
Generalized Entropy and Solution Information
for Measuring Puzzle Difficulty

by

Junwen Shen

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

© Junwen Shen, 2024

Abstract

Metrics for problem difficulty are used by many puzzle generation algorithms, as well

as by adaptive algorithms that are expected to provide players with the puzzles at the

correct level of difficulty. A recently proposed general metric, puzzle entropy, com-

bines an analysis of game mechanics with a model of player knowledge in the form of

inference rules to predict problem difficulty. The entropy of a puzzle is the amount of

information required, given a player’s knowledge about the puzzle, to describe a solu-

tion to a puzzle. This thesis generalizes the concepts of puzzle entropy and solution

information, providing a better foundation for the previous work and creating new

algorithms, Minimum Solution Information and Total Solution Information. While

functionally similar to past work, the new algorithms allow knowledge about a puzzle

to be represented as a policy. We then evaluate the impact of inference rules, policies,

and player knowledge in the 2016 game, The Witness.

ii

Preface

This thesis extends upon the research paper [1] initially submitted at the 20th AAAI

Conference on Artificial Intelligence and Interactive Digital Entertainment (AIIDE),

co-authored with Nathan R. Sturtevant.

iii

Even if the ending has been predetermined, that’s fine.

There are countless things that humans cannot change.

But before that, on the road towards the end,

there are still many things that we can do.

And because of this, the “end” will thus reveal

a completely different meaning.

This is the meaning of “journey”.

All those things, beautiful before, are still so now.

And I believe...

It will still bloom at the end of the Nihility,

until we meet again beneath the sun’s rays.

- Acheron

iv

Acknowledgements

This work was supported by the National Science and Engineering Research Council

of Canada Discovery Grant Program and the Canada CIFAR AI Chairs Program. I

express my sincere gratitude to them for their support of this work.

v

Table of Contents

1 Introduction 1

1.1 Related Works . 1

1.2 Generalizing the Recent Approach . 2

2 Background 4

2.1 Heuristic Search . 4

2.2 Entropy of a Puzzle . 5

2.3 Puzzles from The Witness . 6

2.4 Procedural Content Generation . 8

3 Mathematical Foundations 9

3.1 MUSE and Probability . 9

3.2 Minimum Solution Information . 11

3.3 Total Solution Information . 11

4 Inference Rules 17

4.1 Additional Inference Rules . 18

4.1.1 Along-the-path Rule (APR) 20

4.1.2 Region-completion Rule (RCR) 20

5 Integration with EPCG 23

5.1 Designing Puzzles . 25

5.2 Querying EPCG . 26

6 Experiments 28

6.1 Experiment Setup . 28

6.2 Comparing Different Algorithms . 29

6.3 Applying Additional Inference Rules 29

6.4 Difficulty Calculated by ML Policy 31

6.5 EPCG Verification . 35

vi

7 Conclusions and Future Work 36

References 38

vii

List of Tables

2.1 Constraints and their requirements 7

3.1 Comparison between different algorithms 15

6.1 Correlation and p-value for different approaches evaluated on the dataset

used in the previous study [20] . 30

6.2 Correlation and p-value for for different player models evaluated on

triangle-only and non-triangle Witness puzzles 32

6.3 Correlation and p-value for MSI and TSI with different player models

evaluated on BWS Witness puzzles [5] 33

6.4 The expected probabilities of taking CANNOT TAKE actions and

MUST TAKE actions . 34

viii

List of Figures

2.1 Example The Witness puzzles with size 1× 2 7

2.2 Example 4× 4 complex Witness puzzle and its solution 8

3.1 How the communication shifts the player’s policy in MUSE and MSI 12

3.2 How the communication shifts the player’s policy in TSI 15

4.1 Inference rules proposed in previous studies [20, 23] 18

4.2 Example puzzles with similar paths 20

4.3 Example puzzles with completed regions highlighted 21

5.1 Screenshot of the web page of the puzzle editor 24

5.2 Screenshots of the main part of the puzzle editor 25

5.3 EPCG example puzzle . 27

6.1 The number of upvote of puzzles from the dataset used by the previous

study [20] and their difficulty measured by ReMUSE and TSI respectively 30

6.2 Screenshot of original puzzle and its harder alternatives 35

ix

List of Algorithms

1 πµ with inference rules . 19

2 Along-the-path Rule . 21

3 Region-completion Rule . 22

4 EPCG procedure [10] . 24

x

Chapter 1

Introduction

Developing a generic algorithm to measure puzzle difficulty is a complex task [2].

Different games possess various features that may be challenging to quantify, then

compute and standardize [3]. Nevertheless, an accurate difficulty metric can be highly

beneficial. Puzzle designers could use it to determine the quality and suitability of a

puzzle within a game [4] and predict player enjoyment. It could also aid in generating

and analyzing puzzle curricula, allowing players to acquire game-specific knowledge

more easily [5]. Our work is closely related to measuring puzzle difficulty and its

relationship with player engagement.

1.1 Related Works

Puzzle difficulty represents the challenges that players face and directly influences

their enjoyment [6]. Introducing appropriately challenging puzzles is crucial for main-

taining player engagement, as overly difficult puzzles early in the game can lead to

player frustration and abandonment. Difficulty scoring also supports procedural puz-

zle generation, enabling the rapid creation and assessment of new puzzles. Automated

difficulty evaluation can significantly accelerate the development process by allowing

designers to quickly integrate user-specific and suitable puzzles into their games [2].

Moreover, by dynamically adjusting puzzles based on player performance and feed-

back, designers can maintain an engaging and satisfying player experience.

1

In Sokoban-type games like Fling! [7], simple metrics such as the number of reach-

able states or problem decomposition by subproblem solution length have proven

effective [8, 9]. Similarly, minimum solution length is used in exhaustive procedural

content generation (EPCG) [10] for incrementally designing levels in Snakebird [11,

12] or sliding puzzles like Rush Hour [13, 4].

Constraint-based algorithms, such as answer set programming, have been employed

to assess maze-like puzzles, where mazes are represented as grid-embedded trees with

constraints on reachability and path length [14, 15]. Logic puzzles like Sudoku can

also be treated as constraint satisfaction problems, using corresponding algorithms

such as arc consistency with domain splitting to analyze difficulties [16].

However, these metrics may not be applicable to puzzles that involve real-time

physics, such as Cut The Rope [17] and Angry Birds [18]. Additionally, difficulty

varies among players with different levels of knowledge and skills. Consequently, more

complex methods, such as simulating playtests using deep reinforcement learning,

have been developed and applied to Angry Birds [19].

Recent work by Chen et al. introduced the notion of puzzle difficulty based on

the amount of uncertainty a player might face [20], which can be broadly applied

across different puzzle games [21]. Their approaches rely on information entropy,

representing the amount of communication required to describe the solutions of a

single-player turn-based puzzle. Published results demonstrated a positive correlation

between puzzle difficulty, as measured by their algorithms, and user ratings on a

subset of puzzles and constraints from The Witness [22].

1.2 Generalizing the Recent Approach

Our work aims to understand the methods proposed by Chen et al. [20] and their

limits. Therefore, we propose to study the nature of the underlying algorithms,

consider enhanced player models, and expand the experiments conducted in previous

studies.

