# Evaluation of bioreductively-activated Tirapazamine (TPZ) prodrugs for the management of hypoxic solid tumors

by

Sindhuja Pattabhi Raman

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

in

**Cancer Sciences** 

Department of Oncology University of Alberta

© Sindhuja Pattabhi Raman, 2019

## Abstract

Solid tumors often have large areas with low levels of oxygen (termed hypoxic regions), which are associated with poor prognosis and treatment response. Tirapazamine (TPZ), a hypoxia targeting anticancer drug, started as a promising candidate to deal with this issue. However, it was withdrawn from the clinic due to severe neurotoxic side effects and poor target delivery. Hypoxic cells overexpress glucose transporters (GLUT) - a key feature during hypoxic tumor progression. Our project aims at conjugating TPZ with glucose to exploit the upregulated GLUTs for its delivery, and thereby facilitate the therapeutic management of hypoxic tumors. We hypothesized that glucose-conjugated TPZ (G<sub>6</sub>-TPZ) would be selectively recruited to these receptors, facilitating its entrapment in poorly oxygenated cells only, with minimal damage to their oxygenated counterparts. However, our results reveal that the addition of the glucose moiety to TPZ was counterproductive since G<sub>6</sub>-TPZ displayed selective hypoxic cytotoxicity only at very high concentrations of the compound. We speculate that the reduced cytotoxicity of G<sub>6</sub>-TPZ might be due to the fact that the compound was not taken up by the cells. In order to monitor the cellular uptake of TPZ, we developed a click chemistry-based approach by incorporating an azido  $(N_3)$ group to our parent compound (N<sub>3</sub>-TPZ). We observed that the azido-conjugated TPZ was highly hypoxia selective and the compound successfully tracks cellular hypoxia. Using a similar methodology, we went on to isolate and identify the proteins that are modified by N<sub>3</sub>-TPZ under hypoxia in order to obtain a better understanding of the potential underlying molecular mechanism of TPZ cytotoxicity. In addition, we exploited the property of monitoring TPZ uptake by N<sub>3</sub>-TPZ to study the uptake and localization of  $G_6$ -TPZ by synthesizing a new derivative of TPZ, which incorporated both glucose and azido moieties. Overall, we carried out the above specified structural modifications on TPZ as an attempt to overcome the limitations of TPZ therapy.

# Acknowledgements

I owe sincere gratitude to my co-supervisors, Dr. Michael Weinfeld and Dr. Piyush Kumar for their constant support and motivation without which this dissertation would not be possible. I wish to thank them for providing me the opportunity to work in their team and providing mentorship, motivation, invaluable guidance and encouragement throughout the project, which set the direction for my research.

I would like to sincerely thank Dr. Lynne Postovit for kindly letting me work in her laboratory for a year and supervising me in my earlier days. I am indebted to her for all her constructive suggestions and advice in various meetings throughout the research. I also would like to extend my thanks to her lab members who were kind and friendly towards me.

My sincere thanks to Dr. Richard Fahlman for letting us perform mass spectrometry in his laboratory and am deeply grateful for his kind assistance and valuable suggestions with the data analysis. I also would like to extend my gratitude to Jack Moore who helped us with the proteomics.

My special thanks to Dr. Hassan Elsaidi for designing and synthesizing all the drugs that have been used in this project. Without his effort, it would have been impossible to carry out this work smoothly. I also owe a lot to Faisal Bin Rashed, who is a very good friend and has been a great constant support throughout the entire project. His friendly talks, continual encouragement, valuable discussions and timely help made this journey considerably easier.

Most importantly, I would like to thank all the CRIO group members for their warmth of kindness and interesting discussions in our monthly meetings which have been very beneficial. I am delighted and indebted to Dr. Dawn McDonald and Xiao-Hong Yang who constantly helped and guided me with their technical expertise. I heartily thank Mesfin Fanta and Xiaoyan Yang who were always welcoming, amicable and willing to help.

Furthermore, I am immensely pleased to thank my best friends in the lab Zahra Shire, Diana Diaz, Bingcheng Jiang and Wisdom Kate who made my research experience cheerful and uplifting by providing a great positive working environment. In addition, I would like to thank Dr. Feridoun Karimi-Busheri and Dr. Aghdass Rasouli-Nia for their genuine support and advice. I also extend my thanks to the imaging facility, especially Geraldine Barron.

Lastly, I take great pleasure to acknowledge my parents and my husband for always being there patiently by my side throughout this endeavour and for their immense love, moral support and persistent prayers which made this journey worthwhile.

# **Table of Contents**

| 1.   | Chapter I - Introduction 1                                          |
|------|---------------------------------------------------------------------|
| 1.1. | Tumor Hypoxia                                                       |
|      | 1.1.1. Different types of tumor hypoxia                             |
|      | 1.1.2. Head and Neck Cancer                                         |
|      | 1.1.3. Tumor hypoxia as a therapeutic barrier in HNC                |
|      | 1.1.3.1. Hypoxia induced radioresistance6                           |
|      | 1.1.3.2. Hypoxia induced chemoresistance7                           |
| 1.2. | Cellular response to hypoxia at the molecular level                 |
|      | 1.2.1. Hypoxia Inducible Factor dependent and independent mechanism |
|      | 1.2.1.1. HIF-dependent mechanism9                                   |
|      | 1.2.1.2. HIF-independent mechanism 11                               |
| 1.3. | Hypoxia responsive gene: Glucose transporter (GLUT) 13              |
|      | 1.3.1. Regulation of glucose transport by hypoxia                   |
| 1.4. | Evaluation of hypoxia18                                             |
|      | 1.4.1. Invasive and Non-invasive methods                            |
|      | 1.4.1.1. Invasive methods to assess tumor hypoxia18                 |
|      | 1.4.1.2. Non-invasive methods to assess tumor hypoxia19             |
| 1.5. | Radiosensitization of hypoxic cells21                               |
|      | 1.5.1. Increase in oxygen delivery                                  |
|      | 1.5.2. Hypoxic cell radiosensitizers                                |

| 1.6. | Hypoxic-cell cytotoxins                                                      | . 24 |
|------|------------------------------------------------------------------------------|------|
|      | 1.6.1. Different classes of bioreductive drugs                               | . 24 |
|      | 1.6.2. Drug of Interest: Tirapazamine (TPZ)                                  | 28   |
|      | 1.6.2.1. Molecular mechanism of preferential toxicity                        | 28   |
|      | 1.6.2.2. Early studies of TPZ                                                | 31   |
|      | 1.6.2.3. TPZ clinical trials and the setbacks                                | 32   |
|      | 1.6.2.4. Recent advancements in TPZ studies                                  | 34   |
| 1.7. | Research objectives                                                          | . 36 |
| 2.   | Chapter II - Materials and Methods                                           | . 40 |
| 2.1. | Cell Culture                                                                 | . 41 |
| 2.2. | Hypoxic condition                                                            | . 41 |
| 2.3. | Drug and/or chemical compounds                                               | . 41 |
| 2.4. | Cytotoxicity assays                                                          | . 42 |
|      | 2.4.1. MTT assay                                                             | . 42 |
|      | 2.4.2. Crystal Violet Staining (CVS) assay                                   | . 42 |
|      | 2.4.3. Colony formation assay                                                | . 43 |
| 2.5. | Western blot analysis                                                        | . 43 |
| 2.6. | Real-time reverse transcription polymerase chain reaction (Real-Time RT-PCR) | . 44 |
| 2.7. | Click Chemistry                                                              | . 45 |
| 2.8. | Affinity Purification assay                                                  | . 46 |
| 2.9. | Statistical analysis                                                         | 47   |

| 3.   | Chapter III - Results                                                                              |
|------|----------------------------------------------------------------------------------------------------|
| 3.1. | Determination of optimum time and oxygen concentration for GLUT-1 upregulation 49                  |
| 3.2. | TPZ exhibits preferential hypoxic cytotoxicity in a concentration-dependent manner. 54             |
| 3.3. | G <sub>6</sub> -TPZ displays hypoxia-selective cytotoxicity at high concentrations                 |
| 3.4. | Effect of TPZ on the expression of HIF-1 $\alpha$                                                  |
| 3.5. | Click chemistry-based protocol using azido conjugated TPZ60                                        |
| 3.6. | N <sub>3</sub> -TPZ exhibits selective hypoxic cytotoxicity in a concentration-dependent manner 60 |
| 3.7. | Hypoxia selective sub-cellular localization of N <sub>3</sub> -TPZ61                               |
| 3.8. | Identification of potential protein binding partners of N <sub>3</sub> -TPZ67                      |
| 3.9. | Hypoxia-selective cytotoxicity of N <sub>3</sub> -G <sub>6</sub> -TPZ 84                           |
| 3.10 | . Hypoxia selective sub-cellular localization of N <sub>3</sub> -G <sub>6</sub> -TPZ 85            |
| 4.   | Chapter IV- Discussion                                                                             |
| 4.1. | Regulation of GLUT-1 protein and mRNA levels by hypoxia                                            |
| 4.2. | Determining the cytotoxicity of TPZ91                                                              |
| 4.3. | Determining the cytotoxicity of G <sub>6</sub> -TPZ92                                              |
| 4.4. | Effect of TPZ on the expression of HIF-1α94                                                        |
| 4.5. | Determining the cytotoxicity of N <sub>3</sub> -TPZ95                                              |
| 4.6. | Determining the localization of N <sub>3</sub> -TPZ96                                              |
| 4.7. | Identification of potential binding partners of N <sub>3</sub> -TPZ96                              |
| 4.8. | Determining the cytotoxicity of N <sub>3</sub> -G <sub>6</sub> -TPZ                                |

| 4.9.  | Determining the localization of N <sub>3</sub> -G <sub>6</sub> -TPZ          | 100 |
|-------|------------------------------------------------------------------------------|-----|
| 4.10. | Overall impact on the objective                                              | 101 |
| 5.    | Chapter V - Future Directions                                                | 103 |
| 6.    | References                                                                   | 107 |
| 7.    | Appendix-A                                                                   | 134 |
|       | A1- LC-MS/MS analysis for hypoxic whole cell clicked lysate (expanded table) | 135 |

# List of Tables

| ,  | Table 3.1 LC-MS/MS analysis for hypoxic cell control eluate (untreated with $N_3$ -TPZ).74 |
|----|--------------------------------------------------------------------------------------------|
| ,  | Table 3.2 LC-MS/MS analysis for hypoxic N <sub>3</sub> -TPZ treated cell eluate            |
|    | Table 3.3 LC-MS/MS analysis for hypoxic whole cell clicked lysate (common proteins         |
| fe | ound between this group and hypoxic N <sub>3</sub> -TPZ treated eluate)                    |
|    | Appendix-A                                                                                 |

Table A1 LC-MS/MS analysis for hypoxic whole cell clicked lysate (expanded table)...135

# **List of Figures**

| Figure 1.1 Diffusion-limited or chronic hypoxia                                      |
|--------------------------------------------------------------------------------------|
| Figure 1.2 Vasculature of normal tissue versus tumor tissue                          |
| Figure 1.3 Hypoxia-Inducible Factor-1 signalling pathway11                           |
| Figure 1.4 Lactate induced hypoxic response (HIF independent mechanism) 13           |
| Figure 1.5 Structure of human glucose transporter GLUT-116                           |
| Figure 1.6 Hypoxia-selective activation of TPZ                                       |
| Figure 3.1 GLUT-1 is inversely regulated in an oxygen-concentration dependent manner |
|                                                                                      |
| Figure 3.2 GLUT-1 and HIF-1 $\alpha$ protein are regulated by hypoxia in an oxygen   |
| concentration-dependent manner                                                       |
|                                                                                      |
| Figure 3.3 Time course of GLUT-1 response                                            |
| Figure 3.3 Time course of GLUT-1 response                                            |
|                                                                                      |

| Figure 3.6 TPZ inhibits hypoxic stabilization of HIF-1a                                              |
|------------------------------------------------------------------------------------------------------|
| Figure 3.7 Experimental principle to image hypoxic cells using N <sub>3</sub> -TPZ click chemistry   |
|                                                                                                      |
| Figure 3.8 N <sub>3</sub> -TPZ shows hypoxic cytotoxicity in a concentration-dependent manner 65     |
| Figure 3.9 N <sub>3</sub> -TPZ click chemistry signal is concentration-dependent                     |
| Figure 3.10 Localization of N <sub>3</sub> -TPZ 67                                                   |
| Figure 3.11 Experimental principle of isolating potential N <sub>3</sub> -TPZ binding partners using |
| click chemistry principle                                                                            |
| Figure 3.12 Isolation of potential binding partners of N <sub>3</sub> -TPZ using click chemistry 70  |
| Figure 3.13 Comparison of relative ion intensity of proteins in the whole proteome and the           |
| drug-pulldowns                                                                                       |
| Figure 3.14 Functional enrichment in protein network of N <sub>3</sub> -TPZ targets under hypoxia    |
| using STRING database                                                                                |
| Figure 3.15 Hypoxia selective cytotoxicity of N <sub>3</sub> -G <sub>6</sub> -TPZ                    |
| Figure 3.16 N <sub>3</sub> -G <sub>6</sub> -TPZ click chemistry signal is concentration-dependent    |
| Figure 3.17 Localization of N <sub>3</sub> -G <sub>6</sub> -TPZ                                      |

# List of Abbreviations

| Abbreviation | Full name                                                  |
|--------------|------------------------------------------------------------|
| °C           | degree Celsius                                             |
| %            | percent                                                    |
| AV           | arteriovenous                                              |
| Ab           | antibody                                                   |
| AP-1         | activator protein 1                                        |
| ATP          | adenosine protein 1                                        |
| ARCON        | accelerated radiotherapy with carbogen and nicotinamide    |
| ARNT         | aryl hydrocarbon receptor nuclear translator               |
| AQ4N         | banoxantrone                                               |
| ATCC         | American type culture collection                           |
| bHlH         | basic helix-loop-helix                                     |
| BSA          | bovine serum albumin                                       |
| BTZ          | benzotriazinyl radical                                     |
| CAIX         | carbonic anhydrase-IX                                      |
| CATAPULT     | CIS and TPZ in subjects with advanced previously untreated |
|              | NSCL tumours                                               |
| CBP          | CREB-binding protein                                       |
| cDNA         | complementary protein                                      |
| CEBP         | CCAAT-enhancer-binding protein                             |
| $CO_2$       | carbon dioxide                                             |
| CIS          | cisplatin                                                  |
| CFA          | colony formation assay                                     |
| CSC          | cancer stem cell                                           |
| Cu-ATSM      | Copper (II)-diacetyl-bis(N-methylthiosemicarbazone)        |
| CuAAC        | Copper(I)-Catalyzed Azide-Alkyne Cycloaddition             |
| CVS          | Crystal violet staining                                    |
| CYP450R      | cytochrome p450 oxideroductase                             |
| DAHANCA      | Danish Head and Neck Cancer group                          |
| DAPI         | 4'.6-diamidino-2-phenylindole                              |
| DFS          | Disease-free survival                                      |
| DMEM         | Dulbecco's Modified Eagle Medium                           |
| DMEM/F12     | Dulbecco's Modified Eagle Medium: nutrient mixture F-12    |
| DMSO         | Dimethyl sulfoxide                                         |
| DNA          | deoxyribonucleic acid                                      |
| DSB          | double strand break                                        |
| EBV          | Epstein-bar virus                                          |
| EDTA         | ethylenediaminetetraacetic acid                            |
| EF5          | pentafluorinated etanidazole                               |
| eIF2α        | eukaryotic translation initiation factor 2 subunit alpha   |
| ELISA        | enzyme linked immunosorbent assay                          |
| EO9          | apaziquone                                                 |

| ERK<br>FAZA<br>FBS<br>FDG<br>FETA<br>FIH-1<br>FMISO<br>FU<br>G<br>GOG<br>GLUT-1<br>$G_6$ -TPZ<br>HAP<br>HBOT<br>HC1<br>HCR<br>HIF<br>HNC<br>HNSCC<br>Hg<br>HPV<br>HRE<br>HRP<br>hrs<br>IAZA<br>ICH<br>IC50<br>IHC<br>IR<br>LC-MS/MS<br>LDHA<br>LOX-1<br>LRC<br>LSCLC<br>MDR<br>MFS<br>mg<br>mm<br>mM | extracellular signal-regulated kinase<br>fluoroazomycin arabinofuranoside<br>fetal bovine serum<br>fluorodeoxyglucose<br>fluoroetanidazole<br>factor-inhibiting HIF-1<br>fluoromisonidazole<br>fluorouracil<br>gravity (units)<br>Gynecologic Oncology Group<br>glucose transporter-1<br>glucose-conjugated TPZ<br>hypoxia activated prodrug<br>hyperbaric oxygen therapy<br>hydrochloric acid<br>hypoxia etytotxic ratio<br>hypoxia inducible factor<br>head and neck squamous cell carcinoma<br>millimeters of mercury<br>human papilloma virus<br>hypoxia-response element<br>horseradish peroxidase<br>hours<br>iodoazomycin arabinoside<br>intracellular helix<br>half maximal inhibitory concentration<br>immunohistochemistry<br>ionizing radiation<br>liquid chromatography coupled mass spectrometry<br>lactate dehydrogenase- A<br>lysyl oxidase-1<br>locoregional control<br>limited-stage small-cell lung cancer<br>major facilitator superfamily<br>milligram<br>millimeter<br>millimolar |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| mm                                                                                                                                                                                                                                                                                                   | millimeter                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |
| mM<br>mRNA                                                                                                                                                                                                                                                                                           | milimolar<br>messenger ribonucleic acid                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| mTOR                                                                                                                                                                                                                                                                                                 | mammalian target of rapamycin                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| mTORC1/4E-BP1                                                                                                                                                                                                                                                                                        | mTOR complex 1/eukaryotic initiation factor 4E-binding protein-1                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
| MTT                                                                                                                                                                                                                                                                                                  | 3-(4,5-dimethylthiazol-2-Yl)-2,5-diphenyltetrazolium bromide                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |

| NIE 1-0                             | musloon foston komes hoto                                   |
|-------------------------------------|-------------------------------------------------------------|
| NF-kβ<br>NI                         | nuclear factor kappa beta<br>nitroimidazole                 |
| NIRS                                |                                                             |
|                                     | near-infrared spectroscopy                                  |
| nm                                  | nanometer                                                   |
| NaCl                                | sodium chloride                                             |
| NADPH                               | nicotinamide adenine dinucleotide phosphate hydrogen        |
| NaF                                 | sodium fluoride                                             |
| Na <sub>3</sub> VO <sub>4</sub>     | sodium orthovanadate                                        |
| $N_2$                               | nitrogen                                                    |
| $N_3$                               | azido                                                       |
| N <sub>3</sub> -TPZ                 | azido-conjugated TPZ                                        |
| N <sub>3</sub> -G <sub>6</sub> -TPZ | azido-glucose-conjugated TPZ                                |
| NSCLC                               | non-small-cell lung cancer                                  |
| O <sub>2</sub>                      | oxygen                                                      |
| OS                                  | overall survival                                            |
| PAS                                 | per-arnt-sim                                                |
| PBS                                 | phosphate buffered saline                                   |
| PE                                  | etoposide                                                   |
| PET                                 | positron emission tomography                                |
| PFA                                 | paraformaldehyde                                            |
| PFS                                 | progression free survival                                   |
| pH                                  | potential hydrogen                                          |
| PHD                                 | prolyl hydroxylase domain enzyme                            |
| PHD2                                | prolyl hydroxylase domain protein 2                         |
| PI3K                                | phosphatidylinositide-3-kinase                              |
| POR                                 | porfiromycin                                                |
| PSM                                 | peptide-spectrum match                                      |
| p16                                 | cyclin-dependent kinase inhibitor 2A                        |
| Real-Time RT-PCR                    | real-time reverse transcription polymerase chain reaction   |
| RIPA                                | radioimmunoprecipitation buffer                             |
| RNA                                 | ribonucleic acid                                            |
| ROS                                 | reactive oxygen species                                     |
| RPLP0                               | ribosomal protein lateral stalk subunit P0                  |
| Rpm                                 | revolutions per minute                                      |
| RT                                  | radiation therapy                                           |
| SCCVII                              | squamous cell mouse carcinoma                               |
| SDS                                 | sodium dodecyl sulfate                                      |
| SDS-PAGE                            | sodium dodecyl sulfate-polyacrylamide gel electrophoresis   |
| SEM                                 | standard error of mean                                      |
| SGLT                                | sodium-glucose linked transporters                          |
| SLC2A                               | solute carriers 2A gene family                              |
| SPECT                               | single photon emission computed tomography                  |
| SSB                                 | single strand break                                         |
| STRING                              | search tool for the retrieval of interacting genes/proteins |
| SWOG                                | Southwest Oncology Group                                    |
| TBS-T                               | tris buffered saline with tween                             |
| TH-302                              | evofosfamide                                                |
| 111 502                             | e , or oprimitie                                            |

| TPZ      | tirapazamine                                      |
|----------|---------------------------------------------------|
| Tris-HCl | tris(hydroxymethyl)aminomethane-hydrochloric acid |
| TROG     | Trans-Tasman Radiation Oncology Group             |
| VEGF     | vascular endothelial growth factor                |
| VHL      | von hippel-lindau                                 |
| V        | volt                                              |
| Mg       | microgram                                         |
| μg/ml    | microgram/milliliter                              |
| μl       | microliter                                        |
| μΜ       | micromolar                                        |
| α        | alpha                                             |
| β        | beta                                              |
| δ        | delta                                             |

# **Copyright licenses**

Licensee: Sindhuja Pattabhi Raman. License Date: Nov 9, 2018. License Number: 4465011315984. Publication: Nature. Title: Crystal structure of the human glucose transporter GLUT1. Type of use: Thesis/dissertation. Total: 0.00 CAD.

Licensee: Sindhuja Pattabhi Raman. License Date: Nov 9, 2018. License Number: 4465020499624. Publication: Nature Reviews Cancer. Title: Exploiting tumour hypoxia in cancer treatment. Type of use: Thesis/dissertation. Total: 0.00 USD.

Licensee: Sindhuja Pattabhi Raman. License Date: Nov 9, 2018. License Number: 4465020778672. Publication: Cell. Title: A Lactate-Induced Response to Hypoxia. Type of use: Reuse in a thesis/dissertation. Total: 0.00 USD.

Licensee: Sindhuja Pattabhi Raman. License Date: Dec 3, 2018. License Number: 4481340596748. Publication: Elsevier Books. Title: Medicinal Chemistry of Anticancer Drugs. Type of use: Reuse in a thesis/dissertation. Total: 0.00 CAD.

Licensee: Sindhuja Pattabhi Raman. License Date: Dec 4, 2018. License Number: 4482050213742. Publication: British Journal of Cancer. Title: The Histological Structure of Some Human Lung Cancers and the Possible Implications for Radiotherapy. Type of use: Thesis/dissertation. Total: 0.00 CAD.

# **Chapter I - Introduction**

# **1.1.** Tumor Hypoxia

Tumor Hypoxia is a physiological state where cells within a tumor are sub-optimally oxygenated <sup>1</sup>. Reduction in oxygen level is mainly due to poor vascularization in tumor tissues, which renders it difficult to satisfy the high demand for oxygen created due to rapid and aggressive proliferation of cancer cells <sup>2,3</sup>. The estimated level of oxygenation in normal tissues is 40-60 mm Hg, whereas the partial O<sub>2</sub> pressure reduces to 10 mm Hg or lower in hypoxic conditions <sup>4</sup>. Tumor hypoxia is a common feature that occurs in almost all types of human solid tumors, heterogeneously compromising 50-60% of a tumor mass <sup>5-11</sup>. Hypoxia alters cellular metabolism, which can trigger the activation of genes involved in glycolysis, cell survival, replication, angiogenesis, tissue invasion, metastasis and loss of genomic stability <sup>12,13</sup>. As a consequence, the malignant potency of hypoxic tumors is amplified enabling them to withstand conventional radio <sup>14</sup> and chemotherapy <sup>15</sup> and thereby leading to treatment failure. Therefore, tumor hypoxia presents significant human health challenges and contributes to poor overall survival of cancer patients. Hence, development of novel approaches that molecularly target tumor hypoxia is of utmost need.

## 1.1.1. Different types of tumor hypoxia

Tumor hypoxia is broadly classified into two types namely, acute and chronic, which contribute to the different hypoxia related responses within the tumor leading to variable effects on tumor development and therapeutic response <sup>16</sup>. The first scientific study documenting hypoxia was published by Thomlinson and Gray in 1955 <sup>17</sup>. They suggested that cells within a tumor could remain viable under chronic levels of hypoxia for hours to a few days when located at a distance of 70  $\mu$ m from the vasculature (Figure 1.1). This sets the basis for description of diffusion-limited hypoxia or chronic hypoxia, as the distance to which oxygen can diffuse is largely limited by the

rapid rate at which it is consumed by respiring tumor cells <sup>18</sup>. In the early 1980s, Brown and co-workers proposed that hypoxia in tumors can also arise through another mechanism. They demonstrated that oxygenation levels within a tumor can vary by fluctuating levels of blood flowing through the vessels to the tumor. This arises as a consequence of temporary closing/opening or blockage of a blood vessel due to malformed tumor vasculature resulting in transient periods of severe hypoxia within the tumor <sup>19</sup> (Figure 1.2). The phenomenon is known as acute hypoxia and is also quoted with different names such as perfusion-limited, cyclic, repetitive, transient, short-term, intermittent and fluctuating hypoxia by several authors <sup>19-21</sup>. Targeting acute hypoxia is said to be difficult when compared to chronic hypoxia due to lack of blood flow and in addition, acute hypoxic cells are also said to demonstrate high metastatic potential <sup>22</sup>. Since then, immense research has been conducted in order to control the hypoxic effects in solid tumors thereby to improve the efficacy of treatment given to cancer patients.



#### Figure 1.1 Diffusion-limited or chronic hypoxia

Diagram shows a transverse section of a tumor cord surrounded by vascularized stroma. It also shows large areas of necrosis which is separated from stroma by a narrow band of tumor cells. The study indicates that even though the necrotic centre grows with respect to the enlargement of the tumor cord, the thickness of tumor cells remains constant. They identified that the cells bordering necrosis were viable, but hypoxic. This is due to the limited diffusion distance of oxygen through the respiring tissue since hypoxic cells are located farthest from the blood vessel. The condition was termed as diffusion-limited hypoxia, now also known as chronic hypoxia <sup>17</sup>. Reproduced and modified by permission from Nature Publishing Group: British Journal of Cancer. The Histological Structure of Some Human Lung Cancers and the Possible Implications for Radiotherapy. Thomlinson, R. H. and Gray, L. H., Copyright © 1955.



Figure 1.2 Vasculature of normal tissue versus tumor tissue.

Diagram showing the differences between normal and tumor vasculature (a) normal tissue has uniform, highly organized, evenly spaced blood vessels close enough to provide nutrient and oxygen supply to all the cells. (b) In tumor tissue, hypoxic regions are present between the blood vessels, which are complex, dilated, irregular with lots of twists, blind ends, temporary occlusion, and AV shunt. In addition, the vessels are far apart from each other, which leads to transient blockage of blood delivery resulting in acute (perfusion-limited) hypoxia along with chronic (diffusion-limited) hypoxia <sup>23</sup>. Reproduced by permission from Nature Publishing Group: Nature Reviews Cancer. Exploiting tumour hypoxia in cancer treatment. Brown, J. M. and Wilson, W. R., Copyright © 2004.

## 1.1.2. Head and Neck Cancer

Head and Neck Cancer (HNC) comprises a diverse group of malignant tumors that arise from the epithelial lining of the head and neck regions. They are distinguished based on the primary site of origin as malignancies of the oral cavity, nasal cavity, pharynx, larynx and salivary glands <sup>24</sup>. HNC is the sixth most common cancer worldwide with an incidence rate of  $\sim 550,000$ cases and accounts for  $\sim 380,000$  deaths annually. The male to female ratio for the likelihood of developing HNC ranges from 2:1 to 4:1 and the disease is more prevalent in people who are over 50 years of age <sup>25</sup>. Over recent years, human papilloma virus (HPV) infection has been reported to be the primary risk factor associated with HNC <sup>26</sup>. The other leading causes are smoking, alcohol abuse and Epstein-Barr virus (EBV) infection (for nasopharyngeal cancer). Most common treatment modalities for HNC are surgery, radiation therapy and chemotherapy. The treatment efficacy is said to be improved with altered fractionated radiotherapy <sup>27</sup> and concomitant cisplatin chemotherapy <sup>28</sup>. However, regardless of therapeutic measures, the 5 year overall survival rate of HNC patients still remains only 40-50%<sup>29</sup>. Locoregional recurrence is demonstrated as one of the major contributors to morbidity in 15-50% of HNC patients <sup>30</sup>. Approximately, 90% of all HNCs are squamous cell carcinomas (HNSCC)<sup>31</sup>. Even though, the HNSCC share similar histology, the disease is highly heterogeneous with respect to pathogenesis, clinical progression and management strategy <sup>32</sup>. In spite of the diversity, the common feature that leads to locoregional recurrence and eventually treatment failure in HNC is the presence of tumor hypoxia<sup>33</sup>. The effect of pretreatment tumor oxygenation status on the radiation therapy related response in HNSCC was first documented in 1996<sup>34</sup>. Since then, numerous studies have demonstrated that HNC patients bearing a higher degree of hypoxic fractions show poor response to radio- and chemotherapy and the effectiveness of surgery is limited as well <sup>35</sup>. Hence, tumor hypoxia is considered as a strong

independent negative prognostic factor in HNC resulting in decreased locoregional control (LRC), overall survival (OS) and long term disease-free survival (DFS) <sup>36</sup>. Therefore, unravelling the mechanistic relationship between tumor hypoxia and treatment outcome in HNC is of great clinical importance and will play a major role in improving the quality of life of HNC patients. Since HNC is a well-documented tumor type for hypoxia studies <sup>37</sup>, we chose it as our ideal model of study.

## **1.1.3.** Tumor hypoxia as a therapeutic barrier in HNC

As discussed above, low partial O<sub>2</sub> pressure is a key component in HNC and is associated with increased resistance to treatment (radiotherapy and anti-tumor drug delivery).

#### 1.1.3.1. Hypoxia induced radioresistance

The influence of oxygen on radiotherapy was recognized back in 1900 and hypoxic radioresistance was first discussed in detail by Schwartz and colleagues in 1909 <sup>38</sup>. Now, it is a well-established concept that hypoxic cells exhibit up to three times more resistance to radiation therapy when compared to aerobic cells <sup>39</sup>. Radiation is delivered to patients through different means; the notable ones are external beam radiation (widely used), brachytherapy/internal radiation and through use of radiopharmaceuticals <sup>40</sup>. In solid tumors, radiosensitivity is characterized by two factors namely, intrinsic radiosensitivity displayed by the tumor cells and the degree/extent of hypoxia <sup>41</sup>. Ionizing radiation (IR) kills rapidly dividing cells by generating reactive hydroxyl free radicals either by direct or indirect action <sup>42</sup>. In the presence of oxygen, the reactive free radicals target the DNA strand inducing irreversible DNA damage. We can say, oxygen acts as a potent chemical radiosensitizer by enhancing the efficiency of ionizing radiation dose during radiotherapy by formation of DNA damaging free radicals in cancer cells <sup>42</sup>. In hypoxia, due to a lack of electron supply from oxygen, the DNA damage induced by radiation would be repaired by the tumor cells. In addition, free radicals generated by radiation are reduced

and repaired by sulfhydryl containing macromolecules, a phenomenon known as chemical restitution. Hypoxic cells use the above said mechanism to withstand the damaging effect of radiotherapy <sup>43</sup>. Acute hypoxic cells are said to show high radioresistance when compared to chronic hypoxic cells <sup>44</sup>. However, the exact therapeutic significance of acute hypoxia in radiation therapy still remains unclear. Since there has been only limited success to overcome radioresistance of hypoxic cells, employing a hypoxia modified multi-fractionated radiotherapy (RT) regimen with precise delivery of escalated radiation doses to hypoxic tumor cells and utilizing multimodality functional imaging in RT planning might result in better outcomes when used in combination with surgical resection and novel adjuvants.

#### 1.1.3.2. Hypoxia induced chemoresistance

Hypoxic stress promotes cancer cells to develop resistance against chemotherapeutic agents. Hypoxia-induced chemoresistance was first elucidated in 1950s, suggesting that tumor cells present in severe hypoxic conditions are resistant to chemotherapy <sup>17</sup>. The relation between hypoxia and chemoresistance in HNC was evident when a sub-population of hypoxic cells showed selective survival after chemotherapy <sup>45</sup>. It is believed that various reasons contribute to impaired chemosensitivity. The major reason why these anti-cancer drugs are less effective is due to the inefficient delivery of the cytotoxic drugs to the specific tumor site <sup>46</sup>. Since hypoxic cells are located far from the blood vessel and the vascular organization in hypoxic tumors is abnormal, the diffusion distance between the drug and tumor increases suggesting that the drug might get metabolized before reaching the target cells, which would ultimately result in delivering therapeutically ineffective dose of the drug to the tumor <sup>47,48</sup>. It was also identified that hypoxic tumors are resistant to chemotherapeutic agents that target rapidly proliferating cells <sup>49</sup>. This might be due to the fact that some cells reduce their proliferation rate while they develop within a hypoxic

tumor contributing to reduced response to the anti-cancer agents <sup>46,48</sup>. Anti-cancer drugs that induce DNA damage such as doxorubicin exhibit low efficacy towards hypoxic cells due to decreased free-radical generation <sup>47</sup>. Hence, in most of the cases it is not the tumor that exhibits resistance towards the therapeutic agent, it is the limitation of the drug due to hypoxic conditions which results in poor therapeutic efficiency. Moreover, recent evidence suggests that cancer stem cell (CSC) populations present in HNC might contribute to drug resistance <sup>50</sup>. This is due to the fact that these stem-cell-like cell fractions residing in hypoxic conditions possess the ability to survive in fluctuating blood flow. Also, the low proliferation rate of CSC with infrequent cell cycling patterns results in failure to respond to division-dependent chemo drugs <sup>51</sup>. Further, the upregulation of multidrug resistance (MDR) genes and the over expression of gene product p-glycoprotein (known to be involved in MDR) under hypoxia is linked to the poorer response towards anti-cancer drugs since MDR causes extrusion of drugs <sup>52</sup>. In addition, hypoxia also promotes genetic instability in cancer cells due to mutation of p53 resulting in loss of upregulation of p53 apoptotic target genes which ultimately leads to a rapid development of drug resistance in cells <sup>44</sup>. Hence, hypoxia-induced chemoresistance could only be overcome by using novel drugs such as hypoxic cytotoxins that exploit hypoxia thereby converting a hypoxic problem into a therapeutic advantage.

# **1.2.** Cellular response to hypoxia at the molecular level

The cellular response to hypoxia is mainly mediated by the hypoxia inducible factor (HIF) family, which regulates the expression of multiple genes associated in processes such as adaptation and rapid progression of cancer cells <sup>53</sup>. However, in recent years, new players have been identified in regulating hypoxia at the molecular level <sup>54</sup>.

## 1.2.1. Hypoxia Inducible Factor dependent and independent mechanism

#### **1.2.1.1.** HIF-dependent mechanism

Hypoxic tumor cells undergo a lot of adaptive and cellular changes in order to survive in the low intra-tumoral pH of the tumor microenvironment <sup>55</sup>. Approximately 1-1.5% of the genome is transcriptionally regulated by hypoxia often through a Hypoxia-Inducible Factor (HIF) dependent pathway <sup>56</sup>. Even though HIF related response does not solely contribute to all the alterations that occur to gene expression in hypoxia, it plays a major part in the above said alterations and adaptations to low oxygen. Its essential role is strongly evident as the HIF signalling pathway is reported to be present in almost all cell types and all higher eukaryotes <sup>57</sup>. HIF, a transcription factor identified in 1991<sup>58</sup>, is a heterodimeric protein comprising of two sub-units namely,  $\alpha$  (HIF- $\alpha$ ) and  $\beta$  (HIF- $\beta$ / aryl hydrocarbon receptor nuclear translocator- ARNT) that binds to the hypoxia-responsive element (HRE) in the erythropoietin gene. In HIF-1 protein, HIF-1 $\alpha$ is the oxygen sensitive sub-unit whereas HIF-1 $\beta$  is constitutively expressed. Both sub-units belong to the basic helix-loop-helix (bHLH)-per-arnt-sim (PAS) protein family <sup>59</sup>. There are three paralogs of HIF-a subunit (HIF-1, HIF-2, HIF-3) of which HIF-1 and HIF-2 are extensively studied  $^{60}$ . Both HIF-1 $\alpha$  and HIF-2 $\alpha$  display high sequence similarity and possess the ability to heterodimerize with ARNT and bind to HRE<sup>61</sup>.

Under normoxia, HIF-1 $\alpha$  protein levels are said to be low due to hydroxylation by active prolyl hydroxylase domain protein 2 (PHD2) and factor-inhibiting HIF-1 (FIH-1), in the presence of co-substrate (2-oxoglutarate) and cofactors namely ferrous iron and ascorbate. Hydroxylation of HIF-1 $\alpha$  leads to its binding to the Von Hippel-Lindau tumor suppressor protein (VHL), initiating ubiquitination by E3 ubiquitin ligase, which results in the proteosomal degradation of HIF-1 $\alpha$  by the 26S proteasome <sup>62</sup>. As a result, HIF-1 $\alpha$  has a very short half-life of < 5 min in the cytoplasm at normal oxygen levels <sup>63</sup>. In contrast, under hypoxic conditions, the hydroxylases are inhibited as a result of substrate limitation. HIF-1 $\alpha$  gets stabilized and translocates from the cytoplasm to the nucleus and heterodimerizes with HIF- $\beta$ /ARNT, thus evading the VHL- regulated proteasomal degradation <sup>64</sup>. Hence, the stable transcriptionally active heterodimerized complex (HIF-1 $\alpha$  + HIF-1 $\beta$ /ARNT) induces gene expression by binding to the core DNA sequence 5'-TACGTG-3' at HRE regions in target genes <sup>65</sup>. These effects result in the activation of the transcription of oxygen-dependent genes by binding with co-activators p300 and CBP <sup>64</sup>. Some notable target genes that are stimulated are glucose transporter-1 (GLUT-1), lysyl oxidase-1 (LOX-1), vascular endothelial growth factor (VEGF), carbonic anhydrase-9 (CAIX), and glycolytic enzymes such as phospho-glycerate kinase and lactate dehydrogenase- A (LDHA) <sup>66</sup> (Figure 1.3).



#### Figure 1.3 Hypoxia-Inducible Factor-1 signalling pathway

The diagram depicts how HIF-1 $\alpha$  is regulated in different oxygen levels. Under normoxia, HIF-1 $\alpha$  is hydroxylated by prolyl hydroxylases which leads to its binding to Von Hippel-Lindau tumor suppressor protein. VHL bound HIF-1 $\alpha$  in turn is targeted for ubiquitination and degradation. In hypoxia, HIF-1 $\alpha$  is stabilized, translocates to the nucleus and heterodimerizes with its partner HIF-1 $\beta$ . HIF-1( $\alpha$ - $\beta$ ) complex, in turn, binds to the hypoxia responsive elements upstream of various target genes leading to activation of their transcription <sup>67</sup>. Reproduced by permission from Elsevier: Critical Reviews in Oncology/Hematology. Past approaches and future directions for targeting tumor hypoxia in squamous cell carcinomas of the head and neck. Curtis, K. K., Wong, W. W. & Ross, H. J., Copyright © 2016.

#### **1.2.1.2.** HIF independent mechanism

Although HIF is critical for hypoxia response, recent studies have demonstrated that it is not the only master regulator of hypoxia response suggesting the existence of a HIF-1 independent hypoxia related response. Multiple pathways like tumor angiogenesis and several oxygen-relatable transcription factors such as NF- $k\beta$ , AP-1, CEBP are reported to respond to hypoxia in a HIF independent manner <sup>68</sup>. As a result, hypoxic regulation of a few genes occurs independent of HIF indicating the existence of other oxygen-regulated pathways that are controlled by PHD enzymes in a similar fashion as HIF pathways <sup>69</sup>. In 2015, Lee at al. discovered NDRG3, an oxygenregulated substrate of the PHD2/VHL pathway <sup>70</sup>. NDRG3 protein levels were found to be elevated in several cell types under oxygen limited conditions resulting in increased angiogenesis, motility, proliferative and anti-apoptotic activity <sup>71</sup>. Moreover, these authors demonstrated that NDRG3 becomes proteasomally degraded through PHD2/VHL under normoxia, but under hypoxia, lactate binds to the protein, boosts and stabilises it thereby escaping the VHL associated degradation. The stable NDRG3 protein then binds to c-Raf thereby mediating hypoxia induced activation of Raf/Erk pathway triggering signals for cell growth and angiogenesis <sup>70</sup> (Figure 1.4). Since the inhibition of lactate production abolishes the hypoxia induced expressions, we can say that lactate plays a critical role in promoting hypoxic response independent of HIF. Furthermore, the authors proposed a model which suggests that during prolonged hypoxia, although the mRNA expression of NDGR3 is independent of HIF levels, the protein becomes active and accumulates only when it is bound to the glycolytic end product lactate, which in turn boosts NDRG3 mediated signalling pathways <sup>70</sup>. Thus, even though NDRG3 activity is not directly HIF dependent, it is coupled with the HIF mediated response since HIF1- $\alpha$  regulates the expression of LDHA. Therefore, targeting NDRG3 combined with HIF might be an effective anti-hypoxia strategy and could improve the treatment efficacy of hypoxia-induced diseases.



#### Figure 1.4 Lactate induced hypoxic response (HIF independent mechanism)

NDRG3, an oxygen-regulated substrate of VHL pathway regulates hypoxia independent of HIF. In normoxia, NDRG3 protein is hydroxylated by prolyl hydroxylases and is degraded in a PHD2/VHL-dependent manner. In contrast, under low oxygen the protein evades VHL degradation by binding to lactate which allows it to accumulate. The stabilized NDRG3 protein then binds to c-Raf, mediating hypoxia-induced activation of the Raf-ERK pathway thereby promoting angiogenesis and cell growth <sup>70</sup>. Reproduced by permission from Elsevier: Cell. A Lactate-Induced Response to Hypoxia. Lee, D. C. *et al*, Copyright © 2015.

# **1.3.** Hypoxia responsive gene: Glucose transporter (GLUT)

In general, all cells need a constant flow of glucose as a source of energy for normal physiological function. Since glucose is highly polar, passive transportation across the plasma membrane is very limited and hence structurally relatable transport proteins known as glucose transporters act as carrier proteins by binding to glucose for easier cellular uptake <sup>72,73</sup>. Glucose transporters are broadly classified into two classes namely, sodium-glucose linked transporters or symporters (SGLTs) and facilitated diffusion glucose transporters (GLUTs) on the basis of substrate specificity, distribution and regulatory mechanism <sup>74</sup>. The SGLT family consists of 12 members and are usually expressed by cells in the small intestine and renal proximal tubes. These proteins aid in the active transport of glucose against the electrochemical gradient <sup>75</sup>.

GLUTs are a group of integral transmembrane proteins responsible for bidirectional glucose transport in cells and tissues through a facilitative diffusion mechanism against a concentration gradient <sup>76</sup>. These proteins contain two substrate binding sites exposed towards either the outside or inside of the cell. Glucose binding on either side results in a conformational change which helps to ease transport from one side of the membrane to the other, and the phenomenon is termed as the alternate access mechanism <sup>77</sup>. On the basis of sequence similarity,

GLUTs encoded by solute carriers 2A gene family (SLC2A) of membrane transport proteins are grouped into three classes which comprises of 14 members in total <sup>78</sup>. The isoforms vary in tissue specificity and glucose affinity. Among these transporters, the highly conserved GLUT-1 is regarded as the principal isoform and was the first characterized GLUT and most intensively studied <sup>79</sup>. GLUT-1 belongs to the sugar porter subfamily of a larger superfamily of proteins known as the major facilitator superfamily (MFS)<sup>80</sup>. The MFS family in common is comprised of 12 transmembrane helices organized into two domains namely amino and carboxy, which are exposed to the cytoplasm of the cell<sup>81</sup>. It is also reported that the first six and the latter six helices might exhibit pseudo symmetry <sup>82</sup>. Structurally, GLUT-1 is composed of ~500 amino acids and contains a single site for N-linked glycosylation<sup>83</sup>. In adults, GLUT-1 is expressed in erythrocytes, placenta, endothelial cells of blood-tissue barrier such as the blood-brain barrier and is known to be widely distributed in fetal tissue<sup>84</sup>. The main role of GLUT-1 is to transport glucose back and forth between blood and organs that have less access due to passive diffusion <sup>85</sup>. Although, GLUT-1 is ubiquitously expressed in normal tissues, GLUT-1 levels are increased dramatically under hypoxia making it one of the major genes over-expressed in hypoxic tumor cells <sup>86-91</sup>. Elevated expression has been observed in almost all hypoxic tumors rendering GLUT-1 an excellent prognostic and diagnostic marker 92-95. In particular, GLUT-1 expression has been associated with lymph node metastasis, poor survival and increased tumor growth in HNC <sup>96,97</sup>.

Although the structure of bacterial GLUT-1 homologues had been revealed earlier <sup>98-100</sup>, it was essential to identify the detailed structure of human GLUT-1 since bacterial GLUT-1 is a proton-driven symporter <sup>101</sup> whereas human GLUT-1 is a proton-independent uniporter <sup>81,102</sup>. Immense research has been carried out over several decades to characterize the atomic structure for a better understanding of the transport mechanism and functions. In 2014, Deng et al, elucidated

the crystal structure of GLUT-1 in an inward open conformation <sup>103</sup> (Figure 1.5). They succeeded in crystallizing full length GLUT-1 structure at 3.2 Å resolution containing two point mutations N45T and E329Q in order to eliminate heterogeneity due to glycosylation <sup>104</sup>. Also, in order to prevent multiple interchangeable conformations caused due to the high activity of GLUT-1, the abovesaid mutations were introduced so as to lock and stabilize the protein in a certain conformation. Similar to other MFS membrane transporters, the amino and carboxy terminal domains of GLUT-1 exhibits pseudo symmetry <sup>81,105</sup>. The N and C domains are connected through an intracellular helix (ICH), which is an unique feature of the sugar porter subfamily. The C-terminal segment seems to be invisible and this might be due to the flexibility in the abovesaid conformation <sup>103</sup>. Both the domains are predicted to enclose a cavity in the structure which opens to the intracellular side of the protein. Interestingly, the crystal structure also defines a glucose binding site in the cavity. Hence the authors suggest that, depending upon the angle at which the domains meet each other, the exposure of the glucose binding site from one side of the membrane to the other varies <sup>103</sup>. Overall, since GLUT-1 is regarded as a hypoxic target, unravelling the structure of GLUT-1 might provide clues for developing potential therapeutic agents that target GLUT-1.



Figure 1.5 Structure of human glucose transporter GLUT-1

The diagram shows the structure of full-length human GLUT-1 in an inward-open conformation. The side and cytoplasmic views are shown on the left. A slab of cut-open view of the surface electrostatic potential, is shown on the right so that the inward-facing enclosed cavity can be seen easily. The full length GLUT-1 structure was crystallized containing two point mutations- N45T and E329Q <sup>103</sup>. GLUT-1 is comprised of 12 transmembrane segments, organized into two domains namely amino and carboxy terminal. The corresponding transmembrane segments in the four 3-helix repeats are displayed in the same colour. The extracellular and intracellular helices are coloured blue and orange, respectively. IC indicates intracellular helix. All figures were generated with PyMol. Reproduced by permission from Nature Publishing Group: Nature. Crystal structure of the human glucose transporter GLUT1. Deng, D. *et al*, Copyright © 2014.

# 1.3.1. Regulation of glucose transport by hypoxia

Although GLUT-1 induced by HIF-1 $\alpha$  serves as an energy provider to malignant tumor cells, the correlation between GLUT-1 and HIF-1 $\alpha$  expression varies in different carcinomas. Hence, it is critical to study the involvement of hypoxic HIF-1 signaling in GLUT-1 regulation. Oxidative phosphorylation is the crucial step in the production of ATP in cells where hydrogen atoms and electrons are transferred to oxygen <sup>106</sup>. But in hypoxic atmosphere, cells choose anaerobic glycolysis to release energy and this pathway is regulated by HIF-1 $\alpha$ <sup>107</sup>. Basically, hypoxia induces a shift from aerobic to anaerobic glycolysis in order to maintain the energy supply in a rapidly growing tumor tissue, which leads to an increase in the expression of genes encoding key glycolytic enzymes and glucose transporters such as GLUT-1<sup>107,108</sup>. Regulation of glucose transport by hypoxia is said to be triphasic. Initially under hypoxia, GLUT-1 gets activated on the pre-existing plasma membrane, due to decreased ATP production <sup>109</sup>. If hypoxia still exists, GLUT-1 molecules are said to be translocated from intracellular vesicles to plasma membrane <sup>110</sup>. In chronically hypoxic cells, de novo synthesis of GLUT-1 takes place and the pathway is mediated by HIF-1 $\alpha^{111}$ . GLUT-1 was the first gene discovered whose rate of transcription is dually regulated in hypoxia by HIF-1 $\alpha$  and by inhibition of oxidative phosphorylation <sup>112</sup>. This renders GLUT-1 as an intrinsic cellular marker for targeting hypoxic cells in tumors <sup>113-115</sup>. The activation of GLUTs at the plasma membrane is found to be regulated by PI3-kinase (PI3K) signaling pathway, which in turn is linked to HIF-1a since PI3K can upregulate HIF-1a mRNA translation <sup>116,117</sup>. There is also evidence that an inverse relationship exists between VHL and GLUT-1 expression <sup>118</sup> which in turn highlights the critical role of HIF-1 $\alpha$  since we know loss of VHL protein activity increases HIF-1 $\alpha$  activity resulting in glucose uptake <sup>119</sup>.

In addition to hypoxia, GLUT-1 expression is known to be regulated by mitogens, growth factors, phorbol esters and oncogenes such as *H-ras, src, and c-myc* <sup>120-122</sup>. Studies have indicated that the *ras* oncogene upregulates GLUT-1 mRNA and protein levels and HIF-1 plays a crucial role in the upregulation <sup>123-125</sup>. HIF-1 has been proved to bind to the *cis* acting binding sites located within the 5' flanking region of GLUT-1 mRNA and H-*ras* is said to upregulate GLUT-1 when HIF-1 is bound to it <sup>126,127</sup>. The authors suggest that the HIF-1 binding site located in the GLUT-1 promoter is sufficient to mediate the upregulation of promoter activity by H-*ras* <sup>128</sup>. Taken together, H-*ras* helps the cells to survive in a hypoxic tumor microenvironment by enhancing GLUT-1 expression through upregulation of HIF-1 $\alpha$  protein levels.

