—r

Bibliothéque nationale

National Library
du Canada

of Canada

i

Canadian Theses Service

Ottawa, Canada
K1A ON4

CANADIAN THESES

NOTICE

The quality of this microfiche is heavily dependent upon the
quality of the original thesis submitted for microfilming. Every
effort has been made to ensure the highest quality of reproduc-
tion possible.

if pages are missing, contact the university which granted the
degree. '

Some pages may have indistinct print especially if the original
pages were typed with a poor typewriter ribbon or it the univer-
sity sent us an inferior photocopy. ’ :

Previously copyrighted materials (jc;urnal articles, published
tests, etc.) are 0i med. -

Reproduction in'full or in part of this film i§ governed by the

Canadian Copyright Act, R.S.C. 1970, ¢ C-30. Please read

“the authorization forms which accompany this thesis.

\

THIS DISSERTATION
HAS BEEN MICROFILMED
EXACTLY AS RECEIVED

|

N

NL 339 (1. 8801)

Services des théses canadiennes

i

~ THESES CANADIENNES
g .

AVIS

La qualité de cette microfiche dépend grandement de la qualite

. de la thase soumise au microfiimage. Nous avons tout fait pour

assurer une qualté supérieure de reproduction

< manque des pages. veuillez communiquer avec l'univer-
w12 qui a conféré le grade. ‘

La qualité d'impression de certaines pages peut laisser a
désirer, surtout si les pages originales ont é1é dactylographiées
a I'aide d'un ruban usé ou si l'université nous a fait parvenir
une photocopie de qualité inférieure. '

Les docurﬁents qui font déja I'objet d'un droit d’auteur (articles
de revue, examens publiés, etc.) ne sont pas microfilmés.

' La reproduction, mame partielle, de ce microfilm est soumise

a la Loi canadienne sur le droit d’'auteur, SRC 1970, ¢. C-30.
Veuillez prendre connaissance des formules d'autonsation qui
accompagnent cette thése. .

a4 .4 ,

~

*

‘LA THESE A ETE
MICROFILMEE TELLE QUE
NOUS L’AVONS REGUE

‘ Canads

. i
: . 8-315-26857-3

.* National Library) Bibliotheque nationale
of Canada ~du Canada _ ' A

\

Canadian Theses Division Division des théses canadiennes

Ottawa, Can. . . ‘
K1A ON4 - .

PERMISSION TO MICROFILM — AUTOR&A_TION DE MICROFILMER

e Please prnint or type — Ecrnire en Iemes moulees ou dactvlioqgrapher

Full Name of Author — Nom complat de | auteur

De -Lel . Lee

:no o' Bn'h ~ Date de naissance 7 Loumr\ Wf B:rth — L::u de narsm}nce

Dec. 16, Fsz | . China

m-vnnem Aadreﬁs — Resigence 'ne

:I‘_,t,‘w.. ze &”7-?’4;7 "a@ﬁy / . (:j/;"'?&é ,464‘4' S/‘!Q‘Ck

’\3 (,M'u\

Tive ot Thesis - Yo ia tnese

faol Af'jw'z‘-'{m; S pssiv L€ Memeries | °

T

Loversty — Univers:te

Degree YO' W’N» 'Hesxs V\BS presen'e;. — Grade D"b' tegue! celle hé‘SP tut ﬂ'esemee

, Naster fi Stiencd.

Year this gegree conterre. - Annee & ob'ermon de Ce graae Name ot Supervisor — Nom cu directeur ce these
' : o ; '
Sprirsy , 1§34 . Wayne Daviy |
7 —~ - - . - -

N

Permission is hereby grantea ¢ the NATIONAL LIBRARY OF . L autorisation es! par a presente. accordee a la BIBLIOTHE-
CANADA 10 microtitm this thesis and 1o ieng or sell copies of - QUE NATIONALE DU CANADA de microfiimer cette xnese et de
the film .) préter ou de vencre ges exemplaires du him ‘;

The author reserves other publication rights and neither the . L auteuf se reserve les autres droits de publication. ni |la these
thesis nor extensive exteacts trom it may pe printed or other- n: de longs extraits de celie-ct ne dowent étre impnmes oOu
' wise reproduced w:thom the author s written permission autrement reproduits sans 'autonisation ecrite de | auteur.
\Date : 'Sngnaxure . ‘ ' . -

B . \ - : o . ‘ T -~

porid 4, fee oo "ok AR -

NL91 (4/77)

* THE UNIVERSITY OF ALBERTA

FAST ALGORITHMS FOR ASSOCIATIVE MEMORIES
by

DE-LEI LEE

A THESIS
SUBMITTED TC THE FACULTY OF GRADUATE STUD&ES AND RESEARCH
IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

OF MASTER OF SCIENCE

DEPARTMENT OF COMPUTING SCIENCE

\

EDMONTON, ALBERTA

SPRING, 1984

NAME

.

THE UNIVERSITY OF ALBERTA

RELEASE FORM

OF AUTHOR DE-LEI LEE

TITLE OF THESIS FAS ~ ALGORITHMS FOR ASSOCIATIVE MEMORIES

DEGREE FOR WHICH THESIS WAS PRESENTED MASTER OF SCIENCE

YEAR

THIS DEGREE GRANTED 1984

Permission 1is heréby granted to THE UNIVERSITY OF
ALBERTA LIBRARY to reproduce single cogzes of this
thesis and to lenc or sell such ;opies for private,
scholarly or scientific research purposes only.

The author reserves other publicatien rights; and
neither the tgesis'nor extensive extracts from 1t may
be printed or otherw:se reproducedﬂwithout the auther's
written permissicon.

(sinep) .. .ofl-Ae L .
PERMANENT ADDRESS: -

Jngtitate, o Computrny TechnrLopy

' Chinexe. . Aeadoman, . Sisica

THE UNIVERSITY OF ALBERTA

FACULTY OF GRADUATE STUDIES'AND RESEARCH

The undersigned certify that they have read, and
recommend to the Faculty of Graduate Studies and Research,
for acceptance, a thesis entitled FAST ALGORITHMS FOR
ASSOCIATIVE MEMORIES submitted by DE-LEI LEE 1in partial
fulfilment of the requirements for the degree of MASTER OF

SCIENCE.

Date.. C\M ==

* 8 060 00 06 0 e e e ® e 0 00 s 0

.Abstfact

This thésis is concerned with the Aesign and
implementation of efficient algorithms for # -ocictive
memories. A general model of associative memorizs ~f m n-bit
words is assumed, and the time complexity of any ' ~rithm
under this quel is measured in gate delay units

A new threshold search algorithm with time complexity
O(lOg n) is‘presented,'asicdmpared to 0{(n), the recent
result of Ramaﬁéorthy et al. [31]. Based on this algorithm,
a class of search algorithﬁs with the same t:me complexity
's developed. The extremum search algorithm by Frie and
Goldberg [5]) is modified and generalized so that the number
of memory interrogations is reduced by 30% over the initial
algorithm in the average case.

Another new algorithm is proposed for o}dered
 retrieval, i.e., sorting. It retrieves ktresponders in order
from the associative memory in time O(n+k) which compares
favorably to 0(k~lo§ n), the best result by Lewin L7]. Based
" on the propoéed ordered retrieval algorithm, a fast multiple
response resolver is suggested which.resolves k responders
in time O(k+ log m). The suggested resolver is faster than
the previous fastest resolver with time complexity
O(k-log m) by Anderson [26] in most cases. Cellular logic
implementations of these algorithms are discussed, and an

analysis of the underlying hardware complexity given.

Acknowledgements

I"wish to express my appreciatibn to Dfaiw; A. Davis
for his advice,-encouragément and many.stimulating
discussions throughout the course of this research.

Further thanks are due to the members of my examining
commi’tee, Drs. W. Armstrong, J. Tartar, T. Marsland, and
especially Dr. (. Mowchehko from the Department of
‘Electrical Engiceering, for their helpful comments.

I must thank the late Dr. I1-Ngo Chen, who was |
instrumental in my coming to this department.

I am greatly indebted, above all, to my parents, Lee

<
.

Rugi and Yen Yumei, to whom this thesis is dedicated,for
instilling in me the.r belief in the value of education.
Finally, I am deeply grateful to my wife, Xiaoning,

whose love and assistance made this work possible.

‘ Table of Contents

Chapter ') Page
1. INTRODUCTION e 1

2. BACKGROUNDc..ceeueennnns P eeiea...5

2.1 The ogganization of associative memories5

2.2 Definition of searches cereeacaes .. 12

3. FAST SEARCH ALGORITHMScciievecrecccnnns cecesan 15

3.1 Previous search algorithms\ e cerreneeanan .15

3.2 A new threshold search algorithm cen.21

3.2.1 The wdfd-treé}éoncept et ceseerese e ane 22

3.2.2 The algorithmc00.... ceeeseanns eesa23

3.2.3 Implementation of double-limit searches ...31

3.3 A new extremum search algorith@ csesesssnseans ...32
3.4 Conclusion:.............................36
EFFICIENT ORDBRED RETRIEVAL ALGORITHMS ..;...........5;‘
4.1 Previous ordered ;etrieval.algorifhms....... 37
4.2 A new ordered retrieval algorithm40
. 4.2.1 System overview ..?:....................;;.40
4.2.2 The algorithmciivvieieencnceceneeenadb
4.2.3 Ah analysis of the algorithm ceeaeadl

4.3 Conclusion 1
FAST HﬁLTIPLE RESPONSE RESULOTION ALGORITHMS56
5.1 Previous resultsc.civeennreenencavensst.56
5.2 Anderson's Multiple Response Resolver59
5.3 A new multiple response resolver ..u........i....62
5.4 Comparison with Anderson's resolver63
CONCLUSION 4 tturvunennnnesioonennnconsnsnnnnnsnnnenessb6
BIBLIOGRAPHYeoveneenneneeneenesnnensannnnenns 67

vi

~

List of Figures

Figure ') . = Piée
1. Associative memory model......... et cee e 6
2. ﬁamamoorthy's cell..ieviiivenieenns et e s e seae e .. 18
3. Searching logic.....cevunen T s 26
4. A simplified associative memory.......... EEREEEEERREEE 40
5. The j-th componeﬁt of the BSVI......oovvenn Ceeniesae .45
6. Partition 10giC. s ... et e e 49

7. Anderson’'s resolver StIrUCEULE.....eeeseeeccaoesaneaesab

'8. P-generator block.........ceviieiin. '.g.... 61

vii

CHAPTER 1
INTRODUCT ION
, /

Currentiy, computers predominantly make use of two -
concéptually different types of memories, random access
memory and associative memory. The most pfevaléht\is rén&gm
access memory which allows the word to be retrieved by
address; i.e., physical location in memory. Conventional
computers achieve theif;generality from this
location-addressable capability of random access memories;
howéver, this generality makes the operations of searching
and softing overly time-consuming. If the random access
memory is being used to store a list of N unordered records,
where each record contains a fixed number of fields, it wiil
take O(N) memory accesses to find a record with a épecific
value in a certain field. The §peration can be reduced to
C .og N) memory accesses by using binary search [16],
provided -he N records are sorted according to the field
being searched. On the cther hand, sorting N fecbrds stored
in the randoh access memory is 5 mucﬁ more cosﬁiy ope:ation
for the theoretical lower bound “or sorting is of O(log N!)

memory accesses and comparisons [16]. Moreover, t“en all

fields of the record are equally important with respect to a

query, an inverted fi : system has to be emplc-ed : order
to provide the means for binary sc¢ -ch [25]. This, however,

requires extra memory space ar<’, increases system overhead.