2

This thesis establishes the mathematical connection between the previous MUSE

approach and the probability of solving a puzzle. Our new approaches, minimum

solution information (MSI) and total solution information (TSI), are derived which

have a stronger mathematical foundation, while maintaining the generality of the

previous methods. But, in addition to modeling players with inference rules, it also

allows modeling policies. We then develop additional inference rules that can be ap-

plied to broader types of puzzles in the game, The Witness. Consequently, we are

able to expand the puzzle datasets used for evaluation. Empirically, we find that our

approach, total solution information (TSI), is as effective as previous methods across

different datasets. We hypothesize that using too many or too powerful inference

rules overestimates players’ abilities, resulting in a poorer correlation between puzzle

difficulty and engagement. We evaluate the policy from a machine learning (ML)

model and show that it has learned puzzle difficulty, but not as well as our inference

rules. Moreover, we verify that using too many or too powerful inference rules over-

estimates players’ abilities, resulting in a poorer correlation between puzzle difficulty

and engagement. Finally, we create a puzzle-design tool with a web GUI, enabling

designers to invoke exhaustive procedural content generation (EPCG) queries that

generate suggested designs sorted by difficulty from our approach.

3

Chapter 2

Background

This thesis extends algorithms proposed by Chen et al. [20, 23] that use heuristic

search and information entropy for measuring difficulty of turn-based puzzle games,

evaluated on puzzles in The Witness. In the following sections, we describe how to

formally represent puzzles using mathematical notations, the concept of information

entropy and how to apply it on puzzles, and puzzles from The Witness for evaluation.

2.1 Heuristic Search

A puzzle P can be formally defined as P = (S,A, T, s0, G) [5], where S is a set of states

that includes the initial state s0, and G is a subset of S that represents the set of goal

states. The action function A returns a set of possible actions at a given state s. If a

state s is terminal, A(s) = ∅. The deterministic transition function T takes a state s

and an action a as inputs and produces a new state s′ that results from applying action

a to state s. Thus, the solution path of goal state g can be represented as a sequence

of state-action pairs τg = {(si, ai) | T (si, ai) = si+1 and T (sm, am) = g ∈ G}mi=0,

and the player’s policy can be represented by a function π(a, s) : A(S) × S → [0, 1]

that returns the probability of taking action a at state s. The search space can be

represented as a tree, where each node corresponds to a state in S, and the tree is

rooted at s0. A directed edge exists from state s to state s′ if T (s, a) = s′ for some

action a ∈ A(s). Furthermore, the successor function is denoted as σ(s) = T (s, A(s))

4

and returns a set of successor states of state s.

2.2 Entropy of a Puzzle

Information entropy [24] serves as a fundamental metric in information theory, allow-

ing for the quantification of uncertainty in stochastic processes. Entropy represents

the expected amount of information content given a discrete random variable X and

its probability distribution P : X → [0, 1] over the sample space X .

H(X) = E [I(X)] = −
∑︂
x∈X

P (x) log2 P (x) (2.1)

For example, consider the case of tossing a fair six-sided die. The entropy of this event

would be H = −6 × 1
6
log2

1
6
= log2 6 ≈ 2.585 Sh1, indicating that the information

content of each outcome is log2 6 Sh.

To gauge puzzle difficulty, we adopt the minimum uniform entropy (MUSE) and

relative minimum uniform entropy (ReMUSE) metrics proposed by Chen et al. [20].

These metrics quantify the amount of information an oracle would need to provide

for a player to solve the puzzle. MUSE directly calculates the minimum amount of

uniform entropy based on the number of choices at each step along the solution path.

On the other hand, ReMUSE utilizes the Kullback-Leibler (KL) Divergence [26], also

known as relative entropy, as shown in Equation 2.2, to capture the information of

other solutions from successors of the current state.

DKL(P ∥ Q) =
∑︂
x∈X

P (x) log2
P (x)

Q(x)
(2.2)

Here, P and Q are discrete probability distributions defined on the same sample

space X . In ReMUSE, P is the softmin of direct successors’ uniform entropy, Q

is a uniform distribution as player’s policy, and |P | = |Q| = |A(s)|. MUSE and

ReMUSE values increase with more complex puzzles, as they require the player to

1We use the Shannon (binary unit) as the unit of information instead of bit (binary digit) ac-
cording to the International System of Quantities [25] to avoid ambiguity

5

make more decisions. Previous work [20] demonstrated that MUSE and ReMUSE

are effective tools for assessing puzzle difficulty. Moreover, the positive correlation

between these metrics and user ratings in puzzles from The Witness further supports

the relationship between difficulty and player satisfaction.

2.3 Puzzles from The Witness

The Witness is a single-player puzzle solving game published by Thekla, Inc. in

2016. We refer them henceforth as “Witness puzzles”. Most puzzles in the game

are rectangular grids of size w × h. In Witness puzzles, the player must draw a

non-self-crossing path along the grid lines starting from the designated start junction

and ending at any of the goal junctions. The start junction is represented by a round

circle, and the end junction is indicated by a notch extended from the grid line (Figure

2.1a). When the path reaches the end junction, the notch is automatically filled.

The game includes two classes of constraints: path constraints and region con-

straints. Path constraints are placed on the grid lines, while region constraints are

present in the blocks surrounded by the grid. Figure 2.1b and Figure 2.1c illustrate

examples of path constraints and region constraints with their corresponding solu-

tions. Additionally, Figure 2.2a presents a more complex puzzle that includes every

type of constraint studied in this research. The requirements for satisfying these con-

straints are explained in Table 2.1. It is essential for the solution path to comply with

all the constraints in the puzzle.

Using the definitions in previous sections, the solution path for the puzzle in Figure

2.1b can be represented as {(s0, aup), (s1, aright), (s2, aup)}, and its MUSE value with-

out using inference rules is calculated as log2 |A(s0)| + log2 |A(s1)| + log2 |A(s2)| =

1 + 1 + 0 = 2 Sh. Similarly, the solution path for the puzzle in Figure 2.1c is

{(s0, aright), (s1, aup), (s2, aleft), (s3, aup), (s4, aright)}, and its MUSE value is 1 Sh in-

stead. Based on these calculations, puzzle in Figure 2.1c is easier than the one in

Figure 2.1b.

6

Icon and Name Requirements

The path must cross the constraint

The path cannot cross the constraint

Must-Cross

Cannot-Cross

Separation

The constraint must be separated from different coloured
separation constraints in the same region

Star

The containing area must have exactly one other region
constraint with the same colour

Triangle

The path around it must occupy the same number of edges as
the number of triangles

Table 2.1: Constraints and their requirements

(a) A 1 × 2 puzzle with no
constraint

(b) A 1 × 2 puzzle with 2
region constraints and a so-
lution

(c) A 1 × 2 puzzle with a
path constraint and a solu-
tion

Figure 2.1: Example The Witness puzzles with size 1× 2

7

(a) A 4 × 4 puzzle with 5 types of
constraints

(b) The solution to the puzzle in (a)

Figure 2.2: Example 4× 4 complex Witness puzzle and its solution

2.4 Procedural Content Generation

Procedural content generation (PCG) refers to the automatic creation of content

through algorithms, primarily employed in video games, simulations, and other in-

teractive media to produce complex and varied environments, levels, and assets. One

of its primary advantages is its ability to dynamically produce large amounts of con-

tent, reducing the need for manual design, offering novel experiences for players with

each interaction by leveraging computational techniques [27]. Exhaustive Procedu-

ral Content Generation (EPCG), a type of search-based PCG [28], aims to generate

and evaluate all possible content configurations [10]. EPCG ensures comprehensive

coverage of all potential variations, thereby enhancing the robustness and diversity

of generated content. By systematically evaluating every possible outcome, EPCG

can identify optimal solutions, uncover hidden patterns, and ensure that generated

content meets specific design criteria and quality standards. For puzzles, difficulty

is one common metric used for evaluation [4]. This approach is particularly valu-

able in research and development contexts, where extensive exploration of content

possibilities can lead to significant insights and innovations.

8

Chapter 3

Mathematical Foundations

We study the nature of MUSE by examining its connection to the probability of find-

ing a solution according to player’s policy. In this chapter, we present mathematical

theorems that reveal the underlying principles of these algorithms.

