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Abstract 

Metabolomics, as an interdisciplinary research area, requires the integration of knowledge 

from different disciplines, such as analytical chemistry, bioinformatics, and statistics. The general 

workflow of metabolome analysis includes sample preparation, data acquisition, data processing, 

data analysis, and metabolite identification. The improvement on any step listed above can affect 

the outcome in metabolomics studies. In the experimental section, tremendous efforts have been 

made to expand the metabolome coverage and produce high-quality data. The bottleneck gradually 

shifts to the section of data interpretation, such as metabolite identification, especially for unknown 

compounds, and appropriate methods used in data analysis. 

In response to these challenges, my thesis research focuses on the improvement of the data 

interpretation section. In the first part, the coverage of the combination of multi-channel chemical 

isotope labeling (CIL) methods was evaluated (Chapter 2). Metabolite information from current 

metabolomics databases was extracted. Based on the functional groups, metabolites were further 

classified into four sub-metabolomes corresponding to four CIL channels, including amine/phenol 

channel, carboxylic channel, carbonyl channel, and hydroxyl channel. From the perspective of 

chemical functional groups or chemical space, near-complete metabolome coverage could be 

achieved using the integration of the four sub-metabolomes. 

The second part targeted putative metabolite identification. Instead of building in-house 

libraries through data acquisition of metabolite standards, in silico prediction using existing data 

was employed. In Chapter 3, to refine the tripeptide identification via exact mass match only, the 

retention time (RT) of chemical isotope labeled tripeptides was predicted based on the RT of 

labeled dipeptides. In Chapter 4, MCID 2.0, an evidence-based metabolome library, was 

constructed using 76 biological reactions. To facilitate the identification of unknown metabolites, 
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theoretical metabolites were predicted based on the metabolites from the KEGG compounds 

database.  

Lastly, a biomarker discovery study on spinal cord injury was conducted using serum 

samples from human clinical trials, aiming to differentiate different severity grades and predict 

neurological conversion as well as motor function recovery. Issues of human samples, such as 

imbalanced sample size from different groups, wide age range, and male-biased sex ratios, were 

required to be solved before statistical analysis. Support vector machine models were built to 

discover potential biomarkers.  
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Chapter 1 Introduction 

1.1 Introduction of metabolomics 

When talking about omics, most people are more familiar with genomics, a study focusing 

on all genes from an organism. With the growth of genomics, scientists started to explore the 

downstream products of genes. These products include ribonucleic acids (RNA) from transcription, 

proteins from translation, and metabolites from food or metabolic reactions catalyzed by enzymes. 

Three more omics, transcriptomics, proteomics, and metabolomics, have thus emerged. Among 

those, metabolomics, linking closely to phenotypes, mainly targets small molecules (usually below 

1000 Da) from cells, biofluids, or tissues. It is widely used in biological research, including 

biomarker discovery1, 2, 3, drug development4, and disease diagnosis5.  

Metabolomics can be further divided into two different strategies, targeted metabolomics6 

and untargeted metabolomics1 2. Targeted metabolomics requires prior hypothesis and focuses on 

a set of particular molecules, ranging from several to hundreds. Since the target analytes are 

predefined, the sample preparation methods can be specifically optimized to decrease the dominant 

compounds. And the downstream metabolite identification and biological interpretation is also 

relatively simple. 

As a comparison, untargeted metabolomics profiles the whole metabolome aiming to cover 

as many compounds as possible at the same time. Advanced separation methods are usually 

coupled to reduce sample complexity. As a result, large amount of data were also generated. The 

following analysis also becomes more complicated than targeted metabolomics. Acquired 

compounds include both the known metabolites and unknown ones, resorting to not only in-house 

database, but also online metabolomics database, even in silico ones. Through comparing 

biological samples from different conditions, like healthy volunteers and patients, untargeted 
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metabolomics can generate new hypotheses, making it a discovery-oriented approach. So in the 

following parts, we focus more on untargeted metabolomics.  

  

1.2 Current technology 

Currently, two most popular technologies in untargeted metabolomics are mass 

spectrometry (MS) and nuclear magnetic resonance (NMR) spectroscopy. Mass spectrometry has 

gained the popularity due to its excellent sensitivity and great coverage. It is a type of analytical 

instruments which acquires mass to charge ratio (m/z) information of positive charged or negative 

charged ions. Mass spectrometers can be roughly divided into three parts, ion source, mass 

analyzer, and detector.  

First, molecules need to be ionized in ion source. Electron ionization (EI), electrospray 

ionization (ESI), and matrix-assisted laser desorption/ionization (MALDI) are routinely used in 

metabolomics. Among these, EI is one of the hard ionization methods, which applies relatively 

high energy on gas-phase molecules, resulting in large degrees of fragmentation and detailed mass 

spectra. One disadvantage of EI is that intact molecular ions are hard to be preserved from high 

energy electron beam.  

As a comparison, ESI is one of the soft ionization techniques. Soft ionization generally 

impacts relatively low energy on target analytes, leading to less fragmentation. Molecular ions 

often can be observed in mass spectra, facilitating metabolite identification. In ESI, the sample 

solution first forms small-charged droplets. With the evaporation of solvent, the droplet size 

gradually decreases, but the surface charge density continuously increases. This can cause 

Columbic repulsion and generate gas phase ions.7 One disadvantage of ESI is that metabolites are 

liable to ion suppression during the ionization competition process.  
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MALDI is another soft ionization technique. Before the ionization samples need to be 

mixed homogeneously with a large amount of suitable matrix. The mixtures are coated to a plate. 

Then the matrix can absorb energy from a pulsed laser. Both samples and some matrix materials 

are vaporized from the plate. At the same time the charge is transferred from ionized matrix to 

sample, generating ionized analytes in gas phase. 

Mass analyzers commonly used in metabolomics include, but are not limited to, quadrupole, 

time-of-flight (TOF), ion trap, orbitrap, and Fourier transform ion cyclotron resonance (FTICR). 

Different analyzers should be selected based on the research object. Mass range and resolving 

power (resolution) should be taken into consideration. For example, if the element composition of 

target analytes needs to be determined, high resolution mass analyzers, like FTICR and orbitrap, 

should be selected. Another example is using ion trap mass analyzers to acquire MSn spectra. MSn 

refers to the product ions from previous stage submitted to fragmentation again, which can be used 

for structure identification. Ion trap mass analyzers can trap ions, detect ions, and isolate ions of 

interest. The isolated ions can be fragmented by collision with neutral molecules. Multiple 

isolation and CID experiments can be performed on the product ions from each round until desired 

MSn level. Multiple mass analyzers can also be combined as hybrid systems. For example, TOF 

can be coupled to quadrupoles as Q-TOF8, a linear trap can also be coupled to an orbitrap mass 

analyzer9.  

Different chromatography techniques can be coupled to MS to further improve the 

metabolome detection, such as gas chromatography (GC), liquid chromatography (LC), and 

capillary electrophoresis (CE). If the target analytes are thermally stable and volatile, GC-MS is a 

great choice to profile samples. For nonvolatile compounds, derivatization is necessary to increase 

their volatility and stability at high temperature. Since GC-EI-MS instruments are highly 
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standardized, the MS/MS spectra are highly reproducible across different instruments, which 

facilitates metabolite identification by matching the experimental spectral to external libraries or 

software, such as NIST (https://chemdata.nist.gov/). For example, Jiye et al. have proposed a 

workflow to extract and analyze human plasma sample using GC-MS.10 Five different extraction 

solvents were first optimized. After extraction, samples were submitted to methoxymation and 

following trimethylsilylation. Derivatized samples were then analyzed by GC-MS. After 

optimization, more than 500 peaks could be detected. Among these, 80 could be identified. The 

precision and linearity of 32 endogenous metabolites were also evaluated. Another example is that 

Song et al. employed GC-MS to analyze breathe samples for discovering biomarkers of non-small 

cell lung cancer.11 Breathe samples were collected from 43 patients and 41 normal controls. 

Around 100 volatile organic compounds were detected. Compared to the control group, two 

metabolites, 1-butanol and 3-hydroxy-2-butanone, significantly higher in the patient group, 

indicating they could be potential biomarkers for distinguishing lung cancer patients at early stage 

or late stage.  

Compared with GC-MS, the sample preparation in LC-MS is relatively simple and the 

environment temperature during data acquisition is lower. Through selection or combination of 

different columns, such as reverse phase chromatography (RPLC) for less polar metabolites or 

hydrophilic interaction chromatography (HILIC) for polar and ionic metabolites, targeted and 

untargeted metabolomics can be performed. For example, Wang et al. adopted LC-ESI-MS 

technology to study type 2 diabetes mellitus (DM-2).12 34 human plasma samples from type 2 

diabetes mellitus patients and 35 human plasma samples from healthy control were collected. 

Based on prior knowledge, phospholipids were targeted in their research. A diol column was 

employed to separate phospholipids. After data acquisition, principal components analysis (PCA) 

https://chemdata.nist.gov/
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and partial least squares-discriminant analysis (PLS-DA) were used for distinguishing the patient 

group from healthy group and finding potential biomarkers. Other separation methods can also be 

coupled to MS. For example, CE displayed superior separation efficiency. But the poor 

reproducibility limits its application in metabolomics, especially when dealing with complex 

biological samples.13  

Several advantages of NMR, such as excellent reproducibility, simple sample preparation, 

non-destructive measurements, make it also a popular technique in metabolomics. In a magnetic 

field, the atom nuclei can absorb energy to achieve excitation state. Then the re-emission energy 

can be recorded as signal for further analysis. NMR can be further classified based on the target 

atom nuclei. The most common target in NMR is 1H on account of its high natural abundance. For 

example, Jung et al. proposed an approach to use 1H NMR to separate the beef based on their 

geographical origin, including the United States, Australia, Korea, and New Zealand.14 After data 

collection, data overview was illustrated by PCA. Orthogonal projections to latent structures-

discriminant analysis (OPLS-DA) was used for separate beef samples from different origins. 

Significant metabolites were selected by one-way ANOVA and following Tukey’s multiple-

comparison tests. The experiment showed that 1H NMR is efficient to discriminate the origin of 

beef samples. Other nuclei can be targeted in NMR, such as 13C, 15N, 31P. For example, 13C-NMR 

can be applied to flux analysis15. To increase the coverage, one more orthogonal NMR 

spectroscopy can be combined forming Two-dimensional (2D) NMR. Homonuclear 2D NMR, 

such as 1H-1H total correlation spectroscopy16, and heteronuclear 2D NMR, such as 1H-13C single 

quantum coherence17, are available for metabolomics studies.  
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1.3 The workflow of LC-MS-based untargeted metabolomics 

The workflow of untargeted metabolomics generally contains five steps, showed in Figure 

1.1. The metabolites lost in experiment steps or related information lost in following steps can 

undermine the integrity of sample information. Thus, we should pay attention to the experiment 

section as well as the analysis section. 

 

Figure 1.1 Workflow of LC-MS based untargeted metabolomics. 

 

1.3.1 Sample preparation  

Sample preparation mainly focuses on extracting analytes from original samples and 

reducing potential interferences. In untargeted metabolomics, researchers attempt to separate 

metabolites as many as possible from cells, biofluid, or tissues, and remove large molecules like 

proteins at the same time. Sample preparation can be classified into two main groups: label-free 

and chemical derivatization methods. 
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1.3.1.1 Label-free methods 

Label-free methods are widely used in untargeted metabolomics. The sample preparation 

is relatively simple, facilitating its application especially in data acquisition of large-scale 

metabolomics projects. It is also less complicated to couple with robotic systems18, reducing 

potential inconsistency or mistakes induced by human operation. As we all known, metabolites 

are highly diverse in physical properties and chemical properties. Consequently, different LC 

separation methods and ion modes should be combined to fully acquire metabolome data. 

Generally, to achieve high metabolome coverage, reverse phase liquid chromatography (RPLC) 

and hydrophilic interaction liquid chromatography (HILIC) in both positive ion mode and negative 

ion mode should be combined to acquire data.  

RPLC is commonly used in metabolomics. The stationary phase of RPLC consists of alkyl 

chains (such as C4, C8, and C18) bonded to silica column, generating a hydrophobic environment. 

The mobile phases in RPLC are more polar, such as water, acetonitrile (ACN), and methanol. The 

stationary and mobile phases make RPLC retain hydrophobic molecules. The hydrophilic 

molecules are eluted by polar mobile phase at earlier time. With the increase of organic solvent 

percentage in mobile phase, less polar molecules can be eluted later. Gray et al. have proposed a 

robust workflow using RP-UPLC to profile the large-scale urine samples.19 The robustness and 

repeatability were  tested by 1000 consecutive injections of human urine samples. The relative 

standard deviation of 71% and 92% metabolites in QC samples were below 15% and 30%, 

respectively, indicating this workflow is capable for large-scale metabolomics study.  

As we mentioned before, HILIC is required to provide better separation for hydrophilic 

and ionic metabolites. Similar to normal phase liquid chromatography, HILIC also adopts polar 
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stationary phase, like silica, amino20, cyano21, and amide22. But the mobile phase used in HILIC is 

close to RPLC, such as ACN, methanol, and water. Compared with the non-polar mobile phase in 

normal phase liquid chromatography, the major advantage of HILIC is that metabolites from 

biological samples can be well dissolved in its solvent system. Although HILIC usually presents 

poor reproducibility and peak shapes, it is still a complementary approach to RPLC. Tolstikov et 

al. have proposed a method using HILIC-ESI-ion trop to detect polar metabolites.22 Two HILIC 

columns (Polyhydroxyethyl A and TSK Gel Amide 80) with different modifications and coatings 

were investigated. The separation of 12 polar standards were first evaluated on these two columns. 

Then the phloem samples were also tested. The detected polar metabolites included 

oligosaccharides, glycosides, amino sugars and so on. Sriboonvorakul et al. employed HILIC to 

detected small organic acids from plasma and urine samples related to acidosis.23 In their method, 

all eight small acids achieve high accuracy and precision.  

To achieve high metabolome coverage, RPLC and HILIC should be combined for detecting 

both hydrophobic and hydrophilic compounds. Contrepois et al. investigated the performance of 

five C18 RPLC columns.24 As complementary, five HILIC columns at acid, neutral, and basic 

conditions were also tested. Taking RPLC-MS alone as reference, the combined method could 

detect 44% and 108% more features in urine samples and plasma samples, respectively. Ivanisevic 

et al. developed an approach that applied the same extraction method on both RPLC-MS in positive 

ion mode and HILIC-MS in negative ion mode to overcome limited sample volume.25 Different 

sample types, including bacterial cells, human plasma, and human cancer cells, were evaluated. In 

each sample type, more than 30,000 features were able to be detected.  
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1.3.1.2 Chemical derivatization methods 

Chemical derivatization methods require specific reagents to react with a subset of 

metabolites sharing similar chemical properties. Since only a sub-metabolome is extracted after 

derivatization reaction, the ion suppression for remaining metabolites is reduced. Besides, 

derivatization reagents can also increase sensitivity and improve separation of target analytes by 

modifying their physical properties. For example, dansyl chloride (DnsCl) can be used for labeling 

amine or phenol groups, showed in Figure 1.2.26 After derivatization, the aromatic rings from the 

labeling tag can improve the retention of labeled compounds on RPLC, especially for those polar 

metabolites or ionic metabolites, which can simplify the requirement for multiple separation 

methods or instrument. Compared with label-free method, the application on 20 amino acids 

demonstrated that dansyl derivatization could increase the signal 10-fold to1000-fold increase even 

with 100-fold less injection amount. Besides, these amino acids were better spread on the 

chromatography. Moreover, 13C dansylated pooled samples serving as internal standards could be 

mixed with 12C dansylated individual samples. Instead of comparing the absolute signal intensity 

or peak pairs like label-free methods, relative ratio of 12C/13C peak pairs could be used for 

quantification and produce less variation. Urine samples after derivatization were also tested with 

a 12 min fast LC gradient, and 672 metabolites were detected.  

