INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI fiims the text directly from the original or copy submitted. Thus, some thesis and dissertation copies are in typewriter face, while others may be from any type of computer printer.

The quality of this reproduction is dependent upon the quality of the copy submitted. Broken or indistinct print, colored or poor quality illustrations and photographs, print bleedthrough, substandard margins, and improper alignment can adversely affect reproduction. .

In the unlikely event that the author did not send UMI a complete manuscript and there are missing pages, these will be noted. Also, if unauthorized copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by sectioning the original, beginning at the upper left-hand corner and continuing from left to right in equal sections with small overiaps.

Photographs included in the original manuscript have been reproduced xerographically in this copy. Higher quality $6^{n \prime} \times 9^{\prime \prime}$ black and white photographic prints are available for any photographs or illustrations appearing in this copy for an additional charge. Contact UMI directly to order.

ProQuest Information and Learning 300 North Zeeb Road, Ann Arbor, MI 48106-1346 USA 800-521-0600
UMI'

Synthetic Applications of 5-Endo-trigonal Cyclization, and Synthetic Studies Related to Puraquinonic Acid

by
Mousumi Sannigrahi

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

DEPARTMENT OF CHEMISTRY

Edmonton, Alberta
Spring, 2000

Bibliothèque nationale du Canada

Acquisitions et services bibliographiques
395, rue Wellington Ottawa ON K1A ON4 Canada

The author has granted a nonexclusive licence allowing the National Library of Canada to reproduce, loan, distribute or sell copies of this thesis in microform, paper or electronic formats.

L'auteur a accordé une licence non exclusive permettant à la Bibliothèque nationale du Canada de reproduire, prêter, distribuer ou vendre des copies de cette thèse sous la forme de microfiche/film, de reproduction sur papier ou sur format électronique.

L’auteur conserve la propriété du droit d'auteur qui protège cette thèse. Ni la thèse ni des extraits substanttiels de celle-ci ne doivent être imprimés ou autrement reproduits sans son autorisation.

The author retains ownership of the copyright in this thesis. Neither the thesis nor substantial extracts from it may be printed or otherwise reproduced without the author's permission.

Canadä

UNIVERSITY OF ALBERTA

LIBRARY REEEASE FORM

M. Sannigrahi
P. 407D1

Hijli
Kharagpur 721306
West Bengal
India
Date: 12,22. 99

To my family

UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES AND RESEARCH

The undersigned certify that they have read, and recommend to the Faculty of Graduate Studies and Research for acceptance, a thesis entitled Synthetic Applications of 5-Endotrigonal Cyclization, and Synthetic studies Related to Puraquinonic Acid submitted by Mousumi Sannigrahi in partial fulfillment of the requirements for the degree of Doctor of Philosophy.

ABSTRACT

The first part of this thesis describes the application of a tandem radical cyclization to the formal synthesis of methyl epi-jasmonate. This sequence involves i) a 5-exodigonal cyclization, iil. abstraction of a hydrogen, and iii) an unusual 5-endo-trigonal cyclization. The cyclization results in the formation of substituted cyclopentanes with good stereocontrol. Application of this sequence to material from the chiral pool was also studied, and the results of this work on the tandem radical process have been published (J. Org. Chem. 1999, 64, 2775).

The second part of this thesis describes synthetic studies on puraquinonic acid. Puraquinonic acid is a fungal metabolite which is known to induce cell differentiation in HL-60 cells. It contains an asymmetric center which is asymmetric due to substitution further away in molecule. This feature poses a significant synthetic problem. A model study was done to accommodate this feature. The route should make it possible to obtain the natural product in both racemic and optically pure forms. Also, a route towards the actual synthesis of puraquinonic acid was explored. A key intermediate was prepared, and it should lead to puraquinonic acid by the application of some straightforward chemical transformation.

ACKNOWLEDGMENTS

I would like to express my gratitude to Dr. D. L. J. Clive for his constant support and encouragement during the course of my Ph.D. program, and for his assistance during the preparation of this thesis.

I would also like to thank Dr. P. Sgarbi and Dr. D. Mayhew for their valuable help and advice during the initial stages of my laboratory work and for their friendship.

Thanks also go to a number of other people:

- Dr. Vanessa Gagliardini, Don Coltart and Vince Yeh for helpful discussions, advice and friendship.
- Members of the Clive group over the years - specially Yuanxi, Vírginie and Simona.
- Jennifer and Elizabeth, for the good times we shared.
- the Staff of the IR, MS, NMR and elemental analysis labs.

Finally, I would like to thank my family for their support and encouragement.

Table of Contents

PART 1

5-Endo-Trigonal Radical Cyclization, Synthesis of Methyl epi-Jasmonate, and use of Material from the Chiral Pool
General 2
5-Endo-Trigonal Cyclization by Carbon Centered Radicals 5
(a) Use of an alkyl radical 5
(b) Use of a vinyl radical 8
(c) Use of acyl radicals 9
(d) Use of a carbonyl radical 20
(e) Use of a sulfur-centered radical 21
(E) Use of silicon-centered radicals 22
Conclusion 26
Synthesis of Methyl Epi-Jasmonate 27
Conclusion 44
References and Footnotes 45
A formal Synthesis of Methyl Epi-Jasmonate, and Use of Material from the Chiral Pool 50
Results and Discussion 50
Methyl Epi-Jasmonate 53
Application of the Radical Cascade to Material from the Chiral Pool 68
Experimental 79
References and Footnotes 136

List of Figures

Page
5-Endo-Trigonal Cyclization
Figure 1 Jasmonoid Family 27
A formal Synthesis of Methyl Epi-Jasmonate, and Use ofMaterial from the Chiral Pool
Figure 1 Methyl epi-jasmonate 52
Figure 2 Favored Conformation 57
Figure 3 Corey Lactone and PGF 2α 69
Figure 4 Olefinic Product 136
PART 2
2. Synthetic Studies Related to Puraquinonic Acid
General Introduction 140
References and Footnotes 145
Results and Discussion 146
The β-lactone approach 147
Synthetic studies on the β-lactone route 149
Model Studies on the Acetal approach 155
Synthesis of the substituted indenone system 157
Modified Route 162
The bisbenzyl route 171
Conclusion 180
Experimental 181
References and Footnotes 236
List of Figures
Page
General Introduction
Figure 1 Puraquinonic acid 140
Figure 2 Puraquinonic acid derivatives 140
Figure 3 Model Substructure 4 141
Results and discussion
Figure 1 Puraquinonic acid 146
LIST OF ABBREVIATIONS
AIBN.............2,2'-azobisisobutyronitrile
Bn benzyl
$t-B u$ tert-butyl
DBU 1, 8-diazabicyclo[5.4.0]undec-7-ene
DDQ.............2,3-dichloro-5,6-dicyano-1, 4-benzoquinone
DEAD diethyl azodicarboxylate
DIBAL diisobutylaluminum hydride
DMAP 4-(dimethylamino) pyridine
DMF dimethyl formamide
DMSO dimethyl sulfoxide
HMPA hexamethylphosphoric triamide
KHMDS potassium hexamethyldisilazane
LDA Iithium diisopropylamide
LHMDS lithium hexamethyldisilazane
MCPBA m-chloroperoxybenzoic acid
MOM methoxymethyl
MEM methoxyethoxymethyl
NMO 4-methylmorpholine N-oxide
NMP 1-methyl-2-pyrrolidinone
PCC pyridinium chlorochromate
PDC pyridinium dichromate
Ph
phenyl
PMB p-methoxybenzyl
PPTS pyridinium p-toluenesulfonatePrpropyl
Py pyridine

```
SEM.............2-(trimethylsilyl)ethoxymethyl
TBAF............tetrabutylammonium fluoride
TBDPS...........tert-butyldiphenylsilyl
TBS.............tert-butyldimethylsilyl
TMS..............trimethylsilyl
Tf..............trifluoromethanesulfonyl
TFA.............trifluoroacetic acid
TFAA............trifluoroacetic anhydride
THF..............tetrahydrofuran
TPAP............tetra-n-propylammonium perruthenate
Ts..............p-toluenesulfonyl
```


PART I

5-ENDO-TRIGONAL RADICAL CYCLIZATION, SYNTHESIS OF METHYL EPI-JASMONATE, AND USE OF MATERIAL FROM THE CHIRAI POOL

5-ENDO-TRIGONAL RADICAL CYCLIZATION

General

During the last 20 years radical reactions have become important for the generation of carbon-carbon bonds. Such reactions have characteristics that are different from polar processes. They occur under neutral conditions, and so acidand base-labile groups are unaltered, and several common types of functional groups do not have to be protected during radical reactions. Another important feature is that steric congestion, which complicates and hinders ionic processes, does not play such a decisive role in radical chemistry.

A number of radical initiators are available which initiate reactions at low temperatures, and so radical reactions can be run under mild conditions. I

Most synthetic applications of radical chemistry in synthesis involve cyclizations, and in this regard the Baldwin rules ${ }^{2.3}$ for ring closure and the Beckwith guidelines ${ }^{4}$ are important in predicting the outcome of radical processes. In particular, 5-endo trigonal cyclizations are generally disfavored, but, as described below, an increasing number of such reactions are being discovered. Stereocontrolled tandem sequences of radical ring closures, giving rise to a variety of useful substrates, have been developed. some of these sequences involve 5-endo-trigonal cyclization. The following Iiterature review deals with the main transformations which have been accomplished using 5-endo-trigonal cyclization.

According to the Rules for Ring Closure, established by Baldwin2,3 in 1976, a closure taking place through a 5-endotrigonal pathway is a geometrically disfavored process when X is a Eirst row element (Scheme 1). This rule is based on the

Scheme 1
premise that the transition state has to acquire a specific conformation for ring closure to occur. In analogy to the work done by Dunitz and Bürgi ${ }^{5}$ on nucleophilic additions to carbonyls, Baldwin predicted the required angle of approach to be 109°. Thus, for 5-endo-trigonal cyclization a severe distortion of the bond angles and distances is required to achieve such a trajectory when the connecting chain involves first row elements. In such cases, the substrate may follow alternate reaction paths, such as 4-exo-trigonal cyclization (Scheme 1). The Beckwith Guidelines for radical reactions ${ }^{4}$ support the general preference for 4 -exo over 5-endo closures.

The reliability of this rule is demonstrated by the rare observation of 5 -endo-trigonal cyclizations. The first examples of this process were found in the works of Julia, 6

Pines, ${ }^{7}$ Wilt 8 and Forbes ${ }^{9}$ (Scheme 2). In each case low yields of the 5 -endo closure product were obtained.

(Wilt, 1966)

Scheme 2

However, in several cases, when X (Scheme 1) is a second row element, the above rule may be relaxed, and the 5 -endo cyclization is efficient. The success in such cases is due to the larger atomic radii of second row elements and hence longer bond distances. The net result is that the required approach trajectory can be accommodated without undue strain. Studies involving closures in these circumstances have led to efficient routes to cyclopentanes and diquinanes, pyrrolizidinones, pyroglutamates, and spironucleosides,
including several natural products.

5-Endo-Trigonal Cyclization by Carbon-Centered Radicals

(a) Use of an alkyl radical

Malacria and coworkers 10,11 have extensively developed a tandem radical cyclization sequence, which involves i) 5-exodigonal cyclization, ii) diastereoselective 1,5-hydrogen transfer, and iii) a rarely-observed all-carbon 5-endotrigonal cyclization (Scheme 3). This reaction sequence leads to products such as 19, containing three new contiguous asymmetric centers.

Upon treatment with Bu3SnH, compound 14 underwent 5-exodigonal cyclization to generate vinyl radical 15 , which exists in two forms, (E) -15 and (Z)-15. Due to severe 1,3allylic interactions in the E-vinylic intermediate 15 , the equilibrium shifts towards the more stable Z form. The highly reactive vinyl radical undergoes 1,5 -hydrogen transfer by interaction with a non-activated $C-H$ bond of 15. The newly generated radical 16 then cyclizes by a 5-endo-trigonal pathway to give 17. Diastereoselective quenching of the radical 17 produces the bicycle 18 which, on treatment with methyllithium, affords the cyclopentane 19. The authors propose that the occurrence of the disfavored 5-endo process

14

16
5-endo-trigonal

Scheme 3
is due to a facilitating modification of the geometry brought about by steric repulsion between the isopropyl groups.

This hypothesis was later supportedll by studying substrates which are sterically less demanding. For example, when the isopropyl groups were replaced by ethyl groups (Scheme 4, entry 20d), the product of 5-endo-cyclization was isolated in lower yields.

The reaction was also found to be dependent on the bulk of the acetylenic substituent Y (Scheme 4). When compound 20a (Y = tert-butyl) was subjected to similar experimental conditions, product $21 b$ was formed exclusively and in high yield, suggesting that no bimolecular reduction of the intermediate methylene radical had occurred. It was found that, when the bulky tris(trimethylsilyl)silane was employed instead of a stannane for the reaction $20 a \rightarrow 21$, a complete reversal in the product ratio (21:22) was observed (10:90 vs 81:19). The observance of product 22 (arising from a β elimination from an intermediate of type 17 (see Scheme 3) in the other cases ($\mathbf{2 0 b} \mathbf{0} \mathbf{f}$) was not mentioned in the paper.

The sequence of Scheme 3 was also applied in the synthesis of polycyclic systems (see 20f, Scheme 4).
(b) Use of a vinyl radical

5-Endo-trigonal ring closure has also been applied in
the synthesis of spironucleosides. The groups of Chatgilaloglu 12 and Tanaka 13 imdependently reported the first example of a nucleosidic anomerric radical (Scheme 512).

The cascade summarized im Scheme 5 starts with bromine abstraction from $C(8)$ by a stannyl or silyl radical to generate a highly reactive vinyl radical (23 $\rightarrow 24$), followed by a 1,5 radical translocation to the anomeric position, a

Schemes 5
rare 5-endo-trigonal cyclization of the anomeric radical 25 onto the proximal double bond, and finally, product formation by bromine atom expulsion, gi.ving 28 and 29 in a $2: 1$ ratio
(25-44\% yield). The stability of the anomeric radical 25 suggests that the 5-endo-trigonal cyclization is a relatively fast process, in this case. When the cascade was initiated using a 300-W visible light source, a better yield (78\% combined) was obtained. The authors suggest that the stability of the intermediate radicals 26 and 27 , allows the cyclization to occur by the endo mode.

(c) Use of acyl radicals

Ikeda and coworkers have developed ${ }^{14}$ an efficient route - based on 5-endo-trigonal closure - to various heterocycles containing a γ-lactam unit. Extensive studies on the factors that affect the cyclization process were also carried out.

Their methodology was first used to obtain a variety of γ-lactams (Scheme 6) by 5-endo-trigonal cyciization of N vinylic α-chloroacetamides. When acetamides 30a-c, were treated with $B u_{3} S n H$ and AIBN, a mixture of compounds 31a-c, 32a-c and 33a-c was obtained. This study also found that the ratio of the product arising from 5-endo-trigonal cyclization and that from the competing 4-exo-trigonal closure is controlled by the electronic and steric effects imparted by the substituents on the radical center.

When $R=H$, intermediate $\mathbf{3 1 a}$ predominates, as the benzylic radical, generated by 4 -exo closure of $30 a$, is more stable than the α-acylamino radical that results from the 5endo mode of closure. However, if the substituent R in $\mathbf{3 0 a - c}$ is a bulkier methyl or phenyl group, severe steric repulsion

Scheme 6

that develops between R and the neighboring gem-dialkyl group in the 4-exo pathway leads (Scheme 7) to increased amounts of 32b, c.

Further work ${ }^{15}$ showed that reversibility of the 4 -exotrigonal cyclization is a crucial factor in determining the product ratio. The 4-exo-trigonal cyclization is a kinetically favored process compared to the 5-endo closure in this case, but the benzylic radical 35 and the carbamoylmethyl radical 34 can equilibrate. In substrates where $R=H$, the reduction step is faster than equilibration, giving rise to β-lactams. However, in cases where $R=P h$ or Me, the presence of a radical stabilizing substituent (Ph or Me), slows reduction, and so ring opening of 35 to give 34 occurs, and the reduction step takes place only after the thermodynamically more stable 36 is formed by a 5-endotrigonal cyclization. The above interpretation was supported by carrying out the reactions at different temperatures and studying the product ratio. 16 At a higher temperature, the rate of equilibration is increased, and the proportion of γ lactam rises.

Scheme 7

The presence of the amide carbonyl group as part of the ring-closing chain was also found to be a necessary feature (Scheme 8) for effecting the cyclization. 14 When compound 37, in which the amide carbonyl is not part of the potential ring-closing chain, was subjected to the standard conditions, only the reduced product 38 was obtained.

The above methodology was also extended to a study of the behavior of N-(I-arylethenyl)carbamoylmethyl radicals ${ }^{17}$ (Scheme 9). The cyclization reaction was found to be highly dependent upon the nature of the radical precursor (see Scheme 9). The dithioacetal 39d was found to be best suited

Scheme 9
for this purpose, whereas the dichloro derivative $39 b$ Eailed to give any cyclization products, and much of the starting material was recovered. Racemic cotinine (4) was synthesized, using the above methodology (Scheme 10).

42
$\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, PhH , $80^{\circ} \mathrm{C} ; 97 \%$

Scheme 10

In an effort to develop an asymmetric version of the above protocol, Ikeda's groupl8 studied the cyclization of chiral N-(I-cycloalken-I-yl)- α-haloacetamides (Scheme 11), and the ring closure was designed so that the stereochemistry of the new asymmetric centers is controlled by 1,4 asymmetric induction by a chiral auxiliary on the nitrogen atom. When compound 44a (Ar $=P h$) was treated under the standard stannane reduction conditions, 45 and 46 a were formed in

Scheme 11
good yield, but the diastereoselectivity (3:2) was poor. When a sterically more demanding auxiliary, (S)-1-(I)naphthylethyl was used, as in 44b, the stereochemical outcome was improved (76:24), but the yield was poor (19\%). Removal of the chiral auxiliary by hydrogenolysis of the mixture of $45 b$ and $46 b$ gave the corresponding amines, whose optical rotation indicated an ee of 77%. The observed diastereoselectivity was rationalized in the following way (Scheme 12).

47B

48B

Scheme 12

Compound 45b is obtained by cyclization of the sterically favored conformer 47A. Conformer 47A produces intermediate 48A, which subsequently abstracts hydrogen from the convex face to produce the cis ring fused product. In conformer 47B steric repulsion between the $C(8)$ hydrogen of the aromatic ring and one of the allylic hydrogens of the cyclohexene subunit makes this conformer less stable, and so the amount of $\mathbf{4 6 b}$ is lowered (Scheme 12).

This result was applied in the total synthesis of the alkaloid (-)- γ-lycorane (52). 19 Enamine 49, obtained from cyclohexane-1,2-dione, on exposure to Bu3SnH, underwent radical cyclization by a 5-endo-trigonal route to give a $2: 1$ mixture

Scheme 13
of 50 and 51 (Scheme 13). The high combined yield (84\%) of 50 and 51, as compared to 45 a and 46 b (55\%), may be explained in terms of the captodative ${ }^{20}$ stabilizing effect of
the cyclized radical intermediate ($-N-C \cdot-C=0$) in the case of 49.

Goodall and Panrsons, envisioned that substrates such as 53a-d, when subjected to similar conditions as in the above cyclizations, should lead to the formation of pyroglutamates.21 Pyroglutamates of type 54a-d, with substituents R at $C(4)$, are valuable intermediates in the synthesis of biologically important non-proteinogenic amino acids.

A series of α-chloroamides $5 \mathbf{3 a - d}$, prepared from DLserine, on treatment with $B u_{3} S n H$ and $A I B N$, underwent 5-endotrigonal cyclization to afford pyroglutamates 54a-d in good yield (Scheme 14). The presence of the ester group served to increase the stability of the intermediate radicals by means of the captodative ${ }^{20}$ effect.

Scheme 14

When $R=H, C$ H, the simple reduction product was also observed. The authors make no comment as to why their reactions follow thee 5-endo pathway. Presumably, the same
factors described above are involved. In addition, for the present case, a 4-exo-closure would be slowed because it would involve reaction at a fully substituted carbon.

In a related study, Baker et al. 22 also applied this unusual cyclization in an effort to synthesize indolizidinone and pyrrolizidinone alkaloids (Scheme 15). Some of these

56a R $=H$	$X=C l$
56b R $=M e$	$X=C l$
56C R $=M e$	$X=1$

57a 21\%
58a 21%
56C R = Me $X=1$
57b 27\%
58b 27\%
58c 38\%

Scheme 15
alkaloids have important medicinal properties, and are common synthetic targets.

Various dehydroamino esters (Scheme 15) were treated with $\mathrm{Bu}_{3} \mathrm{SnH}$ and catalytic amounts of AIBN . In each case a 5-endo-trigonal cyclization occurred, followed by a 5-exo- or 6 -endo ring closure onto the pendant double bond (Scheme 15). The yields were better with iodides than with chlorides.

Zard et al. 23 used the normally disfavored 5-endotrigonal cyclization to construct the crucial 5-membered ring (see Scheme 17) in a synthesis of the erythrina alkaloid 3dimethoxyerythratidinone (67). The synthesis uses a novel method (Scheme 16) for generating radicals, previously developed by the zard group. When trichloroacetamides (59)
were treated with nickel powder and acetic acid in refluxing 2-propanol, the compounds are first reduced to a radical intermediate (see 61) which exclusively gives the endoproduct, even when the 4-exo cyclization would lead to a resonance-stabilized, although more strained, radical (see 62).

Scheme 16

For the synthesis of 67, dithioketal 65 was subjected to...

$\mathrm{Ni}, \mathrm{AcOH}$
2-propanol, reflux; 49\%

3-demethoxyerythratidinone
67

Scheme 17
the above radical cyclization conditions; it afforded the unsaturated lactam 66 in 49% yield, along with some (25\%) of the simple reduction product $\left(\mathrm{CHCl}_{2}\right.$ instead of $\left.\mathrm{CCl}_{3}\right)$.

Schultz and coworkers ${ }^{24}$ have employed 5-endo trigonal cyclization of chiral enamide 69 to obtain lactams, which can potentially serve as models for kopsinine-type alkaloids (Scheme 18).

When compound 69, itself prepared by N-acylation of 68, was exposed to $B u_{3} \mathrm{SnH}$ and AIBN, 70 was obtained in 63% yield

Scheme 18
via a 5-endo-trigonal cyclization. It is interesting to note that the radical generated at $C(1)$ in this process is reduced with complete β-facial selectivity. The selectivity is possibly the result of a transition state which ensures maximum overlap between the orbital carrying the radical and the enamide π bond. Such a transition state also requires the piperidine ring to be in the more favored chair conformation. Molecular modeling studies have also shown that the cis isomer 70 is $8.5 \mathrm{kcal} / \mathrm{mol}$ more stable than the corresponding trans isomer.

Rama Rao and coworkers have used 5-endo-trigonal closure
to generate the key spirocenter in their total synthesis of fredericamycin. 25 When a solution of $B u_{3} S n H$ and AIBN was added slowly to a refluxing solution of bromide 71 , spirocycle 72 was formed via a 5-endo-trigonal cyclization. No comment was made about the regiochemistry of this step (Scheme 19).

> $\mathrm{Ph}_{3} \mathrm{SnH}$, AIBN, PhH ; product not isolated until after next step

Scheme 19
(d) Use of ia carbonyl radical

In another use of the 5-endo cyclization, Yamamoto et al.26 developed a method to convert 4-hydroxy-2cyclobutenones, which are readily available from diethyl squarate, into furanones (Scheme 20). Furanone-based natural products are known to possess various biological activities. The usefulness of this method was demonstrated by the synthesis of naturally-occurring (Z)-multicolanate (78).

Diethyl squarate was alkylated to obtain the hydroxy butenone 7 4. Lead tetraacetate-induced oxidative
rearrangement (Scheme 20) gave 77 and 78 in a $3: 1$ ratio. The intermediate acetoxy tetronate 77 was converted efficiently into the natural product 78 by treatment with base.

Scheme 20

The oxidative rearrangement sequence is initiated by formation of the alkoxy radical 75 resulting from reaction of alcohol 74 with lead tetraacetate. This step is followed by a β-scission to produce the acyl intermediate 76. 5-Endotrigonal cyclization of the radical onto the carbonyl oxygen then produced the furanones 77 and 78 .

Other radical initiators such as ceric ammonium nitrate and manganese(III) acetate can also be used, but best results were obtained with lead tetraacetate.
(e) Use of a sulfur-centered radical

An example where a sulfur-centered radical undergoes 5-
endo-trigonal cyclization is found in Journet's synthesis of dihydrothiophene derivative 85.27 Compound 85 is obtained by a complex series of steps involving radical rearrangement and

Scheme 21
radical cyclization of sulfide 79 (Scheme 21). The process is initiated by addition of BuasnH to the terminal triple bond. The newly-generated vinyl radical then equilibrates to the more stable Z-form, which undergoes 5-exo-trigonal cyclization and β-fragmentation to give 83 . The resulting sulfur radical then undergoes 5 -endo-trigonal ring closure (83 $\boldsymbol{8} \boldsymbol{4}$) . The sequence is finally terminated by a β fragmentation of the tin radical (84 $\rightarrow 8$) .

When the electron withdrawing group (ester) was replaced by a sulfone, no cyclization product was obtained because stannane addition to the double bond now occurs more rapidly
than to the triple bond.

(f) Use of silicon-centered radicals

Much of the chemistry involving silicon-centered radicals that undergo 5 -endo-trigonal cyclization has been developed in this laboratory. The details of this work are discussed in the Results section of Part 1 (see later).

The methodology developed in this group (Scheme 22)28-30 has been applied to a variety of substrates, leading to the efficient synthesis of substituted cyclopentanes, tetrahydrofurans, γ-lactones, pyrrolidines and chromanols, and natural products. One of the notable features of this series of transformations is the formation of three contiguous asymmetric centers in one step. Also, since the stereochemical outcome is controlled by the stereochemistry of the original hydroxyl group (see starred atom in 86), this method can be been applied to the synthesis of optically pure compounds. 28,29

The tandem radical process of Scheme 22 involves the following steps: i) 5-exo-digonal closure of radical 87 (produced from the selenide or bromide), giving rise to the vinyl radical; ii) a diastereoselective 1,5-hydrogen transfer and creation of a silicon centered radical and iii) an unusual 5-endo-trigonal cyclization, followed by hydrogen abstraction, to yield 88, exclusively (Scheme 22).

Scheme 22

The efficiency of the normally disfavored 5-endo process is due to the longer (compared with first row elements) O-Si bonds in the chain undergoing closure.

Initially, this methodology was developed to obtain substituted all-carbon 5 -membered rings. These compounds could be obtained by cleaving the bicyclic products 88 ($\mathrm{X}=$ C) under a variety of conditions. The sequence of reactions shown in Scheme 22 was also successful when the tert-butyl groups on the cyclization precursor were replaced by phenyl or methyl groups. 30

Further work (Scheme 23), using substrates were X is a heteroatom, was also carried out. Cyclization reactions occurred as before, and in good yields, giving rise to various five-membered heterocycles.

89

90

91

92

Scheme 23

When an optically pure starting material was used, an optically pure lactone 92 , with three new contiguous asymmetric centers, was obtained (Scheme 23).

The preference of allyloxysilyl radicals to undergo 5-endo-trigonal cyclizations has also been observed in simple systems. 31,32 Thus, when hexane solutions of allyloxysilanes such as 93 were treated with catalytic amounts of tertdodecanethiol and a radical initiator (di-tert-butyl hyponitrite), cyclic silane 95 could be obtained in 95% yield. This intermolecular thiol-catalyzed radical-chain hydrosilylation of alkenes represents a good route to cyclic organosilanes (Scheme 24).

Scheme 24

Barton and Revis32 had also reported similar observations, but on disilanes such as 99 (see Scheme 25).

Scheme 25

Conclusion

As indicated in the above review, the normally disfavored 5-endo-trigonal mode of cyclization can be observed if certain special features are incorporated into the cyclization precursor. These features include the use of second-row elements, steric factors, or substitution that favors reversibility of an initial 4-exo closure.

SYNTHESIS OF METHYL EPI-JASMONATE

Methyl epi-jasmonate (102) is the main component responsible for the odor of jasmine oils. Originally, the epimer, methyl jasmonate, was erroneously thought to be responsible for the fragrance. Methyl jasmonate (103) was first isolated by Demole et al. 33 from the essential oil of Jasmarinus grandiflorum L. and characterized. Subsequently,34 other members of the jasmonoid family (Figure 1), jasmonic acid (104) and methyl cucurbate (105) were isolated. The high price of jasmine absolute ($\$ 6000 / \mathrm{kg}$) and high usage made it an important synthetic target.

(+)-Methyl epi-jasmonate 102

Jasmonic acid 104

Methyl jasmonate 103

Methyl cucurbate 105

Figure 1 Jasmonoid family

The first isolation of methyl epi-jasmonate was reported by Baker et al. 35 from the hairpencils of the male oriental Eruit moth, Grapholitha molesta B. The biosynthesis was reported ${ }^{36}$ three years later.

It was not until 1984 that it was proven by Acree and Nishida37 that (+)-102 is the only stereoisomer of methyl jasmonate which is responsible for the characteristic odor, and that the other three stereoisomers are odorless.

Methyl epi-jasmonate is also known to possess a range of plant regulatory and pheromonal properties. 35,38

Several synthesis of methyl epi-jasmonate have been reported. The crucial step in each route is setting up the cis arrangement of the substituents at $C(2)$ and $C(3)$. Due to the presence of the carbonyl group in the 5 -membered ring, the molecule has a tendency to equilibrate to the more stable trans stereochemistry.

The following section describes the various synthetic approaches reported in the literature, with special emphasis on the steps involved to acquire the desired cis configuration.

Stork and Ouerfelli39 (Scheme 26) used a methodology developed in their group to set up the stereocenters in the appropriate fashion. Its application in the present case involved cyclization of haloacetals 108, derived from the corresponding allylic alcohol.

Allylic alcohol 107, prepared from epoxides 106, was converted efficiently into iodoacetals 108. Radical ring closure of 108 produced the bicyclic acetals 110 in high yield. The radical cyclization step controls the diastereoselectivity of the reaction. The radical generated from iodides 108, on treatment with $\mathrm{Bu}_{3} \mathrm{SnH}$, undergoes 5-exo-
NIS, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$,
$-20^{\circ} \mathrm{C}$;
ethyl vinyl ether;
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, ; 80 \%$

108
$\mathrm{Bu}_{3} \mathrm{SnH}$, AIBN, PhH; 95\%

111 t-BuOK, THF;-78 ${ }^{\circ} \mathrm{C}$ to rt ; 90\%
$+1: 8$

112

$(\pm)-102$

Scheme 26
trigonal ring closure, and the resulting radical 109 is trapped from the convex face, so as to give 110. This possesses the desired cis arrangement of substituents at $C(2)$ and $C(3)$ (methyl epi-jasmonate numbering, Scheme 26).

Acid hydrolysis of acetals 110, followed by a wittig reaction, gave alcohol 111, along with the related lactone 112, the latter being the major product. The combined yield was 90%. Formation of lactone 112 proves the correctness of the stereochemical assignment to 110. Methanolysis of 112 regenerates alcohol 111 which, on oxidation, gave (\pm) methyl epi-jasmonate (102).

In a synthesis of (土)-methyl epi-jasmonate (102), Kitahara's group40 (Scheme 27) made use of the inherent thermodynamic stability of the cis-fused acetals $115 \mathbf{a}, \mathbf{b}$ over the corresponding trans - a situation expected by analogy to the stability of the well-studied cis-1-hydrindanones. Keto

Scheme 27
alcohol 113 was easily converted into the bromoacetals $114 a$ or 114b. Treatment of the bromoacetals with base gave a $2: 1$ mixture of the bicyclic compounds $115 a$ or 115 b . Epimerization after acetal ring cleavage was avoided by reducing the carbonyl and protecting the resulting alcohol
with a methoxyethoxymethyl（MEM）group（115a，b $\rightarrow 116 \mathbf{a}, \mathbf{b}$, Scheme 27）．

Acid hydrolysis of $116 b$（experimental details for $116 a$ were not reported）produced the expected lactols which，when subjected to standard salt－free Wittig conditions（Scheme 27），gave the desired Z olefin 117．The two－carbon arm incorporating the ester was obtained by a series of simple chemical transformations $(117 \rightarrow 118 \rightarrow 111$, Scheme 27）． Finally，oxidation under mild conditions，using a two－phase system，gave（土）－102 in an overall yield of 6\％．The material was 97\％pure，as judged by GC analysis．

In another synthesis（Scheme 28）of（土）－methyl epi－ jasmonate by the same group，41 the regio－and facial selectivity of a hydroboration－oxidation reaction served as a key element of the route．Olefin $\mathbf{1 2 0}$ ，prepared in several steps from diketone 119，when treated with a borane complex， followed by oxidative work up，gave a i：2 mixture of the desired 2，3－cis alcohol 122 and its cis isomer 121．Acid hydrolysis of the mixture gave the corresponding aldehydes which were then treated under salt－free Wittig conditions （Scheme 28）．The resulting mixture was chromatographically separated，to obtain the desired product 105 in low yield （19\％），along with the bridged lactone 112．Alcohol 105，was carefully oxidized to（土）－methyl epi－jasmonate（102）．A

Scheme 28
small amount (12% of the total) of the trans isomer, methyl jasmonate, was also formed.

In a recent synthesis of (+)-methyl epi-jasmonate, an optically pure building block (123, Scheme 29) common in the synthesis of prostaglandins, was used by Kitahara's group. ${ }^{42}$

DIBAL reduction of (+)-123, followed by treatment with TsOH in methanol, gave the expected acetals, which where epoxidized, without separation, to produce 124 and 125. Reduction of the epoxides gave an inseparable mixture of alcohols, which were oxidized to 126 and 127. Attachment of the two-carbon unit was accomplished by a Horner-Emmons reaction with trimethyl phosphonoacetate. Facially selective

EtOAc; 93\%
ii) $75 \% \mathrm{AcOH}-\mathrm{H}_{2} \mathrm{O} \mathrm{OH} \quad \mathrm{Ph}_{3}(\mathrm{Pr}) \mathrm{PBr}$,

130

n-BuLi, DME;
$-78^{\circ} \mathrm{C}$ to t ; 73%

(+)-102

111

Scheme 29
hydrogenation proceeded smoothly and, as expected, from the convex face of the bicyclic system to give the endo products. These were hydrolyzed, giving lactols 130. At this stage, with the required cis stereochemistry established, the remaining task of extending the $\mathrm{C}-2$ chain was achieved by i) salt-free Wittig reaction of the lactols, giving an 89:11 $Z: E$ mixture of chromatographically separable olefins, and ii) mild hydrolysis of the bridged lactone 112, followed by esterification with diazomethane. As a result of these
operations, ester 111 was formed with 100% ee. Two-phase oxidation under carefully controlled conditions gave (+)-102, which was 97% pure, as a small amount (3%) of the trans isomer was formed.

The unnatural isomer of methyl epi-jasmonate was synthesized similarly from (-)-123.

Lactone 136 has often seen service as an intermediate for the synthesis of methyl epi-jasmonate and other members of the jasmonoid family.

Seto and coworkers (Scheme 30) used 136 in their synthesis of racemic methyl epi-jasmonate. ${ }^{43}$

The route started with conversion of norbornene into acid 132, using previously developed chemistry. 44 When

Scheme 30
compound 133 was treated with hydrogen peroxide in acidic methanol, contrary to previous reports, the $C(1)-C(2)$ bond preferentially underwent rearrangement rather than the $C(2)-$ C(3) bond, giving rise to 136 , via the peracid intermediate 135. Esterification of 136 produced the γ-lactone 137 . Reduction of 137 gave lactols 130 , which were converted efficiently into methyl epi-jasmonate, using a set of chemical transformations also employed by Kitahara (cf. Scheme 29). 42

Crombie et al. 45 used the known diacid 139,46 itself made from hydrocarbon 138, in their synthesis of racemic methyl epi-jasmonate (Scheme 31). Iodolactonization of 139

Scheme 31
provided 140, and stannane-mediated deiodination produced the bicyclic lactone 136. DIBAL reduction then gave the lactols 141, which were converted into methyl epi-jasmonate by a set of simple chemical transformations $(141 \rightarrow 111 \rightarrow 102$, Scheme 31). The wittig reaction $(141 \rightarrow 111)$ did not proceed with complete stereoselectivity, and a chromatographically separable mixture of Z and E isomers of 111 was formed.

In Stadmüller and Knochel's synthesis of (+)-methyl epijasmonate, 47 three contiguous asymmetric centers are set up in a single step using a novel Ni-catalyzed cyclization (Scheme

i) $\mathrm{LAH}, \mathrm{Et}_{2} \mathrm{O}$, $0^{\circ} \mathrm{C} ; 90 \%$
ii) Dess-Martin; 81\%

i) $\mathrm{LiO}(\mathrm{MeO}) \mathrm{C}=\mathrm{CH}_{2}$, EをO, $-78^{\circ} \mathrm{C} ; 80 \%$
ii) N -methyl- N, N -dicyclohexylcarbodiimidium iodide, THF;
 57\%
i) $\mathrm{H}_{2}, \mathrm{Pd} / \mathrm{BaSO}_{4}$, pyridine; 92%
ii) $\mathrm{BCl}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$;
iii) Dess-Martin ox, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$; 81\%

Scheme 32
32).

Alcohol $1 £ 5$ was obtained in good yield and reasonable enantiomeric purity (90\% ee) by treatment of 142 with the dialkylzinc 144, $T i(i-P r O)_{4}$, and a catalytic amount of 143. Benzylation of alcohol 145 and protodesilylation gave 146, which was then converted into aldehyde 147. At this point, condensation with the lithium enolate of methyl acetate, followed by replacement of the resulting hydroxyl by iodine, gave the cyclization precursor 148, as a $1: 1$ mixture of diastereomers. In the cyclization step, iodides 148 undergo a stereoconvergent radical-mediated ring closure to give a cyclopentylmethylzinc derivative. This is transmetallated in situ using copper cyanide, and coupled with 1-bromobutyne. This set of reactions afforded 150 with 100% trans stereochemistry between $C(1)$ and $C(2)$ and $95: 5$ cis:trans selectivity between $C(2)$ and $C(3)$. The stereochemical outcome can be explained by assuming a chair-like transition state 149, where all the substituents occupy a pseudoequatorial conformation. Coordination of Ni may serve to enhance the cis stereochemistry between $C(2)$ and $C(3)$.

Lindlar reduction of 150 then afforded an olefin ($96 \% \mathrm{Z}$) which, on debenzylation and oxidation under mild conditions [to avoid epimerization at $C(2)]$, gave the natural product (+)-102.

In one of the first asymmetric syntheses of methyl epijasmonate, Helmchen and coworkers, 48 used an intermediate (154), which could also serve as a building block leading to
other members of the jasmonoid family. This intermediate was readily available in multigram quantities by the route shown (Scheme 33).

Iodolactone 152 was obtained by enantioselective DielsAlder

Scheme 33
reaction of cyclopentadiene and ester 151 , followed by hydrolysis and iodolactonization. Thermally induced decarboxylation of the potassium salt of acid 152, produced lactone 153. Enantiopure 154 was then obtained by lactone opening and ruthenium tetroxide-catalyzed oxidation.

Treatment of 154 with concentrated hydriodic acid, followed by reduction of the resulting iodide with zinc, gave keto carboxylic acid 155.

Baeyer Villiger oxidation of 155 served to introduce the oxygen at $C(1)(155 \rightarrow 156)$. Reduction of 156, followed by Wittig reaction with (methoxymethylene)triphenylphosphorane, and subsequent hydrolysis of the resulting enol ethers, gave aldehyde 157. The required Z olefin 112 was obtained by treating 157 with propylidenetriphenylphosphorane under saltfree Wittig conditions. Basic hydrolysis of the lactone then released the corresponding hydroxy acid which, on esterification, followed by oxidation under neutral conditions, gave (+)-methyl epi-jasmonate in good yield, along with trace amounts (96.4:0.6) of the trans isomer.

Another use of the enantioselective Diels-Alder reaction is seen in Bestmann's synthesis of (+)-methyl epi-jasmonate (Scheme 34).49 The stereochemistry of the key step is controlled by the stereochemistry of the dienophile 158, which is itself derived from D-tartaric acid. Lewis acidcatalyzed asymmetric Diels-Alder reaction of 158 with diene 159 gave adduct 160 , with the stereochemistry shown. In order to avoid epimerization α to the carbonyl, this group was first reduced diastereoselectively, and the resulting alcohol was protected as its silyl ether (160 \rightarrow 161). Ozonolysis gave an aldehyde ester, which reacted under saltfree Wittig conditions to produce 162 . The Wittig reaction proceeded with complete Z stereoselectivity. Removal of the

1,3-dioxolane group and Corey-Winter deoxygenation of the resulting vicinal diol gave olefin 163. Finally, in order to be able to distinguish between the double bonds in a later step, the t-BuMe2Si-protected alcohol was deprotected and oxidized to 164. Selective reduction of the enone gave

Scheme 34
natural methyl epi-jasmonate (+)-102.
In an enantiospecific synthesis of (+)-methyl epijasmonate (Scheme 35), Sarkar and coworkers, 50 used an ene cyclization of the functionalized diene 166 to set up the essential asymmetric centers.

Scheme 35

Diene 166 was synthesized from L-glutamic acid. 51 Ene reaction of 166 at $235{ }^{\circ} \mathrm{C}$ proceeded with high diastereoselectivity to give a 9:1 mixture of esters 169 and 170. The stereoselectivity of the ene-reaction can be explained in terms of the possible transition states 167 and 168. Transition state 167 gives rise to compound 169, whereas the less stable 168, where the alkoxy group is endo, gives 170.

Double bond migration to the end of the upper pendant and ozonolysis, gave aldehyde. On ENittig olefination under salt-free conditions, 172 was formed, and desilylation,
followed by oxidation, gave (+)-102 (87\% ee).
A synthesis 52 of racemic material starting from racemic 166 had been achieved earlier, using the same route.