3.1 MUSE and Probability

We denote the MUSE of puzzleX as µ(X). In µ(X), it is assumed that the probability

distribution of player actions is uniform, and |A(s)| represents the number of available

actions at each state s. Therefore, in the policy πµ, πµ(a, s) = |A(s)|−1 and the local

entropy at s is log2 |A(s)| [20]. Moreover, let τm = {(si, ai)}mi=0 be the sequence of

state-action pairs starting at the root of the tree s0 and ending at terminal state

T (sm, am) = s, then π(s) =
∏︁

(si,ai)∈τm π(ai, si) and π(g) represents the probability

of reaching the goal state g through the solution path, τg, according to π. Similarly,

πµ(g) is the probability of reaching the goal state g by uniform random. Now, we can

derive the following theorem.

Theorem 1 µ(X) is proportional to the probability of finding the most likely solution

according to the player’s policy (uniform random), where each solution path to the goal

state g ∈ G is a state-action sequence τg. It can be calculated by:

µ(X) = − log2max
g∈G

πµ(g) (3.1)

9

Proof. According to the recursive definition, µ of a non-terminal state, µ(s), is

obtained by summing the local entropy and the minimum entropy of its successors.

The local entropy is log2 |A(si)| since πµ(s) = |A(si)|−1. Hence, we have the following

cases:

µ(s) =

⎧⎪⎨⎪⎩
0 if s ∈ G
minsi∈σ(s) µ(si) + log2 |A(si)| if A(si) ̸= ∅
∞ otherwise

By simplifying the definition without recursion, we obtain:

µ(X) = min
g∈G

∑︂
si∈τg

log2 |A(si)|

where each solution path to the goal state g ∈ G is a state-action sequence τg =

{(si, ai) | T (si, ai) = si+1 and T (smg , amg) = g}mg

i=0 and si ∈ τg stands for si ∈ {si |

(si, ai) ∈ τg}.

Using the properties of logarithms, where log2 x = − log2 x
−1 and the logarithm

function is monotone, we have:

µ(X) = min
g∈G

∑︂
si∈τg

log2 |A(si)|

= min
g∈G

log2
∏︂
si∈τg

|A(si)|

= min
g∈G

⎡⎣− log2
∏︂
si∈τg

|A(si)|−1

⎤⎦
= min

g∈G

⎡⎣− log2
∏︂

(si,ai)∈τg

πµ(ai, si)

⎤⎦
= min

g∈G
[− log2 πµ(g)]

= − log2max
g∈G

πµ(g)

Thus, we can conclude that µ(X) is proportional to the probability of finding the

most likely solution when sampling a random trajectory from the policy.

That is, MUSE is equivalent to the logarithm of the probability of the most likely

solution path, with a uniform probability on all actions.

10

3.2 Minimum Solution Information

Now we extend MUSE to cover the case where the player’s policy is not uniform, and

the local entropy is not log2 |A(s)|. For example, suppose |A(s)| = 2. This is like a fair

coin flip, where getting heads represents taking the action leading to the goal. If the

coin is fair, then the entropy of this event is H = −0.5 log2 0.5− 0.5 log2 0.5 = 1 Sh,

which equals to the information content of each outcome. However, if the coin is

not fair and the probability of heads is 0.1, then the entropy of this event is H =

−0.1 log2 0.1−0.9 log2 0.9 ≈ 0.469 Sh. This results shows that tossing this unfair coin

is less uncertain than tossing a fair one, since the outcome is highly unlikely to be

heads. Therefore, the outcome of heads is more informative in this event, which is

I = − log2 P (Head) = − log2 0.1 ≈ 3.322 Sh. Similarly, if an oracle needs to describe

the solution to the player in this case, it also needs to communicate 3.22 Sh to the

player.

We generalize MUSE to handle arbitrary policies by defining the minimum solution

information (MSI) of a puzzle X as I∗(X) shown in Eq 3.2, which represents the

minimum information needed to describe a specific goal from puzzle X.

I∗(X) = − log2max
g∈G

π(g) (3.2)

If player’s policy is uniform, then π = πµ and I∗(X) = µ(X).

3.3 Total Solution Information

Similar to ReMUSE, if a puzzle has multiple solutions (goal states) and the player does

not have a preference for a specific one, then the oracle does not have to communicate

an exact solution, but can minimize the expected communication needed.

Considering the state-space tree of possible moves, minimizing the expected amount

of information for every node in the tree requires minimizing the sum of the com-

munication needed at that node and the expected amount of information necessary

11

for each direct successor. It is worth nothing that after receiving the communication

from the oracle, the player’s policy will be changed. For example, in MUSE or MSI,

following the communication, the player’s policy is updated such that π′(a, s) = 1 if

and only if sa = T (a, s) is on the most likely solution path and 0 otherwise, as shown

in Figure 3.1. Therefore, the amount of information required for the communication

at the current node can be also calculated by DKL(π
′, π).

s0

s1

s3

1
2

g0

1
2

1
2

s2

s4

1
3

s5

1
3

g1

1
3

1
2

the communication

I∗(X)

s0

s1

s3

0

g0

1

1

s2

s4

0

s5

0

g1

0

0

Figure 3.1: How the communication shifts the player’s policy in MUSE and MSI

Recall that σ(s) is the successor function for s. Then, we define the total solution

information (TSI) at state s as

ψ(s) =

⎧⎪⎨⎪⎩
0 if s ∈ G
minF (π′(s)) if A(s) ̸= ∅
∞ otherwise

(3.3)

where F is defined as

F (π′) = DKL(π
′, π) + Eπ′ [I (σ(s))] (3.4)

DKL(π
′, π) captures the amount of information required for shifting the player’s policy

from π to π′ using KL divergence. Eπ′ [I (σ(s))] is the expected amount of information

for successors of s under the new policy π′.

After carefully examining ψ(s), we propose the following theorem:

Theorem 2 F (π′(s)) is minimal if

π′(a, s) =
π(a, s) · Pπ(ga | sa)∑︁

a∈A(s) [π(a, s) · Pπ(ga | sa)]

12

and

minF (π′(s)) =
∑︂

a∈A(s)

π(a, s) · Pπ(ga | sa) (3.5)

where Pπ(ga | sa) represents the probability of reaching a goal ga from the successor

state sa = T (s, a) of state s according to the player’s original policy π.

Proof. Suppose the probability of reaching a goal ga from the successor state sa =

T (s, a) is P (ga | sa). For simplicity, we let p(a) = π′(a, s), q(a) = π(a, s) and

r(a) = Pπ(ga | sa), then the corresponding information content of a successor state is

I(sa) = − log2 r(a) and

F (π′) = DKL(π
′, π) + Eπ [I(σ(s))]

=
∑︂
a∈A

p(a) log2
p(a)

q(a)
+
∑︂
a∈A

p(a)I(sa)

=
∑︂
a∈A

p(a) log2
p(a)

q(a)
−
∑︂
a∈A

p(a) log2 r(a)

=
∑︂
a∈A

p(a) log2
p(a)

q(a)r(a)

Since π′ is a policy, we have
∑︁

a∈A p(a) = 1. According to the method of Lagrange

multiplier, we define the Lagrange function L as

L = F (π′) + λ(1−
∑︂
a∈A

p(a))

Let ∂L
∂p(a)

= 0. We can proceed as follows:

∂L(π′, λ)

∂p(a)
= 0

log2
p(a)

q(a)r(a)
+

1

ln 2
− λ = 0

p(a) = q(a)r(a)2λ−log2 e

Since
∑︁

a∈A p(a) = 1, we have: ∑︂
a∈A

p(a) = 1∑︂
a∈A

q(a)r(a)2λ−log2 e = 1

2λ−log2 e =
1∑︁

a∈A q(a)r(a)