Since derivatization usually only targets a subset of metabolites, to cover the whole 

metabolome, multiple derivatization methods should be incorporated together. Besides the amine 

or phenol groups we mentioned before, DnsCl can also be used to label metabolites containing 

hydroxyl groups.27 A liquid-liquid extraction step was employed to extract hydroxyl metabolites 

into organic phase. And 4-dimethylaminopyridine (DMAP) was used as base to active dansylation. 

More than 3000 peak pairs could be detected in urine samples by this method. Another important 
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functional group, carboxylic acid, can be derivatized by p-dimethylaminophenacyl (DmPA) 

bromide.28 This approach was able to obtain more than 2500 carboxylic acids related metabolites 

from human urine samples.29 To profile carbonyl (for both aldehyde and ketone) submetabolome, 

dansylhydrazine (DnsHz) can be used as derivatization reagents. In this method, 1737 common 

peak pairs could be detected in 6 replicates. Other functional groups, such as thiols30 31, can also 

be derivatized to facilitate detection.  

 

 

Figure 1.2 Using dansyl chloride to label primary, secondary amines and phenols. 

 

1.3.2. Data acquisition  

After metabolites separated by LC systems, they are submitted to mass spectrometers to 

convert the chemical concentration information into digital format. As mentioned before, 

metabolites are first ionized at ion source. Then, ions with different m/z are separated by the mass 

analyzers. At last, the detectors capture the ions and record the signal. If the metabolite 
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concentration is high, the signal also increases. There are multiple choices for mass analyzer 

selection, including quadrupoles, ion traps, time-of-flight (TOF), orbitrap et al. Current mass 

spectrometers tend to couple multiple analyzers together, such as ESI-Q-TOF (Impact II from 

Bruker) and ESI-Q-Orbitrap (Q Exactive from Thermo Fisher Scientific) employed in the projects 

of this thesis. A demonstration of Q-TOF instrument is shown in Figure 1.3. A time-of-flight mass 

analyzer replaces the third quadrupole in QQQ. In full scan mode, both the first quadrupole (Q1) 

and the second quadrupole (Q2) perform radio frequency (RF) only to let all ions pass through. 

After ions arrive at the TOF tube, a pulse voltage is applied at extractor to generate the same initial 

ion kinetic energy for all ions. Ions with larger m/z gain less speed compared to ions with lower 

m/z, leading to longer fly time in TOF chamber and later arrival at detector. The time from 

extractor to detector is measured for calculating m/z. Q-TOF can also be used for acquiring MS/MS 

spectra. Q1 can perform either RF only or selection of specific mass window. The ions transmitted 

from Q1 are collided with neutral gas molecules in Q2 acting as collision cell. Then the fragment 

ions are separated by TOF mass analyzer and recorded by detector as MS/MS.32 Several 

advantages, such as excellent mass range, fast scan speed, great accuracy, relative high resolution, 

and acceptable price make Q-TOF a great choice for metabolomics work.  
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Figure 1.3 The demonstration of Q-TOF. 

 

In Q Exactive, after ionization, ions are transferred to a quadrupole mass filter. This 

quadrupole connected to a C-trap. Ions in C-trap can further travel to higher-energy C-trap 

dissociation (HCD) collision cell for fragmentation or orbitrap for m/z detection. Similarly, Q 

Exactive can also perform full scan mode to collect MS spectra. Ions from ion source pass through 

the quadrupole with RF only mode. After they are collected and stabilized at the C-trap, they are 

further sent to the orbitrap for detection. In orbitrap, ions are trapped in an orbital motion along 

the axial central electrode. And their frequency of rotation is related to m/z. Through resolving the 

oscillation frequencies, the m/z of ions can be calculated. If MS/MS spectra are required for 
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collection, ions of interest are selected by the quadrupole and other ions are filtered. Then the ions 

pass through the C-trap to the HCD collision cell for collision induced fragmentation. Next, 

fragment ions are sent to C-trap for stabilization. And the last step is the same with full scan mode, 

fragment ions are injected to orbitrap for m/z detection. The mass resolution, sensitivity, mass 

measure accuracy of orbitrap is excellent.9 Compared with FT-ICR, the maintenance is relatively 

simpler and more affordable. One limitation for orbitrap is the trade-off between scan speed and 

resolution or accuracy.  

 

1.3.3. Data processing  

Due to the complexity of biological samples, untargeted metabolomics usually generate 

large amount of data, which challenges the data processing and data analysis. The data processing 

workflow usually covers following steps: peak picking, peak alignment, retention time correction, 

and filling missing peaks. XCMS is one of the widely used programs to process metabolomics 

data.33 In peak detection, the data on mass range was cut into small mass unit. For each unit, the 

chromatogram was constructed. To remove background influence, a second order derivative 

Gaussian model was employed to select integrated peak. These detected peaks were submitted to 

peak matching across different samples. In this step, XCMS uses kernel density estimator to 

calculate peak distribution and then dynamically set the retention time boundary for peaks which 

might come from the same metabolites. Sample group information was also used to remove 

insignificant peaks. The peaks presenting more 50% in at least one group would be kept. Then 

peaks showed in most samples, called “well-behaved” peak groups, were selected for retention 

time correction. If there are more than one peak in the group form one sample, the one with highest 

intensity is selected. A nonlinear algorithm was applied for retention time correction. After the 
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first-time correction, more “well-behaved” peak groups could be identified. To improve alignment 

precision, the correction steps can be repeated several times. In last step, the missing peaks were 

retrieved from the raw data based on the m/z range and retention time region.  

A different data processing workflow was applied for chemical isotope labeling method. 

Since both the light labeling and heavy labeling peaks are presented in acquired data, the 

constructed peak pairs from different isotope labeling instead of chromatography peaks can be 

used to extract metabolite information. IsoMS is an example for processing chemical isotope 

labeled metabolomics data.34 First, the raw data generated from LC-MS is converted to centroid 

mode, containing RT, m/z, and intensity. Then, IsoMS pairs up the light labeling and heavy 

labeling ions based on the given mass difference and tolerance window. Different confidence 

levels are determined by isotopic pattern. If the isotopic patterns of both ions can be found and are 

the same, they are classified as Level 1 peak pairs. If only one isotopic pattern can be found, the 

peak pairs are classified as Level 2. If both isotopic patterns are missing, they are considered as 

Level 3. Only Level 1 and Level 2 peak pairs are submitted to next steps. Since the [M+H]+ is 

usually the dominating form for labeled metabolites, if [M+H]+ form can be found in data, other 

adducted ions (like [M+Na]+, [M+K]+, and [M+NH4]
+), dimers, or in-source fragmentation are 

filtered. Background peak pairs can also be removed by manually assigning their m/z into a .CSV 

file, isMZBackground. After filtering, peak pairs from the same metabolite presenting in multiple 

spectra are grouped together. At last, the same peak pairs detected in different samples are aligned 

based on the RT and mass tolerance window defined by users. The aligned data is ready for data 

normalization and following data analysis. 

The relative quantitation data obtained from data processing cannot be used for data 

analysis directly, since the acquired intensity is largely affected by sample size, sample weight, or 
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sample total concentration. For example, the urine concentration is highly influenced by many 

factors, such as fluid intake and diet. As a result, data normalization is required to scale the overall 

sample concentration.35 Data normalization can be classified into pre-acquisition normalization 

and post-acquisition normalization.36 Generally, the pre-acquisition normalization is employed 

between sample preparation and data acquisition. And the post-acquisition normalization is 

applied after data processing. In pre-acquisition normalization, sample volume or sample size is 

adjusted based on the measured quantities to balance the total sample concentration. For example, 

in urine sample, creatinine concentrations can be considered as reference for total urine 

concentrations.37 A higher creatinine concentration indicates more concentrated urine sample. Less 

sample volume is taken from sample with higher concentration. But in other biological samples, 

no similar reference compound like creatinine in urine can be used for normalization. Other 

methods, such as cell count for cell samples, Na+ concentration in sweat samples38, and UV 

absorbance39 have been developed. The UV absorbance is a more universal approach and can be 

applied to different sample types, including but not limiting to urine samples39, E. coli samples40, 

and sweat samples41. The benefit of pre-acquisition normalization is that instruments can provide 

comparable responses for the corrected samples, especially in MS-based platform. The acquired 

metabolite signals are not only affected by the concentration in biological samples, but also 

influenced by ionization efficiency and ion suppression effect. This leads to a nonlinear 

relationship between the acquired signals and metabolite concentration. Another advantage is that 

pre-adjusted sample total concentration can prevent signal saturation and sample carryover. If the 

sample volume is not well-determined, the samples with higher concentration are easier to reach 

saturation when the sample volume is optimal for more diluted samples. The major disadvantages 

of pre-sample acquisition are the requirements of extra experiment steps and extra amount of 
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samples to measure reference quantities. In large scale metabolomics project, extra experiment 

step means additional time, additional effort, and a higher chance to induce operation caused error. 

Simplifying the pre-sample acquisition methods is also important.  

On the contrary, post-acquisition normalization does not require any extra experiment step. 

It is also called as data-driven normalization. After the quantitative information is extracted from 

data processing, normalization can be applied. Warrack et al. introduced MS total useful signal 

(MSTUS), the total intensity of peaks shared by all samples, as the reference for normalization.35 

Other scale factors include MS total signal, MS group useful signal, selected ion count for all 

metabolites, median fold change, specific gravity, etc.36 Since the normalization methods are 

employed after data acquisition, the experimental and instrumental variabilities can be corrected. 

As mentioned before, no extra experiment step is involved, but it cannot reduce the influence from 

ionization efficiency and ion suppression effect.  

The pre-acquisition and post-acquisition normalization methods can be combined. Chen et 

al. have proposed the combination of creatinine as pre-acquisition normalization and MSTUS as 

post-acquisition normalization for urine samples.42 To demonstrate the normalization effect, urine 

samples were serially diluted. The performance of no normalization, using all MS signals as 

normalization, using MSTUS as normalization, using creatinine value as normalization, 

combining creatinine value and all MS signals as normalization, combining creatinine value and 

MSTUS as normalization were compared. Their experiments demonstrated that the combined 

methods can effectively reduce the non-biological difference.  
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1.3.4 Data analysis 

The data analysis in metabolomics covers both statistical methods and machine learning 

techniques. These methods cover univariate analysis and multivariate analysis with both 

unsupervised and supervised methods. Univariate analysis43 can be used for selecting significantly 

changed metabolites between different groups. Different analysis methods require different 

assumptions44. For example, dataset should follow normal distribution when using Student's t-test. 

If the dataset does not meet the requirement, nonparametric tests, such as Wilcoxon rank-sum test, 

can be employed. Among unsupervised methods, principal component analysis (PCA) is the most 

widely used in metabolomics. Through dimension reduction, PCA can present the data overview, 

which facilitates researchers to check data quality. The quality control (QC) samples should be 

closely clustered together in PCA plot. It can also assist to remove outliers.45 After checking data 

quality and selecting significant changed metabolites, supervised methods, such as PLS-DA, can 

be applied to build model and discriminate metabolites as potential biomarkers. In recent years, 

machine learning methods have become more and more popular. For example, Mahadevan et al. 

compared the performance of PLS-DA and support vector machines (SVMs) on human urine 

samples from healthy volunteers and Streptococcus pneumoniae patients.46 It demonstrated that 

SVM could build better predictive model and generate higher accuracy on classification between 

healthy and disease groups. Date et al. applied deep neural networks (DNNs) on the classification 

of geographical origins of yellowfin goby.47 Two NMR dataset containing water-soluble 

metabolites and methanol-soluble metabolites were tested. The prediction result showed that the 

DNN outperformed the PLS-DA and was close to the overall performance of SVM.  
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1.3.5 Metabolite identification 

Unlike other omics containing generic reference, there is no prior knowledge for metabolite 

identification in metabolomics. The high diversity of metabolites makes identification even more 

difficult. To identify metabolites, researchers can compare the experimental data with reference 

data from in-house libraries or online databases. In-house libraries refer to the experimental data 

and reference data from chemical standards that are acquired at the same conditions. According to 

Metabolomics Standards Initiative (MSI), metabolite identification can be classified into four 

different levels48. Level 1 is identified compound, requiring at least two orthogonal pieces of 

information from chemical standards, including but not limiting to accurate mass, retention time, 

and MS/MS spectra. These data should be acquired at the same experimental conditions. Level 2 

is considered as putatively annotated compound. The reference data can come from external 

laboratories or literatures. Level 3 is putatively characterized compound classes. It needs one piece 

of information, which may not be able to exclude other candidates. For example, if only accurate 

mass is used for identification, compounds sharing the same chemical formula could never be 

filtered. Level 4 represents metabolites that were detected in biological samples, but remained as 

the unknown.  

Among the information for identification, retention time is determined by the LC 

conditions. The selection of mobile phase, flow rate, different columns, or temperature can 

influence RT. MS/MS spectra except EI spectra usually vary across different platforms. These two 

can be acquired from in-house laboratories, compared with online database, or predicted from 

algorithm. Accurate mass is more consistent from different laboratories or different instruments. 

And it can be directly calculated with a given formula. 
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1.3.5.1. Databases for metabolite identification 

Since chemical standards are difficult to collect sometimes, reference data from external 

databases or algorithm-based prediction are necessary for metabolite identification. To use 

accurate mass to identify metabolites, researchers can obtain it from metabolomics databases, such 

as Human Metabolome Database (HMDB)49 and Kyoto Encyclopedia of Genes and Genomes 

(KEGG), or from chemical databases, such as PubChem50 and ChemSpider51. A summary of 

commonly used databases is shown in Table 1.1. Take HMDB as an example, HMDB mainly 

focuses on human metabolome. It enrolls three types of data: 1) chemical data, such as chemical 

taxonomy and physical properties; 2) clinical data, such as normal concentrations, abnormal 

concentrations, and associated disorders & diseases; 3) molecular biology/biochemistry data, such 

as cellular position and pathway information. The total number of metabolites in HMDB reaches 

114,100, including detected and quantified metabolites, detected but not quantified metabolites, 

expected metabolites, and predicted metabolites. Only the number from two categories of the 

detected metabolites is listed in Table 1.1.  

For chemical databases, small molecules presented in nature or synthesized by researchers 

are included. For example, PubChem is an open database hosted by the US National Institutes of 

Health (NIH).50 Researchers can upload their experimental data and facilitate other users to search. 

PubChem mainly focuses on small molecules, large molecules like nucleotides and chemically-

modified macromolecules are gradually enrolled. Currently, there are 110,636,827 compounds in 

PubChem.  

To putatively identify unknown compounds which may not exist in databases above, 

researchers can search the accurate mass against predicted database. MyCompoundID52, an 

evidence-based metabolome library (EML), is composed of potential products of known 
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metabolites. 76 metabolic reactions, such as oxidation, acetylation, and deacetylation, were applied 

on 8021 metabolites from HMDB for predicting products. 375,809 predicted products were used 

to construct the one-reaction database. The predicted compounds in one-reaction database were 

considered as substrates for further prediction to generate the two-reaction database. The two-

reaction database consists of 10,583,901 predicted compounds in total.  

 

Table 1.1 The overview of commonly used databases in metabolomics. 