%

,\;,.“

N

The concept of associative memory or alternacively
content-addressable memory, as originally introduced by
Salde and McMahon [1] in 1956, lends a much'better solution
for the above problems. The dlstlngulshlng feature of such a
memory is that it allows stored words to be retrlcve"%y
their contents, or part of their contents. The importance of
associative—memosiesflies not only in accessing data by
content but also in doing so in parallel. |

As a result, e searching operation can be done in one
associative memory access. This content-addressable
capablllty consequentally reduces somewhat ti.e need for'
sorting, partucularly in the case where sortlng is used to
provide ‘th. means for_blnary search. 'It. also eliminates the,‘
reQuifement of extra memory space for index files because
searching can now be done equally well for each record
field. Accord1ngiy, system overhead 1is also m1n1m1zed [25]

Sorting is now required only for sorting”output lists.
HHowever, some'effiCieht techniques have been discovered that
take only O(N) accesses of the assoc1at1ve ‘memory to output,
in order, a stored l4sr of N records.

Because df/the -ontent -addressable characteristif and

;‘ /K:\V Ay
efflcient7par J& pfocess1ng capability, associative memory

w<}@gs(found\1ts ap lzcatlon in various fields such as

sgrting, relatlonal data searches, pattern recognltlon,

\‘v
machlne translatlon que tlon-answerlng systems,.]Ob

scheduling and many others [21],[23],[27].

The desién and implementation of efficient fundamental
algorithms for associative memorie;,.the subject of this
Vhesis; is the heart of different applicabions and as such,
has been a focus of research 'n the area of qssociative
processing from the time the ﬁield was eciablished.
Further&ore, VLSI technology with its promise for the nkar
future in conjunctior with new associative memory
architectures make the economic realization of efficiént?
hardware algorithms for associative memories'worth
investigating.

This thesis begins with a déscription of a general
orgahization.and éome background in which associative
memories operate, and proceeds, in Chapter 2, to define the
fundamental -searches in the context of an assoéiativg memory
of m n-bit words. M

A new scheme for constructing searcb algorithms for
parallel éséociativé memories is dgécribed in Chapter 3. The
resulting eqﬁivalence searches, th?eshold searches and - |
© double-limit searches achieve the time bound of 0O(log n)

compared to 0O(n), the recent result of Ramamoofthy [31]. The

extremum search algorithm by Frie and Goldberg [5] is

modified and generaliz®¥. It is shown that the modified
algorithm reduces the number of memory accesses by 30% in
the average case. : -

Chapter 4 éddresses the very important; classical

problem imposed by retrieval of an ordered list from

- associative memaries. After briefly reviewing previous

solutions to the problem, an efficient new ordered retrieval
algorithm is proposed along with a cellular logic
implementation. The algorithm is proved to be of time
complexity O(n+k) compared to O(k-log n), the previous-
fastest method of Lewin{7], where k is the number of
responders to be retrieved in order.

Chapter 5 deals with the problem of resolving multiple
responseg in associativebmemoriesﬂ The .astest multiple
‘response resolver by‘Andersbn'[ZG] is examined. A new
resolver is suégested. An analysis of the efficiency of
fhese two resolvers 1is presenteq. The\proposed resolver is

superior to its competitor in most cases.

CHAPTER 2
BACKGROUND

This:chapt;r estabiisheé the fundamentals of
associative memories which will be used in subsequent
chapters: the concept and typical functional componénts of
general associative memories, the characteristics of two
different types of associative meﬁory architectures, and a
formal"definition of various assocjative memory searches.

" <
y2.1 The organization of associative memories

The retrieval of informatioﬁ from a memory requireé
that a particular word of the memory be identified as
containing the required information. When identification is
done, the selected word can be read out and/or processed as
required. According to the way the idenﬁification is
achieved, computer memories fall into two different
categories. ’ - ‘ s

In the firsf category, the conventipnal random access
memory’acccmplishes this identification by a given
specification of the desired word's physical locati-n or
address in meméry.'Associative memory, in the second
category, accomplishes this identification by specifying
partial information of the desired word.

: Thié difference provides associative memory with a

varietv of powerful memory operations other than the READ

and WRITE provided by random access memory. This extensive

class of operations, to be precisely defined

1 2 e e e n
I Register
Control .
C Register ,
' “Unit
- M Register

2 .
Memory
Unit
R} |R
elle
y 919 ‘
1|1
s||s
ti]t
ejle
100 - O] HHE
1 2 . e e n
[

Fig. 1. Associative memory model.

in the next section, has made associative memory very -
'attracti&e for a widé fange‘of_applicatiqns.

An'abstract‘associativé memorf model is schematically
shown in Fig. 1. .

The memory unit is a twb-dimensional, itératgve
configuration of m-n identical cells for storing m words of
n bits'each, denoted as é(i) for all ie{1,.;.,m}. The value
of the j-th bit of R(i), B(i,j) is stored in the cell (i,j)
at the i-th row and the j-th colﬁmn, where j=1:is the most |
significant bit.

'The memory unit is connected to five regist?rs: 1, C,
‘M, s and r. Register I provides the means for bufféring the
information fo be trangfered‘betﬁeen the host computing
system and the associagive memory. Registers C and M serve
ﬂﬁe purpose of specifying the contents or partial contents
of*a desired word. In particular, C holds an argument of n
bits called the search key word against which B(i),
ie{1,.§;}m}, will be compéired in parallel; M has the
ability to mask some portions of therearch key word in C.
In other words, any bit of C can be masked as a 'don’t care'
vstatefas desired, and only those unmasked bits of C specify
a seafch criteria. Let C(j) be the value of the j-th bit of
C and M(j) the value of the j-th bit of M. M(j)=1 means C(j)
is unmasked in searches, while M(j)=0 means C(j) is masked

out as the 'don't care' condition. The 'don't care' state

will be denoted throughout this thesis as ¢.

N

Register s is used to select a set of words to be
.involved in searches. s(i) denotes the value of the i-th bit
of s with s(i)=1 indicatihg that B(i) is in the set.
Register r, on the other hand, is used to store a search
result, where r(i) represents the value of the i-th bit of
r. At the end of a search, r(i);1 indicates that the
cor.esponding word B(i) satisfies the search criterion.

In some associqtive operations, at the end of a search,
a decision regérding the next action is based on the
knqﬁledge of the presence or absence of any responders,
i;e.,-words responding to the search. The functional
component, denoted as T, is ‘ncluded in Fig. 1 to provide.
this knowledge.

The component MRR, Muliiple Response Resolver, deals
with operations such as read and write. A search of the
memory may yield more than one responder. The multiple
response resolution arises when the assdc{étive memory
outputs these responders one at a time. To select a
responding word to read out, the MRR generates.an m-bit
vector of which there is exactly one element wi;h a value 1
corresponding to the selected word. When this vector is
generated, the selectéd word can then be read out without
ambiguity. Evidently, the total time required to read out
all responders depends greatly on how fast the vector can be
generated to identify a word each time so that a read
operation can ‘take place. MRR techniques will be discussed

further in Chaper 5.

Finally, the control unit coordinates the above
functional components.

To support the content-addressable concept and the
parallel processing capability, eéch word B(i) in the memory
must have its own hardware comparison logic so that the
contents of each B(i) can be compared with the valu; of the
search key word specified by C and M simultaneously. It is
now easy to see that associative memory belongs to the cla;§
of Singie Instruction Stream-Multiple Data Stream (SIMD)
machines, from the architecture viewpoint [27]. The
comparison logic can be viewed as the processing elements of
the SIMD machine, each of them either executes or ignores an
insiruction from the control unit on'its own data, the
associated word.

Accoraing to the way the comparison logic is provided
to the words, which in turn determines the way searches are
performed, associative memories can be further classified
into the following two major categories:

1) Bit-parallel associative memories; and

2) Bit-serial associa;ive memories.

In a bit;parallel ass&ciative memory, one bit of
comparison logic isvprovided\for each cell of the memory
unit. In a search, the procesﬁéng logic of cell (i,j)’
compares the contents of B(i,jf\with one interrogation bit,
the unmasked C(j). This is done é@multaneoﬁsly for ever}
cell, and the final decision as to whet™ - not the word

B(i) satisfies the given search criter: ade by all

10

cells in the i-th row. Assuming each cell in the memory unit
in Fig. 1 is equipped with comparison logic, then it can be
identified as a bit-parallel associative memory.

The' bit-serial associative memory is based on the
concept of parallel processing with vertical data introduced
by Shooman [2]. Here, only one bit of comparison logic needs
to be provided for each word B(i), and exists outside the
memory uni;. Assuming that none.of the cells in the memory
unit of Fig. 1 contains comparisén logic, and one bit of
hardware comparison logic is added together with s(i) and
r(i) to form the processing element for each B(i) to gain
the éontent—addressable capability, then the associative
memory becomes a bit-serial one.

A bit-serial associative memory must be capable of
'reading all bits in any bit-slice into their corresponding
processing elements in parallel. A bit-slice is made up of
one bit of every word in the memory. The control unit is
responsible'fdr reading the unmasked bit-slices one at a
timé and broadéasting their Eorresponding portion of C one
bit at a time into the processing elements in a synchronized
manner. The storage element r(i) in processing element i is
now used to remember the intermediate comparison state from
one interrogating bit to the next in the course of a search.

