
Abnormality Detection Methods for Utility Equipment
Condition Monitoring

by

Benzhe Li

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

Energy Systems

Department of Electrical and Computer Engineering

University of Alberta

c© Benzhe Li, 2016



Abstract

The wide spread use of power quality monitoring tools in recent years has

enabled utility companies to extract non-power-quality information from the

power quality monitoring data. A high potential use of such data is the equip-

ment condition monitoring. General purpose detection method for waveform

abnormality is considered as an important step for data analytics based equip-

ment condition monitoring.

Two general purpose detection methods are proposed in this thesis. The

first one is a modified detection method based on existing scheme, where seg-

ment RMS values of differential waveform and half-cycle refreshed RMS values

of original waveform are used as features for the detection. The second method

is based on statistical characteristics of current signals, where abnormalities are

detected by comparing the statistical distributions of waveform variations with

and without disturbances. Current waveform is used for the detection since

they are more sensitive to equipment conditions than voltage waveform. An

automatic threshold selection scheme is adopted in the detection method. In

addition, as hard binary detection can sometimes lead to large error especially

for boundary situations, a soft detection scheme is proposed which returns soft

detection results. The soft detection scheme can reduce the number of missing
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events compared with binary detection methods. Moreover, the detection value

provides reference for severity of a certain abnormal event.
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Preface

This thesis makes contributions in the area of abnormality detection for equip-

ment condition monitoring.

After summarizing the signatures of equipment failures and existing meth-

ods for abnormality detection, a novel statistics based generic abnormality de-

tection method is proposed. This statistics based method in Chapter 3 has been

published as: Benzhe Li, Yindi Jing, and Wilsun Xu, “A Generic Waveform

Abnormality Detection Method for Utility Equipment Condition Monitoring,”

IEEE Transactions on Power Delivery, DOI: 10.1109/TPWRD.2016.2580663,

2016. With the general detection idea proposed by Prof. Yindi Jing, I further

developed the method, carried out the data analysis, verification and drafted

the manuscript. Prof. Yindi Jing and Prof. Wilsun Xu further revised the

manuscript and supervised the whole work.
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Chapter 1

Introduction

In recent years, the wide use of power quality monitors and research advance-

ments in power quality disturbance analysis has resulted in a new research

field named power quality data analytics. Power quality data analytics targets

at collecting waveform data in power systems, extracting useful information

from it, and solving various power system problems based on the information.

Utility equipment condition monitoring is an important branch of this field [1].

By detecting and identifying incipient failures or abnormal operations from

voltage and current data, unhealthy condition of power equipment can be dis-

covered and condition-based maintenance can be conducted in time to avoid

catastrophic equipment failures. Some recent work on using power disturbance

data for equipment condition monitoring can be found in [2, 3, 4, 5].

In this chapter, the background of power quality data analytics based utility

equipment condition monitoring is provided. Then, the signatures of power

equipment failures are discussed in comparison with those of the power quality

disturbances. In addition, research needs for power quality data analytics based

equipment condition monitoring are identified. Among these needs, a general

purpose method to detect waveform abnormality is an important step. Finally,

the thesis contributions and organization are presented.
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1.1 Overview of Power Quality Data Analytics

Based Equipment Condition Monitoring

Many equipment failures such as the arcing of a cable joint, restrike of a ca-

pacitor switch, and tree-contact by a power line can produce unique electrical

signatures [4, 6]. These signatures can be observed from the voltage and cur-

rent waveforms associated with the equipment. In recent years, engineers and

researchers in the field of power quality, power system protection, and equip-

ment testing have realized that useful information can be extracted from the

waveforms for the purpose of equipment condition monitoring [1, 7]. In the field

of power quality, for example, power quality monitors routinely collect power

disturbance data. Some of the data do not indicate the existence of a power

quality problem but they have been used to detect the presence of abnormal

equipment operation in the system. Example incipient failure signatures of a

cable is shown in the Figure 1.1[4].

How to analyze the waveform-type power disturbance data and extract in-

formation for purposes such as equipment condition monitoring have attracted

a good interest from industry and academia recently [6, 7, 8, 9]. In view of

the wide availability of power quality monitors and advancements in power

quality disturbance analysis methods, the IEEE Power Quality Subcommittee

formed a Working Group in 2013 to prompt the research, development and

application of power quality data for purposes beyond traditional power qual-

ity concerns. The working group is named “Power Quality Data Analytics”.

Detecting equipment failures is one of the areas with significant potentials for

power quality data analytics.
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Figure 1.1: Self-clearing incipient cable faults that lead to a permanent fault
[4].

1.2 Signatures of Power Quality Disturbances

Before presenting the signatures of equipment failures, it is useful to have a brief

overview of the signatures of power quality disturbances. Power quality distur-

bances are those electrical disturbances that lead to power quality problems.

Equipment failure may or may not result in a disturbance of concern from the

power quality perspective. The comparison of power quality disturbances and

equipment failure disturbances can help us get a better understanding about

challenges in detecting, characterizing and extracting useful information from

the equipment failure disturbances.

Over the past 30 years, significant progresses have been made in the power

3



quality field [10]. There are consensus on definitions, characteristics, and in-

dices of various power quality disturbances [10, 11]. Standards for disturbance

detection and characterization have also been established. According to IEEE

1159-1995, power quality disturbances are classified as shown in Table 1.1.

Sample signatures of the most common power quality disturbances are shown

in Figure 1.2 to Figure 1.4.

Table 1.1: Classification of power quality disturbances.

Categories Typical spectral 
content

Typical duration Typical magnitude

1. Transients
Impulsive
Oscillatory 0.5 MHz - 5 kHz 

1 ns - 1 ms plus
5 us -50 ms 0 - 8 pu

2. Short duration variations
Interruptions

Sags
Swells

0.5 cycle - 1 min
0.5 cycle - 1 min
0.5 cycle - 1 min

< 0.1 pu
0.1 - 0.9 pu
1.1 - 1.8 pu

3. Long duration variations
Sustained interruptions

Under-voltages
Over-voltages

>1 min
>1 min
>1 min

0.0 pu
0.8 - 0.9 pu
1.1 - 1.2 pu

4. Voltage fluctuations <25Hz Intermittent 0.1 - 7%
5. Power frequency variations <10s
6. Voltage imbalances Steady state 0.5 - 2%
7. Waveform distortions 0 - 50th harmonics Steady State 0 - 20%

(a) Impulsive transients.

M

D

(b) Oscillatory transients.

Figure 1.2: Signatures of voltage transients.
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D

(a) Sag.

M

D

(b) Swell.

D

(c) Interuption.

Figure 1.3: Signatures of short variation disturbances (voltage signals).
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(b) Harmonic spectrum of current wave-
form.

Figure 1.4: Waveform distortion and harmonics.

Power quality disturbances are characterized using indices that focus on

the severity of a disturbance (see Table 1.2). For disturbances that occur as

individual events (called transient disturbances in Table 1.2), the indices are

magnitude and duration. For steady-state disturbances such as harmonics and

voltage unbalance, magnitude is recognized as the only index. Disturbances

that occur intermittently such as voltage flicker, the frequency of occurrence

has been used as another severity index.

It is very important to note that the majority of power quality disturbances

manifests as changes to the voltage waveforms. As a result, power quality

indices are developed mainly for the voltage waveforms. As will be seen in the

next section, signatures of equipment failures are mainly observed from current

waveforms. They exhibit a wide variety of characteristics.

5



Table 1.2: Basic indices to characterize power quality disturbances.

Disturbance Group
Transient

Disturbances
Steady- state
Disturbances

Disturbance Types

• Impulsive transients
• Oscillatory transients
• Interruptions
• Sags
• Swells

• Over- voltages
• Under- voltages
• Imbalances
• Flicker
• Waveform distortions  

Severity indices
• Magnitude 
• Duration

• Magnitude

Graphic illustration of 
disturbance severity
(4 events are used as an 
example)

Magnitude ~ duration plot

Magnitude

Duration

Magnitude bar chart

Magnitude

Snapshots

1.3 Signatures of Equipment Failure Distur-

bances

This section presents the electrical signatures of various utility equipment fail-

ures, including waveforms and root-mean-square (RMS) plots of the voltages

and currents. The data and charts are collected from various literatures such

as [6, 12, 13, 14] and they are fully acknowledged. All data shown here are

collected from substation-based feeder current transformers (CT) and bus po-

tential transformers (PT) unless mentioned otherwise. Generally speaking,

substation is the most feasible location for data collection in power quality

data analytics based equipment condition monitoring. It should be noted that

most of the cases presented in this section are located in the medium-voltage

distribution system, electrical behaviors of equipment in low-voltage network

such as photovoltaic inverter and other equipment in secondary side [15, 16, 17]

are not shown here.
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1.3.1 Cable Failures

Most utilities possess a lot of power cables. Since many of current cable sys-

tems are aging, failures are getting more and more common. Medium voltage

underground cables may show signs of incipient faults before permanent fail-

ures occur. Incipient faults show one or more current pulses whose magnitude

depends on the location of the fault and the location on the voltage waveform

when the fault starts [6]. Incipient faults typically do not require the operation

of protective devices as they are usually self-clearing. But they indicate the

cable is deteriorating, thus their detection is important for monitoring the cable

health condition. A common cause of such fault type is the cable insulation

breakdown caused by moisture penetration into cable splices. The self-clearing

nature of such faults is associated with the fact that, once an arc is produced

(insulation breakdown), water is evaporated and the resulting high pressure

vapors extinguish the arc. Electrical trees, chemical reaction and partial dis-

charge are other common causes of incipient faults [8].

(1) Incipient Faults on Primary Cable

Cases of sub-cycle incipient faults, multi-cycle incipient faults and sub-cycle

faults followed by multi-cycle faults are presented and analyzed below. Fig-

ure 1.5 shows two instances of self-clearing incipient fault, whose durations are

less than one cycle.

The current waveform during a single-phase incipient fault on Phase-C of a

13.8 kV underground feeder is shown in Figure 1.6. This fault originated from

an incipient failure of an XLPE cable, and lasted a half cycle, with a 2.7 kA

peak fault current.

The current waveform during multiple single-phase incipient faults on Phase-

B of a 27 kV feeder is shown in Figure 1.7. These faults originated from an

XLPE cable failure, and lasted a half cycle each, with roughly 3.1 kA peak

7



(a) Self-clearing fault lasting about one-quarter
cycle [9].

(b) Self-clearing fault lasting about one-half cy-
cle [12].

Figure 1.5: Two instances of self-clearing incipient faults.

Figure 1.6: Single incipient single-line-to-ground fault [6].

fault currents.

Unlike the examples in Figure 1.5 to Figure 1.7, Figure 1.8 shows a multi-

cycle incipient fault which is also a single phase fault and lasted about two and

a half cycles.
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Figure 1.7: Multiple incipient single-line-to-ground fault [6].

Figure 1.8: Multiple incipient single-line-to-ground fault [9].

The current waveform during a single-phase self-clearing fault on Phase-C

of a 13.8 kV underground feeder is shown in Figure 1.9. This fault lasted one

and a half cycles, with 6.3 kA peak fault current on Phase-B.

Figure 1.9: Self-clearing incipient cable fault lasting one and a half cycles [6].

After a number of such events during several months, the incipient faults

may turn permanent, causing overcurrent protective devices to operate [4].
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Figure 1.10 presents a very interesting event. This figure illustrates the last

phases of the cable failure process, where the frequency of incipient faults had

increased. After the first three incipient faults, a permanent fault occurred.

Durations of the incipient faults are all between half and one cycle, while the

duration of the permanent fault is about two cycles [4]. Figure 1.11 shows

another incipient fault and corresponding permanent fault of an underground

cable.

Figure 1.10: Incipients faults followed by a permanent fault [4].

(a) Incipient fault. (b) Permanent fault.

Figure 1.11: Incipient and permanent faults of an underground cable [13].

The voltage and current waveforms shown in Figure 1.12 outline the occur-

rence of an incipient fault on Phase-A of a 27 kV underground feeder, followed

by a second fault due to PILC cable failure. Both faults durations and magni-

tudes are a half cycle and 3.0 kA, followed by 3 cycles and 3.7 kA.
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Figure 1.12: Incipient fault followed by a multi-cycle fault [6].

The current waveform shown in Figure 1.13 outlines the occurrence of an

incipient fault on a 12 kV feeder, followed by a second fault resulting from an

underground cable failure. Both faults durations and magnitudes are a half

cycle and 5.7 kA, followed by two and a half cycles and 5.4 kA.

Figure 1.13: Underground cable failure incipient fault [6].

The voltage and current waveforms shown in Figure 1.14 outline an evolving

cable failure fault on a 13.8 kV feeder. Initially, one can observe a two-and-

a-half cycle single-phase fault on Phase-A, with 3.3 kA magnitude. This fault

then evolved to a 5 cycle phase-to-phase fault between Phases A and C, with

5.3 kA magnitude.

The current and voltage waveforms during a sequence of two events on a 27

kV feeder are shown in Figure 1.15. It outlines an incipient fault on Phase-A,

11



(a) Voltage waveforms. (b) Current waveforms.

Figure 1.14: Voltage and current waveforms during an evolving cable failure
[6].

followed by a second fault due to XLPE cable failure. The faults durations and

magnitudes are a half cycle and 2.2 kA, followed by three and a half cycles and

2.6 kA.

Figure 1.15: Electrical waveforms during an underground PILC cable failure
[6].

(2) Incipient Faults on Primary Cable Joint

The current waveform during a self-clearing fault on a 27 kV underground

system is shown in Figure 1.16. This fault originated from excessive moisture in

cable joint, and lasted a half cycle, with a 3.8 kA peak magnitude on Phase-B.

The voltage and current waveforms during an incipient fault on Phase-A of
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Figure 1.16: Incipient cable joint fault [6].

a 27 kV feeder is shown in Figure 1.17. This fault originated from a XLPE-to-

EPR cable joint failure, and lasted a half cycle, with a 2.3 kA peak current.

Figure 1.17: Incipient cable joint failure single-line-to-ground fault [6].

The voltage and current waveforms during a fault on Phase-A of a 27 kV

underground feeder is shown in Figure 1.18. This fault originated from a PILC-

to-XLPE cable joint failure, causing a circuit breaker to trip. The fault lasted

three and a half cycles. Although this event is classified as a permanent failure,

the signatures can also be considered as the “final version” of an incipient fault

signature.

(3) Faults on Primary Cable Termination
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Figure 1.18: Underground cable joint failure waveform [6].

The voltage and current waveforms during a fault on Phase-C of a 13.8

kV underground feeder is shown in Figure 1.19. This fault originated from a

PILC cable termination failure, and lasted 5 cycles, before cleared by a breaker

opening. The peak current was 7.8 kA. This event is classified as a permanent

failure. However, the signatures can also be considered as the “final version”

of an incipient fault signature, the same as the example in Figure 1.18.

Figure 1.19: Underground cable termination failure [6].

Additional example signatures of cable failures including those of service

cables can be found in [7].

1.3.2 Overhead Line Failures

There are many causes for overhead line “failures” which are defined as a short-

circuit condition here. Some of the failures such as a conductor contacting a
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tree branch can have certain signatures. Their identification before the failure

evolves into a major outage is highly desirable.

