
GreenBundle: An Empirical Study on the Energy

Impact of Bundled Processing

Shaiful Alam Chowdhury

Department of Computing Science

University of Alberta

Edmonton, AB, Canada

shaiful@ualberta.ca

Takumi Shuto

Information Sc. & Electrical Eng.

Kyushu University

Fukuoka, Japan

shuto@posl.ait.kyushu-u.ac.jp

Abram Hindle

Department of Computing Science

University of Alberta

Edmonton, AB, Canada

abram.hindle@ualberta.ca

Ken Matsui

Information Sc. & Electrical Eng.

Kyushu University

Fukuoka, Japan

matsui@posl.ait.kyushu-u.ac.jp

Rick Kazman

Information Technology Management

University of Hawaii

Honolulu, HI, USA

kazman@hawaii.edu

Yasutaka Kamei

Information Sc. & Electrical Eng.

Kyushu University

Fukuoka, Japan

kamei@ait.kyushu-u.ac.jp

Abstract—Energy consumption is a concern in the data-center
and at the edge, on mobile devices such as smartphones. Software
that consumes too much energy threatens the utility of the end-
user’s mobile device. Energy consumption is fundamentally a
systemic kind of performance and hence it should be addressed
at design time via a software architecture that supports it, rather
than after release, via some form of refactoring. Unfortunately
developers often lack knowledge of what kinds of designs and
architectures can help address software energy consumption. In
this paper we show that some simple design choices can have
significant effects on energy consumption. In particular we exam-
ine the Model-View-Controller architectural pattern and demon-
strate how converting to Model-View-Presenter with bundling can
improve the energy performance of both benchmark systems and
real world applications. We show the relationship between energy
consumption and bundled and delayed view updates: bundling
events in the presenter can often reduce energy consumption by
30%.

Index Terms—energy consumption, MVP, MVC, architecture

I. INTRODUCTION

Energy consumption is an important quality requirement

for mobile devices [1] and for mobile software such as

apps [2], [3] that affects availability, battery life, and sales.

Unfortunately, and often, app developers are addressing energy

consumption when it becomes a problem [2], [4], rather than

at design time before coding starts. There is evidence that

developers simply are not trained enough in the topic of energy

consumption at the application level to be able to address

energy consumption effectively [4], [5]. Also, available opti-

mization tips do not impact energy consumption in real-world

apps, demanding higher-level changes for efficient accesses of

energy hungry components [6]. Unfortunately, developers have

little idea about what design choices are even available that

will affect energy consumption, as well as the consequence

and tradeoffs of those design choices. Yet interest exists as

Manotoas et al. [4] show: “experienced practitioners are often

willing to sacrifice other requirements for reduced energy

usage”. This paper discusses the kinds of design choices

and tradeoffs that architects face, and seeks to illustrate how

we can improve energy consumption of mobile applications

(and, indeed, of any application) by relatively small changes

in an architecture. Specifically, we show how a change to

Model-View-Presenter (MVP) with “bundling” or “dropping”

strategies can improve the energy performance of apps.

But why focus on mobile? By 2019, the number of

global smart-phone users is expected to reach 2.7 billion

[7]. Smartphones are essentially portable networked pocket

computers powered by batteries [8]. Smartphone apps range

from email apps to games, to notifications, prompts, reminders,

stock tickers, etc. This wide variety of software and uses is

ever present as the network bandwidth demands on mobile

networks starts to eclipse PC network bandwidth [9]. This

pressure on functionality and portable computing puts a huge

strain on a mobile device’s battery, which unfortunately has

not seen much technological improvement [10]. If the device’s

battery energy is consumed, the device is typically unusable.

The importance of energy consumption on mobile devices has

immediate consequences: app developers quickly learn that

their apps that use lots of energy suffer in ratings [2] as con-

sumers highly value battery life for their mobile devices [1].

We seek to aid developers in addressing energy consumption

at design time, before runtime. Our concern is that developers

do not have good guidelines or evidence-based models of the

costs and benefits of the design choices they make in the

design of energy efficient apps. Developers lack knowledge

of architectures, patterns, and tradeoffs that are potentially

“green” (energy efficient), or the parameters that can make

an architecture “green” at runtime. So in this work, we

demonstrate how the Model-View-Presenter pattern (MVP)

can be modified to reduce the event processing overhead of

model objects notifying view objects. We discuss how to

modify the presenter of MVP into a proxy that bundles re-

quests or drops redundant requests by delaying notifications—

thus avoiding frequent expensive intermediate notifications or

context switches that update views. Our research questions and

contributions include:

RQ 1: What is the impact of the number of event sources

and event generation rates on software energy consumption?

RQ 2: Can bundling and dropping events help in saving

energy while varying the numbers of sources and rates?

Contribution 1: We developed a benchmark Android app

that follows the Model-View-Presenter (MVP) architecture to

understand the impact of bundling and dropping on Model-

View-Presenter architecture. We implemented the presenter in

three different forms: no bundling, bundling, and dropping.

The number of event sources and the rate of event generation

(i.e., number of events/second) are determined at runtime with

user input. Using the benchmark app, we answer RQ 1 and

RQ 2.

RQ 3: What are the energy impacts of bundling and

dropping on real-world applications?

RQ 4: Can bundling and dropping help address users’

feedback without harming apps’ energy consumption?

Contribution 2: We confirm the realism of the findings from

the benchmarks with four different real-world Android apps to

answer RQ 3 and RQ 4. Because benchmark apps, although

good for conducting controlled tests, do not necessarily reflect

real-world scenarios and performance [6].

RQ 5: Why do bundling and dropping save energy?

Contribution 3: We investigate the cause of performance

changes by analyzing resource access patterns (e.g., CPU use)

of apps with bundling and dropping to answer RQ 5.

RQ 6: What are the maintainability consequences of im-

plementing bundling and dropping on Android apps?

Contribution 4: We analyze the difficulty of incorporating

bundling/dropping in Android apps, and the consequences of

these changes on maintainability, to address RQ 6. Decoupling

Level (DL) metric [11] is used for analyzing the maintainabil-

ity cost of bundling and dropping versions.

We show that a small change to an architecture like MVP

allows for making energy consumption tradeoffs, allowing for

energy-aware decision making during design and maintenance

phases. In general, developers can save significant amount

of energy by adopting the proposed bundling and dropping

mechanisms—without harming user experience and without

materially affecting the maintenance cost. To support repro-

ducibility and extension, our energy measurements and the

open-source benchmark app are shared publicly [12].

II. BACKGROUND

A. Energy Efficiency is Difficult to Achieve

Power (P) is the rate of work expressed in watts. Energy

(E), expressed in joules, is the total amount of work in a

given time (T): E = P × T . Energy consumption is linearly

proportional to the run-time of a component, but only when P

is constant. A reduced time T can save energy, but what if the

CPU switches to a higher power consuming state for a reduced

time T ? Without actual energy measurements or estimates,

this is hard to answer. Moreover, CPU access patterns are just

one of the many considerations that affect energy consumption

in modern devices [13], [14]. Studies have recommended

energy efficient Java collections [15], [16], energy-efficient

communication protocols [17], [18], locating and finding en-

ergy bugs [19]–[22], and building models and tools for energy

estimation [14], [23]–[30]. Despite the increasing amount of

energy efficiency research, it is often unclear how software

design decisions impact energy consumption [31], and what

tradeoffs developers should be aware of [4], [5].

B. Model-View-Presenter

Model-View-Presenter (MVP) is a form of Model-View-

Controller (MVC) [32], [33]. MVC often uses a design pattern

such as the observable pattern to ensure synchronization be-

tween data in the model, and visual or concrete representations

in the views, while shielding the model from direct manip-

ulation from view objects via a controller. MVC has many

variants. Some have different purposes. One popular variant of

MVC is called active MVC [34], that is typically implemented

with a single process whereby the observer pattern is used

to allow interactions between the model objects and the view

objects. In Active MVC, model objects are observables that

notify observers (views) when their representation or data is

updated. This is done by keeping a list of observers and then

notifying each via a method call that the observable they are

watching has been updated. It is then up to the observer to

query the model objects for the information they need. This

can be quite cumbersome as every change can cause a cascade

of observers to react and deal with each change, regardless of

the granularity or usefulness of the change. Another problem

with this pattern is that it puts the notification and listener

logic into model objects.