 
Type Number Link 

HDMB metabolites 23,153 https://hmdb.ca/ 

KEGG 
Compound 

metabolites 18,844 
https://www.genome.jp/kegg/compou
nd/ 

MetaCyc metabolites 17,422 https://metacyc.org/ 

PubChem 
small 

molecules 
110,636,827 https://pubchem.ncbi.nlm.nih.gov/ 

ChemSpider 
small 

molecules 

111 million 
chemical 
structures 

https://www.chemspider.com/ 

ChEBI 

small 
molecules 

of biological 
interest 

59,389 https://www.ebi.ac.uk/chebi/ 

DrugBank53 drugs 14,575 https://go.drugbank.com/ 

MyCompoundID 
predicted 

metabolites 

375,809 in 
one-reaction 
database, 
10,583,901 in 
two-reaction 
database 

http://www.mycompoundid.org/myco
mpoundid_IsoMS/ 

 

Besides accurate mass, MS/MS spectra can also be used for characterizing molecules. 

Researchers can identify metabolites by matching between experimental MS/MS spectra and 
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reference spectra. But the features of MS/MS spectra are influenced by many conditions, such as 

dissociation techniques, dissociation energy, and platforms. The same compound acquired from 

different experimental conditions can produce different spectra. For example, in collision-induced 

dissociation, with the increase of collision energy, more smaller fragment ions appear in spectra, 

and the ratio of these smaller fragment ions also likely rises. To achieve correct identification, 

ideally, the reference spectra data should be acquired using the same instrument. When matching 

reference spectra from online database, users should select spectra acquired at the same or similar 

conditions. Currently, there are a few mass spectrum databases available, including but not limiting 

to HMDB (https://hmdb.ca/spectra/ms_ms/search), NIST (https://chemdata.nist.gov/), MassBank 

(http://www.massbank.jp/), and mzCloud (https://www.mzcloud.org/).  

 

1.3.6. Biological interpretation 

After identifying the acquired signals as metabolites, researchers can interpret the 

biological meaning of designed experiments. The relationship between metabolites or between 

metabolites and other biologically active materials, such as enzymes and genes, can be revealed. 

Correlation based network analysis is a common approach used for omics data analysis. The 

correlation change of different metabolites from two experimental conditions can provide clusters 

of metabolites sharing the same patterns. Fukushima developed an R package, DiffCorr, using 

Fisher's z-test to discover differential correlations.54 Two datasets were used for demonstrating its 

application. The first dataset is gene expression of acute lymphoblastic leukemia and acute 

myeloid leukemia samples. And the second dataset is metabolomics data between flavonoid-

deficient Arabidopsis thaliana and the wild-type.  
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Another approach is to incorporate the metabolite information into metabolic pathway. 

Instead of addressing metabolite change on their own in univariate analysis, several metabolites 

from the same pathway are analyzed together via enrichment analysis. The pathway information 

can be obtained from reference databases, such as KEGG55, MetaCyc56, and SMPDB57. Kankainen 

et al. presented metabolite pathway enrichment analysis (MEPA) to analyze metabolite function 

at the systematic level.58 Metabolomic data on twin pairs with discordant body weight were used 

and demonstrated MPEA could discovery altered metabolic pathways. Currently, several tools 

have been under development for pathway enrichment analysis (such as MetaboAnalyst59 and 

MetScope60) and visualization (such as Cytoscape61).  

 

1.4 Scope of the Thesis 

This research focuses on method development on the data analysis section to increase 

metabolome coverage. 

In Chapter 2, the theoretical coverage from metabolome database of four sub-metabolomes 

and the experimental coverage from biological samples was analyzed. 

In Chapter 3, the retention time of chemical isotope labeled tripeptides was predicted to 

increase the identification accuracy. 

In Chapter 4, theoretical metabolites were predicted based on the biological reactions to 

facilitate the unknown compound identification.  

In Chapter 5, human serum samples from patients with acute spinal cord injury were 

analyzed to differentiate patients from different severity and predict neurological conversion as 

well as motor function recovery.  
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Chapter 2 Metabolomic coverage of chemical-group-submetabolome analysis: group 

classification and 4-channel chemical isotope labeling LC-MS 

2.1 Introduction 

Because of great diversity of chemical and physical properties of metabolites present in a 

complex metabolome sample, conventional liquid chromatography mass spectrometry (LC-MS) 

approach of metabolome analysis relies on the use of multiple LC and MS conditions to increase 

the number of metabolites detectable or the metabolome coverage. For example, the combination 

of reversed-phase (RP) LC column for separation of relatively hydrophobic metabolites and 

hydrophilic interaction liquid chromatography (HILIC) column for separation of relatively 

hydrophilic metabolites, along with positive and negative ion MS detection, allows the detection 

of different types of metabolites.62 This approach has the advantage of using a simple workflow 

with readily available instrument and software for metabolite detection and data analysis and thus 

can be easily implemented. However, this approach has the shortcomings of limited metabolome 

coverage due to low detectability of many metabolites and limited quantification accuracy due to 

the lack of suitable internal standards for a vast majority of metabolites. Chemical isotope labeling 

(CIL) LC-MS offers a means of overcoming these limitations.63 

CIL LC-MS metabolome analysis is a divide-and-conquer approach where the metabolites 

are divided into different chemical groups (e.g., amines, acids, etc.), instead of dividing them 

according to physical properties such as hydrophobicity and ionic property.26,64 Each group of 

metabolites is chemically labeled with a suitable reagent, followed by LC-MS analysis. Many 

reagents have been developed for both targeted and untargeted metabolome analysis.65–70 With 

rational design of chemical structures of the labeling reagents, concomitant improvement in both 

metabolite separation and ionization can be achieved, resulting in significant enhancement in 
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metabolite detectability and hence much higher metabolome coverage.26 Using differential isotope 

labeling (e.g., 12C-reagent labeled individual samples spiked with a 13C-reagent labeled reference 

or pooled sample, followed by LC-MS analysis of the resultant mixtures), accurate relative 

quantification of all labeled metabolites in comparative samples can be performed.71 

The presumed disadvantage of CIL LC-MS is the requirement of chemical derivatization 

that may add a complication in sample processing. However, sample processing for metabolome 

analysis often involves multiple steps62,63 and thus a robust chemical reaction (e.g., by merely 

adding a reagent to a sample) may be seamlessly incorporated into the overall workflow, just as it 

is done for protein precipitation (e.g., by adding a solvent to precipitate proteins and then removing 

them), sample normalization (e.g., by creatinine measurement for urine samples), cell lysis (e.g., 

by adding a lysis reagent), metabolite extraction (e.g., by adding a solvent for liquid-liquid 

extraction), etc. Thus, performing chemical labeling, if properly done, should not inconvenient the 

sample handling process. The benefits of improving metabolite detectability and quantification 

accuracy significantly outweigh the addition of an extra labeling step. However, a more 

fundamental question is actually related to the number of labeling reactions we need to do for a 

given sample in order to cover the whole chemical space of the metabolome. Addressing this 

question will allow us to understand the chemical group diversity of a metabolome, prioritize the 

development efforts on labeling chemistries to target certain groups of metabolites, and examine 

the deficiency of current labeling methods to guide future method optimization or new labeling 

method development. 

In this study, we report our investigation of chemical group diversity of compound entries 

in some commonly used metabolome databases. We developed and applied a high-performance 4-

channel chemical labeling approach, based on dansylation for analyzing amines,26 base-activated 
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dansylation for hydroxyls,27 DmPA bromide labeling for carboxylic acids,28 and dansylhydrazine 

(DnsHz) labeling for carbonyl metabolites,64 for the analysis of human plasma as well as yeast 

cells in order to examine the current coverage of these four groups of metabolites in representative 

complex metabolome samples. By comparing the distribution of chemical groups of database 

compounds with those detected in 4-channel CIL LC-MS, we discussed some of limitations of the 

current methods that we hope to stimulate more future research activities to meet the ultimate goal 

of using CIL LC-MS for whole metabolome profiling. 

2.2 Experimental Section 

2.2.1 Chemical group classification 

A Java-based program was developed to classify the compounds in a database according 

to their chemical groups. The workflow of metabolite classification contains five steps (shown in 

Figure 2.1). First, we downloaded the five selected metabolome databases: MyCompoundID 

(MCID),52 HMDB,49 KEGG,55 YMDB,72 and ECMDB.73 MCID is an evidence-based database, 

including the metabolites detected from human sources and the predicted compounds generated 

from these human metabolites after subjecting them to one or two common metabolic reactions 

(MCID-1R as the one-reaction library and MCID-2R as the two-reaction library). In this work, we 

used MCID zero-reaction library for group classification, as the structures of all entries are known. 

HMDB collects detailed information about small molecules such as chemical property data, 

clinical and biochemical data with the initial focus on human metabolome, but has expanded to 

include compounds that may be associated with human (e.g., food, drugs and chemicals of 

environmental resource) as well as some predicted metabolites. KEGG database includes small 

molecules along with their biological processing information such as reactions, pathways and 

related enzymes as well as biological connectivity among the compounds. YMDB and ECMDB 
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focus on the metabolites and pathway information of two widely used model organisms, 

Saccharomyces cerevisiae (yeast) and Escherichia coli (E. coli), respectively.  

 

 

Figure 2.1 The workflow of metabolite classification. 

 

The 2nd step was to extract compound information, including compound names and 

chemical structures, database ID and other information such as source of compound (e.g., drug 

and food) and actual or predicted compound. We then built the chemical substructure patterns of 

functional groups including different patterns for aliphatic and aromatic atoms in molecules (see 

Table 2.1 for the list). Note that thiols are grouped into hydroxyls, as they can be labeled using 

similar chemical labeling reaction conditions. To accurately determine the functional groups (e.g., 

amines vs. amides), the SMARTS (SMiles ARbitrary Target Specification) program 

(www.daylight.com/dayhtml/doc/theory/theory.smarts) was used to construct the exact 

substructure patterns (see Table 2.1).  

 

http://www.daylight.com/dayhtml/doc/theory/theory.smarts
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Table 2.1 Targeted functional groups for each reaction or class and SMARTS substructure 

patterns for determining chemical groups. 

 

 

 

The next step was to filter out the unconventional metabolites which we defined as lipids 

(particularly long-chain lipids), inorganic species and other molecules that are unique to drug, food, 

plant and environmental origins. Although lipids can also be considered as metabolites, they can 

be extracted and analyzed using methods that are different from CIL methods. Thus, in this study, 

we excluded the lipids. HMDB contains superclass information such as those denoted as lipids and 

lipid-like compounds. We used the superclass information to remove lipid and lipid-like 

compounds. Considering some lipids were not removed using the superclass information, 

compounds containing equal to or more than eight-carbon chains with no class information were 

also filtered out as lipids. Then, class information was used to remove flavonoid, coumarin, and 

lignan related plant compounds. Compounds not containing any carbon were filtered out as 
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inorganic compounds. In addition, we removed drugs and environmental compounds. For KEGG, 

any compounds without SMILES structure information were removed. Generic compounds 

representing homologous series were filtered out according to the “Comment” entry. Inorganic 

compounds were removed. Because KEGG also contains lipids, phytochemical compounds and 

others, BRITE, manually generated functional hierarchies55, was used to filter out the un-

conventional compounds. Compounds meeting the three following criteria were kept: 1) 

compounds containing any information of reaction or pathway or module, 2) compounds 

belonging to 08001 and 3) compounds not containing BRITE information. 

The final step of the program was to determine the functional group(s) in a compound 

structure by matching it to different group substructure patterns. We wrote a Java based program, 

SubstrcMatch, which uses chemical structure files (in SMILES format) and substructure patterns 

as input and then generates a .txt file to indicate whether a compound contains the targeted 

functional group. The group classification results from different databases were used for 

metabolomic coverage analyses.  

 

2.2.2 4-Channel labeling 

The general workflow for metabolome analysis using 4-channel CIL LC-MS is shown in 

Figure 2.2. It includes the following steps: 1) sample pretreatment and metabolite extraction, 2) 

generation of a pooled sample by mixing aliquots of all individual samples, 3) dividing a sample 

into four aliquots, 4) applying four isotope labeling chemistries targeting different 

submetabolomes, 5) LC-UV quantification of dansyl-labeled metabolites for pre-data-acquisition 

normalization,39 6) mixing of equal moles of 12C-labeled samples and 13C-labeled pooled sample, 

7) high-resolution RPLC-MS analysis of 12C-/13C-mixtures, 8) data processing including peak pair 
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picking and peak ratio measurement,34,71,74 and 9) metabolite identification based on the use of 

labeled standard library for positive identification75 and the use of other compound libraries for 

putative identification.27,76  

 

 

Figure 2.2 The workflow for metabolome analysis using 4-channel CIL LC-MS. 
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In this work, to demonstrate the performance of the combined analyses of the four 

submetabolomes, human plasma and yeast samples were labeled using the four chemistries in 

experimental triplicates. In this case, a sample was divided into two aliquots. One was labeled with 

12C-reagent and the other was labeled with 13C-reagent, followed by mixing and LC-MS analysis. 

Supplemental Note N1 provides detailed information on sample preparation and labeling. 

 

2.2.3 LC-MS analysis 

The 12C-/13C-labeled mixtures from individual channels were analyzed using a Bruker 

Compact Quadrupole Time-of-flight (QTOF) mass spectrometer (Bruker, Billerica, MA) linked to 

UltiMate 3000 UHPLC (Thermo Scientific, MA). Supplemental Note N1 shows the LC-MS 

conditions used for the analysis. The injection volume for each channel was determined by 

injection amount optimization experiments (shown in Figure 2.2).  

 

2.2.4 Data processing and metabolite identification 

The resulting LC-MS data were processed using a set of in-house developed software 

(Supplemental Note N). Metabolite identification was carried out at three different levels of 

confidence, or three tiers, using IsoMS Pro software and database (Nova Medical Testing Inc., 

Edmonton, Canada). Positive identification as the first tier was based on accurate mass and 

retention time (RT) search against the labeled standard library currently composed of 1060 unique 

human endogenous metabolites, including 711 amines/phenols, 187 carboxyls, 85 hydroxyls and 

77 carbonyls. The second tier identification was based on searching against Linked Identity (LI) 

Library containing metabolic-pathway-related metabolites (2,500 entries extracted from the 

KEGG database) with accurate mass and predicted RT information. These 2nd tier matches were 
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considered to be high-confidence putative identification. For the third tier, accurate masses of peak 

pairs were searched against compound entries in metabolome databases, resulting in putative 

matches; 5,506 entries in HMDB were searched for the plasma samples and 1,123 entries in 

YMDB were searched for the yeast cell samples. The remaining unmatched peak pairs were mass-

searched against the predicted metabolome libraries (i.e., MCID one- and two-reaction libraries). 

2.3 Results and Discussion 

2.3.1 Group classification of database entries.  

We selected some of the commonly used databases for chemical group classification, 

including MCID, HMDB, KEGG, YMDB and ECMDB. We applied the group classification 

program to examine the structures of database compounds and then classify them into different 

chemical groups. We were particularly interested in the hydroxyl, amine, phenol, carboxyl and 

carbonyl groups, as we have already developed the robust labeling methods for labeling these 

groups. These five groups are covered in four channels of submetabolome profiling: hydroxyl (H), 

amine/phenol (A), carboxylic acid (C) and ketone/aldehyde (K)-channel. Thus, using the 

combined results obtained from 4-channel CIL LC-MS, we could compare the group coverage of 

the experimental data vs. the database data. 

