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Abstract 

Leaks in oil pipeline systems can significantly affect the environment and lead to 

economic losses. Pipeline companies are working to improve existing methods to monitor 

their pipelines more effectively. Computer model-based leak detection methods detect 

leaks by analyzing the pipeline hydraulic state and have been commonly employed in the 

energy pipeline industry. However, the effectiveness of these types of leak detection 

systems is often challenged by real-world uncertainties. This study quantitatively 

evaluated the impacts of uncertainties on leak detectability of a widely used real-time 

transient model based leak detection system. Uncertainties in fluid properties, data 

acquisition systems, and field sensors were assessed. Errors were introduced into the 

identified uncertainty sources one at a time and then randomly; and the changes in leak 

detection time caused by the real-world uncertainties were quantified using simulated 

leaks. This study provides valuable quantitative results contributing towards a better 

understanding of how real-world uncertainties may affect leak detection. A general 

ranking of the importance of the uncertainty sources was obtained; ordered from high to 

low, they are time skew, bulk modulus error, viscosity error, and polling time. It was also 

shown that inertia-dominated systems with low R factors were less sensitive to 

uncertainties compared to friction-dominated systems with high R factors. 
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Chapter 1: Introduction 

1.1   Background 

Pipelines are considered a reliable, efficient, and environmentally-friendly way of 

delivering large quantities of crude oil over long distances. The World Factbook (Central 

Intelligence Agency – CIA, 2016) indicates that the pipelines span approximately 

119,000 km across Canada. The networks of pipelines in Canada are vast with 

approximately 1.2 billion barrels of oil products transported every year and contributed 

$11.5 billion to the national gross domestic product (GDP) in 2015 (Canadian Energy 

Pipeline Association – CEPA, 2016).  

The safety of pipelines is one of the top priorities for the pipeline industry. 

Pipeline companies have been taking various measures to maintain and monitor their 

pipelines. Extensive federal and provincial regulations are in place but the existence of 

pipeline leaks cannot be eliminated. Many factors may lead to pipeline leak, such as 

metal loss, cracking and fatigue of pipelines. The National Energy Board (NEB) indicates 

that during the period of 2008 to 2016, a total of 59 liquid release events have been 

reported, which caused volumetric loss of crude oil summing up to 1,765.38 m3. Leaks 

not only pollute the land and resources of the affected areas significantly, but also cause 

significant economic losses, including costs of a timely contaminants cleanup, thorough 

incident investigations, and pipeline repairs. For instance, a severe crude oil leak accident 

that took place in Michigan, United States, in 2010 released more than 8,000 barrels of 

liquid products into Talmadge Creek and Kalamazoo River, and a total of approximately 

$785 million was spent on pollutant cleanup (Enbridge Inc.). Therefore, detecting leaks is 
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an ongoing challenge and the pipeline industry is highly motivated to enhance the current 

leak detection technologies and develop new ones. 

The energy pipeline industry is employing highly sophisticated technologies and 

practices for leak detection. Some of these techniques are based on devices installed 

externally to the pipeline systems. For example, wireless digital sensors may be attached 

around a pipeline to sense the signal of leaking fluid products (e.g. pressure drop), and 

other sensors may be installed in the soil around the pipelines to detect the presence of 

hydrocarbons (CEPA, 2016). These technologies are limited to high-risk regions due to 

high installation and maintenance costs and the associated retrofit challenges for existing 

pipelines (Geiger, 2006). Other techniques use field measurements of internal pipeline 

parameters and produce new values via some kind of algorithmic computation. If the 

calculated new values exceed certain thresholds, an alarm is generated that may indicate a 

leak (American Petroleum Institute - API, 2002). This type of method is called 

computational pipeline monitoring, which has the advantage of being relatively non-

invasive (to the pipe) and requiring no field installation. 

The algorithm adapted in the computational pipeline monitoring method can be as 

simple as a mass balance calculation, or as sophisticated as a full-blown hydraulic 

transient model, i.e. real-time transient model based leak detection method. The 

occurrence of a leak creates a transient event, i.e. pressure waves propagating in both 

directions along the pipeline. Therefore, analyzing hydraulic behaviors (particularly 

pressure and flow rate) makes it possible to detect leaks. A computer model is perfect for 

this purpose. By solving the partial differential equations of conservation of mass, 

momentum, and energy given necessary pipeline characteristics and boundary conditions, 
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the hydraulic state along the pipeline can be computed in real time. The other main 

component of a real-time transient model based leak detection method is a supervisory 

control and data acquisition (SCADA) system. The SCADA system obtains the measured 

data from field sensors and writes the data into a Remote Terminal Unit (RTU) data file. 

A leak is suspected when the model computed pipeline state (primarily pressure and flow) 

deviates from the corresponding field measurement data in the RTU data file. An alarm 

will be generated when the discrepancies exceed certain threshold(s). A Real-time 

transient model based method is the core technology of many commercial leak detection 

software programs such as DNV-GL Synergi Pipeline Simulator (SPS) Statefinder and is 

the focus of this study. 

 

1.2   Problem Statement 

The effectiveness of real-time transient model based leak detection methods in 

practical applications is often challenged by real-world uncertainties. The pipeline 

characteristics (e.g. pipe diameter, length, wall thickness, and elevation profile) and fluid 

properties (e.g. density, viscosity, and bulk modulus) may not be known accurately. Field 

sensor measurements can be inaccurate or contain data noise. The SCADA system polls 

data from field sensors at discrete time and therefore between the polling intervals 

(polling time) there is uncertainty. In addition, the SCADA system polls data from each 

sensor consecutively rather than from all field sensors simultaneously. Sensors at 

different locations are polled at different time but stamped at the same time, causing a 

“time skew”. These uncertainties contribute to discrepancies between the model predicted 

pipeline state and that as indicated by the measured data even when no leak is present. 
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Detection of small leaks often needs relatively tight alarm threshold values. 

However, the magnitude of discrepancies caused by real-world uncertainties may be 

close to or even bigger than those caused by a small leak (USDOT, 2007). False alarms 

are often resulted (giving an alarm when no leak is present). Too many false alarms 

reduce the reliability of the leak detection system, and can potentially lead to missing the 

alarms caused by a real leak. A relaxed alarm threshold can reduce the number of false 

alarms, but will cause small leaks become undetectable. This problem can be bigger 

when pipeline is operating under transient conditions, e.g. during the pump and valve 

operations, pipeline start-up and shut-down. It has been observed that leak detectability 

degrades during transient operating conditions (personal communication Enbridge 

Pipelines, 2013). Transient operating conditions can be quite frequent in pipeline systems. 

The possibility of a leak occurring during transient conditions is not lower than during 

steady sate. Therefore, it is important to evaluate the effects of uncertainties on leak 

detectability during various operating conditions (both steady state and transient state). 

 

1.3   Previous Research 

Many studies have been conducted to investigate the impact of uncertainties on 

hydraulic modelling and leak detection of water distribution systems. Some focused on 

steady state. For example, Al-Zahrani and Muhammad (2014) assessed the effects of 

uncertainties of pipe roughness and initial tank level on the modelled pressure heads at 

pipe junctions. A Monte-Carlo Simulation (MCS) method was used to generate random 

values for pipe roughness coefficient and water tank level. These values were input to the 

hydraulic model EPANET which solves the continuity and the conservation of energy 
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equations iteratively for water distribution systems (Rossman, 2002). The results 

indicated that modelled pressure was less sensitive to uncertainty in pipe roughness than 

uncertainty in the tank level.  