Active MVC is cumbersome and requires many model

objects to keep track of observers. Model-View-Presenter is

a variant that uses the observer pattern, but it provides a

proxy (presenter) between the model and the views. The model

objects, when modified, updates the presenter. The presenter

notifies views and provides them with the information they

need to update. The views do not necessarily need the model

objects as the presenter is in the way, thus isolating the model

objects further from views, while removing the responsibility

of model objects to notify views for updates. The controller

part of MVP is often folded into the presenter object itself.

Using this presenter as a proxy allows one to put delegation

logic into the presenter and keep that logic out of the model

objects. This means that a presenter could, for example, bundle

updates or drop updates that were deemed irrelevant. Both

of these choices could improve the runtime behaviour of an

application. Because of its simplicity, the MVP pattern has

been recommended in several developers’ blogs and discus-

sions [35]–[37]. Our approach, however, can also be adopted

with other architectures besides MVP.

C. Events, Bundling and Dropping Presenters

An event can be a database update request, a packet trans-

mission request, a view update request and so on. Bundling is

the act of storing and queuing incoming events such that they

Fig. 1: UML class diagram of the benchmark app.

can be processed together, even periodically. Dropping is the

act of keeping only the last incoming event to be processed—

periodically, or on demand, it processes only the most recent

event. A bundling presenter stores incoming events and send

them later in a single batch for processing them together. On

the other hand, a dropping presenter discards previous events

and processes only the most recent one. Bundling is applicable

when a delay in processing is acceptable, whereas dropping is

relevant when, along with the delay tolerance, the most recent

event nullifies the importance of previous events.

Bundling has been found energy efficient in earlier studies.

Pathak et al. [38] proposed I/O bundling for reducing tail

energy leaks in mobile apps. The authors found that some

hardware components, such as the network interface card or

SDCard, suffer from the tail energy phenomenon. Tail energy

is the wasted energy by a component while transitioning

from the active to the inactive state. Bundling operations that

involve such hardware devices reduces the tail energy phases

significantly, and thus save software energy consumption. For

the same reason, Chowdhury et al. [39] found that writing log

messages in batches can reduce energy consumption. Other

research found that HTTP/2 servers can reduce clients’ energy

consumption by enabling a form of bundling, compared to the

HTTP/1.1 servers [18]. Lyu et al. [40] has shown that energy

efficiency can be significantly improved by grouping multiple

database auto-commit transactions into a single transaction.

In this paper, however, we focus on modifying an existing

architectural pattern (MVP) with dropping and bundling. We

show that by adopting this modified architecture one can gain

the maintainability and architectural benefits of MVP. Yet

developers may still decide how to balance event-based energy

consumption against other qualities such as latency.

III. METHODOLOGY

This section describes the benchmark app we developed

for our experimentation, along with our energy measurement

process and test scripts for driving the subject apps.

A. The Benchmark App

This app has three major components including Model,

View, and Presenter in compliance with the MVP pattern.

Figure 1 illustrates the benchmark app with a class diagram.

The benchmark app, with an UI, allows a tester to choose a

configuration of parameters to test. For example, the number

of emitters (i.e., event sources), event generation rate, test

run duration, and the version of the presenter—no bundling,

bundling, or dropping—can be selected at run time. For

bundling and dropping, a delay parameter is also provided,

i.e., how long the app should wait for collecting the incoming

events before processing all the saved events in a single batch?

This UI, with a button click, can then spawn a new experiment

running on a thread separate from the UI thread [41]. The new

experiment will have emitters and views of emitters’ emissions

instantiated.

1) Model: The model is a collection of emitters objects

(i.e., event sources) based on the user’s input. The model is

responsible for dealing with the emitters and forwarding their

emissions to the presenter. The model has a registerObserver

method which can add any number of presenters that can

be interested in an update from this model. However, for

simplicity, we used only one presenter in our experiments.

The model is an observable from the Observer pattern. The

model component uses four different sub-components: Emitter,

Emission, Distribution, and EmitterQueue.

a) Emitter: An emitter is an event source that emits

events at a given rate (i.e., number of events/second). Each

emitter creates emission objects that contain all the data of

the next scheduled transmission from that emitter. The emitter

is also responsible to notify the model about emissions, so

that the model can notify the interested presenter. Emitters

are meant to simulate event sources like stock prices, weather

information, or sensor output.

b) Emission: An emission is an event that contains

some data, usually a message. These messages are randomly

generated and timestamped.

c) Distribution: Each emitter produces emissions fol-

lowing a probability distribution function (PDF) for schedul-

ing the next emission. The benchmark app is designed to

accommodate any PDF at run-time. For simplicity and low

variability in our energy measurements, we used only the

uniform distribution.

d) EmitterQueue: The EmitterQueue uses a priority

queue (Java’s PriorityQueue) to schedule emitters for emitting

and transmitting the next emissions. The priority queue enacts

an efficient algorithm for scheduling the emitter. The Emit-

terQueue sorts all the emitters based on their next waiting time.

The model then removes the first emitter from the priority

queue, finishes its transmission, and then insert it again based

on its next scheduled emission time. This process continues

until the test run duration expires.

2) Presenter: The presenter is an observer of the model

component. It is notified whenever one of the model’s emitters

transmits. The presenter maintains a mapping of emitters and

views, which the presenter uses to notify the view of the

corresponding emitter with the emission. There are 3 kinds

of presenter used in both the benchmark App and the study: i)

No bundling—forwards the update immediately; ii) Bundling:

waits for the given bundling time, saves all the incoming

updates, and forwards each of them all together; iii) Dropping:

same as the bundling except the presenter forwards only the

most recent update and discards all the previous updates.

The presenter runs in a separate thread than the UI thread.

When the presenter receives an update, it decides which view

to notify and passes off the necessary information to the view

in the view’s thread—such as the UI thread if the view has

a UI. The bundling presenter, for example, sleeps inside a

timer thread and stores the incoming events in parallel. It then

forward all the stored events to the interested views once the

sleeping time is over (i.e., the bundling time provided by the

user). The dropping presenter is identical except it discards

previous events and only forwards the most recent one. To help

practitioners for implementing bundling/dropping presenters,

we made the benchmark app public and open-source [12].

3) View: Views are meant to receive updates from the

presenter. What they do with the update is up to them, but

typically they only talk to the presenter and updates them

with the emission objects they receive. They are observers

of the presenter but might be associated with a particular

object. For simplicity, the benchmark app maintains a one-to-

one relationship between the emitters and view components—

a single view, a textfield, is interested in a single emitter. A

view in the benchmark app is thus responsible to display the

received emission data from a emitter through the presenter.

B. Energy Measurements and Test Scripts

We used two implementations, to verify the generalizability

of our proposed approach, of the GreenMiner [42] software

energy measurement platform to measure the energy consump-

tion and resource usage of the apps used in this paper. The

GreenMiner’s tests and measurements can be accessed re-

motely, and GreenMiner has been used extensively in a variety

of software engineering energy consumption research [15],

[18], [30], [42]–[47].

The system under test is typically an Android smartphone.

Energy is measured using current sensor INA219 and INA159

chipsets that report to an Arduino Uno microcontroller. The

microcontroller processes and aggregates measurements, send-

ing to the test computer—a Raspberry Pi model B computer.

