
INFORMATION TO USERS

This manuscript has been reproduced from the microfilm master. UMI films

the text directly from the original or copy submitted. Thus, some thesis and

dissertation copies are in typewriter face, while others may be from any type of

computer printer.

The quality of this reproduction is dependent upon the quality of the

copy submitted. Broken or indistinct print, colored or poor quality illustrations

and photographs, print bleedthrough, substandard margins, and improper

alignment can adversely affect reproduction.

In the unlikely event that the author did not send UMI a complete manuscript

and there are missing pages, these will be noted. Also, if unauthorized

copyright material had to be removed, a note will indicate the deletion.

Oversize materials (e.g., maps, drawings, charts) are reproduced by

sectioning the original, beginning at the upper left-hand comer and continuing

from left to right in equal sections with small overlaps.

ProQuest Information and Learning
300 North Zeeb Road, Ann Arbor, Ml 48106-1346 USA

800-521-0600

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

R ep ro d u ced with p erm issio n o f th e copyrigh t ow n er. Further reproduction prohibited w ithout p erm issio n .

University of Alberta

L a n g u a g e E x t e n s i o n s f o r M u l t ip l e C o d e I n h e r it a n c e i n Ja v a

by

Calvin Puihong Chan

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of
the requirements for the degree o f M aster of Science.

Department of Computing Science

Edmonton, Alberta
Spring 2005

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1*1 Library and
Archives Canada

Published Heritage
Branch

3 95 Wellington Street
Ottawa ON K1A 0N4
C anada

Bibliotheque et
Archives Canada

Direction du
Patrimoine de I'edition

395 , rue Wellington
Ottawa ON K1A 0N4
C anada

0-494-08036-1

Your file Votre reference
ISBN:
Our file Noire rererence
ISBN:

NOTICE:
The author has granted a non
exclusive license allowing Library
and Archives Canada to reproduce,
publish, archive, preserve, conserve,
communicate to the public by
telecommunication or on the Internet,
loan, distribute and sell theses
worldwide, for commercial or non
commercial purposes, in microform,
paper, electronic and/or any other
formats.

AVIS:
L'auteur a accorde une licence non exclusive
permettant a la Bibliotheque et Archives
Canada de reproduce, publier, archiver,
sauvegarder, conserver, transmettre au public
par telecommunication ou par I'lnternet, preter,
distribuer et vendre des theses partout dans
le monde, a des fins commerciales ou autres,
sur support microforme, papier, electronique
et/ou autres formats.

The author retains copyright
ownership and moral rights in
this thesis. Neither the thesis
nor substantial extracts from it
may be printed or otherwise
reproduced without the author’s
permission.

L’auteur conserve la propriete du droit d'auteur
et des droits moraux qui protege cette these.
Ni la these ni des extraits substantiels de
celle-ci ne doivent etre imprimes ou autrement
reproduits sans son autorisation.

In compliance with the Canadian
Privacy Act some supporting
forms may have been removed
from this thesis.

While these forms may be included
in the document page count,
their removal does not represent
any loss of content from the
thesis.

■ *i

Canada

Conformement a la loi canadienne
sur la protection de la vie privee,
quelques formulaires secondaires
ont ete enleves de cette these.

Bien que ces formulaires
aient inclus dans la pagination,
il n'y aura aucun contenu manquant

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

To my wife Connie and my son Colmon,
my parents Chark-wan and Ngan-yu Chan

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstract

The object-oriented programming paradigm provides strong support for code re-use via

inheritance mechanisms. Currently, Java is one of the most widely used objected-oriented

programming languages, but Java supports only single code inheritance. Unfortunately,

code repetition is sometimes unavoidable without some form of multiple code inheritance.

Historically, multiple code inheritance mechanisms in programming languages have been

problematic. This is due to the tight coupling of code and data layout, along with funda

mental semantic issues with multiple data layout inheritance. Since Java’s class mechanism

is used for both inheriting code for methods (i.e., code-type) and inheriting state informa

tion (i.e., data-type), a mechanism for separating the code-type and data-type inheritance is

necessary to solve the multiple code inheritance problem.

We describe the implementation of MCI-Java, an extension to Sun’s Java 1.2.2 that

separates code-types and data-types and thereby enables a multiple code inheritance mech

anism. IBM’s Jikes Compiler 1.15 is modified to provide compiler support for MCI-Java.

At the source-code level, minor Java syntax changes are required for MCI-Java. At the Vir

tual Machine level, minor changes to the code loader and linker are required, but no change

is made to the highly-optimized bytecode execution procedure.

Lastly, we empirically demonstrate that the MCI-Java Virtual Machine, and the modi

fied IBM Jikes Compiler, do not degrade the performance of Java programs, when compared

with the classic Java Virtual Machine and the original IBM Jikes Compiler.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Acknowledgements

I would like to express my sincere and cordial thanks to my supervisors, Professor
Duane Szafron and Professor Paul Lu, for their invaluable input, continuous support and
understanding especially when I was having a serious health problem. It would not be
possible for me to complete this project without their guidance and support.

I would like to thank Maria Cutumisu for her patience and helpful advice every time
when I encountered problems during m y research, in particular, her work in refactoring
the Java classes. Without her work, the task to demonstrate the effectiveness of MCI-Java
would not be as easy.

I would like to acknowledge Dominique Parker for his help in running the Java demon
stration package Java2D to test the compatibility of MCI-Java for unmodified Java pro
grams.

Thanks also go to the Software Systems Research Group in the University of Alberta
for maintaining a pleasant environment in the laboratory. They have been amiable to me
since I joined the group.

I am appreciative of the contributions from my brother Pui-lam and my sisters - Maria
and Ivy - to take care of my parents so that I can concentrate on my study.

I am grateful to my wife Connie for her love, encouragement and understanding through
out my study. It is her support that gave me the strength to complete my study. I am also
owing to my son Colmon who deserved more care and love from me during my study.

Last but not the least, I am indebted to my parents Chark-wan and Ngan-yu for their
love and support throughout my life. This thesis is for my entire family.

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Table of Contents

1 Introduction 1
1.1 O v e rv ie w ... 1
1.2 M o tiv a tio n s.. 3
1.3 C o n trib u tio n s... 5
1.4 N o ta tio n ... 6
1.5 Organization.. 6

2 Code Inheritance 7
2.1 Common c o d e ... 7
2.2 Multiple represen ta tion .. S
2.3 Overview of OOP la n g u a g e s .. 11

2.3.1 Separation ... 11
2.3.2 Code in h e ritan c e .. 12

2.4 S u m m a ry .. 13

3 Extensions to the Java Programming Language 15
3.1 Guidelines for c h a n g e s ... 15
3.2 Orthogonality in language d esig n ... 17
3.3 M C I-Ja v a .. 18

3.3.1 Im plem entation.. 18
3.3.2 MultiSuper method invocation ... 20

3.4 The semantics of multiple code inheritance in MCI-Java 20
3.4.1 Inheritance and v is ib ility ... 20
3.4.2 Precedence of supertypes... 21
3.4.3 Inheritance conflict and re so lu tio n ... 22
3.4.4 Inheritance su sp en sio n ... 24
3.4.5 Keywords t h i s and s u p e r ... 25
3.4.6 Inheritance scenarios for M C I-J a v a ... 26

3.5 The semantics of multisuper call in M C I-Jav a .. 26
3.6 S u m m a ry .. 27

4 Compiler Support 29
4.1 The extended . c l a s s f i l e ... 30
4.2 The grammar of M C I-J a v a ... 32
4.3 Inheritance and co n flic t... 34

4.3.1 The data structure - E x p a n d e d M e th o d T a b le (E M T) 34
4.3.2 The revised EMT building algorithm 36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.3.3 Revised algorithm v erification .. 37
4.4 Bytecode generation .. 39
4.5 S u m m a ry ... 40

5 V irtual M achine Support 41
5.1 The Java Virtual Machine (JV M)... 42

5.1.1 The run-time en v iro n m en t.. 42
5.1.2 Dynamic per-class structures c re a tio n .. 44

5.2 Class data verification... 44
5.3 Method ta b le s ... 45

5.3.1 M e th o d B l o c k .. 46
5.3.2 M e th o d T a b le (M T) ... 46
5.3.3 V i r t u a l M e th o d T a b le (V M T).. 47
5.3.4 I n t e r f a c e M e th o d T a b le (IM T) ... 50
5.3.5 Setting offset values in M eth o d B lo c k s ... 53

5.4 Method lookup and in v o ca tio n ... 54
5.4.1 O v e rv iew .. 54
5.4.2 Dereferencing the C o n s t a n t P o o l en try ... 55
5.4.3 Method lo o k u p .. 56
5.4.4 The quicking process and code e x e c u tio n ... 58
5.4.5 Multisuper c a l l .. 60
5.4.6 Example sc e n a r io s ... 61
5.4.7 Recompilation of a supertype ... 62

5 3 S u m m a ry .. 64

6 Em pirical evaluation 67
6.1 Compatibility o f MCI-Java for unmodified Java program s............................... 67
6.2 Correctness o f MCI-Java generated c o d e .. 68
6.3 Refactoring legacy co d e .. 68

6.3.1 Duplicate code p ro m o tio n .. 68
6.3.2 Static method p rom otion .. 69
6.3.3 Prefix method p rom otion ... 70
6.3.4 Super-suffix method promotion .. 71

6.4 Refactoring the j a v a . i o package.......................... 73
6.5 Performance of Jikes and MCI-Java V M .. 77

6.5.1 Compiler t e s t .. 77
6.5.2 I/O test using refactored I/O c la sse s .. 78

6.6 S u m m a ry .. 79

7 Conclusions 81
7.1 Related w o r k ... 81

7.1.1 M i x i n s .. 81
7.1.2 T r a i t s 82
7.1.3 Code in in terface ... 83

7.2 Summary of work .. 84
7.3 Research contribution.. 84

Bibliography 87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A Abbreviations 91

A ppendix 92

B Class File S tructure 93

C T he G ram m ar of M C I-Java 95
C .l In troduction ... 95
C.2 The Grammar of M C I-Java... 96

D M ultiple Code Inheritance Scenarios 105
D .l Single inheritance involving an implementation ..106

D.1.1 Scenarios 1 - 2 ..106
D .l.2 Scenario 3 ... 106
D.1.3 Scenario 4 ... 107
D.1.4 Scenario 5 ... 107

D.2 Multiple inheritance involving an implementation...108
D.2.1 Scenario 6 ... 108
D.2.2 Scenario 7 ... 108
D.2.3 Scenario 8 ..109
D.2.4 Scenario 9 ..109
D.2.5 Scenario 1 0 .. 109

D.3 Multiple inheritance paths from the same r o o t 110
D.3.1 Scenario 1 1 .. 110
D.3.2 Scenario 1 2 .. 110
D.3.3 Scenario 1 3 .. I l l

D.4 Diamond-shaped multiple inheritance p a t h s .. 112
D.4.1 Scenario 1 4 .. 112
D.4.2 Scenario 1 5 .. 112
D.4.3 Scenario 1 6 .. 113
D.4.4 Scenario 17 •.. 113

E R efactoring the j a v a . i o package 115
E.1 Result of refactoring ..115
E.2 Source c o d e .. 116

E.2.1 S o u rc e ja v a .. 116
E.2.2 Inp u tC o d ejav a .. 116
E.2.3 S in k .ja v a ..118
E.2.4 O utputC ode.java...118
E.2.5 Random A ccessFile.java... 119
E.2.6 DataOutputStream.java...120
E.2.7 DatalnputStream.java.. 121

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Figures

1.1 Possible solutions for dual matrix representation p ro b lem 5

2.1 Java class (partial) hierarchies for I/O c l a s s e s ... 8
2.2 Refactored Java class (partial) hierarchies for I/O c la s s e s 9
2.3 Class (partial) hierarchies for matrix/vector c l a s s e s .. 10
2.4 Class (partial) hierarchies for matrix/vector classes with separation 10

3.1 Method v is ib il i ty ... 21
3.2 Scenarios of inheritance c o n f l ic t ... 23
3.3 Inheritance suspension sce n a rio s ... 24
3.4 Dynamic semantics of multisuper c a l l .. 27

4.1 Modified Java rules for a type d e c la ra tio n .. 32
4.2 Modified Java rules for method invocation .. 33
4.3 Schematic layout o f an E x p a n d e d M e th o d T a b le (E M T).......................... 35
4.4 Multiple code inheritance scenarios 1 - 17 38

5.1 Run-time memory layout for class, interface, implementation and object data 43
5.2 Virtual method table (VMT) entries .. 48
5.3 Interface method table (IMT) e n tr ie s .. 51
5.4 Excerpt of the run-time C o n s ta n t P o o l (RCP) for D a t a l n p u t S t r e a m 56
5.5 Selected multiple code inheritance scenarios from Figure 4 . 4 62

6.1 Example for static method promotion ... 69
6.2 Example for prefix method p ro m o tio n ... 71
6.3 Example for super-suffix method p ro m o tio n ... 72
6.4 Hierarchy of the classes for data input/output before re fa c to r in g 73
6.5 Modified declarations for data input/output types in the j a v a . i o package 75
6.6 Hierarchy of the classes for data in p u t/o u tp u t.. 76

B .l Schematic Diagram of the Modified Class File S tru c tu r e 94

D .l Legend for scenario diagram s...105
D.2 Scenarios 1 - 2 ..106
D.3 Scenarios 3 - 5 ..107
D.4 Scenarios 6 - 8 108
D.5 Scenarios 9 -1 0 .. 109
D.6 Scenarios 11a and l i b ... 110
D.7 Scenarios 12aand 12b ...I l l
D.8 Scenarios 13aand 13b ...I l l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

D.9 Scenarios 14 and 1 5 ..112
D.10 Scenarios 16 and 1 7 ..113

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

List of Tables

4.1 Summary of changes (compiler portion emphasized) 29
4.2 Access flags interpretation by the Java V M ... 31
4.3 Compilation results for scenarios 1 - 1 7 ... 39

5.1 Summary of changes (VM portion em phasized)... 41
5.2 Conversion from execution bytecode to quick-ed by tecodes............................ 58
5.3 Results o f EMB lo o k u p 63

6.1 Common code grouping by promotion technique for data input methods in
D a ta ln p u tS t r e a m a n d R a n d o m A c c e s s F i l e .. 74

6.2 Common code grouping by promotion technique for data output methods
in D a ta O u tp u tS t r e a m a n d R a n d o m A c c e s s F i l e 74

6.3 Change in the number of methods as a result of re fac to rin g 76
6.4 Change in the number of lines o f code as a result of refacto ring 77
6.5 Compiler performance com parison ... 78
6.6 VM performance com parison... 79

A.1 Meaning of the abbreviations u s e d ... 91

E.1 Change in the number o f executable statements as a result of refactoring . . 115

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 1

Introduction

1.1 Overview

Since the development of Simula-67 by Nygaard and Dahl [27], object-oriented pro

gramming (referred to as OOP, hereafter) has become a popular programming paradigm.

In the past three decades, many researchers have dedicated their efforts to improving this

paradigm, and many programming languages supporting OOP have been developed. Some

o f the widely used commercial products include Java, Smalltalk, C++ and C #.1

The object-oriented programming paradigm is an extension o f the concept of an Ab

stract Data Type (ADT) [25. 24], A program developed using OOP can be viewed as a

collection of reacting agents known as objects2 interacting with each other through mes

sage passing.

An object is used to model a concept or a real-world entity. Every' object has a type, an

interface that defines the set o f messages applicable to the object. A behavior describes the

response (to be implemented in a method) of the object to a received message. A class is

the programming unit responsible for creating object instances for a type and for mapping

messages to behaviors.

In OOP, a problem is solved by interactive message-passing among objects that have

private states [10]. This contrasts with the procedural programming paradigm, in which

a problem is solved by changing the states of named storage locations according to a set

o f predefined instructions. OOP allows software to model the real world more closely,

especially for complex systems in which there is a high degree of interaction among com

ponents of the system. It is a programming methodology that encourages modular design

and code re-use. Many believe that programs developed using OOP techniques tend to be

'Trademarks of their respective owners.
2Section 1.4 describes the notation used in this dissertation.

1

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

more reliable, extensible and robust [22].

There are three major features that contribute to the success of OOP:

Encapsulation refers to the ability to protect the internal representation of an object from

external access.

Inheritance refers to the ability of a class {type) to re-use properties of another class

{type).

Polym orphism refers to the ability to map the same message to different methods in

different classes at run-time.

Unfortunately, there are no standard accepted meanings of the notions o f type and class

in the OOP community. This dissertation adopts the ones that support a clean separation

between the concepts o f interface, implementation and representation (the internal data

layout o f an object) [21]:

1. An interface-type defines the set of legal operations (programmatic interface) for a

group of objects that models a real-world concept.

2. A code-type implements an interface-type by associating code with methods that im

plement each of the legal operations defined by this interface-type, without constrain

ing the data layout.

3. A data-type describes the data structure of the objects for the interface-type. It also

provides the methods for accessing these data and a mechanism for creating object

instances that conform to this interface-type.

The generic term type refers to any one of these three notions. Almost all OOP lan

guages handle equivalence of types using the convention of name equivalence. Under this

arrangement, two types with the same set of behaviors will not be treated as equivalent un

less they also have the same name. Subtyping is a special relationship between two types,

where the subtype guarantees behaviors conforming to those of the supertype. This can be

viewed as an is-a relationship o f types. Given that type T is a subtype of type S, an object

of type T is implicitly o f type S by the principle o f subsumption.

A class is a programming language construct that implements the concept o f type and is

responsible for creating object instances for the type. Chambers [12] states that “If a class

conforms to a type, then all of its instances support the interface specified by the type.”

2

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Parallel to the subtyping relationship between two types is the subclassing relationship be

tween two classes. This refers to a strategy by which a subclass re-uses some or all o f the

implementations (code) from its superclass.

Since type refers to any one of the three notions mentioned above, inheritance, which

refers to the ability of a type to re-use properties of another type, also has three distinct

types:

1. Interface inheritance refers to the re-use of the operations of an interface-type by its

subtypes.

2. Code inheritance refers to the re-use of the code in the parent code-type bound to an

operation by its subtypes.

3. Data inheritance refers to the re-use of the object layout of the parent data-type by

its subtypes.

Popular languages such as Java, C# and Eiffel combine code-type and data-type into one

single construct, the implementation-type. Implementation inheritance refers to a combined

code and data inheritance. Other popular languages, such as C++ and Smalltalk, further

combine this implementation-type with interface-type into a single (class) concept.

With respect to the number o f permissible direct super-types, there are two distinct

kinds o f inheritance:

1. Single inheritance allows a type to have no more than one direct supertype.

2. Multiple inheritance allows a type to have more than one direct supertype.

While C++ supports both multiple data inheritance and multiple code inheritance, C#,

Smalltalk and Java support only single implementation inheritance. This dissertation de

scribes a novel way to support the separation between interface-type. code-type and data

type in the Java Programming Language, and adds supports for multipie code inheritance.

1.2 Motivations

OOP permits application programs to model the real world more closely than programs

developed using the procedural programming paradigm. One of the major advantages of

OOP is the strong support of code re-use, which is done via the inheritance mechanism.

3

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Ironically, the current form of inheritance imposes a restriction on code re-use in the avail

able language systems. It is impossible to use the same implementation in two unrelated

inheritance hierarchies without repeating the code.

The reason for this restriction is best explained by the fact that there is not a clear one-

to-one correspondence between language features and concepts of interface-type, code-type

and data-type. The code re-use problem can be solved more elegantly using features of a

language that supports a clean and complete separation between these language concepts; a

language o f this kind would enable a program to use less code.

The Java Programming Language (referred to as Java, hereinafter) is one of the most

widely used programming languages. It has rudimentary support for separate language

constructs for interface-type, code-type and data-type, which are called interface, abstract

class and class, respectively. Java supports multiple inheritance from interfaces but only

single inheritance for class, whether the class is abstract or not.

From the software engineering perspective o f code maintenance, it is best to have the

minimum dependence o f code on the actual data layout. Without independence, efforts

to improve performance by optimizing data layout would require extensive changes to the

codes that access this data directly.

For example, suppose a matrix is modeled using a MATRIX class. Traditionally, a ma

trix is represented using a block o f memory units to store the values of each of the elements

o f the matrix. This block o f memory can be visualized as a rectangular two-dimensional

array. Sometimes, a different, more space-efficient, representation for a matrix is desirable,

in which case a SPARSE .MATRIX class is required. One possible way to represent a sparse

matrix is to use a doubly-linked orthogonal list structure storing only those non-zero mem

bers with their row and column numbers. Despite their different internal representations,

the two classes should behave the same.

One current solution to this dual matrix representation problem is to have a MATRIX

interface used as the interface-type for describing the behaviors of a matrix. The two rep

resentations of a matrix are implemented using two implementations of the MATRIX in

terface, DENSE.MATRIX and SPARSE-MATRIX. These two implementations are used as

the implementation-types (a combined code-type and data-type) for the respective matrix

representations. Figure 1.1(a) shows the schematic diagram of the relationship among the

classes. Unfortunately, the two subclasses cannot share code using this solution, since in

terfaces in Java cannot contain code.

A solution to this problem is to add an abstract class MATRIX.CODE as the code-type

4

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I MATRIX I

implements implements

^^DENSE_M ATRIX^J |^^PARSE_MATR1X^

No code sharing between the two subclasses

(a) Current solution (b) Better solution

Figure 1.1: Possible solutions for dual matrix representation problem

for implementing the behaviors defined in the M A TRIX interface. The two subclasses

of M A TR IX .C O D E, D EN SE J4 A T R IX and S P A R S E M A T R IX , are used as data-types for

implementing the data layouts and providing accessor functions to its internal data. The

schematic diagram showing the relationship among these classes is shown in Figure 1.1(b).

One typical example would be implementing the multiplication operation. This operation

is implemented in M A T R IX .C O D E as a method that applies the dot product method to rows

and columns. The dot product method itself is implemented in each of the two daia-types —

D EN SEJM A TR IX and SPA R SE _M A T R IX - as it requires access to the internal data of each

representation.

Using an abstract class as a code-type in Java still restricts code re-use. as Java only

supports single inheritance for classes. This dissertation proposes a solution to remedy this

situation, by adding a new language construct at the source code level. The new construct.

implementation, is a new form of code-type that supports multiple inheritance. It supports

better code re-use through multiple inheritance.

1.3 Contributions

The work done in this thesis makes the following contributions:

1. It provides the first implementation using a virtual method table for an interface to

extend Java to support the separation between interface-type, code-type and data-

type.

2. It provides an implementation to extend Java to support multiple code inheritance

5

I MATRIX I

4
implements

I ~ I
4 ?

tinheritsJ *-inheritsn

1
j s P A R S E _ M A T R I x l

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

with changes at load time only.

3. It provides the first compiler support to the extended Java that supports multiple code

inheritance and the separation between interface-type, code-type and data-type.

The language extension to Java allows elegant program architecture design and imple

mentation to better model complex problem domains using Java.

1.4 Notation

Throughout this dissertation, the following scheme is used:

symbol notation
term a term in its first appearance with definition
class a term used in the Object-Oriented Programming context

k e y w o rd a keyword used in the Java grammar
m e th o d () code related

invokevirtual an opcode mnemonics used in a Java virtual machine instruction
c l a s s c l a s s an “in-memory” data structure

§ a section where a definition or a description can be found

1.5 Organization

In Chapter 2, several modeling problems encountered in Java are studied, and the weak

ness of Java in handling these cases is revealed. Extensions to the language to increase its

expressive power are proposed in Chapter 3. Modifications made to the IBM Jikes Com

piler and the Java Virtual Machine to support the proposed language extensions are pre

sented in Chapters 4 and 5, respectively. The performance o f the extended language system

is evaluated in Chapter 6. Summary and conclusions are included in Chapter 7. A list of

the abbreviations used in this thesis can be found in Appendix A. Appendix B shows the

schematic layout of a . c l a s s file. A grammar for MCI-Java is included in Appendix C.

Appendix D describes 17 multiple code inheritance scenarios which are commonly found

in normal application programming. The result o f refactoring the j a v a . i o package is

detailed in Appendix E.

6

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 2

Code Inheritance

Some problems in OOP cannot be solved without a separate code-type, and repeated

code is unavoidable without multiple code inheritance. These problems are discussed in

this chapter, with special reference to Java. A brief overview of multiple inheritance (§1.1)

in other common OOP languages is included at the end of the chapter.

2.1 Common code

It is very common to find similar behavior exhibited by different species in the real

world. Therefore, it would not be surprising to find different classes with common behavior.

Many methods implementing the same behavior are expected to have code segments that

are similar, if not exactly the same.