Figure 1.20 to Figure 1.22 show a series of faults caused by tree contact. In

about half an hour, three faults occurred and each fault caused a recloser to

trip and reclose, but no sustained outage resulted. Such temporary overcurrent

faults can cause damage to overhead lines and has the potential to burn the

overhead line down if the underlying problem is not addressed properly.
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Figure 1.20: First episode of a series of tree contact events from data of [14].
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Figure 1.21: Second episode of a series of tree contact events from data of [14].

The voltage and current waveforms during a tree contact event are shown in

Figure 1.23. In this case, the resulting fault caused the tree branch to burn and

fall to the ground. As a result, this fault cleared itself without the operation

of any protective devices.

Voltage and current waveforms collected during an arcing fault on a 13.8

kV feeder are presented in Figure 1.24. This figure shows the instant when a
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Figure 1.22: Third episode of a series of tree contact events from data of [14].

Figure 1.23: Tree contact fault lasting for about one cycle [18].

tree limb touched the overhead distribution line during a storm, causing the

single-phase fault. The feeder circuit breaker cleared the single-phase fault in

about 5 cycles.

Figure 1.24: An arcing fault caused by tree contact [6].
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The current waveform during a single-phase fault on Phase-B of a 25 kV

system is shown in Figure 1.25. This fault originated from a tree falling into

a customers triplex service due to windy weather conditions, and lasted three

and a half cycles, with a 1.1 kA magnitude.

Figure 1.25: Fault caused by tree falling into customer triplex service [6].

The current waveform during a single-phase fault on Phase-C of the 25

kV system is shown in Figure 1.26. This fault originated from tree contact

that caused primary to burn down, and lasted three and a half cycles, with

a 1.5 kA magnitude. Although this event is classified as a permanent failure,

the signatures can be considered as the “final version” of an incipient fault

signature.

Figure 1.26: Tree contact causes primary to burn down [6].
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1.3.3 Transformer Failures

Transformers are made of several components. Each component can experience

failure. The corresponding signatures are different.

(1) Load Tap Changer Failures

Figure 1.27 illustrates a case of load tap changer failure. Initially, system

reported 0 current value on one phase for less than one cycle. The issue hap-

pened several times each day. Over the following several days, the duration of

such anomaly increased to just over 1 cycle. The utility company scheduled a

maintenance outage and sent technicians to investigate the root cause of such

anomaly. The technicians found a pin which was shearing and resulting in arc-

ing when the load tap changer moved. After the planned maintenance, it was

believed that a catastrophic transformer failure would have occurred within

two weeks if the arcing had not been detected and addressed properly [19].

Figure 1.27: Zero current during load tap changer failure [19].

(2) Transformer Bushing Failures

Bushing failures may occur when the dielectric degrades, which can cause
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significant damage to the transformer and other equipment connected nearby.

When a bushing failure occurs, corrective actions should be undertaken to

avoid internal arcing and subsequent violent failures [6]. In this subsection,

three cases of transformer bushing failures are presented and discussed.

In the first case, a recloser tripped and reclosed (due to a single-phase

fault) several weeks prior to the final failure. In total, there were six single-

phase faults before the permanent outage. The last of these six faults (the

one that caused the permanent outage) occurred seven weeks after the first

fault. Figure 1.28 shows the third episode and the final fault. After the perma-

nent outage occurrence, utility investigation showed that the first fault event

happened due to an animal crossing the primary bushing. This damaged the

bushing, leading to the subsequent faults and permanent outage [20].

(a) Third episode. (b) Final episode.

Figure 1.28: RMS trends during recurrent faults [20].

In the second case, voltage and current waveforms during an arcing fault on

a 12.47 kV feeder are presented in Figure 1.29. It happened due to a bushing

failure on transformer primary winding, resulting in a sustained arc to ground.

A recloser cleared the fault in about 2 cycles.

The current waveform behavior during an arcing fault on a 4.4 kV distribu-

tion feeder is presented in Figure 1.30. The event happened during a bushing

failure of a distribution transformer, and was cleared in 5 cycles by a recloser.
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Figure 1.29: Example transformer bushing failure [6].

Figure 1.30: Another example of transformer bushing failure [6].

1.3.4 Circuit Breaker Failures

Due to the high power typically passing through circuit breakers (under nor-

mal or faulty conditions), arcing usually occurs between the moving and fixed

breaker contacts during maneuvers. As a result, circuit breakers are prone

to failures after experiencing sufficient wear and tear over time. This section

presents several failure modes of circuit breakers.

(1) Line Switch Failure Triggered by Temporary Overcurrent Faults

Reference [20] presents an example of line switch failure. It can be described

as follows. Firstly, an overcurrent fault occurred, leading substation breaker to

trip and reclose twice. The fault was cleared without the need for a perma-

nent service outage. This sequence of events was in accordance with a usual
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fault and protection sequence, except for the behavior of Phase-A current after

fault clearance. Such current presented an irregular behavior, different from

the other two phases and from fluctuations caused by regular load variations.

The fault and post-fault currents are shown in Figure 1.31. Overcurrent tem-

porary faults continued happening multiple times after the initial fault, with

the post-fault behavior becoming more irregular and occurring for longer times.

Finally, a permanent fault occurred, causing the substation breaker to trip to

lockout. Utility investigation determined a main line switch failure, outside the

substation.

(a) Temporary overcurrent fault. (b) Erratic signlas after temporary fault.

Figure 1.31: Electrical signatures during and after temporary faults [20].

It was believed that multiple overcurrent faults that occurred over a pe-

riod of a month deteriorated the switch conditions. Series arcing happened

and finally burned its contacts open, causing flashover between the switch and

supporting hardware.

(2) Arcing Capacitor Bank Switch

The current waveform for an arcing capacitor bank switch during energiz-

ing of a capacitor bank is presented in Figure 1.32 [6]. Repetitive transients

can be observed in this figure. The possible underlying cause of the transients
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is a phenomenon called “multiple prestrike”. When closing a switch, a pre-

strike can occur if the electric field strength exceeds the dielectric strength

of the contacts gap. Inrush current with high-frequency and high-amplitude

flows through the circuit breaker. Then the prestrike arc may be interrupted

at or near a zero-crossing point, which is dependent on the rate of change of

current. If interruption does happen, the dielectric strength will recover. Pre-

strike may reoccur if the voltage across the contacts exceeds again the dielectric

strength of the gap [21]. This process may repeat several times until the con-

tacts touch, and a number of high frequency current zeros can occur as shown

in Figure 1.32. The inrush current may lead to contact welding which can fur-

ther result in damage to the contact surfaces [22]. The cumulative damage may

lead to final failure of a circuit breaker which is connected to a capacitor bank.

Figure 1.32: Current waveform during arcing of a capacitor bank [6].

(4) Restrikes during Capacitor De-Energizing

Restrike has been defined as “A resumption of current through a switching

device during an opening operation after zero current lasts 1/4 cycle at power

frequency or longer” [23]. A capacitor switch may restrike during de-energizing

when the switch contacts are contaminated or faulty. Rough contacts surface
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lead to higher electrical stress as contacts open. When the electric field strength

exceeds the dielectric strength of the contact gap, a restrike can occur. Unlike

a normal capacitor de-energizing event which does not produce any significant

switching transients, obvious transients can be observed during capacitor de-

energizing with restrikes. Figure 1.33 shows the three-phase voltage and current

waveforms measured at a substation during a capacitor de-energizing event with

restrikes. Restrikes further degrade the breaker and may lead to failure of the

breaker eventually.

Figure 1.33: Electrical waveforms of a capacitor de-energizing with restrike
[24].

1.3.5 Capacitor Failures

Capacitors are typically energized using circuit breakers or switches. The volt-

age and current waveform measured during capacitor bank switching can con-

tain unique signatures (e.g., oscillatory transient frequency, high transient en-

ergy, etc.) that can be useful for determining which capacitor on the feeder

switched as well as diagnosing capacitor problems. Three instances of capacitor

problems are described and discussed below.

(1) Capacitor Failure Caused by Misoperation of Controller
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A capacitor bank usually switches on and off one or two times during one

day. Excessive operations over short period of time would probably lead to

capacitor bank failures. Reference [25] presents such a case whose underlying

cause was believed to be the misoperation of capacitor bank controller. Initially,

the capacitor bank experienced excessive switching operations. Shortly after

that, Phase-A capacitor experienced a short-circuit fault. Three-phase current

waveforms during Phase-A short circuit are shown in Figure 1.34.

Phase B and C still switched frequently after the Phase-A capacitor failure.

After about two weeks, the contacts of the switch for the Phase-B capacitor

started to fail. Figure 1.35(a) illustrates the RMS current signals as the switch

began to fail. Figure 1.35(b) illustrates several cycles of the phase voltage and

current shortly after the instance shown in Figure 1.35(a). The transients are

obvious. After Phase-B switch began to fail, the controller still operated the

switch frequently. After another four days, the Phase-B switch only made spo-

radic contact, leading to the effective disconnection of Phase-B capacitor from

the grid [25]. According to [25], it was almost certain that the misoperation of

capacitor controller caused this series of failures.

Figure 1.34: Phase-A capacitor short circuit [25].

(2) Unsuccessful Synchronous Closing Control
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(a) RMS currents as the Phase-B switch
began to fail.

(b) Voltage and current waveforms in the
process of switch failure.

Figure 1.35: Electrical signatures during Phase-B switch failure [25].

Generally speaking, by switching on a capacitor at or near voltage zero,

capacitor switching transients can be minimized. Such kind of accurately timed

switching operation can be accomplished with a synchronous closing control.

Figure 1.36 shows the voltage and current waveforms during the energizing of

a three-phase capacitor bank using synchronous closing control. It is obvious

that switching transients happened away from a voltage zero, which means that

the closing control did not work as designed [24].

Figure 1.36: Waveforms of a capacitor energized using synchronous closing
control [24].
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1.3.6 Lightning and Surge Arrester Failures

A lightning arrester is usually used to protect the conductors and insulation

of power systems or telecommunication systems from the damaging effects of

lightning. In most situations, current from a lightning surge can be diverted

through a nearby lightning arrester, to earth. A surge arrester is a similar

device to protect electrical equipment from over-voltage transients which are

caused by internal (switching) or external (lightning) events. In this subsec-

tion, one instance of lightning arrester and one instance of surge arrester are

presented and discussed below.

(1) Lightning Arrester Failure

Reference [26] presents one instance of lightning arrester failure. Small arc

bursts can be observed prior to the permanent arrester failure, as illustrated

in Figure 1.37(a). In this figure, however, the arc fault is not obvious due to

its small current (if compared to the load current). It occurs approximately

in the middle of the measurement window, where one shall observe a slightly

larger current peak. An extended measurement window (about 60 seconds)

of the RMS current is shown in Figure 1.37(b). The observed current spikes

correspond to arc bursts [26]. Figure 1.37(c) presents the final burst, where

a current of about 3800 A is added to the load current for over 20 cycles. In

this event, the substation breaker tripped. Further investigation reveals that a

lightning arrester destroyed itself.

(2) Surge Arrester Failure

Many gapped silicon carbide (SiC) surge arresters contain a number of spark

gaps in series with blocks of silicon carbide material which shows a nonlinear

voltage/current characteristic. The spark gaps can degrade over time. As a
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(a) One burst of intermittent
arc current.

(b) RMS of multiple arc
bursts.

(c) Final failure.

Figure 1.37: Electrical signatures during Phase-B switch failure [26].

result, power frequency currents can flow through the SiC arrester blocks. Such

condition can overheat the arrester and cause it to fail very quickly [6].

The voltage and current waveforms during a SiC arrester failure are shown

in Figure 1.38. A recloser cleared the fault in approximately 0.2 seconds.

Figure 1.38: Surge arrester failure fault waveform [6].

1.3.7 Summary and Motivation

The results in this section have clearly shown that the signatures of equipment

failures are quite diverse and are very different from those of the power quality

disturbances. The main characteristics of equipment failure signatures may be

summarized as follows.

• Abnormal current response. The signatures of equipment failures are of-
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ten more visible in the current waveforms as oppose to the voltage wave-

forms. Many equipment failures exhibit a short-duration current increase

or repetitive current pulses. Low-level variations of current can also be

observed. Such characteristics are especially evident when examining the

RMS values of the current waveforms.

• Diverse time scale. Some equipment failures can only be identified from

the waveforms. Examples are breaker restrike and asynchronous capacitor

closing. There are also equipment failures that are most visible from a

longer time scale such as RMS value variations in several seconds or

minutes.

• Complexity in characterization. Severity of a disturbance is the main

concern for power quality disturbances. As a result, power quality dis-

turbances are characterized using severity parameters. For equipment

condition monitoring, however, the goal is to identify the existence of

incipient failures or abnormal operations. Severity-oriented indices may

not be the best candidate to characterize the signatures of equipment

failures. It is not clear at present what indices are appropriate to char-

acterize equipment failure signatures.

• Challenge in detection. Due to the diverse signatures of equipment fail-

ures, methods developed to detect power quality disturbances are not

adequate for equipment condition monitoring. New methods to detect

waveform abnormality associated with equipment operation are needed.

The task to identify equipment failures from their electric signatures seems

to be quite daunting. However, if we study the history of power quality mon-

itoring many similarities can be found. The need to monitor power quality

was identified in early 1980’s. At that time, the signatures of power quality

disturbances were not well understood. The data recording capability of power
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quality monitors were very poor. There were no indices to characterize the dis-

turbances. It was a big challenge to monitor and study power quality at that

time. But the situation also represented a great opportunity for research and

product commercialization. Intensive research on power quality monitoring

started in early 1990’s. Through over 20 years of efforts, power quality moni-

toring has become a “routine” exercise for utility engineers. The disturbance

signatures and indices have become so “obvious”. In comparison, equipment

condition monitoring is a relatively new field. So it is natural to encounter

many unknowns and uncertainties. They represent challenges as well as oppor-

tunities. In view of the development trajectory of power quality monitoring,

we can safely state that it is just a matter of time that equipment condition

monitoring will become as well developed as the power quality monitoring.

There is also a larger trend to support the use of electrical signatures for

equipment condition monitoring. One of the main characteristics of the future

power systems, the smart grids, is the extensive presence of sensors, meters and

other monitoring devices. Massive amount of field data will be collected. The

most granular data that can be collected are the waveform-type disturbance-

related data. Such data contain unique information about the behavior and

characteristics of the power system and equipment involved. With advancement

on data acquisition hardware and substation automation, it is just a matter

of time that system-wide synchronized waveform data will be made widely

available to utility companies. However, the mere availability of such data

does not make a power system more efficient or reliable. How to extract useful

information from the data and apply it to support power system planning and

operation are a new challenge as well as a new opportunity facing our industry.

Equipment condition monitoring, as one area of power quality data analytics,

represents a highly attractive direction to push the boundary of data analytics

in the smart grid era.

An application scenario is used to illustrate the future of power quality
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data analytics for equipment condition monitoring, as shown in Table 1.3. The

scenario is compared with that of power quality oriented applications. One can

see that a power quality monitor can function as an “equipment doctor” if it

is added with data analytics capabilities. It should be noted that the V & I

responses in this table means voltage and current responses.