The current sensors and the Pi are connected to the phones

under test. The first GreenMiner is connected to 4 Galaxy

Nexus phones (system-under-test) running Android 4.4.1 with

an INA219, while the GreenMiner-2 is connected to an ASUS

ZenFone 2 running Android 5.0.2 with an INA159. For a

given app and test, the Pi acts as the test-runner which pushes,

runs, and collects measurements for a given test script. The

first GreenMiner system has four identical settings with four

Galaxy Nexus phones. Running different tests in parallel helps

accelerate the measurement process. GreeMiner-2 has only 1

ASUS Zenphone 2. GreenMiner test framework cleans any

previously installed apps before running a new test. This is to

ensure the same system state for each test; energy consumption

of a particular test is therefore unaffected by previous tests.

We ran the real-world app tests on the GreenMiner and

GreenMiner-2; the benchmark app was tested solely on the

1 2 4 8 16 32 64 128
Event generation rate (events/second)

20

25

30

35

40

45

50

55

E
n
e
rg

y
 (

J)

Number of emitters

Benchmark App

1
2
4
8
16
32
64
128

Fig. 2: Energy consumption of the benchmark app with

different numbers of emitters and event generation rates. Bars

indicate the 99% confidence interval.

GreenMiner to simplify comparison of parameters and energy

consumption.

Previous GreenMiner based works [15], [18], [30], [44],

[46] recommended running the same test multiple times, for

the observed variability in energy consumption. We ran all

versions of our subject apps (benchmark and real world apps)

10 times. To minimize outlier effects, we show the 99% con-

fidence interval of our measurement distribution. In addition,

whenever necessary, we used the Kruskal-Wallis test [48] to

verify if two energy measurement distributions are statistically

different. The advantage of Kruskal-Wallis test is that it does

not assume any distribution of the data as it is non-parametric.

To measure the energy consumption of an app, we need to

run the app multiple times, which is infeasible with manual

testing. We used the Android’s adb shell [49] script for

writing the test cases. For the benchmark app, writing the

test script was straightforward. The script selects the number

of emitters, the presenter type, the bundling time in case of

bundling and dropping, and provides the test duration and

event generation rate before clicking the start button. For the

real-world apps, however, the tests were written with two of

the authors’ consensus that these tests represent an average

user’s interaction with these apps.

IV. RESULTS: BENCHMARK APP

In this section, we show the energy consumption of the

different versions of the benchmark app with different settings.

To select the number of emitters, and event generation rate,

we use powers of 2: 1, 2, 4, 8, 16, 32, 64, and 128. This large

range is able to show the big picture: the impact on energy

consumption with the increase in the number of emitters and

event generation rate. All versions (at all settings) of the

benchmark app were run for a fixed period of 20 seconds,

repeating 10 times each.

RQ 1: What is the impact of the number of event

sources and event generation rates on software energy

consumption? Figure 2 shows the energy consumption of

the benchmark app with different numbers of emitters (i.e.,

event sources) and event generation rates. Clearly, the en-

ergy consumption goes up when we increase the number of

emitters and/or the event rate. The Spearman [50] correlation

coefficient is 0.66 (p ≈ 0) between the number of emitters

and energy consumption in joules. The coefficient is 0.69

(p ≈ 0) between the event rates and energy consumption.

The coefficient would have been higher if the phones were

able to process high numbers of events and emitters. The

variations in energy measurements among multiple runs for

each setting are small; Figure 2 shows that the 99% confidence

intervals are not noticeable until the performance is saturated.

This is because we kept the benchmark app as simple and

deterministic as possible, which is harder to control in real-

world apps. We also observe that for high number of emitters

(i.e., ≥32 emitters) the energy consumption does not change

with the increase in the event rate after a threshold. This

is because of the limited capacities of the phones we used

for our measurements; these phones can process a certain

number of events within the allotted 20 seconds test duration.

Producing more events than this threshold does not impact

the energy consumption, for the phone can not process the

extra events within the allotted time. In fact, with the Kruskal-

Wallis test, we found statistical differences between the energy

measurements until the numbers of emitters and rates are high.

For example, with 8 emitters, α = 0.05, p = 0.0001 between

32 events/sec and 64 events/sec. However, for α = 0.05, p is

statistically insignificant (0.6242) between 64 events/sec and

128 events/sec when the number of emitters is fixed to 64.

Table I shows the percent increase in energy consumption

in the number of emitters and event generation rates compared

against the energy consumption of one emitter with one event

per second. For example, even with a single emitter, the energy

consumption can go up 38% when the event generation rate

is high (128 events/second). And note that the percentage

increase with high numbers of emitters and rates would have

been much higher than the reported values if the phones were

to able processing more events.

Findings: Many modern applications deal with large num-

bers of event sources with high numbers of incoming

events [51]–[53]. Our results show that energy consumption

is correlated with both the number of event producers and

the rate of event production.

RQ 2: Can bundling and dropping events help in saving

energy while varying the numbers of sources and rates?

To answer this question, we considered three different waiting

times for both bundling and dropping: 0.1 second—the corneal

reflex time of human eyes; 0.5 second—half of user-acceptable

latency; and 1 second—the broadly used acceptable latency

target for interactive applications [54]. Unlike the real-world

apps presented later, a wider range of waiting times were not

considered for the benchmark app so the graphs are readable.

Figure 3 shows the energy savings of different bundling

and dropping rates compared with no bundling or dropping

(presented as Nobundling in the figures). Each graph shows

TABLE I: Percent increase of energy consumption compared

with the energy consumption of 1 emitter and 1 event/second.

For readability, nearest integer values are presented.

Rates

Emitters 1 2 4 8 16 32 64 128

1 0 2 4 6 12 22 32 38

2 2 4 7 12 22 33 39 43

4 5 8 13 22 33 40 44 49

8 8 13 22 33 40 46 51 55

16 14 23 33 41 47 53 55 56

32 22 33 41 47 53 55 56 56

64 26 36 45 53 54 54 55 54

128 30 42 51 54 54 54 54 54

TABLE II: Energy savings (in percent) by different bundlers

and droppers when compared with no bundling or dropping.

Results are presented for just one emitter.

Rates

Versions 1 2 4 8 16 32 64 128

Bundling-0.1s 0 0 0 0 3 13 22 25

Dropping-0.1s 0 0 0 0 4 14 25 30

Bundling-0.5s 0 0 2 3 8 18 27 30

Dropping-0.5s 0 0 2 3 9 19 29 34

Bundling-1s 0 1 4 5 10 19 29 31

Dropping-1s 0 1 4 5 11 20 31 36

the results for all the possible scenarios for a fixed number

of emitters. Except for very high numbers of emitters or

rates, the energy consumption goes up monotonically for the

Nobundling version. While this trend is true for the bundling

versions as well, for the dropping versions we do not see

such clear trends. This is because the number of events

processed by a dropping version (transferring events from the

presenter to the views) is to some extent independent of the

number of events generated. The small energy increase for

the dropping versions with increased rates is due to the cost

of producing more events by the model component in our

benchmark app. Not surprisingly, dropping is more energy

efficient than bundling; the dropping versions process fewer

events than the bundling versions. The bundling versions, in

spite of processing the same number of events as the no

bundling version, can save significant energy.

It is encouraging that, with bundling, we can process and

deal with the same amount of workload, and yet can make

apps significantly more energy efficient. Table II shows the

energy savings by different bundlers and droppers with fixed

one emitter. This is to ensure that the energy consumption

is not affected by resource limitations, thus enabling accurate

comparison. It shows that with bundling (doing all the work

without dropping anything) and maintaining a latency such

that a user does not notice any change (0.1 second), we can

still save up to 25% of the energy (Bundling-0.1s). With user-

acceptable latency (Bundling-1s), bundling can save up to 31%

in a simple app like our benchmark, with just one event source.

We verified with the Kruskal-Wallis test that these differences

are indeed statistically significant (with α = 0.05, p ≤ 0.01).

