
In 1964, when entering medical school, I found myself with a dream whose origins I do 
not know. I was new to biology then, as unfamiliar as many of you may be with its 
intertwined marvels of historical contingency, selection, design, drift, accident, and sheer 
wonder. I think as a young scientist I could not yet begin to fathom the power of natu
ral selection, whose subtlety has grown more impressive to me over the intervening three 
decades. Yet the dream that welled up from whatever unknowable sources is one I still hold. 
If biologists have ignored self-organization, it is not because self-ordering is not pervasive 
and profound. It is because we biologists have yet to understand how to think about sys
tems governed simultaneously by two sources of order. Yet who seeing the snowflake, who 
seeing simple lipid molecules cast adrift in water forming themselves into cell-like hollow 
lipid vesicles, who seeing the potential for the crystallization of life in swarms of react
ing molecules, who seeing the stunning order for free in networks linking tens upon tens 
of thousands of variables, can fail to entertain a central thought: if ever we are to attain 
a final theory in biology, we will surely, surely have to understand the commingling of 
self-organization and selection. We will have to see that we are the natural expressions of a 
deeper order. Ultimately, we will discover in our creation myth that we are expected after all. 

Stuart Kauffman, At Home in the Universe, 1995 





University of Alberta 

ALGORITHMIC DISTRIBUTED ASSEMBLY 

by 

Jonathan Scott Kelly 

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment 
of the requirements for the degree of Master of Science. 

Department of Computing Science 

Edmonton, Alberta 
Spring 2008 

© 



1*1 Library and 
Archives Canada 

Published Heritage 
Branch 

395 Wellington Street 
Ottawa ON K1A0N4 
Canada 

Bibliotheque et 
Archives Canada 

Direction du 
Patrimoine de I'edition 

395, rue Wellington 
Ottawa ON K1A0N4 
Canada 

Your file Votre reference 
ISBN: 978-0-494-45831-0 
Our file Notre reference 
ISBN: 978-0-494-45831-0 

NOTICE: 
The author has granted a non
exclusive license allowing Library 
and Archives Canada to reproduce, 
publish, archive, preserve, conserve, 
communicate to the public by 
telecommunication or on the Internet, 
loan, distribute and sell theses 
worldwide, for commercial or non
commercial purposes, in microform, 
paper, electronic and/or any other 
formats. 

AVIS: 
L'auteur a accorde une licence non exclusive 
permettant a la Bibliotheque et Archives 
Canada de reproduire, publier, archiver, 
sauvegarder, conserver, transmettre au public 
par telecommunication ou par Plntemet, prefer, 
distribuer et vendre des theses partout dans 
le monde, a des fins commerciales ou autres, 
sur support microforme, papier, electronique 
et/ou autres formats. 

The author retains copyright 
ownership and moral rights in 
this thesis. Neither the thesis 
nor substantial extracts from it 
may be printed or otherwise 
reproduced without the author's 
permission. 

L'auteur conserve la propriete du droit d'auteur 
et des droits moraux qui protege cette these. 
Ni la these ni des extraits substantiels de 
celle-ci ne doivent etre imprimes ou autrement 
reproduits sans son autorisation. 

In compliance with the Canadian 
Privacy Act some supporting 
forms may have been removed 
from this thesis. 

Conformement a la loi canadienne 
sur la protection de la vie privee, 
quelques formulaires secondaires 
ont ete enleves de cette these. 

While these forms may be included 
in the document page count, 
their removal does not represent 
any loss of content from the 
thesis. 

Canada 

Bien que ces formulaires 
aient inclus dans la pagination, 
il n'y aura aucun contenu manquant. 



Abstract 

This thesis describes a model for planar distributed assembly, in which unit-square assembly 

components move randomly and independently on a two-dimensional grid, binding together 

to form a desired target structure. The components are simple reactive agents, with limited 

capabilities including short-range sensing and rule-based control only, and operate in an 

entirely decentralized manner. 

Using the model, we investigate two primary issues, coordination and sensing, from an 

algorithmic perspective. Our goal is to determine how a group of components can be reliably 

programmed to produce a global result (structure) from purely local interactions. Towards 

this end, we define the local spatiotemporal ordering constraints that must be satisfied for 

assembly to progress in a coordinated manner, and give a procedure for encoding these 

constraints in a rule set. When executed by the components, this rule set is guaranteed to 

produce the target structure, despite the random actions of group members. We then intro

duce an optimization algorithm which is able to significantly reduce the number of distinct 

environmental states that components must recognize in order to assemble into a structure. 

Experiments show that our optimization algorithm outperforms existing approaches. 



For Frances, Barbara, Helen and John. 



Acknowledgements 

I would like to thank Dr. Hong Zhang for introducing me to the problem which led to the 

research described herein, and for supervising my work. His guidance and assistance were 

invaluable as I charted a course through graduate studies at the University of Alberta. I 

began my doctoral program in California before finishing my Master's degree, and I am 

particularly indebted to Dr. Zhang for his patience over the years that it took to complete 

this manuscript. 

I would like to thank the members of my committee for their careful reading of the thesis, 

and to specially acknowledge Dr. C. Ronald Kube for providing much helpful advice and 

for reviewing and commenting on my early work in this area. I would also like to thank Dr. 

David Kempe at the University of Southern California for teaching an outstanding course 

on algorithm design and analysis. 

I was fortunate, during my time at the U of A, to become involved with Team Canuck, 

the Computer Science department's small-size league entry in the worldwide RoboCup robot 

soccer competition. I participated in the 2002 contest in Pukuoka, Japan, and I am grateful 

to my teammates Axel von Bertoldi, Doug Kondor, Matt McNaughton, Chris Parker, Sean 

Verret, and Andrzej Zadorozny for making this a wonderful and memorable experience -

may your sake cups always be full my friends. 

Most importantly, I would like to thank my mother, Barbara Kelly, and my grandparents, 

John and Helen Aitken, for their support throughout my graduate career. Your love and 

encouragement mean the world to me. 

This work was funded in part by grants from the National Sciences and Engineering 

Research Council of Canada and the Alberta Informatics Circle of Research Excellence. 



Contents 

1 Introduction 1 
1.1 Contributions 2 
1.2 Organization 3 

2 Related Research 4 
2.1 Self-Assembly 4 

2.1.1 Theoretical Contributions 4 
2.1.2 Models for Self-Assembling Robotic Systems 6 
2.1.3 Physical Implementations 8 

2.2 Collective Assembly 9 
2.2.1 Stigmergy 10 
2.2.2 Physical Implementations 11 

2.3 Summary 12 

3 A Model for Distributed Assembly 14 
3.1 Elements of the Model 14 
3.2 The Assembly Process 16 
3.3 Perspectives on Distributed Assembly 19 

4 Spatiotemporal Coordination 22 
4.1 Assembly Orderings 22 
4.2 Assembly Graphs 26 
4.3 Generating Valid Assembly Orderings 30 

5 Rules and Labels 35 
5.1 Consistent Rule Sets 35 
5.2 From Assembly Ordering to Worst-Case Rule Set 38 
5.3 The Minimum Label Set Problem 40 

6 Experiments 44 
6.1 Benchmarks 44 
6.2 Isomorphic and Symmetric Structures 46 
6.3 Complex Structures 50 

6.3.1 Structures with Interior Holes 50 
6.3.2 Larger Structures 54 

6.4 Summary 54 

7 Conclusions and Future Work 58 

Bibliography 60 



List of Algorithms 

4.1 Breadth-First Assembly Graph for Target Structure 31 

4.2 Valid Assembly Ordering for Target Structure 33 

5.1 Consistent Rule Set Decision 37 

5.2 Rule Set from Labelled Structure 39 

5.3 Worst-Case Rule Set 40 

5.4 Randomized Contraction 41 



List of Tables 

3.1 Example three-entry rule set 18 

6.1 Comparison of randomized contraction with competing algorithms 47 

6.2 Optimized rule set for 12-component benchmark structure 49 

6.3 Optimization results for structures D and E 50 

6.4 Optimization results for structures F and G 54 



List of Figures 

3.1 Adjacent grid cells 15 

3.2 Connected and unconnected structures 16 

3.3 Example of an inaccessible grid cell 19 

3.4 Incremental snapshots of the assembly of a 2 x 2 square 21 

4.1 Exterior boundary cells 25 

4.2 Structure and edge-oriented assembly graph 28 

4.3 Simple structure, adjacency graph and breadth-first assembly graph 32 

4.4 Two structures that cannot be assembled using a single seed 34 

5.1 Algorithm flowchart 43 

6.1 Benchmark structures A, B and C 45 

6.2 Assembly graph, worst-case and optimal labelling for structure A 48 

6.3 Assembly graph, worst-case and optimal labelling for structure B 48 

6.4 Isomorphic structure D 51 

6.5 Symmetric structure E 52 

6.6 Plot of label count versus optimization iteration for structure C 53 

6.7 Plot of label count versus optimization iteration for structure D 53 

6.8 Structure F, which contains an interior hole 56 

6.9 Structure G 57 



Chapter 1 

Introduction 

Distributed assembly is the process by which a group of agents interact to assemble a co

herent structure or pattern from individual components. An agent, in this context, is an 

autonomous entity that is a) capable of sensing its environment, and b) able to act on the 

sensory information it receives. These definitions are purposely broad, encompassing both 

self-assembling and collective systems.1 

We are motivated to study this distributed approach because it offers several advantages 

over traditional, sequential assembly methods. Specifically, distributed systems are able to 

exploit parallelism to improve yield or throughput, and can also be made inherently redun

dant and failure tolerant. As such, distributed assembly is expected to become the dominant 

fabrication technique for nanoscale structures, which cannot be built in a top-down, linear 

manner [1]. Researchers have also suggested that self-assembly may be harnessed to build 

meso-scale and macro-scale objects [2], Indeed, Nature very successfully utilizes distributed 

assembly across a range of spatial scales, from the manufacture of intricate biostructures 

inside living cells to the construction of elaborate nests by many social insect species. Al

though ubiquitous in the natural world, we have at present only a basic understanding of 

how many of these systems operate. 

If we wish to employ distributed assembly for our own purposes, we must immediately 

deal with two fundamental and complementary issues: maintaining coordination of the as

sembly process, and ensuring that a desired structure is produced accurately and reliably. 

Some form of coordination is required so that the agents, operating in parallel, do not pro

duce a disorganized or random result. The coordination problem is made more difficult be

cause systems containing hundreds or thousands of agents are frequently locally-interacting 

only - the cost of communication, in terms of power, time, or complexity, between distant 

individuals is often too high to be practical. A challenge, then, is to solve the local-to-global 

problem: given a system of many components, interacting locally, how does one 'program' 

the system to produce a specific global result? Further, the accuracy and reliability of the 

xWe will have more to say about the distinction between these types of systems in Chapter 2. 

1 



assembly process depends on an agent's ability to correctly recognize and discriminate be

tween members of a set of environmental features or states - for agents with limited sensing 

capabilities, discrimination becomes more difficult as the number of features increases. Is 

there a way to reduce the number of distinct features that agents are required to recognize? 

In this thesis, we examine distributed assembly from an algorithmic perspective. Our 

goals are twofold. We wish to determine how a group of homogeneous agents with limited 

capabilities, including local sensing and rule-based reactive control only, can be programmed 

to assemble into complex two-dimensional structures without centralized coordination. We 

also seek to reduce the sensing demands placed on the agents, by minimizing the number 

of environmental features that individuals must recognize in order to complete an assembly 

task. 

To address the above, we propose a model for distributed assembly in which unit-square 

assembly components (our agents) use local rules to self-assemble into planar structures. An 

assembly rule is defined by a local configuration of assembly components and an identifier 

(feature or state) associated with each component; we use the generic term label for such 

an identifier. We show how to generate a set of rules that, when executed by the agents, 

deterministically produces a pre-specified target structure. We then introduce a randomized 

optimization algorithm which attempts to minimize the number of unique labels appearing 

in the rules. The algorithm operates by iteratively refining a worst-case solution, verifying 

at each step that the modified rule set preserves all of the constraints necessary for successful 

assembly. 

Ultimately, we hope to develop principles and techniques that will allow us to build 

complex structures from a large number of physically simple components, in an entirely 

distributed and yet precise and reliable way. Our work here is a step towards this goal. 

1.1 Contributions 

This thesis makes the following contributions: 

• It presents a discrete model for rule-based planar distributed assembly, requiring very 

simple reactive agents (assembly components) only. We make no assumptions about 

the capabilities of the assembly components beyond their ability to sense their imme

diate local environment and to store and execute a set of rules. The components move 

randomly, do not communicate directly with each other, and maintain no history of 

past actions or observations. 

• It formally defines the global spatiotemporal ordering constraints that must be satis

fied for assembly to progress in a coordinated manner. We develop an algorithm for 

2 



expressing these constraints as a directed acyclic graph, and show that the algorithm 

can correctly describe constraints for complex structures, including those with interior 

holes. 

• It gives an algorithm for encoding the graph of spatiotemporal constraints in a set of 

local assembly rules, such that the production of a desired structure is guaranteed, 

despite the random actions of individual assembly components. That is, we show how 

to produce a deterministic and preprogrammed result in a system where interactions 

occur randomly. By doing so, we solve an instance of the local-to-global problem. 

• It introduces the Minimum Label Set (MLS) problem, a combinatorial optimization 

problem which involves finding the minimum number of unique labels necessary (in a 

rule set) for components to exactly self-assemble into a specific structure. We describe 

an iterative, randomized algorithm which provides quantitatively 'good' solutions for 

the MLS problem in a reasonable amount of time. 

The thesis deals with planar structures only, however the assembly model and the al

gorithms described herein can be readily extended to three dimensions. We briefly discuss 

these extensions in Chapter 7. 

1.2 Organization 

The thesis is organized as follows. We begin in Chapter 2 by discussing related work from 

a variety of fields, including biology, entomology, computer science and robotics. Chapter 3 

describes our planar assembly model. In Chapter 4, we introduce a graph-theoretic formal

ism for expressing sets of spatiotemporal ordering constraints that, when satisfied, ensure 

the coordinated assembly of a structure. Chapter 5 gives a procedure for encoding these 

constraints in a set of local assembly rules, and develops our randomized label reduction 

(optimization) algorithm. We present a series of experiments in Chapter 6 which character

ize the performance of the optimization algorithm, for a variety of structures. Finally, we 

offer some conclusions and directions for future research in Chapter 7. 

Throughout the remaining chapters we introduce formal definitions as necessary. Basic 

definitions are often given directly in the section text, while more complicated and important 

terms are defined separately. 

3 



Chapter 2 

Related Research 

In this chapter, we explore relevant work in the broad areas of self-assembly and collective 

assembly. For the purpose of this thesis, we will define a self-assembling system as one in 

which the components involved become part of the final structure. A collective system, in 

contrast, will rely on autonomous agents to position and attach inert building materials. 

Research in self-assembly and collective assembly spans the diverse fields of molecu

lar biology, entomology, computer science and robotics, among others. Our review below 

highlights theoretical contributions and initial steps towards developing controlled (pro

grammable), artificial implementations of self-assembling and collective systems. We focus 

primarily on the modelling of these systems here, as a first step to understanding their 

operation. 

2.1 Self-Assembly 

Self-assembly has traditionally been studied as a chemical process, where interactions be

tween components (individual molecules) are governed by inter- and intramolecular forces. 

It is well known that groups of certain molecules will, in reaching their lowest-energy con

figuration, spontaneously form into symmetric, ordered aggregates. Our interest, however, 

is in complex and potentially asymmetric self-assembled structures, built from more so

phisticated components. We begin by surveying various passive models for asymmetric 

self-assembly, and then consider several active (robotic) approaches. 

2.1.1 Theoretical Contributions 

There have been significant recent efforts toward developing an algorithmic theory of self-

assembly, in which the process is viewed as a form of computation. This approach permits 

analysis using tools from algorithmic complexity theory. The input to a self-assembly 'pro

gram' is a set of individual atomic (irreducible) components or parts, and the output is a 

final, aggregate structure. Programs may be analyzed in terms of both their size complex-

4 



ity, i.e. the cardinality of the input set and/or number of assembly rules, and their time 

complexity, i.e. average or asymptotic time required to assemble the complete structure. 