Finally, a possible path for general-purpose condition monitoring scheme is

presented in Figure 1.39. It involves several steps. The first step is to detect the

existence of waveform abnormality. The second step is to extract the waveforms

associated with the abnormality. The third step is to analyze the extracted

waveforms to determine the cause of abnormality and if equipment failure is

involved. The fourth step is to determine the characteristics of equipment

failure such as the location of a fault.

Table 1.3: Two applications of disturbance data

Type of 
Applications

Power Quality
( Current Practice)

Condition Monitoring
( Future Practice )

Illustrative 
problem

A customer complains repeated trips of its 
variable frequency drives

A utility company needs to determine if an 
aging underground cable needs to be replaced

Solution steps

1) A power quality monitor is used to 
record disturbances experienced by the 
customer

2) The data are then analyzed to find the 
cause of the drive trips

1) A power quality monitor is used to record  
voltage and current responses of the cable 
during its operation

2) The data are then analyzed to check if the 
cable exhibits abnormal V & I responses 
such as partial discharges. The frequency & 
severity of abnormal responses may be 
compared with those collected from various 
cables 

Outcomes Methods to mitigate the PQ problem are 
recommended

Decision on if the cable needs to be 
replaced is made

Nature of 
monitoring

Diagnostic monitoring Preventive monitoring

Medical 
analogy 

Find the causes and damages of a heart 
attack after it has occurred 

Determine if a patient has the risk of heart 
attack

Data 
Input

Analytics 
Result

Abnormality 
Detection

Abnormality 
Extraction

Signature 
Analysis

Failure 
Characterization

Signature 
Database

Figure 1.39: A possible path for general-purpose condition monitoring scheme.

This thesis aims to develop new methods to detect generic waveform ab-
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normality for equipment condition monitoring. The motivation of developing

generic detection method instead of any specific abnormality detection method

is that we still do not have a complete knowledge of the specific signatures of

various equipment failure abnormalities. Under such situation, it is impossible

to monitor equipment conditions by specific methods. Instead, we can detect

and capture generic waveform abnormalities to narrow down the search range.

By analyzing the captured abnormal events and conduct field investigation if

possible, we will be able to monitor the health condition of equipment.

1.4 Thesis Contribution and Organization

In developing reliable and sensitive methods for waveform abnormality detec-

tion, four directions are taken in the research.

The first is on extensive survey on the electrical signatures of various equip-

ment failures. The summarization of equipment failure signatures lay the foun-

dation for the whole research presented in this thesis, for the goal of this thesis

is to develop robust and efficient methods to detect generic waveform abnor-

malities, especially those associated with equipment failures.

The second direction is on the development of an improved traditional

method which is a modification based on several existing methods. The used

features for detection are segment RMS values of differential waveform and

half-cycle refreshed RMS values of original waveform. The signals used here

include both phase voltage and phase current waveforms. Illustrative examples

of detection results are presented to show main types of abnormalities to be

detected and the effectiveness of the method.

To overcome the disadvantages of existing detection methods, the third

direction is on robust and flexible detection of generic waveform abnormalities,

which has the following objectives.

• The developed method should be able to detect generic abnormalities
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associated with power equipment failures, instead of a certain type of

abnormality.

• In traditional detection methods, threshold selection relies heavily on

experience. A systematic and analytical threshold selection scheme is

highly desired to overcome the difficulty to set proper threshold due to

large variations of current waveforms.

The fourth direction is on soft detection of waveform abnormalities. Instead

of returning binary detection results (i.e. an abnormality either exists or does

not exist), soft detection scheme which can return a numerical value in unit

interval [0,1] for the data of interest is desired to reflect the credibility that

the data contain waveform abnormality and to decrease the average detection

error.

The rest of the thesis is organized as follows.

Chapter 2 reviews existing traditional methods for the detection of wave-

form abnormalities. Then a modified detection method based on existing

schemes is proposed. Segment RMS values of differential waveform and half-

cycle refreshed RMS values of original waveform are used as features for the

detection. Illustrative examples of detection results are provided to show the

effectiveness of this method.

Chapter 3 presents a novel statistics-based detection method for the detec-

tion of generic waveform abnormalities. It uses the probability density function

of residual data which is derived by removing steady-state components from

the measured current signal as the feature for detection and the KLD between

distributions as abnormality measure. The proposed method is tested with

field and computer simulation data. Results show that it can effectively detect

abnormality-containing data, and at the same time reduce false alarms due to

small load changes.

Chapter 4 provides a soft detection scheme based on fuzzy set theory. The
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scheme is easy to implement and its output for a certain period of data is a

numerical value in the real unit interval [0, 1] which reflects the degree or credi-

bility for the data being abnormal. Illustrative examples and statistical results

are used to show advantages of the soft detection scheme over the proposed

binary detection method in Chapter 3.

Chapter 5 concludes this thesis and provides suggestions for future research.

Appendix A describes positive-going zero crossing point detection and fre-

quency variation correction, which are used in the improved traditional detec-

tion method proposed in Chapter 2.

Appendix B presents the parameter selection results and performance eval-

uation for the proposed statistics-based binary detection method with phase-B

and phase-C data.
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Chapter 2

Existing Methods to Detect

Waveform Abnormality and

Proposed Modification

The first step to identify equipment failure or malfunction is to detect abnor-

mality in voltage and current waveforms. Once an abnormality is detected, the

waveforms and RMS values associated with the period of abnormality can then

be extracted for detailed analysis. This may include signature evaluation, pat-

tern recognition, statistical analysis and other types of assessments. Eventually

equipment condition can be determined from the results.

As a result, the first problem that needs to be solved is the detection of wave-

form abnormality. As discussed earlier, there is a wide variety of equipment

failure signatures and many of them are not well understood. Alos, methods

to detect power quality disturbances are usually not applicable. A proper ap-

proach to solving the problem is, therefore, to create new general methods that

can detect all types of abnormalities for equipment failures.

Some research has been conducted in this direction for a few types of equip-

ment failures. We first provide a brief review of existing literature, then presents

an improved general purpose waveform abnormality detection method which
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combines the advantages of several existing detection methods. The proposed

method is applied to real field data and the detection results are presented.

2.1 Current Signature Based Methods

Disturbances associated with equipment failures usually results in abnormali-

ties in current signals. As a result, most of the published detection methods

use current waveforms or RMS trends. In this subsection, existing traditional

current-based methods are reviewed.

2.1.1 Fault Component Methods

Superimposed fault component is the current signal from which normal load

component has been removed. According to References [8] and [9], superim-

posed fault component can be derived with the following equation:

iF (k) = i(k)− i(k −NM) (2.1)

where i is the instantaneous current value of a certain phase (A, B or C); iF

represents the superimposed fault component of the phase; k is a sample index;

NM is an integer multiple of N1 which represents the number of samples per

power cycle.

Fault components are very small under steady state conditions. During

faults and other switching events, the above signals will be relatively bigger [8].

If the fault components exceed normal limits, a disturbance can be considered

to occur. There are two different methods to determine if the fault components

exceed normal limits, as follows.

(1) Magnitude of Fundamental Frequency Fault Component
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After superimposed fault components have been calculated, the magnitudes

of fundamental frequency component can be derived with fast Fourier trans-

form (FFT). Let IFA MAG, IFB MAG, IFC MAG stand for the magnitudes of fun-

damental frequency component of Phase A, B and C respectively and IA thre,

IB thre, IC thre stand for thresholds for three phases. If any of the three-phase

magnitudes of fundamental frequency component exceeds a certain threshold, a

disturbance is detected. In other words, if any of the following three equations

is satisfied,

IFA MAG > IA thre, (2.2)

IFB MAG > IB thre, (2.3)

IFC MAG > IC thre, (2.4)

a disturbance is detected. The thresholds can be predefined, or be estimated

by analyzing previous cycles of current signals.

Both References [8] and [9] propose such a method, but there is some differ-

ence between them. The main difference is as follows: in [9], the fundamental

components are derived with full cycle Fourier analysis; while in [8], half cycle

Fourier analysis is used.

Figure 2.1 illustrates the process of this method. In Figure 2.1(c), IRBMag

stands for the fundamental component magnitude of Phase-B fault current.

User pickup stands for the threshold defined by user. From Figure 2.1(c), we

can know that this method successfully detects the disturbance shown in Fig-

ure 2.1(a).

(2) Instantaneous Superimposed Fault Components

Reference [27] proposes a method to detect arcing events. Instantaneous

superimposed fault current is used to detect disturbances. Detailed algorithm
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(a) Three-phase current waveforms.

(b) Fault components of phase B and neutral current.

(c) Fundamental components of fault component.

Figure 2.1: Illustration of the fundamental fault component method [8].

can be explained as follows: first, superimposed fault currents are derived; if

the maximum value of the fault current exceeds a certain threshold during a

predefined time interval, then a disturbance is detected. Let |iFA(k)|, |iFB(k)|,
|iFC(k)| stand for the absolute values of fault components in Phase A, B and C,

and iA thre, iB thre, iC thre stand for the threshold of Phase A, B and C. During

a predefined interval, if any of the following three equations is satisfied,
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|iFA(k)| > iA thre, (2.5)

|iFB(k)| > iB thre, (2.6)

|iFC(k)| > iC thre, (2.7)

a disturbance is detected. The thresholds can be predefined, or estimated by

analyzing previous cycles of current signals.

Figure 2.2 illustrates this method. It should be noted that the current wave-

form is not from field measurement, but from synthetic signals with MATLAB

simulation. Reference [27] does not provide a detailed method to derive the

fault component. In order to illustrate this method, (2.1) is used to derive

the fault component. It is apparent that there is a disturbance in the original

waveform and this method successfully detects the disturbance.
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Figure 2.2: Illustration of instantaneous fault component method.

2.1.2 Wavelet Analysis Methods

In [9], wavelet analysis method is used to detect incipient failures in under-

ground cables. Incipient failures are usually self-clearing faults which have
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short durations (less than 3 cycles) and are generally extinguished before utility

protective devices have time to operate. In order to identify incipient failures,

an algorithm based on wavelet analysis is developed.

More specifically, with wavelet analysis, the measured signal can be decom-

posed into the low frequency approximation coefficients and the high frequency

detail coefficients. The low frequency approximation coefficients can represent

the fundamental frequency component, while the high frequency detail coeffi-

cients can represent the transient state [9]. The detection method involves two

rules, and if either one is triggered, a disturbance is detected.

(1) Detection Based on Approximation Coefficients

The approximation coefficients in the frequency band of 0-240 Hz are uti-

lized in this detection rule. This rule is less related to the high frequency

components. A disturbance is detected if Equation (2.8) is satisfied.

RMSCR =
RMSlatest half cycle −RMSone cycle before

RMSone cycle before

> threshold (2.8)

where RMS is the root mean square value, RMSCR is a derived parame-

ter. The second subfigure of Figure 2.3 illustrates this detection rule. The

disturbance shown in the first subfigure can be detected with this rule. It is

insensitive to heavy noise because it is not related to the high frequency com-

ponents. It also includes a short detection delay.

(2) Detection Based on Detail Coefficients

In this rule, the detail coefficients in the frequency band of 240-960 Hz

are utilized for detection. It is less related to the fundamental frequency. A
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Figure 2.3: Illustration of wavelet analysis method [9].

disturbance is considered to be detected when Equation (2.9) is satisfied.

ENGR =
Energylatest −MEAN(Energypast)

STD(Energypast)
> threshold (2.9)

where Energylatest stands for the energy of the latest detail coefficients; Energylatest

stands for an array of the energy of the past detail coefficients; MEAN stands

for the average function; STD stands for the standard deviation function.

The third subfigure of Figure 2.3 illustrates this detection rule. The dis-

turbance shown in the first subfigure can be detected with this rule. It has

good performance in low noise environment. Since it does not consider the low

frequency component, it is insensitive to slow change of fundamental frequency

component.

2.1.3 Fundamental Frequency Component Method

In [28], a method is proposed to detect incipient faults in medium voltage cir-

cuits using the fundamental frequency components. Its detection process can be

explained as follows: first, the fundamental component of actual current wave-
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form is calculated with discrete Fourier transform (DFT); if the fundamental

component magnitude exceeds a certain threshold, a disturbance is detected.

Then, more detailed analysis is made to determine if a cable fault occurs.

Let N1 be the number of samples in one power frequency cycle. In order

to get fundamental component magnitude, half cycle DFT is done every one

eighth of a cycle which means for every Fourier analysis, one eighth of N1 new

samples are moved in and one eighth of N1 old samples are moved out.

There are two different modes for the calculation of the threshold: (1)

fixed threshold, i.e. predefined threshold; (2) dynamic threshold, where the

average value of several previous cycles’ fundamental component magnitude is

calculated first; and the threshold can be derived by multiplying the average

value by a coefficient larger than 1. Figure 2.4 illustrates the process of this

method. A fixed threshold is used in this case.
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Figure 2.4: Illustration of fundamental component method.

2.2 Voltage Signature Based Methods

Most disturbances in voltage waveforms are power quality disturbances. There

have been extensive research on those disturbances. There are also many com-

mercial devices for the detection of power quality disturbances. Reference

[11] has provided comprehensive techniques for the detection and characteriza-
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tion of power quality disturbances, including short duration voltage variations

(voltage sag, swell and interruption) and steady state disturbances (harmonics,

inter-harmonics and voltage flicker). However, there is little discussion on the

detection of voltage transients. Voltage transient is a special kind of distur-

bance. It not only causes power quality problems but also carries valuable in-

formation about utility equipment conditions, such as capacitor restrike. Thus,

this section presents existing methods for the detection of voltage transients.

2.2.1 Waveform Methods

The main idea of waveform detection methods is to detect disturbances by

comparing two consecutive cycles. Since there are different ways to compare

two cycles of waveforms, there are some subtle differences among the various

adaptations of the method. Three representative versions of the method are

summarized as follows.

1. Two consecutive cycles of a waveform are compared sample-by-sample.

A disturbance is detected if the comparison shows that the difference

exceeds a user supplied magnitude threshold and lasts longer than a user-

supplied minimum duration.

2. The two consecutive cycles of the waveform are first squared. Point-

by-point differences are calculated on the squared values. The absolute

values of the differences are summed over the comparison cycle to form

a mean absolute variation in squared amplitude (MAVSA) value. If the

value exceeds a threshold, a disturbance is detected.

3. The two consecutive cycles of the waveform are subtracted point by point.

The RMS value of the differential waveform is then calculated. It repre-

sents the distance between the two cycles. A percentage distance is then

calculated by dividing the RMS value of the differential cycle by that of a
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healthy cycle. If the percentage value exceeds a threshold, a disturbance

is detected.

The advantages and disadvantages of above methods are analyzed. The first

method is the most flexible one. For users who are not experienced in selecting

threshold values, the method may catch a lot of inconsequential disturbances

or miss important disturbances. The third method is simpler since only one

percentage threshold is needed. Since it compares an entire cycle, disturbances

that last a fraction of a cycle have a high probability to be missed. The second

method also compares one whole cycle and has the shortcoming of the third

method. Furthermore, its square operation lacks theoretical foundation and

physical meaning.