1 2 4 8 16 32 64 128
Rate (events/second)

20

22

24

26

28

30

32
E
n
e
rg

y
 (

J)
Number of emitters = 1

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

22

24

26

28

30

32

34

36

E
n
e
rg

y
 (

J)

Number of emitters = 2

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

E
n
e
rg

y
 (

J)

Number of emitters = 4

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

E
n
e
rg

y
 (

J)

Number of emitters = 8

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

E
n
e
rg

y
 (

J)

Number of emitters = 16

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

1 2 4 8 16 32 64 128
Rate (events/second)

20

25

30

35

40

45

50

55

60

E
n
e
rg

y
 (

J)

Number of emitters = 32

Nobundling
Bundling-0.1s
Bundling-0.5s
Bundling-1s
Dropping-0.1s
Dropping-0.5s
Dropping-1s

Fig. 3: Energy consumption of bundling and dropping compared with the Nobundling versions for different number of emitters.

Results for more than 32 emitters are not presented; due to resource limitations, the energy consumption is inconsistent for

very high numbers of emitters and rates. Bars indicate the 99% confidence interval.

Findings: Dropping is the most energy efficient approach

compared to bundling and no bundling. However, dropping

might not be an acceptable alternative when accuracy is

important. Application developers can consider bundling

in such scenarios, which still saves significant energy over

no bundling.

V. REAL WORLD APPS

Results from the benchmark app shows that bundling and

dropping can save significant energy in Android apps. And

this saving is larger with increased numbers of event sources

or event generation rates. It is, however, not obvious how such

optimization approaches would perform in real-world apps [6].

In this section, we evaluate bundling and dropping in four

selected real-world Android apps.

A. Selection of Applications

The apps we selected had to be open source so that we

can implement bundling and dropping. We explored the F-

Droid repository [59] to find suitable apps. F-Droid contains

source code for all the posted Android apps and was used

in earlier mining software repositories research [60]–[62].

Finding suitable apps with reasonably small code size (so that

we could easily identify where to implement bundling and

dropping) was challenging, which hindered us from analyzing

more apps. Table III shows the characteristics of the four

selected apps.

The different types and code sizes of these four apps enables

reliable evaluation of bundling and dropping. The Sensor

Readout app is also available on Google Play [63] and has

been downloaded more than 50,000 times (as of writing). This

app has received 540 reviews with an average rating of 4.3/5.

This allows evaluating energy optimization techniques for apps

that are already popular. AcrylicPaint, a finger painting app,

represents apps where users might spend more continuous

time, making energy optimization more crucial.

We have implemented the bundling and dropping versions of

these apps, except for Sensor Readout, following the approach

presented in section III-A2. The original Sensor Readout app,

uses a timer function, and processes only 10 measurements per

second, although the app samples measurements continuously.

As a result, we did not have to implement our own timer for

the bundling and dropping variants. The apps, however, did

not follow a clear MVP pattern. Instead, their designs were

closer to the MVC pattern. We have identified which classes

contained the actual processing code, and refactored those

classes to accommodate our bundling/dropping presenters. Our

intention was to convert the existing design as close to the

bundling MVP pattern as possible. For ensuring correctness,

two of the authors were involved in refactoring and testing the

apps afterwards.

B. RQ 3: What are the energy impacts of bundling and

dropping on real-world applications?

The energy savings from bundling and dropping are of

course impacted by the bundling/dropping time—the time

these two variants wait before processing a batch of events.

We selected six different times: 0.01s—fastest human time

perception; 0.03s—animation speed; 0.1s—the corneal reflex

time of human eyes; 0.2s—double the corneal reflex time;

0.5s—half of user-acceptable latency; 1 second—acceptable

TABLE III: Description of the selected four real-world Android apps from F-droid.

Test
App Type # Classes ULOC Test scenario duration (s)

Sensor Readout [55] “Real-time graphs of sensor data” 56 6009 Measure the Gyroscope sensor 70

ColorPicker [56] “Pick colors and display values” 12 908 Move the scroll bars for R,G,B 50

Angulo [57] “Angle and Distance Measuring” 4 497 Start the measurements and wait 55

AcrylicPaint [58] “Simple finger painting” 7 936 Draw a hexagon 27

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

6

8

10

12

14

16

18

E
n
e
rg

y
 (

J)

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping
acrylicPaintOriginal-GM2
acrylicPaintBundling-GM2
acrylicPaintDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

40

50

60

70

80

90

100

110

E
n
e
rg

y
 (

J)

ColorPicker App

colorPickerOriginal
colorPickerBundling
colorPickerDropping
colorPickerOriginal-GM2
colorPickerBundling-GM2
colorPickerDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

15

20

25

30

35

40

45

50

55

E
n
e
rg

y
 (

J)

Angulo App

anguloOriginal
anguloBundling
anguloDropping
anguloOriginal-GM2
anguloBundling-GM2
anguloDropping-GM2

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

40

60

80

100

120
E
n
e
rg

y
 (

J)
SensorReadout App

sensorOriginal
sensorBundling
sensorDropping
sensorOriginal-GM2
sensorBundling-GM2
sensorDropping-GM2

Fig. 4: Energy consumption of bundling and dropping compared with the original versions of four real-world apps. Bars

indicate the 99% confidence interval.

user latency [54]; and 2 seconds—double user-acceptable

latency. Figure 4 shows the energy consumption of bundling

and dropping compared with the original versions of the

four selected apps. Here, we also show the results for the

GreenMiner-2 (GM2) on the Asus Zenphone 2.

Except for the Sensor Readout app, we observe more

energy consumption for the bundling and dropping versions

for very low bundling and dropping times (e.g., 0.01s). This

suggests that running a timer thread for bundling or dropping

incurs energy consumption overhead. As we mentioned before,

Sensor Readout did not require a separate timer thread and

does not have this overhead when bundling or dropping is

used. For all the apps, however, the energy consumption

of bundling and dropping improve significantly when the

waiting time is reasonably higher. For example, even for 0.1s

latency which is difficult for users to perceive, the bundling

and dropping versions of AcrylicPaint and Angulo can save

12% (12% with GM-2) and 9% (8% with GM-2) energy

consumption respectively, when compared with their original

versions. The energy savings become significant for larger

latency. For example, we can save 37% (24% with GM-2)

energy consumption for the Sensor Readout app with a 1s

latency in drawing the measurements graphs, and that without

losing any measurements (i.e., with bundling).

GreenMiner-2 (with the ASUS ZenFone 2 phone) consumes

less energy than the GreenMiner (with the Galaxy Nexus

phone) for all apps, and thus the energy savings are generally

lower. The trends in percent of energy consumption reductions,

however, are similar across the apps for both the GreenMiners.

C. RQ 4: Can bundling and dropping help address users’

feedback without harming apps’ energy consumption?

Answering this question might require analysis from mul-

tiple perspectives. However, with one case study, we show

that there are scenarios where the developers can adopt our

bundling approach to address user feedback that involves

energy expensive modifications. For this study, we selected the

Sensor Readout app—the only app available on Google Play

5 10 20 30
of Measurements/second

50

60

70

80

90

100

E
n
e
rg

y
 (

J)

SensorReadout App

sensorOriginal
sensorBundling-0.1s
sensorDropping-0.1s

Fig. 5: Energy savings of bundling/dropping for the Sensor app

with higher sampling rates. Bundling/dropping time is fixed to

0.1 second. Bars indicate the 99% confidence interval.

with a significant number of reviews. For a selected sensor

type, this app shows/updates 10 measurements per second.

In general, this app is praised by users. However, some

reviews indicate user dissatisfaction. For example, one user de-

sires to see colour changes with different measurements while

updating graphs [55]. Another user is unsure why the sampling

rates from the sensors are low—10 samples per second.

Changing colors continuously and sampling at higher rates

might increase the energy consumption of the app significantly.