Others focused on transient conditions. Covas and Ramos (2010) assessed the 

effectiveness of Inverse Transient Analysis (ITA) leak detection method using the 

pressure and flow rate data collected with different leak sizes from two experimental 

facilities and one real-world water transmission system. ITA integrates a hydraulic 

transient model with an optimization algorithm. Leak sizes were determined through 

optimization which minimizes the difference between observed and calculated pressure 

values; leak locations were determined based on the travelling time of transient signal 

from the source to the leak. Transient events in laboratory were generated by operating a 

valve at the downstream end of the pipe. In field conditions, the transient was generated 

by shutting down the upstream valve while keeping the downstream valve open during 

data collection. The ITA method was shown to be able to detect and localize leaks of 

reasonable sizes (10% of line rate or larger). It was found that the modelled wave speed 

was lower than that calculated based on pressure signal travelling time. The difference 

between the actual and estimated wave speed was attributed to the uncertainties in 

physical characteristics (e.g. diameter changes and non-elastic behavior of pipe), which 

significantly affected the leak detectability. The uncertainty in data collection also 

contributed to the degraded leak detectability since the sensor accuracy and noise greatly 

affected the identification of the leak pressure drop. 

Duan (2015) examined the effects of uncertainties on leak detection during 

transient condition. The investigation was conducted with a water hammer model, which 
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solves the conservation of mass and momentum equation neglecting the convective terms. 

Leak detection was achieved by using the frequency domain method which detected and 

localized leaks utilizing the leak-induced damping pattern of peak in the frequency 

domain (Duan et al. 2011). A hypothetical water distribution system was established with 

constant diameter, constant tank level at upstream and downstream, and a valve at 

downstream end to adjust the pipe flow rate. Transients were generated by shutting down 

the downstream valve. Effects on leak detection by uncertainties in the initial Reynolds 

number, valve operation time, pressure measurements, and wave speed were evaluated 

both individually and collectively. The results showed that the uncertainties in wave 

speed and pressure data measurement had greater impacts on the leak detection method 

than those in valve operation time and initial Reynolds number. 

The properties of water are very different from the properties of oil transported in 

energy pipeline systems. Studies on water distribution systems focused on junctions and 

branches while the energy pipelines are generally long single pipelines. Whether or not 

the findings of the water distribution system studies can be transferred to the energy 

pipelines needs further investigation. However, most research in energy pipeline field 

focused on the enhancements of model-based leak detection methods. For example, Al-

Khomairi (2008) developed a new method of leak detection for long pipelines. Trial leaks 

were introduced into the simulated pipeline. The leak size and location were determined 

as the ones that minimize the squares of the discrepancies between computed and 

measured values of flow rate and pressure. This method was verified with water using lab 

experiments and was shown to be satisfactory in detecting small leaks (as small as 1% of 

line rate) during both steady state and transient state.  
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Research of the effect of uncertainty on leak detection systems in energy pipelines 

is relatively limited and American Petroleum Institute (API) 1149 appears to be the only 

applicable publication that discusses the effects of variable uncertainties on leak detection 

for energy pipeline systems (American Petroleum Institute, 1993). Initially published in 

1993, API 1149 discussed the sources of uncertainty including pipeline systems 

characteristics, fluid properties, and data noise as well as their ranges. The leak detection 

system used to evaluate how uncertainties affect leak detection employed a water 

hammer model to simulate the pipeline state assuming the pipeline was intact. A “pattern 

recognition” algorithm was used for leak detection, i.e. a leak was declared when the 

differences between measured and calculated data matched a specific leak pattern (e.g. a 

simultaneous pressure drop at the inlet and a rise in the inlet flow rate; immediate drop in 

both pressure and flow rate at the outlet). A similitude parameter named R factor was 

developed to categorize the pipelines. 

                                                   𝑅 = (
𝑉0

2𝑎
) (

𝐿𝑓

𝐷
)                                                               (1-1) 

R factor consists of five variables including initial velocity (V0), friction factor (f), wave 

speed (a), pipe length (L) and diameter (D). It was shown that pipelines with identical R 

factor values have the same hydraulic behaviors, which allowed the reduction of number 

of test scenarios and generalization of the test results. API 1149 (1993) indicated that the 

effect of uncertainty in each of the five variables comprising the R factor was identical to 

the effect of uncertainty introduced to the R factor. Therefore, the effect of uncertainty on 

leak detection can be evaluated by introducing the uncertainty to R factor alone rather 

than to each of the five variables individually. It was concluded that pipeline systems 

with low R factors were generally more tolerant to uncertainties as compared to those 
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with high R factors. As these findings were based on pattern recognition leak detection 

algorithm, their applicability to other prevailing leak detection algorithms needs further 

investigation.  

API 1149 was updated in 2015 and provided a framework to assess the effect of 

uncertainties on a full range of computational pipeline monitoring methods currently in 

use (American Petroleum Institute, 2015). It described a general procedure as the 

following. A hydraulic model is built for a hypothetical pipeline to establish a reference 

pipeline state. The measurement and configuration data with introduced error are then 

used to run the computational pipeline monitoring system for various operating scenarios. 

With the uncertainties, the computational pipeline monitoring system will show some 

indications of leak when there is none. This produces statistical properties of the false 

indication of leak. A case study was conducted and the uncertainty associated with the 

SCADA system was included. It was shown that time skew had a significant impact on 

leak detectability during transient period, greater than the effect of pressure measurement 

error but smaller than the flow rate measurement error. However, the conclusions were 

made using a simple mass balance method in this case study thus may not be applicable 

to the more sophisticated real-time transient model based leak detection systems.  

 

1.4   Objective 

The objective of this research was to improve our understanding of the effects of 

real-world uncertainties on the performance of a widely used real-time transient model 

based leak detection method. This is important for pipeline companies to prioritize 

improvement measures when enhancing their leak detection system. The objective was 
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achieved by introducing uncertainties into leak detection system and quantifying the 

change in leak detectability under various operating scenarios. Simulated leaks were used 

to test the response of the leak detection system. The broadly applied SPS Simulator and 

Statefinder (DNV-GL) were selected to facilitate this study. SPS Simulator is used by 

over 130 companies worldwide and was used in this study to generate simulated leak data. 

SPS Statefinder is what Enbridge’s leak detection systems of over 30 pipelines are built 

upon and is used by over 30 other companies. It consists of a real-time transient model 

and an optimization based leak detection algorithm. In this study, uncertainty was first 

introduced to each of the selected key variables (e.g. viscosity, bulk modulus, time skew, 

polling time, and measurement data) one at a time, and then errors were randomly 

generated for all five variables using MCS method. The effects of uncertainty on the low 

R and high R systems were also compared to see whether some pipeline systems are more 

problematic for leak detection than the others. 

 

1.5   Thesis Structure 

This thesis is organized in four chapters. Chapter 1 presents the background on 

pipeline leak detection, challenges faced by computer model based leak detection systems, 

and previous research about the analysis of uncertainty in water supply networks and 

energy pipeline systems. In Chapter 2, the methodology used in this project is explained. 