The formal study of algorithmic self-assembly began with the Domino Tiling Problem 

described by Wang in the early 1960s [3]. A domino tile or Wang tile is a square planar 

tile with a colour assigned to each edge. The fundamental problem Wang posed was to 

determine if a particular set of tiles could fill the infinite plane without leaving any gaps. 

Tiles may be placed according to the following two rules: attachments must be made along 

edges of like colour, and tiles may not be rotated or flipped. The Domino Tiling Problem 

has been shown to be equivalent to the Turing machine halting problem, and is therefore 

undecidable. 

Wang's early work influenced Adleman's model [4] for the one-dimensional self-assembly 

of linear tile chains (a process called tile polymerization). In this model, the edges of a tile 

are assigned glue values (from a countably infinite set of glues), analogous to the coloured 

edges of a Wang tile. Tiles will bind along abutting edges if the glues are compatible; 

rotation of the tiles is not allowed. Adleman provides a metric for the time complexity of 

linear polymerization based on 'step-counting', where a step involves the binding of a tile 

with any adjacent tiles sharing compatible glues. The results in [4] include a proof of the 

asymptotic bound on the number of steps required for a certain proportion of the tiles to 

become incorporated into a single polymer. 

Rothemund and Winfree [5] describes a two-dimensional Tile Assembly Model, in which 

unit-square tiles move randomly on the plane and join together to form larger compound 

structures. As in [4], each tile edge is assigned a glue value; a tile type is a unique assignment 

of glues to edges. Unlike [4], tiles will bind along abutting edges only if the total strength 

(sum) of their pairwise edge interactions, defined by a glue strength function, is larger than 

a fixed temperature parameter r. The r value models the thermal energy of the system, 

with a higher temperature making binding less likely. A structure's program size complexity 

is defined as the number of tile types required to uniquely assemble the structure. Adleman 

et al. [6] generalizes the model in [5] and gives an assembly algorithm for nxn squares that 

is optimal in terms of asymptotic assembly time and program size (tile types). The problem 

of determining whether a certain number of tile types is the minimum required to assemble 

an arbitrary planar structure is shown to be NP-complete in [7]. 

Saitou [8] introduces an alternative model for one-dimensional self-assembly, derived 

from automata theory. Here, assembly is guided by conformational switching, the (phys

ical) process whereby two components, when brought into close proximity, bind to one 

another and change their overall conformation (or shape) as a result. Conformation changes 

then promote or inhibit binding with other components or assemblages.1 A self-assembling 

xMany biological reactions are mediated by conformation changes, caused by e.g. ligand docking etc. 

5 



automaton is a simplified rule-based machine (in the Turing machine sense) that operates on 

one-dimensional strings of components or parts. The parts are initially divided into a series 

of hypothetical 'slots' in a component bin; an assembly operation involves picking two parts 

from random slots, applying an assembly rule (if a suitable rule exists), and returning the 

resulting assemblage to another random slot. One or more of the parts in the assemblage 

may undergo a conformation change as a result of the operation. For the one-dimensional 

case, [8] shows that three conformations for every part are sufficient to exactly assemble any 

linear string of parts. 

Klavins et al. [9] presents a model similar to [8] for self-assembly and distributed robotic 

assembly based on graph grammars. Here, graph vertices represent parts, and an edge 

between two vertices indicates that the corresponding parts are attached. Assembly rules 

are specified by a grammar consisting of a set of graph pairs, where each pair describes a 

local replacement rule: if a conformation of parts matching the first graph in a pair exists, 

the conformation can be replaced with a new conformation defined by the second graph. 

• This procedure defines an assembly action. A particular grammar can be programmed 

into the system, by proper selection of the parts, to synthesize a desired structure. One 

difficulty, however, is that, although graphs naturally express topological relationships, they 

do not readily encode geometric information. Ghrist and Lipsky [10] successfully extends 

graph grammars to tile assembly systems, and gives examples of grammars that generate 

only planar outputs, but does not address the problem of designing grammars for arbitrary 

planar structures. 

2.1.2 Models for Self-Assembling Robotic Systems 

The models described above are passive, in the sense that assembly events occur as a natural 

result of the design of the components themselves. That is, the components cannot choose 

whether or not to participate in an assembly activity - all possible interactions are a priori 

specified by the components' intrinsic characteristics. We now discuss a series of models for 

active systems, in which the components (agents) have some level of basic intelligence and 

are able to sense, deliberate, and act - making them, effectively, simple robots. Our model, 

presented in Chapter 3, is an example of this type. 

Guo et al. [12] suggests a model for active self-assembly involving cubic blocks, where 

each block face is assigned a polarity from the set {like, unalike, neutral}. Like polarities 

repel, while unlike polarities attract; neutral polarities neither attract nor repel. Every block 

contains an internal state machine that is able to change the polarity of a face in response 

to a 'sticking' or 'unsticking' event. Simulation results in [12] demonstrate that a genetic 

algorithm can evolve sets of state machine rules that allow stable shapes to form. A shape 

is stable if it stops growing at some point because no further sticking events can occur. The 

6 



largest stable structure given in [12] consists of only 13 blocks, however. 

Closely related to our own work is the Intelligent Self Assembly (ISA) model proposed 

by Jones and Mataric [13]. In ISA, autonomous unit-square Assembly Agents (AAs) move 

randomly on a two-dimensional grid and self-assemble into planar structures under local, 

rule-based control. Each AA maintains an internal state, and is able to detect the states of 

agents in adjacent cells. An A A will bind to its neighbours when it discovers a state pattern 

that matches one of a series of internally-stored assembly rules. The AA then transitions 

to a new state specified by the activated rule. Rules are generated offline by a Transition 

Rule Set (TRS) compiler, which takes the goal structure as an input and produces a set 

of assembly rules as an output. A rule set which builds the goal structure only is termed 

consistent. The TRS compiler operates by iteratively assigning larger state values to AAs 

in the complete structure until a consistent rule set is built. As described, the compiler is 

able to generate rules for a subset of planar structures without complex interior regions (e.g. 

certain types of 'holes' with non-convex boundaries). Also, the compiler does not attempt 

to minimize the number of states appearing in the rule set, and does not exploit symmetry 

or self-similarity within the goal structure to reduce the number of states used. 

Li and Zhang [14] addresses the problem of state reduction in [13] by partitioning the 

goal structure into rectangular regions and generating rules independently for each region. 

Individual rectangles are encoded using the minimum number of states necessary. The 

rectangles are then 'stitched' together by introducing additional states to handle assembly 

along the boundaries. This partitioning approach is effective for structures composed of 

large, contiguous regions, however the algorithm does not take advantage of symmetry and 

does not provide improvement for degenerate rectangles (those with a length or width of 

one unit). 

Arbuckle and Requicha [15] proposes a communicative model for self-assembly, in which 

agents are able to send messages to connected neighbours. Communication enables a global 

ordering to be imposed on the entire assembly process, and also for the assembly of sacrificial 

scaffolds and of partially-specified structures. In the case of partially-specified structures, 

assembly is adaptive - a structure may be denned in terms of constraints (e.g. "there 

must be a connected bridge from point A to point B"), and message-passing allows the 

components to self-assemble around unknown obstacles. The drawback of communication 

is t ha t it requires significant resources (for example, power) from each assembly agent. 

The work in [15] is extended to shape restoration in [16]. Given a desired, solid pla

nar shape and an existing, partially-complete sub-shape, [15] describes an algorithm for 

programming assembly agents to restore the complete shape from the unknown sub-shape. 

The algorithm begins by assembling an outer perimeter for the complete shape. Agents on 

the perimeter then shift inwards until no further space is available in the interior region. A 

7 



similar extension to self-repairing structures is examined in [17], where agents send messages 

to connected neighbours at regular intervals. If no message is received from a neighbouring 

agent within a specified time period, the receiving agent assumes that some type of failure 

has occurred, and disconnects from the neighbour. This allows another, operating agent 

to move into position, repairing the structure. It also implies that continuous message ex

change is required to maintain structural cohesion, which may be an unrealistic requirement 

for many physical systems. 

Other approaches more closely parallel biological processes, such as cell morphogenesis. 

Kondacs [18] describes a method for programming a group of synthetic 'cells' to replicate 

and grow into an arbitrary two-dimensional shape. There is no centralized control in the 

system - each agent relies solely on an identical internal program that is pre-compiled from 

a covering-disc decomposition of the input shape. The assembly process is mediated by 

long-range gradient signaling, which allows cells to triangulate their current positions in 

the overall structure, and by short-range messaging between adjacent cells. A spanning tree 

formed from the covering disc set is used to generate the individual programs that determine 

when cells should send specific long- and short-range messages. The system has an attractive 

self-containment property: because cells determine their positions via triangulation, they 

do not require any external, global orientation information to self-organize. 

2.1.3 Physical Implementations 

Theoretical models can provide significant insight into the design of self-assembling systems. 

However, as abstractions, these models often do not fully describe the complexities of phys

ical assembly processes. For example, high-level models usually do not consider assembly 

errors that may result from contamination, misalignment of individual components, envi

ronmental noise or other factors. We therefore review several attempts to develop artificial 

self-assembling systems in this section. 

Rothemund [19] demonstrates that a simple tile assembly system can be physically re

alized. In this implementation, binding between small, square plastic tiles is mediated by 

lateral capillary forces, which are attractive or repulsive depending on the hydrophilic or 

hydrophobic wetting characteristics of the individual tile edges. When placed in a liquid 

consisting of two immiscible layers (one hydrophilic, the other hydrophobic), the tiles nat

urally deform the interface between the layers, resulting in capillary forces that cause tiles 

with opposite wetting characteristics to move towards each other and bond together. A 

critical finding in the work is that the model or simulation used to predict the outcome 

of these experiments cannot be over-simplified relative to the physics of the system. For 

example, a model which assumes that tile edge characteristics may be represented by digital 

values {0, 1} fails to capture several important physical effects, such as bonding variations 

8 



that can cause tiles to tilt and inhibit aggregation. 

Reif et al. [20] reports on self-assembly using deoxyribonucleic acid (DNA) tiles with 

'sticky ends'. Each DNA tile is formed from multiple single-strand DNA anti-parallel 

crossovers. At the end of every strand is an unbound base pair sequence (the sticky end); 

this sequence will naturally bind to a complementary sequence at the corner of another tile. 

By designing the selective affinity of the ends, a series of individual tiles can be made to 

reliably form into a larger tiling lattice. The tiles may be homogeneous, producing a regular 

periodic structure, or heterogeneous for application-specific designs. The primary challenge 

for DNA tile systems is error control - error rates from 0.5% to 5% are common. 

Burden et al. [21,22] describes a real-world testbed for the grammatical self-assembly 

model defined in [9]. Triangular programmable parts, which are small, self-contained robots, 

float on an air table and interact through random collisions. A part is equipped with 

an electromagnetic latch and an infrared transceiver along each of its edges, allowing it 

to reversibly bind and communicate with neighbouring parts. The parts are 'stirred' (to 

simulate thermal agitation) by several fans located around the border of the table. Initially, 

the edges of a part are assigned a triple of labels; when two parts come into contact, they 

compare their label states and decide collectively whether to remain bound together or to 

separate. The decision is based on a common graph grammar stored internally by each 

part. Interactions between the parts can be modelled using reaction-diffusion dynamics 

from chemical kinetics theory, with an appropriate kinetic rate constant. 

2.2 Collective Assembly 

In collective assembly2, a number of agents work in parallel to assemble a structure from 

inert building materials. The size of the group may vary from just a few to hundreds or 

thousands of individuals. We are concerned with minimalist systems in which the agents are 

relatively simple and operate without centralized control. In these cases, the agents usually 

do not possess explicit, internal representations of the world or of their actions within it -

instead, as described by Brooks, they "use the world as its own model"3 [23]. 

Much of the research on collective robotics has been inspired by entomological studies of 

social insect species (bees, wasps etc.). Although individuals in these societies possess limited 

capabilities and small behavioural repertoires, reinforcing interactions will often produce 

coherent group behaviour. Pioneering work by Kube and Zhang [24,25] demonstrated that 

a group of insect-like, behaviour-based robots can collectively accomplish certain tasks, such 

as box pushing, which would be impossible for a single robot. Coordination and cooperation 

emerge from simple, local rules that regulate the interactions between group members; the 

2Collective assembly is also called collective construction in some literature. 
3 A different, and more famous, quotation from Rodney Brooks is that "the world is its own best model." 

9 



robots do not need to communicate directly with each other. Kube emphasizes in [24] that 

designers of collective tasks must explicitly consider an interaction loop involving both the 

system (i.e. the robots) and the environment. 

Assembly tasks, in particular, require some method for coordinating the actions of the 

agents involved. Without coordination, misassembly of one portion of a structure may 

impede, or worse, prevent, successful assembly of the structure as a whole. One possible 

coordination strategy is biologically-inspired, hormone-based control [26,27], in which dif

ferent types of digital 'hormone' messages diffuse throughout a colony according to specific 

propagation and decay rules. Hormone-based approaches typically require the transmission 

of electromagnetic or chemical signals, however, and are therefore energy-intensive. Below, 

we focus on stigmergy, an alternative, powerful coordination mechanism used by many social 

insects. 

2.2.1 Stigmergy 

Our work on distributed assembly [28] was originally motivated by a desire to apply models 

for social insect nest construction to robotic systems. Insect workers do not follow a global 

blueprint and do not normally communicate with each other - instead, the workers convey 

information through modification of the environment itself. New environment configura

tions, in turn, stimulate other actions by the same worker or another worker in the colony. 

French entomologist Pierre-Paul Grasse coined the term stigmergy in 1959 to define this 

type of behaviour [29], which he studied initially in termite species. The word is derived 

from the Greek roots 'stigma' (urge or goad) and 'ergon' (action or work), and is meant to 

convey the idea of "incitement to work by the products of work" [30]. 

Stigmergy can be generally classified as either quantitative and qualitative. In quantita

tive stigmergy, the intensity of the interactions between agents and the environment takes 

on a continuous range of values. Pheromone gradients are one example of a quantitative 

stimulus, and have been suggested as a useful coordination mechanism to guide robotic 

construction [31]. Qualitative stigmergy, in contrast, uses a set of discrete stimulus types -

stimuli that are qualitatively different trigger different responses from an agent. 

An example of qualitative stigmergy relevant to this thesis is the model of wasp nest con

struction proposed by Bonabeau et al. [32]. In this model, reactive agents move randomly 

and asynchronously on a three-dimensional cubic or hexagonal lattice, depositing elemen

tary bricks when they sense certain configurations of bricks in adjacent cells. Each agent 

carries an identical, internal lookup table specifying which of two types of bricks to deposit 

when it encounters an appropriate stimulating configuration. Entries in the table are called 

micro-rules, and together they form a building algorithm. To avoid random deposits, every 

algorithm begins with a single, pre-placed seed brick. 

10 



The model in [32] has three important characteristics: 1) construction can occur in par

allel at several locations simultaneously, 2) there is no centralized control or direct (agent-

to-agent) communication, and 3) agents have access only to local information about the 

portion of a structure in their immediate vicinity. The rule space is also extremely large: 

for the 26-cell local neighbourhood used in the model, and with only two types of elemen

tary bricks, there are 226 ss 108 unique micro-rules. Each of these rules can potentially be 

combined with thousands of others, generating an enormous number of possible combina

tions. However, there are relatively few subsets of compatible rules which generate coherent 

architectures [33]; a significant challenge is to efficiently find such coordinated subsets of 

micro-rules. 

Bonabeau et al. [34,35] explores the rule space using a genetic algorithm (GA). The GA 

fitness function is based on subjective human evaluation of the 'structuredness' of a series of 

example architectures, and incorporates the following observations: coherent architectures 

are compact, consist of repeating, modular patterns, and tend to make use of many of 

micro-rules. Although the structures produced by the GA are visibly organized, [35] does 

not consider the problem of generating micro-rules for structures that are a priori specified. 