In Weinges and Lernhardt's53 synthesis of (+)methyl epi-jasmonate, catalpol 173, a material from the chiral pool, was chosen as the starting point. Compound 173 was converted into lactols 174 by a literature procedure. 54 Wittig reaction with (methoxymethylene)triphenylphosphorane

i) $\mathrm{HCl}, \mathrm{Et}_{2} \mathrm{O}$;
ii) $\mathrm{Ph}_{3} \mathrm{P}(\mathrm{Pr}) \mathrm{Br}$, KHDMS, THF; $-78^{\circ} \mathrm{C}$ to rt ; 37\% (Z-isomer)

112
$+$

1:2

$(+)-102$

Scheme 36
released the alcohol 175. At this point, acid hydrolysis of the enol ethers, followed by treatment of the resulting aldehyde with propylidenetriphenylphosphorane under salt-free
conditions produced olefin 176 in good yield. Debenzylation $(176 \rightarrow 177)$, followed by oxidation, gave a 1:2 mixture of the bridged lactone 112 and the acid 178 . Esterification of 178 with diazomethane gave methyl epi-jasmonate $(+)-102$.

Conclusion

From the above review, it is clear that a number of approaches are available for preparing methyl epi-jasmonate, but all of them, inevitably, require the use of extremely mild conditions when the ketone carbonyl is released, in order to avoid epimerization, and it is probable that most synthetic material contains small amounts of the $C(2)$ epimer.

References and footnotes

(1) (a) Ryu. I; Araki, F.; Minakata, S.; Komatsu, M. Tetrahedron Lett. 1996, 37, 2801. (b) Chung, T. C.; Janvikul, W.; Lu, H. L. J. Am. Chem. Soc. 1996, 118, 705. (c) Engel, P. S.; Bishop, D. J. J. Am. Chem. Soc. 1975, 97, 6754. (d) Tanner, D. D.; Xie, G.-J., Hooz, J.; Yang, C.-M. J. Org. Chem. 1993, 58, 7138. (e) Chem. and Eng. News, May 18, 1998, 43.
(2) Baldwin, J. E. J. Chem. Soc., Chem. Commun. 1976, 734.
(3) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc., Chem. Commun. 1976, 736.
(4) Beckwith, A. L. J.; Easton, C. J.; Serelis, A. K. J. Chem. Soc., Chem. Commun. 1980, 482.
(5) Bürgi, H. B.; Dunitz, J. D.; Lehn, J. M.; Wipff, G. Tetrahedron 1974, 30, 1563.
(6) Julia, M.; Le Goffic, F. Bull. Soc. Chim. Fr. 1965, 1550.
(7) Pines, H.; Sih, N.; Rosenfield, D. B. J. Org. Chem. 1966, 31, 2255.
(8) Wilt, J. A.; Maravetz, L. L.; Zawadzki, J. F. J. Org. Chem. 1966, 31, 3018.
(9) Bradney, M. A.; Forbes, A. D.; Wood, J. J. Chem. Soc., Perkin Trans. 2 1973, 1655.
(10) Bogen, S.; Malacria, M. J. Am. Chem. Soc. 1996, 118, 3992.
(11) Bogen, S.; Gulea, M.; Fensterbank, L.; Malacria, M. J. Org. Chem. 1999, 64, 4920.
(12) Chatgilialoglu, C.; Gimisis, T. J. Org. Chem. 1996, 6I, 1908.
(13) Kittaka, A.; Tanaka, H.; Yamada, N.; Miyasaka, T. Tetrahedron Lett. 1996, 37, 2801.
(14) Ishibashi, H.; Nakamura, N.; Sato, T,; Takeuchi, M.; Ikeda, M. Tetraheäron Lett. 1991, 32, 1725.
(15) Ikeda, M.; Ohtani, S.; Yamamoto, T.; Sato, T.; Ishibashi, H. J. Chem. Soc., Perkin Trans. 1 1998, 1763.
(16) Ishibashi, H.; Higuchi, M.; Ohba, M.; Ikeda, M. Tetrahedron Lett. 1998, 39, 75.
(17) Sato, T.; Machigashira, N; Ishibashi, H.; Ikeda, M. Heterocycles 1992, 33, 139.
(18) Ishibashi, H.; Fuke, Y.; Yamashita, T.; Ikeda, M. Tetrahedron: Asymmetry 1996, 7. 2531.
(19) Ikeda, M.; Ohtani, S.; Sato, T.; Ishibashi, H. Synthesis 1998, 1403.
(20) (a) Viehe, H. G.; Merenyi, R.; Stella, L.; Janousek, Z. Angew. Chem., Int. Ed. Engl. 1979, 18, 917. (b) Colombo, L.; Giacomo, M. D.; Papeo, G.; Carugo, O.; Scolastico, C.; Manzoni, L. Tetrahedron Lett. 1994, 35, 4031.
(21) Goodall, K.; Parsons, A. F. J. Chem. Soc., Perkin Trans. 1 1994, 3257.
(22) Baker, S. R.; Parsons, A. F.; Pons, J.-F.; Wilson, M. Tetrahedron Lett. 1998, 39, 7197.
(23) Cassayre, J.; Quiclet-Sire, B.; Saunier, J.-B.; Zard, S. Z. Tetrahedron Lett. 1998, 39, 8995.
(24) Schultz, A. G.; Guzzo, P. R.; Nowak, D. M. J. Org. Chem. 1995, 60, 8044.
(25) Rama Rao, A. V.; Singh A. K.; Rao, B. V.; Reddy, K. M.; Tetrahedron Lett. 1993, 34. 2665.
(26) Yamamoto, Y.; Ohno, M.; Eguchi, S. J. Am. Chem. Soc. 1995, 117, 9653.
(27) Journet, M.; Rouillard, A.; Cai, D.; Larsen, R. D. J. Org. Chem. 1997, 62, 8630.
(28) Clive, D. L. J.; Yang, W. J. Chem. Soc., Chem. Commun. 1996, 1605.
(29) Sannigrahi, M.; Mayhew, D. M.; Clive, D. L. J. J. Org. Chem. 1999, 64, 2776.
(30) Clive, D. L. J.; Cantin, M. J. Chem. Soc., Chem. Commun. 1995, 319.
(31) Cai, Y.; Roberts, B. P. J. Chem. Soc., Perkin Trans. 1 1998, 4б் 7.
(32) Barton, T. J.; Revis, A. J. Am. Chem. Soc. 1984, 106, 3802.
(33) Demole, E.; Lederer E.; Mercier, D. Helv. Chim. Acta 1962, 45, 675.
(34) (a) Aldridge, D. C.; Galt, S.; Giles, D.; Turner, W. D. J. Chem. Soc. (C) 1971, 1623. (b) Fukui, H.; Koshimizu, K.; Yamazaki, Y.; Usuda, S. Agric. Biol. Chem. 1977, 41, 189.
(35) Baker, T. C.; Nishida, R.; Roelofs, W. L. Science 1981,
214. 1359.
(36) Vick, B. A.; Zimmerman, D. C. Plant. Physiol. 1984, 75, 458 .
(37) Nishida, R.; Acree, T. E. J. Agric. Food Chem. 1984, 32, 1001.
(38) (a) Ward, J. I.; Gaskin, P.; Beale, M. H.; Sessions, R.; Koda, Y.; Wasternack, C. Tetrahedron 1997, 53, 8181. (b) Koda, Y. Physiol. Plant. 1997, 100, 639. (c) Koda, Y.; Kikuta, Y.; Kitahara, T.; Nishi, T.; Mori, K. Phytochemistry 1992, 31, 1111.
(39) Stork, G.; Ouerfelli, O. New J. Chem. 1992, 16, 95.
(40) Kitahara, T.; Warita, Y.; Masaki, A.; Seya, M.; Tagaki, Y.; Mori, K. Agric. Biol. Chem. 1991, 55, 1013.
(41) Kitahara, T.; Miura, K.; Warita, Y.; Tagaki, Y.; Mori, K. Agric. Biol. Chem. 1987, 51, 1129.
(42) Kitahara, T.; Nishi, T.; Mori, K. Tetrahedron 1991, 47, 6999.
(43) Seto, H.; Yoshioka, H. Chemistry Lett. 1990, 1797.
(44) Frets, H.; Weis, C. D.; Winkler, T. Helv. Chim. Acta 1975, 58, 1345.
(45) Crombie, L.; Mistry, K. M. J. Chem. Soc., Perkin Trans. 1 1991, 1981.
(46) Stevens, R. V.; Hrib, N. Tetrahedron Lett. 1981, 22, 4791.
(47) Stadtmüller, H.; Knochel, P. Synlett 1995, 463.
(48) Helmchen, G.; Goeke, A.; Lauer, G.; Urmann, M.; Fries, J. Angew. Chem., Int. Ed. Engl. 1990, 29, 1024.
(49) Roth, G. J.; Kirschbaum, S.; Bestmann, H. J. Synlett 1997. 618.
(50) Sarkar, T. K.; Mukherjee, B.; Ghosh, S. K. Tetrahedron 1998, 54, 3243.
(51) Prakash, C.; Sales, S.; Taber, D. F.; Blair, I. A. Tetrahedron Lett. 1989, 30, 19.
(52) Sarkar, T. K.; Ghorai, B. K.; Banerji, A. Tetrahedron Lett. 1994, 35, 6907.
(53) Weinges, K.; Lernhardt, U. Justus Liebigs Ann. Chem. 1990, 751.
(54) Weinges, K.; Gethöffer, H.; Huber-Patz, U.; Rodewald, H.; Irngartinger, H. Liebigs Ann. Chem. 1987, 361.

A FORMAL SYNTHESIS OF METHYL EPI-JASMONATE, AND USE OF
 MATERIAL FROM THE CHIRAL POOL

RESULTS AND DISCUSSION

Previous work in this laboratory resulted in the development of the radical cascade shown in scheme 1 . This cascade represents a method for making 5 -membered rings in a stereocontrolled manner.1 The essential steps require a starting material containing the following features: i) a radical precursor, ii) a radical acceptor (in this case a triple bond), and iii) a suitably placed silicon hydride, which will act as a hydrogen donor and generate a siliconcentered radical.

Scheme 1

The first step in the cascade involves generation of the alkyl radical 2, by tin-mediated cleavage of the Phse-c group. The radical undergoes 5 -exo-digonal closure onto the triple bond, resulting in the creation of a 5 -membered ring and a vinyl radical. This newly generated vinyl radical 3 then abstracts hydrogen from the silicon unit so as to create a silicon-centered radical. This, in turn, undergoes 5-endo cyclization onto the double bond to form a bicyclic system 5, with a radical at the ring fusion position, as shown. Intermolecular hydrogen abstraction by this radical occurs exclusively from the less sterically hindered face, and generates the second stereocenter $(5 \rightarrow 6)$. Several key features of this cascade deserve comment. The first point is that the second cyclization occurs through a normally disfavored 5 -endo-trigonal pathway. When a chain undergoing ring closure contains only first row elements, such processes are disfavored due to the severe distortion of the bond lengths and bond angles required for the preferred approach trajectory of the radical to the double bond. 2 However, in our case, the longer bond lengths associated with silicon make the preferred trajectory readily available. Cyclization reactions, like the one just described, involving siliconcentered radicals ${ }^{3}$ are not common, but there is now a growing number of related examples actually involving carbon chains, 4 and these have been discussed in the review section of this thesis.

A second point about the cascade of Scheme 1 is that the
ring closure occurs stereoselectively, generating a second asymmetric center (see starred atom in 5), although in our synthetic work described later, this center is destroyed during further elaboration. A third stereocenter is created when the reaction is quenched by hydrogen abstraction from the stannane. This process occurs exclusively from the convex face of the molecule.

Bicyclic compounds, such as 6 , where X is not a carbon but a heteroatom, have also been made by the same cascade process. ${ }^{5}$

Since the stereochemical consequences of the above reactions is controlled solely by the stereochemistry of the hydroxyl-bearing carbon, use of an optically pure alcohol should lead to the generation of enantiomerically pure compounds.

In the following discussion, I deal with the application of the method summarized in scheme 1 to the synthesis of methyl epi-jasmonate (7), and I also illustrate the use of an optically pure starting material, obtained from the chiral pool.

7
Figure 1 Methyl epi-jasmonate

Methyl epi-jasmonate

As mentioned earlier, the key structural feature of the natural product methyl epi-jasmonate (7) is a cyclopentane with the substituents at $C(2)$ and $C(3)$ in a cis relationship. We felt that this feature could be accommodated by the radical cascade of Scheme 1 , by appropriate adjustment of the stereochemistry of the initial product. The radical cascade, when applied to a substrate 8 should give compound 9. In principle, deprotonation of ester 9 by a suitable base, followed by kinetic reprotonation,

Scheme 2
should afford the all-syn trisubstituted cyclopentane system 10. The deprotonation-reprotonation sequence would then extend the applicability of the radical cascade to the generation of cis substituted cylopentanes (Scheme 2).

An alternative way of achieving the same end would be to prepare a radical cyclization precursor such as 17 (Scheme 3), and then adjust the stereochemistry after cyclization by a dehydrogenation-hydrogenation sequence, as described later.

We examined the preparation of ester 17 first, and the compound was synthesized along the following lines.

The initial plan was to make selenide 16, starting from furfuryl chloride. The latter was converted in good yield into the corresponding olefin (11 \rightarrow 12) by dehydrohalogenation, using a literature procedure. 6 Oxidation of the alcohol led to the corresponding aldehyde 13. The reaction appeared to be very clean, as judged by TLC examination, but isolation proved difficult due to the volatility of the aldehyde, and the isolated yield was low. Reaction of the aldehyde with the ylide derived from (carbomethoxymethyl)triphenylphosphonium bromide proceeded smoothly to give ester 14, although in low yield (56\%). Unfortunately, Michael addition of the anion PhSe- to the enone proceeded in unacceptable yield (10\%), and so this route to selenide 15 was abandoned (Scheme 3). It had been

Scheme 3
our intention to ozonize 15 under conditions that would preserve the selenium unit, 7 and then elaborate aldehyde 16 into the key intermediate 17.

To overcome the difficulty of isolating the volatile aldehyde 13, and to make a more reactive Michael acceptor by replacing the ester of 14 with an aldehyde group - we decided to modify the above route.

Starting from readily available δ-lactone 18 , the diol 19 was generated by Grignard reaction, and dehydrated

PCC, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$;
93\%

Scheme 4
selectively to obtain olefin 20 (Scheme 4). 8 Oxidation of the olefinic alcohol 20, followed by Wittig homologation, gave the required aldehyde 22. Next, we decided to install the radical precursor (Ph Se) and cleave the remaining double bond. Unfortunately, our attempts to introduce the PhSe group by Michael addition were unsuccessful and so, at this point, we decided to base our approach to methyl epijasmonate on intermediate 8 (Scheme 2), this being a
substance that had already been prepared ${ }^{9}$ in our laboratory. Of course, use of 8 would eventually entail the addition of an extra carbon.

The new reaction sequence started with alkylation of iodoacetal 24 with the anion derived from methyl(phenylseleno)acetate 25 , so as to give acetal 26 . This was best deprotected in situ using TFA, in order to liberate aldehyde 27. Treatment of the aldehyde with the lithium anion of benzyl propargyl ether gave an inseparable mixture of alcohols 29. Protection of the hydroxyl with di-tertbutylchlorosilane proceeded smoothly to yield the cyclization precursors 8, and this material was then subjected to our standard conditions for radical cyclization. Slow addition of a benzene solution of $\mathrm{Ph}_{3} \mathrm{SnH}$ and $A I B N$ to a refluxing

solution of 8 in the same solvent, proceeded smoothly, via sequential 5-exo-digonal cyclization, intramolecular hydrogen transfer, and 5-endo cyclization. The product of this sequence was a mixture of diastereomeric esters 9 and 10. The stereochemistry of the products could not be established at this stage because the compounds were inseparable and the material contained tin residues. However, we expected that the 5 -exo-digonal ring closure would take place preferentially via conformation 30 , in which the ester group is trans to the $0-S i$ unit.

30

31

Figure 2 Favored Conformation

Previously, when the mixture of esters 9 and 10 had been treated with $\mathrm{BF}_{3} . E t_{2} \mathrm{O}, 9 \mathrm{a}$ attack on the silicon by fluoride ion led to expulsion of the OBn group, so that an olefin was formed.9b This olefin was isolated as a single isomer and the stereochemistry, which was assigned on the basis of ${ }^{1} \mathrm{H}$ NMR measurements, 9 b indicated that the major isomer of the $\mathbf{9 , 1 0}$ mixture would likewise have the ester group trans to the silicon unit.

In order to obtain methyl epi-jasmonate all the substituents on the cyclopentane ring must be cis, and so stereochemical adjustment of the major radical cascade

Scheme 6
product was necessary. We anticipated that this could be done easily by oxidation of alcohols 32, followed by baseinduced epimerization at $C(3)$. Surprisingly, when aldehyde 33 was treated with lithium isopropylcyclohexylamide in THF or with LDA, followed in each case by addition of acetic acid, not even trace amounts of the $C(3)$ epimer could be detected, the starting material being recovered unchanged. Hence we decided to use an indirect approach, summarized in Scheme 7.

This new line of attack involved elongation of the chain at $C(3)$ by one carbon ($33 \rightarrow \mathbf{3 5}$), followed by introduction of selenium and selenoxide elimination (35 $\rightarrow 36 \rightarrow 37$) (Scheme 7). These steps would give a substituted exocyclic olefin (37), and hydrogenation of the double bond would be expected to proceed from the less hindered convex face of the bicycle,

33

37

38

35
PhSeCl ,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$;

36

Scheme 7
thus generating the desired relative stereochemistry at the contiguous asymmetric centers of 38.

Conversion of aldehyde 33 into the enol ethers 35 proceeded without event and in high yield. Treatment of the ethers with PhSecl gave selenides 36 but, to our surprise, the selenoxide elimination was inefficient and gave 37 in only 22% yield. Nevertheless, we proceeded with the hydrogenation step. However, we failed to saturate the double bond, and indeed, did not even observe debenzylation. At the time we did not establish if a catalyst poison was present, but instead, we decided to try the reduction on the
corresponding alcohols 39 (Scheme 8). In the event, attempts to reduce the double bond of the allylic alcohols under several different conditions (see Scheme 8) were unsuccessful.

Scheme 8

Finally we decided to convert alcohols 32 into olefin 41 (Scheme 9) and reinstall the hydroxyl group by hydroboration and oxidation. The hydroboration should be not only regioselective, in accordance with Markovnikov's rule, but the reagent should also approach the olefin from the less hindered convex face; thereby the overall process would invert the stereochemistry at $C(3)$ (see scheme 10). Conversion of alcohols 32 into the corresponding o-nitro-

Scheme 9
phenyl selenides proceeded in high yield, but elimination of the selenoxide was sluggish. To test our proposed route, we

Scheme 10
decided to proceed with the hydroboration-oxidation sequence, despite the low yields in the previous step. Under standard conditions the olefin could be converted into the desired alcohol 42, which was obtained as a single isomer in 50\% yield (Scheme 10).

Our next task was to improve the yields of the olefin formation (32 $\rightarrow 41$). We decided to convert the alcohol into various leaving groups and use a base to effect elimination. Several leaving groups were examined, and in each case (see Scheme 9) conversion of the hydroxyl into the leaving group was quite easy, but difficulties were again encountered in the elimination step. It occurred to us that the elimination process might be easier if the tert-butyl groups were removed and the rigid convex shape of the molecule were altered. To this end, a protodesilylation method developed by stork, 10 was applied. This involves simultaneous cleavage of both the C Si and O-Si bonds (Scheme 11). Treatment of bicyclic alcohols 32 with an excess of TBAF in warm ($60^{\circ} \mathrm{C}$) DMF gave the trisubstituted cyclopentane 43. Selective protection of
the primary hydroxyl, using t-BuPh2SiCl, gave pure silyl ether 44. It should be noted that this compound is the first pure substance obtained since the cyclization step, as unidentified tin species were present in the precursors (phenyl groups were evident in the I_{H} NMR spectra). The yield of 44 was 33% over four steps. The hydroxyl of 44 was protected as its methoxymethyl (MOM) ether, and the resulting compound (45) was then desilylated under standard conditions to release alcohol 46. Transformation of the alcohol into the selenide was done as before, and we were pleased to observe that when the selenide was oxidized with m-CPBA and treated with Hünig's base, olefin 47 could be obtained in very good yield (80%). Hydroboration of the olefin at $-20{ }^{\circ} \mathrm{C}$

with borane-dimethyl sulfide complex, followed by oxidation with alkaline hydrogen peroxide, gave the desired alcohol 48 (Scheme 12). The reaction leading to alcohol 48 was completely selective both facially and regiochemically, so that the relative stereochemistry of the substituents was the same as in the target natural product.

A number of standard chemical transformations were then necessary to extend the hydroxyl-bearing arm to the desired length. The alcohoi was converted into tosylate 49, and the

Scheme 12
leaving group was then displaced by cyanide anion. Attempted hydrolysis of the resulting nitrile 50 under mild conditions $\left(40{ }^{\circ} \mathrm{C}\right.$, aqueous base) failed to give any product, although at an elevated temperature ($100^{\circ} \mathrm{C}$), using ethanolic base (3 N NaOH), the corresponding acid could be obtained in satisfactory yield. The crude acid was directly transformed into its methyl ester 51 by treatment with diazomethane. Hydrogenolysis of the benzyl group occurred at room temperature and at 1 atmosphere to give alcohol 52. PCC oxidation then served to generate the corresponding aldehyde 53, and this was treated with the salt-free Wittig reagent derived from triphenylpropylphosphonium bromide, using well established conditions. 11 The reaction gave z-olefin 54 exclusively and in good yield (Scheme 12). The NMR spectra of 54 was totally free of signals expected for the E isomer. ${ }^{12}$ The remaining tasks at this stage were to remove the MOM ether protecting group and to oxidize the resulting alcohol. Surprisingly, treatment of ether 54 with Me3SiBr gave an inseparable mixture of the desired product along with a byproduct. Proton NMR analysis of the mixture showed the absence of the MOM group. In the hope of being able to remove the unwanted material at the next stage, the alcohol was oxidized with TPAP to give 7 and a byproduct. A single spot was observed by thin layer chromatography using various eluents, but the ${ }^{1} \mathrm{H}$ NMR spectrum showed the presence of the natural product along with an impurity derived from the last transformation in approximately a 1:2 ratio (Scheme 13).

Scheme 13

The byproduct, which could not be separated for characterization, might have been formed (during cleavage of the MOM group) by capture of the intermediate oxonium ion by the pendant olefin.

At this stage, it was clear that we needed to repeat the original sequence, with a protecting group that could be more easily removed (Scheme 14). We chose the 2 -methoxyethoxymethyl (MEM) as the unit to protect the secondary hydroxyl of compound $44(44 \rightarrow 56$, Scheme 14) . Desilylation of 56 with an excess of TBAF at room temperature gave alcohol 57, which was readily converted into its o-nitrophenyl selenide. Peracid oxidation of the selenide gave the exocyclic olefin 58 in very good yield. Next, hydroboration-oxidation regenerated the hydroxymethyl group with the correct stereochemistry, as expected from our experiments in the MOM

Scheme 14
series. Tosylation of the resulting alcohol 59, followed by displacement with cyanide, gave us the desired product 61 (Scheme 15). Removal of the benzyl group by hydrogenolysis released alcohol 62 which, on PCC oxidation, gave the corresponding aldehyde 63. When the aldehyde was treated

with the salt free wittig reagent generated from triphenylpropylphosphonium bromide, the z-olefin 64 was obtained exclusively. Compound 64 (Scheme 15) is a substance that has been converted by others ${ }^{13}$ into racemic methyl epijasmonate ester (see Scheme 27 in review section). Thus the synthesis of 64, constitutes a formal synthesis of methyl epi-jasmonate.

APPLICATION OF THE RADICAL CASCADE TO MATERIAL FROM
 THE CHIRAL POOL

Other work in this laboratory resulted in the synthesis of 65, which was transformed eventually into 67.9a This compound is a derivative of the Corey lactone. The designa-

tion "Corey lactone" has been used in recent literature to
refer to a variety of hydroxyl-protected derivatives of
general structure 68 . Such compounds serve as advanced
intermediates commonly used in the synthesis of prosta-
glandins. 14 The prostaglandin family consists of a large

Corey Lactone
68

69

Figure 4 Corey Lactone and $\mathrm{PGF}_{2 \alpha}$
number of members but, common to all of them is a
cyclopentane ring with two side chains. The derivative 67 is related to the prostaglandin $P_{2} \mathcal{F F}_{2}$ (69), as the relative stereochemistry about the cyclopentane subunit is the same in both compounds.

Previous work,9 using the tandem radical process described in scheme 1 , but starting with 65, gave the bicyclic product 66, which was elaborated into the desired lactone 67.

The stereochemistry of 65 at $C(2)$ was assigned on the basis of my own experiments, described later, but my initial task was to apply the radical cyclization route (see Scheme 1) to the synthesis of optically pure 67.

2-Deoxy-D-ribose, was chosen as the starting material because it contains the appropriate oxygen functionality for conversion into 67. The material is also cheap and readily available, and it was chosen for this reason, even though the eventual lactone (67) would have the unnatural stereochemistry.

2-Deoxy-D-ribose (70) was first treated with methanol containing a catalytic amount of HCl , so as to trap the lactol unit as its methyl glycosides. 15 Protection of the remaining hydroxyls as benzyl ethers by a known procedure, 16 and acid hydrolysis of the resulting methyl glycosides, regenerated the lactol unit, to give 72. Homologation of the lactol by wittig reaction produced the hydroxy olefin 73 in very good yield (83\%). Protection of the hydroxyl group with $t-\mathrm{BuMe}_{2}$ SiCl (73 \rightarrow 74), followed by ozonolysis in the
presence of an internal indicator (Sudan II redi7) gave aldehyde 75. Treatment of the aldehyde with the lithium anion derived from p-methoxybenzyl propargyl ether (76), proceeded diastereoselectively to a 1:2.9 mixture of alcohols 77 and 78. These could be separated by careful (slow development) column chromatography. Both alcohols were

70

MeOH, conc. HCl (1 drop), quant.
$\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$, PhMe BuLi; 83\%

71

72
t-BuMe ${ }_{2} \mathrm{SiCl}$,
$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, imidazole; 89\%

74
$\mathrm{O}_{3}, \mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$;
$\mathrm{Ph}_{3} \mathrm{P} ; 77 \%$

78

77

PMBO
76

BuLi, $78^{\circ} \mathrm{C}$, THF; 82\%

Scheme 17
desilylated easily, using TBAF to release the corresponding diols 79 and 80 (Scheme 18 and 19). We later found that conversion of alcohols 77 and 78 into the corresponding diols
made them more readily separable, and in subsequent runs, separation was delayed until that point.

The next task was to protect the propargylic hydroxyl selectively with the crucial t-Bu2SiH unit. Fortunately, when 80 (the major diol) was treated with $t-B u_{2} S i H C l$, the propargylic hydroxyl was protected at a much higher rate than

the secondary hydroxyl (80 $\boldsymbol{7} \mathbf{8 1) \text { . The reaction was }}$ monitored closely by TLC, and quenched at the first indication of the bis-silylated product. If necessary, the bis-silylated material could, in principle, be easily recycled, by treatment with TBAF. The regioselectivity observed in the monosilylation is probably due to the higher accessibility of the propargylic hydroxyl, due to the linear geometry of the adjacent alkyne.

The remaining task was to install the radical precursor, and to this end, the alcohol was esterified with p$\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OC}(\mathrm{S}) \mathrm{Cl}$. Reaction proceeded smoothly to give $\mathbf{8 2}$ in excellent yield.

Unfortunately, when we tried our radical cyclization sequence, by slow addition of $\mathrm{Bu}_{3} \mathrm{SnH}$ and $A I B N$ to a refluxing

solution of 82 , a complex mixture, which included some starting material, was obtained. Efforts to overcome this problem by varying the concentration and amount of stannane, were unsuccessful. We were unable to identify any of the reaction products and are unsure as to why this reaction failed. We assume that the presence of the benzyl group was responsible, but how it exerted an effect is unclear.

In prior work, 965 had been found to undergo smooth cyclization. As 65 is similar to 82 , but with the hydroxyl groups protected differently, we decided to use the same protecting groups as in 65 for cyclization of material derived from 2-deoxy-D-ribose.

At this point we needed to solve another stereochemical
problem which remained unanswered during the synthesis of the racemic Corey lactone derivative 67 . The route used to make 65 ensured that the oxygen substituents at $C(3)$ and $C(5)$ are syn, but the relative stereochemistry with respect to the $C(2)$ oxygen was unknown. To assign this stereochemistry, we decided to convert 2 -deoxy-D-ribose into a compound with the same relative stereochemistry as implied by structure 65. This choice of carbohydrate is appropriate as the $C(2)$ stereochemistry in the final product is already set in the starting sugar. Spectroscopic comparison of the sugarderived material with 65, made by the prior route, would then allow us to make the stereochemical assignment at $C(2)$ to the racemic compound. At the same time, formation of 65 (or a stereoisomer) would illustrate application of the radical

cascade of Scheme 1 to material from the chiral pool.
Thus the failure of the radical cyclization with 82, gave us the opportunity not only to use material from the chiral pool but also to settle at the same time the stereochemical assignment to 65, made by the prior route.

When we attempted to convert 2 -deoxy-D-ribose into the benzyl glycosides 84, using a method very similar to the one used for methyl giycosides 71, we were confronted with the problem of removing the excess of solvent (benzyl alcohol), but after several attempts, we managed to optimize the experimental conditions. Pivaloylation of the $C(5)$ hydroxyl of the glycosides, using standard conditions (t-BuCOCl, pyridine) gave the mono-pivaloylated and bis-pivaloylated products in a $1: 1$ ratio. This outcome is presumably due to the absence of functionality at $C(2)$, thereby making the hydroxyl at $C(3)$ readily accessible. In substrates such as D-ribose the primary hydroxyl is routinely protected in the presence of the other secondary hydroxyls. Fortunately, when we tried a Mitsunobu reaction, 18 using $t-\mathrm{BuCO}_{2} \mathrm{H}$, much better selectivity was obtained, and the resulting α and the β epimers of the product 85 were fully separated at this point. The anomeric configuration was assigned by a TROESY NMR (600 MHz) experiment which established the stereochemistry of 85α. The $C(3)$ hydroxyl of the separate monopivaloylated compounds 85α and 85β were protected as a MOM ether. Catalytic hydrogenolysis of the O-benzyl group failed to give any of the desired alcohol at 1 atmosphere. Increasing the
pressure (50 psi) and prolonging the reaction time gave a mixture of isomeric lactols 87, in equilibrium with the open chain isomer. The stereochemistry at the anomeric center is, of course, destroyed in the next step. Homologation of 87 with the Wittig salt of methyltriphenylphosphonium bromide then produced olefin 88 in good yield. Silylation of the hydroxyl with t-BuMe2Sicl (88 $\rightarrow 89$), followed by ozonolytic cleavage (Scheme 21) of the double bond, gave us the intermediate 90

Scheme 21
required for introduction of the acetylenic unit. Reaction of 90 with the anion derived from benzyl propargylic ether (28), afforded a $1: 1.4$ mixture of chromatographically
inseparable acetylenic alcohols 91. The mixture was desilylated, using hydrofluoric acid, to give diols 92 and 93, which were chromatographically separable. As before,

92

94

Scheme 22
silylation with t-BuMe2Sicl proceeded with very high regioselectivity, in favor of the propargylic hydroxyl. Both 94 and 95 were produced in over 90% yield (Schemes 22 and 23), although it is interesting to note that the reaction times for each isomer were quite different.

The major product 94 was found to be spectroscopically (${ }^{1} \mathrm{H}$ and ${ }^{13} \mathrm{C}$ NMR) identical to the corresponding racemic compound, which was an intermediate in the synthesis of 65.9a In the optically pure series, the material (94) obtained from 2-deoxy-a-ribose has the absolute stereochemistry at $C(2)$ and C(3) preset, as shown. The relative stereochemistry at $C(3)$ and $C(5)$ in the racemic series, was set by the synthetic
route used. Thus, the relative stereochemistry at $C(2), C(3)$ and $C(5)$ in the racemic series is established.

As the major products of the two routes are structurally identical, the relative stereochemistry of racemic 65 and the relative stereochemistry of (+)-94, obtained from 2-deoxy-Dribose, can be assigned as shown in Schemes 16 and 22 , respectively. Since racemic 94 had been converted into the racemic Corey lactone derivative 67,9a the route from the sugar constitutes a formal synthesis of optically pure 67. As mentioned earlier the lactone route from the sugar would have the unnatural prostaglandin stereochemistry.

Experimental

General Procedures. Unless stated to the contrary, the following conditions apply: Reactions were carried out under a slight static pressure of $A r$ that had been purified by passage through a column ($3.5 \times 42 \mathrm{~cm}$) of $\mathrm{R}-311$ catalyst ${ }^{19}$ and then through a similar column of Drierite. All solvents for reactions were dried, as described below. Glassware was dried in an oven for at least 3 h before use ($120^{\circ} \mathrm{C}$) and either cooled in a desiccator over Drierite, or assembled quickly, sealed with rubber septa, and allowed to cool under a slight static pressure of Ar . Reaction mixtures were stirred by Teflon-coated magnetic stirring bars.

Hexane used for chromatography was distilled before use.
Products were isolated from solution by evaporation under water aspirator vacuum at, or below, room temperature, using a rotary evaporator.

Microliter syringes were washed with water and acetone, using a suction device to draw the solvents through. Then air was sucked through for 1 min. The solution to be dispensed was drawn up and expelled, and this operation was repeated several times before drawing up the sample to be used. Cannula transfers were always done under slight pressure (Ar), not by suction.

Commercial thin layer chromatography (TLC) plates (silica gel, Merck 60F-254) were used. Spots were detected by spraying the plate with a solution of phosphomolybdic
acid ${ }^{20}$ or p-anisaldehyde, 21 followed by charring with a heat gun, or by examination under UV light. Silica gel for Elash chromatography was Merck type 60 (230-400 mesh).

Dry solvents were prepared under an inert atmosphere and transferred by syringe or cannula. Dry tetrahydrofuran (THF) and $E t_{2} \mathrm{O}$ were distilled from sodium and benzophenone ketyl. Dry PhH was distilled from sodium. Dry Et $\mathrm{N}, \mathrm{CH}, \mathrm{CH}_{2} \mathrm{Cl} \mathrm{I}_{2}$, and pyridine were distilled from CaH_{2}.

FT-IR measurements were made as casts from the specified solvent using potassium bromide plates.

The symbols $s^{\prime}, d^{\prime}, t^{\prime}$, and q^{\prime} used for ${ }^{i 3} C$ NMR signals indicate $0,1,2$, or 3 attached hydrogens, respectively.

Mass spectra were recorded with AEI Models MS-12, MS-50, MS9 (modified), or Kratos MS50 (modified) mass spectrometers.

Microanalyses were performed by the microanalytical laboratory of this Department.

Methyl 5-0x0-2-(phenyiseleno)pentanoate (27).

BuLi (2.5 M in hexanes, $6.3 \mathrm{~mL}, 16 \mathrm{mmol}$) was added dropwise to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of cyclohexylisopropylamine ($2.59 \mathrm{~mL}, 15.7 \mathrm{mmol}$) in $T H F(7 \mathrm{~mL})$.

After 15 min , ester $25(3.27 \mathrm{~g}, 14.3 \mathrm{~mL}$) in THF (5 mL) was added dropwise, and stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 30 min. The resulting enolate solution was taken up into a syringe and added in a stream to a stirred solution of iodide 24 (3.27 g, 14.3 mmol$)$ in dry DMSO (20 mf). The reaction mixture was stirred for 3 h , diluted with water (100 mL), and extracted with EtOAc (4 x 100 mL$)$. The combined organic extracts were washed with brine, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Evaporation of the solvent gave a yellow residue which was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(40 \mathrm{~mL})$. Aqueous TFA (50\%, 30 mL) was added, and the heterogeneous mixture was stirred vigorously until the starting material had disappeared (TLC control, silica gel, 15:85 EtOAc-Hexane). The solution was cooled to $0{ }^{\circ} \mathrm{C}$ and neutralized with saturated aqueous NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 100 \mathrm{~mL}$, and the combined organic extracts were washed with saturated aqueous NaHCO_{3}, and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (4 x 27 cm), using 15:85 EtOAc-hexane, gave 27 (2.11 $g, 52 \%$) as a pure (1_{H} NMR, 300 MHz), pale yellow oil: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1727 \mathrm{~cm}^{-1}$; $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 2.0-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.61(\mathrm{td}, \mathrm{J}=$ 7.2, $1.08 \mathrm{~Hz}, 2 \mathrm{H}), 3.65-3.71(\mathrm{~m}, ~ 4 \mathrm{H}), 7.25-7.42(\mathrm{~m}, 3 \mathrm{H})$, $7.55-7.65(\mathrm{~m}, 2 \mathrm{H}), 9.7(\mathrm{t}, \mathrm{J}=1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $50.3 \mathrm{MHz}) \delta 24.5\left(t^{\prime}\right), 42.3\left(t^{\prime}\right), 42.7\left(d^{\prime}\right), 52.4\left(q^{\prime}\right), 127.7$ $\left(s^{\prime}\right), 129.1\left(d^{\prime}\right), 129.5\left(d^{\prime}\right), 136.2\left(d^{\prime}\right), 173.0\left(s^{\prime}\right), 201.0$ (s'); exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Se}$ 286.01075, found 286.01080. Anal. Calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} \mathrm{Se}: \mathrm{C} 50.54$, H 4.95.

Found: C 50.685, H 5.071.

Methyl (2R*,5R*)- and (2R*,5S*)-(土)-5-Hydroxy-8-(phenylmethoxy)-2-(phenylseleno)-6-octynoate (29).

27

29

BuLi (1.6 M in hexanes, $21.0 \mathrm{~mL}, 34 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of benzyl propargyl ether ${ }^{22}$ ($\left.4.92 \mathrm{~g}, 33.7 \mathrm{mmol}\right)$ in dry THF (50 mL). After 15 min, aldehyde 27 (3.84 g, 13.5 mmol) in dry THF (20 mL plus 10 mL as a rinse) was added dropwise at $-78{ }^{\circ} \mathrm{C}$. After 2 h , the cold reaction mixture was poured into water $(150 \mathrm{~mL})$, and extracted with EtOAc (4 x 100 mL). The combined organic extracts were washed with brine, dried (MgSO_{4}), and evaporated. Flash chromatography of the residue over silica gel (4.5 x 22 cm), using 1:3 EtOAc-hexane, gave alcohol 29 (4.74 g, 818) as a pure. (${ }^{1} \mathrm{H}$ NMR, 200 MHz), pale yellow oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1728,3435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta 1.61-2.20(\mathrm{~m}, 5 \mathrm{H}), 3.55-3.75(\mathrm{~m}, 4 \mathrm{H})$, 4.20 (s, 2 H$), 4.32-4.50(\mathrm{~m}, ~ 1 \mathrm{H})$, 4.55 (s, 2 H$), 7.21-7.45$ ($\mathrm{m}, 8 \mathrm{H}$) , 7.51-7.65 (m, 2 H); ${ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right) \delta 27.4$ (t'), 35.7 (t'), 42.9 (d'), $52.0\left(q^{\prime}\right), 57.3\left(t^{\prime}\right), 61.6$ (d'), 71.6 (t'), $81.0\left(s^{\prime}\right), 87.0\left(s^{\prime}\right), 127.5\left(s^{\prime}\right), 127.8$ (d'),
$128.0\left(d^{\prime}\right), 128.4\left(d^{\prime}\right), 128.6\left(d^{\prime}\right), 129.0\left(d^{\prime}\right), 135.7$ (d'), $137.2\left(s^{\prime}\right), 173.2\left(s^{\prime}\right)$. Anal. Calcd Eor $\mathrm{C}_{22} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{Se}: \mathrm{C}$, 61.25; H, 5.61. Found: C, 61.42; H, 5.47.

Methyl (2R*,5R*)- and (2R*,5S*)-(土)-5-[1Bis(1,1-dimethylethyl)silyl]oxy]-8-(phenylmethoxy)-2(phenylseleno) -6-octynoate (8).

29

8
$t-\mathrm{Bu}_{2} \mathrm{SiHCl}(2.30 \mathrm{~mL}, 11.4 \mathrm{mmol})$ was added dropwise to a stirred solution of alcohol 29 (3.92 g, 9.09 mmol) and imidazole (1.24 g, 18.2 mmol$)$ in dry $T H F(50 \mathrm{~mL})$. The resulting white slurry was stirred and refluxed for 12 h , allowed to cool to room temperature, poured into water (100 $\mathrm{mL})$, and extracted with EtOAc (4 x 100 mL). The combined organic extracts were washed with brine, dried (MgSO4), and evaporated. Flash chromatography of the residue over silica gel (4 x 24 cm), using 5:95 EtOAc-hexane, gave an inseparable mixture (${ }^{13} \mathrm{C}$ NMR) of diastereomeric compound 8 (4.74 $\mathrm{g}, \mathrm{9} \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 300 MHz), colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1732,2093 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right), \delta 0.85-1.10$ (m, 18 H), 1.65-2.20(m, 4 H), 3.60-3.75(m, 4 H), 4.10(s, 1 H) , 4.15-4.25 (t, J = 1.4 Hz, 2 H$), 4.50-4.65(\mathrm{~m}, 3 \mathrm{H}), 7.20-$
$7.42(\mathrm{~m}, 8 \mathrm{H}), 7.52-7.65(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right)$ $\delta 19.9\left(s^{\prime}\right), 20.3\left(s^{\prime}\right), 27.4$ (q'), 27.7 (t'), 36.4 (t'), 36.5 (t'), 43.1 (d'), 43.2 (d'), $52.0\left(q^{\prime}\right), 57.3$ (t'), 65.6 (d'), $71.3\left(t^{\prime}\right), 81.1\left(s^{\prime}\right), 81.2\left(s^{\prime}\right), 86.7\left(s^{\prime}\right), 127.6\left(s^{\prime}\right), 127.7$ $\left(s^{\prime}\right), 127.8\left(d^{\prime}\right), 128.1\left(d^{\prime}\right), 128.4\left(d^{\prime}\right), 128.5\left(d^{\prime}\right), 129.0$ $\left(d^{\prime}\right), 135.7\left(d^{\prime}\right), 135.7\left(d^{\prime}\right), 137.5\left(s^{\prime}\right), 173.1\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{42} \mathrm{O}_{4} \mathrm{SeSi} 574.2018$, found 574.2017. Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{42} \mathrm{O}_{4}$ SeSi: C, 62.81; H, 7.38. Found: C, 62.80; H, 7.32.