2.2.2 Wavelet Analysis Method

Reference [29] presents a wavelet analysis method to detect voltage transients.

The method can be explained as follows: time-frequency plane is first com-

puted; then the behavior of fundamental frequency and high frequency com-

ponents is analyzed to detect the presence of voltage transients. Figure 2.5

illustrates an example of voltage transients. In this case, the fundamental fre-

quency of the voltage signal is 50 Hz.

Figure 2.5(a) represents the voltage waveform. Figure 2.5(b)-(e) represent

the profile at 50Hz, 350Hz, 650Hz and 1500Hz, respectively. In this case, high

frequency peaks and sharp changes in the signal appear almost simultaneously.

Peaks in the high frequency profiles are compared with threshold values to

detect transients. A part of the signal which is assumed to be disturbance-

free, is used to derive the threshold values. It should be noted that voltage

sags also show abnormal behavior in high frequency components. In order to

differentiate voltage transients and sags, the duration and number of peaks

exceeding threshold values are important parameters that can be used [29].
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Figure 2.5: Wavelet transform of voltage transients [29].

2.3 Composite Method

Reference [30] presents a composite method to detect disturbances. Multiple

parameters are computed using voltage and current signals.

• Harmonic and non-harmonic components below 16th harmonic are com-

puted for each current input. The calculation is conducted one time for

every period of two cycles.

• Current and voltage RMS values are computed. One RMS value is derived

for every two-cycle data from each input.

• The real, reactive, and apparent power are computed one time for every

period of two cycles.

• Energy is computed for high-frequency current channels.

A running average is derived for each parameter. For each parameter shown

above, this method uses the running average to calculate two trigger thresholds;
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one upper threshold and one lower threshold. For every two-cycle interval, each

parameter is compared with the corresponding thresholds. If any of the above

parameters falls beyond the range set by the upper and lower thresholds, a

disturbance is detected, as shown in (2.10).

X(i) > αXmean or X(i) < βXmean (2.10)

where X(i) represents the ith value of any of above parameters; Xmean rep-

resents the running average; α is the coefficient (larger than 1) corresponding

to the upper threshold; β is the coefficient (less than 1) corresponding to the

lower threshold.

The use of each parameter in this composite method is actually similar

to the current fundamental component method illustrated in Section 2.1.3.

Figure 2.4 can help readers to understand the detailed process of this composite

method.

2.4 Proposed Improved Method

By combining the strength of various known methods with our research expe-

riences, an improved abnormally detection method is developed for testing and

demonstration. This method is illustrated here for the purpose of revealing the

main issues that need to be considered when developing abnormality detection

methods. The main characteristics of the illustrative method are that 1) both

voltage and current signals are used and 2) both the variations of waveforms

as well as RMS values are used. The overall flowchart of the method is shown

in Figure 2.6.
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disturbance is detected; then output 1
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update  segment RMS values (as thresholds)

Saved waveform snapshot
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RMS MethodWaveform Method

Disturbance does not exist Disturbance exists

Or

VoltageCurrent

Figure 2.6: Detailed process of the proposed improved method.

2.4.1 Description of the Method

Due to the diverse signatures of equipment failures, both the waveform abnor-

mality and RMS value abnormality in voltage and current signals are used in

this method in order to detect all types of associated abnormalities. In other
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words, four different features are applied concurrently for disturbance detec-

tion. The detailed steps of detection using waveform abnormality and detection

using RMS value abnormality are illustrated below.

(1) Detection Using Waveform Abnormality

Waveform method detects the presence of disturbances by comparing con-

secutive cycles of waveform data. When the difference between two consecu-

tive cycles exceeds a certain threshold, a disturbance is detected. Since there

are different ways to compare two cycles of waveforms, there are some subtle

differences among the various adaptations of the method. Three representa-

tive versions of waveform method have been summarized in Section 2.2.1. A

new waveform detection method is proposed by combining the advantages and

avoiding the disadvantages of the three methods.

The new waveform method can be explained as follows. The differential

waveform between two consecutive cycles is computed first. The waveform is

then divided into M segments (for example M=8). RMS value is calculated for

each segment. If one of the segment RMS values is greater than a threshold, a

disturbance is detected. This criterion is described using the following equation.

ΔXRMS(i) > αXRMS(i) i = 1, ...,M (2.11)

where ΔXRMS(i) is the root-mean-square value of the ith segment of the dif-

ferential waveform Δx(t); XRMS(i) is the root-mean-square value of the ith

segment of the pre-disturbance (or reference) waveform x(t); α is the threshold

value supplied by user.

ΔXRMS(i) and XRMS(i) can be calculated using the following equations:

ΔXRMS(i) =

√√√√
∑
k∈i

Δx2(k)

N
M

i = 1, ...,M (2.12)
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XRMS(i) =

√√√√
∑
k∈i

x2(k)

N
M

i = 1, ...,M (2.13)

where N is the number of samples in one power cycle; Δx(k) is the kth point

in differential waveform; x(k) is the kth point in the reference waveform.

This proposed waveform detection method is illustrated in Figure 2.7 and

Figure 2.8. This method is simple to implement and can successfully detect

disturbances which last only a section of one cycle.
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Figure 2.7: Illustration of the proposed method to derive differential waveform.

The reference cycle is a healthy cycle which is disturbance-free. When

there are no disturbances in three consecutive cycles, the current cycle is used

as a reference cycle and its segment RMS values are calculated from (2.13).

Thresholds are updated with the new segment RMS values. If any cycle of

last three consecutive cycles contains disturbances, the thresholds will not be

updated.
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Figure 2.8: Illustration of detection using waveform abnormality for the pro-
posed method.

This detection method using waveform abnormality is an adapted version

of the third waveform method in Section 2.2.1. The novelty of this adapted

method is that instead of using the RMS value of a whole cycle of differential

waveform, this adaption detects abnormality using small segment (part of one

cycle) RMS value of differential waveform. This can increase the sensitivity in

detecting abnormalities that last only a fraction of one cycle.

When using the proposed waveform method, there are two practical issues

to consider. First, when doing subtraction calculation for two consecutive cy-

cles, positive going zero crossing point needs to be checked if the first cycle

is disturbance-free. The comparison of two consecutive cycles starts from the

positive going zero crossing point. Second, the real frequency of a power system

usually fluctuates in a small range near the nominal value, which will result

in phase difference between the corresponding points in two consecutive cy-

cles. Thus, frequency variation correction is needed. Detailed methods for zero

crossing point detection and frequency variation correction is provided in Ap-

pendix A. It should be noted that though the two operations are useful add-on,

they are not necessary, especially when the waveform distortion level is big. In

the presence of high waveform distortion, these two operations may increase

49



false alarms due to the possible error in getting the differential waveform and

the ratios of segment RMS values of differential waveform to those of reference

waveform.

(2) Detection Using RMS Value Abnormality

The basic idea of the proposed RMS method is to detect disturbances by

evaluating the RMS values of current and voltage signals. Every half cycle,

this method calculates RMS values using one-cycle data. If any RMS value

exceeds the range defined by the upper and lower limits, a disturbance is de-

tected. Compared with detection methods which utilize RMS values updated

every whole cycle, this half-cycle refreshed method has better time resolution.

The reason why we use both the RMS value abnormality and waveform abnor-

mality is that we can avoid the situation when one disturbance that contains

several cycles of similar waveform is detected as two disturbances if only using

the waveform method, such as the voltage sag caused by motor starting [31].

Figure 2.9 illustrates the detailed process of this RMS method.
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Figure 2.9: Illustration of detection using RMS value abnormality for the pro-
posed method.

Half-cycle refreshed RMS value refers to the RMS value calculated for a
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one-cycle sliding window that refreshes every half-cycle. In other words, half

of the data used for calculating a RMS value is fresh data. When the data of

a new cycle arrive, two RMS values need to be calculated. One is X ′
RMS(1/2)

which is the RMS value calculated using the last half samples in the previous

cycle and the first half samples in the current cycle. The other one is XRMS(1/2)

which is the RMS value of the current cycle. It should be noted that the RMS

value is calculated for the original waveform, not for the differential waveform.

Besides, if the previous cycle is disturbance free, its zero crossing point needs to

be checked. If one of the half-cycle refreshed RMS values is greater than or less

than certain thresholds, a disturbance is detected. The criteria are described

using the following equations.

X ′
RMS(1/2) < βsagXRMS or XRMS(1/2) < βsagXRMS (2.14)

X ′
RMS(1/2) > βswellXRMS or XRMS(1/2) > βswellXRMS (2.15)

where XRMS is the nominal RMS value of the original waveform x(t); βsag and

βswell are the threshold values supplied by user.

XRMS can also be calculated with the following equation.

XRMS(n) = 0.9967XRMS(n− 1) + 0.0033X12RMS, (2.16)

whereXRMS(n) is the current reference RMS value; XRMS(n−1) is the previous

reference RMS value; X12RMS is the RMS value calculated by the latest 12

healthy cycles.

If all equations in (2.17)-(2.19) are satisfied for three consecutive cycles, a

disturbance can be considered to have ended.

ΔXRMS(i) < αXRMS(i) i = 1, ...,M (2.17)
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⎧⎪⎨
⎪⎩
X ′

RMS(1/2) > (βsag + βhysteresis)XRMS

XRMS(1/2) > (βsag + βhysteresis)XRMS

(2.18)

⎧⎪⎨
⎪⎩
X ′

RMS(1/2) < (βswell − βhysteresis)XRMS

XRMS(1/2) < (βswell + βhysteresis)XRMS

(2.19)

where βhysteresis stands for hysteresis value and its typical value is 2%.

The results of the disturbance detection procedure are listed below.

• Starting time of the disturbance (in the unit of sample number)

• Ending time of the disturbance (in the unit of sample number)

• Disturbance waveform including three or more cycles of pre-disturbance

data and at least three cycles of post-disturbance data

Figure 2.10 illustrates the output of the proposed disturbance detection

procedure.
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Figure 2.10: Output of disturbance detection procedure for the proposed
method.

(3) Threshold Values

The setting of threshold values is very important for the accuracy of dis-

turbance detection. For the proposed method in previous sections, critical

parameters whose values need to be set are M , α, βsag and βswell. Typical

values used for detection of voltage disturbances are shown in Table 2.1.
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Table 2.1: Typical parameter values.

Level of 

capability
M α sagβ swellβ

1 8 or 16 7% - 20% 70% - 90% 110%

2 16 or 32 7%-20% 70% - 90% 110%

3 3000 to 4000 7%-20% 70% - 90% 110%

4 Specialized instruments have their own methods for disturbance detection

Since current signals are more prone to various disturbances than voltage

signals, these parameters need to be reset when used for detection of current

disturbances. In normal conditions, variations in current RMS values are rela-

tively bigger than variations in voltage RMS values. However, the difference is

not significant. Thus, the typical values of βsag, βswell and M in Table 2.1 can

be adopted for the detection of current disturbances as well. In normal con-

ditions, the waveform distortion of current signals is much more serious than

that of voltage signals. If similar values are used for the detection of current

disturbances, many inconsequential disturbances may be captured. Thus, these

values need to be reset. After applying different values to a large amount of

field measurement data, we recommend to adopt the values between 27% and

40%.

2.4.2 Test Results

The proposed method is applied to a multi-day field record and the main results

are shown in this section. The purpose is to demonstrate the type of abnormal-

ities in the waveforms. Table 2.2 shows the measurement setup. Figure 2.11

shows the metering point in the substation. The parameters used for threshold

setting are shown in Table 2.3.
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Table 2.2: Measurement setup.

Measured signals Substation three-phase bus voltages and feeder currents 

Measurement duration Two weeks 

Sample points per cycle 64 

Sampling mode Continuous (i.e. no gap in the data) 

PT ratio 14.1:0.12 

CT ratio 1200:5 

 

Bus

Circuit 
Breaker

Substation 
Transformer Feeder 1

Feeder 4

Feeder 3

Feeder 2CT

PT

�

�

Measured Parameters

3-phase Voltages

3-phase Currents 1

2

2

1

Figure 2.11: Measurement point and measured parameters.

Table 2.3: Thresholds used for abnormality detection.

 M α  sagβ  swellβ  

I 8 36% 90% 110% 

V 8 17% 90% 110% 

 

The number of abnormalities or disturbances captured by different features

is shown in Table 2.4 and in Figure 2.12. Since some disturbances can be

detected by two or more algorithms, the summation of the four percentage

values is larger than 1. Figure 2.13 shows the distribution of disturbances at

different hours captured by using different features.
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Table 2.4: Number of disturbances captured by using different features.

Voltages Currents

RMS method 4 41

Waveform method 24 89
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Figure 2.12: Percentage of disturbances detected by using different features.
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Figure 2.13: Distribution of disturbances at different time.

The detection results include disturbances of the following categories: (1)

transients; (2) overcurrent; (3) low-level current variations; (4) increase of cur-

rent waveform distortion. Disturbances of these different categories are pre-
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sented in Figure 2.14 to Figure 2.21.

(1) Transients.
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Figure 2.14: Transients-case 1.
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Figure 2.15: Transients-case 2.
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(2) Overcurrent.
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Figure 2.16: Overcurrent-case 1.
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Figure 2.17: Overcurrent-case 2.
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(3) Low-level current variations.
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Figure 2.18: Low-level current variation-case 1.
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Figure 2.19: Low-level current variation-case 2.
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(4) Increase of current waveform distortion.
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Figure 2.20: Increase of current waveform distortion-case 1.
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Figure 2.21: Increase of current waveform distortion-case 2.
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Chapter 3

Generic Waveform Abnormality

Detection Method Based on

Statistical Distribution

As shown in the last chapter, there are several studies on the detection of wave-

form abnormalities for utility equipment condition monitoring [8, 9, 27, 28, 29].

But they are all focused on the detection of waveform abnormality associ-

ated with certain specific types of incipient failures. For example, the work

in [8, 9, 28] are for underground cable failures. Although the improved tradi-

tional method we proposed in Section 2.4 combines the advantages of existing

abnormality detection methods, there are some limitations for the method in

detecting generic waveform abnormalities due to the fact that it still follows

traditional methods for abnormality detection and that waveform abnormalities

that are associated with utility equipment failures are less explicit in voltage

and current magnitudes, RMS values, etc. Furthermore, with existing schemes,

the detection thresholds are usually selected by experiences and largely vary

for different scenarios, which impede their use in general setups.

In this chapter, a new detection framework based on the distribution of the

power signals is proposed. We formulate the detection problem as a binary hy-
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pothesis test to differentiate normal situation and abnormal situation. Under

normal situation, the residual data which is extracted by removing the steady-

state components of the waveforms are modeled as Gaussian samples. Under

abnormal situation, however, the residual data deviate largely from Gaussian

samples. The Kullback-Leibler divergence (KLD) is then applied to quantify

the deviation. An abnormality is detected if the KLD is larger than a threshold.

In contrast to the power quality disturbance detection which mainly uses volt-

age waveforms, the proposed method is based on current waveforms as they are

more sensitive to equipment condition. The challenge associated with the large

deviations of currents due to load changes is overcome through the adoption

of KLD as the distance measure and a proposed systematic threshold selec-

tion scheme that maximizes the detection probability for a given false alarm

probability.