Werfel et al. [36] proposes endowing the environment itself with basic information pro

cessing capabilities, as a way to improve the robustness and efficiency of collective assembly. 

In this approach, called extended stigmergy in [36], square structural blocks are able to com

municate state information to their neighbours and to nearby robots. The blocks can also 

react to this information by attaching to or detaching from one another. Using the informa

tion provided by the blocks, mobile robots are able to assembly any solid, two-dimensional 

structure, specified by either a complete design or by a set of more general constraints (e.g. 

that every block of type A must have a block of type B within a radius of three units). 

Communication within the structure also provides some capacity for error correction via 

disassembly. 

2.2.2 Physical Implementations 

The literature contains several examples of collective assembly involving physical robots. 

Wawerla et al. [37] studies the role of communication in a multi-robot construction task, 

where mobile robots assemble linear barriers composed of coloured cylinders. Robots con

struct a barrier by placing cylinders of alternating colour adjacent to one another, starting 

with an initial 'seed' cylinder that is pre-positioned. The authors carry out several exper

iments to verify that a single robot is able to complete the construction task successfully. 

Simulation studies with multiple robots indicate that, as the number of robots increases, 

there is a corresponding decrease in individual robot performance, due to interference and 

competition for access to the construction site. A robot will often have to wait to access to 

11 



the end of the barrier, only to discover that it is carrying a cylinder of the wrong colour. 

Overall performance improves significantly if the last robot to successfully add a cylinder 

is able to communicate one bit of state information (the colour of the attached cylinder) to 

other, nearby robots. 

Werfel et al. [38] describes several algorithms for collective robotic construction of planar 

structures, where each algorithm is distinguished by the capabilities it requires from the 

structural blocks - blocks are either inert and identical, inert and distinct, or 'writable' 

(blocks which can be labelled dynamically). In all cases, the algorithms are limited to 

the construction of solid shapes without internal holes. Experiments using a mobile robot 

equipped with a gripper, colour camera and Radio Frequency Identification (RFID) tag 

reader/writer verify that the robot is able to successfully build to small planar structures 

from self-aligning, writable blocks. 

Parker and Zhang [39] demonstrates a robotic construction system modelled on the be

haviour of a particular species of ant (Leptothorax tuberointerruptus). This species employs 

a building method known as blind bulldozing, in which the ants push material outwards from 

a central location to form a circular nest surrounded by a uniform wall. In the correspond

ing robotic implementation, each member of a group executes the same simple algorithm: 

a robot moves directly forwards in a straight line, pushing gravel with its plow, until the 

resistive force on the plow exceeds a predetermined threshold. When this occurs, the robot 

backs up, randomly reorients itself, and resumes moving forwards in a new direction. Rep

etition of the pushing action, over a period of time, produces a cleared nest area that is 

approximately round. The robots are entirely reactive and have no knowledge of the struc

ture they are building. Although robot-robot and robot-wall interactions occur randomly, 

the time-evolution of the nest structure is statistically predictable. 

2.3 Summary 

Our review above focused primarily on the modelling of self-assembling and collective sys

tems. We also briefly described several initial attempts to develop artificial implementations 

of these types of systems. 

We saw that theoretical models for self-assembly are at present largely simplified ab

stractions, designed to permit tractable analysis using, for example, algorithmic complexity 

theory. The models can generally be grouped based on whether they are passive or active; 

active systems are typically more capable, but also more complex, than their passive coun

terparts. Examples in the passive category include tile assembly, conformational switching, 

and graph grammar-based approaches. Examples in the active category include intelligent 

state-based methods and techniques inspired by cell morphogenesis. The addition of direct 

short-range communication in some active models enables capabilities such as environmental 

12 



adaptation, disassembly and error correction. 

Researchers have begun to form a bridge from self-assembly theory to practice, using a 

variety of mediums and components. Existing physical implementations rely on capillary 

forces, selective affinity of DNA molecules, or more sophisticated macro-scale components 

such as robotic programmable parts. 

Our discussion of collective assembly emphasized that designers of collective systems 

must consider an interaction loop involving both the agents and the environment in which 

they operate. In some cases, this interaction loop produces a gestalt effect, allowing a group 

of agents to complete a task which would be impossible for a single individual. 

We described methods for collective coordination that rely on digital hormones and 

on stigrnergy. Stigmergy, or environment-mediated coordination, is an attractive approach 

because it does not require agents to perform any actions beyond those already necessary 

for the construction task. 

Much of the work on collective assembly has been inspired by the stigmergic, distributed 

nest-building activities of social insect species. For these types of systems, the range of dis

tinct environmental configurations and possible agent-environment interactions is typically 

extremely large. A challenge, then, is to determine how to constrain the assembly process 

enough to ensure that a coherent result is produced. Because of the additional complexity 

involved, collective robotic implementations have thus far been limited to the assembly of 

planar structures by small numbers of robots. 

13 



Chapter 3 

A Model for Distr ibuted 
Assembly 

We now introduce a discretized model which captures many of the essential properties of 

real-world distributed assembly systems. In our model, homogeneous unit-square assembly 

components move randomly on a two-dimensional grid of cells, binding together to form 

a desired target structure (or simply target). The assembly process is entirely local - as

sembly decisions depend only on the information available within a component's immediate 

environment. 

We begin in the next section by defining the elements of the model, and proceed to 

formalize how a structure is assembled over time. The chapter closes with a discussion 

of several ways in which our abstraction can be modified to describe a wider variety of 

self-assembling, and also certain types of collective, systems. 

3.1 Elements of the Model 

Our model consists of two elements: a planar assembly grid and a set of assembly com

ponents. The assembly grid is a finite, two-dimensional Cartesian lattice on which the 

components move and upon which the final structure is built. An assembly components 

(or simply component), is an autonomous agent that is able to recognize and respond to a 

limited set of features within its local environment. At any time, a grid cell may be empty 

or may contain a single assembly component which completely fills the cell. 

The position of a cell is represented by a coordinate pair (i,j) of integers, relative to an 

arbitrary origin (0,0). We use the cardinal directions north, east, south and west to define 

spatial relationships between the cells: for coordinate pair (i, j), the first value i specifies 

the position of the cell along an axis increasing from west to east, while the second value j 

specifies the position of the cell along an axis increasing from south to north. When there 

is no risk of ambiguity, we will often refer to a cell by its position, as 'cell (i,j)', instead 

of explicitly writing 'the cell at position (i,j)'. Likewise, we will generally not distinguish 

14 



Figure 3.1: The assembly component (black) may move to any one of the four adjacent cells 
(medium grey) at the next time step, as indicated by the arrows. After two time steps, the 
component is able to reach any one of the light grey cells. 

between a set of cells and the set of coordinate pairs that identify those cells on the grid; 

this notational convenience will allow us to simplify a number of the definitions below.1 

Each cell has four adjacent neighbours to the north, east, south and west, as shown in 

Figure 3.1. Given two adjacent cells at positions (i,j) and {m,n), we describe the position 

(m,n) with respect to (i,j) by writing (171,12)^ ••,, where d € {n,e,s,w} is an abbreviation 

for the direction (north, east, south or west), respectively, of (m,n) relative to (i, j) on the 

grid. 

Definition 3.1 Grid cells at positions (m,n) and (i,j) are adjacent if \m — i\ + \n—j\ — 1. 

Although all of the assembly components have the same size and shape, each may be 

distinguished by an intrinsic feature called a label. In a physical system, this label might 

be any characteristic that is readily discernible at the scale of the components, such as a 

colour (macro-scale), inscription (micro-scale), or particular surface molecule (nano-scale). 

For our purposes, labels will be values from the set N+ of positive integers. Initially, every 

component is assigned the null label, which is '0' by our convention. Each component is 

able to undergo a single label update, from the null label to a label I > 1; this change occurs 

as the result of an assembly action. 

An assembly component has minimal sensing capabilities: it is able to determine which 

direction is north, and to recognize the labels assigned to other components in adjacent, 

occupied cells. Heading information is used only to maintain a fixed orientation while 

traversing the grid - an individual does not know its current position, and has no capacity 

to acquire or compute this information. Additionally, the components have no memory of 

past actions or observations and cannot communicate directly with one another. 

1This does (subtly) confuse ontology with representation, however it is acceptable in this case because there 
is a bijective mapping between cells and coordinate pairs. 

15 



^^^^^B 

(a) (b) 

Figure 3.2: A simple connected structure (a), and a similar unconnected structure (b). 

3.2 The Assembly Process 

Assembly begins with a group of n > 1 free components at a set T of random grid positions, 

and a single seed component, which is fixed at the origin and given the initial label T . 

Growth of a structure occurs outwards from the seed. We assume that the grid is of sufficient 

size to accommodate the target structure that we wish to build, with an additional border 

of cells (at least one unit wide) around the entire grid perimeter. 

At each discrete time step, every free component performs a random walk on the grid, 

moving to an adjacent empty cell if possible. As a component moves, it compares the 

occupancy pattern in the four adjacent cells with entries in an internal lookup table of 

assembly rules, stored in read-only memory. Each rule specifies a binding configuration that 

triggers an assembly action, and a resultant label. The binding configuration enumerates 

a) which adjacent cells must be occupied, and b) what labels must appear on components 

in the occupied cells. At least one cell in a binding configuration must be occupied, and up 

to three cells may be occupied. When a binding configuration is identified, the component 

applies the corresponding rule by attaching (binding) itself to the adjacent components at 

its current grid position. Binding is irreversible - assembly actions are never undone. The 

component is then bound to the structure, and the number of free components is reduced 

by one. Immediately after binding, the component performs a label update, transitioning 

from the null label ('0') to the resultant label defined by the activated rule. The rules are 

identical for all components, making each component redundant and interchangeable. 

Formally, we define a structure as a set S of grid cells, with the understanding that the 

cells are to become occupied as part of the assembly process, and a label set C as £ C N + , 

with |£| finite. We model the assembly of connected structures only; Figure 3.2 presents 

examples of a connected and an unconnected structure. 

16 



Definition 3.2 A connected structure is a set S of n > 1 cells (represented by their 

positions on the grid), such that there is a path (or sequence of pairwise-adjacent cells) 

between any two cells in S. 

Definition 3.3 Two structures S\ and c>2 are isomorphic if there is a translation vector 

v = (yi,V2) such that adding v to every element of Si results in <5>2-

Definition 3.4 The bounding box for a structure S is an ordered pair of coordinate 

pairs {{p,q), (r,t)), of the largest possible values p, q and the smallest possible values r, t 

such that for every coordinate pair (i,j) £ S, p < i and q < j and % < r and j < t. 

The assembly process yields a labelled structure (S, C, A), where S is a connected struc

ture, £ is a label set, and A is a surjection A : S —> C. We note that, while a structure is 

defined as a set of cells, a labelled structure is defined as a set of occupied cells. This is a 

subtle but important distinction - labels are assigned to components, and so the cells in a 

labelled structure must be occupied. 

We will normally represent a labelled structure as a set of {{coordinates), label) pairs, 

or, for brevity, by a symbol S with an over-bar. An \C\-labelling of a structure <S is an 

assignment of exactly \C\ unique labels to the elements in S (for example, an assignment 

using two labels is a two-labelling etc.). For a grid defined by the set of cells M, we use 

the notation M{i,j) for the label on the component in the cell at position {i, j) if the cell 

is occupied, or ' - ' if the cell is empty. Likewise, since a labelled structure occupies a subset 

S C M of the cells on a grid M, we also use the notation S{i,j) for the label on the 

component in cell (i,j) which is part of S. 

Our goal is to produce a specific target structure T, or a set of cells that, when occupied, 

form a desired shape. The set T always includes the origin cell (0,0), which is the position of 

the seed. A labelled structure is complete when it contains exactly the same set of occupied 

cells as the target T. 

Definition 3.5 For a target structure T and a labelled structure § = {S, C, A), we say S 

is complete when S = T. 

Definition 3.6 A binding configuration is an ordered four-tuple {InJeJsJw) of values 

from the set N+ U {—}, where the values represent labels on components in adjacent cells to 

the north, east, south and west, respectively, of a component's grid position. The symbol 

'- ' is used to identify cells in the configuration that are either empty or occupied by a free 

component. 

17 

file:///C/-labelling


Rule Number 

1 

2 

3 

Expanded Format 

( - ; - ) -

( • ! - ) - . 

\ 3 ) 

Tuple Format 

( - , - , l . - , 2 ) 

( - , - , - , 1 , 3 ) 

( - , - , 2 , 3 , 4 ) 

Table 3.1: A simple, three-entry rule set. Each rule is shown in expanded format (second 
column) and as a five-tuple (third column). In the expanded format, the right arrow is 
interpreted as 'leads to binding, with the resultant label'. The topmost entry in the expanded 
binding configuration refers to the cell to the north. The label set here is C = {1,2,3,4}. 

Definition 3.7 An assembly rule is an ordered five-tuple (lnJe,ls,lw,l), where 

Inileilsilw £ £ U {—} define the binding configuration and 7 G C is the resultant label. 

Definition 3.8 Two rules conflict if they share the same binding configuration but have 

different resultant labels. 

A rule r = (/„, le, ls, lw,-y) may be applied by a free component in cell (i, j) on grid M if 

ln = M(i,j + 1) and le = M(i + 1, j ) and ls = M{i,j - 1) and lw = M{i - 1, j). When r is 

applied, we update the set J- of positions of free components as T <— T \ {(i,j)} and the 

structure <S as S <— 5 U {((i, j ) , 7 )} . At the start of the assembly process, <S = {((0,0),1)}. 

When we say that a set of rules produces a specific structure, we mean that a group of 

assembly components executing the rules will form the structure on the grid. 

It is possible for a set of bound components to form a barrier around an empty cell, 

preventing free components from reaching the cell (see Figure 3.3 for an example). In this 

case, the empty cell is blocked by the bound components, and therefore inaccessible - if the 

cell is part of the target structure then the target cannot be completed. This problem, in 

particular, motivates our discussion of spatiotemporal coordination in Chapter 4. 

Definition 3.9 A cell (i,j) is accessible if, with all free components removed from the 

grid and starting at an empty cell at the grid edge, there is a connected set of pairwise-

adjacent empty cells that includes (i, j). Conversely, a cell is empty but inaccessible if no 

such set of pairwise adjacent cells including (i,j) exists. 

18 



Figure 3.3: The cell c (light grey) is blocked by eight bound components (labelled 1 - 8). 
The free component in the northeast corner of the grid will be unable to access c. 

Definition 3.10 Each grid cell is always in one of three mutually exclusive states: ac

cessible, inaccessible, or occupied by a bound component. 

An instance of the model is fully specified by the set T of the positions of free components 

on the grid, a target structure T, an initial labelled structure S = {((0,0), 1)}, and a rule 

set 1Z. Table 3.1 gives both graphical and shorthand (tuple) notations for a small rule set. 

We will primarily use the tuple notation throughout the remainder of the thesis. Figure 

3.4 shows four views, each at a different time index, of the structure assembled using these 

rules. 

We do not directly mention assembly time in the exposition above. The rate at which 

assembly proceeds depends on the size of the grid, the number of free components, and the 

shape of the target structure, among other factors. We will assume that assembly occurs 

over some finite (but possibly very large) amount of time.2 

3.3 Perspectives on Distributed Assembly 

According to the taxonomy in Chapter 2, we have defined a model for active robotic self-

assembly - however our formulation is general enough to be applied more broadly. For 

example, we specified that the assembly components update their own labels immediately 

after an assembly action; we could instead assign a fixed label to every component before

hand, and thereby permit each component to implement only one assembly rule. We would 

then have a heterogeneous set of components, and the resulting model would be very similar 

to the Tile Assembly Model defined in [5]. This variation is more suitable for describing 

passive assembly at the micro- or nano-scale. 

2I t is also possible that the assembly process may never terminate, because the components move randomly, 
although this becomes statistically less likely over longer intervals of time. 

