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Abstract 

This thesis aimed to investigate congestive heart failure (CHF) associated with 

anthracycline exposures among the childhood cancer survivors, trying to identify 

differential anthracycline effects by genotype of certain genes. We had 130 

childhood cancer survivors who developed CHF as cases and 269 individually-

matched controls. We assessed each single nucleotide polymorphism’s (SNP) 

interaction with anthracycline dose on the case-control status of CHF. Besides the 

single SNP analysis, we developed a method that considered SNPs from the same 

gene as a set and assessed the set’s effect on anthracycline toxicity by extending a 

gene-set analysis method developed previously for gene expression studies. Some 

SNPs had interactions with anthracycline exposure on the development of CHF. 

Moreover, there was stronger evidence from the SNP-set analysis indicated that 

the interaction between certain sets of SNPs (genes) and anthracycline exist.  
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Chapter 1 Introduction 

More than 80% of childhood cancer patients become long-term survivors due to 

remarkable improvements in cancer treatment in the last several decades (1,2). 

Anthracycline is one of the most widely used chemotherapy drugs in childhood 

cancer therapy and is highly effective against certain types of cancer, such as 

leukemia and lymphoma (3). However, anthracycline exposure can cause serious 

health problems many years after the treatment, one of which is the elevated risk 

of congestive heart failure (CHF).  

CHF risk following childhood cancer treatment is known to be strongly associated 

with cumulative doses of anthracycline in cancer treatment (4). Studies have 

shown that anthracycline’s cardiotoxicity is generally not apparent under the 

cumulative dose below 300 mg/m
2
  (5). For childhood cancer survivors who had 

received cumulative doses of anthracycline exceeding 300 mg/m
2
, more than 10% 

developed cardiac diseases within 20 years following the cancer therapy (6). 

Moreover, the observation that toxicity increases greatly at cumulative doses 

greater than 550 mg/m
2
 has made 550mg/m

2
 an upper limit in practice (2,7). 

However, observations showed that some childhood cancer survivors exposed to 

low doses of anthracycline could experience CHF, while other survivors tolerated 

high doses of anthracycline (e.g., excess of 1000 mg/m
2
) . A potential explanation 

for this heterogeneity in CHF risk may be the genetic variations among cancer 

patients that modify anthracycline toxicities.  
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Although genetic factors can elevate disease risks directly, many diseases are 

induced by the joint effect of genetic variations and environmental exposures. 

Epidemiological studies have shown that many diseases and human traits, such as 

diabetes, mental disorders, and cancers, are the results of complex interactions 

between genetic factors and environment exposures (8-10). Similarly, late effects 

of treatment are a result of the joint effect of genetic variations and the treatment, 

where genetic variations alone may not cause the late effect but influence 

susceptibility to treatment-related risk. Small differences in genetic codes could 

make different responses to the same environmental/treatment exposures. 

Understanding this complex interaction of genes and environment/treatment can 

help us to setup specific approaches for preventing disease/late effects in patients 

with different genotypes (11).  

As a distinct adverse effect of anthracycline, cardiotoxicity has been studied and 

known for a long time. A few studies have examined the role of biomarkers in 

anthracycline-induced cardiotoxicity. A review which summarized 14 studies 

showed that the patients with elevated blood proteins B-type natriuretic peptide, 

N-terminal pro-BNP and cardiac troponit T after or within anthracycline therapy 

were prone to develop cardiac dysfunction; it suggested that these biomarkers 

could be used in the early detection of elevated cardiac disease risk among 

childhood cancer patients receiving anthracycline treatment (12). Nevertheless, 

the mechanism for genetic variants in the development of anthracycline-

associated cardiac disease is not well understood. The current study aimed to fill 
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this gap by examining genetic variants across the whole genome in relation to the 

risk of anthracycline-related CHF among childhood cancer survivors. 

This study was a genome-wide association study (GWAS) which scanned the 

single nucleotide polymorphisms (SNPs) across a spectrum of hypothesized 

cardiovascular-disease related genes in the whole genome. The specific objective 

of the GWAS analysis conducted in this thesis work was to explore genetic 

susceptibilities defined by a set of SNPs to anthracycline-associated CHF. First, 

we conducted a single-SNP analysis, which is the typical approach in GWAS 

analysis, to identify single SNPs associated with anthracycline-induced CHF risk. 

Second, we extended an SNP-set analysis method developed for gene expression 

studies to GWAS (genetic) analysis, by incorporating the SNPs in the same gene 

as a SNP set to examine their combined effect and to identify functional genes for 

modifying anthracycline toxicity in the development of CHF.  

This thesis consists of six chapters. Following this introduction, there are five 

other chapters. Chapter 2 explains some basic concepts related to molecular 

biology, as a basis for its subsequent discussions. In Chapter 3, two important and 

common statistical issues in high-dimensional data analysis for genetic study, 

namely, multiple testing and over-fitting are discussed. In Chapter 4, we describe 

the statistical methods for the main theme of this thesis: the extension of an 

analysis approach from genomic studies to genetic studies. In this chapter, 

concepts related to GWAS and the standard analysis procedures in GWAS are 

described. We then summarize gene expression analysis methods, including 

Significance Analysis of Microarray (SAM) for single-gene expression analysis 
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and SAM-GS for gene-set expression analysis. Then, we extended SAM-GS for 

gene-set expression analysis to SNP-set analysis of genetic data. This is followed 

by the description of the main tool for this thesis, a SNP-set gene-environment 

interaction analysis. Chapter 5, an application chapter, returns to the analysis of 

childhood cancer survivor data and presents all aspects of the anthracycline 

related CHF in childhood cancer survivors, including the interaction of SNPs and 

anthracycline dose. In Chapter 6, strengths and limitations of our study are 

discussed. Finally, we conclude with recommendations for possible future work 

based on this study. 
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Chapter 2 A Brief Summary of Relevant Molecular 

Biology 

2.1 Gene and gene expression 

2.1.1 DNA and gene 

Deoxyribo Nucleic Acid, which is known as DNA, stores human genetic 

information (13-15). In the nucleus of human body cell, the double DNA chain is 

twisted into chromosome. There are 23 pairs of chromosomes, 22 pairs of which 

are numbered chromosomes, called autosomes, and the other pair consists of two 

sex chromosomes (14). For each pair of chromosomes, one comes from the 

mother and the other comes from the father. Four different types of nucleotides 

are the basic units of constructing the DNA molecule, Adenine, Thymine, 

Cytosine, and Guanine expressed by A, T, C and G, respectively (13,15). Each 

nucleotide is paired to a complementary nucleotide following the “pair rule”, 

which is, A and T are paired, and C and G are paired. By this rule, two single 

DNA chains are combined into a double-stranded DNA molecule.   

Genes are the functional fragments of the double chain DNA, determined by the 

sequence of nucleotides. There are approximately 30,000 genes in human DNA 

(16). They are the codes for recording and passing down biological information, 

controlling the birth, growth, disease, aging and death, and all life phenomena of 

organisms. Genes may also interact with environmental factors in contributing to 

these biological functions. 



6 

 

2.1.2 Single nucleotide polymorphism (SNP) 

While more than 99.9% DNA sequences are identical in a population, the less 

than 0.1% of genetic differences (variation) lead to observed phenotypic 

differences within the population (17,18). The most common type of genetic 

variation is called single nucleotide polymorphism (SNP), the genotype variation 

of one nucleotide, where the proportion of the rarer genotype is greater than 1% in 

a population(17-19). Each SNP represents a difference at a DNA location. As 

shown in figure 3.1 (20), the replacement of the nucleotide pair (C, G) with the 

nucleotide pair (T, A) at a certain locus of DNA chain forms a SNP.  

 

Figure 2.1: DNA molecule 1 differs from DNA molecule 2 at a single base-

pair location 

In human DNA, there is one SNP in every 300 nucleotides on average, which 

means there are roughly 10 million SNPs in the human genome (21,22). Since 

SNPs represent the basic variation in genes, some changes in SNPs could cause 

differences in their genes’ functions. Therefore, SNPs can be regarded as 
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biological markers that could help studies of the association between genes and a 

phenotype of interest (19). For example, SNPs can be used to explain the family 

history of some diseases with heritable components, such as cancers (23). As a 

biological marker, SNPs are also helpful in predicting an individual’s response to 

certain drugs and the risk of developing some particular diseases (24).  

2.1.3 Gene expression 

Gene expression involves complex processes in which the information of DNA 

sequence is expressed under certain conditions; and its quantification measures to 

what extent the gene is simulated to synthesize its products (25). In the process of 

gene expression, after the activation of a gene (trigged by internal stimuli and/or 

external environment), the DNA produces messenger RNA (mRNA), which could 

“translate” genetic message to biological characteristics through synthesized 

functional proteins (26). 

The step from DNA to mRNA, which takes place in the cell nucleus, is called 

transcription. The step from RNA to protein is called translation, which takes 

place outside the nucleus (27). In the transcription process, the sequence of a 

strand of mRNA is based on the sequence of the complementary strand of DNA 

(27,28).  

Since gene expression is the intermediate step at which a genotype gives rise to a 

protein that may determine the phenotype, gene expression is also helpful in 

examining the association between a phenotype (disease) and genes (26,29,30). 

http://www.daviddarling.info/encyclopedia/D/DNA.html
http://en.wikipedia.org/wiki/Genotype
http://en.wikipedia.org/wiki/Phenotype


8 

 

Research on gene expression assists scientists towards understanding the 

functions of genes.         

2.2 Microarray technology   

2.2.1 Microarray for SNPs     

Microarray-based gene expression analyses have been introduced with the 

biotechnological advances in the last two decades (31). This new technology 

permits thousands of gene expression measurements in a single assay, providing a 

massive amount of biological information on study samples. Similarly, SNPs 

could be genotyped by a SNP chip, which is a type of DNA microarray designed 

to identify genetic variants associated with a phenotype of interest(32,33). There 

are thousands of probes attached on the surface of a chip, which represent the 

nucleotide sequences of the single-stranded DNA chain (34,35). Although there 

are different microarray chips for SNP genotyping using different technologies, 

the “pair rule” applies everywhere. During genotyping, the DNA samples are 

separated into two single stranded fragments and both are labelled by fluorescent 

substance (19,34). Then, the DNA fragments will be attached onto the microchip 

and hybridized with the synthetic sequences on the chip following the “pair rule”. 