13

Therefore,

p(a) =
q(a)r(a)∑︁
a∈A q(a)r(a)

which is equivalent to

π′(a, s) =
π(a, s) · Pπ(ga | sa)∑︁
a∈A π(a, s) · Pπ(ga | sa)

Moreover, we have:

F (π′) =
∑︂
a∈A

p(a) log2
p(a)

q(a)r(a)

=
∑︂
a∈A

p(a) log2
1∑︁

a∈A q(a)r(a)

=

(︄
− log2

∑︂
a∈A

q(a)r(a)

)︄∑︂
a∈A

p(a)

= − log2
∑︂
a∈A

q(a)r(a)

and

∀ a ∈ A, ∂2F

∂p(a)2
=

log2 e

p(a)
> 0

Therefore, F is convex and its minimum occurs when π′(a, s) = π(a,s)·Pπ(g | sa)∑︁
a∈A π(a,s)·Pπ(g | sa)

This shows that, in TSI, the communication modifies the player’s policy by mul-

tiplying the probability of taking action a (original policy π) with the probability of

reaching a goal ga from the successor sa after taking the action a under the original

policy π. Figure 3.2 presents an example of the behavior of the communication for

TSI within a state-space tree, similar to the one depicted in Figure 3.1. Specifically,

For s0, the original policy π is [1
3
, 2
3
] and the probabilities for reaching g0 and g1 from

s1 and s2 (Pπ(g0 | s1) and Pπ(g1 | s2)) are 3
4
and 1

2
, respectively. Therefore, after

receiving TSI, the policy updates to [1
3
× 3

4
, 2
3
× 1

2
]. Upon normalization, it becomes

[3
7
, 4
7
].

Moreover, Equation 3.5 shows that the minimum amount of information required

for communicating the solution is proportional to the probability of reaching a goal

from the current state s. Thus we can simplify the definition without recursion as

14

s0

s1

s3

1
4

g0

3
4

1
3

s2

s4

1
4

s5

1
4

g1

1
2

2
3

the communication

ψ(X)

s0

s1

s3

0

g0

1

3
7

s2

s4

0

s5

0

g1

1

4
7

Figure 3.2: How the communication shifts the player’s policy in TSI

follows:

ψ(X) = − log2
∑︂
g∈G

π(g) (3.6)

Therefore, the TSI of a puzzle, ψ(X), is derived from the logarithm of the sum of the

probabilities of reaching goals according to player’s policy π.

In contrast, ReMUSE employs a softmin function with base e for calculating the

probability distribution of the uniform entropy of the immediate children [20], which

effectively shifts the distribution of reaching goals since uniform entropy is derived

from the log of base 2 instead of e. Moreover, it is not possible to derive an equation

for ReMUSE without recursion. Even if we know a player’s policy and the correspond-

ing probability of reaching the goal(s), calculating ReMUSE still requires recursively

traversing the state space of the puzzle.

Algorithm Calculation Result type Player policy Proposed by

MUSE single solution entropy uniform Chen et al. [20]

ReMUSE all solutions relative entropy uniform Chen et al. [20]

MSI single solution information any Shen

TSI all solutions information any Shen

Table 3.1: Comparison between different algorithms

To summarize, as shown in Table 3.1, MUSE computes the information needed

from an oracle to find a single solution to a puzzle, given a uniform a priori policy.

MSI generalizes this to find the information needed for a single solution given any a

15

priori policy. TSI computes the minimum expected information needed to find any

solution, given any a priori policy. TSI can be expressed more simply that ReMUSE,

as TSI is the logarithm of the probability of reaching a solution with a given policy.

16

Chapter 4

Inference Rules

When solving logic puzzle games, players often deduce sets of inference rules, which

are guidelines that can solve or simplify the puzzle [20]. Formally, an inference rule

is a function that determines whether a specific action should be taken at a given

state. When a player’s policy incorporates inference rules, the probability of actions

that cannot be taken is reduced to zero. Conversely, if an action must be taken, then

the probability of that action is one, and the probability of all other actions is zero.

For actions in Witness puzzles (aup, aright, adown, aleft), each action can be classified

as unknown (UNKNOWN), cannot be taken (CANNOT TAKE), or must be taken

(MUST TAKE). These classifications reflect the probability of solving the puzzle

by taking the corresponding actions. For instance, CANNOT TAKE actions either

directly violate the puzzle constraints or lead to situations where constraints cannot

be satisfied later. Similarly, necessary actions to satisfy constraints are classified as

MUST TAKE. If there are multiple MUST TAKE actions, then the puzzle is not

solvable at that state since the player can take only one action at each state.

Note that inference rules can be directly incorporated into policies; however, a

policy cannot always be converted into an inference rule. It is useful to reason explic-

itly about inference rules separately from policies, as the policy itself is a probability

distribution that may not always be explainable. An example of integrating inference

rules into the uniform policy, πµ is shown in Algorithm 1.

17

Chen et al. proposed two inference rules for must-cross and separation constraints

in their work [20], and another one for triangle constraints in a follow-up thesis [23].

We briefly explain these rules in Figure 4.1.

(a) aright is MUST TAKE, since a
must-cross constraint is adjacent to
the current junction

(b) aright is MUST TAKE, since two
separation constraints are adjacent
to each other and the path must go
between them

(c) aright is MUST TAKE, since the
double triangle cannot be satisfied
later by taking aup

(d) aright is CANNOT TAKE, since
the triple triangle cannot be satisfied
later by taking it

Figure 4.1: Inference rules proposed in previous studies [20, 23]

4.1 Additional Inference Rules

To expand the dataset for testing algorithms and study the effect of different player

models, we propose the following additional inference rules that could be applied

broadly across Witness puzzles containing different types of constraints.

We derived these inference rules during the development of the puzzle editor intro-

duced in Chapter 5. A group of lab members was tasked informally with designing

puzzles with high TSI. However, we discovered that these puzzles were not sufficiently

challenging, prompting us to formalize the inferences we employed as inference rules.

18

Algorithm 1 πµ with inference rules

function πµ(a, s)
Initialize empty map M
for each a′ ∈ A(s) do

M [a′] = UNKNOWN
end for
for each f ∈ {All inference rules} do

if f(a, s) = CANNOT TAKE then
return 0

else if f(a, s) = MUST TAKE then
return 1

end if
for each a′ ∈ A(s) do

if M [a′] ̸= UNKNOWN and M [a′] ̸= f(a′, s) then
return 0 ▷ conflicts between rules

end if
M [a′]← f(a′, s)

end for
end for
A′ ← ∅
for each a′ ∈ A(s) do

if M [a′] = MUST TAKE and a′ ̸= a then
return 0

else if M [a′] = CANNOT TAKE then
continue

end if
A′ ← A′ ∪ {a′} ▷ append a′ to A′

end for
return |A′|−1

end function

19

4.1.1 Along-the-path Rule (APR)

For any state that forms a sub-sequence of a solution sequence, meaning it is part

of the solution, region constraints adjacent to the same side of the path should not

be violated. They are guaranteed to be in the same region no matter the rest of

the solution, thus, they can be evaluated immediately to determine whether a partial

solution is valid. For example, in Figure 4.2a, there are 8 star constraints adjacent the

path, and none of them are violated. In contrast, there are 3 violated star constraints

adjacent to the path in Figure 4.2b, thus this path is not part of any solution. The

implementation of this inference rule is provided in Algorithm 2.