The bit-parallel associative memory has the advantage
of a simpler control structure\and much faster search speed
at the expense of the édditional logic built into every

cell. In contrast, a bit-serial associative memory has a

"

much slower search speed and a more sophisticated control
structure, but considerably less hardware. The low search
speed of the bit-serial associative memory is esseﬁtially
imposed by the necessity of reading all unmasked bit-slices
out of the memory unit and processing them outside fhe
memory unit sequentially. If is, 1in fact, a compromise
between bit-parallel associatiQ; memories and random® access
memories. The search time 1is meésured in read cycles for the
bit-serial associative memory and in gate delays for the
bit-parallel one.

The most commonly used and widely discussed searches in

the literature include the following:

1. equality search 2. inequality search

3. greater—-than search 4. not-greater—than §earch
5. less-than search 6. not-less-than search

7. between-limits search 8. outsideflimits search
9. maximum search 10. minimu%ﬁsea:ch

11. nearest-above search 12. nearest-beléiﬂsegrch

There are other nonsearch operations that can be
performed in associative memories. These inélude‘fiéld'
addition [27], Summation and product [29], caunting [21],
etc. Mechanisms that inco%porafé nonsearch operations are”
referred to as associative processors [28]. Nonsearch °
operations will not be further investigated in this thesis.

Before fufther discussing aﬁd analyzing some efficient
associative memory algorithms, the searches summarized above

will be more precisely defined in the next section.

12

2.2 Definition of séééghgs

Definitions and notation for the searches to be
examined fully 1n Chapter 3 wlll now be developed in the
context of the assoc1at1ve memory model depicted in Fig. 1.
Let S and Z be two sets deflned as follows:

S ={B(i)|s(i)=1, 1sism}, and Z ={j[M(3)=1, 1<jsn}.

‘According tovthe magnitude of-the unmasked bits of the
search key word held in C: S can be partitionea into three

disjoint subsets denoted bijL, E, G respectively:

L ={B(i)| £ 2"~ (B(i,j)-C(§))<0, B(i)eS},
jeZ .

E —{3(1)| 2"-‘(3(1 i)- c(;)) 0; B(i)eS},
’ jez .

*—{3(1)| £ 2"~ (B(i,§)-C(3))>0, B(i)eS}.
jeZ:
The searches can now be defined in terms of 'S, L,'E and
.-G as follows:
A. Equtvalence searches:
1) equality search that produces E, \

2) inequality search that produces § - E.

B. Threshold searches:
1) greater-than search that produces G,

2) not-less-than seérch that produces GVE,

»e
pNSe

13

3) less-than search that produces L,

4) not-greater-than search that produces L VE.

C. Double-1imit searches:
For two given limits x and y, where x is less than y,
lét Lx, Ex, Gx and Ly, Ey, Gy be the sets.defined as L, E
‘and G with x and y respectively held in C. All double-limit.
searches can be defined in terms of these sets:
1) between-limit searches that produce
a) Gk n Ly, | s
b) (Gx VEx) n Ly,
c) Gx n (LyvEy),
d) (Gx VEx)Nn (Ly VEY);
2) outside-limit searches that produce‘

(Gx VEx) n (Ly u'Ey) ,

e) S

f) s - Gxn(LyvEy),

g) s (GxV Ex)n Ly,

"h) s

Gx nLy.

D. Extremum searches:
1) maximum search that produces the ‘set
{B(i)] £ 2"-J(B(i,j)-B(k,j))>0, Vk#i and B(i),B(k)eS},
JelZ
2) minimum search that produces the set

{B(i)| Z 2"~ 1(B(i,j)-B(k,j))<0, Vk#i and B(i), B(k)eS}.

jeZ

14

E. Adjacency searches:

1) nearest-above search that produces the set
\ ,
{B(i)] £ 2°-/(B(i,3)-B(k,§))<0, Vk#i and B(i),B(k)eG},
jeZ : : .
N

2) nearest-below search that produces the set

{B(i)| £ 2"-1(B(i,j)-B(k,j))>0, Vk#i and B(i),B(k)eL}.
je2

| CHAPTER 3
FAST SEARCH ALGORITHMS

Prevous search algorithms are discussed in this

" chapter. A neQ algorithm for fhreshold_search is proposed.
The algorithm is of time complexiﬁy O(log n),‘as compared to
the tlme complexity O(n) of the previous fastest algorithm

\
[31]. Based on this algorithm, extrémgT search is achieved

by a sequence of 0.7n memory 1nterrogétions on the-average,
compared to'exactly n interrogations conventionally [5].
Implementations of double-limit searches and adjacency

searches are sketched, and an ahalysis of the underlying

hardware complexity is also presented‘{f

3.1 Previous search algorithms

Search algorithms have been intensively studied in the
past. Some important papers discussing general aigorithms
include Gauss [4], Fr1e and Goldberg [5] Falkoff [8],
Estrin and Fuller [9], wOllnsky [13] Feng and Lee [17],
Ramamoorthy [31], and others [24],[28]. :

Early bit-parallel associative memories-héd only .
equality search in hardware as thé basic search, while the
~ other séarches were achieved by executing a corresponding

sequence of the basic searches.

- ———— - —— - —— ———

' Significant parts of this chapter are to appear in IEEE L
Trans. Comput. and Proc. the 1st International Conf on
Computers and Applications, 1984 [32],[33]:

15

16

Perhaps the earliest proposal for extremum searches is
due to Frie and,Goldgerg [5]. The ma#imum (or minimum)
search was cérried out by a seguence of exactly n basic °
searchea, Also introduced in [5] was an interesting
procedure for adjacency searches which needs, at best, one
basic séaréh and, ét'worst, 2n-1 basic searches. Algorithms
for threshold and double-limit searches were also proposed
~and shown éo be basic search sequences of length ﬁ and 2n
respéétively [8],[9].

The major advantage of such a scheme is the low
hardware cost in building bit-parallei aséopiative memories.
As shown in [28], the basic céll requires only three gates
-for the cohparison logic. It is a disédvantage, however,
that search speed is uncomfortably slow for those.composed
searches, si;teen search operéfions out of eighteen.

A time versus space trade—off'exists; to some extent,
in the design of fast search algorithms‘for associative
memories. Having a more powerful basic cell, in| ferms of
comparison capability, the majority of search operations éan
be - done in O(n).gate delafs instead of 0O(n) basic searches.
As a matter of fact, a hardware algorithm for a threshold
search has been recentlyudesigﬁéd and sﬁown to operate in n
gate delays by Ramamoorthy [3f]. All double-limit searches
can then be ddne'in 2n gate deléys by performing the |
threshold seargh twice. Therefore, fourteen search

operations out of eightéen can be achieved in only n to 2n

gate delays. More interestingly, using the threshold search

17

as a basic operation provides thes possibility to improve the
speed of Frie and Goldberg's method for both extremum and
adjacency searches. A new algorithm to be presented in
Section 3.2 indeed achieves such an improvement. As reported
in [31], the basic cell for the threshold search contains
six gates for the comparison logic which doubles the amount
of comparison logic of the cell in L?B]. However, for a
minor hafdware investment, the gain_is worthwhile.

The need for an ext;emely fast ﬁhreshold search
'algorithm is quite obvious due to its tremendous impact on o
the overall peffofmance of other composed searches. Before
presenting a much faster new algorithm for threshold search,
Ramamoorthy's algorithm is first examined.

The associative memory model in Fig. 1 and the relate’
no;ation Qill be used to déscribe Ramamodrthy{s élgorithm.
In addition, the\symbol E(i,j) denotes the outputugenerated
by cell (i,j-1) which is being taken by cell (i,j) as input.

The algorithm follows:

Begin
1 | C:=search key word;
-2 M(§):=1, Viell,...,n};
3 r(i):=0, vie{1,...,m}; o .
4 E(i,1):=s(i), Vie{1,...,m};
5 For j:=1 Until n Do
6 Begin

7 E(i,+1):=E(i,5)-=(M(i,j) - (B(i,§)®C()));

18

s-(,

8 a(i,j):=E(i,j)-B(i,j)-M(3)-(B(i,j)ec(j));
[j, ’
9 G(i):= U d(i,k); (wired-or)
~ k=1
end; .

end.

‘Upon termination of the algorithm, E(i,n+1) together -
"with G(i) indicate the membership of word B(i) as follows:
1). G(i)=1 = B(i)eG; N

2). E(i,n+1)=1 = B(i)eE;

3). "E(i,n%1)-76(i)=1 = B(i)eL.

The r(i) can be properly set to storevthe result of a
search as required.

The logical reaiization of the cell to implement steps
7, 8»and 9 of the algérithm is shown in Fig. 2. The delay

from E(i,j) to E(i,j+1) is one gate delay.

18

ac(3Y

E(i,3)

TFRT [Y

-8,)

Fig. 2. Ramamoorthy's cell.

20

!

The following example shows a threshold search of four

words, each seven bits long, where the _symbol

G N
[B] represents the state of G(i) and E(i,j+1) enabled by
1] : ' ,

cell (i,j) at the end of the j-th dteration of the

algorithm.

Example: Threshold search operation

search key word: -~ cC= 1011011,
bit mask pattern: M= 1111011,
effective search key word: 10 1)1 ¢ 11,
words in the memory: B(1) = 10 1 1 1 11,
B(2) = 0100010,
B(3) = 1111101,
B(4) = 1011010,
s(i)=1, 1=1,.:.,4
0 0 0 0 0 0 0
1 1 1 1 1 1 1|
L d1 Ldq2 Ldg3z tdyg Ldys Ldie L 17
= - = - ~ - P~ - - - r- -
0 0 0 0 0 (1} 3 (0
0 0 0 0 0 0 0
L J29 Ld2z2 Ldaz Ld2g Li2s Llaeg L 27
0 1 F1 1 1 1 1
1 0 0 0 OJ 0 0
-+ J31 LJ32 LJ33 LJ34 L4355 L J36 L 137
v - - - ol r-..r- - - - -
0 0 0 0] 0 0 0
1 1 1 1 1 1 0

L g1 Lldg2 Lldgs Llgs Llgs Llge Llygs

21

For the result of the search, see the interpretation
following the algorithm.

This algonithﬁ has two interesting properties:

1) full parallelism - e:ch cel. (i,j) is capable of

comparing B(i,j) with the 'nmasked C(j) to produce local
results simultaneously; and

2) full serialism - the final comparison result has to
be carried out by scanning these local results serially,
most significant bit first..

Ramamoorthy's algorithm is, therefore, bit sequential
proceséing in natufe; the time complexity O(n) is the best
that it can do.

In thefnext section, a new threshold search algorithm
is présented which utilizes parallelism in a more efficient

way, resulting in a much faster algorithm.