Before we applied our group classification program to the compounds in all databases, we 

examined the classification accuracy using the relatively small database, YMDB, where manual 

checking of the program-generated classification results was manageable. Out of the 1107 filtered 

metabolites (i.e., yeast database entries minus the lipids, inorganic species and hydrocarbons), only 

4 metabolites were misclassified, indicating an error of 0.4%. These 4 misclassifications were 

caused by wrong SMILES or resonance structure, as shown in Table 2.2. Thus, the program was 

deemed to be very accurate in classifying chemical structures into different chemical groups. 
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Table 2.2 Misclassified metabolites in YMDB. 

YMDB ID Reason Comment 

YMDB00151 
wrong 
SMILES 

Wrong SMILES in databse: 
OC(C(=O)C(O)=O)C1=CC=CC=C1 
Correct SMILES from PubChem: 
C1C(C(OC1N2C=NC3=C2NC=NC3=O)CO)O 

YMDB01481 
wrong 
SMILES 

Wrong SMILES in database: 
NC1=C(N=CN1C1OC(COP(O)(O)=O)C(O)C1O)C(O)=N 
Correct SMILES from YMDB website: 
NC(=O)C1=C(N)N(C=N1)[C@@H]1O[C@H] 
(COP(O)(O)=O)[C@@H](O)[C@H]1O 

YMDB00659 
resonance 
structure 

 

YMDB00899 
resonance 
structure 

Uncommon resonant structure. Should be amide 
instead of imidic acid.  

 

Figure 2.3 shows the classification results. In all the databases except HMDB, the hydroxyl 

or H-channel covers the highest percentage, i.e., 56.7%, 42.2%, 50.0%, 50.8% and 66.4%for 

MCID, HMDB, KEGG, YMDB and ECMDB, respectively. In contrast, the carbonyl 

(ketone/aldehyde) or K-channel covers the least, i.e., 22.8%, 20.6%, 24.9%, 20.1% and 18.5% for 

MCID, HMDB, KEGG, YMDB and ECMDB, respectively. In total, the four channels can cover 

94.7% of the metabolites in the MCID database containing 2683 filtered metabolites. Similarly, 

for HMDB (5,506 filtered metabolites), KEGG (11,598), YMDB (1,107) and ECMDB (1,462), 

the 4-channel coverage is 85.7%, 86.4%, 85.7% and 95.8%, respectively. Lower percentages found 

in HMDB, KEGG and ECMDB correlate with increased percentages of the ester, amide and 

heterocycle groups. Note that, for the groups of ester, amide, heterocycle, organophosphorus, 

organosulfur and others shown in Figure 2.3, we used a sequential group-elimination approach to 

determine each percentage for clarify (i.e., 100% in total). For example, in Figure 2.3A, after 

eliminating 94.7% of the filtered metabolites (2,683) which can be analyzed by the 4-channel LC-
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MS method, a small number of the remaining metabolites (0.4% of the total) contain the ester 

group. Thus, if an ester submetabolome profiling channel is developed in the future, it can only 

increase the overall metabolome coverage by 0.4%, assuming all hydroxyls, carboxyls, carbonyls, 

amines and phenols, including those also containing ester group, have already been covered by the 

4-channel method. After eliminating the 4-channel metabolites and the ester group, a small number 

of the remaining metabolites (2.1%) contain the amide group. This elimination process applies to 

the remaining groups sequentially. These analyses indicate that, based on the current entries of the 

studied databases, very high coverage of the chemical space, ranging from ~86% to 96%, can be 

achieved using the 4-channel profiling approach. 
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Figure 2.3 Classification of chemical groups of (A) MCID zero-reaction library, (C) HMDB, (E) 

KEGG, (G) YMDB and (I) ECMDB. Sequential class-elimination approach was used to 

determine the remaining groups (i.e., after removing all the 4-channel metabolites, a small 

number of the remaining metabolites contain the ester group. After removing 4-channel 

metabolites and ester-containing metabolites, a few remaining metabolites contain the amide 

group). Percent distributions of metabolites belonging to the four channels including overlapped 

metabolites with two or more functional groups in (B) MCID, (D) HMDB, (F) KEGG, (H) 

YMDB and (J) ECMDB. 

 

2.3.2 4-Channel labeling LC-MS results.  

Figure 2.2 shows a schematic of the 4-channel LC-MS approach. The labeling methods 

allow the conversion of metabolites not retainable in RPLC into relatively hydrophobic derivatives 

that can be efficiently separated using RPLC. In addition, chemical labeling allows the 

enhancement of ionization efficiency by ~10 to ~1000 folds.26  

Figure 2.4A shows the distribution of the absolute intensities of metabolite peak pairs 

detected from labeled plasma samples. Within the dynamic range of the instrument, there is a clear 

trend of an increase in the number of peak pairs detectable as the peak intensity decreases. Thus, 

using a highly sensitive CIL LC-MS method, we can increase the metabolome coverage 

significantly by detecting an increasing number of lower concentration metabolites. Interestingly, 

the four submetabolomes have similar distributions, indicating similar concentration distributions 

of these different groups of metabolites in plasma.  
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A)  

B)  

Figure 2.4 (A) Percentage of peak pair detected in 4-channel LC-MS analysis of plasma as a 

function of peak intensity. (B) Venn diagram of the numbers of peak pairs detected in four 

channels. 

 

To further compare the number of metabolites detected in the four channels, Figure 2.4B 

shows the Venn diagram of the number of peak pairs detected in each channel. Because of lack of 

structure identities for many of the detected metabolites, in this comparison, we assumed that the 
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same metabolite was detected in two channels if the same accurate mass of the intact metabolite 

[i.e., mass of a labeled metabolite minus the mass of labeling tag(s)] was found in the two channels. 

For example, there are 29 peak pairs detected in all four channels as these peak-pair masses minus 

the mass of labeling tag(s) give the same mass; each one of them is deemed to be from the same 

metabolite that were detected four times. This is a conservative approach of determining the unique 

metabolites detected, as one would expect that metabolites with the same mass may have different 

structures (e.g., isomers; see below) and thus belong to different molecules. There are 1961, 2309, 

1702 and 1459 peak pairs detected in the amine/phenol, carboxyl, carbonyl and hydroxyl 

submetabolome, respectively. If we only count the overlapped metabolites as one unique-mass 

metabolite, out of a combined total of 7431 peak pairs detected from the four channels, there are 

6109 unique-mass peak pairs. 

Many of the detected peak pairs can be identified or matched to metabolome databases. 

Table 2.3 shows the number of identified peak pairs from each channel in three tiers. For the 

plasma sample, out of the 7431 pairs detected, we positively identified 326 peak pairs based on 

accurate mass and retention time matches in tier 1. A few of the peak pairs could be matched to 

the same metabolite (e.g., Carbonyl_594, Carbonyl_635 and Carbonyl_657 matched to butanal). 

These matches were manually checked from the LC-MS data and are likely structural isomers of 

one chemical formula. This example suggests that using mass-match to filter out overlap peaks 

from two or more channels, as discussed above, might remove some same-mass metabolites with 

different structures. In tier 2 where authentic standards are not available, but accurate mass and 

predicted RT data are available in the Linked Identity (LI) library, we identified 344 peak pairs by 

mass and RT matches. Thus, a total of 670 peak pairs (9.0%) can be identified as high-confidence 

results (tier 1 and tier 2). In tier 3, the remaining peak pairs not identified in tiers 1 and 2 were 
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mass-searched against the HMDB, MCID-1R and MCID-2R libraries in sequence. There were 

2628, 2851 and 777 peak pairs (35.4%, 38.4% and 10.5%) matched to the three libraries, 

respectively. In total, 6926 peak pairs (93.2%) were either identified or matched to databases. The 

remaining 6.8% of detected pairs may belong to metabolites that are not included in any of the 

searched databases.  

 

Table 2.3 Summary of the number of peak pairs identified or matched against three different 

compound libraries from the human plasma samples analyzed using 4-channel LC-MS. 

 A-
channel 

C-
channel 

H-
channel 

K-
channel 

Total per 
tier 

Tier 1 208 54 23 41 326 

Tier 2 71 157 68 48 344 

Tier 3-HMDB 774 760 449 645 2628 

Tier 3-MCID1R 570 1014 609 658 2851 

Tier 3-MCID2R 168 242 165 202 777 

Total per channel 1791 2227 1314 1594 6926 

 

 

For yeast samples, similar approach was applied for peak pair detection and metabolite 

identification using 4-channel LC-MS. In total, we detected 5641 peak pairs, including 1747 from 

A-channel, 1867 from C-channel, 1006 from H-channel and 1021 from K-channel (shown in 

Figure 2.5). After filtering the same-mass metabolites detected in two or more channels, we have 

4955 unique-mass peak pairs. Table 2.4 summarizes the identification results. From the 5641 peak 

pairs detected, 243 and 188 peak pairs were identified in tier 1 and tier 2, respectively. Thus, a 

total of 431 peak pairs (7.6%) can be identified as high-confidence results (tier 1 and tier 2). For 

tier 3 matches, we found 880, 3442 and 514 peak pairs (15.6%, 61.0%, 9.1%) matched to YMDB, 
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MCID-1R and MCID-2R libraries, respectively. In total, 5267 peak pairs (93.3%) were either 

identified or matched to databases.  

 

Table 2.4 Summary of the number of peak pairs identified or matched against three different 

compound libraries from the yeast cell samples analyzed using 4-channel LC-MS. 

 A-
channel 

C-
channel 

H-
channel 

K-
channel 

Total per 
tier 

Tier 1 123 68 20 32 243 

Tier 2 69 80 18 21 188 

Tier 3-YMDB 297 261 163 159 880 

Tier 3-MCID1R 944 1255 610 633 3442 

Tier 3-MCID2R 99 155 116 144 514 

Total per channel 1532 1819 927 989 5267 

 

 

Figure 2.5 Venn diagram of the numbers of peak pairs detected in four channels in yeast 

samples. 
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It should be noted that the peak intensity ratios measured in the triplicate analysis of 1:1 

12C-/13C-labeled plasma can be used to gauge the accuracy and precision for relative quantification 

of this particular mixture. When plotting the distribution of peak pairs detected as a function of the 

average peak ratio and their RSD (Figure 2.6), most of the peak pairs in four submetabolome 

profiling gave the ratio value close to the expected ratio of 1.0, demonstrating high accuracy. The 

RSD values are less than 20% for more than 95% of the pairs with an average RSD of 5.1% and 

thus the analytical precision was also very high. We note that we did not study the interday and 

intraday repeatability in this work. However, all the individual labeling methods have been used 

in a number of published metabolomics studies where quality control (QC) samples were used to 

gauge interday and intraday repeatability over a number of days. QC samples were clustered tightly, 

indicating excellent repeatability.1 The linearity of peak ratio measurement has been addressed in 

previously reports such as the original paper published on dansylation labeling for amine/phenol 

submetabolome profiling.26 Over 100-fold relative changes could be measured.26 



 
 

 
 

41 

 

Figure 2.6 Distributions of peak pair numbers as a function of (A) averaged peak ratio and (B) 

RSD. Data are presented as mean ± S.D. from experimental triplicate and injection duplicate 

(n=6). 

 

2.3.3 Overlaps of multi-functional metabolites.  

Figure 2.7 shows the Venn diagrams of the numbers of database metabolites belonging to 

individual channels and overlaps among different channels. There are clearly many metabolites 

belonging to two or more channels. Taking the MCID database as an example (Figure 2.7A), there 

are five metabolites in all channels. Most of the overlaps occur for metabolites containing two 
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function groups. However, in our 4-channel LC-MS results, most of the metabolites were uniquely 

detected in only one channel.  
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Figure 2.7 Venn diagram of the numbers of metabolites in four channels from the compound 

entries in (A) MCID, (B) HMDB, (C) KEGG, (D) YMDB and (E) ECMDB. 

 

Much smaller overlaps found can be attributed to the fact that, by design, we developed 

the 4-channel methods with due consideration of minimizing redundant analyses of the same 

metabolite in different channels. For example, in the analysis of the carboxyl acid submetabolome, 

we used 6 M HCl to acidify the sample, followed by organic solvent extraction of the acids. The 

amines and some phenols would be positively charged at this low pH and thus not be extracted by 

the organic solvent. This can be inferred from the analysis of amino acids; all 20 amino acids can 

be readily detected in the amine/phenol channel, but only 2-3 can be detected in the carboxylic 

acid channel. Similarly, for the analysis of the hydroxyl submetabolome, we used an organic 

solvent to extract the neutral metabolites containing hydroxyl groups from the highly acidified 

sample. In the analysis of the carbonyl submetabolome, the labeling solution is acidic under which 

dansylhydrazine preferentially reacts with neutral metabolites containing carbonyl groups. The 

charged species such as metabolites containing both amine and carbonyl groups may not react with 

dansylhydrazine. Another contributing factor might be related to the changed reactivity of a 

functional group in metabolites with two or more groups. For example, we found that several keto-

acids with carbonyl and carboxyl groups conjugated together (e.g., oxaloacetic acid and 

acetoacetic acid) are difficult to be labeled in the carbonyl channel. 

 

2.3.4 Group under-representation.  

While the compound entries in a database are by no means perfect in terms of coverage 

(i.e., not including all metabolome compounds of an organism) and trueness (i.e., the presence of 

false entries), the group classification shown in Figure 2.3 for several databases gives consistent 
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group distributions. For example, the hydroxyl group is by far the largest group, except in HMDB 

where it is the second largest. However, in our experimental dataset, for both plasma and yeast 

samples, the number of hydroxyl-containing metabolites detected is smaller than the other groups. 

This suggests that the overall coverage achieved by the current 4-channel experiments is lower 

than the database-derived theoretical coverage; the exact percentage of reduction is unknown. It 

appears that the sample preparation workflow or labeling reaction of the hydroxyl channel is not 

fully optimized. More development work should be devoted to optimizing the hydroxyl 

submetabolome profiling. 

2.4 Conclusions 

After filtering out the lipids, inorganic species and hydrocarbons that are not targeted for 

analysis by CIL LC-MS, we found that 86% to 96% of the metabolites in the studied databases 

contain one or more of the five functional groups: amine, phenol, hydroxyl, carbonyl and carboxyl. 

Thus, in-depth profiling of these chemical groups can generate a very high coverage of the 

metabolome. We described a 4-channel CIL LC-MS approach to analyze the hydroxyl (H), 

amine/phenol (A), carboxyl (C) and carbonyl (K) submetabolomes, separately.  

For future work, we will need to optimize the current method for hydroxyl submetabolome 

profiling and develop labeling methods to analyze other groups of metabolites currently not 

covered by the 4-channel approach (e.g., esters and amides). We note that the compound entries 

in a current database may under- or over-represent certain groups of metabolites. For example, 

there may be the intermediate compounds of known metabolites that have not been documented, 

as evident from the mass-matches of many predicted metabolites from one or two metabolic 

reactions of known metabolites (i.e., MCID-1R and MCID-2R). As our knowledge of metabolites 

expands with the detection and identification of known unknowns and unknown unknowns, we 
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will surely increase the coverage and reduce the false entries in a metabolome database of an 

organism. We envisage that the 4-channel LC-MS approach, with perhaps additional channels, 

will play an important role in expanding our knowledge of chemical composition of a metabolome. 
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Chapter 3 Retention time prediction of chemical isotope labeled tripeptides on RPLC using 

machine learning methods 

3.1 Introduction 

Short peptides play an important role in biological processes77 and drug discovery78. They 

can act as signal molecules through binding to DNA or DNA-related proteins.79 Stem cell studies 

have demonstrated that short peptides, Glu-Asp-Pro and Lys-Glu-Asp, can regulate the 

proliferation of embryonic and immortalized cells as inhibitors. Meanwhile, Glu-Asp-Pro can 

stimulate the proliferation of normal lymphocytes.77  

LC-MS, widely used in metabolomics for profiling complex biological samples, can be 

employed for short peptide acquisition. Coupled with chemical isotope labeling, the detection of 

short peptides can be achieved to very low concentrations. At the same time, the identification of 

short peptides becomes an issue to be resolved. Information from LC-MS, such as exact mass, 

retention time, and MS/MS spectra, can support identification. To obtain accurate results, retention 

time and MS/MS spectra should be acquired at the same experimental conditions used to build the 

in-house library as reference. But considering the seq diversity of short peptides, gathering all 

standards of short peptides becomes costly. In-silica prediction of either RT or MS/MS can assist 

identification.  