(a) A puzzle with a path that does
not violate any region constraints
next to it

(b) The same puzzle as (a) but with
a path that violates star constraints
highlighted in red on its right-hand
side

Figure 4.2: Example puzzles with similar paths

4.1.2 Region-completion Rule (RCR)

When the path intersects the boundary of the puzzle twice, it forms a new closed

region. A closed region that does not contain the end junction cannot be changed, as

shown in Figure 4.3. Every constraint within a completed region must be satisfied;

otherwise, these constraints cannot be satisfied later. Algorithm 3 provides the details

of this inference rule.

20

Algorithm 2 Along-the-path Rule

function PathTest(s)
▷ Record blocks on the left-hand side and right-hand side of the path that are
not in a completed region, into lists lhs and rhs, respectively. ◁

lhs, rhs← GetLeftRightBlocks(s)
if ∃cregion ∈ lhs and cregion is not satisfied then

return false
end if
if ∃cregion ∈ rhs and cregion is not satisfied then

return false
end if
return true

end function

function AlongThePathRule(a, s)
Apply Action a to s
r ← PathTest(s)
Undo Action a
if r = true then

▷ cannot be determined by this rule ◁
return UNKNOWN

else
return CANNOT TAKE

end if
end function

(a) A puzzle with 2 completed re-
gions highlighted in green, where all
separation constraints inside them
are satisfied

(b) A puzzle with 1 completed region
highlighted in red, where all separa-
tion constraints inside it are not sat-
isfied

Figure 4.3: Example puzzles with completed regions highlighted

21

Algorithm 3 Region-completion Rule

function RegionTest(s)
R← GetCompletedRegions(s)
for each r ∈ R do ▷ Check each completed region

if ∃cregion ∈ r and cregion is not satisfied then
return false

end if
end for
return true

end function

function RegionCompletionRule(a, s)
Apply action a to s
if a region is completed then

r ← RegionTest(s)
else

r ← true
end if
Undo action a
if r = true then ▷ Cannot be determined by this rule

return UNKNOWN
else

return CANNOT TAKE
end if

end function

22

Chapter 5

Integration with EPCG

Procedural content generation (PCG) is a technique that involves the algorithmic

creation of content rather than manual creation, aiming to reduce content production

costs and enable the production of vast, diverse, and dynamic environments, charac-

ters, and scenarios [4]. EPCG extends this concept by striving to explore all possible

permutations and variations within a defined set of parameters. An EPCG procedure

requires two inputs shown in Algorithm 4 [10]: a generator and an evaluator. The

generator accepts a problem description and generates states according to a prede-

fined generation algorithm. In contrast, the evaluator takes a state and compute a

numerical score for it, to determine of which states worth attention. Moreover, to

ensure the production of all possible content, the generator employs a rank function

that convert integers into content, an unrank function that convert content back into

integers [29], and a maxRank function that compute the size of the complete state

space.

The Windmill [30] is a website where users can design and publish Witness puzzles,

offering a Witness puzzle editor1. However, this editor only supports solution correct-

ness analysis. We have developed a novel Witness puzzle editor shown in Figure 5.1

that not only adheres to the constraints listed in Table 2.1, but also provides com-

prehensive puzzle analysis and querying capabilities for EPCG. This chapter details

the puzzle editor’s functionalities.

1https://windmill.thefifthmatt.com/build

23

https://windmill.thefifthmatt.com/build

Algorithm 4 EPCG procedure [10]

Input: Generator G, Evaluator E
Output: best puzzle b
b← G.unrank(0)
for i = 1, . . . , G.maxRank()− 1 do

t← G.unrank(i)
if E(t) > E(b) then

b = t
end if

end for

Figure 5.1: Screenshot of the web page of the puzzle editor

24

5.1 Designing Puzzles

By default, the web page provides an empty 4×4 puzzle, as shown in Figure 5.2a. The

designer can toggle the editor panel using the button or the shortcut key e. Using the

editor panel, the designer can select a region or path constraint, change its color (for

separation and star constraints only), and place it on the puzzle panel, as shown in

Figure 5.2b. Upon updating the puzzle panel, the number of solutions will be updated

accordingly. If placing the constraint makes the puzzle unsolvable, the indicating

frame will turn red, as shown in Figure 5.2c. Additionally, the editor can display

a solution to the current puzzle as needed, allowing the designer to iterate through

each one by clicking the corresponding button. The editor also allows designers to

import puzzles from The Windmill. Once the design is finalized, the puzzle can be

transferred back to The Windmill for publication.

(a) The default puzzle editor (b) The puzzle editor when placing a new
constraint

(c) The puzzle editor when the new puzzle
has no solution

(d) The puzzle editor when it displays the
solution

Figure 5.2: Screenshots of the main part of the puzzle editor

25

5.2 Querying EPCG

The editor panel provides special placeholder constraints for both the path constraint

and the region constraint, indicated by a question mark icon, as shown in Figure

5.3a. If no constraint is placed on placeholders, then this puzzle has 1919 solutions

with TSI of 0.08 Sh. The designer can place up to 4 placeholder constraints on the

puzzle. Upon clicking the Generate button, the generator will exhaustively attempt

all possible constraints and colors at the specified locations. Specifically, if there is

a placeholder for path constraints, there are three placement options: no constraint,

must-cross constraint, and cannot-cross constraint. For placeholders involving region

constraints, the generator will attempt to apply either no constraint, any of three

triangle constraints, a separation constraint, or a star constraint. Furthermore, since

separation and star constraints can have varying colors, the number of new colors

introduced is two if the puzzle initially contains no colors and there are at least two

placeholder constraints. If the puzzle initially contains more than two colors, no new

colors will be added. In all other cases, exactly one new color will be introduced.

Therefore, the total number of placement configurations is given by:

(3 + 2× ncolor)
nregion × 34−nregion

Using the puzzle in Figure 5.3a as an example, the total number of configurations is

calculated as (3 + 2× 2)2 × 32 = 441 (including unsolvable puzzles).

The evaluator will assess each placement configuration using the TSI. The time

required for this process varies depending on the number of placeholder constraints

and the performance of the designer’s CPU, as the computation is executed locally in

the browser with parallelization. Typically, the process should complete within one

minute. Once the generation process is completed, the editor returns the resulting

solvable puzzles, sorted by TSI, along with suggestions based on puzzle statistics such

as the number of constraints, the number of solutions, and TSI values. The designer

can review each suggested puzzle, select a preferred option, and proceed with further

26

design refinements. Figure 5.3b shows the one generated puzzle for the puzzle in

Figure 5.3a. The generated puzzle has 24 solutions with TSI of 7.33 Sh.

?

?

? ?

(a) The puzzle with placeholders in the ed-
itor

(b) The puzzle generated by EPCG proce-
dure

Figure 5.3: EPCG example puzzle

The editor has been useful for informally testing these constraints and the effec-

tiveness of TSI. Future research could focus on formal user studies with designers.

27

Chapter 6

Experiments

In this chapter, we present a comprehensive analysis of the behavior of proposed

algorithms and inference rules. Our experiments aim to address questions derived

from the study and uncover insights into the factors that influence puzzle difficulty and

player engagement by leveraging various collections of puzzles. This chapter details

the experimental setup, thorough comparisons of different algorithms, inference rules,

and the machine learning policy, laying the groundwork for a deeper understanding

of player engagement modeling in Witness puzzles.

6.1 Experiment Setup

The Windmill [30] allows users to upvote or downvote published Witness puzzles

based on their enjoyment. We assume that users on the website are advanced players

of The Witness and generally upvote challenging puzzles while downvoting trivial

ones [20]. To assess the relationship between player enjoyment and puzzle difficulty,

as well as the quality of difficulty assessment, we compare the Pearson Correlation

Coefficients (r-values) derived from simple linear regression of puzzle difficulty and

the number of upvotes. The corresponding probabilities of the F-statistic (p-values)

represent the likelihood of failing to reject the null hypothesis; in other words, they

indicate that the variable has no effect. Additionally, the number of upvotes for each

puzzle is normalized based on the linear relationship between upvotes and timestamps

28

within the test set to account for temporal variations, as the number of active users

on the website decreases over time. Furthermore, for reproducibility, we implemented

MUSE, ReMUSE and their inference rules individually and assumed player policies

to be uniform after applying inference rules.

