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Abstract

Coupling optical cavities to freely moving mechanical devices results in optome-

chanical systems. Enabled by advancing fabrication techniques, optomechanical

systems are now easily fabricated using silicon-on-insulator chips at the micro- and

nanoscale. These nano-optomechanical systems (NOMS) combine nanomechanical

devices with photonic integrated circuits for sensitive readout of mechanical dis-

placement. NOMS have many potential applications, including mass detection. In

this thesis, we work towards improving the dynamic range of cantilevers coupled to

photonic circuits for mass sensing applications. We use an all-optical pump-and-

probe approach. First, we derive and demonstrate a simple model for designing

optomechanical systems for efficient actuation via the optical gradient force. We

achieve large amplitudes of vibration and show the power required to achieve these

amplitudes is nearly four times smaller than an unoptimized design. When driving

the cantilever to large amplitudes, we observe multiple simultaneous nonlinearities.

To understand the source of these nonlinearities, we derive and solve a numerical

model that allows us to determine that there are three nonlinearities present in the

system; a readout nonlinearity and two distinct optical force nonlinearities. The

model is unique in that it incorporates the effect of the pump laser on the op-

tomechanical system. Of all the nonlinearities, the readout nonlinearity is the most

detrimental to mass sensing performance as it hinders our ability to determine the

amplitude of the mechanical device. To mitigate the readout nonlinearity, we design

a photonic integrated circuit to increase the linear range of NOMS readout. This

photonic architecture successfully increases the linear range by a factor of four while

maintaining the sensitivity of the previous design. These improvements increase the

dynamic range, and therefore the limit of detection, by a factor of 2.8. The work

presented here will help to improve the viability of NOMS mass sensors in a variety

of applications, including portable health care diagnostic tools.
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Chapter 1

Introduction

Sensors are an integral part of our daily lives. Through advances in micro- and

nanofabrication, sensors have become smaller and less costly. Sensor technology is

now portable and even wearable, as demonstrated by commercial wearable fitness

trackers that monitor heart rates and count steps. Portable sensor technology has

many potential applications, including point-of-care health diagnostic tools, envi-

ronmental monitoring, and gas analysis.

Improvements in nanofabrication techniques have also decreased the detection

limit of nanoscale sensors. The detection limit describes the smallest mass or con-

centration of an analyte that the sensor can resolve. For example, carbon nanotubes

have been used to detect masses as small as 1.66 yg (1 yoctogram = 1 × 10−24 g),

which is the mass of a single proton [1]. However, the experimental conditions were

ultra high vacuum and a low temperature of 6 K. Although the sensor itself has an

exquisite detection limit, it is not suitable for use in a portable sensing application.

For applications where portable sensors are desirable, we must achieve a balance

between obtaining an exceptional detection limit and operating at ambient condi-

tions. A technology that may be able to meet these requirements is mass sensors

based on nanomechanical devices. Nanomechanical devices have mechanical degrees

of freedom and vibrate with a characteristic resonance frequency that is dependent

on the device geometry. When an analyte molecule is adsorbed on the surface of the

nanomechanical device, the increase in mass introduced by the analyte results in a

decrease in the mechanical resonance frequency. Therefore, the mass of the analyte

molecule is detected as a shift in the resonance frequency of the nanomechanical de-

vice. Nanomechanical devices have been used to demonstrate detection of biological

molecules [2, 3, 4, 5] and various gases [6, 7, 8, 9]. Clearly this technology is suitable

for sensing different types of analytes, and may find use in health care applications,

or gas sensing and analysis.

In addition to the mass sensor itself (the nanomechanical device), we also re-

quire a transducer to actuate and read out the sensor. One transduction method
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is integrated photonics. Integrated photonics was originally developed for use in

telecommunications. Waveguides, with dimensions on the order of hundreds of

nanometres, carry light across the surface of a silicon-on-insulator (SOI) chip. With

improvements in fabrication techniques leading to decreasing cost, silicon photonics

has become more accessible for applications beyond telecommunications. Silicon

photonic devices, originally designed as filters, have been re-purposed as sensors.

For example, the resonant frequency of a microring optical cavity is sensitive to

changes in the external environment. While this can be detrimental for filter per-

formance, it means that optical cavities are excellent sensors. Microring resonators

have been used to detect biological molecules with nanogram concentration [10].

The same sensing principles can be used to detect the motion of nanomechanical

devices. This readout technique, called nanophotonic transduction, decreases the

noise floor and increases the displacement sensitivity compared to other transduction

techniques [11]. The bandwidth of the technique is also very high, since integrated

photonic devices were originally designed for telecommunication applications that

typically require modulation frequencies in the tens of gigahertz. The bandwidth is

therefore only limited by electronics external to the nanophotonic transducer. The

high bandwidth allows for high frequency nanomechanical devices, which in turn

improves the detection limit of the nanomechanical mass sensor. Nanomechanical

devices and optical cavities can be integrated onto the same platform, an SOI wafer,

using standard CMOS processing techniques. This drives down the cost per device

substantially, as millions of these devices can be fabricated in a small area [12].

The mass sensor and transducer together are called a nano-optomechanical

system. The field of study that encompasses the combined system of a mechan-

ical device and an optical cavity is called optomechanics. Much of the current

work in optomechanics focuses on developing systems for use in quantum comput-

ing [13, 14, 15]. To date, the application of optomechanical systems to mass sensing

has been fairly limited. Some work has been done to develop optomechanical sys-

tems for sensing in liquid [16, 17]. Gas sensing using optomechanical doubly clamped

beams has been demonstrated with 1 ppb sensitivity [9]. Recently, sensitivity has

even been shown to improve with higher damping [18].

With the proof-of-concept demonstrated for nano-optomechanical mass sensing

systems, we must now work towards improving the technology with the end goal of

a low-power, low-cost, portable sensing device in mind. In particular, we focus on

improvements that will help propel this technology towards use in health diagnostic

tools or in gas analysis. In this work, we will discuss several different approaches

to solving these challenging problems, and work towards creating a practical mass

sensing device. In the third chapter of the thesis, we focus on several practical con-

siderations. Reducing the size and complexity of the entire sensing system including
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electronics and packaging is an important consideration. We will demonstrate a

technique for reading out high frequency nanomechanical signals at low frequency

to reduce the cost and complexity of the external electronics. An approach for in-

corporating spatial resolution [19] through the use of multiple mechanical modes of

vibration in optomechanical systems to correctly determine the added mass of an

analyte molecule is also discussed. Finally, sensors that are compatible with not

only gaseous but fluidic samples are desirable as well. Analysis of fluidic samples

will allow the devices to be used in health diagnostic tools since this application

typically requires analysis of fluidic samples. A new device architecture designed

specifically for operation in fluid is presented, along with a package for low-cost,

temperature stabilized microfluidics measurements.

We wish to continue improving the detection limit, while decreasing the power

consumption and improving the portability. In the main section of the thesis, com-

prised of Chapters 4 – 6, we will show that by designing the mass sensor and trans-

ducer together, we can improve the efficiency of actuation, which lowers the input

power requirement. The detection limit may be improved by increasing the dy-

namic range, since as the dynamic range increases, the minimum detectable mass

decreases [20]. One approach that may be used to improve the dynamic range is to

increase the amplitude of vibration of the nanomechanical device. While increasing

the amplitude, nonlinearities in the sensor and transducer must also be reduced or

eliminated. We present an in-depth study of the sources of nonlinearity in a nano-

optomechanical system, and suggest an alternative transducer design that can help

eliminate the observed nonlinearities.

As a relatively new field, there is a significant area to explore to enhance and

improve mass sensing performance using nano-optomechanical systems. We will

demonstrate several promising options for device optimization that help to reduce

cost, complexity, power use, and improve overall performance of the sensor and

transducer.

1.1 Outline

In Chapter 2, we provide background information on the topics of nanomechanics,

integrated photonics, and how these technologies can be combined into optomechan-

ical systems. This section consolidates important details of optomechanical systems

that may be of use to future students, such as equations describing the behaviour of

optical cavities using both the power and energy coupling formalisms, the equations

for modeling coherent backscattering in optical cavities, and equations describing

optomechanics in integrated photonics systems including the transduction coeffi-

cient. We also provide details of our experimental setup.

Chapter 3 is a collection of several different experiments in which we work to-
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wards improving practical mass sensing systems by addressing the difficulties in

packaging, portability, and operation in fluidic environments. In Section 3.1, the

possibility of optomechanical sensing in fluid and the requirements of both photonic

and mechanical design to make fluid sensing feasible are explored. In particular,

designs for and fabrication of narrow mechanical fin resonators as thin as 20 nm are

carried out. It also includes work towards developing an inexpensive package for

microfluidic sensors, including a built-in plastic photonic temperature sensor. All

of the work done in this section is intended to improve operation in fluidic envi-

ronments. Section 3.2 discusses the design and fabrication of integrated photonics

circuits for detecting even modes in doubly clamped beams. It is based on the work

published in [21]. Section 3.3 shows the design of, and results from, a measurement

scheme for detecting high frequency mechanical signals at DC with a single laser for

both drive and detection. This work is a step towards simplifying the experimental

setup for commercial applications.

In the main body of the thesis, comprised of Chapters 4 – 6, we focus specifically

on improving the dynamic range of the nano-optomechanical system for gas sensing

applications. In Chapter 4, we discuss how to design an optomechanical system

to maximize the efficiency of the optical driving force applied to a nanomechanical

beam in the pump-and-probe configuration. We derive a simple model that can

be used to design efficient optomechanical systems. Experimental results verify the

derived model. By applying a moderate driving force, we achieve large amplitudes

of vibration and begin to see nonlinear effects in the experimental results.

Chapter 5 studies further the nonlinearities first observed in Chapter 4. We show

detailed experimental results of the nonlinearities, including some unexpected results

that cannot be explained using existing work. We adapt an existing analytic model

for our pump-and-probe configuration, which accurately describes some, but not all,

of our experimental results. We then derive a numerical model that accounts for the

presence of two lasers in our optomechanical system to more accurately match the

experimental conditions. This model allows us to determine that there are three dif-

ferent types of nonlinearity present; a readout nonlinearity, and two distinct optical

force nonlinearities. This valuable insight cannot be obtained through experiment as

the nonlinearities cannot be separated in the observed results. The numerical model

delivers excellent qualitative agreement with the experimental results, and allows

for a direct estimation of the mechanical amplitude. By comparing the numerical

model to the experimental results, we gain an improved understanding of how non-

linearities arise in nano-optomechanical systems actuated using a pump-and-probe

approach.

The readout nonlinearity observed in Chapter 5 is problematic as it prevents

proper estimation of the nanomechanical amplitude. For this reason, we wish to ad-
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dress the readout nonlinearity and reduce its effect. That is the focus of Chapter 6.

In this chapter, we design an alternative photonic circuit for transducing nanome-

chanical motion. The circuit is a racetrack-loaded Mach Zehnder interferometer that

provides phase-sensitive detection of nanomechanical displacement. The circuit is

designed to have a large linear range to reduce the readout nonlinearity observed in

Chapter 5. We explore a wide parameter space in the design of these devices to find

the most linear designs for future mass sensors. The devices are fabricated and mea-

sured experimentally. Both optical and mechanical measurements demonstrate that

the performance of the photonic circuit is as expected from the design. The results

verify that the racetrack-loaded MZI has a larger linear range without sacrificing

sensitivity, and will be beneficial for creating more powerful mass sensors.
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Chapter 2

Background

Optomechanics is an extremely multidisciplinary field where a strong understanding

of both optics and mechanics is required. To provide sufficient context for the

work done in this thesis, we will describe the necessary background information in

both nanomechanics and integrated photonics. We will then discuss how these two

technologies couple together to create optomechanical systems.

First, we will discuss nanomechanics. We will cover the essential types of

nanomechanical systems and the governing equations. In particular, we will discuss

the experimentally relevant procedure for converting the measured data in volts to

metres, which is useful in data analysis.

We will then cover the relevant subjects in integrated photonics. This is a well-

established field with many different applications and devices. We will discuss the

fundamentals of ring resonators and directional couplers, the main devices used in

this thesis. We will also discuss coherent backscattering, which is an effect that can

occur in silicon photonics, and appears in many of our experimental results.

Lastly, we will discuss how the nanomechanics and optomechanics interact to

form a single optomechanical system. This section will show how our measurements

are done, and how we extract the mechanical properties of the system from optical

measurements.

2.1 Nanomechanics

With improvements in fabrication processes in the past decade, microelectrome-

chanical systems have been scaled down to create nanomechanical devices. These

small resonators take a variety of forms. Most commonly nanomechanical devices

are cantilevers, doubly clamped beams, or disks. They vibrate with very small

amplitudes and have very small motional mass (effective mass, meff), on the order

of picograms or less. Nanomechanical devices have a characteristic resonance fre-

quency (Ωn = 2πfn) that is dependent on the device dimensions. For thin beams,
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the resonance frequency and amplitude can be determined by solving the wave equa-

tion [22, 23];

EI
∂2un(x, t)

∂x4
= −ρA∂

2un(x, t)

∂x2
, (2.1)

where un(x, t) is the amplitude of the nth mode shape, and is a function of time

and x. x is the spatial coordinate along the length of the beam. E is the Young’s

modulus, I is the moment of inertia, ρ is the density of the material in units of kg/m3,

and A is the cross-sectional area of the nanomechanical device. Solving Eq. (2.1) for

the appropriate boundary conditions allows for the solutions for both doubly and

singly clamped beams (cantilevers). One important use of the mode shape function

un(x, t) is to calculate the effective mass of the nanomechanical device. The effective

mass is the mass of the device modified by a factor that accounts for the normalized

mode shape (ûn) of the nth mode of vibration. The effective mass is calculated using

Eq. (2.2) [24, 25];

meff = ρA

∫ l

0
ûn

2(x)dx, (2.2)

where the amplitude of the mode shape un has been normalized to one, which is

represented by the hat notation.

In many cases, it is sufficient to consider the nanomechanical device as a simple

harmonic oscillator instead of requiring the full solution to Eq. (2.1). The behaviour

of a simple harmonic oscillator, a system of a spring connected to a point mass m,

is defined by

m
d2x

dt2
= −kx, (2.3)

where k = mΩ2
n is the spring constant of the simple harmonic oscillator. The

solution to this equation is x(t) = B cos (Ωt+ ϕ) where B is the amplitude and

ϕ is the phase. In many cases we apply a driving force to the simple harmonic

oscillator. In the presence of a driving force we must also consider damping of the

simple harmonic oscillator. Damping can be expressed by the quality factor Q of

the system. The quality factor is defined as the stored energy divided by the energy

lost per cycle [26]. The equation for a damped, driven simple harmonic oscillator is

m
d2x

dt2
+
mΩ

Q

dx

dt
+ kx = F (t), (2.4)

where the driving force is defined as F (t). If F (t) is sinusoidal such that F (t) =

F0 cos(Ωt+ ϕd) where F0 is the amplitude and ϕd is the phase of the driving force,

then the steady state solution to Eq. (2.4) is the same as the simple harmonic

oscillator. The amplitude of the driven, damped harmonic oscillator is a Lorentzian

of the form:
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B =
F0/m√

[Ω2
0 − Ω2]2 + (ΩΩ0/Q)2

. (2.5)

This amplitude is referred to as the driven amplitude, as it is the amplitude

of the device when it is driven by an external driving force. We can simplify this

expression for the case where Ω0 = Ω. In that case, the relationship between the

force and amplitude is

F0 =
kB

Q
. (2.6)

The expressions for the simple harmonic oscillator and the driven damped simple

harmonic oscillator are often used to approximate the behaviour of nanomechani-

cal devices. In particular, Eq. (2.6) is a useful expression as the force applied

to a device can often be calculated with relative ease, allowing an estimate of the

nanomechanical amplitude to be obtained. Damping in nanomechanical systems can

be introduced by a range of different mechanisms, such as viscous damping [27, 28],

thermoelastic dissipation [29, 30], and clamping loss [31, 32] to name a few. Forces

can be applied to nanomechanical devices in many different ways as well. This

is referred to as actuation of the nanomechanical device and can be achieved us-

ing different techniques such as electrostatically [33, 34, 35, 36], physically shaking

the devices with a piezoelectric disk [37, 38, 39, 40], on-chip piezoelectric actua-

tion [41, 42, 43, 44], photothermal actuation [45, 46, 47, 48, 49], or through the

optical gradient force [50, 51, 52, 53, 54]. Readout of the motion of nanomechanical

devices can occur in a number of ways including capacitive detection [55, 56, 57],

with piezoelectric or piezoresistive circuits [27, 58, 59, 60, 61, 62], using optical inter-

ferometry [63, 64, 65, 66], or more recently using integrated photonics and evanes-

cent detection [67, 68, 69]. The combined procedure of detection and actuation of

nanomechanical devices is called transduction.

Nanomechanical systems are a promising technology for use as mass sensors.

When mass is added to a nanomechanical device, the resonance frequency shifts.

By tracking the size of this frequency shift, the magnitude of the mass can be

determined. To first order, the mass sensitivity (δm) of nanomechanical systems is

described as

δm = 2meff
δΩ0

Ω0
, (2.7)

where δΩ0 is the minimum resolvable frequency shift and is dependent on the sources

of noise in the measurement system. If the instrument noise level is independent

of the driven amplitude, δΩ0/Ω0 is inversely proportional to the driven amplitude

of the sensor, since < δΩ0/Ω0 >≈ anoise/(2QB) [18]. B is the amplitude of the

nanomechanical device when a driving force is applied, as previously defined in
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Eq. (2.5). anoise is the amplitude of the nanomechanical noise floor, which is often

the thermomechanical noise as we will see in the following section. By operating

the nanomechanical device at its maximum linear driven amplitude, we ensure that

the optimal mass sensitivity for a given system is achieved [20]. The amplitude is

linear if an increase in the driving force produces a linear increase in the amplitude,

that is, the behaviour of the nanomechanical device is governed by Eq. (2.5).

Eq. (2.7) only takes into account the added mass, and not its location on the

device. The location where the mass is added on the device can also affect the

frequency shift [70]. This can be accounted for by using a technique called inertial

imaging [19]. Even with the added complexity of adsorbate position, the trends

shown by Eq. (2.7) hold true; the smaller the device, the lower the minimum de-

tectable mass. As the devices scale down in size, the effective mass decreases and

the resonance frequency increases.

2.1.1 Thermomechanical Noise and Obtaining the Responsivity

The thermomechanical (TM) noise of a mechanical resonator is detected when no ac-

tuation force is applied, and is the Brownian motion of the device. When measured,

the TM noise has an amplitude signal, but no coherent phase signal. When consid-

ering the dynamic range of a nanomechanical mass sensor, the TM noise represents

a lower limit for the bottom end of the dynamic range [20, 71]. This is because

the thermomechanical noise is the smallest amount of mechanical noise present in

the device. This definition for the bottom end of the dynamic range assumes that

the thermomechanical noise can be measured (that the transduction scheme has a

sufficiently low noise level) and that there are no other significant sources of noise,

which is typically the case for sensitively transduced nanomechanical devices at

room temperature [9, 18].

We measure the TM noise with the experimental setup described in Section 2.4

using a lock-in amplifier or a spectrum analyzer to obtain the power spectral density

(Sv) of the thermomechanical noise in units of V2/Hz. We do not apply any driving

forces. Sv is a Lorentzian function described by

Sv = Sv,0 +
αkbTf0

2π3meffQ[(f2 − f2
0 )2 + (ff0/Q)2]

, (2.8)

where T is the temperature, Q is the mechanical quality factor, and kb is the Boltz-

mann constant. α is a fitting parameter that describes the conversion of the mechan-

ical amplitude to a measured voltage by the transduction technique. By fitting the

measured data with Eq. (2.8), we extract α, Q, f0, and the noise floor Sv,0. These

values can be used to calculate Sv on resonance. The value of Sv on resonance is

defined as Sv,peak and calculated using Eq. (2.8) for f = f0.
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The peak height of the amplitude noise in meters (Sz,peak) is well-understood

due to the equipartition theorem [27]. It can be described by

Sz,peak =
4kbTQ

meffΩ3
0

. (2.9)

We calculate the effective mass using Eq. (2.2). Although the effective mass

can be calculated using numerical techniques such as the finite element method,

for simple cantilevers and doubly clamped beams the mode shape ûn is known

analytically from the solution to Eq. (2.1). Therefore, in this work, the effective

mass is calculated using an analytic expression solved with trapezoidal numerical

integration. Since Sz,peak is known theoretically for a given device, we can use

it to obtain a responsivity in units of volts/metre. The responsivity can be used

to estimate the mechanical amplitude in metres from the measured signal in volts

when a driving force is applied to the nanomechanical device. The transduction

responsivity in volts per metre can be calculated using the following expression [27]:

< =

√
Sv,peak − Sv,0

Sz,peak
. (2.10)

When using the responsivity to obtain an estimate of the amplitude of the me-

chanical device when subject to a driving force, it is important to carefully maintain

the experimental parameters between the measurement of the thermomechanical

noise and the measurement of the driven response. The amplitude in metres is ob-

tained by dividing the measured signal in volts by <. By converting the data to

metres, we are able to eliminate the effects of the transduction efficiency on the data

and provide meaningful comparison between data sets.

2.2 Integrated Photonics

For detection of nanomechanical devices on-chip, we can make use of integrated

photonics. Integrated photonics is a planar technology where light is guided across

the surface of a substrate. The light travels through structures called waveguides.

Waveguides are the building blocks of many other integrated photonics circuit com-

ponents, including microring resonators or racetrack resonators. To couple light into

the waveguides, integrated photonics components called grating couplers [72, 73] or

alternative techniques such as edge coupling [74, 75] can be used.

In this section, we will discuss the physics of waveguiding structures and how

they can be used to direct the flow of light on a substrate. The coupling of light

onto the chip will also be described in detail. We will use the principles of waveguide

operation to explain the design of the racetrack resonator cavities, including direc-

tional couplers [76, 77] to couple light from the bus waveguide into the racetrack.
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We will also discuss the different formalisms used to describe optical cavities; the

power coupling formalism often used in integrated photonics design, and the energy

coupling formalism used by those studying optomechanics. We will show how to

convert between the different formalisms. Finally, we will end with a discussion of

one of the common issues in silicon photonics, which is coherent backscattering, and

how this can be modeled and understood using the power coupling formalism.

2.2.1 Light Propagation through Waveguides

Waveguides are the simplest integrated photonic structure. Waveguide are planar

structures made up of two components, the core and the cladding. The core is the

interior of the waveguide. The cladding of a waveguide surrounds the core. The

substrate is the surface on which the waveguide is fabricated. Waveguides can be

fabricated in several different geometries. Cross-sectional schematics of three types

of planar waveguides are shown in Figure 2.1. In these schematics, light travels in

the z-direction as marked in the top right hand corner of the figure. Slab waveguides,

shown in (a), are the simplest type of waveguide. In this type of waveguide, light

is confined only in the vertical direction. Strip waveguides are shown in (b). These

waveguides confine the light in both the vertical and horizontal directions. Rib

waveguides, shown in (c), are a more complex type of waveguide and show that

waveguides can have many different geometries so long as the conditions for light

propagation in the structure are met.

Figure 2.1: Cross-sectional schematics of (a) a slab waveguide, (b) a strip waveguide,
and (c) a rib waveguide. Light propagates in the z-direction.

The first condition for light propagation in the waveguide is that the waveguide
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core must have a higher index of refraction than the surrounding cladding and

substrate materials. Typically, this means that the waveguide core and cladding are

made of different materials. The substrate can be made of the same material as the

cladding or a different material, so long as the index of refraction of the substrate

is also less than the core material. The condition that the core index of refraction

must be higher than the cladding and substrate indices occurs because waveguides

operate on the principle of total internal reflection. Rigorous derivation of this

requirement is done by imposing the boundary conditions of Maxwell’s equations

to the waveguide core, and is detailed in many photonics textbooks [78, 79, 80].

For a simplistic derivation of this requirement, we can examine Snell’s Law. Let us

assume that light has been injected into the core material and arrives at the interface

between the core and cladding at some incident angle θi. For the light to remain in

the core of the waveguide, total internal reflection must occur. Therefore the sine

of the angle of light transmitted at the interface must be greater than 1, that is

sin θt > 1. By Snell’s Law we can state: sin θi > nt/ni, where ni and nt are the

indices of the incident (core) and transmitted (cladding) media, respectively. Since

sin θi < 1, the ratio nt/ni must also be less than one. Therefore, the cladding index

nt cannot be larger than the core index ni for light to propagate in the waveguide.

If this condition is not met, light incident on the interface between the cladding and

the core will be transmitted, and the light will exit the waveguide at this interface

instead of propagating in the z-direction through the waveguide core.

The second condition for light propagation is due to the diffraction limit. The

thickness of the waveguide slab must be greater than or equal to λ/2, where λ is

the wavelength of light inside the slab. Below this thickness, propagation in the

slab waveguide is cut-off [81, 82]. An example of this will be discussed later in the

section when we describe common waveguide materials and fabrication techniques.

If these two conditions are met, we say the light is “confined” in the waveguide.

In this case, total internal reflection is occurring and the waveguide thickness is

above the diffraction limit, and the light is propagating within the waveguide. If

the light is not confined, the light leaks out of the waveguide.

One of the outcomes of the fact that waveguides operate on the principle of total

internal reflection is the formation of an evanescent wave at the interface between the

waveguide core and cladding. This arises because of the boundary conditions at the

dielectric interface. The evanescent wave is a wave that is bound to the core-cladding

interface and propagates in the z-direction. The existence of the evanescent wave

satisfies the boundary conditions under the condition of total internal reflection.

The mathematical description of the evanescent wave can be derived using Snell’s

Law and assuming sin θi > nt/ni for the case of total internal reflection [83];
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E(t, z) = E(t, 0) exp

[
−kty

(
n2

i

n2
t

sin2 θi − 1

)1/2
]

exp

[
i

(
ktz

ni

nt
sin θi − ωt

)]
,

(2.11)

where E(t, z) is the transmitted wave, E(t, 0) is the initial amplitude, kt is the

wave vector of the transmitted evanescent wave, ω is the frequency of the wave,

and t is time. This wave propagates in the z direction but also extends into the

cladding in the y direction, perpendicular to the interface between the waveguide

and the cladding. This y component of the evanescent wave, which we can term

the evanescent field, has an exponential decay. The decay length depends on the

ratio of the waveguide (incident) and cladding (transmitted) indices. For large

incident angles, sin θ ≈ 1, therefore the decay length of the evanescent field can be

approximated as λ/(2πnt

√
n2

i /n
2
t − 1) [84].

If the waveguide index is much larger than the cladding index (ni >> nt), this

is called a high contrast waveguide. We can see in the first exponential term of

Eq. (2.11) that the evanescent field decays over a shorter distance in this case.

In low-contrast waveguides, the waveguide index is only slightly larger than the

cladding index, and the decay length of the evanescent field increases. This is

an important consideration when designing waveguides, as the decay length of the

evanescent field may be important in determining whether to utilize high contrast

or low contrast waveguides.

Although we can identify the condition for propagation using Snell’s Law, a more

detailed understanding of these waveguides is obtained by finding the electric field

distribution. The wave equation for propagation of a wave in a linear, homogeneous

material is shown by

∇2E(x, y, z) + n2k2E(x, y, z) = 0, (2.12)

where E(x, y, z) is the electric field vector, n is the index of refraction of the material,

and k is the wave vector in free space. This equation is derived using Maxwell’s laws

and assuming that there are no current sources or free charges [85]. We can solve

this equation for the one-dimensional slab waveguide shown in Figure 2.1(a). For

the case of the simple slab waveguide, the waveguide core, cladding, and substrate

indices are simply the bulk material indices. Let the direction of propagation be in

the z-direction, such that E(x, y, z) = E(x, y) exp (iβz), where β is the propagation

constant of the waveguide mode. Additionally, the slab waveguide is invariant in the

x-direction, and therefore ∂E(x, y)/∂x = 0. The last step to simplifying Eq. (2.12)

is to use the fact that the input plane wave is polarized in either the x or y direction,

which means that predominantly only the x or y electric field component will be

present in the waveguide. Waves with orthogonal polarizations will have different
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behaviour at the slab waveguide boundaries [86]. If only the x component of the

electric field exists, this solution is called the transverse electric or TE polarization.

Since this is a one-dimensional geometry, the TE polarized wave is invariant in the

x direction and the wave equation for TE polarization then becomes [87]:

d2Ex

dy2
+ (n(y)2k2 − β2)Ex = 0. (2.13)

Eq. (2.13) has a characteristic equation with a finite number of solutions. The

solutions to the characteristic equation are the propagation constants for different

modes supported by the slab waveguide. Modes obtained by solving the charac-

teristic equation of Eq. (2.13) are called TE modes. The characteristic equation

is

2kyd− 2 arctan

(
β2 − n2

1k
2

ky

)
− 2 arctan

(
β2 − n2

3k
2

ky

)
= 2mπ, (2.14)

where m is an integer, ky is the wave vector in the y direction, n1 is the index of

refraction of the substrate, n3 is the index of the cladding, and d is the thickness

of the waveguide layer. Once the propagation constant for each mode number m

has been obtained, we can solve Eq. (2.13) for the electric field distribution for each

mode. This allows us to see the electric field profile in the one-dimensional slab

waveguide for each mode.

The same analysis can be followed for the magnetic field vector B(x, y, z) to

obtain the results for the orthogonal polarization. This results in solutions for the

transverse magnetic or TM polarization. The wave equation for the magnetic field

Bx in the slab waveguide is

d2Bx

dy2
+ (n(y)2k2 − β2)Bx = 0, (2.15)

where the only component is the transverse magnetic field Bx. The characteristic

equation for TM modes includes the index of refraction of the waveguide layer n2:

2kyd− 2 arctan

(
n2

2[β2 − n2
1k

2]

n2
1ky

)
− 2 arctan

(
n2

2[β2 − n2
3k

2]

n2
3ky

)
= 2mπ. (2.16)

For the dielectric strip and rib waveguides pictured in Figure 2.1(b) and (c),

no analytic solution for the electric and magnetic fields or propagation constants

exists. These structures are complicated by the fact that the light propagating in the

waveguide is confined in two dimensions, and not just one. For this reason, numerical

techniques such as finite difference or finite element analysis are commonly used in

waveguide design [88]. An alternative technique is the effective index method [89, 90,

91]. The effective index method uses the analytic solutions of the slab waveguide

14



to approximate solutions for other geometries. Here we demonstrate the use of

the effective index method (EIM) for a TE polarized mode in the strip waveguide

geometry shown in Figure 2.1(b). The general approach of the EIM is depicted in

Figure 2.2. In part (a), the waveguide cross-section is divided into three sections. If

we examine region 2, we see that in this region the waveguide can be approximated

as a slab waveguide that is confined in the y direction. To solve for the TE mode in

the overall system, we begin by solving the wave equation for the TE polarization

in the slab waveguide in region 2.

Figure 2.2: Effective index method applied to a strip waveguide. (a) The strip
waveguide is divided into three regions. The propagation constant for the inner
region, region 2, can be solved analytically using the equations for a slab waveguide
that confines the light in the y direction. Once this propagation constant is found,
it can be used to calculate the effective index of region 2. (b) The strip waveguide
can be simplified into one slab waveguide structure that confines the light in the x
direction. The propagation constant, and therefore the effective index, of the overall
system is then solved using the analytic one-dimensional slab waveguide equations.

We solve Eq. (2.14) for the propagation constant for a given mode of integer m,

βm. The propagation constant can then be used to define the effective refractive

index of that particular mode, neff,m, of the dielectric stack in region 2 [92]:

neff,m =
βm

k
. (2.17)

Figure 2.2(b) shows the simplified strip waveguide system using the effective

index for region 2. The system in (b) is again a slab waveguide system, this time

with a slab confined in the x direction. Regions 1 on either side of the central

effective index region are approximated to have the index of the cladding only, since

the wave propagating in the central strip waveguide will only “see” the indices to

either side of the waveguide in region 1. To obtain a solution for the mode profile of

this structure, we solve for the propagation constant using Eq. (2.16), which is the

characteristic equation for the TM polarization. The reason that we use the equation
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for the TM polarization is that the slab waveguide shown in Figure 2.2(b) is confined

in the orthogonal direction to the initial solution from part (a) of the same figure. By

solving for the TM modes of the slab in Figure 2.2(b), we obtain a solution for the

TE modes of the original strip waveguide structure. Once the propagation constant

has been obtained for the second slab structure, we can calculate the effective index

of the overall strip waveguide structure using Eq. (2.17).

The effective index method is a versatile and simple technique that requires only

the solution to two one-dimensional slab waveguides to obtain estimates for the

effective index of waveguides with geometries that cannot be solved analytically.

We can use the EIM to calculate the TM modes as well. Instead of calculating the

propagation constant for the TE mode for Figure 2.2(a), the propagation constant

for the TM mode is calculated. Then when simplifying the strip waveguide as in

Figure 2.2(b), the propagation constant for the TE mode is calculated. The EIM can

be used for different waveguide geometries as well, including the rib waveguide in

Figure 2.1(c). The same process of splitting the device into three regions and finding

the effective index in each region is used. From this discussion of the EIM, we can

see that the effective refractive index of the waveguide depends on the waveguide

geometry, the mode number m, and the polarization of the mode. For this reason,

the effective index is sometimes called the modal index. The effective refractive

index of a particular waveguide mode is the analogue of the refractive index for

a bulk material. It can be used to describe the speed v of the wave propagating

in the material through the relation v = c/neff . It also can be used to calculate

the wavelength of light in the material λ with respect to the vacuum wavelength

λ0 as per λ = λ0/neff . The effective index is a useful parameter for describing the

propagation of light in the waveguide. It is also important in waveguide design, as

we will see in the following paragraphs.

The EIM is powerful tool for approximating the effective index. It is, however,

an approximation only. Errors in the method arise from assuming that the x and

y directions in the waveguide are separable, when in fact they are not for a rect-

angular dielectric waveguide [93]. For dielectric waveguides with confinement in

two dimensions, the polarizations are not perfectly TE or perfectly TM polarized.

These waveguides have some hybridization of these polarizations and for this reason

they are often called the quasi-TE or quasi-TM polarizations [94]. To eliminate

errors from the EIM approximation and to quickly obtain the full solution for each

waveguide mode of interest, we will use numerical methods in the remainder of this

work to determine the field distributions and the effective indices of the waveguide

modes. This will reduce any numerical errors, provide more accurate modeling of

the waveguides, and increase the speed of the calculations.

Previously, we discussed the condition for propagation of light in a waveguide,
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and the cut-off condition for the slab waveguide mode. We derived using Snell’s

Law that the index of the waveguide core must be larger than the cladding and

substrate indices. We also provided a rule of thumb for waveguide thickness based

on the diffraction limit, that the waveguide slab should be at least as thick as half

the wavelength in the slab. We can re-frame this discussion in terms of the effective

index. As established earlier, for light to be confined in an integrated photonic

waveguide, the index of the core must be greater than the cladding. The same

principle holds for each mode in the waveguide. If the effective index (modal index)

is larger than the substrate and cladding refractive indices, then the mode is confined

in the waveguide and will propagate. If the effective index is equal to or lower than

the surrounding refractive indices, then the mode does not meet the conditions for

total internal reflection and the light will leak out of the waveguide. This condition is

called the cut-off condition for integrated photonic waveguides [95, 96]. The cut-off

index is the cladding index or the substrate index, whichever is larger. A waveguide

mode with an effective index below cut-off will not be confined.

When designing waveguides, it is important to ensure that the effective index is

above cut-off. A second consideration is the number of modes that will propagate

in the waveguide. The larger the waveguide is, the more modes will propagate

simultaneously in the waveguide because the effective index of the all modes increases

with increasing waveguide size. Larger waveguides may have multiple TE and TM

modes above cut-off. Multiple modes are detrimental for some applications where

measurement of a specific mode is desired [97]. When designing waveguides it is

important to first determine the cut-off level, and then to determine the number of

modes above cut-off. If no modes are above cut-off, a larger waveguide is required.

If many modes are above cut-off, then the waveguide dimensions may be reduced.

2.2.2 Waveguide Materials and Fabrication

The most common materials system for integrated photonics is silicon [98, 99, 100].

Silicon photonic devices are fabricated using silicon-on-insulator (SOI) wafers. SOI

substrates have a thin silicon device layer atop a buried oxide layer, typically 2 µm

thick. The bottom layer is a silicon handle layer. The silicon handle layer is a thick

layer, usually 675 µm thick. The buried oxide layer acts as a buffer between the

thin silicon device layer and the handle layer. The purpose of this low-index layer

is to prevent light from leaking out of the silicon device layer and into the handle

layer. A cladding layer, often silicon dioxide or sometimes simply air, completes the

photonic device.

There are several reasons why silicon photonics is one of the most common

photonics materials systems. First of all, fabrication of silicon devices has al-

ready been developed for CMOS devices, and so many of the techniques are well-
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established. The most common lithographic techniques for fabricating waveguides

using SOI wafers are deep UV lithography and electron beam lithography, to ob-

tain the small feature sizes required. Secondly, silicon is transparent in one of the

wavelength ranges commonly used in telecommunications (C-band, 1530–1565 nm),

which means that silicon waveguides have low loss at these wavelengths. Finally,

silicon has an index of refraction of 3.45 at a wavelength of 1550 nm. This means

that silicon waveguides are a high contrast waveguide relative to air or silicon dioxide

cladding. This is beneficial for reducing the device footprint, as smaller waveguiding

structures can be fabricated in high contrast materials systems [101]. Smaller fea-

tures mean that the density of features increases and the cost per device decreases.

The silicon device layer is the layer in which the waveguides are fabricated. The

standard thickness of this layer is 220 nm. If we refer back to the rule of thumb

for slab thickness in the previous section and use the wavelength in the C-band,

(1550/3.45)/2 ≈ 220 nm. Therefore, 220 nm thickness is half of the wavelength in

a silicon slab waveguide. This standardized thickness helps to prevent cut-off and

achieve single mode operation in silicon photonic waveguides.

In addition to waveguides fabricated using SOI wafers, photonic waveguides can

also be fabricated from other materials such as polymers [102, 103, 104, 105] or

silicon nitride [106]. These types of waveguides are low-contrast materials systems

compared to silicon. Low-contrast waveguides may be useful as sensors or for cou-

pling light into high contrast silicon waveguides [74, 107].

2.2.3 Coupling of Light into Photonic Waveguides

In this section, we will consider approaches for coupling external laser sources into

on-chip photonic devices. Several techniques are commonly used, including edge

coupling, grating couplers, or tapered optical fibers [108, 109, 110]. We will discuss

the two techniques used in this work, edge coupling and grating couplers. Edge

coupling is the simpler of the two techniques, however, grating couplers are more

versatile.

For edge coupling, the waveguide is placed such that its cross section is immedi-

ately at the chip edge, as shown in Figure 2.3 [74, 75, 111]. The exposed end of the

waveguide, sometimes called the end facet, must be cleanly cut. An optical fiber

carries the laser light from the laser output to the waveguide facet. The light output

from the laser is then input to the waveguide by carefully controlling the position

of the fiber. Although straightforward in principle, edge coupling is complicated

by the fact that the fiber optical mode spot size can be significantly larger than

the waveguide. Typical dimensions of high contrast waveguides are 220 nm tall by

500 nm wide. Standard single mode optical fibers, on the other hand, have output

mode field diameters on the order of 10 µm. This mode size mismatch reduces the
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coupling efficiency of edge coupling. To reduce the mode size mismatch, lensed fibers

can be used which have much smaller beam waists than traditional optical fibers.

Alternatively, nano-tapered edge couplers or polymer mode converters can be used

to improve the coupling efficiency [112, 113]. The main benefit of edge coupling,

aside from its simplicity, is that it is a high-bandwidth coupling technique compared

to grating couplers.

Figure 2.3: Cartoon demonstrating the edge coupling technique. In this case, cou-
pling to a waveguide is accomplished using lensed fibers. The diagram is not to
scale.

Grating couplers are another important coupling mechanism [72, 73, 114, 115,

116]. Grating couplers are fabricated on-chip simultaneously with the waveguides.

They are comprised of two parts; the first part is a grating with a periodicity and

duty cycle designed specifically for the desired wavelength and input angle. In sil-

icon photonics, the grating has a top-down area of tens of microns. The grating

may be partially etched or fully etched. Partially etched means that some areas

of the grating are at the full waveguide height, and others have a reduced height

as they have been etched partially. A partially etched grating coupler is shown by

Figure 2.4(a). Fully etched grating couplers have areas where the grating is the

full waveguide height, and areas where the waveguiding material has been etched

away completely. Often, these types of grating couplers alternate feature sizes larger

than one half wavelength of light in the material (> (λ/n)/2) with features much

smaller than one-half the wavelength of light in the material (<< (λ/n)/2) to form

sub-wavelength gratings [117]. An example of a fully-etched sub-wavelength grating

is shown in Figure 2.4(b). The second part of the grating coupler is a triangular

silicon taper that acts to focus the light from the large grating region into the small

waveguide dimensions. In the case of silicon photonics, this slab at its widest is

on the order of a few microns, and tapers adiabatically to hundreds of nanometers.

Grating couplers provide coupling efficiency on the order of approximately 15% [118]

and allow for a wider variety of applications than edge coupling. Grating couplers

can accept light from fibers positioned directly at the chip surface. Since the grat-

ings have a large top-down area, they can accept light from standard optical fibers

without the need for lensed fibers. The fibers may be glued in place for applications

that require a more robust or permanent coupling mechanism. Grating couplers can
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also accept light that is focused on them at a distance. This is beneficial for appli-

cations where the grating coupler may be submerged in fluid or within a vacuum,

as we will see later in this thesis.

Figure 2.4: Scanning electron microscope images of (a) partially etched grating
couplers and (b) the grating of a fully-etched sub-wavelength grating coupler in a
silicon-on-insulator materials system. In (a), the large area of the grating coupler
is emphasized by the scale bar indicating the full size of the coupler to be 40 µm
wide. The partially etched region is indicated. In (b) one of the gratings is a sub-
wavelength grating that is 80 nm wide and is much smaller than 220 nm, which is
one half the wavelength of light in silicon.

Light incident on the grating is diffracted. Since the grating is periodic, the light

is diffracted in a specific direction as described by the Bragg condition [77];

kz,b = βm − b
2π

Λ
, (2.18)

where kz,b is the wave vector of the diffracted light in the direction of propagation

of order b, βm is the propagation constant for a specific mode m, and Λ is the period

of the grating. The wave vector kz,b is related to the input angle θ of the light by

sin θ = kz,b/kcladding, where kcladding is the wave vector of the light traveling through

the cladding material to reach the surface of the waveguide device layer. θ is defined

as the angle between the incident light and the surface normal. It is often set by the

experimental conditions. For example, an experimental setup may be designed to

measure specifically at 10◦ from normal. From this, we can calculate kz,b. Since we

know the modal propagation constant from our earlier analysis of slab waveguides,

this relation can be used to determine the period of the grating.

For maximum coupling efficiency, b = 1, so that only the lowest order diffraction

is present [119]. This means that as the wavelength increases (or decreases) and

therefore kz,1 decreases (or increases), the grating couplers will become less efficient

since Eq. (2.18) is no longer exactly equal to kz,1. For this reason, grating couplers

have a smaller bandwidth of operation than edge couplers. In silicon photonic

devices, grating couplers typically operate in the range of 1500–1580 nm, with peak
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efficiencies in the range of 1530–1560 nm [120]. The shape of the grating coupler

transmission is often referred to as the “envelope” of the grating coupler [121].

2.2.4 Racetrack Resonators

Microring resonators, a type of optical cavity, are created when a waveguide is

formed into circle. Racetrack resonators have the same principles of operation as mi-

croring resonators, only with a slightly different geometry. Straight sections within

the circles result in formation of directional couplers for coupling light into and out

of the racetrack resonator. In this work, racetrack resonators have been selected

because the straight sections create a longer area for the optical cavity to interact

with the mechanical device. Figure 2.5 shows a cartoon of a racetrack resonator.

The cladding layer is omitted for clarity. The waveguide that carries light from the

input to the output grating coupler is called the bus waveguide. The location of the

directional coupler is also specified. Directional couplers are comprised of two adja-

cent waveguides separated by a gap; in this case, the bus waveguide and the straight

section of the racetrack resonator are separated by the coupling gap. Directional

couplers allow for light traveling in the bus waveguide to enter the optical cavity,

and allow a high degree of control over the coupling of light into and out of the

racetrack resonators. Several other important properties of the racetrack resonator

that are highlighted in this figure include the radius of the racetrack resonator, the

coupling length of the directional coupler, and the coupling gap of the directional

coupler.

Figure 2.5: Cartoon showing the important components of a racetrack resonator,
including the bus waveguide for input and output of light. The directional coupler
is formed by the bus waveguide and the straight section of the racetrack resonator.
The directional coupler is defined by the coupling length Lcoupler and the coupling
gap. The radius of the racetrack R is also an important property of the system.

As mentioned previously, racetrack resonators are a specific type of optical cavity.

Light will be coupled into the optical cavity when the wavelength of light meets the

resonant condition for the racetrack resonators. This resonance condition is that

total length of the racetrack resonator cavity is equal to an integer M times the
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wavelength of light in the waveguide, Lc = Mλ/neff [122]. This is defined by the

effective index of the waveguide, so the resonant condition is defined for a single

mode.