The remaining of the chapter is organized as follows. Section 3.1 presents

the detection problem formulation, the current residual data extraction, and

the modelling of the residual data. The detection rule, the threshold selection,

and the summarized detection procedure are provided in Section 3.2. The test

results and comparison with existing work are shown in Section 3.3. Finally,

a brief summary is presented in Section 3.4. To help the presentation, we list

the important symbols used in this chapter and their meanings in Table 3.1.
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Table 3.1: List of symbols used in algorithm description

Symbol Meaning

t time instant

i(t) measured current signal

ĥ(t) steady-state components

fn nominal power frequency

fr operating power frequency

ĩ(t) residual signal

NG window size for Gaussian estimation

NH window size for steady-state components estimation

Nd window size for detection

N0 number of sampling points in one cycle

m̂ estimated mean of Gaussian distribution

σ̂2 estimated variance of Gaussian distribution

fn(x) pdf of Gaussian distribution

f̂(x) estimated pdf of residual data

Dth detection threshold

3.1 Hypothesis Testing Model for General Ab-

normality Detection

The goal of this work is to detect generic waveform abnormalities related to

conditions of utility equipments, including overhead lines, cables, transform-

ers, capacitors, circuit breakers, and lightning arresters, etc. The detailed

signatures of various equipment failures can be found in the Chapter 2. Abnor-

malities related to equipment conditions often show asymmetric and sporadic

current signatures with diverse time scales, and they are often more visible

in current waveforms as opposed to voltage waveforms. Thus, we study the

current signal measured at the feeder. The abnormality detection problem is

naturally a binary hypothesis test where the two hypotheses are H0 : there is

no abnormality and H1 : there is an abnormality.

Under normal situation (Hypothesis H0), the current signal contains nor-
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mal load component and random noise/fluctuations caused by random load

behavior and data acquisition devices. When an abnormality exists (Hypothe-

sis H1), a fault component is superimposed on the normal current signal. Thus,

the hypothesis test problem can be formulated as follows.

H0 : i(t) =
K∑
k=0

Ak cos (2πkfrt+ ϕk) + n(t), (3.1)

H1 : i(t) =
K∑
k=0

Ak cos (2πkfrt+ ϕk) + n(t) + a(t), (3.2)

where the t is the time instant, i(t) is the current signal measured at the sub-

station, Ak and ϕk are the magnitude and phase angle of the kth harmonic

component, K is the highest harmonic order, fr is the fundamental operating

frequency, n(t) represents the random noise, and a(t) represents the fault com-

ponent. Ideally, fr = fn where fn is the nominal frequency, e.g. 60Hz in North

America. But in reality, the operating frequency fluctuates slightly around the

nominal frequency and may change from cycle to cycle. In real applications,

discrete-time samples of the feeder current are measured, thus t takes discrete

values t = nΔt for n = 1, 2, · · · , where Δt is the sampling time.

The steady-state components in the current signal,
∑K

k=0 Ak cos(2πkfrt +

ϕk), is common for both hypotheses, thus contain no useful information for the

abnormality detection. We propose to estimate the steady-state components

and subtract them from the current signal to reveal the residue. Also, since our

goal is to detect general abnormality instead of any specific type of equipment

failure, a(t) is unknown and can take a large variety of forms. Thus we can

only rely on signatures of the normal situation for detection. In this work,

we propose to detect the abnormality based on how well the observed current

signal matches the H0 hypothesis. For this to be possible, the noise n(t) needs

to be understood and modelled.

In the following subsections, we solve the aforementioned two issues in our
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detection model: the estimation of the steady-state components and the mod-

eling of the noise.

3.1.1 Steady-State Components Estimation

Since within the period of a few cycles, the steady-state components are ap-

proximately the same, we estimate the steady-state components of the current

cycle from the previous one or several cycles, which we refer to as the reference

cycles. Let NH be the number of reference cycles used for the steady-state

components estimation. The effect of NH on the detection performance will be

discussed in Section 3.3.1.

By applying FFT on the current samples of the reference cycles, estimations

of the magnitudes and phase angles of the steady-state components can be

obtained, which are denote as Âk and ϕ̂k, for k = 0, 1, ..., K. Under the ideal

assumption that there is no fluctuation in the operating frequency, the steady-

state components of the current cycle can be estimated as

ĥ(t) =
K∑
k=0

Âk cos(2πkfnt+ ϕ̂k).

But in reality, operating frequency fluctuation always exists. To accommodate

this for better detection performance, we first estimate the operating frequency

via a one-dimensional searching. Let fr be the operating frequency of the

current cycle. Usually its value is within a small range around fn. Denote its

possible range as [fmin, fmax]. We conduct a grid search over the range to find

the frequency that leads to the best match with the signal of the current cycle

in the sense of energy. In other words, the error signal, which is the signal of

the current cycle subtracted by the estimated steady-state components, has the

smallest energy, or equivalently, the smallest RMS. The motivation behind the

method is that the energy of the current signal is dominated by its steady-state

components.

64



Without loss of generality, let the time origin t = 0 be the time instant the

cycle of interest starts. Denote the total number of samples of one cycle as N0.

Thus, the samples of the cycle of interest are i(lΔt) for l = 1, · · · , N0. Define

E(f) =

N0∑
l=0

[
i(lΔt)−

K∑
k=0

Âk cos(2πklfΔt+ ϕ̂k)

]2

,

which is the energy of the error signal if the operating fundamental frequency

is f . The operating fundamental frequency search can be mathematically rep-

resented as:

f̂r = arg min
f∈[fmin,fmax]

E(f). (3.3)

Thus the following estimation of the steady-state components can be obtained:

ĥ(t) =
K∑
k=0

Âk cos(2πkf̂rt+ ϕ̂k). (3.4)

By subtracting the steady-state components, the residual signal is obtained as

ĩ(t) = i(t)− ĥ(t). (3.5)

The hypothesis test in (3.1)-(3.2) is simplified into the following:

H0 : ĩ(t) = n(t), (3.6)

H1 : ĩ(t) = n(t) + a(t). (3.7)

We should note that if the steady-state components estimation is precise, the

n(t) in (3.6)-(3.7) is the same as the n(t) in (3.1)-(3.2). If the estimation is with

error, the n(t) in (3.6)-(3.7) contains both the random noise and the estimation

error. It models the overall random component in the residual signal.

Theoretically, variations in both the power system frequency and the sam-
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pling frequency can impact the estimation of steady-state components. How-

ever, the impact of the power system frequency variation is usually much

stronger. Thus in this work we only consider the impact of system frequency

and neglect the variation of the sampling frequency. We have conducted the

following studies to show this.

Using one-hour field data, we calculate the trends of both the power system

frequency and the sampling frequency (using GPS clock). Results show that

the largest deviation from the nominal power system frequency is 0.05Hz, and

the largest deviation from the nominal sampling frequency is 0.52Hz. Based

on these parameters, we use synthesized data (i.e. simulation in Matlab) to

analyze the effect of the two kinds of variations on the estimation of the steady-

state components. The following model is used:

x(n) =
∑

k=1,3,5,7,9

ak cos

(
2πnk

fr
fs

+ ϕk

)
+ ω(n), (3.8)

where n is the sample index, fr is the fundamental frequency, fs is the sampling

frequency. ϕk is the phase angle of the kth harmonic, and ω(n) is the white

Gaussian noise. We set a1 = 1, a3 = 0.02, a5 = 0.03, a7 = 0.01, a9 = 0.02,

SNR = 50dB. Without loss of generality, ϕk are set to be 0. The following

three cases are considered: (1) fr = 60Hz, fs = 64 × 60 = 3840Hz; (2)

fr = 60.05Hz, fs = 64×60 = 3840Hz; and (3) fr = 60Hz, fs = 64×60−0.52 =

3839.48Hz. Case 1 is the perfect case with no variation, Case 2 has 0.05Hz

variation in the power system frequency while the sampling frequency is perfect,

and Case 3 has 0.52Hz variation in the sampling frequency while the power

system frequency is perfect.

Since the behavior of estimated residuals can be used to evaluate the qual-

ity of the steady-state components, the estimated residuals are shown above in

Figure 3.1 in this response. We can see from this figure that the impact of the

system frequency variation is much greater than the sampling frequency vari-
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ation. Thus in this work we only consider the impact of the system frequency

and neglect the variation of the sampling frequency. To avoid the strong effect

of the variation in system frequency, frequency variation correction is proposed

in this chapter. With the correction, we can see from Figure 3.1 that the error

in the residual estimation is greatly reduced.
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Figure 3.1: Residuals under different cases.

3.1.2 Modelling of the Noise Component

Understanding the noise component n(t) is crucial for the detection problem.

The Gaussian model is the most widely used and validated noise model in

various areas such as control systems, communications, and signal processing.

It is also adopted in power systems [32, 33]. In this work, we assume that n(t)

is an ergodic Gaussian random process, thus the discrete-time residual samples

n(lΔt) follows a Gaussian distribution. To validate the assumption, tests on

the field current data are conducted. The data are measured at one end of a

transmission cable which is located in a 138kV ring network. The sampling

frequency is 3840Hz with the nominal frequency of 60Hz, i.e., 64 points per
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cycle. For the tests on the noise distribution, we randomly choose 1000 events,

where each event contains 5 cycles of current samples, i.e., 320 sample points.

All chosen events are normal ones without abnormality.

For each cycle of the chosen events, the steady-state components are esti-

mated and subtracted using the scheme explained in Section 3.1.1 to obtain

the residual signals. To test whether the residual signals follow Gaussian dis-

tribution (also called the normality test), several statistical methods are used,

including the classic Shapiro-Wilk, Anderson-Darling, and Jarque-Bera tests

[34]. If an event passes any of the three tests, the event is considered to pass

the normality test. Our experiments on the 1000 events show that the pass

rate is 94.4%, which validates the Gaussian assumption.

Under the Gaussian assumption, to fully understand the noise, we only need

its mean and variance, which can be estimated from the residual signals. Let

NG be the number of cycles of residual data used for estimating the mean and

variance, and recall that N0 is the number of samples for each cycle. Denote the

discrete-time residual data of the NG cycles as ĩ1,1, · · · , ĩl,r, · · · , ĩNG,N0 , where

ĩl,r represents the r-th point in the l-th cycle. The unbiased estimates of the

mean and variance are [35]

m̂ =
1

N0NG

NG∑
l=1

N0∑
r=1

ĩl,r, (3.9)

σ̂2 =
1

N0NG − 1

NG∑
l=1

N0∑
r=1

(̃
il,r − m̂

)2
. (3.10)

The probability density function (pdf) of the Gaussian distribution for the noise

is thus

fn(x) =
1√
2πσ̂2

e−
(x−m̂)2

2σ̂2 . (3.11)

The assumption that n(t) is an ergodic Gaussian random process is an ideal
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one. In reality, the parameters of the Gaussian model may vary with time.

Thus, in real applications, the mean and variance estimates of the Gaussian

noise pdf can be updated continuously or periodically to improve the accuracy

of the noise modelling.

3.2 Generic Abnormality Detection Scheme

In this section, we present the proposed detection rule and the threshold se-

lection method. Then an algorithm that summarizes the proposed detection

scheme is provided.

3.2.1 Abnormality Detection Rule and Threshold Selec-

tion

With the modelling in Section 3.1, under Hypothesis H0 (no abnormality),

the current residual samples follow the Gaussian pdf in (3.11). On the other

hand, under Hypothesis H1 (an abnormality exists), the residual samples are

expected to largely deviate from the Gaussian pdf in (3.11) but follow the

shape of the fault/abnormality a(t). However, since a(t) is unknown and has a

large variety, it is impossible to conduct the traditional likelihood-ratio-based

detection for binary hypothesis testing, for example, to decide on the hypothesis

whose waveform shape is closer to the residual data.

Instead, we propose to detect whether an abnormality exists by comparing

the distance between the distribution of the current residual samples and the

Gaussian distribution in (3.11) with a threshold. If the distance is smaller than

the threshold, the residual samples have a good match with the noise pdf, thus

an abnormality does not exist. On the other hand, when it is larger than the

threshold, the distribution of the residual samples does not match the Gaussian

pdf of the noise and an abnormality exists. The detection idea is illustrated in

Figure 3.2.
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Figure 3.2: Illustration of the proposed detection rule.

To materialize this detection idea, we need to conduct the following three

tasks: to generate the distribution of the measurement residual data samples,

to calculate the distance between the two distributions, and to select the thresh-

old. In what follows, we explain the three tasks sequentially.

(1) Empirical Residual Distribution Generation

We first explain how the distribution of the measurement residual data is

generated. Recall that the residual data are the current samples measured at

the feeder subtracted by the estimated steady-state components as given in

(3.4) and (3.5). Let Nd be the number of cycles of the current data used for the

abnormality detection, thus there are N0Nd data points in a detection window.

For the simplicity of presentation, denote the residual samples of the detection

window as x1,1, · · · , xl,r, · · · , xNd,N0 ,

xl,r = ĩ((l − 1)N0Δt+ rΔt), (3.12)

which is the r-th point in the l-th cycle of the residual data. Kernel density
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estimation is used to generate the empirical residual pdf. Kernel density es-

timation is a fundamental method to estimate the pdf of a distribution from

a finite set of independent and identically distributed (i.i.d.) samples drawn

from this distribution [36]. It has the same basic principle as the histogram

but possesses more appealing properties such as the smoothness. Given the

discrete samples x1,1, · · · , xl,r, · · · , xNd,N0 , kernel density estimation of the pdf

of the residual data is:

f̂(x) =
1

N0Ndh

Nd∑
l=1

N0∑
r=1

K

(
x− xl,r

h

)
, (3.13)

whereK(x) is the kernel function and h is the bandwidth (or smoothing param-

eter). The kernel function is a zero-mean pdf, implying that it is non-negative

and it integrates to 1. Common kernel functions include uniform, triangular,

biweight, Epanechnikov, and Gaussian distribution functions. Here, we use

the standard Gaussian distribution function due to its convenient mathemat-

ical properties. The bandwidth h is a positive parameter. Its value affects

the smoothness and precision of the kernel density estimation. For Gaussian

random variable, the optimal choice of h has been proved to be [36]:

h =

(
4σ5

3n

) 1
5

≈ 1.06σn−0.2. (3.14)

This result is adopted in our scheme.

It should be noted that the reason why we use kernel density estimation in-

stead of histogram is that the kernel density estimation returns much smoother

distribution than the histogram. This can be seen from Figure 3.3(b) which

presents the histogram plot and the kernel density estimation of the residual

signals in the abnormal cycle in Figure 3.3(a).

(2) Distance Measure
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Figure 3.3: Comparison between histogram and kernel density estimation.

To quantify the distance between the measured data and Hypothesis H0, we

use the KLD from the estimated pdf of the measured residual samples to the

theoretical noise pdf under H0. KLD is widely used in probability theory and

information theory [37]. Let p(x) and q(x) be two pdfs. Thus they are both

non-negative and integrate to 1. The KLD of q from p, denoted by DKL(p||q),
is defined as [37]

DKL(p||q) =
∫ ∞

−∞
p(x) ln

p(x)

q(x)
dx. (3.15)

It provides a quantitative measure for the difference of q from p. It also equals

the amount of information loss when using q to approximate p.