Chapter 3 presents the results and discussion of the uncertainty study. Conclusions and 

recommendations are highlighted in Chapter 4. 
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Chapter 2: Methodology 

2.1   Study Pipeline 

API 1149 (1993) demonstrated that pipeline systems with the same R factor have 

the same hydraulic response. This allowed the use of one pipeline to conduct tests that 

were representative of a wide range of pipeline configurations under various operating 

conditions. A simple study pipeline with one injection and one delivery and no 

intermediate pump station was designed (Figure 2-1). It is also representative of a pipe 

segment between two stations for more complicated pipelines with multiple pump 

stations. The characteristics of the study pipeline were selected based on the pipeline 

catalogue of 30 plus pipelines provided by the industry partner. The outside diameter of 

the study pipeline was selected to be 30 inches because it was the pipe diameter that 

occurred most often (in terms of pipe length). The length was set to 150 km, and the pipe 

roughness was set to 0.0001. The study pipeline carried a single fluid of crude oil with a 

density of 858.6 kg/m3, a viscosity of 4.57 centipoise (cP), and a bulk modulus of 

209,800 psi. Temperature effect was excluded from this study by setting a constant 

temperature of 15 ℃ . The effect of gravitational alignment was also eliminated by 

assuming the pipeline was horizontal with no elevation changes. Flow rate and pressure 

measurements were available at both upstream and downstream ends.  

Systems with different R values were shown to have distinctly different hydraulic 

responses (API 1149, 1993; Pabon, 2015). Systems with high R values are friction-

dominated thus the transient signal caused by operation or leak attenuates quicker 

compared to the systems with low R values, which are inertia-dominated. To study how 

different types of hydraulic response affect leak detectability, the initial flow rate in the 
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1149, 1993). Both steady and transient operating conditions were conducted. For steady 

state, a constant flow rate was specified at the upstream (US) injection location and a 

constant delivery pressure was controlled at downstream (DS) end. A flow increase 

transient was created to mimic a pump start at the injection location. The flow rate at US 

was increased by 50% during 5 seconds while the pressure at DS was held constant. A 

flow decrease transient was also designed to mimic a valve closure at the delivery 

location. The pressure at upstream was held constant while the flow rate at DS was 

decreased by 50% during 5 seconds. Severe transient events in real pipeline systems are 

often associated with the closure of fast response pressure control valves which can close 

by 95% within 3-5 seconds (personal communication Enbridge Pipelines, 2013). 

However, a flow decrease of more than 50% led to column separation in the study 

pipeline, i.e. pressure drops below vapor pressure and gas vapor bubbles form in the oil. 

To eliminate this complexity introduced by two-phase flow, flow changes were limited to 

±50%. The transient events tested in this study were considered relatively severe 

compared to what may occur in real pipeline systems. Transient event was introduced 

into the Simulator model at the same time as the leak (4-hour simulation time), as this 

was shown to be the worst-case scenario for leak detection during transient operations 

(Pabon, 2015).  

RTU data generated by Simulator were free of sensor noise, which was referred to 

as “perfect data” in this study. To better mimic the real-world RTU data, Gaussian 

distributed noise was generated and added to the simulated leak data using a noise 

generation tool developed in MATLAB. Noise levels tested were 1% and 2% of the 

pressure and flow rate values. The modified RTU data containing Gaussian noise were 
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where P is the pressure (Pa); V is the flow velocity (m/s); ρ is the density of the fluid 

(kg/m3); f is the Darcy-Weisbach friction factor (dimensionless); g is the gravitational 

acceleration (m/s2); α is the upward angle between the pipe and the horizontal (degree); x 

is distance (km); t is time (s); D is the pipe diameter (m); and a is the wave speed of the 

pipeline system (m/s) given by 

𝑎 =
√𝐾 𝜌⁄

√1+
𝐾

𝐸

𝐷

𝑒

                                                                                                                        (2-3) 

where e is the pipe thickness (m), E is Young’s modulus, and K is bulk modulus. Both 

have the unit of pressure, which is Pa in SI unit and psi in IM unit. Bulk modulus is 

defined as 

𝐾 = −Ṽ
𝑑𝑃

𝑑Ṽ
 

where Ṽ is the volume of the fluid (m3) (Wylie and Streeter, 1993). 

For a simple pipeline with one injection and one delivery point, it is sufficient to 

determine the hydraulic state if one boundary condition is provided at each pipe end, as 

long as all the input parameters to the model precisely describe the actual pipeline system. 

Any other measured data would be redundant for estimating the hydraulic state. However, 

real-world uncertainties can never be avoided. Uncertainties in fluid properties, pipe 

configuration, and data can all contribute to discrepancies between modelled and 

measured hydraulic state. The state estimation algorithm optimizes the pipeline state (e.g. 

pressure, flow rate, and friction factor) to reasonably ascribe the discrepancies to real-

world errors and/or leaks by making best use of all available measurements.   

State estimation adjusts measured pressures and flow rates, pressure drops, and 

wave speed, as well as removing or adding fluid from the pipeline. A penalty (E) is 
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assigned for each adjustment being made as seen in the following equations (only 

showing terms relevant to this study) and the solution that minimizes the sum of all the 

penalties is sought (DNV-GL SPS User Manual, 2012). 

𝐸1 = ∑ (
𝑊1

𝑅𝐸𝑃𝑖
𝑃 × (𝑃𝑖

𝑀 − 𝑃𝑖
𝐴))

2

+ 𝑖 ∑ (
𝑊2

𝑅𝐸𝑃𝑖
𝑄 × (𝑄𝑖

𝑀 − 𝑄𝑖
𝐴))

2

𝑖                                        (2-4) 

E1 is the penalty associated with the errors in measured pressure and flow rate, where Pi
M 

and Qi
M are measured pressure and flow rate at sensor location i, Pi

A and Qi
A are the adjusted 

pressure and flow rate used in the model, (PM 
i - PA 

i ) and (QM 
i - QA 

i ) are the amount of 

adjustments state estimation made to the measured pressure and flow rate, REPP 
i and REP

Q 
i  are the repeatability of the pressure transmitters and flow meters, i.e. the estimated 

errors in the measured pressure and flow rate, W1 and W2 are the tuning weights assigned 

to pressure measurements and flow rate measurements respectively. A smaller weight 

indicates a higher level of uncertainty and Statefinder is less penalized for making 

adjustments to the relevant variables (DNV-GL SPS User Manual, 2012). 

𝐸2 = ∑ (𝑊3 × 𝐹𝑃𝐷𝐶𝑖)
2

𝑖                                                                            (2-5) 

E2 is the penalty associated with the errors in modelled pressure drop caused by friction, 

W3 is the tuning weight assigned to friction, FPDCi is a correction coefficient applied to 

the friction factor f of pipe segment i. It is applied to the friction factor f of a pipe 

segment, 

𝑓𝑐 = (1 − 𝐹𝑃𝐷𝐶) × 𝑓                                                                                                     (2-6) 

where f is the friction factor in the model calculated by Colebrook method with the input 

viscosity, and fc is the friction factor after state estimation adjusts it. The bound of FPDC 

is ±15%, augmented by a user-defined parameter, Viscosity·Error (VER) (DNV-GL SPS 
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User Manual, 2012). VER can be increased so that full correction can be made to friction 

factor. 