" 3.2 A new threshold search algorithm
In presenting the new algorithm, the associative memory
model in Fig. 1 and the related notation will be used.
Additioﬁal notation will be introduéed as required. The
memor} word organization is-based on the word-tree concept
which will be explained fully. The definitions and
terminology for trees and their traversal to be used follow

* Knuth [15].

22

3.2.1 The word-tree concept
Let T(1) be a complete binary tree with n nodes from
the n cells at the i-th row of the memory unit. ¢
| The mapping of cell (i,j) onto the nodes of T(i) is
determined by the following two rules:
ﬁule 1: endorder numbering the nodes of T(i); and
Rule 2: mappihg cell (1,3) onto T(i,j), where T(i,j) is
the node of T(i) whose number in endorder is j.

As a result, B(i) is stored in a hardware binary tree

T(i) termed the.WOPd—tPee.)
Definition 3.1, Wr(i,j), the weight of a node T(i,j),
i's 2771,

Definition 3.2. WTR(1,3j), the weight of the right
subtree TR of .a node T(i,j), is the sum of the weiéhts_of
the nodes in TR.

As an immediate consequence, the following lemma -
describes an interesting property of the word-tree, and
strongly suggests a fasE threshold algorithm given in the
next section. | | .

Lemma 3.1: gor any node T(i,k) in the left subtree TL,
and T(i,%) in thé right subtree TR or T(i,j), then

1) wr(i,k) > WTrR(i,j) + Wr(i,j), and
2) Wr(i,1) > wWr(i,j).)
Proof: From Rule 1, the number assigned to any node in
" TL is lcss than the numbers assigned to those in TR.

Furthermore, any number assigned to the nodes in TR is less

. 3 '
than thg\one assigned to node j. Without loss of generality,

N

23

assuming that TL and TR both ﬁave s nodes, then (1) the
maximum number assigned to a node in TL is d+s, (2) the
numbers assigned to nodes in TR are: d+s+1, d+s+2,...,d*2s,
(3) the number assigned to node j is d+2s+1 for some integer

d, 0<dsn-2s-1.

Thus, .
. s+1
WTR(i,j) + WP(i,d+2s+1) = L 2" ¢ ' ¢,
: t=1
since,
s+1
Z 2n-d-n-t = 2n-d-n_ 2n-d-2:—1’
t=1
therefore,. 2.
s+1 ,
Z 2n-d-|-t < 2n-d—x.
t=1

The right hand side of the inequality is just the
sma;lest weight of a node in TL; and WT(i,k) is not less
than this weight. The second part of the lemma can be proved
in é similar manner.

Q.E.D.

3.2.2 The aléorithﬁ

Without loss of gene;ality, let n equal 2*-1, and
de{1,...,k}. Define Q(d)={j|the level of T(i,j) is 4,
1<j<n}. In the algorithm that follows, E(i,j-2*"?) and
G(i,j-2%"?) represent the output generated by cell
(i,5-2%-¢) which is the left son of cell (i,j) of level 4,
énd'E(i,j—1) and G(i,j-1) the output generated by cell
(i,j-1) which is the right son of cell (i,j). Both outputs

are be.ng taken by cell (i,j) as inputs. E(i,j) and G(i,j)

24

are the output generated by cell (i,j) to its father. The

algorithm is now presentéd as Algorithm 3.1.

Algorithm 3.1. Threshold search.

Begin
1. "C:=search key word;
2. M(j):=1, ¥je{1,...,n};
3. r(i):=0, vie{1,...,m};

4. E(i,j):="(M(j)-(B(i,j)oC(j))), VjieQ(k);
5. G(i,j):=M(3)-B(i,j)-~C(]), VieQ(k);

For d:=k-1 Step -1 Until 1 Do

'Begin
6. E(i,j):=E(i,3-2%"*)-E(i,j-1)-~(M(j)-(B(i,3)ec(i))),
vieQ(d);
7. G(i,3):=G(i,5-2%"¢) + B(i,j-2%")-(G(i,j-1) +
E(i,3-1)-M(3)-B(i,3)-~C(3)), VieQ(d);
End;
End.

At completion . of the algorithm, E(i,n), G(i,n) together
with s(i) indicate the membership of B(i) as follows:
1). E(i,n):s(i)=1 = B(i)¢E;
2). G(i,n)+s(i)=1 =» B(i)eG;

3). "E(i,n)+~G(i,n)-s(i)=1 = B(i)eL.

25

Theorem 3.1: Algorithm 3.1 performs a threshold search
on m words of (2*-1) bits each in time O(k).

Proof: By induction on k. The basis, k=1,2, is trivial.
Now assume the inductive hyp§thesis is true for k=s. 7
Consider the word tree T(i) with 2**'-1 nodes representing
B(i) of (2**'-1) b{ts, i€{1,...,m}. T(i) consists of a root
r having left and right subtrees, TL and TR, with 2°-1 nodes
each. Invoking the inductive hypdthesis and obserQing step 6
and 7 of the algorithm (which is based on Lemma 3.1), the
algorithm works correctly for k=s+1.

One pass of the loop of the algorithm requires constant
time (steps 6 and 7) to compute E(i,7j) énd G(i,j). The loop
is repeated k-1 times to give time complexity O(k).

Q.E.D.

Implementation of the algorithm proceeds as follows.
The processing logic of the cell is designed to accomplish
.the computation of step 6 and 7 of the algorithm; Fig. 3(a)
sho&s a cell module used to implement the node of the _ |
word-tree. Each cell (i,j) has two incoming lines,
G(i,j-2%"?) and E(i,j-2%"?) from its left son, two incoming
lines, G(i,j-15 and E(i,j-1) from its right son, and two
outgoing lines, G(i,j) and E(i,j) to its father.

A logical realization of the cell is éhowh in Fig. 3
(b). Accordingly, steps 6 and 7 of the algorithm can be
completéd in a period of exactly two gate delays. The amouﬁt

of comparison logic of the cell is seven gates, with maximum\

fan-in and fan-out of three,

G(i,J) E(i,3)
||

G(i,j-2 “°) —nuo ' L E(i,j-1) .

E(i,j-2 *¢) —— b G(i,j-1)

(a)

E(i,j-2%"9) G(i,j~-2%"1)

~(3)
=C(3)
M(j)
.............................. JAEE] EREREEES
:I::: . G(i,Jj)

i | J T ’ 5 |)

[8ei,9) ' — CE(i,5)
e VI = D

. r-w 3 | 6 : |

G(i,j=1) E(i,j-1)

(b)

'Fig. 3. Searching logic.

26

\ \\\ 27

“
\

Using Epebcell modﬁle as an elementary unit, the memory
unit in Fig. 1 can be constructed by m.n identical cells
with a uniform interconnection.

It should be pointed out that preorder or postorder
numbering of the nodes of T(i), together with an appropriate
mb@ification of steps 6 and 7 of the algorithm can serve the
fast search purpose equally well,

The following example demgnstrateS‘the two-bit outputs
G(i,j) and E(i,]) of>cell (i,j), for a threshold seafch of
four words of.seveﬁ bits each. Each word is stored in its
corresponding word-tree. In this example, de{1,2,3},

Q(3)={112r415}r Q(2)={3r6}r Q(1)={7}o

. d

. G

The symbol [E| represents the state of G(i,j) and E(i,3J)
1]

enabled by cell (i,j) of level d at the end of the (3-d)-th

iteration of Algorithm 3.1. For the result of the search,

see the interpretation following Algorithm 3.1,

Example: Threshold search operation.

\ -
search key word:' cC= 1011011,
bit mask register: M="1111011,
effective search key word: iy 01 1¢ 11,
word;4in the memory: B(1) = .10 11111,

B(2) = 0100010,
B(3)

]
-—
[y
-
—
—
o
-

-

B(4) = 101 1010. .

28

0 0 0 0 0 0
1 1 1 1 1 1 1
g Ldg2 Lgas Lidge Lidys Lidig Ly
- 13 13 12 13 13 A2 f£q1
0 1 0 0 0 o] o
0 0 0 0 1 0 0

0 1 1 0 0 0 1
1j 0 0 1 AR B 0 0

L J3¢9 L J32 L J33 L J34 L Jd35 L Jd3e L 137
93 . r 13 92 193 93 92 Al
]] 0 0 0 0 0

1 1 1 1 1 1 0

L Jg1 L dg2 L g3 L Jgg L Jgs5 L Jdge L 147

The search is accomplished\in 3 computation steps,
while Ramamoorthy's algorithm requires 7 steps to do the
same job.rﬁs seen from this example, a high degree of
parallelism has been exploited. |

An alternative approach to implementing Algorithm 3.1
makes use bf two different kinds of cells for nonterminal
nodes and terminal nodes of T(i) respectively. The fact that
the terminal nodes have neither left son nor right son
~allows the ;emoval of gates 4-7 from the original cell. This
results iﬁ ano:her type of celg with only three gates for
the comparison logic which will lie in the pbsition of
terminal nodes. This will reduce the hardware complexity;
Each\cell now feéuires, on}the éverage, no more than five

gates for the processing logic, because the number of .

‘terminal nodes is never less than the number of nonterminal

\

nodes.

29

A natural generalization of the word organization in
1the form of a complete binary tree is in the form of a

p-} .
complete k-ary tree. In the complete k-ary tree, each node

" has exactly k sons except for those on the two bottém
levels, and each level éxcept the last is completely filled
with nonempty nodes. On the last level, some number of
rightmost nodes are allowed to be empty.
Mapping a memory word onto the complete k-ary tree can
jbe done in essentially the same way aé the complete binary
tree. ‘ |
Definition 3.3. WT(i,j,s), the weight of the s-th left
subtree of a nonterminal node T(i,j), is the sum of the
weights of all nodes in the. subtree.
An argumenL similar to the proof of Lemma 3.1 can show
a uséfgl property Qf'the k-ary word-tree below: \
For any node_T(i,j,s) in the s-th left subtree, 1<s<k,
of a nonterminal node T(i,j) of T(i) then

v

Wr(i,j,s) > ; Wr(i,j,1) + wr(i,j).
~ l=s+1
With the property above a cell module can be designed
so that k-ary word-tree can be constructed by n identical
| célls with uniform interconnections, Each cell has two
outgoing lines to its father, and 2k incoﬁing lines from ;ts
sons. The function of the cell can be realized by two levels
of logic gates. The resulting cell needs (k+5) gates with a

maximum fan-in and fan-out of k+1.

VU

It can be easily seen thét the search speed increases
logariﬁhmically with k, while the hardware complexity of the
“cell is linear with k. However, the aAalysis of usingvtwo
different kinds of cells to reduce the hardware cost is
relevant here. In what follows, a formula is derived for the

hardware complexity when two types of cells are used to

imglement the k-ary word-tree.