After hybridization, specialized computer equipment will be used to measure the 

fluorescent signal intensity contained in each probe (36). Genotypes for the alleles 

of a locus can be inferred from the fluorescent signals.   
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2.2.2 Tag SNPs     

There are about 10 million SNPs in human genome (37). Although SNP 

genotyping could infer massive genetic information, measuring all 10 million 

SNPs for each individual is currently not feasible in large-scale studies due to cost 

and time it takes. However, SNPs which are close to each other tend to be 

transmitted together from generation to generation.  A set of SNPs that are highly 

likely to be transmitted together is called haplotype (38). The linkage among 

SNPs is referred to as linkage disequilibrium (LD), which can be measured by 

correlation between SNPs (39,40). High correlations among SNPs enable one of 

them to be served as proxies for the other(s) (41). Figure 2.2 shows a haplotype 

which contains five SNPs (SNP1- SNP4) and true disease-causing SNP which is 

unknown (42). Because of the high correlations among the five SNPs in the 

haplotype block, the disease-causing SNP can be presented by the other 4 SNPs 

which can be called as “Tag SNPs” or “Marker SNPs”.  
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    Figure 2.2: Tag SNPs in a haplotype 

2.2.3 Microarray for gene expression 

Gene expression of a gene refers to the amount of mRNAs synthesized 

(transcribed) from the gene based on its DNA sequence. Microarray technology 

for the SNP chip described above and that for gene expression are based on the 

nucleotide pair rule and, thus, similar. While the SNP microarray is to examine 

the nucleotide sequence in the DNA chain, the microarray for gene expression is 

to measure the amount of gene products (mRNA) under a certain set of 

circumstances.     

When measuring the level of gene expression, researchers actually measure the 

amount of complementary DNA (cDNA) to the mRNA (43,44). cDNA is the 

product of reverse transcription which copies mRNA into DNA, pairing the RNA 

bases(A, T, G and C) to their corresponding DNA counterparts (T, A, C and G) 

(44).  The reason that researchers measure cDNA rather than mRNA is because 
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RNAs are inherently less stable than DNA and techniques for routinely 

amplifying and purifying individual RNA molecules do not exist (45).  

To measure gene expression, researchers firstly need to collect the mRNA 

expressed under a certain set of circumstances. Then reverse transcriptase 

enzymes would generate a complementary DNA (cDNA) to the mRNA, through 

which researchers can label and quantify the mRNA with fluorescent nucleotides 

attached to the cDNA (44,46). Generally, if a gene is highly active, it produces 

more mRNA and more corresponding cDNA than genes that are less active. 

Based on the pair rule, the fluorescent-labelled cDNAs which represent mRNAs 

of the gene will match to their synthetic complementary DNAs on the microarray 

slide (19,46). Researchers can use a special scanner to measure the fluorescent 

intensity for each gene to quantify their level of expression.  

 

      Figure 2.3: Microarray process for gene expression 

Note that the information in genes (DNA) is determined by their nucleotides and 

generally unchanged throughout the lifetime. The study of this gene/DNA 

information is called genetics. On the other hand, the study of gene expression is 

concerned about mRNA copies which change constantly to adapt/respond to the 

circumstances the host and the cell are surrounded by. 
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Chapter 3 Statistical Issues in High-dimensional Data 

Analysis 

3.1 Multiple comparison problem 

The multiple comparison problem is a challenge in high dimensional biological 

data analyses such as those of gene expressions and GWAS based on the 

microarray technology (47,48). In statistical analysis, a p-value is the probability 

of observing a test statistic value as extreme as, or more extreme than, the 

observed test statistic, assuming that the null hypothesis is true (49,50). It is a 

common practice to reject or accept a hypothesis based on a p-value, and p-value 

of 0.05 is usually considered as a threshold of making this decision. If the p-value 

of a test is equal to or less than 0.05, the null hypothesis is normally rejected. This 

also means that the probability of rejecting the null hypothesis when it is actually 

true is 5%, which is referred as Type I error (or false positive) (49).When a set of 

tests are conducted simultaneously, even if the probability of committing Type I 

error for each test is set at 5%, it would lead to an overall Type I error probability 

that is larger than 5% (51).  In a GWAS study, for example, there are 1000 SNPs 

that need to be investigated at the same time and 0.05 is set as the cut-off for each 

SNP, then 50 null SNPs that do not have associations with the outcome would be 

expected to be found positive by chance, which is to say, 50 null SNPs will be 

falsely regarded to be significantly associated with the outcome. Thus, in GWAS 

studies which may scan millions of SNPs, the multiple comparison needs to be 

adjusted properly. 
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3.2 Multiple comparison adjustment procedures 

3.2.1 Bonferroni adjustment 

Suppose there are N hypotheses that need to be tested, and for each single test, 

1 is set as the cut-off for rejecting the null hypothesis, which means 1 is the 

Type I error probability for each single test. If we do more tests, the chance of 

making an error will increase. For N independent tests, the probability of no Type 

I error equals to 1(1 )N  and the probability of having at least one false positive 

is 11 (1 )N  which approximate to 1N  when 1  is very small. We should 

decrease this probability to maintain the overall Type I error (51,52). 

The Bonferroni adjustment is a straightforward correction to the problem of 

multiple comparisons. It applies '

1 / N  in place of 1 as the significant level 

of each single test (53). Then, for all N tests, the overall Type I error would be 

controlled to be no greater than 1 . Suppose, for example, we conduct 1000 tests 

to check 1000 genes in association with the disease of interest and we want to 

control Type I error of  this study at an overall level of 1 =0.05. We would expect 

50 genes to be false positive by chance if we set 1 =0.05 as the p-value threshold. 

Bonferroni adjustment applies ' =0.05/1000=0.00005 as the significant level for 

each test, and then the chance of making a false discovery for the whole 1000 

tests will be controlled as 0.05. 

Although the Bonferroni adjustment is effective for controlling Type I error for 

the multiple testing problem, it has some limitations. Firstly, when Bonferroni 
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adjustment is applied, it is assumed that all the tests are independent, which is 

untenable in any of the high-dimensional studies (42,54). As illustrated above, 

one individual SNP is frequently correlated with the SNPs nearby. Secondly, 

Bonferroni adjustment is a conservative adjustment method where the adjusted 

Type I error probability is less than the target and it could lead to omissions of the 

truly significant associations.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  

3.2.2 False discovery rate 

3.2.2.1 Definition of FDR 

False discovery rate (FDR) is another statistical method which is widely used in 

addressing the multiple comparison problem. FDR is defined as the expected 

proportion of hypotheses which are truly nulls among those declared to be 

significant (42). While Bonferroni correction controls Type I error by adjusting 

the overall threshold of p-value for all the tests, FDR aims to estimate the error 

rate for tests which are declared significant (55,56).  

To discuss FDR, consider a summary of m multiple test results shown in Table 

3.1 (42).  Of the m tests, F is the number of false positives, T  is the number of 

true positives, and R  is the total number of tests declared significant.  
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                 Table 3.1: Property of multiple hypothesis tests 

 Test  

  Significant  Non-significant  

 

Truth 

H0 F V m0 

 HA T S m-m0 

  R m-R m 

 

FDR is an expected proportion of false positives among all the tests called 

significant and is given by: 

                                         
( )
F

FDR E
R

                                                  (3.1) 

If we use a p-value for deciding to reject or accept a hypothesis, when there are 

thousands of tests that are conducted simultaneously, it would result in a large 

number of false positives.  FDR can be applied to control the number of false 

positives, because an FDR estimate for a set of hypotheses that are declared 

significant estimates the chance of them being false positives. A p-value of 0.05 

for each test would result in 50 false positives among 1000 tests assuming all 

hypotheses are null. This is true no matter how many tests are truly non-null. 

Using FDR, however, we do not have to consider “what if all the hypotheses are 

null.”  We know if there are R tests that are declared significant and the 
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corresponding FDR estimate was f, Rf is the estimated number of false 

discoveries. FDR is adaptive to control the number of truly significant tests. 

3.2.2.2 Estimation of FDR 

When setting a significant p-value threshold at  , FDR could be donated as 

                                   
[ ( )]

( )
[ ( )]

F E F
FDR E

R E R







                                        (3.2)              

where [ ( )]E R   could be estimated by the observed number of significant tests 

which is ( )R   and an estimate for [ ( )]E F    is 0m  . Then we need to estimate 

0m  which could be expressed as 0m  , where m is the number of total tests and 

0  is the proportion of truly null tests. Under the null, p-values are uniformly 

distributed in [0, 1], whereas under the non-null, p-values tend to be small. Thus, 

we could estimate 0  by checking the proportion of “the flat part” in the density 

of the p-value distribution.  
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                          Figure 3.1: Distribution of p-values 

As shown in Figure 3.1, if all the tests are null, we expect the p-value distribute 

flatly as the green dashed line. The region below the red line can be considered as 

the proportion of truly null tests ( 0 ); and the part with p-value larger than 

 =0.7, which is indicated as green bars, is the “flat part” that can be used to 

estimate the red line and the number of truly null tests 0m  (57). 

Let  =0.7, the number of tests with p-value  is given by:  

                     0 0#{ } { } (1 )p m P p m  
 

                                                  (3.3) 

 Then we can estimate 0  as: 
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                                      0

#{ }

(1 )

p

m






 



                                                         (3.4) 

and: 

                                 

0
( )

( )

m
FDR

R

 





 

                                                    (3.5) 

While FDR is a useful measurement of the overall error rate for a set of tests 

declared significant, q-value is a measure given to each single test. The q-value of 

an individual hypothesis test is an estimated measure of the probability of false 

discovery when this test is declared significant (58). If we declare a test is 

significant with a p-value of t , the FDR under the p-value level of t  can be 

estimated: this is the q-value for this test. Similar to the p-value cut-off, we can set 

a threshold of   for q-values: all the tests with q-values smaller than   are 

expected to yield the false positive proportion less than .  