𝐸3 = ∑ (
𝑊4

1000×∆𝑡
× (𝑃𝑖

𝐴 − 𝑃𝑖,𝑝𝑟𝑒𝑣
𝐴 ))

2

+ 𝑖 ∑ (𝑊5 × (𝐹𝑃𝐷𝐶𝑖 − 𝐹𝑃𝐷𝐶𝑖,𝑝𝑟𝑒𝑣))
2

𝑖 +

∑ (
𝑊6

𝐵𝑀𝐶𝑎,𝑖
× (𝐵𝑀𝐶𝑖 − 𝐵𝑀𝐶𝑖,𝑝𝑟𝑒𝑣))

2

 𝑖                                  (2-7) 

E3 is the penalty associated with the errors in the rate of change of the modelled pressure, 

the friction correction coefficient, and the bulk modulus correction coefficient BMC. Δt is 

the time step and the subscript prev represents values used at the previous time step; W4, 

W5, and W6 are the tuning weights assigned to the rate of change of pressure, friction, and 

bulk modulus respectively; BMCa,i is the maximum allowed bulk modulus correction 

coefficient in the simulation; BMC is  applied to the wave speed: 

𝑎𝑐
2 = 𝑎2 × (1 − 𝐵𝑀𝐶)                                                                                                    (2-8) 

where a is the calculated wave speed with the input bulk modulus and ac is the wave 

speed after correction. The bound for BMC is set by a user-defined parameter BMER and 

cannot exceed 0.5 (DNV-GL SPS User Manual, 2012).  

𝐸4 = ∑ (𝑊7 × 𝐷𝐹𝑖)2
𝑖                                                                                                        (2-9) 

E4 is the penalty associated with the error that cannot be attributed to the real world 

uncertainties thus may be induced by a leak and W7 is the corresponding tuning weight. 

DFi is defined as “diagnostic flow” in pipeline segment i in Statefinder. If negative, it 

indicates removal of fluid from the modelled pipeline (DNV-GL SPS Help and Reference 

Manual, 2012). Leak detection is often based on volume imbalance, which is calculated 

by integrating the diagnostic flow (DF) over a period of time, or time window. Volume 

imbalance is typically monitored by integrating over different time intervals referred to as 
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time windows (e.g. 5 minutes, 1 hour, and 24 hours), with smaller windows targeted to 

detect large leaks quicker and larger windows targeted to detect smaller leaks (Canadian 

Standard Association Z662 Annex E). This is because over a short period of time, it is 

very difficult to distinguish a leak from the volume imbalance caused by uncertainties; 

whereas in a longer time window, the volume imbalance caused by the leak steadily 

increases and becomes distinguishable. In this study, volume imbalance in a one-hour 

time window was used to quantify leak detectability according to the 5% leak size. A 

dimensionless volume imbalance (DVB) was defined as volume imbalance divided by the 

leak volume (the volume of fluid leaked out over an hour). This allowed different testing 

scenarios with different sizes of leaks to be compared.  

The objective function to be minimized is the summation of all the penalties listed 

above. The decision variables are the pressure measurement, flow rate measurement, 

FPDC, and BMC. The constraints for the pressure and flow rate measurements are the 

repeatability of the field sensors. FPDC bound and BMC bound exert constraints to 

FPDC and BMC respectively. At each time step, state estimation seeks the values of the 

decision variables to obtain the minimal objective function, which indicates a best fit 

between the modelled and actual pipeline state.  

 

2.4   Sources of Uncertainty 

Uncertainties are often present in fluid properties, field sensors, and SCADA 

systems, thus they were evaluated in this study. Properties of a fluid are often not known 

accurately since fluids with different properties may be mixed in tanks before injection 

into the pipeline. As a result, density, viscosity, and bulk modulus can differ greatly from 
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the nominal value measured in the laboratory. In the actual pipeline systems, the density 

of a fluid is often measured by a densitometer before injection. However, viscosity and 

bulk modulus are typically not measured on the pipeline and the values measured 

periodically in the laboratory are used in the leak detection system. The impact of 

inaccurate viscosity and bulk modulus were assessed by purposely setting wrong values 

for these two variables in the hydraulic model of the leak detection system. Viscosity was 

varied to introduce a ±20% in the R factor through the friction factor (f). Initially bulk 

modulus was also varied to introduce a ±20% error to the R factor through the wave 

speed (a). This was conducted to see whether viscosity error and bulk modulus error 

would have the same impact on leak detection if they both cause exactly the same level of 

uncertainty in the R factor.  However, ±20% error in the R factor resulted in 

unrealistically large error in the bulk modulus. Therefore, the realistic level of uncertainty 

(±10%) in bulk modulus was also tested (personal communication Enbridge Pipelines, 

2016). The values of viscosity and bulk modulus tested are shown in Table 2-1.  

Table 2-1. Level of uncertainties in fluid properties. 

 Variable Value Equivalent Error in R 

Factor Lower Base Upper Lower Base Upper 

Viscosity R = 2.20 (cP) 1.31 4.57 11.53 -20% 0 +20% 

Viscosity R = 0.49 (cP) 1.69 4.57 9.85 -20% 0 +20% 

Bulk modulus realistic (psi) 188,820 209,800 230,780 +3.5% 0 -3.0% 

Bulk modulus large (psi) 124,268 209,800 480,250 +20% 0 -20% 
 

The SCADA system can also contribute to uncertainties. Errors may be 

introduced because the SCADA system polls data from field sensors at discrete time and 



21 
 

therefore there is uncertainty between the polling intervals. Polling time of 1 second, 5 

seconds, and 10 seconds were tested to see whether the loss of important information 

during transient period could degrade leak detectability. In addition, the SCADA system 

polls data from each sensor consecutively rather than from all field sensors 

simultaneously. Field sensors at different locations are polled at different times but 

stamped at the same time, causing a “time skew”. The maximum time skew in real 

pipeline systems could reach 10 seconds (personal communication Enbridge Pipelines, 

2016). For field sensor where the pressure or flow rate was controlled at constant, 

variation in reporting time does not affect the reported value. For example, the flow rate 

at upstream end and pressure at downstream end were both held constant for steady state 

scenarios in this study. Therefore, time skew was introduced to upstream pressure and 

downstream flow rate as their “measured” data change with time. The scenarios tested are 

shown in Table 2-2. 
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Table 2-2. Tested scenarios of time skew. 

Flow Condition Sensors with Time Skew 

Steady State (with leak) 
Pressure at US point 

Flow rate at DS point 

Pressure at US point & Flow rate at DS point 

Flow Decrease 

Flow rate at US point 

Flow rate at DS point 

Pressure at DS point 

Flow rate at US point & Pressure at DS point 

Flow rate & Pressure at DS point 

Flow Increase 

Pressure at US point 

Flow rate at US point 

Flow rate at DS point 

Pressure at US point & Flow rate at DS point 

Flow rate & Pressure at US point 
 

When time skew is present in field sensor(s), additional model parameters are 

needed, 

𝐸𝑅𝐸𝑃 =  𝑅𝐸𝑃 + 𝑇𝐸𝐵 × 𝐹𝐼𝐿𝑃                                                                                     (2-10) 

where EREP is the effective repeatability, which defines the bound within which the 

measured flow rate or pressure data can be adjusted; REP is the sensor repeatability as 

previously defined; TEB is a time tag error bound which is a user-defined parameter 

associated with time skew. TEB was set to zero when there was no time skew in the 

simulated leak data; and it was set to 10 seconds for the tests with 10-second time skew; 

FILP is the absolute value of the slope between two measured points. It can be seen that 
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larger time skew causes the increase of EREP, and the bound for adjusting the measured 

flow rate or pressure is larger (DNV-GL SPS User Manual, 2012). 

Error was first introduced into each possible source of uncertainty separately 

including viscosity, bulk modulus, polling time, and time skew. Tests were conducted 

using both perfect data and noisy data to study the effect of data noise. Errors were then 

introduced into all sources randomly and the range of uncertainty for each variable is 

shown in Table 2-4. The tuning weights in equations (2-4), (2-5), (2-7), and (2-9) needed 

to be set differently for the single error case and the random error case (Table 2-3). When 

only a single variable contains uncertainty, its corresponding weight was set to a 

relatively small value compared to the weights for the other terms that contained no error. 