And yet, developers need to carefully address user feedback

for their apps to stay popular [64]. In fact, there are reviews on

the Sensor Readout app suggesting similar apps are supposedly

better than Sensor Readout. We show that Sensor Readout

can benefit by applying bundling—by sampling measurements

faster for timeline graphs, but delaying graphical updates by

only 0.1 second without harming latency (more measuresments

per second but constant UI update rate).

Figure 5 shows the energy consumption of the original

version compared with the bundling and dropping versions,

with different sampling rates. The bundling/dropping time (i.e.,

the latency in updating the graphs) is fixed to 0.1s. The average

energy consumption of the original version is high (≈94

joules) when the sampling rate is 20/second compared with

the original 10/second (≈69 joules); a 36% increase in energy

consumption. The difference is also statistically significant

(Kruskal-Wallis test, α = 0.05, p < 0.01). However, bundling

with 20 samples/second consumes similar energy to the orig-

inal version with just 10 samples/second. With sampling rate

higher than 20, the energy consumption of the phones does not

increase as expected. The Galaxy Nexus phones are unable to

process more than a threshold number of samples.

Findings: Real-world Android apps can save significant

energy with bundling and dropping. Sacrifices in latency

correlate with the energy savings. Bundling with almost

imperceptible latency (0.1s) can save energy without af-

fecting user satisfaction. In some scenarios, bundling and

dropping can help developers address users’ concerns with

no meaningful sacrifice in usability.

VI. UNDERSTANDING RESOURCE UTILIZATION PATTERNS

WITH BUNDLING AND DROPPING

It is unsurprising that dropping saves energy; in dropping the

presenter only sends the most recent event for processing. This

requires less CPU slots for the process (also known as CPU

jiffies [30]). Bundling, however, does the exact same amount

of work as on-time processing. Thus the question arises: why

does bundling save energy in spite of processing all the events?

Assumption: A CPU jiffy is an assigned CPU time slot

for a process in Linux [30], [46]. More CPU jiffies for a

process causes more CPU jiffies for the kernel, because of

more context switches between the user space and the kernel

space. In on-time event processing system, each event requires

at least one user CPU jiffy. This incurs at least one context

switch and one kernel CPU jiffy. This effect, however, can

be minimized with bundled processing. Batching of events

minimizes the number of context switches and the number of

CPU jiffies. If our assumption is correct, the energy efficiency

of bundling is explainable. The number of CPU jiffies and

context switches are almost linearly correlated with software

energy consumption [30].

A. RQ 5: Why do bundling and dropping save energy?

To verify the above assumption, we have analyzed the

AcrylicPaint app. Similar to Chowdhury et al. [30], we used

the Linux proc file system. To capture the CPU jiffies used by

an app, we used /proc/pid/stat. This also includes the

kernel CPU jiffies used for that app. However, app (process)

specific context switches can not be captured using such a file

system. We captured the number of context switches from

/proc/stat before and after running a test for an app.

The difference is thus approximately the number of context

switches for the app.

Figure 6 shows the result (10 measurements for each con-

figuration). The number of CPU jiffies and context switches

follow a similar pattern to the energy consumption of the

AcrylicPaint’s versions (Figure 4). This observation suggests

that our assumption is true: bundling indeed reduces the

number of CPU jiffies and context switches. This also indicates

that bundling and dropping enable efficient resource usage,

and thus can potentially provide similar energy savings for

platforms other than Android. The mechanisms of context

switches between the kernel and user space are similar across

different platforms and architectures.

Findings: Bundling and dropping access resources in effi-

cient ways—reducing the need for many context switches,

leading to energy efficient software. This observation sug-

gests that the energy efficiency of bundling and dropping

is not restricted to Android systems, but also is applicable

in other platforms.

VII. MAINTAINABILITY ANALYSIS

Developers and architects need to be concerned with the

maintainability consequences of changes made to enhance

any single aspect of a system’s quality. Thus it is important

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

160

180

200

220

240

260

280

N
u
m

b
e
r

o
f

C
P
U

 J
if
fi
e
s

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping

10 30 100 200 500 1000 2000
Bundling/Dropping Time (ms)

30000

35000

40000

45000

50000

55000

N
u
m

b
e
r

o
f

C
o
n
te

x
t

S
w

it
ch

e
s

AcrylicPaint App

acrylicPaintOriginal
acrylicPaintBundling
acrylicPaintDropping

Fig. 6: Numbers of CPU jiffies and context switches for bundling and dropping compared with the original AcrylicPaint app.

Bars indicate the 99% confidence interval.

to understand the consequences of the changes made to the

apps to implement the bundling or dropping strategies. This

motivates our sixth and final research question.

RQ 6: What are the maintainability consequences of

implementing bundling and dropping on Android apps?

To assess these consequences we analyzed the before and

after versions of the four selected real-world apps. We first

reverse-engineered each of the apps using the Understand tool

[65]. Using this tool we were able to collect code metrics

on all versions of the apps. (For the purposes of brevity we

only report on the original and bundling versions of the apps

here. Results for the dropping versions were very similar.) In

each case the modifications to the apps were slight in terms of

effort, requiring fewer than 100 additional lines of code and at

most three new classes (including one Handler class and one

Thread class that runs the timer). But counting the lines of

code and classes is just the measure of the required effort for

converting a typical app version to a bundled version. Another

important question is whether these changes affected the long-

term maintainability of the system. If, for example, we added

few lines of code but added many new dependencies between

classes, this would increase coupling in the system, negatively

affect the maintainability of the app going forward.

To determine whether this was the case we analyzed the

coupling of the apps, in their before and after versions,

using the Decoupling Level (DL) metric [11], a system-wide

measure of coupling. The DL metric has been empirically val-

idated [11] and shown to be more reliable than other coupling

metrics such as Propagation-Cost [66] and Independence-

Level [67] in predicting maintenance effort. DL scores range

from 0 to 100, and the higher the number the better, as this

indicates that the system’s files are more highly decoupled

and hence can be independently modified. The purpose of

using this metric is to determine if the changes made to

address energy efficiency significantly lowered the value of

the DL metric. If so, this would mean that the maintainability

of the system was negatively impacted by the energy-saving

modifications.

The DL values of the before and after versions of four apps

TABLE IV: DL values for before/after versions of each app

(bundling only).

App DL Score DL Score DL ∆

Original Bundling

Angulo 68% 69% +1%

ColorPicker 17% 17% +0%

AcrylicPaint 88% 82% -6%

Sensor Readout 32% 30% -2%

are shown in Table IV. While the values of the DL metric

varied widely (indicating the inherent maintainability of the

apps prior to our intervention) the changes for the apps due

to the addition of bundling were small. The observed drops in

DL scores were due to new relationships between classes that

the bundling and dropping functionality required. But since the

DL scores do not change dramatically (decreasing about 6%

for AcrylicPaint, increasing 1% for Angulo, and staying the

same for ColorPicker), this indicates that the tradeoffs made

for energy efficiency were generally good ones—improving

the energy efficiency of the apps while sacrificing little, if any,

maintainability of the apps for the long term. In fact, in [11],

it was noted that small variations in DL (≤ 10%) are typically

not meaningful.

Findings: Energy efficiency is largely ignored during soft-

ware maintenance [4]. One reason could be the difficulty in

fixing energy bugs [68]. Bundling and dropping, however,

are easy to implement and maintain.

VIII. THREATS TO VALIDITY

External validity is hampered by the single version of the

Android OS that we used on four Galaxy Nexus phones.

Also, we do not know how many real-world apps can directly

take advantage of the proposed bundling approach. The first

threat is mitigated somewhat by using the GreenMiner-2 with

a different phone (Zenphone 2). To mitigate the second threat,

we tried to select apps from different domains, and with

the context-switching analysis we explained why bundling is

energy efficient. This might help predicting what other types

of apps can adopt GreenBundling.

Internal validity can be criticized for the way we calculated

the number of context switches. Unlike the CPU jiffies,

process-specific context switches are inaccessible using the

procfs file system. The difference between after and before

when running a process can be affected by other processes

(e.g., garbage collection).