To avoid repeated code and facilitate easy maintenance, the common code segment

should be kept in a common ancestor of the two relevant classes so that the common code

is accessible by both of them. In Java, an interface cannot contain code; the common

ancestor must therefore be a class. Since it is not desirable to have this ancestor restricting

the data layout of the two subclasses, it is best to have an abstract class to act as the common

ancestor. Each subclass can then have a data layout different from that of the other, which

seems to provide a valid solution.

This solution does not work, however, when a class shares common behavior with more

than one other class having different sets of behavior. The primary cause is due to Java

only supporting single inheritance (§1.1) in class, in contrast with multiple inheritance in

interface. The class needs to inherit from more than one abstract class in order to be able to

use the shared code for all the common methods. This violates the rule for single inheritance

in classes.

A typical example of the problem can be found in the j a v a . i o package. Two classes,

7

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Datalnput DataOutput Outputs treamInputStraam

RandomAccessFile Data Outputs treamDatalnputS tream

m Interface^inherits

Rgure 2.1: Java class (partial) hierarchies for I/O classes

R a n d o m A c c e s s F ile and D a ta ln p u t S t r e a m , have common behavior specified by

the interface D a t a l n p u t . Similarly, D a ta O u p u t describes the behavior applicable to

both R a n d o m A c c e s s F ile and D a ta O u tp u t S t ream . The relationship among the

classes is depicted in Rgure 2.1.

W hile it is possible that R a n d o m A c c e s s F ile and D a ta I n p u t S t r e a m share code

stored in one abstract class, and R a n d o m A c c e s s F ile and D a ta O u tp u t S t r e a m use

common code kept in another abstract class, single inheritance means that the single class

R a n d o m A c c e s s F ile cannot inherit from both abstract classes.

To solve this problem, it is necessary to have a type declaration from which a class is

allowed to inherit multiply. The type declaration should be allowed to contain code only,

not data layout The suggested refactored type hierarchy is depicted in R gure 2.2.

In Java, a class is allowed to inherit from multiple interfaces but an interface is not

allowed to contain code. An abstract class can contain only code without data layout.

However, only single inheritance is supported in classes. A new type declaring unit may

therefore be required to solve the problem.

2.2 Multiple representation

In Section 1.2, the benefit of having dual representations for a matrix was discussed.

Optimization can be obtained by using data representations optimized for special scenar

ios. The advantage o f having multiple representations for a single type is explained in a

quote excerpted from an online tutorial1 [1] offered by Sun Microsystems Inc. L i s t is an

'The tutorial is on “General Purpose Implementations'" using the Collection framework.

8

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

implements implements

OutputCode

extends extends

inherits inherits inherits

Datalnput Outputs treamDataOutputInputStream

RandomAccessFileDatalnputStream DataOutputStream

^ In te rfa c e ^ |l ||^ C o d e T y p » ^ ||||

Figure 2.2: Refactored Java class (partial) hierarchies for I/O classes

interface with two classes that implement it, A r r a y L i s t and L i n k e d L i s t .

The two general purpose List implementations are ArrayList and LinkedList. Most o f the time,
you'll probably use ArrayList. It offers constant time positional access, and it’s just plain fast,
because it docs not have to allocate a node object for each element in the List, and it can take
advantage of the native method System.arraycopy when it has to move multiple elements at
once. Think o f ArrayList as Vector without the synchronization overhead.
If you frequently add elements to the beginning of the List, or iterate over the List deleting
elements from its interior, you might want to consider LinkedList. These operations are constant
time in a LinkedList but linear time in an ArrayList. But you pay a big price! Positional access
is linear time in a LinkedList and constant time in an ArrayList. Furthermore, the constant
factor for LinkedList is much worse. If you think that you want to use a LinkedList, measure
the performance with both LinkedList and ArrayList. You may be surprised.

Without a separate code-type, the problem discussed in Section 1.2 is still solvable by

implementing methods specified in the MATRIX interface in MATRIX.CODE, an abstract

class, extended by the two classes, DENSE .MATRIX and SPARSE .MATRIX, which are the

data-types for the two distinct representations of a matrix. The class hierarchy is shown in

Figure 1.1(b). However, in the scenario that follows, the problem cannot be solved with the

present language structure o f Java.

A column or row vector is a specialized form o f a matrix. Some o f the matrix operations

can be optimized for this special form. Thus, some methods which are defined for matrix

9

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

MATRIX

I
I MATRIX.CODE IIiTi_

DENSE MATRIX VECTOR.CODE ^ j ^ ^ ^ ^ M A T H I x J

DENSE.VECTOR | s P A R S ^ E C T O R J

Figure 2.3: Class (partial) hierarchies for matrix/vector classes

MATRIX

MATRIX.CODE

VECTOR

| Interface Type** Q

Q Code Type ^

Data Type |

dense. matrix SPARSE.MATRIX

SPARSE.VECTOR

Figure 2.4: Class (partial) hierarchies for matrix/vector classes with separation

operations can be implemented differently, optimizing for column or row vectors. However,

these implementations are good only for vectors, but not matrices. Furthermore, it is very

reasonable to have dual representations for vectors, making each representation of vector a

specialization of its counterpart for matrix.

In Java, one possible way to model the matrix/vector scenario is depicted in Figure

2.3. The class hierarchy for matrix, as shown in Figure 1.1(b), remains unchanged. The

abstract class M A T R IX .C O D E is extended by V EC TO R .C O D E, an abstract class containing

10

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

code specialized for vectors. The two data-types representing the dual representations of a

vector become subclasses of V EC TO R .C O D E. This model is very close to the real situation

capturing almost all relationships among the classes, except those among the data-types.

D E N SE .V E C T O R should be a specialization of D EN SE .M A TR IX , while SP A R SE .V E C T O R

should be a specialization of S P A R S E .M A T R IX .

With separate language constructs for interface-type, code-type and data-type, the ma

trix/vector case can be modeled using a class hierarchy, as shown in Figure 2.4. It can be

seen that all specialization relations are reflected in the class hierarchy. Data layouts of the

matrix classes are re-used in the vector classes. This factorization is not possible in Java,

since D EN SE .V E C T O R and S P A R S E .V E C T O R must both use multiple code inheritance.

It is obvious that programmers are able to model real world problems more closely us

ing languages that support the separation between interface-type, code-type and data-type.

Java does not support the separation between these types, and this dissertation proposes a

modification to the language to move it in this direction.

2.3 Overview of OOP languages

Several currently available static-typed OOP languages are studied according to their

published specifications to determine how they are designed in terms of inheritance and

separation. The languages studied include BeCecil [13], Cecil [11], C++ [32], C# [5],

Eiffel [26], Java [18] and Sather [31].

23.1 Separation

Not all languages studied provide support for separation between interface-type, code

type and data-type.

C++ gives the modular unit dual functional roles. A class is used for declaring an

interface-type for programmatic interface, type implementation and instance creation.

Eiffel uses a class to declare a type and to create object instances of the type. There is

no separation between type and class, although deferred classes permit a declared feature

to be implemented later by another class inheriting from it.

Both Java and C# provide moderate support for the separation between interface and

implementation through i n t e r f a c e , a modular unit in addition to c l a s s . It allows

the definition of an interface-type without requiring implementation to be included. The

presence of i n t e r f a c e allows a c l a s s to have additional sets of behavior on top of the

one inherited from the superclass.

11

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Sather provides a mechanism that supports separation between interface and imple

mentation in that classes are used to define code and storage. With the presence of this

mechanism, class inheritance is split into two parts. One part of the inheritance deals with

type relationships between classes (subtyping) and the other part (code inclusion) deals with

code relationships between classes.

Cecil and BeCecil (an extension of Cecil) support a polymorphic static type system

which distinguishes between subtyping and code inheritance. The static type system makes

type declaration and subtyping independent of objects and their creation. Cecil and BeCecil

do not provide mechanisms to separate code from representation; the two are blended into

an implementation-type. Code inheritance must be accompanied by preservation of data

layout.

23.2 Code inheritance

Both Java and C# allow only single inheritance in classes. Multiple inheritance is sup

ported through using an interface which contains no code. In other words, these two lan

guages support multiple inheritance in interface-type, but not code-type. As no code is

allowed in interface, one would expect a considerable amount of duplicated code when

implementing multiple inheritance using these two languages.

C++ supports multiple inheritance in both interface-type and code-type. However, there

is no separation between them; inheritance in one is implicitly imposed with inheritance

in the other. When C++ encounters a diamond-shaped inheritance (inheriting from two

modular units having a common source o f inheritance), an explicit qualifier must be created

to refer to the common root.

Eiffel also supports multiple inheritance in both interface-type and code-type. Under

its terminology, multiple inheritance refers to the V-shaped inheritance (inheriting from

two modular units having no common source of inheritance) while the diamond-shaped

inheritance is referred to as repeated inheritance. The repeated common root is treated

differently, as in C++. The programmer has the option o f sharing the common root and

making it one single entity, or replicating the common root through renaming.

Sather allows multiple type inheritance. Since subtyping is only possible with abstract

types, no diamond-shaped type inheritance is possible. When it comes to diamond-shaped

code inheritance, Sather adopts the same scheme used in C++, requiring an explicit qualifier

for methods coming from the common root.

Cecil permits multiple inheritance in both type and code. It uses partial ordering to

12

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

handle diamond-shaped inheritance. An implementation is regarded as more specific if it is

located closer to the class where the call is made. The most specific one is to be invoked.

BeCecil is a language that supports multi-dispatch and thus handles code inheritance dif

ferently.

Neither C++ nor Java permits methods defined in another class, which is not an ancestor

o f the current class, to be inherited.

Sather provides code inheritance through subclassing. Each time the keyword i n c l u d e

is used, the implementation of a specified type is incorporated. This is different from in

heriting code without an association of a type. Sather’s special feature - c l o s u r e - is

equivalent to a function pointer in the other languages.

Although Eiffel supports multiple and repeated inheritance, there is no mechanism to

inherit code without any type association. A programmer may elect to inherit from a type

while rejecting some of the methods declared in the type. However, the reverse is not

possible. The programmer cannot accept a method while rejecting its containing type.

2.4 Summary

OOP is intended to promote code re-use. Ironically, rather than providing the necessary

support to it, most o f the currently available languages restrict or do not allow code re-use.

When using languages that do not support the total separation between interface-type,

code-type and data-type and which only support single inheritance in class, it is not possible

to implement, without duplicated code, a class which shares common behavior with more

than one class, each of which has different behavior sets.

Optimization can be obtained through different data layouts, each specialized for a

unique scenario. However, multiple representations o f an interface cannot be implemented

in a way that models the real situation closely without total separation between interface-

type, code-type and data-type.

No single commonly used OOP language provides a solution to these modeling prob

lems. A proposal to extend Java, (which is a commonly used OOP language), to support

multiple code inheritance and the separation between interface-type, code-type and data

type without changing the original semantics, will be discussed in Chapter 3.

13

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This page contains no text

14

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 3

Extensions to the Java Programming
Language

Several weaknesses of Java, in terms of expressiveness, have been identified in the pre

vious chapter. These include difficulties in modeling a real problem, with respect to multiple

representations, multiple behavior and shared code. This chapter describes MCI-Java, an

extension to Java, which is proposed as a solution to the problem. The chapter begins with

the establishment o f a set of guidelines to be used as criteria for the design decision. This

is followed by a section on the various orthogonal dimensions in OOP language design, on

which the proposed solution is based. While the actual implementation is detailed in the

following two chapters (Chapters 4 and 5), design-related issues and the semantics of the

added features are discussed in Section 3.3.

3.1 Guidelines for changes

One of the strengths of Java is its platform independence. The component responsible

for this machine- and operating system-independence is the Java Virtual Machine (JVM),

which is an abstract computing machine with its own instruction set (the bytecodes). Com

piled code is represented in a binary form known as the . c l a s s file format, which is

machine- and operating system-independent. A . c l a s s file contains the bytecodes, a

symbol table (the constant pool) and other ancillary information. There is a strong format

and structural constraint imposed by the JVM on the . c l a s s file format.

The Java Virtual Machine Specification (JVM Specification) [23] does not assume

any implementation detail. However, any JVM implementation must be able to read the

. c l a s s file format and correctly perform the operations specified there, according to the

JVM Specification. While the implementation details are not precisely specified by the

15

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

JVM Specification, the run-time environment should have:

1. various run-time data areas to be used during program execution, as well as lookup

and symbolic resolution routines that access them,

2. a class loading mechanism which can translate symbolic references contained in a

. c l a s s file into concrete method references within the run-time environment, and

3. a bytecode interpreter for executing the bytecodes correctly.

The interpreter is machine-specific and is usually highly optimized for performance.

None of the changes made to the bytecode execution procedure can be made in the inter

pretation section of the JVM, to avoid affecting performance. Modifying the highly opti

mized bytecode interpreter would be a maintenance disaster, given the numerous machine

specifications on the market. Therefore, all changes to the JVM must be in the class loader

or symbolic resolution code.

Very few OOP languages possess the modularity features provided by Java. By using

this feature, a single compilation unit — usually a top level type (a class or an interface)

- can be recompiled without requiring other units using this type to be recompiled; and

an application using this recompiled type can still be executed without recompiling the

application. Other common languages such as C-H- and Smalltalk require a recompilation

of all related files, once changes are made to one of the files, before the affected application

can be executed. MCI-Java is designed to behave like Java, with no recompilation required.

Another important consideration is backward compatibility. The availability of a stan

dard run-time library (the file r t . j a r) , which contains an archived collection of the built-

in classes, is another important feature o f Java. All programs written in Java use these

classes both implicitly and explicitly. All the changes made to these classes must be trans

parent so that the legacy codes already in existence are not affected, if the code can still

be executed in classic JVM. Because o f the existence of numerous applications written in

Java, the semantics of the original language should not be changed.

In view of the above, it was decided that MCI-Java should meet the following criteria:

1. No changes should be made to the highly optimized bytecode interpreter and thus the

bytecode execution procedure of classic Java should not be modified.

2. Modularity should be supported and the original semantics of the existing features,

as specified by the Java Language Specification [18], should not be modified nor

affected by any new features introduced in MCI-Java.

16

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. Modifications to the . c l a s s file and the r t . j a r file , if any, should conform to the

current specifications described in the JVM Specification and the Java Application’s

Programming Interface (API) [2], respectively.

3.2 Orthogonality in language design

Wegner has identified six orthogonal dimensions of OOP language design. “These di

mensions provide a design framework for object-oriented languages in terms of computing

agents, classification mechanisms, sharing mechanisms, and interface specification mecha

nisms.” [33]

The six dimensions are orthogonal in the sense that no single one is the consequence of

any of the others. They are named below, four o f them being accompanied by the definitions

provided by Wegner:

1. O bject: An object has a set o f “operations” and a “state” that remembers the effect

of operations.

2. Type: A type is a behavior specification that may be used to generate instances having

the behavior.

3. Delegation: Delegation is a mechanism that allows objects to delegate responsibility

for performing an operation, or finding a value, to one or more designated “ances

tors”.

4. A bstraction: A data abstraction is an object whose state is accessible only through

its operations.

5. Concurrency

6. Persistence

As concurrency and persistence are outside the scope of this thesis, they will not be dis

cussed here.

Wegner’s definitions of “Object” and ‘Type” are similar to the definitions of object and

type found in Section 1.1 of this thesis. Inheritance, one of the three main features of OOP,

can be viewed as a specialization o f “Delegation”, while encapsulation is an application of

“Abstraction”.

17

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Leontiev, Ozsu and Szafron [21] have suggested the total separation of interface, im

plementation and representation for objects in object-based database management program

ming languages. Different and unique language constructs are required for each of the three

concepts. The idea of total separation is parallel to Wegner’s concept of orthogonal design

dimensions, with slight modifications.

Since an interface-type defines the set o f legal operations for a group of objects, it can

be seen as a feature in the “Type” dimension. These objects delegate the responsibility

for performing an operation to a code-type, which implements the methods defined by an

interface-type. Accordingly, a code-type belongs to the “Delegation” dimension. A data

type contains the data layout and a set of accessors for accessing the internal state o f the

object it represents. If Wegner’s concept is slightly modified so that an “Object” has a

state and a set o f accessors (instead of “operations”), the data-type defined in [21] will fit

perfectly into the “Object” dimension. The concepts o f separation and orthogonality both

emphasize the independence between any two of the language features mentioned in their

proposals.

The orthogonal design dimensions identified by Wegner are useful tools to understand

issues about language design. They provide a platform to search for solutions. The total

separation of interface-type. code-type and data-type suggested by Leontiev et el. is a

realization of this concept of orthogonal dimensions, with each o f the three types belonging

to a different orthogonal dimension.

A language can be more expressive if all o f the features are so designed that they belong

to a unique dimension. Using orthogonality, any operation in one of the features will have

no effect on another feature. MCI-Java, the proposed extension to Java, conforms to this

framework.

3.3 MCI-Java

3.3.1 Implementation

MCI-Java introduces implementation as the third type-declaring unit at the source code

level, in addition to the two currently used in Java. A distinct language construct is therefore

used for each of the three totally separated notions o f type suggested by Leontiev et el.

[21]. At the Virtual Machine (VM) level, an implementation is compiled to an interface

containing code. Therefore, only the two existing mechanisms - one for interface and the

other for class - are used, without the need to introduce a new one.

18

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This two-level setup decouples language syntax changes from the JVM support required

for code in interface and multiple code inheritance. There can be different language con

structs and syntax at the source code level with different compiler implementations to sup

port them. The modified VM will be able to execute bytecode generated by compilers which

support code in interface. For example, if someone decides to extend Java to allow code in

interface without introducing a third type-declaring unit, the modified VM will still support

code generated from the modified compiler.

At the source code level, the original version of Java has two type declaring units - class

and interface. An interface in Java is used to specify the behavior of a group of objects,

while a class is used to define the data layout o f objects and to associate code with methods

for implementing behavior. In other words, while an interface contains abstract methods

(with no code), a class can have data for state and code for methods. This setup must be

preserved according to the guidelines set out in Section 3.1.

It is a natural choice to assign the role of an interface-type to an interface because this

is the role assigned to it in the original version of the language. In order for the original

semantics of the language to be preserved, it is necessary that data layout can be defined in

a class. This is obviously the role of a data-type.

An abstract class in Java seems to be a good choice for code-type because no instance

of the class can be created. The discussion in Chapter 2 has clearly indicated that multiple

code inheritance is a necessary part of the solution. However, if an abstract class is used as

a code-type, the original semantics o f the language have to be modified to support multiple

inheritance in classes. This cannot be done according to the guidelines set out in the pre

vious section. Therefore, a new construct is introduced to the language at the source code

level for code-type.

At the VM level, the same “in memory” data structure is used for representing a class

and an interface, in Sun’s implementation of the JVM. Obviously, this data structure is

capable of:

1. storing information for a type-declaring unit,

2. keeping method details, including code (concrete methods in class), and

3. supporting both single (for class) and multiple (for interface) inheritance.

An implementation is a type-declaring unit which contains code and supports multiple

inheritance. The existing data structure already has all the features required by an im-

19

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

plementation and it was therefore decided to use the same “in memory” data structure to

represent an implementation at the VM level.

33.2 MultiSuper method invocation

In classic Java, a super method invocation (the super call) is used to access an overrid

den instance method of the immediate superclass. Since MCI-Java supports multiple code

inheritance, it is possible that a method declared in an implementation is overridden in the

current class. A method invocation mechanism analogous to the super call is therefore re

quired to access an overridden method declared in an implementation. Multisuper method

invocation (the multisuper call) is an extension to the super call and is used to invoke an

overridden method of an immediate implementation inherited by the current class to which

the receiver object belongs.

3.4 The semantics of multiple code inheritance in MCI-Java

3.4.1 Inheritance and visibility

According to the original semantics of Java, a method declared in a class higher up in

the inheritance hierarchy is available for use by instances of the current class, by virtue

o f inheritance. It is said to be visible in the current class. However, i f another method

with the same signature, formed with the method name and the number and types o f formal

parameters to the method, is declared in the current class, the aforementioned “inherited”

method will be overridden, and will not be visible in the current class and its subclasses.

The idea of visibility is extended to include implementation. Code visible in an imple

mentation will be the one that is explicitly declared in this type, or inherited by this type

from another implementation, and not overridden. While a class can inherit from an im

plementation, the reverse is not allowed. Both class and implementation can inherit from

more than one implementation. A method in an implementation is visible in a class which

inherits from this implementation, if no method with the same signature is defined in this

class.

When a method is visible in a class or an implementation, the semantics are consistent

regardless of whether the method is explicitly declared in this type or inherited from another

type. In the example depicted in Figure 3.1 where the source code has a form similar to the

one shown in Figure 3.1(a), method m () is declared in implementation A. Figure 3.1(b),

shows that a class is denoted using a rectangle while an implementation will be represented

20

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

public implementation A {

public void m() {

public implementation B extends A

public class C utilizes B

no definition for m() in B and C

(a) code

Class C an instance of
which is denoted by c

Class A with the
declaration of an
abstract method m

Implementation B with
the declaration of a
concrete method m

inheritance relationship

legend (c) pictorial representation

Figure 3.1: Method visibility

by an oval shape. I f the alphabet denoting the name of the type is followed by a method

name enclosed within a pair of curly brackets, it indicates that a definition of the method is

visible in this type. The definition may be an inherited definition, or one that is explicitly

defined in this type. This method is visible in implementation B as well as in class C by

virtue of inheritance, as shown in Figure 3.1(c). I f the method m () is declared in another

implementation from which A inherits, and is visible in A, the situation will be the same as

depicted in this diagram.

3.4.2 Precedence of supertypes

The original semantics of Java does not put any weight on the lexical order of a su

pertype within the declaration statement, in contrast to some languages with multiple code

inheritance, such as CLOS [8], in which the lexical order is significant. For Java, a change

in the order of declaration will not have any effect in any aspect; all methods have the same

degree of importance. In order to preserve this situation, as required by the guidelines set

out in Section 3.1, no precedence will be given to a particular implementation by virtue of

its lexical order. For example, the method m () declared in A and the one declared in B will

have equal precedence with the following two declaration statements for C:

21

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. public class C utilizes A, B

2. p u b l i c c l a s s C u t i l i z e s B, A

Furthermore, an implementation is given the same status as a class with reference to

being a source o f code. As will be discussed in the following section, when resolving a

conflict, no precedence will be given to a class or an implementation for its code. In other

words, the method m () declared in class C will not be given any preference simply because

it is declared in a class over another method m () , declared in an implementation.

3.4.3 Inheritance conflict and resolution

Huchard [19] has identified two kinds o f conflict arising from code inheritance:

1. A name conflict occurs when more than one semantically distinct method uses the

same name. For example, an instance of an Integer class uses the method a d d (i n t)

to compute a sum, while an instance of a List class uses the method a d d (i n t) to

add an integer value to its content The two methods have the same signature but

different semantics.

2. A value conflict arises when one method has more than one definition visible at the

same time. An array-based list and a linked list will have different implementations

for the same method a d d (i n t) .

The inheritance mechanism will try to resolve a value conflict but is not able to deal

with a name conflict Therefore, name conflict will not be discussed in this thesis. If a

conflict cannot be resolved, an error of ambiguity will be raised either at compile time or

at run-time, depending on when the conflict occurs. Value conflict is avoided in classic

Java because of its overriding system and the fact that there is only single code inheritance.

However, it cannot be avoided in MCI-Java because multiple code inheritance by a class

via implementation is permitted.

There are two common strategies - linearization and graph-oriented - to resolve a con

flict arising from multiple code inheritance. Snyder [30] has an overview on both.

The linearization strategies transform the partial ordering of classes into a total order.

The final ordering is based on the relative order among classes within a list of direct su

perclasses. During the transformation process, unrelated classes may be inserted between

a class and its parent. This ensures single inheritance, although there may be conflicting

properties to be inherited. I f it is necessary for a class to inherit those conflicting properties,

22

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A (m ())B (m Q)

(a) different sources (b) same source (c) partial order

Figure 3.2: Scenarios o f inheritance conflict

renaming is required. A typical example would be the “rename” subclause used in Eiffel

[26] to avoid name clashes. In other words, code cannot be reused without transformation.

This contradicts the modularity feature o f OOP which ensures that each class can be de

signed and implemented independently o f other unrelated classes. Furthermore, there is

an additional major problem involving the ability of a class to communicate with its “real”

parent.

Graph-oriented strategies resolve a conflict without requiring class transformation. When

there is a conflict, the programmer will manually create a new definition, at the point where

the conflict is observable, to override the conflicting definitions. Another way to avoid the

conflict is to specify the source from which the property has to be inherited. This kind of

strategy is used in C++ [32]. With this specification, the method lookup process, which

usually starts from the receiver’s class, will now start from the specified class. This hin

ders the capability of the run-time machine to locate the most suitable method within the

inheritance hierarchy tree.