When designing racetrack resonators, the cavity length Lc = 2πR + 2Lcoupler

is an important parameter to consider because it can be used to define the free

spectral range (FSR, F). Lc is inversely proportional to the FSR. The FSR is a

measurement of the wavelength spacing between optical resonances and is equal to

λ2/(ngLc), where λ is the optical wavelength and ng is the group index. The group

index describes the dispersion in the optical waveguide and can be obtained from

FDTD simulations. It is also related to the effective index via [123]:

ng = neff − λ
dneff

dλ
. (2.19)

The FSR, and therefore Lc, should be selected for the specific application for

which the racetrack will be used. The following example will describe how to choose

an appropriate cavity length for the case of optomechanical measurements. Race-

track resonators can be fabricated using the SOI platform. Let us assume that light

is coupled in and out of the photonic circuit using grating couplers. The bandwidth

of the overall photonic circuit is limited to the C-band by the grating couplers, as

described in Section 2.2.3. For optomechanical measurements, one optical resonance

is required for probing the mechanical device and one is required for pumping the

device. The reason for this requirement will be discussed in more detail in Sec-

tion 2.3. When combining the requirements of the optomechanical devices with the

limited bandwidth introduced by the grating couplers, we see that the FSR must

be small enough that at least two optical resonances are observed in the C-band. A

racetrack resonator fabricated using SOI and using the fundamental TE mode will

have an effective index of approximately 2.4 and the group index is approximately

4.3. A racetrack resonator with this group index and a cavity length of 35 µm will

have an FSR of approximately 16 nm. This cavity will have at least two resonances

in the C-band. The cavity length should be equal to or greater than 35 µm. The

FSR should be large enough so that the optical resonances are well-separated so

that the pump laser may be filtered out successfully. The cavity length should then

be chosen to be close to 35 µm for a larger FSR. In the case of optomechanics, a

coupling length of 3 µm is desirable, such that the length of the straight section is

comparable to the length of the mechanical device. The curved section of the cavity

then has a total length of 29 µm, which gives a radius of approximately 5 µm. For

all optomechanical measurements, then, the racetrack resonators fabricated using

SOI will have a radius of 5 µm and a straight section of 3 µm.

Once the size of the racetrack resonator is known, the directional coupler can

be designed. The coupling length of the directional coupler is often selected as part
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of the optical cavity length design as demonstrated in the previous example, and

so the only remaining free parameter is the coupling gap. Directional couplers are

described using coupled mode theory, and one specific approach is the perturbation

approach [76, 124]. When a waveguide (the racetrack resonator coupling length)

is brought into close proximity with a second waveguide carrying an optical signal

(the bus waveguide), the evanescent field of the second waveguide is perturbed.

This perturbation results in a transfer of energy between the two waveguides. In

this way, the original optical signal is coupled into the racetrack resonator. In the

case of symmetric waveguides, complete energy transfer from one waveguide to next

occurs over a length called the cross-over length, Lcross. The cross-over length can

be calculated by finding the first two modes of the entire directional coupler, that is,

the two-waveguide system. The modes of the overall system are not the same as the

individual waveguide modes. Since these modes are of the two-waveguide system

and not just one waveguide, they are often called “supermodes” [125, 126]. The

first supermode is the symmetric, or even, supermode. The second supermode is

the anti-symmetric, or odd, supermode. Cartoons of these mode profiles are shown

in Figure 2.6.

Figure 2.6: A cross-sectional diagram of a directional coupler. The coupler is com-
prised of two identical waveguides separated by a gap. The blue lines show the (a)
even (symmetric) supermode and (b) the odd (anti-symmetric) supermode electric
field profiles in the x direction (Ex). This example is for TE polarization.

Each supermode has a different propagation constant, and therefore also a dif-

ferent effective index (recall Eq. (2.17)). The cross-over length is defined as [77]

Lcross =
λ

2(neff,even − neff,odd)
, (2.20)

where neff,even is the even effective index of refraction of the supermode, neff,odd is

the odd effective index of refraction of the supermode, and λ is the wavelength.
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As the coupling gap increases, the difference between the effective indices of the

odd and even supermodes decreases. Therefore, the cross-over length increases with

increasing coupling gap. For a very large coupling gap, the racetrack waveguide will

no longer perturb the bus waveguide field, and no energy will be transferred between

the waveguides. At this point, the cross-over length is infinite. This indicates that

the directional coupler no longer truly exists, rather there are simply two disparate

waveguides.

To choose an appropriate coupling gap for the directional coupler, we need to

relate the cross-over length to the coupler length Lcoupler. These two parameters are

connected via the field coupling coefficient κ. The field coupling coefficient, referred

to from now on as the coupling coefficient for brevity, is a unitless number between

zero and one. It is defined as

κ = sin

(
π

2

Lcoupler

Lcross

)
. (2.21)

We can see from Eq. (2.21) that if Lcoupler = Lcross, then κ = 1 and all of

the energy from the bus waveguide is coupled into the racetrack. In the opposite

case, where κ = 0, all of the energy remains in the bus waveguide. We can define

the field transmission coefficient τ , which describes the field remaining in the bus

waveguide [94]:

τ = cos

(
π

2

Lcoupler

Lcross

)
. (2.22)

For conservation of power, κ2 + τ2 = 1. From Eqs. (2.21–2.22) we can see

that by varying the ratio of the coupler length to the cross-over length, we can

determine what fraction of power is coupled between the bus waveguide and the

racetrack resonator. Returning to Eq. (2.20), the cross-over length is varied by

adjusting the difference between the even and odd effective indices of the directional

coupler supermodes. We can adjust this difference by increasing or decreasing the

coupling gap, since we have assumed that the coupler length is fixed from our initial

design of the cavity length. κ and τ are shown diagrammatically in Figure 2.7. In

this figure, si is the complex input electric field amplitude and st is the complex

electric field amplitude output through the bus waveguide. si is normalized such

that |si|2 = |E0|2, where E0 is the amplitude of the input electric field. The complex

amplitude of the light coupled into the racetrack resonator can then be represented

by iκsi. R is the radius of the microring or racetrack resonator.

It is important to choose κ and τ , and therefore the coupling gap, appropriately

to achieve the desired coupling condition for the racetrack resonator. There are

three possible coupling conditions for a racetrack resonator; critically coupled, over-

coupled, and under-coupled [94, 127, 128, 129, 130]. At critical coupling, all of the
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Figure 2.7: Schematic of (a) an all-pass microring resonator and (b) an add-drop
microring microring resonator. In (a), there is only one bus waveguide and therefore
only one output, the output complex amplitude labeled st. In (b), the add-drop
microring has two bus waveguides called the through port with output signal st and
the drop port with output signal sd. In both schematics, the radius of the microring
is labeled R. The input signal is si, the complex input electric field amplitude.
The microring coupling parameters are described by τ and κ and are labeled at the
locations of the couplers. The round-trip loss, the fraction of field amplitude that
remains in the racetrack after one round trip, is denoted by art and its placement at
the output of the microring emphasizes that this parameter is defined after the light
completes one full round trip through the optical cavity. All of these parameters
are part of the power coupling formalism. γex is the coupling loss rate in units of
1/s. γ0 is the intrinsic loss rate in units of 1/s. These two parameters are part of
the energy coupling formalism.
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light exiting the racetrack resonator destructively interferes with the light in the

bus waveguide. This results in zero transmission through the bus waveguide at the

optical resonance wavelength. Over- and under-coupled racetracks do not meet this

condition for perfect destructive interference and in both of these cases there will

be non-zero transmission through the bus waveguide at the resonant wavelength.

Another way to describe the coupling conditions of the racetrack resonator is in

terms of the loss in the racetrack [131]. At critical coupling, the power coupled into

the racetrack resonator is equal to power dissipated by the optical cavity. In the

case of over-coupling, more power is coupled into the racetrack resonator than is

dissipated. The over-coupled optical resonance has a lower optical quality factor

(Qopt) compared to the critical and under-coupled cases. In the case of under-

coupling, less power is coupled into the racetrack resonator than is dissipated.

To set the coupling condition of the racetrack resonator, it is necessary to have

an estimate of the power loss in the racetrack resonator. One parameter that can

be used to characterize the loss in a racetrack resonator is the round trip loss,

art = e−α0Lc/2. In this definition, α0 is the propagation loss of the waveguide in

units of 1/metres, and Lc is the cavity length in units of metres. The round trip

loss describes the fraction of field amplitude that remains in the racetrack after

one round trip and is between zero (all amplitude lost) and one (no loss). Bending

loss is one source of loss and includes radiative loss in the bend, which is especially

prevalent in rib waveguides [132, 133]. Absorption of energy by the waveguide

material or cladding is another source of loss [134]. The primary source of loss,

especially in high contrast strip waveguides, is surface roughness [135, 136, 137, 138,

139, 140, 141, 142]. Surface roughness is often introduced by the waveguide etching

process and can cause scattering loss and radiative loss of power. For this reason,

the propagation loss is dependent on the fabrication process.

By comparing art to the transmission coefficient τ , we can determine whether the

racetrack resonator will be over, under, or critically coupled. If τ = art, the racetrack

will be critically coupled because the fraction of field amplitude remaining in the ring

after one round trip, and therefore what is coupled out of the racetrack resonator, is

exactly equal to the fraction of field transmitted through the bus waveguide. This

is the condition that permits complete destructive interference on resonance. By

the same logic, if τ > art, the racetrack will be under-coupled because the fraction

of field amplitude in the bus waveguide is greater than the required fraction for

perfect cancellation. Similarly, if τ < art, the racetrack is over-coupled because the

fraction of field amplitude in the bus waveguide is less than required for perfect

cancellation, and therefore more power than required has been coupled into the

racetrack resonator.

By using these definitions, the coupling condition of the racetrack resonator can
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be designed for specific applications. For example, a transmission function with

a low optical quality factor may be desirable for certain applications. To obtain

a lower quality factor, we may wish to over-couple the racetrack resonator since

the optical quality factor is proportional to 1/κ2. As the the coupling increases in

a racetrack resonator, κ increases and therefore Qopt decreases. To obtain over-

coupling if the round trip loss is known to be 0.98, τ should be less than 0.98.

Therefore, the coupling gap can be chosen by calculating the cross-over length from

Eq. (2.22). The cross-over length can then be used to determine the coupling gap

from Eq. (2.20) and the supermode even and odd effective indices.

2.2.5 The Power Coupling and Energy Coupling Formalisms for
Optical Cavities

In the previous section, we introduced the parameters τ , κ, and art, and demon-

strated how to use these parameters to select the coupling condition for the race-

track resonator. In this section, we will use these parameters to describe the transfer

function of the racetrack resonator. We will describe the transfer function of the

racetrack resonator for both the power coupling formalism and the energy coupling

formalism for the simple case of an all-pass microring resonator as shown in Fig-

ure 2.7(a). The all-pass microring resonator (APMR) has a single bus waveguide

and therefore only one directional coupler. The output is measured at this single

bus waveguide and is called the through port. The add-drop microring resonator

(ADMR, Figure 2.7(b)) has one bus waveguide on each side of the racetrack res-

onator. The output of the second bus waveguide, on the opposite side of the input,

is referred to as the drop port. The APMR is a simpler geometry to demonstrate

the derivation of these transfer functions, but the same approach can be applied to

an ADMR.

The power coupling formalism uses the parameters τ , κ, and art to describe the

spatial coupling of optical power into and out of a microring or racetrack resonator.

To derive the equations for the transmission of an all-pass microring resonator, we

start with the complex input electric field amplitude si. The field amplitude coupled

into the racetrack resonator from the bus waveguide is described as iκsi. The field

then completes one round trip of the optical cavity. We can represent the effect of

one round trip by multiplying the field amplitude by arte
iφ. art accounts for the loss

as the field travels one round trip in the racetrack. The phase shift that the field

experiences is represented by the exponential term. φ is the round-trip phase of the

microring. This field is then coupled back out of the racetrack resonator.

This description shows how to track the electric field as it is coupled into the

racetrack resonator through the directional coupler. To derive the full expression

for the racetrack resonator’s transfer function, we can follow the same process and
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account for fields already present in the racetrack, since photons will make many

round trips before exiting the racetrack resonator. Therefore, the field amplitude

immediately after the coupler is

A = iκsi + τD, (2.23)

where A is the field amplitude immediately after the coupler and D is the field

amplitude immediately before the directional coupler. The first term in Eq. (2.23)

shows the field amplitude coupled in through the directional coupler, and the second

term represents the field amplitude remaining in the racetrack after the directional

coupler, which is why this term is multiplied by the transmission coefficient τ .

We define D as the field after one round trip such that D = Aarte
iφ. The transfer

function of the racetrack resonator is defined by st/si, where st is the output complex

field amplitude. st is defined by

st = τsi + iκD. (2.24)

To find the transfer function, we substitute D = Aarte
iφ into Eq. (2.24). We

also substitute the expression for D into Eq. (2.23) and solve for A. Inserting this

new expression for A into the modified Eq. (2.24) eliminates both A and D from the

expression. This new equation is a function of only si and st, and so we can solve for

the transfer function st/si. To obtain the transfer function in terms of the optical

power, which is the transmission function of the racetrack resonator, we take the

square of the absolute value of st/si. Simplifying this expression using the power

conservation requirement κ2 + τ2 = 1 gives the transmission of the APMR:

Tap =

∣∣∣∣st

si

∣∣∣∣2 =

∣∣∣∣ τ − arte
iφ

1− τarteiφ

∣∣∣∣2 . (2.25)

Since φ can be expressed in terms of experimentally relevant parameters as

φ = 2π(λ − λ0)/F , Eq. (2.25) can be used to fit experimental data to determine

τ and art. The power coupling formalism applies equally well to over, under, and

critically coupled optical cavities, as no assumptions are made about the cavity

coupling condition during this derivation.

The same approach can be used to calculate the power enhancement of the

optical cavity. The power enhancement (PE) is the factor by which the power in the

ring is amplified on resonance. The power enhancement is an important parameter

as it provides an understanding of the actual power in the racetrack resonator. The

power enhancement is defined as

PE =

∣∣∣∣Asi

∣∣∣∣2 =
κ2

|1− τarteiφ|2
, (2.26)

where A was previously defined in Eq. (2.23).

28



The energy coupling approach is an alternative method to the power coupling

technique. It is the formalism commonly used in optomechanics. This formalism

describes the coupling of energy in time, and is valid only for weakly coupled cavities.

Instead of the parameters τ , κ, and art, this approach uses the amplitude loss rate

γ to define the overall loss of the cavity, and is one half of the cavity width at half

maximum. γ can be related to the physical properties of the optical cavity by the

optical quality factor, Qopt = ω0/2γ = πc/γλ0 where λ0 is the cavity resonance

wavelength and c is the speed of light. To separate losses caused by coupling and

those due to the intrinsic cavity loss, we can write γ = γex +γ0. γex is the decay rate

associated with coupling, and γ0 = α0vg/2 is the intrinsic loss rate of the optical

cavity, and is defined in terms of the propagation loss and the group velocity vg.

As these parameters are expressed as rates in units of radians/second, it makes

sense to use the optical frequency, instead of the optical wavelength. Specifically,

we will express the frequency as a detuning from the resonance frequency of the

optical cavity, ∆ = ω−ω0, where ω0 is the resonance frequency of the optical cavity

corresponding to ω0 = 2πc/λ0. With these definitions in mind, the equation for the

all-pass microring resonator can be re-written as follows [143]:

Tap =

∣∣∣∣γ0 − γex − i∆
γ − i∆

∣∣∣∣2 . (2.27)

It is important to understand both formalisms, as each formalism is valuable in

different situations. For example, the energy coupling formalism greatly simplifies

the design of microring filters where several microrings are coupled together [144].

It is also useful to convert between the two formalisms. The full derivation for

this conversion is shown in detail in [94]. Here, we will summarize the most useful

equations to easily translate between formalisms. Mainly, it is useful to convert the

parameters art and τ to the parameters γ0 and γex. From these two connections

between formalisms, all other parameters can be obtained. To convert art to γ, we

can connect them through the propagation loss α0, which is present in the definitions

of γ0 and art. This results in the following expression linking art and γ0:

art = e−γ0Lc/vg . (2.28)

To obtain a relationship between τ and γex, we recall that for power conservation

in a directional coupler, κ2 + τ2 = 1. We can relate κ and γex by comparing the

through port response of the microring resonator in both formalisms [94]. This

allows us to state

κ2 =
Lc

vg
2γex. (2.29)
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Then, by using the relationship between the coupling and transmission coefficients,

we can write

τ2 = 1− Lc

vg
2γex. (2.30)

The relationships described in Eqs. (2.28) and (2.30) allow us to convert easily

between the two formalisms, so that we can use the method best suited for each

application.

2.2.6 Coherent Backscattering

In this section, we will discuss the effects of coherent backscattering on racetrack

resonators fabricated using the SOI platform. As discussed previously, photonic

devices fabricated on SOI are high index contrast, especially when air-clad. Al-

though this makes silicon photonic integrated circuits easier to miniaturize because

smaller bending radii can be achieved while maintaining low loss [122], it also makes

them susceptible to a phenomenon called coherent backscattering. In high con-

trast waveguides, the propagating mode is very sensitive to the surface roughness

of the waveguide, as previously described in the discussion on sources of loss in

Section 2.2.4. If the surface is rough, many reflections in the microring occur and

form a counter-propagating wave. When the counter-propagating wave interferes

with the forward-propagating traveling wave, the result is a standing wave in the

microring or racetrack resonator. In terms of the optical spectrum, it manifests as a

peak splitting in the optical resonance [145]. Backscattering is more easily observed

in rings with large quality factors, since there are few other significant sources of

loss. Backscattering can limit the performance of ring or racetrack resonators with

an optical quality factor greater than 104 [146].

Although backscattering does not affect the racetrack resonator’s ability to read

out a nanomechanical device, as we will demonstrate in Chapter 4, it does compli-

cate the transmission transfer function of the optical cavity, as well as the power

enhancement. The transmission and power enhancement are necessary to model

the behaviour of the cavities in order to calculate optomechanically-relevant param-

eters such as the optical force. To model the effect that coherent backscattering

has on the optical response of the cavity, we use the power coupling approach. We

model the backscattering effect as a lumped element reflector [147]. The reflector

has a reflection coefficient r, transmission coefficient t, and position θ measured in

radians. A schematic of the model used to derive the equations describing coherent

backscattering are shown in Figure 2.8.

First, we derive the amplitude in the microring for the add-drop configuration,

assuming that the coupling is identical at the add and drop ports. To determine the

overall equation that describes the transmission through a backscattered add-drop
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Figure 2.8: Schematics including backscattering effect for (a) an add-drop microring
and (b) an all-pass microring. The lumped element reflector (red line) is included
to account for coherent backscattering. The input amplitude to the microring is si.
The amplitude at the through port is labelled st. For the add-drop microring in
(a), the drop port amplitude is shown as sd. The microring coupling parameters are
described by τ and κ. The transmission through the reflector element is t and the
reflection is r. The location of the lumped reflector within the microring is denoted
by θ.

microring, we follow the same approach used in the previous section to derive the

transfer function for the APMR with the power coupling formalism. This allows

us to derive equations for the electric field amplitude at various locations in the

racetrack resonator [147]. By rearranging these equations, we determine the ampli-

tude of the forward propagating wave after the input coupling junction (A1), and

the amplitude of the backward propagating wave at the same point (B1). These

expressions are as follows:

A1 =
iκ

1− artτ2Cadeiφ
si, (2.31)

B1 =
−rκarte

2iθ

1− 2arttτ2eiφ + a2
rtτ

4e2iφ
si, (2.32)

where φ is the round trip phase of the forward propagating wave. Cad is defined as:

Cad =
t− artτ

2eiφ

1− arttτ2eiφ
. (2.33)

These counter-propagating waves interfere, resulting in the formation of a stand-

ing wave in the racetrack. Therefore, the total amplitude in the microring is the

summation of A1 and B1. In the case of the all-pass microring, the amplitudes

are similar. A1 and B1 are obtained by setting τ2 = τ in Eqs. (2.31) and (2.32),

since the transmission through the second coupler is equal to unity in the case of an

all-pass configuration. For the all-pass configuration:

Cap =
t− artτe

iφ

1− arttτeiφ
. (2.34)
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To obtain the transmission at the through port of both the add-drop microring

and the all-pass microring, we must find the solution for st/si. Combining Eqs. (2.31)

and (2.32) with the remaining electric field amplitude equations in Ref. [147], we

derive the following results for the add-drop microring (Eq. (2.35)) and the all-pass

microring (Eq. (2.36)):

Tad =

∣∣∣∣st

si

∣∣∣∣2 =

∣∣∣∣ τ − Cadτarte
iφ

1− Cadτ2arteiφ

∣∣∣∣2 , (2.35)

Tap =

∣∣∣∣st

si

∣∣∣∣2 =

∣∣∣∣ τ − Caparte
iφ

1− Capτarteiφ

∣∣∣∣2 . (2.36)

Finally, we have discussed the importance of the power enhancement in the

previous section, as it describes how the power in the microring is amplified at res-

onance compared to the input power. However, backscattering greatly complicates

the calculation of the power enhancement since the standing wave pattern caused

by backscattering results in minimum and maximum power enhancement at vari-

ous positions in the microring. To calculate the power enhancement, we need to

calculate the mean value of the power of the standing wave at resonance. To set

the wavelength to the resonance condition, we can set φ = 2π and use Eq. (2.37)

to calculate the backscattered power enhancement, PEb, for both the add-drop and

all-pass microrings. The subscript b indicates that the cavity is backscattered,

PEb =

∣∣∣∣A1 +B1

si

∣∣∣∣2 . (2.37)

Eq. (2.37) gives a range of values depending on the location of the reflector element θ.

Since the location of the reflector element is not known exactly, we can calculate the

average PEb by determining the power enhancement for θ = 0 to 2π and taking the

average value. This approach is verified experimentally in Section 3.2 and detailed

graphically in Section 4.2.2.

Although the presence of coherent backscattering does complicate the model

for the add-drop and all-pass microrings, we have shown here that using methods

already established in the literature, we are able to account for these complications.

We will use the equations derived in this section in our experimental results later in

the thesis and demonstrate that they fit the data well.

2.3 Optomechanics

Until this point, we have described optical cavities only as isolated structures. How-

ever, optical cavities can be coupled to mechanical devices to form optomechanical

systems [148]. There are a wide range of optomechanical systems, as large as the

LIGO interferometer for detection of gravitational waves [149] or as small as the
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breathing modes of nanoscale photonic crystals [150]. There are several different

mechanisms by which optomechanical coupling can arise. The most conceptually

simple optomechanical system is a Fabry-Perot cavity with one end mirror that is

free to move. The photons in the Fabry-Perot cavity impinge on this mirror, result-

ing in a direct transfer of the photon momentum to the end mirror with a mechanical

degree of freedom [151, 152, 153, 154]. The force associated with this momentum

transfer is called the radiation pressure force. Other optomechanical systems that

make use of the radiation pressure force include membrane in the middle systems

where a mechanical membrane is placed in the centre of a Fabry-Perot cavity [40]

and microtoroid resonators [110, 155].

Coupling between optical cavities and mechanical devices can also be achieved

through the optical gradient force [50, 51, 52, 53, 67]. The optical gradient force

occurs when a dielectric particle (or dielectric structure) is placed in a spatially

varying electromagnetic field. Mathematically, the optical gradient force can be

described by F = −∇U where U is the energy in the electromagnetic field. Spatial

variation in the electromagnetic field can occur, for example, in a tightly focused

laser, which is the principle behind optical tweezers [156]. In the case of a dielectric

particle, a dipole is formed. The charged particle experiences a force due to the

electromagnetic field and is accelerated to the region of highest intensity. For a

tightly focused laser, the intensity is highest at the focal point, and decreases away

from the focal point. A dielectric structure in a spatially varying electromagnetic

field experiences the same phenomenon and can be considered to be a collection of

dipoles [54]. Spatial variation in the electromagnetic field can also occur in photonic

waveguides. A well-confined optical mode in a waveguide will decay exponentially

outside the waveguide due to the evanescent field decay, as described in Section 2.2.1.

Therefore, a dielectric object such as a cantilever or doubly clamped beam placed

within the evanescent field of a waveguide will experience an attractive force [157].

In this example, the cantilever or doubly clamped beam will be pulled towards the

waveguide.

Both optical gradient forces and radiation pressure forces result in displacement-

dependent shifts in the optical cavity resonance. As the mechanical device moves,

it alters the effective index of the optical cavity. The change in the effective index,

and therefore the propagation constant according to Eq. (2.17), results in a change

in the optical cavity resonance wavelength. This is called dispersive coupling [158].

One way to measure the cavity shift is to position a probe laser on one side of the

optical cavity resonance, and measure the transmitted optical power. As the cavity’s

resonance condition changes due to the mechanical displacement, a power change is

observed at the output, because the probe wavelength position is stationary. This

measurement can be completed by positioning the probe laser on either the blue
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(low wavelength, high frequency) or red (high wavelength, low frequency) side of

the optical cavity.

For both the radiation pressure force and the optical gradient force, the strength

of the interaction between the optical cavity and the mechanical device can be

described by the optomechanical coupling coefficient, G = ∂ω/∂x where ω is the

optical cavity frequency and x is the displacement of the mechanical device. This

parameter describes how much the optical cavity shifts in frequency for a given

mechanical displacement. The optomechanical coupling can be measured directly.

There are several techniques available to do this, including the injection of a cali-

bration tone [159]. One of the simplest approaches is to measure the frequency shift

caused by the optical spring effect, provided that the optomechanical coupling is

strong enough to cause a detectable frequency shift.

The optical spring effect is a phenomenon that occurs when the spring constant

of the mechanical device increases (stiffening) or decreases (softening) by the place-

ment of the probe laser on the blue or red side of the cavity, respectively [160]. It

is one result of back action effects that the optomechanical interaction has on the

mechanical motion. As the mechanical motion shifts the cavity resonance, it also

alters the driving force. When this changing force is in phase with the motion, it

becomes an optical spring constant. When there is a delay to the interaction, intro-

duced by a finite cavity lifetime, the changing force can become out of phase with

the motion and alter the mechanical damping. This is called dynamical backaction.

When the mechanical motion is oscillating, we can understand the interaction be-

tween the optical cavity, the mechanical resonator, and the probe laser by describing

the system using the input-output formalism for optomechanics, and discussing the

interaction in terms of quantized scattering [143, 161]. The oscillatory cavity shift

induced by the mechanical motion produces a set of intracavity field sidebands with

frequencies equal to ωL ± nΩ0 where ωL is the laser frequency, Ω0 is the mechan-

ical frequency, and n is an integer. In particular, the ωL + Ω0 sideband is called

the Stokes sideband, and the ωL − Ω0 sideband is called the anti-Stokes sideband.

For the case where the cavity linewidth 2γ >> Ω0, many sidebands will be present

within the optical cavity resonance, as shown by the green arrows in Figure 2.9.

This is called the unresolved-sideband regime, or the Doppler regime. In the oppo-

site case, only either the Stokes or anti-Stokes sideband will lie within the optical

cavity resonance. This is called the sideband resolved regime. Here, we will focus

on the specific example of the Doppler regime, as this is the regime that is used for

all following experiments. The same principles hold true for the resolved sideband

regime but involves only the Stokes and anti-Stokes sidebands instead of the full set

of sidebands.

When the probe laser is positioned off of the cavity resonance, the scattering
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Figure 2.9: A schematic showing the mechanism of energy transfer in the Doppler
regime of optomechanics, adapted from [161]. The gray curve is the optical cavity
transmission in dB. The transmission is plotted versus the angular frequency. The
position of a blue-detuned probe laser is shown by the blue arrow and labeled ωL.
The sidebands are generated at a frequency spacing of Ω0 by the mechanical dis-
placement, which is represented by the green arrows. In the case of a blue-detuned
laser, a scattered photon can become a lower energy photon. The remaining energy
creates a quantized number of phonons. In this way, energy can be distributed to
multiple sidebands, as shown by the curved blue arrows.

probability into the sidebands becomes asymmetric due to the cavity density of

states. When the probe laser is positioned on the blue side of the cavity resonance,

the scattering rate for the set of ωL−nΩ0 sidebands is enhanced, while the scattering

rate for the set of ωL +nΩ0 sidebands is suppressed. Similarly, when the probe laser

is positioned on the red side of the cavity resonance, the set of ωL−nΩ0 is enhanced

while the set of ωL + nΩ0 is suppressed. Energy must also be conserved in the sys-

tem. For the blue-detuned probe, energy conservation is achieved by the transfer of

vibrational energy from the optical field to the mechanical resonator in phonons of

quantized energy h̄Ω0. This results in amplification of the mechanical motion and

a reduction in the damping. The opposite is true for the red-detuned probe, where

vibrational energy is transferred to the optical field from the mechanical resonator.

In this case, damping is increased and the mechanical amplitude decreases. These

two cases can also be thought of as heating (adding phonons) and cooling (removing

phonons) of the mechanical resonator. In the case of the Doppler regime, many side-

bands are present within the optical cavity and so in the case of a blue-detuned laser,

many phonons can be generated by a single photon [161]. This makes the Doppler

regime preferable for amplification compared to the resolved sideband regime, where

the photon scattering has only one sideband and that sideband generates only one

phonon.

In addition to the amplification (damping) experienced by a mechanical device

due to a blue (red) detuned probe laser, the mechanical device also experiences an
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increase (decrease) in its spring constant [162]. The change in the spring constant

is introduced by the optical force according to ∂Fopt/∂x = kopt, where x is the

displacement of the simple harmonic oscillator and kopt is the optical spring constant.

The optical force can be produced by the radiation pressure force or by the optical

gradient force. Both of these optical forces are proportional to the lineshape of

the optical cavity resonance. Therefore, ∂Fopt/∂x can have a negative or positive

value depending on whether the probe laser is detuned to the red or the blue side

of the optical cavity resonance. On the red side, kopt < 0, resulting in a decrease

in the overall spring constant. The resonance frequency will also decrease, since

Ω0 = (k/meff)1/2. This is referred to as a spring softening effect. On the blue

side, kopt > 0 and therefore both the effective spring constant and the resonance

frequency will increase. This is a spring stiffening effect. In the Doppler regime, the

frequency shift caused by the optical spring effect can be described by [143]

δΩ = g2
0ncav

2∆

γ2 + ∆2
, (2.38)

where g0 is single-photon optomechanical coupling rate and quantifies the interaction

between a single optical photon and a single phonon. ncav is the number of photons

in the cavity. The number of photons in the cavity can be expressed as

ncav =
2γex

γ2 + ∆2

Pbus

h̄ω
, (2.39)

where Pbus is the optical power in the bus waveguide and ω is the laser frequency. Fi-

nally, the single-photon optomechanical coupling rate can be related to the optome-

chanical coupling via G = g0/xZPF. xZPF = (h̄/2meffΩ0)1/2 is the zero-point fluc-

tuation of the mechanical device [143]. Combining these definitions and Eqs. (2.38)

and (2.39) gives the final result for relating the shift in resonance frequency caused

by the optical spring effect to the optomechanical coupling G:

δΩ = G2x2
ZPF

4γex∆

(γ2 + ∆2)2

Pbus

h̄ω
. (2.40)

Since all of the optical cavity parameters in this equation are known, all that

is required to calculate the optomechanical coupling is the frequency shift and cor-

responding detuning. This provides a straightforward method to experimentally

measure the optomechanical coupling for a given device.

2.3.1 Optical Actuation

As discussed in Section 2.1, there are many potential methods for actuation of

nanomechanical devices. Actuation, often referred to as driving, of the nanome-

chanical devices is essential for mass sensing applications. Although the thermo-

mechanical noise can used for mass sensing [17], the nanomechanical mass sensor
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should ideally be driven at its onset of nonlinearity to provide the highest dynamic

range for mass sensing experiments [18, 20]. Optomechanical transduction allows

for the actuation of nanomechanical devices using optical forces such as the radia-

tion pressure force or the optical gradient force. This is ideal, as the optomechanical

system is already designed for optical interactions and therefore the physical mecha-

nism for the actuation force is already built into the optomechanical system. Optical

actuation can be applied at high powers to achieve large amplitudes. It is also a

high-bandwidth approach, which makes it preferable to actuation using piezoelectric

disks. Actuation with piezoelectric disks is simple and often used in mass sensing

with nanomechanical systems [9], however, these disks are limited to frequencies in

the range of tens of megahertz. Optical actuation clearly has many benefits com-

pared to other types of actuation. For these reasons, we will use optical actuation

in the remainder of this work. We will focus on actuation via the optical gradient

force, as this is the force used in the remainder of this work. The radiation pressure

force can also be used for optical actuation [50, 163, 164]. The discussion here is not

specific to nanoscale mechanical devices; these principles can be extended to any

cavity optomechanical system.

The optical gradient force is a dispersive force generated by the gradient of

the optical cavity field, as discussed in the previous section. The optical gradient

force acting on a mechanical device external to the optical cavity can be described

mathematically by [157]

F (x) = − 2PbusγexG

ω(∆2 + γ2)
, (2.41)

and is a function of the laser detuning from the cavity resonance ∆. Pbus de-

scribes the optical power in the bus (input) waveguide coupled to the optical cavity.

Eq. (2.41) can be used to calculate a DC or an AC optical force, depending on

whether Pbus is the AC or DC optical power in the bus waveguide. The generation

of an AC optical force will be described in more detail in Section 2.4. Eq. (2.41) is de-

fined such that a negative force is an attractive force that pulls the nanomechanical

device towards the optical cavity.

There are two types of optical actuation that can be achieved with the optical

gradient force. The first is self-oscillation, a common approach in optomechanics [16,

165]. Self-oscillation uses a single laser to act as both the pump and the probe. The

laser is detuned to the blue side of the optical cavity, and the power is increased. As

discussed in Section 2.3, a blue-detuned laser will introduce energy into the system,

resulting in amplification of the mechanical motion. The amplification provided by

the optical cavity can be expressed in terms of the optical damping rate Γopt. For

a blue-detuned laser providing amplification (anti-damping), the optical damping

rate is negative. The optical damping rate depends on the optical power of the
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laser. The damping of the mechanical system is expressed as Γm = Ω0/Q, where

Q is the quality factor of the mechanical resonance. When Γopt + Γm < 0, the

optical amplification becomes larger than the intrinsic mechanical damping, and

the damping of the overall system becomes negative. This is the threshold for self-

oscillation. Above this threshold, the mechanical vibrations are self-sustained and

the mechanical quality factor increases. Although self-oscillation has been used for

mass sensing [166], it is less sensitive for mass sensing in comparison to a tight

feedback loop with clean reference oscillator, as there is significant phase-walking of

the self-oscillator in nanoscale systems [18].

The second type of optical actuation that can be used is a pump-and-probe ap-

proach [69]. This technique does require additional resources, as two tunable lasers

are required. However, this technique has a high-bandwidth and tunable power to

reach the upper limits of the mass sensor’s dynamic range. The pump-and-probe

approach also is compatible with phase lock loop operation, and so the phase noise

of the mass sensing system is reduced compared to self-oscillation. The pump-probe

technique uses a weak probe laser and a strong pump laser. The pump laser is

amplitude-modulated at the mechanical resonance frequency, which results in an

oscillatory optical force at the nanomechanical device. Therefore, the nanomechani-

cal resonator behaves as a driven damped harmonic oscillator with a coherent phase

signal, and can be tracked in a phase lock loop. An amplitude modulator consisting

of an electro-optic modulator (EOM) embedded within a Mach Zehnder interferom-

eter is used for amplitude modulation. The EOM is designed for telecommunications

and has a maximum frequency of 10 GHz, allowing for very large actuation frequen-

cies. The wavelength of the pump is set to the minimum of one optical resonance,

at zero detuning. This position of the pump laser is important, as setting the laser

at zero detuning avoids accidentally actuating the device through the self-oscillation

mechanism. To obtain the maximum output signal from the nanomechanical device,

the probe laser wavelength is set to the point of maximum slope on the side of a

different optical resonance. The probe laser must be set to a power less than the

threshold for self-oscillation, or the probe laser may inadvertently introduce ampli-

fication when the probe laser is blue detuned. Similarly, the probe could introduce

damping on the red side if the power is too high, reducing the signal-to-noise ratio

and decreasing the mechanical quality factor. Selection of a suitable probe power is

therefore an important consideration.

2.3.2 Optomechanics and Silicon Photonic Integrated Circuits

Optomechanical devices can be fabricated in a straightforward way using silicon-on-

insulator substrates. Since integrated photonics allows for the fabrication of optical

cavities on a chip, optical cavities can easily be placed adjacent to mechanical com-
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ponents on the same chip. Both optical and mechanical devices are fabricated from

CMOS processes and are conveniently both suited for fabrication using SOI sub-

strates. The photonic and mechanical devices are made from the thin silicon device

layer (220 nm thick) and the oxide layer underneath (2 µm thick) acts as a buffer

layer for the silicon photonics, to prevent leakage into the silicon handle wafer. The

oxide layer also acts as a sacrificial release layer for the mechanical components.

The mechanical components are placed adjacent to the photonic components, such

that the mechanical device is within the evanescent field of the photonic waveguide.

The photonic cavities used in this work are racetrack resonators, as previously men-

tioned. The high finesse of the racetrack resonators allows photons to interact with

the mechanical component several times, increasing the signal-to-noise ratio (SNR)

compared to interaction with a straight waveguide.

To create the mechanical component, the buried oxide layer is etched to release

the mechanical device. This can be done using a masked process, so that only the

mechanical components are released, or a maskless process in which case all of the

photonic components are undercut slightly by the isotropic etch process. Previous

work has demonstrated that etching the silicon buffer layer beneath the photonic

devices does not substantially impact the device performance for 430 nm wide waveg-

uides [68]. This makes intuitive sense based on the effective index method described

in Section 2.2.1, since the removal of a small amount of oxide at the edges of the

waveguide base does not substantially change the waveguide effective index, and the

waveguides are well above cut-off. Once released from the sacrificial oxide layer, the

mechanical device will vibrate at its characteristic resonance frequency. The motion

of the mechanical device modulates the effective index of the waveguide, which in

turn modulates the resonance condition of the racetrack resonator. As a result,

an AC power modulation at the mechanical resonance frequency is observed at the

optical cavity output, and is recorded by a photodiode. The strength of the signal

received at the photodiode can be discussed in terms of the transduction coefficient.

The transduction coefficient dT/dx is defined as the change in the transmission of

the racetrack resonator for a given change in the amplitude of the mechanical signal.

The transduction coefficient is expressed in watts per metre. The measured voltages

are converted to optical powers using the conversion factor of the photodiode used

in the measurement. The higher the transduction coefficient, the higher the signal

received at the photodiode for a given amplitude of vibration. The mathematical

expression for the transduction coefficient of a racetrack resonator is [69]

dT

dx
=

(
dT

dλ

F
2π

)(
2π

λ

∂neff

∂x
βlm

)
, (2.42)

where lm is the length of the mechanical resonator, and β is a factor that describes

how much of this overall length is interacting with the optical resonator. For exam-
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ple, a short cantilever of length less than 3 µm has β = 0.394, because that is the

normalized average amplitude of the cantilever. The calculation of β becomes more

complicated if the device is a long doubly clamped beam that is interacting with a

short optical cavity length. dT/dλ is the slope of the optical cavity where the probe

laser is positioned. This can be recorded directly, making all of the parameters in

Eq. (2.42) straightforward to obtain experimentally with the exception of ∂neff/∂x.

This parameter is the change in the effective index over the change in the gap be-

tween the mechanical device and the cavity. It is an exponential function because,

as discussed in Section 2.2.1, the evanescent field decay outside the waveguide is

exponential. For an SOI waveguide without a cladding layer, we can use the rule of

thumb established from Eq. (2.11). A waveguide operating at 1550 nm in the TE

mode with air cladding has an effective index of 2.4, and therefore the decay length

of the evanescent field is approximately 110 nm. The evanescent field at a distance x

in nanometers is of the form exp (−x/110). Therefore, placing the nanomechanical

beam at different gap spacings within that evanescent field will have an exponentially

decreasing effect as the gap spacing is increased. The effective index at different gap

spacings could be calculated by applying multiple iterations of the effective index

method. However, this type of calculation is more suited to numerical solvers, to

increase the efficiency of the calculation. The effective index of the entire system

of the waveguide and mechanical device together can be calculated for varying gap

spacing, and the derivative calculated to produce ∂neff/∂x.

The optomechanical coupling can also be calculated using the parameter ∂neff/∂x,

providing a way to theoretically calculate this value through a simple formula de-

rived in [69]:

G =
∂ω

∂x
=
ω0βlm
ngLc

∂neff

∂x
. (2.43)

This expression uses only two simulated parameters. The first simulated parameter

is ∂neff/∂x. The other parameter obtained from simulation is the group index (ng),

which can also be obtained from mode solver simulations by recording the index

at various wavelengths. The other parameters in this equation are known from the

geometry of the optomechanical system, and so the optomechanical coupling can be

easily calculated.

2.4 Experimental Setup

As previously mentioned, there are many options when considering how to couple

light into and out of photonic chips. These methods include: edge or butt cou-

pling [167] where the output of a fiber is placed adjacent to the input of an on-chip

waveguide; tapered fibers [108] where an unclad, stretched fiber is positioned over
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top of a bus waveguide; or grating couplers [72]. For grating couplers, the input

light must arrive at the correct angle, as discussed in Section 2.2.3. To couple light

into grating couplers, a fiber will be held or glued at the desired angle immediately

above the grating coupler on the chip [77].

For mechanical devices, it is often desirable to measure them in vacuum to

reduce air damping and improve the signal-to-noise ratio, especially for testing new

devices. In this case, the devices must be placed in a vacuum chamber and directly

positioning optical fibers on top of grating couplers becomes a significant challenge.

To overcome this challenge, we use a free-space confocal microscope setup to focus

the light onto the grating couplers from a distance. This eliminates the need for

exact positioning of the input/output fibers inside a vacuum. By using free space

optics to align the laser spot, we can also improve the tunability of our setup, as the

input angle of our light can be varied easily. This allows for the grating couplers to

be fully optimized, even when submerged in water (Section 3.1.1).

Figure 2.10: Schematic of the pump-and-probe experimental setup [69]. Image
provided by Vincent Sauer, c© IOP Publishing. Reproduced with permission. All
rights reserved.

Although this setup has been detailed elsewhere [11, 118], we will describe it

briefly here as well. The setup is pictured as a schematic in Figure 2.10, originally

published in [69]. Our silicon-on-insulator chip is mounted inside the vacuum cham-

ber (VC), which is connected to a turbo pump that pumps the chamber down to

a pressure less than 1 × 10−5 torr to remove any viscous damping introduced by

air. In the schematic, it is noted that the sample can be mounted on a piezoelectric

(PZ) disc. Although this is a possibility to provide an alternative source of actua-

41



tion [69, 168], it is not used in this thesis. Rather, we use optical actuation via the

optical gradient force using the pump-and-probe approach detailed in Section 2.3.1.

There are two tunable diode lasers present in the setup, a probe laser for detect-

ing the motion of the mechanical devices (TDL probe) and a pump laser for actuation

(TDL pump). The probe laser is directed through a polarization controller (PC) and

into a 50/50 directional coupler (DC). The pump laser is sent through an amplitude

modulator, which consists of an electro-optic modulator (EOM) embedded within a

Mach-Zehnder interferometer, and an erbium doped fiber amplifier (EDFA) before

reaching the directional coupler. The EOM is connected to an AC voltage source

such as a lock-in amplifier (LIA) or network analyzer (NA) to provide an AC drive

signal at the desired frequency and amplitude. The EOM is also subject to a DC

bias. The DC bias allows us to set the operating point of the modulator to provide

the largest amplitude modulation and is optimized during each experiment to pro-

vide maximum output. The EOM permits the application of an AC optical force

to the nanomechanical device. The AC component arises because of the amplitude

modulation on the pump laser provided by the EOM. The optical AC power defined

as the driving voltage, Vdrive, applied to the EOM divided by its Vπ. This ratio is

then multiplied by the DC power in the bus waveguide, to determine the AC power

present in the bus waveguide. This value can then be used to calculate the AC

optical force, as described in Section 2.3.1.

Once the pump and probe are coupled together into a single fiber at the di-

rectional coupler, they are directed into the free space confocal lens system (CLS).

Finally, the light reaches a microscope objective (MO) and is incident on the sample.

The light is coupled into one grating coupler, and out of a second grating coupler.

The output light re-enters the microscope objective and the confocal lens system.

Finally, a 50/50 beam splitter is used to separate the output light from the input

light and direct it into a fiber. The light passes through a band-pass filter (BPF),

which is used to filter out the pump laser. This leaves only the probe laser to be

detected at the photodiode (PD). The optical signal is converted to an electrical

signal by the photodiode. The built-in low-pass filter in the photodiode separates

the signal into DC and AC components. The AC signal is recorded by a lock-in

amplifier, network analyzer, or spectrum analyzer. The DC signal is sent directly

to a computer. The AC signal is used to measure the mechanical signals, whereas

the DC signal is used to measure the optical response of the racetrack cavity.

To image the chip when it is in the vacuum chamber, a high-intensity white light

source (HLS) is directed onto the chip with a series of beam splitters. The reflected

light is directed back through the microscope objective and onto a CCD camera.

Therefore, both the laser spots from the input and output grating couplers, as well

as the devices themselves, can be imaged. This makes the system straightforward
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to align.

The tunability of the setup is largely due to the scanning mirrors (SM) and fiber

positioners (FP). By adjusting the mirrors, we are able to adjust the incident angle

of the light into the microscope objective. The fiber positioners alter the location of

the laser spot on the microscope objective. Since the microscope objective acts to

perform a Fourier transform on the incident light [83, 118], adjusting the scanning

mirrors results in a change in the position of the spot on the chip’s surface. Adjusting

the fiber positioner results in changing the angle of the light incident on the chip.