The Kruskal-Wallis test, although it does not assume any

normality distribution about the data, still assumes that data

in each group has similar skewness [69]. These threats are

minimized by measuring each configuration 10 times and

then showing the means, and confidence intervals. Construct

and conclusion validity may also be questioned based on the

tests scripts that we created for the real-world apps. It is

not guaranteed that typical users of these apps would interact

similar to the way our test scripts do. However, our test scripts

exercise the main functionality of these apps: e.g., drawing

measurement graphs and objects with the Sensor Readout app

and the AcrylicPaint app respectively.

IX. RELATED WORK

In recent years, developers have expressed more concerns

about software energy consumption [70]. The software re-

search community has been investigating several areas of this

issue. Hasan et al. [15], Pereira et al. [16], and Manotas et

al. [71] have presented recommendations for selecting energy

efficient Java collections. Energy efficient color transformation

in Android apps was proposed by Li et al. [13] and Agolli et

al. [72]. Off-loading jobs [73], pre-fetching content [74], and

enabling ad-blockers [43] have been found to save energy in

some cases. Chowdhury et al. [18] suggested that HTTP/2

servers are more energy efficient, from the clients’ perspective,

than HTTP/1.1 servers. Energy efficient logging techniques

for Android systems [39] have also been studied.

Other research has shown correcting code smells helps

to improve energy efficiency [75]. In a similar vein, the

impact of code obfuscation and refactoring on software energy

consumption was studied by Sahin et al. [76], [77]. The energy

change from code obfuscation is too small to notice, whereas

refactoring can impact both positively and negatively.

Developers need to measure or estimate their apps’ energy

consumption. Hao et al. [23] proposed an instruction-based

energy estimation model. Machine learning based models were

proposed by Aggarwal et al. (GreenAdvisor [44]), Chowdhury

et al. (GreenOracle [46] and GreenScaler [30]), and Pathak et

al. [78]. Nucci et al. proposed PETrA [24] to estimate Android

apps’ energy consumption leveraging various Android tools.

Locating software energy bugs and hotspots automatically is

another important research area. Wakelock-related energy bugs

have been frequently reported by earlier studies [19]–[22].

Developers need to exploit tools and techniques to locate and

solve such bugs [21]. Similar to the energy bugs, developers

should also resolve energy hotspots [10]. Jabbarvand et al. [79]

proposed a test-suite minimization approach focusing only

on locating energy bugs. In their later work, the authors

proposed an energy-specific mutation testing framework with

high precision in detecting energy bugs [80].
This paper, however, focuses more on high-level design

choices that can help developers writing energy efficient sys-

tems. To the best of our knowledge, this is the least explored

area of software energy efficiency, and there is still a need

for more research on this avenue. The closest to our work

is the short study by Sahin et al. [31], where the authors

investigated different existing design patterns and their energy

consumption. In contrast to our work, that study lacks proper

guidelines and cost analysis for making a design choice.

X. CONCLUSION & FUTURE WORK

In this work we showed that an architectural choice, such

as choosing a bundled MVP architecture, can improve the

sustainability and energy consumption of a system without

negatively impacting system maintainability. The consequence

of this research means that architects and developers can (and

should) make design decisions to address energy consumption

before they start coding.

We have demonstrated the value of a bundled presenter in

MVP by first benchmarking a generic MVP architecture and

then by demonstrating that the energy improvements demon-

strated in the benchmark were in fact realized on real-world

apps that were refactored into bundled MVP architectures from

more classical MVC architectures. A significant reduction of

energy consumption can in fact be achieved. Furthermore we

showed that these modified apps did not seriously affect the

user experience, nor did the refactored versions suffer in terms

of their eventual maintainability. Thus, the energy-savings that

we achieved were truly win-win.

Our final message is this: fundamental architectural choices,

such as the ones we have investigated in this paper, can

have substantial effects on energy consumption. Although

we demonstrated our results on MVP-based architectures, it

is our hope and belief that developers and researchers can

use this study to motivate similar studies, allowing them to

address questions of energy consumption, and their consequent

tradeoffs, at design time. We do not need to wait until the app

is built to make these important design choices. In our future

work, we want to evaluate the proposed bundling architectures

on other smartphones than Android, and with real end-users

for evaluating actual usability. We also want to evaluate

other architectural patterns and architectural choices so that

architects can predictably translate sustainability requirements

into designs and into working systems.

ACKNOWLEDGMENTS

Shaiful Chowdhury was supported by the Alberta-Innovates

Technology Future PhD Scholarship. Dr. Hindle is supported

by an NSERC Discovery Grant. Dr. Kazman was supported

by U.S. National Science Foundation grant number 1514561.

This research was also partially supported by JSPS KAKENHI

Grant Numbers JP15H05306 and JP18H03222 and an ”JSPS

Invitational Fellowship”.

REFERENCES

[1] V. Woollaston, “customers really want better battery life,” http://
www.dailymail.co.uk/sciencetech/article-2715860/, 2014, (last accessed:
2018-Jul-22).

[2] C. Wilke, S. Richly, S. Gtz, C. Piechnick, and U. Amann, “Energy
consumption and efficiency in mobile applications: A user feedback
study,” in 2013 IEEE International Conference on Green Computing

and Communications and IEEE Internet of Things and IEEE Cyber,

Physical and Social Computing, Aug 2013, pp. 134–141.
[3] H. Khalid, E. Shihab, M. Nagappan, and A. E. Hassan, “What do mobile

app users complain about?” IEEE Software, vol. 32, no. 3, pp. 70–77,
May 2015.

[4] I. Manotas, C. Bird, R. Zhang, D. Shepherd, C. Jaspan, C. Sadowski,
L. Pollock, and J. Clause, “An empirical study of practitioners’ per-
spectives on green software engineering,” in Proceedings of the 38th

International Conference on Software Engineering, ser. ICSE ’16, 2016,
pp. 237–248.

[5] C. Pang, A. Hindle, B. Adams, and A. E. Hassan, “What do pro-
grammers know about software energy consumption?” IEEE Software,
vol. 33, no. 3, pp. 83–89, May 2016.

[6] C. Sahin, L. Pollock, and J. Clause, “From benchmarks to real apps:
Exploring the energy impacts of performance-directed changes,” Journal

of Systems and Software, vol. 117, pp. 307 – 316, 2016.
[7] Statista, “Number of smartphone users worldwide from 2014

to 2020 (in billions),” https://www.statista.com/statistics/330695/
number-of-smartphone-users-worldwide/, (last accessed: 201-Aug-06).

[8] P. Poole, “Half of Us Have Computers in Our Pockets, Though
You’d Hardly Know it,” http://www.huffingtonpost.com/pamela-poole/
smartphone-technology b 2573671.html, (last accessed: 2018-Jul-22).

[9] Cisco, “Cisco visual networking index: Forecast and
methodology, 2016-2021,” https://www.cisco.com/c/en/us/
solutions/collateral/service-provider/visual-networking-index-vni/
complete-white-paper-c11-481360.html, (last accessed: 201-Aug-06).

[10] Banerjee, Abhijeet and Chong, Lee Kee and Chattopadhyay, Sudipta and
Roychoudhury, Abhik, “Detecting Energy Bugs and Hotspots in Mobile
Apps,” in FSE 2014, Hong Kong, China, Novemeber 2014, pp. 588–598.

[11] R. Mo, Y. Cai, R. Kazman, L. Xiao, and Q. Feng, “Decoupling level: A
new metric for architectural maintenance complexity,” in Proceedings of

the 38th International Conference on Software Engineering, ser. ICSE
’16, 2016, pp. 499–510.

[12] “Greenbundle: replication and extension,” https://github.com/shaifulcse/
GreenBundle-Data-Code.

[13] D. Li, A. H. Tran, and W. G. J. Halfond, “Making Web Applications
More Energy Efficient for OLED Smartphones,” in ICSE 2014, Hyder-
abad, India, June 2014, pp. 527–538.