In this work, with the model in Section 3.1, under Hypothesis H0, the

theoretical pdf of the residual samples, f , is given in (3.11). Based on the

measurement residual data of the detection window, we can obtain the kernel

estimate of their pdf, f̂ , as in (3.13). The distance of the H0 hypothesis from

the observed event is thus DKL(f̂ ||f). For the numerical integration in the

KLD calculation, the midpoint rule is used. In our experiments, the theoretical

Gaussian pdf is estimated from previous normal (no abnormality) cycles before

the detection window. In calculating the KLD, extra steps containing the RMS

normalization and mean shift are conducted. Specifically, the current samples
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are scaled so that the one-cycle-RMS values of the data are the same. Another

step is to shift the residual data so the kernel estimation has the same mean

as the Gaussian distribution estimated with (3.9). This can be realized by the

following transformation of the current samples and the residual samples:

îl,r = il,r
RMS(1)

RMS(l)
, (3.16)

x̂l,r = xl,r − 1

N0

N0∑
r=1

xl,r + m̂, (3.17)

where the RMS(l) is the RMS value of the l-th cycle, il,r and xl,r represent the

r-th current sample and r-th residue of the l-th cycle, respectively.

The reason behind this extra step is to deal with small load variations.

Small load variations are very common and frequent phenomena in power sys-

tems. Thus, in this work, we classify small load variations as normal situation

to avoid excessive alarm-raising and extra-sensitive detection. The transforma-

tion in (3.16) and (3.17) effectively avoids this problem. With the mean-shift

and RMS-scaling, the calculated KLD value reflects mainly the shape difference

of the two distributions.

(3) Detection Rule and Threshold Selection

Since the abnormality type has a large variety with different shapes and

is unknown. For a generic scheme, we detect whether an abnormality exists

by comparing the distance of the theoretical Gaussian distribution from the

estimated distribution of the residual data with a threshold. The detection

rule can be represented as follows:

Decide on H0 if DKL(f̂ ||f) ≤ Dth, (3.18)

Decide on H1 if DKL(f̂ ||f) > Dth, (3.19)
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where Dth is the threshold.

The selection of the threshold value is an important issue which determines

the performance of the proposed scheme. Following detection theory, we choose

the threshold to maximize the detection probability given the desired level of

the false alarm probability. Denote the pdf of the KLDDKL(f̂ ||f) as p(s). With

an arbitrary threshold value Dth, the false alarm probability can be calculated

as

PFA(Dth) =

∫ ∞

Dth

p(s)ds. (3.20)

Let α be the desired false alarm probability. Since both the detection proba-

bility and the false alarm probability are non-increasing functions of Dth, the

threshold value is the smallest value that satisfies PFA(Dth) ≤ α. In other

words,

Dth = arg min
PFA(x)≤α

x. (3.21)

We propose the following steps for the threshold selection. It should be noted

that the false alarm rate used to select threshold can be fixed or adaptive based

on number of events detected in previous data.

• Step 1: Gather NKLD sets of the residual data of previous cycles, where

each set contains N samples.

• Step 2: For each set, calculate the kernel density estimation of the N sam-

ples, then calculate the KLD of the kernel estimation with the theoretical

Gaussian noise pdf. Each KLD value is a sample of p(s).

• Step 3: From the NKLD KLD values, calculate the density estimation of

p(s).

• Step 4: Find the threshold value using (3.21) for the given false alarm

rate α.

Figure 3.4 illustrates the false alarm probability as a function of the KLD

threshold value Dth for a segment of the field data described in Section 3.1.2.
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The threshold selection for the desired false alarm rate of 3.5% is shown. Based

on (3.21), the corresponding KLD value, which is 13.74, is chosen as the thresh-

old.
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Figure 3.4: False alarm probability v.s. different threshold values for the field
test data.

The threshold selection can overcome the difficulty to set proper threshold

due to large variations of current values. It can also achieve automatic trigger

setting by continuously or periodically updating the pdf of the KLD, p(s). In

real applications, we can also update the threshold setting by using a sliding

time window prior to the signal that is being detected. The data inside the

window can be used as the reference data for threshold selection.

3.2.2 Summary of the Proposed Detection Method

Based on the ideas and schemes discussed in Section 3.1 and Section 3.2.1,

the overall procedure of the proposed method is summarized in Figure 3.5.

This algorithm allows continuous and adaptive detection of abnormality for a

monitoring device installed at a substation. In this procedure, the threshold is

updated using a sliding window whose length is NKLD. A buffer stores the most

recent NKLD KLD values. When Nset newest KLD values are added into the
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buffer and Nset oldest KLD values are removed from the buffer, the threshold

is updated.

Estimate mean       and variance       using (8)-(9)

Read in new       cycles of data

Calculate residual signal         based on (3)-(5) and 
conduct the transformation in (15)-(16)

Estimate the residual distribution           using (12) 

Calculate the KLD value                     using (14) 

No

Yes

dN
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m̂ 2
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( )i t�

ˆ ( )f x
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Abnormality detected ; 
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Calculate the threshold        from buffered KLD 
values using (19)-(20); Set 0BN =

1B BN N= +

?B setN N=

KLDN
Assign pre -defined values to

,       ,      ,           and       GN HN dN

Figure 3.5: Detection procedure.

In the initialization step, values of several implementation parameters are

76



set. The selection of these values will be discussed in the next section. The

threshold Dth is derived from NKLD KLD values which are stored in a buffer.

A counter NB is set to be zero. It indicates the number of new-coming KLD

values in the buffer after the last update of the threshold. Then, the theoretical

Gaussian pdf for the normal situation and pdf of the residual data in the

detection window are estimated. The KLD of the two pdfs are calculated and

saved into the buffer. The calculation result is compared with the threshold to

decide if there is an abnormality. If an abnormality is detected, the abnormal

data are saved for further detailed analysis. Then the counter NB increases by

one. The KLD value is stored into the buffer and the oldest one KLD value is

removed from the buffer. When NB = Nset, i.e. Nset newest KLD values are

added into the buffer and Nset oldest KLD values are removed from the buffer,

the threshold Dth is updated based on buffered KLD values.

3.3 Performance of the Proposed Method

In this section, the performance of the proposed detection method is shown,

where field measured data are used.

In showing the performance, we plot the probability of detection PD versus

the probability of false alarm PFA curve. It is the mostly widely used perfor-

mance measure for binary hypothesis test, and illustrates the trade-off between

the detection performance and the tolerance of false alarm rate as the discrim-

ination threshold varies [38]. For a certain false alarm probability, the bigger

the corresponding detection probability is, the better the performance. On the

other hand, for a certain detection probability, the smaller the corresponding

false alarm probability is, the better the performance.

Comparison with existing methods is also important in validating the pro-

posed method. While there are many work on fault detection of power systems,

most of them are for specific kinds of faults with known characteristics. They
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cannot be applied in our generic abnormality goal where the fault types are

unknown and have a large variety. In [39], several waveform methods that can

be used for comparison were mentioned. We use two of them in this work since

the other was shown to be inferior.

The first competing method is a differential waveform RMS method, which

detects abnormalities based on the segment RMS value of the differential wave-

form between consecutive cycles. The differential waveform RMS method can

be explained as follows. First, the differential current waveform is obtained by

subtracting the current values of the previous cycle from those of the current

cycle, i.e.,

Δi(kΔt) = i(kΔt)− i((k −N0)Δt), (3.22)

where N0 is the number of sample points in one cycle. Then, the differential

waveform is seperated into M segments. For each segment, a RMS value is

calculated. Ratios of the segment RMS values of the differential waveform to

the segment RMS values of the reference waveform are derived as follows,

αl,r =
ΔIl,r
Ir

, (3.23)

where αl,r is the ratio of the r-th segment in the l-th cycle, ΔIl,r is the segment

RMS value of the r-th segment in the l-th cycle of the differential waveform and

Ir is the r-th segment RMS value in the reference waveform. The maximum

ratio is used to determine if an abnormality exists. The detection rule for the

differential waveform RMS method can be represented as follows:

Decide on H0 if αmax,l ≤ αth,

Decide on H1 if αmax,l > αth,

where αmax,l = max
r

αl,r is the maximum ratio in the l-th cycle and αth is the

threshold whose value is usually determined by experiences.
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The other competing method is based on the mean absolute variation in

squared amplitude (MAVSA). Although developed for the detection of voltage

transients, it is sensitive to waveform variations and can be used for generic

abnormality detection. With this method, the point-by-point differences of the

squared values of two consecutive cycles are calculated first, then the mean

absolute value of the differences is derived and compared with a threshold for

the detection. In what follows, we explain the field test and show the results

on the detection performance. The power system where the data are measured

is described in Section 3.1.2. The measurement parameters are also explained

in Section 3.1.2. The feeder current data are measured gaplessly for 3 weeks.

In order to get the PD versus PFA curve, a set of waveforms called events need

to be selected and identified as normal or abnormal. Then the probability of

detection and the probability of false alarm of a given method can be obtained

by comparing the detection result with our initial identification. We capture

2991 events by applying the waveform method in Section 4.4.1 of Reference [39]

to the 3-week continuous data measured from the system explained in Section

3.1.2. A very small threshold was used in this process, so as to capture as many

as events of variations as possible.

Among the 2991 selected events, there are 1069 normal ones and 1922 ab-

normal ones from the perspective of Phase-A data. Every event contains 150

cycles of current data. For an event that has abnormality, the data contain

the 50 cycles before the abnormality and the 100 cycles after the abnormality

happens (including the abnormal cycles). Abnormalities existing in these data

include but not limited to oscillatory voltage or current transients, multi-cycle

over-current events, and low-level current bursts. A few examples of abnor-

mal events are shown in Figure 3.6. A normal event has a form of waveform

variation that does not exhibit electromagnetic or electromechanical transient

characteristics. An example of normal event is shown in Figure 3.7. In this

case, there is a burst of noise-like current variation. Based on our knowledge
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of various creditable power disturbances, such a waveform is unlikely to con-

tain useful information. So it is clarified as a normal event. It is noteworthy

that pre-screening uses the waveform RMS value, which conceivably favors the

differential waveform RMS method that is used as the competing method in

this work. As a result, the comparison result in this work is a conservative

estimation of the advantage of the proposed method.
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(a) Sub-cycle low-level overcur-
rent.
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(b) Multi-cycle overcurrent.
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(c) Multi-cycle current sag.
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(d) Short-duration current burst.

Figure 3.6: Examples of abnormal events.
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Figure 3.7: A typical normal event.
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3.3.1 Discussions on Parameter Values

Notice that NG, NH , Nd need to be specified for the proposed scheme. In this

subsection, we discuss how to choose the parameter values.

First, recall that Nd is the number of data cycles used to detect abnormality,

in other words, the size of the detection window. More specifically, for each

detection, the residual data ofNd cycles are used to obtain the kernel estimation

of the pdf, which is then compared with the reference pdf to obtain the KLD

value for the detection.

For the effect of Nd on the performance, Figure 3.8 shows the PD v.s. PFA

curves of the proposed method with the field data for different Nd ranging from

1 to 5, where NG = 10 and NH = 1. It can be seen that when PFA < 0.4%,

Nd = 1 performs better than other situations. When PFA > 0.4%, Nd = 2

performs the best. Considering the complexity and detection of short duration

abnormalities (e.g. one cycle or less), we use Nd = 1.
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Figure 3.8: Detection performance for different Nd.

For the effect of NG, Figure 3.9 shows the PD v.s. PFA curves of the

proposed method with the field data for different NG ranging from 5 to 15,

where NH = 1 and Nd = 1. NG represents the number of cycles used to get

the underlying pdf of residuals under normal condition. If NG is too small, it

is hard to get a reliable residual pdf because of the limited number of samples.

81



Meanwhile, if NG is too big, we can not get accurate estimation of the residual

pdf under normal condition since it can vary with time. Based on the results

in Figure 3.9 and the normality test of the noise pdf, we chose NG = 10.
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Figure 3.9: Detection performance for different NG.

Figure 3.10 shows the PD v.s. PFA curves of the proposed method with the

field data for different NH ranging from 1 to 5, where Nd = 1 and NG = 10.

NH is the number of cycles used to estimate the steady-state components. The

figure shows that using the previous one cycle of the data is the best. This

result is natural since the steady-state components in two consecutive cycles

are approximately stable, while they may have non-negligible fluctuation for

cycles with further distance. Thus, NH = 1 is chosen.

It should be noted that the results shown in Figure 3.8 to Figure 3.10 are

derived with Phase-A data. From the perspective of Phase-B data, there are

931 normal ones and 2060 abnormal ones among those 2991 events; from the

perspective of Phase-C data, there are 968 normal ones and 2023 abnormal

ones. The results derived with Phase-B and Phase-C data are presented in

Appendix C. Results show that the same parameter values can be selected

with sensitive study on Phase-B and Phase-C data.
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Figure 3.10: Detection performance for different Nh.

3.3.2 Performance of the Proposed Method With Field

Data

In this subsection, we show the performance of the proposed method and the

comparison with another two existing methods described above. Based on the

studies in Section 3.3.1, we set NG = 10, NH = 1, and Nd = 1. For the

differential waveform RMS method, M is set to be 8 based on the work of [40].

The PD v.s. PFA curves for the field data are shown in Figure 3.11. We can

see that the proposed method has clear advantage over the differential waveform

RMS method and the MAVSA method. At the false alarm probability of 2%,

our scheme has 74.8% detection rate, while the detection rate of the differential

waveform RMS method and the MAVSA method are 59.5% and 27.4%. At the

detection probability of 90%, our scheme has 10.7% false alarm rate, while the

false alarm rate of the differential waveform RMS method and the MAVSA

method are as high as 42.8% and 85.9%, respectively.

The results in Figure 3.11 are derived by applying the three methods to

current signals. In reality, these methods can also be applied to voltage signals.

After applying the methods to voltage signals, we can get the PD v.s. PFA

curves as shown in Figure 3.12. For the proposed method and the differential

waveform RMS method, the performance when applying the methods to both
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Figure 3.11: Performance comparison of the proposed method with the differ-
ential waveform RMS method and the MAVSA method with extracted events.

voltage and current signals is quite close to that when applying the methods

to current signals only, and is much better than the performance when only

applying the methods to voltage signals. This validates our assumption that

the current signal is more sensitive to equipment conditions.

In addition to the performance comparison based on those selected events,

experiments are conducted on three datasets each containing 5-day gapless

data. Dataset 1 is measured from the system explained in Section 3.1.2. The

system where Dataset 2 is measured is described in [41]. The 25 kV substation

data described in [39] is used as Dataset 3. Both the phase currents and

zero-sequence current are used for the detection. In the experiments, the false

alarm probability is set to be 15/NKLD, where NKLD = 5184000 is the number

of cycles per day. This is to control the number of detected events to be around

15 per day on average. For different detection methods, the average numbers

of events per day are shown in Table 3.2. Results show that the proposed

method can detect more events than the other two methods from Dataset 1

and Dataset 2.