# **1.4.** Evaluation of hypoxia

### **1.4.1. Invasive and Non- Invasive methods**

As discussed above, tumor hypoxia is established as a strong indicator for poor prognosis in HNC leading to poor patient outcome and therapeutic response <sup>129-131</sup>. Due to the heterogeneity in hypoxia, there is an acute need to stratify patients according to their hypoxic status <sup>132</sup>. The degree and extent of hypoxia should be assessed before initiating the treatment plan so that an appropriate personalized hypoxia-based treatment modality can be offered with an intent to improve the curative outcome. Several techniques have been identified to measure oxygen levels in hypoxia and they are broadly classified into invasive and non-invasive methods.

#### **1.4.1.1.** Invasive methods to assess tumor hypoxia

Invasive polarographic needle electrodes was used as a gold standard technique in routine clinical management to measure  $pO_2$  and to predict tumor response <sup>133-135</sup>. Even though the electrodes can access a variety of tumor sites such as head and neck, cervix, prostate, lung and pancreas, its insertion into the tumor disrupts tissues limiting the capacity to differentiate between

varying hypoxic patterns <sup>136,137</sup>. Oxygen distribution in tissues is also measured by another approach called phosphorescence quenching where an oxyphor, a phosphorescent probe is injected into the vasculature which successfully maps oxygen concentration in a variety of physiological environments <sup>138,139</sup>. In addition, near-infrared spectroscopy (NIRS) can be used to analyse tumor oxygenation *in vivo* through tracking spectral changes by haemoglobin in the vasculature <sup>140</sup>. Although, initially, phosphorescence imaging and NIRS had certain limitations such as low sensitivity, resolution, limited tissue penetration and path length hindering its clinical translation, the latest developments in those modalities have led to its approval in clinical practise <sup>141</sup>. A few 2-nitroimidazole derivatives such as misonidazole and pimonidazole act as exogenous probes to detect tumor hypoxia by forming stable adducts with intracellular macromolecules under hypoxic conditions <sup>142</sup>. The hypoxic adducts are detected by tumor biopsy and immunohistochemistry (IHC) by specific antibodies raised against these probes. The most widely used exogenous marker, pimonidazole, is demonstrated to be more sensitive in severe hypoxic conditions when compared to other methods <sup>143-145</sup>.

#### 1.4.1.2. Non-invasive methods to assess tumor hypoxia

Of late special emphasis is on non-invasive hypoxic imaging with new reagents and sophisticated imaging techniques which help in deciphering the molecular events related to hypoxia. Positron emission tomography (PET) imaging is a highly preferred methodology in the clinic that traces hypoxia using radiolabelled reporters <sup>146-148</sup>. In PET imaging, organic molecular markers labelled with positron-emitting radioisotopes such as <sup>18</sup>F, <sup>124</sup>I, or <sup>60/64</sup>Cu are used to visualize the hypoxic status of tumors in a three dimensional manner <sup>149</sup>. The notable molecular markers that are used to attach to these isotopes can either be 2-nitroimidazole derivatives such as fluoromisonidazole (FMISO), pentafluorinated etanidazole (EF5), fluoroetanidazole (FETA) or

nucleoside conjugates of 2-nitroimidazole such as iodoazomycin arabinoside (IAZA), fluoroazomycin arabinofuranoside (FAZA), and metal chelated ligands, for example Cu(II)-diacetyl-bis(N-methylthiosemicarbazone) (Cu-ATSM) <sup>149,150</sup>. These markers bind to the contents in a hypoxic cell selectively generating adducts to cellular macromolecules which are detected by PET scanner. <sup>18</sup>F-FMISO was the first-generation nitroimidazole biomarker known to detect hypoxia in glioma, HNC, renal tumor and non-small cell lung cancer <sup>151-158</sup>. However, owing to its high lipophilicity, slow clearance rate and variability in the rate of retention in different cancers led to the development of second generation nitroimidazole based PET hypoxia biomarkers <sup>159</sup>. EF5 is reported to be one of the most stable hypoxia biomarkers as it is more water soluble thereby evading degradation by oxidizing mechanisms in the body <sup>160,161</sup>. Although <sup>18</sup>F-EF5 showed positive outcome in identifying high-risk patients in clinical trials, the major drawback of the compound is its complex labelling chemistry which results in low radiochemical yield <sup>162,163</sup>. The radio-iodinated azomycin arabinoside <sup>123</sup>I-IAZA has been tested as a hypoxia tracer using single photon emission computed tomography (SPECT) imaging and has been clinically validated in HNC, small cell lung cancer and glioblastoma <sup>164,165</sup>. <sup>18</sup>F-FAZA, another sugar-coupled 2-nitroimidazole derivative was developed based on promising results from the use of <sup>123</sup>I-IAZA in SPECT imaging <sup>166</sup>. <sup>18</sup>F-FAZA is considered to be a very effective hypoxic PET imaging agent with faster diffusion, quick clearance rates in normal tissues and high tumor-tobackground ratios when compared to other markers <sup>167</sup>. Due to its superior biokinetics, <sup>18</sup>F-FAZA imaging had been successful in identifying malignancies of head and neck, lung, lymphoma and glioma <sup>168-170</sup>. In addition, Cu-ATSM (a hypoxic tracer) which has garnered considerable interest in recent times exploits the oxidation/reduction ability of chelated copper ions for its selective

accumulation in hypoxic areas when coupled with dithiosemicarbazone, which is already known for its antioxidant properties <sup>171</sup>.

The concept of elevated glucose transporters in malignant and hypoxic tumors was taken advantage of in hypoxic imaging. But many physiological pitfalls have been observed to be associated with <sup>18</sup>F-FDG (fluoro-2-deoxyglucose) PET imaging since FDG uptake by tumor cells reflects the metabolic activity rather than being hypoxia selective, which eventually results in inconsistent results while detecting tumor hypoxia <sup>172-176</sup>. In addition, IHC staining of several endogenous proteins such as HIF-1 $\alpha$  <sup>177-179</sup>, GLUT-1 <sup>113,114,180</sup>, CAIX <sup>181-184</sup> and VEGF <sup>185,186</sup> induced by hypoxia have also been demonstrated to play a significant role in monitoring hypoxia. Also, bioluminescence-based detection of HIF-1 $\alpha$  has been found to be effective in imaging hypoxic fractions *in vivo* <sup>187,188</sup>. But these imaging strategies need further investigation due to the complex heterogeneity of tumor hypoxia. Hence use of combination of these markers could result in accurate quantification of tumor hypoxia.

# 1.5. Radiosensitization of hypoxic cells

Over the past several decades, various attempts have been made to radiosensitize hypoxic cells which withstand conventional therapy. Numerous studies focused mostly on either elevating the oxygen supply so as to improve radiosensitivity/curability or by administration of oxygen mimetic radiosensitizers which selectively sensitizes hypoxic cells to ionizing radiation by replacing oxygen.

## **1.5.1.** Increase in oxygen delivery

Efforts to increase the oxygen delivery to tumor lesions through blood flow in order to overcome intratumoral hypoxia have been carried out through different methods. Hyperbaric oxygen therapy (HBOT) is an approach used since the 1960s where patients inhale pure oxygen at
elevated pressures ranging from 1.5-2.5 atmospheres <sup>189</sup>. Although several reports indicate a positive outcome in HBOT when combined with radiation in solid tumors of head and neck, cervix and bladder, the benefit of the modality still remains controversial <sup>190-194</sup>. The efficacy of HBOT varies depending on the tumor type, size and extent of lesion <sup>195</sup>. Another attempt to overcome tumor hypoxia was carried out by breathing carbogen, a modified gas mixture which contains 5% CO<sub>2</sub> in oxygen. Addition of CO<sub>2</sub> improved tumor oxygenation and the technique showed better outcomes by reoxygenating chronic hypoxic cells <sup>196</sup>. Nicotinamide, a vitamin B3 analogue is proven to target perfusion-related acute hypoxia by preventing transient fluctuations in tumor blood flow. In addition, nicotinamide is said to enhance tumor radiosensitivity since it is known to inhibit poly ADP-ribose polymerase 1, a crucial enzyme involved in DNA repair <sup>197-200</sup>. The combination of nicotinamide to overcome acute hypoxia and carbogen breathing to overcome chronic hypoxia led to the basis for the studies involving accelerated radiotherapy with carbogen and nicotinamide (ARCON)<sup>201-205</sup>. Early results from ARCON trials did not show any significant improvement in overall survival (OS) among patients with HNC, glioblastoma and non-small cell lung cancer <sup>206-209</sup>. However, recent clinical trials with ARCON, at low doses showed promising potential by exhibiting improved LCR, OS and DFS in squamous laryngeal cancer patients with hypoxic tumors <sup>210</sup>. Despite the ongoing research to control tumor hypoxia by elevating oxygen levels, special emphasis is on hypoxic radiosensitizers and hypoxic cell cytotoxins that preferentially sensitizes and kills hypoxic cells respectively.

#### 1.5.2. Hypoxic cell radiosensitizers

In early 1960s, hypoxic-cell radiosensitizers were developed as a result of an immense research to find an alternative approach to use of high-pressure oxygen tanks in radiosensitizing hypoxic cells <sup>211</sup>. These oxygen-substitutes possess the ability to diffuse into poorly vascularized

areas within the tumor and are said to achieve the desired radiosensitizing effect by chemical means<sup>212</sup>. The major reason for success of these molecules over oxygen is that they can penetrate further than oxygen and reach the hypoxic fractions within the tumor since they do not get rapidly metabolized by tumor cells through which they diffuse <sup>213</sup>. The mechanism of action behind this class of sensitizers is based on the principle of 'oxygen fixation' theory <sup>214-216</sup>. An ideal hypoxic cell radiosensitizer must be able to selectively sensitize hypoxic cells at a tolerable dose that would exert only minimum toxicity to normoxic tissues and must possess an optimum reduction potential which plays a crucial factor in the hypoxia selectivity. In addition, it must be chemically stable with optimal lipophilicity and efficient even at fairly low doses of radiation. Nitroimidazoles (NI) are the most common members of this class as their electron-affinic nitro group was designed to react with DNA radicals induced by ionizing radiation in a similar fashion as oxygen does <sup>217</sup>. 2-NI were established as better radiosensitizers as they exhibit higher reduction potential when compared to 4- and 5-NI <sup>218</sup>. Metronidazole and misonidazole which belong to 2-NI class were among the first few compounds that were identified for their hypoxic radiosensitization properties in both in vitro and animal models <sup>213,219-221</sup>. Although, both the molecules started as attractive promising agents in hypoxia directed cancer therapy, they eventually failed at clinical trials as an adjunct to radiotherapy by showing no survival benefits when compared to radiotherapy alone <sup>213,222,223</sup>. The treated patients also experienced a high incidence of peripheral neuropathy and convulsions at fractionated radiation doses <sup>202,222,224</sup>. The major reason behind the failure of these compounds is that only low radiosensitizing effect was achieved at tolerable doses of these drugs <sup>213</sup>. Hence, in an effort to improve the therapeutic benefit of NI, more polar analogues such as pimonidazole and etanidazole were developed <sup>225,226</sup>. Even though both the compounds showed improved therapeutic indices in preclinical models, their clinical application was again limited in

combination with radiotherapy by showing no significant benefit in patients with cervical carcinoma and HNC respectively <sup>227-229</sup>. Currently, nimorazole is the most successful example of a C5-derived NI-based radiosensitizer, which was reported to be less toxic when compared to other members of the class permitting use of tolerable high dosage <sup>230</sup>. The drug shows promise in clinical trials by exhibiting a significant overall improvement in LRC and DFS of HNSCC patients when combined with standard fractionated radiotherapy in a study conducted by the Danish Head and Neck Cancer group (DAHANCA) <sup>230,231</sup>. Recently, a novel class of NI alkylsulfonamide radiosensitizers has been identified and their potential in therapy is being explored <sup>232,233</sup>. In addition, the use of glycididazole (novel NI polymeric compound) as an efficient hypoxic radiosensitizer is underway <sup>234</sup>. Hence, several studies with new approaches are being carried out in the field of hypoxic-cell radiosensitizers in order to identify a potential clinical candidate.

# **1.6.** Hypoxic-cell Cytotoxins

#### **1.6.1.** Different classes of bioreductive drugs

The development of hypoxic-cell radiosensitizers led to the discovery of hypoxic-cell cytotoxins, also widely known as bioreductive drugs or hypoxia activated prodrugs (HAPs). Unlike the hypoxic-cell radiosensitizers which render solid tumors more radio-responsive during radiotherapy, HAPs preferentially kill the hypoxic cells within a tumor by cytotoxic metabolites that are generated through bioreductive activation. <sup>235-238</sup>. These prodrugs are considered superior to conventional anti-cancer agents in cancer therapy since they specifically target a unique subpopulation of cells within a solid tumor hence lowering the toxicity related side effects in well-oxygenated tissues <sup>3,239</sup>. With better drug delivery properties, an ideal HAP also possesses the potential of overcoming a major cause of hypoxia-induced radio- and chemo-resistance by exerting maximum cytotoxicity to the cells located farthest from the blood vessels <sup>16,240</sup>. This unique

characteristic feature of HAP makes it an attractive targeted strategy to turn tumor hypoxia into a therapeutic advantage either by acting alone or in combination with radiation and other existing chemotherapeutic drugs resulting in a synergistic response <sup>241-250</sup>. Based on their chemical moieties, HAPs are broadly classified into five main types namely, quinones, nitroaromatic compounds, aromatic N-oxides, aliphatic N-oxides and transition metal complexes <sup>251,252</sup>. In addition, the molecules are also grouped into two classes depending on the hypoxic threshold required for their activation by specific reductases. Class I HAPs include benzotriazine N,N-dioxides such as Tirapazamine (TPZ) and SN 30000 which are activated under relatively mild hypoxia to generate short-lived cytotoxic radicals that are restricted within the cell where they are formed <sup>253,254</sup>. Whereas nitro compounds such as PR-104 and evofosfamide (TH-302) fall under Class II HAPs which require severe hypoxia for enzymatic reduction and subsequent activation to produce stable prodrug radicals that are known to have longer lifetimes and these cytotoxins possess the added advantage of diffusing into moderately hypoxic cells and eliminating them, thus exerting a bystander effect <sup>241,248,255,256</sup>. In general, most HAPs (nitro compounds, benzotriazine di-oxides and quinones) are activated through one-electron reduction by flavin-oxidoreductases resulting in the formation of an oxygen-sensitive radical intermediate. Subsequently, the radical undergoes further reduction in hypoxia generating active toxic drug; whereas in the presence of oxygen, the intermediate is back-oxidized to the prodrug resulting in a futile metabolic cycle thus ensuring minimal toxicity to normoxic tissues <sup>257,258</sup>. In contrast, a few bioreductive prodrugs (PR-104 and AQ4N) are activated in an oxygen-independent manner, catalysed by certain twoelectron oxidoreductases <sup>259</sup>. Since, the two-electron reduction of the prodrug fails to generate an oxygen-sensitive radical intermediate, the process is irreversible and occurs in both normoxic and hypoxic tissues <sup>259</sup>.

Basically, the concept of HAPs arose from early studies in the 1980s which reported the bioreductive potential of mitomycin C, a quinone based derivative in a hypoxic environment *in vitro*<sup>260</sup>. The drug's low hypoxia selectivity in preclinical studies <sup>261</sup> led to the development of its analogues such as porfiromycin (POR) and apaziquone (EO9) with superior hypoxia selectivity over the lead compound <sup>262-264</sup>. However, although both the compounds demonstrated differential toxicity in early preclinical and clinical trials, unfortunately they were not explored further since it was concluded that POR was inferior to mitomycin C in a follow-up Phase III trial <sup>265</sup>; EO9 trials were restricted to study designs where only local administration of the drug was possible <sup>266</sup>. This was due to the drug's poor pharmacokinetic profile, but the possibility that EO9 might be effective in a loco-regional setting remains to be explored <sup>267</sup>.

In addition to sensitizing hypoxic cells to radiotherapy, nitroimidazoles also exhibit hypoxia-selective cytotoxicity in regard to their high electron affinity <sup>217,268</sup>. The dual functionality of NI was reported in several members of the class such as misonidazole, etanidazole, and doranidazole; these compounds having been shown to undergo oxygen-sensitive redox cycling, which is a typical feature of a bioreductive prodrug <sup>269-271</sup>. As discussed earlier, although these compounds except nimorazole did not show clinical promise in hypoxia therapy, a few molecules from this class are being successfully used as bioreductive hypoxia markers on the basis of their hypoxia-selective uptake property <sup>227,272-277</sup>. Moving forward, new generation cytotoxic nitroaromatic compounds such as TH-302 and PR-104 were discovered in an attempt to develop more effective NI based compounds <sup>246,278</sup>. These prodrugs bind selectively to hypoxic cells through complex reductive chemistry and eventually become activated to cytotoxic products which mediate cell killing predominantly through DNA damage <sup>256,279</sup>. Despite the advancement, several

clinical trials on both PR-104 and TH-302 yielded mixed results in various tumors; currently their potential to sensitize tumors to radiation is being assessed in ongoing trials <sup>279-284</sup>.

TPZ, an aromatic-N-oxide is the lead compound in the benzotriazine family and is one of the best characterized HAPs <sup>257</sup>. The mechanism behind the cytotoxic action of TPZ and its success in clinical trials will be discussed in detail in the upcoming section. In contrast to aromatic-N-oxides, aliphatic N-oxides induce hypoxia selective cytotoxicity through a different mechanism and the most clinically advanced molecule in that class is banoxantrone (AQ4N) <sup>285</sup>. A notable unique feature in AQ4N when compared to other bioreductive drugs, is that it exhibits hypoxia selectivity in an oxygen sensitive two electron-reduction rather than generation of ROS through redox cycling <sup>285</sup>. Even though the drug displayed a significant efficacy in preclinical mouse models and Phase I clinical trials, AQ4N unfortunately is yet to progress further than Phase II trials <sup>246,286,287</sup>. Mentionable examples of transition metal complexes which fall under the fifth class of HAPs include cobalt (III) and copper (I) complexes, which in turn become dissociated to release cytotoxic ligands <sup>288-290</sup>; the clinical usability of these compounds is currently being explored.

Overall, in spite of ongoing advancements in HAPs, most of the molecules failed to show significant clinical benefit, but a major limitation responsible for the failure may be a lack of sufficient patient stratification on the basis of tumor hypoxia <sup>36,291-294</sup>. Therefore, we can say that future clinical trials with promising HAPs would be worthwhile only if the abovementioned issue is addressed.

#### **1.6.2.** Drug of Interest: Tirapazamine (TPZ)

Although several hypoxia targeted cytotoxic agents have been developed in the past, ongoing studies are being vigorously pursued to identify better bioreductive agents that possess high hypoxic differential. Our drug of interest, TPZ (3-amino-1,2,4-benzotriazine-1,4 dioxide [alternatively known as tirazone, SR 4233, SR 259075 and WIN 59075]) emerged as a promising drug by satisfying this criteria as it exerts a relatively high hypoxic cytotoxic ratio (HCR)<sup>295</sup>. TPZ, a well-known anticancer drug, was first synthesized by Robbins and Schofield in 1957 as a derivative of 1,2,4-benzotriazines<sup>296</sup>. Even though TPZ was initially used during screening for herbicides in 1972, the drug was later found to target hypoxic tumor cells<sup>295</sup>. TPZ was the first HAP to be successfully tested in the clinic based on its high killing efficacy in hypoxic cells<sup>297</sup>. The drug, under very low oxygen levels, is thought to be activated by multiple reductases to form free radicals, which subsequently induce single and double strand breaks (SSB and DSBs), base damage and cell death <sup>298</sup>. TPZ is also known for its remarkable potential as an efficient adjunct to irradiation and chemotherapeutic agents<sup>299</sup>.

#### **1.6.2.1.** Molecular mechanism of preferential toxicity

The mechanism for the selective toxicity of TPZ towards hypoxic cells occurs as a result of intracellular enzymatic one electron reduction of the parent molecule to a free radical species, which in turn interacts with DNA and eventually causes cell death <sup>238</sup>. The reduction of TPZ under both aerobic and hypoxic conditions is mainly catalysed by NADPH-dependent cytochrome 450 reductase (P450R) enzymes resulting in the formation of a highly reactive oxygen-sensitive radical intermediate <sup>300-302</sup>. Other enzymes such as xanthine oxidase, aldehyde oxidase and cytochrome P450, DT-diaphorase are also reported to play a limited role in reducing TPZ <sup>303-306</sup>. In normal cells and tissues, oxygen removes the free electron from the TPZ radical thereby back-oxidizing it

to the non-toxic parent compound along with the production of other reactive oxygen species (ROS), including superoxide, which is moderately reactive by nature <sup>246,307-309</sup>. In contrast, in a hypoxic environment, the TPZ radical readily undergoes homolytic cleavage to the reduced product SR 4317 (mono-N-oxide metabolite) and a hydroxyl radical <sup>310-315</sup>. Although both the radicals can degrade DNA, the pattern of TPZ induced damages is characteristic of hydroxyl radicals, in which damage to both the DNA backbone and the heterocyclic bases occur <sup>312,314,316</sup>. Moreover, the TPZ radical is also said to undergo a different type of fragmentation reaction in a low oxygen state resulting in the generation of another DNA-damaging species, termed the benzotriazinyl radical (BTZ), formed by loss of a water molecule <sup>317</sup>. Similar to the hydroxyl radical, the BTZ radical is proven to be responsible for DNA strand cleavage and poisoning of topoisomerase II <sup>318-320</sup>. Topoisomerase II poisoning results either by direct damage from TPZ radicals or from radicals produced on the DNA molecules, which act as topoisomerase II substrates <sup>321</sup>. In addition to TPZ's ability to generate DNA damaging radicals under hypoxia, the drug also reacts with these DNA radicals, thereby acting as a substitute for molecular oxygen <sup>322</sup>. Basically, addition of TPZ to a DNA radical generates intermediates, which further undergo reduction and protonation, finally resulting in hydroxylation of the DNA molecule, which in turn leads to strand breaks <sup>323-325</sup>. Hence, the dual role of TPZ is the reason why the drug is highly efficient specifically in hypoxic cells. Besides the above factors, it has also been identified that TPZ selectively produces other DNA lesions such as abortive topoisomerase I-DNA complex and unligatable DNA ends during hypoxia which get converted to DSBs during replication <sup>298</sup>. Taken together, the overall level of TPZ radical-induced DNA damage under hypoxia; double-strand breaks in particular cause cell death. Even though the cytotoxicity of TPZ in hypoxic conditions has been examined in detail, that under normoxic conditions remained largely unexplored.

However, recent reports indicate that the ROS derived from superoxide through the reoxidation of TPZ under normoxic conditions causes oxidative DNA damage and DSBs <sup>298</sup>. Despite the fact that TPZ induces cell death under oxic conditions, the drug's cytotoxicity is markedly lower under normoxia when compared to hypoxia due to decreased efficacy of cell killing by normoxia-specific ROS rendering TPZ as a promising HAP candidate <sup>298</sup>.



Figure 1.6 Hypoxia-selective activation of TPZ

The diagram shows how the radical species derived from TPZ metabolism exhibit anticancer activity. Initially, the prodrug gets reduced to a reactive TPZ radical intermediate in the presence of CYP450R enzyme. In aerobic conditions, the radical intermediate is back-oxidized resulting in a futile cycle, whereas under hypoxia, the TPZ radical undergoes two different types of fragmentation reactions yielding hydroxyl and benzotriazinyl radicals, which causes DNA strand

cleavage and topoisomerase II poisoning <sup>326</sup>. Reproduced by permission from Elsevier Books: Medicinal Chemistry of Anticancer Drugs. Chapter 4 Anticancer Drugs Acting via Radical Species Radiotherapy and Photodynamic Therapy of Cancer. Carmen Avendaño and J. Carlos Menéndez, Copyright © 2015.

#### 1.6.2.2. Early studies of TPZ

The first experimental study of TPZ conducted in 1986 by Zeman et al., reported that the drug was a selective killer of hypoxic cells by exhibiting a high HCR ranging from 50-300 in mouse and Chinese hamster cells and 15-50 in human cell lines <sup>295</sup>. The decreased cytotoxicity ratio of TPZ in cells of human origin reflects the fact that the drug gets activated by different levels of enzymes in varying cell lines <sup>295,327</sup>. Durand and Olive demonstrated that TPZ shows minimum activity against cells in the centre of hypoxic spheroids, which suggested the possibility that the drug might get bioreductively inactivated before reaching the chronic hypoxic cells <sup>328</sup>. The above finding also explains why TPZ exhibits low cytotoxicity in in vivo models when compared to in *vitro*. Also, the variability in the sensitivity of TPZ within each tumor type depends strongly on its oxygenation status <sup>329,330</sup>. Apart from showing hypoxia selective cytotoxicity, TPZ also possesses radiosensitizing properties. The synergistic response of TPZ and radiation was initially demonstrated in (SCCVII) transplantable squamous cell mouse carcinoma by Brown and Lemmon <sup>331</sup>. The combined therapy drastically delayed tumor growth and the treatment was found to be more effective when TPZ was administered prior to radiotherapy rather than the reverse order, thereby confirming the fact that TPZ potentiates the effect of radiation <sup>331</sup>. Similar results had been reported in human colon cancer cell lines and melanoma cells <sup>332-334</sup>. It has also been demonstrated that the use of electric pulses along with TPZ and radiotherapy shows better outcome when compared to only radiochemotherapy (TPZ and radiation) <sup>335</sup>. Although, initially TPZ was designed to be used as an adjunct to irradiation, the drug has shown great efficacy when combined

with other chemotherapeutic agents, notably cisplatin (CIS)<sup>4</sup>. Besides better tumor control, a low level of toxicity was observed in normoxic tissues when TPZ was administered prior to cisplatin <sup>336</sup>. TPZ is said to potentiate the anti-cancer effects of CIS by inhibiting the repair of CIS-DNA adducts which is believed to be the major pathway by which the two drugs interact resulting in complementary cytotoxicity <sup>337</sup>. The dual sensitizing effect of TPZ in combinatorial therapy (radiation and other chemo drugs, especially CIS) was tested in most solid tumor types and its promising outcome led to the drug's entry into clinical trials.

#### **1.6.2.3. TPZ** Clinical trials and the setbacks

Phase I clinical trials of TPZ in combination with cisplatin or etoposide demonstrated safety of TPZ <sup>338,339</sup>. The studies also reported a significant outcome on tumor control in HNC, non-small cell lung cancer (NSCLC) and cervical cancer <sup>338-341</sup>. However, poor response was reported in studies where TPZ was the only therapeutic agent, suggesting that TPZ performs best when it is used as an adjunct to other cancer treatments rather than a monotherapy <sup>342</sup>. The most common side effects such as muscle cramping, nausea, vomiting, diarrhoea, weight loss, skin rash and acute reversible hearing loss were associated with the chemical dose of TPZ used for treatment <sup>342-345</sup>. However, since the TPZ-induced toxicities were reversible at tolerable chemical doses, the drug advanced to further trials.

Phase II trials with combined modality (either TPZ and radiation or TPZ and CIS) showed clinical advantages by improving overall outcome in advanced HNC, NSCLC, metastatic melanoma, ovarian cancer, cervical cancer and glioblastoma <sup>249,345-352</sup>. A notable result was achieved by Rischin *et al.*, in a randomized Phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02) in locally advanced HNC where they compared the effectiveness of two concurrent chemoradiotherapy regimens namely TPZ, CIS and radiation versus Fluorouracil

[FU- chemodrug], CIS and radiation <sup>353</sup>. The group which received TPZ/CIS regimen showed promising results by exhibiting better LRC and overall survival (OS) when compared to the other arm <sup>353</sup>. In addition, <sup>18</sup>F-FMISO PET imaging was used in a sub-study of TROG 98.02 (Phase II trial) to scan hypoxic tumors in HNC patients prior to the therapeutic regimen <sup>158</sup>. As expected, patients with hypoxic tumors who received TPZ/CIS regimen showed better benefit with fewer local recurrences when compared to the non-TPZ treated patients, supporting the fact that TPZ specifically targets hypoxic cells <sup>158</sup>. The possibility of using TPZ in combination with multiagent chemotherapy was examined by the Southwest Oncology Group (SWOG 0004) in limited-stage small-cell lung cancer (LSCLC)<sup>354</sup>. The results of the SWOG 0004 pilot study (Phase II trial) showed that TPZ when combined with CIS, etoposide (PE) and concurrent thoracic radiotherapy yielded promising survival rates indicating the potential use of TPZ with other therapeutic agents in future trials <sup>354</sup>. Despite, the success of TPZ in Phase-II trials, only a limited number of Phase III trials on TPZ were carried out. Due to the remarkable synergy between TPZ and CIS, two subsequent Phase III clinical trials CATAPULT I (CIS and TPZ in Subjects with Advanced Previously Untreated NSCL Tumors) and CATAPULT II were carried out. CATAPULT I showed improved clinical response and increased median survival time in NSCLC patients who received TPZ/CIS regimen when compared to only CIS arm thereby reconfirming the fact that TPZ enhances CIS activity <sup>355</sup>. Although CATAPULT II was initiated with a lot of expectations, unfortunately low OS and increased toxicity were observed in the CIS/TPZ arm when compared to CIS/PE resulting in early patient drop out; thus suggesting that TPZ might be useful in triple agent combination chemotherapy <sup>356</sup>. But the major reasons behind TPZ-arm related toxicity was using a generalized population without pre-identifying a hypoxic population and the use of concentrations as high as 390 mg/m<sup>2</sup> in the above study, even though the majority of Phase I and

II trials considered 330 mg/m<sup>2</sup> TPZ as the maximum tolerable concentration  $^{344,347,357}$ . Moreover, the results of the Phase III trial conducted by SWOG S0003 were disappointing, as addition of TPZ to a combination of paclitaxel and carboplatin in NSCLC patients showed increased toxicity and failed to demonstrate any survival benefit <sup>358</sup>. Similarly, a randomized multi-centre Phase III trial conducted by TROG 02.02 showed no therapeutic benefit of TPZ in advanced HNC patients, which was quite surprising considering the earlier promising results from Phase II trials conducted by the same group <sup>359</sup>. In addition, a recent Phase III randomized trial conducted by the Gynecologic Oncology Group (GOG 219) in 2014, which was closed early for accrual revealed that TPZ/CIS chemoradiotherapy was not superior to CIS chemoradiotherapy in terms of progression free survival (PFS) or OS in cervix cancer patients although the combination was fairly well tolerated in terms of dose <sup>299</sup>. The plausible explanation for the failure of the above studies (SWOG S0003, TROG 02.02 and GOG 219) would be mainly due to inadequate hypoxia within the tumors <sup>299,358,359</sup>. As mentioned earlier, TPZ benefit is most likely restricted to patients with hypoxic primaries and therefore only a well-defined group of patients who have a certain degree of hypoxia should be recruited for future TPZ clinical trials. Hence, a strict hypoxic patient stratification must be performed using either PET imaging or biomarkers such as p16 prior to treatment in order to achieve the best TPZ therapeutic benefit. Nevertheless, since TPZ is highly dependent on chemical dose and schedule <sup>336,360</sup>, these factors also should be considered for a better outcome along with the best combination of radio and chemotherapeutic agent that would boost the TPZ efficacy.

#### **1.6.2.4.** Recent advancements in TPZ studies

In addition to the above mentioned reasons with regard to TPZ failure in clinical trials, another major limitation that was highlighted in almost all TPZ trials was the drug's inability to

penetrate deeply into severely hypoxic tissue <sup>328,361-364</sup>. As discussed earlier, this would be due to the excessive metabolic consumption of TPZ as the drug is activated even at mild hypoxia thereby limiting its access to hypoxic zones <sup>361,362,365,366</sup>. Hence, in order to achieve an optimum TPZ efficacy, the drug's transport issue was addressed by development of several TPZ analogues with improved penetration and metabolism properties <sup>361,365</sup>. Of these analogues, SN30000 (also known as CEN-209) shows promise by exhibiting a better diffusion profile and efficient extravascular transport in multiple xenograft models when compared to the lead compound, but the compound is yet to enter clinical trials <sup>367-369</sup>. In addition, researchers have also tried to overcome the penetration issues of TPZ by encapsulating the drug into nanoparticles <sup>370,371</sup>. A recent study has reported that nanoparticles loaded with TPZ along with a photosensitizer exhibits significantly improved penetration properties ultimately resulting in enhanced anticancer activity of TPZ in both in vitro and in vivo models <sup>372</sup>. Although several researchers have addressed the limitations of TPZ, many groups have also developed analogues of the drug by exploiting desirable properties of the lead compound; few notable advancements have been discussed as follows. In 2014, Johnson and coworkers synthesized TPZ analogues containing nitrogen mustard units (DNA-alkylating agents), and these new agents showed potential by exerting both DNA-oxidizing and DNA-alkylating effect simultaneously on hypoxic tumor cells <sup>373</sup>. Their work was based on the idea of activating a DNA-alkylating species selectively in hypoxic tumor tissue by utilizing the electronic changes which resulted from the metabolic deoxygenation of TPZ analogues <sup>303,374,375</sup>. Hence, this remarkable union of two anticancer drugs is said to overcome the common limitation of TPZ displaying cytotoxicity only in a small subset of tumor cells where it undergoes bioreductive metabolism. The authors have shown that these new agents possess the superior ability to diffuse and kill neighbouring tumor cells present in both more moderate and severe hypoxic conditions <sup>373</sup>. Most recently, a group exploited the inherent fluorescent property of mono-N-oxide metabolite generated during hypoxic TPZ metabolism to detect the presence of bioreductive enzymes in tumor tissue <sup>376,377</sup>. Accordingly, they developed TPZ analogues which act as profluorescent substrates of one-electron reductases and thus may serve as diagnostic probes in identifying the enzymes involved in hypoxia-selective one-electron bioactivation of the drug <sup>378</sup>. Taken together, these profluorescent compounds can provide a basis for fluorescent based bioassays which would aid in identifying tumors that are highly responsive to hypoxic cytotoxins <sup>378</sup>.

# 1.7. Research objectives

Our research aims at transforming TPZ structurally in order to increase its cellular uptake and tissue penetration properties. As discussed earlier, hypoxic cells express abundant GLUTs, a key feature that we have exploited in our project. We have synthesized a glucose-conjugated TPZ ( $G_6$ -TPZ) derivative in an effort to improve the delivery of TPZ selectively to poorly oxygenated cells. We hypothesize that the addition of a glucose moiety to TPZ would render  $G_6$ -TPZ to be selectively recruited by the upregulated GLUT receptors, facilitating its entrapment in hypoxic cancer cells. Molecular modelling-based conformational analysis of  $G_6$ -TPZ docked into the binding pocket of GLUT-1 revealed binding kinetics similar to 2-deoxyglucose (Elsaidi *et al*, unpublished), which supports the targeting of our compound to the abundantly expressed GLUT receptors on hypoxic tumor cells. Subsequently, bioreductive activation of our molecules will take place selectively in a hypoxic environment, to generate cytotoxic drug species in oxygen-deficient cells, with minimal damage to their oxygenated counterparts. Together our approach aims to overcome the limitations of TPZ therapy. All the drug and/or chemical compounds, except  $G_6$ -TPZ which was synthesized by Naeja Pharmaceuticals (Kumar P., unpublished), used in this study were designed and synthesized by Dr Hassan Elsaidi, a senior researcher in our group. The efficacy of  $G_6$ -TPZ was tested using several cytotoxicity assays. Structures of the parent compound and  $G_6$ -TPZ are as follows.



3-Amino-1,2,4-benzotriazine 1,4-dioxide Chemical Formula:  $C_7H_6N_4O_2$ Exact Mass: 178.0491 Molecular Weight: 178.1510



Exact Mass: 414.1387 Molecular Weight: 414.3710 Although inducing DNA damage is considered as the major mechanism behind TPZ's cytotoxicity, we hypothesize that binding of bioreduced TPZ to cellular proteins under hypoxia would play a role in altering the drug's efficacy. Hence identifying the proteins bound to TPZ under hypoxic conditions could help to determine the pathway by which TPZ causes toxicity. This was addressed by incorporating an azido (N<sub>3</sub>) group to our parent compound (N<sub>3</sub>-TPZ) to exploit a click chemistry-based protocol. The azido group of N<sub>3</sub>-TPZ reacts with an alkyne in the presence of a copper catalyst at room temperature (RT) to form a stable triazole conjugate. Depending on the type of alkyne labelling (fluorophore or biotin), the drug-protein adducts can either be imaged using immunofluorescence staining or be pulled down with mutein streptavidin beads. Thus, we aimed to use our clickable prodrug of TPZ as a tool for mapping and imaging hypoxic cells *in vitro* in addition to isolating potential protein candidates that get modified by N<sub>3</sub>-TPZ under hypoxia.



As we knew the uptake of  $N_3$ -TPZ in a hypoxic cell can be monitored by click chemistry, we set out to exploit this property of the reagent to examine the localization of G<sub>6</sub>-TPZ. Accordingly, we designed a new derivative of TPZ by conjugation of both glucose and azido moieties ( $N_3$ -G<sub>6</sub>-TPZ) to our parent compound. The efficacy and localization of the compound were studied.

<u>N<sub>3</sub>-G<sub>6</sub>-TPZ</u>



Chemical Formula: C<sub>23</sub>H<sub>35</sub>N<sub>9</sub>O<sub>8</sub> Exact Mass: 565.2609 Molecular Weight: 565.5880

Overall, we carried out the above specified structural modifications on TPZ as an attempt to increase its clinical potential as an anticancer drug and our research goal was to examine the potency of these TPZ derivatives.

# **Chapter II - Materials and Methods**

# 2.1. Cell Culture

The FaDu head and neck squamous cell carcinoma cell line was obtained from American Type Culture Collection (ATCC, Manassas, VA). The cells were cultured in a 1:1 mixture of Dulbecco's Modified Eagle's Medium and Ham's F12 medium (DMEM/F12) supplemented with 10% fetal bovine serum (FBS), 1% L-glutamine, 1% penicillin/streptomycin and were maintained at 37°C under 5% CO<sub>2</sub> in a humidified incubator. All culture supplements were purchased from Invitrogen (Waltham, MA).

# 2.2. Hypoxic condition

To establish hypoxic conditions, treated/untreated cells cultured in media were placed in airtight chambers flushed with a gas mixture of 5%  $CO_2 / 95\% N_2$ . Oxygen concentrations within these chambers were maintained using Pro-Ox model O<sub>2</sub> regulators (BioSpherix, NY). We also followed another methodology to establish hypoxic conditions by pumping air out and replacing it with a gas mixture of 5%  $CO_2 / 95\% N_2$  to canisters which had treated/untreated cells cultured in media. The procedure was carried out for five cycles with an interval of 30 seconds in between. Another round of five cycles were repeated with a longer interval of 10 minutes in between. Thereafter, canisters were placed in the incubators at 37°C with 5%  $CO_2$ , for the required duration according to the experimental set-up.

# 2.3. Drug and/or chemical compounds

Tirapazamine (TPZ) used in the study was obtained from Sigma-Aldrich Canada Co, Oakville, ON, Canada (Product No: SML0552, CAS-No: 27314-97-2). Glucose-conjugated TPZ (G<sub>6</sub>-TPZ) was synthesized by Naeja Pharmaceuticals (Kumar P., unpublished). Other chemical compounds used in this study such as Azido-conjugated TPZ (N<sub>3</sub>-TPZ) and Azido-glucose-conjugated TPZ (N<sub>3</sub>-G<sub>6</sub>-TPZ) were designed, synthesized and their respective structures (presented in the prior chapter) were corroborated by Dr Hassan Elsaidi, a senior researcher in our group.

# 2.4. Cytotoxicity assays

#### 2.4.1. MTT assay

Cytotoxicity/cytostasis evaluation of TPZ and its derivatives was performed using the MTT [3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl-2H-tetrazolium bromide] assay as described by Mosmann et al.,<sup>379</sup> with slight modifications. Cell Proliferation Kit I (MTT) was purchased from Roche Diagnostics, Manheim, Germany (Catalogue No: 11465007001). FaDu cells (~3000 cells/well) were seeded in 96-well microtitre plates and incubated overnight at 37°C with 5% CO<sub>2</sub> allowing the cells to adhere to the surface. Next day, the cells were treated with varying concentrations of compound and the plates were incubated under normoxic (20% O<sub>2</sub>) and hypoxic (0.1% O<sub>2</sub>) conditions for 72 hours. Culture medium (DMEM/F12 and low glucose DMEM) without cells was set for background, according to the experimental set-up. In brief, after the required incubation period, a final volume of 50 µl MTT reagent was added to each well and the plates were further incubated for 3-5 hours at 37°C to form formazan crystals. DMSO was added to the wells to dissolve the formazan products and absorbance of the samples was measured spectrophotometrically using an ELISA plate reader at a wavelength of 564 nm. For optimal results, the absorbance of background wavelength (media only) was subtracted from other absorbance results.

#### 2.4.2. Crystal Violet Staining (CVS) assay

FaDu cells (~3000 cells/well) were seeded in 96-well microtitre plates and incubated overnight at 37°C with 5% CO<sub>2</sub>, allowing the cells to adhere to the surface. The cells were then treated with varying concentrations of compound and the plates were incubated under normoxic

(20% O<sub>2</sub>) and hypoxic (0.1% O<sub>2</sub>) conditions for 72 hours. Culture medium (DMEM/F12 and low glucose DMEM) without cells was set for background, according to the experimental set-up. After the required incubation period, media was aspirated and the plates were left to dry for a few minutes. This was followed by addition of crystal violet solution to the wells in order to stain the cells. Subsequently, the dye was discarded, plates were washed with water and left to dry overnight. Finally, methanol was added to the wells and the plates were further incubated for 20 minutes so as to dissolve the crystals. Absorbance of the samples was measured spectrophotometrically using an ELISA plate reader at a wavelength of 520 nm. For optimal results, the absorbance of background wavelength (media only) was subtracted from other absorbance results.

#### 2.4.3. Colony formation assay

FaDu cells (optimum density ranging from 300-3000 cells) were seeded in 60-mm tissue culture plates and incubated overnight at 37°C with 5% CO<sub>2</sub>, allowing the cells to adhere to the surface. The cells were then treated with varying concentrations of compound and the plates were incubated under normoxic (20% O<sub>2</sub>) and hypoxic (0.5% O<sub>2</sub>) conditions for 24 hours. Next day, the media was changed and the plates were incubated further for 14 days (at 37°C with 5% CO<sub>2</sub>) to let the colonies develop. After 14 days, the colonies were stained with crystal violet solution and counted.

#### 2.5. Western blot analysis

FaDu cells were seeded in 60-mm tissue culture plates and incubated overnight at  $37^{\circ}$ C with 5% CO<sub>2</sub>, allowing the cells to adhere to the surface. The treated/untreated cells were then exposed to both normoxic (20% O<sub>2</sub>) and variable hypoxic conditions for various time durations depending on the experimental set-up. Cells were washed twice with ice cold PBS and resuspended

in RIPA buffer (50 mM Tris-HCl pH 7.6, 150 mM NaCl, 1% deoxycholate, 1% Triton X-100, 1 mM Na<sub>3</sub>VO<sub>4</sub>, 50 mM NaF, 1 mM phenylmethylsulfonyl fluoride, protease and phosphatase inhibitor cocktail). Later, the cell lysates were sonicated and centrifuged at 20,000 g for 20 minutes at 4°C. Protein was quantified using the Bradford assay according to the manufacturer's protocol (Bio-Rad, USA). Protein (15-20 µg) was added to sample buffer (2% SDS, 10% glycerol, 0.02% bromophenol blue, 50 mM Tris HCl pH 6.8, 12.5 mM EDTA, 1% β-mercaptoethanol) and boiled for 5 minutes. Samples were separated in a 10% SDS-PAGE gel at 180 V for 1 hour at RT. The proteins were then transferred to a nitrocellulose membrane by wet transfer at 100 V for 2 hours at room temperature. In order to prevent non-specific protein binding, membranes were blocked in 5% non-fat milk in TBS-T (Tris buffered saline, 0.1% Tween-20) for 1 hour. Membranes were then immunostained with the following primary antibodies: rabbit anti-GLUT-1 (Abcam-ab652, 1:1000), mouse anti-HIF-1α (Novus biologicals-NB100-449, 1:1000) and mouse anti-actin (Santa Cruz-sc 47778, 1:2000) overnight at 4°C. Next day, membranes were washed 5 times for 7 minutes each in TBS-T and then were incubated with appropriate HRP-conjugated secondary antibody (goat anti-rabbit and goat anti-mouse) at 1:10,000 dilution in 5% milk for 1 hour at room temperature. Membranes were again washed 5 times for 7 minutes each in TBS-T followed by a 1X 5 minute PBS wash. Finally, the membranes were incubated with chemiluminescence (Thermo Scientific SuperSignal Plus reagent West Pico Chemiluminescent substrate) for 5 minutes prior to autoradiography.

# 2.6. Real-time reverse transcription polymerase chain reaction (Real-Time RT-PCR)

FaDu cells were seeded in 6-well tissue culture plates and incubated overnight at 37°C with 5% CO<sub>2</sub>, allowing the cells to adhere to the surface. Cells were then exposed to both normoxic

(20% O<sub>2</sub>) and variable hypoxic conditions (5, 2, 1, 0.5% O<sub>2</sub>) for various time durations (6, 12, 24 and 48 hour), depending on the experimental set-up. Total RNA was extracted using RNA extraction Manual PerfectPure RNA Cell and Tissue kit (5 Prime Inc, MD) according to manufacturer's protocol. RNAs were quantified by measuring the absorbance at 260 nm and respective cDNA was synthesized using the High Capacity cDNA Reverse Transcription Kit (Applied Biosystems, CA). Real time RT-PCR analysis was performed using 2  $\mu$ g of cDNA and TaqMan gene expression human primer/probe sets. The following primer/probes were used: GLUT-1 (Life Technologies-Hs00892681\_m1), LOX (Applied Biosystems- Hs00184706), and RPLPO (Applied Biosystems- 4333761). Relative fold changes were normalized to the control gene RPLPO and gene expression was quantified using comparative threshold cycle method (2<sup>- $\Delta\Delta$ Ct</sub>) as described by Pfaffl <sup>380</sup>.</sup>

### 2.7. Click Chemistry

FaDu cells (~0.5 million) were seeded on coverslips in 30-mm tissue culture plates and incubated overnight at 37°C with 5% CO<sub>2</sub>, allowing the cells to adhere to the surface. Cells were then treated with varying concentrations of compound and incubated under normoxic (20% O<sub>2</sub>) and hypoxic (<0.1% O<sub>2</sub>) conditions for 24 hours. Post-treatment, cells were fixed with 4% paraformaldehyde (PFA) in PBS for 20 minutes at RT and cells were washed thrice with PBS. This was followed by blocking and permeabilization of cells with PBS containing 1% BSA and 0.1% Triton-X-100 for 20 minutes and cells were again rinsed thrice with PBS. Click reaction was performed for 30 minutes at room temperature in the presence of Alexa Fluor 594 alkyne (Life Technologies, A10275) using the Click-iT Cell Reaction Buffer Kit (Thermo Fisher Scientific, Catalogue No: C10269) following the manufacturer's protocol. The cells were then washed thrice with PBS containing 0.01% Triton X-100 followed by a 3X PBS wash. Nuclei were counterstained

with Hoechst at room temperature for 5 minutes in the dark and cells were rinsed thrice with PBS. Finally, the coverslips were mounted on slides and images were obtained using a Zeiss LSM 710 laser scanning confocal microscopy (Carl Zeiss, Inc).

## **2.8.** Affinity Purification assay

FaDu cells were seeded on coverslips in 60-mm tissue culture plates and incubated overnight at 37°C with 5% CO<sub>2</sub>, allowing the cells to adhere to the surface. Cells were then treated with varying concentrations of the compound and incubated under normoxic  $(20\% O_2)$  and hypoxic (<0.1% O<sub>2</sub>) conditions for 24 hours. Cells were washed twice with ice cold PBS and re-suspended in RIPA buffer. The cell lysates were sonicated and centrifuged at 14,000 rpm for 20 minutes at 4°C. Protein was quantified using the Bradford assay according to the manufacturer's protocol. Later, click reaction was performed on the lysate for 30 minutes at room temperature in the presence of a non-PEGylated Biotin-Alkyne (Lumiprobe, Catalogue No: C37B0) using Click-iT Cell Reaction Buffer Kit following the manufacturer's protocol. The lysate was also blocked simultaneously with 0.1% BSA in PBS. Meanwhile, streptavidin mutein matrix was prepared according to the manufacturer's protocol (Roche Diagnostics, Catalogue No: 03708152001) and the beads were blocked for 1 hour with 1% BSA in PBS at room temperature. This was followed by incubating the clicked lysate with streptavidin mutein matrix overnight at 4°C and next day, the protein complexes were eluted four times with biotin (Sigma-Aldrich, B4501). Eluates were run on 10% SDS-PAGE gel and transferred to a nitrocellulose membrane. The membrane was blocked in 5% non-fat milk in TBS-T (Tris buffered saline, 0.1% Tween-20) for 1 hour to prevent non-specific binding, and then immunostained with the Streptavidin-HRP antibody (Thermo Fisher Scientific, RPN1231VS, 1:2000) overnight at 4°C. Next day, the membrane was washed 5 times for 7 minutes each in TBS-T followed by a 5 minute

PBS wash. Finally, the membrane was incubated with chemiluminescence reagent (Thermo Scientific SuperSignal West Pico Plus Chemiluminescent substrate) for 5 minutes prior to autoradiography.

# 2.9. Statistical Analysis

The experiments in the study were conducted in at least three independent runs. Data are presented as mean value  $\pm$  standard error of mean (SEM). The statistical analysis was performed with GraphPad Prism 7 Software (GraphPad Software Inc., USA) using an unpaired t-test. p < 0.05 was considered statistically significant.

# **Chapter III - Results**

# **3.1. Determination of optimum time and oxygen concentration** for GLUT-1 upregulation

In spite of the well-established fact that GLUT-1 has been regarded as a diagnostic hallmark of tumor hypoxia, we set out to investigate how GLUT-1 responds to various hypoxic conditions. Prior to testing the potential of glucose-conjugated TPZ (G<sub>6</sub>-TPZ), preliminary experiments were performed to determine the optimum hypoxic conditions at which GLUT-1 experiences the best upregulation. As discussed earlier, since HNC is a well-established tumor type for hypoxia studies, we chose FaDu cells (derived from a hypopharyngeal carcinoma cell line) as our model of study. A well-known hypoxia marker, LOX was used as a control gene in our studies in order to ensure that we attained appropriate hypoxia-induced gene responses in our study set up.

To study how GLUT-1 responds to decreasing O<sub>2</sub> concentrations, experiments were performed to determine the optimum oxygen concentration and time point at which GLUT-1 is maximally upregulated. FaDu cells exposed to varying levels of oxygen (20, 5, 2, 1 and 0.5% O<sub>2</sub>) for 24 hours, resulted in a progressive increase of GLUT-1 mRNA levels at decreasing O<sub>2</sub> concentrations, showing a significant increase at 0.5% O<sub>2</sub> when compared to 20% O<sub>2</sub> (ie., normoxic condition) [Figure 3.1 A]. As mentioned earlier, LOX was used as a control to ensure a caninocal hypoxia-induced response. Accordingly, LOX mRNA levels increased with decreasing O<sub>2</sub> concentrations with a maximal increase at 0.5% O<sub>2</sub> similarly as GLUT-1 mRNA levels [Figure 3.1 B]. GLUT-1 protein levels demonstrated a similar trend by showing a high induction of GLUT-1 protein at hypoxic conditions such as 1% and 0.5% O<sub>2</sub>, confirming the response of HIF-1 $\alpha$  to hypoxia in our study [Figure 3.2 B]. Taken together, 0.5% O<sub>2</sub> was considered for future hypoxic experiments since the concentration exhibited a constant increase of GLUT-1 at both the mRNA and protein levels.