The strategy used in MCI-Java is a blend o f the two. No class transformation is nec

essary to resolve a conflict, and a new definition at the point where the conflict is seen can

remove the conflict by overriding it. When such a new definition is absent, a strategy similar

to linearization is adopted. This strategy can be summarized as follows:

1. When the conflicting definitions actually come from the same source, as depicted in

Figure 3.2(b), it is not regarded as a conflict.

2. In situations similar to the one shown in Figure 3.2(a), when there is no inheritance

path linking the two types containing the conflicting definitions, it is ruled as un-

23

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(a) V-shaped inheritance (b) diamond-shaped inheritance (c) partial order

Figure 3.3: Inheritance suspension scenarios

resolvable and the compiler should react accordingly. At run-time, an ambiguity

exception will be raised.

3. Figure 3.2(c) shows the scenario in which there is an inheritance path linking the two

types containing the conflicting definitions. The method defined in the type which

is lower in the inheritance hierarchy (partial ordering) takes precedence according to

the relaxed multiple code inheritance [28], and thus no conflict will be reported.

3.4.4 Inheritance suspension

Section 8.4.3.1 o f the Java Language Specification [18] states that “An instance method

that is not abstract can be overridden by an abstract method.” When this happens, there is

an inheritance suspension.

Inheritance suspension is used to force a new implementation in the subclass chain. In

other words, definitions found in the hierarchy tree above the class that creates the suspen

sion are not intended to be used by its subclasses.

With inheritance suspension in mind, the scenario depicted in Figure 3.2(c) becomes a

difficult-to-decide situation if m () in A is an abstract method. The new situation is now

shown as Figure 3.3(c). The purpose of inheritance suspension is to block the reuse of

inherited code (the one defined in B in this case). It is therefore against the intention of

the original Java semantics to allow the code found in B to be reused in C. On the other

hand, it can be argued that the suspension is intended to block code reuse along a path. The

code from B is still visible in C, along another path. Thus, use of the code in C should be

permitted.

24

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Assuming that method m () is an abstract method in the situation described in Figure

3.2(a), the changed situation can be seen in Figure 3.3(a). The purpose of this abstract

method declaration is to define a protocol, such that an implementation must be provided

(for use) in C. The definition declared in B, visible in C would serve to fulfill this require

ment. It is therefore natural to allow code in B to be reused in C, despite the fact that there

is an abstract method declaration in A.

For consistency, the same resolution should be arrived at in situations depicted in Fig

ures 3.3(b) and 3.3(c). To conclude, a concrete method takes precedence over an abstract

method in conflict resolution.

3.4.5 Keywords t h i s and su p e r

No change is made to the semantics and use of the keyword s u p e r while the seman

tics of the keyword t h i s is expanded in MCI-Java. Section 15.8.3 of the Java Language

Specification [18] states that

When used as a primary expression, the keyword t h i s denotes a value, that is

a reference to the object for which the instance method was invoked, or to the

object being constructed.

The specification then explains (in Section 15.11.2) the use of the keyword s u p e r to access

members of the superclass of a c l a s s , an instance o f which is denoted by the keyword

t h i s .

According to the guidelines set out in Section 3.1. the semantics of the two keywords,

t h i s and s u p e r , must be preserved. However, the semantics o f the keyword t h i s are

expanded to cover its usage in MCI-Java for the new feature - implementation.

As stated in the Java Language Specification, the keyword t h i s refers to the receiver

object o f the sent message (from which the instance method is dispatched). Methods de

clared in an implementation are also instance methods. Thus, the use of the keyword t h i s

in instance methods declared in a class is extended to be applicable to methods declared in

an implementation. When used in code in an implementation, t h i s is not referring to an

instance of the implementation but is used as a placeholder for the reference of the instance

object that u t i l i z e s t h e code.

While the semantics o f the keyword s u p e r have been preserved in MCI-Java, its use

is limited to inside instance methods declared in a class. Using the keyword s u p e r in a

method contained in an implementation is illegal since the compiler has no way to check if

25

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

all classes that u t i l i z e the implementation have implementations of that method in their

superclasses.

3.4.6 Inheritance scenarios for MCI-Java

Many multiple code inheritance scenarios arise from real problem modeling (some very

common ones are recorded in Appendix D for reference). For each scenario listed in Ap

pendix D, there is a brief discussion on the results of applying the MCI-Java semantics of

multiple code inheritance. The scenarios included in the discussion are not meant to be

exhaustive, but are representative o f the most common situations.

3.5 The semantics of multisuper call in MCI-Java

The multisuper call provides a mechanism to invoke an overridden method declared in

an implementation from which the current class inherits either directly or indirectly. This

is analogous to the super call used to invoke an overridden method declared in the chain of

classes.

In C++ [32], each call to a non-virtual method declared in one of the superclasses is a

statically compiled subroutine jump. This is different from the dynamic semantics of a Java

method invocation which supports modularity (§3.1).

To make a multisuper call, the programmer is required to specify the name of the

method, as well as the root o f an inheritance path from winch the method search starts.

The search process is the same as that for an instance method in classic Java; the only dif

ference between the two search processes lies in the search path. The search for an instance

method in classic Java is done along the inheritance chain in which only classes are found.

In the search for a multisuper instance method, the path starts from the specified superim

plementation and travels up the inheritance path in which only implementations exist.

The scenario, as shown in Figure 3.4, is used to explain the dynamic semantics and

the search process. Figure 3.4(a) shows the situation after the original compilation. The

message s u p e r (B) .m () , sent to an instance of C, triggers a search process starting from

B, as specified. The definition in D is located. As a result, the message s u p e r (B) .m () ,

sent to the instance of C, is dispatched to this definition.

A new definition for in () is then introduced to B. After the recompilation o f B, the

situation is depicted in Figure 3.4(b). Recall that the other types are not required to be

recompiled, because of modularity. At run-time, the same message sent to the same instance

of C triggers the same search process. However, this time, the new definition o f m () in B is

26

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C D(m()} J f o (m()(J

A

c

C B) A

c

r B(mO) J

(a) Original compilation (b) After B recompiled

Figure 3.4: Dynamic semantics of multisuper call

located. The message s u p e r (B) .m () , sent to the same instance of C, is now dispatched

to this new definition, instead of to the definition found in D.

It can be seen from the example described above that the dynamic semantics of the

multisuper call guarantees that the most specific method will be dispatched at run-time,

despite the possible recompilation o f the intermediate types.

3.6 Summary

MCI-Java, which supports a unique language construct for each of the three notions of

a type and supports multiple code inheritance, is introduced in this chapter. The total sepa

ration of interface-type, code-type and data-type is able to remove some of the weaknesses

in Java, that were identified in Chapter 2.

At the source code level, the two existing lype-declaring units, namely interface and

class, are used for declaring interface-type and data-type respectively. This necessitates the

introduction of implementation, which is used for declaring a code-type. At the VM level,

no new concept is introduced. The same “in memory” data structure is used for all three

units and an implementation is compiled to an interface containing code. This allows the

existing mechanisms in Sun’s implementation of JVM to be used for the new feature.

While the original Java language semantics are preserved, implementation supports

multiple code inheritance. The mechanism for resolving conflict arising from multiple code

inheritance paths was discussed in detail, in Section 3.4.3.

Multisuper method invocation is introduced to permit invoking an overridden method

declared in an implementation. A more dynamic semantics than the static semantics used

27

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for a multi-super call in C++ is defined for the newly introduced multisuper call.

Modifications to Jikes to support MCI-Java are described in Chapter 4. The implemen

tation details of the new features in Sun’s JVM will be discussed in Chapter 5.

28

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 4

Compiler Support

MCI-Java was introduced in Chapter 3. For each new language concept or feature,

changes are made at both the compiler (source code) level and the VM level (to be discussed

in Chapter 5). The changes are summarized in Table 4.1 for easy reference.

Compiler Virtual Machine

. c l a s s file
Introduce a new access control
flag for a class to indicate an in
terface containing code (§4.1)

Modify' code verification proce
dure during class loading to rec
ognize an intetface with code
(§5.2)

type declaration

1. Introduce the new keyword
im p le m e n t a t i o n to indicate
a declaration for code-type and
the new keyword u t i l i z e s to
indicate an inheritance from a
code-type by a class (§4.2)
2. Modify the Java grammar to
include the new keywords and in
troduce an option to accommo
date for multisuper method invo
cation (§4.2)

No changes are required since
an implementation is an interlace
with code at the VM level

inheritance
and resolution

Introduce a modified algorithm
for resolving method inheritance
and conflict to identify the most
specific method for invocation
(§4.3)

Extend the use of the virtual
method table (VMT) for both
a class and an implementation
(§5.3.3) and modify the method
lookup routine for the bytecode
invokespecial (§5.4.4)

method dispatch
Extend the semantics of invoke-
special to include multisuper
method invocation (§4.4)

No changes are made since all
method invocations use the exist
ing routines for dispatch

Table 4.1: Summary of changes (compiler portion emphasized)

29

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Modifications made to the IBM Jikes Compiler [4] (hereinafter referred to as Jikes) to

support the new proposed features will be discussed in this chapter. Jikes has been chosen

as the compiler to be modified to support MCI-Java for the following reasons:

1. It is an Open Source Initiative (OSI) [6] certified software, making free distribution

possible.

2. It is strictly Java-compatible, adhering “ to both The Java Language Specification and

The Java Virtual Machine Specification as tightly as possible, and does not support

subsets, supersets, or other variations o f the language ” [4]

Modifications to Jikes are made in the following areas and will be discussed in this

chapter in the order presented:

1. the access control flags used in the . c l a s s file - the binary form of a module (usu

ally a top level type),

2. the syntactic grammar for Java to accommodate the new concept of implementation

and the new feature - multisuper method invocation,

3. the mechanism for handling code inheritance and dealing with conflict resolution,

and

4. bytecode emission (for multisuper call).

4.1 The extended .class file

Each . c l a s s file (§3.1) contains the definition of a single top-level type which may be

a class, an interface or an implementation (in MCI-Java only). A schematic diagram of the

entire structure of a . c l a s s file can be found in Figure B .l in Appendix B. A . c l a s s

file uses variable-sized items to store attributes and instructions. These information items

make references to the symbolic information stored in the constant pool, a component of

the . c l a s s file. At run-time, the symbols stored in the constant pool will be transferred

to the “in memory” run-time constant pool and resolved into actual linkage references as

program execution proceeds.

A two-byte bit map is used, both in the file format and in memory, to store the attributes

of a type, a method and a field (state information). Table 4.2 shows a summary of the inter

pretations of all the bits recognized by a standard JVM. Each bit, when set. is interpreted

30

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

bit Class Method Field
1 (LSB) public public public
2 - private private
3 - protected protected
4 - static static
5 final final final
6 super synchronized -
7 - - volatile
8 - - transient
9 implementation1 native -

10 interface - -
11 abstract abstract -
12 - strictfp -
13 - - -
14 - - -
15 - - -
16 (MSB) - - -

Table 4.2: Access flags interpretation by the Java VM

as denoting a certain access permission to the type, method or field to which this bit map

belongs. It may also denote a certain property of the unit.

The use o f the access flags is best illustrated by a few examples. The value 0 x 0 6 2 1

(bits 1, 6 ,10 and 11 are set) when used with a type denotes a p u b l i c i n t e r f a c e which

is automatically set as a b s t r a c t . When used with a method, the value 0 x 0 8 2 4 (bits 3 ,6

and 12 are set) denotes a s y n c h r o n i z e d and p r o t e c t e d method in the F P - s t r i c t

floating point mode.

While an implementation is compiled to an interface with code, it is necessary to dif

ferentiate between an implementation and an interface for two reasons:

1. An implementation can contain code, but an interface cannot

2. An implementation can inherit from both interface and implementation, but an inter

face can inherit from an interface only.

Bit 9 is chosen to denote an implementation. It can be seen from Table 4.2 that the

same bit is used to denote a similar attribute in all three levels. For example, b it 1 is used

to denote a p u b l i c type, a p u b l i c method and also a p u b l i c field, in the respective

application. When no common flags can be found, it is intended that the same bit be used at

'inserted to support implementation in MCI-Java, but not required by the JVM Specification for standard
JVM.

31

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

different levels by attributes that will never be applicable in the other levels. For example,

bit 6 is used to denote a s u p e r class and a s y n c h r o n i z e d method because the attribute

s u p e r is not likely applicable to a method, while the attribute s y n c h r o n i z e d is highly

unlikely to be applicable to a type.

The four most significant bits are not used at all three levels. In order not to interfere

with the future development of Java, the four most significant bits will not be used in MCI-

Java. In addition, it is very unlikely a class would use the modifier n a t i v e and thus, bit 9

is chosen to indicate that the type concerned is an implementation. The schematic diagram

of the entire structure of the modified . c l a s s file can be found in Appendix B.

4.2 The grammar of MCI-Java

The grammar of MCI-Java can be found in Appendix C. It should be noted that a

special sequence of characters reserved for a keyword is shown within a production line as

k e y w o rd . While choices are put inside Q and separated by |, optional components are

kept within [], as per The Java Language Specification 18].

It is interesting to note that only minimal localized changes to the productions are re

quired to support the new concepts and features; no extensive modifications are necessary.

Type declaration

ClossOrlnterfaceDeclaration:

ModifiersOpt ^ ClassDeclaration \ ImplementationDeclaration | InterfaceDeclaration ^

ClassDeclaration:
class Identifier [extends Type] [implements Typelist] [utilizes TypeList]

ClassBody

ImplementationDeclaration:
implementation Identifier [extends TypeUst] [implements Typelist]

ImplementationBody

InterfaceDeclaration:
inter face Identifier [extends Typelist] InterfaceBody

Figure 4.1: Modified Java rules for a type declaration

The revised rules for a type declaration are shown in Figure 4.1. Two new keywords

32

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

im p le m e n t a t i o n and u t i l i z e s are introduced to support the new concept of imple

mentation. While the use o f the keywords i n t e r f a c e , i m p le m e n t a t i o n and c l a s s

to represent the three types is trivial, the use of the keywords e x t e n d s , u t i l i z e s and

im p le m e n ts is explained below:

1. The keyword e x t e n d s is used to express an inheritance relationship between two

similar types, such as that when one implementation inherits from another implemen

tation. O f course, this keyword is already used in classic Java for class inheritance.

2. The keyword im p le m e n ts is used to express the inheritance from an interface by

a class or an implementation.

3. The keyword u t i l i z e s is used to express an inheritance relationship between a

class and an implementation. This keyword is new in MCI-Java.

Multisuper method invocation

Selector:
. Identifier [Arguments]
. t h i s
.s u p e r SuperSuffix
. new IrmerCreator
[Expression]

SuperSuffix:
Arguments
[(Identifier)] . Identifier [Arguments]

Figure 4.2: Modified Java rules for method invocation

The statement for the newly introduced multisuper method invocation takes the form

of s u p e r (p r e f e r r e d P a r e n t) .m ethodN am e () . In order to accommodate this, an

optional component is added in the production for a SuperSuffix expression, which is origi

nally used for the super call. The change is reflected in Figure 4.2.

It is important to note that the optional component, the first Identifier in the second

production for SuperSuffix, must be the name of an immediate superimplementation of the.

containing class of the method in which this statement is declared. For example, suppose

the multisuper call is declared in a class which e x t e n d s S im p le m e n ts A u t i l i z e s

B,C. The multisupercall must be of the form s u p e r (B) .m () o r s u p e r (C) ,m () where

m () is the method to be invoked.

33

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4.3 Inheritance and conflict

Code inheritance is handled in Jikes by building an E x p a n d e d M e th o d T a b le 2 (EMT)

for every top-level type3 the compiler encounters. A minor modification to the EMT build

ing algorithm in Jikes is needed to support multiple code inheritance in MCI-Java. The

original EMT building algorithm is discussed briefly first so that it is easier to understand

the changes made.

43.1 The data structure - ExpandedM ethodTable (EMT)

In Jikes, the EM T is the “in-memory” symbol table for methods. Each class has an

EMT of its own. Figure 4.3 shows the schematic layout of an EMT. Only those major

components that are relevant to this discussion are included in the diagram. A sy m b o l in

Jikes is a data structure for storing lexical information.

An EMT is an array of linked-lists of M eth o d S h ad o w S y m b o ls each of which is

a data structure containing information about a method. The index into the array is the

hashed value of a method name (in the form of a character string).

Take, for example, the values included in Figure 4.3 to describe the structure of an

EMT. The method names a d d , f o o l and f oo2 are all hashed to the same value i, which

is used as an index into the array to locate the linked-list. Each s y m b o l in this linked-list is

itself the head of another linked-list o f M etho d S h ad o w S y m b o ls, all o f them represent

ing methods of the same name but different signatures (the overloaded methods), such as

a d d (i n t) ,a d d () , a d d (i n t , i n t) and a d d (O b je c t) .Every M eth o d S h ad o w S y m b o l

may have a collection of M eth o d S y m b o ls fo r methods having the same name and signa

ture; they are the methods in conflicL In Figure 4.3, the conflict pool for the method a d d ()

has been shown.

For a class in the context of classic Java, Jikes starts building an EMT for the current

class by first entering all its locally declared methods into the table. Constructors, static and

private methods will not be entered into the EMT as they cannot be inherited.

After all the locally declared methods are entered into the EMT, elements in the EMT of

the immediate superclass are added to the local EMT and then followed by those elements

in the EMT, of each o f the interfaces from which this class im p le m e n ts .

A simple example will help to explain how methods are added to an EMT. Assume that

2Denotcs an “in-memory” data structure as per Section 1.4.
JAny type whose declaration is contained in a Java file named using the type name, is a top level type. For

example, the file Integer.java contains the top-level class I n te g e r .

34

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Base - an array of base method symbols | location / for each base method is
I determined by hashing the method name

Base methods with the same hash
value for their method names

____________ A______________

MethodShadowSymbol
method_symbol

e.o. add/int)
next /

next_method

conflict

MethodShadowSymbol
methoa_symool

e.o. add!)
next

next_method

conflict

MethodShadowSymbol
method_symbol

e.o. loom
next

next_mothod

conflict

MethodShadowSymbol
method_symool

e.o. loo2f)
next * '

next_method

conflict

Overloaded methods with the
same method name but

different signatures

I
addO

addO

add()

method_symbol

._y

MethodShadowSymbol
metnoa_syrr.ool e.g. addfint. int)

next_method

conflict

Conflict methods with
)- the same method

name and signature

MethodShadowSymbol
method_symDo!
e.o. addtObiect)

next

next_method

conflict

Figure 4.3: Schematic layout of an E x p a n d e d M e th o d T a b le (EMT)

the M eth o d S h ad o w S y m b o ls for the methods fo o 2 and a d d (O b je c t) are not yet in

the EMT, as shown in Figure 4.3. To insert a method into the EMT, the method name is

first hashed. A search is then conducted in the top-level list of M eth o d S h ad o w S y m b o ls

found in the location directed by the hashed value. The method f o o 2 is hashed to the value

i. A search in the linked-list finds no M eth o d S h ad o w S y m b o l with the same name, so

a new M eth o d S h ad o w S y m b o l is created for this method and appended to the top-level

list.

If a M eth o d S h ad o w S y m b o l containing a method o f the same name as the method

to be added exists in the top-level list, a search will be conducted in the list of overloaded

35

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

methods. Suppose that the method to be inserted is a d d () . It will be inserted into the pool

of methods in conflict because a M eth o d S h ad o w S y m b o l can be found in the list of over

loaded methods that has the same signature. If the method to be inserted is a d d (Ob j e c t) .

it will be appended to the list of overloaded methods because no M eth odS hadow S ym bol

with the name signature can be found in the list of overloaded methods.

When the merge process is complete, all abstract and overridden methods in the conflict

pool will be removed. If any one conflict pool is not empty after this house cleaning stage,

an error of ambiguity is reported. I f no ambiguity is reported, all the methods in the EMT

are methods that are visible in this class and will be inherited by all the subclasses of the

current class. If at least one method remaining in the EM T is abstract, the current class will

be declared abstract

43 J, The revised EMT building algorithm

The major modification to the EMT building procedure to support MCI-Java is the

introduction of a conflict resolution procedure using precedence. However, no precedence

is given based on lexical order of the superimplemenatations. The semantics of MCI-Java

are symmetric with respect to the lexical order of the supertypes. The three rules are listed

below in the order o f application:

1. A locally declared method, whether abstract or not, shall have higher precedence than

methods declared elsewhere in types higher up in the inheritance hierarchy.

2. A concrete method has higher precedence than an abstract method.

3. A method declared in a type lower in the inheritance hierarchy will have higher prece

dence, according to the relaxed multiple inheritance policy.

The revised algorithm for building an EMT in MCI-Java is summarized below:

1. All the methods declared in the current class are entered into the per-class EMT first.

2. Entries in the EMT of the immediate superclass are then added.

3. The EMT of each implementation and interface inherited by the current class will

be processed according to the lexical order of the associated type in the declaration

statement.

4. I f no method of the same name and signature as the incoming method exists in the

EMT, a new entry will be created for the method to be inserted.

36

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5. When the existing s y m b o l contains a locally declared method, all the methods to be

added with the same method name and signature will be moved to the conflict pool.

6. If only one of the two methods (the existing one and the incoming one) is abstract,

the concrete method will be used as the base method for the shadow symbol and the

abstract method will be moved to the conflict pool. Otherwise, the incoming method

will be placed in the conflict pool.

7. According to the relaxed multiple inheritance policy, the method declared in a type

which is lower in the inheritance hierarchy tree will have precedence over the other

method, if neither one is declared locally.

8. When both the existing base method and the method to be added are declared in the

same containing type, the incoming method will be ignored so that no error will be

signaled when a method is inherited via different inheritance paths.

43 3 Revised algorithm verification

Seventeen multiple code inheritance scenarios, which are commonly found in applica

tions programming, are described in Appendix D. Each of these scenarios is now tested

against the revised algorithm for building EMT to verify that the modified Jikes is able

to identify the most specific method (§5.3.3) in each situation. While the descriptions of

the scenarios are included in the appendix, the pictorial depictions are repeated here, for

convenience, in Figure 4.4.

Recall the original algorithm for building the EMT of C. It requires that all methods

declared in C be added first and then followed by the methods contained in the EMT of

the direct superclass of C. The EMTs of all the other direct supertypes will be merged to

the table in C according to the lexical order of the supertypes in the declaration line for

C. However, the result should be independent of the lexical order of these supertypes as

required by the semantics of MCI-Java. which is symmetric with respect to the order. The

results are tabulated in Table 4.3.

It can be seen from Table 4.3 that the compiler behaves as described in Appendix D,

according to the semantics o f MCI-Java (§3.4). When there is an abstract method in the

method shadow symbol and the incoming method is not abstract, as depicted in Figures

4.4(g) and 4.4(h), a swap according to algorithm Rule 6 will move the abstract method

to the conflict pool. However, there will be no swapping in Scenarios 11a, l i b and 12a

(Figures 4.4(k), 4.4(1) and 4.4(m)), since no abstract methods are involved. Rule 7 will help

37

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(a) S c e n a rio 1 (b) S c e n a r io 2 (c) S c e n a rio 3 (d) S c e n a r io 4 (c) S c e n a rio 5

(f) S c e n a rio 6

(i) S c e n a rio 9

(m) S c e n a rio 12a

(< j) S c e n a rio U

(g) S c e n a rio 7

IN I J

(j) S c e n a r io 10 (k) S c e n a rio 11a

(n) S c e n a r io 12b (o) S c e n a rio 13a

(r) S c e n a rio 15 (s) S c e n a rio 16

(h) S c e n a r io 8

(1) S c e n a r io l i b

(p) S c e n a rio 13b

(t) S c e n a rio 17

Figure 4.4: Multiple code inheritance scenarios 1 -1 7

38

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Scenario M eth o d S h ad o w S y m b o l conflict table compiler action
1 a b s A : : m () - declares C abstract
2 A : : m () - emits A : : m () for c . m ()
3 A : : m () - emits A: : m() for c . m ()
4 A : : m () - emits A: : m() for c . m ()
5 a b s B: :m() - declares C abstract
6 A: :m() a b s B: :m() emits A: :m () for c .m ()
7 B: : m() a b s A: :m() emits B : :m () for c -m ()
8 B : : m () a b s A: :m() emits B : : m() for c . m ()
9 A: :m() B: :m() flags ambiguity
10 A: :m() B: :m() flags ambiguity
11a A: : m () B: :m() emits A: :m () for c .m ()
l ib A: : m () B: :m() emits A: : m() for c . m ()
12a A: :m () B: :m() emits A: :m () for c -m ()
12b B : :m() a b s A: : m () em itsB : :m{) for c . m ()
13a B: : m() a b s A : : m () emits B : : m () for c . m ()
13b B : : m () a b s A : : m () emits B : : m () for c . m ()
14 A: : m () D: :m() emits A: :m() for c . m ()
15 B: : m () D: :m() emits B : : m () for c . m ()
16 D: : m() - emits D: : m () for c . m ()
17 D: : m() - emits D: :m () for c .m ()

Table 4.3: Compilation results for scenarios 1 -1 7

to give the right resolution for these scenarios. No error of ambiguity will be flagged for

Scenarios 16 and 17 (Figures 4.4(s) and 4.4(t)) because of the presence of Rule 8. This is

in accordance with the proposed semantics.