3.2 Over-fitting 

3.2.1 Over-fitting problem 

Statistical modeling is an effective approach to describe the association between 

an outcome of interest and independent variables. Based on a statistical model, we 

can also predict new observations. Given a sample, statistical modeling estimates 

the underlying data-generation mechanism to be generalized to new data from the 

same population. A model may provide an adequate explanation for the sample, 

which is often referred to as training data, but may fail to demonstrate a valid 
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prediction for unseen data, which is often referred to as testing data. A statistical 

model could fail in the generalization to new data in a number of ways, including 

incorrect model assumptions, insufficiency/bias of training data, training and 

testing samples being from different populations, and a phenomenon called over-

fitting. Over-fitting means the statistical model tend to describe random error or 

noise instead of the underlying relationship. Over-fitting can lead to an 

overestimate of the performance of a model, misleading the users of the model 

with respect to its performance capacity. 

When an over-fitting happens, the statistical model describes random error, or 

“noise”, in the training data as a systematic pattern of data generation. This occurs 

more frequently when the sample size is small. When the study sample is small, it 

is difficult or impossible to estimate the true underlying distribution of the 

population, separating it from random error. The model from the training data 

would then be prone to describe the noise as part of the systematic pattern of the 

data. Second, if a model is allowed to be excessively complex, such as having too 

many parameters or predictors relative to the number of observations, over-fitting 

is more likely to occur. More predictors can improve the performance of the 

model in the training data. However, a model is made more complex in order to 

maximize its performance on the specific training data at hand without 

considering its generalizability, the model will be ineffective with respect to 

predicting new data in a testing dataset. 

http://en.wikipedia.org/wiki/Statistical_model
http://en.wikipedia.org/wiki/Random_error
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In human microarray studies, which involve high dimensional data analysis, over-

fitting is a potential problem. Given that thousands of genes or SNPs are 

considered in a microarray study, it is prone to consider a highly complex model 

trying to fit the given data perfectly. Moreover, due to the large cost of 

genotyping for genes and SNPs, the sample size may be relatively small. When 

the study samples come from a limited subset of the population to be inferred, the 

statistical model would not be well generalized. This may be a reason for a 

commonly encountered phenomenon where microarray results are not replicable 

in other follow-up studies. 

3.2.2 Cross-validation and the use of validation sets 

There are several methods for preventing over-fitting, among which cross-

validation is widely used. Cross-validation is a method to evaluate how a 

statistical model can generalize to a new set of observations (59). A k-fold cross-

validation divides the sample data into k parts.  In one of k steps of the cross-

validation, the k parts are divided into two groups: one group, consisting of (k-1) 

of the k parts, is training data which are used to build a model; and the other 

group, consisting of just one of the k parts, is testing data which are used to 

measure the performance of the model from the first group. This single step is 

repeated k times until all k parts were considered as the testing data. By 

summarizing model performance across k testing datasets, we can evaluate the 

overall model performance and assess the over-fitting problem.  

For example, in Figure 3.2 (59), a 10-fold cross-validation is illustrated. The 

sample data are equally divided into 10 folds and the step is repeated 10 times. 
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For each step, 90% of the data (yellow colored) are used to form the training data, 

and the other 10% of the data (blue coloured) are used to estimate the prediction 

error.  

 

After k (10) steps, the error of the model would be estimated by the summary of 

the 10 predicted errors.  
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      Figure 3.2: Procedure of the 10-fold cross-validation 
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Chapter 4 Extending gene-set analysis from genomics to 

genetics 

4.1 Genome wide association studies (GWAS) 

Genome wide association studies (GWAS) involve the scanning of the entire 

human genome to identify genetic factors which are associated with the traits of 

interest (60,61). If certain genetic variants are more frequent in people with a 

disease, the variants are considered to be associated with the disease. Thus, a 

common GWAS design compares the frequency differences of genetic variants 

between case and control groups (62,63).  

Given the recent advances in microarray technologies, more than one million 

SNPs can be genotyped in a high-throughput assay for a large number of subjects 

in epidemiological studies. Moreover, the Human Genome Project which has 

mapped nearly all human DNA sequences provided the basis for scanning genetic 

variants across the whole genome and identifying potential susceptibilities which 

would contribute to the disease of interest (64,65). Based on these remarkable 

technological advances, GWAS has gained great popularity and has resulted in 

important findings in recent years. For example, the Wellcome Trust Case-

Control Consortium (WTCCC) conducted a series of large GWASs and 

successfully identified many novel genetic loci associated with several common 

human diseases, such as coronary artery disease, Crohn’s disease and diabetes 

(62,63).  
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Unlike candidate polymorphism or candidate gene studies which examine specific 

genetic markers hypothesized to be associated with the disease of interest based 

on prior knowledge, GWAS is able to check up to one million of tag SNPs in a 

single study (64). Candidate SNP/gene studies and replication studies are often 

conducted to validate the findings from GWAS. 

4.2 Quality control methods for GWAS  

In GWAS, we need to perform data quality assessment to avoid bias and to 

increase the power of the study. There are different methods to control the data 

quality in experimental and analyses procedure. They are applied to both SNP 

genotype data quality and sample quality assessments. We discuss here four 

widely applied measurements for quality control.  

4.2.1 Genotyping call rate  

The call rate of a SNP is the proportion of non-missing genotype in the sample, 

while the call rate of a subject is the percentage of SNPs which are successfully 

genotyped in that subject. Call rates are the quality control measurements to 

measure the missing frequency and indicate the accuracy of SNP genotyping 

(60,66).  It is applied to the selection of both SNPs and subjects samples for 

subsequent analyses. High call rates do not only represent the low missing values, 

but high accuracy of genotyping, thereby leading to higher precision and power of 

subsequent statistical analysis. 

The accuracy of genotyping is determined by the technology of microarray as 

well as the quality of the sample materials (e.g., blood samples). The higher the 
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call rate is, the better the data quality is.  GWAS researchers often set 90% as the 

minimum acceptable cut-off for call rates for quality control. If the call rate for a 

SNP or a subject is less than 90%, it would be excluded from the sample. Many 

GWAS studies used a call rate threshold of >95% for quality control (67,68). 

4.2.2 Minor allele frequency  

At every DNA locus, a SNP is usually consisted of two alleles. Minor allele 

frequency (MAF) for a SNP refers to the frequency of the less frequent allele in a 

given population. Polymorphism is usually defined by MAF greater than 1% 

(sometimes higher): the range of MAF for a SNP is, therefore, from 1% to 50% 

(42). As it is difficult to detect the association of a rare variant with the disease of 

interest, the SNPs with too small MAFs are usually deleted from GWAS: it 

requires high statistical power to detect rare variants’ association with the disease. 

MAF of 1%, 5% or 10% is usually applied to filter the SNPs in many GWAS 

studies (60,69). 

4.2.3 Hardy-Weinberg equilibrium  

Hardy-Weinberg equilibrium (HWE) refers to the independence of two alleles at a 

single DNA locus (70). HWE implies that the probability of an allele of a SNP 

does not depend on its complementary allele. For example, for a SNP which 

includes genotypes of AA, AB and BB, denoting the allele frequencies of A and B 

by ( )p A  and ( )p B , respectively, Table 4.1 shows their relationship:                      
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                        Table 4.1: Allele frequencies and genotypes 

  A B 

  ( )p A  ( )p B  

A ( )p A  AA AB 

B ( )p B  AB BB 

According to the HWE, the probabilities of A and B alleles are independent in a 

population; the probabilities for genotypes of AA, AB and BB should be equal 

to 2( ) ( )p AA p A , ( ) 2 ( ) ( )p AB p A p B , and 2( ) ( )p BB p B , respectively. The 

HWE law hold when a series of assumptions such as no genotyping error, no 

mutation, and random mating to hold. The failure of the HWE law to hold in a 

SNP indicates the violation of any of these assumptions (e.g., genotyping errors) 

(71). SNPs violating the HWE law with high statistical significance are excluded 

from the subsequent statistical analyses. 

HWE check should be conducted for the control group in case that the violation of 

HWE is caused by different allele frequencies between case and control groups. 

Testing of HWE includes a chi-square test and Fisher’s exact test, both of which 

can assess statistical evidence of the SNPs’ deviation from HWE (72,73).  

Because the tests of HWE involve multiple comparisons, one could use 

Bonferroni correction to adjust the p-values and select a threshold which is 

determined by the number of tests/SNPs (60). The SNPs with a p-value smaller 

than the chosen cut-off are excluded from the study. FDR can also be used for this 

multiple testing problem. 
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4.2.4 Correction for population stratification 

Differences in genotype frequencies between case and control samples can be not 

due to the disease, but caused by population substructures, for example, by 

different ancestry or non-random mating (74). This problem is referred to as 

population stratification. Population stratification would affect the findings in 

GWAS study, leading to false discoveries (and false negatives) of genetic markers 

(75,76). Therefore, it is important to assess population-structure heterogeneity and 

correct for the population stratification. 

Of the methods for population stratification correction, Genomic control and 

Eigenstrat are widely used. Genomic control applies an inflation factor to control 

the inflation of an association-test statistics due to population stratification 

(75,77). A Q-Q plot can be used to show the degree of inflation of a test statistics. 

If there is significant difference in the population structure between the case and 

control samples, the test-statistics distribution from association tests would be 

more dispersed than the theoretical null distribution.  With an estimated inflation 

factor , the actual association test statistic is adjusted by divided it with the 

estimated   for a population stratification correction (78).  

Another popular method used for correcting population stratification is Eigenstrat 

which uses principal component analysis to detect and correct population 

stratification. Eigenstrat applies principal component analysis to genotype data to 

investigate continuous axes of major genetic variation (79). The principal 

component axes can capture the major ancestry variability of the data. For 
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example, an axis of variation can be interpreted as ancestry difference in 

geography. The sample subjects could be divided into subpopulations using this 

method. 