In order to determine the response of GLUT-1 to varying exposure times in hypoxia, FaDu cells were exposed to 0.5% O<sub>2</sub> for 6, 12, 24 and 48 hours, which revealed that GLUT-1 mRNA levels increased with increasing exposure time reaching a maximum at 24 hours and later the levels declined sharply [Figure 3.3 A]. LOX mRNA levels were observed to be upregulated at the longer exposure time points, i.e. 24 and 48 hours [Figure 3.3 B]. Considering the fact that GLUT-1 mRNA showed a maximum upregulation at 24 hours and LOX mRNA levels correlates with the same, 24 hours was chosen as the optimum exposure time to hypoxia. Taken together, 0.5% O<sub>2</sub> and 24 hours incubation were considered as optimum conditions for further hypoxic experiments.





FaDu cells were seeded in 6-well plates and incubated overnight to adhere. The cells were then exposed to varying oxygen conditions for 24 hours. (A) Real time RT-PCR data shows that GLUT-1 mRNA levels increase progressively with a decrease in O<sub>2</sub> concentration in FaDu cells. (B) Real time RT-PCR of LOX mRNA levels reveals that LOX mRNA is highly upregulated with decreasing levels of O<sub>2</sub> with a maximal upregulation at 0.5% O<sub>2</sub>. The mRNA levels were measured by Real time RT-PCR and relative fold changes were normalized to the control gene RPLPO. The experiment was repeated twice and the error bars represent the standard error of the mean. The difference between different O<sub>2</sub> concentration versus 20% O<sub>2</sub> control was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. Thus, 0.5% O<sub>2</sub> was chosen as an optimum oxygen concentration for further experiments since mRNA levels of both GLUT-1 and LOX showed maximal upregulation at that oxygen concentration.



Figure 3.2 GLUT-1 and HIF-1 $\alpha$  protein are regulated by hypoxia in an oxygen concentration-dependent manner

FaDu cells were seeded in 60-mm dishes and incubated overnight to adhere. The cells were then exposed to 20%, 1% and 0.5%  $O_2$  for 24 hours. (A) Western blot analysis of FaDu cells exposed to various oxic conditions for 24 hours shows that GLUT-1 protein levels increase with decreasing levels of  $O_2$ .  $\beta$ -actin was used as a loading control. (B) Western blot analysis confirms upregulated HIF-1 $\alpha$  expression at 0.5% hypoxia and  $\beta$ -actin was used as a loading control. Hence, 0.5%  $O_2$  was chosen as an optimum oxygen concentration for further experiments since we observed a strong induction of GLUT-1 and HIF-1 $\alpha$  protein level at that oxygen concentration.



Figure 3.3 Time course of GLUT-1 response

FaDu cells were seeded in 6-well plates and incubated overnight to adhere. The cells were then exposed to either 20% or 0.5%  $O_2$  for 6, 12, 24 and 48 hours. (A) Real time RT-PCR data reveals that GLUT-1 mRNA levels increase linearly up to 24 hours with exposure to 0.5%  $O_2$  when compared to GLUT-1 mRNA levels at 20%  $O_2$  and later declines sharply at 48 hours in FaDu cells. (B) Real time RT-PCR shows that LOX mRNA levels are upregulated with increasing exposure time in 0.5%  $O_2$  compared to 20%  $O_2$  control levels. The mRNA levels were measured by Real time RT-PCR and relative fold changes were normalized to the control gene RPLPO. The experiment was repeated twice and the error bars represent the standard error of the mean. The difference between normoxia and hypoxia within each time point was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. We chose 24 hours as an optimum time for further experiments since mRNA levels of both GLUT-1 and LOX showed maximal upregulation during that time point at 0.5%  $O_2$ .

# **3.2. TPZ exhibits preferential hypoxic cytotoxicity in a concentration-dependent manner**

Following the determination of optimum hypoxic conditions, cytotoxicity of the parent compound (TPZ) was assessed using different assays such as the MTT, crystal violet staining and colony formation assay. We used three different approaches to screen cytotoxicity in order to validate the efficacy of the drug since each assay employs different parameters as a basis to assess cell death. In the MTT assay, which measures cellular metabolic activity, TPZ showed preferential cytotoxicity at low oxygen levels (0.5% O<sub>2</sub>) in a concentration-dependent manner with minimal toxicity under normoxia [Figure 3.4 A]. A similar trend of hypoxic cytotoxicity was observed in TPZ when assessed using crystal violet staining assay, which measures the DNA mass of living cells, and the IC<sub>50</sub> of the drug in hypoxia was observed to be approximately 10 μM, which is lower compared to treatment under normoxia [Figure 3.4 B]. We also evaluated the colony forming ability of cells treated with TPZ and the results correlated with the prior cytotoxicity data thereby reconfirming the hypoxia selective cytotoxicity of the parent compound [Figure 3.4 C]. Therefore, the cytotoxicity data of TPZ strongly establishes that the parent compound is highly hypoxia selective.



#### Figure 3.4 TPZ shows hypoxia-selective cytotoxicity in a concentration-dependent manner

Cytotoxicity of TPZ treated cells as observed using the MTT assay (A), crystal violet staining assay (CVS) (B) and colony forming assay (CFA) (C). In the MTT assay (A), FaDu cells (3000 cells/well) were seeded in 96-well plates and incubated overnight to adhere. The cells were then treated with increasing concentrations of TPZ and the plates were exposed to both normoxic  $(20\% O_2)$  and hypoxic  $(0.5\% O_2)$  conditions for 72 hours. Culture medium (DMEM) without cells was set for background. MTT was added to each well and the plates were further incubated for 3-5 hours to form formazan crystals. DMSO was added to dissolve the formazan products and absorbance of the samples was measured spectrophotometrically. Error bars represent the standard error of the mean. The difference between normoxia and hypoxia within each TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. In the CVS assay (B), FaDu cells (3000 cells/well) were seeded in 96-well plates and incubated overnight to adhere. The cells were then treated with increasing concentrations of TPZ and the plates were exposed to both normoxic (20%  $O_2$ ) and hypoxic (0.5%  $O_2$ ) conditions for 72 hours. Culture medium (DMEM) without cells was set for background. Media was aspirated post-treatment followed by addition of crystal violet solution to stain the cells. Crystals were dissolved using methanol and absorbance of the samples was measured spectrophotometrically. Error bars represent the standard error of the mean. The difference in percent colony formation between normoxia and hypoxia within each TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. In CFA, (C), FaDu cells (optimum density-ranging from 300 to 3000 cells) were seeded in 60-mm plates and incubated overnight to adhere. Next day, the cells were treated with increasing TPZ concentrations and the plates were exposed to both normoxic (20%  $O_2$ ) and hypoxic (0.5%  $O_2$ ) conditions for 24 hours. The media was changed and the plates were incubated for 14 days (at 37°C with 5% CO<sub>2</sub>) to let the colonies develop. Colonies were stained with crystal violet solution and counted. Error bars represent the standard error of the mean. The difference in percent colony formation between normoxia and hypoxia within each TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. The cytotoxicity data of TPZ (A, B, C) as assessed using these assays correlated with each other by displaying an IC<sub>50</sub> of approximately 10  $\mu$ M under hypoxia.

# **3.3.** G<sub>6</sub>-TPZ displays hypoxia-selective cytotoxicity at high concentrations

Following the toxicity studies with TPZ, we went on to examine the potential of glucoseconjugated TPZ (G<sub>6</sub>-TPZ) by examining the cytotoxicity of the compound in FaDu cells. As previously described, G<sub>6</sub>-TPZ was synthesized in an attempt to improve the delivery of TPZ selectively to poorly oxygenated cells by taking advantage of the upregulated GLUT receptors in hypoxic cancer cells. Initially, G<sub>6</sub>-TPZ did not show any hypoxic cytotoxicity in FaDu cells cultured in DMEM up to 100  $\mu$ M concentration. Later, the cells were glucose- starved by culturing them in low glucose DMEM prior to treatment with high concentrations of G<sub>6</sub>-TPZ. As shown in Figure 3.5A, the MTT assay of G<sub>6</sub>-TPZ displayed hypoxic cytotoxicity in low oxygen levels (0.1% O<sub>2</sub>) at very high concentrations of the compound (500 and 1000  $\mu$ M) whereas minimal toxicity was seen in the normoxic group. A similar, but slightly amplified, response of G<sub>6</sub>-TPZ was observed when assessed using CVS assay [Figure 3.5 B]. Since, we observed a hypoxiaspecific response only at high concentrations of G<sub>6</sub>-TPZ in FaDu cells, the compound was not used in the future studies.


Figure 3.5 G6-TPZ displays hypoxia-selective cytotoxicity at high concentrations

Cytotoxicity of G<sub>6</sub>-TPZ as observed using the MTT assay (A) and CVS assay (B). In the MTT assay (A), FaDu cells (3000 cells/well) were seeded in 96-well plates and incubated overnight to adhere. The cells were then treated with increasing concentrations of G<sub>6</sub>-TPZ and the plates were exposed to both normoxic (20%  $O_2$ ) and hypoxic (0.1%  $O_2$ ) conditions for 72 hours. Culture medium (low glucose DMEM) without cells was set for background. MTT was added to each well and the plates were further incubated for 3-5 hours to form formazan crystals. DMSO was added dissolve the formazan products and absorbance of the samples was measured to spectrophotometrically. Error bars represent the standard error of the mean. The difference between normoxia and hypoxia within each G<sub>6</sub>-TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. In the CVS assay (B), FaDu cells (3000 cells/well) were seeded in 96-well plates and incubated overnight to adhere. The cells were then treated with increasing concentrations of G<sub>6</sub>-TPZ and the plates were exposed to both normoxic (20%  $O_2$ ) and hypoxic (0.1%  $O_2$ ) conditions for 72 hours. Culture medium (low glucose DMEM) without cells was set for background. Media was aspirated post-treatment followed by addition of crystal violet solution to stain the cells. Crystals were dissolved using methanol and absorbance of the samples was measured spectrophotometrically. Error bars represent the standard error of the mean. The difference between normoxia and hypoxia within each  $G_6$ -TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. The cytotoxicity data of  $G_6$ -TPZ (A & B) as assessed using both MTT and CVS assays demonstrated a similar trend which correlated with each other by exhibiting hypoxia-selective cytotoxicity at very high concentrations of the compound.

### **3.4.** Effect of TPZ on the expression of HIF-1α

As discussed earlier, we hypothesize that binding of bioreduced TPZ to cellular proteins under hypoxia might contribute to the drug's cytotoxicity besides induction of DNA damage. Although we had a hint that TPZ is stabilized at protein level, it is still uncertain whether the drug binds directly to HIF-1 $\alpha$  protein or it is bound to the proteins which stabilize HIF-1 $\alpha$ . In order to investigate this effect, we performed a western blot analysis on proteins isolated from FaDu cells which were treated with increasing concentrations of TPZ and incubated at normoxic and hypoxic (0.5% O<sub>2</sub>) conditions for 24 hours [Figure 3.6]. A sharp decrease in the expression of HIF-1 $\alpha$  level was observed at 10  $\mu$ M TPZ treated hypoxic sample. This result is in accordance with our prior data which suggested the IC<sub>50</sub> of TPZ in hypoxia to be approximately 10  $\mu$ M when assessed using several cytotoxicity assays [Figure 3.4]. As expected, the HIF-1 $\alpha$  expression was observed to be low in normoxic TPZ treated samples. The data indicates the fact that TPZ inhibits the hypoxic stabilization of HIF- 1 $\alpha$  and therefore, we speculate that the drug might either bind directly to the HIF-1 $\alpha$  protein, or to the proteins that stabilize HIF-1 $\alpha$  and thereby let HIF-1 be proteasomally degraded. This stimulated our interest in identifying proteins that bind TPZ under hypoxia.

### 3.5. Click chemistry-based protocol using azido conjugated TPZ

As mentioned earlier, we designed an azido conjugated TPZ (N<sub>3</sub>-TPZ) derivative in an effort to identify TPZ binding proteins using a click chemistry-based approach. In addition, we also used our clickable prodrug of TPZ to image hypoxic cell content *in vitro* and to trace tumor hypoxia. The general principle of how N<sub>3</sub>-TPZ can be used to image hypoxic cells using click chemistry is illustrated in Figure 3.7. As our drug is hypoxia selective, it will get bioreductively activated under hypoxia thereby binding to cellular proteins. Subsequently, the azide group (N<sub>3</sub>) of N<sub>3</sub>-TPZ can react with an alkyne by click chemistry in the presence of a copper catalyst resulting in the formation a stable triazole conjugate. The labelling of the alkyne to a fluorophore would allow us to trace where the drug accumulates. Thus, N<sub>3</sub>-TPZ can be used as a tool to monitor TPZ uptake.

# **3.6.** N<sub>3</sub>-TPZ exhibits selective hypoxic cytotoxicity in a concentration-dependent manner

The hypoxic selectivity of N<sub>3</sub>-TPZ was initially assessed by examining the cytotoxicity of the compound using different assays in FaDu cells. As shown in Figure 3.8A, the MTT assay of N<sub>3</sub>-TPZ displayed selective cytotoxicity in low oxygen levels (0.1% O<sub>2</sub>) in a concentration-dependent manner whereas minimal toxicity was seen in the normoxic group. Similar, but a slightly amplified response of N<sub>3</sub>-TPZ was observed when assessed using the CVS and CFA assays [Figure 3.8B & C]. The IC<sub>50</sub> of N<sub>3</sub>-TPZ in hypoxia lies between 20-25 µM, which was lower than the response to the compound in normoxia treated cells. Taken together, N<sub>3</sub>-TPZ appeared to be hypoxia selective but slightly less toxic when compared to the parent compound (TPZ)

[Figure 3.4]. This indicated that N<sub>3</sub>-TPZ is a good model to study TPZ interactions since the azide modification did not seem to drastically alter the toxicity of the parent compound. Next, we went on to examine the response of N<sub>3</sub>-TPZ on HIF-1 $\alpha$  expression. Western blot analysis performed on proteins isolated from FaDu cells, which were treated with increasing concentrations of N<sub>3</sub>-TPZ and incubated under normoxic and hypoxic (0.5% O<sub>2</sub>) conditions for 24 hours, revealed that HIF-1 $\alpha$  protein levels decreased with increasing concentrations of N<sub>3</sub>-TPZ in hypoxic samples [Figure 3.8D]. A sharp decrease in the expression of HIF-1 $\alpha$  level was observed at 30  $\mu$ M N<sub>3</sub>-TPZ treated hypoxic sample. This result correlates with our prior data which suggested that the IC<sub>50</sub> of N<sub>3</sub>-TPZ under hypoxia to lie between 20-25  $\mu$ M when assessed using different cytotoxicity assays [Figure 3.8A, B & C].

### **3.7.** Hypoxia selective sub-cellular localization of N<sub>3</sub>-TPZ

Next, we went on to examine the localization of N<sub>3</sub>-TPZ using click chemistry. The click reaction was performed on FaDu cells that were treated with increasing concentrations of N<sub>3</sub>-TPZ for 24 hours under normoxic and hypoxic ( $<0.1 O_2$ ) conditions. Fluorescence images obtained from confocal microscopy reveals selective sub-cellular localization of N<sub>3</sub>-TPZ in cells exposed to hypoxia ( $<0.1 O_2$ ) [Figure 3.9]. It is evident that the compound displays cytoskeletal staining with nucleolar and nuclear localization. The click signal intensity was observed to be concentration dependent in hypoxic N<sub>3</sub>-TPZ treated cells [Figure 3.9B, C & D]. On the other hand, minimal to no background signal was detected in normoxic N<sub>3</sub>-TPZ treated cells even at high concentrations of the reagent [Figure 3.9A], which reconfirms the hypoxia selectivity of the compound. In addition, the Z-stack images acquired through confocal microscopy shows that N<sub>3</sub>-TPZ efficiently enters the cell under hypoxia [Figure 3.10], reconfirming the hypoxia selective sub-cellular

localization of the compound. Overall, we can say this methodology provides an approach to monitor TPZ cellular uptake.



Figure 3.6 TPZ inhibits hypoxic stabilization of HIF-1α

FaDu cells were seeded in 60-mm dishes and incubated overnight to adhere. The cells were then treated with increasing concentrations of TPZ under normoxic (20% O<sub>2</sub>) or hypoxic (0.5% O<sub>2</sub>) conditions for 24 hours. Following treatment, cell lysates were extracted and loaded on 10% SDS-PAGE gel. Later, the proteins that were transferred to a nitrocellulose membrane were immunostained overnight with anti-HIF-1 $\alpha$  antibody.  $\beta$ -actin was used as a loading control. Western blot analysis indicates a sharp decrease in the expression of HIF-1 $\alpha$  level in 10  $\mu$ M TPZ treated hypoxic cells whereas the HIF-1 $\alpha$  levels were elevated at lower concentrations (1 and 5  $\mu$ M) of TPZ treated hypoxic samples. In contrast, HIF-1 $\alpha$  expression was observed to be low in normoxic TPZ treated samples. This data suggests that higher concentrations of TPZ inhibits the hypoxic stabilization of HIF-1 $\alpha$ .



Figure 3.7 Experimental principle to image hypoxic cells using N<sub>3</sub>-TPZ click chemistry

Schematic diagram depicting the general principle of imaging hypoxic cells using N<sub>3</sub>-TPZ click chemistry. TPZ, being hypoxia selective, will become bioreductively activated under hypoxia, leading to its binding to cellular constituents including proteins. Subsequently, the azide group  $(N_3)$  of N<sub>3</sub>-TPZ reacts with an alkyne and the molecule undergoes a rapid click reaction in the presence of a copper catalyst resulting in the formation a stable triazole conjugate. The labelling of the alkyne to a fluorophore (Alexa) eventually allows us to detect where the compound accumulates.





D



#### Figure 3.8 N<sub>3</sub>-TPZ shows hypoxic cytotoxicity in a concentration-dependent manner

Cytotoxicity of N<sub>3</sub>-TPZ treated FaDu cells as observed using the MTT assay (A), CVS assay (B) and colony formation assay (CFA) (C). In the MTT assay (A), FaDu cells (3000 cells/well) were seeded in 96-well plates and incubated overnight to adhere. The cells were then treated with increasing concentrations of N<sub>3</sub>-TPZ and the plates were exposed to both normoxic (20% O<sub>2</sub>) and hypoxic (0.1% O<sub>2</sub>) conditions for 72 hours. Culture medium (DMEM) without cells was set for background. MTT was added to each well and the plates were further incubated for 3-5 hours to form formazan crystals. DMSO was added to dissolve the formazan products and absorbance of the samples was measured spectrophotometrically. Error bars represent the standard error of the mean. The difference between normoxia and hypoxia at each N<sub>3</sub>-TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. In the CVS assay (B), FaDu cells (3000 cells/well) were seeded in 96-well plates and incubated overnight to adhere. The cells were then treated with increasing concentrations of N<sub>3</sub>-TPZ and the plates were exposed to both normoxic (20% O<sub>2</sub>) and hypoxic (0.1% O<sub>2</sub>) conditions for 72 hours. Culture medium (DMEM) without cells was set for background. Media was aspirated post-treatment followed by addition of crystal violet solution to stain the cells. Crystals were dissolved using methanol and absorbance of the samples was measured spectrophotometrically. Error bars represent the standard error of the mean. The difference between normoxia and hypoxia within each N<sub>3</sub>-TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. In the CFA (C), FaDu cells (optimum density-ranging from 300 to 3000 cells) were seeded in 60-mm plates and incubated overnight to adhere. Next day, the cells were treated with increasing N<sub>3</sub>-TPZ concentrations and the plates were exposed to both normoxic (20% O<sub>2</sub>) and hypoxic  $(0.5\% O_2)$  conditions for 24 hours. The media was changed and the plates were incubated for 14 days (at 37°C with 5%  $CO_2$ ) to let the colonies develop. Colonies were stained with crystal violet solution and counted. Error bars represent the standard error of the mean. The difference in percent colony formation between normoxia and hypoxia within each N<sub>3</sub>-TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. The cytotoxicity data of N<sub>3</sub>-TPZ as assessed using these assays demonstrated a similar trend which correlated with each other by displaying an IC<sub>50</sub> value under hypoxia ranging between 20-25  $\mu$ M. (D) FaDu cells were seeded in 60-mm dishes and incubated overnight to adhere. The cells were then treated with varying concentrations of N<sub>3</sub>-TPZ and were exposed to both normoxic (20% O<sub>2</sub>) and hypoxic

 $(0.5\% O_2)$  conditions for 24 hours. Following treatment, cell lysates were extracted and run on 10% gel. Western blot analysis reveals that HIF-1 $\alpha$  protein levels decrease at increasing concentrations of N<sub>3</sub>-TPZ in hypoxic samples.  $\beta$ -actin was used as a loading control.



Figure 3.9 N<sub>3</sub>-TPZ click chemistry signal is concentration-dependent

FaDu cells were seeded on coverslips and incubated overnight to adhere. The cells were then treated with increasing concentrations of N<sub>3</sub>-TPZ for 24 hours under normoxic and hypoxic (<0.1% O<sub>2</sub>) conditions. Cells were fixed in 2% paraformaldehyde and click chemistry was performed at room temperature for 30 minutes using Alexa 594-alkyne. Nuclei were counterstained with Hoechst and images were obtained using confocal microscopy. The signal intensity was observed to be concentration dependent in hypoxic N<sub>3</sub>-TPZ treated cells whereas normoxic N<sub>3</sub>-TPZ treated cells exhibited minimum to no background signal.



#### Figure 3.10 Localization of N<sub>3</sub>-TPZ

Confocal microscopy reveals localization of N<sub>3</sub>-TPZ. FaDu cells were treated with 30  $\mu$ M N<sub>3</sub>-TPZ for 24 hours under hypoxic (<0.1% O<sub>2</sub>) conditions. Cells were fixed in 2% paraformaldehyde and click chemistry was performed at room temperature for 30 minutes using Alexa 594 alkyne. Nuclei were counterstained with Hoechst, and a range of Z-stack images were obtained. The image shows that the entrapment of N<sub>3</sub>-TPZ is cytoplasmic with nucleolar and nuclear localization.

# 3.8. Identification of potential protein binding partners of N<sub>3</sub>-TPZ

Following the success of imaging hypoxic cells using N<sub>3</sub>-TPZ click chemistry, we set out to identify the proteins that are bound to N<sub>3</sub>-TPZ using the same principle but with a biotinconjugated alkyne rather than an Alexa-alkyne. The click reaction was performed on whole cell lysates isolated from FaDu cells that were treated with 30  $\mu$ M N<sub>3</sub>-TPZ for 24 hours under normoxic and hypoxic (<0.1 O<sub>2</sub>) conditions. Use of biotin alkyne enabled us to pull down the N<sub>3</sub>-TPZ bound proteins with a streptavidin column. As shown in Figure 3.11, the schematic diagram illustrates the general principle of isolating potential protein candidates that get modified by N<sub>3</sub>-TPZ under hypoxia using click chemistry. The biotinylated N<sub>3</sub>-TPZ protein adducts that were eluted from the column using free biotin were run on SDS-PAGE along with clicked lysates, transferred to nitrocellulose membrane and were analysed using horseradish peroxidase (HRP)-coupled streptavidin to detect biotinylated proteins and a  $\beta$ -tubulin antibody. In this analysis, streptavidin-HRP signal was detected only in hypoxic N<sub>3</sub>-TPZ [Figure 3.12 A & B]. The  $\beta$ -tubulin signal confirms the efficiency of the streptavidin pull down and also highlights the low background non-specific binding to the beads.



Figure 3.11 Experimental principle of isolating potential N<sub>3</sub>-TPZ binding partners using click chemistry principle

A similar  $N_3$ -TPZ click chemistry principle described earlier for imaging hypoxic cells is used here to identify proteins that are bound to  $N_3$ -TPZ, but biotin-alkyne is used in place of an alexa-alkyne. Use of biotin-alkyne enables us to pull down the  $N_3$ -TPZ bound proteins with a streptavidin column. The biotin-alkyne bound  $N_3$ -TPZ proteins were loaded on streptavidin beads, where the biotin binds to streptavidin. Subsequently, the biotinylated proteins were eluted using free biotin and the eluates run on an SDS-PAGE gel is finally probed and visualized with streptavidin HRP.



#### Figure 3.12 Isolation of potential binding partners of N<sub>3</sub>-TPZ using click chemistry

Click chemistry with a biotin labelled alkyne was performed on the cell lysates isolated from FaDu cells that had been treated with 30  $\mu$ M N<sub>3</sub>-TPZ for 24 hours under normoxic and hypoxic (< 0.1%) conditions. This was followed by pull down of potential binding partners using streptavidin mutein beads. Clicked lysates (a) and eluates (b) were run on SDS-PAGE, transferred to nitrocellulose membrane and biotinylated proteins were detected with streptavidin-HRP, and  $\beta$ -tubulin by standard western blot. In both clicked lysate and eluates, streptavidin-HRP signal was detected only in hypoxic N<sub>3</sub>-TPZ treated lane indicating the specificity of protein modification by N<sub>3</sub>-TPZ. The  $\beta$ -tubulin signal validated the efficiency of pull down and highlighted the low background non-specific binding to the beads.

Since streptavidin-HRP signal was detected only in hypoxic N<sub>3</sub>-TPZ treated cell eluates, they were further analyzed by liquid chromatography coupled mass spectrometry (LC-MS/MS) along with controls consisting of the eluate from hypoxic, but otherwise untreated, cells, and the whole cell lysate from hypoxic cells that underwent the click reaction without being treated with N<sub>3</sub>-TPZ (Table 3.1-3.3). Since many proteins appeared in the latter control, only the common proteins found between this group and hypoxic N<sub>3</sub>-TPZ treated eluate are tabulated in Table 3.3 and the rest of the proteins identified in the hypoxic whole cell clicked lysate are expanded in the appendix (Table A1).

As MS/MS-based proteomic studies are based on peptides, the proteins within a group are ranked depending on (a) the number of peptide sequences unique to a protein group, (b) the number of PSMs [(peptide-spectrum match)- total number of identified peptide spectra match for the protein], (c) their protein score (the sum of ion scores of all peptides that were identified), and (d) sequence coverage (% of the protein sequence covered by identified peptides). Ultimately, the top ranking protein of a group becomes the master protein of that group and is displayed in the search results report. As shown in Table 3.1, the analysis of the eluate from the hypoxic untreated cells (control) contains far fewer proteins when compared to Table 3.2, which showcases the analysis of hypoxic N<sub>3</sub>-TPZ treated eluate. In addition, we also observed that the score, coverage and PSMs are considerably lower in the hypoxic control (Table 3.1) when compared to the cells treated with N<sub>3</sub>-TPZ under hypoxia (Table 3.2). Since in the hypoxic control, the proteins adhere to the column in the absence of a streptavidin interaction, the few proteins identified in that group (Table 3.1) presumably bind to the column through an alternative non-specific interaction. The fact that many more proteins were recovered from the N<sub>3</sub>-TPZ treated cells than the untreated cells

provides strong evidence that the proteins listed in Table 3.2 are biotinylated, which is in agreement with what we visually observed in the gel (Figure 3.12).

Furthermore, our proteomic analysis demonstrates that although the labeling of the proteins is enriched for a sub fraction of the proteome, we observed that the labeling is not highly specific. Figure 3.13 graphically displays the comparison of data sets of the whole proteome (obtained from the hypoxic whole cell clicked lysate) versus the N<sub>3</sub>-TPZ treated cell eluate. We observed that the N<sub>3</sub>-TPZ adducted proteins are proportional to their abundance as viewed by the positive slope of the data in Figure 3.13 A, which demonstrates the signal intensity of each protein from each sample versus each other. In addition, we also identified that some very high abundance proteins are not observed in the hypoxic N<sub>3</sub>-TPZ treated cell eluates, which implies that many high abundance proteins do not react with TPZ. A similar trend was observed in Figure 3.13 B, which displays the alignment of all proteins with their respective observed ion intensities from the hypoxic N<sub>3</sub>-TPZ treated cell eluate and hypoxic whole cell lysate (highlighted by red and black lines respectively). The relative ion intensity denotes the amount of ion produced with respect to the amount of the most abundant ion in the mass spectrum. Again, we observed that a large number of proteins are demonstrated to not be detected in the drug association experiment. Collectively, we could say that although N<sub>3</sub>-TPZ labels diverse proteins, numerous high abundance proteins escape such labelling for a reason, which is unknown. Few notable examples of those highly abundant proteins that escaped N<sub>3</sub>-TPZ labelling are heat shock protein 75 kDa, peroxiredoxin-4, plectin and ubiquitin-40S ribosomal protein. In contrast, we also observed several low abundance proteins that were preferentially labelled by N<sub>3</sub>-TPZ, for example junction plakoglobin, desmoplakin, T-complex protein 1 subunit delta and proliferating cell nuclear antigen.

We identified a few highly abundant proteins that were labelled by N<sub>3</sub>-TPZ under hypoxia. Since it is possible that modification of some of these proteins may contribute to the toxicity of TPZ we used STRING (Search Tool for the Retrieval of Interacting Genes/Proteins) database to examine potential protein-protein interactions among the 13 most highly ranked proteins (Figure 3.14). Although our protein network was enriched in variable biological processes, molecular functions, reactome pathways and several protein domains, we specifically focussed on the cellular component since we were interested in examining the localization of the compound. As shown in Figure 3.14, we observed enrichment of our input proteins in both nucleus and cytoplasm moderately in our network as estimated by STRING; and the result correlated with our prior data observed during N<sub>3</sub>-TPZ imaging studies (Figure 3.9 and 3.10). In addition, we also identified that eukaryotic translation initiation factor 4A-I and II were labelled by N<sub>3</sub>-TPZ under hypoxia (Figure 3.14). This finding is interesting given that a previous TPZ study found an association of TPZ with another eukaryotic translation initiation factor (eIf $2\alpha$ )<sup>392</sup>. It was reported that the down-regulation of HIF-1 $\alpha$  by TPZ was largely dependent on the phosphorylation of this translation initiation factor <sup>392</sup>.

| Accession  | Description                                  | Score | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|----------------------------------------------|-------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| P08238     | Heat shock protein HSP 90-<br>beta           | 34.34 | 7.04     | 1          | 4                    | 4          | 10     | 724   | 83.2        | 5.03     |
| P06733     | Alpha-enolase                                | 34.06 | 12.90    | 1          | 4                    | 4          | 10     | 434   | 47.1        | 7.39     |
| E7EUT5     | Glyceraldehyde-3- phosphate<br>dehydrogenase | 21.20 | 17.69    | 2          | 3                    | 3          | 7      | 260   | 27.9        | 6.95     |
| Q5ST81     | Tubulin beta chain                           | 18.80 | 5.91     | 7          | 2                    | 2          | 6      | 372   | 41.7        | 4.91     |
| A0A0A0MSI0 | Peroxiredoxin-1 (Fragment)                   | 14.97 | 27.49    | 2          | 4                    | 4          | 5      | 171   | 19.0        | 6.92     |
| P63104     | 14-3-3 protein zeta/delta                    | 10.71 | 10.61    | 2          | 2                    | 2          | 3      | 245   | 27.7        | 4.79     |
| A6NMY6     | Putative annexin A2-like<br>protein          | 9.30  | 6.19     | 2          | 2                    | 2          | 3      | 339   | 38.6        | 6.95     |
| A8MW50     | L-lactate dehydrogenase<br>(Fragment)        | 9.11  | 18.10    | 2          | 3                    | 3          | 3      | 232   | 25.2        | 5.81     |
| P16403     | Histone H1.2                                 | 8.83  | 15.96    | 3          | 3                    | 3          | 3      | 213   | 21.4        | 10.93    |
| P10809     | 60 kDa heat shock protein,<br>mitochondrial  | 8.62  | 5.76     | 1          | 3                    | 3          | 3      | 573   | 61.0        | 5.87     |

 Table 3.1 LC-MS/MS analysis for hypoxic cell control eluate (untreated with N3-TPZ)

### Table 3.2 LC-MS/MS analysis for hypoxic N<sub>3</sub>-TPZ treated cell eluate

| Accession | Description                                 | Score  | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|---------------------------------------------|--------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| P04406    | Glyceraldehyde-3-phosphate<br>dehydrogenase | 197.29 | 23.28    | 1          | 6                    | 6          | 91     | 335   | 36.0        | 8.46     |
| P08238    | Heat shock protein HSP 90-<br>beta          | 185.60 | 14.78    | 1          | 3                    | 10         | 66     | 724   | 83.2        | 5.03     |
| P07900    | Heat shock protein HSP 90-<br>alpha         | 184.99 | 13.39    | 1          | 3                    | 9          | 65     | 732   | 84.6        | 5.02     |
| P11142    | Heat shock cognate 71 kDa protein           | 131.70 | 18.58    | 1          | 7                    | 10         | 52     | 646   | 70.9        | 5.52     |
| P07437    | Tubulin beta chain                          | 126.89 | 30.63    | 1          | 3                    | 11         | 49     | 444   | 49.6        | 4.89     |
| H3BTN5    | Pyruvate kinase (Fragment)                  | 116.44 | 18.97    | 2          | 8                    | 8          | 39     | 485   | 53.0        | 6.84     |
| P68104    | Elongation factor 1-alpha 1                 | 113.30 | 14.50    | 2          | 5                    | 5          | 41     | 462   | 50.1        | 9.01     |
| P68371    | Tubulin beta-4B chain                       | 106.02 | 30.56    | 1          | 3                    | 11         | 41     | 445   | 49.8        | 4.89     |
| P11021    | 78 kDa glucose-regulated protein            | 89.65  | 19.72    | 1          | 7                    | 9          | 33     | 654   | 72.3        | 5.16     |
| P0DMV8    | Heat shock 70 kDa protein                   | 86.80  | 9.98     | 2          | 3                    | 5          | 31     | 641   | 70.0        | 5.66     |
| P60174    | Triosephosphate isomerase                   | 82.44  | 18.88    | 1          | 4                    | 4          | 27     | 286   | 30.8        | 5.92     |
| P60709    | Actin, cytoplasmic 1                        | 80.24  | 29.60    | 2          | 8                    | 8          | 29     | 375   | 41.7        | 5.48     |
| P10809    | 60 kDa heat shock protein,<br>mitochondrial | 78.10  | 18.67    | 1          | 8                    | 8          | 29     | 573   | 61.0        | 5.87     |

| Accession | Description                                                 | Score | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|-------------------------------------------------------------|-------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| P07195    | L-lactate dehydrogenase B<br>chain                          | 77.27 | 24.25    | 1          | 6                    | 7          | 32     | 334   | 36.6        | 6.05     |
| P63104    | 14-3-3 protein zeta/delta                                   | 68.07 | 17.96    | 2          | 3                    | 4          | 24     | 245   | 27.7        | 4.79     |
| P07355    | Annexin A2                                                  | 65.81 | 24.48    | 1          | 7                    | 7          | 24     | 339   | 38.6        | 7.75     |
| P06733    | Alpha-enolase                                               | 61.87 | 20.05    | 1          | 6                    | 6          | 21     | 434   | 47.1        | 7.39     |
| P09211    | Glutathione S-transferase P                                 | 58.76 | 36.19    | 1          | 6                    | 6          | 47     | 210   | 23.3        | 5.64     |
| P38646    | Stress-70 protein,<br>mitochondrial                         | 56.97 | 17.82    | 1          | 9                    | 9          | 20     | 679   | 73.6        | 6.16     |
| P68363    | Tubulin alpha-1B chain                                      | 56.62 | 22.39    | 1          | 7                    | 7          | 21     | 451   | 50.1        | 5.06     |
| E7EQG2    | Eukaryotic initiation factor<br>4A-II                       | 52.05 | 6.63     | 3          | 2                    | 2          | 17     | 362   | 41.3        | 5.64     |
| A0A0U1RQ  | Fatty acid synthase                                         | 50.44 | 5.06     | 2          | 11                   | 11         | 20     | 2509  | 273.0       | 6.47     |
| H3BUH7    | Fructose-bisphosphate<br>aldolase A (Fragment)              | 48.64 | 34.19    | 5          | 4                    | 4          | 18     | 155   | 16.9        | 8.56     |
| P62258    | 14-3-3 protein epsilon                                      | 46.50 | 17.65    | 1          | 3                    | 4          | 19     | 255   | 29.2        | 4.74     |
| A0A0B4J1  | Transketolase                                               | 41.95 | 17.51    | 2          | 5                    | 5          | 13     | 457   | 49.9        | 7.91     |
| С9Ј9КЗ    | 40S ribosomal protein SA<br>(Fragment)                      | 40.04 | 15.59    | 3          | 3                    | 3          | 12     | 263   | 29.4        | 5.25     |
| P25705    | ATP synthase subunit alpha,<br>mitochondrial                | 37.98 | 11.93    | 1          | 5                    | 5          | 15     | 553   | 59.7        | 9.13     |
| O43175    | D-3-phosphoglycerate<br>dehydrogenase                       | 37.21 | 9.19     | 1          | 4                    | 4          | 14     | 533   | 56.6        | 6.71     |
| P14625    | Endoplasmin                                                 | 37.19 | 5.73     | 1          | 3                    | 4          | 14     | 803   | 92.4        | 4.84     |
| P00505    | Aspartate aminotransferase,<br>mitochondrial                | 36.27 | 9.53     | 1          | 3                    | 3          | 13     | 430   | 47.5        | 9.01     |
| P07737    | Profilin-1                                                  | 36.25 | 31.43    | 1          | 3                    | 3          | 17     | 140   | 15.0        | 8.27     |
| P27348    | 14-3-3 protein theta                                        | 35.01 | 13.06    | 1          | 1                    | 3          | 14     | 245   | 27.7        | 4.78     |
| P61981    | 14-3-3 protein gamma                                        | 34.72 | 17.00    | 1          | 2                    | 4          | 14     | 247   | 28.3        | 4.89     |
| P11586    | C-1-tetrahydrofolate<br>synthase, cytoplasmic               | 32.93 | 7.17     | 2          | 5                    | 5          | 12     | 935   | 101.5       | 7.30     |
| A0A0A0MS  | Peroxiredoxin-1                                             | 31.60 | 32.16    | 2          | 5                    | 5          | 13     | 171   | 19.0        | 6.92     |
| D6RF44    | Heterogeneous nuclear<br>ribonucleoprotein D0<br>(Fragment) | 31.25 | 28.83    | 5          | 2                    | 3          | 12     | 111   | 12.5        | 8.57     |
| Q14247    | Src substrate cortactin                                     | 31.19 | 10.55    | 1          | 4                    | 4          | 11     | 550   | 61.5        | 5.40     |
| P04083    | Annexin A1                                                  | 28.90 | 18.79    | 1          | 5                    | 5          | 11     | 346   | 38.7        | 7.02     |
| A0A087WV  | Filamin-A                                                   | 27.72 | 4.58     | 4          | 7                    | 7          | 11     | 2315  | 245.7       | 5.97     |
| E9PPU1    | 40S ribosomal protein S3                                    | 25.58 | 27.85    | 4          | 4                    | 4          | 10     | 158   | 17.4        | 9.50     |
| Q5T6W2    | Heterogeneous nuclear<br>ribonucleoprotein K<br>(Fragment)  | 25.02 | 12.66    | 2          | 3                    | 3          | 9      | 379   | 41.8        | 5.59     |
| P35579    | Myosin-9                                                    | 24.95 | 2.35     | 1          | 3                    | 3          | 9      | 1960  | 226.4       | 5.60     |

| Accession | Description                                                     | Score | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|-----------------------------------------------------------------|-------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| G3V1A4    | Cofilin 1 (Non-muscle),<br>isoform CRA_a                        | 23.86 | 26.17    | 3          | 3                    | 3          | 9      | 149   | 16.8        | 8.35     |
| H0Y2X5    | Aldehyde dehydrogenase 1<br>family, member A3, isoform<br>CRA_b | 23.72 | 12.10    | 2          | 4                    | 4          | 9      | 405   | 44.2        | 7.56     |
| F8W0G4    | Poly(rC)-binding protein 2<br>(Fragment)                        | 23.04 | 24.05    | 6          | 2                    | 3          | 9      | 158   | 16.6        | 7.77     |
| P23526    | Adenosylhomocysteinase                                          | 22.40 | 8.10     | 1          | 3                    | 3          | 9      | 432   | 47.7        | 6.34     |
| G3V576    | Heterogeneous nuclear<br>ribonucleoproteins C1/C2               | 21.24 | 16.45    | 7          | 3                    | 3          | 8      | 231   | 25.2        | 9.82     |
| H0YH81    | ATP synthase subunit beta,<br>mitochondrial (Fragment)          | 21.18 | 20.99    | 2          | 5                    | 5          | 8      | 362   | 38.2        | 5.55     |
| Q9UQ80    | Proliferation-associated<br>protein 2G4                         | 20.36 | 10.41    | 1          | 3                    | 3          | 7      | 394   | 43.8        | 6.55     |
| P13639    | Elongation factor 2                                             | 19.49 | 4.08     | 1          | 3                    | 3          | 8      | 858   | 95.3        | 6.83     |
| G3V203    | 60S ribosomal protein L18                                       | 18.52 | 22.56    | 4          | 3                    | 3          | 7      | 164   | 18.7        | 11.59    |
| Q15365    | Poly(rC)-binding protein 1                                      | 18.14 | 11.24    | 1          | 2                    | 3          | 7      | 356   | 37.5        | 7.09     |
| H0Y400    | Spliceosome RNA helicase<br>DDX39B (Fragment)                   | 18.10 | 12.83    | 4          | 2                    | 2          | 7      | 187   | 21.8        | 5.12     |
| D6R9P3    | Heterogeneous nuclear<br>ribonucleoprotein A/B                  | 18.06 | 8.57     | 3          | 1                    | 2          | 7      | 280   | 30.3        | 7.91     |
| F5GY37    | Prohibitin-2                                                    | 17.93 | 9.36     | 3          | 2                    | 2          | 7      | 267   | 29.7        | 9.88     |
| P40925    | Malate dehydrogenase,<br>cytoplasmic                            | 17.16 | 8.08     | 1          | 2                    | 2          | 6      | 334   | 36.4        | 7.36     |
| P00338    | L-lactate dehydrogenase A<br>chain                              | 16.70 | 12.65    | 1          | 3                    | 4          | 7      | 332   | 36.7        | 8.27     |
| P24534    | Elongation factor 1-beta                                        | 16.16 | 12.44    | 1          | 2                    | 2          | 5      | 225   | 24.7        | 4.67     |
| Q3BDU5    | Prelamin-A/C                                                    | 15.65 | 9.65     | 2          | 4                    | 4          | 6      | 487   | 55.6        | 6.65     |
| H9KV75    | Alpha-actinin-1                                                 | 15.37 | 3.16     | 3          | 2                    | 2          | 6      | 822   | 94.8        | 5.69     |
| P50991    | T-complex protein 1 subunit delta                               | 15.34 | 5.01     | 1          | 2                    | 2          | 6      | 539   | 57.9        | 7.83     |
| P49411    | Elongation factor Tu,<br>mitochondrial                          | 15.00 | 7.96     | 1          | 3                    | 3          | 6      | 452   | 49.5        | 7.61     |
| P62937    | Peptidyl-prolyl cis-trans<br>isomerase A                        | 15.00 | 12.12    | 1          | 2                    | 2          | 6      | 165   | 18.0        | 7.81     |
| H7C3I1    | Hsc70-interacting protein<br>(Fragment)                         | 14.71 | 16.44    | 5          | 2                    | 2          | 5      | 146   | 16.3        | 4.88     |
| E7EQR4    | Ezrin                                                           | 14.09 | 4.78     | 2          | 2                    | 2          | 5      | 586   | 69.3        | 6.16     |
| B1AHC9    | X-ray repair cross-<br>complementing protein 6                  | 12.64 | 4.83     | 2          | 2                    | 2          | 4      | 559   | 64.2        | 9.28     |
| Q9Y277    | Voltage-dependent anion-<br>selective channel protein 3         | 12.41 | 8.13     | 1          | 1                    | 2          | 5      | 283   | 30.6        | 8.66     |

| Accession | Description                                             | Score | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|---------------------------------------------------------|-------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| A0A0J9YX  | Glucose-6-phosphate<br>isomerase (Fragment)             | 12.15 | 11.94    | 6          | 2                    | 2          | 4      | 268   | 30.4        | 9.01     |
| F8VPE8    | 60S acidic ribosomal protein<br>P0 (Fragment)           | 11.75 | 30.07    | 6          | 3                    | 3          | 4      | 153   | 16.7        | 9.33     |
| P30050    | 60S ribosomal protein L12                               | 11.66 | 18.79    | 1          | 2                    | 2          | 4      | 165   | 17.8        | 9.42     |
| P00558    | Phosphoglycerate kinase 1                               | 11.14 | 6.71     | 1          | 2                    | 2          | 4      | 417   | 44.6        | 8.10     |
| P15924    | Desmoplakin                                             | 10.83 | 1.08     | 1          | 3                    | 3          | 4      | 2871  | 331.6       | 6.81     |
| P12004    | Proliferating cell nuclear<br>antigen                   | 10.47 | 12.26    | 1          | 2                    | 2          | 5      | 261   | 28.8        | 4.69     |
| P23284    | Peptidyl-prolyl cis-trans<br>isomerase B                | 10.40 | 12.04    | 1          | 2                    | 2          | 7      | 216   | 23.7        | 9.41     |
| P13667    | Protein disulfide-isomerase<br>A4                       | 10.31 | 3.57     | 1          | 2                    | 2          | 4      | 645   | 72.9        | 5.07     |
| P50395    | Rab GDP dissociation<br>inhibitor beta                  | 10.07 | 5.17     | 1          | 2                    | 2          | 4      | 445   | 50.6        | 6.47     |
| B4DUR8    | T-complex protein 1 subunit<br>gamma                    | 9.79  | 6.60     | 2          | 3                    | 3          | 4      | 500   | 55.6        | 5.64     |
| P26641    | Elongation factor 1-gamma                               | 9.78  | 5.95     | 1          | 2                    | 2          | 3      | 437   | 50.1        | 6.67     |
| H7BZ94    | Protein disulfide-isomerase                             | 9.72  | 5.17     | 2          | 2                    | 2          | 3      | 464   | 52.5        | 4.87     |
| P62269    | 40S ribosomal protein S18                               | 9.43  | 11.18    | 1          | 2                    | 2          | 4      | 152   | 17.7        | 10.99    |
| F5GZS6    | 4F2 cell-surface antigen<br>heavy chain                 | 8.03  | 6.51     | 3          | 3                    | 3          | 3      | 599   | 64.8        | 5.10     |
| Q92598    | Heat shock protein 105 kDa                              | 7.82  | 4.90     | 1          | 3                    | 3          | 3      | 858   | 96.8        | 5.39     |
| P50990    | T-complex protein 1 subunit<br>theta                    | 7.65  | 3.83     | 1          | 2                    | 2          | 3      | 548   | 59.6        | 5.60     |
| Q00610    | Clathrin heavy chain 1                                  | 7.59  | 1.91     | 2          | 3                    | 3          | 3      | 1675  | 191.5       | 5.69     |
| P14923    | Junction plakoglobin                                    | 7.56  | 5.10     | 1          | 3                    | 3          | 3      | 745   | 81.7        | 6.14     |
| Q02790    | Peptidyl-prolyl cis-trans<br>isomerase FKBP4            | 7.43  | 5.01     | 1          | 2                    | 2          | 3      | 459   | 51.8        | 5.43     |
| C9JZ20    | Prohibitin (Fragment)                                   | 7.41  | 15.92    | 5          | 3                    | 3          | 3      | 201   | 22.3        | 5.96     |
| P21796    | Voltage-dependent anion-<br>selective channel protein 1 | 7.11  | 8.13     | 1          | 1                    | 2          | 3      | 283   | 30.8        | 8.54     |
| Q15084    | Protein disulfide-isomerase<br>A6                       | 5.61  | 7.05     | 1          | 2                    | 2          | 2      | 440   | 48.1        | 5.08     |
| Q92928    | Putative Ras-related protein<br>Rab-1C                  | 4.91  | 13.43    | 3          | 2                    | 2          | 2      | 201   | 22.0        | 5.43     |
| P27824    | Calnexin                                                | 4.79  | 3.21     | 1          | 2                    | 2          | 2      | 592   | 67.5        | 4.60     |
| P04181    | Ornithine aminotransferase,<br>mitochondrial            | 4.79  | 4.78     | 1          | 2                    | 2          | 2      | 439   | 48.5        | 7.03     |
| Q9NR30    | Nucleolar RNA helicase 2                                | 4.70  | 3.32     | 1          | 2                    | 2          | 2      | 783   | 87.3        | 9.28     |
| G3XAL0    | Malate dehydrogenase                                    | 4.69  | 11.69    | 2          | 2                    | 2          | 2      | 231   | 24.6        | 7.99     |

| Accession | Description                                      | Score | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|--------------------------------------------------|-------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| H0YIZ0    | Serine<br>hydroxymethyltransferase<br>(Fragment) | 4.63  | 8.33     | 2          | 2                    | 2          | 2      | 264   | 28.8        | 9.44     |