Methyl $(3 \alpha, 3 a \beta, 4 \alpha, 6 a \beta)-$ and $(3 \alpha, 3 a \beta, 4 \beta, 6 a \beta)-(\pm)-$ 2,2-Bis(1,1-dimethylethyl)hexahydro-3-! (phenyl-methoxy)methyl]-2H-cyclopent[d]-[1,2]oxasilole-4carboxylate (9, 10).

8

9, 10

A solution of $\mathrm{Ph}_{3} \mathrm{SnH}(1.24 \mathrm{~g}, 3.50 \mathrm{~mol})$ and AIBN (50.0 $\mathrm{mg}, 0.30 \mathrm{mmol}$) in dry $\mathrm{PhH}(20 \mathrm{~mL})$ was added dropwise over 6 h (syringe pump) to a stirred and refluxing solution of 8 (1.69 g, 2.95 mmol) in dry PhH (150 mL). Refluxing was continued for an additional 1.5 h after the addition, and the mixture was then allowed to cool to room temperature. Evaporation of
the solvent, and flash chromatography of the residue over silica gel ($4 \times 20 \mathrm{~cm}$), using 5:95 EtOAc-hexane, gave a crude mixture of 9 and 10. The material was used directly in the next step, without full characterization, because it was found impossible to separate the desired compound from tin residues and from monocyclized (${ }^{1} \mathrm{H}$ NMR) product.
$(3 \alpha, 3 a \beta, 4 \alpha, 6 a \beta)-$ and $(3 \alpha, 3 a \beta, 4 \beta, 6 a \beta)-(\pm)-2,2-8 i s-$ (1,1-dimethylethyl)hexahydro-3-[(phenylmethoxy) -methyl]-2H-cyclopent[d]-[1,2]oxasilol-4-yl]methanol (32).

9, 10

32

A solution of crude $9,10(3.24 \mathrm{~g}, 7.75 \mathrm{mmol})$ in dry THF (25 mL plus 5 mL as a rinse) was added dropwise to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ slurry of LiAlH4 (294.0 mg, 7.750 mmol$)$ in dry THF (20 mu). Stirring was continued for 15 min , and $\mathrm{MeOH}(2 \mathrm{~mL}), \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~g})$, Celite (5.0 g) and $\mathrm{H}_{2} \mathrm{O}(2$ $\mathrm{mI})$ were then added, in that order, and the cold bath was removed. Stirring was continued for 30 min , and the resulting slurry was filtered through a pad of celite, using EtOAC (TLC control, silica, 1:4 EtOAc-hexane). Evaporation of the filtrate and flash chromatography of the residue over
silica gel (4 x 22 cm), using $1: 4$ EtOAc-hexane, gave alcohols 32 ($2.54 \mathrm{~g}, 84 \%$), which were used directly for the next step without full characterization, because it was found impossible to separate the desired compound from tin residues and from monocyclized product at this stage. We depict 32 arbitrarily as a mixture of isomers, but we do not know for a fact whether one of the impurities is the isomer or a totally different compound.
(1 $1,2 \alpha, 3 \beta$)- and ($1 \alpha, 2 \alpha, 3 \alpha$)-(\pm)-3-Hydroxymethy1-2-[2-(phenylmethoxy)ethyl]cyclopentanol (43).

TBAF (1 M in THF, $30 \mathrm{~mL}, 30 \mathrm{mmol}$) was added dropwise to a stirred solution of impure alcohol 32 in DMF (30 mL). The mixture was heated at $60{ }^{\circ} \mathrm{C}$ for 3 h , allowed to cool to room temperature, poured into water (60 mL), and then extracted with EtOAC until extraction was complete (TLC control, silica, 3:1 EtOAC-hexane). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($3 \times 24 \mathrm{~cm}$), using 3:1 EtOAc-hexane, gave diols 43, along with inseparable material derived from the monocyclized product. Diol 43 was
used directly for the next step without full characterization.
$(1 \alpha, 2 \alpha, 3 \beta)-(\pm)-3-[[[(1,1-D i m e t h y l e t h y l) d i p h e n y l-$

silyl]oxy]methyl]-2-[2-(phenylmethoxy)ethyllcyclo-

 pentanol (44).

Imidazole ($362.3 \mathrm{mg}, 5.321 \mathrm{mmol}$) and $t-\mathrm{BuPh}_{2} \mathrm{SiCl}(0.97$ $\mathrm{mL}, 3.70 \mathrm{mmol}$) were added successively to a stirred solution of impure diols 43 in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL), and stirring was continued for 1 h , by which time reaction was complete (TLC control, silica, 15:85 EtOAc-hexane). The mixture was poured into water (20 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 24 \mathrm{~cm}$), using 15:85 EtOAc-hexane, gave alcohol 44 ($400.0 \mathrm{mg}, 33 \%$ over 4 steps) as a pure (${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz})$, colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3450 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.40-2.08(\mathrm{~m}, 8 \mathrm{H}), 2.65$ ($\mathrm{m}, 1 \mathrm{H}$) , 3.4-3.7 (m, 4 H) 4.23(m, 1 H), 4.5 (s, 2 H), 7.21$7.50(\mathrm{~m}, 11 \mathrm{H}), 7.58-7.75(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right)$ $\delta 19.5$ (s'), 26.6 (t'), $27.0\left(\mathbf{q}^{\prime}\right), 29.2$ (t'), 33.4 (t'), 45.5
(d'), 47.7 (d'), $66.9\left(t^{\prime}\right), 70.8\left(t^{\prime}\right), 73.7\left(t^{\prime}\right), 74.8$ (d'), 127.9 (d'), 128.0 (d'), 128.7 (d'), 129.9 (d'), 134.4 ($\left.\mathrm{s}^{\prime}\right)$, 135.9 (d'), 138.6 (s'). Anal. Calcd for $\mathrm{C}_{31} \mathrm{H}_{4} \mathrm{OO}_{3} \mathrm{Si}$: C, 76.18; H, 8.25. Found: C, 75.40; H, 8.25.
$(1 \alpha, 2 \beta, 3 \beta)-(\pm)-[(1,1-$ Dimethylethyl $)$ diphenyl [$[3-$ (methoxymethoxy)-2-[(2-phenylmethoxy)ethyl]cyclopentyllmethylloxy]silane (45).

i-Pr ${ }_{2}$ NEt ($0.38 \mathrm{~mL}, 2.19 \mathrm{mmol}$) was added dropwise to a stirred and cooled ($0^{\circ} \mathrm{C}$) solution of alcohol 44 (714.6 mg , 1.460 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (25 mL). After 15 min , MOMCl (0.17 mL , 2.19 mmol was added dropwise over 5 min , and stirring was continued for 1 h . The cold bath was removed, stirring was continued for 12 h , and the mixture was diluted with water $(50 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \times 50 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Flash chromatography of the residue over silica gel (3 x 20 cm), using 1:4 EtOAc-hexane, gave the protected alcohol 45 ($757.7 \mathrm{mg}, 97 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 300 MHz), colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3070,1199 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.05(\mathrm{~s}, 9 \mathrm{H}), 1.51-2.08(\mathrm{~m}, 8 \mathrm{H}), 3.35$ $(\mathrm{s}, 3 \mathrm{H}), 3.42-3.70(\mathrm{~m}, ~ 4 \mathrm{H}), 4.0-4.06(\mathrm{~m}, 1 \mathrm{H}), 4.42(\mathrm{~s}, 2$
$\mathrm{H}), 4.65\left(\mathrm{AB} q, \Delta \mathrm{~V}_{\mathrm{AB}}=23.0 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.20-7.45$
$(\mathrm{m}, 10 \mathrm{H}), 7.62-7.71(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta$ 19.5 (t'), 26.1 (t'), $27.0\left(\right.$ 土 $\left.^{\prime}\right), 28.7$ (t'), 31.0 (t'), 43.4 ($\left.d^{\prime}\right), 45.3\left(d^{\prime}\right), 55.6\left(q^{\prime}\right), 67.0\left(t^{\prime}\right), 69.8$ (t'), 73.0 (t'), 80.5 ($\left.d^{\prime}\right), 95.6$ (t'), 127.7 (d'), 127.9 (d'), 128.0 (d'), $128.5\left(d^{\prime}\right), 129.9\left(d^{\prime}\right), 134.4\left(s^{\prime}\right), 136.0\left(d^{\prime}\right), 139.4$ (s'); exact mass m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{O}_{4}$ Si 532.30086 , found ($\mathrm{M}-t$ - Bu - $\mathrm{OCH}_{2} \mathrm{OCH}_{3}$) 414.20151. Anal. Calcd for $\mathrm{C}_{3} \mathrm{H}_{44} \mathrm{O}_{4} \mathrm{Si}: \mathrm{C} 74.39$, H 8.32. Found: C 74.26, H 8.47.
(1 $\alpha, 2 \beta, 3 \beta$)-(土)-3-(Methoxymethoxy)-2-[2-(pheny1methoxy) ethyl]cyclopentanemethanol (46).

TBAF (1.0 M in $\mathrm{THF}, 2.7 \mathrm{mH}, 2.7 \mathrm{mmol}$) was added dropwise to a stirred solution of silylated alcohol 45 (707.4 mg, 1.320 mmol) in dry THF (15 mL) . Stirring was continued for 20 h , by which time the reaction was complete (TLC control, silica, 3:4 EtOAc-hexane). The mixture was diluted with water (50 mL) and extracted with EtOAc ($4 \times 50 \mathrm{mI}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (3 x 20 cm), using $3: 4$ EtOAc-hexane, gave 46 (380.9 mg, 97\%) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), colorless oil:

Abstract

FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3431 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.35-$ $2.01(\mathrm{~m}, \mathrm{~g} \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.60(\mathrm{~m}, 4 \mathrm{H}), 4.00-4.05$ $(\mathrm{m}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.65\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{v}_{\mathrm{AB}}=23.0 \mathrm{~Hz}, J=6.7\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 7.21-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 50.3 \mathrm{MHz}\right) \delta 26.3$ (t'), 28.8 (t'), $31.0\left(t^{\prime}\right), 43.8\left(d^{\prime}\right), 45.4\left(d^{\prime}\right), 55.6$ (q'), 66.4 (t'), $69.8\left(t^{\prime}\right), 73.20\left(t^{\prime}\right), 80.6\left(d^{\prime}\right), 95.7\left(t^{\prime}\right), 127.9$ (d'), 128.2 (d'), 128.7 (d'), $139.2\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}$ 294.18309, found (M-OCH) 262.15689. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{O}_{4}: \quad \mathrm{C} 69.36, \mathrm{H}$ 8.90. Found: C 68.89, H 8.79.

(2 $2,3 \alpha$)-(士)-1-(Methoxymethoxy)-3-methylene-2-[2(phenylmethoxy) ethyllcyclopentane (47).

Bu3P (0.32 mL, 1.31 mmol) was added dropwise over 5 min to a stirred solution of alcohol 46 (190.0 mg, 0.650 mol) and 2 -nitrophenyl selenocyanate $(297.1 \mathrm{mg}, 1.308 \mathrm{mmol}$) in dry THF (5 mr). The resulting red solution was stirred for 3 h , at which stage no starting material remained (TLC control, silica, 1:5 EtOAc-hexane). The solvent was evaporated and the crude product, which could not be easily purified, was used directly in the next step.

A stirred solution of the crude selenide in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$
$(5 \mathrm{~mL})$ was cooled to $-10{ }^{\circ} \mathrm{C}$ and m-CPBA (225.8 mg, 1.310 mmol$)$ was added in one portion. Stirring was continued for 1 h , i $\mathrm{Pr}_{2} \mathrm{NH}$ ($0.18 \mathrm{~mL}, 1.31 \mathrm{mmol}$) was added, and the mixture was refluxed for 1 h . Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 18 cm), using $1: 5$ EtOAc-hexane, gave 47 ($158.0 \mathrm{mg}, 88 \%$) as a pure (1_{H} NMR, 300 MHz$)$, yellow oil: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3070,1653 \mathrm{~cm}^{-}$ 1; $I_{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.57-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.32-2.55$ $(\mathrm{m}, 3 \mathrm{H}), 3.3(\mathrm{~s}, 3 \mathrm{H}), 3.52-3.67(\mathrm{~m}, 2 \mathrm{H}), 4.02-4.12(\mathrm{~m}, ~ 1$ $\mathrm{H}), 4.47(\mathrm{~s}, 2 \mathrm{H}), 4.65\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{V}_{\mathrm{AB}}=23.0 \mathrm{~Hz}, \mathrm{~J}=6.7 \mathrm{~Hz}, 2\right.$ H), 4.82-4.92 (d of multiplets, $J=24.0 \mathrm{~Hz}, 2 \mathrm{H}$), 7.20-7.39 (m, 5 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 27.3$ (t'), 29.5 (t'), 29.7 (t'), $46.0\left(d^{\prime}\right), 55.7\left(q^{\prime}\right), 69.2\left(t^{\prime}\right), 73.1\left(t^{\prime}\right), 79.3$ (d^{\prime}), 95.6 (t'), 105.2 (t'), 127.7 ($\left.\mathbf{a}^{\prime}\right), 127.9$ (d'), 128.6 (d'), $139.3\left(s^{\prime}\right), 154.1\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{3}(\mathrm{M}+\mathrm{Na}) 299.16231$, found 299.16231. Anal. Calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{O}_{3}: \mathrm{C} 73.88, \mathrm{H}$ 8.75. Found: C 73.72, H 9.07.
(1 $1 \alpha, 2 \alpha, 3 \alpha$)-(士)-3-(Methoxymethoxy)-2-[2-(phenylmethoxy) ethyl]cyclopentanemethanol (48).

$\mathrm{BH}_{3} . \mathrm{SMe}_{2}(10.0 \mathrm{M}$ in THF, $0.10 \mathrm{~mL}, 0.98 \mathrm{mmol})$ was added
dropwise to a stirred and cooled $\left(-20^{\circ} \mathrm{C}\right)$ solution of olefin 47 ($136.0 \mathrm{mg}, 0.492 \mathrm{mmol})$ in dry $\mathrm{THF}(2.5 \mathrm{~mL})$. After 30 min , the solution was warmed to $0^{\circ} \mathrm{C}$ (by replacing the acetone-dry ice bath with an ice bath). Stirring was continued for 1 h , the ice bath was removed, and stirring was continued for 30 min. The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NaOH}(3 \mathrm{~N}, 0.33 \mathrm{~mL}$) was added dropwise, followed by 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}$ (0.12 mL), and stirring was continued for 30 min . The mixture was diluted with $E t_{2} \mathrm{O}$ (5 mL), washed with water (2 x 5 mL) and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (1.5 x 20 cm), using 15:85 EtOAC-hexane, gave 48 ($98.1 \mathrm{mg}, 68 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 200 $\mathrm{MHz})$, colorless oil: $\mathrm{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta 1.51-1.98(\mathrm{~m}, ~ 6 \mathrm{H}), 2.05-2.3(\mathrm{~m}, 2 \mathrm{H})$, $2.91(\mathrm{dd}, \mathrm{J}=7.4,3.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.3(\mathrm{~s}, 3 \mathrm{H}), 3.39-3.65(\mathrm{~m}$, $4 \mathrm{H}), 4.0-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.62\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{v}_{\mathrm{AB}}=\right.$ $23.0 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.39(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 25.1$ (t'), 25.6 (t'), 30.9 (t'), 42.0 (d'), 43.6 (d') $55.9\left(q^{\prime}\right), 62.7\left(t^{\prime}\right), 70.0\left(t^{\prime}\right), 73.3$ (t'), 80.1 (d'), $95.4\left(t^{\prime}\right), 127.8\left(d^{\prime}\right), 128.0\left(d^{\prime}\right), 128.6\left(d^{\prime}\right)$, 139.2 (s^{\prime}); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{26} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}) 317.17288$, found 317.17255.
$(1 \alpha, 2 \alpha, 3 \alpha)-(\pm)-[3-($ Methoxymethoxy) -2-[2-(phenyImethoxy)ethylycyclopentylumethyl A-Methylphenylsulfonate (49).

p-TsCl ($69.9 \mathrm{mg}, 0.37 \mathrm{mmol}$) was added in one portion to a stirred solution of alcohol 48 (98.1 mg, 0.33 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ containing dry pyridine (0.5 mL). A catalytic amount of DMAP was tipped into the solution and the mixture was stirred overnight, by which time reaction was complete (TLC control, silica, 1:4 EtOAc-hexane). The mixture was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 20$ mI). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (1 x 18 cm), using 1:4 EtoAc-hexane, gave 49 ($144 \mathrm{mg}, 97 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 200 MHz), colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1188 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta$ 1.49-1.81 (m, 6 H), 1.92-2.08 (m, 1 H), 2.25-2.39 (m, 1 H), $2.45(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 3.4-3.6(\mathrm{~m}, 2 \mathrm{H}), 3.90-4.15(\mathrm{~m}$, $3 \mathrm{H}), 4.39-4.51(\mathrm{~m}, ~ 4 \mathrm{H}), 7.22-7.39(\mathrm{~m}, 7 \mathrm{H}), 7.71-7.80(\mathrm{~m}, 2$ $\mathrm{H}):{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} l_{2}, 50.3 \mathrm{MHz}\right) \delta 21.7\left(\mathrm{q}^{\prime}\right), 25.5$ (t'), 26.9 (t'), 30.6 (t'), 39.7 (d'), 43.9 ($\left.\mathrm{d}^{\prime}\right), 55.6$ ($\left.\mathrm{q}^{\prime}\right), 69.5$ (t'), 73.2 (t'), 73.8 (t'), $79.8\left(d^{\prime}\right), 95.6\left(t^{\prime}\right), 127.8\left(d^{\prime}\right), 127.9$ $\left(d^{\prime}\right), 128.2\left(d^{\prime}\right), 128.6\left(d^{\prime}\right), 130.1\left(d^{\prime}\right), 133.6\left(s^{\prime}\right), 139.2$
(s^{\prime}), 145.1 (s^{\prime}); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{NaO}_{6} \mathrm{~S}(\mathrm{M}+\mathrm{Na}) 471.181731$, found 471.181890. Anal. Calcd Eor $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{6} \mathrm{~S}: \quad \mathrm{C} 73.88, \mathrm{H}$ 8.75. Found: C 73.72, H 9.07.

$$
(1 \alpha, 2 \alpha, 3 \alpha)-(\pm)-3-(\text { Methoxymethoxy) - } 2-[2-(\text { phenyl }-
$$ methoxy)ethyl]cyclopentaneacetonitrile (50).

A solution of tosylate $49(121.6 \mathrm{mg}, 0.270 \mathrm{mmol})$ and NaCN ($14.6 \mathrm{mg}, 0.30 \mathrm{mmol}$) in dry DMSO (5 mL) was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h , allowed to cool to room temperature, diluted with water (10 mL), and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (5 x 10 mL). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (1 x 20 cm), using 1:3 EtOAc-hexane, gave 50 (69.4, 84%) as a pure (${ }^{1} \mathrm{H}$ NMR, 300 MHz), pale yellow oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $2244 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.6-$ $2.1(\mathrm{~m}, 7 \mathrm{H}), 2.30-2.50(\mathrm{~m}, 3 \mathrm{H}), 3.29(\mathrm{~s}, 3 \mathrm{H}), 3.48-3.55$ $(\mathrm{m}, 2 \mathrm{H}), 3.98-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2 \mathrm{H}), 4.65\left(\mathrm{AB} q, \Delta \mathrm{v}_{\mathrm{AB}}\right.$ $=23.0 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.5(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 20.4\left(\mathrm{t}^{\prime}\right), 25.7$ (t'), 29.6 (t'), 30.8 (t'), $38.0\left(d^{\prime}\right), 44.8\left(d^{\prime}\right), 55.05\left(q^{\prime}\right), 69.6\left(t^{\prime}\right), 73.3$ (t'), 73.6 (t'), 81.0 ($\left.\mathbf{d '}^{\prime}\right), 95.8\left(t^{\prime}\right), 120.8\left(s^{\prime}\right), 127.9\left(d^{\prime}\right)$,
128.0 (d'), 128.7 (d'), $139.2\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{25} \mathrm{NNaO}_{3}(\mathrm{M}+\mathrm{Na}) 326.17321$, found 326.17348 .

Methyl $(1 \alpha, 2 \alpha, 3 \alpha)-(\pm)-3-($ Methoxymethoxy)-2-[2(phenylmethoxy)ethyl]cyclopentaneacetate (51).

50

51
$\mathrm{NaOH}(137.6 \mathrm{mg}, 3.440 \mathrm{mmol})$ in water $(0.5 \mathrm{~mL})$ was added to a solution of nitrile 50 (259.5 mg, 0.856 mmol$)$ in EtOF (2 mL). The mixture was heated at $100{ }^{\circ} \mathrm{C}$ for 12 h , allowed to cool to room temperature, ailuted with water (10 mL), acidified with 10% aqueous hydrochloric acid, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{x} 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. The residue was redissolved in $E t_{2} \mathrm{O}(2 \mathrm{~mL})$ and $\mathrm{CH}_{2} \mathrm{~N}_{2}$ was added dropwise with stirring until a yellow color persisted. Evaporation of the solvent, and flash chromatography of the residue over silica gel (1 x 20 cm), using 1:4 EtOAc-hexane, gave ester 51 (210.0 mg, 69\%) as a pure (${ }^{1} \mathrm{H}$ NMR, 300 MHz), pale yellow oil: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1736 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.42-1.52(\mathrm{~m}, ~ 1 \mathrm{H}), 1.60-1.91(\mathrm{~m}, 5 \mathrm{H})$, 1.95-2.05 (m, 1 H), 2.25-2.50 (m, 3 H$), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.45-$ $3.55(\mathrm{~m}, 2 \mathrm{H}), 3.6(\mathrm{~s}, 3 \mathrm{H}), 3.95-4.05(\mathrm{~m}, 1 \mathrm{H}), 4.49(\mathrm{~s}, 2$

```
H), 4.65 (AB q, \Deltav AB = 23.0 Hz, J = 6.7 Hz, 2 H), 7.23-7.39
(m, 5 H); 13C NMR (CD2 Cl2, 50.3 MHz) \delta 25.8 (t'), 29.7 (t'),
30.9 (t'), 36.8 (t'), 37.1 (a'), 44.1 (d'), 51.5 (q'), 55.6
(q'), 69.9 (t'), 73.2 (t'), 80.2 (d'), 95.8 (t'), 127.8 (d'),
128.0 (d'), 128.6 (d'), 139.4 (s'), 174.5 (s'); exact mass
```



```
found 336.19301.
```

Methyl $(1 \alpha, 2 \alpha, 3 \alpha)-(\pm)-2-(2-H y d r o x y e t h y l)-3-(m e t h-$ oxymethoxy) cyclopentaneacetate (52).

5\% Pd-C (3.0 mg) was added to a stirred solution of ester $51(20.0 \mathrm{mg}, 0.06 \mathrm{mmol})$ in $\mathrm{MeOH}(1 \mathrm{~mL})$. The reaction flask was flushed with $\mathrm{H}_{2}(3 \mathrm{x} 1 \mathrm{~min})$, and stirring was continued under hydrogen (balloon) until all the starting material was consumed (ca 30 min, TLC control, silica, 3:2 EtOAc-hexane). The mixture was filtered through a pad of silica gel (1 x 2 cm), using EtOAc (15 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel (1 x 10 cm), using 3:2 EtOAc-hexane, gave 52 (14.3 mg, 98%) as a pure ($1_{\mathrm{H}} \mathrm{NMR}, 300 \mathrm{MHz}$), colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3444,1736 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta$ 1.49-1.61 (m, 2 H), 1.71-1.89 (m, 5 H), 1.95-2.05 (m, 1 H),
$2.25-2.50(\mathrm{~m}, 3 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.6 \mathrm{I}-3.70(\mathrm{~m}, 2 \mathrm{H}), 3.62$ $(\mathrm{s}, 3 \mathrm{H}), 4.00-4.10(\mathrm{~m}, ~ 1 \mathrm{H}), 4.58\left(\mathrm{AB} q, \Delta \mathrm{v}_{\mathrm{AB}}=23.0 \mathrm{~Hz}, \mathrm{~J}=\right.$ $6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 28.6$ (t'), 29.3 (t'), 30.6 (t'), 36.8 (t'), 37.2 (d'), 44.1 (d'), 51.6 (q'), 55.7 (\mathbf{q}^{\prime}), 62.4 (t'), 80.4 (d'), 95.8 (t'), 174.5 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{5} \mathrm{Na}$ ($\mathrm{M}+\mathrm{Na}$) 269.13649, found 269.13639.

Methyl (1 $\alpha, 2 \alpha, 3 \alpha$)-(\pm)-3-(Methoxymethoxy)-2-(2oxoethyl)cyclopentaneacetate (53).

A mixture of PCC ($55.8 \mathrm{mg}, 0.26 \mathrm{mmol})$ and powdered $4 \AA$ molecular sieves (30 mg) was added to a stirred solution of alcohol 52 (49.2 mg, 0.20 mmol$)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. Stirring was continued for 4 h , by which time oxidation was complete (TLC control, silica, 2:3 EtOAc-hexane), and the mixture was applied directly to a column (1 $\times 15 \mathrm{~cm}$) of silica gel. The column was developed, using 2:3 EtOAchexane, to give aldehyde 53 ($45.0 \mathrm{mg}, 92 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz})$, colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1736 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.41-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.72-1.89(\mathrm{~m}, ~ 3 \mathrm{H})$, 2.25-2.70 (m, 6 H), $3.32(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.05-4.15$ $(\mathrm{m}, 1 \mathrm{H}), 4.65\left(\mathrm{AB} q, \Delta \mathrm{v}_{\mathrm{AB}}=23.0 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 9.81$
$(t, J=1.7 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 28.8$ (t'), 30.2 (t'), 36.7 (t'), 36.7 (d'), 39.9 (t'), 40.9 (d'), 51.7 (q'), 55.7 (q'), 79.8 (d'), 96.0 (t'), 173.7 (s'), 202.2 (d'). All attempts to obtain a mass spectrum of the aldehyde, gave a spectrum of the corresponding acid: exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{Na}(\mathrm{M}+\mathrm{Na}$) 283.11576, found 283.11568.

Methyl $[1 \alpha, 2 \alpha, 3 \alpha,(Z)]-(\pm)-3-($ Methoxymethoxy)-2-(2pentenyl)cyclopentaneacetate (54).

(Me3Si) ${ }_{2} \mathrm{NK}$ (0.5 M in PhMe, $0.9 \mathrm{~mL}, 0.45 \mathrm{mmol}$) was added to a stirred slurry of triphenylpropylphosphonium bromide ($177.8 \mathrm{mg}, 0.461 \mathrm{mmol}$) in dry PhMe (1 mL). The mixture was stirred for 1 h and the resultant bright red solution was then left undisturbed for 1 h . The supernatant liquid was drawn up into a syringe and an aliquot (ca $2.0 \mathrm{~mL}, 0.3 \mathrm{mmol}$) was added dropwise over 5 min to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of aldehyde $53(26.0 \mathrm{mg}, 0.11 \mathrm{mmol})$ in dry Phme (1 mL). The temperature was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then the cold bath was removed. Stirring was continued overright, leading to a colorless solution and the formation of $\mathrm{Ph}_{3} \mathrm{PO}$. The solvent was evaporated and the residue was
dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The solution was applied directly to a flash chromatography column of silica gel (1 x $10 \mathrm{~cm})$, and the column was developed using $1: 4$ EtOAc-hexane, to give olefin 54 ($20.0 \mathrm{mg}, 70 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 300 MHz), colorless oil: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $2245 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl_{3}, $300 \mathrm{MHz}) \delta 0.98(\mathrm{t}, \mathrm{J}=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-2.61(\mathrm{~m}, 12 \mathrm{H})$, 3.33 (s, 3 H), $3.65(\mathrm{~s}, 3 \mathrm{H}), 4.00-4.08(\mathrm{~m}, ~ 1 \mathrm{H}), 4.60(\mathrm{AB}$ q, $\left.\Delta v_{\mathrm{AB}}=35.0 \mathrm{~Hz}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.25-5.5(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}$ $\left(\mathrm{CDCl}_{3}, 75.5 \mathrm{MHz}\right) \delta 14.2$ (q'), 20.8 (t'), 22.8 (t'), 29.2 (t'), 30.6 (t'), $36.5\left(d^{\prime}\right), 36.5\left(t^{\prime}\right), 47.5\left(d^{\prime}\right), 51.35\left(q^{\prime}\right)$, 55.4 (q'), 80.0 ($\left.\mathrm{d}^{\prime}\right), 95.6$ (t'), 128.0 (d'), 132.2 ($\left.\mathrm{d}^{\prime}\right)$, 174.5 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{O}_{4} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 293.17288$, found 293.17251.
(1 $1,2 \beta, 3 \beta)-(\pm)-[(1,1-D i m e t h y l e t h y l) d i p h e n y l[12-$ [(2-phenylmethoxy)ethyl]-3-[(2-methoxyethoxy)methoxy]cyclopentyl]methylloxylsilane (56).

i-Pr2NEt ($1.37 \mathrm{~mL}, 7.91 \mathrm{mmol}$) was added dropwise to a stirred and cooled ($0^{\circ} \mathrm{C}$) solution of 44 (1.28 g, 2.63 mmol$)$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. After 15 min , MEMCl ($\left.0.90 \mathrm{~mL}, 7.91 \mathrm{mmol}\right)$ was added dropwise over 5 min and stirring was continued for 1 h . The cold bath was removed, stirring was continued for

12 h , and the mixture was diluted with water (100 mL), and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($3 \times 20 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave 56 (1.51 g, 100\%) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1199,3070 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200\right.$ $\mathrm{MHz}) \delta 1.05(\mathrm{~s}, \mathrm{~g} \mathrm{H}), 1.50-2.10(\mathrm{~m}, ~ 8 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H})$, 3.40-3.70 (m, 8 H), 4.10-4.20(m, 1 H), 4.47 (s, 2 H$), 4.64$ $\left(A B q, \Delta V_{A B}=18.2 \mathrm{~Hz}, \mathcal{J}=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.20-7.45(\mathrm{~m}, 10 \mathrm{H})$, 7.60-7.70(m, 5 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 19.5$ (t'), 26.1 (t'), $27.0\left(q^{\prime}\right), 28.7$ (t'), 31.0 (t'), 43.4 (d'), 45.3 $\left(d^{\prime}\right), 59.0\left(q^{\prime}\right), 67.0\left(t^{\prime}\right), 67.4\left(t^{\prime}\right), 69.8\left(t^{\prime}\right), 72.2(t ')$, 73.0 (t'), 80.5 (d'), 94.6 (t'), 127.7 (d'), $127.9(d ')$, 128.0 (d^{\prime}), 128.6 ($\left.d^{\prime}\right), 129.9\left(d^{\prime}\right), 134.4\left(s^{\prime}\right), 136.0\left(d^{\prime}\right)$, 139.5 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{35} \mathrm{H}_{48} \mathrm{NaO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 599.3169$, found 599.3171 .
(1 $\alpha, 2 \beta, 3 \beta)-(\pm)-3-[(2-M e t h o x y e t h o x y)$ methoxy $]-2-[2-$ (phenylmethoxy)ethyl]cyclopentanemethanol (57).

TBAF (1.0 M in THF, $4.6 \mathrm{~mL}, 4.6 \mathrm{mmol}$) was added dropwise to a stirred solution of 56 ($1.33 \mathrm{~g}, 2.30 \mathrm{mmol}$) in dry THF $(40 \mathrm{~mL})$. Stirring was continued for 20 h , by which time
reaction was complete (TLC control, silica, 3:4 EtOAchexane). The mixture was diluted with water (100 mI) and extracted with EtOAc. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (3 x 20 cm), using 3:4 EtOAc-hexane, gave 57 (758 mg, 96\%) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3445 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta$ 1.20-2.10 (m, 9 H$), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.70(\mathrm{~m}, ~ 8 \mathrm{H}), 4.00-$ $4.10(\mathrm{~m}, 1 \mathrm{H}), 4.50(\mathrm{~s}, 2 \mathrm{H}), 4.66\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{v}_{\mathrm{AB}}=18.2 \mathrm{~Hz}, \mathrm{~J}=\right.$ $6.8 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta$ 26.2 (t'), 28.8 (t'), $30.8\left(t^{\prime}\right), 43.7\left(d^{\prime}\right), 45.4\left(d^{\prime}\right), 59.0$ (q'), 66.4 (t'), 67.4 (t'), 69.8 (t'), 72.2 (t'), 73.2 (t'), 80.6 (d'), 94.6 (t'), 127.9 (d'), 128.1 (d'), 128.7 (d'), 139.1 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na}) 361.1991$, found 361.1989.
(2 $2,3 \alpha$)-(士)-1-[(2-Methoxyethoxy)methoxy]-3-
methylene-2-[2-(phenylmethoxy)ethyl]cyclopentane (58).

Bu3 P (0.11 ma, 0.45 mmol$)$ was added dropwise over 5 min to a stirred solution of 57 (76.4 mg, 0.22 mmol) and 2nitrophenyl selenocyanate ($102.5 \mathrm{mg}, 0.45 \mathrm{mmol}$) in dry THF (2 mu). The resulting red solution was stirred for 3 h , at
which stage no starting material remained (TLC control, silica, 1:5 EtOAc-hexane). The solvent was evaporated and the crude selenide was used directly in the next step.

A stirred solution of the crude selenide in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) was cooled to $-10{ }^{\circ} \mathrm{C}$ and $\mathrm{m}-\mathrm{CPBA}$ ($78.0 \mathrm{mg}, 0.45 \mathrm{mmol}$) was added in one portion. Stirring was continued for 1 h , i$\mathrm{Pr}_{2} \mathrm{NH}(0.06 \mathrm{~mL}, 0.45 \mathrm{mmol})$ was added, and the mixture was refluxed for I h. Evaporation of the solvent and flash chromatography of the residue over silica gel ($1 \times 18 \mathrm{~cm}$), using 1:5 EtOAC-hexane, gave $58(57.8 \mathrm{mg}, 80 \%$) as a yellow oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1652,3070 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400\right.$ MHz) $\delta 1.60-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.35-2.60(\mathrm{~m}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H})$, 3.40-3.60(m, 6 H), 4.07-4.09(m, 1 H), 4.43(AB q, $\Delta \mathrm{v}_{\mathrm{AB}}=$ $11.5 \mathrm{~Hz}, \mathcal{J}=11.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.64\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{V}_{\mathrm{AB}}=38.3 \mathrm{~Hz}, \mathcal{J}=\right.$ $6.9 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.86(\mathrm{~d}, \mathrm{~J}=2.1 \mathrm{~Hz}$, $1 \mathrm{H}), 7.20-7.45(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 27.3$ (t'), 29.5 (t'), 29.6 (t'), 46.0 (d'), 58.9 (q'), 67.5 (t'), 69.2 (t'), 72.1 (t'), 73.1 (t'), 79.3 (d'), 94.5 (t'), 105.2 (t'), 127.7 (d'), 127.9 (d'), 128.6 (d'), $139.4\left(s^{\prime}\right), 154.1$ (s^{\prime}); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{4}$ (M +Na 343.1885, found 343.1889. (phenylmethoxy)ethyl]cyclopentanemethanol (59).

$\mathrm{BH}_{3} . \mathrm{SMe}_{2}$ (10.0 M in THF, $0.21 \mathrm{~mL}, 2.10 \mathrm{mmol}$) was added dropwise to a stirred and cooled ($-20^{\circ} \mathrm{C}$) solution of 58 (337.3 mg, 1.053 mmol$)$ in dry THF (5 mL). After 30 min , the solution was warmed to $0{ }^{\circ} \mathrm{C}$ (by replacing the acetone-dry ice bath with an ice bath). Stirring was continued for 1.0 h , the ice bath was removed, and stirring was continued for 30 min. The mixture was cooled to $0^{\circ} \mathrm{C}$, and $\mathrm{NaOH}(3 \mathrm{~N}, 0.70 \mathrm{~mL})$ was added dropwise, followed by 30% aqueous $\mathrm{H}_{2} \mathrm{O}_{2}(0.24 \mathrm{~mL}$), and stirring was continued for 30 min. The mixture was diluted with $E t_{2} O(10 \mathrm{~mL})$, washed with water $(2 \mathrm{x} 10 \mathrm{~mL})$ and brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 20 \mathrm{~cm}$), using $15=85$ EtOAc-hexane, gave 59 (303.0 mg, 85\%) as a colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3453 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.60-$ $1.90(\mathrm{~m}, ~ 6 \mathrm{H}), 2.05-2.20(\mathrm{~m}, ~ 1 \mathrm{H}), 2.20-2.30(\mathrm{~m}, 1 \mathrm{H}), 2.85$ (dd, J $\quad=7.8,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.70(\mathrm{~m}, 8$ $\mathrm{H}), 4.00-4.10(\mathrm{~m}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 2 \mathrm{H}), 4.67\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{v}_{\mathrm{AB}}=30.3\right.$ $\mathrm{Hz}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.45(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $50.3 \mathrm{MHz}) \delta 25.2$ (t'), 25.6 (t'), 30.9 (t'), 42.0 (d'), 43.6 (d^{\prime}) $59.0\left(q^{\prime}\right), 62.8\left(t^{\prime}\right), 67.7\left(t^{\prime}\right), 70.0\left(t^{\prime}\right), 72.1$ (t'),
73.3 (t'), 80.1 (d'), 94.3 (t'), 127.8 (d'), $128.0\left(d^{\prime}\right)$, 128.7 (${ }^{\prime}$). 139.2 (s^{\prime}); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na}) 361.1991$, found 361.1989 .
(1 $\alpha, 2 \alpha, 3 \alpha)-(\pm)-[3-[(2-M e t h o x y e t h o x y)$ methoxy]-2-[2-(phenylmethoxy)ethyl]cyclopentyl]methyl 4-Methylphenylsulfonate (60).

59

60
p-TsCl ($304.4 \mathrm{mg}, 1.596 \mathrm{mmol})$ was added in one portion to a stirred solution of $59(180.0 \mathrm{mg}, 0.532 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (5 mL) containing dry pyridine (0.5 mL). A catalytic amount of DMAP was tipped into the solution, and the mixture was stirred overnight, by which time reaction was complete (TLC control, silica, 1:4 EtOAc-hexane). The mixture was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 18 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave $60(254 \mathrm{mg}$, 97\%) as a colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1188 \mathrm{~cm}^{-1}$; I_{H} NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.50-1.90(\mathrm{~m}, 6 \mathrm{H}), 1.95-2.10(\mathrm{~m}, 1 \mathrm{H})$, 2.25-2.40 (m, 1 H$), 2.45(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.60$ $(\mathrm{m}, 6 \mathrm{H}), 3.90-4.00(\mathrm{~m}, 2 \mathrm{H}), 4.10(\mathrm{dd}, \mathrm{J}=9.4,5.5 \mathrm{~Hz}, 1$ Hi), $4.42(s, 2 \mathrm{H}), 4.57\left(\mathrm{AB} q, \Delta \mathrm{v}_{\mathrm{AB}}=33.5 \mathrm{~Hz}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2\right.$

```
H), 7.20-7.40 (m, 7 H), 7.70-7.80 (m, 2 H); 13C NMR (CD2Cl2,
50.3 MHz) \delta 21.5 (q'), 25.3 (t'), 26.7 (t'), 30.3 (t'), 39.5
(d'), 43.7 (d') 58.8 (q'), 67.2 (t'), 69.4 (t'), 72.0 (t'),
73.0(t'),73.4 (t'), 79.6 (d'), 94.3 (t'), 127.6 (d'), 127.8
(d'), 128.0 (d'), 128.5 (d'), 123.0 (d'), 133.5 (s'), 139.0
(s'), 145.0 (s'); exact mass (HR electrospray) m/z calcd for
C26H36NaO7 S (M + Na) 515.2080, found 515.2083.
```

(1 $\alpha, 2 \alpha, 3 \alpha)-(\pm)-3-[(2-M e t h o x y e t h o x y)$ methoxy]-2-[2(phenylmethoxy) ethyllcyclopentaneacetonitrile (61).

A solution of $60(195.5 \mathrm{mg}, 0.397 \mathrm{mmol})$ and $\mathrm{NaCN}(136.5$ mg, 2.8 mmol) in dry DMSO (2.5 mL) was heated at $100{ }^{\circ} \mathrm{C}$ for 1 h, allowed to cool to room temperature, diluted with water (15 m工), and extracted with Et 2 O. The combined organic extracts were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Flash chromatography of the residue over silica gel (1.5 x 20 cm), using $1: 3$ EtOAc-hexane, gave 61 (115.4 mg, 87\%) as a pale yellow oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $2244 \mathrm{~cm}^{-1}$; 1_{H} $\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.60-2.10(\mathrm{~m}, 7 \mathrm{H}), 2.30-2.50(\mathrm{~m}, 3$ $\mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.40-3.70(\mathrm{~m}, 6 \mathrm{H}), 4.00-4.10(\mathrm{~m}, ~ 1 \mathrm{H})$, $4.40(\mathrm{~s}, 2 \mathrm{H}), 4.62\left(\mathrm{AB} q, \Delta \mathrm{~V}_{\mathrm{AB}}=25.7 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right)$, 7.20-7.50 (m, 5 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.4 \mathrm{MHz}\right) \delta 20.4$ (t^{\prime}),
25.8 (t'), 29.6 (t'), 30.7 (t'), $38.0\left(d^{\prime}\right), 44.8$ (d'), 59.1 (q'), 67.6 (t'), 69.6 (t'), 72.2 (t'), 73.4 (t'), 80.1 (d'), 94.7 (t'), $120.9\left(s^{\prime}\right), 127.99\left(d^{\prime}\right), 128.02(d '), 128.7\left(d^{\prime}\right)$, 139.2 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{29} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na}) 370.1994$, found 370.2003 .
(1 $\alpha, 2 \alpha, 3 \alpha)-(\pm)-2-(2-$ Hydroxyethyl)-3-[(2-methoxyethoxy)methoxy]cyclopentaneacetonitrile (62).