19 



With several additional assumptions3, our model is also valid from a collective assembly 

perspective, where agents transport and attach inert building blocks. If we are able to ignore 

the spatial extent of the agents themselves, then the theorems regarding spatiotemporal 

coordination (and the associated assembly guarantees), derived later in the thesis, also hold 

for the collective system. This variation may be useful for describing assembly tasks in 

minimalist, macroscopic robotic systems. 

In summary, small changes to the model often lead to wide variations in its domain of 

applicability. The aspect common to all of these domains is that only local information is 

available to an agent at any stage of the assembly process. From an algorithmic point of 

view, our model is flexible with respect to the way in which labels are assigned and the way 

in which components are positioned. 

3We omit the details of these assumptions, except to note that they involve the size and maneuverability of 
the agents, e.g. an agent must be able to 'fit' into the same spaces and through the same openings as the 
inert building blocks. 

20 



k n 
• 

<:̂ fl 

u 
(a) (b) 

k 

^E^B^E^I 

Rule 3 
Activated 

(c) (d) 

Figure 3.4: Incremental snapshots of the assembly of a 2 x 2 square target structure using 
the rule set in Table 3.1. The compass rose in the upper left-hand corner cell points north. 
Small arrows indicate the direction of motion of each assembly component at the next time 
step. The light grey (empty) cells are part of the binding configurations that trigger rule 
activations. 

21 



Chapter 4 

Spatiotemporal Coordination 

In our model, assembly components move randomly on the grid, and therefore the exact 

sequence in which binding events occur cannot usually be determined in advance. However, 

for assembly to be successful, the geometry and topology of a target structure will necessarily 

impose certain spatiotemporal ordering constraints on this sequence. As an example, if we 

consider a solid 3 x 3 square target with the seed positioned in the southwest corner (as 

shown in Figure 3.3), the centre component must be attached before the outer border of 

the structure is closed. Otherwise, free components will not be able to access the interior, 

making completion of the structure impossible. How can we guarantee that situations such 

as this, in which a cell becomes inaccessible, cannot occur? A solution to the problem is 

to embed sufficient coordination information, in the form of specific labels and rules, in the 

rule set itself. 

The first step is to define a set of pairwise spatiotemporal ordering constraints between 

adjacent cells in the target structure. These constraints determine the order, with respect 

to time, in which the components should bind to the growing structure. Together, the 

constraints form an assembly ordering, which guides the assembly process. We begin in 

the section below by formally specifying the conditions that an assembly ordering must 

satisfy to ensure that no sequence of assembly steps will ever allow a target cell to become 

inaccessible. In the remainder of the chapter, we present a graph-theoretic approach for 

finding orderings for a large class of structures, including structures that contain interior 

holes. Chapter 5 shows how to produce a set of local assembly rules which are guaranteed 

to follow this ordering, and thus to produce a specific target structure. 

4.1 Assembly Orderings 

The assembly process we have described cannot occur in a completely arbitrary way -

components must already be positioned in certain grid cells before other components can 

bind to the growing structure. Further, since binding is irreversible, it is necessary to ensure 

22 



that groups of components do not prematurely form 'barriers' that prevent free components 

from moving to fill vacant target cells. The notion of an assembly ordering captures these 

dependencies and constraints. We seek to define this ordering, such that any assembly 

sequence, or sequence of component bindings indexed by time step, which respects the 

ordering will produce the desired target structure. Two separate experimental trials which 

produce the same structure may have different assembly sequences, depending upon the 

random actions of the assembly components during each trial. 

Definition 4.1 An assembly ordering for a target structure T is a set of temporal 

ordering constraints over the cells in T. Let -< be the binary predecessor relation, such 

that for any two cells (i,j),(m,n) & T, (i,j) -< (m,n) if a component in cell (i,j) must 

bind to the structure before a component in cell (m,n), or i = m and j — n. We call (z, j) 

a predecessor cell (or simply predecessor) of (m,n), and (m,n) a successor cell (or simply 

successor) of (i,j). Together, the set T and relation -< define an assembly ordering (T, -<). 

Because the structure grows outward from the seed, the seed cell is a predecessor of every 

other cell in T. An assembly ordering is not necessarily fully constrained - for all but the 

simplest structures, assembly operations will often occur in multiple locations simultane

ously. 

Theorem 4.1 An assembly ordering (T, -<) is a partial ordering over the cells in T. 

Proof. We must show that an assembly ordering is reflexive, antisymmetric and transitive. 

We show each property in turn. 

• The ordering is reflexive: (i,j) -< (m,n) if i = m and j = n, by definition. 

• The ordering is antisymmetric: if (i,j) -< (m,n) and (m,n) -< (i,j), then i — m and 

j = n. Here, we appeal to an 'arrow of time' argument - binding events are required to 

be well-ordered with respect to time. Assume that the ordering is not antisymmetric 

- then binding at (i,j) must precede binding at (m,n), and binding at (m,n) must 

precede binding at (i,j). Clearly, because time flows in one direction, only one of 

these events can occur 'first', and our assumption is incorrect. 

• The ordering is transitive: if (i,j) -< (m,n) and (m, n) -< (p,q), then (i,j) -< (p,q)-

Again, using the arrow of time argument, binding must occur in a temporal sequence. 

That is, if binding at (i, j) must precede binding at (ra, n), and binding at (m, n) must 

precede binding at (p, q), then binding at (i,j) must precede binding at (p,q). 

Therefore, an assembly ordering is a partial ordering (or partially-ordered set). • 

23 



We say that an assembly ordering is violated if an assembly rule allows a component 

to bind to the structure before one of the predecessor cells is occupied. Assembly rules 

are evaluated under (or with respect to) a particular ordering - a rule which violates one 

ordering may or may not violate a different ordering, for the same target structure. 

As discussed in Chapter 3, a grid cell is always in one of three states: accessible, inacces

sible, or occupied. If a particular cell in T becomes inaccessible, then it is not possible for 

a free assembly component to reach the cell, and hence T cannot be completed. We seek 

to include a sufficient number of constraints in the assembly ordering to prevent this from 

occurring, i.e. to ensure that assembly can always proceed to completion. 

Definition 4.2 An assembly ordering (T, -<) for target structure T is valid if, for any 

assembly sequence that respects (T, -<) and at any stage of the assembly process, every cell 

in T is either accessible or occupied by a bound component. 

Stated in a different but equivalent way, an assembly ordering is valid if there does 

not exist an assembly sequence that both respects the ordering and allows a target cell to 

become inaccessible. To define a valid ordering, we will divide the cells in the target into 

two mutually exclusive subsets: interior cells and exterior boundary cells. 

Definition 4.3 Consider a grid containing a complete target structure T, with all other 

cells empty. Choose a cell (m, n) outside of the bounding box that encloses the target. A 

cell (i,j) G T is an exterior boundary cell of T if, with (i,j) empty and all other cells in 

T occupied, (i,j) is accessible from (m, n). The set of exterior boundary cells in T is called 

the exterior boundary set. 

Definition 4.4 Let T be a target structure, and B QT be the exterior boundary set for 

T. An interior cell is a cell (m, n) G T \ B. The set of interior cells in T is called the 

interior set. Let I c T be the interior set in T. Then I U B = T and XnB = 0. 

A straightforward algorithm (which we describe informally) can be used to find the 

exterior boundary set. As above, consider a grid containing a complete target structure T, 

with all other cells empty. Choose a cell (m, n) outside of the bounding box enclosing the 

target T. Then, perform a breadth- or depth-first search over all accessible cells, starting 

at (m, n). Let this set of empty cells be C. Any cell in T adjacent to a cell in C is a member 

of the exterior boundary set. Figure 4.1 shows the set of exterior boundary cells for an 

example structure. 

With these definitions in hand, we now state an important theorem about valid assembly 

orderings. 

24 



Figure 4.1: Set of exterior boundary cells for an example structure; boundary cells are shown 
in medium grey. 

Theorem 4.2 An assembly ordering (T, -<) is valid iff, for each cell in T except the seed, 

there is at least one adjacent predecessor cell, and for each interior cell there is at least one 

adjacent successor cell. 

Proof. Our connectivity constraint requires that every cell except the seed have at least one 

adjacent predecessor, so the first clause of Theorem 4.2 is immediately satisfied. Further, 

cells in the exterior boundary set for T cannot, by definition, become inaccessible (assuming 

components only bind to the structure at positions in T) , and can therefore be removed 

from consideration.1 So we must now show that an ordering is valid iff each interior cell has 

an adjacent successor cell. We prove by contradiction. 

Consider an interior cell (i,j), and assume that the assembly ordering is valid but that 

(i,j) has no adjacent successors. The -< relation is transitive, and so it follows that (i,j) 

cannot not have any successors. If (i, j) has no successors, then we must be able to assemble 

the remaining components in T, regardless of whether cell (i,j) is occupied or not (there 

are no constraints in (T, -<) that prevent this). Assume that (i,j) is empty and, according 

to (T, -<), we place components in the remaining cells in T. Cell (i,j) is an interior cell, 

and the final structure is connected, so there must exist a subset of cells Q C T that block 

(i,j) - otherwise (i,j) would be an exterior boundary cell. But if (T, -<) is valid, then such 

a subset cannot exist, and we have reached a contradiction. 

Likewise, assume that every interior cell in T has an adjacent successor cell, but that the 

assembly ordering is not valid. Consider an inaccessible interior cell (»,,?), and let Q C T 

be a set of occupied cells that block (i,j). Let W be the set containing (i,j) and any 

successors of (i,j) that are also blocked by Q. There must exist a cell (p, q) € W that 

does not have an adjacent successor, since W is finite and the predecessor relation is anti

symmetric. According to (T, -<), (p, q) must therefore be an exterior boundary cell. But if 

JIn Chapter 5, we show how to ensure that components only bind at positions in T . 

25 



(p, q) is an exterior boundary cell, it is always accessible, and cannot be blocked by Q. We 

have again reached a contradiction, which completes the proof. • 

For solid structures which do not contain any interior holes, generating valid assembly 

orderings is relatively straightforward. We can create a valid ordering simply by moving 

outward from the seed, because each cell incrementally farther from the seed is incrementally 

closer to an exterior boundary cell. The cells in structures which incorporate holes do not 

necessarily satisfy the above relationship, and this in turn can complicate the ordering 

problem. We discuss this issue briefly in the next section, after giving a formal definition of 

an interior hole. 

Definition 4.5 A set is maximal if it is not a subset of a larger set. 

Definition 4.6 A hole in target T is a maximal set H of connected empty cells, such that 

for all (i,j) & H, (i,j) ^ T and for each direction d G {n,e,s,w}, either (i,j) is adjacent 

to another empty cell (m,n) € H in direction d, or (i,j) is adjacent to a cell (p, q) £ T in 

direction d, and there exists a set W C T of cells that, when occupied, block all cells in H. 

4.2 Assembly Graphs 

We now show how an assembly ordering can be expressed as a directed graph, consisting 

of a set of vertices, corresponding to the cells in the target structure, and a set of directed 

edges between the vertices, corresponding to pairwise ordering constraints. We call such a 

graph an assembly graph; this formalism will allow us to use an efficient graph algorithm 

to produce valid assembly orderings for a large class of structures. We begin with several 

definitions. 

Definition 4.7 A graph G = (V, E) consists of a vertex set V and an edge set E, where 

each edge is associated with two vertices known as the endpoints of the edge. An edge is 

said to be incident on both of its endpoints. If the vertex pairs that identify edges are 

unordered (where (va,Vb), va,Vb € V refers to the same edge as (vb,va)), the graph is said 

to be undirected. If the vertex pairs that identify edges are ordered, the graph is said to 

be directed, and the directed edge (va,Vb) has the tail vertex va and the head vertex Vb-

The edge (va,Vb) is outgoing from vertex va, and incoming to vertex Vb-

Definition 4.8 The degree of a vertex v, denoted deg(u), is the number of edges that 

are incident on v. 

26 



Definition 4.9 A path through a graph G is a traversal of consecutive vertices along a 

sequence of edges in G. The vertices that begin and end the path are the initial vertex 

and terminal vertex, respectively. The length of the path is the number of edges that are 

traversed along the path. 

Definition 4.10 An undirected graph is connected if there is a path between every pair 

of vertices. 

Definition 4.11 A path is simple if it does not contain any repeated vertices. 

Definition 4.12 A directed path is an oriented, simple path such that all edges go the 

same direction. 

Definition 4.13 A directed cycle is a directed path where the initial vertex is the same 

as the terminal vertex. 

Definition 4.14 A directed acyclic graph (or DAG), is a directed graph that contains 

no directed cycles. 

Our ordering algorithm requires an initial, undirected adjacency graph for a target structure 

T. We form this adjacency graph G by: 

• adding a vertex V(ij) to the set V for each cell in (i,j) € T, and 

• adding an undirected edge (u(i,j),V(m)Tl)) to the set E for every pair of adjacent cells 

(i,j), (m,n) £ T, between the corresponding vertices U(i,j) and U(m>Tl). 

As indicated above, we will identify a vertex using the subscripted coordinate pair which 

defines the corresponding grid cell, e.g. i^i^) for the vertex that maps to grid cell (1,2). 

When we describe a directed path between two vertices, we will use two coordinate pairs 

and an arrow, where the first coordinate pair identifies the initial vertex in the path, and 

the last coordinate pair identifies the terminal vertex, e.g. P(o,o)-+(»j) f° r a path from the 

seed vertex to a vertex v^j). 

The relationship between cells in T and vertices in G can be expressed as a bijection 

7r : T —> V. Because there is an enforced adjacency relationship between cells in the target 

structure, our graphs are always connected. 

Using directed edges, we can transform the undirected graph G, which defines the static 

adjacency relationships between components in the final structure, into a directed graph 

G' that contains information about the dynamic relationships that exist as the structure 

evolves from the seed.2 The directed graphs we work with will always be acyclic. A cycle 

2We will use the prime marker, ' , to indicate that a graph is directed. 

27 



• n 

w 

(a) (b) 

Figure 4.2: A small structure (a) and its edge-oriented assembly graph (b). The edges of 
the graph in (b) have been marked with their directions. 

(of minimum length four) implies that a successor cell must be occupied before one of its 

predecessor cells; this contradicts an allowable temporal ordering. Stated equivalently, only 

directed acyclic graphs have vertex partial orders. 

Definition 4.15 A source vertex in a directed graph G' = (V,E') is a vertex v € V 

that has only outgoing edges. 

Definition 4.16 A sink vertex in a directed graph G' = (V,E') is a vertex v € V that 

has only incoming edges. 

We form a directed assembly graph G' for the structure T from the same set of vertices 

V, by adding a directed edge from vertex v^itj) to vertex W(p,g) if the corresponding cell 

(i,j) is adjacent to cell (p,q) and (i,j) is a predecessor of (p,q). A sink vertex in the 

graph represents a cell with no successors. There is a single source vertex in the graph 

corresponding to the seed cell. The set of exterior boundary vertices in V is simply the set 

of vertices that correspond to the exterior boundary cells in T; the same correspondence 

exists for the interior vertices and interior cells. 

Since our assembly graphs are planar (a fact which we do not prove here, but which 

is obvious from the planarity of the target structure), we can assign each edge in G' an 

orientation based on the direction in which the edge points (north, east, south or west). 

We will refer to an assembly graph in which each edge has an explicit orientation as an 

edge-oriented assembly graph. When we draw an assembly graph, we will designate north to 

point towards the top of the page, and the orientation of each edge will therefore be implicit. 

Definition 4.17 An edge-oriented assembly graph G* = (V, E', <f>) is an ordered triple, 

where V is a set of vertices, E' is a set of directed edges, and <f> is a mapping <j> : E' —* d, 

d € {n, e,s,w} from edges to the directions north, east, south and west, respectively. 

Orientation is significant because two portions of a structure which share the same edge-

oriented assembly subgraphs can be assembled using the same rules (and labels). Edge 

orientations will be important when we compare assembly graphs in Chapter 6. 

28 



Using the above definitions, we can re-express Theorem 4.2 in terms of the properties of an 

assembly graph. 