4.3 Single SNP association analysis 

The standard approach to GWAS analysis has been single-SNP association 

analysis which refers to analyzing SNPs in the whole genome one by one, for 

identifying SNPs which are associated to the trait of interest. Each SNP would be 

treated individually without considering the other SNPs. Case-control study 

design is the typical study design for GWAS. Single SNP analysis investigates an 

individual SNP by comparing the genotype frequency difference at this locus 

between case and control groups. Chi-square test is usually used for single SNP 

analysis.  

Given that hundreds of thousands of SNPs in the whole genome are investigated, 

multiple testing problems should be taken into consideration in single SNP 

analysis. The SNPs can be ranked based on their p-values first.  Then Bonferroni 

correction or FDR can be applied to examine the SNPs with strong evidence 

against the null hypothesis of no association.  

Multivariable regression could be applied to adjust for potential effects of non 

genetic factors and the interaction of individual SNPs and environmental factors 

could be examnied. If available, replication studies and candidate gene testing can 

be performed to validate the results from single-SNP analysis.   
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4.4 Important differences between gene and gene expression 

Genes are the functional portion of the double DNA chain. The sequences of the 

nucleotides (A, T, C and G) in a gene are genetic codes which determine the 

gene’s genetic information. These genetic codes are stable because the nucleotide 

sequence of a gene for a person is largely fixed in the whole life except mutations.  

Gene expression is the process by which information from a gene is used in the 

synthesis of a gene product, RNAs. The product of gene expression is Messenger 

RNA (mRNA) and transfer RNA (tRNA) which carry the gene information to 

synthesize proteins. Gene expression is the middle process in which genotypes 

give rise to the organism’s phenotypes. 

While a gene specifies the nucleotide sequence in DNA chain, the gene 

expression is the process that determines the amount of the corresponding protein 

to be made. In other words, the DNA sequence spells out the code for producing a 

specific protein, whereas the expression level is the number of copies and amount 

that will be produced.  Although the genetic code of a gene for a person is largely 

fixed, the gene expression level of this gene would change from time to time. The 

objective of genetic studies, such as GWAS, is to identify the genetic factors 

(SNPs and genes) associated with the trait of interest. On the other hand, gene 

expression studies, which are also referred to as genomic studies, aim to 

investigate differences of gene expression levels associated with the trait of 

interest.  



29 

 

4.5 Gene expression analysis and SAM 

Gene expression studies analyze gene expression levels of a gene under certain 

conditions. In studies of gene expression, the basic measure used in analysis is the 

amount of gene products, which is typically a real-valued positive number.  By 

comparing the gene expression levels between targeted groups, such as patients 

with cancer and normal subjects, one can identify the association between gene 

expression levels and the disease.  

Single-gene analysis is the standard for gene expression studies using the 

measures of gene expression levels for one individual gene at a time. Many 

microarray studies target at the discovery of individual genes whose expressions 

are associated with a phenotype of interest. A popular statistical method for 

single-gene analysis is Significance Analysis of Microarray (SAM) proposed by 

Tusher, Tibshirani and Chu in 2001 (80). SAM identifies statistically significant 

genes by carrying out gene-specific t-like tests and computes a statistic ( )d i  for 

each gene i , which measures the strength of the relationship between gene 

expression and a phenotype (e.g., cases vs. controls): while SAM is used for a 

wide variety of phenotypes, we focus on the binary phenotype here. The statistic 

( )d i  measuring the relative difference in gene expression is: 

                                              1 2

0

( ) ( )
( )

( )

x i x i
d i

s i s





                                                (4.1)    

http://en.wikipedia.org/wiki/Student%27s_t-test
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where 1( )x i  is the average level of expression for gene i  in the case group, while 

2 ( )x i  is the average expression level for gene i  in the control group.  The salient 

feature of SAM is the use of ( )s i , a pooled standard deviation over the two 

groups of genotype: 

                       2 2

1 1 2 2( ) { [ ( ) ( )] [ ( ) ( )] }s i a x i x i x i x i                              (4.2) 

where 1 2 1 2(1/ 1/ ) / ( 2)a n n n n    , 1n  and 2n  are the numbers of cases and 

controls, respectively; 0s  is a small positive constant that adjust for the “small 

variability problem” in microarray measurements.  The reason to add 0s  to the 

denominator is to make the variance of ( )d i  independent of the mean level of 

gene expression: at lower expression levels, values of  ( )d i  could become very 

high due to very small values of ( )s i  (the small variability problem); adding a 

small positive constant 0s  to the denominator ensures that the variance of ( )d i  is 

independent of the mean level of gene expression. 

Permutation of case-control labels is used to calculate the p-value for each gene i . 

Samples in the case group are exchanged randomly with the samples in the 

control group to get the permuted test statistic ' ( )d i . Through comparing the 

original ( )d i with the permuted set of test statistic
' ( )d i ’s, we can get the p-value 

for gene i , permutation test. 



31 

 

4.6 Gene-set expression analysis and SAM-GS 

Besides single-gene analysis, gene-set analysis has been conducted for gene 

expression studies. A gene set is a group of genes which are a priori defined 

according to their biological properties (81). Genes in the same gene set may 

contribute to certain biological functions, and their sets are also referred to 

biological pathways. Gene-set analysis evaluates the expression levels of genes in 

the set, or biological pathway, as a group together, rather than one single gene at a 

time, in association with a phenotype (81,82).  

Extending SAM for single-gene analysis, Dinu et al. proposed a gene-set analysis 

in 2007, called SAM-G(83,84). SAM-GS tests a null hypothesis that the mean 

vector of gene expressions in a gene set does not differ by the phenotype of 

interest (83). While SAM evaluates the single gene expression difference between 

cases and controls, SAM-GS aims to examine the gene set expression difference 

between cases and controls. 

SAM-GS steps are as follows: 

1) For each gene i  in the gene set under consideration, the same t-like statistic 

( )d i  as in SAM is calculated: 

                                 
1 2

0

( ) ( )
( )

( )

x i x i
d i

s i s




                                            (4.3) 
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where 1( )x i  is the average level of expression for gene i  in the case group while 

2 ( )x i  is the average expression level for gene i  in the control group, ( )s i is the 

pooled standard deviation of gene expression over the two groups of phenotype, 

0s is the small positive constant that adjusts for the small variability encountered 

in microarray data (83-85).  

2) Calculate the following SAM-GS test statistic for the gene set: 

                             2 ( )
i s

SAMGS d i


                                              (4.4) 

where S is number of gene in a gene-set. 

3) Permute the phenotype labels and compute the permutation statistic ' ( )d i  for 

each gene i  in the gene set, then get the test statistic value of 'SAMGS  for the 

permuted data.  

4) Repeat the permutation for a large number of times to get a permutation 

distribution for 'SAMGS , and then compare the observed value of SAMGS  with 

its permutation distribution to get the statistical significance level (p-value) for the 

gene set. 

SAM-GS is an extension of SAM for single gene analysis to gene-set analysis. 

Compared to single gene analysis, gene-set analysis has multiple advantages. 

First, gene-set analysis can detect some important effects which may be missed by 

single gene analysis. Because some single genes may have subtle effects which 
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would be missed by single gene analysis; the combination of their effects, 

however, could make magnificent difference on phenotype and can be detect by 

gene-set analysis. Second, gene-set analysis can reduce the number of hypothesis 

tested, which will help reduce problems rising from multiple hypothesis testing 

(81,82). Moreover, based on the a priori biological expert knowledge, gene-set 

analysis can promote biological interpretation of gene expression data. 

Another method proposed by Wang and Dinu considers the gene expression level 

of a gene-set as a linear combination of single genes’ expression (86). Then, we 

can test the association between gene-set and a phenotype by comparing the 

combination means of case and control groups. 

This method supposes the expression of K genes in a gene set is expressed by 

1 2( , ...... )KX X X  and 1 1 2 2( ) ... K KZ X X X       is a linear combination of 

the genes. Then, the gene expressions of gene set can be expressed by a univariate 

model: 

                                            ( )ij i ijZ e                                              (4.5) 

where 1 and 2 are the mean gene expressions for case and control groups 

respectively, and 
2~ (0, )ije N  . 

Through this transformation, this test becomes a classical two-sample comparison 

problem. What we need to do is to find the premium vector 
*  to maximize the 

two sample t-test statistic  
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1 2

_ _
2

1 22 *

2

1 2

( )
( )

1 1
( )Z Z

Z Z
T

S
n n








                                       (4.6)  

Where
_ _

1 1
TZ X , 

_ _

2 2
TZ X ,

1 2

^
2 T

Z ZS    . 
_

1X and 
_

2X are the K-sample 

average of gene expressions of case and control groups. 
^

 is a pooled covariance 

matrix over the two groups and would be estimated with a shrinkage covariance 

matrix proposed by Schafer and Strimmer to deal with the singular problem (87).  

4.7 SNP-set analysis: An extension of SAM-GS to genetic studies 

GWAS aims to identify SNPs associated with an outcome. There are more than 

10 million SNPs in the whole genome of a person, some of which may work 

jointly in influencing the outcome. For many outcomes, genotype difference at a 

single locus may not dominant enough to make the difference of the phenotype. 

As genes in the same biological pathway presumably have related biological 

functions, the SNPs in the same gene (or pathway) may be associated with the 

outcome (through the related biological functions).  

By viewing a SNP set as a gene set, we attempted extending the method of SAM-

GS applied in gene expression studies to genetics studies. Specifically, for a given 

gene i , suppose that there are N genotyped SNPs. When we perform single-SNP 

analysis for the association of each SNP with a disease of interest, we could get a 

chi-square statistic donated by jx  for each of these N  SNPs ( j =1, 2, 3 ... ... N ) 

for the association with the disease phenotype. Then a statistic for the SNP set  i  
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(e.g, gene) can be constructed by combining the statistic jx  in this SNP set 

(gene). Let  iZ  be the summary test statistic for SNP set (gene) i , then, following 

the idea of SAM-GS,  iZ  could be expressed as: 

                                                
1

N

i j

j

Z x


                                                  (4.7) 

In order to test how extreme the observed test statistic iZ  is, we apply 

permutation to form a null distribution of the test statistic for SNP set (gene) i . 