4.4 Bytecode generation

No new bytecodes are needed. The existing instruction set o f classic Java is sufficient

to support MCI-Java.

A new concept (an implementation), a new kind of method invocation (the multisuper

call) and two new keywords (i m p l e m e n t a t i o n and u t i l i z e s) are introduced at the

source code level. As discussed earlier, an implementation is compited into an interface

with code and the keyword u t i l i z e s is used to indicate an inheritance from an imple

mentation by a class. Thus, no new bytecodes are required for the two new keywords.

One of the criteria imposed on the design of the language extensions proposed in this

thesis (§3.1) is the use o f the highly optimized component of the JVM for method invoca

tion. For reasons discussed in Section 5.4.4, the existing bytecode invokespecial is emitted

39

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

for a multisuper call. A minor local change to the method lookup routine is required to

extend the semantics of this bytecode. The change made will be discussed in Section 5.4.4

For the t h i s expression used in a method definition declared in an implementation,

the compiler will make a reference to the receiver object. O f course, the implementation in

which this method is declared will not be instantiated. The reference to the receiver object

for this method is reserved for the object instance to which this message is sent at run-time.

If the t h i s expression is used as an argument to a method, the bytecode aloadJO will

be inserted when the compiler is generating code to push arguments on the stack before

a method invocation. This bytecode will, at run-time, cause the reference to the receiver

object to be pushed on the stack.

4.5 Summary

MCI-Java introduces a new construct, implementation, at the source code level. A new

keyword, u t i l i z e s , is also introduced to express the inheritance relationship between

an implementation and a class. Jikes [4] is modified to support the new features with the

extended language semantics.

New production rules are inserted into the original Java grammar in order to enable

the compiler to recognize the new features, and some production rules are modified to

accommodate the new semantics. A new modifier is added to the binary representation of

a type to indicate an implementation. The procedure to build an EMT. which is used to

find the most specific method within an inheritance hierarchy for a method invocation, is

modified. The enhanced algorithm is able to resolve conflict in various code inheritance

scenarios commonly found in applications programming. The result of the process is as

described by the semantics o f MCI-Java. The semantics of the bytecode invokespecial is

extended to cover the newly introduced multisuper method invocation.

While the changes in Jikes are described in this chapter, the modifications required in

the Java virtual machine to support MCI-Java semantics will be discussed in Chapter 5.

40

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 5

Virtual Machine Support

MCI-Java, an extension to classic Java, was proposed in Chapter 3. Changes are made

at both the compiler (source code) level (see in Chapter 4) and the VM level. The changes

are summarized in Table 5.1 for easy reference.

Compiler Virtual Machine

. c l a s s file
Introduce a new access control
Hag tor a class to indicate an in
terface containing code (§4.1)

Modify code verification proce
dure during class loading to rec
ognize an interface with code
(§5-2)

type declaration

1. Introduce the new keyword
i m p le m e n t a t i o n to indicate
a declaration for code-type and
the new keyword u t i l i z e s to
indicate an inheritance from a
code-type by a class (§4.2)
2. Modify the Java grammar to
include the new keywords and in
troduce an option to accommo
date for multisuper method invo
cation (§4.2)

No changes are required since
an implementation is an interface
with code at the VM level

inheritance
and resolution

Introduce a modified algorithm
for resolving method inheritance
and conflict to identify the most
specific method for invocation
(§4.3)

Extend the use of the virtual
method table (VMT) for both
a class and an implementation
(§5.3.3) and modify the method
lookup routine for the bytecode
invokespedal (§5.4.4)

method dispatch
Extend the semantics of Invoke-
spcckd to include multisuper
method invocation (§4.4)

No changes are made since all
method invocations use the exist
ing routines for dispatch

Table 5.1: Summary of changes (VM portion emphasized)

41

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

It is necessary to make modifications to both IBM Jikes Compiler and Sun’s Java virtual

machine to support MCI-Java. Modifications to Jikes have been described in the previous

chapter. Here, modifications made to Sun’s JVM are discussed.

5.1 The Java Virtual Machine (JVM)

In describing the design principle of a JVM, The Java Virtual Machine Specification

[23] (JVM Specification) states that,

The Java virtual machine is an abstract computing machine. Like a real

computing machine, it has an instruction set and manipulates various memory

areas at run-time.

Each Java application runs inside a run-time instance o f some concrete implementation of

the abstract JVM Specification. The work in this chapter focuses on the implementation by

Sun Microsystems Inc., for Java 2 SDK 1.2.2 [3].

5.1.1 The run-time environment

Figure 5.1 shows a simplified schematic run-time memory layout for class, interface.

implementation and object data. Since Sun’s JVM uses the same “in memory” data structure

for both class and interface; the term class is generalized in this chapter to cover all three

type declaring constructs in MCI-Java - namely, interface, class and implementation.

The h e a p is a block o f memory shared among all JVM threads. At run-time, every ob

ject is allocated from the d a t a a r e a (region A in Figure 5.1) which is apart of the h e a p .

Object storage in the d a t a a r e a is reclaimed by an automatic storage management sys

tem (known as a garbage collector). Each instance is referenced using an Ob jH a n d le

which is an “in memory” data structure (region B in Figure 5.1) kept in the d a t a a r e a .

One component of the Ob jH a n d l e 1 points to the Ob jD a ta , an “in memory” data struc

ture located in the other part of the d a t a a r e a (region C in Figure 5.1), which is holding

state values of the object instance. The other component o f the Ob jH a n d le points to a

C l a s s C l a s s structure (an “in memory” per-class structure used in Sun’s JVM for holding

information about a class used in its broad meaning), stored in the m e th o d a r e a (region

D in Figure 5.1) which will not be garbage-collected. If the required C l a s s C l a s s struc

ture is not yet loaded into the run-time environment, the class loader subsystem is respon

sible for locating and importing the binary data of the concerned class (i.e., the . c l a s s

'Denotes an “in-mcmory” data structure as per Section 1.4.

42

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

HEAP (created upon JVM startup, shared among alt threads)

Method Area (per-class structures, not garbage-collected)Data Area
(run-time objects,
garbage-collected) E) created pj

during loading Mi
w Tf) created during t|sppii=p?gi||||i|
llll linking - preparation l||f|§|i§s§|p||||g|*

grow direct too ol
object handles

I Ob) Handle

Virtual Method W:
Table (VMT) is:

f l n H S methods
methods IHf*55?3=9;

M t f f t o d B t o c f c t f c B)Method Table (UT) M lfw d E*X* (UB)

instance
variables

KM M dTatteflim p l p n An entry tor the gf» BMhodTable(tarT> f jg * * ! type itself it it Is | p
an interface

instance
variables

instance
variables

ObjDala |

run-time Constant
Pool(RCP)grow dtrecbon ol

object data

Figure 5.1: Run-time memory layout for class, interface, implementation and object data

file). After being verified as well-formed, the class data will be linked and become part of

the run-time environment.

The symbolic references contained in the C o n s t a n t P o o l (asymbol table) of a . c l a s s

file will be transferred to the r u n - t i m e C o n s t a n t P o o l (RCP) (region E in Figure

5.1). Many JVM instructions make symbolic references to the constant pool. Concrete val

ues of the symbols have to be determined before any execution o f the instructions can take

place. Resolution refers to the dynamic process of finding these concrete values. When a

C o n s t a n t P o o l entry is referred to for the first time, it is resolved into an internal refer

ence which will replace the existing RCP entry, corresponding to the constant pool entry

being referenced, to ensure that the lengthy resolution process is done only once.

43

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

5.1.2 Dynamic per-class structures creation

Upon startup, the JVM does not put all the classes into the run-time environment.

According to the policy of dynamic loading, a C l a s s C l a s s structure is created for a

class in the run-time environment only when the class is referenced during program exe

cution (referred to as late resolution in the JVM Specification). In summary, the dynamic

C l a s s C l a s s structure creation process includes the following stages:

1. Loading

The JVM will tiy to find the . c l a s s file of the class in need. Once it is located, the

VM will create an internal representation of the class, shown in Figure 5.1 marked as

region E. Symbolic references are transferred from the . c l a s s file to the RCP. An

exception will be thrown if the required . c l a s s file cannot be found.

2. Linking

The loaded class will be merged into the run-time environment using the following

steps:

(a) Verification - assuring a well-formed representation (structurally correct) of the

class,

(b) Preparation - allocating static storage and internal data structures (region F in

Figure 5.1), building the method tables (§5.3) for holding information about

methods, and

(c) Resolution - transforming symbolic references into internal references.

3. Initialization

The JVM will execute the static initializers and static (class) variable initializers.

5.2 Class data verification

Sun’s implementation of the JVM adopts an “on demand” strategy. According to this

strategy, a symbolic reference is resolved and a class is loaded only when it is needed.

After a class is loaded, the JVM verifies that its representation is structurally valid. This

may cause other classes to be loaded. However, the JVM Specification does not require

these additionally loaded classes to be verified and prepared at that time.

When applied to MCI-Java programs, the original verification procedure used in classic

Java will raise a flag for an error in each of the following situations:

44

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. In the original JVM, all methods declared in an interface are implicitly p u b l i c and

a b s t r a c t . An “Illegal method modifiers” exception is thrown if a method declared

in an interface contains code. As discussed earlier, an implementation in MCI-Java

is compiled to an interface containing code. An exception will be thrown when the

original verification procedure is used to verify an implementation.

2. In the original JVM, the bytecode invokespecial is used for a super call. One of the

arguments to the bytecode instruction is the name o f a class (the target class), where a

definition of the method to be invoked can be found. The original verification proce

dure ensures that the target class is not an interface and can be found in the superclass

chain of the current class. If the condition does not hold, an “Illegal use of nonvirtual

function call” exception is thrown. In MCI-Java, the semantics of invokespecial has

been extended to also denote a multisuper call (§3.3.2) which is an invocation of a

method defined in an implementation from which the current class inherits. In this

case, the target class is not a class but an interface and thus an exception is thrown

by the original Java verification procedure.

To support MCI-Java, when an implementation is verified after loading, for reasons

mentioned above, two minor modifications are applied to the verification procedure:

1. In MCI-Java’s VM, all methods declared in an interface will only be checked for

the modifier p u b l i c but not for the a b s t r a c t modifier. This change ensures that

all methods declared in an interface and an implementation are not private while

allowing code in an implementation (at the source code level) and an interface (at the

VM level).

2. In MCI-Java’s VM, a search for the target class along the chain o f superclasses will

be carried out for the bytecode invokespecial only when the target class is not an

interface. This change allows the bytecode to be used for the new multisuper call.

However, when it is used for a classic supercall, the target class still has to be a class

in the superclass chain, so no error-finding is lost.

5.3 Method tables

Sun’s JVM uses three kinds of ta b le s -a M ethod. T a b l e (MT) (§5.3.2), a V i r t u a l

M e th o d T a b l e (VMT) (§5.3.3) and an I n t e r f a c e M e th o d T a b l e (IMT) (§5.3.4)

- to keep information about all the methods of a class. The schematic layouts of these

45

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

tables can be found in region F in Figure 5.1. The tables are built in the preparation stage

of the class linking process. The tables are discussed in the following sections after a brief

summary of the M e th o d B l o c k (§5.3.1), the basic building unit of the method tables.

5.3.1 Method Block
A M eth o d B lo c k is the internal representation of a method using the same “in mem

ory” data structure, whether the method is abstract or n o t Among all the data stored in a

M e th o d B lo c k , the most relevant piece is the F i e l d B l o c k (for which no schematic

layout is shown in Figure 5.1) which has the following components:

1. a pointer to the C l a s s C l a s s structure of the containing class in which the method

is declared — the containing class,

2. a character string representing the method signature — the signature,

3. a character string representing the name of the method - the method name,

4. an access flag masking the modifiers of the method — the modifiers, and

5. an integer value representing the ordinal of the method within an array of M eth o d

B lo c k s - the offset.

In addition to the F ie l d B l o c k , there is a code pointer to the memory location where

the bytecode sequence of that method is stored. The code pointer is null when the method

is an a b s t r a c t one, because the method has no code.

513.2 Method Table (MT)

A M eth o d T a b le exists in every C l a s s C l a s s structure whether the concerned

type is a class or an interface. It is the part of the C l a s s C l a s s structure that stores

information about every method declared in this class (in its broader meaning), including

the constructors, private and static methods. A simplified schematic layout of an MT and

its link with the C l a s s C l a s s structure is shown in region G of Figure 5.1. Each M eth o d

B lo c k (§5.3.1) will point to the current C l a s s C l a s s structure itself as the containing

class.

If the current type is an interface, all methods in the M T are p u b l i c and a b s t r a c t .

Each M eth o d B lo c k has an offset value reflecting the order of appearance of the method

in the interface declaration. If the current type is a class, each M eth o d B lo c k has an

46

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

initial offset value of 0. If the method is a public instance method, this offset value will be

changed to the slot number of the slot (a VM T entry) in which this method is stored in the

VM T (§5.3.3) when the VMT is built.

Since no explicit rule exists to restrict a M e th o d B lo c k found in the MT of an in

terface from containing code, the same data structure can also be used to store information

about methods declared in an implementation, whether the methods are abstract or no t

5 3 3 Virtual Method Table (VMT)

The original setup

The VM T in Java is similar in nature to the V i r t u a l F u n c t i o n T a b l e (VFT)

in C++. I t helps to identify the method to be dispatched at run-time. Each slot holds a

reference to an instance method definition visible in the current class. Since an interface

is used in Java for specifying behavior and contains no concrete method implementation,

no VM T is built for an interface. A VM T is found only in the C l a s s C l a s s structure of

a class. Region H in Figure 5.1 shows the structure of a VMT and the way in which it is

linked to the C l a s s C l a s s structure.

Figure 5.2 shows the VMT details of two classes taken from the j a v a - i o package.

D a t a l n p u t S t r e a m extends F i l t e r l n p u t S t r e a m which inherits I n p u t S t r e a m , a

subclass o f O b j e c t . Entries in the VMTs help to explain the VMT building procedure.

These classes belong to the inheritance hierarchy depicted in Figure 6.6.

In OOP, classes related in an inheritance relationship are permitted to provide code for

the same method. The method definition provided in the subclass is called the most specific

method. The most specific method overrides all the implementations for the same method,

previously defined in all the superclasses o f the class in which the most specific method is

declared. The most specific method will remain in effect until it is overridden by another

method definition in a subclass of the current class.

The process for building the VMT for a class allows the most specific method to over

ride all previous definitions for the same method. It starts by copying all the slots from the

VMT of the immediate superclass. Once VMT copying is completed, the public instance

methods declared in the current class will be entered into the VMT. It can be seen from

Figure 5.2 that 11 methods (offset values between 1 and 11, inclusive) are copied from

O b j e c t to F i l t e r l n p u t S t r e a m via I n p u t S t r e a m . In addition, the 9 methods de

clared in F i l t e r l n p u t S t r e a m (offset values between 12 and 20, inclusive) are copied

to the VM T of D a ta ln p u tS t r e a m .

47

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

»*** java/io/InputStream »*»*
Superclass: java/lang/Object

'*** java/io/FilterlnputStream »»**
Superclass: java/io/InputStream
Details of VMT with 20 entries:

offset Class Method Signature

1 Object clone 0 LObject;
2 Object equals (LObject;) Z
3 Object finalize () v
4 Object getClass () LClass;
5 Object hashCode () I
6 Object notify () V
7 Object notifyAll () V
8 Object toString () LString;
9 Object wait 0 V

10 Object wait (J) v
11 Object wait (JI) V
12 FIS available () I
13 FIS close () V
14 FIS mark (I) V
15 FIS markSupported <) Z
16 FIS read () I
17 FIS read ([B) I
18 FIS read ([BII) I
19 FIS reset ()V
20 FIS skip (J)J

Legends

FIS - java/io/FilterlnputStream
DIS java/io/DatalnputStreara

Class - Declaring class

•*■* java/io/DatalnputStream *■»
Superclass: java/io/FilterlnputStream
Details of VMT with 35 entries:

offset Class Method Signature

1 Object clone () LObject;
2 Object equals (LObject;) Z
3 Object finalize () V
4 Object getClass () LClass;
5 Object hashCode () I
6 Object notify () V
7 Object notifyAll () V
8 Object toString () LString;
9 Object wait () V

10 Object wait (J) V
11 Object wait (JI) V
12 FIS available () I
13 FIS close () V
14 FIS mark (I) v
15 FIS markSupported () Z
16 FIS read () I
17 DIS read ([B) I
18 DIS read ([BII) I
19 FIS reset () v
20 FIS skip (J) J
21 DIS readBoolean () Z
22 DIS readByte () B
23 DIS readChar () C
24 DIS readDouble () D
25 DIS readFloat () F
26 DIS readFully ([B) V
27 DIS readFully ([BII) V
28 DIS readlnt () I
29 DIS readLine () LString;
30 DIS readLong () J
31 DIS readShort () S
32 DIS readUTF () LString;
33 DIS readUnsignedByte () I
34 DIS readOnsignedShort () I
35 DIS skipBytes (I) I

Descriptors used:
B - signed byte
C - character
D - double
F - float
I - integer

J - long integer
S - signed short
v - void
Z - boolean
L<classname>; - a refernece
[- one array dimension

Figure 5.2: Virtual method table (VMT) entries

For each entry in the MT that is a public instance method (herein referred to as the

current method), a search is conducted in the newly created VMT to look for a slot which

contains a pointer to a method with the same signature as the current method. If none exists

in the VMT, a new slot is appended to the VMT for the current method, with a pointer to

the M e th o d B lo c k in the MT holding information about the current method. The offset

value of this M e th o d B lo c k is then changed to the new slot number. If an existing slot

48

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

in the VMT is found to point to a method with the same signature as the current method,

the offset value of the M e th o d B lo c k in the M T for the current method is set to the slot

number just found. The pointer in that slot o f the VM T is made to point to the method

block in the M T for the current method. This is literally a method override by the most

specific method in the current class. In the VMT of D a ta ln p u t S t r e a m , methods with

offset value 17 and 18 are examples of method overriding, while methods with offset values

between 21 and 35, inclusive, are those added in D a ta ln p u t S t r e a m .

At the end o f the process, all M e th o d B lo c k s for the locally declared public instance

methods in the M T will have their offset values set to the corresponding slot number in the

VMT. A zero value indicates that the method is not inheritable. These include constructors,

static and private methods. A t the same time, each slot in the VM T points to the most

specific method implementation visible in the current class.

While new slots are added in the VM T of the subclasses, and some old slots are over

ridden, the offset value (the slot number) for a method with the same name and signature

remains the same in all the classes concerned. This consistency in slot number, reflected in

Figure 5.2, provides room for optimization. It is employed in Sun’s implementation of the

JVM in the form o f quick bytecode, which will be discussed in Section 5.4.4.

The modified setup

To support implementation in MCI-Java, it was decided to build a VM T for an interface.

This is because an implementation in MCI-Java is compiled to an interface at the VM

level. Similar to the situation with a class, it is necessary to maintain a pool of the most

specific methods visible in an implementation. The most efficient way is to use a mechanism

analogous to the one used in classes. As the “in memory” data structure used in Sun’s JVM

does not prohibit it from being used for a construct other than a class, building a VMT for

an implementation becomes a natural solution to the problem.

Whether it is a class or an implementation, the same procedure is used to build the

VMT. Entries in various tables are added to the new VMT in the following order

1. All entries in the VM T of the superclass are copied in the original order to the new

VMT first (this step is skipped for an implementation).

2. For each of the superimplementations, all methods in its VM T are added to the new

VMT. Each superimplementation is processed according to its lexical order of ap

pearance.

49

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. Only public, non-abstract instance methods from the local MT are added to the new

VMT.

When a method is added to the new VMT, and no existing slot in the VMT contains a

method with the same name and signature as the one to be added (referred to as the new

method), a new slot is created for the new method. If another method with the same name

and signature as the new one already exists in the VMT, a potential inheritance ambiguity

occurs. The following rules are applied to resolve the conflict:

1. If the new method is declared locally, it overrides the existing one. This rule is used

in classic Java when building VMT for a class.

2. If both methods have the same implementation as the containing class, they are in

herited from the same source via different paths. The new method is ignored.

3. I f the two methods have different containing classes and an ancestor/descendant re

lationship can be established between them, the method declared in the type which is

lower in the inheritance hierarchy will be kept in the new VMT while the other one

is dropped, according to the relaxed multiple inheritance policy.

4. If the two methods are declared in different types and no ancestor/descendant rela

tionship can be established between them, the M T o f the current type will be searched

for a method with the same name and signature. I f such a method exists, the incom

ing method is ignored because it will be overridden when the locally declared method

is added to the new VMT. If no such method exists in the current MT, an ambiguity

exception is raised.

When the VMT is built for a class, the offset value in the M e th o d B lo c k of the

locally declared method will be set to the number o f the slot in which the method is inserted

into the VMT. However, the offset value is not set for the local methods if the VMT is being

built for an implementation, for reasons to be discussed in the next section.

53.4 Interface Method Table (IMT)

The slot in which an interface method is inserted into a VMT depends on the number

o f interfaces from which the current class inherits and the number of methods declared in

each of these interfaces as well as that of the current class. Therefore, consistency in the slot

number cannot be found in methods declared in an interface, in contrast to the consistent

slot number associated with each instance method declared in a class (§5.3.3). Determining

50

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

»»** Interface java/io/Datalnput ****
Details of MT with 15 entries:

offset Method

0 readBoolean ()Z
1 readByte O B
2 readChar () C
3 readDouble ()D
4 readFloat O F
5 readFully ([B)V
6 readFully ([BII)V
7 readlnt ()I
8 readLine ()Ljava/lang/String;
9 readLong ()J

10 readShort O S
11 readUTF 0 Ljava/lang/String;
12 readUnsignedByte O l
13 readUnsignedShort 0 1
14 skipBytes (1)1

**** Class java/io/DatalnputStream **»*
This class implements 1 interfaces
VMT with 35 entries

Details of IMT with 1 interfaces:

Interface Offsets

java/io/Datalnput 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35

»* Class java/io/RandomAccessFile **
This class implements 2 interfaces
VMT with 49 entries

Details of IMT with 2 interfaces:

Interface Offsets

java/io/DataOutput 36 37 38 39 40 41 42 43 44 45 46 47 48 49
java/io/Datalnput 19 20 21 22 23 24 25 26 27 28 29 30 31 32 35

J - long integer
S - signed short
V - void
2 - boolean
L<classname>; - a refernece
[- one array dimension

Descriptors used:
B - signed byte
C - character
D - double
F - float
I - integer

Figure 5.3: Interface method table (IMT) entries

the slot number after a method is located in the M T o f an interface is non-trivial. An IMT

helps to locate the slot number for an interface method at run-time.

A simplified schematic layout of an IMT can be found in region I of Figure 5.1. An IMT

contains an integer value, i c o u n t . representing the total number of interfaces listed in the

i t a b l e . The i t a b l e is an array, each entry of which represents exactly one unique

interface extended (by an interface) or implemented (by a class) by the current type. In

51

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

every entry of the i t a b l e , there is an array of offset values and a c l a s s d e s c r i p t o r

pointing to the C l a s s C l a s s structure o f the interface concerned. If the current type is a

class, the first entry of the i t a b l e is left blank. If the current type is an interface, the first

entry of the i t a b l e points to the C l a s s C l a s s structure of the type itself. Every element

of the offset array corresponds to a method in the M T o f the interface. Each offset value

indicates the slot number in the current VMT where an implementation of the corresponding

interface method can be found. However, the offset values will just be the ordinal of the

corresponding method within the MT of the interface, if the IMT belongs to an interface

which has no VMT.

Figure 5.3 helps to explain the structure of an IMT. In this figure, the 15 methods

declared in D a t a l n p u t (an interface), found in the j a v a . i o package, are listed ac

cording to the order of appearance of each method in the MT. D a t a l n p u t S t r e a m and

R a n d o m A c c e s s F i l e , also from the same package, are the two classes implementing

D a t a l n p u t (see Figure 6.6 for a depiction of the inheritance hierarchy). It can be seen that

the corresponding slot numbers in the respective VMTs are different for the same method

in D a t a l n p u t . For example, the first method in D a t a l n p u t is r e a d B o o l e a n () .