Theo rem 4.3 Let G' be an assembly graph for target structure T. Let V(o,o) be the seed 

vertex in G', and let B be the set of exterior boundary vertices. Then G' represents a valid 

assembly ordering for T iff for every non-seed vertex ^(ij) € V there is a directed path 

P(o,o)-,(j,j) from W(o,o) to f(i,j), and, if v^j) is an interior vertex, there is also a directed 

path P(itj)-*(m,n) l r o m v(i,j) t o a vertex V(m,„) G B and P(o,o)-»(i,j) a n d P(i,j)-*(m,n) are 

vertex-disjoint except for v^^y 

Proof. The proof follows from Theorem 4.2 and the equivalence between directed edges in 

an assembly graph and pairwise ordering constraints in an assembly ordering. By Theorem 

4.2, every cell in T except the seed cell must have at least one adjacent predecessor. Let 

(i,j) be a non-seed cell in T, and let (p,q) be an adjacent predecessor cell. We represent 

the predecessor relation in the assembly graph by a directed edge from the vertex W(p,9) 

to vertex v^j). Therefore, every non-seed vertex in G' must have at least one incoming 

directed edge from a predecessor vertex. By transitivity, there must therefore be a simple, 

directed path P(o,o)->(t,j) from the seed vertex U(o,o) to every other vertex in G'.3 

Likewise, every interior cell in T must have at least one adjacent successor. Let (i,j) 

be an interior cell in T, and let {m,n) be an adjacent successor cell. We represent the 

successor relation in the assembly graph by a directed edge from the vertex V(itj) to vertex 
v(m,n)- Therefore, every interior vertex must have at least one outgoing directed edge to a 

successor vertex. Let W C V be the set of all interior vertices in G'. Choose an interior 

vertex v^j) G W. If we apply the transitivity property of the assembly ordering, starting at 

V(itj), we will eventually reach a successor V(m<n) of v^j^ which is not in W, because there 

are only a finite number of vertices in W and there are no cycles in the graph. The vertex 
v(m,n) 1S a n exterior boundary vertex. So there must be a simple, directed path P(j j)_+(m,n) 

from each interior vertex v^j) to an exterior boundary vertex f(TO>„). 

The paths P(o,o)-»(i,j) a n d P(j,j)->(m,n) from the seed vertex to an interior vertex V(t,j), 

and from v^j) to an exterior boundary vertex f(TO)Tl) must be vertex-disjoint except for v^j) 

because the graph G' cannot contain a cycle. 

For the reverse case, it is immediately clear that if there is a directed path from the 

seed vertex to each vertex v € V in G', then every cell in T has an adjacent predecessor 

cell (corresponding to the incoming edge incident on v). And if there is a directed path 

from each interior vertex to an exterior boundary vertex, then each interior vertex has an 

outgoing edge in E' corresponding to an adjacent successor cell in T. This completes the 

proof. • 

There may in fact be several directed paths, the proof requires only that there be at least one. 

29 



We will say that an assembly graph is valid if and only if the ordering that the graph 

represents is valid. 

For an interior vertex v £ V in assembly graph G', if there is both a path from the seed 

to v, and another path from v to an exterior boundary vertex, and the paths are vertex-

disjoint except for v, then we say that vertex v satisfies the disjoint-paths condition in G'. 

In a valid assembly graph, every interior vertex must satisfy this condition. 

It is always possible to find a directed path from the seed vertex to any other vertex in 

the assembly graph - however, it may not be possible to find both a directed path from the 

seed vertex to an interior vertex and also a path from that interior vertex to an exterior 

boundary vertex. In particular, we can sometimes determine whether a valid assembly 

ordering exists for a structure simply by examining the adjacency graph, as stated by the 

following theorem. 

Theo rem 4.4 Let T be a target structure and G be the adjacency graph for T. If G 

contains an interior, non-seed vertex v e V such that deg(u) = 1, then no valid assembly 

ordering exists for T. 

Proof. By Theorem 4.3, a valid assembly ordering for T exists iff there is a directed path 

from the seed vertex to every interior vertex and a directed path from every interior vertex 

to an exterior boundary vertex, and the paths are vertex-disjoint. Clearly, if an interior 

vertex has degree one, then it is not possible to assign both an incoming edge (along a 

path from the seed) and an outgoing edge (along a path to an exterior boundary vertex). 

Therefore, no valid assembly ordering exists for T. • 

4.3 Generating Valid Assembly Orderings 

We now turn to the problem of generating valid assembly orderings for specific target struc

tures. In general, there may be many valid orderings for a given structure; the algorithm 

presented below generates one such ordering. Also, we choose to impose one constraint be

tween every adjacent pair of cells in the target structure, although this is often not necessary 

to satisfy the validity requirement. 

Our algorithm generates a breadth-first assembly graph. The graph is produced by 

traversing the target's (undirected) adjacency graph in breadth-first order, starting from 

the seed. The directed graph returned by Algorithm 4.1 is always acyclic, however it may 

not be a valid assembly graph. 

Algorithm 4.1 is a modified version of a standard breadth-first graph search, which tra

verses all of the vertices in the adjacency graph G, rather than searching for a particular 

vertex. As we encounter each vertex in G, we incrementally build a corresponding assembly 

30 



Algorithm 4.1 Breadth-First Assembly Graph for Target Structure 
Input: Target structure T 
Output: Breadth-first directed assembly graph G' 

1: V «— set of vertices, one vertex for each cell in T 
2; E *— set of undirected edges, one edge for every pair of adjacent cells in T 
3: G <— (V, E) II undirected adjacency graph 
4: E' < - 0 

5: open <— {^(o,o)} / / FIFO queue 
6: closed <— 0 
7: while open is not empty do 
8: V(i,j) <— dequeued vertex from front of open 
9: closed <— closed U {v(»,j)} 

10: for each vertex W(p,g) adjacent to vu^ in G do 
11:. if V(Pl?) ^ closed then 
12: if f (p>9) ^ open then 
13: add f ( M ) to end of open 
14: end if 
15: else 
16: E' t— E' U {(v(P,q),V(ij))} /I add directed edge 
17: end if 
18: end for 
19: end while 
20: return G' = {V, E') 

graph, G', using the same set of vertices V, but adding a set of directed, rather than undi

rected, edges. When we arrive at a vertex v, we add directed edges to E' from all adjacent, 

previously-visited vertices. This procedure differs from standard breadth-first search in that 

we perform an action (adding directed edges to E') after visiting all predecessors vertices, 

instead of immediately after visiting a single predecessor. This modification ensures that 

there is a directed edge in the final assembly graph between every adjacent pair of vertices. 

Theorem 4.5 Algorithm 4.1 generates an assembly graph for target T in 0( |T | ) time. 

The graph is a valid assembly graph iff every sink vertex in G' is an exterior boundary 

vertex. 

Proof. We show that the algorithm always produces a directed, acyclic graph, which is an 

assembly graph. First, we show that each vertex in the adjacency graph G is visited exactly 

once. The algorithm examines one vertex on every iteration of the while loop, starting with 

the seed vertex, and adds all unvisited adjacent vertices, which are not already in the closed 

set or the open queue, to the open queue. A vertex can therefore be examined once, at 

most, when it is removed from the front of the open queue. Note, also, that the algorithm 

only terminates when the queue is empty. Now, assume that, at some point, the algorithm 

fails to visit a vertex v in G. Then the algorithm cannot have visited any of the vertices 

adjacent to v, or v would have been added to the open queue. But the graph is connected, 

31 



•*-
1 , 

11 , , 

•*-

- • 
. L 

:; .1.:: 
-it O 

Figure 4.3: (a) Simple structure containing an interior hole. The seed component is marked 
with an s. (b) Adjacency graph for the structure, (c) Breadth-first assembly graph generated 
by Algorithm 4.1. 

so there must be at least one vertex adjacent to v which is visited by the algorithm, and so 

v must have been added to the open queue. This is a contradiction, and hence each vertex 

is visited exactly once. 

We now show that the directed graph G' is acyclic. Assume that the algorithm creates 

a cycle in the graph. By definition, the initial and terminal vertices for the cycle are the 

same. This means that the algorithm must have reached the same vertex twice, along 

different paths. But we showed above that each vertex is visited once, and so the algorithm 

cannot create a directed cycle. Therefore, the algorithm generates a graph which is directed 

and acyclic, and thus is an assembly graph. 

The validity of the graph follows directly from Theorem 4.3. There is a directed edge 

between every adjacent pair of vertices in G', and the graph is acyclic, so, if all sink vertices 

in G' are exterior boundary vertices, then the graph is valid. Likewise, if an interior sink 

vertex exists, then the graph cannot be valid because there is at least one interior vertex 

that does not satisfy the disjoint-paths condition. 

The time complexity of the algorithm is determined by the number of steps required to 

complete the breadth-first traversal of all vertices in the adjacency graph G. This breadth-

first traversal has complexity ©(|V| + \E\) in general. For our specific case, the adjacency 

graph has at least |V| — 1 edges. To determine an upper bound on the number of edges, we 

use an elementary result from graph theory, the Handshaking Lemma, which states that the 

number of edges in a graph is half of the sum of the degree of all vertices. In the adjacency 

graph, each vertex has degree at most four, and so the number of edges in the graph has an 

asymptotic upper bound of at most 4|V|/2 = 2|V|. This gives an overall time complexity of 

at least fi(|V| + |V|), and at most 0(\V\ + 2|V|), which is in 6( |V|) . Since \V\ = \T\, this 

is also 6( |T | ) . • 

For solid structures (without any interior holes), the breadth-first algorithm will always 

return a valid assembly graph, which can immediately be transformed into a set of pairwise 

ordering constraints (see Algorithm 4.2). There is also a large class of structures that contain 

o—o—o—<»—o 

o — o — o — • — o 

• (» O O 

•—o—•—1 

32 



Algorithm 4.2 Valid Assembly Ordering for Target Structure 
Input: Target structure T 
Output: Valid assembly ordering (T, -<) or Fa i lu re if no valid ordering is found 

l: G' — (V,E') *— assembly graph for T generated by Algorithm 4.1 
2: if G' contains an interior sink vertex then 
3: r e turn F a i l u r e 
4: e n d if 
5: -< <- 0 
6: for each directed edge (f(t)./),i>(m,n) ) e E' do 
7: -< <— -< U {(CELL(u(j ,-\), CELL(w(m n ) ) )} / / add pairwise constraint 
8: end for 
9: return {T,<) 

interior holes, for which the breadth-first algorithm produces a valid graph. As an example, 

consider the simple 20-cell structure in Figure 4.3.4 The structure encloses an interior hole 

(one cell in size); Figure 4.3(b) is the adjacency graph for the structure, and Figure 4.3(c) 

is the corresponding valid assembly graph generated by Algorithm 4.1. 

Algorithm 4.1 is not complete. There are structures for which a valid assembly graph 

exists and the algorithm returns Fa i lure . However, it is often possible, for simple structures 

that contain interior holes, to produce a valid graph by inspection, starting with the breadth-

first result. We give an example of such a case in Chapter 6. 

Once we have successfully generated a valid assembly graph, we use Algorithm 4.2 to 

transform the graph edges into a set of pairwise ordering constraints over the cells in the 

target structure T. The notation CELL(v(i)i)) in the algorithm description denotes the cell 

(i,j) in T that maps to vertex v^j). 

Theorem 4.6 Algorithm 4.2 generates a valid assembly ordering for target structure T, 

or returns Fa i lu re , in 0 ( |T | ) time. 

Proof. Algorithm 4.2 begins by generating an assembly graph G' using Algorithm 4.1, which 

requires 0( |T | ) time by Theorem 4.5. If this initial step does not produce a valid graph, 

the algorithm returns Fa i lu re immediately. The final step in the algorithm is to produce 

the set of pairwise ordering constraints from the graph. The for loop adds one constraint 

to the set -< for every edge in G' (line 7). Since the graph is valid, and all required ordering 

constraints are encoded by the graph edges, it follows that the resulting ordering is valid. 

As shown previously, 0( |T | ) time is required to to process all of the edges; this gives an 

overall time complexity of 0( |T | ) . • 

As described, Algorithm 4.1 works outwards from the seed cell. However, if necessary, 

the algorithm could be modified to incorporate other restrictions or preferences, for example 

4From this point onward, we will generally draw only the cells that form a structure; the existence of the 
grid will be implied. 

33 



H 
Bi i i i 

• • • B • 
• • • • • • D l l l l l 

(a) (b) 

Figure 4.4: Examples of structures that cannot be assembled using local rules and a single 
seed only. For structure (a), there is a valid assembly ordering if the seed is moved from 
position s to position a. For structure (b), there is no valid ordering, regardless of the 
position of the seed. 

that assembly should proceed in a north-to-south direction whenever possible. We emphasize 

that, regardless of the exact assembly graph produced, in any valid graph all interior vertices 

must satisfy the disjoint-paths condition. 

We close with two example structures, shown in Figure 4.4, for which no valid assembly 

orderings exist. Cells a and b in the figures correspond to sink vertices in the respective 

breadth-first assembly graphs, and therefore represent the end of the flow of information 

about the state of the assembly process. Neither cell a nor b has an adjacent successor cell, 

and so assembly of the remainder of the structure is not impeded by their absence. More 

generally, there is no assembly ordering that enforces the constraints necessary to ensure 

that the exterior boundary remains open until components bind at a and b. That is, it is 

not possible in either case to produce an assembly graph where all of the interior vertices 

satisfy the disjoint-paths condition. For the structure in Figure 4.4(a), it is possible to avoid 

this problem by moving the seed vertex to position a. For the structure in Figure 4.4(b), 

the adjacency graph includes two non-seed vertices of degree one, and so moving the seed 

does not solve the problem. This is one drawback of purely local sensing. 

34 



Chapter 5 

Rules and Labels 

In this chapter, we describe a procedure for generating a set of local rules that, when 

executed by a group of assembly components, produce a specific target structure. First, we 

show that we can always generate such a rule set, as long as a valid assembly ordering exists 

for the target. This is an important point: it is possible to embed sufficient coordination 

information in the rule set to ensure that a structure is assembled deterministically, although 

the components move and interact randomly. Our initial solution will involve what we call a 

worst-case rule set, which assigns a unique label to every component in the final structure. 

For targets of significant size, the memory and sensing demands (to store the rule table 

and to correctly identify all of the labels, respectively) of the worst-case rule set may be pro

hibitive, especially for physically very simple assembly components. To address this issue, 

we formally introduce the Minimum Label Set (MLS) problem, a combinatorial optimiza

tion problem which involves finding the minimum number of labels required to assemble a 

structure. We do not know of a polynomial time solution to the MLS problem, however 

we develop an iterative, randomized optimization algorithm which provides quantitatively 

'good' solutions in a reasonable amount of time. Chapter 6 presents a series of experiments 

that characterize how well the optimization algorithm performs, for a variety of structures. 

5.1 Consistent Rule Sets 

Our overall goal is to generate a rule set that a) enables a group of components to assemble 

into one specific structure only, and b) requires a limited (ideally, minimal) number of 

labels. We begin by asking the following question: given a target structure T, a valid 

assembly ordering (T, -<), and some rule set 72., how can we determine if the rules in TZ, 

when applied, actually produce T only, and no other structures? One possibility is to 

simulate the assembly process and observe the outcome - if we do this a sufficient number 

of times, we can then draw statistical conclusions about the rule set and the structure(s) it 

produces. This approach will not allow us to say with certainty, however, that a rule set 

35 



always produces T. 

We now show that it is possible to verify in polynomial time whether or not a candidate 

rule set 1Z uniquely assembles a target structure T while respecting a particular assembly 

ordering. By uniquely, we mean that only one distinct label may appear at each position 

in the final structure. This restriction is necessary to avoid having to check a potentially 

exponential number of possible assembly sequences. 