Suppose the k-ary word-tree has n nodes of which there
are i' nonterminal nodes and i terminal nodes, thevcell*dﬁth
(k+5) gates is used for the nonterminal node, and the cell
with 3 gates for the terminal node. The total number of
gates required for the word-tree is (k+5)-i' + 3i; hence,
the average cost per cell is

CL(k+5)eit + 3i1/m.)

By the definition of complete k-ary tree, there exists
at most one nonterminal node which has fewer than k sons.

" When this nonterminal node has exactly one son, the
relationship between i' and i can be easily established as
i= i'ek = (k=1) = (i'-1). (2)

.Substituting n=i'+i back into (2), andlsolving i' in

terms of n ahd k gives

i'= (n+k-2)/k, (3)
which implies that (n-2) mod k = 0 if and only if there
exists one nonterminal node which has exactly one son.

However, when (n-2) mod k # 0, an argument to follow

will adjust (3) to be of the form

i'= L(k+n-2)/k4, ‘ | (4)

where Lxd denotes the largest integer less than or egual to
X. |

Ifw(n—2) mod k # 0, then there must exist n', the
largest integer belonging to {2,3, ...,n-1} such that
(n'-2) mod k = 0. A k-ary tree of n' nodes will have
(k+n'-2)/k nonterminal nodes of which one, say 8, has
e*actly one ferminal nede, and n-n'<k. This will éuarantee
that developing a k-ary tree of n nodes from that of n'
nodes can be done by connecting the (n-n') nodes to § .as
additional terminal nodes, since the number of sons of f
.does not exceed k. Therefore, (4) is established:

Substitution of the previous result back into (1)
yields the following final form fof the average cost per
cell: 3 + [(k+2)-(1+L(n-2)/kd)1/n. B .

In particular, fof-n=64, k=8, the average cost per cell
is 4.25 gates,.and the search speed is 6 gate delays.

"In conclusion, the use of two types of cells to
implement the k-ary word-tree Quarantées that search speed

“ increases logarithmically, and hardware complexity decreases

slightly as k increases.

3.2,3 Implementation of doubie-limit searches

Giygn the above threshold search, ail double—limit
searches definéd in Chapter 2 can be accomplished by
executing the proposed algorithm twice in succession. As an

ekample, in order to obtain the search b) of between-limit

32

searches, the not-less-than search is performed with C=x,
- followed by the less-than search with C=y on the resulting
responders. Other double~limit searches can be obtained in

oo
the same way. Consequently, all double-limit searches can

also be performed in time O(log n).

3.3 A new extremum search algorithm

The fast speed of the proposed threshold search
guaranteeé that extremum searches can be a;hieved by a
sequence of threshold searches without introducing undue
time penalities. Frie and Goldberg's method for extremum
search needs to perform exactly n equality séarches [5]. A
new extremum search aigorithm to be described makes use of a
threshold search sequence ihstead. It will be shown that the
number of threshold searches can be expected to be 0.7n.

To begin with, a maximum search algorithm is presented
as Algorithm 3.2 to illustrate how the search can be

achieved by a sequence of threshold searches.

Algorithm 3.2. Maximum search.

10

11

12

13

Begin

M

:=0;

j:=i;

While j<n Do’

Q

Begin

C(j):=1; C(j+1):=0; Mtj):=1; M(j+1):=1;

Threshold-search;

f:

m
= U (G(i,n)-s(i))
i=1

(wired-OR);

C(j+1):

wired-oOR);

13

m Y
.9:=i21(E(i,n)~s(i)) (wired-OR);
If f=1 Then C(j+1):=1;

Else If g=0
Then
Begin
C(j):=0;
Threshold-search;
m | ‘
f:= U (G(i,n)-s(i)) (
1=1
1f £=1 Then
End;
J:=3+2;
End;

34

The action of this algorithm can be described briefly
as follows: step ! initializes M and j. During the first
iteration, after step 3 is executed, M has 1's in only the
leftmost two bits"starting from the first bit position. The
corresponding two bits of C containé 10. Step 4 §plits the
set of candidate words into the three subsets shown below,
according to the search patterg specified by C and M,

110000000000660000 . o

106000068690006060¢

0¢¢¢¢¢¢¢¢¢¢?¢¢¢¢¢¢.
Step 7 checks if the first subset is empty or not. If it is
ndt, the word with the maximﬁm value must have 11 in the
leftmost two-bits. Thereﬁore C(j+1) is updated to 1.
However, 1if both the first apd second subsets are empty
(tested ir step 8), then the word with maximum valﬁe has to
be in the third subset. Accordingly, C(j) is reset to 0 and
an extra separétion, step 16, is nepeésary'to determine
which of the following two subsets contains the word with
max imum valhe,

0190090000000 00000¢

0040900000000 00000¢.

-Likewise, if the current fifst subset is not empty (tested
in step 12), C(j+1) is updated to 1. Step 13 increases j by
2, and sets M(j"), M(j+1) to 11, C€(j), C(j+1) to 10,

In the succeeding iterations, M and‘C‘will specify a
searching pattern which agfees up to the current (j-1)-th

bit with the word having the maximum value and has 10 in the

35

next two-bit string (the i-th and (j+1)-th bits). The whole
process is then repeated, and the loop executed n/2 times.
Each time, however, the number of searches is not fixed, but
depends on the distribution of 11, 10, 01, and 00 in each
two-bit string of the maximum value. Assuming the
distribution is even, then the average number of searches
for each iteration is: (0.25)-1 + (0.25)-1 + (0.5)-2 = 1.5,
Upon termination of the algorithm, C(1) through C(n) will‘
pola a copy of the maximum value.

The above algorithm can be generalized so that the
register M is filled with k 1's at a time to obtaih.a family
of maximum search algorithms. In order to evaluate these
algo}ithms and select the one of which the number of
threshold searches required is minimal, the éssumption here
is that the bit patterns 00...0, 00...1, ..., 11...1 are
evenly distgib&ted’?ﬁ each k-bit striﬁg of.the haximum
value. Let I(i) be the number of searches in the average

case, for each loop of the generalized aigorithm, then

k-2 ‘
I(k)=2"%[£ i.2""' + (k=1)-(2%"2 + 2%-1' 1) + 2k]
i=1 :
k-2 k-2
=2 [Z I 2/ + (k-1)2%" " + k + 1]
i=0 j=i

k - 1.5 + (k+2)-2"*% |

Therefore, to implement the maximum search requires a
sequence of I(k)-n/k threshold searches. I(k)/k is the ratio

of the number of searches required by the proposed algorithm

36.

and that\by Frie and Goldberqg's algorithm [5]. When k=3, the
rgtio is 0.7 which proves to »c the most efficient choice of
all. The number of memory inte.vogations can thus be feduced
approximately by 30% in the average case. »

The minimum search can be done, on the same basis, with
the same time complexity. Adjancency searches can be
achieved by following a threshold search with an extremum

search. {

3.4 Conclusion

The search algorithms proposéﬁ here are Quite
efficient. The threshold searches and double-limit searches
have significantly improved the time complexity over
searches of the same type in the literature, from O(n) to
O(log n). An improvement over Frie and Goldberg's extremum
seérch algorithm has been achieved. Implementations of the

proposed algorithms have been suggested.

CHAPTER 4
EFFICIENT ORDERED RETRIEVAL ALGORITHMS

The problem\of retrieving an ordered list of k words
from associative memories of m n-bit words is addressed 1in
tbis chapter. An efficient new algorithm is propoéed along
with a cellular logic implementation. The algorithm is of
time complexity O(n+k). By contrast, the fast algorithms by
Lewin [7] and Ramamoorthy [31] are of time complexities
O(k-log n) and O(k-n), respectively.

N

4.1 Previous ordered retrievgl algorithms

The ordered\retrieval of a set of words from an
associative memory has long been. an interesting research
_problem [31,[51,[61,[7),017) and [31]). The first proposal is
due to Frie and Goldberg [5]. Independently, Seeber and
Lindquist [6] postulated another scheme which utilized a
more complicated reporting mechanism to provide the
knowledge fegarding whether or not there exists exactly oné
responder to a previous search. The method in [6] requires,
in most cases, fewer memory accesses than that of [5] to
ret;ieve, in order, the same number of responders from an
associative memories. However, the inherent characteristic

of these two algorithms is that the number of memory

accesses is dependent on n [7],[11].

")

38

The use of an,associative memory with a Bit-Slice Value
Indicator (BSV1) was first introduced by Lewin [7], and has
achievéd the most efficient ordered retrieval algorithm thus
far proposed. The BSVI is a hardware mechanism which has thé
ability to determine, for each bit-slice, whether all words
of interest store the same bit in this bit-slice or not. In
other words, BSVI is capable of distinggishing a mixture of
1's and 0's from either only 1's or onlffﬁ's stored in that
bit-slice. As proven by the inventer, the number of memory
accesses necessary to retrieve k responders in order from an
associative memory of m n-bit words is exactly 2k-1,
independent on n. A simple éroqf of Lewin's ordered
retrieval theorem can be fouﬁd elsewhere [13].

Some efforts have been made in the past to further
reduce the nuﬁber of memory accesses of Lewin's algorithm by
introducing a more powerful BSVI. As reported by Miller
[12], when the BSVI is also able to determine, for each
bit-slice, whether or not éhere exists. exactly one distinct
bit stored in the bit-slice, the number of meméry accesses
can be reduced to, at best, k+1 and, at Qorst, 2k-1,
Unfortunately, Miller's method does not necessarily retrieve
the k responders in an ascending or descending o:der; it can
onlxﬂgs used fqQr multiple response resolution rather than
sorﬁing. _ —

‘Further utilizing the poweffulness of the BSVI,
Ramamoorthy haé designed the fastesf‘algorithms for extremum

searches [31]. Of particular interest, the maximum and

39

minimum searches éan be performed on the memory
concurrently. As a.consequence, ﬁ responders can be 1isolated
in k/2 memory accesses. However, each memory access of
Ramamoorthy's algorithm carries out extremum searches
requiring 0(n) gate delays [31], while that of Lewin's only
performs an equality search. The essential domiﬁant part of
Lewin's algorithm is the time required to locate the
leftmost bit-slice with a mixture of 1's and 0's stored by
all selected words each time before the equality search can
tgke place. This locating process is equivalent to the
problem of selecting the first logic 1 in a binary vector of
length n, and takes time O(log n) to complete, even if the
best algorithms [14],[26] are assumed.