Its slot number in the VMT of D a t a l n p u t S t r e a m is 21, while that in the VM T of

R a n d o m A c c e s s F i l e is 19.

The process o f building an IM T for a class does not change with the introduction of

implementations and the accompanying VMTs in MCI-Java. New methods inherited from

the superimplementations are only appended to the VM T of the current class at the end.

and are not inserted in the middle o f the table.

To build the IM T of a class, the IMT of the superclass is copied in its entirety to the

newly built one. This step is skipped when building the IMT of an interface. Then, all

the superinterfaces o f the current class will be processed in turn. I f an entry already ex

ists in the IMT for an interface with the same name as the one to be processed, the in

terface will not be processed. For each method contained in the M T of the interface, a

search will be conducted in the current VMT. When a slot containing a method with the

same name and signature is found, the slot number will be written to the offset array in

the corresponding position. For example, the first entry in the M T o f D a t a l n p u t is

the method r e a d B o o l e a n () . In the VMT of D a t a l n p u t S t r e a m (Figure 5.2), the

method r e a d B o o l e a n () is found in slot 21. Therefore, 21 is entered as the first entry

in the offset array for D a t a l n p u t in the i t a b l e of the IM T of D a t a l n p u t S t r e a m .

When the IMT is built for R a n d o m A c c e s s F i l e , the slot number for the same method

52

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

r e a d B o o l e a n () becomes 19 and so the first entry in the offset array for D a t a l n p u t

in the i t a b l e of the IMT of R a n d o m A c c e s s F i l e is 19 instead of 21. Since the slot

numbers for methods in the M T of an interface are not in a consistent pattern as that found

in the instance methods declared in a class, the offset value of the M e th o d B l o c k in the

M T o f an interface (D a t a l n p u t in this case) is not changed so that the offset value in

the M e th o d B l o c k always gives the index into the array of offsets in any i t a b l e . This

explains why the offset value of a M e th o d B l o c k in the MT of an implementation is not

set to the slot number after the method is inserted into a VMT (§5.3.3).

W hile the IM T building process is not changed, there will be a minor adjustment to the

procedure to support implementation in MCI-Java. Details are discussed in the next section.

53.5 Setting offset values in Method Blocks
As revealed in Section 5.3.3, instance methods declared in a class with the same name

and signature will have the same slot number. This consistency allows the offset value

(slot number) to be stored in the M e th o d B lo c k representing the method. However, the

consistency in slot number does not exist in methods declared in interfaces. An ordinal

value has to be stored in the M e th o d B lo c k to help to locate the slot number using the

IMT.

It was determined in Section 3.1 that the highly optimized bytecode execution routines

should be reused in MCI-Java. The routines assume and require that the necessary infor

mation for bytecode execution (including the slot number which guides the retrieval o f an

execution method block from a VMT) is contained in the M e th o d B l o c k . This special

feature becomes a problem for the methods declared in an implementation because each

M e th o d B l o c k stores the ordinal number instead of the slot number in the offset field.

The problem can be solved using a clone of the M e th o d B lo c k concerned. In classic

Java, each element o f the VM T is actually a pointer to the M e th o d B lo c k containing

the most specific method which is stored in the M T of the containing class. In MCI-Java,

the VMT element still points to a M e th o d B lo c k in the M T o f the method’s containing

class, if it is a class. This is the same as in classic Java. However, when the containing

class is an implementation, a clone of the M e th o d B lo c k for the m ost specific method

is created in the m e t h o d a r e a (region F in Figure 5.1) to hold the slot number, which

will remain the same for all the classes inheriting from the current class once the M e th o d

B lo c k is entered into the current VMT. The pointer in the VMT will point to the clone in

stead of to the original M e th o d B lo c k in the M T of the method’s containing class. The

53

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

clone helps to provide all the necessary information required by the bytecode interpretor.

Different clones are used in different inheritance trees in which the slot numbers assigned

are usually different from each other. Such an arrangement makes it possible for differ

ent offset values (slot numbers) to coexist in the same run-time environment for the same

method implementation.

5.4 Method lookup and invocation

5.4.1 Overview

The JVM Specification has classified all run-time method invocations into four main

categories with different bytecodes used in the instruction in each case, as described below:

1. invokestatic - to invoke a static (class) method which requires no receiver object for

invocation.

2. invokespecial - to denote a super call or to invoke a private method o f the current

class.

3. invokeinterface - to invoke a method whose receiver object has a static type that is an

interface.

4. invokevirtual - to invoke a method in scenarios not covered by the other three cate

gories (the most widely used invocation in Java programs).

Each invocation instruction has one of the four invocation bytecodes followed by at

least two more bytes of information. These two bytes, when combined together, give the

index to the C o n s t a n t P o o l where a reference to the method to be invoked can be found.

Whenever a method is invoked, a F ram e is created to store data - partial results as well as

the return value. Every method invocation is a four-step procedure, described as follows:

1. The C o n s t a n t P o o l entry is dereferenced to obtain the reference to the target class

which is, at compile time, the containing class of the method intended to be invoked.

In addition, the reference to the details o f the method (method name and signature)

is found at the same time. It is important to note that the target class is very often not

the class to which the receiver object belongs.

2. A search for the resolved M e th o d B l o c k (RMB) is conducted starting from the

MT of the target class.

54

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

3. The original invocation bytecode is quick-ed (§5.3.3) for highly optimized bytecode

execution.

4. The actual execution M e th o d B lo c k (EMB) is retrieved and executed using the

routine for the quick bytecode, and the information retained when the bytecode is

quick-ed.

It is important to note that the last step (bytecode execution) is carried out using a highly

optimized routine. Changes should not be made to this part of the VM to avoid affecting its

performance (§3.1).

5.4.2 Dereferencing the ConstantPool entry

In this section, the techniques used in classic JVM to dereference a method invocation

instruction are described. In MCI-Java, regardless of whether the method to be invoked

is declared in a class or in an implementation, the same procedure is used; no change is

necessary.

Symbolic references in the run-time C o n s ta n tP o o l (RCP) are resolved into internal

references to the corresponding “in-memory” data structures when they are used the first

time. The dereferencing process is best illustrated by using an example. Figure 5.4 shows an

excerpt of the C o n s t a n t P o o l for D a ta ln p u tS t r e a m . The actual C o n s ta n tP o o l

contains more entries than those shown in the diagram. However, only those related to the

discussion that follows (e.g., entries at indices 1 ,6 ,30 , etc.) are shown.

Take for example a method invocation instruction “invokevirtual 32". This will cause

the method referenced by RCP entry 32 to be invoked. From Figure 5.4, the Con s t a n tP o o l

entry at index 32 is a M e th o d R e fe r e n c e which is a composite of two indices. The

first index, 6, refers to the target class. The unresolved entry at location 6 points to 97

for the name of the target class which is “InputStream”. Once the name is known, the

C l a s s T a b l e (an “in-memory” list o f loaded classes maintained by the JVM) is queried

to locate the run-time C l a s s C l a s s structure for I n p u tS t r e a m . The pointer to this

C l a s s C l a s s structure then replaces the original entry at location 6 of the RCP. Any sub

sequent instruction that refers to RCP entry 6 will obtain a pointer to the C l a s s C l a s s

structure of I n p u t S t r e a m without going through the entire dereferencing and lookup

process.

The second index at RCP entry 32, which is 53, refers to a N am eAndType index, giv

ing information about the method to be invoked. The entry at RCP 53 is again a composite

55

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1

6

30

32

51

53

59

69

92

97

118

120

Class #92

Class #97

InterlaceMethod #1 #51

Method #6 #53

N am eS Type #118 #59

N am eS Type #120 #69

Name S Type 0l

Text (J)J
Text Datalnput

Text InputStream

Text raadUnsignadSyte

Text skip

Datalnput

InputStream

methods

obj

method table

^ skip (J)J

methods

obj

method table

0 readUrtsignedByte 0 1

selected entries of the RCP
(entries in between are skipped)

Figure 5.4: Excerpt of the run-time C o n s t a n t P o o l (RCP) for D a ta ln p u t S t r e a m

item. Its first index (120) points to an RCP entry which stores the method name “skip”,

while the method signature “(J)J” is kept in the entry referred to by the second index (69).

Therefore, the method referred to at RCP entry 32 is, in its fully expanded symbolic form.

I n p u t S t r e a m : : s k i p (J) J . Once these are known, the search process for the RMB

starts from the M T of the target class, which is I n p u t S t r e a m in this case. This search

process is described in more detail in the next section. When the RMB is located, the inter

nal pointer to this RMB replaces the original entry at location 32. Similarly, any subsequent

references to this RCP entry 32 will obtain the internal reference to the method s k i p (J) J .

contained in I n p u t S t r e a m , without further dereferencing and lookup.

Take for example another instruction, “invokeinrerface 30”. By the same process de

scribed above, the method referenced by RCP entry 30 is resolved into a reference to the

interface method D a t a l n p u t : : r e a d U n s ig n e d B y te () I declared in D a ta ln p u t ,

which is itself an interface.

5.43 Method lookup

The original method lookup procedure used in classic Java can be applied to MCI-Java

without any modifications, except for the multisuper call (§5.4.5). The search for the RMB

starts in the MT o f the target class. The search will follow one of the two paths described

below:

56

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. When the bytecode is invokeinterface, the target class itself is an interface and the the

search makes use of the IMT of the target class. The i t a b l e of the IM T contains

the list of superinterfaces from which the target class e x t e n d s . Recall that the first

entry in the i t a b l e is the target class itself (§5.3.4). By looking up the MT of

each interface contained in the i t a b l e , following the order of appearance within

the i t a b l e , the process basically searches the M T of the target class first followed

by that of each and every superinterface listed in the i t a b l e .

2. When the bytecode is not invokeinterface, the target class itself is a class and the

search starts in the M T of the target class. I f no matching M eth o d B lo c k is found,

the search will continue in the MT of the superclasses until the root class O b j e c t

is reached. If no RMB can be found at this stage, the search will be conducted in

the VMT of the target class. An exception will be raised if nothing is found in the

VMT. The only time that a method can be found in the VMT of the target class, but

not in the MTs of the target class and its superclasses, is when the RMB is a Miranda

method [14,16].

It is important to note that the search will stop when a matching M e th o d B l o c k is

found. The JVM is only responsible for enforcing access controls (e.g., limited access to

private methods) after a M e th o d B l o c k is located, but not during the lookup process.

In other words, the lookup process will search every method it can reach without paying

attention to the accessibility issue. The first M e th o d B l o c k encountered with the same

name and signature will be selected and the search process will terminate with the first

M e th o d B l o c k located. If the selected method is a constructor, an error will be raised

and the program execution halted. The same thing will occur when the selected method

is not accessible by the receiver object (e.g., a private method accessed by an instance of

a class different from the method’s containing class). Otherwise, the selected M e th o d

B l o c k will be returned as the RMB. A pointer to the RMB replaces the original RCP entry

and is put into a C o n s t a n t P o o l within the method invocation F ram e for further process

as described in Section 5.4.4.

It was said at the beginning of this section that the same process can be applied to

MCI-Java without requiring any change. The discussion that follows explains how the

original process can deal with a situation when a method whose containing class is an

implementation is to be invoked. When the method is invoked using a bytecode other than

invokeinterface, the procedure will start the search in the M T of the target class which is

57

with perm ission o f the copyright owner. Further reproduction prohibited without perm ission.

the implementation. O f course, the RMB can be located very easily. If the bytecode is

invokeinterface, the search begins in the interface which is the first entry in the IMT of the

target class, which is the implementation itself. Again, the RMB can also be located in the

M T o f the implementation. Thus, no change is needed for the method lookup procedure for

use in MCI-Java.

Original bytecode Context Quick-ed bytecode

invokestadc
always quick-ed to the same quick
bytecode

invokestatic.quick

invokevirtual

the slot number is contained in one
byte (slot number < 256)

invokevirtual-quick

slot number > 256 invokevirtual-quick-W
the static type of the receiver object
is O b j e c t (e.g., an array or an ele
ment from a container

invokevirtualObjecL-quick

invokeinterface
always quick-ed to the same quick
bytecode

invokeinterface-quick

invokespecial

the RMB contains a private method
or
the same method definition is visi
ble in the current class and the su
perclass in the case of a supercall

invokenonvirtual.quick

different method definitions are vis
ible in the current class and the su
perclass

invokesuper.quick

Table 5.2: Conversion from execution bytecode to quick-ed bytecodes

5.4.4 The quieking process and code execution

This section is important in understanding the modifications required to support the new

multisuper call introduced in MCI-Java. To redirect code execution to the right optimized

routine, the original bytecode will be replaced by one of the seven quick bytecodes listed

in Table 5.2, according to the context in which the execution is invoked. These contexts are

also included in the same table. After the RMB is identified by the lookup process described

in Section 5.4.4, crucial data are kept in a C o n s t a n t P o o l within the method invocation

F ra m e . The data will be used in the subsequent optimized execution process, as described

below.

58

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

invokestatic-quick

The bytecode invokestadc is used to invoke a static method, which is the same as

a procedure call in C and thus has no receiver object. No reference will be provided

for the receiver object (t h i s) during execution. A pointer to the RMB is stored in the

C o n s t a n t P o o l within the method invocation F ram e . The optimized routine will use

the stored RMB as the EMB and invoke the method directly.

invokevirtuaLquick and invokevirtualObjecLquick

The offset value is retrieved from the RMB and stored in the C o n s t a n t P o o l within

the method invocation F ram e. The optimized routine will use the stored value as the slot

number to retrieve the most specific method from the VMT o f the current class as the EMB

for execution.

InvokevirtuaLquick-W

A pointer to the RMB is stored in the C o n s t a n t P o o l within the method invocation

F ra m e . The optimized routine will use the offset value stored in the RMB as the slot

number to retrieve the most specific method from the VMT of the current class as the EMB

for execution.

invokeinterface-quick

A pointer to the RMB is stored in the C o n s t a n t P o o l within the method invoca

tion F ram e . Recall that a M eth o d B lo c k contains a field which points to the method’s

containing class (§5.3.1) which should be an interface for the RMB, for the bytecode in

vokeinterface. All methods in the M T of an interface have an offset value, which is the

ordinal within the MT.

The optimized routine will invoke a search in the IMT of the current class for the in

terface, which is the same as the method’s containing class for the RMB stored in the

C o n s t a n t P o o l within the method invocation F ram e . Once the interface is located in

the IMT, the offset value retrieved from the RMB is used as an index to the array o f offsets

to obtain the slot number for retrieving the EMB from the current VMT for execution.

invokesuper.quick

The offset value is retrieved from the RMB and stored in the C o n s t a n t P o o l within

the method invocation F ram e. The optimized routine will use the stored value as the slot

59

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

number to retrieve the most specific method from the VMT of the superclass as the EMB

for execution.

invokenonvirtuaLquick

A pointer to the RMB is stored in the C o n s ta n t P o o l within the method invocation

F ram e. The optimized routine will use the stored RMB as the EMB and invoke the method

directly.

Bytecode for multisuper call

Ultimately, only a modified invokespecial is suitable for a multisuper call. The se

mantics o f multisuper call require that the method to be invoked must be declared in an

implementation which is inherited by the current class either directly or indirectly. Among

the four original execution bytecodes, only invokestadc and invokespecial are replaced by

quick-ed bytecodes that do not retrieve the EMB from the current VMT. Since invokestadc

does not have the provision for the t h i s pointer, which is needed by a multisuper call,

invokespecial is therefore chosen for multisuper call. However, the method lookup proce

dure for invokespecial only searches the M T along the chain of superclasses, not those of

the superinterfaces. A change to the procedure is required to accommodate the extended

semantics of invokespecial to include multisuper call. The change is described in the fol

lowing section.

5.4.5 Multisuper call

Method lookup

In classic Java, the method lookup procedure starts the search for the RMB in the M T of

the target class. When the RMB is located, the offset value stored in the M e th o d B lo c k

will be used to retrieve the method referenced in the corresponding slot in the VMTs o f both

the current class and the superclass. If the two methods are the same, the quick bytecode

invokenonvirtual.quick is used; otherwise, invokesuper.quick is used.

In MCI-Java, invokespecial is also used for multisuper call. In this case, the target class

is an implementation at the source code level and an interface at the VM level. The offset

value stored in the M eth o d B lo c k is only an index to the array of offset values in the

i t a b l e (§5.3.3) of the IMT. The offset value is not a true slot number in the VMT. To

avoid choosing a wrong EMB, the original procedure is modified as described below.

60

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

When the RMB contains a private method or the target class is a class and not an

implementation (i.e., an interface with code), the original procedure is followed because

the bytecode is used for its original semantics in classic Java for a super call, or to invoke

a private method. When the target class is an implementation, the bytecode is used for a

multisuper call. The procedure described in Section 5.4.4 is redirected to a new lookup

routine.

In the original procedure, a T ag is used in the RCP to indicate whether or not the

method to be invoked is an interface method. The T ag is retrieved by the lookup procedure

as the value of a temporary variable. If it is the value for an interface method, as in the case

o f invokeinterface, the search for the method will be conducted in the MT of the interfaces

listed in the IM T of the current class only. The new routine makes use of this special feature.

Normally, invokespecial comes with a method reference T ag , instead of an interface

method reference T ag . Once the target class is known to be an interface (for an imple

mentation) after resolution, the value of the temporary variable is changed to the value

for an interface method reference, so that the routine for searching only the IMT of the

target class is used. The RMB located in one of the superimplementations is put in the

run-time C o n s t a n t P o o l replacing the original symbolic entry, and a pointer to the RMB

is put in the C o n s t a n t P o o l within the method invocation F ra m e , as well. The quick-

ed bytecode invokenonvirtual.quick replaces the original bytecode invokespecial. Recall

that invokenonvirtual.quick uses the stored RMB as the EMB for direct execution. Thus, a

method declared in one o f the implementations in the superimplementation tree is executed

as required by the extended semantics of invokespecial.

5.4.6 Example scenarios

In this section, it is shown that the modified method lookup mechanism is able to locate

the correct EMB for execution. Several inheritance scenarios, as shown in Figure 5.5, are

used for this empirical verification. These scenarios are taken from the collection discussed

in Appendix D, using the same scenario numbers.

Table 5.3 shows the verification results. It is assumed that c is an instance of C while a

and b are object instances having static types of A and B respectively. With the help of the

VMTs built for implementations, and the modified resolution procedure, the EMB located

for each scenario and call combination follows what is expected using the new semantics

o f MCI-Java.

61

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Scenario 3 Scenario 1 la Scenario l ib Scenario 17

CUm tt*tt? £ L Im p tx n o n aO o n >n tw t» c» I***#

Figure 5.5: Selected multiple code inheritance scenarios from Figure 4.4

5.4.7 Recompilation of a supertype

The Java platform permits the recompilation o f an individual module (i.e.. a .java file)

without requiring the recompilation of all other related declarations. According to the JVM

Specification, all JVM implementations should be able to take into account all the changes

as a result of the recompilation, and still be able to invoke the most specific method at

run-time for each invocation bytecode. The following discussions (referring to scenarios

depicted in Figure 5 J) are intended to verify that the dynamic semantics are followed in

MCI-Java, since no subclass is forced to be recompiled after a superclass is recompiled.

Scenario 3

Suppose that B is recompiled to insert a new overriding implementation for m () . The

slot in the VMT of C for the method m () should point to a clone of the M e th o d B lo c k

B : :m () . The dynamic semantics is still followed for all three instance method invocation

bytecodes.

For the instruction invokevirtual A: :m () , the method look up process finds A : : m ()

as the RMB whose offset value allows the JVM to locate B : :m () in the VMT of C as the

EMB, and thus it is dispatched in response to the message c . m () .

The search process for invokeinterface A: :m () starts from the target class A. The

search locates A: :m () as the RMB. Offset lookup in the IM T of C results in an index to

the VMT of C. The VM T entry points to B : :m () , and thus it becomes the EMB and is

executed.

62

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Scenario Compiler Output Execution M eth o d B lo c k (EMB)
Message sent: c . m ()

Scenario 3 invokevirtual A : : m () A : : m {)
Scenario 11a invokevirtual A : : m () A : : m ()
Scenario l ib invokevirtual A: : m () A : : m ()
Scenario 17 invokevirtual D: : m () D: :m()

Message sent: a . m ()
Scenario 3 invokeinterface A : : m () A: : m ()

Scenario 11a invokeinterface A : :m () A : : m ()
Scenario l ib invokeinterface A : :m () A: :m ()
Scenario 17 invokeinterface D : : m () D: :m ()

Message sent: b . m ()
Scenario 3 invokeinterface A : : m () A : :m()

Scenario 11a invokeinterface B : : m () A : :m ()

Scenario 1 lb invokeinterface B : : m () A : : m ()
Scenario 17 invokeinterface D : : m () D: :m ()

Message sent: c . s u p e r (A) .m ()

Scenario 3 invokespecial B : : m () A : :m ()
Scenario 11a invokespecial A : : m () A : :m ()

Scenario l ib invokespecial A : :m() A: :m()
Scenario 17 invokespecial A : :m () D : :m ()

Message sent: c . s u p e r (B) .m()
Scenario 3 invokespecial B : : m () A: :m ()

Scenario 11a invokespecial B : :m () A : :m()
Scenario l ib invokespecial B : : m () A : :m()
Scenario 17 invokespecial B : : m () D : : m ()

Table 5.3: Results of EMB lookup

B is always the target class for a multisuper call and thus the instruction invokespecial

B : : m () . It is easy to see that B : : m () will be identified as the EMB (after the recompila

tion of B) by the search process and is executed as a result.

Scenarios 11a and l ib

Assume that A is recompiled to remove the implementation for m () . Before the recom

pilation, the VMT of C should contain a slot pointing to a clone o f A : : m () which overrides

B : : m () in the original context. After recompilation, this slot points to a clone of B : : m () .

It is not difficult to see that both invokevirtual and invokeinterface will execute B: :m () .

For invokespecial, after recompilation, B : :m () will be located as the EMB whether A

or B is the original target class because B exists in the IM T of both A and B. Therefore, the

correct method is dispatched for all three invocations after recompilation.

63

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Scenario 17

If only A is recompiled to insert a new overriding implementation for m () , the slot in

the VM T of C points to a clone of A : : m () because of the relaxed multiple code inheritance

scheme. Thus, A: :m () is executed for both invokevirtual and invokeinterface.

Because o f the method lookup mechanism for invokespecial, A : : m () will be located as

the EMB and executed for the instruction invokespecial A : : m () . D : : m () will be located

as the EMB for invokespecial B : : m () . If only B is recompiled to insert a new overrid

ing implementation for m () instead, B : :m () is executed for invokespecial B : :m () and

D : :m () is executed for invokespecial A : :m () .

If both A and B are recompiled without recompiling all others, an ambiguity exception

is thrown because the conflict between A: :m () and B: :m () cannot be resolved when

building the VM T for C, even under the relaxed multiple code inheritance.

Conclusion

The modified method lookup procedure is able to find the most specific method at run

time, even after the recompilation of the supertypes for each of the scenarios discussed

above. The modified JVM in MCI-Java will throw an exception if the recompilation causes

unresolvable conflict

5.5 Summary

In this chapter, the modifications to the Java virtual machine (JVM) are discussed. The

modifications required to support MCI-Java include:

1. VMTs are added to the C l a s s C l a s s structure of implementations to support mul

tiple code inheritance in MCI-Java. The use of the V i r t u a l M eth o d T a b le

(VMT) for classes only in classic Java is extended in MCI-Java to be applied to in

terfaces with code. It is built for an implementation to handle method inheritance

between implementations. and to facilitate the introduction of methods declared in an

implementation into the inheritance mechanism in the class hierarchy.

2. The new multisuper call is represented using the method invocation bytecode invoke

special in MCI-Java, taking an immediate superimplementation as the target class

for method lookup. When the bytecode invokespecial is used for a multisuper call, a

local and minor change is made to the original lookup procedure to find the resolved

64

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

M ethod B lo ck (RMB) and execution M ethod B lo ck (EMB), so that the origi

nal procedure is redirected to follow that for searching an interface method.

In the chapter that follows, the design and implementation of MCI-Java will be eval

uated against the criteria set out in Section 3.1 in terms of compatibility, correctness and

run-time performance.

65

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This page contains no text

66

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 6

Empirical evaluation

In this chapter, several empirical tests demonstrate that the MCI-Java VM - a modi

fied version o f Sun’s JVM for Java 2 SDK 1 .2 .2 - and the modified IBM Jikes Compiler

are compatible with their original programs, yielding correct results, as expected, with no

performance degradation when compared with the performance o f the original programs.