In this way, we are able to adjust the laser so that it can be received by a grating

coupler in any orientation. The maximum angle that can be achieved with this setup

is approximately 17◦, which much larger than the typical incident angles required

for grating couplers, which is usually closer to 10◦.

This experimental setup has been used in all of the measurements described in

the following chapters.
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Chapter 3

Practical considerations for
portable nano-optomechanical
sensors

In this chapter we discuss several different methods to improve the overall device

performance for mass sensors. In Section 3.1 we focus on the development of pho-

tonic and mechanical systems for use in fluidic environments. We also present a

low-cost approach for packaging microfluidic sensors. The goal of this section is to

make improvements in the technology with the application of health care diagnostic

tools in mind.

Section 3.2 demonstrates a proof-of-concept fabrication process that allows for

higher order modes to be detected in optomechanical systems. This technique allows

for the improvement of the spatial resolution of nano-optomechanical mass sensors

and provides a path to improve the accuracy of mass measurements.

In the final section, 3.3, we describe a measurement technique that permits the

use of a low-frequency photodiode and a single drive laser to reduce the complexity

of the surrounding electronics. This alternative measurement approach is beneficial

for improving the portability of a mass sensing system.

3.1 Optomechanical Systems for Liquid Sensing

There is significant interest in developing mass sensors for use in fluidic environ-

ments, in addition to gaseous environments. There are many potential applications

for fluid-based sensing including health care, for disease diagnosis or health monitor-

ing, and environmental monitoring, to determine the concentrations of potentially

hazardous compounds in water. Other applications include furthering basic scien-

tific research, as chemical reactions could be monitored in situ with nanomechanical

devices to determine reaction kinetics. These applications typically require that

samples under test cannot be processed (i.e. dried or placed in vacuum) and the
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measurements are ideally done in fluid, in real time. Clearly, optical and mechanical

components that can function in a fluidic environment are desirable. In the follow-

ing sections, we discuss the design of photonic and nanomechanical components for

use in water. The challenges with each design will be discussed.

3.1.1 Photonics for Use in Water

For optimal performance of optomechanics with photonic integrated circuits in wa-

ter, there are three main concerns that must be addressed. First is that infrared

light is strongly absorbed by water, with an absorption coefficient at λ = 1550 nm

equal to approximately 10 cm−1 [169]. Therefore, we had to account for the high

loss induced by the water. We also require a very high transduction coefficient, since

any mechanical vibrations in water are strongly damped by the surrounding fluid

(see Section 3.1.2 for more detail). Finally, water has a different index of refraction

than air, which will alter the performance of the waveguides since the effective index

changes when the cladding index changes (Section 2.2.1). In this section, we will

address all three of these issues to formulate an effective design for optical racetrack

resonators operating in water. We will show experimental evidence of the successful

design and fabrication of these devices.

All of the photonic elements were simulated using commercial finite difference

time domain simulations [170] or eigenmode solver simulations [171]. Grating cou-

pler designs were provided by imec, the foundry we used to fabricate these devices.

These grating couplers were not designed specifically for water. Rather, they were

designed for oxide cladding. However, the grating couplers still perform well in air,

as demonstrated in Chapters 4–5. Since the refractive index of water is 1.3, closer

to the index of oxide than air, the grating couplers will actually perform slightly

better in water than in air. Additionally, the tunability of our experimental setup

(as described in Section 2.4) provided enough flexibility in the coupling angle to

optimize the transmission through the grating couplers regardless of the cladding

material.

To address the issue of absorption of near infrared light by water, the waveguide

width was optimized. For wide waveguides, the effective index of the waveguide

is higher and the majority of the electric field, and therefore the optical power,

is confined within the silicon waveguide. As the waveguide width decreases, the

effective index decreases and the electric field is less well-confined. More of the

optical power is present near the waveguide edges and immediately outside of the

waveguide, in the surrounding water. Wider waveguides are better for carrying light

through water, as the light will be confined to the silicon waveguide and less energy

will be absorbed by the water. Figure 3.1 shows the difference between the funda-

mental TE modes at a wavelength of 1550 nm traveling in (a) a narrow waveguide
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of 400 nm and (b) a wider waveguide of 500 nm. The fabricated waveguides had an

average width of 502 nm with a standard deviation of 13 nm. These are the average

dimensions measured from twelve scanning electron microscope (SEM) images of

different waveguides. The performance changes significantly for a small variation

in dimension. As discussed in Section 2.2.1, as the waveguide size decreases, the

optical mode approaches cut-off, which is the mechanism for the field becoming less

confined. By using the effective index method, we can estimate that cut-off will

occur at approximately one-half of the wavelength in the silicon slab mode. The

effective index of a TE silicon slab mode with air cladding is 2.8 [172], and so in

this case cut-off will occur at a width of 1550/2.8/2 = 270 nm. The waveguide

is multi-mode above 600 nm [95]. Clearly, the optical properties of the waveguide

change quickly between 270 nm and 600 nm width, since the waveguide goes from

cut-off to multi-mode over a 330 nm increment. Therefore, only small changes are

required to significantly alter the behaviour of the waveguide mode.

Figure 3.1: Simulated electric field profiles for (a) 400 nm wide waveguide and (b)
500 nm wide waveguide. The simulations used air cladding and are for the TE mode
at a wavelength of 1550 nm. The waveguide thickness is 220 nm. The mode extends
further outside silicon waveguide when the width is equal to 400 nm.

The other main design parameter for the photonic elements was the gap between

the bus waveguide and the racetrack resonator. This gap determines whether the

racetrack resonators are under, over, or critically coupled. For measuring mechanical

devices in water, the steepest slope of the optical cavity transmission possible is

desired to maximize the transduction coefficient (Eq. 2.42) and obtain the highest

displacement sensitivity possible. This is because the mechanical devices will be

strongly damped in liquid, and will have very small amplitudes of vibration [173].

Although the steepest slope is achieved in the under-coupled regime, the largest

linear range (bandwidth) is obtained in the over-coupled regime [94]. To obtain

a high slope while maintaining a reasonable linear range, we chose to use critical

coupling.

We used the power coupling formalism described in Section 2.2 to determine the
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coupling coefficient and transmission coefficient required for the racetracks in water.

Coupled mode theory, in conjunction with FDTD simulations, was used to calculate

κ and τ . The simulated structures were SOI waveguides with a cladding index of

1.3, which is the index of water. The coupling length (Lcoupler) was chosen to be

3 µm, as this provided an adequate interaction length for the adjacent mechanical

devices. The cross-over length (Lcross, Eq. 2.20) was obtained from eigenmode solver

simulations. From the cross-over length, we calculate the coupling coefficient from

Eq. 2.21 [77]. Once κ, and therefore τ , is known for a variety of gaps, we can select

the gaps that are the closest to achieving critical coupling. This is done by choosing

a value of the transmission coefficient τ that is equal to art. Based on past runs

from imec, we were able to estimate the round-trip loss as approximately 0.99 for

air-clad racetrack resonators. To obtain critical coupling in water, we fabricated

coupling gaps from 130 nm to 250 nm. This was to ensure that even if the loss in

the waveguides was high due to absorption by the surrounding water, some racetrack

resonators would still perform well.

Figure 3.2 shows the measurement of two nominally identical racetrack res-

onators (from different chips) in both (a) air and (b) water. The measurement

in air shows peak splitting, which is due to coherent backscattering in the racetrack

resonator (see Section 2.2.6). To measure the racetrack resonators in water, we

placed double sided tape with a thickness of 50 µm around the perimeter of the

chip. A thin glass slide was placed on top of the SOI chip and held in place by the

tape. A small space in the tape was left on each side of the chip. De-ionized (DI)

water was then carefully dropped into the small gap, and wicked underneath the

glass slide onto the racetrack resonators. This allowed for extremely quick prototyp-

ing of the photonics in water without the creation of a full fluid cell. The chips were

placed on our experimental setup (Fig. 2.4) and characterized. In both measure-

ments, 1.0 mW of optical power was incident on the grating coupler. Figure 3.2(b)

shows that the backscattering vanishes when the racetrack resonator is measured in

water. This is because the loss is greater when the racetrack resonator submerged

in water, and therefore the backscattering is less visible. The extinction improves

dramatically in water, reaching -25 dB. This measurement demonstrates successful

design and fabrication of photonic racetrack resonators for use in water.

3.1.2 Designing Mechanics for Use in Water

The most significant issue in developing nanomechanical sensors for use in fluid is

the damping that occurs due to the surrounding fluid. This damping can cause the

quality factor of a typical resonator to decrease from a few hundred in air to 4 or 5 in

liquid [173]. This damping makes it very difficult to detect nanomechanical devices

such as cantilevers or doubly clamped beams in fluid due to the greatly reduced
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Figure 3.2: Experimental results of two racetracks with nominally identical dimen-
sions, one measured in (a) air and the other measured in (b) water. The optical
power input to the grating couplers was 1.0 mW. Coherent backscattering is present
in air but not in water.

signal-to-noise ratio. For these reasons, many researchers have turned to other,

atypical resonators for detection in fluid. One of the more successful is suspended

micro- or nano-channel resonators. These are cantilevers or doubly clamped beams

where the fluid is directed through the centre of the cantilever, instead of exterior

to the cantilever. Mass sensing is accomplished by detecting the changes in the

fluid within the cantilever. The main drawback of these devices is that they reach

a limit in terms of scaling since the channels inside the resonator have to be large

enough to permit fluid flow. For cantilever suspended nanochannel resonators, mass

sensitivities of 0.85 ag have been measured by optimizing the cantilever and channel

dimensions [174]. For doubly clamped suspended nanochannel resonators, the mass

sensitivity is increased to 2 fg [175]. Other approaches include using high frequency

breathing modes. Since these modes of vibration have a very high effective spring

constant and a low amplitude of vibration, they are more robust to the damping

induced by the fluid [176]. GaAs disk resonators in liquid had a theoretical mass

sensitivity of 14 yoctograms [17]. Silicon nitride wheel resonators in water had a

mass sensitivity of 1 ag [16]. The breathing mode of an optomechanical crystal in

water had a theoretical mass sensitivity of 1.33 ag/Hz1/2, and a measured noise floor

of 9.33 am/Hz1/2 [177].

To create a different type of nanomechanical resonator that would perform well in

fluid, there were a few requirements to consider. The main requirement was to have

a design that could easily be integrated into existing photonic circuits. A high spring

constant and a high resonance frequency were also important factors, analogous to

the breathing modes of disk resonators. The high spring constant is also important

in preventing stiction. Stiction occurs when micro- or nanomechanical devices are

exposed to liquids then dried. During the drying process, the capillary forces of
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liquids between the mechanical component and the substrate or adjacent structure

(such as a waveguide) pull the mechanical component towards the substrate [178].

The mechanical device and the substrate adhere irreversibly due to the high forces

between them. Ideally, the silicon photonic chips should be reusable due to their

relatively high cost compared with plastic materials, however, stiction can make

this impossible. Stiction can be reduced by drying devices from a solvent such as

pentane rather than from water. However, commonly used microfluidic materials

such as poly-methylmethacrylate (PMMA) are incompatible with these types of

solvents [179]. This incompatibility is important to consider since the silicon chip

may eventually be packaged into a microfluidic channel made from PMMA or a

similar low-cost plastic material. To avoid stiction altogether, it is possible to use

devices with a sufficiently high spring constant. This makes the devices better able

to resist the capillary forces, reducing stiction. With these considerations in mind,

we devised the concept of a ‘fin’ resonator. The fin is essentially an out-of-plane

cantilever. A schematic of a fin resonator can be seen in Fig. 3.3. The fin is adjacent

to the racetrack resonator. The base of the fin is attached to the oxide substrate.

The top of the fin is the tip of the cantilever. The length of the device is defined by

the thickness of the silicon device layer. The thickness, width, and gap are defined

as in the bottom right panel of Fig. 3.3.

Figure 3.3: A schematic of the fin resonator. On the left-hand side, an image of
the fin adjacent to a racetrack resonator. On the top right, a schematic of the
fin’s motion. On the bottom right, a top down view of the fin with the dimensions
labeled.

The resonance frequencies of a simple cantilever can be estimated using Euler-

Bernoulli beam theory. The fundamental resonance frequency, for example, is shown

by
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f0 =
0.162t

l2

√
E

ρ
, (3.1)

where E is the Young’s modulus and ρ is the density of the material, in this case

silicon. The theoretical values from Euler Bernoulli beam theory for the first mode

are shown by the red circles in Fig. 3.4. The second mode predictions are shown by

the red diamonds. However, one of the primary approximations for this equation is

that the beam should be thin compared to the length. Due to the fact that the fins

are very short (220 nm), this condition is only met when the fin width is less than or

equal to approximately 20 nm. More precise modeling of the resonance frequencies

of the fins was completed with finite element analysis (COMSOL). The results of

this modeling can be seen in Figure 3.4, which shows the resonance frequencies

for (a) 1 µm width and (b) 3 µm width. The blue squares are the results from

the finite element solver, and show that there are many modes present in each fin

for a given dimension. Although the first two flexural modes are found by the

finite element solver, many torsional-type modes are also observed. Examples of

the (a) flexural and (b) torsional modes can be seen in Fig. 3.5. From Figure 3.4,

it is clear that for a 1 µm wide fin, the Euler-Bernoulli predictions are not entirely

accurate. However, for a 3 µm wide fin, the Euler Bernoulli model is much closer to

the expected frequencies. Additionally, the wider device has more densely spaced

modes compared to the narrower device. This makes sense intuitively, as the amount

of strain energy added per node will be greater for the narrower device compared

to the wider device. Since the addition of strain energy proportionally increases

the resonance frequency, the resonance frequencies will have a larger spacing in the

narrow device compared to the wider device.

Eq. (3.1) still provides a useful conceptual framework for the design of the fin

resonators. Since the length of the fins is governed by the thickness of the silicon

device layer, the only parameter we can vary to adjust the resonance frequency is

the thickness. The spring constant k can be tuned by modifying both the thickness

and the width, since k = meffω
2
0. The resonance frequencies and spring constants of

the fundamental mode of narrow fins with a length of 220 nm are shown in Fig. 3.6.

For comparison, the spring constant of a cantilever with a length of 4 µm, thickness

160 nm and width of 220 nm is 0.4 N/m. The spring constants of the fin resonators

are in the kN/m range. This difference in spring constant indicates that the fins

will be resilient to stiction.

The width will also affect the transduction, according to Eq. 2.42. A larger width

will improve the transduction for a given cavity length, which intuitively makes sense

as the interaction length is increased for increasing width.

Very high frequency fins will be extremely difficult to detect, as the displacements

will be very small and the frequencies are out of the range of our experimental setup.
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Figure 3.4: Finite element simulation results (blue squares) compared to Euler-
Bernoulli beam theory (open red markers) for varying thicknesses of fins with a
height of 220 nm and (a) 1 µm width and (b) 3 µm width. Many more modes are
visible in the finite element simulations, as these calculations also produce the tor-
sional modes of vibration instead of only the flexural. The standard Euler-Bernoulli
beam theory is more accurate for the 3 µm wide fin shown in (b). It is less accurate
for the smaller fin simulated in (a), however, the results are close enough that the
standard Euler-Bernoulli beam theory may still be used as a design tool even at
these small dimensions.

Figure 3.5: Finite element simulation simulation results showing (a) the first flexural
mode and (b) the second torsional mode. The fins simulated are 220 nm tall, 1 µm
wide, and 30 nm thick are anchored at the base (dark blue colour). The peak
amplitude is represented by the red colour. These results highlight the difference
in shape between the flexural and torsional modes, as the flexural modes always
have peak displacements across the entire tip of the cantilever whereas the torsional
modes have displacement nodes and anti-nodes along the width at the tip.
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The frequency of the experimental setup is limited by the electronics that read

out the mechanical motion; that is, the network analyzer or the lock-in amplifier.

However, for thinner fins (< 40 nm), the resonance frequency is close to 1 GHz,

which is within the range of our experimental setup. We expect to observe driven

mechanical resonances based on the fact that our displacement sensitivity is on

the order of tens of fm/Hz1/2 [69]. A fin with thickness equal to 40 nm and a

width of 3 µm has a spring constant of 790 N/m. Let us assume a driving force

of 3 pN, which is easily achievable with our setup as demonstrated in [21]. We

will also estimate the quality factor to be no more than 100, given the potentially

significant clamping losses in this structure. Using the simple equation F = kx/Q,

this gives an estimated amplitude of 0.3 pm. We can also estimate the transduction

coefficient dT/dz using Eq. (2.42). Using the simulated value of ∂neff/∂x for a

40 nm thick fin and a gap between the fin and waveguide of 100 nm, we calculate

the transduction coefficient to be 104 W/m. The expected signal size is therefore

104 W/m × 0.3 pm = 35 pW. The noise floor of the photoreceiver sets limit on

the signal size that we can detect. The noise floor of the photoreceiver with 1 GHz

bandwidth (NewFocus 1611) is 20 pW/Hz1/2. The signal is slightly above or close

to the noise floor of the photodiode. The amplitude can be increased by decreasing

the thickness of the fins, or by increasing the optical driving force. From this back-

of-the-envelope calculation, we expect to see a response from fins with thicknesses

less than 40 nm.

Figure 3.6: Predicted spring constants (blue lines with symbols) of fins with widths
of 1 µm (blue squares) and 3 µm (blue circles). The fundamental resonance fre-
quency is shown by the black line, and is calculated using Euler-Bernoulli beam
theory.
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We fabricated fins through the foundry imec. We coupled the fins to optical

racetrack resonators with critical coupling. These fins had thicknesses of 130 nm

and 150 nm, the minimum allowable dimensions from the foundry. An SEM image of

the fins as-is from the foundry is shown in Fig. 3.7(a). Not surprisingly, mechanical

signals from these devices could not be observed even under a large optical driving

force, due to the very small expected displacement. In order to reduce the spring

constant and increase the amplitude of vibration, post-processing was required. At

first, ion milling using a focused ion beam was performed to reduce the thickness

of the fins. This was done using a helium (He) ion microscope with a gallium

(Ga) focused ion beam. The He ion beam was used to image the samples and the

Ga beam was used to mill them. A sample image of a resulting device is shown

in Fig. 3.7(b). These devices had thicknesses around 20–40 nm. However, when

completing measurements of these devices it was observed that the optical response

of the racetrack resonators was degraded. The significantly smaller slope of the

optical transmission resulted in a reduced transduction sensitivity. Therefore, no

mechanical signals from the ion-milled fins were observed. The change in the optical

resonance is shown in Fig. 3.8.

Figure 3.7: Images of different iterations of fins. (a) SEM image of fin as received
from foundry, tilted at 30◦. (b) Helium ion microscope image of a fin modified by
FIB milling, with Au anti-charging layer still present on fin. (c) SEM image of fin
from (a) after modification by electron beam lithography.

Next, we used electron beam lithography to reduce the thickness of the fins.

ZEP-520A resist was spun onto the existing structures, and using the multilayer

alignment capabilities of the Raith 150-TWO, a small opening in the resist was
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Figure 3.8: Optical ring resonances before (blue line) and after (black line) FIB
modification. Before FIB modification, the optical quality factor was 11,000. After
FIB modification, the optical quality factor was 2,000. The optical quality factor
has been significantly degraded by the FIB process.

placed partially across the existing fins. This created an etch window, and all of the

fin that was beneath the open window would be removed. The remainder of the fin

was protected by the resist. The silicon was etched using reactive ion etching. Using

this technique, fins ranging from 15–80 nm in thickness were produced (Fig. 3.7(c)).

The resist was stripped by first performing a 20 minute flood UV exposure, followed

by a short soak in Remover PG. The fins were resistant to stiction, as we were

able to strip the resist from 15 nm fins with solvent, then rinse the devices in

water and dry with nitrogen without stiction. Once the resist was removed and the

device characterized by SEM, we measured the mechanical properties. Unlike the

FIB process, the optical cavity properties were unchanged by this post-processing

procedure. However, no mechanical signals were observed from even the smallest fins

and with very high optical drive powers (≈ 30 mW output from EDFA, compared to

a typical output power of less than 10 mW). There are several potential reasons that

the signal could not be observed. The signal strength of the fins is reduced as they

become thinner, as there is simply less silicon to perturb the effective index of the

optical cavity. Although simulations showed that very thin 10 nm thick fins should

still affect the optical cavity, the perturbation simply may have been too small to

resolve. The noise floor of the photodiode with a bandwidth greater than 1 GHz had

a higher noise floor than the photodiode with a bandwidth of 125 MHz, increasing

the measurement noise floor compared to the typical noise floor in the experimental
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setup. A rising noise floor may have been detrimental to the displacement sensitivity.

Lastly, despite the fact that it appeared in SEM images that all of the resist had

been removed, it is possible than some small residues were still present. Any extra

residues could have caused damping that might reduce the signal quality factor and

amplitude.

To increase the amplitude of vibration, we investigated using 300 nm SOI instead

of 220 nm SOI. This would decrease the resonance frequencies substantially due to

the 1/l2 dependence of the resonance frequency (Eq. (3.1)). For example, a 40 nm

thick fin in 300 nm SOI has a resonance frequency closer to 600 MHz than 1 GHz.

This would allow us to use our lock-in amplifier instead of the network analyzer,

which is beneficial for decreasing the measurement bandwidth as much as possible.

The increased amplitude would also allow for greater signal-to-noise. The drawback

to this method is that waveguide design is not standardized for 300 nm SOI. All of

the optical components, including grating couplers, had to be designed specifically

for this application. We designed sub-wavelength grating couplers, where the grating

couplers are fully etched and alternate a small, sub-wavelength grating with a grating

larger than the wavelength [117]. We also designed waveguides that were 320 nm

wide and ring resonators with a 5 µm radius. As we had not done previous work with

this waveguide dimension, the coupling parameters could only be estimated. This

is because the round trip loss was not known experimentally which, as described in

Section 2.2.4, complicates the determination of the coupling coefficient κ and the

transmission coefficient τ .

We had the devices fabricated using 100 keV electron beam lithography in 300

nm SOI by Applied Nanotools Inc (ANT) [180]. The thickness of fins achieved using

this high-resolution lithography technique was approximately 40 nm (Fig. 3.9(a)).

The ring resonators did not perform well as as required for our application. The

quality factor was relatively low, indicating the loss was higher than expected. This

loss may have been caused by the waveguides being too narrow, which may have

resulted in unexpected bending loss or increased scattering loss. For this reason we

were not able to measure any mechanical resonance frequencies in the 300 nm thick

SOI devices. Figure 3.9(a) shows a 40 nm fin as fabricated from ANT. Figure 3.9(b)

shows the ring resonance transmission from this design, with an optical quality

factor of 2,000 and a slope dT/dλ approximately 8 times shallower than the devices

from in Section 3.1.1. According to Eq. (2.42), this indicated that our displacement

sensitivity was 8 times worse. This explains why no mechanical signals were observed

in these experiments.

In summary, we designed mechanical fin resonators specifically for use in a fluidic

environment. Although these devices seemed promising for fluid sensing due to

their stiction resistance, high resonance frequency, and straightforward design, the
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Figure 3.9: (a) SEM image of a 40 nm thick fin fabricated by 100 keV electron beam
lithography. (b) Transmission through the 300 nm thick ring resonator. The opti-
cal quality factor is approximately 2,000, which is undesirable for optomechanical
transduction.

signals were too small to be measured in our optomechanical setup. This makes

them undesirable for sensing applications. Ideally, the sensor signal should be easy

to resolve and track for robust performance outside of the lab. These devices did

not meet this criteria, therefore we conclude that fin resonators coupled to racetrack

resonators are not suitable for liquid sensing applications.

Recent work by Safavi-Naeini’s group at Stanford has demonstrated fin res-

onators adjacent to photonic crystal cavities [181]. These are 340 nm tall, and 65 or

90 nm wide. They have resonance frequencies greater than 450 MHz. In this work,

an EDFA is used to amplify the Brownian motion of their fin resonators for readout

with a photodiode and spectrum analyzer. The mechanical quality factors are in

the range of 40 to 180 and a peak signal-to-noise ratio of 15 dB. These devices have

significantly higher optical quality factor and optomechanical coupling. Therefore,

fin resonators are possible with high Q and large G optomechanical systems.

3.1.3 Photonic-based Temperature Stabilization for Microfluidic
Chips

For a liquid sensing system, it is not only the sensor that is important. Packaging

the sensor into a microfluidic chip is also important. The microfluidic chip should

properly deliver liquid to the device and should also be temperature-stabilized. Tem-

perature stabilization is especially important for biological applications, where cells

must be kept at specific temperatures (often 37 ◦C). This packaging should be in-

expensive, so that it could potentially be disposable. It should also be made from

materials that are compatible with biological systems, as these would be the samples

of interest in any health-care based applications. In conjunction with the Alberta
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Centre for Advanced MNT (micro- and nanotechnology) Products (ACAMP) and

Mitacs, we made strides towards developing a temperature-stabilized microfluidic

chip that could be used for any liquid sensing application, including liquid sensing

with nano-optomechanics.

The goal of this project was to simulate, design, fabricate, and test integrated

photonics temperature sensors that can be directly integrated with a microfluidic

cell. Integrated photonic devices were selected as temperature sensors for microflu-

idic devices, since electrical devices cannot be embedded in microfluidic channels

without altering the flow of fluid in the channel [182]. However, standard inte-

grated photonics are typically fabricated from silicon-on-insulator (SOI) substrates

with typical silicon device layer thickness of 220 nm. These devices can have lat-

eral dimensions on the order of 500 nm or less, which means advanced lithography

techniques such as electron beam lithography or projection lithography must be

used, and substantially drives up the cost. Since the intention of this device was

to create a generalized, temperature-stabilized microfluidic system that could be

used for many different applications, the cost should be kept low so that the chips

could be disposable if the application called for it. Therefore, the entire device plat-

form was created using inexpensive plastic materials. This choice of materials was

intended to reduce cost and also improve the ease with which the temperature sen-

sors could be integrated with microfluidics. Silicon-on-insulator substrates are not

easily compatible with microfluidic systems. Microfluidic systems made from plas-

tics such as poly-methylmethacrylate (PMMA) or cyclic olefin copolymer (COC) do

not bond to silicon, reducing the ability of SOI-based integrated photonic sensors

to be used in-situ for microfluidics monitoring as part of the microfluidic package.

The main drawback to these materials is that they are not typically used for pho-

tolithographic patterning, which is required to create the small features required

for integrated photonics. For this reason, the main focus of the project was to cre-

ate a photolithographic process that could be used to create waveguides and other

photonic structures using a fully plastic, microfluidic-compatible platform.

There are three main components necessary to create a waveguide: the substrate,

the waveguiding material, and the cladding (see Figure 3.10). In order for light to

travel in the waveguiding material, the refractive index of the waveguiding material

must be higher than the substrate and cladding materials. The difference between

the refractive indices of the waveguiding material and the cladding and substrate

materials is referred to as the index contrast. Photonics based on plastic materi-

als systems are usually low index contrast systems since the waveguiding material

has an index close to that of the substrate and cladding. Silicon based photonics,

alternatively, has a very high index contrast. We chose the negative resist KMPR

for the waveguiding material. KMPR has been used in other works as a waveguid-
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ing material [74, 183]. The substrate and cladding materials we have studied are

PMMA and COC. They are both materials commonly used for microfluidics, and

have lower indices of refraction than KMPR. COC in particular is of interest as it

is bio-compatible [184].

Figure 3.10: Schematic of a waveguide, including the substrate, waveguide core, and
cladding layers. The waveguide has a higher refractive index than the cladding and
substrate materials.

Another consideration was the wavelength of light to use for temperature sensing.

Near infrared light (1500 to 1600 nm) was chosen because it typically does not

interact with biological samples. Wavelengths in the visible range can interact with

these samples, causing phenomena such as fluorescence [185, 186].

To create a photonic temperature sensor, we chose to fabricate racetrack res-

onators as the long coupling lengths should compensate for potentially large losses

in the system, compared to microring resonators where only a point coupler is used.

The temperature can be sensed due to the shift in the resonance wavelength that is

induced by a temperature change [187];

∆λ0 =
∆Tλ0

ng

(
∂neff

∂T
+ neffαT

)
, (3.2)

where T is the temperature, λ0 is the resonance wavelength, ng is the group index

of the waveguide mode, neff is the effective index of the waveguide mode, αT is

the thermal expansion coefficient of the waveguide material, and ∂neff/∂T is the

thermo-optic coefficient of the waveguide.

The wavelength shift can be used to measure temperature in two ways. The first

method is to position the laser at the edge of the optical resonance, similar to the

probe laser in optomechanical measurements. The relative temperature shift can be

determined by tracking the change in the power output. This is sometimes called

the “side of the fringe” method. The second method is to scan the wavelength range

repeatedly, and track the shift in the cavity resonance. Although this measurement

is more time-consuming, it was found to have lower uncertainty than the “side of

the fringe” technique [187].

Polarization was also an important consideration. In a high-contrast system,

the TE and TM modes have very different electric field distributions, whereas in
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a low-contrast system the field distributions are fairly similar. The TE mode has

an electric field discontinuity at the sides of the waveguide, resulting in a higher

electric field at the sides of the waveguide compared to the top and bottom. The

TM mode has the orthogonal distribution, where the discontinuity at the top and

bottom results in a higher electric field compared to the sides of the waveguide.

Since we are interested in temperature sensing, we chose to study the TE mode to

reduce the cross-talk between the waveguide and the microfluidic channel, as the

electric field will be largely confined in the cladding. For sensing applications where

contact with the microfluidic channel is desirable, the TM mode should be used.

This is because the electric field will extend further into the microfluidic channel

since it has a higher electric field at the top of the waveguide, increasing the region

of interaction with the analyte and therefore the sensitivity of the waveguide sensor.

Temperature Control with LabView

In addition to measuring the temperature, we would also like to control the tem-

perature on a microfluidic chip. To accomplish this, a feedback loop is required.

LabView software was used to write a proportional-integral-derivative (PID) feed-

back loop using the built-in PID functions in LabView. The feedback loop measures

the temperature, and then activates or deactivates a heater as required to achieve the

desired temperature set point. The temperature was measured using thermocouples

and the heaters used were flexible, thin film heaters. These heaters were selected as

they had a very uniform heat distribution and were supplied with a voltage supply

that could reach up to 28 V. The PID loop successfully maintained the temperature

at the desired set point to within 0.2 ◦C and could adapt to perturbations in the

system.

Simulation and Design

To design the waveguides, Lumerical Solutions MODE was used [171]. The initial

simulations and design were performed using values from the literature for the re-

fractive indices of the COC, KMPR, and PMMA. When the initial experimental

results did not match the simulations, experimental results for the indices of COC

and KMPR were obtained using the VASE ellipsometer. More details on this exper-

iment can be found in Section 3.1.3. The refractive index values used in the initial

and final simulations are shown in Table 3.1.

Material Literature Value (initial) Measured Value (final)

KMPR 1.555 1.5678
COC 1.52 1.513
PMMA 1.49 NA

Table 3.1: Refractive Index Values for Simulations
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First, the optimal size of the waveguides was determined. The size of the waveg-

uides was important, as the dimensions determined whether the waveguide would

be single- or multi-mode. To make the waveguides single-mode, they must be suffi-

ciently small. However, the waveguide size had to be large enough to fabricate using

photolithography. Photolithography was necessary to maintain the low cost of the

device, compared to more expensive techniques such as electron beam lithography.

To determine the optimal waveguide size, a KMPR waveguide was simulated with

a PMMA substrate and cladding, and a COC substrate and cladding. The effective

indices of the waveguide modes for several dimensions were found. Modes with ef-

fective indices greater than the refractive index of the substrate/cladding material

will propagate. Modes with indices less than the index of the substrate/cladding

will not propagate, as the loss will be too great. The line above which the modes

will propagate is called cut-off. If multiple TE or TM modes are present above cut-

off, the waveguide will be multi-mode. Single mode operation is ideal, as it greatly

simplifies the racetrack resonator response. For PMMA cladding, the largest single

mode waveguides were determined to be 2 µm x 2 µm. For COC cladding, the

largest single mode waveguides were 3 µm x 3 µm. Waveguides with greater widths

and heights were multi-mode. Figures 3.11, 3.12, and 3.13 show the detailed results

of these simulations.

Figure 3.11: Modes in a 2 µm tall KMPR waveguide with PMMA substrate and
PMMA cladding.

From these simulations, the three waveguide widths selected were 2 µm, 3 µm,

and 5 µm. The 5 µm wide waveguides were included despite the fact that they

were expected to be multi-mode to ensure some devices would be straightforward
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Figure 3.12: Modes in a 3 µm tall KMPR waveguide with COC substrate and COC
cladding.

Figure 3.13: Modes in a 2 µm tall KMPR waveguide with COC substrate and COC
cladding.
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to fabricate, since the smaller waveguides widths were likely to be more challenging

to fabricate. Since the ideal height for a PMMA surrounded waveguide was 2 µm,

and the 2 µm waveguide surrounded in COC was still single mode and well above

cut-off, 2 µm was selected as the ideal waveguide height. Figure 3.14 shows the final

simulation of the first ten modes of the fabricated device using the measured values

for the refractive indices (Table 3.1, column 3). Only two modes, the first TE mode

and the first TM mode, are above cut-off. The final fabricated device was a 2 µm

tall, 3 µm wide KMPR waveguide, with COC substrate and PMMA cladding.

Figure 3.14: Modes in a 2 µm tall, 3 µm wide KMPR waveguide with COC substrate
and PMMA cladding.

Once the dimensions of the waveguides were selected, the bending loss was cal-

culated. The bending loss, measured in dB/cm, is a significant source of loss in

low-contrast waveguides. In a curved waveguide, the mode is pushed towards the

outer edge of the waveguide, and as a result the light travels closer to the outer edge

of the curved waveguide than the inner edge. This variation in the mode profile

introduces two loss mechanisms that can be grouped together to define the overall

bending loss. The first loss mechanism is due to a spatial mismatch between the

mode in the bent waveguide and the mode in the straight waveguide, resulting in

inefficient conversion of power as the wave propagates from the straight section and

into the bent section of the racetrack resonator. The second loss mechanism, which

can be significantly greater than the mode mismatch loss in planar waveguides, is

the radiative losses due to bending. Since the mode is pushed to the outer edge

of the waveguide, the optical power tends to leak out of the waveguide as it trav-

els around the bend. Attenuation due to radiative losses in the waveguide bend is
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Waveguide Con-
figuration

Bend
Radius
(µm)

First TE
Mode Index

Loss
(dB/cm)

First TM
Mode Index

Loss
(dB/cm)

2 µm x 2 µm
KMPR waveg-
uide surrounded
by PMMA

100 1.520145 374.58 1.520129 369.1
150 1.518409 88.11 1.518392 89.07
200 1.517691 21.045 1.517687 22.693
250 1.51735 4.8795 1.517349 5.8458
300 1.517169 1.1038 1.517169 1.507

3 µm x 3 µm
KMPR waveg-
uide surrounded
by COC

300 1.538746 103.44

5 µm x 5 µm
KMPR waveg-
uide surrounded
by PMMA

125 1.554242 7.1556 1.554514 6.8043
150 1.551611 1.1604 1.551831 1.1118
175 1.54992 0.17877 1.550101 0.17284

5 µm x 5 µm
KMPR waveg-
uide surrounded
by COC

225 1.55135 102.99 1.551407 100.78
250 1.55042 61.631 1.550471 60.521
275 1.549704 36.482 1.549751 36.01

Table 3.2: Initial simulated bending loss

proportional to exp(−σR), where σ is a constant that depends on the waveguide

geometry and the index contrast of the waveguide, and R is the radius of the curved

waveguide [188]. For planar waveguides fabricated in silicon-on-insulator, bending

radii on the order of a few microns can have very low loss [142]. For low-contrast

waveguide systems such as silicon nitride waveguides with oxide cladding, the bend-

ing radii are typically on the order of tens of microns [189]. Since the contrast of

the plastic photonic system fabricated here is less than the silicon nitride waveg-

uides, we estimate that a low-loss bending radius will be achieved at radii greater

than 100 µm. Since analytic approaches to calculating the bending loss are only

approximations, we compute the bending loss using finite difference software [171].

Using a numerical approach, the smallest radius found to carry a mode was 100 µm,

albeit with high loss. A radius of 300 µm was found to have very low loss. There-

fore, 6 radii were chosen for the 2 µm and 3 µm wide waveguides: 100 µm, 150 µm,

200 µm, 250 µm, and 300 µm. In the case of the 5 µm wide waveguides, the bending

loss was less so the larger radii were eliminated. The results of the initial bending

loss simulations are shown in Table 3.2. The simulated bending loss for the final

fabricated devices are shown in Table 3.3.

Once the bending loss was known, the directional couplers could be designed.

Five different gaps were chosen for the directional couplers: 700 nm, 1 µm, 1.25 µm,
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Bend Radius (µm) First TE
Mode Index

Loss
(dB/cm)

First TM
Mode Index

Loss
(dB/cm)

100 1.541660 160.22 1.541489 162.80
150 1.539034 27.484 1.538784 31.592
200 1.538073 4.9843 1.537794 7.8406
250 1.537629 0.89101 1.537332 2.1592
300 1.537391 0.15845 1.537083 0.61742

Table 3.3: Bending loss for a 2 µm tall, 3 µm wide KMPR waveguide with COC
substrate and PMMA cladding

1.5 µm, and 2 µm. The smaller gaps would provide better coupling, but were more

difficult to fabricate. The larger gaps would provide less coupling, but would be

simpler and more reliable for fabrication. For each gap, five coupling lengths were

chosen.

The simulations for the directional couplers were done using 2D mode simulations

using MODE Solutions. The simulations solved for the effective indices of the TE

supermodes in a directional coupler. The coupling coefficient and the transmission

coefficient were then solved for using the approach outlined in Section 2.2.4. The

round-trip loss in each racetrack was calculated by assuming the bending loss was the

only source of loss in the system. This is a reasonable assumption for low-contrast

waveguides. By setting the transmission coefficient τ equal to the round-trip loss,

an initial coupling length for each radius was chosen. Two shorter and two longer

coupling lengths were then added in each case to cover a wide range of parameter

space. Figure 3.15 shows a plot of the simulated transmission coefficient versus the

coupling length for the three largest gaps for the final fabricated device.

The final simulation compiled all of these results to simulate the final response

of the racetrack resonator. This was done by using MATLAB to solve for the

transmission through a racetrack resonator circuit with a single bus waveguide using

the Eq. (2.25). Figure 3.16 shows the expected response for the simulated values for a

racetrack with a 400 µm long coupling length, a 100 µm radius, and 1.25 µm coupling

gap. The waveguide dimensions were 2 µm tall and 3 µm wide. The waveguide was

KMPR with a COC substrate and PMMA cladding. Figure 3.17 shows the expected

response for the simulated values for a racetrack with a 200 µm long coupling length,

a 300 µm radius and a 2 µm coupling gap, in the final fabricated configuration. The

final design included 15 chips on a 4-inch wafer: 5 chips for 2 µm wide waveguides,

5 chips for 3 µm wide waveguides, and 5 chips for 5 µm wide waveguides.

Fabrication Process

The first fabrication process attempted was a transfer of the KMPR pattern from

a silicon wafer to a PMMA wafer using a hot embossing tool (Jenoptik). Since
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Figure 3.15: Coupling lengths in a 2 µm tall, 3 µm wide KMPR waveguide with
COC substrate and PMMA cladding.

Figure 3.16: Expected racetrack resonator response for a radius of 100 µm, a cou-
pling length of 400 µm, and a coupling gap of 1.25 µm. The waveguide is 2 µm tall,
3 µm wide KMPR waveguide with COC substrate and PMMA cladding
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Figure 3.17: Expected racetrack resonator response for a radius of 300 µm, a cou-
pling length of 200 µm, and a coupling gap of 2 µm. The waveguide is 2 µm tall,
3 µm wide KMPR waveguide with COC substrate and PMMA cladding.

adhesion between silicon and KMPR is relatively poor, it was thought that the

pattern would transfer to the PMMA at the appropriate force and temperature.

This did not succeed, despite varying ranges of forces and temperature tested.

The second fabrication process attempted was lithography with KMPR on PMMA

substrates followed by encapsulation of the pattern by a top PMMA sheet using the

hot embosser. The encapsulation of the KMPR pattern did not work, despite the

range of temperatures tested and the extremely low force used. The aspect ratio of

the KMPR features did not remain constant during this process.

The third fabrication process attempted was lithography on PMMA substrates to

create KMPR waveguides with a spun-on PMMA cladding layer. However, adhesion

of the KMPR features was consistently poor. Features less than 5 µm in width did

not adhere well and were often wavy. One approach used to try to improve the

adhesion was ramped bakes, which was found to be successful for a similar negative

resist called SU-8 [190]. By increasing and decreasing the temperature slowly, the

residual stress in the resist was reduced. However, this did not produce sufficient

adhesion. We next worked towards developing a proprietary adhesion promotion

technique to attempt to improve adhesion, with limited success. To characterize

improvements in adhesion before and after performing this technique, contact angle

measurements were carried out on the PMMA. High angles indicate adhesion will be

poor due to increased hydrophobicity, whereas low angles indicate good adhesion as

the surface has become more hydrophilic. The initial contact angle was 80.2◦. The
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best contact angle achieved was 31.7◦, which is not a substantial improvement. Poor

adhesion also created issues when dicing, since the waveguide edges lifted up during

dicing. Clean waveguide facets, necessary for edge coupling, were not achievable.

For these reasons, the substrate was switched to COC 5013. COC has improved

adhesion over PMMA. Good adhesion was achieved by including the proprietary

adhesion promoting technique before the KMPR was spun on. To confirm this

technique would be a viable approach to improve the adhesion, contact angle mea-

surements were performed. The initial contact angle was 99.7◦ and was reduced

to 8.4◦. This is a substantial improvement, and good adhesion was observed when

spinning on the photoresist after treatment with our technique. Using ramped bakes

were not necessary to achieve good adhesion with COC substrates. Long, ramped

bakes were in fact detrimental as they caused significant debris on the wafers that

was not removed during development.

To create wafers from COC sheets, two annealing steps were required, the first

to flatten the COC sheet sufficiently so that it could be cut, and the second to fully

flatten the wafer and smooth any roughness from the edges. Annealing was done

using the hot embosser.

In addition to choosing an appropriate substrate, the KMPR resist had to be

spun on to the correct thickness. According to the datasheet, KMPR 1005 spread

with a thickness of 5 µm near 5000 rpm. Since the optimal thickness according to

simulations was 2 µm, the KMPR had to be thinned. This was done by adding

SU-8 thinner (cyclopentanone) to the KMPR in varying volumetric ratios until the

correct ratio was achieved. The thickness varied from 1.8 – 2.2 µm depending on

the batch. Once the desired resist thickness was achieved, the next step was to

choose the appropriate bake steps and exposure levels. The hot plate could not be

used as it caused the plastic wafers to distort due to the thermal mismatch between

the bottom and top surface of the wafer. For this reason, the wafers were baked in

an oven at 100 ◦C, the recommended temperature on the KMPR datasheet. Once

the bake parameters were chosen, the exposure dose was determined using trial and

error.

After the waveguide fabrication, the chips were diced to expose the waveguide

edge facets for coupling the laser light in and out of the chip. The chips were diced

so that the dicing time and the quality of the edge facet were optimized, allowing

for edge facets that adhered to the wafer and were very clean.

To deposit the cladding on the waveguides, a thick layer of PMMA was spun

onto the chips. The cladding layer was approximately 4.5 µm thick. According to

the datasheet, PMMA should be baked at 180 ◦C on a hotplate. A hot plate could

not be used as the chips distorted, and 180 ◦C was higher than the glass point of

the COC wafer. Additionally, a reaction between the solvent in the PMMA and the
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COC substrate occurred at elevated temperatures and so the PMMA could not be

baked. The PMMA was air-dried instead.

The final fabrication run produced waveguides with gaps, heights, and widths

that were close to the specified design, with the exception of the racetrack resonators

with 700 nm gaps. These devices did not turn out, as the gaps did not expose

properly and there was significant resist remaining in the gap. The dimensions were

measured using an optical profilometer. Figure 3.18 shows sample results from the

optical profilometer, showing the waveguide width, height, and gap were all close

to the designed sizes. The waveguides tended to be slightly smaller (200–500 nm)

than the designed dimensions. Scanning electron microscope (SEM) imaging could

not be used without destroying the samples, as a metal coating was needed to

prevent charging in the SEM. Figure 3.19 shows optical microscope images of the

final devices after the application of the cladding.

Figure 3.18: (a) Optical profilometer results for a 3 µm wide and 2 µm tall waveg-
uide. The gap spacing was nominally 1.25 µm. The measured step height was
1.85 µm. (b) Optical profilometer results for a 3 µm wide and 2 µm tall waveguide.
The gap spacing was nominally 2 µm. The measured step height was 1.81 µm.