Definition 5.1 A rule set 11 is consistent for a target structure T under assembly 

ordering (7~, -<) if 1Z produces T exactly, with only one possible label at each position in 

T, and does not allow (T, -<) to be violated, for any possible sequence of actions by the 

assembly components.1 

Importantly, if a rule set is not consistent for a target T, this does not necessarily 

imply that the rule set does not assemble the structure. We are concerned with generating 

constrained rule sets that guarantee assembly of the target - the space of rule sets that have 

this guarantee is considerably smaller that the space of rule sets that are statistically able 

to produce the desired structure with some non-zero probability. Without loss of generality, 

we also make the assumption that all the rules in 1Z are used during the assembly process. 

It is possible for 1Z to contain conflicting rules and yet to still be consistent, if none of the 

conflicting rules are ever applied. In this case, the extra rules are superfluous and can simply 

be removed. 

The problem of determining whether a rule set is consistent may initially appear to 

require exponential time, given that the assembly components move randomly and can 

interact in a combinatorial number of ways. We show below that Algorithm 5.1 can be 

used to determine if a rule set 1Z is consistent for a particular target T i n a time that is 

polynomial in the size of T and 1Z. 

Definition 5.2 The frontier of a structure S is the set of all grid cells adjacent to cells 

in S. 

Before describing Algorithm 5.1, we give an additional definition related to the assembly 

process. A rule r may potentially be applied at a cell (i,j) if there is a valid assembly 

sequence that allows the binding configuration for r to appear at (i,j)- This is a local test 

that accounts for all possible ways in which the structure could have grown such that cell 

(i, j) lies on the frontier - that is, we evaluate whether a rule could be applied at (i,j) if 

any existing, adjacent predecessors were absent. For example, two rules, (0,0,0,4,8) and 

(0,0,3,4, 8), may both potentially be applied at the same cell (i,j) but at different stages of 

J The term consistent was originally introduced by Jones and Mataric in [13]. 

36 



Algorithm 5.1 Consistent Rule Set Decision 

Input: Target T, assembly ordering (T, -<) and rule set 1Z 
Output: True if 1Z is consistent for T, False otherwise 

9 

10: 

11: 

12 

13 

14 

15 

16 

17 

18 

19 

20: 

21 

22 

S<-{( (0 ,0) ,1 )} 
K <— {empty cells adjacent to (0,0)} / / initialize frontier 
while K + 0 do 

K" ^ 0 
for each cell (i,j) € K do 

if $ r G 1Z such that r is potentially applicable at (i,j) then 
continue 

else if (i,j) £ T then 
return False 

else if 3 r G 1Z such that applying r would violate -< then 
return False 

end if 
r *— single rule from 1Z applicable at (i,j) 
S <— S U {((i, j),RESULTANT(r))} / / apply rule 
/C* <— K* U {empty cells adjacent to (i,j)} / / ffrow new frontier 

end for 
/c ^ / c * 

end while 
if |5| < \T\ then 

return False 
end if 
return True 

the assembly process, depending on whether an adjacent component with label '3 ' is already 

bound to the south of (i,j). 

Algorithm 5.1 operates by maintaining a set K, of empty cells that form part of the 

frontier of the growing structure S. This set is updated on every iteration - it includes all of 

the empty, adjacent cells for which the local binding configuration has changed (as the result 

of a binding action). There is no need to check cells for which the local binding configuration 

is unchanged from the previous iteration (since all rules will already have been tested at 

those positions). At each step and for every position in /C, the algorithm determines if more 

than one rule can potentially be applied, or if there is a rule which would add a component 

not in T. If either condition is true, the rule set is inconsistent. Otherwise, the algorithm 

iteratively adds components to the labelled structure S until no further rules can be applied 

- if, at that time, S has the same number of occupied cells as T, then 1Z is consistent for 

7". The notation RESULTANT(r) denotes the resultant label specified by rule r. 

Theorem 5.1 Algorithm 5.1 decides whether a rule set 1Z is consistent for a target T 

under assembly ordering (T, •<) in time 0(|7£||T|). 

Proof. We show that the algorithm returns True iff the assembly process always terminates 

with the desired target structure T and the assembly ordering is not violated at any stage. 

37 



Assume that 11 is not consistent for T, and let V be another labelled structure produced 

by TZ. Choose a sequence in which blocks are added to V, and let (i, j) be the first position 

in the sequence where either the assembly ordering is violated or (i,j) £ T. We review each 

case in turn. 

To violate the assembly ordering, a rule must be potentially applicable at cell (i,j), for 

some binding configuration in which one or more predecessors are missing. The algorithm 

will discover a witness for inconsistency in this case, since, when a rule is tried at a frontier 

cell, all possible combinations of adjacent predecessors are considered (line 10). 

Likewise, if at any stage a component is able to bind at a cell (i,j) such that (i,j) fi T, 

the algorithm will discover a witness for the inconsistency (line 8), because every rule is 

tried at each untested frontier cell on each iteration. 

Conversely, the algorithm only adds a block to the growing structure S at position (i,j) 

when exactly one rule r is applicable (line 13), and only when the binding configuration for 

r includes all adjacent predecessors. The main for loop terminates when no additional rules 

can be applied at any cells on the frontier of S. If, at this point, S contains fewer occupied 

cells than T, then the rule set fails to assemble the entire target and the algorithm returns 

False (line 19). Otherwise, K is consistent for T, and the algorithm returns True. 

To determine the time complexity, we note that on each iteration of the for loop we try 

\TZ\ rules at an empty cell (i,j). When a rule is applied at (i,j), no more than four adjacent 

cells are added to the set /C, which is empty at the start of each iteration. The loop runs 

once for every component we add to <5, and hence we check at most 4|T| frontier cells in 

total. This gives an overall time complexity of 0(|7£||T|). • 

5.2 From Assembly Ordering to Worst-Case Rule Set 

We now turn to the problem of generating a consistent rule set for a specific target structure 

T. Given a valid assembly ordering (T, -<), it is always possible to generate such a rule set, 

in the following way. We begin by placing a component with a unique label at each position 

in 7", creating a labelled structure S. Then, as described by Algorithm 5.2, we step through 

the assembly ordering cell by cell, adding rules sequentially to the rule set. For a cell 

(i,j), we add a rule whose binding configuration is defined by the labels on components in 

adjacent predecessor cells (with non-predecessor entries set to '- '), and using the resultant 

label already assigned to the component in cell (i,j). This procedure (Algorithm 5.3) is the 

reverse of Algorithm 5.1 - we extract, from a labelled structure, the rules that would be 

required to produce it. 

38 



Algorithm 5.2 Rule Set from Labelled Structure 

Input: Labelled structure <S and valid assembly ordering (T, -<) 
Output: Rule set TZ 

l: ft < -0 
2: for each cell (i,j) G T do 
3: for cell (m,n)^. .N adjacent to (i,j), d G {n, e,s,w} do 
4: if (m,n) G T and (m, n) -< (i,j) then 
5: Z<j <— S(m,n) 
6: else 
7: i«j < - '-' 

8: end if 
9: end for 

10: 1Z <r— 1ZU (ln,le,ls,lw,S(i,j)) //add rule 
11: end for 
12: return TZ 

Theorem 5.2 Given a target structure T and a valid assembly ordering (T, -<), Algorithm 

5.3 generates a consistent rule set for T using exactly \T\ labels. The algorithm can be 

implemented to run in 6( |T | ) time. 

Proof. We first note that, because each label is used only once, the binding configuration 

for every rule must be unique (and thus there can be no conflicting rules). Now, assume 

that the rule set TZ produced by Algorithm 5.3 is not consistent for T. Then one of the 

following must be true: TZ permits the assembly ordering to be violated, adds a component 

at a position not in T, or fails to add a required component to T. We handle each case in 

turn. 

Let ri e TZ be a, rule which is potentially applicable at a position (i,j) G T and which 

would violate the assembly ordering (if applied). There must be another rule T2 G TZ which 

is also potentially applicable at (i,j) and does not violate the ordering; this rule is added 

on line 10 of Algorithm 5.2 when position (i,j) is considered. Since both r\ and T2 are 

potentially applicable at (i,j), their binding configurations must share at least one label 

in the same binding direction (n, e, s or w). However, every label in S is unique, so the 

algorithm cannot add two rules with the same label in the same binding direction. This is 

a contradiction, and so none of the rules in TZ are able to violate the ordering, regardless of 

the exact sequence of actions by the assembly components. 

Likewise, let r G TZ be a rule which would add a component at a position (m, n) <£T; r 

must be potentially applicable at (m,n). Since r was added by Algorithm 5.2, there must 

be another cell (p, q) G T where r is also potentially applicable. However, every label in S 

is unique, so two rules cannot share the same label in the same binding direction, unless 

the assembly ordering is violated. We know from the result above that this is not possible -

therefore we again have a contradiction and the algorithm does not add a rule which would 

permit the binding of a component at a position not in T. 

39 



Algorithm 5.3 Worst-Case Rule Set 

Input: Target structure T and valid assembly ordering (T, -<) 
Output: Consistent rule set 72 

l: 5 <— structure produced by placing a uniquely-labelled component at each cell in T 
2: 72, <— rule set generated by Algorithm 5.2 from (5, (T, -<)) 
3: return (5,72-) 

Finally, assume that Algorithm 5.3 fails to add a rule that allows a component to bind 

at a position that is in T. Clearly, the algorithm adds one rule to 72 for each cell in T, 

with that rule's binding configuration defined by adjacent predecessors. It follows that there 

exists a rule that will add every component in T to the growing structure, exactly when the 

adjacent predecessors are in place. By definition, the algorithm uses exactly \T\ labels. 

To derive the time complexity, we note that it is possible to find the adjacent predecessors 

of a cell in constant time using, for example, an adjacency list representation of the target 

T. The algorithm considers each cell in T exactly once, for an overall time that is in 

0( |T | ) . The adjacency list can also be generated in a time that is linear in the size of T, if 

necessary. • 

The drawback of Algorithm 5.3 is that \T\ labels and \T\ — 1 rules are always required 

for a |7"|-cell target structure. We call such a |T|-label rule set the worst-case rule set for 

T, and use this worst-case solution as the initial input to our optimization algorithm. 

5.3 The Minimum Label Set Problem 

We have established that, given any structure for which a valid assembly ordering exists, we 

are able to generate a consistent rule set which assembles the structure. Depending on the 

size of the input structure, however, our worst-case algorithm may require a prohibitively 

large number of labels. We therefore pose the following combinatorial optimization prob

lems. 

Definition 5.3 The (Full) Minimum Label Set Problem: Given a target structure 

T, find a valid assembly ordering (T, -<) and rule set 72 such that 72 is consistent for T 

under (T, -<) and uses the minimum number of unique labels possible. 

Definition 5.4 The Restricted Minimum Label Set Problem: Given a target struc

ture T and a valid assembly ordering (T, -<), find a rule set 72 such that 72 is consistent for 

T under (T, -<) and uses the minimum number of unique labels possible. 

The optimization cost function in both cases is simply the number of unique labels that 

appear in the rule set. We do not know of a polynomial time algorithm to exactly solve 

either the MLS problem or the Restricted MLS problem; however, we have shown that the 

40 



Algorithm 5.4 Randomized Contraction 
Input: Target structure T and valid assembly ordering (T, -<) 
Output: Optimized, consistent rule set TZ 

1: TZ <— worst-case, |T|-label rule set generated by Algorithm 5.3 
2: <S <— complete, labelled structure generated by Algorithm 5.3 
3: while termination condition not met do 
4: 5 f <- S 
5: (*ii) <— randomly selected non-seed cell in T 
6: <St(i,j) <— randomly selected label from interval [2,S(i,j) — 1] 
7: 7£* <— rule set generated by Algorithm 5.2 from (5+, (T, -<)) 
8: if two rules in TZ* conflict then 
9: prune rule with larger resultant label from TZ* 

10: end if 
11: S* <— labelled structure produced by applying TV 
12: if TZ* is consistent for T according to Algorithm 5.1 then 
13: prune any unused rules from TV 
14: TZ^TV 
15: S <-S* 
16: re-enumerate labels in TZ and S sequentially from ' 1 ' / / remove gaps 
17: end if 
18: end while 
19: return TZ 

Restricted MLS problem is in NP (see Algorithm 5.1). The full MLS problem, in particular, 

has a solution space that includes all valid assembly orderings for a target structure; this 

space is usually much larger than for the restricted case (where the assembly ordering is a 

priori specified). Further, the interaction between the assembly ordering and the rule set 

is complex, with different assembly orderings requiring (sometimes substantially) different 

numbers of labels. 

Instead, we propose an algorithm called randomized contraction as an approximate solu

tion for the Restricted MLS problem. This approach, described by Algorithm 5.4, attempts 

to iteratively reduce the number of labels appearing in a rule set TZ. Each successful reduc

tion (removal or one or more labels in a single step) is termed a contraction. Starting with a 

valid assembly ordering, we generate a consistent, worst-case rule set TZ and the associated 

labelled structure S using Algorithm 5.3. Then, at each iteration, we randomly select a 

component in S, change the label on the component (again, randomly), and generate an 

updated rule set TZ*. If TZ* is consistent for T, the change is accepted, otherwise the change 

is rejected. At the end of each iteration, we re-enumerate the label set sequentially from ' 1 ' , 

to avoid leaving gaps between the label values. This process continues until a user-defined 

termination condition is met, for example when a certain number of iterations have been 

completed. 

In many cases, changing the label on a component will cause two conflicting rules to 

appear in the updated rule set TZ*. If this occurs, one of the rules must be removed. We 

choose to prune the rule with the larger resultant label. Pruning will frequently introduce 

41 



a discontinuity in the rule set, preventing a portion of the structure from being completed 

because a required rule is missing. However, for a target that contains two or more isomor

phic substructures which share identical edge-oriented assembly graphs, the worst-case rule 

set always includes disjoint subsets of rules which assemble the same shape using different 

labels. Only one of these disjoint subsets is required. If a pruning-induced discontinuity 

occurs within an isomorphism, we can sometimes eliminate the redundant subset(s) of rules 

(and any unique labels they contain) immediately. This process occurs automatically when 

the consistency check for the updated rule set is performed (line 12). The ability to natu

rally exploit redundancy is one attractive property of the contraction algorithm - it is not 

necessary to exhaustively search for isomorphisms beforehand. 

The complexity of Algorithm 5.4 is dominated by time required to verify that the updated 

rule set is consistent, and thus a single iteration can be implemented to run in 0(|7£||T|) 

time using Algorithm 5.1, since \TZ\ is always less than |T|. This is an upper bound - in the 

later stages of optimization (when there are fewer successful label updates), the consistency 

check will often fail very quickly. 

We show the relationship between the algorithms presented in Chapters 4 and 5 as a 

flowchart in Figure 5.1. The flowchart indicates the steps required to go from a target 

structure to an optimized rule set for that structure. 

42 



Target 
Structure 

Algorithm 4.1 
Breadth-First Assembly Graph 

Algorithm 4.2 
Assembly Ordering 

Failure 

Algorithm 5.2 
Rule Set from Labelled Structure 

Algorithm 5.1 
Consistent Rule Set Decision 

Figure 5.1: Algorithm flowchart, showing steps from (input) target structure to (output) 
optimized rule set. The dashed line from Algorithm 5.4 to Algorithm 5.2 and then to 
Algorithm 5.1 indicates that generating a rule set from the labelled structure and checking 
the rule set for consistency are both sub-steps in the randomized contraction algorithm. 

43 



Chapter 6 

Experiments 

The previous three chapters form the main body of the thesis. We now present a series of 

experiments which characterize the performance of our randomized contraction algorithm. 

Our aim is to show that the algorithm is able to significantly reduce the number of labels 

required to assemble a variety of planar structures. To do so, we compare our optimization 

results with competing algorithms for a series of benchmark examples that have appeared 

previously in the literature. We also demonstrate that the contraction algorithm is able 

naturally to exploit redundancies due to structural isomorphisms and symmetries. We close 

the chapter with results for two larger and more complex structures. 

6.1 Benchmarks 

We have tested our optimization algorithm on the three benchmark structures that appear in 

[13] and that are examined in [14]. For these structures, our assembly model and the models 

presented in [13] and [14] are equivalent, and hence the performance of the corresponding 

algorithms may be compared directly, as is done in Table 6.1. Column eight of the table 

gives the number of iterations required to achieve our optimized result. 