5\% Pd-C (9 mg) was added to a stirred solution of 61 $(55.0 \mathrm{mg}, 0.16 \mathrm{mmol})$ in $\mathrm{MeOH}(2 \mathrm{~mL})$. The reaction flask was flushed with H_{2}, and stirring was continued under hydrogen (balloon) until all the starting material was consumed (ca 30 min, TLC control, silica, 3:2 EtOAc-hexane). The mixture was filtered through a pad of silica gel (1 x 2 cm), using EtOAc (50 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel (1 x 10 cm), using 3:2 EtOAc-hexane, gave $62(38.5 \mathrm{mg}, 92 \%)$ as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3442 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta$ 1.50-2.15 (m, 8 H), 2.30-2.50 (m, 3 H$), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.45-$ $3.75(\mathrm{~m}, 6 \mathrm{H}), 4.05-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.62\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{V}_{\mathrm{AB}}=14.7 \mathrm{~Hz}\right.$, $J=6.7 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 20.4(\mathrm{t}), 28.5$ (t'), 29.3 (t'), 30.8 (t'), 38.1 (d'), 44.6 (d'), $59.0\left(q^{\prime}\right)$,
62.0 (t'), 67.7 (t') $=72.2$ (t'), 80.3 (d'), 94.8 (t'), 120.8 (s^{\prime}); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{23} \mathrm{O}_{4} \mathrm{NNa}$ $(M+N a) 280.1525$, found 280.1524.
(1 $\alpha, 2 \alpha, 3 \alpha)-(\pm)-3-[(2-$ Methoxyethoxy)methoxy]-2-(2oxoethyl)cyclopentaneacetonitrile (63).

62

63

A mixture of PCC ($56.8 \mathrm{mg}, 0.26 \mathrm{mmol})$ and powdered $4 \AA$ molecular sieves (20 mg) was added to a stirred solution of $62(52.2 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Stirring was continued for 1 h , by which time oxidation was complete (TLC control, silica, $2: 3$ EtOAc-hexane), and the mixture was applied directly to a column (1 $x 15 \mathrm{~cm}$) of flash chromatography silica gel. The column was developed using 2:3 EtOAc-hexane, to give $63(41 \mathrm{mg}, 78 \%)$ as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1722,2245 \mathrm{~cm}^{-1}$; ${ }^{I} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta$ 1.60-1.75 (m, 1 H$), ~ 1.80-2.05(\mathrm{~m}, ~ 3 \mathrm{H}), 2.30-2.60(\mathrm{~m}, 5 \mathrm{H})$, 2. 65-2.80 (m, 1 H$), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.42-3.62(\mathrm{~m}, 4 \mathrm{H}), 4.10-$ $4.20(\mathrm{~m}, 1 \mathrm{H}), 4.58\left(\mathrm{AB} q, \Delta \mathrm{~V}_{\mathrm{AB}}=30.5 \mathrm{~Hz}, \quad J=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right)$, $9.80(t, J=1.1 \mathrm{~Hz}, \quad 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 20.3$ (t'), 29.2 (t'), 30.3 (t'), 37.3 (d'), 39.9 (t'), 41.0 (d'), 59.0 (q'), 67.6 (t') $\quad 72.1\left(t^{\prime}\right), 79.7\left(d^{\prime}\right), 94.7\left(t^{\prime}\right), 120.1$ (s^{\prime}), 201.4 (d'); exact mass (HR electrospray) m / z calcd for
$\mathrm{C}_{13} \mathrm{H}_{21} \mathrm{NNaO}_{4}(\mathrm{M}+\mathrm{Na})$ 278.1373, found 278.1368.
$[1 \alpha, 2 \alpha(Z), 3 \alpha]-(\pm)-3-[(2-M e t h o x y e t h o x y)$ methoxy]-2-(2-pentenyl)cyclopentaneacetonitrile (64).

63
64
(Me3Si) $2 \mathrm{NK}(0.5 \mathrm{M}$ in PhMe, $0.5 \mathrm{~mL}, 0.25 \mathrm{mmol}$) was added to a slurry of triphenylpropylphosphonium bromide $(100.2 \mathrm{mg}$, $0.260 \mathrm{mmol})$ in dry PhMe (1 mL). The mixture was stirred for 1 h and the resultant bright red solution was then left undisturbed for 1 h . The supernatant liquid was drawn up into a syringe and an aliquot (ca $1.0 \mathrm{~mL}, 0.2 \mathrm{mmol}$) was added dropwise over 5 min to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution Of 63 (15.8 mg, 0.06 mmol) in dry PhMe (1 mL). The temperature was maintained at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then the cold bath was removed. Stirring was continued overnight, leading to a colorless solution and the formation of Ph3PO. The solvent was evaporated and the crude residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The solution was applied directly to a column of flash chromatography silica gel (1 x $10 \mathrm{~cm})$, and the column was developed using 1:4 EtOAc-hexane, to give $64(14.0 \mathrm{mg}, 80 \%)$ as a colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $2245 \mathrm{~cm}^{-1} ; 1_{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 0.96$ (t, J $=7.5$ $\mathrm{Hz}, 3 \mathrm{H}), 1.60-2.30(\mathrm{~m}, ~ 9 \mathrm{H}), 2.30-2.50(\mathrm{~m}, 3 \mathrm{H}), 3.37$ (s, 3

```
H), 3.50-3.70(m, 4 H), 4.00-4.10(m, 1 H), 4.64 (AB q, \DeltavaB =
```



```
100.6 MHz) \delta 14.3 (q'), 20.2 (t'), 21.0 (t'), 23.1 (t'), 29.5
(t'), 30.8(t'), 37.6 (d'), 48.1 (d'), 59.0 (q'), 67.4 (t'),
72.1 (t'), 80.2 (d'), 94.9(t'), 120.8 (s'), 127.5 (d'),
133.0 (d'); exact mass (HR electrospray) m/z calcd for
C16H27NNaO}3(M+Na) 304.1889, found 304.1887.
```

(2R,3s)-1,3-Bis (phenylmethoxy)-5-hexen-2-ol (73).

73

72

BuLi (2.5 M in hexanes, $6.4 \mathrm{~mL}, 16 \mathrm{mmol}$) was added dropwise to a stirred suspension of $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}(5.59 \mathrm{~g}, 15.9$ mmol) in dry PhMe (60 mL), and the resulting yellow slurry was stirred at room temperature for 3 h . A solution of lactols $72^{16}(2.01 \mathrm{~g} .6 .37 \mathrm{mmol})$ in dry PhMe (20 mL) was added dropwise by syringe pump over ca 20 min , and the mixture was then heated at $50{ }^{\circ} \mathrm{C}$ for 10 h . The mixture turned brown and a white solid formed. The mixture was cooled to room temperature, diluted with water (30 mL), and extracted with EtOAc. The combined organic extracts were washed with water, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and brine $(20 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel (3 x 22
cm), using 1:4 EtOAc-hexane, gave 73 ($1.649 \mathrm{~g}, 83 \%$) as a pale yellow oil: $[\alpha]^{25} \mathrm{D}=31.8^{\circ}\left(\mathrm{C} 1.6, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3425 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 2.38-2.48(\mathrm{~m}, 3$ H) , $3.52-3.71(\mathrm{~m}, 3 \mathrm{H}), 3.81-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H})$, $4.58\left(\mathrm{AB} q, \Delta \mathrm{v}_{\mathrm{AB}}=38.5 \mathrm{~Hz}, J=11.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.05-5.18(\mathrm{~m}, 2$ H) , 5.86-5.98 (m, 1 H$), 7.23-7.39(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $50.3 \mathrm{MHz}) \delta 35.0\left(t^{\prime}\right), 71.6$ (d'), 71.8 (t'), 72.4 (t'), 73.7 (t'), $79.6\left(d^{\prime}\right), 117.3\left(t^{\prime}\right), 127.9\left(d^{\prime}\right), 128.0\left(d^{\prime}\right), 128.2$ $\left(d^{\prime}\right), 128.6\left(d^{\prime}\right), 128.7\left(d^{\prime}\right), 135.3\left(d^{\prime}\right), 138.7\left(s^{\prime}\right), 139.1$ (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{NaO}_{3}$ (M + Na) 312.17255, found 312.17202.
(2R,3S)-[(1,1-Dimethylethyl)dimethyl][[1,3-bis-(phenylmethoxy)-5-hexen-2-ylloxylsilane (74).

Imidazole ($654.6 \mathrm{mg}, 9.615 \mathrm{mmol}$) and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(1.268$ g, 8.413 mmol were added consecutively to a stirred solution of 73 ($1.500 \mathrm{~g}, 4.808 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (40 mL). Stirring was continued at room temperature for 10 h , at which point all the starting material had been consumed (TLC control, silica, 1:5 EtOAc-hexane). The mixture was diluted with water (50 mL) and extracted with EtOAc (4 x 50 mL). The combined organic extracts were washed with water (10 mL) and
brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($4 \times 24 \mathrm{~cm}$), using 1:9 EtOAc-hexane, gave 74 (1.84 g, 89\%) as a colorless oil: $[\alpha]^{25} \mathrm{D}=-9.58^{\circ}\left(\mathrm{C} 1.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 0.12(\mathrm{~s}, 3 \mathrm{H}), 0.13$ $(\mathrm{s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 2.33-2.38(\mathrm{~m}, 2 \mathrm{H}), 3.51-3.60(\mathrm{~m}, 3$ H), 3.92-3.95 (m, 1 H$), 4.42-4.52(\mathrm{~m}, 2 \mathrm{H}), 4.57\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{v}_{\mathrm{AB}}=\right.$ $41.2 \mathrm{~Hz}, \mathcal{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.05-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.84-5.96(\mathrm{~m}$, $1 \mathrm{H}), 7.23-7.39(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta-4.7$ $\left(q^{\prime}\right),-4.3\left(q^{\prime}\right), 18.4\left(s^{\prime}\right), 26.0\left(q^{\prime}\right), 35.5\left(t^{\prime}\right), 72.4\left(t^{\prime}\right)$, 72.7 (t'), 73.5 (t'), 73.7 (d'), 80.9 (d'), 116.7 (t'), 127.7 $\left(d^{\prime}\right), 127.8\left(d^{\prime}\right), 128.0\left(d^{\prime}\right), 128.1(d '), 128.5(d '), 128.6$ (d'), 136.1 (d'), $139.0\left(s^{\prime}\right), 139.4\left(s^{\prime}\right) ; ~ e x a c t ~ m a s s ~(H R ~$ electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NaO}_{3} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 449.24879$, found 449.24820.
(3s, 4R)-2-[[(1, 1-Dimethylethyl)dimethylsilyl]-oxyl-3,5-bis(phenylmethoxy)pentanal (75).

74
75

Ozonized oxygen was bubbled through a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $74(241.7 \mathrm{mg}, 0.567 \mathrm{mmol})$ and Sudan III red (1 mg) in $d r y \mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ (protection from moisture by

Drierite tube). When all of the starting material was consumed (ca 10 min; discharge of the red color; TLC control, silica, 2:3 EtOAc-hexane), the solution was purged with oxygen for 10 min. Ph3P (446.5 mg, 1.702 mmol) was added, the cooling bath was removed, and stirring was continued for 2 h , by which time the mixture had attained room temperature. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 20 cm), using 1:4 EtOAc-hexane, gave 75 (186.9 mg, 77\%) as a colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1723 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 0.12(\mathrm{~s}, 3 \mathrm{H})$, $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 2.55-2.70(\mathrm{~m}, 2 \mathrm{H}), 3.49-3.60$ $(\mathrm{m}, 3 \mathrm{H}), 4.01-4.15(\mathrm{~m}, 1 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.57\left(\mathrm{AB} q, \Delta \mathrm{~V}_{\mathrm{AB}}\right.$ $=41.2 \mathrm{~Hz}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.2-7.42(\mathrm{~m}, 10 \mathrm{H}), 9.78(\mathrm{t}, \mathrm{J}=$ $6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta-4.6\left(\mathrm{q}^{\prime}\right),-4.5\left(\mathrm{q}^{\prime}\right)$, $18.4\left(s^{\prime}\right), 26.0\left(q^{\prime}\right), 44.8\left(t^{\prime}\right), 72.1$ (t'), $72.5\left(t^{\prime}\right), 73.0$ (d'), 73.7 (t'), $76.4\left(d^{\prime}\right), 128.0\left(d^{\prime}\right), 128.1\left(d^{\prime}\right), 128.2$ (d^{\prime}), $128.7\left(d^{\prime}\right), 138.7\left(s^{\prime}\right), 138.8\left(s^{\prime}\right), 201.8\left(d^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{3} 6 \mathrm{NaO}_{4} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 451.22806, found 451.22765.
(4R,6S,7R)- and (4S, 6S, 7R)-7-[[(1, 1-Dimethyl-
ethyl)dimethylsilylloxy]-1-[(4-methoxyphenyl)methoxy]-6,8-bis(phenylmethoxy)-2-octyn-4-ol (77, 78).

BuLi (2.5 M in hexanes, $3.1 \mathrm{~mL}, 7.7 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of p methoxybenzyl propargyl ether ${ }^{23}$ (76) (1.347 g, 7.654 mmol) in THF (25 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , and then aldehyde 75 ($1.310 \mathrm{~g}, 3.062 \mathrm{mmol}$) in THF (8 mL plus 2 mL as a rinse) was added dropwise. Stirring was continued for 2 h (TLC control, silica, 3:7 EtOAc-hexane), at which point no starting material remained. The cold bath was removed and, after 5 min , water (100 mL) was added. The mixture was extracted with EtOAC ($4 \times 100 \mathrm{~mL}$), and the combined organic extracts were washed with brine (100 mL) and dried (MgSO_{4}). Evaporation of the solvent and flash chromatography of the residue over silica gel ($4 \times 28 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave a separable mixture (2.9:1) of diastereomers 77 (1.11 g, 60%) and 78 ($398.4 \mathrm{mg}, 22 \%$), each as a colorless oil.

Compound 77 had: $[\alpha]^{25} D=-16.0^{\circ}\left(c\right.$ 1.5, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3419 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 0.12$ (s, 3 H), 0.13 (s, 3 H$), 0.92(\mathrm{~s}, 9 \mathrm{H}), 1.82$ (ddd, $\mathrm{J}=14.7,7.6$,
$2.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.10$ (ddd, $J=24.6,15.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.99$ (d, J $=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.51(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3$ H), 4.02-4.12 (m, 2 H$), 4.18(\mathrm{~d}, \mathcal{J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.48-4.52$ $(\mathrm{m}, 6 \mathrm{H}), 4.78(\mathrm{~d}, \mathrm{~J}=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.86(\mathrm{~m}, 2 \mathrm{H})$, 7.21-7.38 (m, 12 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta-4.7\left(\mathrm{q}^{\prime}\right)$, $-4.5\left(q^{\prime}\right), 18.4\left(s^{\prime}\right), 26.0\left(q^{\prime}\right), 37.3$ (t'), 55.5 (q'), 57.4 (t'), 60.6 (d'), $71.5\left(t^{\prime}\right), 72.2$ (t'), 72.9 (t'), 72.9 (d'), 73.6 (t'), 79.2 (d'), 80.9 (s'), 87.9 ($\left.s^{\prime}\right), 114.0\left(d^{\prime}\right), 127.9$ $\left(d^{\prime}\right), 128.0\left(d^{\prime}\right), 128.1\left(d^{\prime}\right), 128.5\left(d^{\prime}\right), 128.6\left(d^{\prime}\right), 128.7$ (d^{\prime}), 129.9 (d'), $130.1\left(s^{\prime}\right), 138.6\left(s^{\prime}\right), 138.8\left(s^{\prime}\right), 159.7$ (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NaO} \mathrm{NSi}^{2}$ $(\mathrm{M}+\mathrm{Na}) 627.31178$, found 627.31107.

Compound 78 had: $[\alpha]^{25} \mathrm{D}=-33.8^{\circ}\left(\mathrm{C} 2.2, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3431 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta 0.08$ (s, 3 H) $0.13(\mathrm{~s}, 3 \mathrm{H}), 0.89(\mathrm{~s}, 9 \mathrm{H}), 1.91$ (ddd, $J=14.4,3.7$, $1.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.04-2.14(\mathrm{~m}, 1 \mathrm{H}), 3.02(\mathrm{~d}, \mathrm{~J}=3.7 \mathrm{~Hz}, 1 \mathrm{H})$, $3.52(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.02-4.06(\mathrm{~m}, \mathrm{I} \mathrm{H})$, 4.07-4.18 (m, 1 H$), 4.15(\mathrm{~d}, \mathrm{~J}=1.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.44-4.58(\mathrm{~m}$, $5 \mathrm{H}), 4.61-4.64(\mathrm{~m}, ~ 1 \mathrm{H}), 4.72(\mathrm{~d}, \mathrm{~J}=3.9 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-$ $6.86(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right)$ § -4.6 (q^{\prime}, two coincident peaks), 18.4 (s^{\prime}), 25.9 (q^{\prime}), 38.6 (t'), $55.5\left(q^{\prime}\right), 57.4\left(t^{\prime}\right), 61.0\left(d^{\prime}\right), 71.4\left(t^{\prime}\right), 72.1\left(t^{\prime}\right)$, 72.6 (t'), 73.0 (d'), 73.6 (t'), 79.6 (d'), 80.9 (s'), 87.6 $\left(s^{\prime}\right), 114.0\left(d^{\prime}\right), 127.9\left(d^{\prime}\right), 128.0\left(d^{\prime}\right), 128.3\left(d^{\prime}\right), 128.6$ (d'), 129.9 (d'), 130.1 (s'), 138.7 (s', two coincident peaks), 159.7 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{48} \mathrm{NaO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 627.31178$, found 627.31165.

The relative stereochemistry of the two products was established by analogy with the arguments given in the Results and Discussion section for the corresponding MOMprotected compounds (92 and 93).
(2R,3S,5R)-8-[(4-methoxyphenyl)methoxy]-1,3-bis-(phenylmethoxy)-6-octyn-2,5-diol (80).

TBAF (1.0 M in THF, $3.6 \mathrm{~mL}, 3.6 \mathrm{mmol}$) was added dropwise to a stirred solution of silylated alcohol 77 (1.112 g, 1.823 mol) in dry THF (25 mL). Stirring was continued for 20 h , by which time reaction was complete (TLC control, silica, 3:4 EtOAc-hexane).. The mixture was diluted with water (40 mm) and extracted with EtOAc ($4 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (3 x 20 cm), using 3:4 EtoAc-hexane, gave diol 80 (1.542 $\mathrm{mg}, 85 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), colorless oil: $[\alpha]^{25_{D}}=$ $-15.3^{\circ}\left(\mathrm{c} 1.5, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right) ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3433 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 2.01$ (ddd, $\left.J=14.5,5.7,4.7 \mathrm{~Hz}, 1 \mathrm{H}\right)$, $2.12(p, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.88(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.23$ $(d, J=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58(\mathrm{dd}, J=9.7,6.5, \mathrm{~Hz}, 1 \mathrm{H}), 3.62$

```
(dd, J = 9.7, 4.0 Hz, 1 H), 3.76-3.79 (m, 1 H), 3.78 (s, 3
H), 3.95-4.00(m, 1 H), 4.18(s, 2 H), 4.48 (s, 3 H), 4.51
(s, 3 H), 4.62-4.65 (m, 1 H), 6.82-6.88 (m, 2 H), 7.21-7.38
(m, 12 H); ' }\mp@subsup{}{}{13}\textrm{C}\mathrm{ NMR (CD2Cl2, 50.3 MFz) 
57.5 (t'), 60.3 (d'), 71.4 (t'), 71.6 (t'), 72.1 (d'), 72.5
(t'), 73.7 (t'), 77.9 (d'), 81.2 (s'), 87.6 (s'), 114.0 (d'),
128.1 (d'), 128.2 (d'), 128.3 (d'), 128.7 (d'), 129.9 (d'),
130.0(s'), 138.5 (s'), 138.55 (s'), 159.8 (s'); exact mass
(HR electrospray) m/z calcd for C30H34NaO6Si (M + Na)
513.22531, found 513.22567.
```

(2R, $3 S, 5 S$)-8-[(4-methoxyphenyl)methoxy]-1,3-bis-(phenylmethoxy)-6-octyn-2,5-diol (79).

79

78

TBAF (1.0 M in THF, $1.3 \mathrm{~m}, 1.3 \mathrm{mmol}$) was added dropwise to a stirred solution of silylated alcohol 78 (383.0 mg, $0.629 \mathrm{mmol})$ in dry THF (10 mL). Stirring was continued for 20 h , by which time reaction was complete (TLC control, silica, 3:4 EtOAc-hexane). The mixture was diluted with water (20 mL) and extracted with EtOAc ($4 \times 25 \mathrm{~mL}$). The combined organic extract were washed with brine (20 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the
residue over silica gel (2 x 20 cm), using $3: 4$ EtOAc-hexane, gave diol 79 ($266.0 \mathrm{mg}, 87 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), colorless oil: $[\alpha]^{25}=-17.3^{\circ}\left(\mathrm{C} 3.1, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3423 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.85$ (ddd, $\mathrm{J}=$ 14.7, 8.2, $3.5 \mathrm{~Hz}, 1 \mathrm{H}$), 2.05 (ddd, $J=14.7,8.9,3.3 \mathrm{~Hz}, 1$ H), $2.48(\mathrm{~d}, \mathcal{J}=3.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.82(\mathrm{~d}, \mathcal{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H})$, 3.52-3.61 (m, 2 H), 3.81 (s, 3 H), 3.91-4.01 (m, 2 H), 4.19 $(\mathrm{s}, 2 \mathrm{H}), 4.51(\mathrm{~s}, 3 \mathrm{H}), 4.58(\mathrm{~s}, 3 \mathrm{H}), 4.60-4.68$ (s, 3 H$)$, $6.82-6.88(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3\right.$ $\mathrm{MHz}) \delta 38.1\left(t^{\prime}\right), 55.6\left(q^{\prime}\right) ., 57.4$ (t'), 60.2 (d'), 71.2 (t'), 71.5 (t'), 71.8 (d'), 72.9 (t'), 73.7 (t'), 77.8 (d'), 81.1 $\left(s^{\prime}\right), 87.7\left(s^{\prime}\right), 114.0\left(d^{\prime}\right), 128.1\left(d^{\prime}\right), 128.2\left(d^{\prime}\right), 128.4$ $\left(d^{\prime}\right), 128.7(d '), 129.9\left(d^{\prime}\right), 130.1\left(s^{\prime}\right), 138.5\left(s^{\prime}, t w o\right.$ coincident peaks), 159.8 (s^{\prime}); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NaO} 6 \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 513.22531, found 513.22567.
(2R, $3 S, 5 R$)-5-[[Bis(1,1-dimethylethyl)silyl]oxy]-8-[(4-methoxyphenyl)methoxy]-1,3-bis(phenyl-methoxy)-6-octyn-2-o1 [(+)-81].

81

80

Imidazole (185.9 mg, 2.731 mmol) and $t-\mathrm{Bu}_{2} \mathrm{SiHCl}(0.58$
mL, 2.87 mmol) were added consecutively to a stirred solution of diol 80 ($669.2 \mathrm{mg}, 1.365 \mathrm{mmol})$ in dry THF (25 mL). Stirring was continued at room temperature for 3 h , at which point most (ca 90%) of the starting material had been consumed (TLC control, silica, 15:85 EtOAc-hexane). More imidazole ($46.5 \mathrm{mg}, 0.68 \mathrm{mmol})$ and $t-B u_{2} S i H C I(0.14 \mathrm{~mL}, 0.68$ mol) were added and stirring was continued. After 20 min, the bis-silylated product began to form. The mixture was diluted with water (25 mL) and extracted with EtOAc (3×20 mL). The combined organic extracts were washed with water (25 mL) and brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (3 x 24 cm), using 15:85 EtOAc-hexane, gave (+)-81 (730 mg, 85\%, 95\% based on conversion) as a colorless oil: $[\alpha]^{25} \mathrm{D}=-15.7^{\circ}(\mathrm{c}$ 2.9, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3442 \mathrm{~cm}^{-1} ; \mathrm{i}_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400\right.$ $\mathrm{MHz}) \delta 0.98(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{~s}, ~ 9 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 1 \mathrm{H})$, 2.03-2.10 (m, 1 H$), 2.52(\mathrm{~d}, \mathrm{~J}=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.58-3.61(\mathrm{~m}$, $2 \mathrm{H}), 3.76-3.81(\mathrm{~m}, ~ 4 \mathrm{H}), 3.96-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.20(\mathrm{~m}, 3$ H) , 4.51-4.62 (m, 6 H), 4.76-4.80 (m, 1 H), 6.81-6.86 (m, 2 $\mathrm{H}), 7.21-7.38(\mathrm{~m}, \quad 12 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 19.9$ $\left(s^{\prime}\right), 20.2\left(s^{\prime}\right), 27.4\left(q^{\prime}\right), 40.0\left(t^{\prime}\right), 54.6\left(q^{\prime}\right), 57.4$ (t'), $64.6\left(d^{\prime}\right), 71.4\left(t^{\prime}\right), 72.3\left(d^{\prime}\right), 72.9\left(t^{\prime}\right), 73.7\left(t^{\prime}\right), 77.6$ $\left(d^{\prime}\right), 82.2\left(s^{\prime}\right), 87.1\left(s^{\prime}\right), 114.0\left(d^{\prime}\right), 128.1\left(d^{\prime}\right), 128.6$ $\left(d^{\prime}\right), 128.7\left(d^{\prime}\right), 130.0\left(d^{\prime}\right), 130.2\left(s^{\prime}\right), 138.6\left(s^{\prime}\right), 139.0$ (s^{\prime}), 159.8 (s^{\prime}); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{52} \mathrm{NaO}_{6} \mathrm{Si}(\mathrm{M}+\mathrm{Na}) 655.34309$, found 655.34327.

Thiocarbonic acid (2R,3S,5R)-0-5-[1Bis(1,1-di-methylethyl)silyl]oxy]-8-[(4-methoxyphenyl)methoxy]-1,3-bis(phenylmethoxy)-6-octyn-2-yl 0-4-Fluorophenyl Ester (82).

p-FC6 $\mathrm{H}_{4} \mathrm{OC}(\mathrm{S}) \mathrm{Cl}(0.48 \mathrm{~mL}, 3.46 \mathrm{mmol})$ was added to a stirred solution of $81(728.9 \mathrm{mg}, 1.153 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(20 \mathrm{~mL})$ containing pyridine ($0.14 \mathrm{~mL}, 1.73 \mathrm{mmol}$) and DMAP $(70.5 \mathrm{mg}, 0.58 \mathrm{mmol})$. The resulting yellow solution was stirred for 18 h . At this point some starting material remained (TLC control, silica, 1:6 EtOAc-hexane). An additional portion of $p-\mathrm{FC}_{6} \mathrm{H}_{4} \mathrm{OC}(\mathrm{S}) \mathrm{Cl}(0.08 \mathrm{mi}, 0.58 \mathrm{mmol})$ was added and the mixture was stirred for 30 min , diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(25 \mathrm{~mL})$, and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 x 30 mL$)$. The combined organic extracts were washed with brine (25 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and purified by flash chromatography over silica gel ($3 \times 40 \mathrm{~cm}$), using 1:9 EtOAchexane, to give the thionoformate 82 (860 mg, 95\%) as a colorless oil: $[\alpha]^{25}{ }_{D}=-10.2^{\circ}\left(\mathrm{C} 2.8, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 0.82$ (s, 9 H$)$, $1.10(\mathrm{~s}, 9 \mathrm{H}), 1.91-1.98(\mathrm{~m}, 1 \mathrm{H}), 2.04-2.16(\mathrm{~m}, ~ 1 \mathrm{H}), 3.78-$

Phenylmethyl 2-Deoxy- α / β-D-erythro-pentofurano-

 side (84).

70

84

Concentrated hydrochloric acid (1 drop) was added to a stirred solution of 2 -deoxy-D-ribose ($415 \mathrm{mg}, 3.09 \mathrm{mmol}$) in $\mathrm{BnOH}(7.5 \mathrm{~mL})$. Stirring at room temperature was continued for 10 min (TLC control, silica, $1: 9 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$), by which time reaction was over. Anhydrous $\mathrm{MgCO}_{3}(415.0 \mathrm{mg})$ was added and the resultant slurry was stirred for 5 min , and then filtered through a sintered disc, the insoluble material
beìng washed with PhMe. The filtrate was evaporated at room temperature (water aspirator) and the remaining $B n O H$ was removed at room temperature under diffusion pump vacuum (> $0.001 \mathrm{~mm})$. The residue remaining after 24 h was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (I mL), and purified by flash chromatography over silica gel (3 x 22 cm), using first 50:50 EtOAc-hexane (to remove remaining BnOH), Eollowed by $1: 9 \mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$, to give 84 ($569.5 \mathrm{mg}, 80 \%$) as a colorless oil, which was a ca $5: 3$ (1H NMR) inseparable mixture of anomers. A sample, highly enriched in one of the anomers, had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3386 $\mathrm{cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 2.05-2.20(\mathrm{~m}, 1 \mathrm{H}), 2.29-2.40$ $(\mathrm{m}, 1 \mathrm{H}), 2.61(\mathrm{br} \mathrm{s}, 2 \mathrm{H}), 3.60-3.78(\mathrm{~m}, 2 \mathrm{H}), 4.05-4.15$ (m, $1 \mathrm{H}), 4.50-4.60(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.82(\mathrm{~m}, 1 \mathrm{H}), 5.34(\mathrm{dd}, \mathrm{J}=$ $5.6,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.48(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (CDCl $3,50.3$ $M H z) \delta 42.5\left(t^{\prime}\right), 63.6\left(t^{\prime}\right), 70.0\left(t^{\prime}\right), 72.2\left(d^{\prime}\right), 87.6$ (d'), $103.7\left(d^{\prime}\right), 127.8\left(d^{\prime}\right), 128.0\left(d^{\prime}\right), 128.5\left(d^{\prime}\right), 137.2\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$ 247.0946, found 247.0947.

Phenylmethyl 2-Deoxy-5-0-(2,2-dimethylpropanoyl)-$\alpha-$-erythro-pentofuranoside (85α) and Phenylmethyl 2-Deoxy-5-0-(2,2-dimethylpropanoyl)- β - D-erythro-pentofuranoside (85 β).

A solution of diethyl azodicarboxylate $(248.7 \mathrm{mg}, 1.428$ mmol) and $t-\mathrm{BuCO}_{2} \mathrm{H}(145.8 \mathrm{mg}, 1.428 \mathrm{mmol})$ in dry THF (5 mL) was added to a stirred and warmed ($60{ }^{\circ} \mathrm{C}$) solution of alcohols 84 ($320.1 \mathrm{mg}, 1.428 \mathrm{mmol}$) and $\mathrm{Ph}_{3} \mathrm{P}(374.5 \mathrm{mg}, 1.428$ mmol) in THF (2.5 mL), contained in a flask fitted with a condenser (Ar atmosphere). Stirring at $60{ }^{\circ} \mathrm{C}$ was continued for 3 h , the mixture was cooled to room temperature, and the solvent was evaporated. Flash chromatography of the residue [the material was taken up in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and the solution was applied to the column] over silica gel (3 x 22 cm), using 1:4 EtOAc-hexane, gave 84 ($86.4 \mathrm{mg}, 27 \%$), 85α ($94.1 \mathrm{mg}, 22 \%$) and 85β ($157.5 \mathrm{mg}, 36 \%$) (combined yield is 83%, based on conversion) as colorless oils. The stereochemical assignment was inferred from the assignment made to compound 85α (see discussion).

Compound 85α had: $[\alpha]^{25} \mathrm{D}=104.5^{\circ}$ (c 2.6, MeOH); FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 17.31,3508 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.21$ (s, 9 H$), 2.02$ (dd, $\mathcal{J}=13.8,0.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.20$ (ddd, $\mathcal{J}=$ $13.8,6.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.74(\mathrm{~d}, \mathrm{~J}=10.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00-$ $4.18(\mathrm{~m}, 3 \mathrm{H}), 4.23(\mathrm{dt}, \mathrm{J}=2.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.55(\mathrm{~d}, \mathrm{~J}=$ $11.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.80(\mathrm{~d}, \mathrm{~J}=11.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, \mathrm{J}=5.5$, $1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta$ 27.3 (q'), $39.0\left(s^{\prime}\right), 41.5\left(t^{\prime}\right), 64.4$ (t'), 69.5 (t'), 73.3 $\left(d^{\prime}\right), 85.5\left(d^{\prime}\right), 104.0\left(d^{\prime}\right), 128.0\left(d^{\prime}\right), 128.3\left(d^{\prime}\right), 128.8$ (d'), 138.3 (s'), 178.4 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na}) 331.1521$, found 331.1528.

Compound 85β had: $[\alpha]^{25} D=-48.9^{\circ}(C$ 1.7. MeOH); FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 1730,3453 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.21$ $(s, 9 \mathrm{H}), 2.13$ (dt, $J=13.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.29$ (ddd, J = 13.5, 6.8, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.00-4.10(\mathrm{~m}, 1$ H), $4.17(\mathrm{~d}, \mathrm{~J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.42(\mathrm{~d}, \mathrm{~J}=$ $11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, \mathcal{J}=5.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, J=$ $5.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3\right.$ MHz) $\delta 27.3$ (q'), $39.0\left(\mathrm{~s}^{\prime}\right), 42.0\left(\mathrm{t}^{\prime}\right), 65.5$ (t'), 69.7 (t'), 72.9 (d'), 84.3 (d'), 103.8 (d'), 127.9 (d'), 128.3 (d'), $128.7\left(d^{\prime}\right), 138.4\left(s^{\prime}\right), 178.7$ (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na}) 331.1521$, found 331.1520.

Phenylmethyl 2-Deoxy-5-0-(2,2-dimethylpropanoyl)-3-O-(methoxymethyl)- α-D-erythro-pentofuranoside (86人).

85α

86α
i-Pr2NEt ($0.18 \mathrm{~mL}, 134 \mathrm{mg}, 1.04 \mathrm{mmol}$) was added dropwise to a stirred and cooled ($0^{\circ} \mathrm{C}$) solution of alcohol 85α (106.5 $\mathrm{mg}, 0.346 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$. After $15 \mathrm{~min}, \mathrm{MOMCl}(0.08$ $\mathrm{mL}, 1.04 \mathrm{mmol}$ was added dropwise over 5 min , and stirring was continued for 1 h . The cold bath was removed, stirring was continued for 12 h , and the mixture was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic
extracts were washed with brine, dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$), and evaporated. Flash chromatography of the residue over silica gel (2 x 15 cm), using $1: 4$ EtOAc-hexane, gave $86 \alpha(112.2 \mathrm{mg}$, 92%) as a colorless oil: $[\alpha]^{25} \mathrm{D}=106.6^{\circ}(\mathrm{C} 1.1$, MEOH); FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1728,3435 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} 1_{2}, 400 \mathrm{MHz}\right) \delta 1.21$ $(\mathrm{s}, 9 \mathrm{H}), 2.05$ (dad, J$=14.1,2.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.27$ (ddd, $J=14.1,8.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.18(\mathrm{~m}, 2$ $\mathrm{H}), 4.20-4.30(\mathrm{~m}, 2 \mathrm{H}), 4.46(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{AB} \mathrm{q}$, $\left.\Delta V_{A B}=8.7 \mathrm{~Hz}, J=6.9 \mathrm{~Hz}, 2 \mathrm{H}\right), 4.77(\mathrm{~d}, J=12 \mathrm{~Hz}, 1 \mathrm{H})$, 5.27 (dd, J $J=5.5,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.20-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 27.3$ (q^{\prime}), 39.0 (s^{\prime}), 39.8 (t'), 55.7 (q^{\prime}), 64.1 (t^{\prime}), 69.5 (t'), 77.7 ($\left.\mathbf{d}^{\prime}\right), 81.6$ (d'), 96.6 (t'), $103.6\left(d^{\prime}\right), 127.9\left(d^{\prime}\right), 128.2\left(d^{\prime}\right), 128.6\left(d^{\prime}\right), 138.8\left(s^{\prime}\right)$, 178.4 (s'); exact mass (HR electrospray) m/z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{6}(\mathrm{M}+\mathrm{Na}) 375.1784$, found 375.1780. The anomeric configuration was assigned on the basis of a TROESY NMR (600 $\mathrm{MHz})$ experiment.

Phenylmethyl 2-Deoxy-5-0-(2,2-dimethylpropanoyl)-3-0-(methoxymethyl)- β-D-exythro-pentofuranoside (86ß).

i-Pr2NEt (0.12 mJ, 0.71 mmol) was added dropwise to a stirred and cooled ($0^{\circ} \mathrm{C}$) solution of alcohol $85 \beta(72.8 \mathrm{mg}$,
2.63 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. After $15 \mathrm{~min}, \mathrm{CH}_{3} \mathrm{OCH}_{2} \mathrm{Cl}(0.90$ $\mathrm{mL}, 57.1 \mathrm{mmol}, 0.71 \mathrm{mmol})$ was added dropwise over 5 min , and stirring was continued for 1 h . The cold bath was removed, stirring was continued for 12 h , and the mixture was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine, dried (MgSO_{4}), and evaporated. Flash chromatography of the residue over silica gel (3 x 20 cm), using $1: 4$ EtOAc-hexane, gave $86 \beta(70.4 \mathrm{mg}$, 90\%) as a colorless oil: $[\alpha]^{25}{ }_{D}=-47.8^{\circ}$ (c 0.9, MeOH); FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1731 \mathrm{~cm}{ }^{-1} ; I_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.21$ (s, 9 H), 2.15 (dt, $J=13.5,5.7 \mathrm{~Hz}, 1 \mathrm{H}, \mathrm{l}, 2.35(\mathrm{ddd}, J=13.5$, $7.0,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.20(\mathrm{~m}, 3 \mathrm{H}), 4.20-$ $4.25(\mathrm{~m}, ~ 1 \mathrm{H}), 4.44(\mathrm{~d}, \mathrm{~J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.60(\mathrm{~s}, 2 \mathrm{H})$, $4.74(\mathrm{~d}, \mathcal{J}=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.27(\mathrm{dd}, \mathcal{J}=5.4,1.9 \mathrm{~Hz}, 1 \mathrm{H})$, 7.20-7.40 (m, 5 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 27.3\left(\mathrm{q}^{\prime}\right)$, $39.0\left(s^{\prime}\right), 40.0\left(t^{\prime}\right), 55.6\left(q^{\prime}\right), 65.5\left(t^{\prime}\right), 69.6\left(t^{\prime}\right), 78.1$ (d'), $82.4\left(d^{\prime}\right), 96.3\left(t^{\prime}\right), 104.0\left(d^{\prime}\right), 127.9\left(d^{\prime}\right), 128.3$ (d'), 128.7 (d'), $138.4\left(s^{\prime}\right), 178.4\left(s^{\prime}\right) ; ~ e x a c t ~ m a s s ~(H R$ electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{28} \mathrm{NaO}_{6}(\mathrm{M}+\mathrm{Na}$) 375.1784, found 375.1784.

2-Deoxy-5-0-(2,2-dimethylpropanoyl)-3-0-(methoxy-methyl)- α / β-D-erythro-pentofuranose (87).

86α

87
5% Pd-C (15.0 mg) was added to a solution of $\mathbf{8 6 \alpha}(472$ $\mathrm{mg}, 1.34 \mathrm{mmol})$ in EtOH $(95 \%, 15 \mathrm{~mL})$, and the mixture was shaken in a Parr bottle under H_{2} (50 psi) until all the starting material was consumed (ca $12 \mathrm{~h}, \mathrm{TLC}$ control, silica, 2:3 EtOAc-hexane), the apparatus being opened periodically for examination by TLC. The mixture was filtered through a pad of silica gel (4 x 3 cm), using EtOAc (50 mL). Evaporation of the filtrate and Elash shromatography of the residue over silica gel (3 x 15 cm), using 3:2 EtOAc-hexane, gave 87 ($323.2 \mathrm{mg}, 92 \%$) as a colorless oil containing both anomers and small amounts of the open-chain isomer. These compounds were used directly in the next step.

2-Deoxy-5-0-(1, 1-dimethylpropanoyl)-3-0-(methoxy-

 methyl)- $\alpha / \beta-\mathrm{D}$-erythro-pentofuranose (87).
$5 \% \mathrm{Pd}-\mathrm{C}(10 \mathrm{mg})$ was added to a solution of 86β (535.0 $\mathrm{mg}, 1.519 \mathrm{mmol})$ in EtOH ($958,10 \mathrm{~mL}$), and the mixture was shaken in a Parr bottle under H_{2} (50 psi) until all the starting material was consumed (ca $12 \mathrm{~h}, \mathrm{TLC}$ control, silica, 2:3 EtOAC-hexane), the apparatus being opened periodically for examination by TLC. The mixture was filtered through a
pad of silica gel (1 x 2 cm), using EtOAC (50 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel (2 x 10 cm), using 3:2 EtOAc-hexane, gave 87 ($366.3 \mathrm{mg}, 92 \%$) as a colorless oil containing both anomers and small amounts of the open-chain isomer. These compounds were used directly in the next step.
(2R,3S)-2-Hydroxy-3-(methoxymethoxy)-5-hexenyl 2,2-Dimethylpropanoate (88).