The complete puzzle dataset comprises every 4 × 4 puzzle prior to November 29,

2022, consistent with previous studies [20]. This fixed size limits the maximum dif-

ficulty and eliminates the variable of puzzle size. We excluded all puzzles that are

included in the original game or duplication, applying different filters to obtain subsets

of puzzles for various experiments.

6.2 Comparing Different Algorithms

The first question to answer is that how TSI performs comparing to ReMUSE on

different puzzle datasets, therefore we compose the first test set that is identical to

the one used in the previous study [20]. It contains 104 puzzles that incorporate

only separation and path constraints. Table 6.1 shows the correlation computed from

different algorithms, and Figure 6.1 provides details of the difficulty score of each

puzzle and its linear correlation with the number of upvotes. In this case MSI is

identical to MUSE, because a uniform default policy is assumed, so we don’t report

results for MSI separately. TSI and ReMUSE, however, are not the same, but TSI is

very similar to ReMUSE on this test set.

6.3 Applying Additional Inference Rules

The second question we want to address is that how the quality of the player model af-

fects the puzzle difficulty calculation and its correlation with player enjoyment. Since

we proposed more inference rules that could be used on broader Witness puzzles, we

make the test sets containing different types of constraints. The baseline inferences we

use are the same inference rules used in previous study [23] that are briefly explained

29

Approach Correlation p-value

MUSE (Reported) 0.410 1.10× 10−5

MUSE (Reproduction) 0.412 1.53× 10−5

ReMUSE (Reported) 0.570 1.57× 10−10

ReMUSE (Reproduction) 0.583 1.02× 10−10

TSI 0.563 5.78× 10−10

Table 6.1: Correlation and p-value for different approaches evaluated on the dataset
used in the previous study [20]

Figure 6.1: The number of upvote of puzzles from the dataset used by the previous
study [20] and their difficulty measured by ReMUSE and TSI respectively

30

in Figure 4.1. The second test set (T-only set) comprises 179 puzzles, each containing

at least one triangle constraint and possibly one or both path constraints. The first

half of Table 6.2 provides details of how inference rules affect the correlation. The

absolute correlations without applying any additional inference rule are lower than

in previous test sets, as expected [20]. More importantly, adding the along-the-path

rule improves the correlation, while adding the region-completion rule reduced corre-

lation. This suggests that players tend to use along-the-path rules when the puzzle

contains triangles.

For comparison, we conduct a follow-up experiment on the complementary set of

the second test set (non-T set): the set of 226 puzzles that do not contain triangle con-

straints (they contain separation constraints, star constraints, and path constraints).

The second half of Table 6.2 demonstrates that incorporating more inference rules,

resulting in a more informed model, does not necessarily lead to a better correla-

tion between difficulty scores and player upvotes. One might infer that users on The

Windmill are not necessarily using all of the inference rules that we developed. How-

ever, a puzzle we created using procedural tools, which we discuss further at the end

of the experimental results, suggests a different conclusion: that good puzzles will

have inference rules that help guide players to the solution. Regardless, it is crucial

to model player knowledge accurately when measuring puzzle difficulty.

6.4 Difficulty Calculated by ML Policy

The last question we want to address is that how policies from machine learning (ML)

compare to our manually created inference rule. Since MSI and TSI are derived from

the probability of reaching goals, it is possible to use a ML policy instead of manually

creating inference rules. Lelis et al.[5] utilized a modified Bootstrap model [31], which

takes a puzzle instance as input and returns a policy, to be used as a policy in Levin

tree search [32] for generating an equidistant curriculum of specific types of Witness

puzzles. This curriculum is designed to ease player learning. The model was trained

31

Puzzle Set Inference Rule Correlation p-value

T-only Baseline 0.366 4.67× 10−7

T-only APR 0.433 1.40× 10−9

T-only RCR 0.252 6.58× 10−4

T-only Both 0.322 1.09× 10−5

non-T Baseline 0.515 1.03× 10−16

non-T APR 0.494 2.62× 10−15

non-T RCR 0.497 1.71× 10−15

non-T Both 0.479 2.16× 10−14

Table 6.2: Correlation and p-value for for different player models evaluated on
triangle-only and non-triangle Witness puzzles

on Witness puzzles that contain only separation constraints with two colors, referred

to as Black and White Square (BWS) puzzles. The authors shared the source code

and corresponding datasets with us, and we trained their model independently. The

complete dataset contains 24 BWS puzzles. We collect all solutions for each of them.

To compute the MSI, we calculate the logarithm of the probability of reaching the

most likely solution as dictated by the model’s policy using Equation 3.2. For the TSI,

we calculate the logarithm of the sum of the probabilities of reaching each solution

(goal state) using Equation 3.6. The baseline inference rule in these puzzles is the

separation rule (SR), explained in Figure 4.1b, since other inference rules proposed

previously [23] do not affect puzzles in this test set. The results shown in Table 6.3

indicate that the MSI and TSI derived from the ML policy are very close to each

other. Notably, the TSI derived from the ML policy surpasses that derived from

inference rules on these simple puzzles. Additionally, the results show that applying

extra inference rules worsens the correlation, consistent with the previous experiment.

To verify that the ML policy learns inferences, we conduct a supplementary exper-

iment. We first collect states along all solution sequences of each puzzle that have

actions pruned by the separation rule shown in Figure 4.1b. We then calculate the

32

Player Model

Correlation p-value Correlation p-value

SR (baseline) 0.521 8.99× 10−3 0.844 2.23× 10−7

APR 0.401 5.23× 10−2 0.720 7.20× 10−5

RCR 0.405 4.94× 10−2 0.449 2.77× 10−2

SR and APR 0.341 1.03× 10−1 0.769 1.15× 10−5

SR and RCR 0.490 1.51× 10−2 0.827 6.26× 10−7

APR and RCR 0.377 6.92× 10−2 0.739 3.69× 10−5

All Inference Rules 0.299 1.55× 10−1 0.771 1.02× 10−5

ML Policy 0.751 2.35× 10−5 0.787 5.16× 10−6

MSI TSI

Table 6.3: Correlation and p-value for MSI and TSI with different player models
evaluated on BWS Witness puzzles [5]

expected probability of the ML policy taking CANNOT TAKE actions. Additionally,

we calculate the expected probability of taking the correct action, as the separation

rule selects actions that are MUST TAKE rather than explicitly identifying other

actions as CANNOT TAKE. In general, if the policy learns the inference that prunes

actions, then the probability of taking these pruned actions should be close to 0. Sim-

ilarly, if the policy learns the inference that selects actions, then the probability of

taking these selected actions should be close to 1. Furthermore, we collect states along

all solution sequences of every puzzle that the separation rule cannot be applied but

other two new inference rules can be applied respectively. The results are provided

in Table 6.4. They show that the ML model adequately learned the along-the-path

rule; however, it did not learn the region-completion rule effectively, which is also

reflected in Table 6.3. Consequently, we conclude that the ML model is capable of

learning inference, which is also suggested by Stevens et al. [33]. Moreover, they can

be effectively utilized in both MSI and TSI as well.