Experimental Setup

To measure the photonic devices, a specialized setup is used. A schematic of the

setup is shown in Figure 3.20. This setup is located in the Department of Electrical

and Computer Engineering at the University of Alberta. The tunable diode laser has

a wavelength range of 1510 nm to 1630 nm and can step in increments of 1 pm. The

polarization controller sets the output polarization of the laser to either TE or TM

mode. The polarization is calibrated using a polarization cube. Two 3-axis piezo

stages are used to position the input and output fibers so they are aligned to the

waveguide facets of the chip. This type of coupling is called edge coupling or butt

coupling. The chip is stationary on a simple holder. The input and output fibers

are lensed fibers to improve coupling into the waveguide. The output waveguide is

directed to a photodetector where the signal is converted from an optical signal to
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Figure 3.19: (a) Optical microscope image for a 3 µm wide and 2 µm tall waveguide
after deposition of PMMA. The gap spacing was nominally 1 µm. The bright spot
is likely an area not fully filled with PMMA. (b) Optical microscope image for a
3 µm wide and 2 µm tall waveguide after deposition of PMMA. The gap spacing
was nominally 2 µm. (c) Optical microscope image of the edge of a 3 µm wide and
2 µm tall waveguide after deposition of PMMA. (d) Optical microscope image for
a 3 µm wide and 2 µm tall waveguide after deposition of PMMA. The gap spacing
was nominally 1.25 µm. This device is potentially damaged as it appears that the
waveguide was broken during the application of the PMMA.
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an electrical signal. To image the fiber tips and the sample, a white light source is

directed through a microscope objective onto the chip. The live image is recorded

with a CCD camera. This greatly improves the ease with which the sample can

be aligned. A LabView program is used to sweep the laser wavelength through the

desired range, and the device response is recorded at each wavelength.

Figure 3.20: Schematic of the experimental setup used to measure the waveguides.

Refractive Index Measurements

To confirm the values for the refractive index used in simulations, ellipsometry was

performed on the fabricated samples using the VASE ellipsometer. The samples

measured were KMPR on silicon (approximately 2 µm thick), a bare COC sub-

strate, and PMMA air-dried on silicon (approximately 4.5 µm thick). The measure-

ments were done in the near infrared. The results were fit using the VASE analysis

software. The results for the KMPR on silicon and COC were fit reasonably well

with the models in the software, and converged to a singular value with good sta-

tistical correlation. For the PMMA, however, the model did not agree well with

the measured data. Although visually the fit appears acceptable in Figure 3.21(b),

similar results could be obtained by using different values for the percentage of non-

uniformity of the PMMA and PMMA thickness. These different parameters gave

the same statistical correlation, and therefore we concluded the fit did not converge

to a singular value and the fitting results could not be used with confidence. The

most likely cause of this was non-uniformity of the spun-on PMMA. The PMMA

thickness varied significantly across the 1 cm x 1 cm sample, which affected the

ellipsometry measurement. Since the measured values could not be fit with confi-

dence, the experimental data was not used for the PMMA, and the values from the
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datasheet were used instead. Figure 3.21 shows the experimental results from the

ellipsometry measurements, and compare the experimental results to the modeled

results.

Figure 3.21: (a) Experimental and modeled ellipsometry results from the bare COC
substrate. Reasonable agreement was obtained. (b) Experimental and modeled
ellipsometry results from the air-dried PMMA on silicon. Visually, it is clear that the
fit did not agree well with the experimental results. (c) Experimental and modeled
ellipsometry results from the KMPR on silicon. Good agreement was obtained.

Waveguide Measurements

Measurements were carried out on the 3 µm wide waveguides, as they were deter-

mined to be the most promising. These devices should be single-mode, unlike the

5 µm wide waveguides. They should also have less loss than the 2 µm wide waveg-
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uides. The 3 µm wide waveguides also had a good range of coupling parameters on

each chip. Finally, the 3 µm waveguides were more reliable in the final fabrication

process, as the 2 µm devices had a lower yield.

Before testing, the devices were inspected using an optical microscope. Many

of the devices had slight defects from the lithography, and so these devices were

not tested. These defects could be due to debris on the mask or the wafer, or poor

contact during lithography. The following devices were measured: 12 devices with

gaps of 1 µm, 10 devices with gaps of 1.25 µm, 2 devices with gaps of 1.5 µm, and

8 devices with gaps of 2 µm, for a total of 32 measurements. The optical power

output from the laser was 10 mW. Unfortunately, no resonances were observed for

any devices. Figures 3.22 and 3.23 show two example measurements that are typical

of the results obtained. Figure 3.22 is for a racetrack with a radius of 100 µm, a

coupling length of 400 µm, and a gap of 1.25 µm. This curve is plotted in dB and does

not show any significant drop in power that would indicate that there is a signal

from the racetrack resonator. Additionally, free spectral range is approximately

5 nm. This is different than expected for a racetrack of this size, which should be

closer to 1 nm as shown by Figure 3.16.

Figure 3.22: Measured racetrack resonator response for a radius of 100 µm, a cou-
pling length of 400 µm, and a coupling gap of 1.25 µm.

One potential cause for the large deviation in the expected versus observed signal

may be the presence of significantly higher loss than expected in the system. During

the simulation and design phase, it was assumed that the main cause of loss would

be due to bending in the racetrack resonator. However, other sources of loss may be

contributing to increase the loss in the system. Other potential sources of loss could
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include surface roughness from the sides of the waveguide, material loss from the

KMPR, or scattering loss from lithography defects. Although a significant increase

in the loss (more than 4 times larger) would have to occur to produce results similar

to what was observed in experiment, this is not completely unreasonable given the

uncertainties in the material loss and the waveguide roughness. Another reason

that resonances were not observed could be because the coupling between the bus

waveguide and the racetrack was poor, potentially due to residual resist in the trench

between the waveguide and the racetrack. SEM imaging would be helpful in the

future to determine if this was the cause of poor coupling.

Figure 3.23 shows the response for a racetrack with a radius of 300 µm and a

gap spacing of 2 µm. This response has a large signal at low wavelength (1500

nm) and drops to very small signal around -40 dB at high wavelength (1600 nm).

This is not what is expected for a device of this type (see Figure 3.17 for expected

signal). The most likely cause of this response is that the waveguide is approaching

cut-off at higher wavelengths. This might occur if the waveguide was smaller than

the designed dimensions, and therefore the light will propagate at low wavelengths

but will become more lossy at higher wavelengths and cease to propagate. Another

cause could be if the cladding index was higher than expected. Since the measure-

ments of the cladding index were inconclusive, this could be another potential cause.

Although the slope of this response could be used to sense temperature, it is a very

shallow slope and would have very low sensitivity to fluctuations in temperature.

Figure 3.23: Measured racetrack resonator response for a radius of 300 µm, a cou-
pling length of 200 µm, and a coupling gap of 2 µm.
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Conclusions and Future Work

The goal of this project was to develop an on-chip temperature sensor compatible

with microfluidic channels. Integrated photonics on an all-plastic platform was de-

veloped to accomplish this goal, and racetrack resonators were designed for the tem-

perature sensing component. The fabrication of the photonic devices was challenging

due to poor adhesion between the resist and the substrate. These challenges were

overcome with a combination of changing materials systems and adding an adhesion

promoting treatment before spinning on the photoresist. Although waveguides were

successfully fabricated, the racetrack resonators did not function as anticipated. For

this reason, temperature sensing was not achieved with these devices.

There are many potential directions for future work. One improvement to the

fabrication process would be to select a different cladding layer that can be baked

on, instead of dried at room temperature. This would improve the speed and re-

liability of fabrication. Potential cladding layers include PDMS, HSQ, or other

glassy resists. To improve the racetrack resonators, one potential direction is to

design multimode interference (MMI) couplers instead of directional couplers. This

may permit stronger coupling into the racetracks to compensate for increased loss.

Add/drop racetrack resonators could also be used and measured from the drop port

to improve the signal-to-noise ratio. The waveguide loss could also be more accu-

rately measured to improve optical cavity design. For example, the cut-back method

could be used. Finally, alternative resonators such as Bragg gratings could be used

instead of racetrack resonators.

3.2 Transduction of Even Modes in Doubly Clamped
Beams

In the following sections, we will turn our focus towards nano-optomechanical sys-

tems fabricated on silicon-on-insulator substrates. Despite all of the advantages of

nanophotonic transduction outlined in Chapter 1, there are some drawbacks as well.

One of these disadvantages is that some modes of vibration in nano-optomechanical

systems (NOMS) are not efficiently detected or actuated. For nanomechanical de-

vices interacting evanescently with an optical cavity, nanomechanical displacement

results in an oscillatory variation in the effective refractive index of the optical cav-

ity. This results in an oscillation of the optical resonance and therefore an oscillatory

optical power at the output. For some modes of vibration, the mode-averaged dis-

placement is zero and therefore the effective index shift is zero. Similarly, the optical

force averaged over the NOMS area is zero. Even modes in doubly clamped beams

are an example of a set of modes that suffer from this effect, since they are sym-

metric about the midpoint of the beam. This effect is problematic because for mass
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sensing applications, additional information can be obtained when performing sens-

ing experiments with multiple modes simultaneously. Accurate determination of

both adsorbate mass and position on a nanomechanical beam can be determined by

measuring multiple modes simultaneously [19, 191]. For these reasons, transduction

of higher order modes is desirable for mass sensing applications.

In this section, we will discuss the design and fabrication of devices where sym-

metric modes can be detected. We will then detail the experiment where we tested

the devices and demonstrate that we can measure symmetric modes. Finally, we

will discuss another potential application of multi-mode sensing, which is the mea-

surement of stress in the silicon device layer using the first and second modes of

buckled doubly clamped beams.

3.2.1 Design and Fabrication

To allow for detection of these modes, we proposed a modification to the substrate

with which the device is interacting [21]. The proof-of-concept work is done with

a doubly clamped beam embedded in a racetrack resonator, which is coupled to

the substrate beneath. To allow for the actuation and detection of even modes, we

modify the size of the gap across the modal length of the beam. Stronger optome-

chanical coupling on one section of the beam length allows for efficient excitation

and detection of the second flexural mode, while preserving coupling to the first and

third flexural modes. To create a varying gap, we introduce a step in the substrate

below a released section of a racetrack resonator. A schematic of this concept is

shown in Figure 3.24(a) with the first three vibrational modes overlaid. The step in

the substrate results in two different separation distances for the second mode, thus

causing its effective index shift to be non-zero.

The photonic devices were fabricated on a silicon-on-insulator chip with 220 nm

thick silicon device layer and a 2 µm buried oxide layer at the imec foundry. The

racetrack resonator used was an add/drop racetrack resonator with a radius of

22.1 µm and an 18.3 µm long straight section, and was designed by another stu-

dent [192]. Grating couplers were used to couple the light into and out of the system.

To form a step in the substrate underneath the mechanical device, two electron beam

lithography (EBL) steps were used to define the areas of the beam to be released.

First, PMMA was spun on to the chip. Then, in the first EBL step, a small segment

of the beam was exposed, opening an etch window. The device was then etched

in buffered oxide etch (BOE) to undercut the Si waveguide and release the beam.

The PMMA was removed using acetone, and then a fresh layer of PMMA was spun

on for the second patterning step. In the second EBL step, the entire beam was

exposed and etched. This created a two-step substrate beneath the doubly clamped

beam. A scanning electron microscope (SEM) image taken at a 60◦ angle is shown
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Figure 3.24: (a) Schematic of a two-step substrate designed to transduce the second
flexural mode. The first three flexural modes are overlaid in blue (first mode), red
(second mode), and green (third mode). (b) Scanning electron microscope image
of the fabricated device, with the uneven substrate clearly visible. (c) Average
displacement of the first three flexural modes (blue, red, and green respectively)
integrated up to the step position as a function of that position. Reprinted from
[21], with the permission of AIP Publishing.
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in Figure 3.24(b). From this image, it can be seen that the step height did not

change at the midpoint of the beam’s length, but somewhere between one third and

one half of the beam’s total length. This is due to a slight misalignment in the two

EBL steps and the isotropic nature of the BOE process.

Figure 3.24(c) plots the integral of the modal displacement as a function of

integration length from one end of the beam over the full length of the beam. In

other words, the length of the beam is normalized so that the maximum length

of the beam is 1. The amplitude of each mode is also normalized to 1. These

normalized mode shapes, as shown in Figure 3.24(a), are integrated at each position

along the length of the beam. The result of this integration is what is plotted in

Figure 3.24. For the first mode, the integration monotonically increases since the

displacement of this mode is always positive (it is completely one-sided). The second

mode increases until the midpoint of the beam where the normalized length equals

0.5, then decreases to zero at full length (since the whole mode average displacement

is zero). The third mode reaches an integration node at about 2/3 of the length

before increasing again. Figure 3.24(c) essentially shows the average displacement

of the first three modes. A larger average displacement will result in an increased

signal size due to the larger effect that the nanomechanical device will have on

the effective index and therefore the optical resonance wavelength of the racetrack

resonator. We can therefore say that the responsivity of the system depends on the

step placement. The drive efficiency is also dependent on the step position, which

we will describe in more detail in the following section. Figure 3.24(c) gives an

estimate for the relative responsivity and drive efficiency that can be expected for

the first three modes at a given step position along the full length of the beam. In

the following section, it will be shown that this step location causes the transduction

for the first three modes to be of comparable efficiency. Measurements of the first

three modes are important for mass sensing applications. While the mass sensitivity

(Eq. (2.7)) is improved at higher modes because higher order modes have reduced

effective mass [193], the primary benefit to measuring higher order modes is in the

spatial resolution provided by higher order modes. Measurement of the first two

modes gives the analyte position and standard deviation. Measurement of the third

mode adds information about the variance of the analyte [194]. Overall, the ability

to simultaneously measure the first three modes increases the spatial resolution of

the mass measurement.

3.2.2 Experiment and Results

The experimental setup described in Section 2.4 is used to measure the resonance

frequencies of the NOMS. The optical cavity response was measured at the through

port of the microring by sweeping the probe laser through a large wavelength span.
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Subsequently, the probe laser was positioned at the point of maximum slope on the

blue-detuned side of one of the racetrack resonators optical resonance dips. With

only the probe laser activated, the thermomechanical Brownian motion of the de-

vices was measured with a spectrum analyzer. We observed the thermomechanical

motion of the first three modes of vibration, shown in Figure 3.25(a). These modes

have resonance frequencies of 6.76 MHz, 18.93 MHz, and 37.34 MHz. The ther-

momechanical displacement was determined by converting the noise measurements

recorded in volts per Hz1/2, denoted as S
1/2
v , to displacement spectral density (S

1/2
z ).

We use the subscript z in this case because the motion of the beam is out-of-plane.

This is accomplished using the method described in Section 2.1.1. The responsiv-

ity (<) in V/m obtained from this conversion provides a displacement calibration

for driven measurements. We find that the responsivity increases slightly for each

mode, resulting in the displacement sensitivity decreasing with mode number. This

is partially consistent with Figure 3.24(c), as the second and third modes should be

more responsive than the first with the step location at approximately 35% of the

overall beam length. However, the second mode should be more responsive than

the third, according to the model presented in Figure 3.24(c). This model assumes

a step function underneath the beam, but sloped sidewalls from the BOE etch are

clearly in the SEM image in Figure 3.24(b). When examining the effect of the side-

walls on the responsivity, we observe that they do slightly impact the responsivity.

Although the sloped clamping point on the small-gap side would induce a similar

effect for the second and third modes, the slope on the larger gap side (close to

the full length of the beam, at a step position of 1) would induce a decrease in the

responsivity for the second mode, but an increase for the first and third modes.

Therefore, the sloped sidewalls are likely the reason that the responsivity for the

third mode is higher than the second mode.

The noise floor of the displacement spectral density provides the displacement

sensitivity of the measurement. The displacement sensitivity is the minimum de-

tectable displacement, and can be used as a figure of merit to compare our device to

others in the literature. The displacement sensitivity of our device is 228 fm/Hz1/2,

153 fm/Hz1/2, and 112 fm/Hz1/2 for the first through third modes, respectively.

Important for the present discussion is that the even (second) mode responsivity

is comparable to the odd (first and third) modes, demonstrating the utility of our

symmetry-breaking approach.

For sensing applications, it is beneficial to apply a driving force to nanomechani-

cal devices. The reasoning for this is twofold. Firstly, it improves the signal-to-noise

ratio (SNR) of the mechanical response. Secondly, when the mechanical devices are

actuated, they have a coherent phase signal that can be tracked with a phase lock

loop (PLL). This approach is common in many sensing applications [9, 195]. The
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Figure 3.25: (a) Displacement spectral density of the first three flexural modes. The
lines are fits to the measured data. (b) Measured displacements of the first three
modes, as calibrated by the results in (a). The inset shows the simulated optical
force as a function of the distance between the beam and the oxide substrate (z).
The negative optical force is attractive force between the beam and the substrate.
The arrows show the forces for the small and large gaps. The measurement of
three mechanical modes can improve the spatial resolution of mass sensing mea-
surements; the first and second mode give information on the location and standard
deviation [19], whereas the third mode provides information about the analyte’s
spatial variance [194]. Reprinted from [21], with the permission of AIP Publishing.
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devices were actuated using an amplitude-modulated pump laser positioned at the

minimum of another optical resonance dip. This provided an AC actuation force at

the mechanical resonance frequency via a varying optical gradient force. The details

of this technique were described in Sections 2.3.1 and 2.4. The mechanical signal

was read out with a network analyzer.

With the driving force applied, up to the fifth flexural mode was observed due

to the improved SNR. The fourth mode is transduced because the step in the sub-

strate is not exactly at the midpoint of the beam. Since the thermomechanical

noise spectra could only be observed for the first three modes, we can only obtain

the displacements for these modes. Dividing the data recorded in voltage by the

responsivity in V/m, the displacement is calculated. The results of this calculation

are seen in Figure 3.25(b). The peak displacements, zpeak, for the first through

third modes are 1.26 nm, 0.12 nm, and 0.03 nm for the same applied driving force.

The step in the substrate clearly allows actuation of both even and odd modes in

the doubly clamped beam using an optical pumping technique. The next step is

to determine how efficiently each mode is actuated, and compare the efficiencies to

ensure that the actuation efficiency follows the trends predicted by the model shown

in Figure 3.24(c).

From these peak displacements, we can calculate the total force on the beam

using Fdrive = meffΩ2
0zpeak/Q = keffzpeak/Q where keff is the effective spring constant

of the mode and Q is the quality factor of the resonator. From these calculations we

observe that Fdrive is approximately constant at 0.4 pN for the first through third

modes. The spring constant rises with each mode due to the increasing resonance

frequency. Since the force is constant, the amplitude is reduced for the higher modes.

We can convert Fdrive to an optical force to provide a meaningful comparison

with simulated results shown in the inset of Figure 3.25. This can be done by

normalizing the measured Fdrive by the length of the beam (l) and the AC optical

power in the device (Pbus,AC). The AC power is determined by driving voltage

provided to the electro-optic modulator (EOM), which can then be converted to

an optical power. The AC optical power output from the EOM was 0.4 mWrms.

Losses in the measurement system between the EOM output and the device must

be taken into account. Multiplying by these losses gives the optical power entering

the bus waveguide of 6.5± 0.7 µWrms [118]. To determine how much optical power

is in the ring resonator, and therefore how much optical force is acting on the

beam, the power enhancement (PE) provided by the racetrack resonator should be

included. Our racetrack resonators are subject to coherent backscattering effects,

as can be observed by a small peak splitting at bottom of the resonance dip. These

effects must be taken into account when calculating the PE. The average power

enhancement on resonance is 10.6, which is calculated using Eqs. (2.36) and (2.37)
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for add-drop microrings from Section 2.2.6. This method will be described in more

detail in Section 4.2.2. Multiplying the power entering the bus waveguide by 10.6,

the average AC optical power in the racetrack resonator is Pbus,AC = 0.07 ± 0.01

mW. Finally, normalizing Fdrive by Pbus,AC and l gives the total optical driving force,

Fopt,AC. This can be calculated for the first through third modes, giving values of

Fopt,AC = 0.36± 0.04, 0.38± 0.04, and 0.39± 0.04 respectively.

The model shown in Figure 3.24(c) implies similar optical forces, however, the

measured forces are much closer than the model suggests. We can improve the

model by introducing a minor correction to account for the force from the larger

gap section, as the current model only takes the force from the smaller gap into

account. Fopt,AC can be described as the result of two contributions: one from the

section with a small gap (FS), and one from the section with the large gap (FL).

To simplify the integrations, we have modeled the position-dependent optical force

Fopt,AC(x) as a step function with two step heights. We have neglected the sloped

transitions between the gaps, which may introduce a small amount of error, as we

saw in the case of the responsivity. Eq. (3.3) shows the expression for Fopt,AC(x),

and accounts for the partial mode shape over which each force contribution acts:

Fopt,AC =

∫ 1

0
Fopt,AC(x)dx = FS

∫ ls/l

0
ûn(x)dx+ FL

∫ 1

ls/l
ûn(x)dx, (3.3)

where ls is the length of the beam interacting with the small gap. The normalized

mode shape is described by the function ûn, where n is the mode number. The

normalizations in Eq. (3.3) are consistent with those used for the thermomechanical

noise calibration in Section 2.1.1. This function is a solution to the wave equation

for the boundary conditions of a doubly clamped beam [22]. For clamped-clamped

boundary conditions, ûn is described by

ûn = an(cos(zn)− cosh(zn) + bn(sin(zn)− sinh(zn)), (3.4)

with zn = 4.7300, 7.8532, 10.9956... and an/bn = 1.0178, 0.9992, 1.0000....

Since we know the experimental value for Fopt,AC and also the first three mode

shapes, we have a system of equations to solve for FS, FL and ls. Solving this system

gives FS = 1.86 pN/µm mW, FL = 0.24 pN/µm mW, and ls/l = 0.38. We can

compare FS and FL to those obtained via finite difference time domain simulations

obtained with Lumerical Solutions (Figure 3.25(b), inset). The optical force between

a waveguide and a substrate for varying separations (z) can be calculated with

Eq. (3.5) [196], where the left hand side is optical force that has been normalized

by the length of the mechanical resonator and the input optical power:

Fopt =
Fdrive

Poptl
=

ng

neffc

∂neff

∂z
. (3.5)
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If the force is negative, it is an attractive force that pulls the beam towards the

substrate. If the force is positive, it is repulsive and pushes the beam away. By using

the simulated values for ∂neff/∂z and ng, we can calculate the simulated optical force

as shown in the inset of Figure 3.25. We can then compare the simulated optical

force to the measured values for optical force, FS and FL. These are shown by

the arrows in the inset of Figure 3.25 and are comparable to other optical forces

observed in the literature [54, 67]. FS corresponds to a gap of 40 nm and FL

corresponds to a gap of 140 nm, which is reasonable on inspection of the SEM

image in Figure 3.24(a).

Eq. (3.3) could also be used to design higher or lower transduction efficiency for

various modes. A more complex pattern for the optomechanical gap would provide

a function Fopt(x) with shape that either maximizes or minimizes the integral for

various mode shapes. For example, a high force on the first 25% of the beam’s

length and also on 50% to 75% of the beam’s length would be fairly efficient at

transducing the fourth mode. This could be attained with a series of alternating

steps. This method could also be applied to actuate and transduce torsional paddles

or to in-plane motion, to provide transduction for side-coupled doubly clamped

beams. Essentially, this approach could be generalized to any choice of resonator,

and would produce a specific pattern to provide comparable efficiency to the desired

set of modes.

3.2.3 Duffing Amplitude of a Symmetry-Broken Beam

The critical amplitude is the point at which the mechanical resonator response

transitions from linear to nonlinear behavior. For a doubly clamped beam, the first

nonlinear effect typically observed is a stiffening Duffing nonlinearity and is caused

by geometrical effects in the beam [197]. Experimentally, the critical amplitude is

observed as an infinite slope on the falling edge of the resonance peak. The presence

of the point of infinite slope on the falling edge indicates a stiffening nonlinearity,

as opposed to the rising edge which would indicate a softening nonlinearity. By

increasing the optical driving force to observe the critical amplitude, we can test

whether the response due to increased driving power remains predictable in the

symmetry-broken system.

For experimental determination of the critical amplitude (acr), the amplitude of

the modulation on the optical driving force is increased by increasing the modula-

tion voltage at the EOM. This provides a higher actuation force to the resonator.

The mechanical response of the doubly clamped beam is measured at each driving

voltage, and the driving voltage is increased until nonlinearity is observed. These

results are shown in Figure 3.26, where the nonlinearity is evident at higher driving

voltages and highlighted by the asymmetry observed in the mechanical response. To
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determine the critical amplitude, the amplitude at the centre frequency is recorded

for each driving voltage, as plotted in the inset of Figure 3.26. Then, the amplitude

at the 1 dB compression point (a1dB) is determined. a1dB is the point where the

amplitude at the resonance frequency is 1 dB less than predicted by the linear re-

sponse. The 1 dB compression point is observed at a driving voltage of 0.16 Vrms,

which corresponds to an optical power of 0.86 mWrms. Then, the critical amplitude

is related to the amplitude at the 1 dB compression point by [63]

a1dB = 0.745acr. (3.6)

The amplitude at the 1 dB compression point is 3.1 nm, and so from Eq. (3.6)

we calculate a critical amplitude of 4.2 nm. A theoretical value for the critical

amplitude caused by a Duffing nonlinearity can be calculated using the following

equation [197]:

acr =
1.685t

Q1/2
. (3.7)

The theoretical critical amplitude is 3.9 nm, based on the experimentally mea-

sured quality factor for the driven measurements of the first mode, Q = 9200. t

is the thickness of the beam, and in this case is equal to 220 nm, which is the

thickness of the silicon device layer. The experimental value and theoretical value

demonstrate very good agreement for the critical amplitude. This result highlights

that the symmetry-breaking technique used to fabricate this device does not affect

the functionality of the optical drive even at higher driving forces.

Figure 3.26: Amplitude of the first mode in nanometers as the drive power is in-
creased. Inset: Experimental displacements at the centre resonance frequency com-
pared to a linear response (black dashed line). The blue line is a guide to the eye.
Reprinted from [21], with the permission of AIP Publishing.
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3.2.4 Using Multiple Modes to Measure Stress

Thus far in the chapter, we have discussed the driving force and transduction of a

doubly clamped beam with a step in the substrate. We have shown that the first

three modes of a beam can be driven and detected effectively using this symmetry-

breaking technique. Often when releasing doubly clamped beams from SOI wafers,

as is done in this case, the beams can buckle due to the built-in stress in the silicon

device layer [161]. We observed buckling in some of our longer doubly clamped

beams. Due to the fact that we were able to detect even and odd modes in these

devices, we are able to estimate the stress in the buckled Si device.

We fabricated a 17.85 µm long doubly clamped beam with a step in the substrate

underneath using the approach described in Section 3.2.2. The device is pictured in

Figure 3.27(a). The first two mechanical modes of vibration were measured using

the previously described approach. The measured resonance frequencies of the first

two modes are shown in Figure 3.27(b).

To extract the stress in the buckled beams, we need to compare the measured

result to those predicted by theory. Using the approach described in [198], we can

numerically solve the system of equations to determine the resonance frequencies

of the nth buckled mode in a doubly clamped beam, for different initial buckled

deflections. In this theoretical description, the even modes are independent of stress

and depend only on the length of the device. Therefore, we can determine the length

of the device by setting the theoretical expression for the resonance frequency equal

to the experimentally observed value and solving for the length. This calculation

gives an exact length of 17.85 µm, which corresponds well to the SEM image in

Figure 3.27(a). We would like to emphasize that this measurement would not be

possible without the symmetry-breaking approach, as the second mode would not

be visible.

Unlike the even modes, the odd modes depend on the stress in the beam. The

stress in the beam can be related to the initial buckled deflection (zinitial) by

z2
initial =

4l2(σ − σc)

π2E
, (3.8)

where σ is the stress in the device, E is the Young’s modulus of silicon and is equal

to 169 GPa, and σc = π2Et2/3l2 is the critical buckling stress. In this equation,

l is equal to 17.85 µm as determined by the second mode resonance frequency.

We can determine the stress by plotting a range of values for zinitial versus the

resonance frequency for the first mode. By comparing the experimental results for

the fundamental resonance frequency to the theoretical curves, the initial buckled

deflection can be determined. This approach is shown in Figure 3.27(b). From the

initial buckled deflection, the stress in the device can be calculated using Eq. (3.8).

From Figure 3.27(b), the initial buckled deflection is zinitial = 127 nm. This value
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correlates well to the deflection observed in the SEM image in Figure 3.27(a). From

Eq. (3.8), the stress in the buckled device is 106 MPa. This value is within the

typical range for commercial SOI wafers [199].

Figure 3.27: (a) SEM image of a 17.85 µm long buckled doubly clamped beam, taken
at an 80◦ angle. (b) Experimental and theoretical resonance frequencies for the first
two modes of a buckled doubly clamped beam. Experimental results for the first
and second modes are an open square and open circle, respectively. Theoretically
predicted results for the first and second modes are shown as solid and dashed lines,
respectively. Reprinted from [21], with the permission of AIP Publishing.

3.2.5 Conclusion

We have demonstrated nanophotonic drive and readout of even vibrational modes

in a doubly clamped beam. Transduction of the even modes is made possible by a

step in the substrate underneath the mechanical device. This step breaks the sub-

strate symmetry and allows for stronger coupling to one section of the beam. The

symmetry-breaking process allows for straightforward measurement of the second

mode while retaining strong a signal-to-noise in the odd modes. We use the thermo-

mechanical noise signal to calibrate the displacement. From the peak displacement,

we calculate the total optical force induced by the pump laser for the first three

modes. By assuming different contributions from the small and large gap sections

beneath the beam, we derived local optical forces that were consistent with pho-

tonic modeling. We also measured the observed critical amplitude of the first mode,

which agrees well with the theoretically predicted critical amplitude for a mechan-

ical nonlinearity. This agreement demonstrates that the beam with the symmetry
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broken behaves as expected under an applied optical driving force. Lastly, we have

estimated the stress in the device layer to be 106 MPa by measuring the resonance

frequency of the first two modes of a buckled doubly clamped beam. The technique

of breaking the symmetry shown here may also be used in the design of other device

geometries, such as side-coupled doubly clamped beams, to improve mass sensing

for many different configurations.

3.3 Low-Frequency Single Laser Transduction

In an effort to further simplify our nano-optomechanical sensing platform, one option

is to remove the pump laser from the system and use a single laser as both the drive

and detection mechanism. This approach has been explored in [200]. In that work,

it was demonstrated that a single laser with an amplitude modulation was sufficient

to both drive and detect the nanomechanical device. The introduction of a constant

background resulted in a Fano-like shape for the mechanical resonance. Despite the

atypical lineshape, the signal could be tracked with a phase-locked loop (PLL), which

meant the signal was suitable for sensing applications. The single laser reduces the

complexity of the setup and may be more feasible for portable sensing applications.

To extend the work done in [200], and further simplify the experimental setup, it

is desirable to create a signal that can be read out at low frequency. This would elim-

inate the need for expensive high-frequency photodiodes. For this reason, we would

like to use a signal-mixing scheme to down-convert the high frequency mechanical

signal (in the range of 1–100 MHz) to something on the order of tens of kHz. This

signal could be easily read by an inexpensive DC photodiode. This type of photo-

diode would be straightforward to integrate onto a circuit board or even on-chip.

Many down-conversion schemes exist in the literature, such as electronic [201] or

optical [15] heterodyning, where a local oscillator signal is mixed with the measured

signal to produce a down-converted output. Optical homodyning, where the local

oscillator frequency is the same as the measured signal frequency, is also frequently

used in optomechanics to obtain results with low noise [202, 203, 204]. Typically

these techniques are used in optomechanics to detect the thermomechanical noise

of the mechanical resonator. Distinct in the present scheme is the application of di-

rect, controllable excitation power at the mechanical frequency, while also detecting

response at low frequency.

Here, we use a single laser to drive and detect the mechanical signal at low

frequency. We will discuss how the mechanical signal can be extracted with good

signal-to-noise ratio. We will demonstrate low frequency phase locked operation of

the high frequency nanomechanical sensor.

86



3.3.1 Theory

The power output from a device measured and actuated using the single-laser mod-

ulated drive and detection (SLMDD) method is described by Pout = Pin(t)T (t). The

input power can be expressed as the summation of the DC and AC components of the

optical power, Pin(t) = Pdc +P1fcos(Ωt). The DC component is the laser power, and

the AC modulation power is determined by the amplitude modulation introduced

by an electro-optic modulator (EOM). The experimental details will be discussed

further in the following section. The transduction function T (t) = T0 + x(t)∂T/∂x

is an expansion of the optical transmission and includes a DC component (T0), and

a frequency dependent component x(t)∂T/∂x. This component has a frequency at

1f , and sinusoidal time-dependence. The time dependence is sinusoidal since this

component depends on x(t) = B(2πf) cos(2πft−ϕ), which is the time-varying dis-

placement of the nanomechanical device. B(2πf) is the amplitude of the mechanical

device as a function of frequency derived in Eq. (2.5). ϕ is the phase response of the

mechanical device. The 1f component is the first order transduction coefficient that

describes the modulation resulting from optomechanical effects. The transduction

coefficient was previously described by Eq. (2.42). Substituting in these expressions

and multiplying all terms gives results at DC, 1f , and 2f frequency components.

The DC and 1f results are shown in Eqs. (3.9) and (3.10) respectively;

Pout,dc = PdcT0 +
P1f

2
B(2πf)

∂T

∂x
cosϕ, (3.9)

Pout,1f = P1fT0cos(2πft) + PdcB(2πf)
∂T

∂x
cos(2πft− ϕ). (3.10)

The first term in Eq. (3.9) is the DC signal. It is very large in comparison to the

second term, since the DC output from the optical cavity is much larger than the

AC modulation of the cavity. The second term contains information about the

mechanical signal. The Lorentzian amplitude of the mechanical signal is denoted

by the function B(2πf), and the phase shift of the mechanical signal is denoted by

ϕ. Since the first term in Eq. (3.9) is significantly larger than the second, but the

second term is where all of the information about the mechanical signal is located,

the information is lost during measurements. If the full DC signal is observed, only

the noisy first term is visible. However, the idea that we can extract amplitude and

phase data at DC provides inspiration to find another way to observe the mechanical

signal at very low frequencies, such that a DC photodiode can still read out the

signal. To accomplish this, we can add a single sideband at a very low frequency

(10–30 kHz) amplitude modulation onto the drive signal [205] such that

Pin(t) = Pdc + P1fcos(2πft) +
P1fPmod

2
cos(2πft+ 2πfmodt), (3.11)
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where Pmod is the modulation power and fmod is modulation frequency in the range

of tens of kHz. To calculate Pout, we multiply Pin by the transduction function

T (t) = T0 + x(t)∂T/∂x and substitute in x(t) = B(2πf) cos(2πft− ϕ):

Pout(t) = PinT (t) =

[
Pdc + P1fcos(2πft) +

P1fPmod

2
cos(2πft+ 2πfmodt)

]
[T0 +B(2πf) cos(2πft− ϕ)∂T/∂x] .

(3.12)

We can expanding this equation and simplify it using trigonometric identities.

This simplification process gives the following result:

Pout(t) = PdcT0 +
P1f

2
B(2πf)

∂T

∂x
cosϕ+

P1fT0 cos(2πft) + PdcB(2πf)
∂T

∂x
cos(2πft− ϕ)+

P1f

2
B(2πf)

∂T

∂x
cos(4πft− ϕ) +

T0P1fPmod

2
cos(2πft+ 2πfmodt)+

P1fPmodB(2πf)

2

∂T

∂x
[cos(2πfmodt− ϕ)− cos(4πft+ 2πfmodt− ϕ)] .

(3.13)

The first two terms are identical to Eq. (3.9), and are the DC terms. The third

and fourth terms are identical to Eq. (3.10) and are the 1f terms. The fifth term is

the 2f term generated by the power at 1f mixing with the mechanical signal. The

sixth term is at f + fmod. The seventh term has a frequency only at fmod. The

final term has a frequency at 2f +fmod. To summarize, the component solely at the

modulation frequency fmod is

Pout,fmod
=
∂T

∂x

P1fPmod

2
B(2πf)cos(2πfmodt− ϕ). (3.14)

This component at fmod has the same form as the second term in Eq. (3.10).

Notably, the mechanical amplitude B and phase ϕ are contained in this result.

Therefore, we should be able to read out the mechanical signal at these very low

frequencies by measuring the DC response from the photodiode at fmod, eliminating

the need for a high-frequency photodiode.

3.4 Experimental Results

To verify the theoretical prediction experimentally, we have used the experimental

setup illustrated in Figure 3.28. The EOM is biased to provide the optimal signal-

to-noise (SNR) at the output, as described in Section 2.4. The tunable laser is

positioned on the side of the optical cavity slope to provide the maximum respon-

sivity for the mechanical signal. Unless otherwise stated, the laser was positioned
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on the blue side of the optical cavity for all of the subsequent experiments. Polar-

ization controllers (PCs) are set for TE polarization. Both the AC and DC signal

outputs of the photodiode (PD) were connected to the lock-in amplifier (LIA). The

AC signal was used for the SLMDD approach to verify that the results obtained

are similar to those shown in [200]. The DC signal was used to measure the low-

frequency data, to demonstrate that only a DC photodiode is necessary for these

low-frequency measurements.

Figure 3.28: Schematic of the single-laser drive and detection system. Image cour-
tesy of Vincent Sauer [200].

The device measured in these experiments is a 2.89 µm long, 130 nm wide can-

tilever with a fundamental resonance frequency at about 21.21 MHz. It is adjacent

to a racetrack resonator with a 5 µm radius and 3 µm long straight section. The gap

between the racetrack and the cantilever is approximately 90 nm and the optome-

chanical coupling is approximately 1 rad GHz/nm. To obtain the thermomechanical

noise of this nanomechanical cantilever, the EOM was deactivated and the frequency

response of the device was recorded using the AC signal from the photodiode. The

result of this measurement is shown in Figure 3.29. As expected, a Lorentzian

lineshape is observed.

To drive the device, the EOM was activated by applying the output driving

voltage from the LIA. To set up the signal processing scheme, we have used many

of the available capabilities of the Zurich UHF lock-in amplifier. Particularly, the

modulation tab was used to add the amplitude modulation to the output signal

from the lock-in amplifier. The carrier frequency was set to the mechanical reso-

nance frequency, and the modulated component was added to the carrier as a single

upper sideband. By sweeping the carrier frequency, we can sweep over the mechan-

ical resonance to obtain a plot of amplitude versus frequency. To read the data,

we set the AC output from the photodiode to one of the input demodulators of the

lock-in amplifier to the carrier frequency and obtained the results from the AC com-

ponent of the photodiode signal. This provides the SLMDD signal, and shows the
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Figure 3.29: Thermomechanical noise of the cantilever device with the EOM deac-
tivated.

amplitude and phase response as the frequency is swept over a range that includes

the mechanical resonance. A second input demodulator was connected to the DC

component of the photodiode signal, so only the low-frequency data was input to

the LIA. This demodulator was set to a constant value of the modulation frequency

fmod. By setting the demodulator to this low-frequency value, we are measuring

the change in the amplitude and phase of the mixed signal Pout,fmod
at fmod. As

the carrier frequency was swept over the mechanical response, the response at fmod

changes, and shows a signature of the mechanical signal. Although the response is

read out at a constant low frequency value, the results obtained are still a function

of the amplitude response of the mechanical device as the carrier frequency is swept

over the frequency range of interest. For that reason, we have plotted the results as

the mechanical signal amplitude B(2πf) versus the carrier frequency.

It should be noted that the thermomechanical noise of the device cannot be ob-

served using the low-frequency approach, as this technique requires that the carrier

driving voltage is activated, that is, that P1f is non-zero. This is one of the draw-

backs of this technique, however, the benefits gained in terms of simplicity outweigh

this drawback. Since mass sensing is done using a driven signal, the measurement

of the thermomechanical noise is not required for a mass-sensing device.

To fully characterize our low-frequency detection technique, we have carried out

a number of tests that show how different parameters affect the signal. The first

parameter tested was the amplitude of the voltage of the carrier frequency as output

from the LIA to the EOM. Essentially this parameter determines the amplitude of

the driving signal output to the device, because as the driving voltage increases, the

amplitude modulation provided by the EOM increases. In this test, the modulation
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frequency was set to 30 kHz and the optical power was set to 94 µW in the bus

waveguide. The result of this test is shown in Figure 3.30, where (a) and (b) show

the amplitude and phase response of the SLMDD signal, and (c) and (d) show

the response of the low frequency signal. In part (e), the peak amplitude of the

low-frequency signal is plotted versus the input carrier driving voltage.

There are several important results we observe from this data. The first obser-

vation is that the amplitude and phase of the SLMDD signal and the low frequency

signal have the same shape, which is expected since Eq. (3.14) has the same form

as the second term in Eq. (3.10). The second observation is that the low-frequency

signal has two peaks, whereas the SLMDD signal has only one. This is because the

carrier frequency plus the modulated frequency are being swept across the mechani-

cal resonance. Therefore, the swept signal is equal to the mechanical resonance twice

during the sweep; the first time is when fcarrier +fmod = f0 where f0 is the mechani-

cal resonance frequency in Hz. The second time is when fcarrier = f0. Therefore, two

peaks are measured while observing the output at the modulation frequency. The

third observation is that the amplitude of both the SLMDD and low-frequency signal

increase with increasing driving voltage, as expected. By examining Figure 3.30(e),

we see that the rate at which the amplitude increases is not exactly as expected.

We expect the peak amplitude to increase quadratically with the driving voltage

according to Eq. (3.14), due to the P1,fB term, as both of these variables should

increase linearly with increasing carrier drive voltage. However, the trend appears

to be linear. The fourth observation is that both signals have a DC background that

increases with driving voltage, and that the background is different for both signals.

The DC background in the SLMDD signal is due to the first term in Eq. (3.10), and

has been explored thoroughly in Ref. [200]. Essentially this is a coherent DC signal

due to the DC transduction of the 1f signal. For the low-frequency signal, there is

no DC term in the low-frequency model presented in Eq. (3.14) that would cause

an equivalent DC background. Despite the fact that we are measuring at a specific,

low modulation frequency, there is still clearly a coherent background signal from an

unidentified source. The background level in the low-frequency signal increases with

increasing carrier voltage in the amplitude domain (Figure 3.30(c)). There is also a

constant phase background in Figure 3.30(d), which is different from the frequency-

dependent phase background in the SLMDD signal, observed in Figure 3.30(b). We

can conclude that the coherent background not frequency dependent, and as such is

from a different source than the SLMDD signal. This coherent background may also

explain why the increase in peak amplitude with input carrier voltage was linear as

opposed to quadratic.

Interestingly, the random noise background decreases with increasing drive volt-

age in both the amplitude (Figure 3.30(c)) and the phase signal (Figure 3.30(d)).
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Figure 3.30: The results are recorded as the AC voltage of the high-frequency in-
put carrier drive signal applied to the EOM is increased, with a constant DC laser
power was set to 94 µW in the bus waveguide. (a) Amplitude and (b) phase sig-
nals plotted versus the readout frequency from the cantilever measured at 21 MHz
using the SLMDD technique. (c) Amplitude and (d) phase signals from the same
cantilever plotted versus the input carrier frequency using the low frequency single
laser transduction technique using a 30 kHz modulation frequency, 100 mV mod-
ulation voltage. (e) Peak amplitude in mV of the results from (c) versus the AC
input carrier voltage. We expect the peak amplitude to increase quadratically with
the driving voltage according to Eq. (3.14), however the trend appears to be linear.
This discrepancy may be due to the unexpected background present in (c).
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Although the ratio between the peak amplitude signal and the average background

level is constant as the carrier voltage is increased, the ratio between the peak ampli-

tude signal and the height of the noise fluctuations decreases with increasing carrier

voltage. This trend is especially noticeable in the phase signal, where the noise

fluctuations are very large at the low carrier driving voltage of 25 mV. At the high

carrier driving voltage of 300 mV, the noise fluctuations are reduced substantially.

We can therefore conclude than the signal-to-noise ratio increases with increasing

carrier driving voltage, which is a beneficial aspect of this transduction technique

compared to the SLMDD technique.

The second experiment was to test the effect of the laser power on the low-

frequency signal. Based on Eq. (3.14) we expect that as the laser power is increased,

P1f and B are also increased, and therefore the amplitude of the signal increases

accordingly in a quadratic fashion. We examined both the SLMDD and the low-

frequency signals. The results of this experiment are shown in Figure 3.31. In this

experiment, the amplitude of the signal increases with increasing laser power, as

expected from the theoretical description in the previous section. Figure 3.31(e)

highlights the fact that for the low-frequency transduction technique, the peak am-

plitude increases more rapidly compared to Figure 3.30(e) with increasing input

power, but the increase is still not the expected quadratic trend. The main dif-

ference between the results highlighted in Figure 3.30 and Figure 3.31 is that the

phase signal increases in amplitude for the latter as the power increases. This is

true for both the SLMDD signal (Figure 3.31(b)) and the low-frequency signal (Fig-

ure 3.31(d)). This is expected for the SLMDD signal due to the fact that the DC

background in the SLMDD signal is directly proportional to tanϕ, as described

in [200]. In the low-frequency signal, this is not expected from Eq. (3.14), since

there is no DC component. However, this change in the phase is a strong argument

for the fact that a background is present in the signal measured at fmod, allowing

the low-frequency signal to have many of the same characteristics of the SLMDD

signal. By increasing the DC background, the phase shift changes significantly.