. Measured in terms of gate delays, Ehe timg complexities
of Lewin's algorithm and Ramamoorthy's algorithm are
O(k-log n}) and.O(k-n), respectively. Clearly, Lewin's
algorithm behaves much better.

The disadvantage with these two fastkalgorithms lies in
the fact that the time period between isolating two adjacent
responders is not fixed, but depends on the values of the
word§ under consideration.

In what follows, a new ordered retrieval algorithm is
presented for an associative memory with BSVI. With this
algorithm, the first responder is located in time O(n), and

each of the remaining in 0(1).

4.2 A new ordered retrieval algorithm

4.2.1 System overview

40

The simplified associative memory organization shown in

Fig. 4 is used to implement a new ordered retrieval

algorithm to be present

ed.

1 2 . e e n
I Register
M Register
00 - O
00 - O
¥ -
Memory
) . Unit)

- 100

1 2

Fig. 4. A'simplified associative memory.

Nt = Q0D

41

- As can be seen, the register C has been ignored because
no search key word is needed here. The register M is used to
mask bit-slices as required. Only those bit-slices for which
the corresponding M(j)'s are 1's will be' included in the
ordered retrieval brocess. There is another binary matrix A
with A(i,j) residing in célit(i,j), which can be visuaiized
as interleaved with the binary matrix B column by column.
B(i,1) precedes A(i,1), and A(i,n) follows B(i,n) for all
ie{1,...,m}.

The s(i) will be denoted throughout this chapter as
A(i,0) for descriptive purposes only. Initially, matrix A is
reset; and the words to be retrieved in descending order are
specified by A(i,0)=1, for some ie{1,...,m}. |

Informally, it "is now instructive to view A(1,3),
A(2,75), .;..,A(m,j), 1Sj<n, as m paths each of n units long,
and the ordered fetrieval algorithm as a one-way traffic
system, whe:e'each logic 1 initially injected iﬁto A(i1,0),
for some ie{1,...,m}, matches in péth i toward the extreme
right end one unit per step. In this regard, each cell (i,3)
functions as an.intelligent'traffic lights for path i at a
position j units away from A(i,0) and is capable of
pgrmiting or inhibiting the passage of the matching loéic 1
through it, based on the information carried by bit-slice j.
The system is designed <in such a way that the order in which
the logic 1's reach the Qery right end is/zhe desired
reading sequence of their associated words. Moreéver; after

n-2 steps, the logic 1's start reaching the very right end

&

42

in that prder”at the rate of one arrival every two steps.

In presenting the algorithm more precisely, the
following terminology 1is useful and introduced in the
context of the simplified associative memory. Let
8'={B(i)|A(i,j)=1, 1si<m and 0<js<n} be a set of words to be
read 6ut of the memory in descending oréer in the course of
ordered retrieval. For any word B(i)eS', define a function
P(B(i)) to be an integer €{0,...,n} such that
ACi,P(B(i)))=1. |

Definitioﬁ 4.1. The effecfive j-th bit-slice is made up
of the j-th bit of every word B(i) for which A(i,j=-1)=1,
ie{1,...m}. .

| Definition 4.2. The j-th bit-slice is said t§ be busy

if ihere exists i, ie{I,,..,m},'ﬁgch that A(i,j)=1.

Definition 4.3. Two words B(l), B(k)va:e said to be
adjacent, if P(B(1)) > P(B(s)), and there does not exist

B(k)eS' such that P(B(1)) < P(B(k)) < P(B(s)).
Example: Consider the memory unit below, where the symbol
[b"} represents cell (i,j) with a and b for B(i,j) and
a .
13

"A(i,j), respectively: .

A(1,0)=0 -0 0} 0
11 12 13

43

1 1 0
- 421 L . 22_ L 4 23
1 r0, 1)
A(3,0)=0 1 OJ 0
- 4 31 - 32 - 4 33
o | 1 0
A(4,0)=1 0 ‘ 0 0
L4 L1 a2 L] 43
v r - r- -|
_ FO ’ 0 1
A(5,0)=1 0 0 0
: - 4 .51 - 452 L 4 53
' . 0 R . v 1
A(6,0)=0 oy -0 0
L 161 L 4 62 L 4 63,

a) The effective 1st, zhdh and 3rd bit-slice are now

¢ ¢ ¢
¢ 1 ¢
¢ 0 "¢
0 ¢ ¢
0 @ ¢
¢] ¢ J
L 4, L . a nld L
repectively.

e

b) Only the 1st bit-slice, among the'three, is busy. ’
c) Since P(B(2))=P(B(3))=1, and P(B(4))=P(B(5))=0, both

words B(2) and B(3) are adjacent to B(4) ai.d B(5).

44

>The BSVI required here has .the following
characteristics. First, it is capable of detecting whether
or not there exists at least one bif in the effective j-th
bit-slice whose value is 1. Second, it is able to determine
whether or not the j-th bit-slice is busy.

Using the "wired-or" technique, such a detection can be |
done in constaht time [31].

The j-th component of the bit-slice value indicat6r and
the aSSociated bit-slice are schematically illustrated in

Fig. 5, where h(i,j)=A(i,j-1)-B(i,j), and v(j)=a(i,j).

~H.(j)

1,3
2,3 J
X .)
~h(i,) | |
i,J ~v(i,j)
m,j : l

Fig. 5. The j-th component of the BSVI.

45

46

It can be readily seen from Fig. 5, that the j-th
bit-slice is busy if -V(j)=0, and that at least one bit of
the effective j-th bit-slice is 1 if “H(j)=0..

In refering to the previous example, the following
equations ﬁdld: “H(1)=1, aVv(1)=0; -H(2)=0, ~V(2)=1; and

/

SH(3)=1, ~V(3)=1.

4.2.2 The algorithm]

The heart of the Qrdefed retrieval algofithm is a
parallel. operation called pértition which is presented below
as Algorithm 4.1,

Algorithm 4.1. Partition.

ngin
m ' :
1 V(j):=ig1A(i,j) (wiredjOR);
m o —
2 , H.(»j):=iI;I1A('i,jv—1)-B(i,j) (wired-OR);
3 . pli,j):= A(i,j—1)‘(B(i;j)+~H(j)+~M(j));‘
4 If V(j)=0 and p(i,j)=1 Then
Begin
5 A(irj):='1;
6 - A(i,j=1):=0;
- End;
End.

The essence of Algorithm 4.1 is to simultaneously

partition each class of words B(i) indicated by -A(i,j-1)=1,

47

for er{l,...,m} and Vije{1!,...,n}, into two subclasses bésed
on the information carried b; the effective j-th bit-slice.
And if the j-th bit-slice is not busy at that moment, then
the words B(l) in the bigger magnitude subclass can be |
separated from the words B(s) in the smaller magnitude
subclass by means of setting A(l,j), and resetting A(l,j-1).
As a result, the words B(l) and B(s) are now registered bf‘
A(l,j+1);1 and A(s,j)=1 into two subclasses respectively,
which were in the same class before the effective j-th
bit-slice was examined.

In refering to therpartition algorithé shown, steps !
and 2 compute V(j) and H(J) for all je{1,...,n}
simultaneously. V(j)=1 implies that the j-th bit-slice 1is
busy. H(j)=1 indicates that there exists at least on; bit in
the effective j-th bit-slice whose value is 1. Step 3
assigns each‘p(i,j) a logic value. It 'may be noted from the
statement in line 3 that p(i,3j) will have the value 0 1f
either A(i,j-1)=0 or H(j)=7, B(i,j)=0 and the j-th effective

"bit-slice is unmasked. It is apparent that the woré B(i)

with A(i,3-1)=1 and p(i,jl=1 is grekter than the word Bl(k

. ‘
with A(k,j-'! and p(k,3)=0. Mcreover,-i1f the j-th bit-slice
is free and . (i) belongs tc the bigger magnitude subclass,

checked by step 4, then the states of A(i,j-!) and A(i,])
are interchanged by steps 5 anc 6. This interchange
effectively separates the words :ir the bigger magnitude

subclass from those in the smaller magnitude Subc.ass. It :Is

S
Als

. also possible thaff

there dces no: exist any pli,3i=0

48

‘iihplying that the smaller magnitude subclass i= empty. In
this case after steps 5 and 6 are executed, the (j-1)-th
bit-slice will be released.

ﬁhen the j-th bit-slice is busy, however, no separation
can be expected to be done due to no room currently
available to register the words in the bigger magnitude
subclass. Therefore all words B(1i) indicated by A(i,j-1)=1
have ts remain in the original class as if the effective
j-th bit-slice were not examined.

An implementation of the partition algorithm in each
cell is shown in Fig. 6. ﬁach cell (i,3j) communicates with
its left neighbor by means of A(i,j-1) and p(i,j), and with
its right neighbor by means of A(i,j) and p(i,j¥1). Lines
~h(i,j) and -v(i,j) are couplea to the j—ﬁh component of the
BSVI as depicted in Fig.‘S. Each cell will receive a global

timing clock, denoted as P here, to set/reset A(i,j). The

‘of time, 5 gate delays.
The ordered retrieval algorithm is now presented as

Algorithm 4.2.

49

~M(j) —_ SN -h(i,Jj)
P cell — ~v(i,j)
A(i,j-1) — i,3 e A(i,j)
p(i,j) _ fro— pli,j+1)
(a)
|V+

3.
. ' l >c. R
— ' \\I) -A(1,3) . . o
p(i,3) - Al 4) . A(i,]3)
. }——‘ i,3 :

...

P(i,j+1)

~H(j) -v(3)

Fig. 6. Partition logic.

sl
N

L

50

Algorithm 4.2. Ordered Retrieval.

Begin

1 A(i,j):=0, vie{1,...,m}, Vie{1l,...,n};
2 While V(n)=0 Do Partition; .
3 Read out B(i) indicated by A(i,n)=1;
4 Partition; '
5 A(i,n):=0;
6 While V(n-1)=1 Do

Begin
7 ; Partition;
8 o Read out B(i) indicated by'A(i,n)=1;
9 Parﬁition;\ | v
10 . A(i,n):=0;

End;

End. ’

Algorithm 4.2 is achieved essentially by performing a

sequence oI partition erations to isolate all words in S'

by their contents, and rad them out.one at time without

=4

ampbiguity. It is assume¥| th

t~all words in the memory are
Gifferent in'brde: to identify them uniquely. |
initially, A(i,j)=0, for all ie{1,...,m}, and all
Setl,...,n}, and A(i,0)=1, for some ie{1,...,m}. A(i,0)=1
indicates word B(i) in S‘; The algorithm terminates when all

responders have been read out of the memory. In other words,

when the set S' becomes empty.