In all three cases, the randomized contraction algorithm generates rule sets which use 

fewer labels than the competing algorithms. For structures A (Figure 6.1(a)) and B (Figure 

6.1(b)), it is possible to verify that our algorithm generates rule sets which are optimal by our 

criterion, using the minimum number of labels required to assemble these structures.1 For 

structure A, we can prove that three labels are required by performing a simple exhaustive 

search, generating and testing rule sets for all possible two-labellings of the structure (of 

which there are only 211 = 2048, since the seed is always labelled '1'); all of the two-label 

rule sets fail our consistency check. We list the optimized, three-label rule set for structure 

A in Table 6.2. 

l rThat is, the minimum number of labels required for structures A and B, given the specific assembly 
orderings. We have exactly solved instances of the restricted minimum label set problem for these structures. 

44 



(a) 

(b) (c) 

Figure 6.1: Benchmark structures from [13]. (a) Structure A, composed of 12 assembly 
components, (b) Structure B, composed of 64 assembly components, (c) Structure C, 
composed of 245 assembly components. The seed component in each structure is marked 
with an s. 

Proving that the rule set for structure B uses the minimum number of labels is more 

complicated, because exhaustive search is infeasible. Our approach will be to show that 

components forming the left and bottom edges of the structure require unique labels which 

cannot appear at other positions. To begin, we will segment structure B as indicated in 

Figure 6.3(a), and describe the relationship between the components in each segment. 

Consider the components in segments T and '2': each component has only a single 

predecessor and a single successor, according to the assembly graph in Figure 6.3(b). Assume 

that we attempt to use one of the labels from segment ' 1 ' or '2' for a component in segment 

'3 ' . Now assume that we choose a component in segment '3 ' with two adjacent predecessors 

(also in segment '3'), and assign a label from segment ' 1 ' or '2' to one of the predecessors. The 

rule set must contain a rule, used in segment ' 1 ' or '2', that will now be potentially applicable 

at a cell in segment '3 ' . Applying this rule in segment '3 ' will violate the assembly ordering, 

because the rule includes a single predecessor only. So we cannot reuse any of the labels from 

segment ' 1 ' or '2' for a component in segment '3 ' that has an adjacent successor. Likewise, 

we cannot reuse any of the labels from segment T or '2' for a component in segment '3 ' 

that lies on the exterior boundary of the structure - doing so could result in the addition of 

a component that is not part of the target. These two possibilities cover all of the positions 

in segment '3 ' , and so segment '3 ' cannot share any labels with segments ' 1 ' or '2'. 

Components in segments ' 1 ' and '2' also cannot share any labels with each other. Seg-

45 



ment ' 1 ' grows upwards, while segment '2' grows to the left - if we were to use a label 

from segment ' 1 ' at a position in segment '2', then there would be a (potentially applicable) 

rule that would allow a component to bind at a position in segment '3 ' , when only a single 

predecessor was in place. The same would be true if we were to use a label from segment 

'2' at a position in segment ' 1 ' . The assembly ordering would be violated in either case. 

Finally, the label on every component in segment ' 1 ' must be unique; any duplication 

would result in a 'rule loop', causing the segment to grow indefinitely. The same argument 

holds for the components in segment '2'. Therefore, we require six unique labels for segment 

' 1 ' and six unique labels for segment '2', as well as the seed label. The remainder of the 

structure must use at least one additional unique label. This is exactly the number of labels 

in the optimized solution returned by the randomized contraction algorithm (6+6+1+1 = 14 

labels), and is therefore the minimum number possible. 

For the largest and most complex structure, C (Figure 6.1(c)), the contraction algorithm 

reduces the number of labels required by 68% and 60%, compared to [13] and [14] respec

tively.2 Although structure C contains several interior holes, we are still able to generate a 

valid assembly ordering using the breadth-first algorithm. The plot in Figure 6.7 gives the 

number of unique labels as a function of optimization iteration for the structure. More than 

90% of the successful label set contractions occur within the first 5,000 iterations. In this 

case, we ran the contraction algorithm until there was no further improvement (reduction 

in the label count) for 5,000 consecutive iterations. 

Table 6.1 also lists the number of assembly steps required for each structure. This metric, 

introduced in [13], is the number of steps required to assemble the entire target, starting 

with the seed only, if all binding sites on the frontier of the growing structure are filled 

synchronously at every step. The number of assembly steps corresponds to the length of 

the longest directed path in the assembly graph, which is independent of the number of 

labels used. Entries in each table column are identical because [13] and [14] implicitly use 

assembly graphs with the same path lengths as our algorithm for structures A, B and C. 

6.2 Isomorphic and Symmetric Structures 

The contraction algorithm is able to naturally exploit label redundancies due to structural 

isomorphisms and symmetries. As the following examples illustrate, it is not necessary to 

attempt to identify isomorphic or symmetric substructures before running the algorithm -

the redundancies are automatically discovered as part of the optimization process. 

If a structure contains two or more isomorphic substructures, as defined in Chapter 3, 

that share identical, edge-oriented assembly subgraphs, redundancies exists which can be 

2We note, however, that the purpose of Jones and Matarics' original work was to show that consistent rule 
sets could be generated, and not explicitly to consider optimizing those rule sets. 

46 



Structure 

A (12 components) 

B (64 components) 

C (245 components) 

Transition 

Rule Set 

Labels 

5 

26 

165 

Steps 

4 

14 

18 

Rectangular 

Partitioning 

Labels 

9 

16 

131 

Steps 

4 

14 

18 

Randomized 

Contraction 

Labels 

3 

14 

52 

Iterations 

97 

1,344 

36,910 

Steps 

4 

14 

18 

Table 6.1: Comparison of the randomized contraction algorithm with the transition rule set 
compiler (Jones and Mataric) and the rectangular partitioning algorithm (Li and Zhang) 
for structures A, B and C given in [13]. 

used to reduce the label count. Consider structure D, shown in Figure 6.4, which contains 

three isomorphic substructures (the upright 'T' shapes). Components a, b, c and d in 

the structure will initially have different labels. Assume that, during an iteration of the 

optimization algorithm, the label on component b is randomly changed so that it is the 

same as the label on component a, while the labels on components c and d remain the same. 

The updated rule set K*, generated by Algorithm 5.2, will contain two conflicting rules for 

the (a, c) and (b, d) pairs. If we assume also that the label on component d is larger than 

the label on component c, Algorithm 5.4 will prune the second rule. This breaks the chain 

of rules that led to the attachment of component d. However, when the algorithm applies 

72.*, it immediately discovers that the subset of rules used to assemble the left substructure, 

including components a and c, can also be used to assemble the central substructure, including 

components b and d. The redundant rules for the central substructure are removed before 

the start of the next iteration. Optimization results for the structure are shown in Table 

6.3. 

The plot in Figure 6.7 shows the number of unique labels as a function of optimization 

iteration for structure D. Large decreases in the label count on iterations 41 (13 labels 

eliminated) and 577 (8 labels eliminated) are due to the contraction algorithm's discovery of 

the isomorphisms and the consequent rule and label pruning. Figure 6.4(b) shows the initial, 

worst-case labelling for structure D, while Figure 6.4(c) shows the optimized labelling. In 

the optimized case, all three isomorphic substructures share the same labels. By eliminating 

redundancies that exists in the form of isomorphisms, the contraction algorithm is often able 

to reduce the number of labels significantly within a single iteration. This is one reason why 

the algorithm works backwards from a complete, labelled s tructure and rule set, instead of 

attempting to generate a new rule set from the bottom up. 

Symmetric substructures (mirrored horizontally or vertically in the complete structure) 

are also naturally optimized. Structure E, shown in Figure 6.5(a), contains both horizon

tally and vertically symmetric substructures. Figure 6.5(b) shows the initial, worst-case 

labelling for the structure, and Figure 6.5(c) shows the optimized labelling. Note that, in 

47 



(a) (b) 

(c) (d) 

Figure 6.2: (a) Structure A, composed of 12 assembly components. The seed component is 
marked with an s. (b) Breadth-first assembly graph for structure A. (c) Worst-case labelling 
(12 labels), (d) An optimal labelling (given the assembly graph and associated ordering), 
generated by the randomized contraction algorithm (3 labels). The corresponding optimal 
rule set is listed in Table 6.2. 

ri'ixxxnzi 
ULD~TI. LID n r r n .cnn 
[!rud i nnj 
rxinrunm 
a. J_LLOJJ 

(a) (b) 

11 17 24 32 40 47 53 58 

(C) (d) 

Figure 6.3: (a) Segmented view of structure B. Labels used to assemble sections ' 1 ' and '2' 
(medium grey and dark grey, respectively) cannot be used to assemble any portion of section 
'3 ' (light grey), (b) Breadth-first assembly graph for structure B. Vertices in sections ' 1 ' and 
'2' (highlighted by dashed ellipses) each have only a single adjacent predecessor; vertices in 
section '3 ' either have two adjacent predecessors or form part of the exterior boundary of the 
structure, (c) Worst-case labelling (64 labels). (d) An optimal labelling (given the assembly 
graph and associated ordering), generated by the randomized contraction algorithm (14 
labels). 

48 



Rule Number 

1 

2 

3 

4 

5 

6 

7 

8 

9 

10 

Expanded Format 

( - : - ) -

( - : • ) -

( - ; - : 

( • : - ) 

= » 2 

=> 3 

( 2 \ 
- • 2 =*. 2 

I - / 
( - \ 

- • 2 = • 2 

I 2 1 

( ' ! - ) - . 

( • ! - ) 

=> 2 

( • ; - ) -

{ • • - ) => 2 

Tuple Format 

( 1 , - , - , - , 2) 

( - , l , - , - , 2 ) 

( - , - , l , - , 2 ) 

( - , - , - , 1 , 3 ) 

( 2 , 2 , - , - , 2 ) 

( - , 2 , 2 , - , 2 ) 

( 2 , - , - , 2 , 3 ) 

( 3 , - , - , 2 , 2 ) 

( - , - , 3 , 2 , 2 ) 

( - , - , - , 3 , 2 ) 

Table 6.2: Optimized rule set for benchmark structure A from [13]. The label set is £ = 
{1,2,3}. This is the minimum number of labels required to assemble A - no consistent rule 
set containing only two labels exists. 

49 



Structure 

D (64 components) 

E (65 components) 

Labels 

17 

14 

Steps 

16 

7 

Iterations 

1,704 

2,845 

Table 6.3: Optimization results for isomorphic structure D and symmetric structure E. 

the optimized case, many labels are shared at symmetric positions. Optimization results for 

the structure are shown in Table 6.3. 

Although the exact position at which certain labels appear depends on the (random) 

order of selections made by the contraction algorithm, most labels can be utilized at positions 

in two or more symmetric substructures. This is because the mirroring of the edge-oriented 

assembly subgraph often allows labels used by a rule in one direction (for example, north) to 

also be used in the opposite direction (for example, south). Discovering symmetry typically 

requires a larger number of optimization iterations, however, since, unlike for the isomorphic 

case, label values at the symmetric positions must be reduced incrementally. 

6.3 Complex Structures 

We now consider two examples of more complex structures, including one structure that 

contains an interior hole. Our goal in this section is to demonstrate that the randomized 

contraction algorithm is flexible and scalable. For the experiments presented below, we 

ran the contraction algorithm until there was no further improvement for 5,000 consecutive 

iterations. 

6.3.1 Structures with Interior Holes 

We choose to give a result for structure F, shown in Figure 6.8(a), which contains an 

interior hole. This structure originally appeared in [15], as an example of a case that could 

be problematic for purely local assembly algorithms. The authors of [15] suggest that the 

ability to enforce a global ordering on the assembly process is important for these types of 

structures, in which the exterior shell may close before the interior is complete. 

It is true that a simple breadth-first assembly ordering fails to enforce all of the spa-

tiotemporal constraints that are necessary to guarantee successful assembly of structure F. 

However, the assembly graph in Figure 6.8(b) does represents a valid ordering, and thus we 

are able to guarantee successful assembly using local rules only. We produced this graph 

by inspection, starting with the (invalid) graph generated by Algorithm 4.2. In the graph, 

there is a single, directed path which includes the vertices bordering the interior hole.3 The 

3We slightly abuse the notion of a graph here, by referring to the embedding of the graph in the plane (since 
vertices do not really 'border' the interior hole). We do so only for convenience in this case, to easily identify 
the changes made to the original graph produced by Algorithm 4.2. 

50 



• 
- • [ — 

zt 
31 * ; r •' 

fr 
WM mm 

1 
B 
H 

UGn 
LiJ 
DU 

i 

[:" 

LJLDC 

t u n 
UiU 

I L I i l 
SS3 

LJ LI 
u u G D 
in m F' LJ 

(a ) 

• 
E1K1E1 
BED EH 

[QEQQEQDDQBDQESE2C3 
(b) 

HDD 
BED 

BIBQ 
DEQD • E S Q 

BSD 

(c) 

Figure 6.4: (a) Structure D, containing three isomorphic substructures, coloured medium 
grey. The seed component is marked with an s. (b) Worst-case labelling (64 labels), (c) 
Optimized labelling generated by the randomized contraction algorithm (17 labels). Note 
that all three isomorphic substructures share the same labelling. 

51 



UUL nrj 
[If] 

nnnm 
• 

inn 
nn^:i • • • n n c i 

EJ7T3 I 
TJ 
inn 

(a) 

E3 
54 44 32 20 10 5 12 23 35 47 56 

QEDESDBDQinEEaQ 
8 18 30 42 53 

(b) 

IHHIHilffl 

10 14 9 8 3 1 3 6 9 8 14 

HIUiH 

(c) 

Figure 6.5: (a) Structure E, containing horizontally (light grey) and vertically (medium 
grey) symmetric substructures. The seed component is marked with an s. (b) Worst-case 
labelling (65 labels), (c) Optimized labelling generated by the Randomized Contraction 
algorithm (14 labels). Note that labels are often shared at symmetric positions. 

52 



Unique Labels versus Optimization Iteration for Structure C 

250 

200 

150 

100 -

50 

5000 10000 15000 20000 

Iteration 
25000 30000 35000 40000 

Figure 6.6: Unique labels versus optimization iteration for structure C, shown in Figure 
6.1(c). More than 90% of the successful optimization steps are performed within the first 
5,000 iterations. 

Unique Labels versus Optimization Iteration for Structure D 

70 

60 

50 

8 40 

E 30 

20 

10 

I I I ! | | I I 

\ ! 

V 
- • 

I 

i i 

•"ii ... i 1 
< N 

i i i i i i 
200 400 600 800 1000 

Iteration 

1200 1400 1600 1800 

Figure 6.7: Unique labels versus optimization iteration for structure D, shown in Figure 6.4. 
Large decreases in the label count on iterations 41 and 577 are due to the discovery of the 
isomorphisms and the consequent rule and label pruning. 

53 



Structure 

F (162 components) 

G (1,045 components) 

Labels 

51 

120 

Steps 

56 

121 

Iterations 

8,701 

83,838 

Table 6.4: Optimization results for complex structures F and G. 

existence of this path ensures that the exterior of the structure cannot close before the all 

of the interior components are in place. Our only modification to the graph produced by 

the breadth-first algorithm was to reorient 19 edges around the hole border, to produce the 

longer interior path. Also, we intentionally positioned the seed component as part of the 

exterior boundary, in order to make the problem more difficult. Optimization results are 

given in Table 6.4; the rule set contains 51 unique labels. 

Our point here is to emphasize that there is a large class of structures which appear, 

at first glance, to require a globally-enforced assembly ordering, but which can in fact be 

assembled using local rules. 

6.3.2 Larger Structures 

We give one final result, for a structure composed of more than one thousand individual 

components. Figure 6.9 shows a 1,045-component structure which can be assembled with an 

optimized rule set containing only 120 unique labels (Table 6.4). This is an 88.5% improve

ment over the worst-case label count, and an average of just 0.11 labels per component. 