However, for Dataset 3, the differential waveform RMS method can detect

more events than the proposed method and the MAVSA method. With a

closer look, we found that there are a large number of automatic meter reading
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(a) Proposed method.
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(b) Differential waveform RMS method.
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(c) MAVSA method.

Figure 3.12: Results after applying the three methods to different signals.

Table 3.2: Numbers of detected events per day.

Methods
Proposed
method

Differential
waveform

RMS method

MVSVA
method

Dataset 1 20 16 15
Dataset 2 22 14 13
Dataset 3 33 47 16

(AMR) signals in the data, as shown in Figure 3.13. The existence of AMR

signals can affect the threshold selection of the proposed method by enlarging

it. As a result, the proposed method misses some events. There are two ways

to boost the sensitivity of the proposed method: one is to reduce the detection

window if sampling frequency is large enough; the other one is to increase the

false alarm probability used in the threshold selection.
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Figure 3.13: An example of AMR signals.

Since the number of real abnormalities is more useful in determining the de-

tection performance, we checked the detected events manually and summarized

the number of false alarms in Table 3.3 to reveal the number of abnormalities.

We can know from Table 3.2 and Table 3.3 that the proposed method can detect

more abnormalities that contain transient behavior than the other two meth-

ods for Dataset 1 and Dataset 2. But for Dataset 3, the differential waveform

RMS method can detect more abnormalities.

Table 3.3: Numbers of false alarms.

Methods
Proposed
method

Differential
waveform

RMS method

MVSVA
method

Dataset 1 0 8 0
Dataset 2 12 8 4
Dataset 3 0 0 0

3.3.3 Performance of the Proposed Method With Sim-

ulated Data

As field data are limited, to further test the proposed methods, simulations with

PSCAD are also conducted. The modified IEEE-13 bus system as shown in [42],

which is derived from [43], is used for the simulation. The events used in the
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simulation include high current arcing fault, low current (or high impedance)

arcing fault, capacitor switching, constant impedance fault, and load switching.

Load switching is seen as normal events, while others are abnormal events to

be detected. Load switching events are common in distribution systems and

account for many small variations in substation measured currents. These

events are representative to test the performance of the proposed method in

discriminating between normal variations and abnormalities corresponding to

equipment failures. In our simulation, 1402 load switching events are simulated

with varying load parameters. For faulty events, we simulate 54 cases of high

current arcing fault, 485 cases of low current arcing fault, 252 cases of capacitor

switching operation and 420 cases of constant impedance fault, all with varying

fault duration, fault locations, fault starting instant, and fault resistance.

For both low and high current arcing faults, we fix the arcing parameters as

follows [42]: arc time constant τ = 0.0002, characteristic arc voltage u0 = 2900,

characteristic arc resistance r0 = 0.001. The arcing fault starts at around the

voltage peak. The occurrence of a constant impedance fault in a cycle is set

to be random. For capacitor switching events, the compensated reactive power

ranges from 100 kVAr to 300 kVAr per phase. For load switching events, the

load current ranges from 10 A to 30 A. Other parameters such as fault location,

fault duration and fault resistance can be found in Table 3.4, where the fault

location is shown as node number of IEEE-13 node system. Random Gaussian

noises are added in the simulation data where the signal-to-noise-ratio is set as

50dB.

Three sets of data are simulated at three different sampling frequencies,

3840 Hz, 7680 Hz and 15360 Hz corresponding to 64, 128, and 256 points

per cycle, respectively. Intuitively, when the sampling frequency is too low,

the number of sampling points in each cycle will be small. It is conceivable

that the pdf estimation will be highly erroneous and the proposed method will

have low performance [1]. With high enough sample frequency, we investigate
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Table 3.4: Simulation setup.

Fault Type
Fault

Location

Fault
Duration
(cycle)

Fault
Resistance
(ohm)

High Current Arcing Fault 633, 634, 645 0.25 to 1.25 0.003 to 0.005
Low Current Arcing Fault 680, 652, 692 0.25 to 1.25 100 to 800
Constant Impedance Fault 680, 652, 692 2 to 3.25 0.1 to 500

Capacitor Switching 680, 652, 675 N/A N/A
Load Switching 675, 611, 646 N/A N/A

the relationship between the performance and the sampling frequency. The

PD v.s. PFA curves for the proposed method and differential waveform RMS

method derived with the simulated data are shown in Figure 3.14 and Fig-

ure 3.15. We can see that the performance of the proposed method improves

as the sampling frequency increases. However, the impact is not significant. For

all sampling frequencies, the proposed method has considerably higher perfor-

mance than the differential waveform RMS method and the MAVSA method.
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Figure 3.14: Performance comparison of proposed method and differential
waveform RMS method under different sampling frequencies.
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Figure 3.15: Performance comparison of proposed method and MAVSA method
under different sampling frequencies.

3.3.4 Strength and Limitations of the Proposed Method

The advantage of the proposed detection method over the differential waveform

RMS method and the MAVSA method results from two aspects. First, the

KLD measure used in the proposed method is more sensitive to waveform

abnormality and less sensitive to small load variations. Abnormal cases are

usually signatured by waveform changes. Second, the KLD measure is more

sensitive to asymmetrical abnormality. This is an appealing feature because

many abnormalities are asymmetrical, such as the abnormalities in capacitor

switching transients and cable incipient failures.

In the proposed method, the residual signals are obtained by subtracting

the steady-state components derived from the previous cycle. Only one cycle

of the residual data is used to construct the pdf. Therefore, the algorithm has

very fast response. Experience shows that many industrial processes load fluc-

tuations (except arc-furnace) are in the order of multi-cycles or even seconds.

So the relative slow change of such loads is not expected to cause problems

for the proposed algorithm. The algorithm as it stands now is not suitable for

monitoring conditions such as aging. In reality, the available equipment failure

cases have shown that the associated abnormalities may last several seconds to
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minutes at most. If there are sudden activities such as arcing due to aging, the

algorithm is expected to detect it.

The proposed method is very sensitive to abnormalities in the shape of the

residual signals. But it may capture variations with very small magnitude,

causing false alarm. A typical example is shown in Figure 3.7. In this case,

there is a burst of noise-like current variation. Based on our knowledge of

various creditable power disturbances, such a waveform is unlikely to contain

useful information. So it is manually identified as a normal event. But the

algorithm picked it up as an abnormal event. This is because the residual of a

normal waveform contains unusual noise or alike that does not follow expected

Gaussian distribution of normal waveforms.

This work establishes an automatic and adaptive threshold selection scheme

which has theoretical foundation [38]. It proposes to use an easy-to-understand

“probability of false alarm” parameter to select threshold. This is a step for-

ward in comparison with traditional experience-based threshold selection. To

improve this scheme further, more research on automatic threshold selection is

desired, e.g. how to set the “probability of false alarm” in real application.

3.4 Summary

In this chapter, a new approach for the detection of generic and unknown

abnormalities associated with utility equipment failures from the current signal

has been presented. The problem is formulated as a binary hypothesis test.

In finding a detection solution, first, the steady-state components which are

common for both hypotheses are removed from the measured current signal.

Under normal situation, the residual data are modeled as samples of a Gaussian

random variable; while under abnormal situation, they are expected to largely

deviate from Gaussian samples. The KLD from the residual data distribution

to Gaussian distribution is used in the detection rule. The proposed method

90



is tested by field data and simulated data. Results show that it can effectively

detect abnormality-containing data, and at the same time reduce false alarms.

It performs significantly better than two existing methods.
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Chapter 4

Soft Detection of Waveform

Abnormality

Based on the novel detection method presented in Chapter 3, soft detection

methods are proposed in this chapter. Instead of returning hard binary de-

tection result (i.e., whether or not the data of interest contain a waveform

abnormality), the soft detection method returns a numerical value in the in-

terval [0,1] for the data of interest which reflects the credibility that the data

contain a waveform abnormality [44].

4.1 Motivations for Soft Detection and Exist-

ing Literature

This section provides motivations for soft detection as well as existing literature

on soft detection of waveform abnormality.

4.1.1 Motivations for Soft Detection

Performance of the binary detection method in Chapter 3 is affected by several

critical parameters, for example, the KLD threshold value. The setting of these
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parameters is inevitably affected by imprecision and imcomplete knowledge in

waveform abnormality. As well, when the data of interest contain uncertainties

introduced by inaccurate measurements and missing data, the binary detection

method may have undesirable performance, especially for borderline events or

at least may not adequately implement human knowledge to analyze data [45].

In viewing of such situation, this chapter proposes a soft detection method.

Soft detection method returns a numerical value between 0 and 1 which can

reflect the credibility that the data of interest contain a waveform abnormality

as well as the severity of a certain abnormality. When the returned value is

big, it means the abnormality is more severe, and the corresponding incipient

failure may be severe and close to final failure or permanent fault. Besides, it

can also capture waveforms with relatively low abnormality credibility, which

would be missed if binary detection is used. This is useful for systems with

very high reliability requirement, e.g., high-impedance fault relay.

4.1.2 Review of Existing Literature on Soft Detection

The only found reference on soft detection of waveform abnormality is [44]. It

deals with the detection of voltage sag which is an important type of power

quality disturbance. Its detection procedure can be summarized in Figure 4.1.

Inputs:
Voltage 
Waveforms

Data Format 
Conversion

Fourier Transform 
Based Feature 

Extraction

Outputs:
Detect

Fuzzy Expert 
System for 
Detection

Figure 4.1: Detection flow chart for the soft detection in [44].

After data conversion of input voltage waveforms, the fundamental compo-

nent, phase angle shift and total harmonic distortion of the signals are extracted

by applying Fourier transform on the data. Then these features are sent to a

fuzzy expert system for the detection of abnormality. A value between 0 and 1

is assigned to a variable “Detect”, which reflects the credibility or degree that
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certain abnormality exists. The output for the detection can be determined

with the following equation,

Detect = max{MF1(THDn),MF2(PSn),MF3(Vn),MF4(Vn)} (4.1)

where MF1, MF2, MF3, MF4 are membership functions, THDn represents

the total harmonic distortion of the data of interest, PSn is the phase shift,

Vn is the fundamental component, max represents the operation to get the

maximum one among several values. The output is “Detect”.

In (4.1), each input of the max operation corresponds to a fuzzy set which

consists of elements and a membership function, e.g., Vn values and membership

function MF3 constitute a fuzzy set and are used to evaluate the abnormality

in the magnitude of the fundamental component. MF3(Vn) is the membership

degree in the fuzzy set and reflects the degree for Vn being abnormal. It lies in

the range [0, 1]. The four membership degrees in (4.1) determine if a waveform

abnormality exists and how severe it is.

4.2 Proposed Soft Detection Scheme

As illustrated in Chapter 3, the KLD value from the distribution of current

residual data to the theoretical Gaussian distribution is sensitive and reliable

in measuring the abnormality of waveform. Thus, KLD value can be used as a

feature for the detection of abnormality. Thus, we propose to use KLD value

and a membership function to conduct soft detection. When the membership

degree of data of interest is larger than 0, an abnormality can be considered to

be detected; then, the data and the membership degree will be saved for further

analysis. The general structure of the soft detection scheme is illustrated in

Figure 4.2.

Figure 4.3 shows an example of membership function. In this illustrative

example, when the calculated KLD value is 20, it corresponds to an abnormality
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Inputs: Current 
Waveforms

Output : DetectKLD Calculation Membership 
Function

Figure 4.2: General structure of the proposed soft detection scheme.

to a degree of 0.5. The corresponding data of interest will be captured and

saved.
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Figure 4.3: An illustrative example of membership function.

To implement the soft detection scheme, two problems need to be solved.

• Selection of membership function. Generally, the bigger the calculated

KLD value, the more possible the data of interest contain abnormality.

Thus, there should be a positive correlation between the input and output

of the membership function.

• Determination of critical parameters of the selected membership function.

The following subsections discuss these aspects.

4.2.1 Selection of Membership Function

We choose the membership function from commonly used ones, including trian-

gular membership function, trapezoidal membership function, S-shaped mem-

bership function, and Gaussian membership function. The graphical represen-

tation of these membership functions are shown in Figure 4.4. Their analytical
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Figure 4.4: Typical membership functions [47][48].

representations are shown in (4.2)-(4.5), respectively.

μλ =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

x−a1
a2−a1

r, ifa1 ≤ x ≤ a2

a3−x
a3−a2

r, ifa2 < x ≤ a3

0 otherwise

(4.2)

μλ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

x−a1
a2−a1

r, ifa1 ≤ x ≤ a2

r, ifa2 < x ≤ a3

a4−x
a4−a3

r, ifa3 < x ≤ a4

0, otherwise

(4.3)

μλ =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

0, ifx ≤ a1

2( x−a1
a2−a1

)2, ifa1 < x ≤ a1+a2
2

1− 2( a2−x
a2−a1

)2, if a1+a2
2

< x ≤ a2

1, ifx > a2

(4.4)

μλ = ce−
(x−a)2

2σ2 (4.5)
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In our situation, the S-shaped function is a proper one since only this one

shows the positive correlation between the inputs and outputs. In reality, a

linear function as shown in Figure 4.5 can also be used because it is increasing

on the interval [a1, a2]. However, the S-shaped function is smoother at corner

points than this linear function [48, 49]. Thus, we choose to use the S-shaped

function in this work.

1a 2a

1.0
( )x

λ
μ

x

Figure 4.5: A linear membership function.

4.2.2 Determination of the Parameters of the S-shaped

Function

There are two parameters (i.e., a1 and a2) we need to determine in using the S-

shaped function for soft detection. The two parameters set the interval within

which soft detection results need to be assigned. Technically, the KLD value

whose corresponding false alarm rate is zero should be selected as the upper

limit; the KLD value whose corresponding detection rate is one should be

chosen as the lower limit. That is, the range should be the overlap KLD

range of the two hypotheses. However, in real application, it is difficult to get

theoretical KLD values that can be used to set the upper and lower limits.

Instead, we choose the parameters based on the binary detection scheme

illustrated in Chapter 3. Let the threshold under the binary detection scheme

be Dth. By using the Dth as the midpoint of the upper limit a1 and lower limit
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a2, a1 and a2 can be simplified into (1−α)Dth and (1+α)Dth, respectively. In

this way, the number of parameters that need to be predefined reduces to one.

As well, we can easily integrate the soft detection scheme into the detection

procedure under binary detection scheme.

We need to study the impact of α on the performance and find its optimal

value. An appropriate performance measure should be selected first. Let PFA

be the desired level of false alarm probability andDth be the corresponding hard

threshold of the binary detection scheme. For an arbitrary α, denote P̃FA(α)

and P̃D(α) as the probability of false alarm and the probability of detection

under soft detection scheme. In an experiment where the data contains m

normal cycles and n abnormal cycles in the data of interest. P̃FA and P̃D can

be calculated as follows,

P̃FA(α) =

∑m
i=1 MDNi(α)

m
(4.6)

P̃D(α) =

∑n
k=1 MDAk(α)

n
(4.7)

where MDNi(α) represents the membership degree of the ith normal cycle,

MDAk(α) represents the membership degree of the kth abnormal cycle.