The next test was to determine the optimal value for fmod. For this test, the

frequency of the single sideband was varied between 10 kHz and 100 kHz, and the

measurement was performed at each value of fmod. The results of this test are

shown in Figure 3.32. For the amplitude spectrum (Figure 3.32), as fmod increases,

the SNR in the amplitude spectrum decreases. From the amplitude spectrum, it

would seem that the optimal choice for fmod is as low as possible. However, the

choice of fmod also strongly affects the phase signal (Figure 3.32(b)). Since the

goal of this application is to perform sensing experiments, which require the use

of a phase-locked loop (PLL), the phase signal must show good SNR. The SNR of

the phase signal is poor at both 10 kHz and at 50 kHz, and shows good SNR at
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Figure 3.31: The mechanical response was recorded as the DC optical power was
increased. The optical powers are defined as the power in the bus waveguide. The
AC voltage of the input carrier signal applied at the EOM was 100 mV. (a) Ampli-
tude and (b) phase signals from a cantilever plotted versus the readout frequency
measured at different optical powers using the SLMDD technique. (c) Amplitude
and (d) phase from the same cantilever plotted versus the carrier frequency using
the low frequency single laser transduction technique with a 30 kHz modulation
frequency and a modulation voltage of 100 mV. The results are plotted versus the
carrier frequency signal as the readout frequency was constant at 30 kHz. (e) Peak
amplitude from (c) plotted versus the optical power in the bus waveguide. The
amplitude increases more rapidly than a linear trend predicts, but the increase is
not as substantial as the expected quadratic trend would suggest. The discrepancy
is likely due to the background signal.
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30, 70, and 100 kHz. The optimal value for fmod is then 30 kHz, as it has good

SNR in the phase domain, and is the lowest frequency signal so the SNR in the

amplitude domain is maximized. By changing the modulation frequency, the value

of the background phase signal is changed in Figure 3.32. This means that the

background signal that is affecting the low-frequency signal may be dependent on

the modulation frequency. There is more noise at some frequencies (10, 50 kHz)

than others, which may indicate a source of noise at a particular frequency. This

may vary from setup to setup depending on the noise sources in the lab or in the

equipment used, and so it is important to characterize the optimal fmod for each

experimental setup.

Figure 3.32: (a) Amplitude and (b) phase signals from a cantilever measured at
different modulation frequencies. The optical power is set to 94 µW in the bus
waveguide, the carrier voltage is set to 50 mV, and the centre driving voltage is
set to 100 mV. The results are plotted versus the carrier frequency signal as the
readout frequency for each measurement was constant at the frequency specified in
the legend. For example, in (a), the amplitude signal was read out at a constant
value of 10 kHz for the black curve, a constant value of 30 kHz for the red curve,
and so on.

The final parameter varied was the voltage of the sideband signal, called the

modulation voltage. This affects Pmod, but does not affect B, as shown in Eq. (3.14).

Therefore, we expect peak amplitude of the observed signal to increase linearly with

increasing modulation voltage. Instead of changing the voltage of the central carrier

frequency, we modified the voltage of the sideband signal to determine the effect

on the signal observed at low frequency. This also has no effect on the SLMDD

signal, since it is not affected by the low-frequency modulation signal. The results

of this experiment are shown in Figure 3.33 for the (a) amplitude and (b) phase

signals. The peak amplitude of the observed mechanical signal is plotted versus the

modulation voltage in Figure 3.33(c). As expected, the peak amplitude increases

linearly with modulation voltage. Lastly, by increasing the carrier voltage, the SNR

of the phase signals are improved as the noise is reduced. For the amplitude signal,
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the overall amplitude increases and the background level also increases.

Figure 3.33: (a) Amplitude and (b) phase signals from the cantilever measured at
different modulation voltages. The centre carrier driving voltage was set to 100 mV,
and the optical power in the bus waveguide was set to 94 µW. The results are
plotted versus the carrier frequency signal as the readout frequency was constant
at 30 kHz. (c) The peak amplitude from (a) plotted versus the modulation voltage.
The amplitude increases linearly with modulation voltage, as expected.

As a check to ensure that the signal measured at low frequency was in fact the

mechanical signal of the cantilever, we moved the position of the laser from the

blue side of the optical cavity to the red side, and monitored the response at both

positions. This result is shown in Figure 3.34. As expected, the Fano-like shape

changes its sign when the laser is moved from the blue to the red side due to the

changing sign of the slope. This occurs for both the amplitude (Figure 3.34(a)) and

phase (Figure 3.34(b)) signals. There is also a slight shift in the resonance frequency.

As the cavity moves from blue to red, the mechanical resonance frequency decreases

slightly. This is expected from the optical spring effect (Eq. (2.40)) since the blue

side of the cavity induces a spring stiffening effect, whereas the red side induces a

spring softening effect. The varying amplitudes in the signal are likely caused by

a slightly different position on the optical cavity slope, causing a slightly improved
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transduction on the red side compared to the blue. As this optical cavity has a

tendency towards optical bistability (see Section 5.2), the red side may be slightly

steeper than the blue side and as a result the transduction is enhanced, providing

larger voltage amplitudes.

Figure 3.34: (a) Amplitude and (b) phase signals from a cantilever with measure-
ments performed on each side of the optical cavity transmission. One measurement
was performed on the red and one on the blue side of the cavity. As expected, due
to the changing sign of the slope, the amplitude and phase are opposite signs for the
red and blue sides. The results are plotted versus the carrier frequency signal as the
readout frequency was constant at 30 kHz. The optical power in the bus waveguide
was set to 94 µW.

To ensure that this technique is suitable for mass sensing applications, the final

test is to lock the device using a phase lock loop (PLL). To use the low-frequency

signal, we need to lock the PLL to a phase value at the frequency fmod. As the

resonance frequency of the device shifts due to mass loading effects, the phase signal

will also shift and the PLL will track this shift. One way to demonstrate that the

phase can be locked is to measure the Allan deviation. The Allan deviation provides

information regarding the frequency stability of the device, and is a good indicator

of whether or not the phase can be accurately locked for mass sensing experiments.

To lock the phase using our lock-in amplifier, the PLL was set to read in the phase

at the frequency fmod. The initial phase chosen was on the point of highest slope

on the Lorentzian phase signal to maximize the sensitivity of the device. The PLL

was set to drive at the carrier frequency, which was set to the mechanical resonance

frequency f0. In this way, we observe the signal at fmod, but drive the device at the

appropriate resonance frequency. As the frequency of the cantilever shifts, due to

temperature or other external stimuli, the phase also shifts. This phase shift is read

out in the low-frequency signal, and the PLL then adjusts the carrier frequency

to compensate for the shift, such that the original phase setpoint is maintained,

despite a shift in the mechanical frequency. This permits the low-frequency tracking
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of the high-frequency mechanical signal. The results of this experiment are shown

in Figure 3.35(a)–(d) for four different bandwidths, 500 Hz, 100 Hz, 10 Hz, and

1 Hz, respectively. The Allan deviation decreases as the measurement bandwidth

decreases. This is another benefit of locking to a low frequency signal. Smaller

Allan deviations are typically better for mass sensing, as the minimum detectable

mass is proportional to the Allan deviation [8]. Since a small Allan deviations

can be obtained by shrinking the measurement bandwidth, it may be beneficial to

use a small bandwidth during a mass sensing measurement. However, these small

bandwidth measurements are harder to lock to at high frequency. With the low-

frequency technique, we can easily lock using a smaller bandwidth, since the signal

we are locking to is only 30 kHz.

Figure 3.35: Allan deviation measurements using the low frequency single laser
transduction signal at fmod = 30 kHz. These measurements were taken for four
different bandwidths, (a) 500 Hz, (b) 100 Hz, (c) 10 Hz, and (d) 1 Hz.

3.4.1 Conclusion

In this section, we have examined a technique that allows us to down-mix a high-

frequency mechanical signal at low frequency, in the range of 30 kHz. This technique

uses a single laser for drive and detection, using the same approach as the SLMDD
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technique previously demonstrated in our lab. The benefits of this technique are that

we can observe the signal using an inexpensive, low-frequency photodiode and that

the phase locked loop can be set to a very low bandwidth for improved frequency

stability. This is a simplified setup because only one laser is necessary. This simple

measurement scheme could be used to more easily integrate our mass sensing device

onto a small chip, since the laser and photodiode requirements are minimized.
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Chapter 4

Optimization of Optical Driving
Force

In Section 2.3.1, we discussed the difference between self-oscillation and optical

actuation with an amplitude-modulated pump laser. In particular, we discussed that

the pump and probe technique is beneficial for mass sensing because this technique

can be used in conjunction with phase lock loop operation to reduce the phase noise

of the system. We also mentioned that one of the advantages of the pump and probe

approach was that the power could be increased to maximize the driven amplitude

and therefore the dynamic range of the mass sensor. However, simply increasing

the power to arbitrarily high levels is not practical for the portable mass-sensing

device as described in Chapter 1. For this type of application, the overall power

consumption of the system should be as low as possible. To achieve this, while still

maintaining a high driven amplitude for the nanomechanical device, the actuation

technique should be optimized to be as efficient as possible. Despite the fact that

the pump and probe approach is often used in optomechanical systems [21, 67, 69],

thorough design of optomechanical systems to optimize this actuation technique has

never been studied.

To achieve maximum efficiency of the optical pump and probe actuation, we

design optical cavities specifically optimized for pump-probe actuation. At first

glance, an optimized design maximizes the optical power delivered to the nanome-

chanical device to apply the maximum driving force, which implies that excellent

extinction and high quality factor are required [50]. However, there are several com-

plications. Cantilevers are an example of a high amplitude device, and are known

to have a higher mass sensitivity than doubly clamped beams due to their lower

effective mass [20] and are therefore desirable for mass sensing. If the nanomechan-

ical device has a large amplitude and optomechanical coupling coefficient G, the

cavity will experience a significant shift in the detuning ∆ during one period of

vibration. The pump laser is therefore not at zero detuning for the entire period of

oscillation, and so the maximum power is not consistently applied to the cantilever.
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Additionally, silicon photonic microring resonators with good extinction and high

quality factor often suffer from coherent backscattering [146], which may affect de-

vice actuation. One possible solution is to create a feedback loop to modulate the

pump laser frequency so it is oscillating in phase with the mechanical device, such

that the detuning is always zero. The large bandwidth required by this feedback

loop makes it very difficult to implement. The bandwidth required is equal to the

swing in the cavity response caused by the cantilever’s large amplitude, and may

be on the order of several GHz. Currently, the maximum bandwidth achieved for

locking to these high finesse optical cavities is on the order of 3.5 MHz [206]. An

improvement of three orders of magnitude is very challenging.

We suggest an alternative solution, wherein we design optical cavities specif-

ically to compensate for the pump laser moving off the optical cavity resonance.

In this way, the optical cavities are optimized for actuation of nanomechanical de-

vices. In Section 4.1, we derive a simple model for designing optomechanical systems

for optimal actuation using a pump-probe technique. The model accounts for op-

tomechanical coupling, optical cavity loss rate, and the coupling loss rate and is

applicable to any optomechanical system where the mechanical device behaves as a

driven damped harmonic oscillator. For the specific example of a simple cantilever

coupled to an optical racetrack resonator, we solve our numerical model for a wide

range of input parameters to illustrate how the model can be used to determine the

optimal cavity design. In Section 4.2, we discuss the fabrication and show experi-

mental results from several different devices. We verify the model by comparing it

to experimental results. Our experimental results also show that coherent backscat-

tering affects only the actuation of the devices using an optical pump, while readout

of the devices is unaffected. We verify experimentally a modification to the model

to account for a pump optical cavity with coherent backscattering.

4.1 Theory

The peak amplitude of the AC optical force should be maximized to maximize the

optical drive. Eq. (2.41) is a function of the detuning, which is in turn dependent on

the position x of the mechanical resonator [157]. The pump laser is initially set at a

detuning ∆ = 0, to maximize the optical power input to the cantilever and to ensure

that the device is actuated solely through the amplitude modulated optical gradient

force and not through self-oscillation. However, the pump laser is not constantly

positioned at the optical resonance at all points in the mechanical measurement,

since the cavity shifts as the mechanical device vibrates [158]. Consider, for example,

the extreme case where the amplitude of the mechanical resonator is very large

and the cavity linewidth is very small. In this example, the pump laser is rarely

positioned on the optical resonance and may even be located outside of the optical
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resonance. Clearly, this will not produce efficient actuation as the power delivered to

the cantilever is significantly reduced. The interaction of the mechanical device and

the optical cavity must be optimized for efficient actuation to produce the largest

amplitude mechanical displacement. With this large displacement we can make use

of the full dynamic range of the cantilever, which is desirable for mass sensing.

To describe how much the optical cavity shifts for a given peak mechanical

displacement, we approximate the detuning as a function of position such that

∆(x) = G0x, where G0 is the initial optomechanical coupling and x is the mechanical

displacement. This relationship is obtained from the definition of the optomechan-

ical coupling coefficient G = ∂ω/∂x. We define the Taylor series expansion of the

optical frequency ω(x) about a mechanical displacement x0 as

ω(x) = ω(x0) + ω′(x0)(x− x0) +
ω′′(x0)(x− x0)2

2
+ ... (4.1)

We can define an approximation for G(x0) by rearranging Eq. (4.1) and solving

for ω′(x0). For the particular situation of driving with the optical gradient force

using an amplitude modulation, the initial pump laser wavelength is set to ∆ =

0. Therefore, ω(x0) = ω0, where ω0 is the resonance wavelength of the optical

cavity. We can also define the initial mechanical displacement x0 = 0. This is

because the optical AC amplitude modulation will result in positive and negative

deflections about the initial mechanical position. We therefore define the mechanical

deflection as x, as referenced to the initial mechanical displacement. Combining all

of these definitions and rearranging Eq. (4.1) results in the following equation for

the variation in ∂ω/∂x about the initial detuning ∆ = 0:

ω′(0) =
ω(x)− ω(0)

x
− 1

x

(
ω′′(0)x2

2
+ ...

)
. (4.2)

Finally, we recall that the detuning is defined as ∆ = ω(x)− ω0 = ω(x)− ω(0).

We use the definition of the optomechanical coupling G = ∂ω/∂x to determine that

the expansion for the optomechanical coupling about zero deflection G(x0) = G0 is

G0 =
∆(x)

x
−
(
G′0x

2
+ ...

)
. (4.3)

To first order, we can say that ∆ = G0x. The higher order terms in this expres-

sion represent the error in the approximation.

To derive a model to optimize the cavity performance for efficient actuation, we

set Eq. (2.41), the equation for the optical gradient force, equal to F (x) = −kx/Q.

This is the simple equation for the vibration amplitude on resonance of a driven

damped harmonic oscillator, where k is the cantilever’s effective spring constant.

Re-writing this equality and moving all terms to one side gives
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G2
0x

3 + γ2x− 2PbusVdriveG0γexQ

kωVπ
= 0, (4.4)

which is a cubic polynomial in x and straightforward to solve numerically. Two

imaginary solutions and one real solution are produced by the numerical solver. We

use the real solution for our analysis. The model shown in Eq. (4.4) accounts for the

fact that increasing mechanical amplitude reduces drive force efficiency. It produces

an estimate of the maximum drive amplitude that can be achieved for a given set of

experimental parameters, and can be used to optimize the optomechanical system to

achieve the maximum amplitude of vibration. This simple model can be used for any

dispersive optomechanical system where the mechanical device can be approximated

by a driven damped harmonic oscillator.

To demonstrate the numerical model as a design tool for optimizing optomechan-

ical systems for efficient actuation, we input experimentally relevant mechanical and

optical parameters and solve Eq. (4.4). For this demonstration we use a cantilever

with length = 3 µm, width = 130 nm, and thickness = 220 nm. It has k = 0.8 N/m

and Q = 10, 000. The cantilever is side-coupled to a racetrack resonator [69] with a

radius of 5 µm and a 3 µm straight section. Pbus is 260 µW, a typical experimental

value. The EOM has a Vπ = 1.5 V. The intrinsic loss rate γ0 is fixed at 16.4 rad GHz.

This is an average value measured from several nominally identical optical cavities

from the same foundry. If the racetrack has a sufficiently large radius, γ0 is set

only by the material loss and scattering loss in the waveguide as the bending loss

is negligible in high contrast waveguides, such as those fabricated in SOI. There-

fore, the intrinsic loss rate will remain relatively constant for the same racetrack

dimensions if the same fabrication process is used. The coupling loss from the bus

waveguide into the racetrack resonator, γex, is used to tune the cavity linewidth γ,

since γ = γ0 +γex. The optomechanical coupling is adjusted by varying the distance

between the cantilever and the racetrack resonator. We solve Eq. (4.4) for a wide

range of optomechanical coupling and cavity linewidth values and for the mechani-

cal parameters stated above to obtain a map of the possible cantilever amplitudes,

which we will denote as the design amplitudes, created by these specific conditions.

We solve Eq. (4.4) for three different driving voltages, Vdrive = 200 mV, 500 mV,

and 700 mV. Although we increase the driving voltage here, the same effect is

achieved if Pbus, Q, or 1/k is increased. To increase Q or 1/k, the initial mechanical

design must be altered. During the experiment, Vdrive or Pbus can be easily increased.

Increasing Vdrive is preferable as increasing Pbus is more likely to introduce optical

nonlinearities that occur at higher DC input power. The results of solving Eq. (4.4)

for the three voltage conditions are shown in Figure 4.1. The figure shows the range

of optomechanical couplings and cavity linewidths where the maximum amplitude

can be achieved. As the optomechanical coupling increases, the range of optimal
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cavity linewidths also increases. In a system with large optomechanical coupling, it

is acceptable to have a so-called “bad” cavity and still achieve maximum mechanical

amplitude. For higher optomechanical coupling, the cavity shifts more for a given

amplitude of vibration. The pump laser will spend correspondingly less time near

the bottom of the cavity where the power injected into the cavity is the greatest.

This means less optical force is applied to the mechanical device as the average

power enhancement is reduced off-resonance. However, if the cavity has a wider

linewidth, the power decrease as the cavity moves off-resonance is reduced. For

this reason, a wider cavity linewidth is beneficial for large optomechanical coupling.

“Bad” cavities also become more optimal as the driving voltage increases. The

envelope where the maximum amplitude is achieved grows larger as the driving

voltage increases, including wider cavities for all optomechanical coupling values.

Figure 4.1: Optimization of the driven amplitude of a cantilever for a range of
optical cavity linewidth and optomechanical coupling values. There is an envelope
of maximum amplitude for a range of both optomechanical coupling and cavity
linewidth. This envelope becomes larger as the driving voltage is increased from (a)
200 mV to (b) 500 mV to (c) 700 mV.

To check that this model’s validity at large amplitudes, we use the same parame-

ters to calculate the error term from Eq. (4.3). For the largest amplitude calculated

in Figure 4.1(c), the error in Eq. (4.3) is 17.7%. For the largest amplitude given in

Figure 4.1(a), the error is 12.6%. We can therefore conclude that the error in the

model increases with increasing amplitude. This result indicates that for amplitudes

less than approximately 15 nm, the model derived in Eq. (4.4) will be an accurate

estimate of the amplitude as the error will be less than 12.6%. For amplitudes

greater than 15 nm, the exact amplitude produced by Eq. (4.4) may not compare

as accurately to experimental data. However, the trends predicted by Eq. (4.4) will
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still hold true; therefore, we can still use this model as a general guideline to design

optomechanical systems for efficient actuation at high amplitudes.

Our simple model shows the effects of the optical cavity linewidth, the optome-

chanical coupling, and the driving power on the peak amplitude of the nanomechan-

ical resonator. In the next section, we demonstrate the design of an optomechanical

system for efficient actuation using this model. We show the amplitude of the op-

tomechanical system can be approximated by Eq. (4.4).

4.2 Experimental Validation

4.2.1 Device Parameters

To experimentally validate our model, we design and measure several cantilevers

coupled to optical racetrack cavities with the same dimensions described in Sec-

tion 4.1. Two optomechanical couplings were included to verify the effect of the op-

tomechanical coupling on the amplitude. To create the two different optomechanical

couplings, gaps between the racetrack resonator and the cantilever of 90 nm and

145 nm were fabricated. The optomechanical coupling should be made as high as

possible to achieve the highest amplitude (Figure 4.1). 90 nm is the smallest gap we

could fabricate given the practical restrictions of photolithography. We can simulate

the optomechanical coupling using commercial eigenmode solver software [171]. We

calculated the change in the effective index for a change in the gap spacing between

the racetrack and the cantilever, ∂nneff/∂x. The optomechanical coupling is then

calculated using Eq. (2.43) [69]. For a 90 nm gap, simulations showed the optome-

chanical coupling is expected to be 1.14 rad GHz/nm. This is smaller than ideal to

achieve the highest amplitude from Figure 4.1(a) for a 200 mV drive voltage, but is

in the ideal range for the higher driving voltages in Figure 4.1(b) and (c). The wide

gap of 145 nm had a simulated optomechanical coupling of 0.32 rad GHz/nm, far

from the optimal value.

To achieve the desired γ and obtain a cavity optimized for efficient actuation, the

coupling gap between the bus waveguide and the racetrack resonator was adjusted.

As previously mentioned, the intrinsic cavity loss is known to be approximately γ0 ≈
16.4 rad GHz. By using the directional coupler design principles from Section 2.2.4,

we designed the coupling loss to be approximately equal to 10–20 rad GHz by

choosing a coupling gap of 250 nm. When combined with the intrinsic cavity loss,

this results in a cavity linewidth in the range of 25–35 rad GHz. This linewidth and

optomechanical coupling places our device close to the maximum amplitude envelope

for the low actuation voltage of 200 mV. For the 500 mV and 700 mV cases, the

predicted amplitude is within the maximum amplitude envelope (Figure 4.1(b) and

(c)). To obtain optical cavities with larger linewidths for comparison, we overcoupled
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several cavities by fabricating racetrack resonators with smaller coupling gaps, down

to 130 nm. The overcoupled cavities are expected to have cavity linewidths up to

100 rad GHz, which means the amplitude will be very far from the optimal values

shown in Figure 4.1.

The optomechanical systems were fabricated on SOI substrates at the silicon

photonics foundry imec via CMC Microsystems. A timed maskless buffered oxide

etch was completed to release the cantilever from the sacrificial oxide layer. All of

the measurements were performed using the confocal microscope setup described in

Section 2.4.

4.2.2 Effects of Coherent Backscattering

Five optical cavities with different coupling conditions were characterized by sweep-

ing the probe laser through the appropriate wavelength range while the voltage

was measured from the photodiode. Figure 4.2 is the response from one optical

cavity, and shows two optical cavity resonances. Figure 4.2(a) is an example of

peak splitting caused by coherent backscattering. We perform a fit of the trans-

mission in Figure 4.2(a) using Eq. (2.36) to obtain the coupling parameters of our

system. This fit directly produces τ and art. These parameters can be related to

the optomechanically relevant parameters γex and γ0 using Eqs. (2.28) and (2.30).

Figure 4.2: Optical response of one racetrack resonator. The resonance shown in (a)
is used as the probe cavity, and suffers from coherent backscattering. The resonance
shown in (b) is used as the pump cavity, and is not backscattered.

To experimentally determine the optomechanical coupling, we measured the

thermomechanical noise of the cantilever across the entire cavity detuning. This

result is shown in Figure 4.3(a). For this measurement, zero detuning is set to the

highest point between the two resonance dips in Figure 4.2(a). Only the probe laser

is activated. The optical spring effect causes the shift in mechanical resonance fre-

quency when the probe wavelength changes from red to blue cavity detuning [162].
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As described in Section 2.3, the optical spring effect can be used to directly mea-

sure G. The resonance frequency shift is extracted from each mechanical sweep in

Figure 4.3(a) and plotted versus the detuning. This result is shown in Figure 4.3(b).

Figure 4.3: (a) Sweep of the thermomechanical noise along the full range of cavity
detuning. The input power to the cavity was 77 µW. (b) Change in mechanical
resonance frequency as a function of detuning caused by the optical spring effect.
The circles are measured data and the black line is the fit with Eq. (4.5).

To fit this curve and extract the optomechanical coupling, we modify Eq. (2.40)

to account for the split cavity. We regard the single split cavity as two uncoupled

cavities, and add the optical spring equation for each cavity together. Lastly, we

include an offset to account for the detuning of each cavity from zero. This is

shown by Eq. (4.5), where δ is the offset of each individual resonance dip from zero

detuning. The subscripts 1 and 2 indicate the red and blue detuned optical cavity

resonances, respectively:

δΩ0 =
4Pbus

h̄ω

{
g2

0,1γex,1(∆− δ1)

[(∆− δ1)2 + γ2
1 ]2

+
g2

0,2γex,2(∆− δ2)

[(∆− δ2)2 + γ2
2 ]2

}
. (4.5)

We use Eq. (4.5) to fit the data in Figure 4.3(b) and extract the single-photon

optomechanical coupling parameter for both the red and blue detuned cavities. We

will use the blue-detuned cavity in the pump-and-probe experiments, and so we

require g0,2. From the fit, g0,2 = 89.7 rad kHz. We divide g0,2 by xZPF to produce

G = 0.99±0.03 rad GHz/nm. This is in good agreement with the simulated optome-

chanical coupling, demonstrating an optical resonance split by coherent backscat-

tering is suitable for probing an optomechanical system, and that the standard op-

tomechanical equations can be used with minimal modification in a backscattered

system.

Since Figure 4.3 shows that the split optical resonance is suitable for probing

the nanomechanical device, we can choose one side of the split cavity resonance as

the probe laser position for our driven measurements. For driven measurements,
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the probe is set to the blue slope of one optical cavity, and the pump laser is set to

the transmission minimum of the optical cavity resonance of another optical cavity

(Figure 4.2(b)). Setting the laser to the optical cavity minimum ensures maximum

force is delivered to the nanomechanical cantilever since the power enhancement is

maximized on resonance, as shown by Eq. (2.26).

If the optical resonance used for pumping is backscattered, the power enhance-

ment is more complex. Figure 4.4(a) shows the response of another racetrack res-

onator that suffers from coherent backscattering (top plot). This resonance is used

as the pump cavity to actuate a second cantilever. Recall that the power enhance-

ment for a backscattered cavity is dependent on the reflector position θ, as described

by Eq. (2.37). The bottom plot in Figure 4.4(a) shows the power enhancement of

the same cavity as a function of wavelength and θ. Clearly, the power enhance-

ment varies significantly depending on the location of the reflector element. We

plot the power enhancement at the pump laser position as a function of reflector

position, shown by the dashed line in Figure 4.4(a) and the sinusoidal function in

Figure 4.4(b). The lumped element model implies a single reflection at a single

location. Experimentally, however, the scattering occurs at several locations within

the racetrack. The power enhancement is the average value, shown by the blue line,

of the sinusoid in Figure 4.4(b). This was experimentally verified in Section 3.2.

Figure 4.4: (a) Experimental measurement of a backscattered racetrack resonator
cavity is shown in the top plot. The corresponding power enhancement is shown
in the bottom plot. The power enhancement is plotted versus the wavelength and
the reflector position θ. The dashed line indicates the pump laser position. (b) The
black dashed line shows the power enhancement at the pump laser position, plotted
versus the reflector position. The overall power enhancement for the device at the
cavity minima is shown by the solid blue line, which is the average value of the
sinusoid.

To account for backscattering in the optical cavity design model, the amplitude

calculated via Eq. (4.4) is multiplied by the ratio of the average power enhancement
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of the backscattered cavity to the power enhancement of the same optical cavity

with no backscattering. The subscript b is used to indicate a backscattered cavity:

xb = x
PEb

PE
. (4.6)

The total force provided to the nanomechanical device is proportional to the

power enhancement. The amplitude is directly proportional to the force since

F = kx/Q. Eq. (4.6) shows that if the pump laser is positioned in a backscat-

tered cavity, the amplitude of the cantilever will be reduced compared to an optical

cavity that does not suffer from coherent backscattering. We conclude this discus-

sion on coherent backscattering by emphasizing that a backscattered cavity may

be used as the probe cavity with no additional modeling of optomechanical system.

However, using an optical cavity resonance that suffers from coherent backscattering

to drive a nanomechanical device reduces the driven amplitude and requires addi-

tional modeling. Since coherent backscattering is present in many photonic systems,

it is important to understand its effects. Backscattering has been examined in both

membrane-in-the-middle systems [207] and sideband-resolved regimes [208]. In both

cases, including the effects of backscattering was necessary to accurately model the

optomechanical systems.

4.2.3 Amplitude Calibration

To compare the results of the derived model to experiment for both backscattered

and non-backscattered cavities, six measurements were taken of five different me-

chanical devices. To obtain the sixth measurement, we switched the position of the

pump and probe lasers for one cantilever. The probe laser power in the bus waveg-

uide was 108 µW. The DC pump laser power in the bus waveguide was initially

set to 260 µW, then reduced to 100 µW for the remaining measurements after the

observation of a readout nonlinearity. The applied AC voltage was 200 mV. The

pump laser detuning was set to zero to ensure that the optical drive provided by

the pump laser was solely through the amplitude modulation of the optical gradient

force, and not by self-oscillation. The probe laser detuning was set to the maximum

slope on the blue side of the optical cavity. The pump laser was filtered out before

the photodiode by a narrow bandpass filter centered at the probe wavelength. The

amplitude of the cantilevers was recorded in volts, then converted to watts using the

conversion factor of the photodiode. For measurements that appeared to have linear

readout, the amplitude was converted to metres using two techniques. The standard

thermomechanical noise calibration, as described in Section 2.1.1, was performed.

We also calibrated the data using the transduction coefficient dT/dx in units of

W/m, which was defined previously in Eq. (2.42). The amplitudes in watts are di-

vided through by the transduction coefficient to give an amplitude in metres. These
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approaches provide experimental results to compare to the model, and to determine

whether we have successfully optimized the optical cavities for efficient actuation.

The expected amplitude for the device designed for optimal actuation is greater

than 10 nm for 260 µW of DC input power. Due to this high amplitude, we observed

nonlinearities in the readout of the mechanical amplitude. These nonlinearities

are due to the Lorentzian lineshape of the optical cavity and will be discussed in

detail in Chapter 5. The outcome of the readout nonlinearity is that we cannot use

the thermomechanical noise calibration or the transduction coefficient to determine

the amplitude of the cantilever in metres. We confirm that a readout nonlinearity

exists by observation of harmonics in the mechanical frequency spectrum [163] when

the optical resonance shown in Figure 4.2(a) is used as the probe cavity and the

resonance shown in Figure 4.2(b) was used as the pump laser cavity. For these

measurements, zero detuning is redefined to the optical resonance of the blue side

of the split cavity. To explore this result further, the pump laser was set at the

optical resonance of Figure 4.2(b) and held fixed while the probe laser was swept

across the blue half of the split cavity. At each wavelength, the mechanical response

was measured at the fundamental resonance frequency (Figure 4.5(a)), as well as the

second (2f), third (3f), and fourth (4f) harmonics (Figure 4.5(d)–(f), respectively).

In addition to the harmonics, a distortion in the peak shape as the probe laser

detuning approaches zero is visible in Figure 4.5(a)–(c). This distortion, or dip,

is caused by the probe laser crossing through the bottom of the optical resonance

and moving from the blue side of the cavity to the red side during one mechanical

period of vibration [165]. Since the cavity shift is related to the mechanical ampli-

tude via the optomechanical coupling G, the location of the dip in the mechanical

response allows for experimental estimation of the cantilever’s amplitude. We note

the detuning before a dip is observed and the detuning after a dip is observed, which

correspond to the range of detunings where the cantilever starts to cross over the

bottom of the optical resonance. The dip is first observed at ∆ = 2π × 1.88 GHz.

The optomechanical coupling is equal to 0.99 rad GHz/nm, and so this detuning cor-

responds to an amplitude of 11.95 nm, meaning the amplitude is equal to or greater

than 11.95 nm. The last detuning before the dip is observed is ∆ = 2π × 2.00 GHz,

which gives an amplitude of 12.75 nm. The average value of these amplitudes is

12.3±0.4 nm, thus providing an experimental estimate of the amplitude despite the

readout nonlinearity.

We also experimentally confirm that the amplitude is generated by the optical

force induced by the pump laser, and not by self-oscillation induced by the probe

laser using the same high-amplitude device. For this test, the pump laser was

deactivated and the probe laser was positioned at the point of maximum slope on the

blue side of the optical cavity. To account for heating in the optical cavity introduced
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Figure 4.5: The mechanical response as the probe laser is swept through the cavity
detuning, with the pump laser held at a constant wavelength and DC power with
a 200 mV amplitude modulation applied at the EOM. The probe laser power in
the bus waveguide is 108 µW and the pump laser power in the bus waveguide is
260 µW. The responses are shown as contour maps. The fundamental resonance
frequency is shown in (a). Visible in these contour maps are dips in the response as
the detuning is decreased. These dips are shown in more detail in (b) and (c) and
are the result of the probe laser crossing the minimum of the optical resonance. (b)
shows the specific mechanical sweeps before and after the appearance of the dips as
the probe detuning is decreased. (c) shows the contour map in (a) divided by the
thermomechanical noise. The dips are present in this figure as the horizontal purple
line near zero mechanical detuning. Contour maps for (d) the second harmonic, (e)
the third harmonic, and (f) the fourth harmonic are also shown.
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by increased laser power, and the thermo-optic induced shift of the optical resonance,

the position of the probe laser was verified and shifted for each measurement to

ensure that the probe laser was positioned at the point of maximum slope. The

power in the probe laser was initially set to 77 µW and increased to 293 µW. The

results for this test are shown in Figure 4.6. The square root of the power spectral

density S
1/2
v is shown versus the mechanical frequency for increasing optical power in

Figure 4.6(a). The quality factor of the mechanical measurement versus the optical

power is shown in Figure 4.6(b).

Figure 4.6: Characterization of the self-oscillation behaviour of the optomechanical
system. The input power is increased from 77 µW to almost 300 µW with the probe
laser set to the point of maximum slope on the blue side of the optical cavity. The
power spectral density was recorded at each input power. The square root of the

power spectral density S
1/2
v is recorded at each optical power and plotted in (a).

The mechanical quality factor from each measurement is extracted from a curve fit
to the data in (b). From both (a) and (b), we can determine that the threshold for
self-oscillation is above 200 µW, because there is a sudden and substantial increase

in both S
1/2
v and the quality factor above this input power. Below this threshold, the

device has not entered self-oscillation. The probe input power must be kept below
this threshold to ensure that all measurements are not affected by the presence of
self-oscillation.

When the optical power is below 200 µW, the quality factor of the mechanical

resonance slowly increases for increasing power and the peak height of S
1/2
v also

slowly increases but is less than 4 × 10−4 V/Hz1/2. The slight increase in quality

factor and peak height is expected, since the optical damping is proportional to the

input optical power. Above 200 µW, the peak height and quality factor abruptly

increase to 2× 10−2 V/Hz1/2 and 366,000 respectively. This sudden and significant

increase in both the amplitude and quality factor indicates that the threshold for

self-oscillation has been surpassed, and that the optical power of the blue-detuned

probe laser is now driving the mechanical device into self-oscillation. This occurs for

optical powers greater than 200 µW. We can therefore conclude that self-oscillation
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is not a contributing factor to our previous measurements, and that the optical

gradient force is the cause of the device actuation, since the probe power in our

previous measurements was set to 108 µW. This value is well below the threshold

optical power required for self-oscillation, as demonstrated by Figure 4.6. We can

also use the quality factors observed in Figure 4.6(b) to confirm in our future mea-

surements whether we have surpassed the threshold for self-oscillation. If the quality

factor remains in the range of 10,000 to 50,000, as observed for the optical powers

below 200 µW, we can confirm that self-oscillation is not the dominant actuation

mechanism.

4.2.4 Comparison of Experimental Amplitudes to Theoretical Model

The experimentally measured and calibrated amplitudes are shown in Figure 4.7,

where (a) shows the data for devices with higher optomechanical coupling, and (b)

shows the data for devices with lower optomechanical coupling. The result cali-

brated using the dip in the mechanical spectrum is the largest observed amplitude.

The other five measurements were calibrated using both the thermomechanical noise

and the transduction coefficient. The amplitudes calibrated by using the thermome-

chanical noise are shown by the squares. The error bars are smaller than the symbol

size for all thermomechanically calibrated amplitudes, and the error is obtained from

the curve fit of Eq. (2.8) to the thermomechanical noise. The amplitudes calibrated

by the transduction coefficient are shown by black stars. Vertical error bars account

for errors in determining the optomechanical coupling and the cavity slope. The er-

ror bars are large because the optomechanical coupling was directly measured only

for one device, shown in Figure 4.3. From that measurement, the optomechanical

coupling for the remaining devices was calculated based on the exponential rela-

tionship between the optomechanical coupling and the gap between the device and

waveguide using Eq. (2.43). The gaps were measured directly from scanning electron

microscope images. Horizontal error bars account for errors in determining the cav-

ity linewidth from curve fits to the measured optical cavity transmission. The solid

lines are theoretical amplitudes calculated using Eq. (4.4). These amplitudes are

obtained by inputting the experimentally measured values for each device, such as

the cantilever lengths, resonance frequencies, mechanical quality factors, calculated

optomechanical couplings, and cavity linewidths. These calculations also account

for the different DC optical pump power used in each measurement. Recall that

during the experiment, the power was reduced to eliminate readout nonlinearities.

Therefore, this change in power must be accounted for in each measurement.

First, we compare the design and experiment for the case where the optomechan-

ical coupling is high, approximately equal to 1 rad GHz/nm. The device with a low

cavity linewidth, on the order of 25 rad GHz, has an optimized design. As a result,
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Figure 4.7: Comparison of the experimental amplitude to the amplitudes calculated
with the theoretical model. The stars are the experimental amplitude calibrated
using the transduction coefficient. The squares are the experimental amplitude
calibrated using the thermomechanical noise. The solid lines are the theoretical
amplitudes calculated using Eq. (4.4) that account for the experimentally measured
properties of the optomechanical system and the pump power in the bus waveg-
uide. The results for each device are grouped by colour; for example, the measured
amplitude, TM calibrated amplitude, and theoretically calculated amplitudes for
the same device are all shown by the same colour. (a) shows the results for high
optomechanical coupling, close to 1 rad GHz/nm. (b) shows the results for low
optomechanical coupling, approximately 0.32 rad GHz/nm. (b) also includes one
device where the pump was placed on a backscattered peak. The green dashed line
shows the theoretical amplitude after the model has been corrected with Eq. (4.6).
The probe laser power in all cases was 108 µW.
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the amplitude is very large and reaches 12.3 ± 0.4 nm. This result demonstrates

successful optical cavity design using Eq. (4.4) to achieve a high output amplitude.

The drawback is that this cantilever suffers from readout nonlinearities due to the

high amplitude. Another important result is that Eq. (4.4) is accurate despite the

presence of coherent backscattering in the probe optical cavity. The other two de-

vices, driven with low DC input power, have large γ, and therefore the amplitudes

are lower than ideal. The experimentally measured amplitudes, calibrated using

both the thermomechanical noise and the transduction coefficient, are below the

predicted amplitude. The result from the thermomechanical noise calibration is

also smaller than the transduction coefficient calibration.

The results for devices with low optomechanical coupling are shown in Fig-

ure 4.7(b). The experimental results calibrated with the thermomechanical noise

are lower than the experimental amplitudes calibrated with the transduction coeffi-

cient. The experimental values calibrated with the transduction coefficient are close

to within error of the values calculated using Eq. (4.4) with the exception of the

narrowest cavity linewidth. For the narrowest linewidth, the predicted amplitude

is approximately a factor of 1.5 greater than the measured amplitude. For this de-

vice, the pump laser was placed on the backscattered cavity shown in Figure 4.4(a).

Therefore, the power enhancement in the optical cavity is reduced, providing less

driving force to the cantilever. We apply Eq. (4.6) to the original calculation of

Eq. (4.4) to account for the reduction in power enhancement. This correction pro-

duces the green dashed line seen in Figure 4.7(b). This updated theoretical value

is within error of the measured value. To correctly estimate the amplitude, the

power enhancement reduction when the pump is placed in a backscattered cavity is

important to include in the model.

For both the high and low optomechanical coupling coefficients, the amplitude

calibrated with the thermomechanical noise is smaller than the amplitude calibrated

with the transduction coefficient. There are some potential causes for this. For some

devices, the mechanical resonance had a slight background signal when the AC mod-

ulation was activated, which may affect the calibration. Some devices also had a

slightly higher noise floor at 2f , although no clear signals were observed. It is pos-

sible that this is an indicator of a slight readout nonlinearity. As we will discuss

in Chapter 5, a readout nonlinearity would significantly impact the accuracy of the

thermomechanical noise calibration as the energy of the mechanical signal may be-

come spread out over several higher order harmonics instead of remaining localized

in the signal at the fundamental mechanical resonance frequency. The calibration

using the transduction coefficient would be affected to a lesser extent, since that

calibration depends mainly on the properties of the optical cavity. However, this

calibration is also somewhat suspect for large amplitudes, since the slope of the
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optical cavity and the term ∂neff/∂x are only linear for small deflections x. Clearly,

precise determination of the mechanical amplitude, especially when large ampli-

tudes are achieved, is not a straightforward issue. The model we have presented in

Eq. (4.4) provides yet another avenue to estimate the amplitude. Corroborating the

model with the data presented in Figure 4.7, we can conclude that the transduc-

tion coefficient may be a better estimate of the amplitude than calibration with the

thermomechanical noise at large amplitudes of vibration.

Regardless of the method of amplitude calibration, we can see from examination

of Figure 4.7 that the model presented in Eq. (4.4) provides an excellent path for-

ward for the design of optomechanical systems for efficient actuation. In comparing

Figure 4.7(a) and (b), we clearly see that higher optomechanical coupling is benefi-

cial for increasing the amplitude of vibration, as the unoptimized designs with high

optomechanical coupling had amplitudes comparable to the best designs with low

optomechanical coupling. This trend was predicted by Eq (4.4) and demonstrated

in Figure 4.1. We also see that there is an optimal range for the cavity loss rate,

which leads to an improved amplitude of vibration. This trend was also suggested

by the model we derived. The amplitude decreases quickly if the cavity loss rate is

too low, and more slowly if the cavity loss rate is higher than optimal. It is therefore

not beneficial for the cavity loss rate to be too low, and so slightly lower Q optical

cavities are more desirable for this application.

Finally, we would like to quantify the improvement that the optimized optome-

chanical system designed using this model provides over an unoptimized design. To

accomplish this, we can compute the amount of optical power used experimentally

to achieve the peak amplitude shown by the black star in Figure 4.7(a). The AC

optical power in the bus waveguide required to actuate this device to 12.3 nm was

34 µW. We can use Eq.(4.4) to calculate the equivalent amount of power required

to achieve the same amplitude for the unoptimized cavity shown by the red star in

Figure 4.7(b). This device is does not have an optimized optomechanical coupling

or cavity linewidth. To achieve the same amplitude with this device, an AC optical

power of 133 µW would be required. This is a 3.85 times increase in the AC opti-

cal power. This calculation demonstrates that an optimized optomechanical system

designed using Eq. (4.4) is approximately four times more efficient than an unopti-

mized design. Therefore, our model successfully reduces the power requirements for

an optomechanical mass sensor.

4.3 Conclusion

We have derived and tested a simple model to design optomechanical systems for

efficient optical actuation via the optical gradient force. Efficient actuation is im-

portant in sensor applications to reach the maximum dynamic range of the op-
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tomechanical system, while keeping overall power consumption as small as possible.

By comparing experimental results to the theoretical model, we use the model to

successfully design optomechanical systems that have high amplitudes of vibration.

We demonstrate that a driven amplitude of 12 nm is achieved by optimizing the

optomechanical coupling and the optical cavity linewidth. To achieve the same am-

plitude with an unoptimized cavity, the AC optical power must be increased by

approximately four times.

We have also explored the effect of coherent backscattering on optomechanical

systems. If the probe cavity is backscattered, the split optical cavity behaves as

two independent cavities and no further modeling is needed. If the pump cavity is

backscattered, additional modeling is required to account for coherent backscatter-

ing. Backscattering reduces the amount of driving force delivered to the cantilever

as the power enhancement is reduced. To avoid the reduction in efficiency caused by

coherent backscattering, the pump laser should be positioned at a non-backscattered

optical resonance.

Our simple model predicts that higher optomechanical coupling produces more

efficient actuation via the optical gradient force. The cavity loss rate is also an

important consideration; a cavity loss rate that is too low reduces the efficiency of

the technique, however, a high optical cavity loss rate is also not beneficial. There

is an optimal range for the cavity loss rate the must be considered in the design of

the optomechanical system. We verify this result experimentally and confirm the

model’s validity for designing optomechanical systems for efficient actuation. By

following the design rules set in our model, we can increase the amplitude of the

nanomechanical mass sensor and therefore increase the dynamic range for a given

input power. In this case, we have demonstrated that the maximum dynamic range

of the cantilever has been reached, since we have observed a nonlinearity in the

output. This represents an improvement on previous cantilever designs [69], which

had mass sensitivity in the zeptogram range without reaching the full dynamic range

of the mechanical sensor.
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Chapter 5

Transduction of Large
Amplitudes with Racetrack
Resonators

Nonlinear behaviour in micro- and nanomechanical devices is important for many

reasons. If the mechanical device is used as a sensor, nonlinearities are detrimen-

tal and much work has been devoted to eliminating or avoiding the nonlinearities

in order to increase the dynamic range of the sensors [18, 209, 210]. For other

applications, such as in quantum optics or oscillator circuits, nonlinearities are es-

sential. For example, it has been shown that mechanical Duffing nonlinearities can

help prepare squeezed mechanical states [211], and can also help form autonomous

oscillators [212]. Regardless of the application of the nanomechanical device, un-

derstanding its nonlinear behaviour is crucial. For these reasons, it is important

to understand how the actuation and readout methods can introduce nonlinearities

into a nanomechanical system. For some actuation and readout techniques, non-

linearities are well understood. One example is in capacitive transduction, where

nonlinear effects due to pull-in are well studied and the effects can be quantified

and tuned [213, 214]. When the actuation and readout is optomechanical, however,

nonlinearities in the transduction are not as well explored [43, 154, 166, 215, 216].