Generating highly optimized rule sets for larger structures does require a comparative in

crease in the number of iterations of the contraction algorithm - a total of 83,838 iterations 

were required in this case. 

6.4 Summary 

In this chapter, we examined the performance of our randomized contraction algorithm, for 

a variety of planar structures. We showed that for the benchmark structures A, B and C, the 

contraction algorithm generates rule sets which use fewer labels than competing algorithms. 

We also proved that the rule sets for structures A and B are optimal by our criterion, using 

the minimum number of labels possible. 

For structures C through F, we are not able to determine the true minimum number 

of labels directly, and so it is more difficult to quantify the performance of the algorithm. 

However, we saw that in all these cases, significant reductions (of at least 68%) from the 

worst-case label counts were attained. 

Our results for structures E and F demonstrated that the contraction algorithm is able 

to naturally exploit redundancies due to isomorphisms and symmetries, without the need 

to identify such substructures in advance. The result for structure G established that the 

54 



algorithm is scalable, reducing the number of labels by more than 88% over the worst-case 

for this large structure. 

55 



• • • • 

• • • • • • • • • • • • 

• • • • • • • • • • • • 

• • • • 
DMHHI 

(a) 

II—Ml »f »• »f •« »• .+ »« • • »f • • .11—HI 

ii »> »> •» >> »> > « » » » » » * »> •» »> »n 

(b) 

Figure 6.8: (a) Structure F, composed of 162 assembly components. The seed component is 
marked with an s. (b) Assembly graph generated using the breadth-first ordering algorithm, 
followed by adjustment by inspection; the breath-first algorithm alone does not produce a 
valid ordering for this structure. Note that there is a single directed path which includes all 
vertices in the interior region that border the interior hole. 

56 



Figure 6.9: Structure G, Leonardo da Vinci's Mona Lisa, composed of 1,045 assembly 
components. The structure can be assembled using a rule set containing only 120 unique 
labels. The seed component is shown in light grey, near the centre of the figure. 

57 



Chapter 7 

Conclusions and Future Work 

This thesis explored distributed assembly from an algorithmic perspective. We presented 

a discretized, grid-based model for the assembly of planar structures by simple, reactive 

robots (assembly components). We then defined the spatiotemporal ordering constraints 

that must be satisfied to ensure coordinated assembly of a structure, and gave a procedure 

for encoding these constraints in a set of local assembly rules. We showed that it is possible 

to guarantee successful assembly using such a rule set, and in doing so solved an instance 

of the local-to-global problem introduced in Chapter 1. 

Our final contribution was a randomized optimization algorithm for reducing the num

ber of labels that appear in an assembly rule set, or equivalently for reducing the sensing 

demands placed on the assembly components. To characterize the performance of the opti

mization algorithm, we presented results from a series of experiments with a variety of simple 

and complex planar structures. These results demonstrated that our approach outperforms 

other algorithms found in the literature. 

Our work is a further step towards developing a theoretical understanding of distributed 

assembly. Ultimately, we hope that our contributions will advance efforts to harness these 

processes and enable the synthesis of specific structures in an exact and reliable way. 

There are a number of directions for future research. We restricted our discussion to 

planar structures, however our assembly model can readily be extended to three dimensions, 

simply by expanding the components' local sensing neighbourhood to include cells along a 

third axis. We have already begun to develop modified three-dimensional ordering and label 

optimization algorithms. 

Our ordering algorithm generates valid outputs only when the breadth-first traversal of 

a structure's adjacency graph does not produce any interior, sink vertices. This means that 

the algorithm will not work for certain structures that contain interior holes with non-convex 

boundaries. We showed in Chapter 6 that it is sometimes possible to generate valid order-

ings by direct inspection. However, we believe that there is a complete, polynomial-time 

58 



algorithm which will generate valid orderings for arbitrary structures. The algorithm should 

operate on the adjacency graph alone, once the exterior boundary vertices have been identi

fied. That is, there is sufficient information contained in the (topological) adjacency graph 

to define the necessary ordering constraints, without considering the geometric embedding 

of the graph. We have developed a graph search algorithm (omitted from the thesis) to 

solve this general problem, however we have not yet verified its completeness. 

An additional, important research problem is to show that the Minimum Label Set 

problem is NP-complete. We gave a polynomial time algorithm for verifying whether a rule 

set, which uses a certain number of labels, is consistent for a particular structure under a 

specific assembly ordering, and thus showed that the restricted MLS problem is in NP. Our 

conjecture is that a reduction from Adleman's Minimum Tile Types problem can be used 

to show NP-completeness in the general case, but this result needs to be proved. 

In a broader context, we believe that there are many results to be obtained by examining 

distributed assembly from an information-theoretic perspective. We saw in Chapters 4 and 5 

that information about the state of the assembly process must propagate through a structure 

sequentially over time. In most situations, propagation is unlikely to be error-free - this is 

analogous to data transmission over a noisy communications channel, and can perhaps be 

modelled as such. Further, the Minimum Label Set problem is essentially a compression 

problem, where we seek to remove any redundancies in the label set; the MLS problem may 

therefore benefit from an information-theoretic analysis. 

Finally, related to the above is the problem of determining the extent to which abstract 

models, such as the one presented here, can be used to describe real systems. Physical 

implementations must work in continuous (rather than discrete) environments, and must 

deal with noise, contamination and assembly errors. At present, only a handful of attempts 

have been made to build physical systems which are adequately described by these simple 

models. It is also not clear what level of fidelity is required from the models as we scale 

down to smaller dimensions (e.g. millimeters to nanometers) and up to thousands or tens 

of thousands of components. 

The study of distributed assembly is still in its infancy - many interesting research 

problems remain to be solved. We believe there is much to be gained, both theoretically 

and pragmatically, by understanding how to engineer these systems. In fact, we expect that, 

with this understanding, distributed assembly will become a principal way in which many 

artifacts are built in the not-too-distant future. 

59 



Bibliography 

A. A. G. Requicha, "Nanorobots, NEMS, and nanoassembly," Proceedings of the IEEE, 
vol. 91, no. 11, pp. 1922-1933, November 2003. 

G. M. Whitesides and M. Boncheva, "Beyond molecules: Self-assembly of mesoscopic 
and macroscopic components," Proceedings of the National Academy of Sciences of the 
United States of America, vol. 99, no. 8, pp. 4769-4774, April 2002. 

H. Wang, "Proving Theorems by Pattern Recognition II," Bell Systems Techinical 
Journal, no. 40, pp. 1-42, 1961. 

L. Adleman, "Towards a Mathematical Theory of Self-Assembly," Department of Com
puter Science, University of Southern California, Los Angeles, USA, Tech. Rep. 00-722, 
January 2000. 

P. Rothemund and E. Winfree, "The Program-size Complexity of Self-assembled 
Squares," in Proceedings of the Thirty-Second Annual ACM Symposium on Theory 
of Computing (STOC'00), Portland, Oregon, USA, May 2000, pp. 459-468. 

L. Adleman, Q. Cheng, A. Goel, and M.-D. Huang, "Running Time and Program Size 
for Self-assembled Squares," in Proceedings of the Thirty-Third Annual ACM Sympo
sium on Theory of Computing (STOC'01), Hersonissos, Greece, July 2001, pp. 740-748. 

L. Adleman, Q. Cheng, A. Goel, M.-D. Huang, D. Kempe, P. M. de Espanes, and 
P. W. K. Rothemund, "Combinatorial Optimization Problems in Self-Assembly," in 
Proceedings of the Thirty-Fourth Annual ACM Symposium on Theory of Computing 
(STOC'02), Montreal, Canada, May 2002, pp. 23-32. 

K. Saitou, "Self-Assembling Automata: A Model of Conformational Self-Assembly," in 
Proceeding of Pacific Symposium on Biocomputing, Maui, Hawaii, USA, January 1998, 
pp. 609-620. 

E. Klavins, "Directed Self-Assembly Using Graph Grammars," in Foundations of 
Nanoscience: Self Assembled Architectures and Devices, Snowbird, Utah, USA, April 
2004. 

R. Ghrist and D. Lipsky, "Grammatical Self Assembly for Planar Tiles," in Proceed
ings of the IEEE International Conference on MEMS, NANO, and Smart Systems 
(ICMENS'04), Banff, Canada, August 2004, pp. 205-211. 

E. Klavins, R. Ghrist, and D. Lipsky, "Graph Grammars for Self Assembling Robotic 
Systems," in Proceedings of the IEEE International Conference on Robotics and Au
tomation (ICRA '04), New Orleans, Louisianna, USA, April 2004, pp. 5293-5300. 

Y. Guo, G. Poulton, P. Valencia, and G. James, "Designing Self-Assembly for 
2-Dimensional Building Blocks," in Engineering Self-Organising Systems: Nature-
Inspired Approaches to Software Engineering, LNAI 2977, G. D. M. S. et al., Ed. 
Springer Verlag, February 2004, pp. 75-89. 

C. V. Jones and M. J. Mataric, "From Local to Global Behavior in Intelligent Self-
Assembly," in Proceedings of the IEEE International Conference on Robotics and Au
tomation (ICRA '03), Taipei, Taiwan, September 2003, pp. 721-726. 

[14] G. Li and H. Zhang, "A Rectangular Partition Algorithm for Planar Self-Assembly," 
in Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and 
Systems (IROS'05), Edmonton, Canada, August 2005, pp. 2324-2329. 

60 



[15] D. Arbuckle and A. A. G. Requicha, "Active Self-Assembly," in Proceedings of the 
IEEE International Conference on Robotics and Automation (ICRA'04), vol. 1, New 
Orleans, USA, April 2004, pp. 896-901. 

[16] , "Shape Restoration by Active Self-Assembly," in Proceedings of the International 
Symposium on Robotics and Automation (ISRA '04), Queretaro, Mexico, August 2004. 

[17] , "Self-repairing Self-assembled Structures," in Proceedings of the IEEE Interna
tional Conference on Robotics and Automation (ICRA '06), Orlando, Florida, USA, 
May 2006, pp. 4288-4290. 

[18] A. Kondacs, "Biologically-Inspired Self-Assembly of Two-Dimensional Shapes Using 
Global-to-Local Compilation," in Proceedings of the Seventeenth International Joint 
Conference on Artificial Intelligence (IJCAI '03), Acapulco, Mexico, August 2003, pp. 
633-638. 

[19] P. W. K. Rothemund, "Using lateral capillary forces to compute by self-assembly," Pro
ceedings of the National Academy of Sciences of the United States of America, vol. 97, 
no. 3, pp. 984-989, February 2000. 

[20] J. H. Reif, T. LaBean, S. Sahu, H. Yan, and P. Yin, "Design, Simulation, and Ex
perimental Demonstration of Self-Assembled DNA Nanostructures and DNA Motors," 
in Computational Modeling and Simulation of Materials Conference (CIMTEC'04), 
Acireale, Sicily, Italy, 2004. 

[21] J. Bishop, S. Burden, E. Klavins, R. Kreisberg, W. Malone, N. Napp, and T. Nguyen, 
"Programmable Parts: A Demonstration of the Grammatical Approach to Self-
Organization," in Proceedings of the IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS'05), Edmonton, Canada, August 2005, pp. 3684-3691. 

[22] S. Burden, N. Napp, and E. Klavins, "The Statistical Dynamics of Programmed Robotic 
Self-Assembly," in Proceedings of the IEEE International Conference on Robotics and 
Automation (ICRA '06), Orlando, Florida, USA, May 2006, pp. 1469-1476. 

[23] R. A. Brooks, "Intelligence without representation," Artificial Intelligence, no. 47, pp. 
139-159, 1991. 

[24] C. R. Kube and H. Zhang, "Collective Robotic Intelligence," in Proceedings of the 
Second International Conference on the Simulation of Adaptive Behaviour (SAB'92), 
J.-A. Meyer, H. L. Roitblat, and S. W. Wilson, Eds. Cambridge, Massachusetts, USA: 
MIT Press, 1993, pp. 460-468. 

[25] , "Collective Robotics: From Social Insects to Robots," Adaptive Behaviour, vol. 2, 
no. 2, pp. 189-219, 1993. 

[26] M. A. Lewis and G. A. Bekey, "The Behavioral Self-organization of Nanorobots Using 
Local Rules," in Proceedings of the IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS'92), vol. 2, July 1992, pp. 1333-1338. 

[27] W.-M. Shen, C.-M. Chuong, and P. Will, "Simulating Self-Organization for Multi-
Robot Systems," in Proceedings of the IEEE/RSJ International Conference on Intelli
gent Robots and Systems (IROS'02), vol. 3, Lausanne, Switzerland, October 2002, pp. 
2776-2781. 

[28] J. Kelly and H. Zhang, "Combinatorial Optimization of Sensing for Rule-Based Planar 
Distributed Assembly," in Proceedings of the IEEE/RSJ International Conference on 
Intelligent Robots and Systems (IROS'06), Beijing, China, October 2006, pp. 3728-
3734. 

[29] G. Theraulaz and E. Bonabeau, "A Brief History of Stigmergy," Artificial Life, vol. 5, 
no. 2, pp. 97-116, 1999. 

[30] R. Beckers, O. E. Holland, and J. L. Deneubourg, "From Local Actions to Global Tasks: 
Stigmergy and Collective Robotics," in Proceedings of the Fourth International Work
shop on the Synthesis and Simulation of Living Systems, R. A. Brooks and P. Maes, 
Eds., Artificial Life IV. Cambridge, Massachusetts, USA: MIT Press, 1994, pp. 181-
189. 

61 



[31] Z. Mason, "Programming with Stigmergy: Using Swarms for Construction," in Pro
ceedings of the Eighth International Conference on Artificial Life (ICAL '02), Sydney, 
Australia, December 2002, pp. 371-374. 

[32] E. Bonabeau, G. Theraulaz, E. Arpin, and E. Sardet, "The Building Behavior of Lattice 
Swarms," in Proceedings of the Fourth International Workshop on the Synthesis and 
Simulation of Living Systems, R. A. Brooks and P. Maes, Eds., Artificial Life IV. 
Cambridge, Massachusetts, USA: MIT Press, 1994, pp. 307-312. 

[33] G. Theraulaz and E. Bonabeau, "Coordination in Distributed Building," Science, vol. 
269, no. 5224, pp. 686-688, August 1994. 

[34] E. Bonabeau, M. Dorigo, and G. Theraulaz, Swarm Intelligence: From Natural to 
Artificial Systems. Oxford University Press, 1999. 

[35] E. Bonabeau, S. Guein, D. Snyers, P. Kuntz, and G. Theraulaz, "Three-dimensional 
architecture grown by simple 'stigmergic' agents," Biosystems, vol. 56, no. 1, pp. 13-32, 
2000. 

[36] J. Werfel, Y. Bar-Yam, and R. Nagpal, "Building Patterned Structures with Robot 
Swarms," in Proceedings of the Nineteenth International Joint Conference on Artificial 
Intelligence (IJCAI '05), Edinburgh, Scotland, August 2005, pp. 1495-1502. 

[37] J. Wawerla, G. S. Sukhatme, and M. J. Mataric, "Collective Construction with Multi
ple Robots," in Proceedings of the IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS'02), vol. 3, Lausanne, Switzerland, October 2002. 

[38] J. Werfel, Y. Bar-Yam, D. Rus, and R. Nagpal, "Distributed Construction by Mobile 
Robots with Enhanced Building Blocks," in Proceedings of the IEEE International 
Conference on Robotics and Automation (ICRA '06), Orlando, Florida, USA, May 2006, 
pp. 2787-2794. 

[39] C. Parker, H. Zhang, and C. R. Kube, "Blind Bulldozing: Multiple Robot Nest Con
struction," in Proceedings of the IEEE/RSJ International Conference on Intelligent 
Robots and Systems (IROS'3), vol. 2, Las Vegas, Nevada, USA, October 2003, pp. 
2010-2015. 

[40] D. B. West, Introduction to Graph Theory, 2nd ed. Prentice Hall, 2000. 

[41] S. S. Epp, Discrete Mathematics with Applications, 3rd ed. Brooks Cole, December 
2003. 

62 