Permutation test is a type of randomization test, in which the distribution of the 

test statistic under the null hypothesis is obtained by calculating all possible 

values, or a random sample from them, of the test statistic under rearrangements 

of the observed case and control samples (88,89). For example, if we want to 

perform k  permutations, in every one of k permutations, the observed cases and 

controls are changed randomly to form a new set of cases and that of controls. 

From the new permuted case-control data, we perform single SNP analysis for 

each individual SNP j  in SNP-set (gene) i  to get a new test statistic jkx . A new 

permuted test statistic for the k-th permutation can be constructed by: 

                                              
1

N

ik jk

j

Z x


                                                 (4.8) 

From repeated permutations, a distribution of the test statistic under the null 

hypothesis is formed. If we set k =10,000, then we could get a null distribution 

containing 10,000 test statistic values for SNP set (gene) i , which can be donated 
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by ( 1 2 3 10,000, , ,.......i i i iZ Z Z Z ). Though comparing the observed test statistic value 

iZ  with the permuted null distribution of ikZ , we could get a p-value for the SNP 

set (gene) i . 
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Chapter 5 An Application of GWAS SNP-Set Analysis 

In this chapter, GWAS is applied to identify the genetic susceptibility in the 

development of therapy-related congestive heart failure (CHF) after childhood 

cancer. We start with describing the project background, study design, sample and 

data collection. Then different analyses are described exploring the association 

between genetic variants and CHF. Besides single SNP analysis which is the 

standard approach in GWAS studies, we also applied the SNP-set analysis. These 

include examinations of a SNP-treatment and SNP-set-treatment interaction in 

developing CHF after cancer. Following the description of the analysis methods, 

results of the analyses are presented and discussed in this chapter.  

5.1 Background  

Over the past several decades, survival rates for childhood cancers have improved 

significantly, reflected in the 5-year relative survival rates for major childhood 

cancers (90,91). More than 80% of children who are treated for childhood cancer 

can be cured and survive as least 5 years after diagnosis (92,93). The marked 

improvement in childhood cancer survival rates has been attributed to several 

factors: development of multimodal treatment protocols; and the centralization of 

care and support services (94).  

Although childhood cancer patients can survive for a long time, their quality of 

life after cancer treatment is an important issue for the patients, their family and 

healthcare providers. Some diseases of cancer survivors are caused by late effects 
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of cancer treatment that includes radiation and chemotherapy drugs. The treatment 

can kill not only cancerous cells but also normal cells, subsequently leading to 

diseases. Anthracycline has been widely used in the treatment for childhood 

cancers, such as leukemia and lymphoma. But the toxicity of anthracycline is a 

potential cause for many late effects, among which cardio toxicity is one of the 

most frequent and serious adverse effects for childhood cancer survivors. 

Specifically, anthracycline induced CHF occurs in a substantial subgroup of 

childhood cancer survivors; up to 10% of childhood cancer survivors treated with 

300mg/m
2 

have been reported to develop anthracycline-associated CHF (95,96).  

The risk of CHF is highly related to the dosage of anthracycline during cancer 

treatment (97). With the cumulative dose of anthracycline, the risk of CHF 

increases. Although there is a dose-response relationship between anthracycline 

and CHF, some patients can tolerate high doses of anthracycline without 

experiencing any adverse event. On the contrary, cardiac disease has been 

recorded in some patients exposed to very low doses of anthracycline. The reason 

underlies this difference could be explained by genetic susceptibility, which has 

not been fully explored. This project aims to examine genetic risk factors 

associated with the development of anthracycline-caused CHF by examining 

genetic loci which are relevant to cardiovascular metabolic and inflammatory 

syndromes.  
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5.2 Objective and hypothesis 

The overall objective of this study was to identify therapeutic exposures and 

genetic risk factors associated with the development of CHF by studying doses of 

anthracycline, demographic factors and genetic variants among cases and 

controls. The specific aims of this study included: 

1) To characterize survivors with the adverse event (cases), in comparison with 

individuals from the same pool of cancer survivors without the outcome 

(controls), to examine the role of genetic susceptibility in the development of 

CHF. 

2) To assess the modification effect of genetic factors on anthracycline toxicity in 

inducing CHF. 

The main research hypothesis to be tested in this study is:  

Among the childhood cancer survivors, the toxic effect of anthracyclines in the 

development of CHF is modified by a subset of genetic variants. 

5.3 Study population and study design 

This study was initiated by Dr. Smita Bhatia from City of Hope Comprehensive 

Cancer Center in California, USA. The study population of this project is the 

childhood cancer survivors who developed cancer before age 21 in USA. Because 

the incidence rate of childhood cancer is low, in order to conduct a study with a 

sufficient size, it is necessary to establish a resource pool which can share the 

information and allow for a larger, multi-organizational study. The answer to this 
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question was the Children's Oncology Group (COG) which is a worldwide clinical 

trial cooperative group supported by the National Cancer Institute, with the 

mission of studying issues related to childhood cancers (98). COG follows up a 

cohort of all childhood cancer patients since the time of developing cancer.  

A matched case-control design was used for this study based on the established 

childhood cancer survivor cohort. Cases were selected from study participants 

developing CHF and the childhood survivors who had not developed CHF served 

as controls. 

5.4 Data collection 

5.4.1 Case definition  

The adverse event of interest in this study is CHF. If a clinical document (i.e., 

medical records) indicated that the patient had a diagnosis of CHF with 

echocardiagraphic confirmation, then the patient was labelled as a case with CHF. 

5.4.2 Selection of cases and controls 

Childhood cancer patients with CHF were recruited based on eligibility criteria. 

After obtaining informed consents from those patients (or legal guardians), they 

were registered via the remote data entry (RDE) system into the COG Cancer 

Registry, with completed on-line Eligibility Worksheet and Event Reporting 

Worksheet, as well as the clinical document and echocardiogram used to verify 

CHF. 

http://en.wikipedia.org/wiki/Clinical_trial
http://en.wikipedia.org/wiki/Clinical_trial
http://en.wikipedia.org/wiki/National_Cancer_Institute
http://en.wikipedia.org/wiki/Cancers
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For each case enrolled, 1 to 4 matched controls were randomly selected by the 

COG statistical center from the cohort. Upon each new case registration in COG 

Operations Office, controls were identified using the following criteria to match 

with the case: 1) same primary childhood cancer diagnosis; 2) same date of 

diagnosis; 3) at least the same length of follow-up time since diagnosis of primary 

cancer; 4) and same race/ethnicity. The subject sample was comprised of 399 

childhood cancer survivors from COG, of whom 130 were CHF cases and 269 

were controls. 

5.4.3 Study procedures 

5.4.3.1 Data availability  

For each registered subject, case or control, data abstraction forms such as the 

therapy summary form and radiation treatment form were prepared by the 

institution that treated the patient, and submitted via electronic RDE within 3 

months of the patient’s study enrolment. Details regarding chemotherapy included 

date of treatment initiation, total number of cycles, protocols/regimens, and 

cumulative doses of key therapeutic agents per square meter. Details on radiation 

therapy included dates, total lifetime dose, field, fractions, dose per fraction, and 

copy of institutional radiation therapy summary report. Anthracycline cardio 

toxicity score was calculated by multiplying cumulative dose by a factor that 

reflects the cardio toxic potential of each drug (doxorubicin=1, 

daunorubicin=0.75, idarubicin and mitoxantrine=3). 
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A self-administered questionnaire was administered for each registered case or 

control. This questionnaire comprised of sections concerning personal 

medication-use history and health-related behaviours such as use of cancer 

screening tests. Some demographic variables were also collected through the 

questionnaire, such as sex, age and smoking status. For the participants who were 

too young to give the information themselves, their parents were requested to 

offer the information and help them to complete the questionnaire. 

5.4.3.2 Genotyping 

Blood sample was collected from all the participants to perform genotyping with 

rigorous quality control (QC) requirements. Genotyping was performed on the 

Illumina IBCv2 BeadChip array which contained approximately 50K gene-centric 

SNPs that were specially designed to assess relevant loci across a spectrum of 

cardiovascular, metabolic, and inflammatory syndromes. Although the IBCv2 

array contains only 50K SNPs, based on haplotype information, it can cover 

genetic diversity of a broader set of genetic loci using data from the HapMap and 

SeatleSNPs projects by the tag SNP approach (99). In order to avoid bias, 

personnel performing genotyping were blinded regarding the case-control status 

of the participants. A total of 48,742 SNPs were successfully genotyped for each 

participant.  

5.5 Quality control 

In order to increase the power and accuracy of the analyses for this study, several 

quality control methods were applied to the sample subjects and genotype data. 
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We conducted quality control using R package “GenABEL” which is a 

specialized R package for GWAS. 

First, we applied call rate to remove the sample subjects and SNPs with low 

quality which were caused by inaccurate genotyping. If the proportion of SNPs 

successfully genotyped for a subject was less than 95%, the subject was removed 

from the sample. For a SNP, if the successful genotyping proportion among all 

sample subjects was below 95%, then it was deleted. 

Second, in order to increase the power of the analysis and reduce the number of 

multiple testing, we applied 10% as the MAF threshold. The SNPs with MAF less 

than 10% were removed from the SNP set to be analyzed. 

Thirdly, we excluded the SNPs which deviated from the Hardy-Weinberg 

Equilibrium (HWE). The multiple comparison problem was also taken into 

account. In the quality control with respect to HWE, we applied the method of 

false discovery rate (FDR) with an FDR of <0.2 as a threshold. If a SNP violated 

HWE with q-value smaller than 0.2, then it was deleted. 

Because race was one of the matched variables, we didn’t check population 

structure in the analysis.  

5.6 Association analysis    

After quality control, there were 25,572 SNPs. A total of 399 sample subjects 

were eligible for further analyses, of whom 130 subjects were cases and 269 

subjects were matched controls. For coding of 3 genotypes (AA, AB and BB) 



44 

 

with A and B representing the two alleles of an SNP at a single locus, we 

considered two different ways: 1) AA=0, AB or BB=1, which took AA as the 

reference group; 2) BB=0, AB or AA=1, which took BB as the reference group.  