51

4.2.3 An anaiysis of the algorithm

In order to analyze the time complexity, and verify the
validity of Algorithm 4.2, three lemmas are first
: estabiished concerning the effectiveness‘of a sequence of

partition operations on the words in S'.

Lemma 4.1: The relatién P(B(1)) > P(B(s)) is not
affected by any partition to be executed.

Proof : Consider the following two cases.

CASE 1. Suppose P(B(l)) - P(B(s)) = 1.

P(B(s)) can be increased by 1 iff steps 5 and 6 are
executed. However, steps 5 and 6 cannot be executed in thi%
case, because V(P(ﬁ(l))) equals 1.

' CASE 2. Suppose P(B(1)) - B(B(s)) > 1.

P(B(;)) can be increased at most by 1 after steps 5 and
6 are executed. However, this iﬁcrement by no means changes
the realtion P(B(1l)) > P(B(s)).

Q.E.D

Lemma 4.2: B(l) > B(s) if P(B(1l)) > P(B(s)).
Proof : Theré are only two ways in which
P(B(1)) > P(B(s)) can occur after a partition P is executed.
CASE 1. Before executing P, P(B(1)) = P(B(s)) which
implies that B(l,jk = B(s,j) for j=1,2,...,P(B(1l)). After P
is executed, conditfbn P(B(1)).> P(B(s)), implies
" B(1,P(B(1))) .= 1 and B(s,P(B(1))) = 0 for the increased

\&
P(B(1l)). Therefore, B(l) > B(s) if P(B(1l)) > P(B(s))

follows.

CASE 2. Before executing P, P(B(l)) > P(B(s)), which
recursively implies that separating B(1) from B(s) was due
to an earlier partifion P’. In other words, there exists an
h such tnat B(1,j) = B(s,j), for j=1,2,...,h-1, and
B(1l,h)=1°B(s,h)=0; the separation was dane by P’ based on
the above information carried by the effective h-th
bit-slice. By Lemma 4.1, B(l) > B(s) if P(B(1l)) > P(B(s))

follows.

Q.E.D.
Lemma 4.3: P(B(l)) - P(B(s)) < 2 if B(1l) and B(s) are
adjacent.

. Proof : The lemma can be proven by showing that B(l) and
B(s) .are not adjacent if P(B(1l)) - P(B(s)) = k (k>2), by
induction. P

The basis, k=3. There must exist a partition P such
‘that P(B(1)) - P(B(s)) = 2 before P takes place. At
completion of P, P(B(1l)) - P(B(s)) = 3 implies that P(B(1l))
is increased by one but not P(B(s)). However, P(B(s))
remains unchanéed only when either V(P(B(s))+1) = 1 or
p(s,P(B(s))+1) = 0 during the execution of P. The first
condition implies that B(l) and B(s) cannot be adjacent due
to the existance of B(k) such that P(B(1l))>P(B(k))>P(B(s)),
and that they can never become adjacent, after the execution
of P, by Lemma 4.1. The second condition implies that there

exists at least one word B(k') such that P(B{k")) = P(B(s))

53

and p(k',P(B(s))+1) = 1. Consequently, B(1) and B(s) will be
no longer adjacent, because P(B(1l)) > ?(B(k") > P(B(s))
must occur after P is executed.

Now assume that the inductiﬁf hypothesis is true for
all values of k23. Consider P(B(1)) - P(B(s)) = k+1, Again,
thefé must be a partition P’ such that P(B(l)) -~ P(B(s)) = k
before it takes place. By the inductive hypothesis,'B(l) and
B(s) cannot be adjacent. By Lemma 4.1, they can néver become

adjacent, even after P’ is executed.

Q.E.D.

In what follows, it is:assumed that the read operation
transmitting the contents of a single word B(i) indicated by
A(i,n)=1 into the register I can be done in constant time
[28]. Also it is assumed that this read is executed in
parallel with the partition following it in Algofithm 4,2
even thoughvit has been written in a serial manner. The time
complexity of Algorithm 4.2 will be measured in terms of the

)
number of partition operations.

Theorem 4.1: The number of partitions required by
Algorithm 4.2 to retrieve k responders in descending order

from the associative memory of m n-bit words is n+2k=1.

Proof: After step 1 is executed, the words in S' are
indicated by A(i,0)=1 only. None of the bit-slices 1 through

n is busy before a partition is invoked.

54

The number of iterations of the first While loop in
line 2 is n. In other words, to isolate the first responder
from the rest of them requires n partitions. The fact that
bit-slices through j to n are all free before the j-th
iteration takes place, where 15jsSn, gurantees that there
musf exist one word, say B(i), being registered by A(i,3J)
with j increasing each timeé a partition is executed. At the
completion of the n partitions, exactly one A(i,n)
associated with this word is set, which indicates that the
word can be read out.ihmediately without ambiguity.

After step 4 is executed, by Lemma 4.3, A(i',n-1), for
some i'e{1,...,m}, will be set to register words B(i') which
are adjacent to the word indicated by A(i,n)=1. Step 5
resets A(i,p) making the n-th bit-slice no longer busy.

The number of iterations of the next While loop is k-1.
During the fitst iteration, after step 7\ is performed, a new
B(1i) will be reéistered by A(i,n)=1, and\be read.out
subsequently. Step'9 guarantees that the words adjaceht to
B(i),‘say B(i'), will be registered by A(i'(n-1)=1, after it
takes. effect. Step 10 clears up A(i,d) discarding this B(i)
from further consideration and, releasing tHe n-th
bit-slice. In the succéeding iteration of the %oop, the
words B(i') are registered by A(i',n-1)=1, the n-th
bit-slice is free, and all wordé in S‘.satigfy the prope;ty
specified by Lemma 4.3. The loop will be repeated k-1 times

to exhaust the remaining k-1 responders.

55

By Lemma 4.2, the k words are retrieved in descending
6rder. .

Taking into acéﬁunt the total cost above gives that
n+2k-1 partitions are necessary.

The correc£nes§ of the algorithm follows by induction

on k.

0.E.D.

4.3 Conclusion

An efficient ordered retrieval algorithm has been
presentéd which retrieves k responders in descending order
from an associative memory of m n-bit words in O(n+k) steps.
It possesses the salient feature that after the first

responder is obtained, each of the remaining can be found in

constant time.

CHAPTER 5
FAST MULTIPLE RESPONSE RESOLUTION ALGORITHMS

\ .
Ly
Y
'Y

The problem of multiple response resolution is
discussed in ,is chapter. Alternative techniques for
solving this Rroblem are briefly reviewed with the emphasis
on Anderson's method [25]. A new method is outlined based on
the fast ordered retrieval algorithm proposed in Chapter 4.1

A comparison is then made between Anderson's method and the

proposed one..

5.1 Previous results

Consider the associative'memory organization shown in
Fig. 1f A search of the associative memory, in general,
separates the.stbre& m words into two, subsets ofvwhich one
contains all the words satisfying the search criteria. The -
words in this subset are aléo sometimes called responders.
Let S, defined in Chapter 2, be this subset;.i.e., s(is=1
indicates that B(i) is a responder. Multiple response
resolution occurs when the associative memory must read out
these responders ohe at a time for the purpose of output. To
select a responder to read, the associative memory must be
able to choose from the m-bit vector, register s, an element
s(i) which is logic 1. In other words, it must be able to
generate from s an m-bi£ vector h‘of which only one element
is 1 corresponding to the selected;ééspdnder.‘Identified by

_ .

56

57

the vector R, the selected word can be read out without
ambiguity. How fast the vector R can be generated will
dominate the output speed of associative ﬁemories because
the vector R has to be generated as many times as the n ..ber
of responders.

Several fast methods for generating the vector R have
been proposed in the past, and they can be grcuped into two
classe -ccordinq to whether or not further associative
searche: .n the responders are required. The fi}st class,
including methods due to Frie gnd Goldberg [5], Seeber and
Lindquist [6], Lewin [7] and Ramamoorthy [31], uses fqrther
associative searckes to retrieve the respondérs in an I
ordered sequence according to their contents. The responders
are supﬁosed ﬁo be distinct so that no futher multiple
response conflict can occur.

The second class comprising those of Weinstein [101],
Koo [20], Foster [14], Ahderson'tZG] and Landis [29]
utilizes priority circuitry to retrieve them in an ordered
sequence qccordin§~to their physicél location in the memory.
It is desired in this case to select sequentially all logic
1's in registeras one at a time. The simplest way of doing.
this, as mentioned by Weistein[10], is to scan serially all
bits of the register s. If s(i) is not the "first" logic 1,
a logic 0 will be generated for R(i), inhibiting readbout of
B(i). The scheme requires O(m) gate delays to generate the

vector R whiéh will defeat the main advantage of'a‘parhllel

search of associative memories when m becomes large.
. - R

58

An alternative method with time complexity O(log m) was
first proposed by Weistein using tree structured logic to
gén;;ate the vector R [10]. Weistein's resolver operates 1in
two phases: in the first, pulses propagate up tﬁe “2e,
setting storage elements on the way, and in the second,
these storage elements steer a downwards propagating p:lse
to the "firsc" of the responders.

Later, a faster multiple response resolver embodying
lookahead logic was presehted by Foster[14]. Foster's
resolver uses much less hardware tﬁbn Weistein's and
generates the vector R approximately two times as fast.
Foster's scheme was then generalized by Landis '[29] to
achieve a resolving speed about 20 percent faster. The most/
efficient approach using tree structured logic for
generating the vector R is due to Anderson [26]. Anderson's
resolver can speed up Fostgr's scheme at least by a facth
of two, and becomes the fastéét among the second class thus
far developed. Yg |

It has been widely believed that Foster's scheme is
much faster in absolute speed than UPe ordered retrieva%
methods [29],[31). The fast ordered retrieval algorithm
Aproposed in Chapter 4, however, is very promising fqr
resolving multiple respohses. Such avresolvér is suggested
in Section 5.3. It is then only neccessary to compare it

with Anderson's resolver. The following .section is therefore

devoted to describing Anderson's method.
: o

59

5.2 Anderson's Multiple Response Resolver

Fig. 7 shows Anderson's tree structured resolver. The
tree is constructed with identical logic blocks of 4 input
pairs and 1 output pair. The function of each block is to
perform the resolution operation when enabled to do so by a
parent block above it, and to inform the parent of any !
bits (activity) on .its inputs when its parent enabies.the
resolution, An indication vector is passed to its descendent
blocks (or to the vector R), enabling their resolution
opération. | '

Each interconﬁecting pair is comprised of an activity
signal propagating up the tree to the root block and an
indication éignal propagating down. The pairs at the
terminal nodes of the tree are the register s and the vector
R, while tpe pair at the root are the system level agtivity
and enable signals. #.