In optomechanics, the complex interaction between the nanomechanical device and

the optical cavity can lead to a wide range of nonlinear effects. In addition to the

purely mechanical nonlinearities observed such as stiffening and softening mechani-

cal nonlinearities, such as those seen in Section 3.2, nonlinear coupling between the

mechanical device and the optical cavity can be achieved [217], and both radiation

pressure force and dispersive optical forces are inherently nonlinear [218, 219].

For mass sensing nanomechanical devices, the nonlinearities of interest are those

that limit the dynamic range of the sensor [20]. For doubly clamped beams, this

nonlinearity is typically the mechanical Duffing nonlinearity. Cantilevers, however,

have a significantly higher threshold for mechanical nonlinearity, since the onset of
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mechanical nonlinearity is proportional to the length of the cantilever, instead of

the thickness [197, 209]. Therefore, the type of nonlinearity that a cantilever will

encounter at the peak of its dynamic range in an optomechanical system is much

more likely to be from another source. In this chapter, we explore the sources of

nonlinearity affecting the dynamic range of a cantilever that is both actuated and

read out optomechanically. We examine both a readout nonlinearity and optical

force nonlinearities caused by the large amplitude of the cantilever. We present a

numerical model that separates both the mechanical and optical outputs from the

system, allowing us to understand the dynamics of the system even when readout

nonlinearities obscure the experimental results.

In this chapter we will study the simultaneous effects of both a pump and probe

laser on the nonlinear behaviour of a nanomechanical cantilever coupled to a race-

track resonator. Previous work has studied the effects of a single pump laser actu-

ating a nanomechanical cantilever via the optical gradient force [219]. The addition

of the probe laser into the system greatly increases the complexity and produces

unexpected behaviour. We first describe the mathematical background for nonlin-

ear mechanical resonators in Section 5.1. In Section 5.2, we provide details on the

fabrication and initial characterization of the optomechanical system. In Section 5.3

we show the experimental results, beginning with the experimental observation that

positioning the probe laser on the blue side of the optical cavity results in a soften-

ing effect, and that positioning the probe laser on the red side of the cavity results

in a stiffening effect. This is directly opposite to what is described in Section 2.3

for a typical optomechanical system. We also demonstrate experimentally that the

thermomechanical noise calibration described in Section 2.1.1 does not hold for our

optomechanical system under our experimental conditions. We attribute this to a

readout nonlinearity, which also introduces harmonics into the mechanical frequency

spectrum. We observe these harmonics experimentally and discuss how they are

linked to the readout nonlinearity. We will then explore in depth the cause of the

unexpected stiffening and softening behaviour. By utilizing an analytical model for

the optical force nonlinearity previously demonstrated in [219], we can begin to ex-

plain some of our experimental observations. This model incompletely describes our

system, leaving the optomechanical system behaviour at zero detuning unexplained.

To model our pump-and-probe optomechanical system, we derive a numerical model

that includes both lasers and can be used to account for the optical force nonlin-

earity introduced by the probe laser position in the optical cavity. To describe the

optomechanical system, including the behaviour at zero detuning, we demonstrate

that the optical force nonlinearity introduced by the evanescent field outside of the

waveguide is crucial to include in the numerical model. By including this additional

source of nonlinearity in the numerical model, we can correctly identify the soften-
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ing and stiffening behaviour at every detuning. This numerical model also allows

us to estimate the amplitude of the mechanical device, which is beneficial since the

thermomechanical noise calibration is ineffective in this case. In Section 5.4 we dis-

cuss the results in further detail, highlighting the three different contributions to the

nonlinearity; the readout, the optical cavity force, and the optical evanescent force.

We conclude in Section 5.5 and determine that unexpected experimental results

caused by our pump-and-probe transduction technique, and the numerical model

we derive to help explain these results, forms a unique contribution to the study of

optomechanical nonlinearities.

5.1 Theoretical Description of Nonlinear Resonators

To determine the upper bound on the dynamic range of a sensor, one experimental

approach is to gradually increase the driving power until a nonlinearity is observed.

Previous studies have demonstrated that there are several potential sources of non-

linearity for nanomechanical resonators. As shown in Section 3.2, geometric or

mechanical nonlinearities can dominate the performance of doubly clamped beams.

In the case of cantilevers, the onset of geometric nonlinearity is proportional to

the device length according to acr,mech = 6.3lm/Q
1/2 [209]. Using this relation, the

mechanical critical amplitude for the cantilever measured here, with a length of

2.89 µm, is expected to be approximately 180 nm. This amplitude is double the

size of the gap between the cantilever and the waveguide and therefore we reason-

ably expect that another source of nonlinearity will occur before the mechanical

nonlinearity is reached. Our goal with these measurements is to find the onset of

nonlinearity, and to determine the source of this nonlinearity. Once we know the

source of the nonlinearity, we may be able to design future devices with higher lin-

ear ranges to improve the performance of the mass sensing devices. Other potential

sources of nonlinearity include actuation nonlinearity, which has been observed in

cantilevers under electrostatic actuation [213, 220]. This type of nonlinearity affects

the amplitude that can be attained with a given actuation method. Another type

of nonlinearity is a readout nonlinearity. This type of nonlinearity can result in a

nonlinear relationship between the amplitude of the nanomechanical device and the

output signal that is measured [38], but does not affect the actual amplitude of the

device.

The behaviour of a nonlinear resonator, regardless of the source of nonlinear-

ity [221], can be described by a similar differential equation to Eq. (2.4). Two ad-

ditional terms are included in the differential equation to account for the quadratic

and cubic nonlinearities, as shown in the following differential equation [219, 222]:
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meff
d2x

dt2
+
meffΩ0

Q

dx

dt
+ keffx+meffα2x

2 +meffα3x
3 = F (t), (5.1)

where x is the amplitude of the mechanical device, t is time, meff is the effective

mass, Ω0 is the fundamental resonance frequency, Q is the mechanical quality factor,

keff is the effective spring constant, α2 is the second-order or quadratic nonlinearity

coefficient, and α3 is the third-order or cubic nonlinearity coefficient, and F (t) is

the applied driving force. A nonlinear resonator with α3 as the dominant nonlin-

earity term is usually referred to as a Duffing resonator. Experimentally, a Duffing

resonator has a frequency resonance curve with a shark-fin shape and exhibits bi-

stability.

The onset of nonlinearity, called the critical amplitude acr, is generally considered

to be the upper bound on a sensor’s dynamic range [20, 21, 197, 214, 219]. The

critical amplitude is the point at which the Lorentzian lineshape of the mechanical

signal begins to exhibit the shark-fin shape. Mathematically, this can be described

as d2Ω/(dB2
NL)2 = 0, where BNL is the frequency-dependent nonlinear amplitude of

the resonator. The critical amplitude is described as [222]

acr =

(
8Ω2

0

3
√

3Qα

)1/2

, (5.2)

where α is the combined quadratic and cubic nonlinearity terms. To combine the two

nonlinearity terms into a single term describing the nonlinearity of the resonator,

we can use the expression [223]:

α = α3 − 10α2
2/9Ω2

0. (5.3)

The critical amplitude can be calculated as long as the total nonlinearity is

known. Eq. (5.2) gives a detuning-dependent critical amplitude, since α is a function

of the detuning ∆.

The experimental procedure for determining the critical amplitude is to increase

the drive power linearly, and record the peak amplitude and frequency of the me-

chanical device. The results of this experiment produce a plot of amplitude versus

frequency that is often referred to as the “backbone” curve of a nonlinear device.

To extract the nonlinearity coefficient from this curve, we use the following expres-

sion [222]:

apeak =

√
8

3

Ω0(Ωpeak − Ω0)

α
, (5.4)

where α is positive for a stiffening nonlinearity and negative for a softening nonlin-

earity.

Another approach to determining the critical amplitude is using the 1 dB com-

pression point. This technique was used in Section 3.2 for a doubly clamped beam.
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The 1 dB compression point is where the amplitude falls to 1 dB below the linearly

expected trend. The 1 dB compression point is related to the critical amplitude via

Eq. (3.6). The same experimental procedure of obtaining the peak amplitude for

increasing drive power described in the previous paragraph is used. In this case,

however, the peak amplitude is plotted versus the input drive power. A linear trend

can be determined from the results at low drive power. At the drive power increases,

the amplitude no longer follows the linear trend, and is smaller than predicted by

the linear trend. The 1 dB compression point is obtained from comparing the peak

amplitudes at high drive power to the linearly expected tend. This is a straightfor-

ward method to experimentally determine the critical amplitude, although not as

mathematically rigorous as the previously described approach.

With this description of nonlinear resonators in mind, we can begin character-

ization of the pump-and-probe optomechanical system to determine the sources of

nonlinearity and therefore the upper bound on the dynamic range of the device for

mass sensing.

5.2 Optomechanical System Fabrication and Character-
ization

The optomechanical system was fabricated on a silicon-on-insulator chip with a

220 nm thick device layer and a 2 µm thick sacrificial oxide layer. The mechanical

device has a length of 2.89 µm, which is coupled to an optical racetrack cavity. The

cantilever was 220 nm wide and 130 nm thick and the gap between the racetrack

resonator and the cantilever was approximately 90 nm. The racetrack resonator had

5 µm radius with a straight coupling section 3 µm long. The waveguides width was

500 nm and the coupling gap between the bus waveguide and the racetrack resonator

was 250 nm. Grating couplers were used to couple the incident light into the bus

waveguide. The optomechanical system was fabricated at imec. Post-processing

to release the devices was completed at the University of Alberta NanoFab. The

only post-processing required was a buffered oxide etch to release the cantilever.

This was a timed, maskless process to release the narrow waveguides while keeping

the waveguides attached to the oxide layer. A scanning electron microscope (SEM)

image of the mechanical cantilever device before release is shown in Figure 5.1.

For characterization, we use the free-space confocal microscope setup described

in Section 2.4. The DC component of the signal is used to characterize the optical

cavity, while the AC component is sent to a digital lock-in amplifier and used to

characterize the mechanics of the system. To actuate the devices, we use the optical

driving technique described in Chapter 4. The driving frequency is set by the lock-in

amplifier.

First, we characterize the response of the optical racetrack cavity. The pump
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Figure 5.1: Scanning electron microscope (SEM) image of the nanomechanical can-
tilever adjacent to an optical racetrack resonator.

laser is deactivated and the wavelength of the probe laser is swept to measure the

optical response over a wide wavelength range from 1530 nm to 1570 nm, as shown

in Figure 5.2(a). Three optical cavity resonances are observed, with an FSR of

approximately 14.5 nm. The first two optical cavity resonances show peak splitting,

which is caused by coherent backscattering. For the following experiments, the pump

laser is placed at the bottom of the highest wavelength resonance unless otherwise

specified. The probe wavelength is positioned on the side of the centre optical cavity,

close to 1548 nm.

A fine scan is used to provide detailed information about the blue half of the

split optical cavity, as it is the optical cavity used to measure the optomechanical

interaction. The scan was first performed at low power, with approximately 77 µW

in the bus waveguide (Figure 5.2(c), blue circles). The response begins at 0 dB

on the blue side of the cavity, but does not reach 0 dB on the red side due to the

peak splitting effect. The power was then increased to 108 µW (Figure 5.2(c), red

circles). As the power increased, asymmetry in the optical cavity was observed and

the optical resonance increased in wavelength.

Potential sources of nonlinearity in silicon photonic integrated circuits include

thermal nonlinearities and free carrier effects such as free carrier dispersion [224,

225, 226, 227, 228]. Free carriers are generated through two-photon absorption.

Two-photon absorption can occur when the bandgap energy is less than two times

the photon energy. For example, the bandgap of silicon is 1.12 eV. The energy of

a photon at 1550 nm is 0.8 eV. Therefore, the combined energy of two photons is

larger than the bandgap of silicon. This means that two photons can combine to

excite an electron from the valence band to the conduction band, generating free

carriers in the silicon waveguide. Two-photon absorption is an intensity-dependent
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Figure 5.2: (a) Sweep of the optical cavity response over a wide wavelength range.
Three resonances are observed. The two lowest wavelength resonances exhibit peak
splitting, but the highest wavelength response has no splitting and shows good
extinction. For the following experiments, the probe is set to the side of the slope
in the middle cavity. The pump is set to the bottom of the third resonance unless
stated otherwise. (b) Coarse sweep of the probe optical cavity. Peak splitting is
observed. (c) Fine sweep of the probe optical cavity at 77 µW (blue circles) and the
corresponding curve fit (solid line). The experimental cavity data does not reach
0 dB on the red side because of the peak splitting. A second sweep at 108 µW (red
circles) is also shown, with a theoretical model approximating the behaviour of the
optical cavity (dashed line).
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process, and therefore we would expect this to increase as the input laser power

increases [229]. The free carriers generated as a result of two-photon absorption can

have two effects, free carrier absorption (FCA) and free carrier dispersion (FCD).

FCA leads to increased absorption in the silicon waveguide but does not alter the

resonance wavelength of the racetrack resonator. The resonance wavelength is, how-

ever, affected by FCD. FCD induces a decrease in the refractive index proportional

to the number of free carriers [230]. A decreasing silicon refractive index results in

an overall decrease in the effective index of the silicon waveguide. The optical path

length also decreases, and the resonance wavelength decreases. Therefore, a blue

shift in the racetrack resonance wavelength is expected for nonlinearities introduced

by FCD.

Thermal nonlinearities in microring or racetrack resonators arise because of the

large thermo-optic coefficient in silicon. The thermo-optic coefficient, or how much

the refractive index of a material shifts with temperature, is 1.8 × 10−4 K−1 at

room temperature [231]. Processes such as FCA can lead to increased heating in

the silicon waveguide due to phonons that are generated when electrons and holes

recombine. Two-photon absorption is also a source of additional heat. Heating ef-

fects are amplified in racetrack resonators near resonance because of the high power

enhancement. As the wavelength is swept from the blue side of resonance to the red

side, the power in the racetrack increases as the wavelength approaches resonance

and also maximum power enhancement. Absorption and heating also increase. This

results in an increase in the refractive index because the thermo-optic coefficient in

silicon is positive, and therefore an increase in the effective index of the waveguide.

The path length of the cavity effectively increases, causing an increase in the res-

onance wavelength. Therefore, a thermal nonlinearity produces a red shift in the

racetrack resonance wavelength. As the wavelength is swept past the optical reso-

nance, the power enhancement in the racetrack resonator decreases and the heating

effects also decrease. The index changes induced by the thermo-optic effect will

reduce as well, and the resonance shifts back to its original position. This produces

an asymmetric optical resonance, where the blue side of the resonance is elongated,

and the red side of the resonance exhibits a sharp decrease. At high powers, this

effect can result in hysteresis in the measurement of the optical spectrum [232].

The asymmetry and red shift observed in our data indicate that the dominant

source of nonlinearity is a thermal nonlinearity. There may simultaneously be FCD

occurring in the racetrack resonator, however, the blue shift expected from that

effect is obscured by the large red shift introduced by the thermal nonlinearity.

To account for this effect, we first fit the data recorded at low input power using

Eq. (2.25), the standard power coupling equation for an all-pass microring resonator.

Using the values obtained for τ and art, we can develop a model for the nonlinearities
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in the higher power sweeps. The equation for nonlinear transmission through an

all-pass racetrack resonator can be derived using the power coupling formalism [94].

The result of this derivation is the inclusion of a nonlinear phase φNL to Eq. (2.25),

such that the total round trip phase is equal to φ + φNL. However, this equation

cannot be used alone to perform a curve fit to the experimental data because the

nonlinear phase changes throughout the entire wavelength sweep, depending on the

proximity to the optical resonance. To solve for the nonlinear phase at each point in

the optical resonance, we use the expression for the nonlinear amplitude inside the

optical cavity. By taking the square of the absolute value of the amplitude in the

racetrack resonator and simplifying the result we obtain the following expression [94]:

1

1 + F sin2(φ+φNL
2 )

= −
cφNLn

2
effAeff

n2n2ωPmaxLeff
, (5.5)

where F is the contrast of the racetrack resonator and is defined as F = 4τart/(1−
τart)

2 for a racetrack in the all-pass configuration, n is the bulk index of the silicon

and is equal to 3.45, n2 is the nonlinear index of the silicon waveguides, Pmax is the

peak power inside the racetrack on resonance, and Aeff is the effective modal area

of the waveguide. Both neff and Aeff can be obtained using commercial mode solver

software [171]. Finally, Leff = (1−e−α0Lc)/α0 is the effective length of the racetrack

resonator, which accounts for the optical loss of the waveguide α0 in units of 1/m,

and Lc is the physical cavity length. All of these parameters are known or can be

solved for using simulation, with the exception of n2. This nonlinear index describes

how the effective index of the waveguide changes as a function of intensity. This

parameter is not known for this specific racetrack resonator configuration. Although

it is possible to measure this value experimentally [224], it is sufficient in our case

to use this value to tune the nonlinear index. Essentially, we can use n2 as a free

parameter, and vary it to produce a range of nonlinear phase shifts from Eq. (5.5).

Then the nonlinear phase is substituted back into Eq. (2.25) to produce a model

of the optical transmission. To determine the correct value for n2, we extract the

wavelength shift observed when the power is increased from 77 µW to 108 µW from

the experimental data. We can then adjust n2 in the model until the correct shift

is observed between the curve fit to the 77 µW data and the model. The model

for the higher power data is shown in Figure 5.2. Although this model is not a

curve fit, it does provide a good estimate of the curve shape. The properties of

the probe and pump optical resonances are summarized in Tables 5.1, 5.2, and 5.3.

The probe laser is maintained below the threshold for self-oscillation determined

experimentally in Chapter 4. The pump laser is always positioned at zero detuning

to avoid introducing self-oscillation.

Once the optical cavity parameters have been determined, the mechanical prop-

erties of the system can be studied. Based on the dimensions observed in the SEM
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Table 5.1: List of probe optical cavity properties (λ ≈ 1548 nm)

Parameter Value Unit

art 0.9977 -
τ 0.9952 -
γ 12.8 rad GHz
γex 8.6 rad GHz
Pbus 107.8 µW
ω0 2π × 193.8 rad THz

Table 5.2: List of pump optical cavity properties (λ ≈ 1560 nm)

Parameter Value Unit

art 0.9934 -
τ 0.9902 -
γ 26.2 rad GHz
γex 17.6 rad GHz

Pbus,DC 258.2 µW
Pbus,AC 34.4 µW
ω0 2π × 192.2 rad THz

Table 5.3: List of pump optical cavity properties (λ ≈ 1535 nm)

Parameter Value Unit

art 0.9936 -
τ 0.9952 -
γ 20.3 rad GHz
γex 8.75 rad GHz

Pbus,DC 170 µW
Pbus,AC,minimum(Simulation) 1.13 µW
Pbus,AC,maximum(Simulation) 22.7 µW

ω0 2π × 195.8 rad THz
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image in Figure 5.1, we can calculate the effective mass of the cantilever as 48 fg (1

fg= 10−15g). We can also determine the noise floor of the system, which in turn can

be used to establish the bottom of the dynamic range of the sensor [18, 20]. This

noise floor is established by the thermomechanical noise of the cantilever, which is

measured by setting the pump laser modulation off and measuring the mechanical

response with the lock-in amplifier. The result of this measurement can be seen in

Figure 5.3, and is expressed in terms of the detuning from cavity resonance. In this

case, the optical cavity resonance ω0 is set to the bottom of the optical resonance

curve at the higher power of 108 µW (red dots in Figure 5.2(c)). The data has

been smoothed to reduce the vibrational noise introduced by the vacuum pump.

From Figure 5.3, we can determine that centre mechanical resonance frequency is

Ω0 = 2π × 21.1956 rad MHz, which is the frequency at zero detuning where the

optical spring effect vanishes. The observation of the thermomechanical noise shows

that we can access the noise floor of our device even at large detunings where the

mechanical transduction by the optical cavity is not efficient. The average qual-

ity factor of the measurements in Figure 5.3 is 10,000, and therefore we set the

mechanical Q = 10, 000.

The final characterization is the optomechanical interaction. One of the most

important parameters defining the optomechanical interaction is the optomechanical

coupling coefficient G = ∂ω/∂x, which describes the strength of the interaction

between the mechanical resonator and the optical cavity. There are several ways

to determine the optomechanical coupling coefficient, one of which is by measuring

the thermomechanical noise of the mechanical resonator at a variety of detunings.

If the optomechanical coupling is sufficiently large, frequency shifts caused by the

optical spring are observed. These shifts can be used to calculate the optomechanical

coupling. This procedure is described in detail in Chapter 4. From Figure 5.3, we

can extract the peak values of the mechanical response at each detuning and use

this to calculate the optomechanical coupling coefficient. The resulting value is

G = 0.987 rad GHz/nm. The mechanical properties of the system are summarized

in Table 5.4.

Table 5.4: List of mechanical properties

Parameter Value Unit

G 0.987 rad GHz/nm
Ω0 2π × 21.1956 rad MHz
Q 10,000 -
meff 47.7 fg

With the optical, mechanical, and optomechanical properties of the system with-

out a driving force known, we can introduce the pump laser to provide actuation

through the optical gradient force. This increases the complexity of the system, as
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Figure 5.3: Experimental measurement of the thermomechanical noise of the can-
tilever, smoothed to eliminate noise introduced by vacuum pump vibrations. This
result can be used to extract the optomechanical coupling coefficient.
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we will see in the following section.

5.3 Large Amplitude Nonlinearities

To characterize the nonlinear behaviour of the optomechanical system using a pump-

and-probe actuation and detection approach, we gradually increase the applied AC

optical force and measure the mechanical amplitude response. We set the pump

laser wavelength to the lowest point of the first optical resonance in Figure 5.2(a),

and therefore the values listed in Table 5.3 apply. We activate our amplitude EOM

and use the lock-in amplifier to increase the voltage applied to the EOM, thereby

increasing the AC amplitude of the actuation power applied to the cantilever. The

probe laser was positioned at the point of maximum slope on both the red and blue

side of the optical cavity transmission from Figure 5.2(c), to maximize the signal-to-

noise ratio of the mechanical signal. This corresponds to a detuning of approximately

±0.61 GHz. The lock-in amplifier was used to sweep the frequency of the voltage

drive across the mechanical frequency spectrum to obtain driven measurements of

the mechanical device. As the applied AC optical force was increased, nonlinearity

was observed for both red and blue detuning. A stiffening nonlinearity was observed

in the red-detuned measurements, whereas a softening nonlinearity was observed in

the blue-detuned measurements. This is opposite to the behaviour described by the

optical spring effect in Section 2.3. We will investigate the cause of this result in

Section 5.3.1. To determine the critical amplitude, the data recorded in voltage by

the lock-in amplifier must be converted to metres. The thermomechanical noise is

used to calculate the responsivity for use as a calibration factor, using the method

from Section 2.1.1. We have performed the conversion using the responsivity from

volts to metres on the data to produce Figure 5.4. Using the 1 dB compression

point approach described in Section 5.1, we can use Figure 5.4 to determine that

the critical amplitude for the mechanical device measured with a blue-detuned probe

laser is 1.9 nm. The critical amplitude for the same device measured with a red-

detuned probe laser is 3.6 nm.

The amplitudes shown in Figure 5.4 are significantly smaller than expected for

the driving force input to the system. The driving force Fopt applied to the device is

calculated using Eq. (2.41). All of these parameters are known experimentally from

the measured optical cavity responses. The force calculated from this expression can

be converted to a corresponding amplitude using the simple relation for a damped

harmonic oscillator, Fopt = kx/Q, where k = meffΩ2
0 is the spring constant, x

is the amplitude, and Q is the quality factor. These values are known from the

characterization of the mechanical device in the previous section. Using these well-

known relationships, we can estimate that the largest amplitude in Figure 5.4(a)

should be 6.3 nm. The largest amplitude in Figure 5.4(b) should be 20.7 nm,
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Figure 5.4: The frequency response of the cantilever in nanometres as the driving
voltage is increased with the probe laser positioned on the (a) blue and (b) red sides
of the optical cavity. The apparent amplitude is calculated using the thermome-
chanical noise calibration and assumes there is no readout nonlinearity. The power
of the probe laser in the bus waveguide is 154 µW. The DC power of the pump laser
in the bus waveguide is 170 µW. For (a), the AC power is increased from 1.13 µW
to 7.93 µW. For (b), the AC optical power is increased from 1.13 µW to 39.7 µW.
The pump laser frequency is held constant for both measurements. When the probe
laser is positioned on the blue side, a softening effect is observed. When the probe
laser is positioned on the red side, a stiffening effect is observed. This is opposite to
the expected result in optomechanical systems.
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as a significantly larger voltage was applied to this measurement. The expected

amplitudes are a factor of 2.5–4.5 times larger than the observed amplitudes, which

is the first indication that there may be an issue with the calibration using the

responsivity obtained from thermomechanical noise.

To obtain more information about the driven optomechanical system, we can

perform a sweep of the mechanical signal at different detuning points in the optical

cavity. We move the pump laser to the highest wavelength optical resonance in

Figure 5.2(a), to improve the efficiency of the driving laser power by moving it to a

non-backscattered peak. It also eliminates any possibility that the drive laser could

shift from one minimum of the split cavity to the next, since the highest wavelength

optical resonance does not exhibit any peak splitting. The pump laser power was set

to a DC value of Pbus,pump = 258 µW. A constant voltage of 200 mV was applied to

the EOM, producing an AC power of 34 µW in the bus waveguide. The probe laser

was activated and set to Pbus,probe = 108 µW. Next, the probe laser wavelength was

swept through the optical cavity, starting at the far blue-detuned side and increas-

ing the wavelength to sweep through the cavity. At each wavelength position, the

frequency response of the cantilever was measured using the lock-in amplifier. The

frequency response at the fundamental resonance frequency was recorded, as well

as data from higher harmonics (2Ω/2π, 3Ω/2π, and 4Ω/2π). The results of these

sweeps are shown in Figure 5.5. There are clear signals at all of the higher harmonics

measured, which is indicative of a readout nonlinearity. This readout nonlinearity is

apparent when a driving force is applied, since the thermomechanical noise only has

a component at the fundamental resonance frequency. This indicates that the non-

linearities are induced by the large amplitude of oscillation of the cantilever device,

and are most likely related to a readout nonlinearity as opposed to an optome-

chanical nonlinearity induced by the optical force as observed in [219]. However, a

softening effect appears as the probe laser wavelength approaches the cavity centre

from the blue side in Figure 5.5(e). A stiffening effect is visible as the probe laser

wavelength moves past zero detuning and onto the red side. These effects are consis-

tent with Figure 5.4, and are not observed in other reports of nonlinearities caused

purely by readout [163, 233, 234]. From this result, we conclude that there are at

least two sources of nonlinearity present in the system; a readout nonlinearity and

another source of nonlinearity.

To confirm that the harmonic components observed in Figure 5.5 are caused by

a readout nonlinearity, and not another source of nonlinearity that induces higher

order harmonics such as second-order optomechanical coupling [215], we examine

the relationship between the harmonics and the optical cavity. If the optomechanical

nonlinearity observed is caused mainly by a nonlinearity in the transduction, the

shape of the optical cavity and its derivatives will correspond to the peaks of the
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Figure 5.5: The frequency response of the cantilever as the probe laser is swept
through the optical cavity. In the bus waveguide, the probe power is 108 µW, the
DC pump power is 258 µW, and the AC pump power is 34 µW. (a) The response at
the fundamental resonance frequency. The black arrows show the peak height trend
as the detuning is decreased. (b)–(d) The harmonic components at 2Ω/2π, 3Ω/2π,
and 4Ω/2π, respectively. The harmonics are indicative of a readout nonlinearity.
(e) The fundamental response is re-plotted to show the changing nonlinearity as
the detuning is decreased. In the first panel, very little nonlinearity is observed for
large positive (blue) detuning. In the second panel the detuning approaches zero. A
softening nonlinearity is observed and the peaks begin to have dips. The last peak
without a dip is at ∆ = 2.0 GHz and the first peak with a dip is at ∆ = 1.88 GHz.
The frequency difference between these peaks and ∆ = 0 can be used to estimate
that the amplitude is 12.3 ± 0.4 nm. In the third panel, a stiffening nonlinearity
is seen for negative detuning. The stiffening and softening nonlinearities are not
caused by a readout nonlinearity.
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harmonics observed in Figure 5.5. The voltage peaks are extracted from Figure 5.5

for the first and second harmonic, then normalized to one. The normalized values

are plotted versus the detuning. The voltages where the mechanical phase is shifted

by π are denoted as negative voltages. The result of this calculation is shown in

Figure 5.6, where the fundamental peaks are represented by the blue circles, and

the second harmonic peaks are represented by the red circles. We can then compare

these curves to the derivatives of the nonlinear optical cavity model shown by the

dashed line in Figure 5.2(c) and plotting the results versus the detuning. The first

and second derivatives are shown in Figure 5.6 and are represented by the blue and

red dashed lines, respectively.

Figure 5.6: The peak value of the mechanical signal is shown for the fundamental
frequency (blue circles) and second harmonic (red circles). These peaks are extracted
from Figure 5.5(a) and (b). The first (blue) and second (red) derivatives of the
nonlinear optical cavity are shown by the dashed lines. A moving average of the
first (blue) and second (red) derivatives with a window size equal to the peak-to-
peak amplitude of the nanomechanical cantilever is shown by the solid lines. There is
excellent agreement between the experimental peaks and the moving average of the
first and second derivatives. This demonstrates that the harmonics in the mechanical
frequency spectrum are directly related to the shape of the optical cavity and are a
result of a readout nonlinearity. The large window of the moving average indicates
that the readout is also directly affected by the large amplitude of the cantilever.

The derivatives represent the slope and curvature of the cavity at an instanta-

neous point along the optical resonance. However, the large-amplitude cantilever in

this experiment samples significantly more than a single point during one period of
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vibration. The optical cavity slope may be an accurate measure of the transduc-

tion for small amplitude vibrations such as the thermomechanical noise or doubly

clamped beams [67, 69], but this does not hold for a driven cantilever where the

amplitudes are large enough to move past the approximately linear section of the

Lorentzian optical resonance. To more accurately map the slope and curvature that

the cantilever samples as it moves through one period of vibration with a large am-

plitude, we take a moving average of the first and second derivatives of the optical

cavity. The window size of this moving average is the peak-to-peak amplitude of the

nanomechanical device converted to a detuning using the optomechanical coupling

coefficient. The peak amplitude is estimated from observing the detuning at which

the dips in the mechanical spectrum appear, since those dips arise from the probe

laser crossing over the optical cavity resonance minimum, resulting in a change in

slope and an abrupt change in the signal [165]. This is the same method used to

estimate the amplitude in Chapter 4. We can use the first detuning that exhibits

a dip and the last detuning without a dip as reference points to estimate the am-

plitude of the cantilever, and therefore also the window size for the integration. At

the detuning where the first dip occurs, we know that the optical cavity is moving

from its initial detuning position to the other side of the optical cavity slope. This

gives a minimum shift that the optical cavity is experiencing at the cantilever’s peak

amplitude. On the other hand, at the detuning immediately before the first dip, the

probe laser does not complete the shift to the other side of the optical cavity. This

detuning value gives a maximum amount of shift that the optical cavity is experi-

encing during the peak of the cantilever’s vibration. By averaging the maximum

and minimum shifts, we can obtain an estimate of the appropriate window size for

the integration. The average shift is a substantial 1.95 GHz at the cantilever’s peak

amplitude. Therefore, the window for the integration should be twice this value,

3.9 GHz, to account for the peak-to-peak amplitude of the cantilever. Using the

peak-to-peak amplitude is necessary to account for the full range of the optical cav-

ity that the cantilever samples during one period of vibration. To confirm that this

estimate makes sense, we can convert the average shift to an amplitude using the

optomechanical coupling coefficient G = ∂ω/∂x ≈ ∆ω/∆x. The resulting ampli-

tude is 12.3± 0.4 nm, which is close to the expected amplitude of 11.0 nm given the

optical force applied during the experiment.

This approximate approach to finding the window size and amplitude is neces-

sary because of the large discrepancy between the expected and observed amplitudes

in Figure 5.4, where the responsivity obtained from the thermomechanical noise was

used to calibrate the amplitudes. This result indicates that the thermomechanically

calibrated amplitudes may not be accurate. The result of applying a 3.9 GHz wide

moving average window to the first and second derivatives of the optical cavity is
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shown by the solid blue and red lines respectively in Figure 5.6. These curves agree

very well to the peaks obtained from the mechanical sweeps for the first and second

harmonics shown by the circles in Figure 5.6. This close agreement shows that the

shape of the optical cavity is closely linked to the harmonics observed in the me-

chanical frequency spectrum. This is a strong indicator that the harmonics we have

observed in the experiment are caused mainly by a readout nonlinearity, which is

purely due to the nonlinear nature of the Lorentzian transfer function of the optical

cavity instead of another mechanism. The nonlinear readout also provides some un-

derstanding as to why the amplitude calculated using the thermomechanical noise

responsivity (Figure 5.4) gave such erroneous results. With nonlinear readout, there

is no longer a linear relationship between the driven amplitude and the thermome-

chanical noise, rendering the calibration inaccurate. The significant number and

high signal-to-noise (SNR) of the harmonics present in the mechanical spectrum in

Figure 5.5 indicate that much of the energy of the driven signal is shifted from the

fundamental resonance frequency to the higher order harmonics. Calculating the

amplitude using the thermomechanical responsivity does not take this energy loss

and nonlinearity into account.

Although the cause of the harmonics in the mechanical frequency spectrum is

a readout nonlinearity resulting from the Lorentzian shape of the optical cavity,

the mechanical resonances in Figures 5.4 and 5.5(e) show softening and stiffening

distortions that are similar to a Duffing nonlinearity. A readout nonlinearity alone is

insufficient to explain these nonlinear effects. As mentioned in Section 5.1, a readout

nonlinearity may result in incorrect conversion between the observed and actual

amplitudes, however, it does not alter the left-to-right symmetry of the mechanical

peak shape. In the following sections, we examine the other sources of nonlinearity in

the optomechanical system. Since driving the devices to high amplitude is crucial to

reaching a high dynamic range for our mass sensing cantilevers, we must understand

what factors affect the nonlinear behaviour of the system.

5.3.1 Optical Force Nonlinearity

Other types of optomechanical nonlinearities have been previously observed, includ-

ing an optomechanical nonlinearity caused by the optical force [219]. The optical

force nonlinearity can be further divided into two components; nonlinearity intro-

duced by the Lorentzian line shape of the optical cavity, and nonlinearity introduced

by the exponential decay of the evanescent field outside of the waveguide. The first

type of optical force nonlinearity is a function of detuning, since the optical force

applied will vary with the detuning according to Eq. (2.41). The second type of

nonlinearity is only relevant for optomechanical devices where the optical cavity is

physically separated from the mechanical resonator, as in our case since the can-
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tilever adjacent to the racetrack resonator. For clarity, we will label these different

sources of nonlinear optical force as the optical cavity force nonlinearity and the

evanescent force nonlinearity, respectively. For small amplitudes of vibration, both

optical forces are approximately linear. The evanescent force strongly depends on

the gap between the optical cavity and the mechanical element, and for larger gaps

will be linear over a larger range.

To obtain a first-order approximation of the nonlinearity and to see whether

the unexpected stiffening and softening behaviour observed in Figure 5.4 could be

explained by these optical force nonlinearities, we use the model derived in [219].

This model produces the total nonlinearity coefficient α described in Eq. (5.3). It

includes both the optical cavity force and the evanescent force, and shows how

the softening and stiffening nonlinearities depend on the probe laser position in

the optomechanical system. To calculate the total nonlinearity, the quadratic and

cubic nonlinearities α2 and α3 are calculated from the second and third order spring

constants k2 and k3 via α2 = −k2/meff and α3 = −k3/meff . The detuning ∆

and optomechanical coupling G in the expression for the dispersive optical force,

Eq. (2.41), are expanded about x = 0 to obtain an expression of the form k1x+k2x
2+

k3x
3 + ... = F (x). Using this expansion, the terms proportional to x, x2, and x3 are

grouped together and the coefficients extracted to obtain expressions for k1, k2, and

k3, respectively. We modify the model to account for the nonlinearity of the optical

cavity observed in Figure 5.2(c). This can be done by converting the nonlinear

phase used to model the optical cavity in Section 5.2 to a nonlinear detuning. The

relationship between the phase and the frequency shift is ωNL = −cφNL/Lcng. Using

the same approach described in [108], we can add this nonlinear detuning to the

standard detuning in the equations for the spring constants k1, k2, and k3 to produce

the following equations:

k1 =
4PbusγexG

ω

ζ(γ2 + (∆0 + ωNL)2)−G(∆0 + ωNL)

(γ2 + (∆0 + ωNL)2)2
, (5.6)

k2 =
Pbusγex

ω(γ2 + (∆0 + ωNL)2)3
[2G2γ2 − 4ζ2γ4 + 12Gζ(∆0 + ωNL)γ2

−(6G2 + 8ζγ2)(∆0 + ωNL)2 + 12Gζ(∆0 + ωNL)3 − 4ζ2(∆0 + ωNL)4],

(5.7)

k3 =
PbusγexG

ω(γ2 + (∆0 + ωNL)2)4
[−8G2ζγ4 +

8

3
ζ3γ6 + (8G3γ2 − 56

3
Gζγ4)(∆0 + ωNL)+

(16G2ζγ2 + 8ζ3γ4)(∆0 + ωNL)2 − (8G3 +
112

3
Gζ2γ2)(∆0 + ωNL)3

+(24G2ζ + 8ζ3γ2)(∆0 + ωNL)4 − 56

3
Gζ2(∆0 + ωNL)5 +

8

3
ζ3(∆0 + ωNL)6].

(5.8)

137



In these equations, all terms have been previously defined except ζ. ζ is the field

amplitude decay constant for the racetrack resonator. This parameter describes the

decay length of the amplitude of the evanescent field outside the optical waveguide.

It can be calculated using the approach described in Section 2.2.1 and Eq. (2.11). ζ

can also be calculated numerically using finite difference simulations and solving for

the electric fields of the optical mode in the waveguide. To obtain this parameter, we

use mode solver simulations [171] to calculate the field decay outside the waveguide.

For our waveguides, this value is equal to ζ = 1/83 nm−1. Once ζ is obtained, we

can calculate k2 and k3 using Eqs. (5.7) and (5.8), and finally solve for the total

nonlinearity α by substituting α2 and α3 into Eq. (5.3).

The total nonlinearity for the probe laser is solved for a wide range of detunings,

using the values in Tables 5.1 and 5.4. The total nonlinearity of the pump laser is

solved only at ∆ = 0 using the values in Tables 5.2 and 5.4, and the resulting value

of 0.092 MHz2/nm2 is summed with the total nonlinearity for the probe laser. The

nonlinearity of the pump laser essentially acts as a DC offset since the detuning is

constant. The combined nonlinearity is plotted in Figure 5.7. The result shows that

for ∆ = 0.4 − 2.3 GHz the nonlinearity is negative and therefore a softening effect

is expected. All other detunings have a positive nonlinearity and a stiffening effect

is expected.

This approach correctly predicts that a stiffening effect occurs for a red-detuned

probe laser, and that a softening effect occurs for a blue detuned laser. Therefore,

we can conclude that these nonlinearities, opposite to what is expected from the

optical spring effect, are introduced by the optical force of the probe laser on the

nanomechanical device. This occurs despite the fact that the probe laser power is

well below the threshold for self oscillation, as discussed in Chapter 4.

When we examine the results more closely, however, we see that the model cor-

rectly predicts the sign of the nonlinearity observed in experiments at all detunings,

except at ∆ = 0 GHz. At zero detuning, a softening is observed (Figure 5.5(e), third

panel) when a stiffening is predicted. To better quantify the agreement between the

model and the experimental results, we can apply Eq. (5.2) to calculate a critical

amplitude for the nonlinearity. The result for the critical amplitude as a function of

detuning for the optical force nonlinearity is shown on the second axis in Figure 5.7,

for both the case of the cavity with and without optical nonlinearity. The model

shown in Figure 5.7 predicts that for the values of ∆ close to zero, the critical am-

plitude is less than 10 nm. This agrees with the experimental results obtained in

Figure 5.5, since all of the mechanical data recorded between ∆ = −0.5 GHz and

∆ = 0.5 GHz exhibit nonlinear behaviour. This is as expected, because the critical

amplitude is less than 10 nm, but the amplitude for this nanomechanical device was

previously estimated to be 12.3 nm. However, the model does not hold at a detuning
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Figure 5.7: The theoretically calculated nonlinearity coefficient α of the combined
pump and probe system plotted versus the detuning in units of GHz. The result for
a linear optical cavity is shown by the blue circles, and the theoretically calculated α
including an optically nonlinear cavity is shown by the black squares. The addition
of the optical nonlinearity produces the expected result, with a narrowed linewidth
on the red side and a broadened linewidth on the blue side. The blue solid line is
the critical amplitude for the optical cavity with no optical nonlinearity, and the
black dashed line is the critical amplitude for the optical cavity with nonlinearity.
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of ∆ = 2.0 GHz. At this detuning, we experimentally observe nonlinear behaviour

as shown by Figure 5.5(a) and highest peak in the centre panel of Figure 5.5(e).

The critical amplitude at ∆ = 2.0 GHz predicted in Figure 5.7 is 20.5 nm when the

optical cavity nonlinearity is included in the model. At this detuning, the model

presented in Figure 5.7 disagrees with the experimental result.

Although the model shown in Figure 5.7 does indicate that the source of the

stiffening and softening nonlinearities observed in experiment are due to an optical

force nonlinearity, there are several discrepancies that indicate that the model does

not sufficiently describe our optomechanical system. These discrepancies include the

incorrect prediction of the sign of the nonlinearity at ∆ = 0 GHz, and the incorrect

prediction of the critical amplitude at ∆ = 2 GHz. These discrepancies may be

caused by the very large amplitudes of our cantilever, or the additional complexities

introduced by the optical forces of the pump laser, which were only modeled as a

DC offset. This model also does not provide any way to incorporate the readout

nonlinearity, and therefore cannot predict the non-Lorentzian peak shapes observed

in the centre panel of Figure 5.5(e). Additionally, this model does not provide a

mechanism to estimate the displacement, which would be useful since the amplitude

cannot be correctly measured because of the readout nonlinearity. Finally, we cannot

easily separate the optical cavity force and the evanescent force nonlinearities, as

they are tied together in this model.

To fully understand our optomechanical system and provide better agreement to

experimental results, we must derive an alternative model. This model must model

the effects of the pump laser, account for the very large amplitudes of the cantilever,

and should also include the readout nonlinearity in order to accurately describe the

optomechanical system.

5.3.2 Numerical Model

We have demonstrated that existing models of optomechanical nonlinearities do not

sufficiently describe our optomechanical system, likely due to the complexity of the

second pump laser in the system and the large amplitudes achieved by the can-

tilever using the pump-and-probe technique. To accurately model the behaviour of

our optomechanical system we use a numerical approach. We solve a set of coupled

differential equations that describe the interaction between the probe laser optical

resonance, the pump laser optical resonance, and the mechanical resonator. This

approach is derived using the energy coupling formalism for the optical cavity de-

scribed in Section 2.2.5. Recall that the energy coupling formalism describes the

coupling of optical power in time, and therefore we describe the evolution of the

optical cavity amplitude as a function of time, a(t). The amplitude in the ring is

dependent on the loss rate γ, the external loss rate γex, the power in the bus waveg-
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uide Pbus, and the detuning ∆ = ω − ω0. The optomechanical coupling coefficient

G describes the interaction of the optical cavity with the nanomechanical device.

To describe the rate of change of the optical cavity amplitude as the mechanical

device oscillates, we can derive the optomechanical Hamiltonians. This procedure

has been previously presented for the interaction between a mechanical resonator

and a single optical cavity [143]. The additional complication in our system arises

due to the presence of the pump laser to drive the nanomechanical device. The

pump laser adds a second, time-varying optical cavity to the system of equations.

By following the approach used in [143], we can write a system of equations for the

optomechanical pump-and-probe system. The equations for the probe optical cavity

(subscripts 1), pump optical cavity (subscripts 2), and mechanical resonators are as

follows:

ȧ1(t) = −γ1a1(t) + i(∆1 +Gx(t))a1(t) +
√

2γex,1Pbus,1/h̄ω1, (5.9)

ȧ2(t) = −γ2a2(t) + i(∆2 +Gx(t))a2(t) +
√

2γex,2Pbus,2/h̄ω2, (5.10)

meff [ẍ(t) + Ω0ẋ(t)/Q+ Ω2
0x(t)] = h̄G|a1(t)|2 + h̄G|a2(t)|2, (5.11)

where a(t) is the normalized (unitless) time-dependent optical cavity amplitude, and

all other parameters have been previously defined. The main difference between

Eqs. (5.9) and (5.10) are the functional forms of Pin, the input power to the system.

Pin,1 is a DC optical power determined by the probe laser power input to the system,

and the detuning ∆1 varies to mimic the probe laser sweep in Figure 5.5. The pump

input power, Pin,2, has both a DC and an AC component, to mimic the experimental

conditions provided by the EOM. The form of the pump power is Pin,2 = PDC
in,2 +

PAC
in,2cos(ξΩ0t). The pump laser has a constant detuning of ∆2 = 0 GHz, as it is

always set at the cavity minima. The probe and pump input powers have both been

normalized by h̄ω such that the units for the input power are in Hz. The variable ξ

is used to calculate the response off-resonance, and is defined as Ω/Ω0. By setting ξ

to a range of values between ξ = 0.999 and ξ = 1.001, we can effectively sweep the

mechanical frequency in the equations, thereby mimicking the experimental results.