BuLi (2.5 M in hexanes, $2.5 \mathrm{~mL}, 6.3 \mathrm{mmol}$) was added dropwise to a stirred suspension of $\mathrm{Ph}_{3} \mathrm{PCH}_{3} \mathrm{Br}$ (2.223 g, 6.223 mmol) in dry PhMe (25 mL), and the resulting yellow slurry was stirred at room temperature for 3 h . A solution of lactols 87 ($550.7 \mathrm{mg}, 2.110 \mathrm{mmol}$) in dry PhMe (7.5 mL) was added dropwise by syringe pump, and the mixture was then heated at $50{ }^{\circ} \mathrm{C}$ for 10 h . The mixture turned brown and a white solid formed. The mixture was cooled to room temperature, diluted with water (30 mL), and extracted with EtOAC ($4 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with water, saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$, and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel (3.5 x 22 cm),
using 1:4 EtOAc-hexane, gave $88(372.2 \mathrm{mg}, 72 \%$) as a pale yellow oil: $[\alpha]^{25} \mathrm{D}=29.4^{\circ}$ (c 1.2. MeOH$)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 1730, $3486 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta 1.2 \mathrm{I}(\mathrm{s}, 9 \mathrm{H})$, 2.40-2.50 (m, 2 H$), 2.75(\mathrm{~d}, \mathrm{~J}=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H})$, 3.60-3.70 (m, 1 H$), 3.75-3.90(\mathrm{~m}, 1 \mathrm{H}), 4.10(\mathrm{dd}, \mathcal{J}=11.6$, $6.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.20(\mathrm{dd}, \boldsymbol{J}=11.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.64(\mathrm{AB} \mathrm{q}$, $\left.\Delta \mathrm{V}_{\mathrm{AB}}=8.2 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.00-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.75-6.00$ ($\mathrm{m}, 1 \mathrm{H}$) ; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 75.5 MHz$) \delta 27.4$ (q'), 35.7 ($\left.\mathrm{t}^{\prime}\right)$, $39.1\left(s^{\prime}\right), 56.1\left(q^{\prime}\right), 65.7\left(t^{\prime}\right), 71.5\left(d^{\prime}\right), 80.1\left(d^{\prime}\right), 97.3$ (t'), 117.6 (t'), $134.9\left(d^{\prime}\right), 179.0\left(s^{\prime}\right) ; ~ e x a c t ~ m a s s ~(H R ~$ electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{24} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na}$) 283.1521, found 283.1526.
(2R,3S)-2-[[(1,1-Dimethylethyl)dimethylsilyl]-oxy]-3-(methoxymethoxy)-5-hexenyl 2,2-Dimethylpropanoate (89).

88
89

Imidazole ($197 \mathrm{mg}, 2.89 \mathrm{mmol}$) and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(380 \mathrm{mg}$, 2.52 mmol) were added consecutively to a stirred solution of 88 ($355.0 \mathrm{mg}, 1.364 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 mL). Stirring was continued at room temperature for 10 h , at which point all the starting material had been consumed. The mixture was
diluted with water (10 mL) and extracted with EtOAc. The combined organic extracts were washed with water (10 mL) and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over siiica gel (2.5 x 22 cm), using $1: 4$ EtOAc-hexane, gave 89 ($453.0 \mathrm{mg}, 89 \%$) as a colorless oil: $[\alpha]^{25} \mathrm{D}=-1.72^{\circ}(\mathrm{c} 0.9, \mathrm{MeOH}) ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1730 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.21$ $(\mathrm{s}, 9 \mathrm{H}), 2.30-2.40(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{dt}, \mathrm{J}=$ $4.0,6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.82-3.85(\mathrm{~m}, 1 \mathrm{H}), 4.02(\mathrm{dd}, \mathrm{J}=11.4$, $4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dd}, J=11.4,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.65(\mathrm{AB} \mathrm{G}$, $\left.\Delta \nu_{\mathrm{AB}}=12.5 \mathrm{~Hz}, \mathcal{J}=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 5.00-5.20(\mathrm{~m}, 2 \mathrm{H}), 5.75-$ $6.00(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta-4.51$ (q', two coincident peaks), 18.3 (s'), 26.0 (q'), 27.4 (q'), 35.5 (t'), $39.0\left(s^{\prime}\right), 56.0\left(q^{\prime}\right), 65.8\left(t^{\prime}\right), 72.6$ (d'), 78.3 (d'), 96.5 (t'), 117.2 (t'), 135.6 (d'), 178.5 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{38} \mathrm{NaO}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{Na}$) 397.2386, found 397.2396.
(2R, 3S)-2-[[(1,1-Dimethylethyl)dimethylsilyl]-oxy]-3-(methoxymethoxy)-5-oxopentyl 2,2-Dimethylpropanoate (90).

Ozonized oxygen was bubbled through a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $89(537.7 \mathrm{mg}, 1.437 \mathrm{mmol})$ and Sudan III red (1 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$ (protection from moisture by Drierite tube). When all of the starting material was consumed (ca 10 min ; discharge of the red color; TLC control, silica, 2:3 EtOAc-hexane), the solution was purged with oxygen for 10 min . $\mathrm{Ph}_{3} \mathrm{P}(753.7 \mathrm{mg}, 2.873 \mathrm{mmol})$ was added, the cooling bath was removed, and stirring was continued for 2 h , by which time the mixture had attained room temperature. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 18 cm), using 1:4 EtOAc-hexane, gave 90 (420.9 mg, 83\%) as a colorless oil: $[\alpha]^{25} \mathrm{D}=-16.9^{\circ}$ (c 1.3, MeOH); FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1732 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $400 \mathrm{MHz}) \delta 0.10(\mathrm{~s}, 6 \mathrm{H}), 0.90(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{~s}, 9 \mathrm{H}), 2.60-$ $2.66(\mathrm{~m}, 2 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.90-4.18(\mathrm{~m}, 4 \mathrm{H}), 4.65(\mathrm{AB} \mathrm{G}$, $\left.\Delta \mathrm{V}_{\mathrm{AB}}=23.0 \mathrm{~Hz}, J=6.8 \mathrm{~Hz}, 2 \mathrm{H}\right), 9.81(\mathrm{t}, \mathrm{J}=2.1 \mathrm{~Hz}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta-4.61$ (q ', two coincident peaks), $18.3\left(s^{\prime}\right), 25.9\left(q^{\prime}\right), 27.4\left(q^{\prime}\right), 39.0\left(s^{\prime}\right), 45.2(t), 56.0$ (q^{\prime}), 65.1 (t'), $72.6\left(d^{\prime}\right), 74.2$ (d'), $96.7\left(t^{\prime}\right), 178.5\left(s^{\prime}\right)$, 201.2 (d'); a satisfactory mass spectrum could not be obtained.
(2R,3S,5R)- and (2R,3S,5S)-2-[[(1,1-Dimethyl-ethyl)dimethylsilylloxy]-5-hydroxy-3-(methoxymethoxy) -8-(phenylmethoxy)-6-octynyl 2,2-Dimethylpropanoate (91).

BuLi (2.5 M in hexanes, $1.1 \mathrm{~mL}, 2.8 \mathrm{mmol}$) was added dropwise to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of benzyl propargyl ether (2822) (391.9 mg, 2.685 mmol) in THF (10 mL). Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 h , and then aldehyde $90(378.0 \mathrm{mg}, 1.073 \mathrm{mmol})$ in THF (3 plus 2 mL as a rinse) was added dropwise. Stirring was continued for 2 h (TLC control, silica, 2:3 EtOAc-hexane), at which point no starting material remained. The cold bath was removed and, after 5 min, water (10 mL) was added. The mixture was extracted with EtOAc, and the combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and Elash chromatography of the residue over silica gel (3 x 22 cm), using 1:4 EtOAc-hexane, gave 90 (40 mg, 11\%) and 91 (398.2 mg, 71\%, or 80% based on conversion), each as a colorless oil. Compound 91 was isolated as a 1:1.4 mixture $\left({ }^{1} \mathrm{H}\right.$ NMR, 400 MHz$)$ of diastereoisomers: $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400\right.$ $M H z) \delta 0.10$ and 0.11 (two $s, 6 \mathrm{H}$ in all), 0.90 (s, 9 H), 1.20
$(\mathrm{s}, 9 \mathrm{H}), 1.80-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.80(\mathrm{~d}, \mathrm{~J}=4.8 \mathrm{~Hz})$ and 3.05 (d, J $=6.0 \mathrm{~Hz}$) (the signals at 2.80 and 3.05 correspond to 1 H in all), 3.42 and 3.44 (two s, 3 H in all), 3.80-4.20 (m, 4 H), 4.25 and 4.26 (two s, 2 H in all), 4.52 (s, 2 H), $4.60-$ $4.72(\mathrm{~m}, 2 \mathrm{H}), 4.72-4.80(\mathrm{~m}, 1 \mathrm{H}), 7.28-7.40(\mathrm{~m}, 5 \mathrm{H})$.
(2R,3S,5R)- and (2R,3S,5S)-2,5-Dihydroxy-3-(meth-oxymethoxy)-8-(phenylmethoxy)-6-octynyl 2,2-Dimethylpropanoate (92, 93).

HF (48% in water, $0.4 \mathrm{~mL}, 11.2 \mathrm{mmol}$) was added to a stirred solution of 91 ($251 \mathrm{mg}, 0.48 \mathrm{mmol}$) in bench MeCN (5 $\mathrm{mL})$. After 30 min , saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ was added dropwise, and the aqueous layer was extracted with EtOAC. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($2 \times 40 \mathrm{~cm}$), using $1: 4$ EtOAc-hexane, gave 92 ($98.1 \mathrm{mg}, 50 \%$), and 93 ($69.8 \mathrm{mg}, 35.5 \%$) as a separable mixture (1.4:1.0) of diastereoisomers.

Compound 92 had: $[\alpha]{ }^{25} D=-15.36^{\circ}$ (C 1.0. MeOH); FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1728,3436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta 1.21$ $(\mathrm{s}, 9 \mathrm{H}), 1.80-2.20(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{~d}, \mathrm{~J}=5.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.10$
$(\mathrm{d}, \mathrm{J}=5.0,1 \mathrm{H}), 3.35(\mathrm{~s}, 3 \mathrm{H}), 3.85-3.92(\mathrm{~m}, 2 \mathrm{H}), 4.00-$ $4.25(\mathrm{~m}, 4 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.60-4.68(\mathrm{~m}, 3 \mathrm{H}), 7.30-7.40$ $(\mathrm{m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 27.3\left(\mathrm{q}^{\prime}\right), 39.0\left(\mathrm{~s}^{\prime}\right)$, 39.4 (t'), 56.3 (q'), 57.8 (t'), 60.2 (d'), $65.5(t)$) 71.8 (d'), $72.0(t '), 78.4\left(d^{\prime}\right), 81.5\left(s^{\prime}\right), 87.3\left(s^{\prime}\right), 97.5(t)$, $128.1\left(d^{\prime}\right), 128.3\left(d^{\prime}\right), 128.7\left(d^{\prime}\right), 138.1\left(s^{\prime}\right) 178.9\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NaO}_{7}$ ($\mathrm{M}+\mathrm{Na}$) 431.2046, found 431.2055.

Compound 93 had: $[\alpha]^{25} \mathrm{D}=-10.0^{\circ}$ (c 1.4, MeOH); FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1728,3439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.21$ (s, 9 H) , 1.90 (ddd, $\mathcal{J}=14.6,9.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.05$ (ddd, $\mathcal{J}=14.6,9.0,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.80(\mathrm{~d}, \mathcal{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.90$ $(\mathrm{d}, \mathrm{J}=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{~s}, 3 \mathrm{H}), 3.80-3.84(\mathrm{~m}, 1 \mathrm{H})$, 3.90-3.96 (m, 1 H$), 4.16(\mathrm{dd}, J=11.6,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.18-$ $4.21(\mathrm{~m}, 3 \mathrm{H}), 4.59(\mathrm{~s}, 2 \mathrm{H}), 4.60-4.68(\mathrm{~m}, 1 \mathrm{H}), 4.71(\mathrm{AB} \mathrm{q}$, $\left.\Delta \mathrm{V}_{\mathrm{AB}}=12.0 \mathrm{~Hz}, J=6.7 \mathrm{~Hz}, 2 \mathrm{H}\right), 7.30-7.40(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 27.3$ (q'), 39.0 ($\left.\mathrm{s}^{\prime}\right), 39.1$ (t'), 56.4 $\left(q^{\prime}\right), 57.8\left(t^{\prime}\right), 59.5\left(d^{\prime}\right), 65.4\left(t^{\prime}\right), 72.0\left(d^{\prime}\right), 72.0\left(t^{\prime}\right)$, 78.6 (d'), $81.0\left(s^{\prime}\right), 87.6\left(s^{\prime}\right), 98.1\left(t^{\prime}\right), 128.1\left(d^{\prime}\right), 128.3$ (d'), 128.7 (d'), 138.1 (s') 178.9 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{32} \mathrm{NaO}_{7}(\mathrm{M}+\mathrm{Na}$) 431.2046, found 431.2057.
(2R, 3S, 5R)-5-[[(1,1-Dimethylethyl)dimethylsilyl]oxy - 2-hydroxy-3-(methoxymethoxy)-8-(phenylmethoxy)-6octynyl 2,2-Dimethylpropanoate [(+)-94].

Imidazole ($7.9 \mathrm{mg}, 0.1 \mathrm{mmol}$) and $t-\mathrm{BuMe}_{2} S i C l(34.8 \mathrm{mg}$, 0.23 mmol) were added consecutively to a stirred solution of diol 92 (23.5 mg, 0.06 mmol$)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Stirring was continued at room temperature for 1 h , at which point all the starting material had been consumed and the bis-silyiated product began to form. The mixture was diluted with water $(2.5 \mathrm{~mL})$ and extracted with EtOAc. The combined organic extracts were washed with water (2.5 mL) and brine, dried (MgSO_{4}), and evaporated. Flash chromatography of the residue over silica gel (1 x 10 cm), using 1:4 EtOAc-hexane, gave $(+)-94$ (28.3 mg, 94\%) as a colorless oil: $[\alpha]^{25} \mathrm{D}=7.81$ (c 1.4. MeOH$)$; $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1730,3442 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 0.14(\mathrm{~s}, 3 \mathrm{H}), 0.18(\mathrm{~s}, 3 \mathrm{H}), 0.90(\mathrm{~s}, 9$ H), 1.20 (s, 9 H$), 1.91$ (ddd, $J=14.1,7.3,4.2 \mathrm{~Hz}, 1 \mathrm{H})$, 2.09 (ddd, $J=14.0,7.9,5.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~d}, \mathcal{J}=6.4 \mathrm{~Hz}$, 1 H), 3.39 (s, 3 H) 3.76-3.91 (m, 2 H), 4.09-4.23 (m, 4 H), 4.58 ($\mathrm{s}, 2 \mathrm{H}$), 4.60-4.72 (m, 3 H), 7.24-7.37 (m, 5 H$)$; ${ }^{13 \mathrm{C}} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta-5.0 .\left(\mathrm{q}^{\prime}\right),-4.4$ (q'), 18.4 ($\left.\mathrm{s}^{\prime}\right), 25.9$
$\left(q^{\prime}\right), 27.3\left(q^{\prime}\right), 39.0\left(s^{\prime}\right), 40.5\left(t^{\prime}\right), 56.2\left(q^{\prime}\right), 57.8\left(t^{\prime}\right)$, $60.9\left(d^{\prime}\right), 65.4\left(t^{\prime}\right), 71.8\left(d^{\prime}\right), 71.8\left(t^{\prime}\right), 78.9\left(d^{\prime}\right), 81.7$ $\left(s^{\prime}\right), 87.5\left(s^{\prime}\right), 97.8\left(t^{\prime}\right), 128.1\left(d^{\prime}\right), 128.3\left(d^{\prime}\right), 128.7$ (d'), 138.1 (s'), 178.7 ($\left.s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{46} \mathrm{NaO}_{7} \mathrm{Si}(\mathrm{M}+\mathrm{Na})$ 575.2911, found 575.2901.
(2R,3S,5S)-5-[[(1,1-Dimethylethyl)dimethylsilyl]-oxyl-2-hydroxy-3-(methoxymethoxy)-8-(phenylmethoxy)-6octynyl 2,2-Dimethylpropanoate [(-)-95].

93

95

Imidazole (14.3 mg, 0.21 mmol$)$ and t-BuMe2SiCl (17.5 mg, 0.12 mmol) were added consecutively to a stirred solution of 93 (42.9 mg, 0.11 mmol) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2.5 mL). Stirring was continued at room temperature for 10 h , at which point all the starting material had been consumed and the bis-silylated product began to form. The mixture was diluted with water (5 mL) and extracted with EtOAc. The combined organic extracts were washed with water and brine, dried (MgSO_{4}), and evaporated. Flash chromatography of the residue over silica gel (1.5 x 10 cm), using $1: 4$ EtOAc-hexane, gave the $C(5)$ epimer of (+)-94, i.e. (-)-95 (50.4 mg, 92\%) as a colorless oil: $[\alpha]{ }^{25} D=-17.6^{\circ}(c$ 1.0, MeOH$) ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 1730,

```
3438 cm-1; 1H NMR ( }\mp@subsup{\textrm{CD}}{2}{}\mp@subsup{\textrm{Cl}}{2}{},400\textrm{MHz}) \delta0.14(s, 3 H), 0.18 (s,
3 H), 0.90(s, 9 H), 1.20 (s, 9 H), 1.88-1.95 (m, 2 H), 3.15
(d,J J = 5.0 Hz, 1 H), 3.39 (s, 3 H), 3.80-3.86 (m, 2 H),
4.10-4.20 (m, 4 H), 4.59 (s, 2 H), 4.60-4.64 (m, 1 H), 4.71
(AB q, \Delta V AB = 12.0 Hz, J = 6.7 Hz, 2 H), 7.30-7.40 (m, 5 H);
I3C NMR (CD2Cl
25.9 (q'), 27.3 (q'), 39.0 (s'), 41.1 (t'), 56.2 (q'), 57.7
(t'), 59.8 (d'), 65.4 (t'), 71.8 (t'), 72.1 (d'), 79.3 (d'),
81.0 (s'), 88.2 (s'), 98.2 (t'), 128.0 (d'), 128.3 (d'),
128.7 (d'), 138.2 (s'), 178.7 (s'); exact mass (HR
electrospray) m/z calcd for }\mp@subsup{\textrm{C}}{28}{}\mp@subsup{\textrm{H}}{46}{}\mp@subsup{\textrm{NaO}}{7}{}\textrm{Si}(\textrm{M}+\textrm{Na}) 545.2911
found 545.2910.
```


References and footnotes

(1) Clive, D. L. J.; Cantin, M. J. Chem. Soc., Chem. Commun. 1995, 319.
(2) Baldwin, J. E.; Cutting, J.; Dupont, W.; Kruse, L.; Silberman, L.; Thomas, R. C. J. Chem. Soc., Chem. Commun. 1976, 736.
(3) Cai, Y.; Roberts, B. P. J. Chem. Soc., Perkin Trans. I 1998, 467.
(4) Cf. (a) Bogen, S.; Malacria, M. J. Am. Chem. Soc. 1996, 118, 3992. (b) Bogen, S.; Gulea, M.; Fensterbank, L.; Malacria, M. J. Org. Chem. 1999, 64, 4920.
(5) Clive, D. L. J.; Yang, W. J. Chem. Soc., Chem. Commun. 1996, 1605.
(6) Brooks; S. Organic Syntheses; Wiley: New York, 1955; Collect. Vol. III, p 698.
(7) Clive, D. L. J.; Postema, M. H. D. J. Chem. Soc., Chem. Commun. 1994, 235.
(8) Lehmann, J.; Marquardt, N. Liebigs Ann. Chem. 1988, 827.
(9) (a) Sannigrahi, M.; Mayhew, D. M.; Clive, D. L. J. J. Org. Chem. 1999, 64, 2776.
(b)

Figure 4 Olefinic Product
(10) Stork, G.; Ouerfelli, O. New J. Chem. 1992, 16, 95.
(11) Sarkar, T. K.; Ghorai, B. K.; Banerji, A. Tetrahedron Lett. 1994, 35, 6907.
(12) Crombie, L.; Mistry, K. M. J. Chem. Soc., Perkin Trans. 1 1991, 1981.
(13) Kitahara, T.; Warita, Y.; Masaki, A.; Seya, M.; Tagaki, Y.; Mori, K. Agric. Biol. Chem. 1991, 55, 1013.
(14) Corey, E. J.; Weinshenker, N. M.; Scaff, T. K.; Huber, W. J. Am. Chem. Soc. 1969, 91, 5675.
(15) Vandendriessche, F.; Snoeck, R.; Janssen, G.; Hoogmaartens, J.; Aerschot, A. V.; De Clerq, E.; Herdewijn, P. J. Med. Chem. 1992, 35, 1458.
(16) Hossain, N.; Blaton, N.; Peeters, O.; Rozenski, J.; Herdewijn, P. A. Tetrahedron 1996, 52, 5563.
(17) Veysoglu, T.; Mitscher, L. A.; Swayze, J. K. Synthesis 1980, 807.
(18) Mitsunobu, O.; Kimura, J.; Fujisawa, Y. Bull Chem. Soc. Jpn. 1972, 45, 245.
(19) Supplied by Chemical Dynamics Corp., South Plainfield, N. J.
(20) Phosphomolybdic acid (15g) and ($\left.\mathrm{NH}_{4}\right)_{2} \mathrm{Ce}\left(\mathrm{NO}_{3}\right)_{6}$ (2.5g) dissolved in a mixture of water (485 mL) and concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}$ (15 mL).
(21) p-Anisaldehyde (15 drops) was added to concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(6 \mathrm{~mL})$ and $\mathrm{EtOH}(94 \mathrm{~mL})$.
(22) Kwart, H.; Sarner, S. F.; Slutsky, J. J. Am. Chem. Soc. 1973, 95, 5234.

(23) Made analogously to the corresponding benzyl ether. Shibuya, M.; Sakai, Y.; Naoe, Y. Tetrahedron Lett. 1995, 36, 897.

PART
 II

SYNTHETIC STUDIES RELATED TO PURAQUINONIC ACID

SYNTHETIC STUDIES RELATED TO PURAQUINONIC ACID

General Introduction

Puraquinonic acid (1), a norilludinane sesquiterpene, was isolated recently by Becker et al. I from the mycelial cultures of Mycena pura. It was found to induce cell differentiation in $30-40 \%$ of $H L-60$ cells at $380 \quad \mu \mathrm{M}$ concentration. This biological property makes it a potential candidate for the treatment of leukemias. 1

1
Figure 1 Puraquinonic acid

The structure was assigned on the basis of 2D NMR (HMBC and NOESY) spectroscopy,1 but the stereochemistry at the asymmetric center has not yet been determined; the optical rotation has been reported, however. The value is +1 (c 1.0 , CHCl3).

Figure 2 Puraquinonic acid derivatives

Recently, several related natural products, such as deliquinone 2 - a $C(1)$ reduced derivative of puraquinonic acid - and the corresponding epoxide, 2,9-epoxydeliquinone 3 , were isolated from Russula delica ${ }^{2}$ and characterized. The biological properties of these substances have not yet been reported. Both are optically active. The optical rotation of 2 was reported to be -0.5 ($c 0.6$, MeOH) and that of 3 to be ± 1.0 ($\mathrm{C} 0.1, \mathrm{CHCl}_{3}$).

Puraquinonic acid and its derivatives possess a quaternary center which is asymmetric due to the substitution pattern further away in the molecule. This feature complicates the synthesis of such compounds.

A survey of the Beilstein database showed that a number of natural products possessing the structural unit 4 have been isolated, but few total syntheses have been reported. In Figure 3, C^{*} represents any substitution and the $C^{*}-O^{*}$ and C*-C* bonds can be of any type. Likewise, a CASONLINE search [\Rightarrow illud? and synth? and org/sc] for syntheses of members of the illudane class gave a similar result for compounds in which the quaternary center bears two different groups.

4
Figure 3 Model substructure

The natural product hirsutic acid C (8) is an example
where the key feature of an asymmetric center, caused by the substitution further away, was found in the synthetic literature. Greene et al.3.4 synthesized hirsutic acid C in both racemic and enantiomerically pure forms.

In the synthesis ${ }^{3}$ of racemic hirsutic acid C, the quaternary center was easily incorporated by alkylation of the starting acid 5. Dichloroketene addition to the ester 6 proceeded diastereoselectively to produce a $3: 1$ mixture of $7 a$ and 7b. The major isomer was subsequently converted into the desired natural product. Stereochemical assignments to 7 a and 7b were based on further chemical derivatization of the minor isomer.

In the optically active series, 4 attempts to resolve racemic $7 \mathbf{7 a}$ (Scheme 1), using the amine cinchonidine, gave very poor yields. In order to circumvent this problem, an alternative approach was used. Racemic keto acid 7 a was converted into the mesylates 9 (Scheme 2), and the crude
product was added to an excess of sodium in liquid ammonia.

10
i) $\mathrm{CH}_{2} \mathrm{~N}_{2}$

ii) $(+)-\mathrm{pc}_{2} \mathrm{BH}$, $\mathrm{H}_{2} \mathrm{O}_{2}, \mathrm{NaOH}$; 73\%

Scheme 2

Crystalline cyclobutene 10 was produced in high yield in this experiment. The meso olefin 10 was then desymmetrized using a procedure developed by Brown and coworkers. 5 This sequence involved asymmetric hydroboration with an excess of (+)diisopinocampheylborane. The optical purity of the product 11 was found to be $92 \pm 5 \%$. The stereochemical assignment was based on previous work on related compounds, 5 and the material was elaborated into the natural product hirsutic acid C.

In another study towards the synthesis of the hirsutane skeleton 18, Sakan and coworkers ${ }^{6}$ converted the monoketal 12 into the methylene derivative 13 (Scheme 3). Methoxycarbene addition to 13, gave a 1:2 mixture of the exo and endo methoxycyclopropanes 14 and 15. Chromatographic separation of the exo product, followed by acid cleavage of the cyclopropane ring, gave aldehyde 16 exclusively. This was
converted into the corresponding ester 17, from which point the target 18 was easily reached.

2:1

14
i) $\mathrm{CrO}_{3}-\mathrm{H}_{2} \mathrm{SO}_{4}$,

15
$\mathrm{Et}_{2} \mathrm{O}$
ii) $\mathrm{CH}_{2} \mathrm{~N}_{2}, \mathrm{Et}_{2} \mathrm{O}$; 35% (over three steps)

Scheme 3

References and footnotes

(1) Becker, U.; Erkel, G.; Anke, T.; Sterner, O. Nat. Prod. Lett. 1997, 9, 229.
(2) Clericuzio, M.; Han, F.; Pan, F.; Pang, Z.; Sterner, O. Acta Chem. Scand. 1998, 52, 1333.
(3) Greene, A. E.; Luche M-J.; Depres, J.-P. J. Am. Chem. Soc. 1983, 105, 2435.
(4) Greene, A. E.; Luche M-J.; Serra, A. A. J. Org. Chem. 1985, 50, 2435.
(5) Brown, H. C.; Jadhav, P. K. J. Org. Chem. 1982, 47, 5065 .
(6) Sakan, F.; Hashimoto, H.; Ichihara, A.; Shirahama, H.; Matsumoto, T. Tetrahedron Lett. 1971, 3703.

SYNTHETIC STUDIES RELATED TO PURAQUINONIC ACID

RESULTS AND DISCUSSION

The fungal metabolite puraquinonic acid (1) was isolated recently y^{1} and found to stimulate cell differentiation. This property suggests that it may serve as a lead compound for the design of anticancer drugs. ${ }^{1}$

Figure 1 Puraquinonic acid

Abstract

Puraquinonic acid contains a structural unit - the quaternary center - that presents a significant synthetic problem. The difficulty is due to the fact that the quaternary carbon is asymmetric, and the features of the molecule that are responsible for the asymmetry of this center are far removed from it. In principle, such an asymmetric center can be created if an adjacent, but temporary, asymmetric center is present during the appropriate steps of the work, and we decided to approach the synthesis based on this concept. Several exploratory studies were carried out, as described below, and these eventually

served to identify what we believe to be a very promising route that should afford optically active puraquinonic acid. At present the absolute stereochemistry of the natural product is not known, and our experimental work is designed to afford either enantiomer.

The β-lactone approach
Our first experiments were based on the ideas summarized in scheme 1. If we could construct an optically pure lactone, such as 3 , starting from the corresponding hydroxy acid, then radical cyclization $(3 \rightarrow 4)$ would be expected to afford the tricyclic lactone shown in the scheme. The lactone would, of necessity, have cis ring fusion, in accord

Scheme 1
with the general rules for ring fusion stereochemistry resulting from radical cyclization. 2 Consequently, the absolute stereochemistry at the hydroxyl-bearing carbon of 2 controls the stereochemical outcome of the whole process, and once the quaternary center has been set up, the $C(1)-0$ bond in 4, or a later intermediate, could be hydrogenolyzed.

We decided to test the plan on the simple system 2 itself. If we were successful in generating 4, we would then
need to make some alterations to the model sequence, along the following lines.

In order to reach the natural product, we would begin with the synthesis of the protected lactol ethers 5. Radical cyclization of 5 should produce 6 , with the appropriate stereochemistry at the quarternary center, determined in an absolute sense by the absolute stereochemistry at $C(1)$ of 5 .

8

9

7

1

Scheme 2

Ozonolytic cleavage of the exocyclic double bond, followed by sodium borohydride reduction should give 7 , and at this point, catalytic hydrogenolysis of the benzylic oxygen functions should liberate aldehyde 8 . Reduction of the aldehyde, and DDQ (or CAN) oxidation of the dimethoxybenzene
unit (with or without temporary protection of the primary hydroxyl) would complete the synthesis ($9 \rightarrow 1$).

Synthetic studies on the β-lactone route
As a model study, we prepared the hydroxy acids 13, beginning with the condensation ${ }^{3}$ of the known acid 11^{4} with aldehyde ${ }^{5}$ 10. The condensation (Scheme 3) gave very low yields (25\%) and significant amounts of starting materials were recovered.

Scheme 3

From previous experiments on the synthesis of methyl epijasmonate, we knew that the use of methyl esters - as opposed to acids - led to much higher yields in similar condensations, and so we decided to work in the ester series (10 \rightarrow 13); the carboxylic acid function required for β lactone formation would then be obtained by hydrolysis. In the event, condensation of aldehyde 10 with the anion derived from phenylseleno ester 12^{6} gave the hydroxy esters 13 in
high yield (86\%). Surprisingly, when we attempted to hydrolyze 13 with lithium hydroxide, the substrate underwent a retro-aldol reaction to give back aldehyde 10 and the product (11) of hydrolysis of the original seleno ester (Scheme 3).

In order to avoid the necessity for basic hydrolysis, we examined the use of a silyl ester, instead of a methyl ester. Protection of acid 11 with the t-BuMe2Sicl proceeded cleanly (as judged by TLC), but the product decomposed during the aqueous workup to give back the starting acid. In situ, protection of the acid, followed by attempted condensation with aldehyde 10, also gave back extensive amounts of starting materials, and we failed to isolate the desired product 14 (Scheme 4).

Next, we examined the use of an O-allyl ester, as the allyl group should be removable with a Pd reagent, without interfering with other functional groups present. Ester 15 could be obtained, although in low yield, by two-phase esterification of acid 11 with allyl bromide in the presence of sodium bicarbonate and Aliquat 336.7 Unfortunately, condensation of allyl ester 15 with aldehyde 10 gave only a

Scheme 5
poor yield (20\%) of the desired alcohols 16.
Accordingly, we decided to try yet another protecting group. Esterification of acid 11 with $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{CH}_{2} \mathrm{OCH}_{2} \mathrm{Cl}$ (SEMCl) produced ester 17, quantitatively, and condensation with aldehyde 10 gave us the desired alcohols 18 in good Yield (71\%, or 81% corrected for recovered phenylseleno ester).

Scheme 6

Initial attempts at removing the silyl group, 8 using TBAF in DMPU were unsuccessful, but under harsher conditions (HF in MeCN), 9 the desired hydroxy acids 2 were obtained in 63\% yield (Scheme 6).

With an acceptable route to the hydroxy acids in hand, our next task was to form the β-lactone. When hydroxy acids 2 were treated with phenylsulfonyl chloride in pyridine at 0 ${ }^{\circ} \mathrm{C}, 10$ lactone 3 was produced in excellent yield (Scheme 6). We obtained a single lactone, even though the starting material was a mixture of stereoisomeric acids. At this point we were ready to try the key radical cyclization that would generate the quaternary center in a stereochemical sense that is controlled by the stereochemistry of the original alcohol 18.

Slow addition of a solution of $B u_{3} S n H$ and AIBN to a refluxing solution of the potential cyclization precursor 3, failed to give any one of the desired product. When $\mathrm{Ph}_{3} \mathrm{SnH}$ was used, under similar conditions, decomposition of the starting material occurred. When the radical initiator was replaced by triethylborane, yet again, some starting material along with unidentified products were obtained. Attempts to

3

Scheme 7
initiate the radical reaction with light (254 A), also proved futile (Scheme 7). ${ }^{11}$

The outcome of these experiments was very disappointing, as an large number of radical cyclizations have been done in this laboratory, and we had no reason to expect that the present intended ring closures would present any difficulties.

At this point we felt, rightly or wrongly, that we had exhausted the possibilities using a β-lactone approach, as our substrate appeared to be unsuitable for the radical cyclization. Two features of the substrate might contribute to the failure of the radical steps. The highly strained β lactone might decompose thermally or under the influence of a Lewis acid and, possibly, the rigidity of the system carrying the alkyne and β-lactone units might preclude adequately close approach of the carbons that must become linked.

One modification that we considered was to use a substrate such as 19, where the four-membered lactone has been replaced by a more flexible six-membered unit (Scheme 8). The rules for ring fusion stereochemistry would still apply, so as to generate a quaternary center in the desired stereochemical sense.

Attempts to link the carboxyl and hydroxyl of 2 failed (Scheme 8), and we subsequently found that similar difficulties had been observed by others on a related starting material. 12 In that case, however, use of bis(tri-

Scheme 8
methylsilyl) acetamide, instead of Messicl, afforded the desired cyclic material.

At this stage, we had recognized a different approach that looked sufficiently promising that we decided to stop our current work for the time being, in order to examine the new route, which was based on the stork bromoacetal cyclization (Scheme 9). 13 Some years ago stork et al. 13 had developed a method to synthesize compounds of type 23 by radical cyclization of bromoacetals 22. On this basis, a

21

22

23

Scheme 9
substrate such as 25 , when subjected to the above methodology, should afford 26. Again, the stereochemistry of
the newly-formed quarternary center would be controlled by the stereochemistry of the hydroxyl group in 24 (Scheme 10). The structure of 26 is such that it ought to be modifiable so as to generate the required carboxyl group.

Scheme 10

Model Studies on the Acetal Approach

2-Methylindenone (29) was made by a literature procedure, 14,15 starting from benzaldehyde (Scheme 11). Luche reduction of the carbonyl group gave the corresponding

indenol 30, and this was smoothly converted into the required bromoacetals 31.

Slow addition of a solution of $B u_{3} S n H$ and AIBN to a refluxing solution of 31 failed to give any of the desired cyclization product. Our next attempted cyclization involved the same reagents, but instead of slow addition, they were added in one lot. This modification led to the formation of a 1:4 diastereomeric mixture of the cyclic acetals 32 in 70\% yield. In the hope of improving the yield, we tried the cyclization using catalytic amounts of $B u_{3} S n C l, A I B N$ and $\mathrm{NaBH}_{3} \mathrm{CN}, 16$ but the cyclized product was produced in a similar yield. As the two diastereomers of 32 were chromatographically inseparable and there was significant signal overlap in the ${ }^{1} \mathrm{H}$ NMR spectrum, we decided to convert the material into the corresponding lactone. Acid hydrolysis of acetals 32, gave the corresponding lactols, and PCC oxidation

33

36

37

34

35

38

Scheme 12
then gave the desired lactone 33. The same transformation could also be achieved directly by treating 32 with freshly prepared Jones reagent. 16

In principle, 33 could be degraded to a substance containing the required quarternary center by the sequence summarized in Scheme 12. We regarded the experiments of Scheme 11 as a reliable model on which to base the actual synthesis of the natural product, and we now proceeded to apply this approach to properly substituted substrates. To this end, we needed to prepare compound 38 (Scheme 13), or a synthetically equivalent material.

Synthesis of the substituted indenone system

Our initial plan (see Scheme 13) involved starting with the known bromide 39,17 which is available by a literature procedure from commercial 2,5-dimethoxybenzoic acid.

The bromo acid 39 was esterified ($39 \rightarrow 40$). The next task was to selectively demethylate the $C(3)$ ring oxygen so as to obtain phenol 41. We had anticipated, of course, that this step might be difficult, as it was not clear what features of the molecule would control the selectivity of demethylation. The presence of the ester might be expected to favor removal of the $C(6)$ O-methyl group, but we were not sure what role steric factors might play. We decided to try different boron-based reagents. If the demethylation was successful, the resulting phenol would then be protected as

Scheme 13
an allyl ether (41 $\rightarrow 42$), which would later serve the purpose of providing the extra substitution (by way of Claisen rearrangement) needed on the aromatic ring. The ester would next be reduced to the alcohol, reoxidized to the aldehyde, and protected as an acetal (42 $\rightarrow 43$). Our plan then called for transmetallation of the bromide with BuLi, followed by treatment with ethyl bromoacetate, giving 45. Deprotection of the aldehyde, followed by selective reduction, would then be expected to produce lactone 46 . We felt that Claisen rearrangement, followed by hydroborationoxidation of the resulting olefin would give an alcohol, oxidizable to acid 47. Finally, Friedel-Crafts acylation
should give the desired indenone 48, which is suitably constituted for application of the radical closure sequence that we had already tested with a simple model (see Scheme 11). In connection with the proposed Friedel-Crafts reaction, we were aware that such processes can be done even on O-methyl ethers. 15

The above plans were explored, as follows (Scheme 14). Nitration of 2,5 -dimethoxybenzoicl8 acid gave a $5: 1$ mixture of 50 and 51. Separation was not attempted at this stage, and the crude material was directly methylated to produce 52 and 53. These esters could be completely separated, and the desired 2 -nitro compound 52 was found to be the major product. Catalytic hydrogenation of 52 in ethanol gave amine 54. When the above sequence (49 \rightarrow 54) was carried out on a

Scheme 14
large scale, the material was processed without isomer separation until the last step (formation of 54), and at that point the required compound was isolated. This approach
allowed us to generate quite easily $5-7 \mathrm{~g}$ batches of the amine.

Our first attempt to diazotize the amine and convert it into bromide 40, using CuBr_{2} and isoamyl nitrite, gave us primarily the dibromide 56 (Scheme 15). We next tried a twostep Iiterature ${ }^{19}$ procedure that called for conversion of the amine into the triazo compound 58. This intermediate was treated with LiBr in the presence of an acid resin, but none of the desired product was formed. Finally, we tried the

classical Sandmeyer method, and were able to optimize the reaction conditions (Scheme 15). The amine was converted into the corresponding diazonium bromide, using an acidic NaNO_{2} solution at $0{ }^{\circ} \mathrm{C}$, and the bromide 40 was formed by heating with CuBr .

The next task was to demethylate compound 40 selectively at $C(3)$, i.e. adjacent to the bromine. When 40 was exposed to BBr_{3} (I.I equivalent) for 5 min at $-78^{\circ} \mathrm{C}$ none of the starting material was consumed. Increasing the temperature or the reaction time also did not lead to any reaction. When the temperature was raised to $40{ }^{\circ} \mathrm{C}$, reaction occurred, but unfortunately, gave 42% of the doubly demethylated ester, along with some of the triply demethylated compound (2-bromo-3,6-dihydroxybenzoic acid).

The above exploratory experiments indicated that the required selective demethylation would have to be controlled by the presence of some specific feature, and in this regard we noted that methoxy groups adjacent to an aldehyde or ketone can be removed selectively by $\mathrm{BCl}_{3} .20$ On the basis of this information, we converted ester 40 into the corresponding aldehyde 60 , by the standard sequence of DIBAL reduction and reoxidation (Scheme 16). Selective demethylation of the $C(6)$ methoxy group (i.e., the one adjacent to the aldehyde) did indeed occur as anticipated, although the reaction required considerable optimization work (Scheme 16).

$\mathrm{BCl}_{3}, 3$ equiv. $\mathrm{CH}_{2} \mathrm{Cl}_{2},-78^{\circ} \mathrm{C}$; 96\%

Scheme 16

Modified route
With phenol 61 in hand, we now proceeded to introduce an

additional carbon substituent on the benzene ring, and for this purpose, the phenolic hydroxyl was allylated (61 $\rightarrow 62$). Attempts to protect the aldehyde as its acetal 63 at this stage failed, and so we decided to carry out this transformation before the allylation.

Treatment of the hydroxy aldehyde 61 with ethylene glycol in the presence of a catalytic amount of TsOH (Scheme 17), gave acetal 64 in good yield. In exploratory experiments the derived allylated compound (63) was heated to a high temperature ($200{ }^{\circ} \mathrm{C}$); it underwent claisen rearrangement to give the desired product 65, together with some of the corresponding aldehyde 66 (Scheme 17) resulting from loss of the acetal group.

Scheme 18

The next task was to protect the hydroxyl as a methoxy group but, unfortunately, in each attempt only a very small amount of the starting material was converted into the desired compound 67 (Scheme 18). Despite the low yield, we decided to try to replace the bromine by an ester group. Transmetallation of 67 with BuLi, followed by treatment with Mander's reagent, gave ester 68, although in poor yield. Apart from the low yields in the methylation step, we also
encountered solubility problems during purification of the compounds bearing the cyclic acetal unit. To circumvent these difficulties we decided to change the protecting group for the aldehyde to a dimethoxy acetal - chosen merely for convenience of preparation - and to try to find the best possible order of the three reactions involved: acetal protection, Claisen rearrangement, and methylation.

Formation of the dimethyl acetal 69 (Scheme 19) was best effected by using trimethyl orthoformate in the presence of TsOH. The compound could be transformed smoothly into the allyl ether 70 in high yield, but Claisen rearrangement of 70 on a large scale produced an inseparable 1:1 mixture of the acetal 71 and aldehyde 66. Obviously, we needed to try a different order of protection and Claisen rearrangement.

In our next attempt (Scheme 20), the hydroxy aldehyde 61

was first converted into the allyl ether 62.21 Claisen rearrangement of this compound then gave the hydroxy aldehyde 66 in 74% yield. 22 All the Claisen rearrangements up to this point had been performed in decalin, and we now decided to try N, N-dimethylaniline, a commonly used solvent for Claisen rearrangements,23 in the hope of increasing the yield. However, no significant improvement was observed; in fact the yield was actually about 10% lower in the amine solvent (Scheme 20).

Phenolic aldehyde 66 was best methylated (97\%) by treatment with MeI and $\mathrm{K}_{2} \mathrm{CO}_{3}$ in DMF at $70^{\circ} \mathrm{C}$. The remaining step of protecting the aldehyde group as a dimethyl acetal $(72 \rightarrow 73)$ was accomplished as before, again in high yield
(96\%). All our dimethoxy acetals were indeed much more soluble and easier to handle and purify than the corresponding cyclic acetals.