## Table 3.3: LC-MS/MS analysis for hypoxic whole cell clicked lysate (common proteins found between this group and hypoxic N<sub>3</sub>-TPZ treated eluate)

| Accession | Description                                 | Score  | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|---------------------------------------------|--------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| P49327    | Fatty acid synthase                         | 545.71 | 46.12    | 1          | 84                   | 84         | 355    | 2511  | 273.3       | 6.44     |
| P14618    | Pyruvate kinase PKM                         | 342.95 | 56.87    | 1          | 26                   | 26         | 196    | 531   | 57.9        | 7.84     |
| P04406    | Glyceraldehyde-3-phosphate<br>dehydrogenase | 324.82 | 67.46    | 1          | 17                   | 17         | 233    | 335   | 36.0        | 8.46     |
| P07900    | Heat shock protein HSP 90-<br>alpha         | 318.27 | 52.60    | 1          | 25                   | 39         | 271    | 732   | 84.6        | 5.02     |
| P10809    | 60 kDa heat shock protein,<br>mitochondrial | 314.92 | 55.67    | 1          | 29                   | 29         | 212    | 573   | 61.0        | 5.87     |
| P08238    | Heat shock protein HSP 90-<br>beta          | 311.65 | 55.80    | 1          | 23                   | 38         | 273    | 724   | 83.2        | 5.03     |
| P68371    | Tubulin beta-4B chain                       | 286.39 | 53.03    | 1          | 4                    | 21         | 198    | 445   | 49.8        | 4.89     |
| P68363    | Tubulin alpha-1B chain                      | 285.93 | 60.31    | 1          | 4                    | 19         | 181    | 451   | 50.1        | 5.06     |
| P07437    | Tubulin beta chain                          | 281.82 | 59.23    | 1          | 6                    | 22         | 189    | 444   | 49.6        | 4.89     |
| P35579    | Myosin-9                                    | 274.88 | 41.99    | 1          | 59                   | 68         | 178    | 1960  | 226.4       | 5.60     |
| P60709    | Actin, cytoplasmic 1                        | 270.07 | 75.47    | 2          | 9                    | 18         | 200    | 375   | 41.7        | 5.48     |
| P11142    | Heat shock cognate 71 kDa protein           | 244.67 | 48.45    | 1          | 16                   | 25         | 163    | 646   | 70.9        | 5.52     |
| Q60FE5    | Filamin A                                   | 225.32 | 37.90    | 2          | 63                   | 66         | 167    | 2620  | 278.1       | 6.06     |
| P13639    | Elongation factor 2                         | 205.20 | 44.99    | 1          | 31                   | 32         | 135    | 858   | 95.3        | 6.83     |
| P68104    | Elongation factor 1-alpha 1                 | 194.17 | 40.48    | 2          | 12                   | 12         | 180    | 462   | 50.1        | 9.01     |
| P07355    | Annexin A2                                  | 191.10 | 61.06    | 1          | 22                   | 22         | 117    | 339   | 38.6        | 7.75     |
| P06733    | Alpha-enolase                               | 186.46 | 69.35    | 1          | 21                   | 25         | 141    | 434   | 47.1        | 7.39     |
| P0DMV8    | Heat shock 70 kDa protein<br>1A             | 178.38 | 58.66    | 2          | 21                   | 29         | 132    | 641   | 70.0        | 5.66     |
| P12814    | Alpha-actinin-1                             | 159.09 | 56.61    | 1          | 26                   | 39         | 120    | 892   | 103.0       | 5.41     |
| P04075    | Fructose-bisphosphate<br>aldolase A         | 157.20 | 74.73    | 2          | 17                   | 18         | 103    | 364   | 39.4        | 8.09     |
| P09211    | Glutathione S-transferase P                 | 145.00 | 56.67    | 1          | 9                    | 9          | 119    | 210   | 23.3        | 5.64     |
| P06576    | ATP synthase subunit beta,<br>mitochondrial | 131.31 | 59.55    | 1          | 20                   | 20         | 106    | 529   | 56.5        | 5.40     |
| P11021    | 78 kDa glucose-regulated protein            | 128.46 | 40.21    | 1          | 22                   | 24         | 89     | 654   | 72.3        | 5.16     |

| Accession | Description                                    | Score  | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|------------------------------------------------|--------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| P25705    | ATP synthase subunit alpha,<br>mitochondrial   | 120.29 | 44.67    | 1          | 18                   | 18         | 69     | 553   | 59.7        | 9.13     |
| P29401    | Transketolase                                  | 119.23 | 43.02    | 1          | 15                   | 15         | 94     | 623   | 67.8        | 7.66     |
| P04083    | Annexin A1                                     | 119.14 | 49.42    | 1          | 15                   | 15         | 76     | 346   | 38.7        | 7.02     |
| P38646    | Stress-70 protein,                             | 117.72 | 39.47    | 1          | 19                   | 19         | 80     | 679   | 73.6        | 6.16     |
|           | mitochondrial                                  |        |          |            |                      |            |        |       |             |          |
| P11586    | C-1-tetrahydrofolate                           | 117.10 | 41.28    | 1          | 29                   | 29         | 90     | 935   | 101.5       | 7.30     |
|           | synthase, cytoplasmic                          |        |          |            |                      |            |        |       |             |          |
| Q00610    | Clathrin heavy chain 1                         | 114.89 | 35.82    | 2          | 40                   | 40         | 90     | 1675  | 191.5       | 5.69     |
| P07237    | Protein disulfide-isomerase                    | 112.63 | 48.43    | 1          | 19                   | 19         | 74     | 508   | 57.1        | 4.87     |
| P14625    | Endoplasmin                                    | 109.84 | 34.12    | 1          | 21                   | 23         | 88     | 803   | 92.4        | 4.84     |
| P02545    | Prelamin-A/C                                   | 102.23 | 39.31    | 1          | 24                   | 24         | 68     | 664   | 74.1        | 7.02     |
| Q14247    | Src substrate cortactin                        | 100.01 | 33.82    | 1          | 18                   | 18         | 73     | 550   | 61.5        | 5.40     |
| F5GZS6    | 4F2 cell-surface antigen<br>heavy chain        | 95.04  | 36.39    | 3          | 19                   | 19         | 57     | 599   | 64.8        | 5.10     |
| P26641    | Elongation factor 1-gamma                      | 85.30  | 46.68    | 1          | 16                   | 16         | 53     | 437   | 50.1        | 6.67     |
| P62937    | Peptidyl-prolyl cis-trans<br>isomerase A       | 74.60  | 65.45    | 1          | 8                    | 8          | 64     | 165   | 18.0        | 7.81     |
| P50991    | T-complex protein 1 subunit<br>delta           | 70.82  | 49.35    | 1          | 17                   | 18         | 56     | 539   | 57.9        | 7.83     |
| P49411    | Elongation factor Tu,<br>mitochondrial         | 70.44  | 32.08    | 1          | 10                   | 11         | 37     | 452   | 49.5        | 7.61     |
| P60174    | Triosephosphate isomerase                      | 64.26  | 59.09    | 1          | 14                   | 14         | 51     | 286   | 30.8        | 5.92     |
| P50395    | Rab GDP dissociation<br>inhibitor beta         | 63.76  | 36.40    | 1          | 6                    | 13         | 36     | 445   | 50.6        | 6.47     |
| Q06830    | Peroxiredoxin-1                                | 62.99  | 58.79    | 1          | 9                    | 12         | 50     | 199   | 22.1        | 8.13     |
| P12956    | X-ray repair cross-<br>complementing protein 6 | 62.87  | 45.16    | 1          | 21                   | 21         | 63     | 609   | 69.8        | 6.64     |
| G3V1A4    | Cofilin 1 (Non-muscle),<br>isoform CRA_a       | 61.44  | 60.40    | 4          | 12                   | 12         | 55     | 149   | 16.8        | 8.35     |
| J3KPX7    | Prohibitin-2                                   | 60.58  | 48.66    | 2          | 11                   | 11         | 41     | 298   | 33.2        | 9.83     |
| O43175    | D-3-phosphoglycerate<br>dehydrogenase          | 59.63  | 36.02    | 1          | 13                   | 13         | 41     | 533   | 56.6        | 6.71     |
| P61978    | Heterogeneous nuclear<br>ribonucleoprotein K   | 59.30  | 32.61    | 1          | 14                   | 14         | 60     | 463   | 50.9        | 5.54     |
| P23396    | 40S ribosomal protein S3                       | 58.08  | 56.38    | 1          | 14                   | 14         | 33     | 243   | 26.7        | 9.66     |
| P35232    | Prohibitin                                     | 57.84  | 48.90    | 1          | 9                    | 9          | 27     | 272   | 29.8        | 5.76     |
| P04181    | Ornithine aminotransferase,<br>mitochondrial   | 57.58  | 29.61    | 1          | 11                   | 11         | 33     | 439   | 48.5        | 7.03     |
| P50990    | T-complex protein 1 subunit<br>theta           | 56.79  | 44.71    | 1          | 20                   | 20         | 47     | 548   | 59.6        | 5.60     |

| Accession | Description                                             | Score | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|---------------------------------------------------------|-------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| Q15084    | Protein disulfide-isomerase<br>A6                       | 56.70 | 27.73    | 1          | 10                   | 10         | 29     | 440   | 48.1        | 5.08     |
| P00338    | L-lactate dehydrogenase A<br>chain                      | 56.30 | 58.73    | 1          | 16                   | 17         | 61     | 332   | 36.7        | 8.27     |
| P07195    | L-lactate dehydrogenase B<br>chain                      | 55.89 | 56.59    | 1          | 16                   | 17         | 73     | 334   | 36.6        | 6.05     |
| P00558    | Phosphoglycerate kinase 1                               | 55.01 | 42.45    | 1          | 12                   | 12         | 49     | 417   | 44.6        | 8.10     |
| P62258    | 14-3-3 protein epsilon                                  | 54.89 | 43.14    | 1          | 10                   | 11         | 39     | 255   | 29.2        | 4.74     |
| P21796    | Voltage-dependent anion-<br>selective channel protein 1 | 51.98 | 70.67    | 1          | 14                   | 15         | 42     | 283   | 30.8        | 8.54     |
| Q15365    | Poly(rC)-binding protein 1                              | 50.97 | 42.70    | 1          | 7                    | 9          | 25     | 356   | 37.5        | 7.09     |
| С9Ј9КЗ    | 40S ribosomal protein SA<br>(Fragment)                  | 50.88 | 50.95    | 3          | 10                   | 10         | 32     | 263   | 29.4        | 5.25     |
| P27824    | Calnexin                                                | 49.15 | 20.95    | 1          | 10                   | 10         | 36     | 592   | 67.5        | 4.60     |
| Q92598    | Heat shock protein 105 kDa                              | 48.62 | 23.78    | 1          | 15                   | 15         | 35     | 858   | 96.8        | 5.39     |
| P63104    | 14-3-3 protein zeta/delta                               | 48.06 | 55.10    | 1          | 13                   | 15         | 45     | 245   | 27.7        | 4.79     |
| P49368    | T-complex protein 1 subunit<br>gamma                    | 45.71 | 35.23    | 2          | 14                   | 15         | 35     | 545   | 60.5        | 6.49     |
| P05388    | 60S acidic ribosomal protein<br>P0                      | 45.02 | 50.47    | 1          | 10                   | 10         | 35     | 317   | 34.3        | 5.97     |
| E7EQR4    | Ezrin                                                   | 44.53 | 36.35    | 2          | 13                   | 18         | 45     | 586   | 69.3        | 6.16     |
| P06744    | Glucose-6-phosphate<br>isomerase                        | 43.49 | 33.87    | 2          | 13                   | 13         | 47     | 558   | 63.1        | 8.32     |
| Q02790    | Peptidyl-prolyl cis-trans<br>isomerase FKBP4            | 41.89 | 40.74    | 1          | 14                   | 14         | 26     | 459   | 51.8        | 5.43     |
| P00505    | Aspartate aminotransferase,<br>mitochondrial            | 39.35 | 32.33    | 1          | 10                   | 10         | 35     | 430   | 47.5        | 9.01     |
| P61981    | 14-3-3 protein gamma                                    | 39.24 | 39.68    | 1          | 5                    | 6          | 23     | 247   | 28.3        | 4.89     |
| P40925    | Malate dehydrogenase,<br>cytoplasmic                    | 34.60 | 42.81    | 1          | 10                   | 10         | 28     | 334   | 36.4        | 7.36     |
| Q14240    | Eukaryotic initiation factor<br>4A-II                   | 33.25 | 30.47    | 2          | 2                    | 8          | 25     | 407   | 46.4        | 5.48     |
| P23526    | Adenosylhomocysteinase                                  | 32.71 | 31.94    | 1          | 12                   | 12         | 32     | 432   | 47.7        | 6.34     |
| P07737    | Profilin-1                                              | 32.27 | 49.29    | 1          | 6                    | 6          | 28     | 140   | 15.0        | 8.27     |
| Q15366    | Poly(rC)-binding protein 2                              | 32.15 | 31.78    | 1          | 5                    | 7          | 18     | 365   | 38.6        | 6.79     |
| P27348    | 14-3-3 protein theta                                    | 31.05 | 35.51    | 1          | 10                   | 11         | 26     | 245   | 27.7        | 4.78     |
| Н         | Nucleolar RNA helicase 2                                | 30.39 | 19.03    | 1          | 11                   | 11         | 23     | 783   | 87.3        | 9.28     |
| Q13838    | Spliceosome RNA helicase<br>DDX39B                      | 27.05 | 24.77    | 1          | 9                    | 9          | 24     | 428   | 49.0        | 5.67     |
| P13667    | Protein disulfide-isomerase<br>A4                       | 25.73 | 28.68    | 1          | 13                   | 13         | 28     | 645   | 72.9        | 5.07     |

| Accession | Description                                                 | Score | Coverage | # Proteins | # Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|-------------------------------------------------------------|-------|----------|------------|----------------------|------------|--------|-------|-------------|----------|
| Q9UQ80    | Proliferation-associated                                    | 21.47 | 37.31    | 1          | 11                   | 11         | 17     | 394   | 43.8        | 6.55     |
|           | protein 2G4                                                 |       |          |            |                      |            |        |       |             |          |
| P24534    | Elongation factor 1-beta                                    | 20.29 | 30.67    | 1          | 4                    | 4          | 14     | 225   | 24.7        | 4.67     |
| P50502    | Hsc70-interacting protein                                   | 20.05 | 15.18    | 1          | 4                    | 4          | 14     | 369   | 41.3        | 5.27     |
| P62269    | 40S ribosomal protein S18                                   | 18.66 | 32.89    | 1          | 6                    | 6          | 16     | 152   | 17.7        | 10.99    |
| P14923    | Junction plakoglobin                                        | 17.44 | 9.13     | 1          | 4                    | 4          | 9      | 745   | 81.7        | 6.14     |
| P12004    | Proliferating cell nuclear<br>antigen                       | 16.86 | 35.25    | 1          | 6                    | 6          | 11     | 261   | 28.8        | 4.69     |
| H0YHA7    | 60S ribosomal protein L18<br>(Fragment)                     | 16.08 | 43.71    | 4          | 6                    | 7          | 10     | 167   | 19.0        | 11.78    |
| P30050    | 60S ribosomal protein L12                                   | 15.65 | 45.45    | 1          | 5                    | 5          | 14     | 165   | 17.8        | 9.42     |
| Q9Y277    | Voltage-dependent anion-<br>selective channel protein 3     | 11.94 | 34.63    | 1          | 5                    | 7          | 16     | 283   | 30.6        | 8.66     |
| P23284    | Peptidyl-prolyl cis-trans<br>isomerase B                    | 11.50 | 44.44    | 1          | 9                    | 9          | 20     | 216   | 23.7        | 9.41     |
| G3V576    | Heterogeneous nuclear<br>ribonucleoproteins C1/C2           | 5.35  | 20.35    | 7          | 4                    | 4          | 6      | 231   | 25.2        | 9.82     |
| H0YA96    | Heterogeneous nuclear<br>ribonucleoprotein D0<br>(Fragment) | 4.23  | 21.43    | 4          | 2                    | 3          | 6      | 210   | 23.9        | 9.58     |
| D6R9P3    | Heterogeneous nuclear<br>ribonucleoprotein A/B              | 3.70  | 26.07    | 4          | 4                    | 5          | 9      | 280   | 30.3        | 7.91     |



## Figure 3.13 Comparison of relative ion intensity of proteins in the whole proteome and the drug-pulldowns

(A) The graph shows the comparison of signal intensity of each protein from each sample versus each other. (B) The graph shows the alignment of all proteins with their respective ion intensity. The red and black lines reveal the measured ion intensities of each protein in both experiments (drug-pulldown and whole proteome respectively). Over all the data suggests that even though N<sub>3</sub>-TPZ labels diverse proteins, numerous high abundance proteins escape the labelling.



Figure 3.14 Functional enrichment in protein network of N<sub>3</sub>-TPZ targets under hypoxia using STRING database

Screenshot from the STRING website shows the protein-protein association of 13 highly abundant proteins that were labelled by N<sub>3</sub>-TPZ under hypoxia. Specifically, the Figure shows the functional enrichment of the protein network based on the cellular component. Node colour differentiates the protein enrichment in the cellular component by red and blue colours representing cytoplasm and nucleus respectively; white node represents the weaker association to the input protein. Coloured lines in between the proteins represents the different types of interaction evidence (pink- experimentally determined, cyan- curated databases, yellow- textmining, black – co-expression, purple - cooccurrence, blue - protein homology.

Input proteins are as follows: EIF4A1- Eukaryotic initiation factor 4A-I, TUBA1C- Tubulin alpha-1C chain, EIF4A2- Eukaryotic initiation factor 4A-II, HSP90AA1- Heat shock protein HSP 90-alpha, EEF1A1- Elongation factor 1 alpha 1, HNRNPAB- Heterogeneous nuclear ribonucleoprotein A/B, PCBP2- Poly (rC)-binding protein 2, PHGDH- D-3-phosphoglycerate dehydrogenase, HSP90AB1- Heat shock protein HSP 90-beta, POTEJ- POTE ankyrin domain family member J, ACTBL2- Beta-actin-like protein 2, HNRNPC- Heterogeneous nuclear ribonucleoprotein C1/C2, HNRNPDL- Heterogeneous nuclear ribonucleoprotein D-like.

### **3.9.** Hypoxia selective cytotoxicity of N<sub>3</sub>-G<sub>6</sub>-TPZ

We proceeded to test the efficacy of a new compound, N<sub>3</sub>-G<sub>6</sub>-TPZ, a derivative of TPZ which contains both glucose and azido moieties conjugated to it. Our prior results indicated the utility of  $N_3$ -TPZ to monitor TPZ uptake. Therefore,  $N_3$ -G<sub>6</sub>-TPZ was synthesized in an effort to study the uptake and localization of G<sub>6</sub>-TPZ, since the compound exhibited hypoxic sensitization only at higher concentrations [Figure 3.5]. The efficacy of  $N_3$ -G<sub>6</sub>-TPZ was assessed by examining its cytotoxicity using the crystal violet staining assay in FaDu cells cultured in both DMEM and low glucose DMEM [Figure 3.15]. Two different media were used in order to compare and study the response of N<sub>3</sub>-G<sub>6</sub>-TPZ on glucose-starved FaDu cells. As shown in Figure 3.15 A, N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells cultured in DMEM displayed selective cytotoxicity in low oxygen levels  $(0.1\% O_2)$ when compared to its normoxic counterparts. A similar trend was observed in N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells cultured in low glucose DMEM [Figure 3.15 B]. Since there was no significant difference in the cytotoxicity of N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells cultured in both media, further experiments with the compound were performed on cells cultured in DMEM. Although N<sub>3</sub>-G<sub>6</sub>-TPZ demonstrated concentration dependent hypoxia-selective cytotoxicity, it is evident that the compound seems to be less toxic in comparison to N<sub>3</sub>-TPZ [Figure 3.8] and the parent compound TPZ [Figure 3.4], but was markedly more toxic when compared to G<sub>6</sub>-TPZ [Figure 3.5].

### **3.10.** Hypoxia selective sub-cellular localization of N<sub>3</sub>-G<sub>6</sub>-TPZ

Using fluorescence imaging, we investigated whether N<sub>3</sub>-G<sub>6</sub>-TPZ was either taken up by FaDu cells or remains bound to the GLUT-1 transporter. The click reaction was performed on FaDu cells that had been treated with increasing concentrations of N<sub>3</sub>-G<sub>6</sub>-TPZ for 24 hours under normoxic and hypoxic (<0.1 O<sub>2</sub>) conditions. Fluorescence images obtained by confocal microscopy reveal selective sub-cellular localization of N<sub>3</sub>-G<sub>6</sub>-TPZ in cells exposed to hypoxia (<0.1 O<sub>2</sub>). In addition, it is evident that considerably less N<sub>3</sub>-G<sub>6</sub>-TPZ [Figure 3.16 B, C & D] was taken up by the hypoxic cells when compared to N<sub>3</sub>-TPZ [Figure 3.9 B, C & D]. The click signal intensity was observed to be concentration dependent in hypoxic N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells [Figure 3.16 B, C & D]. In contrast, minimum to no background signal was detected in normoxic N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells even at high concentrations of the reagent, which reconfirms the hypoxia selectivity of the compound [Figure 3.16 A].

Since the  $N_3$ -G<sub>6</sub>-TPZ signal was low, we checked the localization of the compound. The Z-stack images acquired through confocal microscopy suggest that  $N_3$ -G<sub>6</sub>-TPZ enters the cells and the entrapment is predominantly nucleolar and nuclear with cytoskeleton staining [Figure 3.17]. In addition, we also observed that the localization of  $N_3$ -G<sub>6</sub>-TPZ under hypoxia was quite similar to the localization of hypoxic  $N_3$ -TPZ treated cells [Figure 3.10].



Figure 3.15 Hypoxia selective cytotoxicity of N<sub>3</sub>-G<sub>6</sub>-TPZ

Cytotoxicity of N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells as observed using the CVS assay in DMEM (A) and low glucose DMEM (B). In the CVS assay, FaDu cells (3000 cells/well) were seeded in 96-well plates and incubated overnight to adhere. The cells were then treated with increasing concentrations of N<sub>3</sub>-G<sub>6</sub>-TPZ and the plates were exposed to either normoxic (20% O<sub>2</sub>) or hypoxic (0.1% O<sub>2</sub>) conditions for 72 hours. Culture medium [DMEM-(A)], [DMEM low glucose-(B)] without cells was set for background respectively. The media was aspirated post-treatment, followed by addition of crystal violet solution to stain the cells. Crystals were dissolved using methanol and absorbance of the samples was measured spectrophotometrically. Error bars represent the standard error of the mean. The difference between normoxia and hypoxia within each N<sub>3</sub>-G<sub>6</sub>-TPZ concentration was analyzed with an unpaired t-test; (\*) indicates statistical significance of p < 0.05. The cytotoxicity data of N<sub>3</sub>-G<sub>6</sub>-TPZ (A, B) treated cells cultured in both DMEM and low glucose DMEM exhibited a similar trend of significant hypoxia selective toxicity.





FaDu cells were seeded on coverslips and incubated overnight to adhere. The cells were then treated with increasing concentrations of N<sub>3</sub>-G<sub>6</sub>-TPZ for 24 hours under normoxic or hypoxic (<0.1% O<sub>2</sub>) conditions. Cells were fixed in 2% paraformaldehyde and click chemistry was performed at room temperature for 30 minutes using Alexa 594 alkyne. Nuclei were counterstained with Hoechst, and images were obtained using confocal microscopy. The signal intensity was observed to be concentration dependent in hypoxic N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells whereas normoxic N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells exhibited minimum to no background signal.



### Figure 3.17 Localization of N<sub>3</sub>-G<sub>6</sub>-TPZ

Confocal microscopy reveals localization of  $N_3$ -G<sub>6</sub>-TPZ. FaDu cells were treated with 30  $\mu$ M N<sub>3</sub>-G<sub>6</sub>-TPZ for 24 hours under hypoxic (<0.1% O<sub>2</sub>) conditions. Cells were fixed in 2% paraformaldehyde and click chemistry was performed at room temperature for 30 minutes using Alexa 594 alkyne. Nuclei were counterstained with Hoechst, and a range of Z-stack images were obtained. The image shows that the entrapment of N<sub>3</sub>-G<sub>6</sub>-TPZ is mostly cytoplasmic with nucleolar and nuclear staining.

## **Chapter IV- Discussion**

Over the decades, it has been well established that major metabolic alterations occur in mammalian cells that undergo oncogenic transformation <sup>381</sup>. Cancer cells are known to produce energy by displaying increased glycolytic metabolism even in aerobic conditions; a phenomenon known as the Warburg effect <sup>382,383</sup>. Under hypoxia, due to inhibition of oxidative phosphorylation, malignant tumor cells choose anaerobic glycolysis to release energy in order to maintain the energy supply in a rapidly growing tumor tissue <sup>112</sup>. Eventually, hypoxic cells undergo metabolic adaptation, which in turn leads to upregulation of genes that encode the enzymes required for anaerobic glycolysis <sup>108</sup>. As a consequence, the acute stimulation of glucose transport by hypoxia is mediated by the upregulation of facilitative glucose transporters, primarily by GLUT-1, thus making it an intrinsic cellular marker of hypoxia <sup>113-115</sup>. Therefore, the idea to exploit the abundance of GLUTs in hypoxia formed the basis of our objective to transform TPZ structurally by adding a glucose moiety to it. This was carried out in an effort to improve the delivery of TPZ selectively to oxygen deficient cells. Our initial objective in this study was to determine the effect of glucose-conjugated TPZ (G<sub>6</sub>-TPZ) on poorly oxygenated FaDu cells using several cytotoxicity assays.

# 4.1. Regulation of GLUT-1 protein and mRNA levels by hypoxia

Our data indicates that hypoxia regulates GLUT-1 protein and mRNA levels in FaDu cells. We observed that both GLUT-1 protein and mRNA levels were inversely regulated in an oxygen-concentration dependent manner (Figure 3.1 A & Figure 3.2 A). Our result is in accordance with prior reports, which have shown that hypoxia regulates GLUT-1 by increasing the activity of the sodium-independent transport of glucose in an oxygen-concentration dependent manner <sup>384</sup>. The increase in glucose transport has been demonstrated to be dependent on protein

synthesis and is known to be linked with a rise in GLUT-1 protein units at the membrane level <sup>384</sup>. In addition, the upregulation of GLUT-1 mRNA transcript in response to hypoxia is said to occur as a result of either reduced oxygen concentration per se or inhibition of oxidative phosphorylation <sup>112,127</sup>. We observed a high induction of HIF-1 $\alpha$  protein in whole cell lysates isolated from FaDu cells which were exposed to 0.5% O<sub>2</sub>, thereby demonstrating a similar trend as GLUT-1 protein (Figure 3.2 B). Since, HIF-1 $\alpha$  is the oxygen sensitive subunit of HIF-1 protein, the expression of HIF-1 $\alpha$  is said to be specifically induced under hypoxic conditions in an oxygen dependent manner, whereas the protein becomes proteasomally degraded by ubiquitination in oxygenated cells <sup>59,62</sup>. In addition, since we observed induction of GLUT-1 protein at both 0.5 and 1% O<sub>2</sub> and HIF-1 $\alpha$  protein only at 0.5% O<sub>2</sub>, we speculate that GLUT-1 would also be regulated through other oxygen- regulated pathways independent of HIF. Previous studies have suggested that lactate plays a critical role in promoting hypoxic response independent of HIF and this mechanism is said to be controlled by PHD enzymes in a similar fashion as HIF pathways <sup>69</sup>.

Although GLUT-1 mRNA levels displayed a positive linear correlation with decreasing oxygen concentrations, a slightly different trend of GLUT-1 mRNA was observed when FaDu cells were exposed to 0.5% O<sub>2</sub> for varying time points. The mRNA levels of GLUT-1 increased with increasing exposure time reaching a maximum at 24 hours and later the levels declined sharply (Figure 3.3 A). The decrease in GLUT-1 mRNA levels following 24 hours was surprising, but intriguing since we observed the mRNA levels of another hypoxia-responsive gene, *LOX* to be upregulated at longer exposure time points, i.e. 24 and 48 hours (Figure 3.3 B).

### 4.2. Determining the cytotoxicity of TPZ

Initially, the effect of the parent compound (TPZ) on FaDu cells was investigated prior to determining the effect of  $G_6$ -TPZ on poorly oxygenated FaDu cells. It is well-established that TPZ

displays anticancer activity on tumor cells through induction of apoptosis <sup>385</sup>. As mentioned earlier, cytotoxicity of TPZ was evaluated using three different assays so as to validate the efficacy of the drug since each assay uses different parameters to assess cell death. The response of TPZ, when determined based on the measurement of cellular metabolic activity (MTT assay) was reported to display a concentration-dependent cytotoxicity in FaDu cells when treated only under hypoxic conditions (Figure 3.4 A). The hypoxia selective cytotoxicity of TPZ arises as a consequence of activation by intracellular reductive enzymes that adds a single electron to the parent molecule resulting in the production of a free radical species, which in turn induces DNA single and double strand breaks (SSB and DSBs), base damage and ultimately cell death <sup>298</sup>. However, minimal cytotoxicity was observed in normoxic TPZ treated cells (Figure 3.4) since the unstable TPZ radical gets rapidly back oxidized to the non-toxic parent molecule in the presence of oxygen <sup>246</sup>. Further, TPZ was observed to exhibit a similar trend of toxicity when evaluated using the crystal violet staining assay and the clonogenic assay, which measure cytotoxicity of the compound based on the DNA mass of the living cells and the ability to form colonies, respectively (Figure 3.4 B & C). Collectively, the above results reconfirm the fact that the parent compound gets bioreductively activated selectively under hypoxic conditions.

### 4.3. Determining the cytotoxicity of G<sub>6</sub>-TPZ

Following the assessment of TPZ cytotoxicity, the potential of  $G_6$ -TPZ was investigated by examining the cytotoxicity of the compound in FaDu cells. We hypothesized that the addition of a glucose moiety to TPZ would enhance the selective recruitment of  $G_6$ -TPZ through interaction with the upregulated GLUT receptors, facilitating its entrapment in hypoxic cancer cells. The recently published crystal structure of human GLUT-1 reveals that, aside from the hydroxyl group at position 6 of D-glucose, all of the other hydroxyl groups are involved in stabilizing

hydrogen-bonding interactions with various amino acid residues within the transporter <sup>103</sup>. Earlier studies have reported that the C6 position of glucose could tolerate addition of various functional groups and simultaneously retain the substrate specificity and internalization by GLUT-1 since the modification at C6 position does not interfere with receptor binding <sup>386,387</sup>. In addition, it has been reported that anticancer agents conjugated to the C6 position of D-glucose can bind to GLUT-1 with high affinity <sup>386-388</sup>, which further added support to our hypothesis. Based on these observations, we designed and synthesized glucose-conjugated TPZ (G<sub>6</sub>-TPZ: C6 end of glucose conjugated to TPZ). Although, our molecular modelling based conformational analysis of G<sub>6</sub>-TPZ docked into the binding pocket of GLUT-1 revealed binding kinetics similar to 2-deoxyglucose (Elsaidi et al. unpublished data), unexpectedly, G<sub>6</sub>-TPZ up to 100 µM concentration failed to show any hypoxic sensitization in FaDu cells cultured in DMEM. Moving forward, we tried to glucose-starve the cells by culturing them in low glucose DMEM prior to treatment with high concentrations of G<sub>6</sub>-TPZ. Glucose starvation in tumor cells has recently been shown to impair DNA DSB repair by inhibiting histone acetylation <sup>389</sup>. We expected a cytotoxic effect of G<sub>6</sub>-TPZ on hypoxic glucose starved cells since TPZ is known to cause cytotoxicity primarily by induction of DNA DSBs <sup>298</sup>. Even though we observed that G<sub>6</sub>-TPZ was considerably less potent than TPZ, it still retained its selective hypoxic cytotoxicity at very high concentrations of the compound (500 and 1000 µM) when assessed using MTT and CVS assay (Figure 3.5 A & B). We speculate that even though our conjugate may have high-affinity for GLUT-1, the low cytotoxicity of G<sub>6</sub>-TPZ could be due to the bulky substituent at C6 which makes transport of the compound through GLUT-1 difficult. Another plausible explanation would be that the conjugate might bind to GLUT-1 very strongly, thus blocking the transporter and in turn preventing glucose uptake,
rather than competing for facilitated transport. Hence, in order to determine the underlying reason, we were interested to study the cellular uptake and localization of the compound under hypoxia.

### 4.4. Effect of TPZ on the expression of HIF-1α

As briefly discussed in the results section, we postulated that the binding of bioreduced TPZ to cellular proteins might contribute to drug's cytotoxicity in addition to induction of cytotoxic DNA DSBs through a topoisomerase-II dependent process <sup>321</sup>. Even though we had an indication that TPZ binds to proteins, we were still uncertain whether the drug binds directly to HIF-1 $\alpha$  protein or if it is bound to the proteins that stabilize HIF-1 $\alpha$ . Based on the observations, we went on to investigate the effect of TPZ on HIF-1a activity. Our results revealed that TPZ at 10  $\mu$ M decreases the cellular HIF-1 $\alpha$  protein levels under hypoxic conditions (Figure 3.6). The above result was in line with our prior data which suggested that the IC<sub>50</sub> of TPZ in hypoxia to be approximately 10  $\mu$ M when assessed using several cytotoxicity assays (Figure 3.4). TPZ has been identified to be associated in HIF-1 $\alpha$  translational regulation without affecting HIF-1 $\alpha$  mRNA expression or protein degradation <sup>390</sup>. In addition, prior studies have revealed that the down-regulation of HIF-1a by TPZ is largely dependent on the phosphorylation of translation initiation factor  $2\alpha$  (eIF2 $\alpha$ ) rather than the mTOR complex 1/eukaryotic initiation factor 4E-binding protein-1 (mTORC1/4E-BP1) signalling pathway <sup>390</sup>. In addition, the inhibitory effect of TPZ on HIF-1a protein synthesis under hypoxic conditions is said to be a topoisomerase-II independent phenomenon <sup>390</sup>. Overall, our findings and prior studies reiterate the fact that TPZ inhibits the hypoxic stabilization of HIF- 1a; thereby being a potent regulator. This also strongly adds support to our hypothesis that TPZ might either bind directly to the HIF-1a protein, or to the proteins that stabilize HIF-1a. Therefore, we set out to identify the proteins bound to TPZ under

hypoxic conditions in order to gain new insight in determining the pathway by which TPZ causes toxicity.

#### 4.5. Determining the cytotoxicity of N<sub>3</sub>-TPZ

We designed a new derivative of TPZ by incorporating an azido (N<sub>3</sub>) group into our parent compound to exploit a click chemistry-based protocol. The copper (I)-catalyzed alkyne-azide cycloaddition (CuAAC) click reaction has become very popular over the past decade and is considered a reliable method since it links molecules covalently <sup>391</sup>. When the azido group of N<sub>3</sub>-TPZ is paired with an alkyne in the presence of a copper catalyst, an irreversible, hydrolytically stable triazole conjugate is formed <sup>392</sup>. Notable advantages of click reaction include its fast reaction rate with high efficiency under physiological conditions in any solvent over a wide range of temperatures, chemo-selectivity, tolerance to other functional groups and the robust nature of the products <sup>393</sup>. Based on the type of alkyne labelling (fluorophore or biotin), we used our clickable prodrug of TPZ to image hypoxic cell content *in vitro* and to identify TPZ-binding proteins.

We observed that N<sub>3</sub>-TPZ displayed hypoxia-selective cytotoxicity in a concentration-dependent manner, when examined using MTT, CVS and CFA assay (Figure 3.8 A, B & C). The IC<sub>50</sub> of N<sub>3</sub>-TPZ in hypoxia ranged between 20-25  $\mu$ M, which was lower than the response of the compound in normoxia. Overall, N<sub>3</sub>-TPZ appeared to be hypoxia selective but slightly less cytotoxic when compared to the parent compound, which exhibited an IC<sub>50</sub> of approximately 10  $\mu$ M under hypoxia (Figure 3.6). The data suggests that N<sub>3</sub>-TPZ is a reasonable model to study TPZ interactions since the azide modification did not drastically alter the toxicity of the parent compound. Furthermore, we went on to examine the response of N<sub>3</sub>-TPZ on HIF-1 $\alpha$  expression. Our results revealed that under hypoxia, N<sub>3</sub>-TPZ causes a reduction in the HIF-1 $\alpha$  protein levels in a concentration-dependent manner (Figure 3.8 D). Interestingly, we

observed a sharp decline in the expression of HIF-1 $\alpha$  level at 30  $\mu$ M N<sub>3</sub>-TPZ treated hypoxic sample, which is consistent with our observation that the IC<sub>50</sub> of N<sub>3</sub>-TPZ under hypoxia lies between 20-25  $\mu$ M when assessed using different cytotoxicity assays (Figure 3.8 A, B & C).

#### 4.6. Determining the localization of N<sub>3</sub>-TPZ

Using click-chemistry approach, we observed the hypoxia selective sub-cellular localization of N<sub>3</sub>-TPZ (Figure 3.9). Our results reveal that the compound displays cytoskeletal staining as well as nucleolar and nuclear localization. The click signal intensity in hypoxic N<sub>3</sub>-TPZ treated cells was observed to be concentration dependent whereas minimal to no background signal was detected in normoxic N<sub>3</sub>-TPZ treated cells even at high concentrations of the reagent (Figure 3.9 A), reconfirming the hypoxia selectivity of the compound. Moreover, we are the first to report an easy, robust, sensitive and straightforward methodology, which only requires standard laboratory and microscopy setup to image cellular hypoxia and monitor TPZ uptake within a few hours. It is also noteworthy to mention that we are the first to design and chemically modify TPZ by conjugating it with an azido moiety and to successfully use this unique approach to trace cellular hypoxia.

#### 4.7. Identification of potential binding partners of N<sub>3</sub>-TPZ

We used a similar methodology with a biotin-conjugated alkyne rather than an Alexa-alkyne to isolate the potential protein candidates that are modified by N<sub>3</sub>-TPZ under hypoxia. As mentioned earlier, use of biotin-alkyne enabled us to pull down the N<sub>3</sub>-TPZ bound proteins with a mutein-streptavidin column. Western blot analysis was performed on the clicked lysates and eluates and subsequently the biotinylated proteins were detected using (HRP)-coupled streptavidin and a  $\beta$ -tubulin antibody. Our data reveals that streptavidin-HRP signal was detected only in hypoxic N<sub>3</sub>-TPZ treated clicked lysates and eluates indicating the specificity of protein

modification by N<sub>3</sub>-TPZ (Figure 3.12). The β-tubulin signal validated the efficiency of streptavidin pull down and highlighted the low background non-specific binding to the beads. Interestingly, the N<sub>3</sub>-TPZ concentration used in the above experiment was 30  $\mu$ M, a concentration at which the compound exhibited hypoxia specific protein modification and which was in accord with our finding that N<sub>3</sub>-TPZ displays hypoxia-specific cytotoxicity (Figure 3.8 A, B & C). Although we know TPZ induces toxicity by DNA damage, we went on to explore the protein modifications associated with the drug, which we speculated could also play a role in altering the drug's efficacy. Since streptavidin-HRP signal was detected only in hypoxic N<sub>3</sub>-TPZ treated eluates, they were further analyzed by liquid chromatography coupled mass spectrometry (LC-MS/MS) along with hypoxic control eluates and hypoxic whole cell clicked lysate. Our analyses revealed that although labeling was not highly specific, the labeling was enriched for a sub fraction of the proteome. In addition, we observed that numerous high abundance proteins escape such labelling. The explanation for these observations are unknown, but presumably are related to the chemistry of TPZ interaction with proteins and the subcellular localization of the compound.

Even though several high abundance proteins escaped the drug labelling, we identified a few highly abundant proteins that were labelled by N<sub>3</sub>-TPZ under hypoxia. Interestingly, our proteomic analysis revealed tubulin alpha-1C chain as one of the highly abundant protein labelled by N<sub>3</sub>-TPZ under hypoxia, which correlates with the β-tubulin signal that we observed specifically in the western blot of hypoxic N<sub>3</sub>-TPZ treated cell eluate (Figure 3.12). In addition, we observed a filamentous pattern in the N<sub>3</sub>-TPZ click imaging studies under hypoxia (Figure 3.9), which further validates our proteomic analysis data and strongly suggests that TPZ might interact with tubulin that has to be explored in detail in future. Furthermore, we used these highly ranked proteins to study the predicted protein-protein interactions associated with the drug using STRING

database. STRING has been recommended as the first choice in assessing functional and physical associations between proteins on a global scale when compared to other protein-protein interaction databases on the basis of data comprehensiveness, use of confidence scores and visualization features <sup>394-396</sup>. Apart from obtaining information through known interactions such as experimental data and curated databases on protein-protein interactions <sup>397-399</sup>, STRING surpasses other databases by collecting predicted interactions through variable sources such as co-expression analysis, text-mining of scientific literature, gene fusions, neighbourhood and co-occurrence; thus rendering the database as a more reliable resource <sup>400-402</sup>. Therefore, using STRING, we observed the functional association of our input proteins (highly abundant proteins that were labelled by N<sub>3</sub>-TPZ under hypoxia) in variable biological processes, molecular functions, cellular component, reactome pathways and several protein domains (Figure 3.14). Since we were interested in the localization of the compound, we examined the cellular localization of the proteins. Interestingly, we observed the enrichment of our input proteins in both the nucleus and cytoplasm as shown in Figure 3.14 and the result estimated by STRING was in accord with our cell imaging during the hypoxia selective sub-cellular localization studies of N<sub>3</sub>-TPZ (Figure 3.9 and 3.10). Our imaging results revealed that the compound displayed both cytoskeletal staining as well as nucleolar and nuclear localization, which fairly correlates with our STRING findings; hence corroborating the localization of N<sub>3</sub>-TPZ.

As mentioned, we are the first to explore the protein modifications associated with TPZ and isolate the potential protein candidates that are modified by the drug under hypoxia. Interestingly, a fellow graduate student in our group has studied another class of hypoxia-specific compounds based on 2-nitroimidazole (NI) and has made use of an azido derivative. We observed that the abundance and set of proteins associated with the azido-conjugated NI differs from the proteins associated with our compound, N<sub>3</sub>-TPZ, which belongs to an N-oxide class of drugs. For instance, glyceraldehyde-3-phosphate dehydrogenase was observed to be highly abundant in azido-conjugated NI, whereas the abundance of the same protein was remarkably very low with our compound. The striking difference in the protein interactions between the different classes of the drug (N-oxide and nitroimidazole) establishes the fact that TPZ interacts with proteins differently when compared to nitroimidazoles. However, we also need to highlight that our samples were analysed by LC-MS/MS only once and the experiment should be repeated further and additional experiments will be required to validate our observations so as to unravel the basis underlying protein-N<sub>3</sub>-TPZ interactions.

### 4.8. Determining the cytotoxicity of N<sub>3</sub>-G<sub>6</sub>-TPZ

Since we found that  $N_3$ -TPZ was a useful reagent for monitoring drug uptake, we went on to utilize a similar approach to study the uptake and localization of G<sub>6</sub>-TPZ, since we observed that this compound displayed hypoxic sensitization only at higher concentrations. Consequently, we designed and synthesized a new derivative of G<sub>6</sub>-TPZ (N<sub>3</sub>-G<sub>6</sub>-TPZ), which incorporates both glucose and azido moieties.

Our data revealed that  $N_3$ -G<sub>6</sub>-TPZ exhibited hypoxia-selective cytotoxicity in a concentration-dependent manner when examined using the CVS assay with FaDu cells cultured in both DMEM and low glucose DMEM (Figure 3.15). We used two different media in order to compare and study the response of  $N_3$ -G<sub>6</sub>-TPZ on glucose-starved FaDu cells. However, our results indicate that there was no significant difference in the cytotoxicity of  $N_3$ -G<sub>6</sub>-TPZ treated cells cultured in both media. Our results also indicate that  $N_3$ -G<sub>6</sub>-TPZ is less toxic than  $N_3$ -TPZ (Figure 3.8) and the parent compound TPZ (Figure 3.4), but was remarkably more toxic when compared to G<sub>6</sub>-TPZ (Figure 3.5). We speculate that the addition of glucose moiety has an impact

on N<sub>3</sub>-G<sub>6</sub>-TPZ since its hypoxia selective cytotoxicity is reduced when compared to the toxicity of N<sub>3</sub>-TPZ, where only azido moiety is conjugated to TPZ. Therefore, we think that the comparatively low hypoxic cytotoxicity of N<sub>3</sub>-G<sub>6</sub>-TPZ when compared to TPZ and N<sub>3</sub>-TPZ, might be due to either reduced transporter efficiency of the compound resulting from addition of the glucose moiety or maybe the compound remains bound to the GLUT-1 transporter.

## 4.9. Determining the localization of N<sub>3</sub>-G<sub>6</sub>-TPZ

In order to explore the underlying reason, we went on to study the cellular uptake and localization of N<sub>3</sub>-G<sub>6</sub>-TPZ under hypoxia using click chemistry. Fluorescence images reveal the hypoxia selective sub-cellular localization of N<sub>3</sub>-G<sub>6</sub>-TPZ (Figure 3.16). Although, the click signal intensity in hypoxic N<sub>3</sub>-G<sub>6</sub>-TPZ treated cells was observed to be concentration dependent, it was clearly evident that considerably less N<sub>3</sub>-G<sub>6</sub>-TPZ was taken up by the hypoxic cells when compared to N<sub>3</sub>-TPZ (Figure 3.9). Contrastingly, minimum to no background signal was detected in normoxic  $N_3$ -G<sub>6</sub>-TPZ treated cells even at high concentrations of the reagent, which reconfirms the hypoxia selectivity of the compound (Figure 3.16 A). Due to low click signal intensity under hypoxia, the localization of the compound was further investigated. The Z-stack images acquired through confocal microscopy indicates that N<sub>3</sub>-G<sub>6</sub>-TPZ efficiently penetrates into the cellular membrane and the entrapment of the compound is predominantly nucleolar and nuclear with some cytoskeleton staining (Figure 3.17). In addition, we also observed that the localization of N<sub>3</sub>-G<sub>6</sub>-TPZ was quite similar to the localization of N<sub>3</sub>-TPZ under hypoxia (Figure 3.10). Therefore, even though the localizations of N<sub>3</sub>-G<sub>6</sub>-TPZ and N<sub>3</sub>-TPZ are quite similar, the difference between the toxicities of the compounds might be due to their distinct chemical structures, and notably both the compounds have different amine linkages which might also contribute to their different cellular properties.

#### 4.10. Overall impact on the objective

Our initial objective in this study was to improve the delivery of TPZ selectively to oxygen deficient cells by adding a glucose moiety to it which was based on the idea of exploiting the abundance of GLUTs in hypoxia. However, our results reveal that the addition of glucose moiety to TPZ did not work fairly well since glucose-conjugated TPZ displayed selective hypoxic cytotoxicity only at very high concentrations. We speculate that the reduced cytotoxicity of G<sub>6</sub>-TPZ might be due to the fact that the compound was not taken up by the cells or it was cleared out faster due to higher hydrophilicity in comparison to TPZ. Our next objective was to devise a TPZ derivative that would monitor the cellular uptake of TPZ which led to the incorporation of an azido group to our parent compound. Subsequently, we observed that the azido-conjugated TPZ was highly hypoxia selective and in addition, using click-chemistry approach we observed that the compound successfully traces tumor hypoxia and binds to proteins. Next, using similar methodology we went on to isolate the potential protein candidates that are modified by N<sub>3</sub>-TPZ under hypoxia using a biotin alkyne. The drug-protein adducts were pulled down with mutein streptavidin beads and were analysed further by LC-MS/MS. Our analyses revealed that although the N<sub>3</sub>-TPZ labeling was not highly specific, it was enriched for a sub fraction of the proteome. In addition, we also observed that numerous high abundance proteins escape such labelling for some reason that is unknown. However, using a few highly abundant proteins that were labelled by N<sub>3</sub>-TPZ under hypoxia, using STRING database, we observed that those proteins were enriched in both nucleus and cytoplasm suggesting the localization of the compound. Furthermore, we exploited the property of monitoring TPZ uptake by N<sub>3</sub>-TPZ to study the uptake and localization of G<sub>6</sub>-TPZ by synthesizing a new derivative of TPZ which incorporated both glucose and azido moieties. Apparently, our results reveal that  $N_3$ -G<sub>6</sub>-TPZ was considerably more potent when

compared to  $G_6$ -TPZ. We speculate that the difference between the toxicities of the compounds might be due to the structural difference in the linkage between glucose and TPZ in  $G_6$ -TPZ when compared to  $N_3$ - $G_6$ -TPZ. On the contrary,  $N_3$ -TPZ, which had a rather simpler addition to TPZ turned out to be a relatively good model to study TPZ interactions since the azide modification did not seem to drastically alter the toxicity of the parent compound.

# **Chapter V - Future Directions**

With regard to determining the potential of TPZ and its derivatives, we plan to measure the uptake of  $G_6$ -TPZ by labelling it with  $C_{14}$ . We prefer intrinsic radiolabelling of the compound rather than tagging it with a fluorescent dye so that the structure, conformation and property of the compound is unaltered, thus making it identical to its unlabelled counterpart. The direct measure of the radiolabelled compound uptake or binding will be determined through a radioactive assay. We also plan to determine whether the cellular uptake of these glucose-conjugated TPZ derivatives ( $G_6$ -TPZ and  $N_3$ - $G_6$ -TPZ) are GLUT-1 mediated. In general, even though all the glyoconjugates are designed to be taken up by facilitated diffusion, a few compounds are known to be transported through passive diffusion. Hence, in order to study the transport mechanism of our glucose-conjugated TPZ derivatives, we plan to monitor the cellular uptake of these compounds in the presence and absence of an exofacial GLUT-1 inhibitor. We could confirm that the entry of  $G_6$ -TPZ and  $N_3$ - $G_6$ -TPZ into cells are GLUT-1 receptor mediated if their co-treatment with a GLUT-1 inhibitor significantly reduces their cellular uptake. In addition, since D-glucose is the main substrate of GLUT-1, its inhibitory effect on our glucose-compounds would be assessed too.

A recent study suggests that varying the position of substitution of glucose to anticancer compounds does not only contribute to the alteration of cellular uptake and cytotoxicity, but also plays a major role in the GLUT-1 specificity of the glyoconjugates <sup>403</sup>. Since, substituents at C<sub>2</sub> of glucose are considered to be stronger substrates for GLUT-1 when compared to C<sub>6</sub> of glucose, we plan to test our hypothesis on G<sub>2</sub>-TPZ, which has been synthesized as an alternative approach by our group.

Following our success in using  $N_3$ -TPZ to image cellular hypoxia, we plan to further validate the hypoxia selectivity of  $N_3$ -TPZ using click chemistry approach by co-staining them with pimonidazole, a commercially available hypoxia marker. Furthermore, we also plan to

confirm our *in vitro* imaging results of N<sub>3</sub>-TPZ by performing *in vivo* studies of N<sub>3</sub>-TPZ click chemistry along with pimonidazole co-staining. We aim to encapsulate N<sub>3</sub>-TPZ into nanoparticles and use them in *in vivo* studies for a better outcome since encapsulation would elevate the delivery properties of the compound. We intend to use orthotopic xenograft model to validate our *in vitro* findings since it is known to effectively reproduce the tumor microenvironment of HNSCC <sup>404</sup> and has been well established over the years as a clinically relevant tumor model <sup>405</sup>. In addition, these studies would be conducted with FaDu cells as it has been previously reported that the FaDu cell line is associated with high incidence of cervical lymph node metastasis in orthotopic HNC models <sup>406-408</sup>. We also would like to incorporate periodic monitoring of hypoxia in animals by using <sup>18</sup>F-FAZA PET scan in order to obtain a more complete analysis.

We carried out affinity purification studies with N<sub>3</sub>-TPZ in an effort to explore the protein modifications associated with TPZ. But since the analysis of our samples by LC-MS/MS was carried out only once, the experiment needs to be repeated to reconfirm the pattern of abundance in the identified set of proteins and its cellular localization in order to get a better picture of TPZ binding partners.