For example, for tests with viscosity error alone, the tuning weight for FPDC (W3) was 

set to 1, which was the smallest value among all the tuning weights. W1 and W2 were set 

to 1 in all cases. This is because when “measured” data contains data noise, adjustment to 

the “measured” data is desirable and Statefinder was less penalized for making such 

adjustment. The bound for the adjustment was determined by the sensor repeatability. For 

perfect data cases, repeatability of all sensors was set to be zero thus no adjustments to 

the measured pressures or flow rates would be made regardless the values of W1 and W2.  

In the cases where error was introduced randomly in any uncertainty sources, the 

tuning weights were set similar to what are used for real-life pipelines (Table 2-3). 

Measurements (pressure and flow rate), friction, and bulk modulus were considered the 

most likely uncertainty sources thus W1, W2, W3, and W6 were all set to 1. W7 was set to 

the second smallest value (5) so that Statefinder was less penalized for generating 

diagnostic flow to account for leak. More penalty was given to the change rate of 
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pressure and friction by setting W4 to 10 and W5 to 500. The purpose of the random 

uncertainty tests was to statistically analyze the effect of uncertainties on leak 

detectability. The MCS method was used to generate all uncertainty variables, including 

viscosity, bulk modulus, polling time, time skew (magnitude and location), and data noise 

level. The range of uncertainty for each variable is listed in Table 2-4. A total of 500 

combinations were tested for each flow condition, steady state, flow decrease, and flow 

increase transient.   

Errors were introduced in the various uncertainty sources and the response of the 

leak detection system as indicated by the one-hour window DVB was compared to the 

baseline case which was error free. A leak alarm threshold was needed to quantify leak 

detectability. A threshold too large would result in delayed or missed detection of a leak; 

while a threshold too small would lead to too many false alarms. Therefore, a leak 

threshold corresponding to a 2% leak was used in this study. When superimposed onto 

the DVB figure (e.g. Figure 3-1a), the 2% threshold appears to be a horizontal line at 

DVB = -0.4 because it was scaled by the volume of fluid leaked out of the pipeline over 

one hour for a 5% leak. The interception of the threshold line and the DVB curve 

indicates the time when a leak was detected, which are marked out with arrows in the 

figure. 
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Table 2-3. Tuning weights in Statefinder for single error and random error scenarios: Wj 

(j = 1-7) are weights assigned to measured pressure and flow rate, friction, rate of change 

of pressure, friction, and bulk modulus, and diagnostic flow, respectively. 

Tuning Weights Viscosity Bulk Modulus SCADA Random Error 

W1 1 1 1 1 

W2 1 1 1 1 

W3 1 107 107 1 

W4 10 10 10 10 

W5 500 107 107 500 

W6 107 1 107 1 

W7 5 5 5 5 
 

Table 2-4. The range of uncertainty for each variable in random error tests. 

Variables Range of Uncertainty 

Viscosity 1.31cP - 11.53cP 

Bulk Modulus 188,820 psi - 230,780 psi 

Data Noise 1%, 2% 

Time Skew 5s, 10s 

Polling Time 5s, 10s 
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Chapter 3: Results and Discussion 

3.1   Single Error Source 

3.1.1   Uncertainty in R Factor 

The effect of uncertainty in the R factor, caused by errors in the different variables 

it comprises, was first evaluated. A ±20% error was introduced in the R factor by varying 

the viscosity or bulk modulus as listed in Table 2-1. For all cases, Statefinder was 

configured to allow for adjustment of the viscosity or bulk modulus to their correct values. 

This was achieved by adjusting the bounds of FPDC and BMC.  

Figure 3-1 shows the results with perfect data. It can be seen that leak 

detectability was not affected by the viscosity error as the DVB baseline and the positive 

and negative viscosity error curves overlap precisely onto each other. However, this was 

not the case when the uncertainty in the R factor was introduced by an incorrect bulk 

modulus. For flow decrease (Figure 3-1a), the detection time for the baseline case was 

24.9 minutes after the leak started at 4:00:00. The curve of the 120% R case deviated 

from the baseline and detection of the leak was delayed by 11.5 minutes, a 46% increase 

in detection time; whereas, the -20% error in R caused by bulk modulus (80% R case) did 

not affect leak detectability, i.e. its DVB curve collapsed onto the baseline. During flow 

increase (Figure 3-1b), the detection time was also delayed for the 120% R case, but for 

the 80% R case, the DVB curve did not collapse exactly with baseline as under flow 

decrease condition. The detection time was slightly earlier by 1.7 minutes. Steady state 

(Figure 3-1c) was much less affected by bulk modulus error than during transient 

operating conditions. Similar trend was observed with noisy data (Figure 3-2). Leak 

detectability was not affected by the viscosity error, but was affected by bulk modulus 
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error, particularly during transient operating conditions. The changes in detection time 

due to bulk modulus error as well as the corresponding baseline detection time are 

summarized in Table 3-1. Only results for system with R = 2.20 are shown because the 

findings are similar for the system with R = 0.49 (results can be found in Appendix A).  

These results evidently show that the viscosity error and bulk modulus error have 

different effects on leak detectability, even though they both introduced exactly the same 

amount of error in the R factor. Viscosity error did not affect leak detectability while the 

impact of bulk modulus error could be significant. Therefore, the effect of the 

uncertainties in individual variables comprising the R factor must be evaluated 

individually. This is a different finding from API 1149 (1993), which concluded that 

uncertainty in different variables comprising the R factor has equal impact on leak 

detectability. This is likely due to the different leak detection methods employed in API 

1149 and this study. 

Table 3-1. Changes in detection time for ±20% uncertainty in the R factor caused by bulk 

modulus error (R = 2.20) 

Data 

Type 
Flow Condition 

Baseline Detection 

Time (minutes 

after leak start) 

Change in Detection (min) 

Time (minutes) 
120% R 80% R  

Perfect 

Data 

Flow Decrease 24.9 11.5 0  

Flow Increase 26.1 14.3  -1.7 

Steady State 25.5 -1.2 1 

Noisy 

Data 

Flow Decrease 33.1 17.6 -5.9  

Flow Increase 61.7 17.8 -26.7  

Steady State 41.7 -1.5 1.4 
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3.1.1.1   Viscosity Uncertainty 

In Statefinder, the friction correction coefficient FPDC is applied to the friction 

factor f of a pipe segment as shown in Equation (2-6). As a result, the 120% R (i.e. 120% 

f) case required an FPDC of 0.1667 while the 80% R (i.e. 80% f) case required an FPDC 

of -0.25 in order to adjust the friction factor to the correct value. Therefore, the 80% R 

case required more correction than the 120% R case in order to make full correction. The 

bound for FPDC is adjusted by changing VER. 