We could now direct our efforts to completion of the 6membered ring characteristic of 48 (see earlier, Scheme 13), and the following simple transformations were carried out for this purpose: transmetallation of 73 with BuLi, followed by quenching of the lithiated product with MeOC(O)CN, gave ester 74 in 88% yield, and we were now ready to elaborate the side arms of puraquinonic acid.

Reduction of the ester with DIBAL gave alcohol 75 (Scheme 21). Attempts to remove the acetal using TFA in
aqueous chloroform resulted in isolation of acetal 77. When 75 was stirred in acidic aqueous dioxane, the desired lactol 76 was obtained in 71% yield, together with a small amount (24\%) of 77. The latter could be recycled to obtain more of the desired lactol (Scheme 21).

Treatment of lactol 76 with the ylide generated by reaction of (methoxymethyl)triphenylphosphonium bromide and (Me3Si) ${ }_{2} N K$ gave a separable $2: 1$ mixture of the expected enol ethers 78.24 Each could be converted into the hemiacetal 79 efficiently by treatment with 0.1 N HCl in dioxane (Scheme 22). A small amount of the corresponding lactol methyl ether was also obtained.

At this stage we decided to proceed via the six-membered lactone, rather than the corresponding methyl acetal, since

Scheme 22
the former was available to us more readily. In the event, this was an unwise decision, but it was possible to correct the error later. PCC oxidation of lactol 79 gave the lactone 80 in excellent yield. Initially, we decided that we would convert the allylic pendant of 80 into a hydroxypropyl group (see 81) by hydroboration-oxidation, but examination of the literature revealed that the common regioselective borane reagents would also attack the lactone unit carbonyl. 25

This difficulty could be avoided, in principle, by converting the allylic unit into an aldehyde which would then be condensed with the dilithium salt of propionic acid. To this end, the double bond in the side chain of 80 was moved into conjugation with the aromatic ring, by treatment with RhCl $3.3 \mathrm{H}_{2} \mathrm{O}$ in a PhMe-EtOH mixture ($80 \rightarrow 82$) (Scheme 22). Dihydroxylation, Eollowed by NaIO_{4}-mediated cleavage, gave aldehyde 83.26

While these experiments were being carried out, we also pursued a modified route that avoided the possibility that

Scheme 23
the presence of the lactone carbonyl might make selective reaction at the aldehyde carbonyl difficult to achieve.

When 84, obtained as a byproduct in the conversion of 78 into 79 (Scheme 22), was treated with $\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}$ in a PhMeEtOH mixture, 27 compounds 85 were obtained. Evidently, in addition to double bond isomerization, an alkoxy exchange with the solvent had taken place. Cleavage of the olefin with $\mathrm{OsO}_{4} / \mathrm{NaIO}_{4}$ gave the required aldehyde $\mathbf{8 6}$.

Scheme 24

In order to obtain large amounts of $\mathbf{8 6}$, or the corresponding methyl ether, we decided to treat the enol ether 78 with acid in ethanol. Unfortunately, this experiment gave a 1:1 mixture of 87 and 88 (Scheme 24), a transformation that is very easily understandable.

The bisbenzyl route

The foregoing experiments had given us extensive experience with the properties of the compound classes involved in our synthesis, and we were now in a position to modify the approach in a way which we expect will actually lead to the natural product.

Our modified route (Scheme 25) involves reduction of the
lactol (79 $\rightarrow 89$) and protection of the resulting diol as a bisbenzyl ether (89 \rightarrow 90). Conjugation of the olefin with the aromatic ring, followed by ozonolytic cleavage, would then give an aldehyde (92) suitable for elaboration into an indenone. These steps were easily accomplished.

$\mathrm{NaH}, \mathrm{THF}$, BnBr ; 68\%

Lactol 79 was readily reduced to the diol 89 in excellent yield. Protection of the diol with benzyl bromide gave the dibenzyl compound 90, and the double bond in 90 was moved into conjugation, as before, in excellent yield. Ozonolysis then gave aldehyde 92. Condensation of 92 with methyl propionate (Scheme 26) produced a diastereomeric mixture of alcohols 93. Hydrolysis of the ester to the acid 94 proceeded without incident, and we were now ready to try
the crucial Friedel-Crafts acylation.
Compound 94 (which was used without full characterization) was treated under exactly the same conditions for Friedel Crafts acylation used in the model

Scheme 26
study with 28 (see Scheme 11). Unfortunately, none of the cyclized material was formed, but we isolated compound 91 (Scheme 26). Presumably, the methoxy group in 94 plays a role in this reaction. In the presence of the Lewis acid, the methoxy group β to the hydroxyl helps to expel the hydroxyl group or the corresponding chloride. This process is followed by decarboxylation and rearomatization (Scheme 27).

As we had reached an advanced stage in our synthesis, we decided to find a solution to the problem of constructing the 5-membered ring, using a model system, instead of valuable material from the main route.

Our first approach in this effort (Scheme 28) was to make 98, a substrate which lacked the hydroxyl group of the main series (Cf. 94).

Scheme 28

Condensation of 2,5-dimethoxybenzaldehyde 95 with the lithium anion of ethyl propionate produced alcohols 96. These could be converted easily into the bromides 97^{28} but
unfortunately, partial decomposition occurred during purification over silica gel. Stannane reduction of bromides 97 occurred readily to give the desired ester 98 . We had intended to convert 98 into the indanone 101, but due to the instability of the bromide, we decided to make the chloro derivative instead.

Treatment of alcohol 96 with SOCl_{2} in the presence of Et3N gave chloride 99, which could be isolated easily. Stannane reduction proceeded smoothly as before, to give ester 98, and basic hydrolysis gave the acid 100. Attempts to cyclize 100, using polyphosphoric acid, prepared according to reference 29, failed, and we recovered only starting material. Other methods (TFA/TFAA, $\mathrm{P}_{2} \mathrm{O}_{5} /$ methanesulfonic acid
or $\left.\mathrm{SOCl}_{2} / \mathrm{AlCl}_{3}\right)$ gave very small amounts of the desired product (Scheme 30). 14, 15, 30

Finally, using freshly-prepared polyphosphoric acid, made according to a reference 28 , and using it in large excess, gave the desired indanone 101 in 60% yield.

Scheme 30

During these latest model studies, we also considered using a Nazarov ${ }^{31}$ reaction to construct the required 5membered ring, and a simple model study (Scheme 31) quickly established that this was a very promising approach.

Aldehyde 95 was treated with isopropenylmagnesium bromide to obtain alcohol 102, which was readily oxidized to ketone 103. Treatment of the ketone with fuming SnCl_{4} failed to produce any of the desired indanone 103. However, when 103 was stirred with concentrated sulfuric acid for 1 day at room temperature, it underwent Nazarov cyclization to give 101 in 65% yield. It is known ${ }^{31}$ that Nazarov cyclizations proceed more readily when the aromatic ring is highly substituted. Taking this factor into account leads us to

Scheme 31
believe that the most efficient route to our required indanone system will indeed be the use of an acid-mediated Nazarov cyclization.

Grignard reaction of aldehyde 95 (Scheme 32) with isopropenylmagnesium bromide in ether gave a chromatographically separable mixture of two compounds. The major product (44\%) was found to be 104, where one of the benzyl groups:had been replaced by an ethyl group. The minor product (18\%) was the dibenzyl compound 105. The major product (104) is presumably formed by expulsion of the OBn group from the carbon chain at $C(4)$ by the oxygen lone pair on the adjacent methoxy group. The resulting species is then attacked by the solvent ($\mathrm{E} \mathrm{t}_{2} \mathrm{O}$), followed by rearomatization (Scheme 33). It might be possible to vary the ratio of the products by adjusting the experimental conditions, but we have not tried this.

Although in principle, either of the alcohols 104 or 105 could be processed further, we chose to continue our synthesis using the major product. PCC oxidation of 104 gave aldehyde 106. When this aldehyde was stirred with concentrated sulfuric acid, not only did the Nazarov cyclization occur at a higher rate than in our model compound 103, but a pyran ring was also generated. Formation of the pyran ring probably occurs via a process analogous to that outlined in Scheme 33 for an intermolecular reaction.

The unexpected formation of the pyran system does not alter the synthetic plan in any way, and further work in the group is aimed at converting 107 into puraquinonic acid along

92

104
 $\mathrm{Et}_{2} \mathrm{O}$

92 b

Scheme 33
the lines summarized in Scheme 34. This sequence will afford racemic puraquinonic acid, but we expect that intermediate 107 can be diverted to optically pure material by desaturation and asymmetric reduction of the ketone carbonyl. At that point, application of the procedure shown in Scheme 11 will generate the quaternary center, and the last steps of the synthesis will then require degradation of the lactol ether along the lines of Scheme 12.

Conclusion

As described above, we have developed methods, using model compounds related to puraquinonic acid, for constructing a quaternary carbon, and for making appropriate indanones. We expect that the methods are directly applicable to the main series leading to optically active

Scheme 34
puraquinonic acid, and work is currently under way in this laboratory to finish the synthesis in both the racemic and optically active series. For generation of optically pure material, a method will be needed for asymmetric reduction of ketone 107, so that the approach of Scheme 11 can be applied. A number of reagents for asymmetric ketone reduction are available, 32 but other ways of constructing the derived optically pure alcohol are also being considered in the group.

Experimental

General Procedures. The same general procedures were used as described in part I of this thesis.

[2-(Trimethylsilyl)ethoxy]methyl 3-hydroxy-2-

 methyl-3-[2-(phenylethynyl)phenyl]-2-(phenylseleno) propanoate (18).

Ester 17 was generated in situ, as follows:
Acid 11 ($400.0 \mathrm{mg}, 1.721 \mathrm{mmol}$) was dissolved in dry THF (8 mL) and the mixture was stirred and cooled ($0{ }^{\circ} \mathrm{C}$). SEMCI $(574 \mathrm{mg}, 0.61 \mathrm{~mL}, 3.44 \mathrm{mmol})$ was added dropwise over 5 min , and the resulting white slurry was stirred for 3 h at $0{ }^{\circ} \mathrm{C}$. The mixture was diluted with water (10 mL) and extracted with EtOAc (4 x 10 mL). The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($2 \times 15 \mathrm{~cm}$), using 15:85 EtOAc-hexane, gave ester 17 ($614.5 \mathrm{mg}, 99 \%$) as a pale yellow oil, which was used directly.

BuLi (2.5 M in hexanes, $0.8 \mathrm{~mJ}, 1.9 \mathrm{mmol}$) was added
dropwise to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}$ ($0.26 \mathrm{~mL}, 1.87 \mathrm{mmol}$) in $\mathrm{THF}(5 \mathrm{~mL})$. After 15 min , ester 17 (614.5 mg, 1.706) was added dropwise, and stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 30 min . The resulting enolate solution was taken up into a syringe and added dropwise to a stirred room temperature solution of aldehyde $10(386.6 \mathrm{mg}$, 1.877 mmol) in dry THF (1 mL). The mixture was stirred for 30 min, diluted with water (10 mL), and extracted with EtOAc ($4 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($2 \times 27 \mathrm{~cm}$), using 1:4 EtOAchexane, gave a separable mixture (1:5) of alcohols 18 (689.5 mg, 71\%, 81\% corrected for recovered starting material) as a colorless oil. The major isomer had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3475, $1727 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 0.02(\mathrm{~s}, 9 \mathrm{H})$, $0.9-1.0(\mathrm{~m}, 2 \mathrm{H}), 1.4(\mathrm{~s}, 3 \mathrm{H}), 3.62-3.70(\mathrm{~m}, 2 \mathrm{H}), 4.18(\mathrm{~d}$, $\mathcal{J}=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.32\left(\mathrm{AB} q, \Delta v_{\mathrm{AB}}=41.5 \mathrm{~Hz}, J=6.0 \mathrm{~Hz}, 2\right.$ H), $5.72(\mathrm{~d}, \mathrm{~J}=6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.62(\mathrm{~m}, 14 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.3 \mathrm{MHz}\right) \delta-1.4\left(\mathrm{q}^{\prime}\right), 18.3$ ($\left.\mathrm{s}^{\prime}\right), 20.2$ (q'), 56.9 $\left(t^{\prime}\right), 68.5\left(t^{\prime}\right), 75.7\left(d^{\prime}\right), 88.2\left(s^{\prime}\right), 90.4\left(t^{\prime}\right), 94.9\left(s^{\prime}\right)$, $123.3\left(s^{\prime}\right), 123.6\left(s^{\prime}\right), 126.7\left(s^{\prime}\right), 127.6\left(d^{\prime}\right), 128.3\left(d^{\prime}\right)$, $128.8\left(d^{\prime}\right), 128.9\left(d^{\prime}\right), 129.2\left(d^{\prime}\right), 129.9\left(d^{\prime}\right), 131.8\left(d^{\prime}\right)$, 132.4 (d'), 138.7 ($\left.\mathrm{d}^{\prime}\right), 141.7$ (s^{\prime}), 173.5 ($\left.\mathrm{s}^{\prime}\right)$; exact mass m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{O}_{4} \mathrm{Si}^{80}$ Se 566.13916, found 566.13831 .

3-Methyl-4-[2-(phenylethynyl)phenyl]-3-(phenyl-

 seleno) oxetan-2-one (3).
$\mathrm{HF}\left(48 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 0.5 \mathrm{~mL}\right)$ was diluted with $\mathrm{MeCN}(3 \mathrm{~mL})$ and cooled $\left(-20^{\circ} \mathrm{C}\right)$. An aliquot ($0.54 \mathrm{~mL}, 15 \% \mathrm{HF}$ in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$) of the solution was added dropwise to a stirred and cooled (-20 ${ }^{\circ} \mathrm{C}$) solution of esters 18 ($118.2 \mathrm{mg}, 0.209 \mathrm{mmol}$) in MeCN (1 $\mathrm{mL})$. The reaction was followed by TLC (silica, 1:1 EtOAchexane) and, after 2 h at $-10^{\circ} \mathrm{C}$, since much of the starting material remained unreacted, an additional portion of HF (I $\mathrm{mL}, 15 \% \mathrm{HF}$ in $\mathrm{MeCN}-\mathrm{H}_{2} \mathrm{O}$) was added, and the cooling bath was removed. Stirring was continued for an additional 1 h , by which time most of the starting material had been consumed. The mixture was quenched with saturated aqueous NaHCO_{3} (2 $\mathrm{mL})$, and the organic phase was washed with water (5 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$, and the combined organic extracts were washed with brine, dried (MgSO_{4}), and evaporated to obtain acids 2 ($57.4 \mathrm{mg}, 63 \%$) and recovered 18 ($9.5 \mathrm{mg}, 8 \%$).
$\mathrm{PhSO}_{2} \mathrm{Cl}$ ($0.07 \mathrm{~mL}, 0.58 \mathrm{mmol}$) was added dropwise to a stirred and cooled ($-5{ }^{\circ} \mathrm{C}$) solution of hydroxy acid 2 (83.3 $\mathrm{mg}, 0.19 \mathrm{mmol})$ in pyridine (2.5 mL). The brownish yellow
mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 18 h , diluted with water (5 $\mathrm{mL})$, and extracted with $\mathrm{E} \mathrm{t}_{2} \mathrm{O}$ (4 x 10 mL). The combined organic extracts were washed with saturated aqueous NaHCO_{3} $(10 \mathrm{~mL})$ and brine $(5 \mathrm{~mL})$, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 15 cm), using $1: 5$ EtOAc-hexane, gave 3 (67.3 mg, 84\%) as a yellow foam: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1829 \mathrm{~cm}^{-1}$; 1 H $\mathrm{NMR}(200 \mathrm{MHz}) \delta 1.31(\mathrm{~s}, 3 \mathrm{H}), 5.91(\mathrm{~s}, \mathrm{IH}), 7.25-7.51(\mathrm{~m}, 9$ $\mathrm{H}), 7.52-85(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 17.9\left(\mathrm{q}^{\prime}\right)$, $59.8\left(s^{\prime}\right), 82.1\left(d^{\prime}\right), 88.3\left(s^{\prime}\right), 97.2\left(s^{\prime}\right), 122.8\left(s^{\prime}\right), 124.7$ $\left(s^{\prime}\right), 127.0\left(d^{\prime}\right), 127.5\left(s^{\prime}\right), 130.5\left(d^{\prime}\right), 130.8\left(d^{\prime}\right), 131.3$ $\left(d^{\prime}\right), 131.8\left(d^{\prime}\right), 133.8\left(d^{\prime}\right), 134.7\left(d^{\prime}\right), 138.7\left(s^{\prime}\right), 139.5$ (d'), 173.3 (s^{\prime}); exact mass $\mathrm{m} / \boldsymbol{z}$ calcd for $\mathrm{C}_{24} \mathrm{H}_{18} \mathrm{O}_{2} 80 \mathrm{Se}$ 418.04721, found 418.04776.

2-Methylinden-1-01 (30).

$\mathrm{CeCl}_{3} \cdot 7 \mathrm{H}_{2} \mathrm{O}(310.3 \mathrm{mg}, 0.833 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 2 -methylindenone $(100 \mathrm{mg}, 0.69$ mmol) in $M e O H$ (8 mL). Stirring was continued for 15 min , and LiBH $_{4}(2 \mathrm{M}$ in THF, $0.42 \mathrm{~mL}, 0.84 \mathrm{mmol})$ was added dropwise over 5 min. The cold bath was left in place, and stirring was continued for 1 h. Water (1 mL) was added and the
resultant slurry was filtered through a pad (1 x 2 cm) of Celite and washed with $E t_{2} O(25 \mathrm{~mL})$. The filtrate was concentrated (to ca 2 mL) and the resultant white suspension was extracted with $E t_{2} \mathrm{O}$ ($5 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried (MgSO_{4}), and evaporated. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and purified by flash chromatography over silica gel (1 x 12 cm), using 1:9 EtOAc-hexane, to give 30 (102.9 mg, 99\%) as a pure ($1_{\mathrm{H}} \mathrm{NMR}, 300 \mathrm{MHz}$), white solid: mp $52.5{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3031,1710 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.83(\mathrm{~m}, 1$ H), $4.82(\mathrm{~d}, \mathrm{~J}=9.2 \mathrm{~Hz}, 3 \mathrm{H}), 6.45(\mathrm{~s}, 1 \mathrm{H}), 7.11(\mathrm{~m}, 2 \mathrm{H})$, $7.22(\mathrm{~m}, ~ 1 \mathrm{H}), 7.41(\mathrm{~m}, \mathrm{I} \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.3 \mathrm{MHz}\right) \delta$ $13.8\left(q^{\prime}\right), 79.2\left(d^{\prime}\right), 120.4\left(d^{\prime}\right), 123.5\left(d^{\prime}\right), 125.1\left(d^{\prime}\right)$, $127.0\left(d^{\prime}\right), 128.7\left(d^{\prime}\right), 143.5\left(s^{\prime}\right), 145.9\left(s^{\prime}\right), 149.1\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}$ 146.07317, found 146.07309.

1-(2-Bromo-1-ethoxyethoxy)-2-methylindene (31).

Alcohol $30(100.0 \mathrm{mg}, 0.681 \mathrm{mmol})$ was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3.5 \mathrm{~mL})$ and cooled ($-20^{\circ} \mathrm{C}$) with stirring. In another flask a homogenous mixture of N-bromosuccinimide (187.9 mg, 1.055 mmol) and vinyl ethyl ether $(88.4 \mathrm{mg}, 0.12 \mathrm{~mL}, 1.23$
mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was prepared under Ar , taken up into a foil-wrapped syringe, and added dropwise over 8 min to the previous solution.

All the flasks and syringes where protected from light in the last step. Stirring at $-20^{\circ} \mathrm{C}$ was continued for 3 h . At this point significant amounts (ca 30%) of the starting material remained. Another portion of N-bromosuccinimide (187.9 mg, 1.055 mmol$)$ and ethyl vinyl ether ($88.4 \mathrm{mg}, 0.12 \mathrm{~mL}, 1.23 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ was added, and stirring was continued for 30 min at $-20^{\circ} \mathrm{C}$ (TLC control, silica, 1:9 EtOAc-hexane).

The reaction mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with 10% aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(10 \mathrm{~mL})$ and water (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ and purified by flash chromatography over silica gel (2 x 22 cm), using I:9 EtOAc-hexane, to give 31 (199.3 mg, 99\%) as a colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) unexceptional; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.05-1.21(\mathrm{~m}, 3 \mathrm{H})$, 2.02-2.12 (m, 3 H), 3.26-3.41 (m, 2 H), 3.44-3.78 (m, 2 H), $4.70(t, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.82-5.0(\mathrm{~m}, 1 \mathrm{H}), 6.40$ (d of broad $\mathrm{m}, \mathrm{J}=20 \mathrm{~Hz}, 1 \mathrm{H}), 7.05-7.18(\mathrm{~m}, 2 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 1$ H), $7.42-7.51(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 14.5$ $\left(q^{\prime}\right), 14.6\left(q^{\prime}\right), 15.3\left(q^{\prime}\right), 15.4\left(q^{\prime}\right), 32.4\left(t^{\prime}\right), 33.0\left(t^{\prime}\right)$, 62.6 (t'), $63.4(t '), 83.0\left(d^{\prime}\right), 84.0\left(d^{\prime}\right), 99.9\left(d^{\prime}\right), 101.1$ (d'), 101.5 (d'), 120.4 (d'), 120.6 (d'), 124.3 (d'), 124.6 (d^{\prime}), $125.0\left(d^{\prime}\right), 127.8\left(d^{\prime}\right), 128.8\left(d^{\prime}\right), 128.9\left(d^{\prime}\right), 142.7$ $\left(s^{\prime}\right), 143.5\left(s^{\prime}\right), 143.8\left(s^{\prime}\right), 144.0\left(s^{\prime}\right), 146.1\left(s^{\prime}\right), 147.5$ (s^{\prime}); exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{17}{ }^{79} \mathrm{BrO}_{2} 296.04120$, found

Cis-2-Ethoxy-3, 3a, 4, 8b-tetrahydro-2H-3a-methyl-indeno-[1,2-b]furan (32).

Procedure A

Bromoacetal 31 ($58.7 \mathrm{mg}, 0.20 \mathrm{mmol})$, AIBN (3.3 mg) and $\mathrm{Bu}_{3} \mathrm{SnH}(66.4 \mathrm{mg}, 0.06 \mathrm{~mL}, 0.23 \mathrm{mmol})$ were dissolved in dry PhH (10 mL) and the reaction flask was lowered into a preheated oil bath ($85{ }^{\circ} \mathrm{C}$). Heating with stirring was continued until all the starting material was consumed (ca 8 h, TLC control, silica, 1:9 EtOAc-hexane). Evaporation of the solvent and flash chromatography of the residue over silica gel (1 x 12 cm), using (1:9 EtOAC-hexane), gave 32 (30.7 mg, 70\%) as a colorless oil. For characterization data, see following experiment.

Procedure B

Bromoacetal 31 (293.4 mg, 1.000 mmol$),$ AIBN (16.0 mg, $0.01 \mathrm{mmol}), \mathrm{NaBH}_{3} \mathrm{CN}(126.0 \mathrm{mg}, 2.000 \mathrm{mmol})$ and $\mathrm{Bu}_{3} \mathrm{SnCl}(0.03$ $\mathrm{mL}, 0.10 \mathrm{mmol}$) were dissolved in tert-butyl alcohol (5.0 mL). The mixture was refluxed with stirring under nitrogen for 7
h. Then 3% aqueous $\mathrm{NH}_{4} \mathrm{OH}$ was added and the solvent was evaporated. The residue was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 3 \mathrm{~mL})$, and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and purified by flash chromatography over silica gel (1 x 12 cm), using 1:9 EtOAc-hexane, to give 32 (148.4 mg, 68\%) as a pure (${ }^{1} \mathrm{H}$ NMR, 360 MHz), colorless oil which was a 1:4 mixture of diastereomers. The minor diastereomer had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 0.78(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, 2.01-2.15 (m, 2 H$), 2.80(\mathrm{~d}, \mathrm{~J}=16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~d}, \mathrm{~J}=$ $16.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.43-3.51(\mathrm{~m}, 1 \mathrm{H}), 3.80-3.89(\mathrm{~m}, 1 \mathrm{H}), 5.12$ (s, 1 H), 5.18-5.20(m, 1 H$), 7.18-7.42(\mathrm{~m}, ~ 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 15.4$ (q'), $26.0\left(\mathrm{~d}^{\prime}\right), 46.3$ (t'), 48.0 $\left(t^{\prime}\right), 48.2\left(s^{\prime}\right), 48.8\left(s^{\prime}\right), 63.0\left(t^{\prime}\right), 93.0(d '), 105.3\left(d^{\prime}\right)$, 125.2 (d'), 125.7 (d'), $127.0\left(d^{\prime}\right), 142.2\left(s^{\prime}\right), 142.5\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}$) 241.12045, found 241.12014.

The major diastereomer had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl} \mathrm{C}_{2}$ cast) unexceptional; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 360 \mathrm{MHz}\right) \delta 1.21(\mathrm{t}, \mathrm{J}=9.2 \mathrm{~Hz}$, $3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 2.01-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.81(\mathrm{~d}, \mathrm{~J}=21.6$ $\mathrm{Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=21.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.16-3.20(\mathrm{~m}, 1 \mathrm{H})$, 3.29-3.34 (m, 1 H$), 5.08(\mathrm{~s}, 1 \mathrm{H}), 5.26(\mathrm{~m}, 1 \mathrm{H}), 7.18-7.42$ $(\mathrm{m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 14.6$ (q'), 27.3 (d'), 46.5 (t'), $48.0\left(t^{\prime}\right), 48.2\left(s^{\prime}\right), 61.7\left(s^{\prime}\right), 93.0\left(d^{\prime}\right), 105.2$ $\left(d^{\prime}\right), 124.8\left(d^{\prime}\right), 125.5(d '), 126.5\left(d^{\prime}\right), 128.3\left(d^{\prime}\right), 128.7$ (d'), 143.0 (s'), 143.1 (s'); exact mass (HR electrospray)
m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{2}(\mathrm{M}+\mathrm{Na}) 241.12045$, found 241.12014.

Cis-3, 3a, 4, 8b-Tetrahydro-2H-3a-methylindeno[1,2-b]furan-2-one (33).

Ethers 32 (133.3 mg, 0.600 mmol) were dissolved in dry THF (2 mL), and $\mathrm{ACOH}-\mathrm{H}_{2} \mathrm{O}(10 \mathrm{~mL}, 2: 8)$ was added dropwise to the mixture. Stirring was continued for 12 h , by which time a small amount of the starting material remained (TLC control, silica, 1:1 EtOAc-hexane). The mixture was warmed at $50^{\circ} \mathrm{C}$ for 1 h , cooled to room temperature, and extracted with EtOAC (4 x 10 mL). The combined organic extracts were washed with brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (2 x 22 cm), using 15:85 EtOAc-hexane, gave the corresponding lactols (111.8 mg, 98%) as a white solid. The material was used directly in the next step.

A mixture of PCC ($115.6 \mathrm{mg}, 0.536 \mathrm{mmol})$ and powdered $4 \AA$ molecular sieves (40.0 mg) was added to a stirred solution of lactol 32 ($34.0 \mathrm{mg}, 0.18 \mathrm{mmoi}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2.5 \mathrm{~mL})$. Stirring was continued for 2 h , by which time oxidation was complete (TLC control, silica, 2:3 EtOAc-hexane). The mixture was applied directly to a column ($1 \times 15 \mathrm{~cm}$) of
silica gel, and the column was developed using 1:9 to $2: 3$ EtOAc-hexane, to give lactone 33 ($30.8 \mathrm{mg}, 92 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), colorless oil which solidified on storage: mp $52{ }^{\circ} \mathrm{C} ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1776 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right)$ $\delta 1.38(\mathrm{~s}, 3 \mathrm{H}), 2.58(\mathrm{~m}, 2 \mathrm{H}), 3.1\left(\mathrm{AB} \mathrm{q}, \Delta \mathrm{v}_{\mathrm{AB}}=57.3 \mathrm{~Hz}, \mathcal{J}=\right.$ $16.4 \mathrm{~Hz}, 2 \mathrm{H}), 5.42(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.50(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 50.3 \mathrm{MHz}\right) \delta 26.3$ (q'), 44.3 (t'), 46.4 (t'), 48.0 (s'), 94.7 (d'), 127.3 (d'), 128.2 (d'), 129.3 (d'), 131.7 $\left(d^{\prime}\right), 140.7\left(s^{\prime}\right), 144.7$ (s'), $178.0\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{2}$ 188.08372, found 188.08349 .

3,6-Dimethoxy-2-nitrobenzoic acid (50) and 2,5-Dimethoxy-3-nitrobenzoic acid (51).

The literature method ${ }^{18}$ was modified.
$\mathrm{HNO}_{3}(100 \mathrm{~mL})$ was placed in a three-necked flask fitted with a low temperature thermometer and cooled to $0{ }^{\circ} \mathrm{C}$. 2,5Dimethoxybenzoic acid (10.0 g, 54.9 mmol$)$ was added in small portions over 30 min with stirring (the temperature was not allowed to rise above $0{ }^{\circ} \mathrm{C}$). The resulting yellow solution was stirred at $0{ }^{\circ} \mathrm{C}$ for another 3 h , and poured onto cracked
ice (300 mL). A yellow precipitate formed immediately. It was filtered off, air dried overnight, and dried further under oil-pump vacuum for 4 h to yield 50 and 51 (12.4 g, 100\%) as a 5:1 mixture of isomers.

Methyl 3,6-Dimethoxy-2-nitrobenzoate (52) and Methyl 2,5-Dimethoxy-3-nitrobenzoate (53).

$\mathrm{K}_{2} \mathrm{CO}_{3}(40.00 \mathrm{~g}, 290.0 \mathrm{mmol})$, dry acetone (250 mL), and $\mathrm{Me}_{2} \mathrm{SO}_{4}(18.4 \mathrm{~g}, 145 \mathrm{mmol}, 13.3 \mathrm{~mL}$) were added successively to the crude acid ($26.40 \mathrm{~g}, 116.2 \mathrm{mmol})$ obtained from the previous step. The resulting orange colored solution was stirred for 12 h . The solvent was evaporated and the residue was kept under oil-pump vacuum for 12 h . The resulting yellow solid was redissolved in a small amount of EtOAc and purified by flash chromatography over silica gel ($4 \times 27 \mathrm{~cm}$), using 15:85 EtOAc-hexane, to give esters 52 (23.0 g, 82\%) and 53 ($4.4 \mathrm{~g}, 16 \%$). The major isomer 52 had: mp $118-119{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1706,1517,1251 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200\right.$ $\mathrm{MHz}) \delta 3.92(\mathrm{~s}, 3 \mathrm{H}), 3.96(\mathrm{~s}, 3 \mathrm{H}), 3.98(\mathrm{~s}, 3 \mathrm{H}), 7.45$ (s, I H), $7.55(\mathrm{~s}, \mathrm{I} \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 52.7\left(\mathrm{q}^{\prime}\right)$, $56.9\left(q^{\prime}\right), 57.2\left(q^{\prime}\right), 109.5\left(d^{\prime}\right), 117.1\left(d^{\prime}\right), 125.1\left(s^{\prime}\right)$,
141.5 (s'), 146.2 (s'), $152.2\left(s^{\prime}\right), 165.1\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{6} \mathrm{~N} 241.0586$, found 241.05892 .

The minor isomer 53 had: mp 102.5-103.5 ${ }^{\circ} \mathrm{C}$; FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1742,1530,1271 \mathrm{~cm}{ }^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right)$ $\delta 3.86(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~s}, 3 \mathrm{H}), 7.08(\mathrm{~d}, \mathrm{~J}=$ $9.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}, J=9.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5\right.$ $\mathrm{MHz}) \delta 53.1\left(q^{\prime}\right), 57.0\left(q^{\prime}\right), 57.2\left(q^{\prime}\right), 115.7$ (d'), 116.1 $\left(d^{\prime}\right), 118.1\left(s^{\prime}\right), 145.3$ is'), $150.6\left(s^{\prime}\right), 163.4\left(s^{\prime}\right), 165.1$ (s^{\prime}); exact mass m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{O}_{6} \mathrm{~N}$ 241.05860, found 241. 05902.

```
Methyl 2-Amino-3,6-dimethoxybenzoate (54).
```


$10 \% \mathrm{Pd}-\mathrm{C}(25.0 \mathrm{mg})$ was added to a solution of ester 52 (1.50 g, 6.22 mmol) in EtOH (95\%, 100 mL), and the mixture was shaken in a Parr bottle under H_{2} (50 psi) until all the starting material was consumed (ca $12 \mathrm{~h}, \mathrm{TLC}$ control, silica, 1:4 EtOAc-hexane). [The apparatus was opened periodically for examination by TLC]. The mixture was filtered through a pad (4 x 3 cm) of silica gel, using EtOAc (50 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel (3 x 15 cm), using $3: 2$ EtOAc-hexane,
gave amine $54\left(1.266 \mathrm{~g}, ~ 97 \%\right.$) as a pure (${ }^{I_{H}} \mathrm{NMR}, 400 \mathrm{MHz}$), pale yellow oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3489,3379 \mathrm{~cm}^{-1} ; I_{H}$ NMR (CDCl $3,400 \mathrm{MHz}) \delta 3.77(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.92(\mathrm{~s}, 3$ H) , 5.35 (broad $s, 2 \mathrm{H}), 6.15(\mathrm{~d}, \mathrm{~J}=8.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.75$ (d, $J=8.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 51.9$ (q'), $56.4\left(q^{\prime}\right), 56.5\left(q^{\prime}\right), 98.4\left(d^{\prime}\right), 105.0\left(s^{\prime}\right), 113.1$ (d'), 140.7 ($\left.\mathrm{s}^{\prime}\right), 141.8\left(\mathrm{~s}^{\prime}\right), 154.1\left(\mathrm{~s}^{\prime}\right), 168.8\left(\mathrm{~s}^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{ClOH}_{13} \mathrm{HNNaO}_{4}(\mathrm{M}+\mathrm{Na})$ 234.07423, found 234.07467. Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{~N}$: C 56.87, H 6.20, N 6.63. Found: $\mathrm{C} 56.71, \mathrm{H} 6.31, \mathrm{~N} 6.61$.

Methyl 2-Bromo-3,6-dimethoxybenzoate (40).

$\mathrm{HBr}(48 \%$ in water, 17.0 mL) was added to amine 54 (9.232 g, 43.75 mmol) and the mixture was stirred vigorously with a mechanical stirrer. The resulting white solid was broken up with a glass rod from time to time to allow reaction of the remaining amine. The slurry was further diluted with HBr (48\% in water, 7.0 mL) and cooled ($0^{\circ} \mathrm{C}$). A cooled ($0^{\circ} \mathrm{C}$) solution of $\mathrm{NaNO}_{2}(3.169 \mathrm{~g}, 45.94 \mathrm{mmol})$ in water (8.5 mL) was added dropwise by Pasteur pipette, maintaining a temperature below $5{ }^{\circ} \mathrm{C}$. The resulting brownish-red solution was stored
in an ice-bath, and was added dropwise, using a Pasteur pipette, to a refluxing solution (100 ${ }^{\circ} \mathrm{C}$) of CuBr 2 (4.14 g , 0.66 equiv) in $\operatorname{HBr}\left(48 \%\right.$ in $\left.\mathrm{H}_{2} \mathrm{O}, 5.0 \mathrm{~mL}\right)$. The color of the reaction mixture changed from deep purple to black and later to brown. Upon completion of the addition, heating was continued for 10 min. The reaction mixture was cooled to room temperature and diluted with boiling Et E (10 mL). The aqueous layer was extracted with $E t_{2} O(5 \times 100 \mathrm{~mL})$ until extraction was complete (TLC control, silica, 15:85 EtOAchexane). The combined organic extracts were washed with brine (100 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The black crude material was redissolved in hot $4: 1$ EtOH-acetone, and applied directly to a column of flash chromatography silica gel ($5 \times 20 \mathrm{~cm}$). The column was developed using 15:85 EtOAchexane, to give $40\left(9.698 \mathrm{~g}, 81 \%\right.$) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 $\mathrm{MHz})$, white solid: mp $97{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1737 \mathrm{~cm}^{-1} ; 1_{\mathrm{H}}$ $\mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 3.92$ (s, $3 \mathrm{H}), 7.85\left(\mathrm{AB} q, \Delta \mathrm{~V}_{\mathrm{AB}}=16.0 \mathrm{~Hz}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}\right) ;{ }^{13} \mathrm{C} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 100.6 \mathrm{MHz}\right) \delta 52.8\left(q^{\prime}\right), 56.6\left(q^{\prime}\right), 57.0\left(q^{\prime}\right), 109.9$ (s^{\prime}), $110.9\left(d^{\prime}\right), 113.1\left(d^{\prime}\right), 127.5\left(s^{\prime}\right), 150.3\left(s^{\prime}\right), 150.8$ (s^{\prime}), 166.5 (s^{\prime}); exact mass (HR electrospray) m / z calcd for
 Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}: \quad \mathrm{C} 43.66, \mathrm{H} 4.03$. Found: C 43.59, H 3.85.
(2-Bromo-3,6-dimethoxyphenyl)methanol (59).

DIBAL (1.0 M in hexanes, $70.7 \mathrm{~mL}, 71 \mathrm{mmol}$) was added dropwise to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of ester 40 (9.692 g, 35.37 mmol$)$ in dry PhMe (250 mu). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h , warmed to $0{ }^{\circ} \mathrm{C}$, and stirred for 1 h. Stirring was continued for another $6 h$ without recharging the ice bath. The solution was recooled $\left(-78{ }^{\circ} \mathrm{C}\right)$, and $\mathrm{MeOH}(10 \mathrm{~mL}), \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(4 \mathrm{~g})$, Celite (6.0 g) and water (2 mL) were added successively. The cold bath was removed and stirring was continued for 30 min. The slurry was filtered through a sintered disc funnel and washed with EtOAc (500 mL). The filtrate was concentrated and the residue was redissolved in a small amount of EtOAc and purified by flash chromatography over silica gel (5 x 20 cm), using 1:4 EtOAchexane, to give 59 ($8.78 \mathrm{~g}, 99 \%$) as a pure (${ }^{1} \mathrm{H} \operatorname{NMR}, 400 \mathrm{MHz}$), white solid: mp $127-128^{\circ} \mathrm{C} ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3489 \mathrm{~cm}^{-1}$; 1_{H} NMR ($\left.\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 2.44(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 6$ $\mathrm{H}), 4.83(\mathrm{~d}, \mathrm{~J}=7 \mathrm{~Hz}, 2 \mathrm{H}), 6.85(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $100.6 \mathrm{MHz}) \delta 56.6\left(q^{\prime}\right), 57.1\left(q^{\prime}\right), 60.6\left(t^{\prime}\right), 110.6\left(d^{\prime}\right)$, $112.0\left(\right.$ d' $\left.^{\prime}\right), 115.2\left(s^{\prime}\right), 130.5\left(s^{\prime}\right), 150.7\left(s^{\prime}\right), 153.0\left(s^{\prime}\right)$; exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{11}{ }^{79} \mathrm{BrNaO}_{3}(\mathrm{M}+$

Na) 268.97892, found 268.97943. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{11} \mathrm{BrO}_{3}$: C 43.75, H 4.49. Found: C 43.68, H 4.32.
2-Bromo-3,6-dimethoxybenzaldehyde (60).

A mixture of PCC (9.795 g, 45.52 mmol$)$ and powdered $4 \AA$ molecular sieves (3.0 g) was added to a stirred solution of alcohol 59 ($8.012 \mathrm{~g}, 32.52 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (200 mL). Stirring was continued for 10 h , by which time oxidation was complete. The solvent was evaporated to approximately 50 mL and the slurry was filtered through a pad (5 x 3 cm) of silica gel which was washed with 1:1 EtOAC-hexane (400 mL, TLC control, silica, 1:1 EtOAc-hexane). The filtrate was evaporated and the residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (15 mL) and purified by flash chromatography over silica gel (5 x 15 $\mathrm{cm})$, using 2:3 EtOAc-hexane, to give aldehyde 60 (7.530 g , 95\%) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), white solid: mp $99.5{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1695 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 3.82$ $(\mathrm{s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}), 7.11(\mathrm{~d}$, $J=9.1 \mathrm{~Hz}, 1 \mathrm{H}) 10.41(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta$ $56.6\left(q^{\prime}\right), 57.2\left(q^{\prime}\right), 111.4\left(d^{\prime}\right), 114.8\left(s^{\prime}\right), 117.1\left(d^{\prime}\right)$, 124.8 (s'), 150.4 (s'), 155.4 (s'), 190.8 (d'); exact mass
(HR electrospray) m / z calcd for $\mathrm{CgHg}{ }^{79} \mathrm{BrNaO}(\mathrm{M}+\mathrm{Na}$) 266.96327, found 266.96351. Anal. Calcd for $\mathrm{C}_{9} \mathrm{H}_{9} \mathrm{BrO}_{3}$: C 44.11, H 3.70. Found: C 43.94, H 3.26.

2-Bromo-6-hydroxy-3-methoxybenzaldehyde (61).

BClu (1.0 M in hexanes, $59 \mathrm{~mL}, 59 \mathrm{mmol}$) was added dropwise to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of aldehyde $60(4.805 \mathrm{~g}, 19.69 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(200 \mathrm{~mL})$. The resulting bright-red solution was stirred for 10 h without recharging the cold bath. The solution was recooled to $0{ }^{\circ} \mathrm{C}$, and ice water (100 mL) was added slowly. The resulting deep yellow solution was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 x $50 \mathrm{~mL})$. The combined organic extracts were washed with brine (100 mL). dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The yellow residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and purified by flash chromatography over silica gel (4 x 20 cm), using 15:85 EtOAc-hexane, to give $61(4.317 \mathrm{~g}, 96 \%)$ as a pure $\left({ }^{1} \mathrm{H}\right.$ NMR, 400 MHz). Yellow solid: mp $89{ }^{\circ} \mathrm{C}$; FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1645 \mathrm{~cm}^{-}$ I: 1_{H} NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 3.89(\mathrm{~s}, 3 \mathrm{H}), 6.95(\mathrm{~d}, \mathrm{~J}=9.1$ $\mathrm{Hz}, 1 \mathrm{H}) .7 .21(\mathrm{~d}, \mathrm{~J}=9.1 \mathrm{~Hz}, 1 \mathrm{H}) 10.41(\mathrm{~s}, 1 \mathrm{H}), 11.51$ (s, $1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 57.8\left(\mathrm{q}^{\prime}\right), 116.4$ ($\left.\mathrm{s}^{\prime}\right)$,
117.8 (d'), $118.3\left(s^{\prime}\right), 122.7\left(d^{\prime}\right), 149.7\left(s^{\prime}\right), 158.2$ (s'), $198.6\left(d^{\prime}\right)$; exact mass m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{8}{ }^{79} \mathrm{BrO}_{3}(\mathrm{M}+\mathrm{H})$ 230.96568, found 230.96632. Anal. Calcd for $\mathrm{C}_{8} \mathrm{H}_{7} \mathrm{BrO}_{3}$: C 41.59, H 3.05. Found: C 41.67, H 2.72.