We still have a lingering question about TPZ - whether it binds to HIF-1 $\alpha$  directly or to the proteins that stabilize HIF-1 $\alpha$ ? We plan to use immunoprecipitation to determine the interaction between TPZ and HIF-1 $\alpha$ . Accordingly, initially the N<sub>3</sub>-TPZ treated and untreated cells will be clicked with a biotin alkyne. Later the lysates would be incubated with an anti-HIF-1 $\alpha$  antibody, which would be followed by a pull down with secondary antibody-coated beads. Western blot of the eluates would be performed to determine whether HIF-1 $\alpha$  was modified by the immunoprecipitated N<sub>3</sub>-TPZ or not. As discussed earlier in the introduction, cytochrome c P450 reductase (CYP450R), a one-electron reducing enzyme, is known to play a major role in the

metabolic activation of TPZ. As prior studies suggest that high levels of P450R activity increases the sensitivity to TPZ, in future we plan to use cells that express high levels of catalytically active CYP450R by transfecting the cells with P450 reductase cDNA. It is highly likely that the overexpression of CYP450R activity in cells would efficiently elevate the cytotoxic response of TPZ and its derivatives in oxygen-deficient cells. We would like to use this model to study and compare the cytotoxic response of N<sub>3</sub>-TPZ and TPZ to confirm whether N<sub>3</sub>-TPZ undergoes a similar mechanism of activation when compared to the parent compound.

In conclusion, we would like to emphasize the fact that TPZ still holds great promise with recent developments in identifying tumors that are highly responsive to hypoxic cytotoxins. Therefore, employing a strict hypoxic patient stratification using either PET imaging or biomarkers prior to the treatment plan along with the use of an ideal combinatorial therapy would boost the TPZ efficacy, which would ultimately result in attaining the best therapeutic benefit of TPZ, thereby aiding in enhancing the quality of life of cancer patients.

# References

- 1 Pahlman, S. & Mohlin, S. Hypoxia and hypoxia-inducible factors in neuroblastoma. *Cell Tissue Res* **372**, 269-275, doi:10.1007/s00441-017-2701-1 (2018).
- 2 Bennewith, K. L. & Dedhar, S. Targeting hypoxic tumour cells to overcome metastasis. *BMC Cancer* **11**, 504, doi:10.1186/1471-2407-11-504 (2011).
- 3 Minchinton, A. I. & Tannock, I. F. Drug penetration in solid tumours. *Nat Rev Cancer* **6**, 583-592, doi:10.1038/nrc1893 (2006).
- 4 Brown, J. M. The Hypoxic Cell. *Cancer Research* **59**, 5863 (1999).
- 5 Kim, Y., Lin, Q., Glazer, P. M. & Yun, Z. Hypoxic tumor microenvironment and cancer cell differentiation. *Curr Mol Med* **9**, 425-434 (2009).
- 6 Birner, P. *et al.* Overexpression of Hypoxia-inducible Factor 1α Is a Marker for an Unfavorable Prognosis in Early-Stage Invasive Cervical Cancer. *Cancer Research* **60**, 4693 (2000).
- 7 Zhong, H., Semenza, G. L., Simons, J. W. & De Marzo, A. M. Up-regulation of hypoxiainducible factor 1α is an early event in prostate carcinogenesis. *Cancer Detection and Prevention* **28**, 88-93, doi:10.1016/j.cdp.2003.12.009 (2004).
- 8 Duffy, J. P., Eibl, G., Reber, H. A. & Hines, O. J. Influence of hypoxia and neoangiogenesis on the growth of pancreatic cancer. *Mol Cancer* **2**, 12 (2003).
- 9 Wei, J. *et al.* Hypoxia potentiates glioma-mediated immunosuppression. *PLoS One* **6**, e16195, doi:10.1371/journal.pone.0016195 (2011).
- 10 Nordsmark, M. *et al.* Hypoxia in human soft tissue sarcomas: Adverse impact on survival and no association with p53 mutations. *British Journal Of Cancer* **84**, 1070, doi:10.1054/bjoc.2001.1728 (2001).
- 11 Hartmann, A. *et al.* Hypoxia-induced up-regulation of angiogenin in human malignant melanoma. *Cancer Res* **59**, 1578-1583 (1999).
- 12 Keith, B. & Simon, M. C. Hypoxia-inducible factors, stem cells, and cancer. *Cell* **129**, 465-472, doi:10.1016/j.cell.2007.04.019 (2007).
- 13 Padhani, A. R. Where are we with imaging oxygenation in human tumours? *Cancer imaging : the official publication of the International Cancer Imaging Society* **5**, 128-130, doi:10.1102/1470-7330.2005.0103 (2005).
- 14 Bar, E. E., Lin, A., Mahairaki, V., Matsui, W. & Eberhart, C. G. Hypoxia Increases the Expression of Stem-Cell Markers and Promotes Clonogenicity in Glioblastoma Neurospheres. *The American Journal of Pathology* **177**, 1491-1502, doi:10.2353/ajpath.2010.091021 (2010).
- 15 Lara, P. C. *et al.* Severe hypoxia induces chemo-resistance in clinical cervical tumors through MVP over-expression. *Radiation Oncology* **4**, 29, doi:10.1186/1748-717X-4-29 (2009).
- 16 Höckel, M. & Vaupel, P. Tumor Hypoxia: Definitions and Current Clinical, Biologic, and Molecular Aspects. *JNCI: Journal of the National Cancer Institute* **93**, 266-276, doi:10.1093/jnci/93.4.266 (2001).
- 17 Thomlinson, R. H. & Gray, L. H. The histological structure of some human lung cancers and the possible implications for radiotherapy. *British journal of cancer* **9**, 539-549 (1955).
- 18 West, J. B. Physiological Effects of Chronic Hypoxia. *New England Journal of Medicine* **376**, 1965-1971, doi:10.1056/NEJMra1612008 (2017).

- 19 Brown, J. M. Evidence for acutely hypoxic cells in mouse tumours, and a possible mechanism of reoxygenation. *Br J Radiol* **52**, 650-656, doi:10.1259/0007-1285-52-620-650 (1979).
- Bayer, C., Shi, K., Astner, S. T., Maftei, C.-A. & Vaupel, P. Acute Versus Chronic Hypoxia: Why a Simplified Classification is Simply Not Enough. *International Journal of Radiation Oncology Biology Physics* 80, 965-968, doi:10.1016/j.ijrobp.2011.02.049 (2011).
- 21 Rofstad, E. K., Galappathi, K., Mathiesen, B. & Ruud, E. B. Fluctuating and diffusionlimited hypoxia in hypoxia-induced metastasis. *Clin Cancer Res* **13**, 1971-1978, doi:10.1158/1078-0432.Ccr-06-1967 (2007).
- 22 Horsman, M. R. & Overgaard, J. The impact of hypoxia and its modification of the outcome of radiotherapy. *Journal of radiation research* **57** Suppl 1, i90-i98, doi:10.1093/jrr/rrw007 (2016).
- 23 Brown, J. M. & Wilson, W. R. Exploiting tumour hypoxia in cancer treatment. *Nature Reviews Cancer* **4**, 437, doi:10.1038/nrc1367 (2004).
- Stoyanov, G. S., Kitanova, M., Dzhenkov, D. L., Ghenev, P. & Sapundzhiev, N. Demographics of Head and Neck Cancer Patients: A Single Institution Experience. *Cureus* 9, e1418-e1418, doi:10.7759/cureus.1418 (2017).
- 25 Beck, T. N. & Golemis, E. A. Genomic insights into head and neck cancer. *Cancers of the Head & Neck* **1**, 1, doi:10.1186/s41199-016-0003-z (2016).
- 26 Blitzer, G. C., Smith, M. A., Harris, S. L. & Kimple, R. J. Review of the clinical and biologic aspects of human papillomavirus-positive squamous cell carcinomas of the head and neck. *International journal of radiation oncology, biology, physics* **88**, 761-770, doi:10.1016/j.ijrobp.2013.08.029 (2014).
- 27 De Felice, F. *et al.* Radiotherapy Controversies and Prospective in Head and Neck Cancer: A Literature-Based Critical Review. *Neoplasia (New York, N.Y.)* **20**, 227-232, doi:10.1016/j.neo.2018.01.002 (2018).
- 28 Iqbal, M. S. *et al.* Primary Concurrent Chemoradiation in Head and Neck Cancers with Weekly Cisplatin Chemotherapy: Analysis of Compliance, Toxicity and Survival. *International archives of otorhinolaryngology* 21, 171-177, doi:10.1055/s-0036-1594020 (2017).
- 29 Boscolo-Rizzo, P. *et al.* The evolution of the epidemiological landscape of head and neck cancer in Italy: Is there evidence for an increase in the incidence of potentially HPV-related carcinomas? *PloS one* **13**, e0192621-e0192621, doi:10.1371/journal.pone.0192621 (2018).
- 30 Gilyoma, J. M., Rambau, P. F., Masalu, N., Kayange, N. M. & Chalya, P. L. Head and neck cancers: a clinico-pathological profile and management challenges in a resource-limited setting. *BMC research notes* **8**, 772-772, doi:10.1186/s13104-015-1773-9 (2015).
- 31 Vigneswaran, N. & Williams, M. D. Epidemiologic trends in head and neck cancer and aids in diagnosis. *Oral and maxillofacial surgery clinics of North America* **26**, 123-141, doi:10.1016/j.coms.2014.01.001 (2014).
- 32 Klussmann, J. P. Head and Neck Cancer New Insights into a Heterogeneous Disease. Oncology Research and Treatment **40**, 318-319, doi:10.1159/000477255 (2017).
- 33 Leeman, J. E., Li, J., Pei, X. & et al. Patterns of treatment failure and postrecurrence outcomes among patients with locally advanced head and neck squamous cell carcinoma after chemoradiotherapy using modern radiation techniques. *JAMA Oncology* 3, 1487-1494, doi:10.1001/jamaoncol.2017.0973 (2017).

- 34 Nordsmark, M., Overgaard, M. & Overgaard, J. Pretreatment oxygenation predicts radiation response in advanced squamous cell carcinoma of the head and neck. *Radiotherapy and Oncology* **41**, 31-39, doi:10.1016/S0167-8140(96)91811-3 (1996).
- 35 Méry, B. *et al.* Targeting head and neck tumoral stem cells: From biological aspects to therapeutic perspectives. *World journal of stem cells* **8**, 13-21, doi:10.4252/wjsc.v8.i1.13 (2016).
- Walsh, J. C. *et al.* The clinical importance of assessing tumor hypoxia: relationship of tumor hypoxia to prognosis and therapeutic opportunities. *Antioxidants & redox signaling* 21, 1516-1554, doi:10.1089/ars.2013.5378 (2014).
- 37 Bittner, M.-I. & Grosu, A.-L. Hypoxia in Head and Neck Tumors: Characteristics and Development during Therapy. *Frontiers in oncology* **3**, 223-223, doi:10.3389/fonc.2013.00223 (2013).
- 38 Bertout, J. A., Patel, S. A. & Simon, M. C. The impact of O2 availability on human cancer. *Nature reviews. Cancer* **8**, 967-975, doi:10.1038/nrc2540 (2008).
- 39 Rockwell, S., Dobrucki, I. T., Kim, E. Y., Marrison, S. T. & Vu, V. T. Hypoxia and radiation therapy: past history, ongoing research, and future promise. *Curr Mol Med* **9**, 442-458 (2009).
- 40 Dietrich, A. *et al.* Improving external beam radiotherapy by combination with internal irradiation. *The British journal of radiology* **88**, 20150042-20150042, doi:10.1259/bjr.20150042 (2015).
- 41 Liu, C., Lin, Q. & Yun, Z. Cellular and molecular mechanisms underlying oxygendependent radiosensitivity. *Radiation research* **183**, 487-496, doi:10.1667/RR13959.1 (2015).
- 42 Riley, P. A. Free radicals in biology: oxidative stress and the effects of ionizing radiation. *International journal of radiation biology* **65**, 27-33 (1994).
- Willers, H., Azzoli, C. G., Santivasi, W. L. & Xia, F. Basic mechanisms of therapeutic resistance to radiation and chemotherapy in lung cancer. *Cancer journal (Sudbury, Mass.)* 19, 200-207, doi:10.1097/PPO.0b013e318292e4e3 (2013).
- Muz, B., de la Puente, P., Azab, F. & Azab, A. K. The role of hypoxia in cancer progression, angiogenesis, metastasis, and resistance to therapy. *Hypoxia (Auckland, N.Z.)* 3, 83-92, doi:10.2147/HP.S93413 (2015).
- 45 Gabalski, E. C. *et al.* Pretreatment and midtreatment measurement of oxygen tension levels in head and neck cancers. *Laryngoscope* **108**, 1856-1860 (1998).
- 46 Durand, R. E. The influence of microenvironmental factors during cancer therapy. *In Vivo* **8**, 691-702 (1994).
- 47 Teicher, B. A. Hypoxia and drug resistance. *Cancer Metastasis Rev* 13, 139-168 (1994).
- 48 Durand, R. E. & Raleigh, J. A. Identification of nonproliferating but viable hypoxic tumor cells in vivo. *Cancer Res* **58**, 3547-3550 (1998).
- 49 Sullivan, R., Pare, G. C., Frederiksen, L. J., Semenza, G. L. & Graham, C. H. Hypoxiainduced resistance to anticancer drugs is associated with decreased senescence and requires hypoxia-inducible factor-1 activity. *Molecular cancer therapeutics* 7, 1961-1973, doi:10.1158/1535-7163.Mct-08-0198 (2008).
- 50 Prince, M. E. *et al.* Identification of a subpopulation of cells with cancer stem cell properties in head and neck squamous cell carcinoma. *Proc Natl Acad Sci U S A* **104**, 973-978, doi:10.1073/pnas.0610117104 (2007).

- 51 Duarte, S. *et al.* Isolation of head and neck squamous carcinoma cancer stem-like cells in a syngeneic mouse model and analysis of hypoxia effect. *Oncol Rep* **28**, 1057-1062, doi:10.3892/or.2012.1904 (2012).
- 52 Shen, X. *et al.* Hypoxia Induces Multidrug Resistance via Enhancement of Epidermal Growth Factor-Like Domain 7 Expression in Non-Small Lung Cancer Cells. *Chemotherapy* **62**, 172-180, doi:10.1159/000456066 (2017).
- 53 Ortmann, B., Druker, J. & Rocha, S. Cell cycle progression in response to oxygen levels. *Cellular and molecular life sciences : CMLS* **71**, 3569-3582, doi:10.1007/s00018-014-1645-9 (2014).
- 54 Nakayama, K. & Ronai, Z. Siah: new players in the cellular response to hypoxia. *Cell cycle* (*Georgetown, Tex.*) **3**, 1345-1347, doi:10.4161/cc.3.11.1207 (2004).
- 55 Riffle, S. & Hegde, R. S. Modeling tumor cell adaptations to hypoxia in multicellular tumor spheroids. *Journal of experimental & clinical cancer research : CR* **36**, 102-102, doi:10.1186/s13046-017-0570-9 (2017).
- 56 Matsushima, S. *et al.* Broad suppression of NADPH oxidase activity exacerbates ischemia/reperfusion injury through inadvertent downregulation of hypoxia-inducible factor-1 $\alpha$  and upregulation of peroxisome proliferator-activated receptor- $\alpha$ . *Circulation research* **112**, 1135-1149, doi:10.1161/CIRCRESAHA.111.300171 (2013).
- 57 Franke, K., Gassmann, M. & Wielockx, B. Erythrocytosis: the HIF pathway in control. *Blood* **122**, 1122 (2013).
- 58 Wang, G. L. & Semenza, G. L. Purification and characterization of hypoxia-inducible factor 1. *The Journal of biological chemistry* **270**, 1230-1237 (1995).
- 59 Salceda, S. & Caro, J. Hypoxia-inducible Factor 1α (HIF-1α) Protein Is Rapidly Degraded by the Ubiquitin-Proteasome System under Normoxic Conditions: ITS STABILIZATION BY HYPOXIA DEPENDS ON REDOX-INDUCED CHANGES. Journal of Biological Chemistry 272, 22642-22647 (1997).
- 60 Graham, A. M. & Presnell, J. S. Hypoxia Inducible Factor (HIF) transcription factor family expansion, diversification, divergence and selection in eukaryotes. *PloS one* **12**, e0179545-e0179545, doi:10.1371/journal.pone.0179545 (2017).
- 61 Hu, C. J. *et al.* Differential regulation of the transcriptional activities of hypoxia-inducible factor 1 alpha (HIF-1alpha) and HIF-2alpha in stem cells. *Molecular and cellular biology* **26**, 3514-3526, doi:10.1128/mcb.26.9.3514-3526.2006 (2006).
- 62 Hagg, M. & Wennstrom, S. Activation of hypoxia-induced transcription in normoxia. *Experimental cell research* **306**, 180-191, doi:10.1016/j.yexcr.2005.01.017 (2005).
- 63 Ke, Q. & Costa, M. Hypoxia-Inducible Factor-1 (HIF-1). *Molecular Pharmacology* **70**, 1469 (2006).
- 64 Ziello, J. E., Jovin, I. S. & Huang, Y. Hypoxia-Inducible Factor (HIF)-1 regulatory pathway and its potential for therapeutic intervention in malignancy and ischemia. *The Yale journal of biology and medicine* **80**, 51-60 (2007).
- 65 Gu, Y. Z., Moran, S. M., Hogenesch, J. B., Wartman, L. & Bradfield, C. A. Molecular characterization and chromosomal localization of a third alpha-class hypoxia inducible factor subunit, HIF3alpha. *Gene expression* 7, 205-213 (2018).
- 66 Seeber, L. M. S. *et al.* Hypoxia-Inducible Factor-1 as a Therapeutic Target in Endometrial Cancer Management %J Obstetrics and Gynecology International. **2010**, doi:10.1155/2010/580971 (2010).

- 67 Curtis, K. K., Wong, W. W. & Ross, H. J. Past approaches and future directions for targeting tumor hypoxia in squamous cell carcinomas of the head and neck. *Critical reviews in oncology/hematology* **103**, 86-98, doi:10.1016/j.critrevonc.2016.05.005 (2016).
- 68 Cummins, E. P. & Taylor, C. T. Hypoxia-responsive transcription factors. *Pflugers Archiv : European journal of physiology* **450**, 363-371, doi:10.1007/s00424-005-1413-7 (2005).
- 69 Elvidge, G. P. *et al.* Concordant Regulation of Gene Expression by Hypoxia and 2-Oxoglutarate-dependent Dioxygenase Inhibition: THE ROLE OF HIF-1α, HIF-2α, AND OTHER PATHWAYS. **281**, 15215-15226, doi:10.1074/jbc.M511408200 (2006).
- 70 Lee, D. C. *et al.* A lactate-induced response to hypoxia. *Cell* **161**, 595-609, doi:10.1016/j.cell.2015.03.011 (2015).
- 71 Park, K. C., Lee, D. C. & Yeom, Y. I. NDRG3-mediated lactate signaling in hypoxia. *BMB* reports **48**, 301-302 (2015).
- 72 Baldwin, J. M., Gorga, J. C. & Lienhard, G. E. The monosaccharide transporter of the human erythrocyte. Transport activity upon reconstitution. *The Journal of biological chemistry* **256**, 3685-3689 (1981).
- 73 Kasahara, M. & Hinkle, P. C. Reconstitution and purification of the D-glucose transporter from human erythrocytes. *The Journal of biological chemistry* **252**, 7384-7390 (1977).
- 74 Navale, A. M. & Paranjape, A. N. Glucose transporters: physiological and pathological roles. *Biophysical reviews* **8**, 5-9, doi:10.1007/s12551-015-0186-2 (2016).
- 75 Sala-Rabanal, M. *et al.* Bridging the gap between structure and kinetics of human SGLT1. *American journal of physiology. Cell physiology* **302**, C1293-C1305, doi:10.1152/ajpcell.00397.2011 (2012).
- 76 Jurcovicova, J. Glucose transport in brain effect of inflammation. *Endocrine regulations* **48**, 35-48 (2014).
- 77 Kapoor, K. *et al.* Mechanism of inhibition of human glucose transporter GLUT1 is conserved between cytochalasin B and phenylalanine amides. *Proceedings of the National Academy of Sciences of the United States of America* **113**, 4711-4716, doi:10.1073/pnas.1603735113 (2016).
- 78 Joost, H. G. *et al.* Nomenclature of the GLUT/SLC2A family of sugar/polyol transport facilitators. *American journal of physiology. Endocrinology and metabolism* **282**, E974-976, doi:10.1152/ajpendo.00407.2001 (2002).
- 79 Mueckler, M. & Thorens, B. The SLC2 (GLUT) family of membrane transporters. *Molecular aspects of medicine* **34**, 121-138, doi:10.1016/j.mam.2012.07.001 (2013).
- 80 Pao, S. S., Paulsen, I. T. & Saier, M. H., Jr. Major facilitator superfamily. *Microbiology* and molecular biology reviews : MMBR 62, 1-34 (1998).
- 81 Mueckler, M. *et al.* Sequence and structure of a human glucose transporter. *Science (New York, N.Y.)* **229**, 941-945 (1985).
- 82 Abramson, J. *et al.* Structure and mechanism of the lactose permease of Escherichia coli. *Science (New York, N.Y.)* **301**, 610-615, doi:10.1126/science.1088196 (2003).
- 83 Thorens, B. & Mueckler, M. Glucose transporters in the 21st Century. *American journal* of physiology. Endocrinology and metabolism **298**, E141-E145, doi:10.1152/ajpendo.00712.2009 (2010).
- 84 Stokkel, M. P., Linthorst, M. F., Borm, J. J., Taminiau, A. H. & Pauwels, E. K. A reassessment of bone scintigraphy and commonly tested pretreatment biochemical parameters in newly diagnosed osteosarcoma. *Journal of cancer research and clinical oncology* **128**, 393-399, doi:10.1007/s00432-002-0350-5 (2002).

- 85 Shah, K., Desilva, S. & Abbruscato, T. The role of glucose transporters in brain disease: diabetes and Alzheimer's Disease. *International journal of molecular sciences* **13**, 12629-12655, doi:10.3390/ijms131012629 (2012).
- 86 Chung, F.-Y. *et al.* GLUT1 gene is a potential hypoxic marker in colorectal cancer patients. *BMC cancer* **9**, 241-241, doi:10.1186/1471-2407-9-241 (2009).
- Sadlecki, P. *et al.* The role of Hypoxia-inducible factor-1 α, glucose transporter-1, (GLUT-1) and carbon anhydrase IX in endometrial cancer patients. *BioMed research international* 2014, 616850-616850, doi:10.1155/2014/616850 (2014).
- 88 Airley, R. *et al.* Glucose Transporter Glut-1 Expression Correlates with Tumor Hypoxia and Predicts Metastasis-free Survival in Advanced Carcinoma of the Cervix. *Clinical Cancer Research* **7**, 928 (2001).
- 89 Carvalho, K. C. *et al.* GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. *Clinics (Sao Paulo, Brazil)* **66**, 965-972, doi:10.1590/S1807-59322011000600008 (2011).
- 90 Hayashi, M. *et al.* Induction of glucose transporter 1 expression through hypoxia-inducible factor 1alpha under hypoxic conditions in trophoblast-derived cells. *The Journal of endocrinology* **183**, 145-154, doi:10.1677/joe.1.05599 (2004).
- 91 Ouiddir, A., Planes, C., Fernandes, I., VanHesse, A. & Clerici, C. Hypoxia upregulates activity and expression of the glucose transporter GLUT1 in alveolar epithelial cells. *American journal of respiratory cell and molecular biology* **21**, 710-718, doi:10.1165/ajrcmb.21.6.3751 (1999).
- 92 Eckert, A. W., Lautner, M. H., Taubert, H., Schubert, J. & Bilkenroth, U. Expression of Glut-1 is a prognostic marker for oral squamous cell carcinoma patients. *Oncol Rep* 20, 1381-1385 (2008).
- 93 Carvalho, K. C. *et al.* GLUT1 expression in malignant tumors and its use as an immunodiagnostic marker. *Clinics (Sao Paulo)* **66**, 965-972 (2011).
- 94 Yu, M. *et al.* The prognostic value of GLUT1 in cancers: a systematic review and metaanalysis. *Oncotarget* **8**, 43356-43367, doi:10.18632/oncotarget.17445 (2017).
- Blayney, J. K. *et al.* Glucose transporter 1 expression as a marker of prognosis in oesophageal adenocarcinoma. *Oncotarget* 9, 18518-18528, doi:10.18632/oncotarget.24906 (2018).
- 96 Zhou, S., Wang, S., Wu, Q., Fan, J. & Wang, Q. Expression of glucose transporter-1 and -3 in the head and neck carcinoma--the correlation of the expression with the biological behaviors. ORL; journal for oto-rhino-laryngology and its related specialties 70, 189-194, doi:10.1159/000124293 (2008).
- 97 Wu, X.-H. *et al.* Expression and significance of hypoxia-inducible factor-1α and glucose transporter-1 in laryngeal carcinoma. *Oncology letters* 5, 261-266, doi:10.3892/ol.2012.941 (2013).
- 98 Sun, L. *et al.* Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. *Nature* **490**, 361-366, doi:10.1038/nature11524 (2012).
- 99 Quistgaard, E. M., Löw, C., Moberg, P., Trésaugues, L. & Nordlund, P. Structural basis for substrate transport in the GLUT-homology family of monosaccharide transporters. *Nature Structural & Amp; Molecular Biology* **20**, 766, doi:10.1038/nsmb.2569

https://www.nature.com/articles/nsmb.2569#supplementary-information (2013).

- 100 Iancu, C. V., Zamoon, J., Woo, S. B., Aleshin, A. & Choe, J.-y. Crystal structure of a glucose/H<sup&gt;+&lt;/sup&gt; symporter and its mechanism of action. *Proceedings of the National Academy of Sciences* **110**, 17862 (2013).
- 101 Madej, M. G., Sun, L., Yan, N. & Kaback, H. R. Functional architecture of MFS D-glucose transporters. *Proc Natl Acad Sci U S A* **111**, E719-727, doi:10.1073/pnas.1400336111 (2014).
- 102 Olson, A. L. & Pessin, J. E. Structure, function, and regulation of the mammalian facilitative glucose transporter gene family. *Annual review of nutrition* **16**, 235-256, doi:10.1146/annurev.nu.16.070196.001315 (1996).
- 103 Deng, D. *et al.* Crystal structure of the human glucose transporter GLUT1. *Nature* **510**, 121, doi:10.1038/nature13306 (2014).
- 104 Schürmann, A. *et al.* Role of Conserved Arginine and Glutamate Residues on the Cytosolic Surface of Glucose Transporters for Transporter Function. *Biochemistry* 36, 12897-12902, doi:10.1021/bi971173c (1997).
- Manolescu, A. R., Witkowska, K., Kinnaird, A., Cessford, T. & Cheeseman, C. Facilitated hexose transporters: new perspectives on form and function. *Physiology (Bethesda, Md.)* 22, 234-240, doi:10.1152/physiol.00011.2007 (2007).
- 106 Eales, K. L., Hollinshead, K. E. R. & Tennant, D. A. Hypoxia and metabolic adaptation of cancer cells. *Oncogenesis* **5**, e190, doi:10.1038/oncsis.2015.50 (2016).
- 107 Lum, J. J. *et al.* The transcription factor HIF-1alpha plays a critical role in the growth factor-dependent regulation of both aerobic and anaerobic glycolysis. *Genes & development* **21**, 1037-1049, doi:10.1101/gad.1529107 (2007).
- 108 Li, X.-B., Gu, J.-D. & Zhou, Q.-H. Review of aerobic glycolysis and its key enzymes new targets for lung cancer therapy. *Thoracic cancer* **6**, 17-24, doi:10.1111/1759-7714.12148 (2015).
- 109 Jing, M., Cheruvu, V. K. & Ismail-Beigi, F. Stimulation of glucose transport in response to activation of distinct AMPK signaling pathways. *American journal of physiology. Cell physiology* **295**, C1071-C1082, doi:10.1152/ajpcell.00040.2008 (2008).
- 110 Widnell, C. C. Control of glucose transport by GLUT1: Regulated secretion in an unexpected environment. *Bioscience Reports* **15**, 427-443, doi:10.1007/BF01204347 (1995).
- Zhang, J.-Z., Behrooz, A. & Ismail-Beigi, F. Regulation of glucose transport by hypoxia. *American Journal of Kidney Diseases* 34, 189-202, doi:10.1016/S0272-6386(99)70131-9 (1999).
- 112 Behrooz, A. & Ismail-Beigi, F. Dual control of glut1 glucose transporter gene expression by hypoxia and by inhibition of oxidative phosphorylation. *The Journal of biological chemistry* **272**, 5555-5562 (1997).
- 113 Hoskin, P. J., Sibtain, A., Daley, F. M. & Wilson, G. D. GLUT1 and CAIX as intrinsic markers of hypoxia in bladder cancer: relationship with vascularity and proliferation as predictors of outcome of ARCON. *Br J Cancer* 89, 1290-1297, doi:10.1038/sj.bjc.6601260 (2003).
- 114 Airley, R. E. *et al.* GLUT-1 and CAIX as intrinsic markers of hypoxia in carcinoma of the cervix: relationship to pimonidazole binding. *International journal of cancer* **104**, 85-91, doi:10.1002/ijc.10904 (2003).
- 115 Gillies, R. M., Robinson, S. P., McPhail, L. D., Carter, N. D. & Murray, J. F. Immunohistochemical assessment of intrinsic and extrinsic markers of hypoxia in

reproductive tissue: differential expression of HIF1 $\alpha$  and HIF2 $\alpha$  in rat oviduct and endometrium. *Journal of Molecular Histology* **42**, 341-354, doi:10.1007/s10735-011-9338-2 (2011).

- 116 Melstrom, L. G. *et al.* Apigenin inhibits the GLUT-1 glucose transporter and the phosphoinositide 3-kinase/Akt pathway in human pancreatic cancer cells. *Pancreas* **37**, 426-431, doi:10.1097/MPA.0b013e3181735ccb (2008).
- 117 Volker, H. U. *et al.* Expression of p-AKT characterizes adenoid cystic carcinomas of head and neck with a higher risk for tumor relapses. *Diagnostic pathology* **4**, 18, doi:10.1186/1746-1596-4-18 (2009).
- 118 Fukuzumi, M., Hamakawa, H., Onishi, A., Sumida, T. & Tanioka, H. Gene expression of GLUT isoforms and VHL in oral squamous cell carcinoma. *Cancer letters* **161**, 133-140 (2000).
- 119 Ramakrishnan, S. K. *et al.* Loss of von Hippel-Lindau protein (VHL) increases systemic cholesterol levels through targeting hypoxia-inducible factor 2alpha and regulation of bile acid homeostasis. *Molecular and cellular biology* **34**, 1208-1220, doi:10.1128/mcb.01441-13 (2014).
- 120 Jun, Y. J. *et al.* Clinicopathologic significance of GLUT1 expression and its correlation with Apaf-1 in colorectal adenocarcinomas. *World journal of gastroenterology* **17**, 1866-1873, doi:10.3748/wjg.v17.i14.1866 (2011).
- 121 Merrall, N. W., Plevin, R. & Gould, G. W. Growth factors, mitogens, oncogenes and the regulation of glucose transport. *Cellular signalling* **5**, 667-675 (1993).
- 122 Driedger, P. E. & Blumberg, P. M. The effect of phorbol diesters on chicken embryo fibroblasts. *Cancer Res* **37**, 3257-3265 (1977).
- 123 Flier, J. S., Mueckler, M. M., Usher, P. & Lodish, H. F. Elevated levels of glucose transport and transporter messenger RNA are induced by ras or src oncogenes. *Science (New York, N.Y.)* **235**, 1492 (1987).
- 124 Birnbaum, M. J., Haspel, H. C. & Rosen, O. M. Transformation of rat fibroblasts by FSV rapidly increases glucose transporter gene transcription. *Science (New York, N.Y.)* 235, 1495 (1987).
- 125 Racker, E., Resnick, R. J. & Feldman, R. Glycolysis and methylaminoisobutyrate uptake in rat-1 cells transfected with ras or myc oncogenes. *Proceedings of the National Academy* of Sciences **82**, 3535 (1985).
- 126 Murakami, T. *et al.* Identification of two enhancer elements in the gene encoding the type 1 glucose transporter from the mouse which are responsive to serum, growth factor, and oncogenes. *Journal of Biological Chemistry* **267**, 9300-9306 (1992).
- 127 Ebert, B. L., Firth, J. D. & Ratcliffe, P. J. Hypoxia and Mitochondrial Inhibitors Regulate Expression of Glucose Transporter-1 via Distinct Cis-acting Sequences. *Journal of Biological Chemistry* **270**, 29083-29089 (1995).
- 128 Chen, C., Pore, N., Behrooz, A., Ismail-Beigi, F. & Maity, A. Regulation of glut1 mRNA by Hypoxia-inducible Factor-1: INTERACTION BETWEEN H-ras AND HYPOXIA. *Journal of Biological Chemistry* **276**, 9519-9525 (2001).
- 129 Janssen, H. L., Haustermans, K. M., Balm, A. J. & Begg, A. C. Hypoxia in head and neck cancer: how much, how important? *Head & neck* 27, 622-638, doi:10.1002/hed.20223 (2005).
- 130 Nordsmark, M. *et al.* Prognostic value of tumor oxygenation in 397 head and neck tumors after primary radiation therapy. An international multi-center study. *Radiotherapy and*

oncology : journal of the European Society for Therapeutic Radiology and Oncology 77, 18-24, doi:10.1016/j.radonc.2005.06.038 (2005).

- 131 Stadler, P. *et al.* Influence of the hypoxic subvolume on the survival of patients with head and neck cancer. *Int J Radiat Oncol Biol Phys* **44**, 749-754 (1999).
- 132 Nakajima, E. C. *et al.* Quantifying metabolic heterogeneity in head and neck tumors in real time: 2-DG uptake is highest in hypoxic tumor regions. *PLoS One* **9**, e102452, doi:10.1371/journal.pone.0102452 (2014).
- Flenley, D. C. Arterial blood gas tensions and pH. *British journal of clinical pharmacology* 9, 129-135 (1980).
- 134 Gaertner, F. C., Souvatzoglou, M., Brix, G. & Beer, A. J. Imaging of hypoxia using PET and MRI. *Current pharmaceutical biotechnology* **13**, 552-570 (2012).
- 135 Stone, H. B., Brown, J. M., Phillips, T. L. & Sutherland, R. M. Oxygen in human tumors: correlations between methods of measurement and response to therapy. Summary of a workshop held November 19-20, 1992, at the National Cancer Institute, Bethesda, Maryland. *Radiat Res* **136**, 422-434 (1993).
- 136 Shaw, A. D., Li, Z., Thomas, Z. & Stevens, C. W. Assessment of tissue oxygen tension: comparison of dynamic fluorescence quenching and polarographic electrode technique. *Critical care (London, England)* **6**, 76-80 (2002).
- 137 Vaupel, P., Hockel, M. & Mayer, A. Detection and characterization of tumor hypoxia using pO2 histography. *Antioxid Redox Signal* 9, 1221-1235, doi:10.1089/ars.2007.1628 (2007).
- 138 Esipova, T. V. *et al.* Two new "protected" oxyphors for biological oximetry: properties and application in tumor imaging. *Analytical chemistry* **83**, 8756-8765, doi:10.1021/ac2022234 (2011).
- 139 Wilson, D. F., Lee, W. M., Makonnen, S., Apreleva, S. & Vinogradov, S. A. Oxygen pressures in the interstitial space of skeletal muscle and tumors in vivo. *Advances in experimental medicine and biology* **614**, 53-62, doi:10.1007/978-0-387-74911-2\_7 (2008).
- 140 Boushel, R. *et al.* Monitoring tissue oxygen availability with near infrared spectroscopy (NIRS) in health and disease. *Scandinavian journal of medicine & science in sports* **11**, 213-222 (2001).
- 141 Zheng, X. *et al.* Hypoxia-specific ultrasensitive detection of tumours and cancer cells in vivo. *Nature communications* **6**, 5834, doi:10.1038/ncomms6834 (2015).
- 142 Dische, S. *et al.* A comparison of the tumour concentrations obtainable with misonidazole and Ro 03-8799. *Br J Radiol* **59**, 911-917, doi:10.1259/0007-1285-59-705-911 (1986).
- 143 Varia, M. A. *et al.* Pimonidazole: a novel hypoxia marker for complementary study of tumor hypoxia and cell proliferation in cervical carcinoma. *Gynecologic oncology* **71**, 270-277, doi:10.1006/gyno.1998.5163 (1998).
- 144 Ragnum, H. B. *et al.* The tumour hypoxia marker pimonidazole reflects a transcriptional programme associated with aggressive prostate cancer. *British journal of cancer* **112**, 382-390, doi:10.1038/bjc.2014.604 (2015).
- 145 Aguilera, K. Y. & Brekken, R. A. Hypoxia Studies with Pimonidazole in vivo. *Bioprotocol* **4**, e1254 (2014).
- 146 Wang, W. *et al.* Pharmacokinetic analysis of hypoxia (18)F-fluoromisonidazole dynamic PET in head and neck cancer. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* **51**, 37-45, doi:10.2967/jnumed.109.067009 (2010).
- 147 Price, J. M., Robinson, S. P. & Koh, D. M. Imaging hypoxia in tumours with advanced MRI. *The quarterly journal of nuclear medicine and molecular imaging : official*

publication of the Italian Association of Nuclear Medicine (AIMN) [and] the International Association of Radiopharmacology (IAR), [and] Section of the So **57**, 257-270 (2013).

- 148 Kelada, O. J. & Carlson, D. J. Molecular imaging of tumor hypoxia with positron emission tomography. *Radiation research* **181**, 335-349, doi:10.1667/RR13590.1 (2014).
- 149 Lopci, E. *et al.* PET radiopharmaceuticals for imaging of tumor hypoxia: a review of the evidence. *American journal of nuclear medicine and molecular imaging* **4**, 365-384 (2014).
- 150 Fleming, I. N. *et al.* Imaging tumour hypoxia with positron emission tomography. *British Journal Of Cancer* **112**, 238, doi:10.1038/bjc.2014.610 (2014).
- 151 Laking, G. & Price, P. Radionuclide imaging of perfusion and hypoxia. *Eur J Nucl Med Mol Imaging* **37 Suppl 1**, S20-29, doi:10.1007/s00259-010-1453-x (2010).
- 152 Rajendran, J. G. *et al.* Tumor hypoxia imaging with [F-18] fluoromisonidazole positron emission tomography in head and neck cancer. *Clinical cancer research : an official journal of the American Association for Cancer Research* **12**, 5435-5441, doi:10.1158/1078-0432.CCR-05-1773 (2006).
- 153 Eschmann, S. M. *et al.* Prognostic impact of hypoxia imaging with 18F-misonidazole PET in non-small cell lung cancer and head and neck cancer before radiotherapy. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* **46**, 253-260 (2005).
- 154 Koh, W. J. *et al.* Evaluation of oxygenation status during fractionated radiotherapy in human nonsmall cell lung cancers using [F-18]fluoromisonidazole positron emission tomography. *Int J Radiat Oncol Biol Phys* **33**, 391-398, doi:10.1016/0360-3016(95)00170-4 (1995).
- 155 Cheng, J. *et al.* 18F-fluoromisonidazole PET/CT: a potential tool for predicting primary endocrine therapy resistance in breast cancer. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* **54**, 333-340, doi:10.2967/jnumed.112.111963 (2013).
- 156 Segard, T. *et al.* Detection of hypoxia with 18F-fluoromisonidazole (18F-FMISO) PET/CT in suspected or proven pancreatic cancer. *Clinical nuclear medicine* **38**, 1-6, doi:10.1097/RLU.0b013e3182708777 (2013).
- 157 Kim, B. W. *et al.* Prognostic assessment of hypoxia and metabolic markers in cervical cancer using automated digital image analysis of immunohistochemistry. *Journal of translational medicine* **11**, 185, doi:10.1186/1479-5876-11-185 (2013).
- 158 Rischin, D. *et al.* Prognostic significance of [18F]-misonidazole positron emission tomography-detected tumor hypoxia in patients with advanced head and neck cancer randomly assigned to chemoradiation with or without tirapazamine: a substudy of Trans-Tasman Radiation Oncology Group Study 98.02. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **24**, 2098-2104, doi:10.1200/jco.2005.05.2878 (2006).
- 159 Sorger, D. *et al.* [18F]Fluoroazomycinarabinofuranoside (18FAZA) and [18F]Fluoromisonidazole (18FMISO): a comparative study of their selective uptake in hypoxic cells and PET imaging in experimental rat tumors. *Nucl Med Biol* **30**, 317-326 (2003).
- 160 Evans, S. M. *et al.* Comparative measurements of hypoxia in human brain tumors using needle electrodes and EF5 binding. *Cancer Res* **64**, 1886-1892 (2004).
- 161 Komar, G. *et al.* 18F-EF5: a new PET tracer for imaging hypoxia in head and neck cancer. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* **49**, 1944-1951, doi:10.2967/jnumed.108.053785 (2008).

- 162 Mahy, P. *et al.* Comparative pharmacokinetics, biodistribution, metabolism and hypoxiadependent uptake of [18F]-EF3 and [18F]-MISO in rodent tumor models. *Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology* 89, 353-360, doi:10.1016/j.radonc.2008.06.008 (2008).
- 163 Laughlin, K. M. *et al.* Biodistribution of the nitroimidazole EF5 (2-[2-nitro-1H-imidazol-1-yl]-N-(2,2,3,3,3-pentafluoropropyl) acetamide) in mice bearing subcutaneous EMT6 tumors. *The Journal of pharmacology and experimental therapeutics* 277, 1049-1057 (1996).
- 164 Urtasun, R. C. *et al.* Measurement of hypoxia in human tumours by non-invasive spect imaging of iodoazomycin arabinoside. *The British journal of cancer. Supplement* **27**, S209-212 (1996).
- 165 Stypinski, D. *et al.* Dosimetry estimations for 123I-IAZA in healthy volunteers. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* **42**, 1418-1423 (2001).
- 166 Kumar, P., Wiebe, L. I., Atrazheva, E. & Tandon, M. An improved synthesis of  $\alpha$ -AZA,  $\alpha$ -AZP and  $\alpha$ -AZG, the precursors to clinical markers of tissue hypoxia. *Tetrahedron Letters* **42**, 2077-2078, doi:<u>https://doi.org/10.1016/S0040-4039(01)00099-5</u> (2001).
- 167 Reischl, G. *et al.* Imaging of tumor hypoxia with [124I]IAZA in comparison with [18F]FMISO and [18F]FAZA--first small animal PET results. *Journal of pharmacy & pharmaceutical sciences : a publication of the Canadian Society for Pharmaceutical Sciences, Societe canadienne des sciences pharmaceutiques* **10**, 203-211 (2007).
- 168 Souvatzoglou, M. *et al.* Tumour hypoxia imaging with [18F]FAZA PET in head and neck cancer patients: a pilot study. *Eur J Nucl Med Mol Imaging* **34**, 1566-1575, doi:10.1007/s00259-007-0424-3 (2007).
- 169 Verwer, E. E. *et al.* Parametric methods for quantification of 18F-FAZA kinetics in nonsmall cell lung cancer patients. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* **55**, 1772-1777, doi:10.2967/jnumed.114.141846 (2014).
- 170 Postema, E. J. *et al.* Initial results of hypoxia imaging using 1-alpha-D: -(5-deoxy-5-[18F]fluoroarabinofuranosyl)-2-nitroimidazole (18F-FAZA). *Eur J Nucl Med Mol Imaging* **36**, 1565-1573, doi:10.1007/s00259-009-1154-5 (2009).
- 171 Bowen, S. R., van der Kogel, A. J., Nordsmark, M., Bentzen, S. M. & Jeraj, R. Characterization of positron emission tomography hypoxia tracer uptake and tissue oxygenation via electrochemical modeling. *Nuclear medicine and biology* **38**, 771-780, doi:10.1016/j.nucmedbio.2011.02.002 (2011).
- 172 Gagel, B. *et al.* pO polarography, contrast enhanced color duplex sonography (CDS), [18F] fluoromisonidazole and [18F] fluorodeoxyglucose positron emission tomography: validated methods for the evaluation of therapy-relevant tumor oxygenation or only bricks in the puzzle of tumor hypoxia? *BMC Cancer* 7, 113, doi:10.1186/1471-2407-7-113 (2007).
- 173 Gagel, B. *et al.* pO(2) Polarography versus positron emission tomography ([(18)F] fluoromisonidazole, [(18)F]-2-fluoro-2'-deoxyglucose). An appraisal of radiotherapeutically relevant hypoxia. *Strahlentherapie und Onkologie : Organ der Deutschen Rontgengesellschaft ... [et al]* **180**, 616-622, doi:10.1007/s00066-004-1229-y (2004).
- 174 Zimny, M. *et al.* FDG--a marker of tumour hypoxia? A comparison with [18F]fluoromisonidazole and pO2-polarography in metastatic head and neck cancer. *Eur J Nucl Med Mol Imaging* **33**, 1426-1431, doi:10.1007/s00259-006-0175-6 (2006).

- 175 Dierckx, R. A. & Van de Wiele, C. FDG uptake, a surrogate of tumour hypoxia? *Eur J Nucl Med Mol Imaging* **35**, 1544-1549, doi:10.1007/s00259-008-0758-5 (2008).
- 176 Li, X.-F., Du, Y., Ma, Y., Postel, G. C. & Civelek, A. C. (18)F-fluorodeoxyglucose uptake and tumor hypoxia: revisit (18)f-fluorodeoxyglucose in oncology application. *Translational oncology* 7, 240-247, doi:10.1016/j.tranon.2014.02.010 (2014).
- 177 Beasley, N. J. *et al.* Hypoxia-inducible factors HIF-1alpha and HIF-2alpha in head and neck cancer: relationship to tumor biology and treatment outcome in surgically resected patients. *Cancer Res* **62**, 2493-2497 (2002).
- 178 Baba, Y. *et al.* HIF1A overexpression is associated with poor prognosis in a cohort of 731 colorectal cancers. *The American journal of pathology* **176**, 2292-2301, doi:10.2353/ajpath.2010.090972 (2010).
- 179 Seeber, L. M. *et al.* The role of hypoxia inducible factor-1alpha in gynecological cancer. *Critical reviews in oncology/hematology* **78**, 173-184, doi:10.1016/j.critrevonc.2010.05.003 (2011).
- 180 Rademakers, S. E., Lok, J., van der Kogel, A. J., Bussink, J. & Kaanders, J. H. Metabolic markers in relation to hypoxia; staining patterns and colocalization of pimonidazole, HIF-1alpha, CAIX, LDH-5, GLUT-1, MCT1 and MCT4. *BMC Cancer* 11, 167, doi:10.1186/1471-2407-11-167 (2011).
- 181 Loncaster, J. A. *et al.* Carbonic anhydrase (CA IX) expression, a potential new intrinsic marker of hypoxia: correlations with tumor oxygen measurements and prognosis in locally advanced carcinoma of the cervix. *Cancer Res* **61**, 6394-6399 (2001).
- 182 Tanaka, N. *et al.* Expression of carbonic anhydrase 9, a potential intrinsic marker of hypoxia, is associated with poor prognosis in oesophageal squamous cell carcinoma. *Br J Cancer* **99**, 1468-1475, doi:10.1038/sj.bjc.6604719 (2008).
- 183 Chia, S. K. *et al.* Prognostic significance of a novel hypoxia-regulated marker, carbonic anhydrase IX, in invasive breast carcinoma. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **19**, 3660-3668, doi:10.1200/jco.2001.19.16.3660 (2001).
- 184 Ilie, M. *et al.* High levels of carbonic anhydrase IX in tumour tissue and plasma are biomarkers of poor prognostic in patients with non-small cell lung cancer. *Br J Cancer* 102, 1627-1635, doi:10.1038/sj.bjc.6605690 (2010).
- 185 E, G. *et al.* Endogenous vascular endothelial growth factor-A (VEGF-A) maintains endothelial cell homeostasis by regulating VEGF receptor-2 transcription. *The Journal of biological chemistry* **287**, 3029-3041, doi:10.1074/jbc.M111.293985 (2012).
- 186 Kusumanto, Y. H., Meijer, C., Dam, W., Mulder, N. H. & Hospers, G. A. P. Circulating vascular endothelial growth factor (VEGF) levels in advanced stage cancer patients compared to normal controls and diabetes mellitus patients with critical ischemia. *Drug target insights* **2**, 105-109 (2007).
- 187 Viola, R. J. *et al.* In vivo bioluminescence imaging monitoring of hypoxia-inducible factor 1alpha, a promoter that protects cells, in response to chemotherapy. *AJR. American journal of roentgenology* **191**, 1779-1784, doi:10.2214/ajr.07.4060 (2008).
- 188 Saha, D. *et al.* In vivo bioluminescence imaging of tumor hypoxia dynamics of breast cancer brain metastasis in a mouse model. *Journal of visualized experiments : JoVE*, 3175, doi:10.3791/3175 (2011).
- 189 Boerema, I. High Tension Oxygen Therapy: Hyperbaric Oxygen. *Proceedings of the Royal Society of Medicine* **57**, 817-818, doi:10.1177/003591576405700924 (1964).

- 190 Watson, E. R. *et al.* Hyperbaric oxygen and radiotherapy: a Medical Research Council trial in carcinoma of the cervix. *The British Journal of Radiology* **51**, 879-887, doi:10.1259/0007-1285-51-611-879 (1978).
- Brady, L. W. *et al.* Hyperbaric oxygen therapy for carcinoma of the cervix—Stages IIB, IIIA, IIIB and IVA: Results of a randomized study by the radiation therapy oncology group. *International Journal of Radiation Oncology Biology Physics* 7, 991-998, doi:10.1016/0360-3016(81)90149-8 (1981).
- 192 Beppu, T. *et al.* A Phase II Study of Radiotherapy after Hyperbaric Oxygenation Combined with Interferon-beta and Nimustine Hydrochloride to Treat Supratentorial Malignant Gliomas. *Journal of Neuro-Oncology* **61**, 161-170, doi:10.1023/A:1022169107872 (2003).
- 193 Haffty, B. G., Hurley, R. & Peters, L. J. Radiation therapy with hyperbaric oxygen at 4 atmospheres pressure in the management of squamous cell carcinoma of the head and neck: results of a randomized clinical trial. *Cancer J Sci Am* **5**, 341-347 (1999).
- Hoskin, P. J., Saunders, M. I. & Dische, S. Hypoxic radiosensitizers in radical radiotherapy for patients with bladder carcinoma. 86, 1322-1328, doi:doi:10.1002/(SICI)1097-0142(19991001)86:7<1322::AID-CNCR30>3.0.CO;2-E (1999).
- 195 Stępień, K., Ostrowski, R. P. & Matyja, E. Hyperbaric oxygen as an adjunctive therapy in treatment of malignancies, including brain tumours. *Medical oncology (Northwood, London, England)* **33**, 101-101, doi:10.1007/s12032-016-0814-0 (2016).
- 196 Horsman, M. R. *et al.* Reducing acute and chronic hypoxia in tumours by combining nicotinamide with carbogen breathing. *Acta oncologica (Stockholm, Sweden)* **33**, 371-376 (1994).
- 197 Surjana, D., Halliday, G. M. & Damian, D. L. Role of Nicotinamide in DNA Damage, Mutagenesis, and DNA Repair %J Journal of Nucleic Acids. 2010, 13, doi:10.4061/2010/157591 (2010).
- 198 Albert, J. M. *et al.* Inhibition of Poly(ADP-Ribose) Polymerase Enhances Cell Death and Improves Tumor Growth Delay in Irradiated Lung Cancer Models. *Clinical Cancer Research* **13**, 3033 (2007).
- 199 Calabrese, C. R. *et al.* Anticancer Chemosensitization and Radiosensitization by the Novel Poly(ADP-ribose) Polymerase-1 Inhibitor AG14361. *JNCI: Journal of the National Cancer Institute* **96**, 56-67, doi:10.1093/jnci/djh005 (2004).
- 200 Khan, K. *et al.* Head and neck cancer radiosensitization by the novel poly(ADP-ribose) polymerase inhibitor GPI-15427. **32**, 381-391, doi:doi:10.1002/hed.21195 (2010).
- 201 Bussink, J. Clinical Outcome and Tumour Microenvironmental Effects of Accelerated Radiotherapy with Carbogen and Nicotinamide. *Acta Oncologica* **38**, 875-882, doi:10.1080/028418699432563 (1999).
- 202 Saunders, M. & Dische, S. Clinical results of hypoxic cell radiosensitisation from hyperbaric oxygen to accelerated radiotherapy, carbogen and nicotinamide. *The British journal of cancer. Supplement* 27, S271-S278 (1996).
- 203 Stern, S. & Guichard, M. Efficacy of agents counteracting hypoxia in fractionated radiation regimes. *Radiotherapy and Oncology* **41**, 143-149, doi:<u>https://doi.org/10.1016/S0167-8140(96)01787-2</u> (1996).
- 204 Aquino-Parsons, C., Lim, P., Green, A. & Minchinton, A. I. Carbogen Inhalation in Cervical Cancer: Assessment of Oxygenation Change. *Gynecologic oncology* 74, 259-264, doi:<u>https://doi.org/10.1006/gyno.1999.5443</u> (1999).