It was shown in Figure 3-1 and 3-2 that leak detectability was unaffected by 

viscosity error if Statefinder was allowed to adjust the friction factor to the correct value, 

i.e. the bound for FPDC was set bigger than the required FPDC. To further investigate 

how viscosity errors are handled, VER was set to 50% which increased the FPDC bound 

from ±0.15 to ±0.23. This allowed full correction for the 120% R case but not for the 80% 

R case. It was found that in both cases the error in the viscosity did not impact leak 

detectability when simulated leak data was perfect. The three DVB curves collapsed 

exactly onto each other thus the figure is not shown here. However, when 1% noise was 

present in the pressure and flow rate, Figure 3-3 shows that the DVB curve for the 120% 

R case collapsed onto the baseline, while the curve for the 80% R case deviated from the 

baseline indicating that leak detectability was affected when the error in viscosity was not 

fully corrected. In the latter case, the leak was detected 1.1, 8.5, and 1.1 minutes sooner 

compared to the baseline detection time of 33.1, 61.7, and 41.7 minutes during flow 

decrease, flow increase, and steady state respectively. This improved leak detectability 

caused by viscosity error may not be desirable since the resulting larger diagnostic flow 

(greater absolute magnitude) was not due to the leak, but rather due to the uncorrected 
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error in viscosity. The change in detection time was minor since the FPDC bound (±0.23) 

was close to the required correction (-0.25). Smaller bound would lead to further change 

in detection time. 
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3.1.1.2   Bulk Modulus Uncertainty 

As previously shown with the R factor test in Figure 3-1 and 3-2, bulk modulus 

error can have a significant impact on leak detectability. Therefore, the response of the 

leak detection system to this uncertainty was further investigated with realistic errors of 

±10% in bulk modulus. It was found that bulk modulus error only marginally affected 

leak detectability during steady state operating condition. This is because the error in bulk 

modulus results in error in wave speed, which only affects transient cases and the 

transient wave caused by a small leak (e.g. 5% leak) was of small magnitude. Leak 

detection times changed by less than ±1% compared to the baseline case with either 

perfect data or noisy data when bulk modulus correction was disabled in Statefinder 

(Figure 3-4). Therefore, only results under transient operating conditions are discussed 

here.  

For all transient cases, Statefinder was configured to allow full correction to the 

bulk modulus error. The correction coefficient BMC is applied to the wave speed instead 

of bulk modulus and is limited by BMER. According to equation (2-8) BMER needed to 

be 0.058 for the 110% bulk modulus case and 0.071 for the 90% bulk modulus case to 

allow full correction. Figure 3-5 shows the effect of bulk modulus errors on leak 

detectability with perfect data. For the 110% bulk modulus case, the DVB curve collapsed 

onto the baseline curve. However, for the 90% bulk modulus case, the DVB curve 

deviated from the baseline even though full correction was allowed. The leak was 

detected 4.9 and 7.0 minutes later than the baseline detection time of 24.9 and 26.1 

minutes for flow decrease and increase transients, respectively.  
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Statefinder does not output the computed wave speed, it is difficult to explain the 

observed BMC behavior with certainty. However, a logical explanation is that the sign of 

BMC is dependent upon the nature of wave propagations in the pipeline. The changes in 

pressure at the downstream end with and without leak are also shown. The flow decrease 

transient at the downstream end caused the pressure to increase and the two pressures (i.e. 

0% and 5% leak) overlapped until the leak caused transient arrived at the downstream 

end. BMC was negative up to this point in time and wave speed was adjusted correctly. 

After this time the pressure with leak increased slower than if there was no leak. BMC 

was positive all the way until a new steady state was achieved, except for a couple of 

instances where it spiked to a negative value briefly. The positive BMC corresponds to a 

decrease in bulk modulus and wave speed, which is clearly incorrect. In contrast, Figure 

3-6b plots the BMC for the 110% bulk modulus case. A flow decrease transient was 

introduced at the upstream end which caused the pressure to decrease. Despite the fact 

that the bulk modulus required a negative correction, the negative BMC corresponds to an 

increase in the bulk modulus and wave speed, which is also clearly incorrect. 

In the low R system, the pressure increased and decreased a few times before 

reaching a new steady state due to wave reflection at the two pipe ends. The finding was 

in agreement with those for the high R system. In general, the sign of BMC was positive 

when the pressure was decreasing and was negative when the pressure was decreasing. 

As a result, leak detectability in the system with R = 0.49 was worse for the case where 

the bulk modulus error can be properly corrected in the system with R = 2.20, but better 

for the case where the bulk modulus error was incorrectly adjusted in the system with R = 

2.20 (Table 3-2). The same relationship between the sign of BMC and pressure was 



 
 



 
 



 
 



 
 



41 
 

the baseline case. The detection time for the corresponding baseline case was 24.9 and 

26.1 minutes during flow decrease and flow increase transients, respectively. It was also 

noticed that the delay in detection time was greatest for the cases with time skew in both 

sensors located at the transient initiation location. When the flow was decreased at the 

downstream end, the case with time skew in both the downstream pressure and flow rate 

sensors located at the downstream end experienced the biggest delay of 3.1 minutes; The 

flow was increased at the upstream end for the flow increase transient and the case with 

time skew in the upstream pressure and flow rate sensors had the largest delay of 3.3 

minutes. Note that leak detection times during steady state operations with perfect data 

were not affected by time skew (Figure 3-10c). The delay in detection time was more 

pronounced in the cases with noisy data, as can be seen in Figure 3-11. Time skew had a 

large impact on leak detectability during both steady state and transient operating 

conditions. Leak detectability was greatly degraded for noisy data because FILP (the 

slope between two adjacent points in the measured data series) in equation (2-10) was 

much larger when data noise was present, increasing the EREP greatly. Therefore, the 

bound for adjusting “measured” data is much larger with noisy data cases. Leak detection 

was delayed by 35 minutes compared to the baseline case detection time 33.1 minutes 

during flow decrease (Figure 3-11a). For flow increase and steady state cases, leak 

became undetectable as compared to the detection time of 61.7 and 41.7 minutes for the 

corresponding baseline cases (Figure 3-11b and c). DVB eventually stabilized at -0.08 

and -0.22 for the flow increase and steady state cases, both were above the threshold. 
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3.1.3   Uncertainty in Polling Time 

Polling time of 5 seconds, and 10 seconds were tested in this study to see whether 

the loss of important measured data information during transient period would degrade 

leak detectability. Polling time of 1 second during transient period was considered as the 

baseline case for comparison. It was found that longer polling time in SCADA system 

had no effect on leak detectability, for either transient conditions or steady state. Since 

the DVB curves for the cases with longer polling time overlapped exactly onto the 

baseline for both perfect data and noisy data tests, the figures are not shown here.  

 

3.1.4   Low R System vs High R System 

The effect of uncertainties on leak detectability in systems with low and high R 

values was compared as they have distinctly different hydraulic responses. Computed 

leak detection times are summarized in Table 3-2 and 3-3 for perfect data and noisy data 

tests respectively along with the corresponding viscosity error, bulk modulus error, and 

time skew for each case. The change in detection times relative to the corresponding 

baseline case are also tabulated and negative numbers indicate earlier detection times 

compared to the baseline case. However, these were associated with excessive diagnostic 

flow caused by uncorrected errors rather than a leak. Figures of the DVB curves in the 

low R system for all tested scenarios can be found in Appendix A. 

Note that setting VER to the same value in the two systems results in a 

significantly smaller FPDC bound in the low R system as the portion of the bound that is 

amplified by VER is proportional to flow rate. The correction that can be made to 

viscosity error in the low R system is greatly limited compared to the high R system. 



45 
 

Therefore, VER was set to different values in the low and high R systems to obtain the 

same FPDC bound in order to make a fair comparison. VER was set to its maximum 

value of 100% in the system with R = 0.49 which produced an FPDC bound ranging 

from 0.153 to 0.162 depending on the flow rate after transient. This bound range was 

equivalent to VER of 2 – 14% in the system with R = 2.20.   

For the perfect data tests in Table 3-2, there was no clear indication on whether 

leak detectability was better in the high R or low R system. However, uncertainties had 

only minor impact on leak detectability when the “measured” data contained no noise. 