These two codes corresponded to the notion of dominant and recessive effects of 

alleles.  

5.6.1 Analysis of single SNP  

5.6.1.1 Main effect of SNPs 

Main effect models (main effects of single SNPs) without any other covariate 

were considered to examine the associations between CHF and each single SNP. 

This analysis assessed whether any single SNP was associated with the risk of 

CHF. Conditional logistic regression models were applied based on the matched 

case-control study design. We conducted two conditional logistic regressions 

based on the two codings for genotype: if genotype AA was the reference group 

(AA=0, AB or BB=1), we were assessing the effect of allele B for the SNP; and if 

genotype BB was set as reference (BB=0, AB or AA=1) then we were examining 

the effect of allele A. The main effect model was of the form: 

                                  
1

[ ]
log( )

1 [ ]
k

E Y
SNP

E Y
  


                                      (5.1)                                   

where k  was the baseline risk within each matched sample and 1  was the effect 

of SNP genotype. 
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5.6.1.2 Analysis of single-SNP-treatment interaction  

After checking the direct effect of individual SNPs in developing CHF, 

interaction between single SNPs and therapies applied to cancer treatment was 

studied. To answer the question whether the effect of anthracycline on the 

development of CHF was modified by genotypes, we assessed the interaction of 

single SNPs and anthracycline. Since heart radiation was also known to be 

associated with CHF risk, heart radiation status was added to this model as a 

potential confounder to be adjusted for. Anthracycline dose was taken as a 

continuous variable and heart radiation was an indicator variable. The model for 

the interaction assessment took the following form: 

1 2 3 4

[ ]
log( ) *

1 [ ]
k

E Y
SNP Athracycline Radiation Athracycline SNP

E Y
        


                 (5.2) 

where k  was the baseline risk of CHF within each set of matched childhood 

cancer samples, 1  was the effect of SNP genotype, 2  was the effect of 

anthracycline dose, 3  was the effect of heart radiation and 4 was the coefficient 

of interaction between anthracycline and SNPs. 

Because this study was a matched case-control study, the p-value and power 

depend on the number of discordant pairs. If the number of discordant pairs for a 

SNP was small, the power was low. Thus, we selected the SNPs which contained 

more than 35 discordant pairs for statistical analysis and ran 35,769 (two coding 

ways together) regression models in total. 
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5.7 Simulation  

In order to interpret and validate the analysis results above, we conducted 

simulations based on the real data which contained 35,769 SNPs (two SNP coding 

ways together) with 35 or more discordant pairs (the numbers of discordant pairs 

for simulated SNPs were kept exactly the same as the real observed SNPs). To 

simplify the simulation, we simulated 130 cases, and for each case, we simulated 

one matched control (the simulation data was 1:1 matched). We assumed an odds 

ratio (OR) equal to 1 for the null SNPs; while for the SNPs associated with CHF, 

we simulated with an OR equal to 1.5.  

We conducted the simulation assuming varying proportions (1%, 3%, 5%, 10% 

and 15% respectively) of SNPs having an association with the disease with 

OR=1.5 (the rest of the SNPs have no  association with OR=1). The aim of 

assuming different proportions of associated SNPs in simulations was so that we 

can identify the approximate proportion which was most similar to our true data.    

5.8 SNP-set analysis 

We performed the SNP-set interaction analysis, which took all the SNPs in the 

same gene as a SNP-set, to assess the gene-treatment interaction in association 

with anthracycline-induced CHF. IBCv2 array contains some SNPs that do not 

belong to any genes; some of these SNPs are marked as “near to” some genes and 

the rest has no gene information. If a SNP is marked as near to a gene, then we 

mapped it to that gene. We successfully mapped 24,224 SNPs, which accounted 
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for about 95% of the entire set of the 25,572 SNPs with good quality, into 2,991 

genes.  

We performed 10,000 permutations to get a p-value for gene-anthracycline 

interaction for each gene. Specifically, we considered the interaction between 

each gene and anthracycline dose. A statistic for the interaction between a gene 

and anthracycline was constructed by summing the chi-square statistic of testing 

the interaction between anthracycline dose and each individual SNP over all SNPs 

in the gene. The chi-square statistic came from a conditional logistic model which 

contained SNP, anthracycline dose, heart radiation and the interaction between 

SNP and anthracycline. Because we coded each SNP in two ways, we had two 

SNP-anthracycline interaction chi-square statistic values for each SNP. We chose 

the larger of the two as the chi-square statistic for the SNP-anthracycline 

interaction. 

A permutation test was then applied to get a p-value for each gene’s interaction 

with anthracycline dose. The procedure of the permutation test was as follows. 

We randomly shuffled the labels of each case and its matched controls within the 

matched case-control set. Then the same procedure as the original case-control 

data was followed to calculate a permuted test statistic for each permutation. That 

is, for each permuted dataset, we calculated each SNP’s chi-square statistic for 

SNP-anthracycline interaction and summed these chi-square statistic values over 

each gene to obtain the test statistic for the interaction of gene and anthracycline 

dose. After 10,000 permutations, there were of 10,000 test statistic values for the 

interaction of each gene and anthracycline dose which formed a null distribution 
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of the test statistic. By comparing the test statistic from the original data with the 

null statistic distribution from the permutations, we calculated a p-value for the 

interaction of each gene and anthracycline dose.  

5.9 Result 

5.9.1 Single-SNP analysis results 

5.9.1.1 Single-SNP main effect 

The SNP main effect was examined by a conditional logistic regression model 

including only one single SNP. This was repeated for 51,144 times for the two 

ways of coding for 25,572 SNPs that passed the quality control (QC). The p-value 

distribution of all the 51,144 tests is shown in Figure 5.1. 

 

               Figure 5.1: Distribution of p-values of SNP   
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The flat histogram of p-values indicated that the p-value distribution was 

consistent to the null hypothesis and the p-values were uniformly distributed 

between 0 and 1. Note that, although there were some individual SNPs with p-

values<0.05, their number was as expected under the null hypothesis. For 

example, after taking into account of the multiple comparison problem by FDR, 

there was no evidence against the null hypothesis of no association. In summary, 

the main effect analysis of single SNPs indicated that there was no evidence that 

any individual SNP alone is associated with the risk of developing CHF. 

5.9.1.2 Interaction of SNP and anthracycline treatment 

Figure 5.2 shows the results of the SNP-treatment interaction analysis which 

assessed the modification effect of each individual SNP for anthracycline toxicity 

on CHF, with the heart radiation exposure indicator as a covariate in the model. 

As discussed previously, based on the consideration of statistical power, only 

SNPs which had more than 35 discordant pairs were examined. A total of 35,769 

SNP anthracycline interactions (two coding ways together) were examined, 

among which, 3,288 interactions (accounting for 9.2%) had a p-value less than or 

equal to 0.05.  
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Figure 5.2: Distribution of p-values of the interaction between single SNP 

and anthracycline dose 

The p-value histogram peaked towards small p-values, which is a typical p-value 

distribution showing the existence of true associations when a large number of 

potential associations were tested. Thus, this result indicated that the effect of 

anthracycline dose on the development of CHF was modified by certain SNP 

genotypes. 

Table 5.1 and table 5.2 showed the analysis results of SNPs with the smallest p-

values for the interaction. Q-values for these 10 interactions were all 0.35 

indicating that the probability of each of these most significant associations being 

a false discovery was 35%.  
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Odds ratios (ORs) associated with 100 mg/m2 increase in anthrocycline were also 

shown. For example, rs2956529 in gene RAP1B is the SNP which has the most 

statistically significant interaction with anthracycline dose with a p-value of 

0.00003. The odds ratio for this interaction shows that (a) if a cancer patient has 

genotype AA in rs2956529, the odds of developing CHF would decrease by a 

factor of 0.92 with every 100 mg/m
2
 increase of anthracycline dose after 

controlling for heart radiation; and (b) if the genotype is AB or BB, the odds of 

developing CHF would increase by a factor of 2.34 times with every 100 mg/m
2
 

increase of anthracycline dose after controlling for heart radiation. 
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                    Table 5.1: Ten SNPs with smallest p-values for the interaction of SNP and anthracycline dose 

SNPs Chr   position Gene 

OR for 100       

mg/m
2
 anth 

OR for 100     

mg/m
2
 anth 

p-value q-value 

(Reference) 
(Non-

Reference) 

rs2956529 12q14 RAP1B 0.92 2.34 3.00E-05 0.35 

rs2232228 12q22.1 HAS3 3.86 1.41 6.00E-05 0.35 

rs2284136 12p13 KCNA5 0.98 2.28 7.00E-05 0.35 

rs140615 5q33-q34 SGCHF 1.13 2.43 7.00E-05 0.35 

rs17138476 17cen-q21.3 HNF1B 1.44 3.62 9.00E-05 0.35 

rs11667974 19q13.4 HAS1 1.46 3.83 1.00E-04 0.35 

rs2649747 3p22 N/A 1.13 2.35 1.00E-04 0.35 

rs566552 11q22 N/A 2.32 1.21 2.00E-04 0.35 

rs2975734 8p23.1 MSRA 1.29 2.53 2.00E-04 0.35 

rs11689738 2q31.3 ITGA4 2.72 1.43 2.00E-04 0.35 

http://www.ncbi.nlm.nih.gov/sites/nuccore/NC_000003.10?report=graph&v=39331809:39332809&content=5&m=39332309!&mn=rs2649747&dispmax=1&currpage=1
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5.9.2 Simulation result 

We also conducted simulations under different assumptions to validate and 

interpret the above results.  The histograms shown in Figures 5.3 and 5.4 are 

simulated p-value distributions for the 35,769 SNPs (two coding ways together) 

with underlying OR=1.0 and OR=1.5, respectively. 

 

Figure 5.3: Distribution of 35,769 p-values of simulated SNP data with 

underlying OR=1.0 
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Figure 5.4: Distribution of 35,769 p-values of simulated SNPs with estimated 

OR=1.5 

The p-value density from the simulation with OR=1, shown in Figure 5.3, was 

flat, consistent to the null hypothesis of no association, and similar to the p-value 

distribution of the main effect analysis of single SNPs shown in Figure 5.1. 