2-Bromo-3-methoxy-6-(2-propenyloxy)benzaldehyde

(62).

Aldehyde 61 ($6.14 \mathrm{~g}, 26.59 \mathrm{mmol}$) in DMF (5 mL) was added dropwise to a stirred and cooled ($0^{\circ} \mathrm{C}$) slurry of $\mathrm{NaH}(772.5$ g. 30.58 mmol) in dry DMF (30 mL). The cold bath was removed and the resulting bright yellow slurry was stirred for 1 h . The solution was recooled to $0{ }^{\circ} \mathrm{C}$ and allyl bromide (4.60 mi, 53.2 mmol) was added dropwise. The cold bath was removed, and stirring was continued for 4 h . The reaction mixture was poured into brine (50 mL) and extracted with $\mathrm{Et}_{2} 0$ (4 x 50 $\mathrm{mL})$. The combined organic extracts were washed with aqueous $\mathrm{KOH}(10 \%, 20 \mathrm{~mL})$ and brine $(100 \mathrm{~mJ})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The pale yellow crude residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and purified by flash chromatography over silica gel ($4 \times 20 \mathrm{~cm}$), using 1:4 EtOAc-hexane, to give 62 (6.01 g , 83\%) as a pure ($1_{\mathrm{H}} \mathrm{NMR}, 400 \mathrm{MHz}$), white, crystaline solid:
mp $77{ }^{\circ} \mathrm{C}$; $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast), $1696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400\right.$ $\mathrm{MHz}) \delta 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.57(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 5.29(\mathrm{~d}, \mathrm{~J}=$ $12 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{~d}, \mathrm{~J}=18 \mathrm{~Hz}, 1 \mathrm{H}), 6.00-6.09(\mathrm{~m}, 1 \mathrm{H})$, $6.96(\mathrm{~d}, \mathrm{~J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 7.07(\mathrm{~d}, \mathcal{J}=9 \mathrm{~Hz}, 1 \mathrm{H}), 10.38(\mathrm{~s}, 1$ H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right) \delta 57.4$ (q'), 70.8 (t'), 113.6 $\left(d^{\prime}\right), 113.7\left(s^{\prime}\right), 117.3\left(d^{\prime}\right), 118.0\left(t^{\prime}\right), 125.8\left(s^{\prime}\right), 133.0$ (d'), $151.1\left(s^{\prime}\right), 154.8\left(s^{\prime}\right), 190.7\left(d^{\prime}\right) ; ~ e x a c t ~ m a s s ~(H R$ electrospray) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{79} \mathrm{BrO}_{3} \mathrm{Na}(\mathrm{M}+\mathrm{Na}) 292.97892$, found 292.97870.

2-Bromo-6-hydroxy-3-methoxy-5-(2-propenyl)benz-

aldehyde (66).

62

66

Trans decalin was degassed by several freeze-thaw cycles (liquid $\mathrm{N}_{2} /$ oil-pump vacuum).

A solution of aldehyde 62 ($810.0 \mathrm{mg}, 3.011 \mathrm{mmol})$ in degassed decalin (3 mL) was refluxed under Ar for 6.5 h and then cooled to room temperature. Flash chromatography of the mixture (without evaporation of the solvent) over silica gel (2 x 15 cm), using 1:12 EtOAc-hexane, gave phenol 66 (602.8 mg, 74\%) as a pure, yellow oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $1646 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.40(\mathrm{~d}, \mathcal{J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3$
H), 5.05-5.20(m, 2 H$), 5.85-6.07(\mathrm{~m}, ~ 1 \mathrm{H}), 7.06(\mathrm{~s}, 1 \mathrm{H})$, $10.40(\mathrm{~s}, 1 \mathrm{H}), 11.90(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} I_{2}, 100 \mathrm{MHz}\right) \delta$ $33.5\left(t^{\prime}\right), 57.9\left(q^{\prime}\right), 113.7\left(s^{\prime}\right), 116.8\left(t^{\prime}\right), 117.6$ (s'), 123.2 ($\left.\mathrm{d}^{\prime}\right), 129.6\left(\mathrm{~s}^{\prime}\right), 135.6\left(\mathrm{~d}^{\prime}\right), 149.2\left(\mathrm{~s}^{\prime}\right), 156.3$ (s'), 198.8 (d^{\prime}); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{11}{ }^{79} \mathrm{BrNaO}_{3}(\mathrm{M}+\mathrm{Na}) 292.97892$, found 292.97870.

2-Bromo-3, 6-dimethoxy-5-(2-propenyl)benzaldehyde
(72).

MeI (4.74 g, $2.08 \mathrm{~mL}, 33.4 \mathrm{mmol}$) was added dropwise to a stirred mixture of phenol $66(1.808 \mathrm{~g}, 6.696 \mathrm{mmol})$ and $\mathrm{K}_{2} \mathrm{CO}_{3}$ (4.587 g, 33.37 mmol$)$ in dry DMF (20 mL). The mixture was warmed to $70{ }^{\circ} \mathrm{C}$ and stirring was continued for 10 h at this temperature. The solids were filtered off and the filtrate was poured into brine (20 mL) and extracted with $E t_{2} O(4 \times 20$ mL). The combined organic extracts were washed with brine $(50 \mathrm{~mL})$ and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel (3.5 x 20 cm), using 1:4 EtOAc-hexane, gave aldehyde 72 (1.857 9, 97\%) as a yellowish-white solid: mp $50{ }^{\circ} \mathrm{C} ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 1702 $\mathrm{cm}^{-1} ; 1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.43(\mathrm{dt}, J=6.5,1.3 \mathrm{~Hz}, 2$
$\mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 3.90(\mathrm{~s}, 3 \mathrm{H}), 5.08-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.90-$ $6.00(\mathrm{~m}, 1 \mathrm{H}), 6.95(\mathrm{~s}, 1 \mathrm{H}), 10.38(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $100.6 \mathrm{MHz}) \delta 33.7\left(t^{\prime}\right), 57.2\left(q^{\prime}\right), 63.9\left(q^{\prime}\right), 111.6$ (s'), 116.9 (t^{\prime}), $118.1\left(d^{\prime}\right), 129.7\left(s^{\prime}\right), 135.1$ (s'), 136.4 (d'), $153.0\left(s^{\prime}\right), 153.6\left(s^{\prime}\right), 191.4\left(d^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{81} \mathrm{BrO}_{3} 286.00275$, found 286.00154.

1-bromo-2-(dimethoxymethyl)-3, 6-dimethoxy-4-(2propenyl)benzene (73).

72

73

CH(OMe) $3(3.00 \mathrm{~mL}, 27.4 \mathrm{mmol})$ was added dropwise to a stirred solution of aldehyde 72 (1.211 $g, 4.248 \mathrm{mmol})$ in dry $\mathrm{MeOH}(3 \mathrm{~mL})$ containing TsOH. $\mathrm{H}_{2} \mathrm{O}(5.0 \mathrm{mg})$. The mixture was warmed to $70{ }^{\circ} \mathrm{C}$ and stirring was continued for 3.5 h at this temperature. The mixture was cooled to room temperature and evaporated. Flash chromatography of the residue over silica gel (3 x 18 cm), using $1: 4$ EtOAc-hexane, gave 73 (1.345 g, 96\%) as a colorless oil: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; 1_{H} $\mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 3.37(\mathrm{~d}, \mathrm{~J}=6.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.43(\mathrm{~s}, 6$ $\mathrm{H}), 3.71(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{~s}, 3 \mathrm{H}), 5.07-5.16(\mathrm{~m}, 2 \mathrm{H}), 5.68$ $(\mathrm{s} .1 \mathrm{H})=5.90-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.77(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} \mathrm{N}_{2}\right.$, $100.6 \mathrm{MHz}) \delta 34.1$ (t'), 56.0 (two overlapping q^{\prime}), 57.0 (\mathbf{q}^{\prime}),
63.1 (q'), $105.4\left(d^{\prime}\right), 110.5\left(s^{\prime}\right), 114.0\left(d^{\prime}\right), 116.5\left(t^{\prime}\right)$, $132.1\left(s^{\prime}\right), 134.1\left(s^{\prime}\right), 137.0\left(d^{\prime}\right), 151.0\left(s^{\prime}\right), 152.9\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19}{ }^{79} \mathrm{BrO}_{4} 330.0467138$, found $284.00485\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{6} \mathrm{O}\right)$.

Methyl 3,6-Dimethoxy-2-(dimethoxymethyl)-4-(2propenyl)benzoate (74).

BuLi (1.6 M in hexanes, $3.7 \mathrm{~mL}, 9.2 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of bromide 73 (2.024 g, 6.116 mmol$)$ in dry THF (50 mL), and the resultant pale brown solution was stirred at $-78{ }^{\circ} \mathrm{C}$ for 25 min. MeOC (0) CN ($0.85 \mathrm{~mL}, 10.7 \mathrm{mmol}$) in THF (0.85 mL) was then added dropwise over 5 min. Stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 20 min , and the cold bath was removed. The mixture was allowed to warm to $0{ }^{\circ} \mathrm{C}$, and was then diluted with water (20 mL), and extracted with EtOAc ($4 \times 50 \mathrm{~mL}$). The combined organic extracts were washed with brine (20 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the pale yellow residue over silica gel (3 x 22 cm), using 1:3 EtOAc-hexane, gave ester 74 (1.673 g, 88\%) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 1737 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta$
$3.34(\mathrm{~s}, 6 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.77$ $(\mathrm{s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 5.09-5.15(\mathrm{~m}, 2 \mathrm{H}), 5.47(\mathrm{~s}, 1 \mathrm{H})$, $5.91-6.02(\mathrm{~m}, 1 \mathrm{H}), 6.82(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} \mathrm{I}_{2}, 100.6 \mathrm{MHz}\right)$ ס $34.1\left(t^{\prime}\right), 52.1\left(q^{\prime}\right), 55.2\left(q^{\prime}\right), 56.7\left(q^{\prime}\right), 62.6\left(q^{\prime}\right)$, 101.6 ($\left.d^{\prime}\right), 113.9\left(d^{\prime}\right), 116.6\left(t^{\prime}\right), 121.9\left(s^{\prime}\right), 130.4\left(s^{\prime}\right)$, $135.6\left(s^{\prime}\right), 136.9\left(\bar{a}^{\prime}\right), 150.5\left(s^{\prime}\right), 152.7\left(s^{\prime}\right), 168.0\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{O}_{6} 310.14163$, found 310.14154 .

[2-(Dimethoxymethyl)-3,6-dimethoxy-4-(2-pro-

 penyl)phenyllmethanol (75).

DIBAL (1.0 M in hexanes, $3.9 \mathrm{~mL}, 3.9 \mathrm{mmol}$) was added dropwise to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of ester 74 (596.8 mg, 1.925 mmol$)$ in dry PhMe (20 mf). The mixture was stirred at $-78{ }^{\circ} \mathrm{C}$ for 1 h and then DIBAL (1.0 M in hexanes, $1.9 \mathrm{~mL}, 1.9 \mathrm{mmol}$) was added, and stirring was continued for 1 h . The solution was recooled to $-78{ }^{\circ} \mathrm{C}$, and $\mathrm{MeOH}(3 \mathrm{~m}), \mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}(2.0 \mathrm{~g})$, Celite $(1.0 \mathrm{~g})$ and water (1 mL) were added successively. The cold bath was removed and stirring was continued for 30 min. The slurry was filtered through a short pad of celite on a sintered disc and the pad was washed with EtOAc (50 mL). The filtrate was evaporated
and the residue was dissolved in a small amount of EtOAc and purified by flash chromatography over silica gel (2 x 20 cm), using 1:4 EtOAC-hexane, to give 75 (504.9 mg, 93\%) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), white solid: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3430 \mathrm{~cm}^{-1}$; $1_{\mathrm{H}} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 2.97(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 1 \mathrm{H}), 3.44(\mathrm{~d}, \mathrm{~J}$ $=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.48(\mathrm{~s}, 6 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H})$, $4.81(\mathrm{~d}, \mathrm{~J}=6 \mathrm{~Hz}, 2 \mathrm{H}), 5.08-5.10(\mathrm{~m}, \mathrm{I} \mathrm{H}), 5.11-5.13(\mathrm{~m}, 1$ H), $5.61(\mathrm{~s}, 1 \mathrm{H}), 5.93-6.04(\mathrm{~m}, 1 \mathrm{H}), 6.76(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right) \delta 34.3$ (t'), 55.5 (t'), 56.4 (q'), 56.6 (q'), 62.9 (two q'), $103.9\left(d^{\prime}\right), 114.0\left(d^{\prime}\right), 116.2\left(t^{\prime}\right)$, $128.2\left(s^{\prime}\right), 131.7\left(s^{\prime}\right), 133.3\left(s^{\prime}\right), 137.3(d '), 150.4\left(s^{\prime}\right)$, 155.0 (s'); exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{22} \mathrm{O}_{5}$, 282.14671, found 282.14673.

1,3-Dihydro-4, 7-dimethoxy-6-(2-propenyl)isobenzo-furan-1-ol (76) and 1,3-Dihydro-1,4,7-trimethoxy-6-(2propenyl)isobenzofuran (77).

Dilute hydrochloric acid (0.1 M, 10 mL) was added dropwise to a stirred solution of acetal 75 (1.304 g. 4.624 mol) in dioxane (10 mL). Stirring was continued for 12 h , by which time all the starting material had been consumed
(TLC control, silica, 2:3 EtOAc-hexane). The reaction mixture was neutralized with saturated aqueous NaHCO_{3} and the aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 20 \mathrm{~mL})$, washed with water (10 mL) and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 18 \mathrm{~cm}$), using $1: 4$ EtOAc-hexane, gave lactol 76 (778.1 mg, 71\%) as a white solid and acetal 77 (276.7 mg, 24\%) as a colorless oil. Lactol 76 had: mp $157.5^{\circ} \mathrm{C} ;$ FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3335 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta 3.31-3.45$ $(\mathrm{m}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}), 4.88(\mathrm{~d}, \mathrm{~J}=12 \mathrm{~Hz}, 2$ $\mathrm{H}), 5.01-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.88-6.09(\mathrm{~m}, 1 \mathrm{H}), 6.59(\mathrm{dd}, \mathrm{J}=6$, $1.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.7(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 34.4$ (t'), $56.0\left(q^{\prime}\right), 61.4\left(q^{\prime}\right), 70.6\left(t^{\prime}\right), 101.0\left(d^{\prime}\right), 113.7$ (d'), 115.7 (t'), 127.7 (s'), 132.3 (s'), 133.5 (s'), 137.6 (d'), 1.47.4 (s'), 149.7 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{16} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$ 259.09463, found 259.09467.

Acetal 77 had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta 3.41(\mathrm{~s}, 3 \mathrm{H}), 3.42(\mathrm{~m}, 2 \mathrm{H}), 3.76$ (s, 3 H), $3.81(\mathrm{~s}, 3 \mathrm{H}), 4.82-5.15(\mathrm{~m}, ~ 4 \mathrm{H}), 5.85-6.12(\mathrm{~m}, ~ 1 \mathrm{H})$, $6.25(\mathrm{~d}, \mathrm{~J}=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.68(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} \mathrm{I}_{2}, 50.3\right.$ $\mathrm{MHz}) \delta 35.9\left(t^{\prime}\right), 55.8\left(q^{\prime}\right), 57.5\left(q^{\prime}\right), 62.7\left(q^{\prime}\right), 72.3$ (t'), $108.5\left(d^{\prime}\right), 115.2\left(d^{\prime}\right), 117.3\left(t^{\prime}\right), 129.8\left(s^{\prime}\right), 132.1\left(s^{\prime}\right)$, $134.7\left(s^{\prime}\right), 139.3\left(d^{\prime}\right), 149.0\left(s^{\prime}\right), 151.1\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}$) 273.11028, found 273.10998.
(E) - [3, 6-dimethoxy-2-(2-methoxyethenyl)-4-(2-pro-
penyl)phenyl]methanol (E-78) and (z)-[3,6-dimethoxy-2-(2-methoxyethenyl)-4-(2-propenyl)phenyl]methanol (z78) -

(Methoxymethyl)triphenylphosphonium bromide (511.3, 1.483 mol) was placed in a long-necked flask and dry THF (2 $\mathrm{mL})$ was added. The white slurry was stirred and cooled to $-78{ }^{\circ} \mathrm{C}$, and (Me3Si) ${ }_{2} \mathrm{NK}(0.5 \mathrm{M}$ solution in PhMe, $1.7 \mathrm{~mL}, 0.85$ mmol) was added dropwise over 5 min. The resulting red slurry was stirred at $-78{ }^{\circ} \mathrm{C}$ for 2 h , and a solution of lactol 76 ($100.0 \mathrm{mg}, 0.424 \mathrm{mmol}$) in dry THF (1 mL plus 1 mL as a rinse) was added dropwise. The resulting pale orange solution was stirred for 10 h without recharging the cold bath. The resulting white slurry was filtered off using a sintered disc, and washed with EtOAc (10 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel (2.5 x 15 cm), using 1:4 EtOAc-hexane, gave the isomeric enol ethers (E)-78 (70.8 mg, 63\%) and (Z)-78 (33.5 mg , 30\%) as colorless oils. Compound (E)-78 had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3462 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 2.16$ (t, J $=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dt}, \mathrm{J}=1.4,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{~s}, 3$ H), $3.71(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~s}, 3 \mathrm{H}), 4.65(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H})$,
5.05-5.14 (m, 2 H$), 5.85(\mathrm{~d}, J=15 \mathrm{~Hz}, 1 \mathrm{H}), 5.92-6.05(\mathrm{~m}, 1$ $\mathrm{H}), 6.61(\mathrm{~s}, 1 \mathrm{H}), 6.99(\mathrm{~d}, \mathrm{~J}=15 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $75.5 \mathrm{MHz}) \delta 34.7$ (t'), $56.1\left(q^{\prime}\right), 56.7\left(q^{\prime}\right), 58.0$ (t'), 60.4 (q^{\prime}), $98.0\left(d^{\prime}\right), 110.1\left(d^{\prime}\right), 115.9\left(t^{\prime}\right), 126.0\left(s^{\prime}\right), 130.8$ $\left(s^{\prime}\right), 133.4\left(s^{\prime}\right) .137 .7\left(d^{\prime}\right), 150.1\left(s^{\prime}\right), 153.1$ (d'), 154.9 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{2} \mathrm{ONaO}_{4}$ (M +Na 287.12593, found 287.12595.

Compound ${ }^{-}(\boldsymbol{Z})-78$ had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3462 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 2.78(\mathrm{t}, \mathrm{J}=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.40(\mathrm{dt}, \mathrm{J}$ $=1.4,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.63(\mathrm{~s}, 3 \mathrm{H}), 3.64(\mathrm{~s}, 3 \mathrm{H}), 3.82(\mathrm{~s}, 3$ H), $4.54(\mathrm{~d}, \mathrm{~J}=6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.05-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.41(\mathrm{~d}, \mathrm{~J}$ $=6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.93-6.23(\mathrm{~m}, 1 \mathrm{H}), 6.25(\mathrm{~d}, \mathrm{~J}=6.8 \mathrm{~Hz}, 1$ H) , $6.67(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{MMR}\left(\mathrm{CD}_{2} \mathrm{Cl} 1_{2}, 100.6 \mathrm{MHz}\right) \delta 34.5$ (t'), $56.1\left(q^{\prime}\right), 59.2\left(t^{\prime}\right), 60.3\left(q^{\prime}\right), 61.0\left(q^{\prime}\right), 100.8\left(d^{\prime}\right), 111.3$ (d'), 116.0 (t'), 127.7 (s'), 129.1 (s'), 133.0 (s'), 137.7 (d'), 148.4 (d'), $150.2\left(s^{\prime}\right), 154.8$ (s'); exact mass (HR
 found 287.12572.

5, 8-Dimethoxy-6-(2-propenyl)isochroman-3-ol

Dilute hydrochloric acid (0.1 M, 3 mL), was added
dropwise to a stirred solution of enol ethers 78 (250.0 mg, $0.946 \mathrm{mmol})$ in dioxane (10 mL). Stirring was continued for 12 h , by which time only one of the enol ethers (the Z isomer) had been converted into the corresponding lactol methyl ether while the other remain unchanged (TLC control, silica, 2:3 EtOAc-hexane). The reaction mixture was then heated at $60{ }^{\circ} \mathrm{C}$ for 3 h , by which point all the starting material had reacted (TLC control, silica, 2:3 EtOAc-hexane). the mixture was cooled to room temperature and neutralized with saturated aqueous NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 20 \mathrm{~mL})$, washed with water (10 mL) and brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (2 x 18 cm), using $1: 2$ EtOAC-hexane, gave 79 (196.4 mg, 83%) as a pure, colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 3404 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, $400 \mathrm{MHz}) \delta 2.71(\mathrm{dd}, \mathcal{J}=11.5,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.00(\mathrm{dd}, \mathrm{J}=$ $16.6,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.08(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.39(\mathrm{~d}, \mathrm{~J}=$ $6.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.66(\mathrm{~d}, \mathrm{~J}=16$ $\mathrm{Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, \mathrm{~J}=16 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.14(\mathrm{~m}, 2 \mathrm{H}), 5.22-$ $5.29(\mathrm{~m}, 1 \mathrm{H}), 5.93-6.03(\mathrm{~m}, 1 \mathrm{H}), 6.54(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 30.0$ (t'), 34.4 (t'), 55.7 (q'), 60.7 (t'), 61.0 (q'), 92.4 (d'), 109.4 (d'), 115.8 (t'), 121.7 $\left(s^{\prime}\right), 126.2\left(s^{\prime}\right), 131.5\left(s^{\prime}\right), 137.8\left(d^{\prime}\right), 150.0\left(s^{\prime}\right), 151.6$ (s'); exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{4}$ 250.12051, found 250.11985.

3-Ethoxy-5,8-dimethoxy-6-(1-propenyl)isochroman

(85).

$\mathrm{RhCl}_{3} .3 \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{mg})$ was added to a stirred solution of olefin 84 ($60.0 \mathrm{mg}, 0.18 \mathrm{mmol}$) in dry 4:1 PhMe-EtOH (8 mL). The mixture was refluxed for 12 h, cooled, and evaporated. Flash chromatography of the residue over silica gel (1 x 15 $\mathrm{cm})$, using $1: 1$ EtOAC-hexane, gave an inseparable mixture of isomeric olefins 85 (43.5 mg , 69\%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 200 \mathrm{MHz}\right) \delta$ (major isomer) 1.22 (t, $J=7 \mathrm{~Hz}, 3$ H), 1.84 (dd, $J=7.0,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 2.92-3.00(\mathrm{~m}, 1 \mathrm{H})$, 3.50-3.62 (m, 1 H$), 3.60(\mathrm{~s}, 3 \mathrm{H}), 3.78-3.91(\mathrm{~m}, 1 \mathrm{H}), 3.78$ $(s, 3 \mathrm{H}), 4.62(\mathrm{~s}, 2 \mathrm{H}), 5.01(\mathrm{t}, \mathrm{J}=3 \mathrm{~Hz}, 1 \mathrm{H}), 6.18-6.32$ ($\mathrm{m}, 1 \mathrm{H}$) , 6.58-6.69 (m, 1 H$), 6.70(\mathrm{~s}, \mathrm{IH})$.

3-Ethoxy-5,8-dimethoxyisochroman-6-carbaldehyde

(86).

$\mathrm{OsO}_{4}(2.5 \% \mathrm{w} / \mathrm{v}$ in $t-\mathrm{BuOH}, 125.0 \mu \mathrm{~L}, 0.020 \mathrm{mmol})$ was added to a stirred mixture of $85(43.5 \mathrm{mg}, 0.17 \mathrm{mmol})$, $t-\mathrm{BuOH}$ $(0.6 \mathrm{~mL}), \mathrm{CCl}_{4}(1.2 \mathrm{~mL})$ and water $(1.2 \mathrm{~mL})$. After 15 min , $\mathrm{NaIO}_{4}(90.0 \mathrm{mg}, 0.42 \mathrm{mmol})$ was added in one portion, and stirring was continued for 2 h . Water (2 mL) was then added and the mixture was extracted with EtOAc (2 $\times 3 \mathrm{~mL})$. The combined organic extracts were washed with water (2 mL) , 10% $\mathrm{NaHSO}_{3}(10 \mathrm{~mL})$, and brine $(10 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 15:85 EtOAc-hexane, gave lactone 86 $(36.63 \mathrm{mg}, 81 \%)$ as a white solid: mp $105.5{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1684 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.18(\mathrm{t}, \mathrm{J}=7.0$ $\mathrm{Hz}, 3 \mathrm{H}), 2.78-2.81(\mathrm{~m}, ~ 1 \mathrm{H}), 2.92-3.00(\mathrm{~m}, 1 \mathrm{H}), 3.58-3.62$ $(\mathrm{m}, 1 \mathrm{H}), 3.82(\mathrm{~s}, 3 \mathrm{H}, 2$ signals), $3.80-3.86(\mathrm{~m}, 1 \mathrm{H}), 4.71$ $(s, 2 H), 5.08(t, J=4 \mathrm{~Hz}, 1 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H}), 10.38(\mathrm{~s}, 1$ H) ; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 15.3$ (q'), 28.4 (t'), 54.3 $\left(q^{\prime}\right), 59.2\left(t^{\prime}\right), 63.8\left(t^{\prime}\right), 63.9\left(q^{\prime}\right), 96.3\left(d^{\prime}\right), 104.9\left(d^{\prime}\right)$, $127.68\left(s^{\prime}\right), 127.7\left(s^{\prime}\right), 132.3\left(s^{\prime}\right), 152.2\left(s^{\prime}\right), 156.4$ ($\left.s^{\prime}\right)$, $189.6\left(d^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{O}_{5}$ 266.11542, found 266.11575.

2-[(2-Hydroxymethyl)-3, 6-dimethoxy-5-(2-pro-

 penyl)phenyl]ethanol (89).
$\mathrm{NaBH}_{4}(35.6 \mathrm{mg}, 0.94 \mathrm{mmol})$ was added in portions to a stirred and cooled ($0^{\circ} \mathrm{C}$) solution of lactol 79 (156.0 mg , 0.624 mmol) in dry MeOH (8 mL). After 1 h , the reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the MeOH was evaporated. The aqueous layer was extracted with $E t_{2} O$ (3 x 8 $\mathrm{mL})$, and the combined extracts were dried (MgSO_{4}) and evaporated. Flash chromatography of the residue over silica gel (2 x 18 cm), using $1: 1$ EtOAc-hexane, gave $89(141.0 \mathrm{mg}$, 90\%) as a white solid: mp $73.5{ }^{\circ} \mathrm{C}$; FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3320 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 2.95(\mathrm{t}, \mathrm{J}=6.0 \mathrm{~Hz}, 2 \mathrm{H})$, 3.12 (broad s, 1 H), 3.41 (dt, J $=6.5,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.51$ (broad s, 1 H) , $3.64(\mathrm{~s}, 3 \mathrm{H}), 3.76$ ($\mathrm{m}, 2 \mathrm{H}$) , 3.80 (s, 3 H), 4.61 ($\mathrm{s}, 2 \mathrm{H}$), 5.08-5.18 (m, 2 H), 5.85-6.05 (m, 1 H), 6.62 (s, 1 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 30.1$ ($\left.\mathrm{t}^{\prime}\right), 34.5$ (t'), $55.9\left(q^{\prime}\right), 56.1\left(q^{\prime}\right), 61.6\left(q^{\prime}\right), 62.8\left(t^{\prime}\right), 111.2\left(d^{\prime}\right), 116.2$ (t'), $127.9\left(s^{\prime}\right), 133.2\left(s^{\prime}\right), 133.6\left(s^{\prime}\right), 137.4\left(d^{\prime}\right), 150.9$ (s'), 154.5 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{20} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}) 275.12593$, found 275.12630.

1, 4-Dimethoxy-3-[2-(phenylmethoxy)ethyl]-2-[(phenylmethoxy)methyl]-5-(2-propenyl)benzene (90).

NaH (95\% dispersion in mineral oil, $54.5 \mathrm{mg}, 2.16 \mathrm{mmol})$ was added to a stirred and cooled ($0^{\circ} \mathrm{C}$) solution of diol 89 $(270.8 \mathrm{mg}, 1.074 \mathrm{mmol})$ in dry $\mathrm{THF}(5 \mathrm{~mL}) . \operatorname{BnBr}(0.26 \mathrm{~mL}$, 2.16 mmol) was added dropwise to the slurry and stirring was continued for 3 h without recharging the ice bath. The reaction was quenched with $\mathrm{MeOH}(0.5 \mathrm{~mL})$, and then water (5 $\mathrm{mL})$ was added. The aqueous layer was extracted with EtOAc (3 $x 8 \mathrm{~mL})$, and the combined extracts were dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (2 x 18 cm), using 1:3 EtOAc-hexane, gave $90(313.5 \mathrm{mg}$, 68\%) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; ${ }^{1} \mathrm{H}$ $\operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.95-1.98(\mathrm{~m}, 3 \mathrm{H}), 3.02-3.09(\mathrm{~m}, 2$ H), $3.58-3.64(\mathrm{~m}, 2 \mathrm{H}), 3.68(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~m}, 3 \mathrm{H}), 4.40-$ $4.61(\mathrm{~m}, 6 \mathrm{H}), 6.21-6.31(\mathrm{~m}, 1 \mathrm{H}), 6.60-6.68(\mathrm{~m}, 1 \mathrm{H}), 6.82-$ $6.85(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.39(\mathrm{~m}, 10 \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right)$ $\delta 20.0\left(t^{\prime}\right), 34.6$ (t'), 56.3 (q'), 61.8 (q'), 63.6 (t'), 71.1 (t'), 72.7 (t'), $73.0\left(t^{\prime}\right), 111.4\left(d^{\prime}\right), 116.1$ (t'), 124.9 $\left(s^{\prime}\right), 127.6\left(d^{\prime}\right), 127.7\left(d^{\prime}\right), 127.8\left(d^{\prime}\right), 128.1\left(d^{\prime}\right), 128.5$ (d'), 128.55 (d'), 133.6 (s'), $134.0\left(s^{\prime}\right), 137.5$ (d'), 139.4
(s'), $151.2\left(s^{\prime}\right), 155.0$ (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{O}_{4} 432.23007$, found 432.23005 .
(Z)- and (E)-1,4-Dimethoxy-3-[2-(phenylmethoxy)-ethyl]-2-[(phenylmethoxy)methyl]-5-(1-propenyl)benzene (91).

$\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(10.0 \mathrm{mg})$ was added to a stirred solution of olefin 90 ($313.3 \mathrm{mg}, 0.725 \mathrm{mmol}$) in dry 5:1 PhMe-MeOH (3 mi). The mixture was refluxed for 3 h , cooled and evaporated. Flash chromatography of the residue over silica gel (2 x 20 cm), using 1:3 EtOAC-hexane, gave an inseparable mixture of isomeric olefins 91 ($278.0 \mathrm{mg}, 89 \%$) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.96-$ $1.98(\mathrm{~m}, ~ 3 \mathrm{H}), 3.00-3.12(\mathrm{~m}, 2 \mathrm{H}), 3.55-3.60(\mathrm{~m}, 2 \mathrm{H}), 3.64$ $(\mathrm{s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.40-4.62(\mathrm{~m}, ~ 6 \mathrm{H}), 6.20-6.29$ ($\mathrm{m}, 1$ H), 6.61-6.70 (m, 1 H), 6.82-6.86 (m, 1 H), 7.23-7.39 (m, 10 $\mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100 \mathrm{MHz}\right) \delta$ (major isomer) 17.0 (q'), 29.4 (t'), 55.8 (q'), $63.5\left(q^{\prime}\right), 65.1\left(t^{\prime}\right), 67.5\left(t^{\prime}\right), 72.6\left(t^{\prime}\right)$, 74.5 (t'), 108.5 (d'), $125.5\left(s^{\prime}\right), 127.7$ (d'), $128.9\left(d^{\prime}\right)$, 129.2 (d'), 129.4 (d'), 129.6 (d'), 133.2 (s'), 135.2 (s'), 140.9 (s'), $151.9\left(s^{\prime}\right), 156.6$ (s'); exact mass m/z calcd for

2, 5-Dimethoxy-3-[2-(phenylmethoxy)ethyl]-4[(phenylmethoxy)methyl]benzaldehyde (92).

Ozonized oxygen was bubbled through a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of olefin $91(272.0 \mathrm{mg}, 0.629 \mathrm{mmol})$ and Sudan II red (1 mg) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ [protection from moisture (Drierite)]. When all of the starting material had been consumed (ca 10 min, discharge of the red color, and TLC control, silica, 2:3 EtOAc-hexane), the solution was purged with oxygen for 10 min . $\mathrm{Ph}_{3} \mathrm{P}(3.30 .0 \mathrm{mg}, 1.258 \mathrm{mmol})$ was added, the cold bath was removed, and stirring. was continued for 2 h , by which time the mixture had attained room temperature. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 18 cm), using 1:4 EtOAC-hexane, gave 92 ($200 \mathrm{mg}, 76 \%$) as a pure oil; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1686 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 3.11$ (t, J $=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $3.63(\mathrm{t}, \mathcal{J}=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.85$ (s, 3 H), 3.87 ($\mathrm{s}, 3 \mathrm{H}), 4.45(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.68$ (s, 2 $\mathrm{H}), 7.18-7.48(\mathrm{~m}, 11 \mathrm{H}), 10.31(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}\right.$, 100.6 MHz) $\delta 27.5$ (t'), 56.4 (q'), 63.5 (t'), 65.4 (q'), 70.7
(t'), 73.1 (t'), 73.2 (t'), 107.4 (d'), 127.76 (d'), 127.84 $\left(d^{\prime}\right), 127.9\left(d^{\prime}\right), 128.2\left(d^{\prime}\right), 128.6\left(d^{\prime}\right), 129.5\left(s^{\prime}\right), 134.2$ $\left(s^{\prime}\right), 135.6\left(s^{\prime}\right), 139.0\left(s^{\prime}\right), 139.1\left(s^{\prime}\right), 155.4\left(s^{\prime}\right), 157.1$ $\left(s^{\prime}\right), 189.9\left(d^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{28} \mathrm{O}_{5} 420.19366$, found 420.19419.

Methyl 3-Hydroxy-3-[2,5-dimethoxy-3-[2-(phenyl-methoxy)ethyl]-4-[(phenylmethoxy)methyl]phenyl]-2methylpropanoate (93).

BuLi (2.5 M in hexanes, $0.17 \mathrm{~mL}, 0.4 \mathrm{mmol}$) was added dropwise to a stirred and cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of $i-\mathrm{Pr}_{2} \mathrm{NH}$ (60.6 $\mu \mathrm{L}, 0.43 \mathrm{mmol})$ in THF (0.4 mL). After 15 min , methyl propionate $(35.0 \mathrm{mg}, 38.2 \mu \mathrm{~L}, 0.40 \mathrm{mmol})$ was added dropwise, and stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 30 min . The resulting enolate solution was taken up into a syringe and added dropwise to a stirred room temperature solution of aldehyde 92 (200.0 mg, 0.476 mmol) in dry THF (0.2 m山). The reaction mixture was stirred for 30 min , diluted with water (10 mL), and extracted with EtOAc ($4 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica
gel (2 x 27 cm), using 15:85 EtOAc-hexane, gave an inseparable mixture of alcohols 93 (135.5 mg, 68\%, 78\% corrected for recovered starting material) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $3453 \mathrm{~cm}{ }^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta$ $1.0(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 2.80-3.15(\mathrm{~m}, 3 \mathrm{H}), 3.50-3.62(\mathrm{~m}, 2$ H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.40-4.65$ (m, 5 H), 5.15-5.18 (m, 1 H), $5.28(\mathrm{~s}, 2 \mathrm{H}), 6.8(\mathrm{~s}, 1 \mathrm{H})$, 7.22-7.40 (m, 10 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 14.6$ (q'), 15.5 (q'), $28.0\left(t^{\prime}\right), 47.1$ (d'), 52.1 (d'), 56.3 (d'), 61.5 (d'), 62.6 (d'), 63.5 (t'), 66.1 (t'), 69.3 (d'), 71.0 (t'), 71.1 (d'), $72.9\left(t^{\prime}\right), 73.0(t '), 108.0(d '), 108.8\left(d^{\prime}\right)$, 126.7 (s'), 127.7 (d'), 127.8 (d'), 127.84 (d'), 128.2 (d'), 128.6 (d'), 134.0 (s'), 135.6 (s'), 139.3 (s'), $151.0\left(s^{\prime}\right)$, 155.5 (s'), 176.5 (s'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{3} \mathrm{HH}_{3} 6 \mathrm{NaO}_{7}(\mathrm{M}+\mathrm{Na})$ 531.23587, found 531.23548.

> 1-[4-Ethoxymethyl-2,5-dimethoxy-3-[2-(phenyl- methoxy) ethyllphenyl]-2-methyl-2-propen-1-ol (104) and 1-[2,5-Dimethoxy-3-[2-(phenylmethoxy)ethyl]-4-[(phenylmethoxy)methyl]phenyl]-2-methyl-2-propen-1-ol (105).

92

104

105

Isopropenylmagnesium bromide $(1.0 \mathrm{M}$ in $\mathrm{THF}, 0.4 \mathrm{~mL}, 0.2$ mmol) was added dropwise to a stirred and cooled ($-10{ }^{\circ} \mathrm{C}$) solution of aldehyde $92(59.6 \mathrm{mg}, 0.14 \mathrm{mmol})$ in $E t_{2} \mathrm{O}(2.5$ $\mathrm{mL})$. The mixture was stirred for 2 h , and then quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(2 \mathrm{~mL})$. The organic extract was washed with water (5 mL), and the combined aqueous phases were extracted with $E t_{2} O(2 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated:" Flash chromatography of the residue over silica gel (2 x 18 cm), using 1:4 EtOAc-hexane, gave alcohols 104 (24.8 mg, 44\%) and 105 ($12.0 \mathrm{mg}, 18 \%$). Compound 104 had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3425 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.12$ (t, J = $7 \mathrm{~Hz}, 3 \mathrm{H}), 1.67(\mathrm{~s}, 3 \mathrm{H}), 2.28(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, 3.05 (t, J $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{q}, \mathcal{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62$ (t, J $=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72$ ($\mathrm{s}, 3 \mathrm{H}$), 3.78 (s, 3 H), 4.45 (m, $4 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~m}, 1 \mathrm{H}), 6.78(\mathrm{~s}, 1$ H), $7.21-7.38(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.4$ (q'), 19.5 (q'), $27.9\left(t^{\prime}\right), 56.3\left(q^{\prime}\right), 62.6$ (q'), 63.5 (t'), 66.0 (t'), 71.0 (t'), 72.2 (d'), 72.8 (t'), $73.0(t '), 108.6(d ')$, $111.0\left(s^{\prime}\right), 126.6\left(s^{\prime}\right), 127.7\left(d^{\prime}\right), 127.8(d '), 128.1(d ')$, 128.5 (d'), $133.9\left(s^{\prime}\right), 136.0\left(s^{\prime}\right), 139.3\left(s^{\prime}\right), 147.2\left(s^{\prime}\right)$, 151.6 (s'), 155.3 (s'); exact mass m/z calcd for $\mathrm{C}_{24} \mathrm{H}_{32} \mathrm{O}_{5}$ 400.22498, found 400.22517.

Compound 105 had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3405 \mathrm{~cm}^{-1} ; \mathrm{I}_{\mathrm{H}} \mathrm{NMR}$ $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.65(\mathrm{~s}, 3 \mathrm{H}), 2.23(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}, 1 \mathrm{H})$, $3.05(t, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{t}, J=9.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.72$ (s, 3 H), 3.78 (s, 3 H), $4.45(\mathrm{~s}, 2 \mathrm{H}), 4.52(\mathrm{~s}, 2 \mathrm{H}), 4.61$
$(\mathrm{s}, 2 \mathrm{H}), 5.00(\mathrm{~m}, 1 \mathrm{H}), 5.18(\mathrm{~m}, 1 \mathrm{H}), 5.41(\mathrm{~d}, \mathrm{~J}=4.5 \mathrm{~Hz}$, $1 \mathrm{H}), 6.71(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.38(\mathrm{~m}, 10 \mathrm{H})$; exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{2} 9 \mathrm{H}_{34} \mathrm{NaO}_{5}(\mathrm{M}+\mathrm{Na}) 485.23039$, found 485.23056.

2-Methyl-1-[4-(ethoxymethyl)-2,5-dimethoxy-3-[2(phenylmethoxy) ethyl]phenyllpropenone (106).