Following the Neyman-Pearson detection framework, we use P̃FA and P̃D

as performance measures and formulate the α-optimization as follows,

α̂ = arg max
α∈[0,1),P̃FA(α)≤PFA

P̃D(α). (4.8)

This formulation means to maximize the detection probability while keeping

the false alarm probability under PFA.

(1) Determination of α with field data

In this part, the field data measured at one end of a transmission cable is
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used to determine the proper range of α. 2991 events (they are also used in the

Chapter 3) are selected from the data, consisting of 1069 normal events which

do not contain abnormalities and 1922 abnormal events. Figure 4.6 shows the

probability of false alarm v.s. different KLD values under binary detection

scheme. The Dth value which corresponds to a given PFA value are used to

determine the S-shaped function of the soft detection scheme.
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Figure 4.6: False alarm probability v.s. different threshold values for soft
detection.

To get α̂, one-dimensional exhaustive search over its possible range [0, 1) is

conducted. The value which corresponds to the maximum detection probability

P̃D while keeping the false alarm probability P̃FA under PFA is selected as

the optimal value. Results show that the optimal value α̂ mainly lies in the

following range for all PFA values. Specifically, optimal values for α of about

90% of all the cases fall in this range.

α̂ ∈ (0, 0.3) (4.9)

(2) Determination of α with simulated data

Since field data are limited, the KLD values used to determine α are limited

and discontinuous. Thus, the results presented above may have bias in revealing

the result. To overcome this disadvantage, we can simulate a large number of

cases to mimic the field data. Based on the IEEE 13 bus system explained in

Chapter 3, we simulate normal events (i.e., small loading switching events) and
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abnormal events which includes high current arcing faults, low current arcing

faults, constant impedance faults and capacitor switching events. The numbers

of simulated normal and abnormal events are 1212 and 5088, respectively.

Based on (4.8), the optimal choices of α for different false alarm rates (dif-

ferent Dth values) lie in the same range as shown in (4.9).

Since the optimal α may vary with time and different datasets, the α̂ can

be updated periodically in real applications.

4.2.3 Proposed Soft Detection Algorithm and Test Re-

sults

The integrated soft detection procedure is shown in Figure 4.7. To illustrate the

advantage of soft detection over the binary detection explained in Chapter 3,

the numbers of missing events for the binary detection and the soft detection

with the optimal α are presented in Table 4.1. A missing event refers to an

abnormal event that is not detected. We can clearly see from this table that for

all desired false alarm probability levels, the numbers of missing events under

soft detection are less than the situation under binary detection.

Two illustrative examples of missing events that are not detected with bi-

nary detection scheme but detected with soft detection scheme are presented

in Figure 4.8. The soft detection results of the two cases are 0.0896 and 0.1622,

respectively. Figure 4.9 presents an example that is detected by both binary de-

tection and soft detection scheme. The oscillatory behavior in current residuals

makes it a more severe abnormality compared with the examples in Figure 4.8.

The returned numerical value under soft detection scheme is 1, which is much

higher than the results of the examples in Figure 4.8. These three cases show

that the soft detection results can be used as a reference in evaluating the sever-

ity of a certain abnormality. In other words, the returned values can reflect the

credibility that the waveforms contain abnormality. As well, our proposed soft
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detection scheme can capture waveforms with less abnormality which would be

missed if binary detection is used.

Estimate mean       and variance       using (8)-(9)

Read in new       cycles of data

Calculate residual signal         based on (3)-(5) and 
conduct the transformation in (15)-(16)

Estimate the residual distribution           using (12) 

Calculate the KLD value                     using (14) 

No

Yes

dN

thD

m̂ 2
σ̂

( )i t�

ˆ ( )f x
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setN
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Calculate the threshold        from buffered KLD 
values using (19)-(20); Set 0BN =

1B BN N= +

?B setN N=

KLDN
Assign pre -defined values to

,       ,      ,           and       GN HN dN
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p

0?p >

Save the data for 
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Figure 4.7: Procedure of the proposed soft detection scheme.
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Table 4.1: Number of missing events under soft and binary detection scheme.

False alarm rate Binary detection Soft detection

0.2 120 71

0.4 64 64

0.6 40 0

0.8 18 0
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Figure 4.8: Two examples of missing events.
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Figure 4.9: An example with severe abnormality.

4.3 Summary and Discussion

In this chapter, a soft detection scheme based on fuzzy set theory is proposed.

This scheme is easy to implement and its output for a certain period of wave-

form data is a value between the interval [0, 1], which reflects the degree or
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credibility for the data being abnormal. The S-shaped membership function is

recommended and methods to determine its parameters are given. The pro-

posed soft detection scheme is tested with transmission cable data. Results

show that our proposed soft detection scheme can capture waveforms with less

abnormality which would be missed if binary detection is used. Meanwhile, the

soft detection results can be used as a reference in evaluating the severity of a

certain abnormality.
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Chapter 5

Conclusions and Future Work

Conclusions and possible future work are presented in this chapter.

5.1 Conclusions

This thesis dicsusses the detection of waveform abnormality aimed at power

equipment condition monitoring. The major conclusions and contributions of

this thesis are summarized as follows.

• An extensive survey was made to summarize the electrical signatures

of various utility equipment failures and existing work on their detec-

tion. The main characteristics of equipment failure signatures include

abnormal current response, diverse time scales, complexity in character-

ization and challenge in detection. The survey lays the foundation for

the research presented in this thesis, which is to detect generic waveform

abnormalities, expecially those associated with equipment failures.

• An improved detection method is proposed based on segment RMS val-

ues of differential waveform and half-cycle refreshed RMS values of orig-

inal waveform. The signals used here include both phase voltage and

phase current waveforms. Illustrative examples of detection results are
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presented to show main types of abnormalities to be detected and the

effectiveness of this method.

• A novel detection method based on probability density function of cur-

rent residual waveform is proposed for the detection of generic waveform

abnormality. The problem is formulated as a binary hypothesis test. Af-

ter deriving residual data by removing steady-state components from the

measured signal, the KLD from the residual data distribution to Gaus-

sian distribution is used in the detection rule. The difficulty to set proper

threshold due to large variations of current values is overcome through

the adoption of KLD as the distance measure and a systematic thresh-

old selection method. The proposed method is tested by field data and

simulated data. Results show that it can effectively detect abnormality-

containing data, and at the same time reduce false alarms due to small

load changes. It performs significantly better than two existing methods.

• A soft detection scheme is proposed. Unlike traditional detection methods

which determine if or not a certain period of data contain abnormality,

the proposed detection schemes returns a numerical value in unit interval

[0,1] for the data of interest, which represents the degree for the data

being abnormal as well as the severity of a certain abnormality. Besides,

it can capture abnormality with low severity, which would be missed

with a binary detection scheme. Illustrative examples and results on

miss detection numbers are used to show advantages of the soft detection

scheme over binary detection method.

5.2 Suggestion for Future Work

The work in this thesis can be extended in the following three aspects:

• In Chapter 3, the KLD is used to measure distance between two distri-
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butions. Other distance measures for distribution function or properties

of distribution function can be investigated for their effectiveness in ab-

normality detection for equipment condition monitoring.

• The soft detection scheme proposed in Chapter 4 only considers KLD as

a feature for the detection. Other features such as change in instanta-

neous power can be introduced to make better and more comprehensive

decisions about the degree for a certain period of data being abnormal.

• It is useful to evaluate if the recurring abnormalities prior to equipment

final failure correspond to similar soft detection results. If their soft de-

tection results are close to each other, we may be able to use the results to

classify captured abnormalities and then derive associated characteristics.
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Appendix A

Positive-Going Zero Crossing

Point Detection and Frequency

Variation Correction

When detecting disturbances using the proposed practical method, zero cross-

ing point should be checked and frequency variation correction should be con-

ducted. They are discussed in details below.

A.1 Positive-Going Zero Crossing Point De-

tection

The recommended zero-crossing point detection is explained as follows:

• Step 1: Take one cycle of the sampled waveform. If the sampling fre-

quency is N points, this means take N points of the sample data x(1),

x(2), ..., x(N).

• Step 2: Find the sample that gives the minimum value among the N

sampled values. The value should be negative. The corresponding sample

number is recorded as, for example, k.
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• Step 3: Check the values of x(k + 1), x(k + 2), ..., x(N). The first data

sample that has a positive value is the positive-going zero-crossing point.

It should be noted that if a waveform contains multiple zero-crossing points

due to, for example, large harmonic distortions, the first positive-going zero-

crossing point is considered as the correct point.

A.2 Frequency Variation Correction

The operating frequency of a power system normally fluctuates within a narrow

range, and may not be always exactly constant at 60 Hz. This frequency

variation will result in an error when two cycles of a waveform are subtracted.

The error caused by frequency variation is illustrated in Figure A.1.
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Figure A.1: Impact of frequency variation on sample locations

The waveform is sampled at a rate of approximately 9 samples per cycle

(N = 9). If the second cycle is subtracted by the first cycle simplify according

to the sample locations, we will get a differential waveform as:

Δx(k) = x(N + k)− x(k) (A.1)

For example, if k = 1, the subtraction is done between x(10) and x(1). It

can be clearly that x(10) is not at the same phase as that of x(1). As a result,
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such a subtraction will cause errors; Δx(k) will not be zero even if the two

cycles are identical. The correct way to subtract the two cycles is:

Δx(k) = x(N + k)− x′(k) (A.2)

where x′(k) is the estimated sample value on the first cycle. The sample has

the same phase angle as that of x(N + k). x′(k) can be estimated using linear

interpolation on its two adjacent samples. In this example, the two adjacent

samples are x(1) and x(2).

A more precise description of the above correction method and its imple-

mentation procedure are presented below. It assumes that the frequency is

constant during the 5 to 10 cycles’ period where the subtraction takes place.

Figure A.2 shows the parameters associated with the method. The symbols

and their meanings used in this figure are listed in Table A.1.

11 +A 2A

wN

D

Sample number

2ZC1ZC1A

1

0 12 +A

1τ

2τ

Figure A.2: Parameters for frequency variation correction

A reference cycle is the one that is used to subtract other cycles. For the

example of Figure A.1, it is the first cycle. The procedure for the frequency

variation correction is as follows:

1. Determine the exact zero-crossing point ZC1 of the reference cycle. The

location of ZC1 lies between a sample with a negative value A1 and the
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Table A.1: List of symbols used in frequency variation correction

Symbol Meaning

N the number of samples per cycle

ZC1 the first zero-crossing sample

ZC2 the second zero-crossing sample

A1 the sample closest to the ZC1 and with a negative value

A2 the sample closest to the ZC2 and with a negative value

τ1 the fraction difference between samples A1 + 1 and ZC1 (0 ≤ τ1 ≤ 1)

τ2 the fraction difference between samples A2 and ZC2 (0 ≤ τ2 ≤ 1)

D the sample difference between samples A1+1 and A2, D = A2− (A1+1)

Nw the actual sample number of the reference cycle, Nw = D + τ1 + τ2

next sample with a positive value A1 + 1. These two values can be used

to determine the exact ZC1 location through linear interpolation. The

result is the fraction difference between samples A1 + 1 and ZC1, which

is labeled as τ1.

2. A similar procedure can be used to find the next zero-crossing point ZC2.

The value of ZC2 lies between sample points A2 and A2 + 1. The result

is the fraction difference between samples A2 and ZC2.

3. The precise period of the waveform, i.e. Tw, can then be calculated from

the following equation.

Tw = [A2−(A1+1)+τ1+τ2]×ΔT = [D+τ1+τ2]×ΔT = Nw×ΔT (A.3)

where ΔT = 1
N×60

. In other words, the precise frequency of the waveform

is equal to 1
Tw

= 60×N
Nw

. If Nw > N , the actual frequency is less than 60

Hz and if Nw < N , the actual frequency is greater than 60 Hz.

4. With the above parameters, the subtracted waveform can then be calcu-

lated. For example, if we want to compute the subtracted value for any

117



sample, the equation is as follows,

Δx(k) = x(k)− x′
ref (k) (A.4)

where x′
ref (k) is the value of the reference cycle that shall be used to

subtract x(k).

5. The first step to find x′
ref (k) is to compute the time difference between

x(k) and the exact zero crossing point of the reference cycle, ZC1, as

follows,

Tdiff = k − ZC1 (A.5)

The number of cycles separating the two instants is:

Ndiff =
(k − ZC1)ΔT

Tw

=
(k − ZC1)

Nw

(A.6)

Note that Ndiff is not an integer. Its remainder, denoted as NR, repre-

sents the sample location where x′
ref (k) should be calculated. NR resides

between 0 and 1. If NR = 0.5, it means that x′
ref (k) is located at the

exact mid-point of the reference cycle.

6. The NR value can then be used to find the two adjacent samples of xref

that should be used to calculate x′
ref (k). To do this, we first compute N ′

R

as follows,

N ′
R = NR ×N − τ1 + 1 (A.7)

The value of N ′
R will reside between two integers. These two integers

are recorded as K1 and K2. The remainder of N ′
R is recorded as τ . For

example, if N ′
R = 5.34, we have K1 = 5, K2 = 6 and τ = 0.34. The value

of x′
ref (k) is computed from linear interpolation of xref (K1) and xref (K2)
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as shown in Figure A.3. The equation is as follows,

x′
ref (k) = xref (K1) + τ [xref (K2)− xref (K1)] (A.8)

If K1 = 0, the first point is the ZC1 so the value of xref (K1) = 0, if K2 is

the last sample of the reference cycle, the interpolation should take place

between K2 and ZC2.
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xref(K1 )

xref(K2 )

τ

x?ref(k )

x
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τ
1

1

Figure A.3: Determining the value of x′
ref (k)
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Appendix B

Sensitive Study and

Performance Comparison Using

Phase-B and Phase-C of Field

Data

This appendix presents the parameter selection results and performance com-

parison of the proposed method with differential waveform RMS method and

MAVSA method derived with Phase-B and Phase-C data.

The sensitive study on Nd, NG, NH are presented in Figure B.1 to Fig-

ure B.3. Based on the sensitive study results and the need to detect short-

duration abnormalities, the optimal choices of these parameters are Nd = 1,

NG = 10 and NH = 1. The performance comparison of Phase B and Phase

C shows that the proposed method performs better than the differential wave-

form RMS method and MAVSA method. The results are consistent with those

presented in Chapter 3.
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(a) Phase-B results.
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(b) Phase-C results.

Figure B.1: Detection performance for different Nd derived with Phase-B and
Phase-C data.
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(a) Phase-B results.

0.02 0.2 0.4 0.6 0.8 1
0.55

0.6

0.65

0.7

0.75

0.8

0.85

0.9

0.95

1

Probability of false alarm

P
ro

ba
bi

lit
y 

of
 d

et
ec

tio
n

 

 

N
G

=5

N
G

=10

N
G

=150 0.005 0.01 0.015 0.02
0

0.2

0.4

0.6

0.8

 

 

(b) Phase-C results.

Figure B.2: Detection performance for different NG derived with Phase-B and
Phase-C data.
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(a) Phase-B results.
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(b) Phase-C results.

Figure B.3: Detection performance for different NH derived with Phase-B and
Phase-C data.
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(a) Phase-B results.
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(b) Phase-C results.

Figure B.4: Detection performance comparison derived with Phase-B and
Phase-C data.
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