Cutumisu [15] refactors the j a v a . i o package to take advantage of multiple code in

heritance, with techniques to be discussed below. The . c l a s s files for the refactored

classes are generated by compiling the code using the modified IBM Jikes compiler, and

applied using the MCI-Java VM. Through the tests, it is found that invokespecial is better

suited for a multisuper call than the bytecode invokeinterface.

The implementation of MCI-Java is evaluated against the criteria set out in Section 3.1,

in terms of compatibility, correctness and run-time performance.

The new language features of MCI-Java are applied to the standard Java run-time library

(the file rt.jar), to demonstrate how they can assist in software engineering. The effect of

refactoring some classes in the package j a v a . i o is also discussed in this chapter.

As pointed out in Section 3.1, the original semantics of Java should not be changed in

MCI-Java, and the semantics of the new features should not be in conflict with those of the

existing features of classic Java. These criteria are evaluated in this chapter, in terms of

compatibility and correctness.

Finally, the performance o f the new VM at run-time is compared with that o f the original

VM in machines running the Linux operating system.

6.1 Compatibility of MCI-Java for unmodified Java programs

The demonstration package J a v a 2 D accompanying Sun’s Java 2 SDK 1.2.2 [3] was

executed using the VM of both the classic Java and MCI-Java. Both executions gave the

67

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

same output.

The j a v a packages from the classic Java library were compiled using both the original

and modified version of Jikes1 and the original j a v a c (from SUN JDK 1.2.2), using the

standard class library without any refactoring. Then, the . c l a s s files so generated are

compared. Use of the d i f f program helps to verify that both the original and modified

versions of each compiler generated the same output.

It can therefore be concluded that the modified compiler and VM are compatible with

the original unmodified versions.

6.2 Correctness of MCI-Java generated code

The test for compatibility mentioned in the previous section indicates that the modified

Jikes and the VM of MCI-Java give correct results executing legacy code. To verify the

correctness with the new semantics, the 17 scenarios of multiple code inheritance discussed

in Appendix D are coded, compiled using the modified Jikes, and executed using the VM

o f MCI-Java. In each o f the tests, the execution results are exactly the same as described in

Appendix D.

The issue of recompilation as discussed in Section 5.4.7 is also tested. The scenarios

described in that section are coded and compiled using the modified Jikes. The execution

o f the generated code, using MCI-Java VM, gives the expected result in all cases.

63 Refactoring legacy code

In MCI-Java, a new reference type, implementation, is available for programmers to

use as a separate code-type. Instead o f using one single implementation-type, they can now

separate code from data layout declaration, making it easier to re-use common code.

It is also important to be able to refactor existing reference types, so that future programs

using existing classes can deploy the new language features provided by MCI-Java. Several

techniques are used by Cutumisu [15] to refactor legacy code, and they are described below.

63.1 Duplicate code promotion

The simplest scenario is when two implementations of a method contain exactly the

same code. The duplicated code is promoted to a method declared in an implementation.

The two classes holding the duplicated code are then declared to u t i l i z e this newly

'IBM Jikes 1.15 Compiler.

68

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 public class DatalnputStream {
c.
3 public final static String readUTF(Datalnput in) throws IOException {
4 ... code to be shared
5 }
e public final String readUTF() throws IOException {
7 return readUTF (this);
8 }
9 }

10
11 public class RandomAccessFile {
12 . . .
13 public final String readUTF() throws IOException {
14 return DatalnputStream.readUTF(this);
15 }
16 }

(a) Code before refactoring

1
•y

public implementation InputCode {

3 public final String readUTF0 throws IOException {
4 --- code to be shared
5 }
6
7

}

8
Q

public class DatalnputStream utilises InputCode {

10 public final static String readUTF(Datalnput in) throws IOException {
11 return i n .readUTF ();
12 }
13 }
14
15 public class RandomAccessFile utilises InputCode .
16

(b) Code after refactoring

Figure 6.1: Example for static method promotion

created implementation. The promoted code is invoked whenever an instance of either one

of the two classes is sent a message for the promoted method.

63.2 Static method promotion

When two classes belong to two different inheritance hierarchies, it is impossible for

them to share code by virtue of inheritance relationship between the two classes. In this

situation, a static method is used to contain the common code, so that the code can be

accessed via a static method call, by instances of the two classes. Figure 6.1 shows an

example of applying the static method promotion technique to refactor two classes in the

j a v a - i o package.

In Figure 6.1(a), D a ta ln p u t S t r e a m (line 1) and R a n d o m A c c e s s F ile (line 11)

69

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

belong to two different inheritance hierarchies. Common code shared between them is kept

in the static method read U T F () (line 3), which is a member of D a t a l n p u t S t r e a m .

Each o f the two classes has an instance method re ad U T F () (lines 6 and 13) implemented

by invoking the static method passing the receiver object itself as an argument to the invo

cation.

Instead of keeping the shared code in a static method in one o f the involved classes

(D a t a l n p u t S t r e a m in this case), the common code is now promoted, as shown in Fig

ure 6.1(b), to become a method in the newly created implementation I n p u t C o d e (line 1)

from which both classes u t i l i z e (lines 8 and 15) for multiple code inheritance. How

ever, there is still a static method in D a t a l n p u t S t r e a m (line 10), so that legacy code

using the original static method can be executed. The original code in the static method

is now replaced with a message (line 11) sent to the receiver object, which is passed as

an argument to the static method. This will invoke the promoted instance method in the

common implementation.

6 3 3 Prefix method promotion

Figure 6.2 shows an example o f applying the prefix method promotion technique to

the j a v a . i o package. This technique is useful when two method implementations have

identical code, differing only in some variables whose values are results o f a set of class-

dependent computation. The computation is performed before the common code is exe

cuted.

In Figure 6.2(a), two classes - D a t a l n p u t S t re a m and R a n d o m A c c e s s F ile (lines

1 and 21) - have their own implementations for the method r e a d l n t () (line 3 and 23).

It can be seen that the two implementations have identical code except for the local vari

able i n (lines 5 - 9) used in D a ta ln p u t S t r e a m , and t h i s (lines 25 - 29) used in

R a n d o m A c c e s s F ile . In D a ta ln p u tS t r e a m , the variable i n is the result of the com

putation in line 5.

In Figure 6.2(b), a new interface (S o u rc e) (line 1) is created to serve as the common

interface for the two involved classes, R a n d o m A c c e s s F ile and D a ta ln p u tS t r e a m ,

as well as the newly created implementation - In p u tC o d e . A method (s o u r c e ()) is

declared in S o u r c e (line 2) for the ctor-dependent computation. Each class then imple

ments this interface method using its unique code (lines 8 and 16). The common code,

together with the ctos-dependent computation (embedded in the implementation of the in

terface method, lines 27 - 30), is then promoted to become the method r e a d l n t () (line

70

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 public class DatalnputStream { 21 public class RandomAccessFile {
2 . . . 22
3 public final int readlnt() 23 public final int readlnt ()
4 throws IOException { 24 throws IOException {
5 InputStream in - this.in; 25
6 int chi - in.read0 ; 26 int chi - this.readO;
7 int ch2 - in. read () ; 27 int ch2 - this.readO;
8 int ch3 - in.readt); 28 int ch3 - this.readO;
9 int ch4 - in.readO; 29 int ch4 - this.readO;

10 if ((chi Ich21ch31ch4) < 0) 30 if ((chi Ich2tch31ch4) < 0)
11 throw new EOFException(); 31 throw new EOFException();
12 32
13 return (chi « 24) + 33 return (chi « 24) +
14 (ch2 « 16) + 34 (ch2 « 16) +
15 (ch3 « 8) f 35 (ch3 « 8) +
16 (ch4 « 0); 36 (ch4 « 0);
17 } 37 }
18 } 38 }

(a) Code before refactoring

21 public implementation InputCode
22 implements Source {
23
24 public final int readlntO
25 throws IOException {
26
27 int chi - this.source () .readO ;
28 int ch2 - this.source 0 .readO ;
29 int ch3 - this.source () .readO ;
30 int ch4 - this.source().read();
31 if ((chi 1ch2Ich31ch4) < 0)
32 throw new EOFException () ;
33
34 return (chi « 24) +
35 (ch2 « 16) *
36 (ch3 << 8) +
37 (ch4 « 0);
38 }
39 }

1 public interface Source {
2 public Source source();
3 }
4 public class DatalnputStream
5 implements Source
6 utilizes InputCode {
7 . . .
8 public Source source() {
9 return this.in;

10 }
11 }
12 public class RandomAccessFile
13 implements Source
14 utilizes InputCode {
IS . . .
16 public Source source() {
17 return this;
18 }
19 }

(b) Code after refactoring

Figure 6.2: Example for prefix method promotion

24) in In p u tC o d e .

63.4 Super-suffix method promotion

Figure 6.3 depicts an example in which the super-suffix method promotion technique

is deployed. In Figure 6.3(a), D a ta O u tp u tS t r e a m and R a n d o m A c c e s s F ile (lines

1 and 21) have essentially similar implementations for the same method - w r i t e l n t ()

(lines 3 and 23). The two implementations differ only in some epilogue statements (lines

10 and 30). The use o f an additional local variable o u t in D a t a l n p u t S t r e a m can be

71

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1 public class DataOutputStream { 21 public class RandomAccessFile {
2 . . . 22
3 public final void writelnt (int v) 23 public final void writelnt (int v)
4 throws IOException { 24 throws IOException {
5 OutputStream out - this.out; 25
6 out.write((v » > 24) £ OxFF); 26 write ((v » > 24) £ OxFF);
7 out.write((v » > 16) S OxFF); 27 write((v » > 16) £ OxFF);
8 out.write((v » > 8) 4 OxFF); 28 write((v > » 8) £ OxFF);
9 out.write((v » > 0) £ OxFF); 29 write((v > » 0) £ OxFF);

10 incCount(4); 30
11 } 31 }
12 } 32 }

(a) Code before refactoring

1
O

public class DataOutputStream implements Sink utilizes OutputCode {
6
3 public Sink sink() {
4 return this.out;
S }
6 public final void writelnt (int v) throws IOException {
7 super(OutputCode).writelnt(int v) ;
8 incCount(4);
9 }

10
11

}

12 public class RandomAccessFile implements Sink utilizes OutputCode {
13 . . .
14 public Sink sink() {
15 return this;
16 }
17
18

}

19 public interface Sink {
20 oublic Sink sinkO;
21
22

}

23 public implementation OutputCode {
24 . . .
25 public final void writelnt(int v) throws IOException {
26 Sink out - this.sinkO;
27 out.write((v » > 24) £ OxFF);
28 out-write ((v » > 16) £ OxFF);
29 out.write((v » > 8) £ OxFF);
30 out. write ((v » > 0) £ OxFF);
31 }
32 }

(b) Code after refactoring

Figure 6.3: Example for super-suffix method promotion

handled using the prefix method promotion technique described in the previous section.

In Figure 6.3(b), O u tp u tC o d e (line 23) is a newly created common implementation.

The common code in Figure 6.3(a) is factored out as the body o f w r i t e l n t () (line 25) -

declared in O u tp u tC o d e . The epilogue statements stay in the method body of the original

72

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Object

extends extends

Outputs treamInputs tream

extendsextends

FllterOutput
Stream

Rltertnput
Stream DataOutputDatalnput

implements implements implements implements extendsextends

DataOutputStreamDatalnputStream

Class

Figure 6.4: Hierarchy of the classes for data input/output before refactorim

instance method declared in the respective classes (line 8). The common code is invoked

using a multisuper call before the epilogue statements are executed (line 7). S in k (line

19), which acts as a common interface, is introduced to define the method s i n k () (line

20) for the class dependent computation, as a part of the prefix method promotion scheme

to handle the local variable o u t in D ata ln p u tS tream .

6.4 Refactoring the ja v a . i o package

Figure 6.4 depicts the inheritance hierarchy of the original j a v a . i o package, showing

only the classes involved with data input and output. The classes are now refactored (the

hierarchy of the refactored classes is shown in Figure 6.6), using the techniques discussed

in the previous section - resulting in a significant reduction in the total code size and the

total number of declared methods. The most important impact of this refactoring process is

that the refactored code is easier to understand, trace and maintain.

The interface D a t a l n p u t has 15 declared abstract methods. These methods are im

plemented in two classes - D a ta ln p u t S t r e a m and R a n d o m A c c e s s F ile . Among

them, 13 methods have similar implementations in both classes. Several of the techniques

discussed in the previous section can be used to move common code into one location for

73

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Duplicate code promotion Prefix method promotion

r e a d F u l l y (b y t e [] , i n t , i n t) r e a d B y t e ()
r e a d F u l l y (b y t e []) r e a d U n s i g n e d B y t e ()
r e a d F l o a t () r e a d S h o r t ()
r e a d D o u b l e () r e a d U n s i g n e d S h o r t ()

r e a d l n t ()
Static method promotion r e a d B o o l e a n ()

r e a d L o n g ()
r e a d U T F () r e a d C h a r ()

Table 6.1: Common code grouping by promotion technique for data input methods in
D a ta ln p u t S t r e a m and R a n d o m A c c e s s F ile

Duplicate code promotion writeFloat()
writeDouble()

Super-suffix method promotion write(byte[],int,int)
write(byte[])
writeBoolean()
writeByte ()
writeShort()
writelnt ()
writeLong ()
writeChar ()

Table 6.2: Common code grouping by promotion technique for data output methods in
D ataO utputStream and R an d om A ccessF ile

sharing by both classes. The methods can be grouped according to the applicable promotion

techniques, as discussed in the previous section and shown in Table 6.1.

Similarly, the interface D ataO utput has 14 declared abstract methods, which are

implemented by D ataO utputStream and R an d om A ccessF ile . Among them, 10

methods have similar implementations in both classes. According to the applicable promo

tion techniques, these methods can be grouped as shown in Table 6.2.

As discussed in Section 6.3, two implementations (I n p u tC o d e and O u tp u tC o d e)

are created to hold the promoted common code, while two newly created interfaces (S in k

and S o u rc e) provide the common interface for generalization. Figure 6.5 shows the mod

ified declaration lines for all the classes, implementations and interfaces involved. The

hierarchy tree o f the refactored package is shown in Figure 6.6. The classes and interfaces

provided in the standard class library rtjar are replaced by the refactored ones - including

the newly created implementations and interfaces - to create a new run-time class library,

74

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

newly created types:

public interface Source
public interface Sink
public implementation InputCode implements Datalnput, Source
public implementation OutputCode implements DataOutput, Sink

modified types:

public abstract class InputStream implements Source
public class FilterlnputStream extends InputStream
public class DatalnputStream extends FilterlnputStream utilizes InputCode
public abstract class OutputStream implements Sink
public class FilterOutputStream extends OutputStream
public class DatalnputStream extends FilterOutputStream utilizes OutputCode
public class RandomAccessFile utilizes InputCode, OutputCode

Figure 6.5: Modified declarations for data input/output types in the j a v a . i o package

miRtjar, for use in MCI-Java. Source code for the affected interfaces, implementations and

classes are included in Appendix E.

The effect of refactoring the j a v a . i o package in reducing the number o f methods

used as well as the code size, has been tabulated below in Tables 6.3 and 6.4 (with abbrevi

ated class names). The tables are based on the raw data listed in Appendix E. The meaning

o f the abbreviations are:

1. RAF stands for R a n d o m A c c e s s F ile

2. DIS stands for D a t a l n p u t S t r e a m

3. DOS stands for D a t a O u t p u t S t r e a m

4. IC stands for I n p u tC o d e

5. OC stands for O u tp u tC o d e

The apparent low reduction rate in the number o f methods used in D a ta O u tp u t S t re am

(as reflected in Table 6.3) is due to the fact that 6 of the 8 promotable methods contain an

extra line o f code unique to this class, making it necessary to retain a method declaration

for the suffix. However the number of methods declared in the other two classes, namely

D a ta ln p u t S t r e a m and R a n d o m A c c e s s F ile , are very significantly reduced.

75

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

O bject

•extends-

Source Sink

implements Datalnput DataOutput implements

implements

InputStream OutputStream

extends extends

Filterlnput
Stream

RlterOutput
Stream

utilizes utilizesextends utilizes utilizes extends

DatalnputStream RandomAccessFile DataOutputStream

fft* 2̂2il252™i»— ' '•"***
M |l Class -IfiiS jC jfn P 1*”
Islf >i V i

Interlace

Figure 6.6: Hierarchy of the classes for data input/output

C l a s s RAF DIS DOS
Method type Before After Before After Before After
Constructors 3 3 1 1 1 1
Native methods 11 11 0 0 0 0
Non-native methods 31 10 18 6° 16 15®
Total 45 24 19 7 17 16
Percentage reduction in methods 46.67% 63.16% 5.88 %

“a 1-line static method is kept for compatibility purposes
b6 o f the methods contain only 2 lines of code after supcr-suffix method promotion

Table 6.3: Change in the number of methods as a result of refactoring

It can also be seen from Table 6.4 that there is a significant reduction in the code size in

each of the involved classes, and in the overall total.

76

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C l a s s RAF D IS DOS IC OC Overall
Lines not involved in the methods 93 42 54 - - 189
Total lines before refactoring 158 127 84 - - 369
Total lines after refactoring 93 44 67 82 27 313
Percentage Reduction in lines 41.14 65.35 25.37 - - 15.18

Table 6.4: Change in the number of lines of code as a result of refactoring

6.5 Performance of Jikes and MCI-Java VM

One of the concerns about MCI-Java is the degradation in performance caused by the

modifications performed on Jikes and the Java VM. The details of the two tests are provided

in the following sections. Test results show that the modifications have negligible effect on

the performance o f both the compiler and the Java VM.

6.5.1 Compiler test

The original source files for the entire j a v a package are used as the source files. They

are compiled using the following compilers:

1. j a v a c running in classic Java

2. j a v a c running in MCI-Java

3. the unmodified Jikes

4. the modified Jikes

All four compilers use the original run-time library r t . j a r as the bootclass library for

compilation. For each compilation, the output is stored in a separate location and compared

using the system program d i f f . As the output from Jikes and j a v a c are different, d i f f

is only applied to compare output from the same family of compilers. The result (stated

in the previous section) is that there is no difference in output between the original and

modified versions. A total o f 100 runs is taken for each compiler in a Linux machine using

AMD Athlon XP1800+ U G H z CPU with 256KB cache. The 400 compilations are done

in a continuous mode with each compiler taking turns so that the risk of performance being

affected by background processes is spread evenly among them. The process times were

reported using the system function t im e , and the results are tabulated in Table 6.5.

The small values in the standard deviation column indicate that the process times are

very consistent between runs. Comparing the mean times for j a v a c running in classic Java

77

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

javac jikes
classic Java MCI-Java original modified

mean std dev mean std dev mean std dev mean std dev
real 64.581 0.474 63.645 0.463 3.082 0.085 3.085 0.107
user 61.990 0.418 61.024 0.180 1.769 0.075 1.772 0.075
sys 0.513 0.071 0.488 0.066 0.247 0.040 0.247 0.042
Unit of measure: seconds

Table 6.5: Compiler performance comparison

and MCI-Java (64.581 vs 63.645 and 61.990 vs 61.024) show that there is no significant

difference in performance between the two versions of j a v a c . However, the lower mean

time for j a v a c in MCI-Java is not an indication that it is performing better than the one

in classic Java, because the diferences are within the standard deviation ranges. The mean

times for Jikes (3.082 vs 3.085 and 1.769 vs 1.772) show that the performances of the two

versions of Jikes are basically identical. It can be concluded that the modifications made to

Jikes and the Java VM have negligible effect on the performance of both the compilers and

the Java VM.

6.5.2 I/O test using refactored I/O classes

This test is primarily designed to test the refactored j a v a . i o package. The test pro

gram begins by writing a series o f double precision values, integer values, character values

and string values to an instance o f D a ta O u tp u tS t r e a m . The process is repeated 50,000

times. The data file is then closed and reopened as an instance of D a ta ln p u tS t r e a m .

The data are read from the file, line by line, and written to another file, opened as an instance

o f a R a n d o m A c c e s s F ile . After the entire file is completely “'copied”, data are read from

the instance of R a n d o m A c c e s s F ile with the numerical values used to compute a sum

for the correctness check and the correctness is verified. All the refactored methods are

invoked during the program execution.

The test is performed on the same machine that is used for the compiler test. The

program is run in the VM of both classic Java and MCI-Java 200 times, consecutively and

alternately, in order to distribute the risks of background processes affecting the process

times. The process times are recorded using the system function t im e . The results are

tabulated in Table 6.6. When the test program is run on the classic VM, it uses the original

j a v a . i o package. When it is run in MCI-Java, it uses the refactored j a v a . i o package

that takes advantage of multiple code inheritance.

78

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

classic JVM MCI-Java VM
mean time std deviation mean time std deviation

real 83.7807 2.6350 83.0003 2.4774
user 37.5243 0.5530 37.2336 0.5196
sys 45.9405 2.3724 45.4318 2.2410
Unit of measure: seconds

Table 6.6: VM performance comparison

The greater variations in performance, as reflected in the value of the standard devia

tion for real time (2.6350 and 2.4774), are mainly due to the I/O component of the tests.

It can be seen that the process times for the non I/O part are very consistent (standard de

viations 0.5530 and 0.5196). Despite the greater variations in the overall process times,

they demonstrate similar distribution patterns with very little differences in the mean and

standard deviation values. The mean real times are 83.7807 and 83.003, with standard de

viations 2.6350 and 2.4774. The mean user times are 37.5243 and 37.2336 with standard

deviations 0.5530 and 0.5196. The numbers show that there is no significant difference

between the performance of the classic JVM and MCI-Java VM. Based on this observation,

it can be concluded that the modifications made to the Java VM and the refactored classes

have no significant effect on the overall performance.

6.6 Summary

It has been demonstrated in this chapter that legacy code can be refactored to take

advantage of the new features introduced in MCI-Java, using the following four method

promotion techniques:

1. Duplicate code promotion

2. Static method promotion

3. Prefix method promotion

4. Super-suffix method promotion

The techniques are applied to the original j a v a . i o package. Refactoring has success

fully reduced both the total code size and the combined number of methods used.

Through the various tests conducted, it is shown that the MCI-Java VM, the modified

version of Sun’s JVM for Java 2 SDK 1.2.2 and the modified IBM Jikes Compiler are

79

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

compatible with the original programs, give correct results as expected and - most important

of all - do not degrade the performance when compared with the original programs.

80

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Chapter 7

Conclusions

The design and implementation of MCI-Java, an extended Java Virtual Machine sup

porting multiple code inheritance, has been presented in this dissertation. The modifications

made to the IBM Jikes Compiler [4] to support the newly introduced syntax in MCI-Java are

also presented. This dissertation is concluded with a discussion on the related work o f other

researchers, a summary of the work done, future directions and research contributions.

7.1 Related work

Many researchers have been working on schemes that allow multiple code inheritance

in programming languages originally designed with single inheritance. Some o f their work

is discussed below.

7.1.1 Mbtins

A mixin is a specification with methods. It can be used to extend various classes with

the same set of features.

Mixin-based inheritance, proposed by Bracha and Cook [9], sees a mixin as the primary

construct, while inheritance is built ffom mixins. This concept was applied to Modula-3.

Flatt et eL [17] proposed application of the concept of mixins to Java. In MIXEDJAVA,

a mixin is viewed as a function that extends a class by adding methods. An atomic mixin

in MIXEDJAVA declares a new mixin, while a composite mixin composes two existing

mixins to create a new one. This idea has not yet been implemented in any version o f Java.

Ancona et el. [7] extends Java 1.0 with mixins. The translator jam c translates JAM

code into Java code by mapping a mixin declaration into an interface. Every time a new

class is required, ja m c is invoked before j a v a c , thus making it a very expensive process.

Furthermore, the variable t h i s is forbidden in mixins in JAM.

81

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

There is an excellent overview of mixins in [29] which illustrates the fact that mixin

inheritance [9] does not work well when more than one mixin is used by a class, because

“the mixins do not quite fit together” [29]. Three main problems with mixins have been

identified, as described below:

1. Linearization - Mixin-based inheritance, proposed by Bracha and Cook [9], requires

explicit linearization of the mixins. A class is viewed as a composition of mixins.

When attributes are in conflict, the one from the newly added mixin will override

the older ones. However, a suitable total order does not always exist for conflict

removal. The problem of total ordering does not exist in MCI-Java, as inheritance is

symmetrical.

2. Mixin programming - Special code (glue code) is written to link mixins together.

Glue code reduces flexibility and also gives rise to maintenance issues. In MCI-Java,

glue code is not needed and therefore the associated problems do not exist.