- 205 Stüben, G., Stuschke, M., Knühmann, K., Horsman, M. R. & Sack, H. The effect of combined nicotinamide and carbogen treatments in human tumour xenografts: oxygenation and tumour control studies. *Radiotherapy and Oncology* **48**, 143-148, doi:<u>https://doi.org/10.1016/S0167-8140(98)00006-1</u> (1998).
- 206 Miralbell, R. *et al.* Accelerated Radiotherapy, Carbogen, and Nicotinamide in Glioblastoma Multiforme: Report of European Organization for Research and Treatment of Cancer Trial 22933. *Journal of Clinical Oncology* **17**, 3143-3149, doi:10.1200/JCO.1999.17.10.3143 (1999).
- 207 Bernier, J. *et al.* ARCON: accelerated radiotherapy with carbogen and nicotinamide in non small cell lung cancer: a phase I/II study by the EORTC. *Radiotherapy and Oncology* **52**, 149-156, doi:10.1016/S0167-8140(99)00106-1 (1999).
- 208 Bernier, J. *et al.* ARCON: accelerated radiotherapy with carbogen and nicotinamide in head and neck squamous cell carcinomas. The experience of the Co-operative Group of Radiotherapy of the European Organization for Research and Treatment of Cancer (EORTC). *Radiotherapy and Oncology* **55**, 111-119, doi:10.1016/S0167-8140(00)00165-1 (2000).
- 209 Simon, J.-M. *et al.* Radiotherapy and chemotherapy with or without carbogen and nicotinamide in inoperable biopsy-proven glioblastoma multiforme. *Radiotherapy and Oncology* **67**, 45-51, doi:10.1016/S0167-8140(03)00007-0 (2003).
- Janssens, G. O. *et al.* Accelerated Radiotherapy With Carbogen and Nicotinamide for Laryngeal Cancer: Results of a Phase III Randomized Trial. *Journal of Clinical Oncology* 30, 1777-1783, doi:10.1200/JCO.2011.35.9315 (2012).
- 211 Adams, G. E. & Cooke, M. S. Electron-affinic sensitization. I. A structural basis for chemical radiosensitizers in bacteria. *International journal of radiation biology and related studies in physics, chemistry, and medicine* **15**, 457-471 (1969).
- 212 Adams, G. E. *et al.* Electron-affinic sensitization. VII. A correlation between structures, one-electron reduction potentials, and efficiencies of nitroimidazoles as hypoxic cell radiosensitizers. *Radiat Res* **67**, 9-20 (1976).
- 213 Dische, S. Chemical sensitizers for hypoxic cells: A decade of experience in clinical radiotherapy. *Radiotherapy and Oncology* **3**, 97-115, doi:10.1016/S0167-8140(85)80015-3 (1985).
- Alper, T. The modification of damage caused by primary ionization of biological targets. *Radiat Res* **5**, 573-586 (1956).
- 215 Howard-Flanders, P. Effect of oxygen on the radiosensitivity of bacteriophage in the presence of sulphydryl compounds. *Nature* **186**, 485-487 (1960).
- 216 Chapman, J. D., Greenstock, C. L., Reuvers, A. P., McDonald, E. & Dunlop, I. Radiation chemical studies with nitrofurazone as related to its mechanism of radiosensitization. *Radiat Res* **53**, 190-203 (1973).
- 217 Wardman, P. Chemical Radiosensitizers for Use in Radiotherapy. *Clinical Oncology* **19**, 397-417, doi:10.1016/j.clon.2007.03.010 (2007).
- 218 Kizaka-Kondoh, S. & Konse-Nagasawa, H. Significance of nitroimidazole compounds and hypoxia-inducible factor-1 for imaging tumor hypoxia. *Cancer Science* **100**, 1366-1373, doi:10.1111/j.1349-7006.2009.01195.x (2009).
- 219 Chapman, J. D., Reuvers, A. P. & Borsa, J. Effectiveness of nitrofuran derivatives in sensitizing hypoxic mammalian cells to X rays. *The British Journal of Radiology* **46**, 623-630, doi:10.1259/0007-1285-46-548-623 (1973).

- Ahn, G. O. & Brown, M. Targeting tumors with hypoxia-activated cytotoxins. *Front Biosci* 12, 3483-3501 (2007).
- 221 Kappen, L. S., Lee, T. R., Yang, C. C. & Goldberg, I. H. Oxygen transfer from the nitro group of a nitroaromatic radiosensitizer to a DNA sugar damage product. *Biochemistry* 28, 4540-4542, doi:10.1021/bi00437a004 (1989).
- 222 Dische, S., Saunders, M. I., Lee, M. E., Adams, G. E. & Flockhart, I. R. Clinical testing of the radiosensitizer Ro 07-0582: experience with multiple doses. *British journal of cancer* 35, 567-579 (1977).
- 223 Urtasun, R. *et al.* Radiation and nitroimidazoles in supratentorial high grade gliomas: a second clinical trial. *British Journal Of Cancer* **46**, 101, doi:10.1038/bjc.1982.171 (1982).
- 224 Grigsby, P. W. *et al.* Irradiation with or without misonidazole for patients with stages IIIb and IVa carcinoma of the cervix: final results of RTOG 80-05. *International Journal of Radiation Oncology Biology Physics* 44, 513-517, doi:10.1016/S0360-3016(99)00054-1 (1999).
- 225 Brown, J. M., Yu, N. Y., Brown, D. M. & Lee, W. W. SR-2508: a 2-nitroimidazole amide which should be superior to misonidazole as a radiosensitizer for clinical use. *Int J Radiat Oncol Biol Phys* 7, 695-703 (1981).
- 226 Saunders, M. I. *et al.* The clinical testing of Ro 03-8799--pharmacokinetics, toxicology, tissue and tumor concentrations. *Int J Radiat Oncol Biol Phys* **10**, 1759-1763 (1984).
- 227 Dische, S. *et al.* A trial of Ro 03-8799 (pimonidazole) in carcinoma of the uterine cervix: an interim report from the Medical Research Council Working Party on advanced carcinoma of the cervix. *Radiotherapy and Oncology* **26**, 93-103, doi:<u>https://doi.org/10.1016/0167-8140(93)90089-Q</u> (1993).
- 228 Urtasun, R. C. *et al.* Intervention with the hypoxic tumor cell sensitizer etanidazole in the combined modality treatment of limited stage small-cell lung cancer. A one-institution study. *International Journal of Radiation Oncology\*Biology\*Physics* **40**, 337-342, doi:https://doi.org/10.1016/S0360-3016(97)00771-2 (1998).
- Eschwège, F. *et al.* Results of a european randomized trial of Etanidazole combined with radiotherapy in head and neck carcinomas. *International Journal of Radiation Oncology\*Biology\*Physics* 39, 275-281, doi:<u>https://doi.org/10.1016/S0360-3016(97)00327-1</u> (1997).
- 230 Overgaard, J. *et al.* A randomized double-blind phase III study of nimorazole as a hypoxic radiosensitizer of primary radiotherapy in supraglottic larynx and pharynx carcinoma. Results of the Danish Head and Neck Cancer Study (DAHANCA) Protocol 5-85. *Radiotherapy and Oncology* 46, 135-146, doi:<u>https://doi.org/10.1016/S0167-8140(97)00220-X</u> (1998).
- 231 Overgaard, J. & Horsman, M. R. Modification of hypoxia-induced radioresistance in tumors by the use of oxygen and sensitizers. *Seminars in Radiation Oncology* **6**, 10-21, doi:<u>https://doi.org/10.1016/S1053-4296(96)80032-4</u> (1996).
- 232 Bonnet, M. *et al.* Novel nitroimidazole alkylsulfonamides as hypoxic cell radiosensitisers. *Bioorganic* & *Medicinal* Chemistry **22**, 2123-2132, doi:<u>https://doi.org/10.1016/j.bmc.2014.02.039</u> (2014).
- 233 Hong, C. R., Wang, J., Hicks, K. O. & Hay, M. P. in *Tumor Microenvironment*. (eds Constantinos Koumenis, Lisa M. Coussens, Amato Giaccia, & Ester Hammond) 269-290 (Springer International Publishing).

- 234 Yasui, H. *et al.* Preclinical study on hypoxic radiosensitizing effects of glycididazole in comparison with those of doranidazole in vitro and in vivo. *Oncol Lett* **15**, 1993-1998, doi:10.3892/ol.2017.7481 (2018).
- 235 Denny, W. A. The role of hypoxia-activated prodrugs in cancer therapy. *The Lancet. Oncology* **1**, 25-29, doi:10.1016/s1470-2045(00)00006-1 (2000).
- 236 Sun, J. D. *et al.* Selective tumor hypoxia targeting by hypoxia-activated prodrug TH-302 inhibits tumor growth in preclinical models of cancer. *Clin Cancer Res* **18**, 758-770, doi:10.1158/1078-0432.Ccr-11-1980 (2012).
- Hu, J. *et al.* Targeting the multiple myeloma hypoxic niche with TH-302, a hypoxiaactivated prodrug. *Blood* **116**, 1524-1527, doi:10.1182/blood-2010-02-269126 (2010).
- 238 Phillips, R. M. Targeting the hypoxic fraction of tumours using hypoxia-activated prodrugs. *Cancer Chemotherapy and Pharmacology* **77**, 441-457, doi:10.1007/s00280-015-2920-7 (2016).
- 239 Lee, C. T., Boss, M. K. & Dewhirst, M. W. Imaging tumor hypoxia to advance radiation oncology. *Antioxid Redox Signal* **21**, 313-337, doi:10.1089/ars.2013.5759 (2014).
- 240 Foehrenbacher, A., Secomb, T. W., Wilson, W. R. & Hicks, K. O. Design of optimized hypoxia-activated prodrugs using pharmacokinetic/pharmacodynamic modeling. *Front Oncol* **3**, 314, doi:10.3389/fonc.2013.00314 (2013).
- 241 Foehrenbacher, A. *et al.* The Role of Bystander Effects in the Antitumor Activity of the Hypoxia-Activated Prodrug PR-104. *Front Oncol* **3**, 263, doi:10.3389/fonc.2013.00263 (2013).
- Hu, J. *et al.* Synergistic induction of apoptosis in multiple myeloma cells by bortezomib and hypoxia-activated prodrug TH-302, in vivo and in vitro. *Molecular cancer therapeutics* 12, 1763-1773, doi:10.1158/1535-7163.Mct-13-0123 (2013).
- 243 Liapis, V. *et al.* Hypoxia-activated pro-drug TH-302 exhibits potent tumor suppressive activity and cooperates with chemotherapy against osteosarcoma. *Cancer letters* **357**, 160-169, doi:10.1016/j.canlet.2014.11.020 (2015).
- 244 Meng, F. *et al.* Enhancement of hypoxia-activated prodrug TH-302 anti-tumor activity by Chk1 inhibition. *BMC Cancer* **15**, 422, doi:10.1186/s12885-015-1387-6 (2015).
- 245 McKeown, S. R., Hejmadi, M. V., McIntyre, I. A., McAleer, J. J. & Patterson, L. H. AQ4N: an alkylaminoanthraquinone N-oxide showing bioreductive potential and positive interaction with radiation in vivo. *Br J Cancer* **72**, 76-81 (1995).
- 246 Patterson, L. H. *et al.* Enhancement of chemotherapy and radiotherapy of murine tumours by AQ4N, a bioreductively activated anti-tumour agent. *Br J Cancer* **82**, 1984-1990, doi:10.1054/bjoc.2000.1163 (2000).
- 247 Abbattista, M. R. *et al.* Pre-clinical activity of PR-104 as monotherapy and in combination with sorafenib in hepatocellular carcinoma. *Cancer biology & therapy* **16**, 610-622, doi:10.1080/15384047.2015.1017171 (2015).
- 248 Patterson, A. V. *et al.* Mechanism of action and preclinical antitumor activity of the novel hypoxia-activated DNA cross-linking agent PR-104. *Clin Cancer Res* **13**, 3922-3932, doi:10.1158/1078-0432.Ccr-07-0478 (2007).
- 249 Treat, J. *et al.* Tirapazamine with cisplatin in patients with advanced non-small-cell lung cancer: a phase II study. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **16**, 3524-3527, doi:10.1200/jco.1998.16.11.3524 (1998).
- 250 Marcu, L. & Olver, I. Tirapazamine: from bench to clinical trials. *Current clinical pharmacology* **1**, 71-79 (2006).

- 251 Guise, C. P. *et al.* Bioreductive prodrugs as cancer therapeutics: targeting tumor hypoxia. *Chinese journal of cancer* **33**, 80-86, doi:10.5732/cjc.012.10285 (2014).
- 252 Denny, W. A., Wilson, W. R. & Hay, M. P. Recent developments in the design of bioreductive drugs. *The British journal of cancer. Supplement* **27**, S32-38 (1996).
- 253 Yin, J., Glaser, R. & Gates, K. S. On the reaction mechanism of tirapazamine reduction chemistry: unimolecular N-OH homolysis, stepwise dehydration, or triazene ring-opening. *Chem Res Toxicol* **25**, 634-645, doi:10.1021/tx200546u (2012).
- 254 Shinde, S. S. *et al.* Characterization of radicals formed following enzymatic reduction of 3-substituted analogues of the hypoxia-selective cytotoxin 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). *Journal of the American Chemical Society* **132**, 2591-2599, doi:10.1021/ja908689f (2010).
- 255 Wilson, W. R. *et al.* Bystander effects of bioreductive drugs: potential for exploiting pathological tumor hypoxia with dinitrobenzamide mustards. *Radiat Res* **167**, 625-636, doi:10.1667/rr0807.1 (2007).
- 256 Meng, F. *et al.* Molecular and cellular pharmacology of the hypoxia-activated prodrug TH-302. *Molecular cancer therapeutics* **11**, 740-751, doi:10.1158/1535-7163.Mct-11-0634 (2012).
- 257 Wilson, W. R. & Hay, M. P. Targeting hypoxia in cancer therapy. *Nat Rev Cancer* **11**, 393-410, doi:10.1038/nrc3064 (2011).
- 258 Wardman, P. Electron transfer and oxidative stress as key factors in the design of drugs selectively active in hypoxia. *Current medicinal chemistry* **8**, 739-761 (2001).
- 259 Workman, P. Enzyme-directed bioreductive drug development revisited: a commentary on recent progress and future prospects with emphasis on quinone anticancer agents and quinone metabolizing enzymes, particularly DT-diaphorase. *Oncology research* **6**, 461-475 (1994).
- 260 Lin, A. J., Cosby, L. A., Shansky, C. W. & Sartorelli, A. C. Potential bioreductive alkylating agents. 1. Benzoquinone derivatives. *Journal of medicinal chemistry* **15**, 1247-1252 (1972).
- Stratford, I. J. & Stephens, M. A. The differential hypoxic cytotoxicity of bioreductive agents determined in vitro by the MTT assay. *International Journal of Radiation Oncology\*Biology\*Physics* 16, 973-976, doi:<u>https://doi.org/10.1016/0360-3016(89)90898-5</u> (1989).
- 262 Rockwell, S., Keyes, S. R. & Sartorelli, A. C. Preclinical Studies of Porfiromycin as an Adjunct to Radiotherapy. *Radiation Research* **116**, 100-113, doi:10.2307/3577481 (1988).
- 263 Hendriks, H. R. *et al.* EO9: A novel bioreductive alkylating indoloquinone with preferential solid tumour activity and lack of bone marrow toxicity in preclinical models. *European Journal of Cancer* 29, 897-906, doi:<u>https://doi.org/10.1016/S0959-8049(05)80434-4</u> (1993).
- 264 Adams, G. E., Stratford, I. J., Edwards, H. S., Bremner, J. C. M. & Cole, S. Bioreductive drugs as post-irradiation sensitizers: Comparison of dual function agents with SR 4233 and mitomycin analogue EO9. International Journal the С of Radiation Oncology\*Biology\*Physics 22, 717-720, doi:https://doi.org/10.1016/0360-3016(92)90510-O (1992).
- 265 Haffty, B. G. *et al.* Concurrent chemo-radiotherapy with mitomycin C compared with porfiromycin in squamous cell cancer of the head and neck: Final results of a randomized

clinical trial. *International Journal of Radiation Oncology\*Biology\*Physics* **61**, 119-128, doi:<u>https://doi.org/10.1016/j.ijrobp.2004.07.730</u> (2005).

- 266 Phillips, R. M., Hendriks, H. R. & Peters, G. J. EO9 (Apaziquone): from the clinic to the laboratory and back again. *British Journal of Pharmacology* **168**, 11-18, doi:10.1111/j.1476-5381.2012.01996.x (2012).
- 267 Workman, P., Binger, M. & Kooistra, K. L. Pharmacokinetics, distribution, and metabolism of the novel bioreductive alkylating indoloquinone EO9 in rodents. *International Journal of Radiation Oncology\*Biology\*Physics* 22, 713-716, doi:<u>https://doi.org/10.1016/0360-3016(92)90509-G</u> (1992).
- 268 Moeller, B. J., Richardson, R. A. & Dewhirst, M. W. Hypoxia and radiotherapy: opportunities for improved outcomes in cancer treatment. *Cancer and Metastasis Reviews* **26**, 241-248, doi:10.1007/s10555-007-9056-0 (2007).
- 269 Palcic, B. & Skarsgard, L. D. Cytotoxicity of misonidazole and DNA damage in hypoxic mammalian cells. *The British journal of cancer. Supplement* **3**, 54-59 (1978).
- 270 DeGraff, W. G., Russo, A., Friedman, N. & Mitchell, J. B. Misonidazole hypoxic cytotoxicity and chemosensitization in two cell lines with different intracellular glutathione levels. *European journal of cancer (Oxford, England : 1990)* **26**, 17-20 (1990).
- Jin, C., Bai, L., Wu, H., Tian, F. & Guo, G. Radiosensitization of paclitaxel, etanidazole and paclitaxel+etanidazole nanoparticles on hypoxic human tumor cells in vitro. *Biomaterials* 28, 3724-3730, doi:<u>https://doi.org/10.1016/j.biomaterials.2007.04.032</u> (2007).
- 272 Chapman, J. D., Engelhardt, E. L., Stobbe, C. C., Schneider, R. F. & Hanks, G. E. Measuring hypoxia and predicting tumor radioresistance with nuclear medicine assays. *Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology* **46**, 229-237 (1998).
- 273 Nunn, A., Linder, K. & Strauss, H. W. Nitroimidazoles and imaging hypoxia. *European journal of nuclear medicine* **22**, 265-280 (1995).
- 274 Arteel, G. E., Thurman, R. G., Yates, J. M. & Raleigh, J. A. Evidence that hypoxia markers detect oxygen gradients in liver: pimonidazole and retrograde perfusion of rat liver. *Br J Cancer* **72**, 889-895 (1995).
- 275 Russell, J. *et al.* Immunohistochemical detection of changes in tumor hypoxia. *Int J Radiat Oncol Biol Phys* **73**, 1177-1186, doi:10.1016/j.ijrobp.2008.12.004 (2009).
- 276 Evans, S. M., Jenkins, W. T., Joiner, B., Lord, E. M. & Koch, C. J. 2-Nitroimidazole (EF5) binding predicts radiation resistance in individual 9L s.c. tumors. *Cancer Res* 56, 405-411 (1996).
- 277 Raleigh, J. A. *et al.* Hypoxia and vascular endothelial growth factor expression in human squamous cell carcinomas using pimonidazole as a hypoxia marker. *Cancer Res* **58**, 3765-3768 (1998).
- 278 Duan, J. X. *et al.* Potent and highly selective hypoxia-activated achiral phosphoramidate mustards as anticancer drugs. *Journal of medicinal chemistry* **51**, 2412-2420, doi:10.1021/jm701028q (2008).
- 279 Guise, C. P. *et al.* The Bioreductive Prodrug PR-104A Is Activated under Aerobic Conditions by Human Aldo-Keto Reductase 1C3. *Cancer Research* **70**, 1573 (2010).
- 280 McKeage, M. J. *et al.* PR-104 a bioreductive pre-prodrug combined with gemcitabine or docetaxel in a phase Ib study of patients with advanced solid tumours. *BMC Cancer* **12**, 496, doi:10.1186/1471-2407-12-496 (2012).

- 281 Guise, C. P. *et al.* Identification of human reductases that activate the dinitrobenzamide mustard prodrug PR-104A: a role for NADPH:cytochrome P450 oxidoreductase under hypoxia. *Biochemical pharmacology* **74**, 810-820, doi:10.1016/j.bcp.2007.06.014 (2007).
- 282 Larue, R. T. *et al.* A phase 1 'window-of-opportunity' trial testing evofosfamide (TH-302), a tumour-selective hypoxia-activated cytotoxic prodrug, with preoperative chemoradiotherapy in oesophageal adenocarcinoma patients. *BMC Cancer* **16**, 644, doi:10.1186/s12885-016-2709-z (2016).
- 283 Peeters, S. G. J. A. *et al.* TH-302 in Combination with Radiotherapy Enhances the Therapeutic Outcome and Is Associated with Pretreatment [<sup&gt;18&lt;/sup&gt;F]HX4 Hypoxia PET Imaging. *Clinical Cancer Research* 21, 2984 (2015).
- 284 Van Cutsem, E. *et al.* Evofosfamide (TH-302) in combination with gemcitabine in previously untreated patients with metastatic or locally advanced unresectable pancreatic ductal adenocarcinoma: Primary analysis of the randomized, double-blind phase III MAESTRO study. *Journal of Clinical Oncology* 34, 193-193, doi:10.1200/jco.2016.34.4\_suppl.193 (2016).
- 285 Patterson, L. H. & McKeown, S. R. AQ4N: a new approach to hypoxia-activated cancer chemotherapy. *British Journal Of Cancer* **83**, 1589, doi:10.1054/bjoc.2000.1564 (2000).
- Albertella, M. R. *et al.* Hypoxia-Selective Targeting by the Bioreductive Prodrug AQ4N in Patients with Solid Tumors: Results of a Phase I Study. *Clinical Cancer Research* 14, 1096 (2008).
- 287 Steward, W. P. *et al.* The use of pharmacokinetic and pharmacodynamic end points to determine the dose of AQ4N, a novel hypoxic cell cytotoxin, given with fractionated radiotherapy in a phase I study. *Annals of Oncology* **18**, 1098-1103, doi:10.1093/annonc/mdm120 (2007).
- Ahn, G. O. *et al.* Radiolytic and cellular reduction of a novel hypoxia-activated cobalt(III) prodrug of a chloromethylbenzindoline DNA minor groove alkylator. *Biochemical pharmacology* **71**, 1683-1694, doi:<u>https://doi.org/10.1016/j.bcp.2006.03.007</u> (2006).
- 289 Parker, L. L. *et al.* A Novel Design Strategy for Stable Metal Complexes of Nitrogen Mustards as Bioreductive Prodrugs. *Journal of medicinal chemistry* **47**, 5683-5689, doi:10.1021/jm049866w (2004).
- 290 Ware, D. C., Palmer, B. D., Wilson, W. R. & Denny, W. A. Hypoxia-selective antitumor agents. 7. Metal complexes of aliphatic mustards as a new class of hypoxia-selective cytotoxins. Synthesis and evaluation of cobalt(III) complexes of bidentate mustards. *Journal of medicinal chemistry* **36**, 1839-1846, doi:10.1021/jm00065a006 (1993).
- 291 Dubois, L. et al. Current preclinical and clinical applications of hypoxia PET imaging using 2-nitroimidazoles. Vol. 59 (2015).
- 292 Dhani, N. C. *et al.* Analysis of the intra- and intertumoral heterogeneity of hypoxia in pancreatic cancer patients receiving the nitroimidazole tracer pimonidazole. *British Journal Of Cancer* **113**, 864, doi:10.1038/bjc.2015.284

https://www.nature.com/articles/bjc2015284#supplementary-information (2015).

293 Toustrup, K. *et al.* Validation of a 15-gene hypoxia classifier in head and neck cancer for prospective use in clinical trials. *Acta Oncologica* **55**, 1091-1098, doi:10.3109/0284186X.2016.1167959 (2016).

- 294 Eustace, A. *et al.* A 26-Gene Hypoxia Signature Predicts Benefit from Hypoxia-Modifying Therapy in Laryngeal Cancer but Not Bladder Cancer. *Clinical Cancer Research* **19**, 4879 (2013).
- 295 Zeman, E. M., Brown, J. M., Lemmon, M. J., Hirst, V. K. & Lee, W. W. SR-4233: a new bioreductive agent with high selective toxicity for hypoxic mammalian cells. *Int J Radiat Oncol Biol Phys* 12, 1239-1242 (1986).
- 296 Robbins, R. F. & Schofield, K. 623. Polyazabicyclic compounds. Part II. Further derivatives of benzo-1 : 2 : 4-triazine. *Journal of the Chemical Society (Resumed)*, 3186-3194, doi:10.1039/JR9570003186 (1957).
- 297 Brown, J. M. Hypoxic cytotoxic agents: a new approach to cancer chemotherapy. *Drug* resistance updates : reviews and commentaries in antimicrobial and anticancer chemotherapy **3**, 7-13, doi:10.1054/drup.2000.0120 (2000).
- 298 Moriwaki, T. *et al.* Cytotoxicity of Tirapazamine (3-Amino-1,2,4-benzotriazine-1,4dioxide)-Induced DNA Damage in Chicken DT40 Cells. *Chemical Research in Toxicology* **30**, 699-704, doi:10.1021/acs.chemrestox.6b00417 (2017).
- 299 DiSilvestro, P. A. *et al.* Phase III Randomized Trial of Weekly Cisplatin and Irradiation Versus Cisplatin and Tirapazamine and Irradiation in Stages IB2, IIA, IIB, IIIB, and IVA Cervical Carcinoma Limited to the Pelvis: A Gynecologic Oncology Group Study. *Journal of Clinical Oncology* **32**, 458-464, doi:10.1200/JCO.2013.51.4265 (2014).
- 300 Patterson, A. V. *et al.* Overexpression of human NADPH:cytochrome c (P450) reductase confers enhanced sensitivity to both tirapazamine (SR 4233) and RSU 1069. *Br J Cancer* **76**, 1338-1347 (1997).
- 301 Chinje, E. C. *et al.* Does reductive metabolism predict response to tirapazamine (SR 4233) in human non-small-cell lung cancer cell lines? *Br J Cancer* **81**, 1127-1133, doi:10.1038/sj.bjc.6690819 (1999).
- 302 Saunders, M. P., Patterson, A. V., Chinje, E. C., Harris, A. L. & Stratford, I. J. NADPH:cytochrome c (P450) reductase activates tirapazamine (SR4233) to restore hypoxic and oxic cytotoxicity in an aerobic resistant derivative of the A549 lung cancer cell line. *Br J Cancer* 82, 651-656, doi:10.1054/bjoc.1999.0977 (2000).
- 303 Laderoute, K. R. & Rauth, A. M. Identification of two major reduction products of the hypoxic cell toxin 3-amino-1,2,4-benzotriazine-1,4-dioxide. *Biochemical pharmacology* 35, 3417-3420 (1986).
- 304 Laderoute, K., Wardman, P. & Rauth, A. M. Molecular mechanisms for the hypoxiadependent activation of 3-amino-1,2,4-benzotriazine-1,4-dioxide (SR 4233). *Biochemical pharmacology* 37, 1487-1495 (1988).
- 305 Riley, R. J. & Workman, P. DT-diaphorase and cancer chemotherapy. *Biochemical pharmacology* **43**, 1657-1669 (1992).
- 306 McLane, K. E., Fisher, J. & Ramakrishnan, K. Reductive Drug Metabolism. Drug Metabolism Reviews 14, 741-799, doi:10.3109/03602538308991408 (1983).
- 307 Elwell, J. H., Siim, B. G., Evans, J. W. & Brown, J. M. Adaptation of human tumor cells to tirapazamine under aerobic conditions: implications of increased antioxidant enzyme activity to mechanism of aerobic cytotoxicity. *Biochemical pharmacology* **54**, 249-257 (1997).
- 308 Wouters, B. G. *et al.* Mitochondrial dysfunction after aerobic exposure to the hypoxic cytotoxin tirapazamine. *Cancer Res* **61**, 145-152 (2001).

- 309 Lloyd, R. V., Duling, D. R., Rumyantseva, G. V., Mason, R. P. & Bridson, P. K. Microsomal reduction of 3-amino-1,2,4-benzotriazine 1,4-dioxide to a free radical. *Mol Pharmacol* **40**, 440-445 (1991).
- 310 Baker, M. A., Zeman, E. M., Hirst, V. K. & Brown, J. M. Metabolism of SR 4233 by Chinese hamster ovary cells: basis of selective hypoxic cytotoxicity. *Cancer Res* 48, 5947-5952 (1988).
- 311 Walton, M. I. & Workman, P. Pharmacokinetics and bioreductive metabolism of the novel benzotriazine di-N-oxide hypoxic cell cytotoxin tirapazamine (WIN 59075; SR 4233; NSC 130181) in mice. *The Journal of pharmacology and experimental therapeutics* 265, 938-947 (1993).
- 312 Daniels, J. S. & Gates, K. S. DNA Cleavage by the Antitumor Agent 3-Amino-1,2,4benzotriazine 1,4-Dioxide (SR4233): Evidence for Involvement of Hydroxyl Radical. *Journal of the American Chemical Society* **118**, 3380-3385, doi:10.1021/ja9510774 (1996).
- 313 Birincioglu, M. *et al.* DNA base damage by the antitumor agent 3-amino-1,2,4benzotriazine 1,4-dioxide (tirapazamine). *Journal of the American Chemical Society* **125**, 11607-11615, doi:10.1021/ja0352146 (2003).
- 314 Zagorevskii, D. *et al.* A mass spectrometry study of tirapazamine and its metabolites. insights into the mechanism of metabolic transformations and the characterization of reaction intermediates. *Journal of the American Society for Mass Spectrometry* **14**, 881-892, doi:10.1016/s1044-0305(03)00334-9 (2003).
- 315 Chowdhury, G., Junnotula, V., Daniels, J. S., Greenberg, M. M. & Gates, K. S. DNA strand damage product analysis provides evidence that the tumor cell-specific cytotoxin tirapazamine produces hydroxyl radical and acts as a surrogate for O(2). *Journal of the American Chemical Society* **129**, 12870-12877, doi:10.1021/ja074432m (2007).
- 316 Kotandeniya, D., Ganley, B. & Gates, K. S. Oxidative DNA base damage by the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). *Bioorganic & medicinal chemistry letters* **12**, 2325-2329 (2002).
- 317 Anderson, R. F., Shinde, S. S., Hay, M. P., Gamage, S. A. & Denny, W. A. Activation of 3-amino-1,2,4-benzotriazine 1,4-dioxide antitumor agents to oxidizing species following their one-electron reduction. *Journal of the American Chemical Society* 125, 748-756, doi:10.1021/ja0209363 (2003).
- 318 Biedermann, K. A., Wang, J., Graham, R. P. & Brown, J. M. SR 4233 cytotoxicity and metabolism in DNA repair-competent and repair-deficient cell cultures. *British journal of cancer* **63**, 358-362 (1991).
- 319 Wang, J., Biedermann, K. A. & Brown, J. M. Repair of DNA and chromosome breaks in cells exposed to SR 4233 under hypoxia or to ionizing radiation. *Cancer Res* **52**, 4473-4477 (1992).
- 320 Delahoussaye, Y. M., Evans, J. W. & Brown, J. M. Metabolism of tirapazamine by multiple reductases in the nucleus. *Biochemical pharmacology* **62**, 1201-1209 (2001).
- 321 Peters, K. B. & Brown, J. M. Tirapazamine: a hypoxia-activated topoisomerase II poison. *Cancer Res* **62**, 5248-5253 (2002).
- 322 Jones, G. D. & Weinfeld, M. Dual action of tirapazamine in the induction of DNA strand breaks. *Cancer Res* **56**, 1584-1590 (1996).
- 323 Daniels, J. S., Gates, K. S., Tronche, C. & Greenberg, M. M. Direct evidence for bimodal DNA damage induced by tirapazamine. *Chem Res Toxicol* 11, 1254-1257, doi:10.1021/tx980184j (1998).

- 324 Hwang, J. T., Greenberg, M. M., Fuchs, T. & Gates, K. S. Reaction of the hypoxia-selective antitumor agent tirapazamine with a C1'-radical in single-stranded and double-stranded DNA: the drug and its metabolites can serve as surrogates for molecular oxygen in radicalmediated DNA damage reactions. *Biochemistry* **38**, 14248-14255 (1999).
- 325 Shi, X., Mandel, S. M. & Platz, M. S. On the mechanism of reaction of radicals with tirapazamine. *Journal of the American Chemical Society* **129**, 4542-4550, doi:10.1021/ja0647405 (2007).
- 326 Avendaño, C. & Menéndez, J. C. in *Medicinal Chemistry of Anticancer Drugs (Second Edition)* (eds Carmen Avendaño & J. Carlos Menéndez) 133-195 (Elsevier, 2015).
- 327 Brown, J. M. SR 4233 (tirapazamine): a new anticancer drug exploiting hypoxia in solid tumours. *Br J Cancer* 67, 1163-1170 (1993).
- 328 Durand, R. E. & Olive, P. L. Physiologic and cytotoxic effects of tirapazamine in tumorbearing mice. *Radiation oncology investigations* 5, 213-219, doi:10.1002/(sici)1520-6823(1997)5:5<213::Aid-roi1>3.0.Co;2-0 (1997).
- 329 Siim, B. G., Menke, D. R., Dorie, M. J. & Brown, J. M. Tirapazamine-induced cytotoxicity and DNA damage in transplanted tumors: relationship to tumor hypoxia. *Cancer Res* **57**, 2922-2928 (1997).
- 330 Lartigau, E. & Guichard, M. Does tirapazamine (SR-4233) have any cytotoxic or sensitizing effect on three human tumour cell lines at clinically relevant partial oxygen pressure? *International journal of radiation biology* **67**, 211-216 (1995).
- 331 Brown, J. M. & Lemmon, M. J. Potentiation by the Hypoxic Cytotoxin SR 4233 of Cell Killing Produced by Fractionated Irradiation of Mouse Tumors. *Cancer Research* 50, 7745 (1990).
- 332 Zhang, M. & Stevens, G. Effect of radiation and tirapazamine (SR-4233) on three melanoma cell lines. **8**, 510-516 (1998).
- 333 Shibata, T. *et al.* Tirapazamine: hypoxic cytotoxicity and interaction with radiation as assessed by the micronucleus assay. *The British journal of cancer. Supplement* **27**, S61-64 (1996).
- 334 Shibata, T. *et al.* Comparison of in vivo Efficacy of Hypoxic Cytotoxin Tirapazamine and Hypoxic Cell Radiosensitizer KU-2285 in Combination with Single and Fractionated Irradiation. *Japanese Journal of Cancer Research* 87, 98-104, doi:10.1111/j.1349-7006.1996.tb00206.x (1996).
- 335 Maxim, P. G. *et al.* Enhanced Effectiveness of Radiochemotherapy with Tirapazamine by Local Application of Electric Pulses to Tumors. *Radiation Research* **162**, 185-193, doi:10.1667/RR3200 (2004).
- 336 Done, M. J. & Brown, J. M. Tumor-specific, Schedule-dependent Interaction between Tirapazamine (SR 4233) and Cisplatin. *Cancer Research* **53**, 4633 (1993).
- 337 Kovacs, M. S. *et al.* Cisplatin anti-tumour potentiation by tirapazamine results from a hypoxia-dependent cellular sensitization to cisplatin. *Br J Cancer* **80**, 1245-1251, doi:10.1038/sj.bjc.6690492 (1999).
- 338 Peters, L. J., Rischin, D., Hicks, R. J., Hughes, P. G. & Sizeland, A. M. 8 Extraordinary tumor control in phase I trial of concurrent tirapazamine cisplatin and radiotherapy for far advanced head and neck cancer. *International Journal of Radiation Oncology* • *Biology* • *Physics* 45, 148-149, doi:10.1016/S0360-3016(99)90026-3 (1999).

- 339 Craighead, P. S., Pearcey, R. & Stuart, G. A phase I/II evaluation of tirapazamine administered intravenously concurrent with cisplatin and radiotherapy in women with locally advanced cervical cancer. *Int J Radiat Oncol Biol Phys* **48**, 791-795 (2000).
- 340 Rischin, D. *et al.* Phase I trial of concurrent tirapazamine, cisplatin, and radiotherapy in patients with advanced head and neck cancer. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **19**, 535-542, doi:10.1200/jco.2001.19.2.535 (2001).
- 341 Le, Q. T. *et al.* Phase I study of tirapazamine plus cisplatin/etoposide and concurrent thoracic radiotherapy in limited-stage small cell lung cancer (S0004): a Southwest Oncology Group study. *Clin Cancer Res* **10**, 5418-5424, doi:10.1158/1078-0432.Ccr-04-0436 (2004).
- 342 Senan, S. *et al.* Phase I and pharmacokinetic study of tirapazamine (SR 4233) administered every three weeks. *Clin Cancer Res* **3**, 31-38 (1997).
- 343 Reddy, S. B. & Williamson, S. K. Tirapazamine: a novel agent targeting hypoxic tumor cells. *Expert opinion on investigational drugs* **18**, 77-87, doi:10.1517/13543780802567250 (2009).
- 344 Doherty, N. *et al.* Muscle cramping in phase I clinical trials of tirapazamine (SR 4233) with and without radiation. *Int J Radiat Oncol Biol Phys* **29**, 379-382 (1994).
- 345 Miller, V. A. *et al.* Phase II study of the combination of the novel bioreductive agent, tirapazamine, with cisplatin in patients with advanced non-small-cell lung cancer. *Annals of Oncology* **8**, 1269-1271, doi:10.1023/A:1008219125746 (1997).
- 346 Reck, M., von Pawel, J., Nimmermann, C., Groth, G. & Gatzemeier, U. [Phase II-trial of tirapazamine in combination with cisplatin and gemcitabine in patients with advanced nonsmall-cell-lung-cancer (NSCLC)]. *Pneumologie (Stuttgart, Germany)* 58, 845-849, doi:10.1055/s-2004-830056 (2004).
- 347 Lee, D. J. *et al.* Concurrent tirapazamine and radiotherapy for advanced head and neck carcinomas: a Phase II study. *Int J Radiat Oncol Biol Phys* **42**, 811-815 (1998).
- 348 Bedikian, A. Y. *et al.* Phase II trial of tirapazamine combined with cisplatin in chemotherapy of advanced malignant melanoma. *Annals of oncology : official journal of the European Society for Medical Oncology* **8**, 363-367 (1997).
- 349 Maluf, F. C. *et al.* Phase II study of tirapazamine plus cisplatin in patients with advanced or recurrent cervical cancer. *International journal of gynecological cancer : official journal of the International Gynecological Cancer Society* **16**, 1165-1171, doi:10.1111/j.1525-1438.2006.00454.x (2006).
- 350 Covens, A., Blessing, J., Bender, D., Mannel, R. & Morgan, M. A phase II evaluation of tirapazamine plus cisplatin in the treatment of recurrent platinum-sensitive ovarian or primary peritoneal cancer: a Gynecologic Oncology Group study. *Gynecologic oncology* 100, 586-590, doi:10.1016/j.ygyno.2005.09.032 (2006).
- 351 Smith, H. O. *et al.* Tirapazamine plus cisplatin in advanced or recurrent carcinoma of the uterine cervix: a Southwest Oncology Group study. *International journal of gynecological cancer : official journal of the International Gynecological Cancer Society* **16**, 298-305, doi:10.1111/j.1525-1438.2006.00339.x (2006).
- 352 Del Rowe, J. *et al.* Single-arm, open-label phase II study of intravenously administered tirapazamine and radiation therapy for glioblastoma multiforme. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **18**, 1254-1259, doi:10.1200/jco.2000.18.6.1254 (2000).
- 353 Rischin, D. *et al.* Tirapazamine, Cisplatin, and Radiation versus Fluorouracil, Cisplatin, and Radiation in patients with locally advanced head and neck cancer: a randomized phase II trial of the Trans-Tasman Radiation Oncology Group (TROG 98.02). *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **23**, 79-87, doi:10.1200/jco.2005.01.072 (2005).
- 354 Le, Q.-T. X. *et al.* Phase II study of tirapazamine, cisplatin, and etoposide and concurrent thoracic radiotherapy for limited-stage small-cell lung cancer: SWOG 0222. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* 27, 3014-3019, doi:10.1200/JCO.2008.21.3868 (2009).
- 355 Pawel, J. et al. Tirapazamine plus cisplatin versus cisplatin in advanced non-small-cell lung cancer: A report of the international CATAPULT I study group. Cisplatin and Tirapazamine in Subjects with Advanced Previously Untreated Non-Small-Cell Lung Tumors. Vol. 18 (2000).
- 356 Shepherd, F. *et al.* Comparison of Tirazone (Tirapazamine) and cisplatin vs. etoposide and cisplatin in advanced non-small cell lung cancer (NSCLC): Final results of the international Phase III CATAPULT II Trial. *Lung Cancer* **29**, 28, doi:10.1016/S0169-5002(00)80087-2 (2000).
- 357 Shulman, L. N. *et al.* Phase I trial of the hypoxic cell cytotoxin tirapazamine with concurrent radiation therapy in the treatment of refractory solid tumors. *Int J Radiat Oncol Biol Phys* **44**, 349-353 (1999).
- 358 Williamson, S. et al. Phase III Trial of Paclitaxel Plus Carboplatin With or Without Tirapazamine in Advanced Non-Small-Cell Lung Cancer: Southwest Oncology Group Trial S0003. Vol. 23 (2006).
- 359 Rischin, D. *et al.* Tirapazamine, cisplatin, and radiation versus cisplatin and radiation for advanced squamous cell carcinoma of the head and neck (TROG 02.02, HeadSTART): a phase III trial of the Trans-Tasman Radiation Oncology Group. *Journal of clinical oncology : official journal of the American Society of Clinical Oncology* **28**, 2989-2995, doi:10.1200/jco.2009.27.4449 (2010).
- 360 Brown, J. M. & Lemmon, M. J. Tumor hypoxia can be exploited to preferentially sensitize tumors to fractionated irradiation. *Int J Radiat Oncol Biol Phys* **20**, 457-461 (1991).
- 361 Hicks, K. O., Pruijn, F. B., Sturman, J. R., Denny, W. A. & Wilson, W. R. Multicellular Resistance to Tirapazamine Is Due to Restricted Extravascular Transport. *Cancer Research* 63, 5970 (2003).
- 362 Hicks, K. O., Fleming, Y., Siim, B. G., Koch, C. J. & Wilson, W. R. Extravascular diffusion of tirapazamine: effect of metabolic consumption assessed using the multicellular layer model. *International Journal of Radiation Oncology* • *Biology* • *Physics* 42, 641-649, doi:10.1016/S0360-3016(98)00268-5 (1998).
- 363 Kyle, A. H. & Minchinton, A. I. Measurement of delivery and metabolism of tirapazamine to tumour tissue using the multilayered cell culture model. *Cancer Chemother Pharmacol* 43, 213-220, doi:10.1007/s002800050886 (1999).
- 364 Hicks, K. O., Siim, B. G., Pruijn, F. B. & Wilson, W. R. Oxygen dependence of the metabolic activation and cytotoxicity of tirapazamine: implications for extravascular transport and activity in tumors. *Radiat Res* 161, 656-666 (2004).
- 365 Hicks, K. O. *et al.* Use of Three-Dimensional Tissue Cultures to Model Extravascular Transport and Predict In Vivo Activity of Hypoxia-Targeted Anticancer Drugs. *JNCI: Journal of the National Cancer Institute* **98**, 1118-1128, doi:10.1093/jnci/djj306 (2006).

- 366 Denny, W. A. & Wilson, W. R. Tirapazamine: a bioreductive anticancer drug that exploits tumour hypoxia. *Expert opinion on investigational drugs* **9**, 2889-2901, doi:10.1517/13543784.9.12.2889 (2000).
- 367 Hicks, K. O. *et al.* Pharmacokinetic/pharmacodynamic modeling identifies SN30000 and SN29751 as tirapazamine analogues with improved tissue penetration and hypoxic cell killing in tumors. *Clinical cancer research : an official journal of the American Association for Cancer Research* **16**, 4946-4957, doi:10.1158/1078-0432.CCR-10-1439 (2010).
- 368 Wang, J. *et al.* Identification of one-electron reductases that activate both the hypoxia prodrug SN30000 and diagnostic probe EF5. *Biochemical pharmacology* **91**, 436-446, doi:10.1016/j.bcp.2014.08.003 (2014).
- 369 Chitneni, S. K. *et al.* 18F-EF5 PET imaging as an early response biomarker for the hypoxiaactivated prodrug SN30000 combined with radiation treatment in a non-small cell lung cancer xenograft model. *Journal of nuclear medicine : official publication, Society of Nuclear Medicine* **54**, 1339-1346, doi:10.2967/jnumed.112.116293 (2013).
- 370 Zhao, P. *et al.* PL-W18O49-TPZ Nanoparticles for Simultaneous Hypoxia-Activated Chemotherapy and Photothermal Therapy. *ACS applied materials & interfaces* **10**, 3405-3413, doi:10.1021/acsami.7b17323 (2018).
- 371 Chang, J., Ajnai, G. & Lin, P.-Y. P 084 Therapeutic assessment of tirapazamine-induced oxidative stress on gastric cancers. *Free Radical Biology and Medicine* **108**, S46, doi:https://doi.org/10.1016/j.freeradbiomed.2017.04.169 (2017).
- 372 Wang, Y. *et al.* Tumor-Penetrating Nanoparticles for Enhanced Anticancer Activity of Combined Photodynamic and Hypoxia-Activated Therapy. *ACS nano* **11**, 2227-2238, doi:10.1021/acsnano.6b08731 (2017).
- 373 Johnson, K. M., Parsons, Z. D., Barnes, C. L. & Gates, K. S. Toward hypoxia-selective DNA-alkylating agents built by grafting nitrogen mustards onto the bioreductively activated, hypoxia-selective DNA-oxidizing agent 3-amino-1,2,4-benzotriazine 1,4dioxide (tirapazamine). *The Journal of organic chemistry* **79**, 7520-7531, doi:10.1021/jo501252p (2014).
- 374 Fuchs, T., Chowdhury, G., Barnes, C. L. & Gates, K. S. 3-amino-1,2,4-benzotriazine 4oxide: characterization of a new metabolite arising from bioreductive processing of the antitumor agent 3-amino-1,2,4-benzotriazine 1,4-dioxide (tirapazamine). *The Journal of organic chemistry* **66**, 107-114 (2001).
- 375 Denny, W. A. & Wilson, W. R. Considerations for the design of nitrophenyl mustards as agents with selective toxicity for hypoxic tumor cells. *Journal of medicinal chemistry* **29**, 879-887 (1986).
- 376 Shi, X., Poole, J. S., Emenike, I., Burdzinski, G. & Platz, M. S. Time-resolved spectroscopy of the excited singlet states of tirapazamine and desoxytirapazamine. *The journal of physical chemistry*. *A* **109**, 1491-1496, doi:10.1021/jp0457040 (2005).
- 377 Poole, J. S. *et al.* Photochemical electron transfer reactions of tirapazamine. *Photochemistry and photobiology* **75**, 339-345 (2002).
- 378 Shen, X. *et al.* Exploiting the Inherent Photophysical Properties of the Major Tirapazamine Metabolite in the Development of Profluorescent Substrates for Enzymes That Catalyze the Bioreductive Activation of Hypoxia-Selective Anticancer Prodrugs. *The Journal of organic chemistry* **83**, 3126-3131, doi:10.1021/acs.joc.7b03035 (2018).