Thus, it was not important to determine the fine distinctions observed between the low R 

and high R systems. For noisy data tests however, the change in detection time from the 

baseline was smaller in the low R system as compared to the corresponding case in the 

high R system for 14 out of the 18 cases. For the remaining four cases, the two with time 

skew were undetected in both systems (i.e. DVB never crossed the threshold line); the 

other two cases with positive viscosity error had larger detection time change in the low 

R system but again the changes were very minor (within 1.5 minutes from the baseline).  

It can be concluded that in most cases, the system with low R value tends to be less 

impacted by uncertainties than the system with high R value. 
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Table 3-2. Change in detection time due to uncertainties in systems with low R and high 

R (perfect data tests). 

Variable 
Flow 

Condition 

Level of 

Uncertainty 

Baseline Detection Time 

(minutes after leak start) 

Change in Detection Time 

(minutes) R = 0.49 R = 2.20 R = 0.49 R = 2.20 

Viscosity1 

Flow Decrease -20%f 24.2 24.9 0  0  

+20%f 0  0  

Flow Increase -20%f 24.5 26.1 0  0  

+20%f 0 0  

Steady State -20%f 24.4 25.5 0 0 

+20%f 0 0 

Bulk 

Modulus 

Flow Decrease +10% 24.2 24.9 0.7 0 

-10% 1.7 4.9  

Flow Increase +10% 24.5 26.1 0.5 0 

-10% 1.4  7  

Steady State +10% 24.4 25.5 0.05 0.17 

-10% -0.05 -0.2 

Time 

Skew 

Flow Decrease 10 s 24.2 24.9 2.5-3.9 0.6-3.1  

Flow Increase 10 s 24.5 26.1 0.8-2.2 0.5-3.3  

Steady State 10 s 24.4 25.5 0 0 

Polling 

Time 

Flow Decrease 5s, 10 s 24.2 24.9 0  0  

Flow Increase 5s, 10 s 24.5 26.1 0  0  

Steady State 5s, 10 s 24.4 25.5 0 0 
1Viscosity error was introduced to obtain ±20% error in friction factor (f). 
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Table 3-3. Change in detection time due to uncertainties in systems with low R and high 

R (noisy data tests). 

Variable 
Flow 

Condition 

Level of 

Uncertainty 

Baseline Detection Time 

(minutes after leak start) 

Change in Detection Time 

(minutes) R = 0.49 R = 2.20 R = 0.49 R = 2.20 

Viscosity1 

Flow Decrease -20%f 31.1 33.1 -1.8  -4.5  

+20%f 0.2 0.5 

Flow Increase -20%f 55.5 61.7 -22.6  -34.2  

+20%f 1.3  0.1  

Steady State -20%f 39.8 41.7 -8.7 -15.2 

+20%f 0.5 -0.3 

Bulk 

Modulus 

Flow Decrease +10% 31.1 33.1 0.1  -1  

-10% 0.35  4.9 

Flow Increase +10% 55.5 61.7 0  -4.6  

-10% 1.3  7.1  

Steady State +10% 39.8 41.7 0.05 0.2 

-10% -0.02 -0.3 

Time 

Skew 

Flow Decrease 10 s 31.1 33.1 28 35  

Flow Increase 10 s 55.5 61.7 Undetected Undetected 

Steady State 10 s 39.8 41.7 Undetected Undetected 

Polling 

Time 

Flow Decrease 5s, 10 s 31.1 33.1 0  0  

Flow Increase 5s, 10 s 55.5 61.7 0  0  

Steady State 5s, 10 s 39.8 41.7 0 0 
1Viscosity error was introduced to obtain ±20% error in friction factor (f). 
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3.2   Random Error Sources 

The MCS method was used to generate random values for viscosity, bulk modulus, 

time skew, polling time, and noise level. The purpose was to observe the probabilistic 

effect of uncertainties on leak detectability. Here the baseline was taken as the case 

without any error in viscosity or bulk modulus, 1-second polling time, no time skew, and 

with 1% random noise. It was found that the presence of random uncertainties caused the 

detection of a leak to be delayed or the leak to become undetectable in all cases. 

The histogram in Figure 3-12 shows the percentage of delay in detection time as 

compared to baseline for the 500 cases experiencing flow decrease transient, for the low 

R and high R system, respectively. Leak was detected 31.1 minutes after the leak started 

for the low R system and 33.1 minutes for the high R system in the baseline cases. For the 

high R system, the mean value of the percentage delay was 46.5%, with a standard 

deviation of 24.8% and the median was 40.8%. For the low R system, the mean value was 

31.8%, with a standard deviation of 17.2% and the median was 27.3%. This supports the 

previous finding that leak detection was generally less affected by uncertainties in the 

low R systems. It is interesting to see that the distribution for the high R system is clearly 

bimodal with peaks at approximately 25% and 65% in Figure 3-12b. The data centered 

around the peaks at 25% and 65% are associated with the cases with 1% and 2% random 

noise, respectively. Clearly the higher the noise level in the “measured” data, the more 

leak detectability is impacted by uncertainties. This was less clear in the low R system, 

but a bimodal distribution still exists with peaks at approximately 15% and 55%. There 

are very few data points past 60-70%, again supporting that it tolerates uncertainties 

better than the high R system. 
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Figure 3-12. Delayed leak detection for the 500 cases with random uncertainties during 

flow decrease in system of: a) R = 0.49; b) R = 2.20. 

Figure 3-13 presents the delay in detection time as a function of viscosity error 

and bulk modulus error respectively. Each data point represents one case and the two 

“layers” of data points are for cases with 1% data noise (lower layer) and 2% data noise 

(upper layer) respectively. This is corresponding to the bimodal distribution in Figure 3-

12. It can be seen from the trend line that the delay does not have any trend with the 

magnitude of viscosity error (Figure 3-13a) but shows an obvious decreasing trend with 

bulk modulus error (Figure 3-13b). For tests with positive bulk modulus error the leak 

alarms were generated much closer to the baseline detection time as compared to 
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negative bulk modulus error cases. This was because scenarios with negative bulk 

modulus error required negative BMC but BMC was always positive for all the 500 cases 

since the transient event caused pressure to increase. This is consistent with the finding 

when single error source was present. Therefore an accurate measurement of bulk 

modulus is more important to leak detection than accurate viscosity. Only results from 

the high R system are shown as the trend is not obvious in the low R system. 

 

 

Figure 3-13. Delay in detection time as a function of a) viscosity error; b) bulk modulus 

error in system of R = 2.20 under flow decrease condition (black line is a linear fit to the 

data). 
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Figure 3-14 shows the delayed leak detection time with respect to time skew and 

polling time during flow decrease. The data points appear to be in two layers with the 

lower layer associated with 1% data noise and the top associated with 2% data noise. It 

can be seen from Figure 3-14a that in general tests with 10-second time skew experienced 

longer detection time than those with 5-second time skew. It was because the EREP was 

larger for cases with larger time skew (due to larger TEB). The discrepancy between the 

modelled and “measured” data was more attributed to measurement error than leak, 

resulting in degraded leak detectability. It is also interesting to notice that the degradation 

in leak detectability with the larger time skew is greater for 2% noise than 1% noise cases. 

This again can be explained from the EREP equation (2-10). Larger noise level leads to 

larger FILP, thus larger EREP and less DF (or DVB). The effect of polling time is shown 

in Figure 3-14b. Results were compared between 5-second and 10-second polling time 

for the different time skew value separately. It can be seen that tests with 5-second 

polling time were delayed to a larger extent for both 5-second and 10-second time skew 

scenarios. This could be explained with the FILP in equation (2-10). The slope of two 

measured points is much steeper for the tests with 5-second polling time than those with 

10-second- polling time, so that FILP in 5-second polling time cases was generally 

steeper and resulted in larger EREP. Thus the leak was more difficult to detect with 5-

second polling time. 
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Figure 3-14. Delay in detection time as a function of a) time skew (TS); b) polling time 

(PT) in system of R = 2.20 during flow decrease. 