3. Fragile hierarchies - A newly added method may have the unwanted side effect of

silendy overriding another method, thus changing some behaviours because of the

required total ordering. Since conflict removal is hard coded, using glue code, a

change to a mixin must be rippled across the inheritance hierarchy when a mixin

is used in several places. Most of the problems are solved in MCI-Java with the

multiSuperCall mechanism and the adoption of the relaxed multiple code inheritance

approach for conflict resolution. Most of the errors are reported at load time during

the VMT building process, and any errors that cannot be determined at load time

are handled as exceptions at run-time, thereby ensuring that there are no unexpected

executions.

7.1.2 Traits

Scharli et el. [29] implemented traits as a solution to multiple code inheritance in the

Squeak dialect of Smalltalk [20].

Traits are similar to implementations proposed in this dissertation in the following areas:

1. Each is a collection of methods, possibly invoking methods that are abstract until they

are natively defined in a client class;

2. Each can be used by a client class to augment its natively-defined methods;

3. Each contains no representation information;

82

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

4. A class can use more than one trait or implementation.

However, the two solutions to multiple code inheritance have the following major dif

ferences:

1. When a client class that uses a trait is compiled, the non-overridden methods are

flattened into the client class by extending the method dictionary o f the client class

with one entry for each non-overridden method. The entries in all method dictionaries

using the same trait point to a common code stored in the trait which is a “hidden

class”. An implementation is a first-class language feature which is not hidden and

has its own VMT for method lookup.

2. When a trait or a superclass is recompiled, the client class is automatically recom

piled. This is made possible by the fact that all source codes are stored in the same

Smalltalk image. However, automatic recompilation of the client class is not possible

and is not required in Java and MCI-Java.

3. W hile both trait and implementation solve the “diamond” inheritance problem by

declaring no conflict, they handle potential conflict differently. Some are classified as

conflicting scenarios by traits, but not with implementations, because of the adoption

o f the relaxed multiple code inheritance approach. They also select the method to

be invoked differently. Methods from traits take precedence over those from super

classes, but implementations treat methods from all sources the same.

4. The inheritance semantics used in trait relies on compile-time based flattening tech

nique, which is difficult to support in Java because o f the inaccessibility of source

code at load time. Implementations follows the dynamic semantics o f Java.

7.13 Code in interface

Cutumisu[14] has implemented code in interface as a solution to multiple code inheri

tance in Sun JDK 1.2.2. This implementation differs from the work presented in this dis

sertation in the following areas:

1. Cutumisu’s implementation used the Miranda Method1 technique to insert a method

declared in interface into the VMT of an inheriting class. No VMT is built for an

interface. MCI-Java has VMT for implementations - interfaces with code.

'in Sun's JVM, an abstract method declared in an abstract superclass is classified as the Miranda Method,
and is reserved a slot in the VMT for future implementation defined in one of the subclasses

83

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

2. A special scripting process is designed to transform specially written program files

for interfaces containing code into binary format . c l a s s files.

3. The modified JVM has to be operated in the “-noverify” mode, as the code verifier at

load time is not adjusted to accommodate code in interface.

7.2 Summary of work

This dissertation starts with a scenario illustrating the need for multiple code inheritance

and separated interface-type, code-type and data-type. This improves expressiveness and

allows programmers more code re-use, avoiding duplicated code and resulting in fewer

maintenance problems.

Subsequently, a brief review o f the current Java technology, with the emphasis on its

weaknesses in handling multiple representations and multiple behavior specifications, is

given. The difficulty in sharing code across inheritance hierarchy trees is also highlighted.

MCI-Java is proposed as a solution. MCI-Java supports the total separation of interface-

type, code-type and data-type with the introduction of, at the source code level, implemen

tation - a new type declaring unit, and u t i l i z e s - a new keyword in the Java syntax sig

nifying inheritance from an implementation by a class. The semantics of the new construct

are explained in detail, with 17 scenarios illustrated for elaboration. As a side effect o f the

language extension, the multiSuper call mechanism is also introduced, with its semantics

fully explained.

To support the new language syntax, the IBM Jikes Compiler is modified. A detailed

explanation of the modification follows a description of the existing operation of the orig

inal compiler. Prior to describing the modifications made to Sun’s JVM by MCI-Java, the

operation of those parts of the JVM involved in method dispatch are explained.

Several experiments are conducted to verify that the modified compiler behaves cor

rectly in handling code written using the classic Java semantics, as well as the semantics

of MCI-Java. It is also verified that the modified JVM executes code correctly, according

to the defined semantics. No measurable difference in performance is found between the

original and the modified compiler and VM.

7.3 Research contribution

The research contributions of this dissertation include:

84

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

1. The first implementation with compiler support to extend Java to support the separa

tion of interface-type, code-type and data-type, with a VM that supports code gener

ated by the modified compiler. The modified JVM is able to support verification of

code in interfaces without affecting the original verification processes.

2. Language syntax changes are decoupled from the modifications in the VM. New

syntax is introduced in the source code level only. The modified JVM can be used to

execute any code produced by any compiler that supports code in interfaces. Simi

larly, the modified IBM Jikes compiler can be used to support any extensions to Java

requiring three separate type declaring units.

3. A super call mechanism similar to the one found in C++ is implemented with com

piler support. This mechanism allows programmers to specify an inheritance path

to the desired method implementation. Furthermore, this mechanism supports the

dynamic Java semantics that permits recompilation of any one of the intermediate

classes, and is still able to locate the most specific implementation for invocation at

run-time.

4. An empirical evaluation o f the MCI-Java VM shows that there is no measurable dif

ference in performance between the original JVM and the MCI-Java JVM.

The most important modification to the JVM is the construction of the virtual method

table (VMT) for an i n t e r f a c e . An i m p le m e n t a t i o n , the newly introduced language

construct at the source code level, is mapped to an interface at the VM level. The construc

tion of the VMT facilitates the identification of method implementation that is visible at any

point of an inheritance tree. It also helps to identify potential inheritance conflict at load

time.

All changes to the JVM and the Jikes compiler are localized. In the original JVM

all method-invoking bytecodes are quick-ed and then executed using the highly optimized

module written in assembly language. The module has not been changed and the algorithm

for executing the new muItiSuperCall is designed in such a way that the same module for

quick-ed bytecode execution can be used.

This thesis has proposed and implemented a scheme to improve the expressiveness

o f the original Java platform. MCI-Java facilitates code re-use, supports the separation

o f inheritance, and allows programmers to write less code without affecting the clarity

o f their implementations. Existing program code and class libraries are not affected by

85

with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

the modifications, and there is no measurable effect on performance. The modified Jikes

Compiler has been verified to generate correct . c l a s s files for both traditional programs

and programs using the proposed new features. Execution of the generated code in the

modified JVM is shown to be correct for the programs using classic Java semantics, as well

as those using the new multiple code inheritance and super call mechanisms.

86

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bibliography

[1] http://java.sun.com/docs/books/tutorial/collections/implementations/general.html.
webpage. Last accessed July 23,2003.

[2] http://java.sun.eom/j2se/l.4.2/docs/api/index.html. webpage. Last accessed Novem
ber 17, 2003.

[3] http://java.sun.com/software/communitysource/j2se/java2/download.html. webpage.
Last accessed November 17,2003.

[4] http://www.ibm.com/developerworks/opensource/jikes/. webpage. Last accessed De
cember 22,2003.

[5] http://www.jaggersoft.com/csharp-standard/. webpage. Last accessed July 21,2003.

[6] http://www.opensource.org/. webpage. Last accessed December 22,2003.

[7] Davide Ancona, Giovanni Lagorio, and Elena Zucca. Jam — A smooth extension of
Java with mixins. Lecture Notes in Computer Science, 1850:145-178, 2000.

[8] Daniel G. Bobrow, Linda G. DeMichiel. Richard P. Gabriel, Sonya E. Keene, Gregor
Kiczales, and David A. Moon. Common lisp object system specification. SIGPLAN
Not., 23(SI):1-142, 1988.

[9] Gilad Bracha and William Cook. Mixin-based inheritance. In Norman Meyrowitz,
editor, OOPSLA/ECOOP '90: Proceedings o f the Conference on Object-Oriented
Programming: Systems, Languages, and Applications / Proceedings o f the European
Conference on Object-Oriented Programming, pages 303-311, Ottawa, Canada, 1990.
ACM Press.

[10] Timothy Budd. An Introduction to Object-Oriented Programming, Second edition.
Addison Wesley Longman, Inc., 1997.

[11] Craig Chambers and Gary Leavens. The Cecil language: Specification and rationale.
Technical Report TR93-03-05. Department of Computer Science, FR-35, University
of Washington, 1993.

[12] Craig Chambers and Gary Leavens. Typechecking and modules for multimethods.
ACM Transactions on Programming Languages and Systems (TOPLAS). 17(6):805—
843,1995.

[13] Craig Chambers and Gary Leavens. BeCecil, A core object-oriented language with
block structure and multimethods: Semantics and typing. In The Fourth International
Workshop on Foundations o f Object-Oriented Languages, FOOL 4, Paris, France,
1996.

[14] Maria Cutumisu. Multiple Code Inheritance in Java. Master’s thesis, University of
Alberta, 2003.

87

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

http://java.sun.com/docs/books/tutorial/collections/implementations/general.html
http://java.sun.eom/j2se/l.4.2/docs/api/index.html
http://java.sun.com/software/communitysource/j2se/java2/download.html
http://www.ibm.com/developerworks/opensource/jikes/
http://www.jaggersoft.com/csharp-standard/
http://www.opensource.org/

[15] M aria Cutumisu, Calvin Chan, Paul Lu, and Duane Szafron. MCI-Java: A Modified
Java Virtual Machine Approach to Multiple Code Inheritance. In 3rd Virtual Machine
Research and Technology Symposium Usenix VM ’04 Conference Proceedings, pages
13-28, San Jose, California, United States, May 2004.

[16] Christopher Dutchyn. Multi-dispatch in the Java virtual m achine: Design, implemen
tation, and evaluation. Master’s thesis, University of Alberta, 2002.

[17] Matthew Flatt, Shriram Krishnamurthi, and Matthias Felleisen. Classes and mixins.
In POPL '98: Proceedings o f the 25th ACM SIGPLAN-SIGACT Symposium on Prin
ciples o f Programming Languages, pages 171-183. ACM Press, 1998.

[18] James Gosling, Bill Joy, Guy Steele, and Gilad Bracha. The Java Language Specifi
cation. Addison-Wesley, 2nd edition, 2000.

[19] M. Huchard. Sur quelques questions algorithmiques de I’heritage multiple. PhD
thesis, Universite Montpellier II, 1988.

[20] Dan Ingalls, Ted Kaehler, John Maloney, Scott Wallace, and Alan Kay. Back to the
future: the story o f Squeak, a practical Smalltalk written in itself. In OOPSLA ’97:
Proceedings o f the 12th ACM S1GPLAN Conference on Object-oriented Program
ming, Systems, Languages, and Applications, pages 318-326. ACM Press, 1997.

[21] Yuri Leontiev, Tamer Ozsu, and Duane Szafron. On Separation between Interface,
Implementation, and Representation in Objects DBMSs. In 26th International Con
ference on Technology o f Object-Oriented Languages and Systems (TOOLS USA98),
pages 155 -1 6 7 , Santa Barbara, August 1998.

[22] Jesse Liberty. Object-Oriented Analysis and Design with C ++. Wrox Press Ltd, 1998.

[23] Tim Lindholm and Frank Yellin. The Java Virtual Machine Specification. Addison-
Wesley, 2nd edition, 1997.

[24] Barbara Liskov. Keynote address - data abstraction and hierarchy. In OOPSLA ’87:
Addendum to the Proceedings on Object-oriented Programming Systems, Languages
and Applications (Addendum), pages 17-34. ACM Press, 1987.

[25] Barbara Liskov and Stephen Zilles. Programming with abstract data types. In Pro
ceedings o f the ACM SIGPLAN Symposium on Very High Level Languages, pages
50-59,1974.

[26] Bertrand Meyer. Eiffel: The Language. Prentice-Hall, 1991.

[27] Kristen Nygaard and Ole-Johan Dahl. The development of the SIMULA languages.
In HOPL-1: The first ACM SIGPLAN Conference on History o f Programming Lan
guages, pages 245-272. ACM Press, 1978.

[28] Candy Pang, Wade Holst, Yuri Leontiev, and Duane Szafron. Multi-Method Dispatch
Using Multiple Row Displacement. In ECOOP1999 Conference Proceedings, pages
304-328. 13th European Conference on Object-Oriented Programming, Lisbon, Por
tugal, June 1999.

[29] N. Scharli, S. Ducasse, O. Nierstrasz, and A. Black. Traits: Composable units of
behavior. In ECOOP 2003 Conference Proceedings, pages 248-274, Darmstadt, Ger
many, July 2 0 0 3 .17th European Conference on Object-Oriented Programming.

[30] Alan Snyder. Inheritance and the development of encapsulated software systems.
In Research directions in object-oriented programming, pages 165-188. MIT Press,
1987.

[31] David Stoutamirer and Stephen Omohundro. The Sather 1.0 Specification. Technical
Report TR96-012, International Computer Science Institute o f Berkeley, 1996.

88

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

[32] Bjame Stroustrup. The C++ Programming Language. Addison-Wesley, 1991.

[33] Peter Wegner. Dimensions of object-based language design. In OOPSLA ’87: Con
ference Proceedings on Object-oriented Programming Systems, Languages and Ap
plications, pages 168-182. ACM Press, 1987.

89

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This page contains no text

90

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix A

Abbreviations

Many abbreviations have been used in this thesis. Table A .l is a collection of these

abbreviations with their whole forms and meanings.

Abbreviation Whole form M eaning

EMB (§5.4.4) Execution
Method Block

the “in memory” data structure holding informa
tion about the method to be executed

EMT (§4.3) Expanded
Method Table

an “in memory” symbol table for methods used
by Jikes to handle code inheritance

IMT (§5.3) Interface
Method Table

an “in memory” data structure used to identify the
slot number for methods declared in an interface

JVM (§3.1) Java Virtual
Machine

an abstract computing machine in which a pro
gram written in Java runs

M T (§5.3) Method Table
an “in memory” data structure used to hold infor
mation about all the methods declared a type

OOP (§1.1)
Object Oriented
Programming

a programming paradigm in which a problem is
solved using interactive message passing among
objects

RCP (§5.1.1) Run-time
Constant Pool

a run-time symbol table inside the Java Virtual
Machine

RMB (§5.4.2) Resolved
Method Block

the “in memory” data structure holding informa
tion about the method referred to by an entry in
the run-time constant pool

VM (§3.3) Virtual Machine an abstract computing machine

VMT (§5.3) Virtual
Method Table

an “in memory” data structure used to identify the
most specific methods visible in a type

Table A .l: Meaning of the abbreviations used

91

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This page contains no text

92

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix B

Class File Structure

The new schematic diagram of the modified class file structure is shown in Figure B .l.

A new class access flag (IM PLEM ENTATION) has been added on top o f the original five.

As a result, the legitimate class access flags are:

1. PUBLIC

2. FINAL

3. SUPER

4. ABSTRACT

5. INTERFACE

6 . IM PLEM ENTATION

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

R
eproduced

with
perm

ission
of

the
copyright

ow
ner.

Further
reproduction

prohibited
w

ithout
p

erm
ission

.

VO
4^

31
ctq’

I
W

00
o
ET
a>

3
p
a .
n

&
o

&
En
Q
O-

O

31

o o

5
o
r t
C
3

Magic Number (4 Bytes)
0XCAFE8A&E

Minor Version Number
(2 Bytes)

Major Version Number
(2 Bytes)

Constant Pool Si/e • C
(integer. 2 Bytes)

Constant Pool Structi*e
(Variable St/e)

Class Access Flags
(2 Bytos)

Class Name (2 Bytes)
(Location intie x in CP)

interlace Count. N
(Integer. 2 Bytes)

Interlace list
(Variable Si/e)

Field Count ‘ F
(Integer, 2 Bytes)

Field Table
(Variable Si/e)

Method Count • M
(Integer, 2 Bytes)

Method Table
(Variable Si/e)

Attrix/te Count • A
(Integer, 2 Bytes)

Attrtxjto Table
(Variable Si/e)

Schem atic Diagram of a (modified) .c lass File S tructure
CONSTANT.

CONSTANT.

CONSTANT.
CONSTANT.

CONSTANT.

CONSTANT.

CONSTANT.

CONSTANT.

CONSTANT.

CONSTANT.

CONSTANT

Utf8_lnfo Structure

.Integerjnto Structure

Floatjnfo Structure

L ongjnto Structure

DoubleJnto Structure

.C lassjn to Structure

S tringjnfo Structure

FleldRef Structure

.MethodRel Structure

JnterfaceModeRe! Structure

NameAndType Structure

Superctass Name (J Bytes)
(location Index In CP)

Prepared by: Calvin Chan
Last modilied: December 16, 2002

set ub) on (set)
M t(4 B n n)

o*»t<en»n

is
Detals (Variable Sire)

D«a(ien«)

mon (28)

M ts |» |Mil (26)
Mil (28)

w elrtt

Oftapv
ln o « i (78)pueucABSTRACT

WTERfACE
M W .tM tN TA nOM field info Structure

ACCMt
Fuat

AVttuNI
COurtN N (ternsMVtUll

P»m«*o AltOuttl
C o n $ t i r W |l u l

SyT,r«< D*fr*CM*4
rrusstENT

VOLATAE
p u e u c
PRIVATE
PROIECTEO
STATCfinalN item i

m ethodjnfo Structure
AXMI
FHj»

D*Krt*or A t t u t n
COLTt N m u i t h r w 'C t a u i ' t o 'n o t i (28)

OuferC*mW<*ntfei (28)
IwwCUstNAmttnaei (28)

P i r m E l d A fe tw f e f
CoM

E* S « p M

STRICT
ABSTRACT

NATIVE SYNCHRONIZED

PU8UC
PRIVATE
PROTECHO
STATIC
FINAL

knnerOasiAccatiFlag (28)

InnerClass attribute
Nam*

Intfei (28)
Alftmgth

(48)
InmrtUi
C0/4(28)Deprecated attribute Exceptions attributeM Rems

ei tim
Coa*2B)

6UrT PC (28)Synthetic attribute UneNumberTable attribute EMPC(2S)
NandfPC (28)N*r*tafei (28) AJn*T0ffl

0
ASt«<99i INTLm

(28)A Hems

N
CUcnTypo (28)

LocalVariableTabte attributeConstvalue attnbute StarrC (28)
Langtt(26)IVT Lin

(28) Narr* Hfe» (78)lnd#i{78)
DttCrftor Indti (28)

Code attribute InMl (28)

PmnMiO A M U N :
SmmFM Dip icafed

N«t*
Mil (78)

AMmgn
US)

GomYrf
InMi (28)

SourcoFile attribute
H***

Mil (28)
AMmglh

(48)
So/cFM
Mil (28)

Niff* AMonjm UuStt* UuLoe* Cafe Sill Ubyfe** El Lmgn Ei caption MrbutM ABrCUM
Ml* (28) (48) (28) V* (28) M (48) Com T (28) Tltt* CovT » T&c

Appendix C

The Grammar of MCI-Java

C .l Introduction

This chapter presents a grammar for MCI-Java suited for a parser. This version is

based on the Java grammar included in Chapter 18 of the book T he Jav a ™ Language

Specification, second edition (JLS) by James Gosling, Bill Joy, Guy Steele, and Gilad

Bracha [18].

The starting goal symbol is CompilationUnit. The production line has been marked

with for easy identification.

Similar to the original Java grammar, the grammar below uses the following BNF-style

conventions:

* [x] denotes zero or one occurrences o f x.

* j- denotes zero or more occurrences of x.

* ^x | y j means one o f either x or y.

* k e y w o rd is an actual keyword used in MCI-Java.

This grammar for MCI-Java, which is included in Section C.2, is generated by modify

ing the original Java grammar. Changes to the original version are recorded as

1. additions,

2. removals or

added new non-terminal:
o rules for the added non-terminal

95

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C.2 The Grammar of MCI-Java

Identifier:
IDENTIFIER

Qualifiedldentifier:

Identifier ^ . Identifier ^

Literal:
IntegerLiteral
FloatingPointLiteral
CharacterLiteral
StringLiteral
BooleanUteral
NullLiteral

Expression:
Expression! [AssignmentOperator Expressionl]

AssignmentOperator:

+ =

/ =
& =

A _

% =
<<=
» =
» > =

Type:

Identifier | . Identifier BracketsOpt
BasicType

StatementExpression:
Expression

ConstantExpression:
Expression

Expressionl:
Expression2 [Expression] Rest]

Expression] Rest:
[? Expression : Expressionl]

Expression2 :
Expression3 [ExpressiorHRest]

96

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Expression2Rest:

•|/«/£xop Expression31-

Expression3 instanceofType

Infixop:
II
&&
I
A

&

! =
<
>
< =
> =
«
»
» >
+

/
%

Expression3:
PrefixOp Expressions

(^ Expr | Type j) Expression3

Primary

Primary:
(Expression)
this [Arguments]
super SuperSujfix
Literal
new Creator

Identifier . Identifier IdentifierSujfix]

BasicType BracketsOpt .class
void.class

IdentifierSujfix:

[^] BracketsOpt .class | Expression
Arguments

. ^ class | this | super Arguments | new InnerCrealorj

PrefixOp:
+ +

97

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

I

+

PostfixOp:
+ +

Selector:
. Identifier [Arguments]
.this
. super SuperSujfix
. new InnerCreator
[Expression]

SuperSujfix:
Arguments
[(Identifier) J .Identifier [Arguments]

BasicType:
byte
short
char
int
long
float
double
boolean

ArgumentsOpt:
[Arguments]

Arguments:

Creator:
Qualifiedldentifier (ArrayCreatorRest | ClassCreatorRest)

InnerCreator:
Identifier ClassCreatorRest

ArrayCreatorRest:

[I] BracketsOpt Arraylnitializer | Expression] < [Expression] > BracketsOpt

([Expression < , Expression >])

BracketsOpt:

ClassCreatorRest:
Arguments [ClassBody]

A rraylnitializer:

98

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

{ [Variablelnitializer < , Variablelnitializer

Variablelnitializer:
Arraylnitializer
Expression

ParExpression:
(Expression)

Block:
{ BlockStatements }

BlockStatements:

^ BlockStatement ^

BlockStatemeru :
LocalVariableDeclarationStatement
ClassOrlnterfaceDeclaration
[Identifier:] Statement

LocalVariableDeclarationStatement:
[final] Type VariableDeclarators:

Statement:
Block
if ParExpression Statement [else Statement]
for (ForlnitOpt; [Expression]; ForUpdateOpt) Statement
while ParExpression Statement
do Statement while ParExpression :

try Block ^ Catches | [Catches] finally Block ̂

switch ParExpression { SwitchBlockStatementGnoups }
synchronized ParExpression Block
return [Expression];
throw Expression ;
b r e a k [Identifier]
c o n tin u e [Identifier]

ExpressionStatement
Identifier : Statement

Originally missing in chapter 18, from section 14.8 of JLS
ExpressionStatement:

StatementExpression;

Catches:

CatchClause < CatchClause

CatchClause:
catch (FormalParameter) Block

99

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

SwitchBlockStatementGroups:

| SwitchBlockStatementGroup |

SwitchBlockStatementGroup:
SwitchLabel BlockStatements

SwitchLabel:
case ConstantExpression :
default:

MoreStatementExpressions:

^ , StatementExpression j-

Forlnit:
StatementExpression MoreStatementExpressions
[final] Type VariableDeclarators

ForUpdate:
StatementExpression MoreStatementExpressions

ModifiersOpt:

•| Modifier ^

Modifier:
public
protected
private
static
abstract
final
native
synchronized
transient
volatile
strictfp

VariableDeclarators:

VariableDeclarator ^ , VariableDeclarator ^

VariableDeclaratorsRest:

VariableDeclaratorRest ^ , VariableDeclarator j-

ConstantDeclaratorsRest:

ConstantDeclaratorRest ^ , ConstantDeclarator |

VariableDeclarator:
Identifier VariableDeclaratorRest

100

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

ConstantDeclaraior:
Identifier ConstantDeclaratorRest

VariableDeclaratorRest:
BracketsOpt [= Variablelnitializer]

ConstantDeclaratorRest:
BracketsOpt = Variablelnitializer

VariableDeclaratorld:
Identifier BracketsOpt

>->~CompilationUnit:

[package Qualifiedldentifier;] ̂ ImportDeclarationTypeDeclaration^

ImportDeclaration:

import Identifier . Identifier ^ / . *]:

TypeDeclaration:
ClassOrlnterfaceDeclaration

ClassOrlnterfaceDeclaration:

ModifiersOpt { ClassDeclaration \ImplementationDeclaration I InterfaceDeclaration I

ClassDeclaration:
class Identifier [extends Type] [implements TypeList] [utilizes TxpeUst]

ClassBody

ImplementationDeclaration:
implementation Identifier [extends TypeList] [implements TypeList]

ImplementationBody

InterfaceDeclaration:
interface Identifier [extends TypeList] InterfaceBody

TypeList:

Type | , Typê

ClassBody:

{ | ClassBodyDeclaration̂ }

ImplementationBody:

{ llmplementationBodyDeclarationX }

InterfaceBody:

101

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

{ < InterfaceBodyDeclaration > }

ClassBodyDeclaration:

[static] Block
ModifiersOpt MemberDecl

MemberDecl:
MethodOrFieldDecl
void Identifier MethodDeclaratorRest
Identifier ConstructorDeclaratorRest
ClassOrlnterfaceDeclaration

MethodOrFieldDecl:
Type Identifier MethodOrFieldRest

MethodOrFieldRest:
VariableDeclaratorRest
MethodDeclaratorRest

InterfaceBodyDeclaration:

ModifiersOpt InterfaceMemberDecl

InterfaceMemberDecl:
InterfaceMethodOrFieldDecl
voi d Identifier InterfaccMethodDedaratorResi

ClassOrlnterfaceDeclaration

InterfaceMethodOrFieldDecl:
Type Identifier InterfaceMethodOrFieldRest

InterfaceMethodOrFieldRest:
ConstantDeclaratorsRest;
AbsjraqtMetfiodDeclpratqrRest
InterfaceMethodDeclarat&rRest

ImplementationBodyDeclaration:

ModifiersOpt ImplementationMemberDecl

ImplementationMemberDecl:
Type Identifier ConstantDeclaratorsRest;
Type Identifier MethodDeclaratorRest
voi d Identifier VoidMethodDeclaratorRest
ClassOrlnterfaceDeclaration___________

MethodDeclaratorRest:

FormalParameters BracketsOpt [throws QualifiedldentifierList] MethodBody

AbstractMethodDeclaratorRest

102

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Abstr ^ M^thp4D^S^^9JS.̂ lz
InterfaeeMethod&eelarat&rResti-

FormalParameters BracketsOpt [throws QualifiedldentifierList] ;

ConstructorDeclaratorRest:
FormalParameters [throws QualifiedldentifierList] MethodBody

QualifiedldentifierList:

Qualifiedldentifier ^ , Qualifiedldentifier̂

FormalParameters:

([FormalParameter ^ , FormalParameter̂])

FormalParameter:
[final] Type VariableDeclaratorld

MethodBody:
Block

103

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This page contains no text

104

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix D

Multiple Code Inheritance Scenarios

Seventeen multiple code inheritance scenarios, which are commonly found in normal

application programming, are described in this chapter. The outcome o f a method invoca

tion in each of the scenarios is examined using the semantics of the extended language.