The amino acid composition and chemical descriptors80, 81 of peptides have been used for 

RT prediction. Machine learning methods were also involved in this processing. For example, 

ELUDE adopts a support vector regression model trained by 60 features of peptides. These features 

include modified retention coefficients, peptide length, number of occurrences of amino acid 

sharing specific properties.82 ELUDE in the following version uses a two-step method to predict 

RT of post-translationally modified peptides. RT index of modified and unmodified amino acids 
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was calculated in the first step using linear SVR. Then features derived from the RT index were 

used in the second SVR to predict RT for peptides of interest.83 Artificial neural network-based 

method was also used to predict RT with the composition of amino acids.84 And the chemical 

descriptors were further added to the model to improve accuracy.85 DeepRT employs a deep 

learning model using 20D embedding vectors representing amino acid composition.86  

In this work, to predict RT of chemical isotope labeled tripeptides, we built models using 

support vector regression based on chemical descriptors and labeling information. 360 dipeptides 

were used for building the models and cross validation. The models were further validated by 

tripeptide standards and tripeptide mixture. Since the chemical isotope labeling alters the physical 

and chemical properties of short peptides, the chemical descriptors calculated from labeled and 

unlabeled peptides were compared in RT prediction. Through validating with experimental 

tripeptide data, the mean of RT difference was achieved at 16.1 s using the chemical descriptors 

calculated by labeled tripeptides. 329 and 528 tripeptides can be putatively identified in serum and 

urine samples, respectively.  

3.2 Methods 

3.2.1 Chemicals and Reagents 

Organic solvents for the mobile phase and sample preparation were purchased from 

Thermo Fisher Scientific (Waltham, MA). 12C-DnsCl derivatization reagent and 13C-DnsCl 

derivatization reagent were made in-house according to our previous studies87. The 399 dipeptide 

standards and 10 tripeptide standards were synthesized by LifeTein (Somerset, NJ). XXA 

tripeptide mixture was purchased from GenScript (Piscataway, NJ). And around 5 mg standards 

were measured and dissolved in ACN/H2O (1:1, v/v) to make stock solutions. 
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3.2.2 Sample preparation and derivatization 

For the urine samples, 75 μL of lyophilized human urine standard was diluted with H2O to 

300 μL. For serum samples, 30 μL of serum was mixed with 90 μL H2O and kept in -20℃ fridge 

for 1 hour for protein precipitation. After protein precipitation, it was centrifuged for 15 min and 

the supernatant was collected and dried by a nitrogen blower. The dried serum sample was 

resuspended in 25 μL of H2O for DnsCl derivatization reaction. The derivatization reaction was 

conducted to label the amine group on the N terminal of dipeptides according to a protocol 

developed in our lab with sight modification. In brief, 25 μL of diluted urine samples or 

resuspended serum samples were mixed with 12.5 μL of 250 mM Na2CO3/NaHCO3 buffer. The 

solution was vortexed, spun down and mixed with 37.5 μL freshly prepared 12C-DnsCl (18 mg/mL 

in ACN, for light labeling) or 13C-DnsCl (18 mg/mL in ACN, for heavy labeling), followed by 

vertexing and spinning down. The mixture was incubated in an oven at 40 ℃ for 45 min. Then, 

the incubated solution was mixed with 7.5 μL NaOH solution (250 mM in H2O) to quench the 

excess 12C-DnsCl or 13C-DnsCl at 40 ℃ for 10 min. Lastly, the quenched solution was mixed with 

30 μL of 425 mM formic acid in ACN/H2O (1:1, v/v) to consume the excess NaOH. The 12C-

DnsCl and 13C-DnsCl derivatized products were equally mixed, and the mixture was centrifuged 

for 10 min at 12000 rpm before LC-MS analysis.  

 

3.2.3 In-house database of dipeptides 

20, 40, or 60 dipeptides were mixed and derivatized with 12C-DnsCl with the same 

procedure as sample derivatization for an in-house database. For missing derivative dipeptides in 

each mixed dipeptide solution, the corresponding individual standard was derivatized with 12C-
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DnsCl and collected by the retention time (RT). The RT of each dipeptide was checked manually 

by matching its theoretical m/z. 

 

3.2.4 HPLC-MS condition 

A Vanquish UHPLC Systems (Thermo Scientific) coupled with a Q Exactive HF Orbitrap 

Mass Spectrometers (Thermo Scientific) was used for DnsCl derivatized sample and dipeptide 

standards analysis. An Agilent reversed phase C18 column (100 × 2.1 mm, 1.8 mm particle size, 

95 Å pore size) was used for separation and the column was maintained at 40 ℃. Mobile A 

consisted of 0.1% FA in HPLC grade water and mobile phase B was consisted of 0.1% FA in 

HPLC grade ACN. A total of 18 min gradient was set as follows: 25% B increased to 99% in 10 

min and maintained for 5 min, followed by 3 min equilibrium. The flow rate was set to 0.4 mL/min. 

The Q Exactive HF mass spectrometer was operated under an ESI positive mode for both in-house 

database collection and sample analysis. Electrospray ionization parameters were as follows: the 

spray voltage was at 3.5 kV; the capillary temperature at 320 °C; probe heater temperature at 360 

°C; Full mass scan mode (m/z 220−1800) was used at a resolution of 120k at m/z 200 with around 

1.2 Hz scan rate. The automatic gain control (AGC) target was at 1 × 106 ions with 200 ms 

maximum ion injection time. The sample injection amount was optimized according to the 

maximum peak pair numbers at different injection volumes. For derivatized standards, the 

injection volume is 2 μL. 

 

3.2.5 Data processing 

The original data of the resulting LC-MS data of serum and urine sample was firstly 

converted to “.text” format with MSConvert GUI tool88. The converted data containing 12C/13C 

peak pair information were further processed using IsoMS Pro software (Nova Medical Testing 
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Inc., Edmonton, Canada)89 34. Dipeptide identification in serum and urine was carried out with the 

in-house database of dipeptides. 

 

3.2.6 SMILES generation 

The workflow of dipeptide and tripeptide retention time (RT) prediction is shown in Figure 

3.1. First, the simplified molecular-input line-entry system (SMILES) files, using line notions to 

describe the chemical structure, of dipeptides and tripeptides without chemical labeling were 

generated. The SMILES started from the N terminal to the C terminal. An example SMILES of 

the dipeptide, alanyl alanine (AA), is shown in Figure 3.2. Then, the SMILES of the labeled 

dipeptides and tripeptides were further generated. Since the dansyl chloride chemical labeling 

reaction targets amine and phenol groups, the N terminals, side chain of tyrosine (Y), lysine (K), 

and histidine (H) can be labeled. Peptides without Y, K, or H can only be labeled by one tag on 

the N terminal. The structure and SMILES of labeled AA is shown as an example in Figure 3.2. 

For peptides containing Y or K, both N terminal and side chain can be labeled. The structure and 

SMILES of labeled YA and KA is demonstrated in Figure 3.2. The N-H on the side chain of 

histidine can only be partially labeled, and the side chain with and without labeling were both 

observed. An example of HA labeled by one tag or two tags was shown in Figure 3.2.  
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Figure 3.1 Workflow of dipeptides and tripeptides RT prediction. 
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Figure 3.2 Structure of unlabeled and labeled dipeptides.  

 

3.2.7 Molecular descriptor calculation and filter 

After generating the SMILES of dipeptides and tripeptides, the SMILES was used for 

calculating the exact mass of short peptides with and without labeling with R package ChemmineR 

(version 3.34.1)90. Then, the SMILES was treated as input to calculate molecular descriptors. A R 

package, rcdk91 (version 3.4.9.1), was used to generate molecular descriptors. Then, molecular 
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descriptors containing NA, undifferentiated molecular descriptors, and highly correlated 

molecular descriptors were filtered.  

For each SMILES of labeled and unlabeled short peptides, 287 molecular descriptors were 

calculated. The molecular descriptors of labeled and unlabeled short peptides were processed 

separately. First, molecular descriptors containing NA were filtered. Then, undifferentiated 

molecular descriptors were also removed as they provide the same information. At last, highly 

correlated molecular descriptors (R2 > 0.8) were further excluded. The remained molecular 

descriptors were ready for building models.  

 

3.2.8 Building SVR radial models 

Apart from the molecular descriptors for the last step, the occurrence number of each amino 

acid, the exact mass of peptides, and the labeled tag number were also input as features for building 

the support vector regression (SVR) model using caret (version 6.0-84) package on R. The 

dipeptide dataset was divided into 80% training set and 20% test set. The radial kernel was selected. 

For the training set, recursive backward elimination was applied for feature selection. And 7-fold 

cross validation repeated 3 times was used for tuning parameters, sigma and C, ranging from 2-5 

to 25. Top 20 features were selected for building models based on the root-mean-square error 

(RMSE) of experimental RT and predicted RT from the dipeptide training set and test set.  

𝑅𝑀𝑆𝐸 =  √
∑ (𝑥𝑖 − �̂�𝑖)

2𝑁
𝑖 =1

𝑁
 

 



 
 

 
 

54 

3.3 Results and Discussion 

3.3.1 Overview of dipeptide experimental data and SMILES, tripeptides SMILES 

For the dipeptide dataset, experimental RT of 397 peaks from 360 dipeptides were 

incorporated into the following analyses, as histidine can be either labeled or unlabeled. For 

peptide RT prediction, the side chain of cystines can form dimers via SS-bonds, leading to different 

physical and chemical properties from the rest of the peptides. Cystine-related peptides were 

removed from RT prediction. An overview of dipeptides for experiment and tripeptides for 

prediction were listed in table 3.1. The experimental RT of QF was missing. The tripeptide 

SMILES is consisted of all possible combinations, including fully labeled N-terminal, Y, K and 

partially labeled H.  

 

Table 3.1 The overview of dipeptide and tripeptide data. 

 
1 tag 2 tags 3 tags 4 tags Sum 

Experimental 

dipeptides 
288 100 9 NA 397 

Predicted 

dipeptides 
289 100 9 NA 398 

Predicted 

tripeptides 
4913 2434 444 27 7818 

 

3.3.2 Comparison of experimental RT and predicted RT for the training set and validation 

set  

For the dipeptide dataset, 316 (80%) dipeptides were used for the training model. After 

tuning parameters through cross validation, sigma was selected as 2-5 and C as 23, resulting in the 

lowest RMSE in cross validation. The RMSE of the training set and test set, summarized in Table 



 
 

 
 

55 

3.2, reached 0.158 and 0.249, respectively. The optimization result is shown in Figure 3.3. A 

comparison of the experimental RT and predicted RT of the training set was illustrated in Figure 

3.4a. Most dipeptides are well-aligned on the diagonal. The RT difference is ranging from 0.0029 

min to 0.6105 min, and the histogram of RT difference is shown in Figure 3.4b. We also compared 

the experimental RT and predicted RT of the test set, shown in Figure 3.4c and 3.4d. Overall, the 

difference between the experimental RT and predicted RT of dipeptides met the identification 

requirement.  

 

Table 3.2 The RMSE summary of model performance on a different dataset. 

 
RMSE 

 Labeled SMILES Unlabeled SMILES 

Dipeptide training set 0.158 0.146 

Dipeptide test set 0.249 0.240 

Tripeptide standards 0.182 1.012 

Tripeptide mixture 0.380 0.814 

 

To investigate whether the SMILES of labeled short peptides is necessary for predicting 

RT, we used the SMILES of unlabeled dipeptides to calculate the chemical descriptors and 

predicted RT for labeled dipeptides. The same workflow was followed as the previous model. 

After cross validation in the training set, the parameters sigma and C were chosen as 2-5 and 25 

(showed in Figure 3.3b), respectively. Similarly, the predicted RT of the training set and test set 

using unlabeled SMILES are comparable to experimental RT, shown in Figure 3.4e and 3.4g. The 

distribution of RT difference for both training set (Figure 3.1f) and test set (Figure 3.1h) is also 

similar to the distribution using labeled SMILES. The RMSE is 0.146 and 0.240 for the training 
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set and test set, respectively, close to the RMSE of the previous model. As a result, no clear 

difference was observed from models built by chemical descriptors calculated by labeled or 

unlabeled SMILES.  

 

a)  

b)  

Figure 3.3 a) The optimization result of models built by top 20 features generated by labeled 

SMILES. b) The optimization result of models built by top 20 features generated by unlabeled 

SMILES. The smaller dot size represents a smaller RMSE.  
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a)  

b)  
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c)  

d)   
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e)  

f)  
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g)  

h)   

Figure 3.4 a) The comparison of experimental RT and predicted RT of dipeptide training set 

using labeled SMILES. b) The histogram of RT difference in the training set using labeled 

SMILES. c) The comparison of experimental RT and predicted RT of dipeptide test set using 

labeled SMILES.  d) The histogram of RT difference in the test set using labeled SMILES. e) 

The comparison of experimental RT and predicted RT of dipeptide training set using unlabeled 

SMILES. f) The histogram of RT difference in the training set using unlabeled SMILES. g) The 

comparison of experimental RT and predicted RT of dipeptide test set using unlabeled SMILES.  

h) The histogram of RT difference in the test set using unlabeled SMILES. 
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3.3.3 Comparison between the experimental RT and predicted RT of 10 tripeptide standards  

After building and validating the models using dipeptide data, we applied the models to 

tripeptides. The RT of 7818 tripeptides were predicted. To test whether the models fit tripeptides, 

ten tripeptide standards were synthesized covering 12 different amino acids and both one-tag and 

two-tag labeling. RT of tripeptide standards was acquired at the same experimental conditions. 

The predicted RT from models using labeled and unlabeled SMILES was compared with 

experimental RT, listed in Table 3.3. The RT difference predicted by labeled SMILES ranges from 

0.04 min to 0.30 min. In contrast, the maximum RT difference predicted with unlabeled SMILES 

is 1.78 min, much larger than 0.03 min. In the model built by unlabeled SMILES, RT difference 

of all tripeptides is larger than using labeled SMILES.  

 

Table 3.3 The comparison of tripeptide experimental RT and predicted RT. 