A mixture of $P C C(18.7 \mathrm{mg}, 0.09 \mathrm{mmol})$ and powdered $4 \AA$ molecular sieves (9.0 mg) was added to a stirred solution of alcohol $105(24.8 \mathrm{mg}, 0.01 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. Stirring was continued for 1 h , by which time oxidation was complete (TLC control, silica, 1:3 EtOAc-hexane). The mixture was applied directly to a column ($1 \times 15 \mathrm{~cm}$) of silica gel, and the column was developed, using $1: 4$ EtOAchexane, to give ketone $106\left(22.0 \mathrm{mg}, 89 \%\right.$) as a pure (${ }^{1} \mathrm{H}$ NMR, $300 \mathrm{MHz})$, colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $2971 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (CDCl3, 400 MHz$) \delta 1.19(\mathrm{t}, \mathrm{J}=7 \mathrm{~Hz}, 3 \mathrm{H}), 2.02(\mathrm{~s}, 3 \mathrm{H})$, $3.05(\mathrm{t}, \mathrm{J}=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.55(\mathrm{q}, \mathrm{J}=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.6$ (s, $3 \mathrm{H}), 3.62(\mathrm{t}, \mathrm{J}=7.9 \mathrm{~Hz}, 2 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 4.48-4.62$ (m, $4 \mathrm{H}), 5.62(\mathrm{~s}, 1 \mathrm{H}), 5.95(\mathrm{~s}, 1 \mathrm{H}), 6.62(\mathrm{~s}, 1 \mathrm{H}), 7.21-7.38$ (m, 5 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 15.4$ (q^{\prime}), 17.3 (q^{\prime}),

```
27.8 (t'), 56.4 (q'), 62.9 (q'), 63.4 (t'), 66.2 (t'), 70.8
(t'), 73.0 (t'), 109.8 (d'), 127.7 (d'), 127.8 (d'), 128.6
(d'), 129.1 (s'), 130.0 (t'), 133.3 (s'), 134.3 (s'), 139.3
(s'), 144.9 (s'), 150.6 (s'), 154.1 (s'), 198.3 (s'); exact
mass (HR electrospray) m/z calcd for C24H30NaO5 (M + Na)
421.19909, found 421.19876.
```

2, 3, 7, 8-Tetrahydro-5H-4,9-dimethoxy-2-methyl-6-
oxacyclopenta[b]naphthalen-1-one (107).

Ketone 106 (10.0 mg, 0.03 mmol) was dissolved.in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.1 \mathrm{~mL})$ and the solution was stirred for 6 h. The resulting dark brown solution was diluted with water (1 mL) and extracted with EtOAC (3 x 2 mL). The combined organic extracts were washed with water (2 mL) and brine (2 $\mathrm{mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel ($1 \times 8 \mathrm{~cm}$), using 1:4 EtOAchexane, gave 107 ($5.7 \mathrm{mg}, 86 \%$) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), white solid: mp $123{ }^{\circ} \mathrm{C} ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1706 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.25(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.60-2.71(\mathrm{~m}, 2$ H), $2.81(t, J=5.7 \mathrm{~Hz}, 2 \mathrm{H}), 3.38(\mathrm{q}, J=8.8 \mathrm{~Hz}, 1 \mathrm{H})$, $3.80(s, 3 \mathrm{H}), 3.86(\mathrm{t}, \mathrm{J}=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 4.81$
(s, 2 H$) ;{ }^{13} \mathrm{C}$ NMR (CDCl3, 100.6 MHz$) \delta 16.5$ (q'), 22.9 (t'), 31.7 (t'), $42.4\left(d^{\prime}\right), 59.8\left(q^{\prime}\right), 61.4\left(q^{\prime}\right), 64.6\left(d^{\prime}\right), 64.7$ $\left(d^{\prime}\right), 126.8\left(s^{\prime}\right), 127.4\left(s^{\prime}\right), 136.3\left(s^{\prime}\right), 142.2\left(s^{\prime}\right), 148.4$ (s^{\prime}), $152.0\left(s^{\prime}\right), 206.0\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}) 285.11028$, found 285.10978.

5, 8-Dimethoxy-6-(2-propenyl)isochroman-3-one
(80).

A mixture of PCC ($54.5 \mathrm{mg}, 0.25 \mathrm{mmol}$) and powdered $4 \AA$ molecular sieves (40.0 mg) was added to a stirred solution of alcohol $79(50.6 \mathrm{mg}, 0.20 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. Stirring was continued for 12 h , at which point some starting material still remained (TLC control, silica, 1:1 EtOAchexane). An additional portion of PCC (54.5 mg, 0.25 mmol$)$ was added and stirring was continued for 1 h . The solvent was evaporated to approximately 0.5 mL and the resulting slurry was filtered through a pad (5 x 3 cm) of silica gel and washed with $1: 1$ EtOAc-hexane (5 mL), until all the product had been eluted (TLC control, silica, 1:1 EtOAchexane). Evaporation of the solvent and flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using $2: 3$ EtOAc-
hexane, gave lactone $80(46.8 \mathrm{mg}, 93 \%)$ as a pure (${ }^{1} \mathrm{H}$ NMR, 400 $\mathrm{MHz})$, white solid: ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 200 \mathrm{MHz}\right) \delta 3.42(\mathrm{~d}, \mathrm{~J}=6$ $\mathrm{Hz}, 2 \mathrm{H}), 3.68(\mathrm{~s}, \mathrm{br}, 5 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 5.04-5.17$ (m, 2 H), $5.36(\mathrm{~s}, 2 \mathrm{H}), 5.85-6.07(\mathrm{~m}, 1 \mathrm{H}), 6.63(\mathrm{~s}, 1 \mathrm{H})$.
(Z)- and (E)-5,8-Dimethoxy-6-(1-propenyl)isochro-man-3-one (82).

$\mathrm{RhCl}_{3} \cdot 3 \mathrm{H}_{2} \mathrm{O}(6.0 \mathrm{mg})$ was added to a stirred solution of olefin 80 ($45.0 \mathrm{mg}, 0.18 \mathrm{mmol})$ in dry $4: 1 \mathrm{PhMe-EtOH}$ (2 mL). The mixture was refluxed for $10 \mathrm{~h}, \mathrm{cooled}$ and evaporated. Flash chromatography of the residue over silica gel (1 x 15 cm), using 1:1 EtOAC-hexane, gave an inseparable mixture of isomeric olefins 82 ($23.0 \mathrm{mg}, 50 \%$) as a white solid. The trans isomer had: $1_{\mathrm{H}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.84$ (dd, $J=$ $7.0,1.8 \mathrm{~Hz}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 2 \mathrm{H}), 3.82(\mathrm{~s}, 3$ H), $5.37(\mathrm{~s}, 2 \mathrm{H}), 5.86-5.96(\mathrm{~m}, \mathrm{I} \mathrm{H}), 6.49-6.58(\mathrm{~m}, \mathrm{I} \mathrm{H})$, $6.70(\mathrm{~s}, 1 \mathrm{H})$.

The cis isomer had: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 300 \mathrm{MHz}\right) \delta 1.94$ (dd, $J=6.6,1.7 \mathrm{~Hz}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 3.70(\mathrm{~s}, 2 \mathrm{H}), 3.84(\mathrm{~s}$, $3 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 6.22-6.34(\mathrm{~m}, 1 \mathrm{H}), 6.58-6.67(\mathrm{~m}, 1 \mathrm{H})$, 6.85 ($\mathrm{s}, 1 \mathrm{H}$).

```
    3-Hydroxy-3-[2,5-dimethoxy-3-[2-(pHenylmethoxy) -
ethyl]-4-[(phenylmethoxy)methyl]phenyl]-2-methylpro- panoic acid (94).
```


Coarsely powdered $\mathrm{KOH}(15.0 \mathrm{mg}, 0.27 \mathrm{mrmol}$) was added to a swirled solution of ester $93(45.0 \mathrm{mg}, 0.09 \mathrm{mmol})$ in MeOH (0.25 mL) and water (0.1 mL). The reaction mixture was allowed to stand undisturbed for 12 h and then neutralized with 10% aqueous hydrochloric acid. The a\&queous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2.5 \mathrm{~mL})$, and the combined organic extracts were washed with water $(2.5 \mathrm{~mL})$ and brine, and dried (MgSO_{4}). Evaporation of the solvent gave 9.4 (39.2 mg, 90\%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.08(\mathrm{~d}, \mathrm{~J}=6$ $\mathrm{Hz}, 3 \mathrm{H}), 2.91-3.15(\mathrm{~m}, 2 \mathrm{H}), 3.50-3.74(\mathrm{~m}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 3$ H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 4.47-4.63(\mathrm{~m}, ~ 6 . \mathrm{H}), 5.42(\mathrm{~d}, \mathrm{~J}=2.7 \mathrm{~Hz}, 1$ H), 6.98-7.02 (m, 1 H), 7.21-7.40 (m, 10 H).

3-Bromo-2-(1, 3-dioxolan-2-YI)-4-methoxy-1-
benzenol (64).

61
64

Aldehyde 61 (509.0 mg, 2.200 mmol), ethylene glycol (273.1 mg, 4.4 mmol), and TsOH. $2 \mathrm{H}_{2} \mathrm{O}$ (10.0 mg) were dissolved in dry PhH (15 mu). The reaction Elask was attached to a Dean-Stark apparatus fitted with a condenser, and the reaction mixture was refluxed (oil bath at $125^{\circ} \mathrm{C}$) for 10 h , and cooled to room temperature. Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 18 cm), using (1:3) EtOAc-hexane, gave $61(40 \mathrm{mg}, 8 \%)$ and 64 ($462.2 \mathrm{mg}, 76 \%$ or 84% based on conversion) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), pale yellow solid: ${ }^{1} \mathrm{H}$ NMR (400 MHz) $\delta 3.8$ (s, 3 H), 4.05-4.15 (m, 2 H), 4.20-4.25 (m, 2 H), 6.18 (s, 1 H), 6.80 $(d, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.91(\mathrm{~d}, \mathcal{J}=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.42$ (s, 1 $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 57.4\left(\mathrm{q}^{\prime}\right), 65.3$ (t'), 105.8 $\left(d^{\prime}\right), 114.0\left(s^{\prime}\right), 115.1\left(d^{\prime}\right), 117.1\left(d^{\prime}\right), 119.3\left(s^{\prime}\right), 149.9$ (s^{\prime}), 151.9 (s^{\prime}). Anal. Calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{BrO}_{4}: \mathrm{C} 43.66$, H 4.03. Found: C 43.5083, H 3.93.

Methyl 2-Bromo-3,6-dimethoxybenzoate (40) and

Methyl 2,4-Dibromo-3,6-dimethoxybenzoate (56).

Oven-dried ($110{ }^{\circ} \mathrm{C}$), anhydrous $\mathrm{CuBr}_{2}(397.2 \mathrm{mg}, 1.778$ mmol), was placed in a flask fitted with a condenser. Freshly distilled MeCN (4.5 mL) was added with stirring, followed by isoamyl nitrite $(0.30 \mathrm{~mL}, 2.22 \mathrm{mmol})$, and the resulting green solution was stirred and warmed at $65^{\circ} \mathrm{C}$. A solution of amine $54(312.7 \mathrm{mg}, 1.482 \mathrm{mmol})$ in MeCN (0.75 mL) was added dropwise, resulting in a brown solution and effervescence. After bubbling had subsided (ca 5 min), the mixture was allowed to cool to room temperature, and extracted with $E t_{2} O$ (2 x 20 mL$)$. The combined organic extracts were washed with 20% aqueous hydrochloric acid (10 $\mathrm{mL})$, water (10 mL) and brine, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Evaporation of the solvent and flash chromatography of the residue over silica gel (2 x 20 cm), using I:I EtoAc-hexane, gave dibromide 56 (368.2 mg, 70\%) and the desired monobromide 40 (40.7 mg, 10\%). The dibromide had: mp 56-57 ${ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1740 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}) \delta 3.81(\mathrm{~s}, 3 \mathrm{H}), 3.91$ (m, 3 H), $4.00(\mathrm{~m}, 3 \mathrm{H}), 7.15(\mathrm{~s}, 1 \mathrm{H})$; exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{10 \mathrm{H}} \mathrm{H}_{10}{ }^{79} \mathrm{Br}_{2} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na})$
374.88435, found 374.8842. The monobromide data were the same as those reported before.

3-Ethoxy-5,8-dimethoxy-6-(2-propenyl)isochroman

(87) and 3-[(2,2-Diethoxyethyl]-2-(ethoxymethyl)-1,4-dimethoxy-5-(2-propenyl)benzene (88).

Ethanolic $\mathrm{HCl}(0.20 \mathrm{~mL})$ was added to a stirred solution of enol ethers 78 ($50.0 \mathrm{mg}, 0.19 \mathrm{mmol})$. Stirring was continued for 12 h and the mixture was neutralized with saturated aqueous NaHCO_{3}. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with water (10 mL) and brine, and dried ($\mathrm{Na}_{2} \mathrm{SO}_{4}$). Evaporation of the solvent and flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave acetal 87 ($21.0 \mathrm{mg}, 40 \%$) and acetal 88 (27.0 mg, 42\%). Compound 87 had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; ${ }_{1} \mathrm{H}$ NMR $(300 \mathrm{MHz}) \delta 1.21(t, \mathcal{J}=6.8 \mathrm{~Hz}, 3 \mathrm{H}), 2.70-2.98(\mathrm{~m}, 2 \mathrm{H})$, $3.38(\mathrm{~d}, \mathrm{~J}=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.51-3.61(\mathrm{~m}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H})$, 3.75 ($\mathrm{s}, 3 \mathrm{H}), 3.78-3.90(\mathrm{~m}, ~ 1 \mathrm{H}), 4.65(\mathrm{~s}, 2 \mathrm{H}), 4.98$ (t, J $=4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.05-5.12(\mathrm{~m}, 2 \mathrm{H}), 5.91-6.05(\mathrm{~m}, 1 \mathrm{H}), 6.51$ (s, 1 H); exact mass (HR electrospray) m/z calcd for
$\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{4}(\mathrm{M}+\mathrm{Na}) 301.14158$, found 301.14190 .
Compound 88 had: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) unexceptional; I_{H} $\operatorname{NMR}(300 \mathrm{MHz}) \delta 0.75(\mathrm{t}, \mathrm{J}=6 \mathrm{~Hz}, 3 \mathrm{H}, 2$ peaks), 1.18 (t, J $=6 \mathrm{~Hz}, 3 \mathrm{H}), 3.05(\mathrm{~d}, J=6 \mathrm{~Hz}, 2 \mathrm{H}), 3.31-3.65(\mathrm{~m}, ~ 8 \mathrm{H})$, $3.70(\mathrm{~s}, 2 \mathrm{H}), 3.75(\mathrm{~s}, 2 \mathrm{H}), 4.55(\mathrm{~s}, 2 \mathrm{H}), 4.71(\mathrm{t}, \mathrm{J}=3$ $\mathrm{Hz}, 1 \mathrm{H}), 5.05-5.18(\mathrm{~m}, 2 \mathrm{H}), 5.85-6.15(\mathrm{~m}, ~ 1 \mathrm{H}), 6.6(\mathrm{~s}, \mathrm{I}$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 15.5$ (q'), 15.54 (q'), 32.65 (t'), 34.7 (t'), $56.4\left(q^{\prime}\right), 61.55\left(q^{\prime}\right), 63.7\left(t^{\prime}\right), 66.0\left(t^{\prime}\right)$, 104.4 (d'), 111.7 (d'), $116.0\left(t^{\prime}\right), 125.8\left(s^{\prime}\right), 132.6\left(s^{\prime}\right)$, 133.5 (s'), 137.65 (d'), 151.44 (s'), 154.9 (s'); exact mass m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{O}_{5} 352.22498$, found 352.22476 .

Methyl 3-Hydroxy-3-(2,5-dimethoxyphenyl)-2methylpropanoate (96).

BuLi (2.5 M in hexanes, $3.9 \mathrm{~mL}, 9.8 \mathrm{mmol}$) was added dropwise to a stirred and cooled (-78 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of i-Pr2NH (0.15 mL, $1.45 \mathrm{~g}, 10.3 \mathrm{mmol})$ in THF (9.3 mL). After 15 min , Ereshly distilled methyl propionate $(828 \mathrm{mg}, 0.90 \mathrm{~mL}, 9.39$ mmol) in THF (2.5 mL) was added dropwise, and stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 40 min . The resulting enolate solution was taken up into a syringe and added at a fast
dropwise rate to a stirred solution of 2,5dimethoxybenzaldehyde (1.871 g, 11.27 mmol) in dry THF (2.5 $\mathrm{mL})$. Stirring was continued for 45 min , and the mixture was diluted with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ (10 mL), and extracted with EtOAc ($4 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (2.5 x 18 cm), using 1:4 EtOAc-hexane, gave a mixture of diastereomeric alcohols 96 (2.299 g, 80\%) as a colorless oil. The material was used directly for the nest step, without characterization.

Methyl 3-Bromo-3-(2,5-dimethoxyphenyl)-2-methylpropanoate (97).

96

97
$\mathrm{Ph}_{3} \mathrm{P}$ ($870.9 \mathrm{mg}, 3.320 \mathrm{mmol}$) was added to a stirred solution of alcohols $96(421.7 \mathrm{mg}, 1.660 \mathrm{mmol})$ in MeCN (12 $\mathrm{mL})$. After 5 min a homogenous mixture was obtained, and 2,6lutidine ($17.2 \mathrm{mg}, 19.4 \mathrm{~mL}, 0.17 \mathrm{mmol}$) was added, followed by CBr_{4} (1.101 g, 3.320 mmol). The resulting orange solution was stirred for 45 min , poured into saturated aqueous NaHCO_{3} (10 mL) and extracted with $E t_{2} \mathrm{O}(3 \mathrm{x} 20 \mathrm{~mL})$. The combined
organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (2.5 x 12 cm), using (1:4 EtOAc-hexane), gave 97 ($240.1 \mathrm{mg}, 45 \%$) as a pale brown oil that was a 3:2 mixture of diastereomers. 1_{H} NMR measurements and TLC examination showed that this product undergoes slight decomposition on contact with silica gel. The material, which was used directly for stannane reduction without full characterization, had: 1_{H} NMR (minor diastereomer) $\delta 1.01(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.41-3.50(\mathrm{~m}, 1$ H), $3.51(s, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.55(\mathrm{~d}, \mathrm{~J}=$ 12.0 $\mathrm{Hz}, \quad 1 \mathrm{H}), 6.91-7.15(\mathrm{~m}, \quad 3 \mathrm{H}) ; \quad 1 \mathrm{H}$ NMR (major diastereomer) $\delta 1.41(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.21-3.39(\mathrm{~m}, 1$ $\mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 5.65(\mathrm{~d}, \mathrm{~J}=$ $12.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.88(\mathrm{~m}, 3 \mathrm{H})$.

Methyl 3-(2,5-Dimethoxyphenyl)-2-methylpropanoate (98).

Bu_s $\mathrm{SH}(0.24 \mathrm{~mJ}, 0.91 \mathrm{mmol})$ and AIBN (10.0 mg) were added to a solution of bromide $97(240.1 \mathrm{mg}, 0.758 \mathrm{mmol})$ in $\mathrm{PhH}(10 \mathrm{~mJ})$, and the mixture was refluxed and stirred for 2 h. Evaporation of the solvent and flash chromatography of

```
the residue over silica gel (1.5 x 12 cm), using 1:9 EtOAc-
hexane, gave 98 (216-1 mg, 100%) as a colorless oil
containing inseparable tin residues: FTIR ( }\mp@subsup{\textrm{CH}}{2}{}\mp@subsup{\textrm{Cl}}{2}{}\mathrm{ cast) }173
cm-1; 1'H NMR (400 MHz) \delta 1.51 (d, J = 7 Hz, 3 H), 2.75 (dd, J
= 13.2, 7.6 Hz, 1 H), 2.86 (sextet, J = 7 Hz, 1 H), 3.01 (dd,
J = 13.2, 6.7 Hz, 1 H), 3.61 (s, 3 H), 3.76 (s, 3 H), 3.78
```



```
17.1 (q'), 34.9 (t'), 39.9 (d'), 51.6 (q'), 55.9 (q'), 56.1
(q'), 111.5 (d'), 111.9 (d'), 117.4 (d'), 129.3 (s'), 152.3
(s'), 153.7 (s'), 176.9 (s'); exact mass m/z calcd for
C13H18O4 238.12051, found 238.11999.
```

Methyl 3-Chloro-3-(2,5-dimethoxyphenyl)-2-methylpropanoate (99).

$E t_{3} \mathrm{~N}$ ($0.21 \mathrm{~mL}, 1.51 \mathrm{mmol}$) was added to a stirred solution of alcohol $96(255.7 \mathrm{mg}, 1.007 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (10 $\mathrm{mL}) . \mathrm{SOCl}_{2}(180 \mathrm{mg}, 0.11 \mathrm{~mL}, 0.17 \mathrm{mmol})$ was added dropwise and stirring was continued for 1 h . The mixture was poured into saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$ and extracted with $\mathrm{Et}_{2} \mathrm{O}$ (3 x 10 mL). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue
over silica gel ($2.5 \times 12 \mathrm{~cm}$), using (1:4 EtOAC-hexane), gave 99 (253.0 mg, 93\%) as a colorless oil. The material was a 3:2 diastereomeric mixture. The minor diastereomer had: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1739 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}) \delta 0.98(\mathrm{~d}, \mathrm{~J}=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.12-3.25(\mathrm{~m}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.78$ (s, 3 H), $3.82(\mathrm{~s}, 3 \mathrm{H}), 5.12(\mathrm{~d}, \mathrm{~J}=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.91-7.15(\mathrm{~m}$, $3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 15.8$ (q'), 48.7 (d'), 52.2 (d^{\prime}), $56.0\left(\mathrm{q}^{\prime}\right), 56.55\left(\mathrm{q}^{\prime}\right), 58.0\left(\mathrm{q}^{\prime}\right), 112.7\left(\mathrm{~d}^{\prime}\right), 114.5$ (d'), $115.0\left(\mathrm{~d}^{\prime}\right), 128.1\left(\mathrm{~s}^{\prime}\right), 151.4\left(\mathrm{~s}^{\prime}\right), 154.2\left(\mathrm{~s}^{\prime}\right), 174.7$ (s'); exact mass m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{35} \mathrm{ClO}_{4} 272.08383$, found 272.08096.

The major diastereomer had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1739 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(300 \mathrm{MHz}) \delta 1.28(\mathrm{~d}, \mathrm{~J}=6.0 \mathrm{~Hz}, 3 \mathrm{H}), 3.12-3.25(\mathrm{~m}$, $1 \mathrm{H}), 3.61(\mathrm{~s}, 3 \mathrm{H}), 3.79(\mathrm{~s}, 3 \mathrm{H}), 3.87(\mathrm{~s}, 3 \mathrm{H}), 5.71(\mathrm{~d}, \mathrm{~J}$ $=10.7 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.86(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13 \mathrm{C}} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5\right.$ $\mathrm{MHz}) \delta 13.1\left(\mathrm{q}^{\prime}\right), 46.0\left(\mathrm{~d}^{\prime}\right), 52.1\left(\mathrm{~d}^{\prime}\right), 56.0\left(\mathrm{q}^{\prime}\right), 56.5\left(\mathrm{q}^{\prime}\right)$, 59.5 (q'), $112.2\left(d^{\prime}\right), 114.2\left(d^{\prime}\right), 115.0\left(d^{\prime}\right), 129.1\left(d^{\prime}\right)$, 150.5 (s'), $153.9\left(s^{\prime}\right), 173.5$ (s'); exact mass m/z calcd for $\mathrm{C}_{13} \mathrm{H}_{17}{ }^{35} \mathrm{ClO}_{4} 272.08383$, found 272.08096 .

Methyl 3-(2,5-dimethoxyphenyl)-2-methylpropanoate (98).

Bu ${ }_{3} \mathrm{SnH}(0.30 \mathrm{~mL}, 1.12 \mathrm{mmol})$ and AIBN (12.0 mg) were added to a solution of chloride $96(253.3 \mathrm{mg}, 0.930 \mathrm{mmol})$ in dry $\mathrm{PhH}(20 \mathrm{~mL})$, and the mixture was refluxed with stirring for 2 h . Evaporation of the solvent and flash chromatography of the residue over silica gel (1.5 x 12 cm), using $1: 6$ EtOAc-hexane, gave 98 (213.1 mg, 89\%) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1735 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}) \delta 1.51(\mathrm{~d}, \mathrm{~J}=$ $7 \mathrm{~Hz}, 3 \mathrm{H}), 2.75(\mathrm{dd}, \mathcal{J}=13.2,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (sextet, J $=7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, J=13.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~s}, 3$ H), $3.76(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.66-6.70(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 17.1\left(\mathrm{q}^{\prime}\right), 34.9$ (t'), 39.9 (d'), 51.6 $\left(q^{\prime}\right), 55.9\left(q^{\prime}\right), 56.1\left(q^{\prime}\right), 111.5\left(d^{\prime}\right), 111.9\left(d^{\prime}\right), 117.4$ (d'), $129.3\left(s^{\prime}\right), 152.3\left(s^{\prime}\right), 153.7\left(s^{\prime}\right), 176.9\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{18} \mathrm{O}_{4}$ 238.12051, found 238.11999.

3-(2,5-Dimethoxyphenyl)-2-methylpropanoic acid (100).

Coarsely powdered $\mathrm{KOH}(58.2 \mathrm{mg}, 1.00 \mathrm{mmol})$ was added to a swirled solution of ester $98(82.2 \mathrm{mg}, 0.35 \mathrm{mmol})$ in MeOH $(1.0 \mathrm{~mL})$ and water $(0.2 \mathrm{~mL})$. The mixture was allowed to
stand undisturbed for 12 h and then neutralized with 10% aqueous hydrochloric acid. The aqueous layer was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were washed with water (10 mL) and brine, and dried (MgSO_{4}). Evaporation of the solvent gave $100(70.0 \mathrm{mg}, 90 \%)$ as a white solid: mp $53{ }^{\circ} \mathrm{C} ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 2938, $1704 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $(400 \mathrm{MHz}) \delta 1.12(\mathrm{~d}, \mathrm{~J}=7.0 \mathrm{~Hz}, 3.0 \mathrm{H}), 2.75(\mathrm{dd}, J=13.2$, $7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.86$ (sextet, $\mathcal{J}=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.01(\mathrm{dd}, \mathcal{J}=$ $13.2,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 6.77-6.70$ $(\mathrm{m}, 3 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 16.7$ (q'), 34.3 (t^{\prime}), $39.4\left(d^{\prime}\right), 55.6\left(q^{\prime}\right), 55.7\left(q^{\prime}\right), 111.1\left(d^{\prime}\right), 111.2\left(d^{\prime}\right)$, $117.2\left(d^{\prime}\right), 128.6\left(s^{\prime}\right), 151.7\left(s^{\prime}\right), 153.25\left(s^{\prime}\right), 182.8\left(s^{\prime}\right) ;$ exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{NaO}_{4}$ ($\mathrm{M}+\mathrm{Na}$) 247.09463, found 247.09458.

4,7-Dimethoxy-2-methylindan-1-one (101).

$\mathrm{P}_{2} \mathrm{O}_{5}(282.0 \mathrm{mg})$ was added to orthophosphoric acid (85\%, d $1.7 \mathrm{~g} / \mathrm{mL}, 0.13 \mathrm{~mL}, 218 \mathrm{mg})$, and the mixture was heated for 30 min (Ar atmosphere) at $200^{\circ} \mathrm{C}$ (oil-bath) in a flask fitted with a reflux condenser and containing a magnetic stirring bar. 33 The mixture was then cooled to room temperature, and
used as follows.
Acid 100 ($34.0 \mathrm{mg}, 0.15 \mathrm{mmol})$ was added to freshly prepared polyphosphoric acid (500.0 mg). The greyish-white reaction mixture was heated to $65{ }^{\circ} \mathrm{C}$ with stirring, at which point it became a yellow solution. Heating was continued for 8 h and the reaction flask was removed from the oil bath and allowed to cool to room temperature. Water (2 ms) was added and the slurry was extracted with EtOAc (3 310 mL$)$, and the combined extracts were washed with water (10 mL) and brine, and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave a white solid. This was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.25 \mathrm{~mL})$ and purified by flash chromatography over silica gel (1 x 8 cm), using 2:3 EtOAc-hexane, to give 101 ($18.9 \mathrm{mg}, 60 \%$) as a pure, white solid: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1707 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}(400 \mathrm{MHz}) \delta 1.24$ $(\mathrm{d}, \mathrm{J}=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.55$ (ddd, J$=17.1,3.7,0.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.60-2.71 (m, 1H), $3.23(\mathrm{dd}, J=17.7,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.82$ (s, $3 \mathrm{H}), 3.86(\mathrm{~s}, 2 \mathrm{H}), 6.82\left(\mathrm{AB}\right.$ q, $\Delta \mathrm{V}_{\mathrm{AB}}=91.0 \mathrm{~Hz}, \mathrm{~J}=8.7 \mathrm{~Hz}$, $2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 100.6 \mathrm{MHz}\right) \delta 16.9$ (q'), 31.3 (t'), 42.1 $\left(d^{\prime}\right), 55.8\left(q^{\prime}\right), 56.0\left(q^{\prime}\right), 109.5\left(d^{\prime}\right), 116.6\left(d^{\prime}\right), 125.5$ $\left(s^{\prime}\right), 144.2\left(s^{\prime}\right), 150.4\left(s^{\prime}\right), 151.9\left(s^{\prime}\right), 207.5\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} 206.09430$, found 206.09475.

1-(2,5-Dimethoxyphenyl)-2-methyl-2-propen-1-o1

(102).

95
102

Isopropenylmagnesium bromide (1.0 M in THF, $3.3 \mathrm{~mL}, 3.3$ mol) was added dropwise to a stirred and cooled ($0{ }^{\circ} \mathrm{C}$) solution of aldehyde $95(500.0 \mathrm{mg}, 3.012 \mathrm{mmol})$ in $E t_{2} \mathrm{O}$ (20 mu). The reaction was followed by TLC (silica, 1:3 EtOAchexane) and, after 2 h , since much (ca 50\%) of the starting material remained unreacted, an additional portion of isopropenylmagnesium bromide ($1.5 \mathrm{~mL}, 1.5 \mathrm{mmol}$) was added. Stirring was continued for an additional 2 h , by which point more of the starting material had been consumed. The reaction was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and the organic phase was washed with water (5 mL). The aqueous layer was extracted with $E t_{2} O(2 \times 20 \mathrm{~mL})$, and the combined organic extracts were washed with brine, dried (MgSO_{4}), and evaporated. Flash chromatography of the residue over silica gel (2 x 18 cm), using $1: 4$ EtOAc-hexane, gave alcohol 102 (375.8 mg, 60\%), along with unreacted starting material (30\%). Alcohol 102 had: $1_{\mathrm{H}} \mathrm{NMR}(400 \mathrm{MHz}) \delta 2.71(\mathrm{~s}, 3 \mathrm{H})$, 2.63 (br s, 1 H$), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.81(\mathrm{~s}, 3 \mathrm{H}), 4.93(\mathrm{~s}, 1$ H), $5.21(\mathrm{~s}, 1 \mathrm{H}), 5.34(\mathrm{~s}, 1 \mathrm{H}), 6.79-6.89(\mathrm{~m}, 3 \mathrm{H}) . \quad{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 19.7\left(\mathrm{q}^{\prime}\right), 55.9\left(\mathrm{q}^{\prime}\right), 56.3\left(\mathrm{q}^{\prime}\right), 73.0$ $\left(d^{\prime}\right), 110.5\left(t^{\prime}\right), 112.3\left(d^{\prime}\right), 113.2\left(d^{\prime}\right), 114.0\left(d^{\prime}\right), 132.0$ (s'), $146.9\left(s^{\prime}\right), 151.6\left(s^{\prime}\right), 154.2\left(s^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{16} \mathrm{O}_{3} 208.10944$, found 208.10938.

2-[2,5-Dimethoxyphenyl] 2-propenyl ketone (103).

A mixture of PCC ($450.7 \mathrm{mg}, 2.091 \mathrm{mmol})$ and powdered $4 \AA$ molecular sieves (100.0 mg) was added to a stirred solution of alcohol 102 ($334.6 \mathrm{mg}, 1.743 \mathrm{mmol}$) in $\mathrm{dry} \mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 mL). Stirring was continued for 1 h , by which time oxidation was complete (TLC control, silica, 1:3 EtOAc-hexane), and the mixture was applied directly to a column (1 x 15 cm) of silica gel. The column was developed using 1:4 EtOAc-hexane, to give ketone 103 (315.0 mg, 95\%) as a pure (${ }^{1} \mathrm{H}$ NMR, 300 MHz), colorless oil which solidified on storage in a refrigerator: $m p 31{ }^{\circ} \mathrm{C} ; \operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1664 \mathrm{~cm}^{-1} ; \delta 2.04$ $(\mathrm{s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 5.65(\mathrm{~m}, 1 \mathrm{H}), 5.92$ $(\mathrm{m}, 1 \mathrm{H}), 6.77-6.91(\mathrm{~m}, 3 \mathrm{H}) ;{ }^{13 \mathrm{C}} \operatorname{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl} \mathrm{I}_{2}, 75.5 \mathrm{MHz}\right) \delta$ $17.12\left(q^{\prime}\right), 55.82\left(q^{\prime}\right), 56.47\left(q^{\prime}\right), 112.96\left(d^{\prime}\right), 114.10\left(d^{\prime}\right)$, 116.35 (d'), 128.93 (t'), 129.97 (s'), 145.00 (s'), 151.04 (s'), $153.24\left(s^{\prime}\right), 198.21$ (s'); exact mass m/z calcd for
$\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{3} 206.09430$, found 206.09449.

4,7-Dimethoxy-2-methylinden-1-one (101).

Ketone 103 (24.8 mg, 0.12 mmol) was dissolved in concentrated $\mathrm{H}_{2} \mathrm{SO}_{4}(0.2 \mathrm{~mL})$ and the mixture was stirred for 24 h. The resulting dark brown solution was diluted with water (1 mL) and extracted with EtOAc (3 x 2 mL). The combined organic extracts were washed with water (2 mL) and brine, dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. Flash chromatography of the residue over silica gel (1 $x 8 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave ketone 101 (16.1 mg, 65\%) as a pure (${ }^{1} \mathrm{H}$ NMR, 360.1), white solid: spectroscopically identical with material obtained previously.

References and footnotes

(1) Becker, U.; Erkel, G.; Anke, T.; Sterner, O. Nat. Prod. Lett. 1997, 9, 229.
(2) Clive, D. L. J.; Cheshire, D. R.; Set, L. J. Chem. Soc., Chem. Commun. 1987, 353.
(3) Pfeffer, P. E.; Silbert, L. S. J. Org. Chem. 1970, 35, 262.
(4) Agawa, T.; Ishida, M.; Ohshiro, Y. Synthesis 1980, 933.
(5) (a) Sakamoto, T.; Kondo, Y.; Miura, N.; Hayashi, K., Yamanaka, H. Heterocycles 1986, 24, 2311. (b) Anderson, P. N.; Sharp, J. T. J. Chem. Soc., Perkin Trans. 1 1980, 1331.
(6) Qian, W.; Bao, W.; Zhang, Y. Synlett 1997, 393.
(7) Friedrich-Bochnitschek, S.; Waldmann, H.; Kunz, H. J. Org. Chem. 1989, 54, 751.
(8) Lipshutz, B. H.; Miller, T. A. Tetrahedron Lett. 1989, 30, 7149.
(9) Li, W.-R.; Ewing, W. R.; Harris, B. D.; Joullié, M. M. J. Am. Chem. Soc. 1990, 112, 7659.
(10) Adam, W.; Baeza, J.; Liu, J.-C. J. Am. Chem. Soc. 1972, 94, 2000.
(11) Back, T. G.; Gladstone, P. L.; Parvez, M. J. Org. Chem. 1996, 61, 3806.
(12) Herradón, B.; Seebach, D. Helv. Chim. Acta 1989, 72, 690.
(13) Stork, G.; Ouerfelli, O. New J. Chem. 1992, 16, 95.
(14) Floyd, M. B., Allen, G. R., Jr. J. Org. Chem. 1970, 35, 2647.
(15) Galatsis, P.; Manwell, J. J.; Blackwell, J. M.; Can. J. Chem. 1994, 72, 1656.
(16) Moufid, N.; Chaleur, Y., Mayon, P. J. Chem. Soc., Perkin Trans. 1 1992, 991.
(17) Rubenstein, L. J. Chem. Soc. 1925, 127, 2002.
(18) Oki, M.; Tanaka, Y.; Yamamoto, G.; Nakamura, N. Bull. Chem. Soc. Jpn. 1983, 56, 302.
(19) a) Ku, H.; Barrio, J. R. J. Org. Chem. 1981, 46, 5239.
(b) Satyamurthy, N.; Barrio, J. R. J. Org. Chem. 1983, 48, 4396 .
(20) Dean, F. M.; Goodchild, J.; Houghton, L. E.; Martin, J. A.; Morton, R. B.; Parton, B.; Price, A. W.; Somvichien, N. Tetrahedron Lett. 1996, 37, 4153.
(21) Martin, S. F.; Garrison, P. J. J. Org. Chem. 1982, 47, 1513.
(22) A similar experiment was done with the 2-methyl-2propenyl ether corresponding to 62:

2-Bromo-3-methoxy-6-(2-methyl-2-propenyloxy) benzaldehyde (A).

Aldehyde 61 ($96.7 \mathrm{mg}, 0.42 \mathrm{mmol}$) in DMF (0.25 mL) was added dropwise to a cooled ($0^{\circ} \mathrm{C}$) slurry of NaH (11.6 $\mathrm{mg}, 0.48 \mathrm{mmol})$ in dry $\operatorname{DMF}(0.5 \mathrm{mI})$. The cold bath was removed, and the bright yellow slurry was stirred for 1 h, and then recooled to $0{ }^{\circ} \mathrm{C}$. 3-Bromo-2-methylpropene (0.84 mL, 0.84 mmol) was added dropwise, the cold bath was removed, and stirring was continued Eor 4 h . The reaction mixture was poured into brine (5 mI) and extracted with $E t_{2} 0(4 \times 5 \mathrm{mI})$. The combined organic extracts were washed with aqueous $\mathrm{KOH}(10 \%, 8 \mathrm{~mL})$ and brine (10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$, and evaporated. The pale yellow crude residue was redissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (0.5 mL) and purified by Elash chromatography over silica gel $(1.5 \times 20 \mathrm{~cm})$, using $1: 4$ EtOAC-hexane, to give $A(95.2$ mg, 80%) as a pure (${ }^{1} \mathrm{H}$ NMR, 400 MHz), white, crystalline solid: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1696 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400\right.$ $\mathrm{MHz}) \delta 1.82(\mathrm{~s}, 3 \mathrm{H}), 3.88(\mathrm{~s}, 3 \mathrm{H}), 4.51(\mathrm{~s}, 2 \mathrm{H})$, 4.99-5.12 (m, 2 H), 7.01 (dd, J $=24.0,6.6 \mathrm{~Hz}, 2 \mathrm{H})$, $10.41(\mathrm{~S}, \mathrm{I} \mathrm{H}) ;{ }^{13 \mathrm{C}} \mathrm{NMR}\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 19.4$ (q^{\prime}), 57.4 (q'), 73.5 (t'), 113.1 (t'), 113.4 (d'), 113.8 $\left(s^{\prime}\right), 117.4\left(s^{\prime}\right), 125.8\left(s^{\prime}\right), 151.1\left(s^{\prime}\right), 154.8\left(s^{\prime}\right)$, 190.7 (d'); exact mass (HR electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrNaO}_{3}(\mathrm{M}+\mathrm{Na}) 306.99457$, found 306.99436.

2-Bromo-6-hydroxy-3-methoxy-5-(2-methy1-2-propenyl)benzaldehyde (B).

A solution of aldehyde $A(51.0 \mathrm{mg}, 0.18$ mol) in degassed decalin (0.75 mL) was refluxed under Ar for 6.5 h and then cooled to room temperature. Flash chromatography of the mixture (without evaporation of the solvent) over silica gel (1 x 15 cm), using $1: 12$ EtOAc-hexane, gave phenol B (31.2 mg, 61\%) as a pure, yellow oil: $\operatorname{FTIR}\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $1696 \mathrm{~cm}^{-1} ; I_{\mathrm{H}} \mathrm{NMR}$ $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 400 \mathrm{MHz}\right) \delta 1.72(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 2 \mathrm{H}), 3.85$ $(\mathrm{s}, 3 \mathrm{H}), 4.66-4.71(\mathrm{~m}, ~ 1 \mathrm{H}), 4.83-4.86(\mathrm{~m}, ~ 1 \mathrm{H}), 7.13$ $(\mathrm{s}, 1 \mathrm{H}), 10.41(\mathrm{~s}, 1 \mathrm{H}), 11.87(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{2} \mathrm{Cl}_{2}, 75.5 \mathrm{MHz}\right) \delta 22.4\left(\mathrm{~s}^{\prime}\right), 37.1$ (t'), 57.9 (q^{\prime}), 112.4 (t'), $114.0\left(s^{\prime}\right), 117.7\left(s^{\prime}\right), 123.7$ (d'), 129.2 $\left(s^{\prime}\right), 144.0\left(s^{\prime}\right), 149.2\left(s^{\prime}\right), 156.6\left(s^{\prime}\right), 198.8\left(d^{\prime}\right) ;$ exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{13}{ }^{79} \mathrm{BrO}_{3} 284.00479$, found 284.00463.
(23) Rhoads, S. J.; Raulins, N. R. Org. Reacts 1975, 22, 5061.
(24) Walton, R.; Fraser-Reid B. J. Am. Chem. Soc. 1991, 113, 5798.
(25) Negishi, E.-I. In Comprehensive Organometallic Chemistry; Wilkinson, G.; Stone, F. G. A.; Abel, E. W., Eds.; Pergamon: Oxford, 1982, Vol 7, 255
(26) Torii, S.; Inokuchi, T.; Kondo, K. J. Org. Chem. 1985, 50, 4980.
(27) Clive, D. L. J.; Joussef, A. C. J. Org. Chem. 1990, 55, 1096.
(28) Evans, D. A.; Gage, J. R., Leighton, J. L. J. Am. Chem. Soc. 1992, 114, 9435.
(29) Girija, T.; Sathya Shanker, P.; Subba Rao, G. S. R. J. Chem. Soc., Perkin Trans. 1 1991, 1467.
(30) Garofalo, A. W.; Litvak, J.; Wang, L.; Dubenko, L. G.; Cooper, R.; Bierer, D. E. J. Org. Chem. 1999, 64, 3369.
(31) Carter, R. H.; Garson, M. J., Hill, R. A.; Staunton J.; Sunter, D. C. J. Chem. Soc., Perkin Trans. 1 1981, 471.
(32) Larock, R. C. Comprehensive Organic Transformations, 2nd Ed.; Wiley-VCH: New York, 1999.
(33) Encyclopedia of Reagents for Organic Synthesis, Paquette, L. A. Ed.; Wiley: London, 1995; Vol 6, p 4196.