The 5% leak became undetectable with the selected 2% leak threshold in a large 

number of scenarios during steady state and all 500 cases during flow increase. To better 

reveal the effects of random uncertainties, the leak alarm threshold was reduced to 1% 

leak for flow increase and steady state. Figure 3-15 shows the percentage of delay in 

detection time for the 500 cases experiencing a flow increase transient. For the baseline, 

the leak was detected 27.5 minutes and 31.9 minutes after it started in the low R and the 

high R system respectively. Even with the reduced threshold, there were still 215 
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undetectable cases in the low R system and 253 undetectable cases in the high R system. 

For the detected cases, the mean value of the percentage delay was 56.3%, with a 

standard deviation of 27.7% and the median was 54.3% in the low R system; the mean 

value was 73.9%, with a standard deviation of 32.2% and the median was 71.6% in the 

high R system. The results supported that the low R system was less affected by 

uncertainties than the high R system. Figure 3-16 and Figure 3-17 represent the delayed 

detection time for all detectable tests in terms of viscosity, bulk modulus, time skew, and 

poling time uncertainty respectively in the system with R = 2.20. The conclusions made 

for flow decrease cases remain valid here.  

Figure 3-18 to Figure 3-20 summarize the results for random errors effects during 

steady state. With the 1% leak threshold, all 500 cases were detectable in the low R 

system. The baseline detection time was 20.6 minutes after leak started. The mean value 

of the percentage delay was 81.3%, with a standard deviation of 74.2% and the median 

was 54.3%. In the high R system, 445 scenarios were detectable with the baseline 

detection time of 22 minutes. The mean value was 124%, with a standard deviation of 

102.8% and the median was 66.6%. The findings were consistent with those for transient 

conditions expect that the delay in detection time did not show a decreasing trend with 

bulk modulus error. This was because bulk modulus uncertainty had limited impact on 

leak detectability during steady flow condition. 
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Figure 3-15. Delayed leak detection time for the 500 cases with random uncertainties 

during flow increase in system of: a) R = 0.49; b) R = 2.20. 
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Figure 3-16. Delay in detection time as a function of a) viscosity error; b) bulk modulus 

error in system of R = 2.20 under flow increase condition (black line is a linear fit to the 

data). 
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Figure 3-17. Delay in detection time as a function of a) time skew; b) polling time in 

system of R = 2.20 under flow increase condition. 
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Figure 3-18. Delayed leak detection for the 500 cases with random uncertainties under 

steady flow condition in system of: a) R = 0.49; b) R = 2.20. 
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Figure 3-19. Delay in detection time as a function of a) viscosity error; b) bulk modulus 

error in system of R = 2.20 under steady flow condition (black line is a linear fit to the 

data). 

 

 

 



59 
 

 

 

Figure 3-20. Delay in detection time as a function of a) time skew; b) polling time in 

system of R = 2.20 under steady flow condition. 
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Chapter 4: Summary and Conclusions 

Computer model based leak detection systems use a hydraulic model to simulate 

the pipeline state and compare predictions to the hydraulic state indicated by field 

measurements. A discrepancy between the two states may be induced by a leak. However, 

real-world uncertainties can contribute towards discrepancies between the simulated and 

measured pipeline states even when a leak is not present. If a leak detection system 

cannot properly differentiate between the discrepancies caused by uncertainties and those 

caused by a leak, leak detectability is compromised and leaks may be missed or false 

alarms may be generated. This study investigated how various sources of uncertainty 

affect leak detection with the widely used SPS Statefinder leak detection software (DNV-

GL 2012). Uncertainty sources investigated include fluid properties (viscosity and bulk 

modulus), SCADA parameters (polling time and time skew), and field sensors (data 

noise). Uncertainties were introduced into the leak detection system individually and 

collectively, and the changes in leak detection time compared to a baseline case with no 

uncertainties were determined for a simulated 5% leak. Both steady state and transient 

operating conditions were considered in this study. 

It was found that the SPS Statefinder leak detection system can cope better with 

errors in viscosity than in bulk modulus. Leak detectability was unaffected by viscosity 

errors as long as Statefinder was configured to allow it to fully correct the friction factor. 

In the case of bulk modulus errors, full correction was only achievable when the bulk 

modulus correction coefficient was set equal to the exact amount of required correction 

and when the pressure wave propagated in a certain pattern. That is, when there is 

positive error in the bulk modulus and the transient causes the pressure to increase in the 
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pipeline; or there is negative error in bulk modulus and the transient causes pressure to 

decrease in the pipeline. Longer polling time alone did not affect leak detectability but 

time skew caused significant degradation of leak detectability during both steady and 

transient operating conditions when the “measured” data contained random noise. 

Therefore, a general ranking of the importance of the uncertainty sources (from high to 

low) is: (1) time skew as it always causes degraded leak detectability; (2) bulk modulus 

error as it may be incorrectly adjusted in some cases and the required amount of 

correction is often not known; (3) viscosity error as it only has impact when full 

correction is not allowed and the data is noisy; and (4) polling time as it alone does not 

affect leak detectability for the cases tested. The probabilistic effect of random 

uncertainties of all sources caused delayed leak detection in all cases. It was shown that 

systems with a low R factor were less sensitive to uncertainties compared to system with 

high R factor. The findings are applicable to a wide category of real-time transient 

model-based leak detection systems which utilize optimization algorithm to minimize the 

difference between the modelled and measured pipeline state.  

This study provides general guidelines in terms of prioritizing enhancement 

measures for the tested or similar leak detection system. The implications of the findings 

are: accurate measurement of bulk modulus in real pipeline system is important (as 

compared to viscosity) because there are certain conditions for which bulk modulus error 

cannot be properly accounted for, resulting in degraded leak detectability. The software 

developer may be involved to review the algorithm used for adjusting wave speed to 

explore if it can possibly be improved so that correct adjustment can always be made to 

error in bulk modulus regardless of the pattern of wave propagation. The time skews with 
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SCADA data, if they can be reduced, will lead to more accurate state estimation and 

better leak detectability. The noise level in field sensors is also an important affecting 

factor for leak detection and it can greatly amplify the impact of other uncertainties that 

may exist in the system. A data filter could be employed or better sensors could be 

installed to reduce data noise. Pipeline systems of low R factor can generally better 

tolerate uncertainties or data noise. Measures can be taken to reduce R factor for existing 

pipelines, e.g. adding flow meters to reduce the length of the pipe segment. Variables 

comprising the R factor should be considered when designing new pipelines and their 

leak detection systems.  

In this study, the only leak location tested was at the mid-point of the pipeline. 

This is because a previous study showed that leak detectability was not very sensitive to 

leak locations comparing leaks located at 1/4, 1/2, and 3/4 of the pipe length (Pabon, 

2015). Future work is recommended for additional leak locations especially nearby field 

sensor locations. Only the worst transient conditions with single severity were used for 

the transient operating scenarios evaluated. Therefore, the effects of uncertainties on leak 

detectability should be evaluated with other transient scenarios with various severities to 

cover a full range of operating conditions. Other sources of uncertainty such as pipe 

elevation, shape and diameter, and temperature may also be added in future studies. 
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