33

Method Probability

uniform 0.497

policy 0.002

inference 0.000

(a) Method and expected probabilities of
taking CANNOT TAKE actions pruned by
the separation rule in total of 11050 states

Method Probability

uniform 0.497

policy 0.994

inference 1.000

(b) Method and expected probabilities of
taking MUST TAKE actions selected by the
separation rule in total of 11050 states

Method Probability

uniform 0.465

policy 0.091

inference 0.000

(c) Method and expected probabilities of
taking CANNOT TAKE actions pruned by
the along-the-path rule in total of 4518
states

Method Probability

uniform 0.418

policy 0.331

inference 0.000

(d) Method and expected probabilities of
taking CANNOT TAKE actions pruned by
the region-completion rule in total of 2998
states

Table 6.4: The expected probabilities of taking CANNOT TAKE actions and MUST -
TAKE actions

34

6.5 EPCG Verification

As an independent experiment, in March 2024, we selected the latest puzzle1 (Figure

6.2a) posted on The Windmill and used our editor to generate a similar puzzle2 with

a higher TSI (Figure 6.2c). We then published it alongside the original one. Three

months later, the original puzzle had 207 solves and 4 upvotes, while our puzzle had

only 113 solves and 5 upvotes.

In going back and trying to solve this puzzle again, we find that it is difficult for

us to solve, because there are very few inferences we can make to guide our own

problem-solving process. We end up solving it more by random exploration than by

reasoned exploration. TSI is high because no inference rules reduce the search. Our

experience is reflected in the relative low total number of solves.

We must be careful not to draw too broad of conclusions from this single puzzle.

This result suggests that instead of just looking for puzzles with high TSI, we may

be interested in finding puzzles that have a large difference in TSI depending on the

inference rules used. This would indicate puzzles that can be more easily solved if

you know the inference rule, but are hard otherwise. This approach has been used

recently in curriculum generation [34]. Regardless, more work is needed to understand

the interplay between TSI, player models, and puzzle enjoyment.

(a) Original puzzle with TSI
of 6.67 Sh

? ?

?

(b) Puzzle with placeholders
in the editor

(c) Generated puzzle using
our editor with TSI of 8.58 Sh

Figure 6.2: Screenshot of original puzzle and its harder alternatives

1https://windmill.thefifthmatt.com/zmxfp88
2https://windmill.thefifthmatt.com/7nw1t3r

35

https://windmill.thefifthmatt.com/zmxfp88
https://windmill.thefifthmatt.com/7nw1t3r

Chapter 7

Conclusions and Future Work

In this thesis, we generalized entropy and solution information and proposed new

algorithms, MSI and TSI, as general metrics for measuring puzzle difficulty. These

novel approaches facilitate analysis involving both inference rules and player policies.

After validating these metrics with two additional inference rules through extensive

experiments on various puzzle sets and player models, we conclude that our approach

is as effective as previous methods while offering improved mathematical foundation

and generality. Furthermore, we demonstrated that accurate player modeling is es-

sential. Finally, we developed a Witness puzzle editor that supports EPCG queries.

Future research could focus on studying other region constraints in The Witness,

such as Tetris-shaped constraints, which are also crucial mechanics of the game. This

would involve enhancing the player model and conducting experiments to test the

TSI.

Additionally, incorporating ML techniques to create explainable inference rules for

puzzles and their solutions, as suggested by previous studies [33], represents another

promising area of exploration. The effects of these learned inference rules on the

player model could also be investigated.

Moreover, the data from The Windmill presents challenges due to noise and out-

liers, including puzzles from the original game and spam test puzzles, which impact

experimental outcomes. Future work could conduct a formal user study to develop

36

a clean dataset and then examine the correlation between TSI and player enjoyment

based on it.

Finally, this approach as a generic algorithm could be extend to different puzzle

games using corresponding player policies to evaluate its broader applicability and

effectiveness.

37

References

[1] J. Shen and N. R. Sturtevant, “Generalized entropy and solution information
for measuring puzzle difficulty,” in Artificial Intelligence and Interactive Digital
Entertainment (AIIDE), 2024.

[2] M. van Kreveld, M. Loffler, and P. Mutser, “Automated puzzle difficulty esti-
mation,” in 2015 IEEE Conference on Computational Intelligence and Games
(CIG), IEEE, Aug. 2015. doi: 10.1109/cig.2015.7317913.

[3] A. Frazer, “Towards better gameplay in educational computer games: A phd
thesis,” Ph.D. dissertation, University of Southampton, Nov. 2010. [Online].
Available: https://eprints.soton.ac.uk/172421/.

[4] B. De Kegel and M. Haahr, “Procedural puzzle generation: A survey,” IEEE
Transactions on Games, vol. 12, no. 1, pp. 21–40, 2020. doi: 10.1109/TG.2019.
2917792.

[5] L. H. S. Lelis, J. G. G. V. Nova, E. Y. C. Chen, N. R. Sturtevant, C. D. Epp, and
M. Bowling, “Learning curricula for humans: An empirical study with puzzles
from the witness,” in International Joint Conference on Artificial Intelligence,
2022. [Online]. Available: https://www.ijcai.org/proceedings/2022/538.

[6] S. Abuhamdeh and M. Cśıkszentmihályi, “The importance of challenge for the
enjoyment of intrinsically motivated, goal-directed activities,” Personality &
social psychology bulletin, 2012. doi: 10.1177/0146167211427147.

[7] CandyCane Software, Fling! 2011. [Online]. Available: https://www.candycaneapps.
com/fling/.

[8] N. Sturtevant, “An argument for large-scale breadth-first search for game design
and content generation via a case study of fling!” In AI in the Game Design
Process (AIIDE workshop), 2013, pp. 28–33.

[9] P. Jarušek and R. Pelánek, “Difficulty rating of sokoban puzzle,” in Proceed-
ings of the 2010 Conference on STAIRS 2010: Proceedings of the Fifth Start-
ing AI Researchers’ Symposium, NLD: IOS Press, 2010, pp. 140–150, isbn:
9781607506751.

[10] N. Sturtevant and M. Ota, “Exhaustive and semi-exhaustive procedural content
generation,” Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 14, no. 1, pp. 109–115, Sep. 2018. doi:
10.1609/aiide.v14i1.13020. [Online]. Available: https://ojs.aaai.org/index.php/
AIIDE/article/view/13020.

38

https://doi.org/10.1109/cig.2015.7317913
https://eprints.soton.ac.uk/172421/
https://doi.org/10.1109/TG.2019.2917792
https://doi.org/10.1109/TG.2019.2917792
https://www.ijcai.org/proceedings/2022/538
https://doi.org/10.1177/0146167211427147
https://www.candycaneapps.com/fling/
https://www.candycaneapps.com/fling/
https://doi.org/10.1609/aiide.v14i1.13020
https://ojs.aaai.org/index.php/AIIDE/article/view/13020
https://ojs.aaai.org/index.php/AIIDE/article/view/13020

[11] Noumenon Games, Snakebird, 2015. [Online]. Available: https://store.steampowered.
com/app/357300/Snakebird/.

[12] N. R. Sturtevant, N. Decroocq, A. Tripodi, and M. Guzdial, “The unexpected
consequence of incremental design changes,” in Artificial Intelligence and Inter-
active Digital Entertainment (AIIDE), 2020, pp. 130–136. [Online]. Available:
http://www.cs.ualberta.ca/∼nathanst/papers/sturtevant2020incremental.pdf.

[13] ThinkFun Games, 1996. [Online]. Available: https://www.thinkfun.com/rush-
hour-online-play/.

[14] A. M. Smith, E. Andersen, M. Mateas, and Z. Popović, “A case study of expres-
sively constrainable level design automation tools for a puzzle game,” in Pro-
ceedings of the International Conference on the Foundations of Digital Games,
ser. FDG’12, ACM, May 2012. doi: 10.1145/2282338.2282370.