The legend used in the diagrams for depicting the scenarios is shown in Figure D .l. A

class and an implementation are represented by a rectangular and an oval shape, respec

tively. A single alphabet in capital letters denotes the name o f the type.

When the type in question contains a

definition for a method, the single alpha

bet will be followed by the name of the

method enclosed in a pair of curly brackets.

An abstract method declaration is identified

with the three letters ’ab s \ It should also

be noted that a method definition contained

in a type may have the meaning extended

to include cases where the method is inher

ited from the supertypes, and is visible at Figure D .l: Legend for scenario diagrams

that point in the inheritance hierarchy. To

simplify the explanation, c is used to denote a run-time instance of C, and c . m () denotes

a message sent to this instance of C.

105

Class C an instance of
which is denoted by c

Class A with the
declaration of an
abstract method m

Implementation B with
the declaration of a
concrete method m

■O inheritance relationship

A {abs mQ}

C

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A{mO)

(a) Scenario 1 (b) Scenario 2

Figure D.2: Scenarios 1 - 2

D .l Single inheritance involving an implementation

D.1.1 Scenarios 1 -2

Figure D.2(a) shows a situation in which class C u t i l i z e s implementation A. An

abstract method m () is declared in A. At compile time, the compiler will convert C into

an abstract class because there is an abstract method visible in C, but no concrete imple

mentation o f m () is found in C. If the situation is a result of a recompilation of A without

recompiling C, a run-time exception will be raised when the message c . m () is sent.

However, in Scenario 2 (as shown in Figure D.2(b)), implementation A contains the

concrete method m () instead. This method is therefore visible in C by virtue of the inheri

tance relationship between A and C. At run-time, the message c .m () will be dispatched to

the method found in A unless it is overridden in C by another implementation o f the method

m () , according to the semantics of the extended language.

D.1.2 Scenario 3

In Scenario 3 (as shown in Figure D.3(a)). class C u t i l i z e s implementation B which,

in turn, e x t e n d s another implementation A. While the implementation for method m is

found in A, the method is not overridden in B and C. Thus, the method definition found in A

is the one visible in C. The message c :m () at run-time is dispatched to the method found

in A. The outcome is similar to the normal inheritance scenarios seen with classes.

106

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A {m()l

(b) Scenario 4 (c) Scenario 5(a) Scenario 3

Figure D.3: Scenarios 3 - 5

D.13 Scenario 4

Scenario 4, depicted in Figure D.3(b), is similar in inheritance relationship between

types to Scenario 3, discussed in the previous section. However, the implementation for

the method m () found in B is overridden by the one found in A , and is therefore no longer

visible in the inheritance hierarchy in the subtree rooted from A.

In A and C, only the implementation defined in A is visible and thus the message c . in ()

will be dispatched to the method found in A , according to the semantics of the extended

language.

D.1.4 Scenario 5

Scenario 5, shown in Figure D.3(c), is a special case. Section S.4.3.1 of the Java Lan

guage Specification [18] states that “An instance method that is not a b s t r a c t can be

overridden by an a b s t r a c t method.”

The phenomenon, known as inheritance suspension, is intended to force a new imple

mentation for the method being overridden. Thus, the definition of m () found in A . being

suspended by the abstract method in B , is no longer available in C. This scenario is therefore

equivalent to the situation found in Scenario 1. When a message c . m () is sent at run-time,

an exception will be raised — the same result as for Scenario 1.

107

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Bl r oO)

(c) Scenario 8(b) Scenario 7(a) Scenario 6

Figure D.4: Scenarios 6 - 8

D.2 Multiple inheritance involving an implementation

D.2.1 Scenario 6

The class hierarchy is depicted in Figure D.4(a). In this scenario. C e x t e n d s class A

and u t i l i z e s implementation B. A contains a definition for the concrete method m () ,

while B declares an abstract method with the same signature. It is a conflict situation be

cause two distinct declarations with the same signature are visible in C. According to the

semantics of the extended language, concrete method is given precedence over abstract

method in resolving conflicts and thus only the definition from A is made visible in C. At

run-time, the message c .m () is dispatched to the method in A.

D.2.2 Scenario 7

The class hierarchy is depicted in Figure D.4(b). In this scenario, C e x t e n d s class

A and u t i l i z e s implementation B. B contains a definition for the concrete method m (),

while A declares an abstract method with the same signature. It is a conflict situation be

cause two distinct declarations with the same signature are visible in C. According to the

semantics of the extended language, concrete method is given precedence over abstract

method in resolving conflicts and thus only the definition from B is made visible in C. At

run-time, the message c -m () is dispatched to the method in B. The outcome at run-time

is similar to that for Scenario 6, except that the roles of A and B are swapped in both cases.

This demonstrates the fact that no precedence is given to either a class or an implementation

in resolving conflicts.

108

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

B (m ())A | r a O I

(a) Scenario 9 (b) Scenario 10

Figure D.5: Scenarios 9 -1 0

D.23 Scenario 8

The class hierarchy is depicted in Figure D.4(c). In this scenario, C u t i l i z e s both

implementations A and B . B contains a definition for the concrete method m () , while A

declares an abstract method with the same signature. It is a conflict situation because two

distinct declarations with the same signature are visible in C. According to the semantics

of the extended language, concrete method is given precedence over abstract method in

resolving conflicts and thus only the definition from B is made visible in C. At run-time, the

message c - m () is dispatched to the method in B.

D.2.4 Scenario 9

Figure D.5(a) shows the relationship among the classes for Scenario 9, in which C

e x t e n d s class A and u t i l i z e s implementation B. Both A and B contain a different

definition for the concrete method m () . It is a conflict situation in which two distinct

declarations with the same signature are visible in C. Since both implementations are equal

in precedence, the conflict cannot be resolved and an error will be raised at compile time.

I f it is the result of recompilation of one of the implementations without recompiling C, an

ambiguity exception will be raised at run-time.

D.23 Scenario 10

Figure D.5(b) shows the situation in Scenario 10. This is very similar to Scenario 9,

except that A is an implementation instead of a class. Since a class and an implementation

are treated equally in code inheritance in the new semantics of the language, the outcome

109

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

(a) Scenario 11a (b) Scenario 1 lb

Figure D.6: Scenarios 11a and l i b

in this scenario is the same as in the previous one.

D.3 Multiple inheritance paths from the same root

D3.1 Scenario 11

Figure D.6 shows two distinct versions of Scenario 11. The two differ only in the

lexical order o f the supertypes in the declaration line o f C. However, the semantics of both

the original and the extended version of Java do not attach weight to the lexical order of a

type within the list o f supertypes. Therefore, the two versions of this scenario will have the

same outcome, independent of the lexical order of the supertyes.

Two distinct implementations of m () can be seen in C; it is a conflict situation. Since

there is a partial order between A and B , the definition found in B is overridden by the one

found in A according to the relaxed multiple inheritance approach, making only the defini

tion found in A visible in C. Thus, the message c . m () sent at run-time will be dispatched

to the method found in A.

D3.2 Scenario 12

Based on the explanation found in the discussion o f Scenario 11, the message c .m ()

sent at run-time in Scenario 12a (as depicted in Figure D.7(a)) will be dispatched to the

method defined in A.

However, the situation is changed in Scenario 12b (as shown in Figure D.7(b)) because

110

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

A labs mQl

(b) Scenario 12b(a) Scenario 12a

Figure D.7: Scenarios 12a and 12b

(a) Scenario 13a (b) Scenario 13b

A{aBsmO)

Figure D.8: Scenarios 13a and 13b

the method declared in A is an abstract method; it is a suspension of inheritance. According

to the semantics of language extension, precedence is given to a concrete method over

an abstract method. Thus, the message c . m () sent at run-time in Scenario 12b will be

dispatched to the method defined in B.

D 3 3 Scenario 13

Figure D.8 shows two versions of Scenario 13. They differ in the lexical order of the

supertypes. As previously explained, the outcome is the same because there is no weight

attached to the lexical order of a type within the type list.

Since the definition found in B is given precedence over the one found in A , because it

is an abstract method, the definition of m () in B is visible in C. At run-time, the message

111

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C D (m01 J f Dl™0> J

A{mQ}

c

C 8 j A

c

B(mO) J

(a) Scenario 14 (b) Scenario 15

Figure D.9: Scenarios 14 and 15

c . m () will be dispatched to the method defined in B.

D.4 Diamond-shaped multiple inheritance paths

D.4.1 Scenario 14

Scenario 14, as shown in Figures D.9(a), is the situation in which C e x t e n d s its

superclass A . A has defined the method m () which overrides the declaration in D from

which A inherits. C also u t i l i z e s implementation B. which also e x t e n d s D.

The definition o f m () in D is overridden by the definition in A, so it is hidden from C

along this inheritance path. However, it is not overridden along the path via B. The situation

is similar to that o f Scenario 12a, as shown in Figure D.7(a). It is therefore quite natural to

expect the same outcome as found in Scenario 12a for Scenario 14.

By virtue of the relaxed multiple code inheritance approach, the definition of m () vis

ible in C will be the one defined in A. At run-time, the message c .m () will be dispatched

to the method defined in A, because the definition of m () in D is farther away from C.

D.4.2 Scenario 15

As shown in Figure D.9(b), Scenario 15 has the same inheritance structure as that found

in Scenario 14. In this scenario, a new definition o f m () is found in B instead of A, as in

Scenario 14.

Similar to Scenario 14, by virtue of the relaxed multiple code inheritance approach, the

112

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

C D{m()) J (D{m()> J

A

C

C 8) C A

c

C B j

(a) Scenario 16 (b) Scenario 17

Figure D.10: Scenarios 16 and 17

definition of m () visible in C will be the one defined in B. At run-time, the message c . m ()

will be dispatched to the method defined in B, because the definition of m () in D is farther

away from C.

D.43 Scenario 16

As shown in Figure D.10(a), Scenario 16 has the same inheritance structure as that

found in Scenario 14. In this scenario, no new definition of m () is found in A or B. The

definition in D is the definition visible in C . While the method is inherited from D via two

different paths, the two inherited methods are actually the same. The new semantics does

not define this situation as a conflict. At run-time, the message c . m () will be dispatched

to the method defined in D, as it is the only one visible in C.

D.4.4 Scenario 17

Depicted in Figure D.10(b), Scenario 17 is a situation in which C u t i l i z e s two

implementations, A and B . A t the same time, both A and B e x t e n d another implementation,

D. The definition o f method m () in D is not overridden in A or B.

The definition of m () visible in C is inherited from the same source via two distinct

inheritance paths. No conflict will be reported using the extended language semantics and

the definition in D will be taken as the one visible in C. Thus, at run-time, the message

c . m () will be dispatched to the method declared in D.

113

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

This page contains no text

114

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

Appendix E

Refactoring the ja v a . io package

E .l Result of refactoring

Class RAF DIS DOS IC OC
Method B A B A B A B A B A
w r i t e B o o l e a n 1 0 - - 2 2 - - - 2

w r i t e B y t e 1 0 - - 2 2 - - - 2
writeShort 2 0 - - 4 2 - - - 3
w r i t e C h a r 2 0 - - 4 2 - - - a
w ritelnt 4 0 - - 6 2 - - - 5
w r i t e L o n g 8 0 - - 10 2 - - - 9
w r i t eFloat 1 0 - - 1 0 - - - 1
wr t e D o u b l e 1 0 - - 1 0 - - - 1
sink - - - - - 1 - - - 1
r e a d F u l l y (b y t e []) 1 0 1 0 - - - 1 - -
r e a d F u l l y (b y t e [] ,int,int) 5 0 6 0 - - - 5 - -
re a d 3oolean 3 0 3 0 - - - 3 - -
r eadByte 3 0 3 0 - - - 3 - -
re a d U n s i g n e d B y t e 3 0 3 0 - - - 3 - -
readShort 4 0 5 0 - - - 4 - -
r e a d U n s i g n e d S h o r t 4 0 5 0 - - - 5 - -
r eadChar 4 0 5 0 - - - 5 - -
readlnt 6 0 7 0 - - - 7 - -
r eadLong 1 0 2 0 - - - 1 - -
readFXoat 1 0 1 0 - - - 1 - -
r e a d Double 1 0 1 0 - - - 1 - -
r eadUTF 1 0 1 0 - - - 30 - -
s t a t i c readUTF - - 30 1
source - - - 1 - - - 1 - -
Total 57 0 73 2 30 13 - 70 - 27
Legends:
RAF = RandomAcccssFile
DIS = Datal nputStream DOS = DataOutputStream
1C = I nputCode OC = OutputCode
B = Before refactoring A = After refactoring

Table E.1: Change in the number of executable statements as a result of refactorin

115

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission

E.2 Source code

E.2.1 Sourcejava
package java.io;

public interface Source
{

public int read() throws IOException;
public int read tbyte b[], int off, int len) throws IOException;

}

E.2.2 InputCode.java
package java.io;

public implementation InputCode implements Datalnput, Source
<

public Source sourced {
return this;

>
public void readFully(byte b[]) throws IOException {

this.readFully(b, 0, b.length);
)
public void readFully (byte b[], int off, int len) throws IOException (

int n - 0;
while (n < len) (

int count - this.sourced .readtb, off + n, len - n) ;
if (count < 0)

throw new EOFException();
n +- count;

)

}
public boolean readBoolean() throws IOException {

int ch - this.sourced .readd;
if (ch < 0)

throw new EOFException();
return (ch !- 0);

)
public byte readByteO throws IOException {

int ch - this.source 0 - r e a d d ;
if (ch < 0)

throw new EOFException{);
return (byte)(ch);

}
public int readUnsignedByted throws IOException {

int ch - this.source () .read ();
if (ch < 0)

throw new EOFExceptiond;
return ch;

)
public short readShortd throws IOException {

int chi - this.source () . read ();
int ch2 - this.source().read();
if ((chi I ch2) < 0)

throw new EOFException();
return (short)((chi << 8) - (ch2 « 0));

}
public int readUnsignedShort() throws IOException {

Source in - this.source();
int chi - in.readd;
int ch2 - in.readd;
if ((chi I ch2) < 0)

throw new EOFException!);
return (chi << 8) + (ch2 << 0);

116

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

public char readCharO throws IOException (
Source in - this.source ();
int chi *■ in. read () ;
int ch2 - in.read();
if ((chi I ch2) < 0)

throw new EOFException!);
return (char) ((chi « 8) •* (ch2 « 0));

}
public int readlnt() throws IOException (

Source in - this.source0;
int chi - in.readd;
int ch2 - in.read ();
int ch3 - in.read ();
int ch4 - in.read();
if ((chi I ch2 I ch3 I ch4) < 0)

throw new EOFException!);
return ((chi « 24) + (ch2 « 16) + (ch3 « 8) + (ch4 « 0));

}
public long readLongO throws IOException {

return ((long) (this.readlnt0) « 32) + (this.readlnt() & OxFFFFFFFFL)
)
public float readFloatf) throws IOException (

return Float.intBitsToFloat (this.readlnt());
)
public double readDoubleO throws IOException {

return Double.longBitsToDouble(this.readlong0);
>
String readUTF() throws IOException (

int utflen - this.readUnsignedShort();
char str[] “ new char[utflen];
int count - 0;
int strlen - 0;
while (count < utflen) (

int c •• this.readUnsignedByte () ;
int char2, char3;
switch (c » 4) (

case 0: case 1: case 2: case 3: case 4: case 5: case 6: case 7
count++;
str(strlen*-] - (char)c;
break;

case 12: case 13:
count +- 2;
if (count > utflen)

throw new UTFDataFormatException ();
char2 - this.readUnsignedByte0 ;
if ((char2 & 0x00) !- 0x80)

throw new UTFDataFormatException();
str[strlen++] - (char) (((c S OxlF) « 6) I (char2 S 0x3F))
break;

case 14:
count +- 3;
if (count > utflen)

throw new UTFDataFormatException();
char2 - this.readUnsignedByte ();
char3 - this.readUnsignedByte();
if (((char2 S OxCO) !- 0x80) II ((char3 & OxCO) !- 0x80))

throw new UTFDataFormatException();
str[strlen++] - (char) (((c & OxOF) « 12) I

((char2 & 0x3F) « 6) I
((char3 s 0x3F) « 0));

break;
default:

throw new UTFDataFormatException();
)

}
return new String(str, 0, strlen);

117

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

E.23 Sink.java

package java.io;

public interface Sink
<

public void write(int b) throws IOException;
)

E.2.4 OutputCode.java

package java.io;

public implementation OutputCode implements DataOutput, Sink
'i

public Sink sink()(
return this;

>
public void writeBoolean(boolean v) throws IOException {

Sink out - this.sink ();
out.write(v ? 1 : 0);

}
public void writeByte(int v) throws IOException {

Sink out - this.sinkO;
out.write(v);

>

public void writeShort(int v) throws IOException (
Sink out - this.sinkO;
out .write ((v » > 8) £ OxFF) ;
out .write ((v » > 0) £ OxFF);

)
public void writeChar (int v) throws IOException {

Sink out - this.sinkO;
out. write ((v » > 8) £ OxFF);
out.write((v » > 0) £ OxFF);

}

public void writelnt(int v) throws IOException (
Sink out “ this.sinkO;
out. writet (v » > 24) £ OxFF);
out.write((v » > 16) £ OxFF);
out.write((v » > 8) £ OxFF);
out.write((v » > 0) £ OxFF);

)
public void writeLong (long v)

Sink out - this.sinkO;
out.write ((int) (v > » 56)
out.write ((int) (v » > 48)
out.write ((int) (v » > 40)
out.write ((int) (v > » 32)
out.write ((int) (v » > 24)
out.writet (int) (v > » 16)
out.write((int) (v » > 8)
out.writet (int) (v » > 0)

)
public void writeFloat(float v) throws IOException {

this.writelnt(Float.floatToIntBits(v));
)
public void writeDouble(double v) throws IOException (

this.writeLong(Double.doubleToLongBits(v));
>

>

118

throws IOException (

£ OxFF);
£ OxFF);
£ OxFF);
£ OxFF);
£ OxFF);
£ OxFF);
£ OxFF);
£ OxFF);

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

E.2.5 RandomAccessFile.java

package java.io;

public class RandomAccessFile utilizes InputCode, OutpucCode
(

public RandomAccessFile(String name. String mode) throws FileNotFoundException
(

»* code not modified »»
!
public RandomAccessFile(File file. String mode) throws IOException {

.... code not modified **»*
1
public final FileDescriptor getFDO throws IOException (

.... code not modified ****
)
private native void open(String name, boolean writeable) throws FileNotFoundException

public native int r e a d O throws IOException;

private native int readBytes(byte b[], int off, int len) throws IOException;

public int read(byte b I], int off, int len) throws IOException (
.... cocje n ot modified »«**

)
public int read(byte b[]) throws IOException (

.... code not modified *»**
1
public int skipBytes(int n) throws IOException {

.... code not modified **»»
■)

public native void write(int b) throws IOException;

private native void writeBytes(byte b(], int off, int len) throws IOException;

public void write(byte b[]) throws IOException (
...» code not modified **”

I
public void writetbyte b[], int off, int len) throws IOException (

.... code not modified *'**
)
public native long getFilePointer() throws IOException;

public native void seek(long pos) throws IOException;

public native long length() throws IOException;

public native void setLength(long newLength) throws IOException;

public native void close 0 throws IOException;

public final String readLineO throws IOException (
»*■*» code not modified *■**•*

)
public final void writeBytes(String s) throws IOException {

...» code not modified **■*»
I
public final void writeChars(String s) throws IOException (

»•** code not modified
)
public final void writeUTF(String str) throws IOException (

.... code not modified »***
)

119

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

E.2.6 DataOutputStream.java

package java.io;

public class DataOutputStream extends FilterOutputStream utilizes OutputCode
'(

public DataOutputStream(OutputStream out) (
» code not modified *

)
private void incCount(int value) {

* * * * code not modified •»***
}
public synchronized void write(int b) throws IOException (

''* * code not modified ***»
)
public synchronized void write (byte b[], int off, int len) throws IOException
(

* * * * code not modified ****
1
public void flush() throws IOException (

*”** code not modified »»**
}
public final void writeBoolean (boolean v) throws IOException (

super(OutputCode)-write(v ? 1 : 0);
incCount(1);

f
public final void writeByte(int v) throws IOException {

super(OutputCode).write(v);
incCount (1);

}
public final void writeShort(int v) throws IOException (

super(OutputCode).writeShort(v);
incCount(2);

S
public final void writeChar(int v) throws IOException (

super(OutputCode).writeChar(v);
incCount(2);

)
public final void writelnt(int v) throws IOException {

super(OutputCode).writelnt (v);
incCount(4);

)
public final void writeLong(long v) throws IOException (

super(OutputCode).writeLong(v);
incCount(8);

)
public final void writeBytes (String s) throws IOException f

* *•* code not modified »*»»
1
public final void writeChars (String s) throws IOException (

**** code not modified »■***
)
public final void writeUTF(String str) throws IOException (

**** code not modified ****
)
public final int s i z e d (

•» code not modified *»**
)
I I overriding the method declared in OutputCode
public Sink sink(){

return this.out;
)

1

120

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

E.2.7 DatalnputStream.java
package java.io;

public class DatalnputStream extends FilterlnputStream utilizes InputCode
t

public DatalnputStream(InputStream in) (
***» code not modified »*»*

)
public final int readtbyte b []) throws IOException {

code not modified *«»*
)
public final int readtbyte b[], int off, int len) throws IOException I

* * " code not modified »**»
>
public final int skipBytes (int n) throws IOException {

**** code not modified ****
)

public final String readLinet) throws IOException {
»*»* code not modified »■***

)
public final static String readOTFtDatalnput in) throws IOException {

return in.readUTF();

// overriding the method declared in InputCode
public Source source{){

return this.in;
)

121

R eproduced with perm ission of the copyright owner. Further reproduction prohibited without perm ission.