Conversely, when the estimated OR was set to be 1.5 which means there were 

true associations, the p-value distribution was completely different and peaked 

towards 0. These further confirm that the single-SNP main effect analysis result 

was consistent to the notion that no single-SNP had a main effect on CHF risk.  
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Figure 5.5 represents the results of simulations with varying proportions (1%, 3%, 

5%, 10% and 15% respectively) of SNPs having associationa with the disease 

with OR=1.5, with the remaining SNPs having no  association with OR=1.0. 
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Figure 5.5: Distributions of 35,769 p-values of simulated SNP data with 

varying OR=1.5 proportions and the observed p-value distribution for the 

interaction between single SNPs and anthracycline dose 
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From the observed p-value distribution of the interaction with 35+ discordant 

pairs, shown in the last panel of Figure 5.5, we observe the consistency of this 

distribution to the one that has 15% SNPs with OR=1.5. The simulation indicated 

that there may be approximately 15% of SNPs which may modify the effect of 

anthracycline dose on CHF risk. 

5.9.3 Results of SNP-set analysis 

For the 2,991 genes, we assessed the interactions between their SNP-sets and 

anthracycline. There were 399 interactions with a p-value less than or equal to 

0.05, accounting for 13.3% of the genes examined. The distribution of 2,991 p-

values is shown in Figure 5.6. 

 

Figure 5.6: Distribution of p-values of interactions between genes and 

anthracycline dose 
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This graph indicates there are strong interaction effects between genes and 

anthracycline dose on CHF risk. Comparing with Figure 5.2 which represented 

the result of the interaction analysis between single SNPs and anthracycline dose, 

the distribution of the p-values in Figure 5.6 are much more peaked towards 0. 

And the proportion of significant genes is much larger than that of significant 

single SNPs (13.3% vs 9.2%). It shows that the SNP-set interaction analysis 

resulted in more statistically significant discoveries than the single-SNP 

interaction analysis. 

P-values for SNP-set anthracycline interaction analysis were obtained from 

10,000 permutations. The smallest p-value was < 0.0001 as shown in Table 5.3. 

Both p-values and q-values for the top genes were smaller than the top SNPs from 

the single-SNP interaction analysis. Among the statistically significant genes, 

different genes contained varying numbers of SNPs. Some of these SNPs were 

statistically significant in the single-SNP interaction analysis, while others were 

not. The reason might be that some SNPs’ effects on anthracycline modification 

are not so significant that would be tested in single SNP analyses. However, their 

combined effects, identified by SNP-set analyses, do make differences in 

modifying anthracycline toxicity. In this SNP-set analysis, we identified 5,154 

SNPs in significant genes, which accounts about 21.3% of the SNPs examined.    
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Table 5.2: Top genes with smallest p-values for the interaction of a gene 

(SNP-set) and anthracycline dose 

Gene 

Number 

of 

 SNPs 

Gene 

p-value 

Gene 

q-value 
SNP 

SNP  

p-value 

SNP  

q-value 

Discordant  

pairs 

CCR8 4 <0.0001 <0.0001 
    

    
rs2649747 1.09E-04 5.51E-01 51 

    
rs1909560 1.17E-03 5.51E-01 87 

    
rs13077620 4.39E-03 5.51E-01 85 

    
rs1909554 3.06E-01 8.29E-01 18 

HBEGF 7 <0.0001 <0.0001 
    

    
rs4150196 4.21E-04 5.51E-01 64 

    
rs7268 9.50E-04 5.51E-01 77 

    
rs2074613 1.01E-03 5.51E-01 78 

    
rs13385 1.40E-02 5.77E-01 87 

    
rs3776089 7.42E-02 6.80E-01 31 

    
rs4912711 1.11E-01 7.15E-01 69 

    
rs1862176 3.46E-01 8.47E-01 35 

AVPR1A 3 0.0001 0.0551 
    

    
rs7298346 3.22E-04 5.51E-01 20 

    
rs3803107 4.34E-04 5.51E-01 79 

    
rs1042615 2.23E-01 7.84E-01 76 

HAS1 9 0.0004 0.1201 
    

    
rs11667974 1.10E-04 5.51E-01 78 

    
rs3829646 1.01E-03 5.51E-01 79 

    
rs3764545 1.44E-03 5.51E-01 91 

    
rs4802856 3.92E-02 6.35E-01 30 

    
rs11672222 1.36E-01 7.34E-01 21 

    
rs8112223 2.32E-01 7.89E-01 46 

    
rs10401482 2.51E-01 8.00E-01 63 

    
rs11084109 3.87E-01 8.66E-01 30 

    
rs3794977 5.29E-01 9.16E-01 87 

KCNA5 7 0.0004 0.1201 
    

    
rs2284136 7.83E-05 5.51E-01 40 

    
rs11063479 8.97E-04 5.51E-01 83 

    
rs9788217 1.03E-02 5.70E-01 73 

    
rs3741930 1.30E-02 5.75E-01 45 

    
rs1056468 1.45E-01 7.39E-01 91 

    
rs7961013 2.10E-01 7.77E-01 69 

    
rs7973471 4.67E-01 8.94E-01 61 

CALR 4 0.0006 0.1201 
    

    
rs2293683 5.21E-04 5.51E-01 84 
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rs1049481 7.50E-04 5.51E-01 75 

    
rs1010222 1.29E-03 5.51E-01 83 

    
rs2974754 8.52E-02 6.89E-01 38 

LLGL1 4 0.0007 0.1201 
    

    
rs7498 1.31E-03 5.51E-01 91 

    
rs2746028 4.06E-03 5.51E-01 51 

    
rs2245430 1.07E-02 5.73E-01 95 

    
rs2290507 4.40E-01 8.84E-01 68 

BNIP2 4 0.0008 0.1201 
    

    
rs2307275 8.70E-04 5.51E-01 86 

    
rs6151589 9.66E-04 5.51E-01 84 

    
rs11854063 1.50E-03 5.51E-01 82 

    
rs6151592 8.43E-03 5.67E-01 74 

NCAPH 1 0.0008 0.1201 
    

    
rs17633463 1.22E-03 5.51E-01 89 

RAP1B 4 0.0008 0.1201 
    

    
rs2956529 2.53E-05 5.51E-01 37 

    
rs2439759 1.43E-02 5.77E-01 88 

    
rs11177315 1.61E-01 7.50E-01 89 

    
rs2468430 6.31E-01 9.48E-01 59 
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Chapter 6 Discussion and Conclusion 

6.1 Validity of the current study 

This study was designed by Dr. Bhatia in cooperation with the Children’s 

Oncology Group (COG). Children’s Oncology Group (COG) is the world’s 

largest, cooperative children’s cancer research entity and it establishes a large 

cohort for studying childhood cancer survivors (98). The underlying cohort of 

cancer survivors and the sampling of cases and controls from it alleviated 

potential selection bias.  

The study was a matched case-control study which is a common method in 

epidemiological studies. Since matched sampling can control for the effects of the 

matching variables in the design stage, it is an effective way for eliminating 

potential confounding and the need to adjust for it in the analysis stage. This is 

especially advantageous when the sample size is not large.  

There were 3,288 SNPs that had p-values less than or equal to 0.05 for the SNP-

anthracycline-dose interaction on CHF risk, which accounted for 9.2% of all 

SNPs examined in the single-SNP interaction analysis. Moreover, 399 genes, i.e., 

13.3% of all genes examined in the SNP-set interaction analysis, had p-values less 

than or equal to 0.05 for the gene-anthracycline-dose interaction. After 

considering the multiple comparison problem by FDR estimates (q-values), there 

were statistically significant interactions between some genes and anthracycline 

dose on CHF risk.  
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A further literature review exploring underlying biological mechanisms for 

several reported SNPs and genes was conducted to substantiate the biological 

validity. In our analysis results, gene KCNA5 (p=0.0004, q=0.12) was one of the 

most statistically significant genes reported in Table 5.3. There are studies show 

that mutation in gene KCNA5 could cause cardiac arrhythmia (100-102). HAS1 

(p=0.0004, q=0.12) and HAS3 (p=0.0015, q=0.12) were also among the 

significant findings from the SNP-set analysis. Hyaluronan (HA) is an obligatory 

component in the ventricular myocardium and plays an important role in 

experimental myocardial infarction (103). HA is expressed by three different 

hyaluronan synthases which are encoded in genes HAS1, HAS2 and 

HAS3(103,104). HAS2 has been proven to be associated with cardiovascular 

morphogenesis (104,105). A study conducted by Urban et al. (2007) also showed 

that there was an association of genes HAS1 and HAS2 with cardiac hypertrophy 

(105), which is in agreement with our finding on HAS1. Although we are not 

aware of any direct evidence to support HAS3’s involvement with anthracycline-

associated CHF, our finding may suggest a new direction to examine the role of 

HAS3 in modifying anthracycline’s toxicity in the development of CHF. Some 

other genes which are known to have an association with cardiac disease, such as 

AVPR1A (p=0.0001, q=0.06) (106,107), were also validated in our study. 

6.2 Impacts of the study 

To our knowledge, this study led by Dr. Bhatia is the first comprehensive GWAS 

study which attempted to explore genetic susceptibility for anthracycline-induced 

CHF among childhood cancer survivors. There was a candidate gene study 
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examined whether common polymorphisms in gene CBR3 and NQO1 had an 

impact on the risk of anthracycline-related CHF (108). But these two candidate 

genes were selected based on the prior knowledge of their biological functions on 

heart functions. Our study explored a much larger number of genes over the 

whole genome, which is one of GWAS studies’ advantages over candidate gene 

studies. Our approach may lead to unexpected, but important genetic findings. 

The main aim of this study was to explore interactions between genetic factors 

and cancer treatment in developing CHF. Family studies have shown genetic 

factors play an important role in cardiac diseases (109). Environmental effect and 

life style habits are also highly related to CHF. Thus, studying CHF with multiple 

genetic factors, environmental factors, and their interaction is important for 

improving accuracy and precision in the assessment of both genetic and 

environmental influences.  