Experimental information Labeled SMILES Unlabeled SMILES 

 

Tripeptide 

sequence 

Tag 

number 

Charge 

number m/z 

Experimental 

RT (min) 

Predicted 

RT (min) 

RT 

difference 

(min) 

Predicted 

RT (min) 

RT 

difference 

(min) 

1 IGA 1 1 493.2115 3.27 3.47 0.20 3.47 0.20 

2 MPS 1 1 567.1941 3.03 3.07 0.04 3.69 0.66 

3 KMW 2 2 465.671 6.63 6.70 0.07 4.85 -1.78 

4 MFL 1 1 643.2618 5.92 5.76 -0.16 4.63 -1.29 

5 NAA 1 1 508.186 1.49 1.61 0.12 2.00 0.51 

6 QFN 1 1 641.2388 2.38 2.08 -0.30 3.97 1.59 

7 ASW 1 1 596.2173 3.47 3.24 -0.23 3.60 0.13 

8 LAA 1 1 507.2272 3.68 3.91 0.23 4.22 0.54 

9 IGM 1 1 553.2149 4.30 4.26 -0.04 4.08 0.22 

10 WFW 1 1 771.2959 5.88 6.17 0.29 4.54 1.34 
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3.3.4 Comparison between the experimental RT and predicted RT using tripeptide mixture 

data 

We further validated our models using the RT from XXA tripeptide mixture. X represents 

any one of the 20 essential amino acids. The exact mass and MS/MS spectra were manually 

inspected to confirm the tripeptide sequence. Since leucine and isoleucine share the same exact 

mass, distinguishing their RT may induce mistakes even by manually selection from the mixture. 

The RT of tripeptides containing leucine or isoleucine was excluded. After manual selection, the 

RT of 147 tripeptides remained for testing models. Among these peptides, 68, 60, and 9 tripeptides 

were labeled by one tag, two tags, and three tags, respectively. The distribution of RT difference 

between experimental RT and predicted RT is illustrated in Figure 3.5. Similar to the result of 

tripeptide standards, we found that the RT difference of the model built by unlabeled SMILES 

shifts to the right side, indicating a larger RT error between experimental RT and predicted RT. 

The RT difference of tripeptides labeled by different numbers of tags was examined, shown in 

Figure 3.5c. The difference from the model built by unlabeled SMILES is higher for peptides 

labeled by all three numbers of tags, especially for those labeled by three tags. 
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a)  

b)  
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c)  

Figure 3.5 a) Distribution of RT difference in tripeptide mixture using the model built by labeled 

SMILES. b) Distribution of RT difference in tripeptide mixture using the model built by 

unlabeled SMILES. c) RT difference of tripeptide mixture labeled by different tag numbers. 

 

3.3.5 Distinguish in-source fragmentation  

The predicted RT time can also be used for differentiating labeled peptides from the in-

source fragmentation. For example, the extracted ion chromatogram (EIC) of one-tag labeled and 

one charged LH contains 2 peaks, shown in Figure 3.6a. The first EIC peak at 2.53 min matches 

with the predicted RT of one tag labeled LH as 2.87 min. We further investigated the mass plot of 

the second peak, both one tagged one charged m/z and two tagged two charged m/z could be found 

at 6.94 min, as demonstrated in Figure 3.6b. The predicted RT of two tags labeled LH is 7.11 min, 

0.17 min different from the second peak. The EIC of two tags labeled LH is also shown in Figure 

3.6c, which is well-aligned with the second peak of one tag labeled LH. Both the mass plot and 

EIC plots indicate that the second peak from 6.94 min is the in-source fragment of two tags labeled 

LH. This illustrated the predicted RT can be used for differentiating in-source fragmentation. 
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Figure 3.6 a) The EIC plot of 1 tag labeled LH. b) The mass plot of 1 tag labeled LH at 6.94 min. 

c) The EIC plot of 2-tag labeled LH. 

 

3.3.6 Identification against serum and urine samples.  

To demonstrate the performance of the predicted tripeptide RT, we acquired the data of 

serum samples and urine samples labeled with dansyl chloride. Three technical replicates (double-

check if they are technical replicates) of each sample were acquired. After data processing by 

IsoMS Pro, 1822 and 51 peak pairs were detected in serum and urine samples, respectively. Then, 

these peak pairs were submitted for tripeptide identification with 10 ppm as mass tolerance and 1 

min RT tolerance. 329 and 528 tripeptides in total were identified in serum and urine samples, 

respectively, shown in Figure 3.7a. Among these tripeptides, 87 were shared by both serum and 

urines samples, showed in Figure 3.7b.  
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a)  

b)  

Figure 3.7 a) The putatively identified tripeptides in serum and urine samples. b) The overlap of 

putatively identified tripeptides between serum and urine samples.  

 

3.4 Conclusions 

In this work, we predicted and validated the tripeptide RT using models built by dipeptide 

RT information. SVR models with radial kernel were built based on the molecular descriptors of 

labeled and unlabeled short peptides. And their performance was further compared. Despite the 

similar performance on the dipeptide dataset, the model based on the labeled molecular descriptors 

provided more accurate RT prediction on both tripeptide standard and mixture datasets, especially 

for tripeptides with multiple tags. It indicates physical and chemical properties altered by chemical 
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labeling cannot be well-captured by features from unlabeled short peptides. Besides, the unlabeled 

SMILES failed to designate the tag position if multiple labeling positions are available on short 

peptides. In future work, the RT prediction of tetrapeptides, many of which are pharmacologically 

active, will be investigated and validated.  
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Chapter 4 MyCompoundID 2.0: evidence-based metabolome library facilitating CIL 

identification 

4.1 Introduction  

Metabolomics has been widely applied to biomarker discovery1 92, disease pathway and 

pathology93, and toxicology94 95 96. As a result of metabolite high diversity of physical and 

chemical properties, metabolite identification is still the bottleneck of metabolomics study.97 In 

liquid chromatography-mass spectrometry (LC-MS) based metabolomics, accurate mass, MS/MS 

spectra98 49, retention time, and collision cross-section (CCS) values99 100 can be used for 

metabolite identification by comparing the experimental data and reference data. Reference data 

can be obtained either from the in-house library or external databases. The reference data from the 

in-house library are usually acquired at the same instrument conditions as experiment data, which 

can provide more accurate identification results. But due to the lack of metabolite standards, it is 

difficult to generate an in-house library to cover the whole metabolome. External metabolomics 

databases, such as HMDB49 and KEGG101 compound databases, or chemical databases, such as 

ChemSpider102 and PubChem103, can be used for putatively identifying known metabolites. Apart 

from known metabolites, unknown metabolites cannot be identified by comparing databases 

consisting of existing compounds. The predicted database104 105, such as MyCompoundID 

(MCID)106, an evidence-based metabolome database using metabolites and biological reactions to 

predict potential metabolites, can provide more identification information. 

Although current MCID can throw a light upon the unknown compound identification, 

there is still room for improvement. With the development of technology in metabolomics research, 

more and more metabolites have been enrolled in the metabolomics database. The metabolites 

used for predicting potential metabolites in MCID can be further updated. The compounds used 
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for prediction in current MCID contain unrelated compounds, such as lipids and lipid-like 

compounds, which should be filtered to reduce false positive matches. The 76 reactions can be 

further optimized to recognize the different chemical environment, like -OH from phosphate 

groups or hydroxyl groups. Besides, after the exact mass search, instead of retrieving the structure 

information of predicted compounds directly, users can only obtain the relationship between 

substrates and possible reactions from the current MCID. At last, there is not an ID system for the 

predicted metabolites which can facilitate users to track the identification result.  

To improve the issues listed above, in this work, we have constructed MCID 2.0 based on 

the KEGG compound database. The metabolite number after filtering unrelated compounds 

reached 11,164. The predicted potential metabolites and their structure information were provided 

in the search result. MCID ID was designed for each predicted metabolite and the corresponding 

MCID ID search was in development.  

 

4.2 Methods 

4.2.1 MCID 2.0 database construction.  

The workflow of database construction is shown in Figure 4.1. The first step is filtering 

unrelated compounds, including lipids and lipid-related compounds, generic compounds, 

inorganic compounds and so on. The remained metabolites were used for zero-reaction database 

construction. Then, these metabolites were submitted to the prediction of 76 metabolite reactions. 

A Java-based program was built for prediction. The targeted functional groups and specific 

chemical environment for each reaction were recognized by the program and further reacted to 

generate the predicted metabolites. After prediction, products, such as CH4, H2O, were considered 

invalid for mass spectrometer analysis and filtered out. Next, the exact mass of predicted 
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compounds was calculated using ChemmineR R package107 (version 3.34.1). Four digits after a 

decimal of exact mass were kept. For each predicted compound, a unique MCID ID was given to 

facilitate the searching of predicted metabolites. The ID consists of three parts: substrate ID, 

reaction index, and compound index. An MCID ID example, C03145R13001, shown in Figure 

4.4a was used to explain the ID construction. The first five letters, C03145, are the KEGG ID 

representing the substrate. The next three letters, R13, indicate that the substrate has gone through 

the 13th reaction, demethylation, from the 76-reaction list. The final three letters, 001, are the 

unique compound index. To clarify the relationship between the substrates and predicted products, 

products from different substrates but sharing the same structure were kept with different MCID 

IDs. At last, the SMILES files of products were used for generating structure pictures. The final 

predicted database was named as MCIDxKEGG one-reaction database. 

 

 

Figure 4.1 The workflow of database construction. 
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4.2.2 Web interface.  

To facilitate users in identifying metabolites, we have developed a responsive web-

designed interface named as MyCompound ID 2.0. And the link is 

https://mycompoundid.chem.ualberta.ca/kegg_query. The information of the predicted 

compounds based on metabolic reactions and their substrates from KEGG are stored in a local 

MySQL database. For each predicted product, an entry, including MCID ID, exact mass, a 

structure picture, substrate ID, substrate name, substrate exact mass, and possible reaction, was 

generated (example entries showed in Figure 4.2a. The exact mass of predicted one-reaction 

products was calculated up to the millionth precision. To facilitate users to manually validate the 

identification results, the structure pictures of predicted compounds were provided. MCID 2.0 web 

server was built based on Node.js and Express.js, providing two different search functions: exact 

mass search and MCID ID search, the web page is shown in Figure 4.2b and Figure 4.2c, 

respectively. An example of exact mass search result against one-reaction database is shown in 

Figure 4.2d.  

 

a)  

https://mycompoundid.chem.ualberta.ca/kegg_query
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b)   

c)  

d)  
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Figure 4.2 a) Example entries in MCIDxKEGG one-reaction. b) The exact mass search interface 

of MCID 2.0. c) The MCID ID search interface of MCID 2.0. d) the demo result page of MCID 

2.0 one-reaction database.  

 

In the exact mass search function, both brief version and detailed version of identification 

results were provided to download. In the detailed search result, named 

“MCIDxKEGG_oneRxn_full_result.csv”, each matched identification generates an entry, which 

means one query mass is corresponding to multiple entries in results. An example is shown in 

Figure 4.3a. Each entry consists of two parts, the query information and query result. The query 

information contains index (automatically generated according to the order of query mass), the ion 

type selected by users, and query mass input put users. The query result part includes the MCID 

ID of matched predicted metabolites, their exact mass, substrate information (covering ID, name, 

and exact mass), possible reactions that substrates have gone through, and the mass error between 

the query mass and exact mass of predicted metabolites. As complementary, in the brief search 

result, named “MCIDxKEGG_oneRxn_brief_result.csv”, each query mass is related to only one 

entry. An example is shown in Figure 4.3b. The brief result summarizes the detailed match and 

presents the total match number of a query mass, a list of all possible reactions, and a list of MCID 

ID for all matched predicted metabolites. The MCID ID list from the brief result can be used for 

the MCID ID search directly. 
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a)  

b)  

Figure 4.3 a) A demonstration of detailed search result against one-reaction database. b) A 

demonstration of brief search result against one-reaction database. 

 

4.2.3 Materials 

Organic solvents for the mobile phase and sample preparation were purchased from 

Thermo Fisher Scientific (Waltham, MA). 12C-DnsCl derivatization reagent and 13C-DnsCl 

derivatization reagent were made in-house according to our previous studies87. 

 

4.2.4 Sample preparation and derivatization reaction 

For the urine samples, 75 μL of lyophilized human urine standard was diluted with H2O to 

300 μL. The derivatization reaction was conducted to label the amine group on the N terminal of 

dipeptides according to a protocol developed in our lab with slight modification.89 In brief, 25 μL 

of diluted urine samples were mixed with 12.5 μL of 250 mM Na2CO3/NaHCO3 buffer. The 

solution was vortexed, spun down and mixed with 37.5 μL freshly prepared 12C-DnsCl (18 mg/mL 

in ACN, for light labeling) or 13C-DnsCl (18 mg/mL in ACN, for heavy labeling), followed by 

vertexing and spinning down. The mixture was incubated in an oven at 40 ℃ for 45 min. Then, 
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the incubated solution was mixed with 7.5 μL NaOH solution (250 mM in H2O) to quench the 

excess 12C-DnsCl or 13C-DnsCl at 40 ℃ for 10 min. Lastly, the quenched solution was mixed with 

30 μL of 425 mM formic acid in ACN/H2O (1:1, v/v) to consume the excess NaOH. The 12C-

DnsCl and 13C-DnsCl derivatized products were equally mixed, and the mixture was centrifuged 

for 10 min at 12000 rpm before LC-MS analysis.  

 

4.2.5 HPLC-MS condition 

A Vanquish UHPLC Systems (Thermo Scientific) coupled with a Q Exactive HF Orbitrap 

Mass Spectrometers (Thermo Scientific) was used for DnsCl derivatized sample and dipeptide 

standards analysis. An Agilent reversed phase C18 column (100 × 2.1 mm, 1.8 mm particle size, 

95 Å pore size) was used for separation and the column was maintained at 40 ℃. Mobile A 

consisted of 0.1% FA in HPLC grade water and mobile phase B was consisted of 0.1% FA in 

HPLC grade ACN. A total of 18 min gradient was set as follows: 25% B increased to 99% in 10 

min and maintained for 5 min, followed by 3 min equilibrium. The flow rate was set to 0.4 mL/min. 

The Q Exactive HF mass spectrometer was operated under an ESI positive mode for both in-house 

database collection and sample analysis. Electrospray ionization parameters were as follows: the 

spray voltage was at 3.5 kV; the capillary temperature at 320 °C; probe heater temperature at 360 

°C; Full mass scan mode (m/z 220−1800) was used at a resolution of 120k at m/z 200 with around 

1.2 Hz scan rate. The automatic gain control (AGC) target was at 1 × 106 ions with 200 ms 

maximum ion injection time. The sample injection amount was optimized according to the 

maximum peak pair numbers at different injection volumes. For derivatized standards, the 

injection volume is 2 μL. 

 



 
 

 
 

76 

4.2.6 Data processing 

The original data of the resulting LC-MS data of serum and urine sample was firstly 

converted to “.text” format with MSConvert GUI tool88. The converted data containing 12C/13C 

peak pair information were further processed using IsoMS Pro software (Nova Medical Testing 

Inc., Edmonton, Canada)89 34. Dipeptide identification in serum and urine was carried out with the 

in-house database of dipeptides. 

4.3 Results and Discussion 

The KEGG based MCID 2.0, named as MCIDxKEGG, was generated as the workflow 

shown above. First, lipids and lipids related compounds, such as C00249 palmitic acid, in KEGG 

compounds were filtered as shown in the work published previously89. Then generic compounds, 

like C03193 (5-L-Glutamyl)-peptide, were also removed. Six hydrates were further filtered out. 

After removing unrelated compounds, 11,164 remaining metabolites in total were enrolled in the 

MCIDxKEGG zero-reaction database. 76 metabolic reactionswere applied to the zero-reaction 

database to predict potential metabolites. 296,518 reactions in total were carried out based on the 

11,164 substrates. After filtering invalid products, 1,811,882 predicted products were used for 

building the MCIDxKEGG one-reaction database. The statistics of MCIDxKEGG information is 

shown in Table 4.1. 
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Table 4.1 Statistics of database information. 