Fig. 8 shows «the circuit Anderson calls the
"P-generator"” block. The A00 - A11 lines repreéent inputs of
activity from four lower iocations in the tree; four bits of
s or four descendent blocks aepédding on the level. If any
of them are 1, then the A-out line going up the tree is
energized. The P00 - P11-iines represent outputs of the

indication vector to four lower locations in the tree.

\

’
W

-] .
. — . . I
. . i -
. . “ S
e — —_ |

~

60

8
<]
y

Fig. 8. Pigenerator block.

The time Ior generating R vector is calculated as
follows.'FQr a memory of m woras, Andersorn's tree will have
(log m)/é levels. The activity signal must propagate upwar-
in the tree'throughp(log m)/2 levels for the root block !@
.generate the enable signal. This signal has to propagate
downwards in the tree through (log m)/2 levels to generate
the R vector. This gives (log m) unit delays in total. Thé
time complexity 6f Andersg@'s method is, therefore,

: S
O(k-log m). It should be ndted that the major advantages of

Anderson's resolver are its very fast speed and its cellular

ot
a0
| R

structure. e

5.3 A new multiple 'response resolver

The orderéd retrieval algorithm introduced in Cﬁapter 4
is directly applicable to solving the problém of multiple
responée resolution. A tag field is includéd'for each word,
where each tag is a distinguishable number ofblength log m.
When multiple responses occur, each tag serves as a ﬁumbef
for the ordered retrieval'algorithﬁ. The tags invb}ved in
the ordered retrieval érevthdse'corresponding ;o ﬁhe
résponse wordg._Only the‘bit—slices éomposing theitaglfielé

are used in the process. Consequently, thlsrscheme.ggqu1res

A3 1 [
O(log m +k) steps to resolve k responders. * ,g?,;
G

@

5.4 Coﬁparison with Anderson;s resolver

The dﬁstinguishing feature of the multipile response
resolver outlined in the previous section is that the vector
R can be generated 1in constant ;ime fér each of the
responders except the firgt one. This implies tha; it 1s
potentially attractive for large associative memories. It
would be of great value to evaluate the proposed method in
terms of Anderson's approach which has been widely regarded
a; the fastest one.

In order to precisely compare these two schemes, it is
assumed that (1) reading of a selected word into register I
can be done in constant time [28] and (2) I is made up of D
type flip flops. |

For a memory of size m, Anderson's resolver requires
log m gate delays to c:nerate the vector R. Once the vector
‘R has beén generated, one word, say B(i), indicated by
R(i)=1 can be read inté register I; s(i) is thén‘resqg,
discarding B(i) from further cofisideration. The process is
repeated until all responders have be exhausted. |

Reading a selected word B(i) and generating another
‘vector R for “he next wdr% can be overlaped in time. They
cannot, however, start at the same time, for the following
réggons. First, s(i) has to h= reset to guarantee that the
vecfor R to be generated would not locate fhe same B(1i)
again. Second, resefting s(i) haé to be done in such a way

that the'éurrently used vector R cannot be disturbed before

.;régister I can receive B(i) properly. It is reasonable to

-2

XV 64

assume that generating the next vector R can be started 4
gate delays later than the read operation, where 4 1s-due to
the set up time and hold time for the D flip flop as well as
the reset time for s(i). Fuftgér.guppébé a memory read
operation takes time less than (log m +4) gate delays,
therefcre the total time required by Anderscon's method to
resolve k responders is k-:(log m +4) gate delays. The total
timé needed byJ;he proposed resolver to 4o the same task is
5(log m +2k-1). Consequently, Qﬁen k 1is greater than

5(log m —1)/(lo§-m -6) the proposéd resolver takes less time
thaﬁ Andersénigégcheme does. Table I gives a list of values
for log m, k' and the ratio k'/m, where-

k'=5(log m -1)/(log m -6);:As the table implies, the
pioposed method becomes more efficient ﬁhan.its competitor
when the memory size is large. For example; when m= 4096,
the new resolver always takes less time than its competitor
as long as k is greater than 9. For the purpose of output,

however, to read a list of more than 9 out bf the 4096 words

would be the most likely case.

PO
g

Table I

log m k' k'/m
7 30 0.234375
8 17] 0.066406
9 13 0.025391
10 11 0.010742
11 10 0.004883
12 9 0.002197
13 8 0.000979
14 8 0.000488

s 15 7. 0.000213
16 7 0.000106
17 7 0.000053
18 7 1 0.000027
19- 7 0.000013
20 6 0.000006

65

’ CHAPTER 6
 CONCLUSION

Three major types of algorithms for parallel

associative memories have been investigated in this thesis.

Effecient algorithms for searching, ordered retrieval as

- well as multiple résponse resolution have been proposed.
'Each of the new algorithms has been evaluated in terms of

the best algorithm of the same type in the literature. A

comparison of the results has shown that the proposed

algorithms are superior in most cases.

66

10.

BIBLIOGRAPHY

A. E. Slade and H. O. McMahon, "A cryotror catalog
memory system," Proc. Easten JCC, vol. 10. pp. 115-120,
Dec. 1956.

W. Shooman, "Parallel processing with vertical data,"
Proc. Easten JCC., 1960.

R. R. Seeber, "Associative self—sortihg memory," Proc.
Eastern JCC, vol. 18, pp. 179-187, Dec. 1960.

E. J. Gauss, "Locating the largest word in a file using
a modified memory," JACM, vol. 8, pp. 418-425, July
1961. ,

E. H. Frei and J. Goldberg, "A method for resolving

multiple responses in a parallel search file," IRE

Trans. Comput., vol. EC-10, pp. 718-722, Dec. 1961.
- g

R. R. Seeber and A. B. Lindquist, "Associative memory
with ordered retrieval,"” IBM Journal, vol. 6, pp.
126-136, Jan. 1962. .’

M. H. Lewin, "Retrieval of ordered list from a
content-addressed memory," RCA Rev., voli 23, pp.
215-229, June 1962. , L

A. D. Falkoff, "Algorithms for parallel-search
memories,” JACM , vol. 9, pp. 488-511, Oct. 1962.

G. Estrin and R. H. Fuller, "Algorithms for
content-addressable'! memories," IEEF pacific computer
conf., pp. 118-130, 1963.

H. Weinstein, "Proposals for ordered sequential
detection of simultaneous multiple responses,;" IEEE

"~ Trans. Comput., vol. EC-12, pp. 564-567, Oct. 1963. "

11,

L. R. Johnson and M. H. McAndrew. "On ordered retrieval@;
from an associative memory," IBM Journal, vol. 8, pp;/ﬁL

67 o N

13.

14.

15.

16.

17.

18.

19.

20.

21.

22,

68

189-193, April, 1964.

. H. S. Miller, "Resolv1ng multiple responses in an

associative memory," IEEE Trans. Comput., vol. EC-13,
pp. 614-616, Oct. 1964. ~

A. Wolinsky, "A simple proof of Lewin's ordered
retrieval theorem for associative memory," CACM, vol.
11, pp. 448-490, July 1968.

C. C. Foster, "Determination of priority in associative
memories," IEEE TPans Comput., vol. EC-17, pp. 788-789,
Aug. 1968.

D. E. Knuth, The art of computer programming, vol. 1,
Fundamental Algorlthms Addison-Wesley, Reading, Mass.
1968.

D. E. Knuth, The art of computer programming, vol. 2,
Sorting and Searchlng, Addison-Wesley, Reading, Mass., j

1969.

V. H. Kautz, "Cellﬁlar logic-in-memory arrays," IEEE

Trans. Comput., vol. C-18, pp. 719-727, Aug. 1969.

A. Wolinsky, "Unified interval ¢lassfication and unified

3-classfication for associative memory," IEEE Trans.

Comput ., vol. C-18, pp. 899-911, Oct. 1962 i

D Lo
T. Y. Feng and C. C. Lee, "Associative memory
manipulations,” Proc. Hawaii International Conf. on
System Sciences, pp. 833-837, Jan. 1970.

J. T. Koo, "Integrated circuit content addressable

‘memories," IEEE Trans. Solid State Circuits, pp. 3]

208-215, Oct. 1970.°

J. Minker, "An overview of associative.or
content-addressable memory systems and KWIC index to the
literature," Computlng Revtews, vol. 12, 'pp. 453-504,
Oct 21971, , ‘

o 1

C. C. Foster and F. Stockton, "Counting responders in an

23.

24.

25.

26.

27.

28.

29.

30.

31.

32.

69

associative memory," IEEE Trans. Comput., vol. C-20, pp.
1580-1584, Dec. 1971, '

~ : ’ ‘t

B. Parhami, "Associative memories and processbrs: An
overview and selected bibliography,"™ Proc. IEEE, vol.
61, pp. 722-730, June 1973.

D. W. Digby, "A search memory for many-to-many ,
comparisons,” IEEE Trans. Comput., vol. C-22, pp.
768-772, Aug. 1973. i

C. DeFiore and P. B. Berra, "A quantitative analysis of
the utilization of associative memories in data base
management ," IEEE Trans. Comput Vol. C-23, pp.
121-123, Feb, 1974.

G. A. Anderson, "Multiple match resolvers: a new design
method," IEEE TPans Comput vol. C-23, pp. 1317-1320,
Dec. 1974.

S. S. Yau and H. SﬁaFung, "Associative processor
architecture- A survey," in Proc. 1975 Sagamore Computer
Conf. on Parallel Processing, IEEE Computer Society, PP.
1-14, Aug. 1975. p

C. C. Foster, Content addressable Parallel Processors,
New York: Van Nostrand Reinhold, 1976.

D. Landis, "Multiple-response resolution in associative
systems," IEEE Trans. Comput vol. C-26, pp. 230-235,
Mar. 1977.

I. N. Chen, "Performing summation and product in an
associative processor," Proc. of the 1977 International
Conf. on Parallel Processing, pp. 155-156, Aug. 1977,

C. V. Ramamoorthy, J. L. Turner, and B. W. Wah, "A
design of a fast cellular associative memory for ordered
retrieval,"” IEEE TPanS Comput., vol. C-27, pp. 800-815,
Sept. 1978 ' _

W. A. Pavis and D. L. Leé,f"Fast search algorithms for
associative memories," to appear in IEEE Trans. Comput.,
1984. o : A .

33.

W

%g

70

. A. Davis and D. L. Lee, "An associative memdry
cheme," to appear in Proc. the 1st International Conf.
n Computers and Applications, 1984. ‘