As a promising direction of GWAS-based genetic research, SNP-set analysis, 

which grouped SNPs in a gene into a SNP set and tested the joint effect of the 

SNPs in the set, was proposed in this study. In GWAS, single-SNP analysis is the 

standard mode of analysis, but there are several problems/limitations with it. 

One of the problems of single SNP analysis is that it could miss the SNPs which 

are truly associated with the disease due to the multiple comparison problem. 

Because a large number of SNPs is tested in a typical GWAS study and most of 

them are expected to have no association with the phenotype of interest. If we 

apply Bonferroni adjustment to control Type I errors, the threshold for 
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significance would be very stringent. For example, if there are 50,000 SNPs and 

the overall target of Type I error is 5%, the cut-off of p-value will be set to 10
-6

. 

True causal SNPs with p-values those are not as extremely significant as this 

stringent threshold would not be discovered. Given the large number of null SNPs 

which account for the dominant majority, when FDR is applied, the q-value of the 

truly causal SNPs will be high and they will not be discovered. 

The SNP-set analysis is advantageous in controlling for Type I errors (i.e., false 

positive discoveries) over the single-SNP analysis because it has a much smaller 

number of tests to be performed. In our study, gene-set analysis grouped 24,224 

individual SNPs that were examined by the single SNP analysis into 2,991 SNP-

sets. 

Secondly, the single-SNP analysis would not be powerful enough to detect the 

SNPs with moderate effects that are truly associated with the outcome. Some 

disease phenotypes may be caused by the interactions of SNPs which have 

moderate effect at different loci (110,111). When we check these SNPs with small 

effects individually, they may be missed due to low power, especially when the 

sample size is not enough. The SNP-set analysis which considers the joint of 

effect of the SNPs in the same gene can be capable of capturing the truly 

associated SNPs. Thus, SNP-set analysis can improve the statistical power of 

GWAS. 

Thirdly, from the biological point of view, a single SNP may not have appreciable 

effects compared to the gene it belongs to on the development of the disease. 
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Therefore, the joint effect of a set of SNPs based on prior biological criteria (i.e., 

SNPs in the same gene or SNPs of genes with similar biological functions) is 

more meaningful, interpretable, and likely to show underlying associations if they 

exist.  

In view of the limitations of the single-SNP analysis above, the SNP-set analysis 

which included the SNPs in the same gene can be complementary and/or 

advantageous in overcoming these restrictions. Moreover, it’s easier to interpret 

the result of the SNP-set analysis biologically than that of the single-SNP analysis 

due to grouping of multiple SNPs under a biological concept. 

6.3 Limitations  

There are several limitations in this project. First, the sample size of our study 

may be not large enough to assess SNPs or genes if their interaction with 

anthracycline dose on CHF is moderate. Since GWAS scan thousands of SNPs or 

SNP sets in the genome, in order to sustain statistical significance even after a 

multiple-comparison correction, the associations must achieve a very high level of 

statistical significance for which a large number of subjects are needed. For 

example, in the GWAS studies conducted by WTCCC, more than 2,000 case 

subjects and 3,000 control subjects were enrolled (63). In our study, the sample 

was composed of 130 cases and 266 matched controls which past the quality 

control process: this may not have produced adequate statistical power.   

There is a key assumption in the method we applied in the SNP-set analysis, 

which is a limitation of our method. In the SNP-set analysis, we constructed a test 
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statistic for the interaction between a SNP-set and anthracycline dose by summing 

up the chi-square test statistic of the interaction of each single SNP in the same 

gene and anthracycline dose. The underlying assumption for this method is that 

the effect of a gene on CHF is equal to the sum of the effects of its single SNPs on 

CHF. For this to hold, the causal effect must be observable for single SNPs: if the 

effect is caused by SNP-SNP interactions, for example, this may not hold. In 

addition, this assumption does not reflect the underlying mechanism properly 

when some SNPs modify anthracycline effects on CHF, but others do not. This 

possibility of heterogeneity in a SNP set with respect to the effect of interest was 

not considered in our approach and could make our approach inefficient (less 

powerful). 

6.4 Conclusion 

In conclusion, there was strong evidence that the associations of anthracycline 

dose with CHF risk among childhood cancer survivors were modified according 

to genotypes of SNPs; and the SNP-set interaction analysis showed interactions 

between certain genes and therapeutic exposure of anthracycline exist. Results 

from our study should aid the understanding of the mechanism of genetic factors 

and anthracycline exposure interaction on the development of CHF after surviving 

childhood cancer.  

6.5 Future work 

The work in this study is an initial step in exploring the interplaying mechanism 

of gene and cancer treatments in developing anthracycline-induced CHF for 
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childhood cancer survivors. The following possible directions may be considered 

for further work. 

In order to confirm the current findings of our study, a replication study based on 

an independent set of cases and controls could be conducted. Permutation was 

applied to obtain the null distribution of the test statistic for an interaction 

between gene and anthracycline dose. However, a recent study suggested that 

exact permutation test for gene-gene and gene-environment interaction may be 

difficult to obtain in GWAS study (112). This may limit our power for finding the 

truly important interaction. Therefore, future research needs to assess this issue 

and clarify the validity and efficiency of our approach. 

It may be valuable to examine gene expression levels of the significant genes 

from our study in relation to CHF. Assessing gene expression, an intermediate 

biological process between DNA and the disease, by measuring mRNA levels of 

the genes we found associated with CHF would give additional insights into the 

molecular mechanism. Thus a gene expression study could provide functional 

biological evidence in validating our study findings. 
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Appendix 1: R code for simulation 

library(survival) 

## input the SNPs data to get the number of SNPs ##  

## --aa as the reference --## 

ct=read.table("Z:\\Common\\wei\\thesis 

project\\send2dr_batia\\CD\\interaction\\aa.txt",header=T,sep="\t") 

n1=17123 

######################################################### 

## --bb as the reference --## 

#ct=read.table("Z:\\Common\\wei\\thesis 

#project\\send2dr_batia\\CD\\interaction\\bb.txt",header=T,sep="\t") 

#n1=18646 

########################################################## 

count=c(ct[1:n1,1]) 

n2=length(count) 

###### “pi” which represents estimated odds ratio ########### 

pi=1.5 

num=130 

pvalue1=rep(0,n2) 

for (j in 1:n2) 

     {  

      x=count[j] 

      y=rbinom(x,1,pi/(1+pi)) 

      set1_1=cbind(c(1:x),y,rep(1,x)) 
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      y=1-y 

      set1_2=cbind(c(1:x),y,rep(0,x)) 

      set1=rbind(set1_1,set1_2) 

      p=runif(1,0,1) 

      s1=rbinom(130-x,1,p) 

      set2_1=cbind(c((x+1):num),rep(1,(num-x)),s1) 

      set2_2=cbind(c((x+1):num),rep(0,(num-x)),s1) 

      set2=rbind(set2_1,set2_2) 

      set=rbind(set1,set2) 

      set=as.data.frame(set) 

      colnames(set)=c("match_set","status","snp") 

      reg=clogit(status~snp+strata(match_set),data=set) 

      sum=summary(reg) 

      sum1=sum$coefficients 

      ## get the simulated p-values ## 

      pvalue1[j]=sum1[,5] 

     } ############end of j 
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Appendix 2: R code for permutation 

library(survival) 

### input clinical data ### 

clin1=read.table() 

### input genotype data ### 

genetype1=read.table() 

 

genetype2=genetype1[,-c(401:405)] 

genetype3=rbind(as.matrix(genetype2),as.matrix(clin1)) 

genetype4=t(genetype3) 

 

names=genetype4[1,] 

colnames(genetype4)=names 

set=as.data.frame(genetype4[-1,]) 

c1=c(1:dim(set)[1]) 

set1=cbind(set[,24216:24221],c1) 

case1=set[set$status==1,] 

match_set=case1$match_set 

pair1=as.data.frame(match_set) 

pair2=pair1[,1] 

pair3=as.character(pair2) 

pair4=as.numeric(pair3) 
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### Make a matrix of 130 rows where each row contains C1 values of 

set1$match_set==k ### 

c1list=matrix(NA,130,10) 

for(d in 1:130){ 

       k=pair4[d] 

       junk=set1[set1$match_set==k,]$c1 

       c1list[d,1:length(junk)]=junk 

       }             

 

### Define a ranodm sampling function ### 

sample1=function(x) 

                  { 

                    sample(x[!is.na(x)],1) 

                        } 

 

##--times of permutation--## 

nperm=10000       

##--number of SNPs--## 

nsnp=24242       

################################## 

stat=matrix(0,nsnp,nperm) 

for ( i in 1:nperm)        

      {      

               perm1=apply(c1list,1,sample1)     #### apply sample function #####                             

#-----newcase dataset------# 
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permcase1=set[perm1,]   

#-----newcontrol dataset----# 

perm2=c1[-perm1] 

permcontrol1=set[perm2,] 

 

pcase=permcase1[,c(24217: 24221)] 

pcontrol=permcontrol1[,c(24217: 24221)] 

 

###--prepare the variables needed for regression--### 

dat1=rbind(pcase,pcontrol) 

disease=c(rep(1,130),rep(0,269)) 

match_set=dat1$match_set 

anth1=as.character(dat1$totalanth)  

anth=as.numeric(anth1) 

rd=dat1$rd 

rd=as.numeric(as.character(rd)) 

######################################### 

for (p in 1:nsnp) 

    {  

      case=permcase1[,p] 

      control=permcontrol1[,p] 

      snp=c(case,control) 

      ## some of the regression don't converge and the loop would stop, ### 

      ## insert this program to make the permutation continue           ### 

      aa = try({ 



75 

 

              reg=clogit(disease ~ snp+anth+rd+snp*anth+strata(match_set)) 

                })### end of try 

 

      if  (class(aa)[1]=="try-error") stat[p,i]=NA  

         else{ 

              sum1=summary(aa)$coefficients 

              stat[p,i]=(sum1[4,4])^2 

                      } ## end of if                     

                    }   ## end of p 

      }## end of i 

                               

 

 

 

 