The evanescent force is not initially included in the model, as we wish to determine

which of the two optical force nonlinearities is the most significant contributing

factor. By simultaneously solving these three equations numerically for a range

of values for ∆1 and ξ, we can determine a solution for x(t) and a(t) at various

optical detunings and mechanical frequencies close to resonance. The coupled set

of equations is solved simultaneously for time steps increasing from 100 ns to 1 ms.

Once the time domain results are obtained, they are transformed to the frequency

domain using a numerical fast Fourier transform. We select only the steady state

data from the end of the simulations for our analysis. The values input to the

simulation are listed in Tables 5.1, 5.2, and 5.4.
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We compare the simulated optical cavity data a1(t), which is the optical reso-

nance in which the probe laser is positioned, to the experimentally obtained results.

To make this comparison, we start with the simulated value a1(t), which is the nor-

malized, time-averaged complex amplitude inside the racetrack resonator cavity. To

convert this value to the optical power inside the bus waveguide, we must convert

the amplitude from a normalized value to an optical amplitude by multiplying the

amplitude by (h̄ω1)1/2. Then, we re-write Eq. (2.27) in terms of the input power

and cavity amplitude to obtain

Pout,1 = |
√
Pin,1 −

√
2γex,1h̄ωa1(t)|2, (5.12)

where Pout,1 is the output power in the bus waveguide from the racetrack resonator

and includes the signal at the fundamental resonance frequency, as well as all of the

higher order harmonics. It also includes a DC component. The DC component is

comprised of the DC output from the optical cavity in the absence of modulation,

which is the typical output observed in Figure 5.2, and a DC signal formed from

the self-beating of the harmonics, which downmixes to a DC signal. By taking the

Fourier transform of Pout,1, we can filter out the DC component at 0 Hz. The Fourier

transform also allows us to separate the simulated results by frequency, allowing for

results at the fundamental frequency and all of the higher order harmonics. We

extract the peaks from the frequency spectrum for each detuning, normalized me-

chanical frequency ξ, and at the first four harmonics in the frequency spectrum. The

simulated results at the fundamental resonance frequency are shown in Figure 5.8.

The results for the second through fourth harmonics are shown in Figure 5.9(a)–(f).

The simulated results (open points) are compared to the experimental results (solid

lines). To compare the experimental results at the same point in the experimental

setup, we take the results from the lock-in amplifier (recorded in volts), and use

the responsivity of the photodetector (in W/V) to convert the results to an opti-

cal power. By accounting for the losses in the experimental setup between the bus

waveguide and the photodiode, we convert the experimental results in volts to an op-

tical power in the bus waveguide for direct comparison to the simulated results. We

also normalize the experimentally recorded frequencies by Ω0 = 2π× 21.1956 MHz,

which is the resonance frequency of the thermomechanical noise at zero detuning

(Figure 5.3). One potential source of error in this conversion is imperfect alignment

of the laser spot on the grating couplers, which may result in improved or reduced

optical power measured at the photodiode, which would then change the calculated

power in the bus waveguide. For this reason, comparison between the shape of the

peaks, instead of the peak heights, is of greater importance in this analysis. Correct

agreement in the peak shape indicates that we have successfully modeled the source

of nonlinearity in the system.
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Figure 5.8: Comparing the numerically modeled results (dashed lines with open
symbols) to the experimental data (solid lines) for the fundamental mechanical
resonance frequency. The results for ∆ = 0 GHz and ∆ = −0.63 GHz are shown
in (a), and the results for ∆ = 1.13 GHz and ∆ = 2 GHz are shown in (b). The
correct stiffening and softening behaviour is identified in all cases except ∆ = 0,
where a signal of zero is predicted by simulation. Although the correct directions
of stiffening and softening are predicted, the simulated peak shapes do not closely
match experimental results, which indicates that this model is incomplete.

In addition to the optical cavity data, we can also extract the results for the

mechanical amplitude x from the simulation. This result is shown in Figure 5.10 for

four different detunings. The calculated mechanical displacement had components

only at the fundamental resonance frequency and no signals at higher frequency

components, confirming that the harmonics are generated by the readout and not

by the mechanical device itself. The same analysis procedure used to extract the

frequency components of the simulated optical cavity data was used to extract the

mechanical amplitude. The steady state time domain data was Fourier-transformed

to frequency data, and the peak value extracted at each ∆ and ξ. The simulated

results show that the amplitudes achieved by the nanomechanical cantilever are

significantly higher than those calculated using the responsivity obtained from the

thermomechanical noise. The peak simulated amplitudes range from 12.1 nm at

a detuning of ∆ = −0.63 GHz, up to a maximum of 13.1 nm at a detuning of

∆ = 2.0 GHz. These amplitudes are very close to the 12.3 ± 0.4 nm estimated

from Figure 5.5. The peak heights of the simulations are as expected based on the

optical damping and amplification discussed in Section 2.3. The amplitude of the

cantilever measured by a red-detuned probe laser is slightly damped compared to

the amplitude measured by a blue-detuned probe laser.

One of the most important features in Figure 5.10 is that the detuned results

show nonlinear behaviour, where blue-detuned peaks show softening behaviour and

the red-detuned peaks show stiffening behaviour. At zero detuning, the stiffening
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Figure 5.9: Comparing the results from the numerical model (dashed lines with
open symbols) to the experimental data (solid lines) for the second, third, and
fourth harmonics. The results for ∆ = 0 GHz and ∆ = −0.63 GHz are shown for
(a) the second harmonic, (c) the third harmonic, and (e) the fourth harmonic. The
results for ∆ = 1.13 GHz and ∆ = 2 GHz are shown in for (b) the second harmonic,
(d) the third harmonic, and (f) the fourth harmonic. The correct directions for the
stiffening and softening are predicted for every detuning except ∆ = 0 GHz.
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Figure 5.10: Calculated mechanical amplitude x obtained from simultaneous nu-
merical solutions of Eqs. (5.9)–(5.11) for four different detunings. The dashed lines
are a guide to the eye. The amplitudes are close to the experimental result of
12.3 ± 0.4 nm. This graph demonstrates that the amplitude is fairly consistent for
each detuning, which is as expected since the pump-and-probe approach applies the
same pumping force at each detuning. The effect of the probe laser is evidenced by
the slight damping of the red-detuned result compared to the blue-detuned results.
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and softening nonlinearities vanish, causing the amplitude to be symmetric. This

indicates that the stiffening and softening nonlinearities are induced by the position

of the probe laser in the system, as that is the only parameter changing in the

simulations. From this we confirm that the optomechanical force nonlinearity affects

the mechanical device itself, and is separate from the readout nonlinearity and its

associated harmonic frequencies. The nonlinearity in this case is purely the optical

cavity force nonlinearity induced by the probe and pump lasers, as the evanescent

force was not included in these simulations.

One difference between the simulated and experimental results is immediately

obvious. In Figures 5.8 and 5.9(c), which show the results for the first and third

harmonics, the simulated result is zero for all mechanical frequencies when ∆ =

0 GHz. This is because the simulation is based on a perfectly symmetric optical

cavity, thus the transduction at zero detuning is zero. However, for the experimental

result, there is a peak when ∆ = 0 GHz. The presence of a signal at ∆ = 0 GHz

in the experiment may be due in part to the asymmetry in the optical cavity from

Figure 5.2(c). Since the optical peak is asymmetric, the signal will be greater on one

side than the other, producing a signal at ∆ = 0 GHz. The cavity asymmetry does

not, however, account for the slight softening of the experimentally observed signal

at zero detuning, as that is a mechanical effect and not caused by the readout.

From this, we conclude that the evanescent force is an important factor in this

optomechanical system. Since the cantilever is external to the optical cavity, the

optical gradient force interacting with the cantilever is an evanescent force with an

exponential form. Typically, the amplitudes of the cantilevers are sufficiently small

that the exponential force can be linearized about the initial displacement point of

the beam. In this case, however, the amplitudes are very large, and the exponential

form of the evanescent field must be accounted for. To introduce an exponential

dependence in Eqs. (5.9) to (5.11), we modify the optomechanical coupling term

to include an exponential decay. The optomechanical coupling has been previously

demonstrated to have an exponential form [219], and can be written as

G = G0 exp(−2ζx), (5.13)

where G0 is the optomechanical coupling of the stationary device, x is the amplitude

of the mechanical device, and ζ is the exponential decay constant of the evanescent

field outside the waveguide. x is referenced to the initial, stationary position of the

cantilever and is permitted to be positive or negative in the simulations. ζ is the

same value previously calculated to be 1/83 nm−1 using mode solver simulations.

By substituting Eq. (5.13) into the set of coupled equations (5.9)–(5.11), we create

a set of equations where the result x is dependent on the exponential decay of the

evanescent field outside the waveguide, therefore accounting for the fact that the
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cantilever is external to the waveguide. We solve this set of equations numerically

using the same approach as before. The data is extracted from the simulation using

the same technique. The results for the optical cavity output at the fundamental

mechanical frequency are shown by Figure 5.11. The experimental results are plotted

in the same graphs for straightforward comparison. The results for the second, third,

and fourth harmonics are plotted in Figure 5.12.

Figure 5.11: Comparing the results from the numerical model (dashed lines with
open symbols) to the experimental data (solid lines) for the fundamental mechanical
resonance frequency, where the model includes a displacement-dependent G caused
by the evanescent force. The results for ∆ = 0 GHz and ∆ = −0.63 GHz are
shown in (a), and the results for ∆ = 1.13 GHz and ∆ = 2 GHz are shown in (b).
The correct stiffening and softening behaviour is identified by the numerical model
for each detuning. The simulated peak shapes agree well with the experimental
shapes, including at zero detuning. The slight dip in the result at ∆ = 1.13 GHz
is also predicted by the simulation. The difference in the size of the dip may be
explained by the asymmetry in the optical cavity, which is not modeled by these
simulations. Overall the agreement between the experimental and predicted peak
shapes is excellent, and indicates that we have successfully modeled the sources of
nonlinearity in the model.

By including the exponential decay of the evanescent field in the optomechani-

cal coupling coefficient, a signal is now visible at zero detuning. The signal at zero

detuning also shows a softening effect, and matches well with the measured data.

The signals at other detunings also have similar curve shapes to the measured data.

Notably, the signal at ∆ = 1.13 GHz at the fundamental harmonic (Figure 5.11(b))

has a slight dip in the response, and while not as dramatic as the dip in the experi-

mentally measured response, this demonstrates the model is able to reproduce the

experimental results well. The remaining discrepancies may be a result of the slight

optical nonlinearity in the optical cavity, error in extracting the exact optical power

in the measured value since the coupling into the grating couplers is not known

precisely, and small errors in experimentally determining the detuning. Overall,
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Figure 5.12: Comparing the numerically modeled results (dashed lines with open
symbols) to the experimental data (solid lines) for the second, third, and fourth
harmonics, where the model includes a displacement-dependent G caused by the
evanescent force. The results for ∆ = 0 GHz and ∆ = −0.63 GHz are shown for
(a) the second harmonic, (c) the third harmonic, and (e) the fourth harmonic. The
results for ∆ = 1.13 GHz and ∆ = 2 GHz are shown in for (b) the second harmonic,
(d) the third harmonic, and (f) the fourth harmonic. The correct directions for the
stiffening and softening are predicted for all detunings.
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the addition of the evanescent force into the simulations significantly improves the

prediction of the curve shape in comparison to the results of Figures 5.8 and 5.9.

From this we can conclude that the evanescent force nonlinearity adds distortions

in the signal shape that must be accounted for, and that it also causes asymmetry

in the signal that permits the signal at zero detuning to be observed.

We can also examine the effects of the evanescent force nonlinearity directly

on the mechanical amplitude, which is shown in Figure 5.13. The main difference

between the results in Figures 5.10 and 5.13 is that the mechanical signal at zero

detuning exhibits softening in the latter figure. This is because of the extra nonlin-

earity included in this simulation, caused by the exponential form of the evanescent

force. The amplitudes are fairly similar, although slightly smaller in the case where

the evanescent force is included. The amplitudes for the evanescent force case are

12.5 nm for ∆ = 2 GHz, 11.5 nm for ∆ = 1.13 GHz, 11.9 nm for ∆ = 0 GHz,

and 12.1 nm for ∆ = −0.63 GHz. All of these values are within error of the ex-

perimentally estimated value of 12.3 ± 0.4 nm, with the exception of the value at

∆ = 1.13 GHz, which is slightly below the expected value. Although the amplitude

peak shapes are different when comparing the results from the simulations with

and without the evanescent force included, the overall heights are not significantly

different.

Figure 5.13: Calculated amplitudes obtained from simultaneous solutions of
Eqs. (5.9)–(5.11), with the exponential form of the optomechanical coupling in-
cluded. The dashed lines are a guide to the eye. All the simulated results are within
error of the experimental result except the value at ∆ = 1.13 GHz.

The result obtained in Figure 5.13 is also important because it demonstrates that
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the amplitude of the mechanical signal does not change significantly throughout the

range of detunings. The change in the amplitude between detunings in Figure 5.13

is less than 10%. The optical force nonlinearities induced by the pump and probe

lasers clearly alter the peak shape and the nonlinear behaviour of the optomechanical

signal, but do not substantially alter the amplitude of the mechanical device over

the simulated detuning range. This indicates that the assumption that we made to

calculate the moving average of the optical cavity derivatives in Figure 5.6 holds

true; that is, using a window of constant size to calculate the moving averages

is a reasonable approximation. Since the agreement between the optical cavity

derivatives and the peaks of mechanical signals depends only on the window size,

as demonstrated in Figure 5.6, we can conclude that the nonlinearity introduced by

the probe laser does not substantially affect the harmonic content of the mechanical

signal. In other words, the amplitude of the harmonics observed in the experiment

are indeed purely a readout nonlinearity, and are not strongly affected by the optical

force nonlinearity present in the system.

5.3.3 Simulating the Critical Amplitude

One final comparison that can be made between these numerical results and the

model presented in the previous section is a comparison of the critical amplitude.

To test the critical amplitude using simulated values, we return to the modeling

without the evanescent force. This decreases the computation time and complexity,

and is an acceptable substitution for an estimate of the critical amplitude since the

mechanical amplitudes from Figures 5.10 and 5.13 are very close. By increasing the

AC component of Pin,2 in the model, we increase the driving power in the model

to mimic the experimental conditions used in the experimental measurement of

Figure 5.4. We perform these computations at detunings of ∆ = ±0.61 GHz and use

the cavity parameters for the lowest wavelength curve from Figure 5.2 (Table 5.3) to

provide further similarity to the experimental conditions used to obtain Figure 5.4.

The resulting amplitudes in nanometres are shown in Figure 5.14(a) for a range of

input powers.

The critical amplitude is extracted using “backbone” approach detailed in Sec-

tion 5.1. The backbone method is preferred in the case of simulated results compared

to the 1 dB compression point approach. In the 1 dB compression point approach,

several peaks at low power with linearly increasing amplitude are required to obtain

the linear trend. The exact peak height is also necessary, requiring very high reso-

lution in ξ. This makes this approach an experimentally straightforward one, but a

numerically challenging one as the required resolution in both frequency and input

power is computationally expensive.

To extract the critical amplitude, we find the peak of each mechanical resonance
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Figure 5.14: (a) Modeled amplitudes with increasing input AC pump power. The
optical cavity data input to the simulation were the same as the experimental results
in Figure 5.4; the pump laser was positioned at the lowest-wavelength optical cavity
resonance (Table 5.3), and the probe laser was positioned at the point of steepest
slope on the centre optical cavity transmission. (b) Critical amplitude extraction
using the backbone curve technique for the blue side model. The critical amplitude
is 5.8 nm. (c) Critical amplitude extraction using the backbone technique for the
red side model. The critical amplitude is 6.3 nm. The simulated result that the
critical amplitude is larger for red probe detuning compared to blue probe detuning
matches the experimentally observed result in Figure 5.4.
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in Figure 5.14(a) and plot it versus the peak frequency to obtain the plots shown

in Figure 5.14(b) and (c), for the blue and red detuned probe laser positions re-

spectively. We fit these curves using Eq. (5.4) to obtain the nonlinearity coefficient

α. Finally, we input α into Eq. (5.2) to calculate the critical amplitude for each

detuning. The critical amplitude when the laser is blue-detuned is 5.8 nm, and the

critical amplitude when the laser is red-detuned is 6.3 nm. This result indicates

that the red side is more difficult to drive into nonlinearity, which agrees with the

result found experimentally in Figure 5.4. In contrast, the analytical model summa-

rized by Figure 5.7 incorrectly predicts that the critical amplitude should be lower

on the red side compared to the blue side for ∆ = ±0.61 GHz. That our numeri-

cal model correctly produces this asymmetry in the critical amplitude is a notable

accomplishment.

The original experimental critical amplitudes from Figure 5.4 were 1.9 nm for

the blue detuned probe laser, and 3.6 nm for the red detuned probe laser. The

numerical model predicts significantly higher critical amplitudes, 3 times higher for

the blue-detuned case and 1.75 times higher for the red-detuned case. This again

suggests that the calculation of the amplitude using the thermomechanical noise

responsivity is not accurate as a result of the readout nonlinearity. Recall that

the expected amplitude of the largest mechanical signal in Figure 5.4(a) is 6.3 nm

based on the applied optical force and Eq. (4.4). The simulated critical amplitude of

5.8 nm is much closer to this value than the thermomechanically calibrated critical

amplitude of 1.9 nm. This indicates that we may use the simulated critical amplitude

as a calibration technique for the amplitude when a readout nonlinearity is present,

if the critical amplitude can be determined both experimentally and numerically

and the input parameters to the model such as optical cavity properties and optical

power are known.

5.4 Discussion

This analysis demonstrates that even if the readout nonlinearity is eliminated, op-

tomechanical nonlinearities induced by the force of the pump and probe lasers still

exist in the system. This implies that we have multiple simultaneous nonlinearities;

readout nonlinearity, optical cavity force nonlinearity, and evanescent force nonlin-

earity. Without numerical modeling, we would not be able to separate them. With

the modeling, however, we are able to see that the harmonics in the mechanical

frequency spectrum are generated by the readout nonlinearity. This is caused by

the Lorentzian lineshape of the optical cavity. The readout nonlinearity is what

prevents proper calibration using the thermomechanical noise. The softening and

stiffening behaviour observed in the experiment are a result of the optomechanical

force nonlinearities, the optical cavity force nonlinearity caused by the pump and
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probe lasers moving through the Lorentzian lineshape of the optical cavity and the

evanescent force nonlinearity caused by the cantilever moving towards and away

from the racetrack resonator. The readout nonlinearity cannot cause this type of

mechanical peak asymmetry, as it does not affect the movement of the mechanical

device. Finally, our detailed numerical approach is important to ensure that the

effects of both the pump and probe are modeled accurately. Previously published

models studying optomechanical nonlinearities do not include a strong, amplitude

modulated pump laser. Since the power of this laser is high, it is important that the

optical force nonlinearities generated by this laser are taken into consideration as

well. Table 5.5 summarizes different approaches used to model the optomechanical

nonlinearity in the literature. This table demonstrates that our numerical model

occupies a unique niche. It is the only model that accounts for nonlinearities using

a pump-and-probe approach with an AC amplitude modulation on the pump laser.

Table 5.5: Summary of Approaches to Optomechanical Nonlinearity

Type of Nonlinearity Experiment

Bessel
Function
Expansion
[216]

Optical
Force
Expansion
[219]

Numerical
Model,
Constant
G

Numerical
Model,
Exponential
G

Readout Yes Yes No Yes Yes
Optical cavity force, DC Yes Yes Yes Yes Yes
Evanescent force, DC Yes No Yes No Yes
Optical cavity force, AC Yes No No Yes Yes
Evanescent force, AC Yes No No No Yes

By comparing the information from experiments and the detailed numerical

modeling with and without the exponential form of the optomechanical coupling

included, we are able to fully understand the source of nonlinearities in our optome-

chanical system. This is important so that we can design future optomechanical

systems for reduced nonlinearity to improve the dynamic range of our sensor. To

reduce the readout nonlinearity, we can design optical cavities with longer linear

ranges or smaller optomechanical coupling. Smaller optomechanical coupling will

result in a smaller optical cavity shift for a given nanomechanical amplitude. To

reduce the optical cavity force nonlinearity, the optomechanical coupling could be

reduced, or the optical input power could be reduced. The detuning is also an

important point to choose experimentally, as the detuning impacts the amount of

nonlinearity caused by the optical cavity force. To reduce the evanescent force

nonlinearity, the optomechanical coupling could be decreased yet again, so that

the operation point of the optomechanical system is in the more linear region of

the exponential curve. Clearly, a higher optomechanical coupling is not necessarily

ideal for optomechanical systems to be used as mass sensors. The downside of de-

creasing the optomechanical coupling is a decrease in the signal-to-noise ratio and
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the efficiency of the optical driving force, as the readout and actuation are both

proportional to the optomechanical coupling.

Clearly many possibilities exist to improving the dynamic range of the optome-

chanical system, however, they come at a cost. A trade-off in the design must be

made to optimize both the linearity of the system and the signal to noise ratio.

With the knowledge of the source of the nonlinearity, and the ability to simulate

the different types of nonlinearity individually, we can determine the best designs

to maximize the linear range while maintaining a suitable signal to noise ratio in

future designs.

5.5 Conclusion

We have demonstrated that several optomechanical nonlinearities occur simulta-

neously when a mechanical device such as a cantilever is undergoing large am-

plitude vibrations induced by a coherent driving force. The nano-optomechanical

pump-and-probe system produces harmonics in the mechanical frequency spectrum,

which are a signature of a readout nonlinearity. The system also exhibits a stiffen-

ing nonlinearity when the probe is red-detuned and a softening nonlinearity when

the probe laser is blue detuned, which is opposite to the expected result introduced

by the optical spring effect. These nonlinearities are caused by an optical cavity

force nonlinearity induced by the detuning of the probe laser in the system. The

third nonlinearity, caused by the evanescent force outside of the racetrack resonator

cavity, results in a signal at zero detuning that exhibits a softening nonlinearity.

These types of nonlinearity cannot be separated and understood only by looking at

the experimental results or by previous models in the literature due to the added

complexity of the pump laser in the system. We have used full numerical modeling

to study the system and determine the differences between these two sources of

nonlinearity. The numerical models also aid in the determination of the mechanical

amplitude, since the typical thermomechanical noise responsivity cannot be used to

calibrate the amplitude when the readout is nonlinear.

Numerical modeling of our pump-and-probe optomechanical system provides a

much better understanding of the dynamics of the system, and allows us to separate

the readout nonlinearity from the two optical force nonlinearities. In the future,

these results could allow for better optical cavity design for optimization of linear

operation for both the force and the transduction. The full understanding of the

nonlinearities in the system may also be useful for applications where nonlinearities

are required, and in determining whether a sensor is in the linear or nonlinear regime.
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Chapter 6

Transduction of Large
Amplitudes with
Racetrack-Loaded Mach
Zehnder Interferometers

In this section we discuss the design and measurement of an optomechanical system

to increase the range of linear operation of a nanomechanical sensor with large ampli-

tude. In Chapters 4 and 5, cantilevers with very large amplitudes produced nonlin-

ear readout, which is detrimental to sensor performance. Ideally, an optomechanical

sensor will reach large amplitudes of vibration with linear readout to maximize the

dynamic range of the sensor.

To solve this issue, we design a photonic circuit with a larger linear readout range.

In Section 6.1, we create a definition of the linear range using the transmission of

the photonic circuit. This definition is based on our experimental procedure. We

apply this definition to the racetrack resonators used in previous chapters to create

a baseline linear range. The next section, Section 6.2, take this definition and ap-

plies it to a new photonic circuit, the racetrack-loaded Mach Zehnder interferometer.

In this section we demonstrate the design of this new circuit including the deriva-

tion of the transfer function of the circuit. Our analysis suggests that this circuit

will allow the cantilever to reach larger vibrational amplitudes with linear readout,

without compromising the high sensitivity of optomechanical transduction, and is

robust to fabrication imperfections. As this design converts a phase measurement

to an amplitude measurement, it may allow for a greater flexibility in applications

such as on-chip homodyne detection. We fabricate a variety of design with different

coupling conditions to fully explore the parameter space of this photonic circuit.

We then characterize the optical and mechanical performance of these optomechan-

ical systems in Section 6.3. The optical results demonstrate that for most coupling

conditions, the racetrack-loaded MZI provides an enhancement in both the linear
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range and the sensitivity compared to a racetrack resonator only. The mechanical

measurements confirm that the linear range and sensitivity is improved for certain

coupling conditions. In Section 6.4, we discuss the results in detail and determine

that by switching to the racetrack-loaded MZI architecture, that a 2.8 times im-

provement in mass sensitivity may be gained. In Section 6.5, we summarize and

conclude that these results provide a good parameter space for future work, and

highlight the best designs to use moving forward.

6.1 Defining the Linear Range

Compared to doubly clamped beams, cantilevers are better mass sensors due to

their smaller effective mass. They also have a larger dynamic range, which is benefi-

cial for mass sensing applications in ambient or fluidic conditions where the quality

factor is relatively low [18]. This improvement in dynamic range is useless, however,

if the readout does not remain linear throughout the entire amplitude of vibration.

As demonstrated in Chapter 5, optical cavities with reasonably good finesse (≈400)

close to critical coupling do not have enough range for linear readout. Other race-

track resonators, such as over-coupled cavities with lower finesse (50–70) also do not

have enough linear range [235], although higher amplitudes can be reached. Based

on this experimental evidence, we can conclude that although racetrack resonators

are very sensitive photonic elements, they lack the linear range required to measure

the large amplitudes of vibration produced by cantilevers.

We would like to design an alternative photonic circuit with a higher linear range

for mass sensing applications. To determine whether the linear range is enhanced,

we require a definition for the linear range that can be compared to the racetrack

resonator response. Ideally, the linear range should be determined from the optical

properties of the photonic circuit so that we can obtain an estimate of the linear

range from analytic equations of the photonic circuit transmission response, and

easily compare it to the racetrack resonator response. Defining the linear range

based on the optical response is not a straightforward process, as there are many

potential definitions that could be used. We will be begin by defining a linear range

for the racetrack resonators that is based on our experimental limitations. The

linear range is defined in nanometres, and represents the linear wavelength span of

the photonic circuit. We can then apply this definition to new designs to determine

whether the linear range has been enhanced.

During the optomechanical measurements, we place the probe laser at the posi-

tion of largest absolute value of the slope of the optical cavity transmission. This

measurement point produces the largest transduction coefficient, as shown by the

term dT/dλ in Eq. (2.42), and therefore the signal with the largest signal-to-noise

ratio (SNR). We will define this point as the mid-point of the linear range because
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the increase or decrease in optical cavity transmission induced by the mechanical

vibration are measured with reference to this point. It is the point of zero deflection

for the cantilever. We also saw in Chapters 4 and 5 that when the cantilever ampli-

tude becomes too large, the cavity shifts sufficiently that the probe laser moves from

one side of the optical cavity to the other. This produces dips in the mechanical

signal readout (Figures 4.5 and 5.5). The dips are a result of nonlinearity in the

signal readout, and as such represent a limitation on the linear range of the readout.

The maximum cavity shift that produces a linear readout is therefore limited to the

distance in wavelength between the initial probe position and the resonance wave-

length of the racetrack resonator. The maximum linear cavity shift is introduced

by the mechanical device moving from a deflection of zero to a point of maximum

positive (or negative) deflection. Therefore, the total linear range is two times the

maximum cavity shift, to account for the cantilever moving from zero deflection to

a point of maximum negative (or positive) deflection, shown visually in Figure 6.1.

Figure 6.1: Graphical representation of the linear range, using the racetrack res-
onator transmission function as an example. The racetrack resonator response plot-
ted here has a round trip loss art = 0.9991 and a transmission coefficient τ = 0.95.
The probe is positioned at the point of minimum (or maximum) slope, denoted
by the dashed black line. The linear range is defined as two times the wavelength
distance between the point of minimum (or maximum) slope, and cavity minimum
where the slope is equal to zero. The edges of the linear range are denoted by the
dashed red lines. The linear range is spanned by the solid red arrow. For this
example case, the linear range is 0.14 nm.

To generalize this result, we define the linear range as two times the distance

between the cavity minimum and the point of maximum slope. Expressed in terms

of the first derivative of the optical cavity transmission, this is two times the distance

between the first derivative minimum or maximum, and the point where the first
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derivative equals zero. This is shown graphically in Figure 6.1. This graph is

produced by calculating the optical cavity transmission using Eq. (2.25) for a round

trip loss art = 0.9991 and a transmission coefficient τ = 0.95. The slope is calculated

by taking the first derivative of the optical cavity transmission. This definition is

based on the experimental procedure of choosing the point of highest slope as the

operating point of the measurement, and accounts for the fact that the probe cannot

cross over the cavity minimum without producing a readout nonlinearity.

6.2 Design of Racetrack-Loaded Mach Zehnder Inter-
ferometers

To improve the linear range of the optical readout, we can more closely examine

the transfer function of the all-pass racetrack resonator. In Eq. (2.25, we describe

the transmission of the all-pass racetrack resonator by taking the square of the

absolute value of the transfer function. However, the transfer function also has a

phase component Φ that is described by [94]:

Φ(φ) = arctan

(
sinφ

τ/art − cosφ

)
− arctan

(
sinφ

1/τart − cosφ

)
, (6.1)

where φ is the round trip phase, τ is the transmission coefficient, and art is the round

trip loss. These parameters are defined in detail in Section 2.2.4. We calculate the

phase for the three coupling conditions; over-coupled, under-coupled, and critically

coupled. This result is plotted in Figure 6.2. The transmission for each case is also

plotted.

For the over-coupled case, shown in Figure 6.2(a), we see there is a slowly in-

creasing phase shift from zero to 2π. The phase does not change sign or slope on

resonance, and is linear across the optical cavity resonance. The transmission is

clearly not linear across the optical cavity resonance, as the slope changes sign.

This difference between the phase and the transmission observed in Figure 6.2(a)

indicates that the phase has an enhanced linear range compared to the transmission

for over-coupled racetrack resonators. However, the criteria established in the pre-

vious section cannot be used to precisely determine the linear range for the phase,

as there is no point of zero slope to use as an end-point for the linear range. For

this case, we estimate that the linear range of the phase is likely approximately two

times greater than the linear range of the transmission, because the phase is linear

across the optical resonance and is a slowly-varying function.

For the under-coupled case, it appears visually in Figure 6.2(b) that the phase

may have a larger linear range than the transmission. The criteria established in the

previous section can be used to determine the linear range of both the transmission

and the phase in this case. The transmission has a linear range of 2.5 pm, whereas the
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Figure 6.2: The normalized transmission (solid black lines) and phase (solid blue
lines) for a racetrack resonator under three different coupling conditions; (a) over-
coupled, (b) under-coupled, and (c) critically coupled. The phase shift for an over-
coupled cavity has a slowly increasing phase shift from 0 to 2π. In this case, we
can see that the linear range of the phase is approximately two times that of the
transmission, as the slope of the phase does not change sign on resonance and there
is no sharp transition. The phase shift for the under-coupled cavity is very small and
returns to zero off resonance. The under-coupled cavity has a linear range of 2.5 pm
for the amplitude, but a linear range of 3.9 pm for the phase. The phase shift for the
critically coupled cavity also returns to zero off resonance, but completes a sharp
shift from −0.5π to 0.5π across the racetrack resonance. In this case, the phase does
not visually appear to provide a linear range improvement over the transmission.
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phase has a linear range of 3.9 pm. This result suggests that the phase has a slightly

larger linear range than the transmission for under-coupled racetrack resonators.

For the critically coupled case, it is unclear what the linear range of the phase is

because there is a sharp transition on-resonance. In Figure 6.2(c), we see that the

slope at the transition from maximum to minimum phase (0.5π to −0.5π) is nearly

infinite. Therefore, the linear range for this phase signal is approximately zero using

the criteria established in the previous section. For the critically coupled case, it is

not immediately obvious that the phase signal produces a benefit in the linear range

when compared to the transmission.

This analysis of the transfer function suggests detecting nanomechanical motion

through the phase may produce a larger linear range compared to the transmis-

sion. Optical homodyne detection, commonly used in the field of optomechan-

ics [14, 203, 204, 218, 236], provides access to the optical phase of the cavity signal.

To implement homodyne detection on chip, and to convert the phase of the race-

track resonator into a signal that we can observe at the photodiode, we look to

the field of silicon photonics. By using the silicon photonics literature as inspi-

ration, we observe that ring resonators or racetrack resonators can be combined

with Mach Zehnder interferometers (MZIs) to produce spectra that have a Fano-

like shape [237, 238, 239, 240]. An MZI measures the phase difference between the

two interferometer arms. Assuming that the optical power is equally split between

the two interferometer arms, the transfer function TMZI of an MZI is described by

TMZI =

∣∣∣∣12 (1 + eiθ
)∣∣∣∣2 , (6.2)

where θ is the phase difference between the two arms. From this expression, we

see that the output of the MZI depends only on the phase difference between the

two arms, and converts the phase difference to a measurable power change in the

transmission TMZI. Therefore, we should be able to use the MZI to detect the phase

of the racetrack resonator and convert that phase to a power change that can be

measured with a photodiode.

We adopt the device architecture used in [237] and [238]. This photonic inte-

grated circuit consists of an MZI loaded with a racetrack resonator on one arm. A

schematic of this structure is shown in Figure 6.3. The amplitude of the field input

to the system is labeled si. This input is split by a 50/50 coupler and directed to

each arm. The bottom arm in the schematic is loaded with a ring resonator. The

ring resonator is coupled to the MZI arm using a directional coupler with coupling

parameters κ and τ . The upper arm is the reference arm, and has a phase shift of

θ relative to the second arm. The signals from the two arms are recombined at the

output coupler again at a 50/50 ratio. Finally, the signal amplitude output from

the system is st.
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Figure 6.3: Schematic of the racetrack resonator loaded Mach-Zehnder interferom-
eter (MZI). A racetrack resonator is placed adjacent to one arm of the MZI, and
has coupling parameters τ and κ. The phase shift of the reference arm, θ, is also
indicated on the schematic. The input signal si is split 50/50 to each arm. The
amplitude in each arm is recombined at 50/50 to produce the output signal st.

In this work, we implement homodyne detection on-chip using the SOI platform

with the device architecture shown in Figure 6.3. The homodyne measurement

approach used by many in the optomechanics field [204, 218, 241] is generally im-

plemented using optical fibers and discrete external components. In a homodyne

measurement, the initial input signal is split to form a local oscillator signal and

a detection signal. These two signals are mixed at a splitter, and the phase dif-

ference between the two signals is detected. Two detectors are used for balanced

optical homodyning. One of the downsides of traditional homodyne detection is the

complexity of the experimental setups required to implement homodyne detection,

as many other components are required such as fibre stretchers. Polarization and

perfect mode overlap are key concerns for these types of setups, and a mismatch

in polarization or incomplete interference can be detrimental to the detection ef-

ficiency [236]. In our on-chip implementation, only one polarization exists as the

grating couplers are polarization-sensitive and admit only either TE or TM polar-

ization, and the interfering optical modes are essentially perfectly pre-aligned by

the integrated photonics. The on-chip implementation is simple and compact, and

could potentially simplify the setup of a homodyne measurement [242, 243]. One

of the benefits of a homodyne measurement is that the power of the local oscillator

signal can be increased, thereby increasing the signal-to-noise ratio (SNR) of the

mixed signal even if the detection signal is small. In this chapter we demonstrate

50/50 splitting of the optical power into the two arms of the on-chip MZI, and

therefore do not take advantage of the potential SNR enhancement of a usual ho-

modyne approach. However, in future implementations the power could be split to

any ratio desired by replacing the 50/50 splitter with a directional coupler designed
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to split the power in whatever ratio is desired. In addition, balanced homodyne

detection could be easily incorporated by modifying the MZI output coupler to be

a 2:2 coupler, instead of 2:1.

The transfer function of the racetrack-loaded MZI can be expressed as |st/si|2

and is derived by following the progress of si through the photonic circuit and

keeping track of the phase changes carefully, as an MZI is a phase-sensitive device.

We assume the optical amplitude is split equally between the two arms. By summing

the two outputs where they recombine at the splitter, we obtain an expression for

the output amplitude of the overall photonic circuit. To express the result as an

output power, we square the amplitude result and take the absolute value. Half

of the optical power will enter the ring-loaded arm, which has a transfer function

of an all-pass ring resonator, as described in Section 2.2.4 (Eq. (2.25)). The phase

information is contained in this transfer function via the round-trip phase φ. The

final expression for the transmission of the ring-loaded MZI is:

TR−MZI =

∣∣∣∣st

si

∣∣∣∣2 =

∣∣∣∣12
(
τ − arte

iφ

1− τarteiφ
+ eiθ

)∣∣∣∣2 . (6.3)

We see from Eq. (6.3) that the transmission of the racetrack-loaded MZI is

dependent on the phase difference between the racetrack resonator and the phase of

the reference arm θ. The phase of the reference arm is defined as [77]

θ =
2πneffLarm

nλ
, (6.4)

where n is an integer, Larm is the arm length, and λ is the design wavelength. The

fact that the phase shift depends on the effective index of the waveguide indicates

that the MZI phase will not be constant across all wavelengths. This is because the

effective index depends on the wavelength, as discussed in Section 2.2.1 and defined

in Eq. (2.17). Therefore, an MZI fabricated using planar waveguide technology will

have a sinusoidal output, as the phase varies across the wavelength [68].

Let us assume that we are operating the device near 1550 nm, and that the

variation in the effective index is small over full width of one optical racetrack reso-

nance. In this small wavelength region, the effective index is approximately constant.

Therefore, we can set the phase shift θ by choosing an appropriate arm length. If

theta is equal to mπ, where m = 0,1,2,..., then the output from the racetrack-loaded

MZI will be a Lorentzian response superimposed on the MZI sinusoid. This is be-

cause the phase difference between the reference arm and the racetrack-loaded arm

is simply the phase of the racetrack resonator. If, however, the phase is set to π/2,

the phase difference between the two arms off-resonance is π/2. As we approach the

resonance, the racetrack resonator phase increases and therefore the difference de-

creases. When the racetrack resonator phase reaches π/2, the phase difference is zero
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and therefore the transmission is equal to zero. The transmission increases as the

phase moves away from π/2, and eventually returns to the initial value off-resonance.

We will show the effect of the phase change mathematically later in the section, but

for now we see that setting the phase of the reference arm to π/2 produces a much

different response in the transmission function than the typical racetrack resonator

response. If we use Eq. (6.3) to plot the transmission of the racetrack-loaded MZI

with θ = π/2, we see that the transmission is a Fano-like shape very similar to the

phase of the racetrack resonator [237], as shown in Figure 6.4.

Figure 6.4: The calculated transmission of a (a) racetrack resonator and (b)
racetrack-loaded Mach Zehnder interferometer with a π/2 phase shift. Both re-
sults are calculated for over-coupled (τ = 0.8, 0.85, 0.90.95), critically coupled
(τ = 0.9991) and under-coupled (τ = 0.9999) conditions. Visually, the linear range
is improved for over-coupled devices.

We can use the definition provided in the previous section to establish the linear

range of the racetrack-loaded MZIs. By using the same criteria as in Section 6.1,

the point of maximum slope occurs at the midpoint between the maximum and

minimum of the Fano-like response, making this the optimum operating point for

any experimental measurements. The linear range is defined as two times the wave-

length spacing between the minimum of the Fano-like response and the midpoint.

The linear range of the Fano-like response from the racetrack-loaded MZI is shown

graphically in Figure 6.5.

By varying τ to change the coupling of the racetrack resonator to the MZI, it is

possible to tune the linear range of this photonic circuit to produce superior linear

ranges when compared to racetrack resonators or MZIs alone. We use Eq. (6.3) to

begin the design process. The phase shift in the reference arm is set to θ = π/2,

which produces a symmetric Fano-shaped response as discussed previously. The pa-

rameters we examine for each case are the optical linear range and the slope of the

optical curve. Both of these parameters are compared to a racetrack resonator with

the same coupling parameters to determine whether the racetrack-loaded MZI im-
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Figure 6.5: The solid black line shows the transmission of the racetrack-loaded MZI.
The solid blue line shows the first derivative of the transmission. The probe laser is
positioned at the point of maximum slope, at the midpoint of the Fano-like response.
This position is shown by the black dashed line. The linear range is defined as two
times the wavelength span between the point of maximum slope and the point of
zero slope, and is shown by the red arrow between the red dashed lines. In the case
of a symmetric Fano-like response, this definition means that the linear range is
simply the wavelength span between the maximum and minimum of the Fano-like
transmission.

proves on the racetrack resonator design. The linear range is as defined in Figure 6.5.

The second parameter is the slope, which is of interest because it helps to determine

the signal-to-noise ratio of the optomechanical system. This is demonstrated by the

fact that the transduction coefficient (Eq. (2.42)) is proportional to the slope of the

optical cavity. As the slope increases, the transduction also increases.

The first design parameter we examine is the transmission coefficient of the ring,

τ . It is important to know the round trip loss (art) to determine whether the device

is over-, under-, or critically coupled for a given transmission coefficient. The round

trip loss of the device is set by the fabrication process, and varies depending on the

foundry and processes used. The foundry used to fabricate these devices, IME, has

been shown to have a loss for strip waveguides of approximately 2 dB/cm [244]. For

the racetrack resonator geometry of a 5 µm radius and 3 µm straight sections (total

length of 37 µm), this results in a round trip loss art = 0.9991. We vary the coupling

parameter τ from 0.8 to 0.9999 to determine the effects of under-, over-, and critically

coupling the racetrack-loaded MZI. We compare these results to those obtained from

a standard racetrack resonator with the same loss and coupling parameters. The

transmission from both of these device architectures is shown in Figure 6.4, where

(a) shows the response from a racetrack resonator, and (b) shows the response from a

racetrack-loaded MZI. The response for the over-coupled racetrack resonator is very
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shallow, especially when compared to the critically coupled racetrack resonator.

The shape of the curve changes dramatically over the various coupling conditions;

the resonance of the strongly over-coupled racetracks are almost flattened into the

background. This highlights the fact that the racetrack resonators are very sensitive

to the coupling conditions, especially when strongly over-coupled. In Figure 6.4(b),

we see that for the over-coupled devices (τ < art), the Fano-like response is not very

sharp and has a very large variation in slope across the coupling conditions. This

follows the trend of the phase of the racetrack resonator shown in Figure 6.2(a).

Unlike the racetrack resonator alone, an extremely over-coupled device does not

result in the signal vanishing, but rather a shallower slope. This indicates that the

racetrack-loaded MZI is more robust with regards to over-coupled conditions. The

under-coupled and critically coupled devices in this case are very sharp curves with

a very steep slope at resonance. This is as expected based on the phase response of

the racetrack resonator when under- and critically coupled as shown in Figure 6.2(b)

and (c).

To analyze these responses in more detail, and in particular the linear range and

slopes, we extract both the linear range and slope from each curve in Figure 6.4(a)

and (b). This summary results in Figure 6.6, where the linear range is shown

in (a) and the slope is shown in (b) for both the racetrack alone (red stars) and

the racetrack-loaded MZI (blue circles). For over-coupled devices, the racetrack-

loaded MZI has a linear range approximately double that of a racetrack resonator

alone. This is the same result we obtained from analyzing the phase response in

Figure 6.2(a). As expected, the linear range increases as the devices become more

over-coupled and the phase changes more slowly. The critically coupled and under-

coupled devices have significantly lower linear ranges than the over-coupled devices,

as expected from the phase shown in Figure 6.2(b) and (c). However, the racetrack-

loaded MZI still outperforms the racetrack resonator in these instances as well.

Interestingly, the linear range of the critically coupled device has a higher linear

range than the under-coupled device, despite the nearly infinite slope in the phase

from Figure 6.2(c).

In terms of the slope, as the coupling shifts from over- to under-coupled, the

racetrack resonator slope dramatically increases. The slope for the critically coupled

and under-coupled devices is more than 400 times greater than the slopes for the

over-coupled racetrack resonators. Although the slopes are higher for the critically

coupled and under-coupled racetrack-loaded MZIs compared to the over-coupled

devices, the difference is not as significant. The slopes for the critically coupled and

under-coupled devices are greater than the over-coupled devices by approximately

a factor of 16. According to Eq. (6.3), the racetrack-loaded MZI is a more sensitive

device for detecting the small motion of the nanomechanical devices in the case
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Figure 6.6: The simulated (a) linear range and (b) slope are shown for both racetrack
resonators only (red stars) and racetrack-loaded Mach Zehnder interferometers (blue
circles). Devices with τ between 0.8 and 0.95 are over-coupled. Devices with τ =
0.9991 are critically coupled, and with τ = 0.9999 are under-coupled. The over-
coupled racetrack-loaded MZIs show an improvement over the racetrack resonators
in the case of both the linear range and the slope. The under- and critically coupled
racetrack-loaded MZIs show an improvement in the linear range, however, the slope
is higher for the racetrack resonators.

of over-coupling, but racetrack resonators are more sensitive at critical and under-

coupling.

By examining Figure 6.6, we see there is a trade-off between maximizing the

linear range and the slope. Since the slope determines the sensitivity of the trans-

duction, it is important to keep the slope relatively large. However, the thermome-

chanical noise has been observed previously using over-coupled racetracks [69], and

so it is acceptable to have a slightly lower slope in favour of a higher linear range.