[14] L. Zhang, B. Tiwana, Z. Qian, Z. Wang, R. P. Dick, Z. M. Mao,
and L. Yang, “Accurate Online Power Estimation and Automatic Bat-
tery Behavior Based Power Model Generation for Smartphones,” in
Proceedings of the 8th IEEE/ACM/IFIP International Conference on

Hardware/Software Codesign and System Synthesis, 2010.
[15] S. Hasan, Z. King, M. Hafiz, M. Sayagh, B. Adams, and A. Hindle,

“Energy profiles of java collections classes,” in Proceedings of the 38th

International Conference on Software Engineering, ser. ICSE ’16, 2016,
pp. 225–236.

[16] R. Pereira, M. Couto, J. a. Saraiva, J. Cunha, and J. a. P. Fernandes,
“The influence of the java collection framework on overall energy
consumption,” in Proceedings of the 5th International Workshop on

Green and Sustainable Software, ser. GREENS ’16, 2016, pp. 15–21.
[17] D. Li, Y. Lyu, J. Gui, and W. G. J. Halfond, “Automated energy

optimization of http requests for mobile applications,” in Proceedings of

the 38th International Conference on Software Engineering, ser. ICSE
’16, 2016, pp. 249–260.

[18] S. Chowdhury, S. Varun, and A. Hindle, “Client-side Energy Efficiency
of HTTP/2 for Web and Mobile App Developers,” in SANER ’16, Osaka,
Japan, March 2016.

[19] Y. Liu, C. Xu, S. Cheung, and V. Terragni, “Understanding and detecting
wake lock misuses for android applications,” in FSE 2014, Seattle, WA,
USA, Nov 2016.

[20] F. Alam, P. R. Panda, N. Tripathi, N. Sharma, and S. Narayan, “Energy
optimization in android applications through wakelock placement,” in
2014 Design, Automation Test in Europe Conference Exhibition (DATE),
March 2014, pp. 1–4.

[21] X. Wang, X. Li, and W. Wen, “Wlcleaner: Reducing energy waste caused
by wakelock bugs at runtime,” in Dependable, Autonomic and Secure

Computing (DASC), 2014 IEEE 12th International Conference on, Aug
2014, pp. 429–434.

[22] P. S. Patil, J. Doshi, and D. Ambawade, “Reducing power consumption
of smart device by proper management of wakelocks,” in Advance

Computing Conference (IACC), 2015 IEEE International, June 2015,
pp. 883–887.

[23] S. Hao, D. Li, W. G. J. Halfond, and R. Govindan, “Estimating Mobile
Application Energy Consumption Using Program Analysis,” in ICSE

’13, 2013, pp. 92–101.
[24] D. D. Nucci, F. Palomba, A. Prota, A. Panichella, A. Zaidman, and

A. D. Lucia, “Software-based energy profiling of android apps: Simple,
efficient and reliable?” in 2017 IEEE 24th International Conference on

Software Analysis, Evolution and Reengineering (SANER), Feb 2017,
pp. 103–114.

[25] A. Carroll and G. Heiser, “An Analysis of Power Consumption in a
Smartphone,” in Proceedings of the USENIXATC’10, 2010.

[26] A. Shye, B. Scholbrock, and G. Memik, “Into the Wild: Studying Real
User Activity Patterns to Guide Power Optimizations for Mobile Archi-
tectures,” in IEEE/ACM MICRO 42, New York, NY, USA, December
2009, pp. 168–178.

[27] S. Gurumurthi, A. Sivasubramaniam, M. J. Irwin, N. Vijaykrishnan,
M. Kandemir, T. Li, and L. K. John, “Using Complete Machine
Simulation for Software Power Estimation: The SoftWatt Approach,” in
Proceedings of the 8th International Symposium on High-Performance

Computer Architecture, ser. HPCA ’02, 2002, pp. 141–150.
[28] J. Flinn and M. Satyanarayanan, “PowerScope: A Tool for Profiling the

Energy Usage of Mobile Applications,” in WMCSA ’99, New Orleans,
Louisiana, USA, February 1999, pp. 2–10.

[29] M. Dong and L. Zhong, “Self-constructive High-rate System Energy
Modeling for Battery-powered Mobile Systems,” in Proceedings of the

MobiSys ’11, June 2011, pp. 335–348.
[30] S. Chowdhury, S. Borle, S. Romansky, and A. Hindle, “Greenscaler:

training software energy models with automatic test generation,” Em-

pirical Software Engineering, Jul 2018.
[31] C. Sahin, F. Cayci, I. L. M. Gutirrez, J. Clause, F. Kiamilev, L. Pollock,

and K. Winbladh, “Initial explorations on design pattern energy usage,”
in 2012 First International Workshop on Green and Sustainable Software

(GREENS), June 2012, pp. 55–61.
[32] M. Fowler, “Gui architectures. 2006,” URL http://www. martinfowler.

com/eaaDev/uiArchs. html, 2007.
[33] M. Potel, “Mvp: Model-view-presenter the taligent programming model

for c++ and java,” Taligent Inc, p. 20, 1996.
[34] C. V. Lopes, Exercises in programming style. Chapman and Hall/CRC,

2016.
[35] Bohdan Samusko , “Model-view-presenter: Our choice of

architecture for your android app,” https://steelkiwi.com/blog/
model-view-presenter-our-choice-of-android-app/, (last accessed:
2018-Aug-02).

[36] android-architecture, “Android architecture blueprints,” https://github.
com/googlesamples/android-architecture, (last accessed: 2018-Aug-02).

[37] Pulkit Sethi, “Xamarin application architecture,” https://blog.kloud.com.
au/2018/01/17/xamarin-application-architecture/, (last accessed: 2018-
Aug-02).

[38] A. Pathak, Y. C. Hu, and M. Zhang, “Where is the Energy Spent
Inside My App?: Fine Grained Energy Accounting on Smartphones with
Eprof,” in EuroSys ’12, Bern, Switzerland, April 2012, pp. 29–42.

[39] S. Chowdhury, S. Di Nardo, A. Hindle, and Z. M. J. Jiang, “An
exploratory study on assessing the energy impact of logging on android
applications,” Empirical Software Engineering, vol. 23, no. 3, pp. 1422–
1456, Jun 2018.

[40] Y. Lyu, D. Li, and W. G. J. Halfond, “Remove rats from your
code: Automated optimization of resource inefficient database writes
for mobile applications,” in Proceedings of the 27th ACM SIGSOFT

International Symposium on Software Testing and Analysis, ser. ISSTA
2018, Amsterdam, Netherlands, 2018, pp. 310–321.

[41] Android, “Processes and threads overview,” https://developer.android.
com/guide/components/processes-and-threads, (last accessed: 2018-Jul-
22).

[42] A. Hindle, A. Wilson, K. Rasmussen, E. J. Barlow, J. C. Campbell,
and S. Romansky, “GreenMiner: A Hardware Based Mining Software
Repositories Software Energy Consumption Framework,” in MSR 2014,
Hyderabad, India, May 2014, pp. 12–21.

[43] K. Rasmussen, A. Wilson, and A. Hindle, “Green Mining: Energy
Consumption of Advertisement Blocking Methods,” in GREENS 2014,
Hyderabad, India, June 2014, pp. 38–45.

[44] K. Aggarwal, A. Hindle, and E. Stroulia, “Greenadvisor: A tool for
analyzing the impact of software evolution on energy consumption,” in
2015 IEEE ICSME, Bremen, Germany, Sept 2015, pp. 311–320.