- 379 Mosmann, T. Rapid colorimetric assay for cellular growth and survival: Application to proliferation and cytotoxicity assays. *Journal of Immunological Methods* **65**, 55-63, doi:<u>https://doi.org/10.1016/0022-1759(83)90303-4</u> (1983).
- 380 Pfaffl, M. W. A new mathematical model for relative quantification in real-time RT-PCR. *Nucleic acids research* **29**, e45 (2001).
- Warburg, O. On the origin of cancer cells. Science (New York, N.Y.) 123, 309-314 (1956).
- Hanahan, D. & Weinberg, R. A. The hallmarks of cancer. *Cell* **100**, 57-70 (2000).
- 383 Hanahan, D. & Weinberg, R. A. Hallmarks of cancer: the next generation. *Cell* **144**, 646-674, doi:10.1016/j.cell.2011.02.013 (2011).
- Ouiddir, A., Planès, C., Fernandes, I., VanHesse, A. & Clerici, C. Hypoxia Upregulates Activity and Expression of the Glucose Transporter GLUT1 in Alveolar Epithelial Cells.
   21, 710-718, doi:10.1165/ajrcmb.21.6.3751 (1999).
- 385 Nagasawa, H. *et al.* Antiangiogenic hypoxic cytotoxin TX-402 inhibits hypoxia-inducible factor 1 signaling pathway. *Anticancer Res* **23**, 4427-4434 (2003).
- 386 Kumar, P. et al. Design, Synthesis, and Preliminary Biological Evaluation of 6-O-Glucose– Azomycin Adducts for Diagnosis and Therapy of Hypoxic Tumors. *Journal of medicinal* chemistry 55, 6033-6046, doi:10.1021/jm2017336 (2012).
- 387 Gynther, M. *et al.* Glucose promoiety enables glucose transporter mediated brain uptake of ketoprofen and indomethacin prodrugs in rats. *Journal of medicinal chemistry* **52**, 3348-3353, doi:10.1021/jm8015409 (2009).
- 388 Barros, L. F. *et al.* Kinetic validation of 6-NBDG as a probe for the glucose transporter GLUT1 in astrocytes. *Journal of neurochemistry* **109 Suppl 1**, 94-100, doi:10.1111/j.1471-4159.2009.05885.x (2009).
- 389 Ampferl, R., Rodemann, H. P., Mayer, C., Hofling, T. T. A. & Dittmann, K. Glucose starvation impairs DNA repair in tumour cells selectively by blocking histone acetylation. *Radiotherapy and oncology : journal of the European Society for Therapeutic Radiology and Oncology* **126**, 465-470, doi:10.1016/j.radonc.2017.10.020 (2018).
- 390 Zhang, J. *et al.* Suppression of hypoxia-inducible factor 1alpha (HIF-1alpha) by tirapazamine is dependent on eIF2alpha phosphorylation rather than the mTORC1/4E-BP1 pathway. *PLoS One* **5**, e13910, doi:10.1371/journal.pone.0013910 (2010).
- 391 Rostovtsev, V. V., Green, L. G., Fokin, V. V. & Sharpless, K. B. A stepwise huisgen cycloaddition process: copper(I)-catalyzed regioselective "ligation" of azides and terminal alkynes. *Angewandte Chemie (International ed. in English)* **41**, 2596-2599, doi:10.1002/1521-3773(20020715)41:14<2596::Aid-anie2596>3.0.Co;2-4 (2002).
- 392 Huisgen, R., Szeimies, G. & Möbius, L. 1.3-Dipolare Cycloadditionen, XXXII. Kinetik der Additionen organischer Azide an CC-Mehrfachbindungen. 100, 2494-2507, doi:doi:10.1002/cber.19671000806 (1967).
- 393 Hein, J. E. & Fokin, V. V. Copper-catalyzed azide-alkyne cycloaddition (CuAAC) and beyond: new reactivity of copper(I) acetylides. *Chemical Society reviews* 39, 1302-1315, doi:10.1039/b904091a (2010).
- 394 Jeanquartier, F., Jean-Quartier, C. & Holzinger, A. Integrated web visualizations for protein-protein interaction databases. *BMC bioinformatics* 16, 195-195, doi:10.1186/s12859-015-0615-z (2015).
- 395 Szklarczyk, D. *et al.* The STRING database in 2017: quality-controlled protein-protein association networks, made broadly accessible. *Nucleic acids research* **45**, D362-D368, doi:10.1093/nar/gkw937 (2017).

- 396 Szklarczyk, D. *et al.* STRING v10: protein-protein interaction networks, integrated over the tree of life. *Nucleic acids research* **43**, D447-D452, doi:10.1093/nar/gku1003 (2015).
- Kerrien, S. *et al.* The IntAct molecular interaction database in 2012. *Nucleic acids research* 40, D841-846, doi:10.1093/nar/gkr1088 (2012).
- 398 Schaefer, M. H. *et al.* HIPPIE: Integrating protein interaction networks with experiment based quality scores. *PLoS One* 7, e31826, doi:10.1371/journal.pone.0031826 (2012).
- 399 Licata, L. *et al.* MINT, the molecular interaction database: 2012 update. *Nucleic acids research* **40**, D857-861, doi:10.1093/nar/gkr930 (2012).
- 400 Luo, Q., Pagel, P., Vilne, B. & Frishman, D. DIMA 3.0: Domain Interaction Map. *Nucleic acids research* **39**, D724-729, doi:10.1093/nar/gkq1200 (2011).
- 401 Niu, Y., Otasek, D. & Jurisica, I. Evaluation of linguistic features useful in extraction of interactions from PubMed; application to annotating known, high-throughput and predicted interactions in I2D. *Bioinformatics (Oxford, England)* **26**, 111-119, doi:10.1093/bioinformatics/btp602 (2010).
- 402 Lewis, A. C., Saeed, R. & Deane, C. M. Predicting protein-protein interactions in the context of protein evolution. *Molecular bioSystems* 6, 55-64, doi:10.1039/b916371a (2010).
- 403 Patra, M., Awuah, S. G. & Lippard, S. J. Chemical Approach to Positional Isomers of Glucose–Platinum Conjugates Reveals Specific Cancer Targeting through Glucose-Transporter-Mediated Uptake in Vitro and in Vivo. *Journal of the American Chemical Society* **138**, 12541-12551, doi:10.1021/jacs.6b06937 (2016).
- 404 Sano, D. & Myers, J. N. Xenograft models of head and neck cancers. *Head & neck oncology* **1**, 32-32, doi:10.1186/1758-3284-1-32 (2009).
- 405 Killion, J. J., Radinsky, R. & Fidler, I. J. Orthotopic models are necessary to predict therapy of transplantable tumors in mice. *Cancer Metastasis Rev* **17**, 279-284 (1998).
- 406 Sano, D. *et al.* Targeted molecular therapy of head and neck squamous cell carcinoma with the tyrosine kinase inhibitor vandetanib in a mouse model. *Head & neck* **33**, 349-358, doi:10.1002/hed.21455 (2011).
- 407 Sano, D. *et al.* Disruptive TP53 mutation is associated with aggressive disease characteristics in an orthotopic murine model of oral tongue cancer. *Clinical cancer research : an official journal of the American Association for Cancer Research* **17**, 6658-6670, doi:10.1158/1078-0432.CCR-11-0046 (2011).
- 408 Tuttle, S. *et al.* The chemopreventive and clinically used agent curcumin sensitizes HPV
   (-) but not HPV (+) HNSCC to ionizing radiation, in vitro and in a mouse orthotopic model.
   *Cancer biology & therapy* 13, 575-584, doi:10.4161/cbt.19772 (2012).

## **APPENDIX-A**

| Accession | Description                          | Score  | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|-----------|--------------------------------------|--------|----------|------------|----------|------------|--------|-------|-------|----------|
|           |                                      |        |          |            | Peptides |            |        |       | [kDa] |          |
| Q9BQE3    | Tubulin alpha-1C chain               | 278.57 | 60.36    | 2          | 3        | 18         | 164    | 449   | 49.9  | 5.10     |
| Q09666    | Neuroblast differentiation-          | 195.14 | 33.94    | 1          | 92       | 100        | 176    | 5890  | 628.7 | 6.15     |
|           | associated protein AHNAK             |        |          |            |          |            |        |       |       |          |
| P78371    | T-complex protein 1 subunit          | 159.23 | 57.01    | 1          | 23       | 23         | 93     | 535   | 57.5  | 6.46     |
|           | beta                                 |        |          |            |          |            |        |       |       |          |
| Q9BUF5    | Tubulin beta-6 chain                 | 125.93 | 41.48    | 1          | 9        | 13         | 83     | 446   | 49.8  | 4.88     |
| P78527    | DNA-dependent protein                | 124.97 | 19.16    | 1          | 61       | 61         | 91     | 4128  | 468.8 | 7.12     |
|           | kinase catalytic subunit             |        |          |            |          |            |        |       |       |          |
| O43707    | Alpha-actinin-4                      | 124.93 | 42.26    | 1          | 18       | 31         | 98     | 911   | 104.8 | 5.44     |
| P68032    | Actin, alpha cardiac muscle 1        | 121.08 | 46.68    | 1          | 3        | 12         | 151    | 377   | 42.0  | 5.39     |
| Q14204    | Cytoplasmic dynein 1 heavy           | 103.32 | 16.44    | 1          | 54       | 55         | 82     | 4646  | 532.1 | 6.40     |
|           | chain 1                              |        |          |            |          |            |        |       |       |          |
| O75369    | Filamin-B                            | 97.50  | 26.56    | 1          | 40       | 43         | 76     | 2602  | 278.0 | 5.73     |
| P54652    | Heat shock-related 70 kDa            | 94.35  | 19.72    | 1          | 3        | 12         | 81     | 639   | 70.0  | 5.74     |
|           | protein 2                            |        |          |            |          |            |        |       |       |          |
| P34932    | Heat shock 70 kDa protein 4          | 90.21  | 32.50    | 1          | 20       | 21         | 54     | 840   | 94.3  | 5.19     |
| P18206    | Vinculin                             | 90.20  | 36.24    | 1          | 30       | 30         | 67     | 1134  | 123.7 | 5.66     |
| P46940    | Ras GTPase-activating-like           | 90.18  | 31.93    | 1          | 38       | 38         | 77     | 1657  | 189.1 | 6.48     |
|           | protein IQGAP1                       |        |          |            |          |            |        |       |       |          |
| P22102    | Trifunctional purine                 | 88.07  | 33.37    | 1          | 25       | 25         | 57     | 1010  | 107.7 | 6.70     |
|           | biosynthetic protein                 |        |          |            |          |            |        |       |       |          |
|           | adenosine-3                          |        |          |            |          |            |        |       |       | - 10     |
| B7ZAR1    | T-complex protein 1 subunit          | 87.76  | 46.72    | 3          | 14       | 15         | 57     | 503   | 55.3  | 5.48     |
| P11413    | Glucose-6-phosphate 1-               | 86.32  | 48.93    | 1          | 19       | 19         | 69     | 515   | 59.2  | 6.84     |
|           | dehydrogenase                        |        |          |            |          |            |        |       |       | 10.50    |
| Q02878    | 60S ribosomal protein L6             | 83.85  | 36.46    | 1          | 9        | 9          | 45     | 288   | 32.7  | 10.58    |
| P19338    | Nucleolin]                           | 80.66  | 22.82    | 1          | 15       | 15         | 61     | 710   | 76.6  | 4.70     |
| P05783    | Keratin, type I cytoskeletal         | 80.61  | 39.30    | 1          | 13       | 14         | 63     | 430   | 48.0  | 5.45     |
| D40704    | 18                                   | 70.06  | 20.01    |            | 20       | 20         |        | 1204  | 157.0 | (12)     |
| P42704    | Leucine-rich PPR motif-              | 78.96  | 29.91    | 1          | 29       | 29         | 64     | 1394  | 157.8 | 6.13     |
|           | containing protein,<br>mitochondrial |        |          |            |          |            |        |       |       |          |
|           | [LPPRC HUMAN]                        |        |          |            |          |            |        |       |       |          |
| P05787    | Keratin, type II cytoskeletal 8      | 78.80  | 39.96    | 1          | 18       | 20         | 58     | 483   | 53.7  | 5.59     |
| P22314    | Ubiquitin-like modifier-             | 76.86  | 39.90    | 1          | 18       | 19         | 62     | 1058  | 117.8 | 5.76     |
| 1 22314   | activating enzyme 1                  | /0.00  | 51.27    |            | 17       | 17         | 02     | 1030  | 11/.0 | 5.70     |
| 075533    | Splicing factor 3B subunit 1         | 68.05  | 23.85    | 1          | 23       | 23         | 48     | 1304  | 145.7 | 7.09     |
| 010000    | [SF3B1_HUMAN]                        | 00.05  | 23.03    |            | 23       | 2.5        | -10    | 1304  | 173./ | 7.09     |
| Q01518    | Adenylyl cyclase-associated          | 67.59  | 30.32    | 1          | 13       | 13         | 49     | 475   | 51.9  | 8.06     |
| 201310    | protein 1 GN=CAP1 PE=1               | 01.37  | 50.52    |            | 15       | 15         | 77     | -113  | 51.7  | 0.00     |
|           | SV=5                                 |        |          |            |          |            |        |       |       |          |
|           | 545                                  |        |          |            |          |            |        |       |       |          |

## Table A1: LC-MS/MS analysis for hypoxic whole cell clicked lysate (expanded table)

| Accession       | Description                  | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------------|------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P04843          | Dolichyl-                    | 66.25 | 33.11    | 1          | 14                  | 14         | 47     | 607   | 68.5        | 6.38     |
| 104045          | diphosphooligosaccharide     | 00.25 | 55.11    | 1          | 14                  | 14         |        | 007   | 00.5        | 0.58     |
|                 | protein glycosyltransferase  |       |          |            |                     |            |        |       |             |          |
|                 | subunit 1                    |       |          |            |                     |            |        |       |             |          |
| Q14974          | Importin subunit beta-1      | 66.05 | 19.52    | 1          | 13                  | 13         | 45     | 876   | 97.1        | 4.78     |
| P30101          | Protein disulfide-isomerase  | 65.34 | 38.02    | 1          | 13                  | 13         | 47     | 505   | 56.7        | 6.35     |
| P30101          | A3                           | 05.54 | 58.02    | 1          | 17                  | 17         | 4/     | 303   | 50.7        | 0.55     |
| P17066          | Heat shock 70 kDa protein 6  | 64.01 | 23.79    | 1          | 1                   | 12         | 46     | 643   | 71.0        | 6.14     |
| P08727          | Keratin, type I cytoskeletal | 63.82 | 55.50    | 1          | 11                  | 12         | 40     | 400   | 44.1        | 5.14     |
| P08/2/          | 19                           | 03.82 | 55.50    | 1          | 11                  | 18         | 48     | 400   | 44.1        | 5.14     |
|                 |                              | (2.0) | 25.10    | 2          | 9                   | 9          | 47     | 527   | 5(5         | 0.20     |
| A6NLN1          | Polypyrimidine tract binding | 62.96 | 35.10    | 3          | 9                   | 9          | 47     | 527   | 56.5        | 9.38     |
| <b>D</b> 2((20) | protein 1, isoform CRA_b     | (2.00 | 20.47    | 1          | 14                  | 14         | (0)    | 723   | 02.4        | ( (7     |
| P26639          | ThreoninetRNA ligase,        | 62.89 | 20.47    | 1          | 14                  | 14         | 60     | /23   | 83.4        | 6.67     |
| <b>D12010</b>   | cytoplasmic                  | (0.51 | 22.02    |            | 1.6                 | 16         |        |       |             |          |
| P13010          | X-ray repair cross-          | 62.71 | 32.92    | 1          | 16                  | 16         | 50     | 732   | 82.7        | 5.81     |
| <b>D</b> 05022  | complementing protein 5      | (1.0) | 27.06    | 1          | 20                  | 20         | 27     | 1022  | 112.0       | 5.40     |
| P05023          | Sodium/potassium-            | 61.26 | 27.86    | 1          | 20                  | 20         | 37     | 1023  | 112.8       | 5.49     |
|                 | transporting ATPase subunit  |       |          |            |                     |            |        |       |             |          |
|                 | alpha-1                      |       |          |            |                     |            |        |       |             |          |
| P63241          | Eukaryotic translation       | 59.15 | 61.69    | 1          | 9                   | 9          | 61     | 154   | 16.8        | 5.24     |
|                 | initiation factor 5A-1       |       |          |            |                     |            |        |       |             |          |
| Q16658          | Fascin                       | 58.89 | 35.50    | 1          | 11                  | 11         | 36     | 493   | 54.5        | 7.24     |
| P37802          | Transgelin-2                 | 57.76 | 63.82    | 2          | 10                  | 11         | 39     | 199   | 22.4        | 8.25     |
| P07814          | Bifunctional                 | 56.11 | 23.61    | 1          | 24                  | 24         | 40     | 1512  | 170.5       | 7.33     |
|                 | glutamate/prolinetRNA        |       |          |            |                     |            |        |       |             |          |
|                 | ligase                       |       |          |            |                     |            |        |       |             |          |
| P49321          | Nuclear autoantigenic sperm  | 55.82 | 24.75    | 1          | 11                  | 11         | 35     | 788   | 85.2        | 4.30     |
| A0A087WSW9      | Thioredoxin reductase 1,     | 55.66 | 41.79    | 3          | 13                  | 13         | 36     | 548   | 60.0        | 6.68     |
|                 | cytoplasmic                  |       |          |            |                     |            |        |       |             |          |
| P06748          | Nucleophosmin                | 55.44 | 28.57    | 1          | 6                   | 6          | 32     | 294   | 32.6        | 4.78     |
| P40227          | T-complex protein 1 subunit  | 54.79 | 50.09    | 1          | 18                  | 19         | 57     | 531   | 58.0        | 6.68     |
|                 | zeta                         |       |          |            |                     |            |        |       |             |          |
| P55072          | Transitional endoplasmic     | 54.61 | 31.27    | 1          | 18                  | 18         | 53     | 806   | 89.3        | 5.26     |
|                 | reticulum ATPase             |       |          |            |                     |            |        |       |             |          |
| P40926          | Malate dehydrogenase,        | 53.50 | 36.69    | 1          | 9                   | 9          | 35     | 338   | 35.5        | 8.68     |
|                 | mitochondrial                |       |          |            |                     |            |        |       |             |          |
| P22626          | Heterogeneous nuclear        | 53.33 | 34.28    | 1          | 11                  | 12         | 32     | 353   | 37.4        | 8.95     |
|                 | ribonucleoproteins A2/B1     |       |          |            |                     |            |        |       |             |          |
| P30153          | Serine/threonine-protein     | 51.23 | 18.85    | 1          | 10                  | 10         | 33     | 589   | 65.3        | 5.11     |
|                 | phosphatase 2A 65 kDa        |       |          |            |                     |            |        |       |             |          |
|                 | regulatory subunit A alpha   |       |          |            |                     |            |        |       |             |          |
|                 | isoform                      |       |          |            |                     |            |        |       |             |          |
| E9PDF6          | Unconventional myosin-Ib     | 50.69 | 24.48    | 2          | 18                  | 18         | 35     | 1107  | 128.4       | 9.31     |

| Accession    | Description                                            | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa]   | calc. pI |
|--------------|--------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|---------------|----------|
| A0A087WTT1   | Polyadenylate-binding                                  | 50.36 | 30.84    | 2          | 9                   | 13         | 35     | 522   | 58.5          | 9.26     |
| A0A007 W 111 | protein]                                               | 50.50 | 50.84    | 2          | 9                   | 15         | 55     | 522   | 56.5          | 9.20     |
| P13929       | Beta-enolase                                           | 49.11 | 19.35    | 1          | 1                   | 5          | 33     | 434   | 47.0          | 7.71     |
| E9PK01       | Elongation factor 1-delta                              | 48.88 | 32.57    | 11         | 6                   | 6          | 26     | 261   | 28.8          | 5.02     |
|              | (Fragment)                                             |       |          |            |                     |            |        |       |               |          |
| P60842       | Eukaryotic initiation factor<br>4A-I                   | 48.33 | 48.28    | 1          | 7                   | 13         | 38     | 406   | 46.1          | 5.48     |
| P31150       | Rab GDP dissociation                                   | 48.01 | 35.12    | 1          | 5                   | 11         | 27     | 447   | 50.6          | 5.14     |
| P31150       | inhibitor alpha                                        | 48.01 | 35.12    | 1          | 3                   |            | 27     | 447   | 50.6          | 5.14     |
| P18669       | Phosphoglycerate mutase 1                              | 47.48 | 69.29    | 1          | 13                  | 13         | 31     | 254   | 28.8          | 7.18     |
| Q9Y490       | Talin-1                                                | 47.32 | 15.27    | 1          | 22                  | 22         | 30     | 2541  | 269.6         | 6.07     |
| Q14697       | Neutral alpha-glucosidase                              | 47.10 | 29.34    | 1          | 19                  | 19         | 47     | 944   | 106.8         | 6.14     |
|              | AB                                                     |       |          |            |                     |            |        |       |               |          |
| P63244       | Receptor of activated protein<br>C kinase 1            | 47.09 | 62.78    | 1          | 12                  | 12         | 32     | 317   | 35.1          | 7.69     |
| Q15149       | Plectin                                                | 46.76 | 9.93     | 1          | 34                  | 35         | 37     | 4684  | 531.5         | 5.96     |
| A0A0A0MSQ0   | Plastin-3                                              | 45.96 | 34.20    | 2          | 10                  | 15         | 38     | 617   | 69.3          | 5.94     |
| Q9NZM1       | Myoferlin                                              | 45.46 | 16.50    | 1          | 25                  | 25         | 34     | 2061  | 234.6         | 6.18     |
| Q00839       | Heterogeneous nuclear<br>ribonucleoprotein U           | 45.25 | 19.15    | 1          | 10                  | 11         | 35     | 825   | 90.5          | 6.00     |
| P47895       | Aldehyde dehydrogenase<br>family 1 member A3           | 45.23 | 27.73    | 1          | 14                  | 14         | 40     | 512   | 56.1          | 7.25     |
| P55060       | Exportin-2                                             | 45.16 | 27.19    | 1          | 19                  | 19         | 46     | 971   | 110.3         | 5.77     |
| Q9UL46       | Proteasome activator<br>complex subunit 2              | 44.93 | 46.44    | 2          | 8                   | 8          | 28     | 239   | 27.4          | 5.73     |
| P09972       | Fructose-bisphosphate<br>aldolase C                    | 44.49 | 41.21    | 2          | 5                   | 10         | 28     | 364   | 39.4          | 6.87     |
| Q7KZF4       | Staphylococcal nuclease<br>domain-containing protein 1 | 44.36 | 31.10    | 1          | 19                  | 20         | 42     | 910   | 101.9         | 7.17     |
| P53396       | ATP-citrate synthase                                   | 43.93 | 23.34    | 1          | 17                  | 17         | 38     | 1101  | 120.8         | 7.33     |
| P05141       | ADP/ATP translocase 2                                  | 43.69 | 37.58    | 1          | 5                   | 9          | 38     | 298   | 32.8          | 9.69     |
| B4DY09       | Interleukin enhancer-binding<br>factor 2               | 43.54 | 32.95    | 2          | 7                   | 7          | 24     | 352   | 38.9          | 4.94     |
| P31947       | 14-3-3 protein sigma                                   | 43.01 | 66.94    | 1          | 11                  | 12         | 32     | 248   | 27.8          | 4.74     |
| Q32Q12       | Nucleoside diphosphate                                 | 43.01 | 55.14    | 1          | 8                   | 8          | 46     | 292   | 32.6          | 8.48     |
| D            | kinase                                                 | 40.75 |          |            |                     |            |        | 107-  | <b>00</b> 0 - |          |
| P35580       | Myosin-10                                              | 42.46 | 11.39    | 1          | 9                   | 16         | 33     | 1976  | 228.9         | 5.54     |
| Q99832       | T-complex protein 1 subunit<br>eta                     | 42.44 | 46.96    | 1          | 18                  | 18         | 50     | 543   | 59.3          | 7.65     |
| P34897       | Serine<br>hydroxymethyltransferase,                    | 42.36 | 36.11    | 1          | 13                  | 13         | 34     | 504   | 56.0          | 8.53     |
| A0A087WWU8   | mitochondrial<br>Tropomyosin alpha-3 chain             | 41.83 | 24.23    | 2          | 5                   | 9          | 18     | 227   | 26.4          | 4.78     |
| AUAU8/WWU8   | 1 ropomyosin aipna-3 chain                             | 41.85 | 24.23    | 2          | 2                   | 9          | 18     | 227   | 26.4          | 4./8     |

| Accession  | Description                  | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pl |
|------------|------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| G5E972     | Lamina-associated            | 41.79 | 29.23    | 2          | 2                   | 7          | 25     | 414   | 46.3        | 9.03     |
|            | polypeptide 2, isoforms      |       |          |            |                     |            |        |       |             |          |
|            | beta/gamma                   |       |          |            |                     |            |        |       |             |          |
| P36578     | 60S ribosomal protein L4     | 41.71 | 34.19    | 1          | 14                  | 14         | 29     | 427   | 47.7        | 11.06    |
| Q08211     | ATP-dependent RNA            | 41.52 | 17.09    | 1          | 15                  | 15         | 29     | 1270  | 140.9       | 6.84     |
|            | helicase A                   |       |          |            |                     |            |        |       |             |          |
| Q96QK1     | Vacuolar protein sorting-    | 41.05 | 25.25    | 1          | 16                  | 16         | 41     | 796   | 91.6        | 5.49     |
|            | associated protein 35        |       |          |            |                     |            |        |       |             |          |
| Q86VP6     | Cullin-associated NEDD8-     | 40.84 | 16.50    | 1          | 14                  | 14         | 36     | 1230  | 136.3       | 5.78     |
|            | dissociated protein 1        |       |          |            |                     |            |        |       |             |          |
| P17987     | T-complex protein 1 subunit  | 40.70 | 52.34    | 1          | 19                  | 19         | 42     | 556   | 60.3        | 6.11     |
|            | alpha                        |       |          |            |                     |            |        |       |             |          |
| P62979     | Ubiquitin-40S ribosomal      | 40.45 | 44.87    | 1          | 6                   | 6          | 26     | 156   | 18.0        | 9.64     |
|            | protein S27a                 |       |          |            |                     |            |        |       |             |          |
| P36871     | Phosphoglucomutase-1         | 40.00 | 30.60    | 1          | 9                   | 9          | 26     | 562   | 61.4        | 6.76     |
| A0A087X054 | Hypoxia up-regulated protein | 39.90 | 22.09    | 2          | 15                  | 15         | 28     | 937   | 104.7       | 5.72     |
|            |                              |       |          |            |                     |            |        |       |             |          |
| Q13200     | 26S proteasome non-ATPase    | 39.85 | 27.20    | 1          | 13                  | 13         | 35     | 908   | 100.1       | 5.20     |
|            | regulatory subunit 2         |       |          |            | _                   |            |        |       |             |          |
| P30048     | Thioredoxin-dependent        | 39.83 | 40.23    | 1          | 7                   | 7          | 26     | 256   | 27.7        | 7.78     |
|            | peroxide reductase,          |       |          |            |                     | ,          |        |       |             |          |
|            | mitochondrial                |       |          |            |                     |            |        |       |             |          |
| P20618     | Proteasome subunit beta      | 39.59 | 43.57    | 1          | 7                   | 7          | 28     | 241   | 26.5        | 8.13     |
|            | type-1                       |       |          |            |                     |            |        |       |             |          |
| Q15029     | 116 kDa U5 small nuclear     | 39.36 | 16.87    | 1          | 11                  | 12         | 23     | 972   | 109.4       | 5.00     |
|            | ribonucleoprotein component  |       |          |            |                     |            | _      |       |             |          |
| P32119     | Peroxiredoxin-2              | 39.28 | 31.82    | 1          | 4                   | 5          | 19     | 198   | 21.9        | 5.97     |
| P61204     | ADP-ribosylation factor 3    | 39.12 | 59.67    | 2          | 5                   | 10         | 27     | 181   | 20.6        | 7.43     |
| Q8TEX9     | Importin-4                   | 39.10 | 17.48    | 1          | 13                  | 13         | 26     | 1081  | 118.6       | 4.96     |
| O60701     | UDP-glucose 6-               | 39.00 | 40.28    | 1          | 13                  | 13         | 30     | 494   | 55.0        | 7.12     |
| 000701     | dehydrogenase                | 57.00 | 10.20    | 1          | 15                  | 15         | 50     |       | 55.0        | ,.12     |
| 075643     | U5 small nuclear             | 38.37 | 11.99    | 1          | 19                  | 19         | 29     | 2136  | 244.4       | 6.06     |
| 075015     | ribonucleoprotein 200 kDa    | 50.57 | 11.55    | 1          | 17                  |            |        | 2150  | 2           | 0.00     |
|            | helicase                     |       |          |            |                     |            |        |       |             |          |
| P51149     | Ras-related protein Rab-7a   | 37.76 | 43.48    | 1          | 8                   | 8          | 19     | 207   | 23.5        | 6.70     |
| P31946     | 14-3-3 protein beta/alpha    | 37.59 | 46.34    | 1          | 7                   | 9          | 31     | 246   | 28.1        | 4.83     |
| P08758     | Annexin A5                   | 37.51 | 57.81    | 1          | 16                  | 16         | 41     | 320   | 35.9        | 5.05     |
| P26038     | Moesin                       | 37.40 | 32.41    | 1          | 10                  | 10         | 31     | 577   | 67.8        | 6.40     |
| P67809     | Nuclease-sensitive element-  | 37.40 | 38.27    | 1          | 10<br>7             | 13         | 18     | 324   | 35.9        | 9.88     |
| F0/009     | binding protein 1            | 57.55 | 30.27    |            | /                   |            | 10     | 524   | 33.9        | 9.88     |
| P36957     |                              | 37.01 | 18.10    | 1          | 7                   | 7          | 20     | 453   | 48.7        | 8.05     |
| P3095/     | Dihydrolipoyllysine-residue  | 57.01 | 18.10    | 1          | /                   | /          | 20     | 455   | 48.7        | 8.95     |
|            | succinyltransferase          |       |          |            |                     |            |        |       |             |          |
|            | component of 2-oxoglutarate  |       |          |            |                     |            |        |       |             |          |

| Accession | Description                     | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pl |
|-----------|---------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
|           | dehydrogenase complex,          |       |          |            |                     |            |        |       |             |          |
|           | mitochondrial                   |       |          |            |                     |            |        |       |             |          |
| H0Y4R1    | Inosine-5'-monophosphate        | 36.52 | 22.98    | 2          | 10                  | 10         | 27     | 470   | 51.0        | 8.18     |
|           | dehydrogenase 2 (Fragment)      |       |          |            |                     |            |        |       |             |          |
| P49588    | AlaninetRNA ligase,             | 36.39 | 20.14    | 1          | 13                  | 13         | 29     | 968   | 106.7       | 5.53     |
|           | cytoplasmic                     |       |          |            |                     |            |        |       |             |          |
| Q92616    | eIF-2-alpha kinase activator    | 36.38 | 11.98    | 1          | 20                  | 20         | 34     | 2671  | 292.6       | 7.47     |
|           | GCN1                            |       |          |            |                     |            |        |       |             |          |
| O60814    | Histone H2B type 1-K            | 36.02 | 19.84    | 10         | 2                   | 2          | 35     | 126   | 13.9        | 10.32    |
| O60506    | Heterogeneous nuclear           | 36.00 | 26.00    | 1          | 12                  | 15         | 37     | 623   | 69.6        | 8.59     |
|           | ribonucleoprotein Q             |       |          |            |                     |            |        |       |             |          |
| P31939    | Bifunctional purine             | 35.65 | 26.69    | 1          | 10                  | 10         | 24     | 592   | 64.6        | 6.71     |
|           | biosynthesis protein PURH       |       |          |            |                     |            |        |       |             |          |
| Q8WUM4    | Programmed cell death 6-        | 35.55 | 17.63    | 1          | 12                  | 12         | 24     | 868   | 96.0        | 6.52     |
|           | interacting protein             |       |          |            |                     |            |        |       |             |          |
| P13647    | Keratin, type II cytoskeletal 5 | 35.31 | 21.19    | 1          | 8                   | 11         | 27     | 590   | 62.3        | 7.74     |
| H0YNW5    | Deoxyuridine 5'-triphosphate    | 34.81 | 46.71    | 3          | 6                   | 6          | 19     | 167   | 17.8        | 7.28     |
|           | nucleotidohydrolase,            |       |          |            |                     |            |        |       |             |          |
|           | mitochondrial                   |       |          |            |                     |            |        |       |             |          |
| H0Y8E6    | DNA helicase (Fragment)         | 34.72 | 21.65    | 2          | 13                  | 13         | 26     | 836   | 94.0        | 6.24     |
| Q92945    | Far upstream element-           | 34.70 | 24.33    | 1          | 11                  | 11         | 23     | 711   | 73.1        | 7.30     |
|           | binding protein 2               |       |          |            |                     |            |        |       |             |          |
| E7EX73    | Eukaryotic translation          | 34.69 | 17.76    | 4          | 18                  | 18         | 39     | 1436  | 158.5       | 5.21     |
|           | initiation factor 4 gamma 1     |       |          |            |                     |            |        |       |             |          |
| Q12931    | Heat shock protein 75 kDa,      | 34.66 | 29.26    | 1          | 11                  | 12         | 23     | 704   | 80.1        | 8.21     |
| -         | mitochondrial                   |       |          |            |                     |            |        |       |             |          |
| P54886    | Delta-1-pyrroline-5-            | 34.59 | 17.74    | 1          | 10                  | 10         | 22     | 795   | 87.2        | 7.12     |
|           | carboxylate synthase            |       |          |            |                     |            |        |       |             |          |
| P13645    | Keratin, type I cytoskeletal    | 34.45 | 28.08    | 1          | 8                   | 10         | 38     | 584   | 58.8        | 5.21     |
|           | 10                              |       |          |            |                     |            |        |       |             |          |
| C9JMC5    | Aldehyde dehydrogenase,         | 34.37 | 24.73    | 4          | 7                   | 7          | 28     | 372   | 41.6        | 5.31     |
|           | dimeric NADP-preferring         |       |          |            |                     |            | -      |       |             |          |
|           | (Fragment)                      |       |          |            |                     |            |        |       |             |          |
| D6RG13    | 40S ribosomal protein S3a       | 34.33 | 38.57    | 2          | 8                   | 8          | 26     | 223   | 25.6        | 9.66     |
|           | (Fragment)                      |       |          |            |                     |            |        |       |             |          |
| P09661    | U2 small nuclear                | 34.28 | 42.35    | 1          | 9                   | 9          | 21     | 255   | 28.4        | 8.62     |
|           | ribonucleoprotein A'            |       |          |            |                     |            |        |       |             |          |
| O14980    | Exportin-1                      | 34.24 | 20.82    | 1          | 15                  | 15         | 35     | 1071  | 123.3       | 6.06     |
| P00491    | Purine nucleoside               | 34.16 | 42.21    | 1          | 8                   | 8          | 21     | 289   | 32.1        | 6.95     |
|           | phosphorylase                   |       |          | -          |                     |            |        |       |             |          |
| P62701    | 40S ribosomal protein S4, X     | 33.90 | 37.26    | 1          | 9                   | 9          | 25     | 263   | 29.6        | 10.15    |
| 102/01    | isoform                         | 55.70 | 57.20    | 1          |                     |            | 23     | 205   | 27.0        | 10.15    |
| P42166    | Lamina-associated               | 33.64 | 18.73    | 1          | 3                   | 8          | 22     | 694   | 75.4        | 7.66     |
| 172100    | polypeptide 2, isoform alpha    | 55.04 | 10.75    | 1          | 5                   | 0          | 22     | 0,74  | 73.4        | 7.00     |

| Accession  | Description                                             | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|---------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P17655     | Calpain-2 catalytic subunit                             | 33.58 | 17.43    | 1          | 8                   | 8          | 18     | 700   | 79.9        | 4.98     |
| Q14152     | Eukaryotic translation<br>initiation factor 3 subunit A | 33.15 | 14.91    | 1          | 17                  | 19         | 37     | 1382  | 166.5       | 6.79     |
| P20700     | Lamin-B1                                                | 32.72 | 29.35    | 1          | 13                  | 13         | 23     | 586   | 66.4        | 5.16     |
| Q96AE4     | Far upstream element-                                   | 32.46 | 20.34    | 2          | 10                  | 10         | 22     | 644   | 67.5        | 7.61     |
|            | binding protein 1                                       |       |          |            |                     |            |        |       |             |          |
| Q9Y265     | RuvB-like 1                                             | 32.38 | 22.37    | 1          | 7                   | 7          | 20     | 456   | 50.2        | 6.42     |
| A0A140T936 | ValinetRNA ligase<br>(Fragment)                         | 32.03 | 14.29    | 2          | 11                  | 11         | 20     | 1183  | 131.9       | 7.49     |
| Q15393     | Splicing factor 3B subunit 3                            | 31.76 | 16.52    | 1          | 13                  | 13         | 21     | 1217  | 135.5       | 5.26     |
| P62191     | 26S protease regulatory<br>subunit 4                    | 31.75 | 18.18    | 1          | 4                   | 5          | 17     | 440   | 49.2        | 6.21     |
| P04264     | Keratin, type II cytoskeletal 1                         | 31.67 | 23.60    | 1          | 13                  | 15         | 30     | 644   | 66.0        | 8.12     |
| Q9UJZ1     | Stomatin-like protein 2,<br>mitochondrial               | 31.35 | 42.98    | 1          | 10                  | 10         | 21     | 356   | 38.5        | 7.39     |
| Q04695     | Keratin, type I cytoskeletal<br>17                      | 31.29 | 46.06    | 1          | 11                  | 16         | 31     | 432   | 48.1        | 5.02     |
| Q9NY33     | Dipeptidyl peptidase 3                                  | 31.23 | 24.29    | 3          | 11                  | 11         | 20     | 737   | 82.5        | 5.10     |
| M0R0F0     | 40S ribosomal protein S5<br>(Fragment)                  | 31.06 | 43.50    | 2          | 6                   | 7          | 21     | 200   | 22.4        | 9.55     |
| O00410     | Importin-5                                              | 30.71 | 15.13    | 2          | 10                  | 10         | 34     | 1097  | 123.5       | 4.94     |
| J3KR24     | IsoleucinetRNA ligase,<br>cytoplasmic                   | 30.49 | 14.50    | 3          | 15                  | 15         | 20     | 1152  | 131.7       | 6.11     |
| Q9NTK5     | Obg-like ATPase 1                                       | 30.26 | 30.56    | 2          | 8                   | 8          | 26     | 396   | 44.7        | 7.81     |
| O15067     | Phosphoribosylformylglycina<br>midine synthase          | 30.13 | 14.05    | 1          | 12                  | 12         | 18     | 1338  | 144.6       | 5.76     |
| Q99986     | Serine/threonine-protein<br>kinase VRK1                 | 29.94 | 30.81    | 1          | 8                   | 8          | 18     | 396   | 45.4        | 8.91     |
| Q15181     | Inorganic pyrophosphatase                               | 29.87 | 32.53    | 1          | 6                   | 6          | 19     | 289   | 32.6        | 5.86     |
| P49591     | SerinetRNA ligase,<br>cytoplasmic                       | 29.86 | 25.68    | 2          | 10                  | 10         | 25     | 514   | 58.7        | 6.43     |
| P62333     | 26S protease regulatory<br>subunit 10B                  | 29.74 | 31.88    | 2          | 9                   | 9          | 26     | 389   | 44.1        | 7.49     |
| E9PK47     | Alpha-1,4 glucan<br>phosphorylase                       | 29.62 | 16.24    | 2          | 7                   | 10         | 23     | 819   | 94.0        | 7.31     |
| J3KTF8     | Rho GDP-dissociation<br>inhibitor 1 (Fragment)          | 29.43 | 27.98    | 3          | 5                   | 5          | 20     | 193   | 21.5        | 5.49     |
| P35241     | Radixin                                                 | 29.34 | 18.18    | 1          | 4                   | 9          | 22     | 583   | 68.5        | 6.37     |
| P46783     | 40S ribosomal protein S10                               | 29.21 | 32.73    | 1          | 5                   | 5          | 21     | 165   | 18.9        | 10.15    |
| Q99497     | Protein deglycase DJ-1                                  | 29.19 | 56.08    | 1          | 9                   | 9          | 28     | 189   | 19.9        | 6.79     |
| P27695     | DNA-(apurinic or<br>apyrimidinic site) lyase            | 29.00 | 38.05    | 1          | 8                   | 8          | 23     | 318   | 35.5        | 8.12     |

| Accession  | Description                  | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                              |       |          |            | Peptides |            |        |       | [kDa] |          |
| E9PCY7     | Heterogeneous nuclear        | 28.93 | 22.14    | 3          | 4        | 5          | 17     | 429   | 47.1  | 6.34     |
|            | ribonucleoprotein H          |       |          |            |          |            |        |       |       |          |
| J3KTA4     | Probable ATP-dependent       | 28.62 | 23.45    | 2          | 7        | 12         | 23     | 614   | 69.0  | 8.85     |
|            | RNA helicase DDX5            |       |          |            |          |            |        |       |       |          |
| Q7Z406     | Myosin-14                    | 28.53 | 6.32     | 1          | 4        | 9          | 24     | 1995  | 227.7 | 5.60     |
| A0A0D9SFB3 | ATP-dependent RNA            | 28.49 | 15.78    | 4          | 6        | 7          | 15     | 640   | 70.8  | 7.36     |
|            | helicase DDX3X               |       |          |            |          |            |        |       |       |          |
| Q96KP4     | Cytosolic non-specific       | 28.12 | 26.11    | 1          | 9        | 9          | 20     | 475   | 52.8  | 5.97     |
|            | dipeptidase                  |       |          |            |          |            |        |       |       |          |
| P15559     | NAD(P)H dehydrogenase        | 27.78 | 40.15    | 1          | 9        | 9          | 18     | 274   | 30.8  | 8.88     |
|            | [quinone] 1                  |       |          |            |          |            |        |       |       |          |
| Q9H0U4     | Ras-related protein Rab-1B   | 27.74 | 62.69    | 1          | 7        | 9          | 25     | 201   | 22.2  | 5.73     |
| E9PM69     | 26S protease regulatory      | 27.68 | 39.80    | 3          | 12       | 12         | 28     | 397   | 44.3  | 5.05     |
|            | subunit 6A                   |       |          |            |          |            |        |       |       |          |
| P61160     | Actin-related protein 2      | 27.65 | 34.01    | 1          | 10       | 10         | 20     | 394   | 44.7  | 6.74     |
| Q86UP2     | Kinectin                     | 27.64 | 20.04    | 1          | 20       | 20         | 28     | 1357  | 156.2 | 5.64     |
| P62081     | 40S ribosomal protein S7     | 27.58 | 31.44    | 2          | 5        | 5          | 17     | 194   | 22.1  | 10.10    |
| P50454     | Serpin H1                    | 27.01 | 27.75    | 1          | 7        | 7          | 16     | 418   | 46.4  | 8.69     |
| B4DXW1     | Actin-related protein 3      | 26.92 | 25.07    | 2          | 7        | 7          | 13     | 367   | 42.0  | 5.62     |
| P40939     | Trifunctional enzyme subunit | 26.85 | 24.90    | 1          | 12       | 12         | 15     | 763   | 82.9  | 9.04     |
|            | alpha, mitochondrial         |       |          |            |          |            |        |       |       |          |
| G8JLD5     | Dynamin-1-like protein       | 26.72 | 26.83    | 2          | 12       | 12         | 22     | 712   | 79.6  | 7.08     |
| P20290     | Transcription factor BTF3    | 26.66 | 47.57    | 1          | 4        | 4          | 15     | 206   | 22.2  | 9.38     |
| P62263     | 40S ribosomal protein S14    | 26.65 | 30.46    | 1          | 5        | 5          | 13     | 151   | 16.3  | 10.05    |
| P41250     | GlycinetRNA ligase           | 26.46 | 22.87    | 1          | 10       | 10         | 19     | 739   | 83.1  | 7.03     |
| P54136     | ArgininetRNA ligase,         | 26.38 | 24.70    | 1          | 13       | 13         | 18     | 660   | 75.3  | 6.68     |
|            | cytoplasmic                  |       |          |            |          |            |        |       |       |          |
| Q06323     | Proteasome activator         | 26.30 | 46.18    | 1          | 11       | 11         | 21     | 249   | 28.7  | 6.02     |
|            | complex subunit 1            |       |          |            |          |            |        |       |       |          |
| F8W6I7     | Heterogeneous nuclear        | 26.25 | 29.32    | 2          | 6        | 7          | 18     | 307   | 33.1  | 9.13     |
|            | ribonucleoprotein A1         |       |          |            |          |            |        |       |       |          |
| K7ENT6     | Tropomyosin alpha-4 chain    | 26.14 | 23.46    | 2          | 2        | 6          | 12     | 179   | 20.6  | 4.61     |
|            | (Fragment)                   |       |          |            |          |            |        |       |       |          |
| P22234     | Multifunctional protein      | 25.67 | 31.53    | 2          | 12       | 12         | 20     | 425   | 47.0  | 7.23     |
|            | ADE2                         |       |          |            |          |            |        |       |       |          |
| O95433     | Activator of 90 kDa heat     | 25.63 | 38.46    | 1          | 9        | 9          | 14     | 338   | 38.3  | 5.53     |
|            | shock protein ATPase         |       |          |            |          |            |        |       |       |          |
|            | homolog 1                    |       |          |            |          |            |        |       |       |          |
| P62826     | GTP-binding nuclear protein  | 25.37 | 37.96    | 3          | 8        | 8          | 23     | 216   | 24.4  | 7.49     |
|            | Ran                          |       |          |            |          |            |        |       |       |          |
| G3XAM7     | Catenin (Cadherin-associated | 25.30 | 20.33    | 2          | 10       | 12         | 15     | 841   | 92.7  | 5.52     |
|            | protein), alpha 1, 102kDa,   |       |          |            |          |            |        |       |       |          |
|            | isoform CRA_a                |       |          |            |          |            |        |       |       |          |

| Accession  | Description                    | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|--------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| F8VZJ2     | Nascent polypeptide-           | 24.91 | 51.47    | 4          | 5                   | 5          | 23     | 136   | 15.0        | 4.91     |
|            | associated complex subunit     |       |          |            |                     |            |        |       |             |          |
|            | alpha                          |       |          |            |                     |            |        |       |             |          |
| Q6P2Q9     | Pre-mRNA-processing-           | 24.90 | 9.98     | 1          | 17                  | 18         | 24     | 2335  | 273.4       | 8.84     |
|            | splicing factor 8              |       |          |            |                     |            |        |       |             |          |
| O43809     | Cleavage and                   | 24.74 | 42.73    | 1          | 6                   | 6          | 15     | 227   | 26.2        | 8.82     |
|            | polyadenylation specificity    |       |          |            |                     |            |        |       |             |          |
|            | factor subunit 5               |       |          |            |                     |            |        |       |             |          |
| P05198     | Eukaryotic translation         | 24.33 | 39.68    | 1          | 11                  | 11         | 16     | 315   | 36.1        | 5.08     |
|            | initiation factor 2 subunit 1  |       |          |            |                     |            |        |       |             |          |
| P13928     | Annexin A8                     | 24.32 | 35.47    | 2          | 9                   | 9          | 17     | 327   | 36.9        | 5.78     |
| P19105     | Myosin regulatory light chain  | 24.30 | 47.37    | 3          | 7                   | 7          | 15     | 171   | 19.8        | 4.81     |
|            | 12A                            |       |          |            |                     |            |        |       |             |          |
| P62424     | 60S ribosomal protein L7a      | 24.25 | 21.05    | 1          | 5                   | 5          | 13     | 266   | 30.0        | 10.61    |
| P61106     | Ras-related protein Rab-14     | 23.98 | 52.56    | 2          | 6                   | 7          | 16     | 215   | 23.9        | 6.21     |
| J3KMX5     | 40S ribosomal protein S13      | 23.84 | 23.65    | 2          | 4                   | 4          | 14     | 148   | 16.7        | 10.51    |
| P00533     | Epidermal growth factor        | 23.83 | 8.76     | 3          | 8                   | 8          | 17     | 1210  | 134.2       | 6.68     |
|            | receptor                       |       |          |            |                     |            |        |       |             |          |
| A0A0G2JH68 | Protein diaphanous homolog     | 23.64 | 16.35    | 4          | 15                  | 15         | 19     | 1272  | 141.3       | 5.39     |
|            | 1                              |       |          |            |                     |            |        |       |             |          |
| P62829     | 60S ribosomal protein L23      | 23.57 | 46.43    | 1          | 6                   | 6          | 14     | 140   | 14.9        | 10.51    |
| P33176     | Kinesin-1 heavy chain          | 23.48 | 16.82    | 1          | 12                  | 12         | 20     | 963   | 109.6       | 6.51     |
| P52597     | Heterogeneous nuclear          | 23.45 | 19.76    | 1          | 3                   | 4          | 16     | 415   | 45.6        | 5.58     |
|            | ribonucleoprotein F            |       |          |            |                     |            |        |       |             |          |
| P04844     | Dolichyl-                      | 23.45 | 17.59    | 1          | 6                   | 6          | 14     | 631   | 69.2        | 5.69     |
|            | diphosphooligosaccharide       |       |          |            |                     |            |        |       |             |          |
|            | protein glycosyltransferase    |       |          |            |                     |            |        |       |             |          |
|            | subunit                        |       |          |            |                     |            |        |       |             |          |
| P05455     | Lupus La protein               | 23.03 | 39.22    | 1          | 14                  | 14         | 24     | 408   | 46.8        | 7.12     |
| P33993     | DNA replication licensing      | 22.98 | 13.77    | 1          | 7                   | 7          | 10     | 719   | 81.3        | 6.46     |
|            | factor MCM7                    |       |          |            |                     |            |        |       |             |          |
| K4DI93     | Cullin 4B, isoform CRA_e       | 22.93 | 9.89     | 2          | 7                   | 7          | 16     | 900   | 102.7       | 8.03     |
| Q14651     | Plastin-1                      | 22.85 | 16.53    | 1          | 3                   | 7          | 17     | 629   | 70.2        | 5.41     |
| P25205     | DNA replication licensing      | 22.80 | 14.73    | 2          | 8                   | 8          | 18     | 808   | 90.9        | 5.77     |
|            | factor MCM3]                   |       |          |            |                     |            |        |       |             |          |
| A0A087WWT3 | Serum albumin                  | 22.77 | 6.06     | 7          | 3                   | 3          | 18     | 396   | 45.1        | 6.10     |
| P62753     | 40S ribosomal protein S6       | 22.45 | 20.08    | 1          | 4                   | 4          | 13     | 249   | 28.7        | 10.84    |
| G3V1C3     | Apoptosis inhibitor 5          | 22.37 | 12.75    | 2          | 4                   | 4          | 14     | 510   | 57.5        | 6.09     |
| O00299     | Chloride intracellular channel | 22.16 | 45.64    | 1          | 7                   | 8          | 18     | 241   | 26.9        | 5.17     |
|            | protein 1                      |       |          |            |                     |            |        |       |             |          |
| Q15233     | Non-POU domain-containing      | 22.02 | 13.80    | 1          | 4                   | 4          | 10     | 471   | 54.2        | 8.95     |
|            | octamer-binding protein        |       |          |            |                     |            |        |       |             |          |
| P62805     | Histone H4                     | 21.95 | 43.69    | 1          | 7                   | 7          | 16     | 103   | 11.4        | 11.36    |