 

 

As a comparison, 7998 HMDB compounds in the previous MyCompoundID database also 

went through the workflow of database construction. After unrelated compound filter, 2683 

compounds remain and were used to construct the MCIDxHMDB2683 zero-reaction database, 

with detailed information as shown in previous publications. As a result of prediction and invalid 

product filter, 445,963 predicted products remain for the MCIDxHMDB2683 one-reaction 

database. 7998 HMDB compounds without removing unrelated compounds were also applied with 

metabolic reaction prediction. 7998 HMDB compounds and 2,667,520 predicted compounds were 

used for building MCIDxHMDB7998 zero-reaction and one-reaction databases, respectively. 

Although MCIDxHMDB7998 contains fewer substrates and reactions than MCIDxKEGG, it 

covered more products in the one-reaction database. This is caused by lipids and lipid-like 

compounds containing many reaction positions. For example, 13 predicted metabolites could be 

generated from palmitic acid (HMDB0000220) through reaction 01 dehydrogenation. The current 

MCID one-reaction database was also added into the comparison. Since the predicted product 

information was not included in the current database, only the reaction number was shown in Table 

4.1.  

To demonstrate the predicted database, 20 amino acids were considered as pseudo 

“unknown” compounds, and their exact mass was used as query mass. For example, 131.0405 Da, 
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the exact mass of methionine, was searched against the MCIDxKEGG one-reaction database with 

0.005 Da mass tolerance (Showed in Figure 4.4a). 114 predicted compounds were found as 

putative identifications. We further compared their structure with methionine. Four predicted 

compounds share the same structure with methionine. C03145R13001, one of these four 

compounds, is a product of N-Formylmethionine (C03145) with the reaction of loss of CO (R13). 

This reaction is named N-formyl-L-methionine amidohydrolase (R00653), belonging to Cysteine 

and methionine metabolism, as well as Glyoxylate and dicarboxylate metabolism (Showed in 

Figure 4.4b).  

 

a)  

b)   

Figure 4.4 a) The demo identification of methionine. b) The biological reaction of methionine 

and N-Formylmethionine. 

 

19 remaining amino acids were further searched against the predicted database. The result 

is shown in Table 4.2. The column of the exact mass match represents the matched number of 
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query mass fitting the 0.005 Da tolerance. The column of structure match is the number of 

predicted compounds sharing the same structure with query amino acids. As a comparison, the 

search results against the one-reaction and zero-reaction databases of MCIDxHMDB7998, 

MCIDxHMDB2683, and current MCID were also generated. Compared with MCIDxHMDB7998 

and MCIDxHMDB2683 one-reaction databases, more identification could be obtained for both 

exact mass matches and structure matches except cysteine. Besides, the identification numbers of 

MCIDxHMDB7998 and MCIDxHMDB2683 one-reaction databases are identical except glycine, 

indicating that the filtered unrelated compounds rarely contribute to metabolite identification. 

Since the current MCID does not contain the structure information, only the exact mass match 

results are shown in Table 4.2. The identification number of the current MCID one-reaction 

database is much lower than the MCIDxKEGG one-reaction database.  

 

Table 4.2 Identification results of 20 amino acids against different databases. 
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We further tested the MCIDxKEGG database using dansyl labeled urines samples. The 

current MCID database was also tested as a comparison. 1507 amines or phenols related peak pairs 

were detected in urine samples. Among these, 955 out of 1507 peak pairs were putatively identified 

by searching against the MCIDxKEGG zero-reaction database alone, covering 63.4% (showed in 

Figure 4.5a. And 1349 peak pairs were identified using the MCIDxKEGG one-reaction database. 

After the combination of zero-reaction and one-reaction results, the metabolite coverage reached 

89.6% (1351). Meanwhile, 647 peak pairs and 1334 peak pairs were identified using the MCID 

zero-reaction and one-reaction databases, respectively. The corresponding coverage reached 

88.7% (1336). We further compared the matched numbers for peak pairs, the related histograms 

are shown in Figure 4.5b and Figure 4.5c. Although the coverage for MCIDxKEGG and MCID is 

comparable, the identification numbers of MCIDxKEGG are significantly higher than MCID.1458 

peak pairs (96.7%) of MCID contains 0 to 50 putative identifications. In contrast, only 670 (44.6%) 

of MCIDxKEGG contains 0 to 50 putative identifications. The rest of the peak pairs contain higher 

matched numbers. Besides, the search results from one-reaction database can help users to mine 

zero-reaction putative identifications. If the upstream substrates or downstream products of a 

metabolite can also be putatively identified, this metabolite would have a higher chance of existing 

in biological samples. We analyzed 3812 putatively identified metabolites by zero-reaction 

database. The predicted products of 1715 (45.0%) metabolites can be found in one-reaction 

database search, which can increase the identification confidence. The distribution of the possible 

reaction numbers of 1715 putative identified metabolites is shown in Figure 4.5e (52.1%). Instead 

of showing the predicted product numbers, the possible reaction numbers of putatively identified 

metabolites are also shown in Figure 4.5e. 
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a)  

b)  
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c)  

d)  



 
 

 
 

83 

e)  

Figure 4.5 a) The identification coverage of MCIDxKEGG and MCID database. b) The 

frequency distribution of MCIDxKEGG one-reaction identification number. c) The frequency 

distribution of MCID one-reaction identification number. d) The percentage of putatively 

identified metabolites by zero-reaction database with and without predicted products, 

respectively. e) The frequency distribution of the possible reaction number of putatively 

identified metabolites by zero-reaction database. 

 

4.4 Conclusions 

To summarize, we have upgraded our evidence-based metabolome library, 

MyCompoundID, to MyCompoundID 2.0. More metabolites and their predicted products are 

included. Besides, the new MCID ID system can facilitate users to save and re-search predicted 

metabolites. The structure information can assist users to determine the unknown metabolites. 

Compared to using standard library alone or previous MCID, MyCompoundID 2.0 can provide 

better coverage. In the future, MCID 2.0 can be further expanded by recruiting more metabolites 

and more reactions. The structure information of predicted metabolites can also be employed for 



 
 

 
 

84 

retention time prediction, MS/MS spectrum prediction, CCS prediction and so on. Combining the 

information can further refine the identification result. 
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Chapter 5 Biomarker discovery on spinal cord injury using chemical isotope labeling 

profiling 

5.1 Introduction 

Acute traumatic injury to the spinal cord causes the sudden disruption of neural pathways 

to and from the brain, leading to significant motor, sensory, and autonomic dysfunction.   Aside 

from the physical and emotional suffering caused by the paralysis of spinal cord injury (SCI) to 

the affected individuals and their families, the injury is associated with huge societal economic 

costs. The lifetime economic burden including the direct as well as indirect costs was estimated in 

Canada. For a patient suffering from paraplegia or tetraplegia, the estimated cost is $1.5 million 

and $3.0 million, respectively.108 The two primary causes for Acute traumatic SCI are motor 

vehicle collisions and falls.109 110 111 Treatments to improve neurologic recovery and functional 

outcome are sorely needed, but to date, few therapeutic approaches have shown convincing 

effectiveness. 

Furthermore, even if a valid ISNCSCI examination can be performed in the early stages of 

acute SCI, because the entire spectrum of traumatic injury to the spinal cord is categorized into 

essential four AIS (American Spinal Injury Association Impairment Scale) grades, there is 

considerable variability in spontaneous neurologic recovery. This makes it difficult to accurately 

prognosticate neurologic recovery112, leading to more patients required in clinic trails for sufficient 

power. 

These issues impose important limitations on the clinical evaluation of acute SCI with the 

ISNCSCI examination. it simply cannot be done in many patients who, in the early stages of injury 

may be unconscious or have other injuries that preclude active participation 113. Its reliability 

depends on the training and experience of the examiner, and ultimately, it lacks precision for 
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predicting outcome. For these reasons, there has been interest in the establishment of biomarkers 

of acute SCI – objective measures that could be used to classify the severity of neurologic 

impairment and better predict outcome.  

Biofluids such as serum, plasma, and cerebrospinal fluid (CSF) represent potential sources 

of neurochemical biomarkers of SCI. human114 115 2 and animal studies116 117 118 have revealed 

potential candidate markers for stratifying injury severity and predicting outcome. To 

comprehensively interrogate these biofluids, multiple omics platforms have been employed, 

including transcriptomics119, proteomics120, and metabolomics2. More targeted biochemical 

approaches have revealed that CSF proteins such as interleukin (IL)-6, IL-8, monocyte 

chemotactic protein (MCP-1), tau, S100β, and GFAP, can separate different AIS grades at 24 hr 

after injury and predict AIS graded improvement at 6 months post-injury114.  

In this work, we have interrogated the metabolome in serum samples obtained from acute 

SCI patients, to determine if there are unique metabolomic factors that could be used as biomarkers 

to define injury severity and also predict outcome. Here, we used liquid chromatography mass 

spectrometry (LC-MS) and chemical isotope labeling (CIL) to enhance the detection of 

metabolites containing amine or phenol groups. One objective of this study is to classify the 

baseline AIS grades, which can facilitate the selection of intervention methods at early stage and 

further evaluation during rehabilitation processing. Another objective is to differentiate the 

recovery potentials of patients over time, which can better characterize the injury status even for 

patients with the same AIS grade. 
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5.2 Methods 

5.2.1 Chemicals and reagents 

The LC-MS grade solvents and reagents, including water, methanol, acetonitrile (ACN), 

and formic acid (FA) were purchased from Fisher Scientific (Ottawa, ON). 13C dansyl chloride 

(DnsCl) was purchased from Nova Medical Testing Inc. (Edmonton, AB). 

 

5.2.2 Sample collection 

Individuals suffering acute cervical or thoracic SCI (AIS A, B, or C) were enrolled within 

48 hours of injury into a prospective observational clinical trial at 6 North American sites 

(ClinicalTrials.gov: NCT01279811). In this trial, lumbar intrathecal catheters were inserted pre-

operatively, and serial CSF and serum specimens were collected over the first 3-5 days post injury. 

In addition to the objective of evaluating CSF and serum for biomarkers of acute SCI, an objective 

of this study was to evaluate intrathecal pressure and spinal cord perfusion pressure121 122. 

Importantly, subjects were included only if a valid, reliable baseline neurologic examination could 

be performed upon their admission.  This therefore excluded those with a concomitant TBI, major 

axial or appendicular trauma, or who were too sedated or intoxicated to assess neurologically. 

An ISNCSCI examination was performed at admission in the emergency room or ICU 

(prior to surgery) and at 6 months post-injury to establish baseline and follow-up AIS grade and 

MS. All sites involved in the clinical trial received ISNCSCI training to ensure the reliability of 

the neurologic examinations. The admission ISNCSCI examination that constituted the assessment 

to assign the “baseline AIS grade and motor score” was done prior to surgery, as the subjects 

needed to consent to the study and the placement of the intrathecal catheter placement in the 

operating room. A non-SCI control group of individuals undergoing routine lumbar spine surgery 
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was also recruited. All SCI and control subjects provided informed consent for participation in the 

study. Institutional ethics approvals were in place at all participating sites. 

 

5.2.3 Sample preparation 

The aliquots from each individual sample were pooled together as pooled serum samples. 

Serum sample preparation including following steps: first, 45 µL of methanol was added into 15 

µL of serum sample for protein precipitation. The sample was incubated at -20 °C for 2 h. Then, 

45 µL of supernatant was transferred into a new vial and dried under vaccum. Next, metabolites 

were reconstituted using mixture of solvents, including 25 µL of water, 12.5 µL of ACN, 12.5 µL 

of Na2CO3/NaHCO3 buffer. 25 µL of 12C-DnsCl (18 g/mL dissolved in ACN) was added to 

individual samples and part of pooled samples for QC samples. Whereas 13C-DnsCl (18 g/mL 

dissolved in ACN) was added into the rest pooled samples. The reaction vials were placed into an 

incubator at 40 °C for 45 min. To quench the excess DnsCl, 5 µL of 250 mM NaOH was added 

into vials. Then sample vials were incubated at 40 °C for another 10 min. At last, to neutralize the 

excess NaOH and acidify the solution, 25 µL of 425 mM FA dissolved in 1:1 ACN/H2O was added.  

 

5.2.4 LC-UV methods 

After sample preparation, the metabolite concentration of individual samples and pooled 

samples were measured using LC-UV method 1. Waters ACQUITY UPLC system (Waters, 

Milford, MA) with a Phenomenex Kinetex C18 column (2.1mm × 55 cm,1.7 µm particle size,100 

Å pore size) was used for separation. For each labeled sample, 5 µL was injected. Mobile phase A 

was 0.1% (v/v) FA in 5% (v/v) ACN, and mobile phase B was 0.1% (v/v) FA in ACN. The 6.5 

min step gradient was set as following: B was set as 0% at 0 min to 1 min. Then B was increased 
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to 95% at 1.1 min and kept until 2.6 min. B was further decreased to 0% at 3.1 min and kept until 

6.5 min. The flow rate was set as 0.45 mL/min. PDA detector was operated at 338 nm. Waters 

Empower (V6.00) was employed for integrating the peak area indicating the metabolite total 

concentration.  

 

5.2.5 LC-MS methods 

Based on the total concentration measured by LC-UV, each 12C-DsnCl labeled individual 

sample was mixed with the 13C-DsnCl labeled pooled samples by equal mole amount. For quality 

control (QC) samples, 12C-DsnCl and 13C-DsnCl labeled pooled samples were mixed by equal 

mole amount. Samples were injected into a Agilent 1290 HPLC coupled to a Bruker compact 

quadrupole time-of-flight (Q-TOF) mass spectrometer (Bruker, Billerica, MA). Labeled 

metabolites were separated by an Agilent reversed phase Eclipse Plus C18 column (2.1 mm × 10 

cm, 1.8 µm particle size, 95 Å pore size). The mobile phase was the same with the one used in LC-

UV. The LC gradient was set as following: t = 0 min, 20% B; t = 3.5 min, 35% B; t = 18 min, 65% 

B; t = 21 min, 99% B; t = 34 min, 99% B, and flow rate of 0.18 mL/min. Mass spectrometer was 

set as following: polarity, positive; dry temperature, 230 °C; dry gas, 8 L/min; capillary voltage, 

4500 V; nebulizer, 1.0 bar; endplate offset, 500 V; spectra rate, 1.0 Hz. 

 

5.2.6 Data processing 

After data acquisition from LC-MS, data conversion from raw data to centroid data (.csv 

format) was processed by via Bruker Daltonics Data Analysis 4.3 software. IsoMS34 was used for 

matching peak pairs, filtering unqualified peak pairs, calculating peak pair ratio, and align peak 
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pairs from different samples. Zero-fill program was employed to filling the values of peak pair 

ratio which were missing from last step. 

 

5.2.7 Data analysis 

The workflow of data analysis consists of seven steps. First, peak pairs with relative 

standard deviation (RSD) of ratio above 30% in QC samples were filtered. Peak pair ratio in each 

sample was normalized by median values. Confounding factors, including age and sex, were 

corrected using linear regression.123 Auto scaling was performed on each peak pair across different 

samples. For every peak pair, normality and homoscedasticity was tested via Shapiro-Wilk test 

and Levene's test (from car R package, version 3.0.5), respectively. If both assumptions were 

qualified, Student's t-test was used to determine if peak pairs changed significantly between 

different groups. Otherwise, Wilcoxon signed-rank test was used. Partial least squares discriminant 

analysis (PLS-DA) was performed by pls R package (version 2.7.2), respectively. Peak pairs with 

fold change above 1.2 and p-value below 0.05 were considered as significantly changed 

metabolites. These metabolites were further subjected to building classification models via support 

vector machine (SVM) in Caret R package (version 6.0.84). The workflow is shown in Figure 5.1. 