[15] M. J. Nelson and A. M. Smith, “Asp with applications to mazes and levels,” in
Computational Synthesis and Creative Systems. Springer International Publish-
ing, 2016, pp. 143–157, isbn: 9783319427164. doi: 10.1007/978-3-319-42716-
4 8.

[16] B. Fatemi, S. M. Kazemi, and N. Mehrasa, “Rating and generating sudoku
puzzles based on constraint satisfaction problems,” International Journal of
Computer and Information Engineering, vol. 8, no. 10, pp. 1816–1821, 2014.
[Online]. Available: https : //citeseerx . ist .psu . edu/document? repid=rep1&
type=pdf&doi=fc78d54ae5d5234c9fb229d6a2cd2ef5af181e70.

[17] ZeptoLab UK Limited, Cut the rope, 2010. [Online]. Available: https://www.
cuttherope.net/.

[18] Rovio Entertainment Corporation, Angry birds, 2009. [Online]. Available: https:
//www.angrybirds.com/.

[19] S. Roohi, C. Guckelsberger, A. Relas, H. Heiskanen, J. Takatalo, and P. Hämäläinen,
“Predicting game difficulty and engagement using ai players,” Proc. ACM Hum.-
Comput. Interact., vol. 5, no. CHI PLAY, Oct. 2021. doi: 10.1145/3474658.
[Online]. Available: https://doi.org/10.1145/3474658.

[20] E. Y. C. Chen, A. White, and N. R. Sturtevant, “Entropy as a measure of puzzle
difficulty,” Proceedings of the AAAI Conference on Artificial Intelligence and
Interactive Digital Entertainment, vol. 19, no. 1, pp. 34–42, Oct. 2023, issn:
2326-909X. doi: 10.1609/aiide.v19i1.27499.

[21] J. A. del Solar-Zavala, H. Schaa, and N. A. Barriga, “Using entropy for modeling
difficulty in the asteroid escape sliding puzzle,” in 2023 IEEE CHILEAN Con-
ference on Electrical, Electronics Engineering, Information and Communication
Technologies (CHILECON), IEEE, Dec. 2023. doi: 10.1109/chilecon60335.2023.
10418707.

[22] Thekla, Inc., The witness, Jan. 2016. [Online]. Available: https://store.steampowered.
com/app/210970/The Witness/.

39

https://store.steampowered.com/app/357300/Snakebird/
https://store.steampowered.com/app/357300/Snakebird/
http://www.cs.ualberta.ca/~nathanst/papers/sturtevant2020incremental.pdf
https://www.thinkfun.com/rush-hour-online-play/
https://www.thinkfun.com/rush-hour-online-play/
https://doi.org/10.1145/2282338.2282370
https://doi.org/10.1007/978-3-319-42716-4_8
https://doi.org/10.1007/978-3-319-42716-4_8
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fc78d54ae5d5234c9fb229d6a2cd2ef5af181e70
https://citeseerx.ist.psu.edu/document?repid=rep1&type=pdf&doi=fc78d54ae5d5234c9fb229d6a2cd2ef5af181e70
https://www.cuttherope.net/
https://www.cuttherope.net/
https://www.angrybirds.com/
https://www.angrybirds.com/
https://doi.org/10.1145/3474658
https://doi.org/10.1145/3474658
https://doi.org/10.1609/aiide.v19i1.27499
https://doi.org/10.1109/chilecon60335.2023.10418707
https://doi.org/10.1109/chilecon60335.2023.10418707
https://store.steampowered.com/app/210970/The_Witness/
https://store.steampowered.com/app/210970/The_Witness/

[23] Chen, You Chen Eugene, “Entropy as a measure of puzzle difficulty,” M.S.
thesis, University of Alberta, 2023. doi: 10.7939/R3-9RSM-EG27.

[24] C. E. Shannon, “A mathematical theory of communication,” Bell System Tech-
nical Journal, vol. 27, no. 3, pp. 379–423, Jul. 1948, issn: 0005-8580. doi:
10.1002/j.1538-7305.1948.tb01338.x.

[25] International Organization for Standardization, Quantities and units – part 13:
Information science and technology, Apr. 2008. [Online]. Available: https ://
www.iso.org/standard/31898.html.

[26] S. Kullback and R. A. Leibler, “On information and sufficiency,” The annals of
mathematical statistics, vol. 22, no. 1, pp. 79–86, 1951.

[27] M. Hendrikx, S. Meijer, J. Van Der Velden, and A. Iosup, “Procedural content
generation for games: A survey,” ACM Trans. Multimedia Comput. Commun.
Appl., vol. 9, no. 1, Feb. 2013, issn: 1551-6857. doi: 10.1145/2422956.2422957.
[Online]. Available: https://doi.org/10.1145/2422956.2422957.

[28] A. Summerville et al., “Procedural content generation via machine learning
(pcgml),” IEEE Transactions on Games, vol. 10, no. 3, pp. 257–270, 2018. doi:
10.1109/TG.2018.2846639.

[29] W. Myrvold and F. Ruskey, “Ranking and unranking permutations in linear
time,” Information Processing Letters, vol. 79, no. 6, pp. 281–284, 2001, issn:
0020-0190. doi: https://doi.org/10.1016/S0020-0190(01)00141-7.

[30] M. Gruen, The windmill, May 2016. [Online]. Available: https : / /windmill .
thefifthmatt.com.

[31] S. Jabbari Arfaee, S. Zilles, and R. C. Holte, “Learning heuristic functions for
large state spaces,” Artificial Intelligence, vol. 175, no. 16–17, pp. 2075–2098,
Oct. 2011, issn: 0004-3702. doi: 10.1016/j.artint.2011.08.001.

[32] L. Orseau, L. H. S. Lelis, T. Lattimore, and T. Weber, “Single-agent policy tree
search with guarantees,” in Proceedings of the 32nd International Conference
on Neural Information Processing Systems, ser. NIPS’18, Montréal, Canada:
Curran Associates Inc., 2018, pp. 3205–3215.

[33] J. Stevens, V. Bulitko, and D. Thue, Solving witness-type triangle puzzles faster
with an automatically learned human-explainable predicate, 2023. doi: 10.48550/
ARXIV.2308.02666.

[34] Y. Mahmoud and N. R. Sturtevant, “Using epcg for designing a hexagon tan-
gram puzzle,” in Artificial Intelligence and Interactive Digital Entertainment
(AIIDE), 2024.

40

https://doi.org/10.7939/R3-9RSM-EG27
https://doi.org/10.1002/j.1538-7305.1948.tb01338.x
https://www.iso.org/standard/31898.html
https://www.iso.org/standard/31898.html
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1145/2422956.2422957
https://doi.org/10.1109/TG.2018.2846639
https://doi.org/https://doi.org/10.1016/S0020-0190(01)00141-7
https://windmill.thefifthmatt.com
https://windmill.thefifthmatt.com
https://doi.org/10.1016/j.artint.2011.08.001
https://doi.org/10.48550/ARXIV.2308.02666
https://doi.org/10.48550/ARXIV.2308.02666

	Introduction
	Related Works
	Generalizing the Recent Approach

	Background
	Heuristic Search
	Entropy of a Puzzle
	Puzzles from The Witness
	Procedural Content Generation

	Mathematical Foundations
	MUSE and Probability
	Minimum Solution Information
	Total Solution Information

	Inference Rules
	Additional Inference Rules
	Along-the-path Rule (APR)
	Region-completion Rule (RCR)

	Integration with EPCG
	Designing Puzzles
	Querying EPCG

	Experiments
	Experiment Setup
	Comparing Different Algorithms
	Applying Additional Inference Rules
	Difficulty Calculated by ML Policy
	EPCG Verification

	Conclusions and Future Work
	References