[45] S. Romansky, N. C. Borle, S. Chowdhury, A. Hindle, and R. Greiner,
“Deep green: Modelling time-series of software energy consumption,”
in 2017 IEEE International Conference on Software Maintenance and

Evolution (ICSME), Shanghai, China, Sept 2017, pp. 273–283.
[46] S. A. Chowdhury and A. Hindle, “Greenoracle: Estimating software

energy consumption with energy measurement corpora,” in Proceedings

of the 13th International Conference on Mining Software Repositories,
ser. MSR ’16, 2016, pp. 49–60.

[47] A. McIntosh, S. Hassan, and A. Hindle, “What can android mobile
app developers do about the energy consumption of machine learning?”
Empirical Software Engineering, Jun 2018.

[48] M. Hollander, D. A. Wolfe, and E. Chicken, Nonparametric statistical

methods. John Wiley & Sons, 2013.
[49] Android, “Android Debug Bridge,” https://developer.android.com/studio/

command-line/adb, (last accessed: 2018-Jul-22).
[50] Laerd, “Spearman’s Rank-Order Correla-

tion,” https://statistics.laerd.com/statistical-guides/
spearmans-rank-order-correlation-statistical-guide.php, (last accessed:
2018-May-11).

[51] T. Akidau, “The world beyond batch: Streaming 101,” https://www.
oreilly.com/people/09f01-tyler-akidau, (last accessed: 2018-AUG-05).

[52] J. Krystynak, “How to serve billions of web requests per day without
breaking a sweat,” https://www.infoworld.com/article/2868513/database/
how-to-serve-billion-web-requests-per-day.html, (last accessed: 2018-
AUG-22).

[53] J. Shore, “How many data sources in your apps? let me
count the apis.” https://searchcloudapplications.techtarget.
com/blog/Head-in-the-Clouds-SaaS-PaaS-and-Cloud-Strategy/
How-many-data-sources-Let-me-count-the-APIs, (last accessed:
2018-AUG-22).

[54] “Microsoft,” https://docs.microsoft.com/en-us/windows/desktop/
uxguide/progress-bars, (last accessed: 2018-Jun-02).

[55] F-Droid, “Sensor readout,” https://f-droid.org/en/packages/de.onyxbits.
sensorreadout/, (last accessed: 2018-Jun-02).

[56] F-droid, “Colorpicker,” https://f-droid.org/en/packages/com.enrico.
sample/, (last accessed: 2018-Jun-02).

[57] ——, “Angulo,” https://f-droid.org/en/packages/eu.domob.angulo/, (last
accessed: 2018-Jun-02).

[58] ——, “Acrylicpaint,” https://f-droid.org/en/packages/anupam.acrylic/,
(last accessed: 2018-Jun-02).

[59] “F-droid: Free and open source android app repository,” https://f-droid.
org/, (last accessed: 2018-May-22).

[60] L. Bao, D. Lo, X. Xia, X. Wang, and C. Tian, “How android app
developers manage power consumption?: An empirical study by mining
power management commits,” in Proceedings of the 13th International

Conference on Mining Software Repositories, ser. MSR ’16, 2016, pp.
37–48.

[61] D. E. Krutz, M. Mirakhorli, S. A. Malachowsky, A. Ruiz, J. Peterson,
A. Filipski, and J. Smith, “A dataset of open-source android appli-
cations,” in Proceedings of the 12th Working Conference on Mining

Software Repositories, ser. MSR ’15, 2015, pp. 522–525.
[62] X. Xia, E. Shihab, Y. Kamei, D. Lo, and X. Wang, “Predicting

crashing releases of mobile applications,” in Proceedings of the 10th

ACM/IEEE International Symposium on Empirical Software Engineering

and Measurement, 2016, pp. 29:1–29:10.
[63] Google Play, “Sensor readout,” https://play.google.com/store/apps/

details?id=de.onyxbits.sensorreadout, (last accessed: 2018-Jun-02).

[64] D. Pagano and W. Maalej, “User feedback in the appstore: An empirical
study,” in 21st IEEE International Requirements Engineering Conference

(RE), July 2013, pp. 125–134.
[65] Scitools.com, “Understand,” https://scitools.com/, (last accessed: 2018-

Aug-18).
[66] A. MacCormack, J. Rusnak, and C. Y. Baldwin, “Exploring the structure

of complex software designs: An empirical study of open source and
proprietary code,” Management Science, vol. 52, no. 7, pp. 1015–1030,
July 2006.

[67] K. Sethi, Y. Cai, S. Wong, A. Garcia, and C. Sant’Anna, “From
retrospect to prospect: Assessing modularity and stability from software
architecture,” in 2009 Joint Working IEEE/IFIP Conference on Software

Architecture European Conference on Software Architecture, Sep 2009,
pp. 269–272.

[68] S. A. Chowdhury and A. Hindle, “Characterizing energy-aware software
projects: Are they different?” in Proceedings of the 13th International

Conference on Mining Software Repositories, ser. MSR ’16, 2016, pp.
508–511.

[69] J. McDonald, “Kruskalwallis test: Handbook of biological statis-
tics,” http://www.biostathandbook.com/kruskalwallis.html, (last ac-
cessed: 2018-AUG-07).

[70] H. Malik, P. Zhao, and M. Godfrey, “Going green: An exploratory
analysis of energy-related questions,” in Proceedings of the 12th Working

Conference on Mining Software Repositories, ser. MSR ’15, 2015, pp.
418–421.

[71] I. Manotas, L. Pollock, and J. Clause, “Seeds: A software engineer’s
energy-optimization decision support framework,” in Proceedings of the

36th International Conference on Software Engineering, ser. ICSE 2014,
2014, pp. 503–514.

[72] T. Agolli, L. Pollock, and J. Clause, “Investigating decreasing energy
usage in mobile apps via indistinguishable color changes,” in 2017

IEEE/ACM 4th International Conference on Mobile Software Engineer-

ing and Systems (MOBILESoft), May 2017, pp. 30–34.
[73] A. P. Miettinen and J. K. Nurminen, “Energy Efficiency of Mobile

Clients in Cloud Computing,” in Proceedings of the 2nd USENIX

Conference on Hot Topics in Cloud Computing, ser. HotCloud’10,
Boston, MA, USA, June 2010.

[74] N. Gautam, H. Petander, and J. Noel, “A Comparison of the Cost and
Energy Efficiency of Prefetching and Streaming of Mobile Video,” in
Proceedings of the 5th Workshop on Mobile Video, ser. MoVid ’13, Oslo,
Norway, February 2013, pp. 7–12.

[75] A. Carette, M. A. A. Younes, G. Hecht, N. Moha, and R. Rouvoy,
“Investigating the energy impact of android smells,” in 2017 IEEE

24th International Conference on Software Analysis, Evolution and

Reengineering (SANER), Feb 2017, pp. 115–126.
[76] C. Sahin, P. Tornquist, R. McKenna, Z. Pearson, and J. Clause, “How

Does Code Obfuscation Impact Energy Usage?” in Proceedings of

the 30th IEEE International Conference on Software Maintenance and

Evolution (ICSME), 2014.
[77] C. Sahin, L. Pollock, and J. Clause, “How do code refactorings affect

energy usage?” in Proceedings of the 8th ACM/IEEE International Sym-

posium on Empirical Software Engineering and Measurement (ESEM),
2014.

[78] A. Pathak, Y. C. Hu, M. Zhang, P. Bahl, and Y.-M. Wang, “Fine-
grained Power Modeling for Smartphones Using System Call Tracing,”
in EuroSys ’11, Salzburg, Austria, April 2011, pp. 153–168.

[79] R. Jabbarvand, A. Sadeghi, H. Bagheri, and S. Malek, “Energy-aware
test-suite minimization for android apps,” in Proceedings of the 25th

International Symposium on Software Testing and Analysis, ser. ISSTA
2016, 2016, pp. 425–436.

[80] R. Jabbarvand and S. Malek, “µdroid: An energy-aware mutation testing
framework for android,” in Proceedings of the 2017 11th Joint Meeting

on Foundations of Software Engineering, ser. ESEC/FSE 2017, 2017,
pp. 208–219.