Linear kernel was selected. Since the sample numbers in each AIS group were not equal, synthetic 

minority oversampling technique (SMOTE) was used for balancing the dataset during the model 

training processing. Receiver operating characteristic (ROC) analysis via pROC R package 

(version 1.15.3) was performed on model evaluation.  
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Figure 5.1 The workflow of building SVM models. 

 

5.3 Results and Discussion 

5.3.1 Demographic information of participants 

1. Classifying baseline AIS grades 

In this project, metabolomics data of serum samples collected at 24-hr post-injury from 

acute SCI patients were used for prediction. For models differentiating baseline AIS grades, 68 

samples in total are in the discovery cohort, covering 44, 10, and 14 samples from AIS A, AIS B, 

and AIS C patients, respectively. A summary is shown in Table 5.1. The patient age of these 

samples spans a large range from 17 to 77, shown in Figure 5.2. And 55 out of 68 patients are male, 

the rest 13 patients are female. As age and sex can affect metabolite levels, these two confounding 

factors were corrected before data analysis. Apart from the discovery cohort, serum samples from 

an independent cohort were collected as the validation cohort. In the validation cohort, the sample 
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numbers of AIS A, B, and C grades are 16, 1, and 1, respectively. Similarly, the age in the 

validation cohort ranges from 19 to 76. 16 and 2 patients are male and female, respectively. 

 

Table 5.1 The overview of baseline AIS grades of participants at admission. 
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a)  

b)  

Figure 5.2 a) The age distribution of discovery cohort. b) The age distribution of the validation 

cohort. 
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2. Predicting AIS grade conversion in those with AIS A SCI 

For individuals who presented with “complete” AIS A SCI, we examined whether specific 

metabolomic profiles could predict who would improve and “convert” to AIS B, C, or D, and who 

would not improve and remain AIS A. Here, 44 individuals with AIS A injuries at baseline were 

used for the discovery cohort, and 16 subsequent individuals were used for the validation cohort. 

The description of how many individuals converted in the discovery and validation cohorts is 

shown in Table 5.2 and Table 5.3, respectively. 

 

Table 5.2 The overview of conversion information in the discovery cohorts. 

 

 

Table 5.3 The overview of conversion information in the validation cohorts. 

 

 

3. Predicting Outcome at 6 Months  

In situations where a baseline neurologic examination is not able to be conducted, it would 

be valuable to determine if certain metabolomic profiles at the 24-hr post-injury timepoint could 
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predict whether an individual would be “motor complete” (AIS A or B) or have some motor 

function and be “motor incomplete” (AIS C or D) at 6 months. Here, we compared the 24-hr serum 

metabolites of 43 participants who ended up being AIS A/B and 25 participants who ended up 

being AIS C/D at 6 months. From this discovery set of 68 subjects, we generated models and tested 

them on a validation cohort of 18 individuals, 12 of whom were AIS A/B, and 6 were AIS C/D. 

The description of these cohorts is shown in Table 5.4 and Table 5.5. 

 

Table 5.4 The overview of motor function outcome in the discovery cohort. 

 

 

Table 5.5 The overview of motor function outcome in the validation cohort. 
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5.3.2 Metabolomics results 

After the data acquisition using LC-MS, 8152 peak pairs were detected. 103 peak pairs 

were positively identified using an in-house library of amine/phenol channel. 643 from the 

unidentified peak pairs were putatively identified using the Li-Lib library. The remaining peak 

pairs were submitted to MyCompoudID zero-reaction, one-reaction database, and two-reaction 

database for further identification. 72.9% peak pairs were identified using all three levels together.  

After RSD filtering peak pairs with RSD above 30% in QC samples, 5814 peak pairs were 

subjected to PCA analysis. The result is shown in Figure 5.3. Since the different QC samples were 

used during data acquisition of the discovery cohort and validation cohort, these two QC samples 

were separated on PCA plot but clustered together, respectively. This indicates the excellent 

instrument stability during sample acquisition. Besides, for the samples diagnosed as the scale, 

there is no clear separation between the discovery cohort and validation cohort, representing the 

batch effect was removed by normalizing and scaling the discovery cohort and validation cohort, 

separately. A PCA plot of the discovery cohort and validation cohort normalized and scaled 

together is shown in Figure 5.3b. Clear separation can be observed from the discovery cohort and 

validation cohort.  
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a)  

b)  

Figure 5.3 a) PCA plot of the discovery cohort and validation cohort normalized separately. b). 

PCA plot of the discovery cohort and validation cohort normalized together. 
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5.3.3 Classifying baseline AIS grades  

After examining the data quality, confounding factor correction was applied to each sample. 

The, the data were used for separating different AIS grade. Three different models were built to 

separate AIS A from AIS B and C, AIS B from AIS A and C, and AIS C from AIS A and B. Taking 

AIS A vs. non-A as an example, first, the PCA plot (Figure 5.4a) and PLS-DA plot (Figure 5.4b) 

were generated. Rare separation and weak separation of scale A and rest can be observed from 

PCA and PLS-DA plots, respectively. Then, fold change equal to or more than 1.2 and p-value 

below 0.05 was applied to find significantly changed metabolites. 70 significantly changed peak 

pairs were used for building SVM linear models to distinguish AIS A from non-A. Features were 

selected using backward elimination. ROC analysis was employed for models built with top 5, top 

10, top 15, and top 20 features (shown in Figure 5.4c) reaching AUC to 0.705, 0.814, 0.835, and 

0.800, respectively. Considering the model performance and metabolite number for building 

model in clinic application, the model constructed by the top 5 peak pairs was validated using the 

validation cohort, and the accuracy reached 0.661, shown in Table 5.6. The same analysis 

workflow was applied to scale B vs. non-B (Figure 5.4d, 5.4e, and 5.4f) and AIS C vs. non-C 

(Figure 5.4g, 5.4h, and 5.4i). In B vs. non-B, separation was observed in the PLS-DA plot. And 

the AUC of the model using the top 5 features reaches 0.934. The accuracy on the validation cohort 

is 0.778, shown in Table 5.7. In C vs. non-C, the separation in PCA and PLS-DA plots is not clear. 

The model built by the top 5 features with AUC reaching 0.883 was selected for prediction. The 

corresponding accuracy on the validation cohort is 0.778, as shown in Table 5.8.  
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a)  

 

b)  
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c)  

 

d)  
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e)  

 

f)  
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g)   

 

h)  
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i)  

Figure 5.4 a) PCA plot of AIS A vs non-A. b) PLS-DA plot of AIS A vs non-A. c) ROC analysis 

of models differentiating A vs non-A. d) PCA plot of AIS B vs non-B. e) PLS-DA plot of AIS B 

vs non-B. f) ROC analysis of models differentiating B vs non-B. g) PCA plot of AIS C vs non-C. 

h) PLS-DA plot of AIS C vs non-C. i) ROC analysis of models differentiating C vs non-C. 

 

Table 5.6 The confusion matrix of SVM model distinguishing AIS A and non-A grade. 
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Table 5.7 The confusion matrix of SVM model distinguishing AIS B and non-B grade. 

 

 

Table 5.8 The confusion matrix of SVM model distinguishing AIS C and non-C grade. 

 

 

5.3.4 Predicting AIS grade conversion in those with AIS A SCI 

Since spontaneous neurological recovery can diminish the reliability of clinic trials, a 

conversion model is necessary to predict whether patients diagnosed as AIS A grade would convert 

into AIS B, C, or D grade after 6 months. 44 AIS A samples were subjected to building the 

conversion model. The PCA and PLS-DA plots were shown in Figure 5.5. In the PCA plot (Figure 

5.5a), the converted and non-converted groups can be rarely separated. But in the PLS-DA plot 

(Figure 5.5b), the separation can be observed. 87 metabolites were changed significantly between 

the converted and non-converted patients. The results of SVM linear models were shown in Figure 

5.5c. In the ROC analysis, the AUC of the model built by the top 10 peak pairs reaches 0.908. 

However, we further tested the model using the validation cohort, containing 16 samples. The 

accuracy is only 0.4375 (shown in Table 5.9), indicating there could be potential overfitting. We 
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further tested the models built by top 5 peak pairs with 0.779 as AUC. The accuracy on the 

validation cohort is 0.500, shown in Table 5.10. This indicates the metabolomics data of 

amine/phenol channel cannot separate converted and non-converted patients although excellent 

performance was achieved on the discovery cohort. 

 

a)  

 

b)  
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c)  

Figure 5.5 a) PCA plot of converted vs non-converted patients. b) PLS-DA plot of converted vs 

non converted patients. c) ROC analysis of models built by different numbers of peak pairs. 

 

Table 5.9 The confusion matrix of SVM model distinguishing converted and non-converted 

patients using the top 10 features. 
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Table 5.10 The confusion matrix of SVM model distinguishing converted and non-converted 

patients using the top 5 features. 

 

 

5.3.5 Predicting Outcome at 6 Months 

Based on the loss of motor function, patients with AIS A or B level can be classified as 

“motor complete”, and patients with AIS C or D level are denoted as “motor incomplete”. Upon 

the prediction of the likelihood that patients will obtain considerable improvement in motor 

function over time, interpretation of novel therapeutic strategies can be more comprehensible. The 

time point is usually selected as 6 months post-injury since most recovery of motor function takes 

place during this time.124 In these models, only metabolite information was considered as input to 

build the models. The baseline AIS grades were excluded from the input. In the discovery cohort, 

the “motor complete” group contains 43 samples and the “motor incomplete” group consists of 25 

samples. In the validation cohort, “motor complete” and “motor incomplete” groups contain the 

12 and 6 samples, respectively. 

From the PCA plot (Figure 5.6a) and PLS-DA plot (Figure 5.6b), the separation between 

two different groups was not conspicuous. 111 metabolites changed significantly between these 

two groups. From the ROC analysis (Figure 5.6c), the best performance was achieved using the 

top 5 features to build the model. The model was further applied to the validation cohort and the 

accuracy reached 0.667. The confusion matrix is shown in Table 5.11.  
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Figure 5.6 a) PCA plot of motor complete loss vs motor incomplete loss groups. b) PLS-DA plot 

of motor complete loss vs motor incomplete loss groups. c) ROC analysis of models built by 

different numbers of peak pairs. 

 

 

 

Table 5.11 The confusion matrix of applying the outcome model using the top 5 features to the 

validation cohort. 
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5.4 Conclusions 

In this work, we used the chemical isotope labeling method to detect the amine/phenol 

channel of serum samples. With the detected metabolites, SVM models were built for 

distinguishing AIS levels and predicting neurological conversion as well as motor function 

outcomes. The results indicated that AIS levels could be fairly separated, but obvious inaccuracies 

were in the prediction of both neurological conversion and motor function outcomes, especially 

on the validation cohort. Therefore, in future work, metabolites from other sub-metabolomes 

should be incorporated into the models. And the combination of using serum and CSF samples 

together can also bring benefits to a better understanding of spinal cord injury. 
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Chapter 6 Conclusions and Future Work 

6.1 Thesis Summary 

In Chapter 2, the metabolome coverage of multiple chemical isotope labeling methods was 

evaluated through examining individual chemical structures of all compounds in metabolomic 

databases and classify them according to functional groups. After removing hydrocarbons, 

inorganic species and long-chain lipids (a subject of lipidomic analysis), four groups, namely 

hydroxyls (H), amines (A), carboxyls (C) and ketones/aldehydes (K), are the dominant classes. In 

the databases of MCID (2,683 metabolites), HMDB (15,817), KEGG (11,598), YMDB (1,107) 

and ECMDB (1,462), 94.7%, 94.2%, 86.4%, 85.7% and 95.8% of the metabolites belong to one 

or more of the four groups, respectively. Four-channel CIL approach using dansyl and DmPA 

reagents to analyze human plasma was employed to determine the detectable numbers of H, A, C 

and K-metabolites. Compared to group distributions of database compounds, the hydroxyl-

containing metabolites were severely under-detected, which might indicate that the current method 

is less than optimal for analyzing this group of metabolites. In short, this study has shown that high 

metabolome coverage is attainable by analyzing only the H, A, C and K-submetabolomes and the 

group classification information can be very helpful in determining the area of improvements in 

chemical labeling methods. 

In Chapter 3, as part of metabolome, very short peptides, such as dipeptides and tripeptides, 

share the same structural units. considering the sequence diversity of tripeptides, the retention time 

of chemical isotope labeled tripeptides was predicted based on the experimental RT of labeled 

dipeptides. Compared with using exact mass only to putatively identify tripeptides, the 

combination of exact mass and predicted RT can reduce the false positive identification. The 

SMILES files of dipeptides and tripeptides were generated locally and used for calculating the 
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chemical molecular descriptors. Through recursive feature selection and cross validation, 20 

features were selected to build the SVM model with radial kernel. To test if the accurate RT can 

be predicted by the unlabeled SMILES of peptides, which can greatly simplify the prediction, 

especially for RT prediction of labeled metabolites, the same workflow was applied on unlabeled 

SMILES to build the model. In training and test set of dipeptides, the performance of models built 

by labeled and unlabeled SMILES was similar. But in test sets of tripeptides, RT difference from 

the labeled-SMILES model is lower than the one from unlabeled-SMILES model. The comparison 

indicates the labeled SMILES is necessary to provide more accurate prediction. The predicted RT 

can be used for in-source fragmentation differentiation as well as putative identification. With the 

combination of exact mass and predicted RT, 329 and 528 tripeptides can be putatively identified 

in serum and urine samples, respectively. 

In Chapter 4, MCID 2.0 was built as an evidence-based library to assist unknown 

metabolite identification. 76 common biological reactions were employed to predict potential 

metabolites theoretically. 1,811,882 products were predicted using 11,164 metabolites from 

KEGG compound database as substrates. For each predicted product, a unique MCID ID was 

generated to illustrate the relationship of the upstream substrate and corresponding reaction. A 

corresponding website was built to facilitate users searching the database. We further applied the 

MCIDxKEGG database to urine samples, and 89.6% peak pairs could be putatively identified.  

In Chapter 5, the amine/phenol sub-metabolome of serum samples was profiled for 

discovering biomarkers in spinal cord injury. 68 serum samples collected at 24 h post-injury were 

analyzed. A total of 8152 peak pairs were detected. After QC RSD filter, cofounding factors 

correction, the remained peak pairs were used for building modeled to distinguishing different AIS 

grades and predict neurological conversion as well as motor function outcome. The results indicate 
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that using amine/phenol sub-metabolome alone is not sufficient to predict conversion and motor 

outcome.  

 

6.2 Future Work 

For chapter 3, we have built the dipeptide library with experimental RT and tripeptide 

library with predicted RT for short peptide identification. The comparison of unlabeled SMILES 

and labeled SMILES illustrates the importance of labeled SMILES in RT prediction. In the future 

work, RT prediction of tetrapeptides and metabolites will also employed the labeled SMILES. 

For chapter 4, we used 76 biological reactions to predict potential metabolites based on 

human metabolome database. First, more reactions can be integrated into the workflow to enlarge 

the evidence-based metabolome library. Besides, this workflow can also be applied to the 

metabolome database of various species, the drug database for predicting downstream drug 

metabolites, the food database, and so on.  

For chapter 5, multiple CIL channels, such as carboxylic channel, carbonyl channel, and 

hydroxyl channel, can be incorporated into the selection of biomarkers. In this way, the 

combination of biomarkers from different channels may produce sufficient separation between 

different groups.  
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