For this reason, the optimal coupling range for the racetrack-loaded MZIs is over-

coupled. For the final design, we choose τ = 0.999, 0.995, 0.987, and 0.948. Ideally,

we would like to increase the coupling further to have values closer to τ = 0.8, how-

ever, the smallest gap spacing between two waveguides permitted by the foundry

was 200 nm, which limited our ability to choose stronger coupling. To try to achieve

coupling as large as τ = 0.948, the racetrack resonators have been made with 10 µm

coupling lengths instead of 3 µm coupling lengths, which increases the round trip loss

slightly. If a very large linear range is required, fabrication by electron beam lithog-

raphy may be required to decrease the gap spacing and create very over-coupled

devices.

The final parameter to examine in our design of the racetrack-loaded MZI is

the phase shift θ. We have already determined that a phase near π/2 produces a

symmetric Fano-like response. Figure 6.7 shows the response of the photonic circuit

under various phase shifts. In this calculation, the round trip loss is set to 0.9991
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and τ is set to 0.95. By varying the phase shift θ from 0 to π/2, we see the effect

θ has on the signal shape. If the phase shift is set to 0, the output is a Lorentzian

similar to the through port response of a microring resonator. A phase shift of π/2

produces a symmetric Fano-like lineshape. The phases between 0 and π/2 produce

Fano-like shapes with varying asymmetry. This is the same result observed in [237].

Interestingly, the linear range (Figure 6.7(b)) for all cases except θ = 0 is greater

than the equivalent racetrack resonator only. For θ = 0, the linear range is the

same for the racetrack resonator and the racetrack-loaded MZI. The linear range is

largest for θ = π/2. Therefore, even if the phase shift is not perfectly equal to π/2,

the design is an improvement over the racetrack resonator alone. This improves

the robustness of the design to fabrication variations. The slope is also largest for

θ = π/2 and decreases as the phase shift decreases, as shown in Figure 6.7(b). Based

on the linear range and slope, we conclude that a phase shift of θ = π/2 is the best

choice for the design. However, the racetrack-loaded MZI design is robust to design

flaws or fabrication imperfections, since the linear range and slope are improved

for all phase shifts greater than θ = 0 compared to a racetrack resonator. This

robustness is a beneficial feature since silicon photonics can be strongly affected by

fabrication process variations [245, 246].

Figure 6.7: (a) The effect of varying the phase shift in the reference arm of the Mach
Zehnder interferometer on the transmission of the photonic circuit. As the phase
is increased from zero to π/2, the transmission shifts from a Lorentzian lineshape
to a Fano-like lineshape. (b) The effect of varying the phase shift on the slope
(blue circles) and linear range (open red squares). In both plots, art = 0.9991 and
τ = 0.95, and so the device is over-coupled. A phase shift of π/2 produces the best
linear range and slope.

To design for a phase shift of θ = π/2, we need to add the correct length to

the reference arm. To determine the length required, the effective index is required.

This is obtained from simulation using Lumerical MODE simulations [171]. The

structure is a 500 nm wide, 220 nm tall silicon waveguide surrounded by oxide
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cladding. The effective index at a wavelength of 1550 nm is neff = 2.3487. To

determine the arm length, we set θ = π/2 and solve for Larm in Eq. (6.4). We set

n to a large value such that the path length is on the order of tens of microns to

simplify the layout process. The final path length difference is Larm = 33 µm.

The design was submitted for fabrication at the IME foundry in Singapore. In

addition to the racetrack-loaded MZI circuits, as in Figure 6.3, single racetrack

resonators with identical coupling properties were also fabricated as reference de-

vices. The mechanical cantilevers in the design were all 220 nm tall, as that is the

thickness of the silicon device layer. The cantilever dimensions were 2 µm long and

200 nm wide, 3.5 µm long and 180 nm wide, and 5 µm long and 180 nm wide. The

gaps between the cantilever and racetrack resonators were 100 nm, 160 nm, and

200 nm. The smaller gaps were designed to maximize the optomechanical coupling,

however, the minimum device spacing specified by the foundry was 200 nm. Placing

these devices on the four different coupling conditions gave a total of 36 racetrack

resonators, and 36 racetrack-loaded MZIs.

Additionally, active racetrack-loaded MZIs were also designed and fabricated.

An active device means that the optical transmission of the device can be modified

after fabrication by the application of a voltage. The active device used here was

an electro-optic MZI. Active interferometric devices such as this are often used as

modulators [247, 248, 249]. The MZI was designed by Xu Wang and Han Yun,

students from the University of British Columbia [250]. This device operates on

the principle of the free carrier effect. Recall that the free carrier effect, discussed

in detail in Section 5.2, induces a change in the refractive index, and therefore the

optical path length, of the silicon waveguide. When this effect is applied to one arm

of an MZI device, the change in path length corresponds to a change in the phase

shift in the arm according to Eq. (6.4), where neff is modified by the free carrier

effect. The transmission of the MZI spectrum will then shift in wavelength to reflect

this phase change. Controlling the phase shift is useful in our application to obtain

an exact π/2 phase shift, to obtain a symmetric Fano-like response as shown in

Figure 6.7(a).

The MZI arms were comprised of rib waveguides. Rib waveguides, as described

in Section 2.2.1 and Figure 2.1, have thin silicon slabs adjacent to the central waveg-

uide. The central waveguide has a height of 220 nm. The benefit of the rib waveguide

for electro-optic devices is that the rib portions can be doped with high levels of

n and p type ions. The exact doping level is protected intellectual property of the

IME foundry. For this active MZI device, one side of the rib waveguide was doped

with n-type ions and the other side of the rib waveguide was doped with p-type

ions. Metal vias were used to connect the doped sections of the rib waveguide to

aluminum traces on top of a thick cladding oxide. Vias are vertical features on a
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chip created by etching holes in a layer, such as the oxide cladding layer. The holes

are then filled with metal to create an electrical connection from the top of the chip

to features buried below other layers. The aluminum traces were connected to bond

pads at the edge of the chip. Using the bond pads, a voltage can be applied across

the n and p doped sections of the waveguide to generate free carriers. Therefore,

the entire chip, including the simple passive devices, was covered in a thick oxide

cladding layer with exposed aluminum pads at the edge of the chip. This active

MZI device will ideally be beneficial in helping to compensate for thermal drift in

the circuit, or for any fabrication imperfections or dispersion that causes the phase

shift to be greater or less than π/2.

The only remaining issue is determining where to set the pump laser for pump-

and-probe operation, and how the force applied by the racetrack-loaded MZI com-

pares to the racetrack resonators alone studied in Chapter 4. To determine the best

placement of the optical pump laser in the racetrack-loaded MZI system, we exam-

ine the power enhancement. Since the cantilever is placed adjacent to the racetrack

resonator, the cantilever experiences an optical force proportional to the power en-

hancement of the racetrack resonator, and is unaffected by the remainder of the

MZI circuit. The power enhancement can be calculated using Eq. (2.26) for various

coupling conditions. The result is shown in Figure 6.8, and indicates that the power

enhancement is maximized at the optical resonance, which is at the midpoint of

the steepest point of the Fano-like lineshape from Figure 6.4(b). The figure also

highlights a trade-off between the linear range (Figure 6.6(a)) and the power en-

hancement. As the transmission coefficient decreases, the power enhancement also

decreases. Therefore, the force applied to the cantilever will also decrease. The force

is maximized for critical coupling, where the linear range is smaller. Although this

trade-off is not ideal, we can increase the pumping power by increasing the optical

input power and the modulation voltage (Eq. (2.41)). This will help to counteract

the driving force that is lost as the linear range improves.

The analysis from Chapter 4 is used to determine the efficiency of the driving

force. Unfortunately, the optomechanical coupling for these devices is significantly

lower than those from Chapter 4 because the gap between the racetrack and the

cantilever is larger due to the limitations from the foundry. From Eq. (2.43), we cal-

culate the optomechanical coupling for the devices with the lowest optomechanical

coupling, the 2 µm long cantilevers. For these cantilevers, the optomechanical cou-

pling is at most 0.6 rad GHz/nm and at least 0.06 rad GHz/nm, for gaps of 100 nm

and gaps of 200 nm respectively. Using Eq. (4.4), we calculate the optimal cavity

linewidth for these optomechanical couplings to obtain the highest amplitude. Un-

fortunately, for the smaller optomechanical coupling coefficient of 0.06 rad GHz/nm,

the device is outside the optimal range for optical pumping for all transmission co-
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Figure 6.8: The power enhancement the cantilever will experience from the racetrack
resonator in the racetrack-loaded MZI photonic circuit. The black line is an under-
coupled racetrack, the red line is a critically coupled racetrack, and the dashed lines
are over-coupled racetracks. The power enhancement decreases as the transmission
coefficient decreases.

efficients and driving powers. For the larger optomechanical coupling coefficient,

the optimal driving range can be achieved for transmission coefficients greater than

0.995, but only when the optical input power or the modulation voltage is increased

sufficiently. Therefore, the optical driving force cannot be properly optimized with

the low optomechanical coupling resulting from the large gap spacing required by

the foundry. To successfully drive the devices to maximum amplitude, the optical

power and modulation voltage must be increased significantly.

We have described the design process for the racetrack-loaded MZIs in detail,

and have provided many reasons why they are an improvement over single racetrack

resonators for large-amplitude nanomechanical sensors such as cantilevers. The over-

coupled racetrack-loaded MZI has a larger linear range and slope, and the design is

robust to fabrication imperfections.

6.3 Experimental Results

The racetrack-loaded MZIs are measured using the confocal microscope setup de-

scribed in Section 2.4. First, the optical properties of the system are characterized

in detail. The characterization was done with the cladding oxide still in place; that

is, before the mechanical devices were released from the sacrificial oxide layer. The

optical results are detailed in the first section below.

In the second section, the results from mechanical measurements are described.
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The mechanical characterization includes both thermomechanical and driven mea-

surements to test the mechanical linear range and displacement sensitivity of the

nano-optomechanical system.

6.3.1 Optical Results

To find the optical properties of the system, the reference racetrack resonators are

characterized first. The response of each racetrack is measured using only the probe

laser for a wide wavelength range of 1520–1580 nm for a total of 36 measurements,

resulting in nine measurements of each coupling configuration which are then aver-

aged to provide an estimate of the round trip loss and the transmission coefficient for

each configuration. For all measurements, the optical power incident on the grating

coupler was 1.0 mW. The experimental measurements are fit with either Eq. (2.25)

or Eq. (2.36) depending on the amount of backscattering in the system. The re-

sults of these measurements are shown in Figure 6.8. The transmission coefficients

and round trip loss values are plotted versus the cantilever device number. The

cantilevers are sorted by increasing length then increasing gap, and then numbered

accordingly. For example, Device 1 has a length of 2 µm and a gap of 100 nm.

Device 6 has a length of 3.5 µm and a gap of 200 nm.

From Figure 6.9, we see that all of the devices with gaps of 100 nm (Devices 1,

4, and 7) did not have optical resonances, and are therefore missing data, or that

art is substantially less than the other racetrack resonators with the same coupling

condition. This indicates that the cantilever gaps may not have cleared properly

during the lithography step, most likely due to the fact that the gap was significantly

smaller than the minimum gap suggested by the foundry. In this case, the cantilever

is most likely stuck to the racetrack resonator, causing significantly more loss than

expected. To confirm this hypothesis, focused ion beam (FIB) was used to image

the devices. By using an ion beam to mill through the oxide cladding, the devices

can be imaged. Figure 6.10(a) shows an image of the smallest gap device where the

cantilever is joined to the waveguide, indicating that these small gaps did not resolve

properly in the photolithography process and will not produce functional devices.

For this reason, the devices with the smallest gaps are excluded from future analysis.

Figure 6.10(b) shows a device with a properly resolved gap of approximately 160 nm,

confirming that the devices with larger gaps were fabricated as expected.

The remainder of the devices show reasonably good agreement between the de-

signed values (bottom right corner of Figure 6.8(a)–(d)) and the experimental val-

ues. In all cases the transmission coefficient is slightly lower than the designed value,

likely because there was more coupling than anticipated at the curved sections of

the racetrack resonators. Despite this, the coupling is close to the designed value

in each case, providing a good range of transmission coefficients. To compare these
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Figure 6.9: The round trip loss (red squares) and transmission coefficient (blue cir-
cles) are shown for each coupling configuration starting with the most over-coupled
(a) and ending with the closest to under-coupling (d). The designed parameters
are shown in the bottom right corner of each graph. In all four graphs, Device
Numbers 1, 4, and 7 are often missing or have substantially different round trip loss
values compared to the other designs. These devices had the smallest gaps between
the mechanical device and the racetrack (100 nm), which indicates the mechanical
devices may be attached to the racetrack resonator and increased the loss in the
optical cavity substantially.
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Figure 6.10: Focused ion beam images of the cantilevers coupled to racetrack-loaded
MZIs. The device in (a) had the smallest gap. This gap did not resolve, as the
measured size of the waveguide in this image is approximately 800 nm. The 800 nm
feature is the total length of the 500 nm waveguide plus the 200 nm beam plus the
100 nm gap. Devices with these gaps were excluded from the analysis. The device
shown in (b) is the mid-sized gap of 160 nm, where it is clear that the cantilever
is separate from the waveguide. The waveguide is 500 nm wide as expected. At
210 nm, the cantilever is slightly wider than the 200 nm design width.

results to the racetrack-loaded MZIs and the simulated results from Figure 6.6, the

slope and linear range were extracted from the curve fits to the racetrack resonators.

The linear range was obtained using the same criteria described in Section 6.1. The

experimental linear range and slope are shown in Figure 6.11(a) and (b) respectively.

In both cases, the single point is the average linear range of six measured devices

with the same coupling coefficient. The error bars are the standard deviation of the

six measurements.

Measurements of the racetrack-loaded MZIs revealed that the response required

a slightly different model to describe the results than the ideal model presented in

Eq. (6.3). The experimental results across a large wavelength spectrum are shown

by the black dots in Figure 6.12. The racetrack resonator response is superimposed

on the sine wave response of the MZI, which is clearly visible in Figure 6.12. Ad-

ditionally, we observe that the shape of the on-resonance response changes as the

wavelength increased. In some cases, the shape is Fano-like, as expected. However,

there are also resonances that have a purely Lorentzian transmission. To account

for the variation in the resonance shape, we can include several factors as fitting

parameters. The first parameter that we include as a fitting parameter is the length

of the MZI reference arm Larm. This parameter is present in the variable θ, as shown

in Eq. (6.4). Including this parameter as a fit parameter accounts for variations in

the fabrication of the devices.

Another variable that influences the transmission function is the effective index.

Recall that Eq. (6.4) is dependent on the wavelength through the variable neff . We

discussed previously that the change in the effective index results in a sinusoidal
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Figure 6.11: The experimental (a) linear range and (b) slope are shown for both
racetrack resonators only (red stars) and racetrack-loaded Mach Zehnder interfer-
ometers (blue circles). The single point is the average linear range of six measured
devices with the same coupling coefficient, with the exception of the racetrack-loaded
MZIs at τ = 0.994 where only four measurements were taken since only four working
devices were observed. The error bars are the standard deviation of the measure-
ments. The racetrack-loaded MZIs show a distinct improvement over the racetrack
resonators for the case of the linear range. When τ = 0.994, the improvement is
less clear as the variability in the linear range is very high for the racetrack-loaded
MZIs. The slopes are higher for the racetrack-loaded MZIs compared to the race-
track resonators except when τ = 0.994. For all measurements, the optical power
input incident on the grating coupler was 1.0 mW.
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output for a silicon photonic MZI. We can account for the wavelength dependence

of the effective index by assuming that the variation of the effective index is approxi-

mately linear over our wavelength range of interest. This assumption can be verified

using Eq. (2.17) or by numerical methods. By including a linear wavelength depen-

dence of the effective index in θ, we obtain a more accurate fit to the experimental

data.

The change in the effective index also affects the racetrack resonator response. In

Section 2.2.1, we defined the free spectral range, or FSR, of the racetrack resonator

as

F =
λ2

Lcng
, (6.5)

where ng is the group index of the waveguide and Lc is the cavity length. The

FSR is therefore also dependent on the effective index via Eq. (2.19). The variation

of the FSR with wavelength is accounted for in the expression for the round trip

phase, which we defined in Section 2.2.4 as φ = (λ − λ0)/F , where λ is the mea-

surement wavelength and λ0 is the resonance wavelength. However, according to

simulations [171], the variation of the group index is less than 2% over the wave-

length range of 1550–1600 nm. In comparison, the simulated effective index has a

variation greater than 6% over the same wavelength range. To simplify the already

complicated fitting function, we set the group index as a fit parameter that does not

vary with wavelength, instead of using Eq. (2.19) as yet another fitting equation.

The final parameter in our fitting function accounts for a power difference in

the arms when the two signals recombine. Although the power in the arms is the-

oretically identical, the splitting may not be ideal and more power may be lost as

the light travels through the racetrack resonator arm than through the reference

arm. This results in a slight power imbalance when the signals from the two arms

recombine, and therefore the destructive and constructive interference is not per-

fect. We will account for this using the value b, which is between zero and one,

where one represents perfect cancellation at the output. The final expression for the

experimental power transmission is

TR−MZI,exp =

∣∣∣∣∣12
(
b
τ − arte

i(λ−λ0)Lcng/λ2

1− τartei(λ−λ0)Lcng/λ2 + ei2πneff(λ)Larm/λ

)∣∣∣∣∣
2

, (6.6)

where the fitting parameters are b, ng, neff(λ) = mλ+neff,0, τ , art, λ0, and Larm. m

is the slope of the linear relationship between the effective index and the wavelength.

We use Eq. (6.6) to fit the experimental data. The experimental data is obtained by

activating the probe laser and observing the transmission of the photonic integrated

circuit as the wavelength is increased from 1520 – 1580 nm. For all measurements,
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the optical power incident on the grating coupler was 1.0 mW. Four fits, one for

each designed value of τ , are shown in Figure 6.12. The data is normalized to one,

allowing for a better fit by subtracting the effect of the grating coupler envelope on

the low and high wavelength portions of the data. The fits show reasonably good

agreement with the model in Eq. (6.6). The arm length varied between 0.2% and

2.7% of the designed value of 33 µm, which is a reasonable variation similar to that

observed in the literature [246].

Figure 6.12: Experimental racetrack-loaded MZI data. The MZI peaks are normal-
ized to one to remove the envelope introduced by the grating coupler and allow for
a better fit. The fits are shown for 2 µm long cantilevers with 200 nm gaps for the
four different coupling conditions. The transmission coefficients in each case are (a)
τ = 0.923, (b) τ = 0.975, (c) τ = 0.986, and (d) τ = 0.994 as measured from the
ring resonator data. The transmission coefficients obtained from the fits were very
similar to the ones measured from the racetrack resonators. The largest variation
was for the fit shown in (b), which had a 1.3% difference. For all measurements, the
optical power incident on the grating coupler was 1.0 mW.

The next step in the analysis is to compare the performance of the racetrack-

loaded MZIs to the racetrack resonators. The linear range and slopes are extracted

directly from the experimental results using the approach detailed in Section 6.1.
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Since the shape of the response varied over the wavelength spectrum as seen in

Figure 6.12, the most Fano-like shape is chosen from each spectrum to perform the

linear range and slope analysis. The single blue points in Figure 6.11 are the av-

erage linear range of six measured devices with the same coupling coefficient, with

the exception of the racetrack-loaded MZIs at τ = 0.994 where only four measure-

ments were taken since only four working devices were observed. The error bars

are the standard deviation of the measurements. When compared to the racetrack

resonators alone, the racetrack-loaded MZIs have a larger average linear range for

all transmission coefficients. The standard deviation is, however, very large for the

result at τ = 0.994, putting the results from the racetrack-loaded MZI and the

racetrack resonator alone within error of each other for this transmission coefficient.

Overall, the results match the trends predicted by the simulated results from Fig-

ure 6.6. The linear range is lower than predicted by simulation for the smallest

transmission coefficient of 0.923, approximately 0.26 nm compared to 1 nm. For

the higher transmission coefficients, including those close to critical coupling, the

linear range is substantially higher than predicted by simulation, by more than a

factor of ten. The slopes for both the racetrack resonators and racetrack-loaded

MZIs are higher than predicted by simulation for the smallest transmission coef-

ficient of 0.923. For the transmission coefficient of 0.975, the slopes were higher

for the racetrack-loaded MZIs than the racetrack resonators. As the transmission

coefficients approached the critical coupling condition, the slopes for the racetracks

alone were higher than the racetrack-loaded MZIs, which was predicted in the initial

model.

From these plots, the coupling configuration that maximizes both the linear

range and the slope simultaneously is τ = 0.975. This transmission coefficient

provides the highest average linear range, and the slope of the transmission is only 1.5

times smaller than the maximum achieved by any device, and only 1.3 times smaller

than the maximum value achieved by the racetrack-loaded MZIs. This coupling

coefficient also provides an improved situation for optically pumping the devices,

since the power enhancement increases as the transmission coefficient approaches

the round trip loss and critical coupling is achieved. To test these conclusions, the

mechanical properties of these devices are characterized in the following section.

6.3.2 Mechanical Results

Although the optical properties indicate that the racetrack-loaded MZIs have in-

creased linear range and sensitivity, the results must be verified experimentally by

measuring the mechanical cantilever adjacent to the racetrack resonator. To mea-

sure the mechanical devices, they must first be released from the thermal oxide

underneath the silicon device layer and the cladding oxide above the cantilever.
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The cladding oxide could not simply be removed in a maskless release, because of

the presence of the aluminum bond pads and electrical traces on top of the ox-

ide cladding layer that were required for the active MZI design. A masking layer

was used to protect the aluminum features while allowing release of the cantilevers.

First, the chip was treated with HMDS, an adhesion promoter, to ensure improved

adhesion of the photoresist to the chip. Then, HPR504 photoresist was spun onto

the chip. Photolithography was used to pattern the masking layer. The resist was

developed and windows in the photoresist around the mechanical components were

created on the chip. The optical components, such as the racetrack resonators and

grating couplers, were protected with photoresist. The chip was then etched us-

ing BOE for five minutes to ensure a full etch of the thermal oxide underneath

the cantilevers. The photoresist was removed and the chip was critical point dried

to prevent stiction. This process resulted in successful release of the mechanical

cantilevers, while protecting the aluminum features elsewhere on the chip. Opti-

cal microscope images of the chip post-release are shown in Figure 6.13 for both

(a) racetrack resonators and (b) racetrack-loaded MZIs. The etch was inconsistent

across the surface of the chip, as is evidenced by the differing etch patterns around

the racetracks compared to the racetrack-loaded MZIs. This is potentially due to

inconsistencies in the cladding oxide density or stoichiometric composition across

the chip.

Figure 6.13: Optical microscope images of (a) a racetrack resonator and (b) a
racetrack-loaded MZI after device release. The inconsistent etch pattern around
the devices is indicative of an uneven etch of the cladding oxide.

Once the mechanical devices were released, they could be measured using the

lock-in amplifier. The devices measured were 3.5 µm long cantilevers with a 160 nm

gap, the smallest gap available since the 100 nm gaps did not pattern correctly.

Due to this large gap, the optomechanical coupling for the devices was very low

and as a result the signal-to-noise ratio of the mechanical measurements was also

low. For the racetrack-loaded MZIs, all four coupling conditions had functional
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mechanical devices. For the racetracks alone, resonances for only three out of the

four mechanical devices were observed. The data for the coupling condition τ =

0.975, was not observed. The device either stictioned during the release process, or

was not fully released.

To set up the mechanical measurements, the following procedure was followed for

each device. First, the probe laser was activated and positioned at the point of max-

imum slope of each optical resonance. The probe power was set such that the optical

power incident on the grating coupler was 1 mW at the probe wavelength. Then,

the pump laser was activated. The wavelength of the drive laser was positioned

such that the output power of the mechanical signal was maximized, which indi-

cates that the pump laser is positioned at the resonance frequency of the racetrack

resonator. This eliminates any potential accidental actuation via self-oscillation.

For the racetrack-loaded MZIs, the maximum drive power was found manually for

each device by maximizing the signal observed on the lock-in amplifier. This was

because the phase differed across the optical spectrum causing some resonances to

be more Lorentzian than Fano-like. For the initial setup, the AC voltage to the

amplitude modulator was disabled so that the pump was only providing DC optical

power. The pump power was set such that the optical power incident on the grating

coupler was 1 mW at the pump wavelength.

First, the thermomechanical noise of the cantilevers was measured with the am-

plitude modulation deactivated. The thermomechanical noise is useful for two rea-

sons. First, it allows for conversion of the data to an amplitude in meters using the

responsivity as described in Section 2.1.1. Second, the tails of the thermomechanical

noise are used to find the displacement sensitivity of each photonic circuit, which is a

figure of merit used to establish the overall sensitivity. The smaller the displacement

sensitivity, the better the circuit sensitivity, and so a smaller displacement sensitiv-

ity is more ideal. The displacement sensitivity is obtained by fitting a Lorentzian to

the thermomechanical noise, and converting the thermomechanical noise to a dis-

placement via the responsivity as per Section 2.1.1. Once the displacement spectral

density is obtained, the displacement sensitivity can be extracted from the noise

floor of the Lorentzian fit in units of m/Hz1/2. The displacement sensitivities for

the different coupling conditions and photonic circuits are shown in Figure 6.14.

In Figure 6.14, we see the displacement sensitivity is smallest for the racetrack

resonators with the largest transmission coefficient. This is in agreement with Fig-

ures 6.6(b) and 6.11(b), which predict the highest sensitivity for the highest trans-

mission coefficient. In most cases, the racetrack resonators have better displacement

sensitivity than the racetrack-loaded MZIs. This is expected from Figure 6.6(b) for

the highest transmission coefficient, where the cavity is under-coupled. For the

second-highest τ (close to critical coupling), the displacement sensitivity is again
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Figure 6.14: Displacement sensitivities of the different photonic circuits and coupling
conditions. The racetracks are shown by the red stars, and the racetrack-loaded
MZIs are shown by the blue dots.

better for the racetrack resonator. This is opposite to the result from simulation,

but not unexpected given the close measurement of the slopes in Figure 6.11(b). For

the smallest value of τ , the expected trend is observed, with the racetrack-loaded

MZI showing a better displacement sensitivity compared to the racetrack resonator

alone. Since the displacement sensitivity for both device architectures improves as

τ increases, the ideal design for minimizing the displacement sensitivity is some-

where in the range of slightly over-coupled to critically coupled. This corresponds

to τ = 0.97− 0.99.

After the thermomechanical measurements were recorded and the displacement

sensitivity obtained, the amplitude modulation was activated for driven measure-

ments. The driven measurements were recorded for increasing drive voltage ampli-

tudes output from the lock in amplifier to the electro-optic modulator. The first and

second harmonic signals (1f and 2f signals) were recorded for each photonic cir-

cuit. A large background was present in all of the driven mechanical measurements.

The large background resulted in a mechanical signal that was not a Lorentzian

shape, but rather a Fano-like shape for both the racetracks and the racetrack-loaded

MZIs. To subtract this background and return the mechanical signal to the expected

Lorentzian lineshape, the following transformation was used. The measured data,

taken in polar coordinates, was transformed to Cartesian coordinates using the typ-

ical equations x = r cos θ and y = r sin θ. Then, x and y were plotted. A mechanical

signal with no background is centered on the origin. However, it is clear from our
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data that a background is present as the data is always centered off the origin. The

first and last 75 points in each dataset were averaged to determine the average start

and end point. The midpoint of these start and end points was found to determine

the overall background signal in Cartesian coordinates. This background was sub-

tracted from the x and y data to re-center the data to the origin. Finally, the data

was converted back to the usual polar coordinates for analysis. This procedure is

shown graphically in Figure 6.15. The exact cause of the background is uncertain,

but as it was a frequency-dependent background it may have been due to noise

processes in the optical racetrack resonators that are dependent on frequency, such

as a thermal effect. It is also possible that the pump laser was leaking through

the filter and causing a frequency-dependent signal. Determining the cause of the

background is a source of future work.

Figure 6.15: Visual description of the procedure used to subtract the frequency
dependent background from the Fano-like signals. (a) The original recorded data in
polar coordinates. (b) The original data converted to Cartesian coordinates is shown
by the blue line, and the red line shows the transformed data where the background
has been subtracted. The signal is now centered at the origin. (c) The transformed
data in polar coordinates.

Once the fundamental and 2f peaks have been converted to Lorentzians and the
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background has been removed, we proceed with the analysis. The fundamental and

2f responses were fit with a Lorentzian to determine the peak value for each device

and driving voltage. Many of the 2f signals with lower driving voltages could not be

fit with a Lorentzian, since the signal was indistinguishable from the noise floor. This

is expected, as the harmonic contribution will be negligible at low driving voltages.

The peak voltages for the fundamental response were then converted to metres via

the thermomechanical noise. By converting the fundamental response to metres, we

are able to directly compare the results from different devices, as slight differences

in driving power are automatically accounted for. Differences in driving power may

be caused by different power enhancements in the optical cavity, slight changes in

the alignment of the free-space optics to the grating couplers, or differences in the

frequencies of the various cantilevers. The 2f peaks were extracted in units of µV.

To compare the linear ranges of the racetracks to the racetrack-loaded MZIs, the 2f

signal was plotted versus the fundamental displacement for each coupling condition.

This result is shown in Figure 6.16.

For the most over-coupled case, shown in Figure 6.16(a), the racetrack resonator

begins to show 2f components when the amplitude of the cantilever reaches ap-

proximately 0.9 nm. This is the largest linear range seen in any of the various

coupling conditions. This trend agrees with results from simulation and the opti-

cal measurements of the devices shown in Figures 6.6(a) and 6.11(a) respectively.

The racetrack-loaded MZI in this case did not reach a large enough amplitude to

produce a signal at the 2f harmonic. The amplitude reached was only 0.2 nm.

The optical drive for this device was clearly inefficient and did not drive the can-

tilever to a significant amplitude. The same optical power and voltage were input

to the racetrack-loaded MZI as the racetrack resonator alone, however, only half of

the input power reaches the cantilever in the racetrack-loaded MZI photonic circuit.

The frequency of the cantilever on the racetrack-loaded MZI was also approximately

2 MHz higher than the cantilever on the racetrack. The higher frequency leads to

a higher stiffness, and correspondingly a higher force is required to drive it to the

same amplitude. For τ = 0.975, we cannot make a direct comparison between the

racetrack and racetrack-loaded MZI, since only the data from the racetrack-loaded

MZI is available for that coupling condition. However, we can observe that the

amplitude at which the 2f signal becomes apparent in Figure 6.16(b) is approxi-

mately 0.9 nm, the same as the racetrack in (a). Therefore, we determine that the

linear range for the strongly over-coupled racetrack resonator is roughly equivalent

to the linear range for the slightly over-coupled racetrack-loaded MZI. However, the

racetrack-loaded MZI has significantly improved displacement sensitivity, suggest-

ing that this architecture is in fact an improvement over the racetrack alone for

transmission coefficients in the range of 0.925 – 0.975.
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Figure 6.16: Amplitude of the fundamental mechanical signal in metres plotted
versus the 2f signal in volts. The data for the racetrack resonators is shown by the
red stars and the data for the racetrack-loaded MZIs is shown by the blue circles. The
results are plotted for four coupling conditions; (a) strongly over-coupled, τ = 0.923,
(b) slightly over-coupled, τ = 0.975, (c) close to critically coupled, τ = 0.986, and
(d) under-coupled, τ = 0.994. The results demonstrate that the linear range is
always greater for the racetrack-loaded MZIs, as the threshold for the onset of the
2f signal occurs at a lower mechanical amplitude for the racetracks compared to
the racetrack-loaded MZIs.
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We can compare more directly the cases for the critically coupled and under-

coupled devices (Figure 6.16(c) and (d), respectively). For the critically coupled

devices, the racetrack resonator has 2f components at a fundamental amplitude of

0.3 nm. The racetrack-loaded MZI has 2f components at a fundamental amplitude

of 0.8 nm, which is a linear range improvement of 2.7 times. Furthermore, the

amplitude of the 2f components for the racetrack-loaded MZI do not reach the same

levels as the racetrack until the fundamental amplitude is close to 1.2 nm, which is

a linear range improvement of 4 times. For the under-coupled case, the racetrack

resonator has 2f components at a fundamental amplitude of 0.15 nm, and the

racetrack-loaded MZI has 2f components at a fundamental amplitude of 0.45 nm,

for a factor of 3 improvement in the linear range. Clearly, the racetrack-loaded MZIs

allow for a larger fundamental amplitude to be reached before the 2f components

become significant. This indicates that a larger linear readout of nanomechanical

motion is achieved by the racetrack-loaded MZIs than by the racetracks alone, for

all coupling conditions.

6.4 Discussion

From experimental results of both optical and mechanical measurements of racetrack

resonators and racetrack-loaded MZIs, we conclude that racetrack-loaded MZIs have

a longer linear range than racetrack resonators alone. The improvement in linear

range is substantial; an improvement of 3–4 times is observed in both the optical and

mechanical results when the coupling is close to critical. As the devices become more

over-coupled, the performance of the racetrack resonator improves more quickly than

the racetrack-loaded MZI, and so the benefit provided by the racetrack-loaded MZI

is smaller. These results match the expected trends from simulation. In terms of the

transduction sensitivity, the racetracks outperform the racetrack-loaded MZIs close

to critical coupling. The racetracks become less sensitive than the racetrack-loaded

MZIs as τ decreases. Again, this is the expected result from simulation.

Both simulations and experimental results demonstrate that the linear range is

largest when τ is smallest, but the sensitivity worsens as τ decreases. These are

both important factors in the consideration of the overall photonic circuit design.

Another factor is the driving force applied through an optical pump to the devices.

For the racetrack-loaded MZIs, the optical power delivered to the cantilever is halved

compared to the racetrack resonator alone, decreasing the driving power. The results

of Chapter 4 indicate that the driving force is reduced for over-coupled cavities

where γ is large. Figure 6.16(a) shows that the reduced drive results in a very small

driven amplitude. For the cavity in Figure 6.16(a), τ = 0.923, γ ≈ 200 rad GHz

and G ≈ 0.2 rad GHz/nm. Comparing these values to Figure 4.1 we see that the

expected amplitude, and therefore the driving force, is very low. To compensate
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for the reduced drive power, the power in the drive laser can be increased or the

driving voltage can be increased. Alternatively, the optomechanical coupling can be

increased to provide higher driving force. The latter is a trade-off, however, since

increasing the optomechanical coupling will increase the required linear range.

The increase in linear range obtained by using the racetrack-loaded MZI results

in an increase in the dynamic range of the optomechanical system. This is beneficial

for mass sensing. As described in Section 2.1, the mass sensitivity is proportional

to the frequency fluctuations δΩ0/Ω0. This term is proportional to anoise/adriven =

1/SNR, where SNR is the signal-to-noise ratio. We can calculate the SNR for both

the racetrack-loaded MZI and for the racetrack for the case where the coupling

coefficient τ = 0.986. adriven is defined as the amplitude of the 1f signal before

the onset of the 2f readout nonlinearity. For the racetrack-loaded MZI, adriven =

0.61 nm. For the racetrack, adriven = 0.22 nm. The amplitude of anoise in each

case is extracted from the thermomechanical noise, and is equal to 87.4 pm/Hz1/2

for the racetrack-loaded MZI, and equal to 87.6 pm/Hz1/2 for the racetrack. The

SNR for the racetrack-loaded MZI is therefore 698 m/m Hz1/2, and the SNR for the

racetrack is 251 m/m Hz1/2. This means that δΩ0/Ω0 ∝ anoise/adriven improves by

a factor of 2.8 for the racetrack-loaded MZI compared to the racetrack resonator.

Therefore, the mass sensitivity also improves by a factor of 2.8 with the new photonic

architecture.

Overall, there are three main considerations to choosing the appropriate coupling

condition for future designs; the linear range, the sensitivity, and the drive power.

The choice of coupling condition will depend on the properties of the mechanical

device. If the device has a very high frequency, for example, the sensitivity and

drive power should be increased by designing a cavity close to critical coupling.

The linear range can be sacrificed somewhat in this regard, as the stiffer cantilever

will have a smaller amplitude of vibration. A low frequency device will naturally

have a larger amplitude, and so a larger linear range is necessary. For a cantilever

with low resonance frequency, the required optical drive power and sensitivity are

reduced, and so the cavity can be strongly over-coupled. Regardless of the coupling

condition is chosen, using a racetrack-loaded MZI will improve the linear range of

the mechanical readout.

6.5 Conclusion

To reduce the readout nonlinearity observed in racetrack resonator coupled optome-

chanical systems, we have designed, fabricated, and tested racetrack-loaded Mach

Zehnder interferometers. A racetrack resonator is coupled to one arm of a MZI,

while the reference arm has a phase shift set to π/2 at a wavelength of 1550 nm.

Although in this case we have used this photonic circuit to improve the linear range
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for optomechanical mass sensors, this phase-sensitive photonic integrated circuit

may also enable on-chip homodyne measurements for other optomechanical appli-

cations. The Fano-like resonance shape of the racetrack-loaded MZI increases the

linear response of the transfer function of the photonic circuit by between 3–4 times,

depending on how strongly the racetrack resonator is coupled to the MZI arm. The

improvements in the linear range were observed in both the optical spectra and the

mechanical signal. To determine the mechanical linear range, the mechanical signal

was recorded at the fundamental resonance frequency as well as higher harmonics.

The mechanical linear range was specified by the fundamental amplitude in metres

where the 2f signal was greater than zero. The linear range was highest for the

most over-coupled optical cavities, and smallest for under-coupled cavities. The dis-

placement sensitivity of the racetrack-loaded MZIs was slightly worse than racetrack

resonators close to critical coupling. When the cavities were strongly over-coupled,

the racetrack-loaded MZIs had better displacement sensitivity.

The linear range of the racetrack-loaded MZIs was greater than the racetrack

resonators in all cases. By converting the improvement in linear range to an im-

provement in signal-to-noise ratio, we are able to determine than the SNR of the

racetrack-loaded MZI is improved by 2.8 times compared to the racetrack. This

should lead to an improvement in mass sensitivity by a factor of 2.8. This photonic

circuit architecture will be very valuable for reducing the readout nonlinearity of

photonic transduction when using cantilevers or other high amplitude nanomechan-

ical devices, and improving their performance as mass sensors.
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Chapter 7

Conclusions

Nanomechanical devices are very promising mass sensors due to their low limit of

detection. When combined with integrated photonic transducers to create nano-

optomechanical systems, a number of desirable properties such as excellent signal-

to-noise ratio, high bandwidth, and CMOS compatibility are attained. In this thesis,

we have studied nanomechanical cantilevers coupled to optical racetrack resonators.

The end goal in mind is low-cost, portable mass sensing technology that could be

used in applications such as health care diagnostic tools and gas analysis. The

nanomechanical cantilevers are actuated using an all-optical pump-and-probe ap-

proach. The nano-optomechanical system is fabricated using silicon-on-insulator

substrates and operates at near-infrared wavelengths.

An important consideration for portable sensor technology is power consump-

tion. We derived a unique design methodology specifically for the pump-and-

probe approach that improves the efficiency of the integrated photonic transduction

scheme. By adhering to these design principles, the AC optical power required to

reach the upper bound on the cantilever’s dynamic range was reduced by approxi-

mately four times compared to an unoptimized system. By using the optimized op-

tomechanical system, we were able to achieve large amplitudes greater than 12 nm.

This large amplitude was sufficient to introduce nonlinearity into the system and

thereby reach the upper end of the dynamic range of the cantilever. Reaching the

full dynamic range while reducing power consumption by 4 compared to previous

nano-optomechanical system designs represents a significant improvement.

Once we reached the upper bound on the dynamic range of the nano-optomechanical

system, we performed in-depth experimental characterization of the device, while it

was driven into nonlinearity. To extend the dynamic range of the nano-optomechanical

system, and improve the detection limit of the system for use as a mass sensor, we

must first understand the sources of nonlinearity. By studying the effects of pump

laser drive power and probe laser detuning on the nano-optomechanical system,

we experimentally observed a stiffening nonlinearity when the probe laser was red-
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detuned, a softening nonlinearity when the probe laser was blue-detuned, and a

softening nonlinearity at zero detuning. This counterintuitive result could not be

fully explained by any existing models in the literature. We adapted an existing an-

alytical model to include the pump laser, and this approach was able to reproduce

the softening observed at blue detuning and the stiffening observed at red detuning.

The model could not explain the softening at zero detuning. Furthermore, no other

existing model accounted for an AC amplitude modulated pump laser, or for the

large amplitudes of vibration experienced by the cantilever in our optomechanical

system. We derived and solved a numerical model to account for the effects of the

pump laser and the large amplitudes of vibration. By using the numerical model

we were able to ascertain that there were three sources of nonlinearity in the nano-

optomechanical system; a readout nonlinearity, an optical cavity force nonlinearity,

and an evanescent force nonlinearity. Using the numerical model, we could separate

the different types of nonlinearity and determine the impact that each one had on

the nanomechanical system. The amplitude of the mechanical device could also be

modeled directly, which allowed for approximation of the amplitude. This is an

important benefit, as the amplitude could not be obtained experimentally due to

the readout nonlinearity. The model successfully accounted for the stiffening and

softening effects observed red, blue, and zero detuning.

It was evident that the readout nonlinearity posed the most significant challenge

for using these devices as mass sensors, as the amplitude could not be correctly

calibrated and the onset of this nonlinearity was earlier than the other types of

nonlinearity. For this reason, in the final chapter we studied an alternative inte-

grated photonic circuit for transduction of the nanomechanical device. This circuit,

a racetrack-loaded Mach Zehnder interferometer (MZI), is a phase-sensitive circuit

and has a Fano-like lineshape and constitutes an integrated photonics implemen-

tation of optical homodyning. For these reasons, the circuit was expected to have

a larger linear range than the racetrack resonator alone. Many different aspects of

the circuit were modeled in the design process, including the coupling conditions of

the racetrack resonator to the MZI and the phase difference between two arms of

the racetrack-loaded MZI. The design process for on-chip, phase-sensitive detection

of optomechanical systems has not been previously explored and may find use in

other applications, such as on-chip homodyne detection. Experimental testing of

the optical and mechanical properties of the racetrack-loaded MZIs resulted in a

linear range improvement compared to the racetrack resonators, regardless of the

coupling condition of the racetrack-loaded MZI. We demonstrate that improvement

in the linear range results in an improvement in the dynamic range, and therefore

the mass sensitivity, by a factor of 2.8.

This work has demonstrated approximately a four times reduction in the power

188



consumption and approximately three times improvement to the mass sensitivity of

nano-optomechanical systems, improving the overall performance of these devices

as mass sensors. However, the primary contribution of this work is in improving

the understanding of the source of nonlinearities in nano-optomechanical systems

when used with a pump-and-probe transduction scheme. The model derived here

can be used to design future systems and characterize existing systems, and occu-

pies a previously unexplored niche in the complex realm of nano-optomechanical

nonlinearity.

All of these improvements have contributed to a greater understanding of nano-

optomechanical systems for use in mass sensing applications. These improvements

are important strides to make optomechanical mass sensing more practical and

portable. In the following section, we provide suggestions on how to build on the

work presented here, to continue to make improvements for mass sensing technology

based on nano-optomechanical mass sensors.

The end goal for this technology is to combine the remarkable sensitivity of

the nanomechanical sensor, integrated photonic transducer, and all of the necessary

electronics to create a portable, low-cost mass analysis system. The sensor and

transducer already have a low limit of detection, a small footprint, and low cost

due to the fact that they are both simultaneously fabricated using CMOS processes.

This is an excellent starting point for the overall technology. To create a portable

system, the surrounding lasers and electronics are an important consideration. The

large, tunable diode laser could be replaced with a small on-chip laser. The bulky

chambers used to hold the chips could be replaced with smaller, gas-tight packages.

However, the biggest hurdle for creating a portable device is the electronics used

for analysis. The lock-in amplifier, currently used for phase-lock loop operation, is

not portable. However, creative solutions such as using a wireless connection on

the chip or package may be incorporated. The chip and package would then be

small and portable, with a larger, less portable “reader” elsewhere for data analysis.

This approach, used in conjunction with the sensor and transducer improvements

suggested in this thesis, would help propel the technology forward. With each

improvement to the sensor, transducer, electronics, or packaging, the dream of a

portable mass analysis system for health care, environmental monitoring, or gas

analysis becomes closer to reality.

7.1 Directions for Future Work

One area for future development is in developing nano-optomechanical mass sensing

technology for operation in liquid. Future development should focus on the fin

resonators, which despite the difficulties observed in this work still have significant

potential for liquid sensing. The fin response may be seen if the noise floor of
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the measurement of fins could be reduced by modifying the experimental setup.

Lower noise photodiodes, amplifiers at the output, or a mixing technique to reduce

the overall noise may all be useful directions to explore. The sensitivity of the

transduction could be improved by using high quality factor optical cavities such as

photonic crystals.

When considering the dynamic range of the mass sensor, the next step is to

combine the optimized drive with the racetrack-loaded MZI circuit. To achieve

this goal, devices defined using electron beam lithography will likely be required

to obtain the small gap between the cantilever and the optical cavity required to

achieve the desired optomechanical coupling coefficients. This design should be

modeled numerically to determine the sources of nonlinearity, so that they may be

reduced as much as possible. A future design that accounts for all of these aspects

will represent a substantial improvement in the on-chip mass sensing architecture.

These improvements to the overall sensor technology are crucial to moving nano-

optomechanical mass sensors forward to enable our vision of a portable, inexpensive

mass analysis technology.
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