| Accession | Description                                                       | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pl |
|-----------|-------------------------------------------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|           |                                                                   |       |          |            | Peptides |            |        |       | [kDa] |          |
| Q6NZI2    | Polymerase I and transcript<br>release factor                     | 21.94 | 15.64    | 1          | 5        | 5          | 12     | 390   | 43.4  | 5.60     |
| E9PKZ0    | 60S ribosomal protein L8                                          | 21.91 | 22.93    | 2          | 3        | 3          | 10     | 205   | 22.4  | 10.76    |
|           | (Fragment)                                                        |       |          |            |          |            |        |       |       |          |
| P61019    | Ras-related protein Rab-2A                                        | 21.80 | 38.21    | 1          | 6        | 6          | 13     | 212   | 23.5  | 6.54     |
| P11908    | Ribose-phosphate<br>pyrophosphokinase 2                           | 21.78 | 19.50    | 1          | 4        | 4          | 18     | 318   | 34.7  | 6.61     |
| P30041    | Peroxiredoxin-6                                                   | 21.75 | 62.95    | 1          | 12       | 12         | 20     | 224   | 25.0  | 6.38     |
| P12270    | Nucleoprotein TPR                                                 | 21.71 | 10.62    | 1          | 18       | 18         | 26     | 2363  | 267.1 | 5.02     |
| O43242    | 26S proteasome non-ATPase<br>regulatory subunit 3                 | 21.68 | 14.61    | 1          | 6        | 6          | 10     | 534   | 60.9  | 8.44     |
| Q9Y262    | Eukaryotic translation<br>initiation factor 3 subunit L           | 21.67 | 21.45    | 3          | 10       | 10         | 18     | 564   | 66.7  | 6.34     |
| P53999    | Activated RNA polymerase<br>II transcriptional coactivator<br>p15 | 21.57 | 30.71    | 1          | 5        | 5          | 21     | 127   | 14.4  | 9.60     |
| P61221    | ATP-binding cassette sub-<br>family E member 1                    | 21.55 | 14.52    | 1          | 6        | 6          | 15     | 599   | 67.3  | 8.34     |
| B1ANR0    | Polyadenylate-binding<br>protein                                  | 21.42 | 22.11    | 2          | 5        | 9          | 15     | 615   | 67.9  | 9.45     |
| P16152    | Carbonyl reductase<br>[NADPH] 1                                   | 21.40 | 42.96    | 1          | 7        | 8          | 12     | 277   | 30.4  | 8.32     |
| P16615    | Sarcoplasmic/endoplasmic<br>reticulum calcium ATPase 2            | 21.35 | 13.92    | 1          | 11       | 11         | 14     | 1042  | 114.7 | 5.34     |
| Q92841    | Probable ATP-dependent<br>RNA helicase DDX17                      | 21.15 | 14.54    | 2          | 4        | 9          | 13     | 729   | 80.2  | 8.27     |
| Q12906    | Interleukin enhancer-binding<br>factor 3                          | 20.90 | 10.74    | 1          | 7        | 7          | 13     | 894   | 95.3  | 8.76     |
| F5H6E2    | Unconventional myosin-Ic                                          | 20.88 | 14.63    | 2          | 9        | 9          | 16     | 1039  | 118.9 | 9.41     |
| P51991    | Heterogeneous nuclear<br>ribonucleoprotein A3                     | 20.75 | 23.81    | 1          | 6        | 6          | 13     | 378   | 39.6  | 9.01     |
| Q99714    | 3-hydroxyacyl-CoA<br>dehydrogenase type-2                         | 20.62 | 72.03    | 1          | 11       | 11         | 15     | 261   | 26.9  | 7.78     |
| P23246    | Splicing factor, proline- and glutamine-rich                      | 20.58 | 14.57    | 1          | 7        | 7          | 17     | 707   | 76.1  | 9.44     |
| P52907    | F-actin-capping protein<br>subunit alpha-1                        | 20.52 | 47.90    | 1          | 8        | 8          | 16     | 286   | 32.9  | 5.69     |
| H0Y2W2    | ATPase family AAA<br>domain-containing protein<br>3A (Fragment)   | 20.51 | 9.79     | 2          | 5        | 6          | 11     | 572   | 64.3  | 9.44     |
| E9PLK3    | Puromycin-sensitive<br>aminopeptidase                             | 20.27 | 12.57    | 2          | 7        | 7          | 15     | 915   | 102.9 | 5.60     |
| Q86V81    | THO complex subunit 4                                             | 20.20 | 29.18    | 2          | 4        | 4          | 17     | 257   | 26.9  | 11.15    |

| Accession  | Description                                                | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| C9JPM4     | ADP-ribosylation factor 4                                  | 20.18 | 64.57    | 2          | 3                   | 8          | 15     | 127   | 14.5        | 8.12     |
|            | (Fragment)                                                 |       |          |            |                     |            |        |       |             |          |
| P46777     | 60S ribosomal protein L5                                   | 20.10 | 30.30    | 1          | 5                   | 5          | 18     | 297   | 34.3        | 9.72     |
| P56192     | MethioninetRNA ligase,<br>cytoplasmic                      | 19.91 | 17.00    | 1          | 9                   | 10         | 17     | 900   | 101.1       | 6.16     |
| P56537     | Eukaryotic translation                                     | 19.76 | 40.82    | 1          | 6                   | 6          | 12     | 245   | 26.6        | 4.68     |
| 100007     | initiation factor 6                                        | 19.70 | 10.02    | 1          | Ŭ                   |            | 12     | 215   | 20.0        |          |
| Q01813     | ATP-dependent 6-                                           | 19.70 | 14.03    | 1          | 7                   | 9          | 16     | 784   | 85.5        | 7.55     |
|            | phosphofructokinase, platelet<br>type                      |       |          |            |                     |            |        |       |             |          |
| Q04917     | 14-3-3 protein eta                                         | 19.42 | 23.58    | 1          | 3                   | 4          | 13     | 246   | 28.2        | 4.84     |
| P51148     | Ras-related protein Rab-5C                                 | 19.42 | 30.56    | 1          | 3                   | 5          | 12     | 216   | 23.5        | 8.41     |
| F8W1A4     | Adenylate kinase 2,                                        | 19.40 | 44.83    | 3          | 8                   | 8          | 20     | 232   | 25.6        | 7.83     |
| 100174     | mitochondrial                                              | 17.40 |          | 5          | 0                   | 0          | 20     | 232   | 23.0        | 7.05     |
| P14868     | AspartatetRNA ligase,<br>cytoplasmic                       | 19.36 | 23.95    | 1          | 9                   | 10         | 17     | 501   | 57.1        | 6.55     |
| P28070     | Proteasome subunit beta<br>type-4                          | 19.21 | 36.36    | 1          | 6                   | 6          | 12     | 264   | 29.2        | 5.97     |
| Q7Z4W1     | L-xylulose reductase                                       | 19.18 | 27.46    | 1          | 4                   | 4          | 14     | 244   | 25.9        | 8.10     |
| P25787     | Proteasome subunit alpha<br>type-2                         | 19.14 | 37.18    | 1          | 6                   | 6          | 12     | 234   | 25.9        | 7.43     |
| Q01469     | Fatty acid-binding protein,<br>epidermal                   | 19.00 | 48.15    | 1          | 7                   | 7          | 14     | 135   | 15.2        | 7.01     |
| I3L3U9     | Ribosomal L1 domain-<br>containing protein 1<br>(Fragment) | 18.66 | 24.66    | 3          | 5                   | 5          | 11     | 296   | 33.9        | 10.01    |
| A0A0J9YYL3 | Poly(U)-binding-splicing<br>factor PUF60 (Fragment)        | 18.65 | 21.39    | 5          | 7                   | 7          | 11     | 505   | 54.6        | 5.34     |
| P61086     | Ubiquitin-conjugating<br>enzyme E2 K                       | 18.64 | 59.50    | 1          | 7                   | 8          | 12     | 200   | 22.4        | 5.44     |
| Q9UHD8     | Septin-9                                                   | 18.61 | 20.65    | 1          | 8                   | 8          | 20     | 586   | 65.4        | 8.97     |
| P17858     | ATP-dependent 6-<br>phosphofructokinase, liver<br>type     | 18.43 | 14.49    | 1          | 6                   | 8          | 15     | 780   | 85.0        | 7.50     |
| Q9NUQ9     | Protein FAM49B                                             | 18.39 | 23.15    | 1          | 6                   | 6          | 13     | 324   | 36.7        | 6.06     |
| P09960     | Leukotriene A-4 hydrolase                                  | 18.30 | 18.17    | 1          | 7                   | 7          | 17     | 611   | 69.2        | 6.18     |
| P59998     | Actin-related protein 2/3<br>complex subunit 4             | 18.30 | 42.26    | 2          | 5                   | 5          | 11     | 168   | 19.7        | 8.43     |
| K7ENG2     | Splicing factor U2AF 65 kDa<br>subunit                     | 18.27 | 27.69    | 2          | 6                   | 6          | 13     | 307   | 33.9        | 5.03     |
| P30084     | Enoyl-CoA hydratase,<br>mitochondrial                      | 18.17 | 37.93    | 1          | 8                   | 8          | 13     | 290   | 31.4        | 8.07     |

| Accession  | Description                                                                | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|----------------------------------------------------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                                                                            |       |          |            | Peptides |            |        |       | [kDa] |          |
| Q01650     | Large neutral amino acids<br>transporter small subunit 1                   | 18.12 | 9.66     | 1          | 4        | 4          | 7      | 507   | 55.0  | 7.72     |
| P47897     | GlutaminetRNA ligase                                                       | 18.08 | 19.61    | 1          | 11       | 11         | 19     | 775   | 87.7  | 7.15     |
| Q9NYU2     | UDP-glucose:glycoprotein<br>glucosyltransferase 1                          | 17.99 | 11.38    | 1          | 12       | 12         | 14     | 1555  | 177.1 | 5.63     |
| B1AK87     | Capping protein (Actin<br>filament) muscle Z-line, beta,<br>isoform CRA_a  | 17.98 | 40.00    | 2          | 8        | 8          | 10     | 260   | 29.3  | 6.92     |
| Q92499     | ATP-dependent RNA<br>helicase DDX1                                         | 17.97 | 19.46    | 3          | 9        | 9          | 15     | 740   | 82.4  | 7.23     |
| O00303     | Eukaryotic translation<br>initiation factor 3 subunit F                    | 17.94 | 15.13    | 1          | 3        | 3          | 10     | 357   | 37.5  | 5.45     |
| Q07021     | Complement component 1 Q<br>subcomponent-binding<br>protein, mitochondrial | 17.82 | 31.56    | 1          | 5        | 5          | 13     | 282   | 31.3  | 4.84     |
| P12236     | ADP/ATP translocase 3                                                      | 17.78 | 32.21    | 1          | 3        | 7          | 24     | 298   | 32.8  | 9.74     |
| Q04837     | Single-stranded DNA-<br>binding protein,<br>mitochondrial                  | 17.69 | 41.22    | 1          | 4        | 4          | 10     | 148   | 17.2  | 9.60     |
| Q14019     | Coactosin-like protein                                                     | 17.63 | 21.13    | 1          | 3        | 3          | 12     | 142   | 15.9  | 5.67     |
| P52209     | 6-phosphogluconate<br>dehydrogenase,<br>decarboxylating                    | 17.47 | 26.50    | 1          | 10       | 10         | 18     | 483   | 53.1  | 7.23     |
| Q15046     | LysinetRNA ligase                                                          | 17.47 | 13.57    | 1          | 7        | 7          | 13     | 597   | 68.0  | 6.35     |
| P41091     | Eukaryotic translation<br>initiation factor 2 subunit 3                    | 17.44 | 20.55    | 1          | 5        | 5          | 11     | 472   | 51.1  | 8.40     |
| P53618     | Coatomer subunit beta                                                      | 17.41 | 11.96    | 1          | 7        | 7          | 13     | 953   | 107.1 | 6.05     |
| A0A0A0MR02 | Voltage-dependent anion-<br>selective channel protein 2<br>(Fragment)      | 17.40 | 42.55    | 2          | 8        | 8          | 21     | 282   | 30.3  | 7.81     |
| J3QR09     | Ribosomal protein L19                                                      | 17.37 | 13.99    | 3          | 3        | 3          | 9      | 193   | 23.1  | 11.47    |
| Q86UE4     | Protein LYRIC                                                              | 17.37 | 14.43    | 1          | 7        | 7          | 17     | 582   | 63.8  | 9.32     |
| P23381     | TryptophantRNA ligase,<br>cytoplasmic                                      | 17.30 | 19.53    | 1          | 6        | 6          | 13     | 471   | 53.1  | 6.23     |
| Q96C19     | EF-hand domain-containing<br>protein D2                                    | 17.27 | 27.08    | 1          | 5        | 5          | 9      | 240   | 26.7  | 5.20     |
| Q14566     | DNA replication licensing<br>factor MCM6                                   | 17.26 | 13.03    | 1          | 8        | 8          | 15     | 821   | 92.8  | 5.41     |
| P54578     | Ubiquitin carboxyl-terminal<br>hydrolase 14                                | 17.26 | 19.84    | 2          | 6        | 6          | 9      | 494   | 56.0  | 5.30     |

| Accession  | Description                                                                            | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|----------------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P55809     | Succinyl-CoA:3-ketoacid<br>coenzyme A transferase 1,<br>mitochondrial                  | 17.21 | 9.42     | 1          | 2                   | 3          | 7      | 520   | 56.1        | 7.46     |
| 095373     | Importin-7                                                                             | 17.18 | 11.37    | 1          | 8                   | 8          | 19     | 1038  | 119.4       | 4.82     |
| Q9UQE7     | Structural maintenance of chromosomes protein 3                                        | 17.12 | 16.35    | 1          | 13                  | 14         | 16     | 1217  | 141.5       | 7.18     |
| H7C469     | Uncharacterized protein<br>(Fragment)                                                  | 17.10 | 17.86    | 8          | 4                   | 4          | 8      | 336   | 35.9        | 5.40     |
| Q9UHB9     | Signal recognition particle<br>subunit SRP68                                           | 17.08 | 10.85    | 1          | 5                   | 5          | 10     | 627   | 70.7        | 8.56     |
| H7C3T4     | Peroxiredoxin-4 (Fragment)                                                             | 17.02 | 46.58    | 2          | 4                   | 6          | 14     | 161   | 18.3        | 6.19     |
| B4DJ81     | NADH-ubiquinone<br>oxidoreductase 75 kDa<br>subunit, mitochondrial                     | 16.92 | 16.37    | 2          | 7                   | 7          | 10     | 611   | 66.9        | 5.38     |
| B4DGU4     | Catenin beta-1                                                                         | 16.87 | 9.17     | 2          | 4                   | 5          | 11     | 774   | 84.7        | 5.92     |
| P60228     | Eukaryotic translation<br>initiation factor 3 subunit E                                | 16.83 | 16.18    | 1          | 5                   | 5          | 14     | 445   | 52.2        | 6.04     |
| P16403     | Histone H1.2                                                                           | 16.67 | 17.84    | 3          | 4                   | 6          | 20     | 213   | 21.4        | 10.93    |
| P49755     | Transmembrane emp24<br>domain-containing protein 10                                    | 16.66 | 32.42    | 1          | 7                   | 7          | 12     | 219   | 25.0        | 7.44     |
| P35527     | Keratin, type I cytoskeletal 9                                                         | 16.40 | 21.83    | 1          | 7                   | 7          | 19     | 623   | 62.0        | 5.24     |
| P62244     | 40S ribosomal protein S15a                                                             | 16.22 | 53.85    | 1          | 6                   | 6          | 10     | 130   | 14.8        | 10.13    |
| P38919     | Eukaryotic initiation factor<br>4A-III                                                 | 16.16 | 17.03    | 1          | 5                   | 6          | 10     | 411   | 46.8        | 6.73     |
| P17812     | CTP synthase 1                                                                         | 16.11 | 15.91    | 1          | 6                   | 6          | 12     | 591   | 66.6        | 6.46     |
| P61353     | 60S ribosomal protein L27                                                              | 16.09 | 36.76    | 1          | 5                   | 5          | 11     | 136   | 15.8        | 10.56    |
| P62266     | 40S ribosomal protein S23                                                              | 16.00 | 35.66    | 1          | 5                   | 5          | 8      | 143   | 15.8        | 10.49    |
| A0A0C4DGS1 | Dolichyl-<br>diphosphooligosaccharide<br>protein glycosyltransferase<br>48 kDa subunit | 16.00 | 16.17    | 2          | 6                   | 6          | 12     | 439   | 48.8        | 5.69     |
| P30044     |                                                                                        | 15.94 | 40.65    | 1          | 9                   | 9          | 16     | 214   | 22.1        | 8.70     |
| H0YN26     | Acidic leucine-rich nuclear<br>phosphoprotein 32 family<br>member A                    | 15.89 | 47.46    | 2          | 5                   | 6          | 9      | 177   | 20.0        | 4.58     |
| P35998     | 26S protease regulatory<br>subunit 7                                                   | 15.87 | 20.79    | 1          | 7                   | 7          | 11     | 433   | 48.6        | 5.95     |
| P31689     | DnaJ homolog subfamily A<br>member 1                                                   | 15.79 | 14.36    | 1          | 3                   | 3          | 8      | 397   | 44.8        | 7.08     |
| P13796     | Plastin-2                                                                              | 15.79 | 10.53    | 1          | 2                   | 5          | 10     | 627   | 70.2        | 5.43     |
| P30043     | Flavin reductase (NADPH)                                                               | 15.77 | 26.21    | 1          | 3                   | 3          | 6      | 206   | 22.1        | 7.65     |

| Accession | Description                                                         | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|---------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P61224    | Ras-related protein Rap-1b                                          | 15.72 | 55.43    | 3          | 8                   | 8          | 19     | 184   | 20.8        | 5.78     |
| E5RI99    | 60S ribosomal protein L30<br>(Fragment)                             | 15.68 | 35.09    | 2          | 3                   | 3          | 14     | 114   | 12.6        | 9.55     |
| P23193    | Transcription elongation<br>factor A protein 1                      | 15.60 | 35.88    | 1          | 8                   | 8          | 12     | 301   | 33.9        | 8.38     |
| P48047    | ATP synthase subunit O,<br>mitochondrial                            | 15.57 | 20.66    | 2          | 4                   | 4          | 8      | 213   | 23.3        | 9.96     |
| Q9UNM6    | 26S proteasome non-ATPase<br>regulatory subunit 13                  | 15.55 | 17.55    | 4          | 5                   | 5          | 14     | 376   | 42.9        | 5.81     |
| P31153    | S-adenosylmethionine<br>synthase isoform type-2                     | 15.40 | 18.99    | 1          | 5                   | 5          | 13     | 395   | 43.6        | 6.48     |
| O76094    | Signal recognition particle<br>subunit SRP72                        | 15.31 | 7.30     | 2          | 3                   | 3          | 8      | 671   | 74.6        | 9.26     |
| Q07955    | Serine/arginine-rich splicing<br>factor 1                           | 15.22 | 29.03    | 2          | 5                   | 5          | 12     | 248   | 27.7        | 10.36    |
| P30086    | Phosphatidylethanolamine-<br>binding protein 1                      | 15.21 | 48.13    | 1          | 7                   | 7          | 18     | 187   | 21.0        | 7.53     |
| Q9NSD9    | PhenylalaninetRNA ligase<br>beta subunit                            | 15.17 | 12.56    | 1          | 7                   | 7          | 13     | 589   | 66.1        | 6.84     |
| 075131    | Copine-3                                                            | 15.14 | 23.09    | 1          | 8                   | 8          | 11     | 537   | 60.1        | 5.85     |
| Q92688    | Acidic leucine-rich nuclear<br>phosphoprotein 32 family<br>member B | 15.13 | 15.94    | 1          | 2                   | 3          | 9      | 251   | 28.8        | 4.06     |
| Q99471    | Prefoldin subunit 5                                                 | 15.12 | 43.51    | 2          | 4                   | 4          | 8      | 154   | 17.3        | 6.33     |
| Q15691    | Microtubule-associated<br>protein RP/EB family<br>member 1          | 15.06 | 27.24    | 1          | 5                   | 5          | 12     | 268   | 30.0        | 5.14     |
| P18124    | 60S ribosomal protein L7                                            | 15.03 | 32.66    | 1          | 8                   | 8          | 11     | 248   | 29.2        | 10.65    |
| Q96HE7    | ERO1-like protein alpha                                             | 14.99 | 12.82    | 1          | 5                   | 5          | 7      | 468   | 54.4        | 5.68     |
| Q9Y617    | Phosphoserine<br>aminotransferase                                   | 14.92 | 28.11    | 1          | 9                   | 9          | 12     | 370   | 40.4        | 7.66     |
| P28074    | Proteasome subunit beta<br>type-5                                   | 14.82 | 31.18    | 1          | 6                   | 6          | 9      | 263   | 28.5        | 6.92     |
| P00367    | Glutamate dehydrogenase 1,<br>mitochondrial                         | 14.71 | 25.45    | 1          | 9                   | 9          | 16     | 558   | 61.4        | 7.80     |
| Q99613    | Eukaryotic translation<br>initiation factor 3 subunit C             | 14.70 | 13.58    | 2          | 10                  | 10         | 20     | 913   | 105.3       | 5.68     |
| Q5JR07    | Rho-related GTP-binding<br>protein RhoC (Fragment)                  | 14.69 | 59.84    | 5          | 6                   | 6          | 11     | 127   | 14.4        | 4.73     |
| P51858    | Hepatoma-derived growth factor                                      | 14.67 | 34.58    | 1          | 7                   | 7          | 11     | 240   | 26.8        | 4.73     |
| J3QL19    | Small nuclear<br>ribonucleoprotein Sm D1                            | 14.64 | 44.00    | 2          | 2                   | 2          | 10     | 75    | 8.4         | 11.84    |
| P28838    | Cytosol aminopeptidase                                              | 14.62 | 14.45    | 1          | 6                   | 6          | 9      | 519   | 56.1        | 7.93     |

| Accession  | Description                 | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|-----------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q16795     | NADH dehydrogenase          | 14.58 | 12.73    | 1          | 3                   | 3          | 9      | 377   | 42.5        | 9.80     |
|            | [ubiquinone] 1 alpha        |       |          |            |                     |            |        |       |             |          |
|            | subcomplex subunit 9,       |       |          |            |                     |            |        |       |             |          |
|            | mitochondrial               |       |          |            |                     |            |        |       |             |          |
| P62136     | Serine/threonine-protein    | 14.47 | 27.88    | 1          | 8                   | 8          | 13     | 330   | 37.5        | 6.33     |
|            | phosphatase PP1-alpha       |       |          |            |                     |            |        |       |             |          |
|            | catalytic subunit           |       |          |            |                     |            |        |       |             |          |
| P17174     | Aspartate aminotransferase, | 14.44 | 41.16    | 1          | 10                  | 10         | 15     | 413   | 46.2        | 7.01     |
|            | cytoplasmic                 |       |          |            |                     |            |        |       |             |          |
| P20073     | Annexin A7                  | 14.40 | 10.25    | 1          | 4                   | 4          | 8      | 488   | 52.7        | 5.68     |
| F5H157     | Ras-related protein Rab-35  | 14.38 | 21.62    | 2          | 1                   | 3          | 8      | 185   | 21.2        | 8.31     |
|            | (Fragment)                  |       |          |            |                     |            |        |       |             |          |
| Q9UIJ7     | GTP:AMP                     | 14.28 | 32.16    | 1          | 5                   | 5          | 10     | 227   | 25.5        | 9.16     |
|            | phosphotransferase AK3,     |       |          |            |                     |            |        |       |             |          |
|            | mitochondrial               |       |          |            |                     |            |        |       |             |          |
| P51659     | Peroxisomal multifunctional | 14.27 | 10.73    | 1          | 5                   | 5          | 7      | 736   | 79.6        | 8.84     |
|            | enzyme type 2               |       |          |            |                     |            |        |       |             |          |
| I3L0H8     | ATP-dependent RNA           | 14.26 | 5.82     | 3          | 2                   | 2          | 6      | 447   | 50.5        | 6.38     |
|            | helicase DDX19A             |       |          |            |                     |            |        |       |             |          |
| Q02539     | Histone H1.1                | 14.24 | 16.28    | 1          | 2                   | 4          | 12     | 215   | 21.8        | 10.99    |
| Q15785     | Mitochondrial import        | 14.22 | 32.04    | 1          | 6                   | 6          | 8      | 309   | 34.5        | 8.98     |
| <b>L</b> , | receptor subunit TOM34      |       |          |            | Ť                   |            | Ĩ      |       |             |          |
| P15121     | Aldose reductase            | 13.97 | 21.20    | 1          | 4                   | 5          | 10     | 316   | 35.8        | 6.98     |
| Q6PIU2     | Neutral cholesterol ester   | 13.89 | 25.98    | 3          | 6                   | 6          | 10     | 408   | 45.8        | 7.23     |
| 201102     | hydrolase 1                 | 1010) | 20.00    | 5          | Ŭ                   |            | 10     |       |             | ,.25     |
| P31948     | Stress-induced-             | 13.80 | 9.02     | 1          | 5                   | 5          | 11     | 543   | 62.6        | 6.80     |
| 151510     | phosphoprotein 1            | 15.00 | 9.02     | 1          | 5                   |            |        | 515   | 02.0        | 0.00     |
| H7C463     | MICOS complex subunit       | 13.79 | 13.87    | 4          | 6                   | 6          | 10     | 613   | 68.1        | 6.06     |
| 11/0405    | MIC60 (Fragment)            | 15.75 | 15.67    | -          | 0                   | 0          | 10     | 015   | 00.1        | 0.00     |
| Q9HAV4     | Exportin-5                  | 13.67 | 8.55     | 1          | 8                   | 8          | 14     | 1204  | 136.2       | 5.80     |
|            | Succinate dehydrogenase     | 13.59 | 14.45    | 3          | 8<br>4              | 8          | 6      | 519   | 56.6        | 7.50     |
| A0A087X1I3 | [ubiquinone] flavoprotein   | 15.59 | 14.43    | 5          | 4                   | 4          | 0      | 519   | 50.0        | 7.30     |
|            |                             |       |          |            |                     |            |        |       |             |          |
| 014744     | subunit, mitochondrial      | 12.50 | 14.20    | 1          | 7                   | 7          | 10     | (27   | 72.6        | ( 20     |
| O14744     | Protein arginine N-         | 13.56 | 14.29    | 1          | 7                   | 7          | 10     | 637   | 72.6        | 6.29     |
|            | methyltransferase 5         |       |          |            |                     |            |        |       |             | 0.50     |
| P00390     | Glutathione reductase,      | 13.56 | 17.24    | 1          | 4                   | 4          | 9      | 522   | 56.2        | 8.50     |
|            | mitochondrial               |       |          |            |                     |            |        |       |             |          |
| P09525     | Annexin A4                  | 13.55 | 33.86    | 1          | 7                   | 7          | 8      | 319   | 35.9        | 6.13     |
| P43358     | Melanoma-associated antigen | 13.48 | 25.24    | 1          | 8                   | 8          | 15     | 317   | 34.9        | 4.69     |
|            | 4                           |       |          |            |                     |            |        |       |             |          |
| O00151     | PDZ and LIM domain protein  | 13.46 | 38.30    | 1          | 9                   | 9          | 14     | 329   | 36.0        | 7.02     |
|            | 1                           |       |          |            |                     |            |        |       |             |          |
| Q13126     | S-methyl-5'-thioadenosine   | 13.43 | 27.21    | 2          | 4                   | 4          | 8      | 283   | 31.2        | 7.18     |
|            | phosphorylase               |       |          |            |                     |            |        |       |             |          |

| Accession | Description                                                         | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|---------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q9H4A4    | Aminopeptidase B                                                    | 13.42 | 17.69    | 2          | 10                  | 10         | 10     | 650   | 72.5        | 5.74     |
| F8W020    | Nucleosome assembly<br>protein 1-like 1 (Fragment)                  | 13.37 | 42.51    | 6          | 7                   | 7          | 19     | 207   | 24.4        | 4.51     |
| O00232    | 26S proteasome non-ATPase<br>regulatory subunit 12                  | 13.37 | 19.30    | 1          | 5                   | 5          | 12     | 456   | 52.9        | 7.65     |
| B4DJV2    | Citrate synthase                                                    | 13.35 | 23.18    | 2          | 8                   | 9          | 13     | 453   | 50.4        | 7.90     |
| P39019    | 40S ribosomal protein S19                                           | 13.28 | 17.24    | 1          | 3                   | 3          | 6      | 145   | 16.1        | 10.32    |
| Q9Y3F4    | Serine-threonine kinase<br>receptor-associated protein              | 13.20 | 21.43    | 1          | 5                   | 5          | 9      | 350   | 38.4        | 5.12     |
| Q5T7C4    | High mobility group protein<br>B1                                   | 13.16 | 46.84    | 2          | 5                   | 6          | 15     | 158   | 18.3        | 9.70     |
| P53621    | Coatomer subunit alpha                                              | 13.11 | 9.56     | 1          | 10                  | 10         | 11     | 1224  | 138.3       | 7.66     |
| B7Z9I1    | Medium-chain-specific acyl-<br>CoA dehydrogenase,<br>mitochondrial  | 13.05 | 25.71    | 3          | 6                   | 6          | 15     | 385   | 42.4        | 6.43     |
| D6RAN4    | 60S ribosomal protein L9<br>(Fragment)                              | 12.99 | 40.88    | 3          | 4                   | 4          | 12     | 181   | 20.8        | 10.20    |
| P62316    | Small nuclear<br>ribonucleoprotein Sm D2                            | 12.96 | 40.68    | 1          | 5                   | 5          | 10     | 118   | 13.5        | 9.91     |
| P37837    | Transaldolase                                                       | 12.96 | 23.15    | 2          | 8                   | 8          | 16     | 337   | 37.5        | 6.81     |
| P51571    | Translocon-associated protein subunit delta                         | 12.91 | 24.86    | 1          | 3                   | 3          | 7      | 173   | 19.0        | 6.15     |
| Q13435    | Splicing factor 3B subunit 2                                        | 12.91 | 10.50    | 1          | 9                   | 9          | 10     | 895   | 100.2       | 5.67     |
| E5RIW3    | Tubulin-specific chaperone A                                        | 12.84 | 45.24    | 3          | 5                   | 5          | 8      | 84    | 10.1        | 4.63     |
| P10644    | cAMP-dependent protein<br>kinase type I-alpha regulatory<br>subunit | 12.78 | 14.17    | 1          | 3                   | 3          | 5      | 381   | 43.0        | 5.35     |
| P61289    | Proteasome activator<br>complex subunit 3                           | 12.65 | 25.20    | 3          | 5                   | 5          | 10     | 254   | 29.5        | 5.95     |
| P00492    | Hypoxanthine-guanine phosphoribosyltransferase                      | 12.62 | 34.40    | 1          | 6                   | 6          | 12     | 218   | 24.6        | 6.68     |
| P13804    | Electron transfer flavoprotein subunit alpha, mitochondrial         | 12.61 | 38.44    | 1          | 8                   | 8          | 10     | 333   | 35.1        | 8.38     |
| P43304    | Glycerol-3-phosphate<br>dehydrogenase,<br>mitochondrial             | 12.60 | 14.86    | 1          | 7                   | 7          | 13     | 727   | 80.8        | 7.69     |
| P49915    | GMP synthase [glutamine-<br>hydrolyzing                             | 12.60 | 27.42    | 1          | 12                  | 12         | 17     | 693   | 76.7        | 6.87     |
| C9JU14    | Ras-related protein Rab-6B<br>(Fragment)                            | 12.58 | 27.71    | 4          | 1                   | 2          | 7      | 83    | 9.7         | 5.45     |
| K7EM73    | Calpain small subunit 1<br>(Fragment)                               | 12.53 | 20.86    | 6          | 2                   | 2          | 7      | 163   | 15.9        | 4.91     |
| 075694    | Nuclear pore complex protein<br>Nup155                              | 12.52 | 9.56     | 1          | 10                  | 10         | 11     | 1391  | 155.1       | 6.16     |

| Accession  | Description                     | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pl |
|------------|---------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| B7Z7P8     | Eukaryotic peptide chain        | 12.52 | 21.51    | 2          | 6                   | 6          | 11     | 423   | 47.4        | 5.57     |
|            | release factor subunit 1        |       |          |            |                     |            |        |       |             |          |
| P38606     | V-type proton ATPase            | 12.49 | 13.61    | 1          | 7                   | 7          | 9      | 617   | 68.3        | 5.52     |
|            | catalytic subunit A             |       |          |            |                     |            |        |       |             |          |
| P15880     | 40S ribosomal protein S2        | 12.48 | 37.20    | 2          | 8                   | 8          | 17     | 293   | 31.3        | 10.24    |
| P00387     | NADH-cytochrome b5              | 12.45 | 22.59    | 1          | 6                   | 6          | 14     | 301   | 34.2        | 7.59     |
|            | reductase 3                     |       |          |            |                     |            |        |       |             |          |
| X1WI28     | 60S ribosomal protein L10       | 12.36 | 29.50    | 2          | 4                   | 4          | 11     | 200   | 23.0        | 10.01    |
|            | (Fragment)                      |       |          |            |                     |            |        |       |             |          |
| F8W1R7     | Myosin light polypeptide 6      | 12.33 | 49.66    | 7          | 6                   | 6          | 15     | 145   | 16.3        | 4.65     |
| E9PN17     | ATP synthase subunit g,         | 12.24 | 36.84    | 2          | 2                   | 2          | 6      | 76    | 8.4         | 10.29    |
|            | mitochondrial                   |       |          |            |                     |            |        |       |             |          |
| Q12874     | Splicing factor 3A subunit 3    | 12.24 | 18.76    | 1          | 6                   | 6          | 11     | 501   | 58.8        | 5.38     |
| Q9NX58     | Cell growth-regulating          | 12.22 | 10.29    | 1          | 2                   | 2          | 8      | 379   | 43.6        | 9.54     |
|            | nucleolar protein               |       |          |            |                     |            |        |       |             |          |
| A0A096LNY6 | Adenylosuccinate lyase          | 12.18 | 13.89    | 7          | 3                   | 3          | 4      | 360   | 40.9        | 7.68     |
|            | (Fragment)                      |       |          |            |                     |            |        |       |             |          |
| Q9H9B4     | Sideroflexin-1                  | 12.16 | 26.09    | 1          | 5                   | 5          | 5      | 322   | 35.6        | 9.07     |
| O15144     | Actin-related protein 2/3       | 12.14 | 35.00    | 1          | 8                   | 8          | 11     | 300   | 34.3        | 7.36     |
|            | complex subunit 2               |       |          |            |                     |            |        |       |             |          |
| Q9Y678     | Coatomer subunit gamma-1        | 12.12 | 14.76    | 1          | 7                   | 8          | 14     | 874   | 97.7        | 5.47     |
| P61604     | 10 kDa heat shock protein,      | 12.12 | 43.14    | 2          | 4                   | 4          | 12     | 102   | 10.9        | 8.92     |
|            | mitochondrial                   |       |          |            |                     |            |        |       |             |          |
| P14550     | Alcohol dehydrogenase           | 12.04 | 18.15    | 1          | 4                   | 5          | 9      | 325   | 36.5        | 6.79     |
|            | [NADP(+)]                       |       |          |            |                     |            |        |       |             |          |
| P60866     | 40S ribosomal protein S20       | 12.03 | 22.69    | 1          | 3                   | 3          | 7      | 119   | 13.4        | 9.94     |
| P08754     | Guanine nucleotide-binding      | 11.99 | 21.47    | 1          | 4                   | 6          | 19     | 354   | 40.5        | 5.69     |
|            | protein G(k) subunit alpha      |       |          |            |                     |            |        |       |             |          |
| D6RA82     | Annexin                         | 11.99 | 29.93    | 2          | 8                   | 8          | 12     | 284   | 32.1        | 5.94     |
| P52292     | Importin subunit alpha-1        | 11.94 | 26.65    | 1          | 7                   | 7          | 14     | 529   | 57.8        | 5.40     |
| Q8N1G4     | Leucine-rich repeat-            | 11.91 | 15.44    | 1          | 6                   | 6          | 7      | 583   | 63.4        | 8.28     |
|            | containing protein 47           |       |          |            |                     |            |        |       |             |          |
| P11166     | Solute carrier family 2,        | 11.84 | 11.99    | 1          | 3                   | 4          | 8      | 492   | 54.0        | 8.72     |
|            | facilitated glucose transporter |       |          |            |                     |            |        |       |             |          |
|            | member 1                        |       |          |            |                     |            |        |       |             |          |
| A0A087X1K9 | Acyl-protein thioesterase 1     | 11.83 | 16.27    | 3          | 2                   | 2          | 5      | 166   | 18.0        | 5.06     |
| P62249     | 40S ribosomal protein S16       | 11.77 | 38.36    | 2          | 5                   | 5          | 12     | 146   | 16.4        | 10.21    |
| P33991     | DNA replication licensing       | 11.77 | 11.24    | 1          | 6                   | 6          | 10     | 863   | 96.5        | 6.74     |
|            | factor MCM4                     |       |          | -          |                     |            |        |       |             |          |
| Q92597     | Protein NDRG1                   | 11.73 | 20.30    | 1          | 5                   | 5          | 10     | 394   | 42.8        | 5.82     |
|            |                                 |       |          | _          |                     |            | -      |       |             |          |
| H3BRG4     | Cytochrome b-c1 complex         | 11.73 | 27.43    | 2          | 8                   | 8          | 13     | 412   | 44.6        | 9.00     |
|            | subunit 2, mitochondrial        |       |          |            |                     |            |        |       |             |          |

| Accession  | Description                                                       | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|-------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P50995     | Annexin A11                                                       | 11.72 | 13.07    | 1          | 5                   | 5          | 7      | 505   | 54.4        | 7.65     |
| Q13724     | Mannosyl-oligosaccharide<br>glucosidase                           | 11.64 | 10.99    | 1          | 5                   | 5          | 7      | 837   | 91.9        | 8.90     |
| Q13283     | Ras GTPase-activating                                             | 11.62 | 15.24    | 1          | 4                   | 4          | 8      | 466   | 52.1        | 5.52     |
| <b>C</b>   | protein-binding protein 1                                         |       |          |            | -                   |            |        |       |             |          |
| P62241     | 40S ribosomal protein S8                                          | 11.61 | 41.35    | 1          | 7                   | 7          | 16     | 208   | 24.2        | 10.32    |
| P60900     | Proteasome subunit alpha<br>type-6                                | 11.61 | 20.73    | 2          | 5                   | 5          | 11     | 246   | 27.4        | 6.76     |
| P26232     | Catenin alpha-2                                                   | 11.57 | 8.08     | 1          | 1                   | 5          | 10     | 953   | 105.2       | 5.71     |
| P11388     | DNA topoisomerase 2-alpha                                         | 11.53 | 7.58     | 1          | 9                   | 9          | 11     | 1531  | 174.3       | 8.72     |
| K7ES52     | Thymidine kinase                                                  | 11.51 | 25.00    | 4          | 3                   | 3          | 6      | 180   | 19.8        | 8.29     |
| P02786     | Transferrin receptor protein 1                                    | 11.51 | 9.47     | 1          | 6                   | 6          | 8      | 760   | 84.8        | 6.61     |
| С9ЛG9      | Serine/threonine-protein<br>kinase OSR1                           | 11.41 | 9.40     | 2          | 3                   | 3          | 5      | 468   | 51.8        | 7.80     |
| P16422     | Epithelial cell adhesion<br>molecule                              | 11.36 | 24.84    | 2          | 4                   | 4          | 10     | 314   | 34.9        | 7.46     |
| A0A087WVM4 | Monofunctional C1-<br>tetrahydrofolate synthase,<br>mitochondrial | 11.33 | 15.66    | 3          | 9                   | 9          | 9      | 913   | 99.2        | 7.27     |
| Q9Y224     | UPF0568 protein C14orf166                                         | 11.32 | 24.18    | 1          | 4                   | 4          | 9      | 244   | 28.1        | 6.65     |
| P28066     | Proteasome subunit alpha<br>type-5                                | 11.30 | 34.85    | 1          | 6                   | 6          | 13     | 241   | 26.4        | 4.79     |
| Q8N163     | Cell cycle and apoptosis regulator protein 2                      | 11.30 | 10.83    | 1          | 6                   | 6          | 7      | 923   | 102.8       | 5.22     |
| P23921     | Ribonucleoside-diphosphate<br>reductase large subunit             | 11.26 | 17.30    | 1          | 8                   | 8          | 9      | 792   | 90.0        | 7.15     |
| P27797     | Calreticulin                                                      | 11.25 | 21.10    | 1          | 5                   | 5          | 13     | 417   | 48.1        | 4.44     |
| Q96P70     | Importin-9                                                        | 11.24 | 4.42     | 1          | 2                   | 2          | 5      | 1041  | 115.9       | 4.81     |
| Q16531     | DNA damage-binding protein<br>1                                   | 11.19 | 8.68     | 1          | 9                   | 9          | 10     | 1140  | 126.9       | 5.26     |
| Q15459     | Splicing factor 3A subunit 1                                      | 11.15 | 9.96     | 1          | 5                   | 5          | 9      | 793   | 88.8        | 5.22     |
| P82979     | SAP domain-containing<br>ribonucleoprotein                        | 11.14 | 23.33    | 2          | 4                   | 4          | 6      | 210   | 23.7        | 6.42     |
| Q15427     | Splicing factor 3B subunit 4                                      | 11.11 | 12.97    | 1          | 3                   | 3          | 8      | 424   | 44.4        | 8.56     |
| C9J3L8     | Translocon-associated protein subunit alpha                       | 11.11 | 9.81     | 5          | 2                   | 2          | 6      | 265   | 29.6        | 4.30     |
| E9PLL6     | 60S ribosomal protein L27a                                        | 11.04 | 38.89    | 2          | 5                   | 5          | 10     | 108   | 12.2        | 11.46    |
| M0QXS5     | Heterogeneous nuclear<br>ribonucleoprotein L<br>(Fragment)        | 11.04 | 13.96    | 2          | 4                   | 4          | 20     | 530   | 58.4        | 6.79     |

| Accession | Description                                                           | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|-----------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P10599    | Thioredoxin                                                           | 11.02 | 48.57    | 1          | 5                   | 5          | 8      | 105   | 11.7        | 4.92     |
| Q15907    | Ras-related protein Rab-11B                                           | 11.00 | 27.98    | 1          | 5                   | 5          | 8      | 218   | 24.5        | 5.94     |
| Q15758    | Neutral amino acid<br>transporter B(0)                                | 10.99 | 12.38    | 1          | 4                   | 4          | 6      | 541   | 56.6        | 5.48     |
| O96008    | Mitochondrial import<br>receptor subunit TOM40<br>homolog             | 10.98 | 9.14     | 1          | 3                   | 3          | 7      | 361   | 37.9        | 7.25     |
| Q8WXF1    | Paraspeckle component 1                                               | 10.94 | 13.58    | 2          | 4                   | 5          | 13     | 523   | 58.7        | 6.67     |
| O14818    | Proteasome subunit alpha<br>type-7                                    | 10.92 | 28.23    | 1          | 5                   | 5          | 7      | 248   | 27.9        | 8.46     |
| 075475    | PC4 and SFRS1-interacting<br>protein                                  | 10.90 | 6.79     | 1          | 2                   | 3          | 7      | 530   | 60.1        | 9.13     |
| Q99798    | Aconitate hydratase,<br>mitochondrial                                 | 10.90 | 11.03    | 2          | 6                   | 6          | 10     | 780   | 85.4        | 7.61     |
| P07099    | Epoxide hydrolase 1                                                   | 10.84 | 7.69     | 1          | 2                   | 3          | 5      | 455   | 52.9        | 7.25     |
| F2Z2Y4    | Pyridoxal kinase                                                      | 10.83 | 26.10    | 2          | 4                   | 4          | 9      | 272   | 30.6        | 6.65     |
| Q9HDC9    | Adipocyte plasma<br>membrane-associated protein                       | 10.82 | 23.32    | 2          | 5                   | 5          | 7      | 416   | 46.5        | 6.16     |
| P48444    | Coatomer subunit delta                                                | 10.81 | 8.61     | 2          | 5                   | 5          | 8      | 511   | 57.2        | 6.21     |
| Q96AG4    | Leucine-rich repeat-<br>containing protein 59                         | 10.78 | 34.53    | 1          | 7                   | 7          | 10     | 307   | 34.9        | 9.57     |
| P62851    | 40S ribosomal protein S25                                             | 10.77 | 16.80    | 1          | 3                   | 3          | 12     | 125   | 13.7        | 10.11    |
| B4E3S0    | Coronin                                                               | 10.76 | 20.33    | 2          | 4                   | 4          | 9      | 369   | 41.6        | 6.73     |
| I3L1P8    | Mitochondrial 2-<br>oxoglutarate/malate carrier<br>protein (Fragment) | 10.75 | 20.61    | 2          | 6                   | 6          | 7      | 296   | 32.2        | 9.77     |
| Q13045    | Protein flightless-1 homolog                                          | 10.68 | 4.10     | 1          | 4                   | 4          | 6      | 1269  | 144.7       | 6.05     |
| Q92973    | Transportin-1                                                         | 10.64 | 9.24     | 1          | 6                   | 6          | 8      | 898   | 102.3       | 4.98     |
| Q12797    | Aspartyl/asparaginyl beta-<br>hydroxylase                             | 10.62 | 11.74    | 1          | 5                   | 5          | 11     | 758   | 85.8        | 5.01     |
| Q9BSJ8    | Extended synaptotagmin-1                                              | 10.55 | 9.24     | 1          | 6                   | 6          | 7      | 1104  | 122.8       | 5.83     |
| P20339    | Ras-related protein Rab-5A                                            | 10.52 | 24.19    | 1          | 2                   | 4          | 6      | 215   | 23.6        | 8.15     |
| H7BXH2    | Serine/threonine-protein<br>phosphatase 6 regulatory<br>subunit 3     | 10.50 | 4.72     | 3          | 3                   | 3          | 6      | 827   | 92.4        | 4.63     |
| P07384    | Calpain-1 catalytic subunit                                           | 10.49 | 18.35    | 1          | 10                  | 10         | 15     | 714   | 81.8        | 5.67     |
| P63173    | 60S ribosomal protein L38                                             | 10.48 | 52.86    | 3          | 5                   | 5          | 9      | 70    | 8.2         | 10.10    |
| P30520    | Adenylosuccinate synthetase<br>isozyme 2                              | 10.42 | 23.25    | 1          | 7                   | 7          | 9      | 456   | 50.1        | 6.55     |

| Accession  | Description                                                                       | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|-----------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P31930     | Cytochrome b-c1 complex<br>subunit 1, mitochondrial                               | 10.40 | 15.00    | 1          | 5                   | 5          | 9      | 480   | 52.6        | 6.37     |
| P49721     | Proteasome subunit beta<br>type-2                                                 | 10.37 | 22.39    | 1          | 3                   | 3          | 5      | 201   | 22.8        | 7.02     |
| O15371     | Eukaryotic translation<br>initiation factor 3 subunit D                           | 10.36 | 15.33    | 1          | 4                   | 5          | 7      | 548   | 63.9        | 6.05     |
| H3BQZ7     | HCG2044799                                                                        | 10.35 | 10.99    | 2          | 5                   | 5          | 6      | 746   | 84.6        | 4.93     |
| Q14008     | Cytoskeleton-associated<br>protein 5                                              | 10.32 | 4.38     | 1          | 7                   | 7          | 8      | 2032  | 225.4       | 7.80     |
| P35606     | Coatomer subunit beta'                                                            | 10.30 | 6.29     | 1          | 5                   | 5          | 8      | 906   | 102.4       | 5.27     |
| H7BXY3     | Putative ATP-dependent<br>RNA helicase DHX30                                      | 10.27 | 3.60     | 2          | 2                   | 2          | 4      | 1166  | 130.5       | 8.56     |
| P19012     | Keratin, type I cytoskeletal<br>15                                                | 10.25 | 13.38    | 1          | 1                   | 7          | 13     | 456   | 49.2        | 4.77     |
| O43390     | Heterogeneous nuclear<br>ribonucleoprotein R                                      | 10.21 | 15.01    | 1          | 4                   | 7          | 15     | 633   | 70.9        | 8.13     |
| K7ERZ3     | Perilipin-3 (Fragment)                                                            | 10.19 | 31.51    | 2          | 5                   | 5          | 7      | 292   | 32.0        | 5.14     |
| E7EPB3     | 60S ribosomal protein L14                                                         | 10.19 | 19.35    | 2          | 2                   | 2          | 5      | 124   | 14.5        | 10.21    |
| H0YHS6     | TyrosinetRNA ligase<br>(Fragment)                                                 | 10.17 | 20.27    | 2          | 4                   | 4          | 8      | 291   | 32.2        | 8.40     |
| C9JZR2     | Catenin delta-1                                                                   | 10.16 | 11.19    | 2          | 7                   | 7          | 12     | 938   | 104.8       | 6.87     |
| P62857     | 40S ribosomal protein S28                                                         | 10.07 | 30.43    | 1          | 2                   | 2          | 7      | 69    | 7.8         | 10.70    |
| Q9H0A0     | RNA cytidine<br>acetyltransferase                                                 | 10.03 | 7.80     | 2          | 4                   | 4          | 7      | 1025  | 115.7       | 8.27     |
| A0A0C4DG79 | Constitutive coactivator of<br>PPAR-gamma-like protein 1<br>(Fragment)            | 10.02 | 8.10     | 2          | 3                   | 3          | 6      | 494   | 54.2        | 9.33     |
| O00629     | Importin subunit alpha-3                                                          | 9.99  | 11.32    | 1          | 3                   | 3          | 11     | 521   | 57.9        | 4.96     |
| Q9UBT2     | SUMO-activating enzyme<br>subunit 2                                               | 9.98  | 7.81     | 1          | 4                   | 4          | 6      | 640   | 71.2        | 5.29     |
| Q9NSE4     | IsoleucinetRNA ligase,<br>mitochondrial                                           | 9.91  | 9.58     | 1          | 7                   | 7          | 10     | 1012  | 113.7       | 7.20     |
| Q92538     | Golgi-specific brefeldin A-<br>resistance guanine nucleotide<br>exchange factor 1 | 9.84  | 2.10     | 1          | 3                   | 3          | 5      | 1859  | 206.3       | 5.73     |
| E9PGT6     | COP9 signalosome complex<br>subunit 8                                             | 9.81  | 51.45    | 2          | 5                   | 5          | 9      | 173   | 19.3        | 5.53     |
| P25786     | Proteasome subunit alpha<br>type-1                                                | 9.80  | 29.66    | 1          | 5                   | 5          | 8      | 263   | 29.5        | 6.61     |
| P07741     | Adenine<br>phosphoribosyltransferase                                              | 9.79  | 38.33    | 1          | 4                   | 4          | 7      | 180   | 19.6        | 6.02     |

| Accession  | Description                                                                | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|----------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P08574     | Cytochrome c1, heme<br>protein, mitochondrial                              | 9.79  | 22.15    | 1          | 4                   | 4          | 10     | 325   | 35.4        | 9.00     |
| Q9H845     | Acyl-CoA dehydrogenase<br>family member 9,<br>mitochondrial                | 9.76  | 10.14    | 1          | 4                   | 5          | 8      | 621   | 68.7        | 7.96     |
| P13798     | Acylamino-acid-releasing<br>enzyme                                         | 9.75  | 7.10     | 2          | 4                   | 4          | 6      | 732   | 81.2        | 5.48     |
| 075489     | NADH dehydrogenase<br>[ubiquinone] iron-sulfur<br>protein 3, mitochondrial | 9.74  | 23.86    | 1          | 5                   | 5          | 5      | 264   | 30.2        | 7.50     |
| P05387     | 60S acidic ribosomal protein<br>P2                                         | 9.67  | 59.13    | 1          | 4                   | 4          | 6      | 115   | 11.7        | 4.54     |
| P38117     | Electron transfer flavoprotein<br>subunit beta                             | 9.67  | 18.82    | 1          | 4                   | 4          | 6      | 255   | 27.8        | 8.10     |
| Q9H0S4     | Probable ATP-dependent<br>RNA helicase DDX47                               | 9.66  | 6.15     | 1          | 2                   | 2          | 5      | 455   | 50.6        | 9.10     |
| P60953     | Cell division control protein<br>42 homolog                                | 9.65  | 35.60    | 1          | 4                   | 4          | 8      | 191   | 21.2        | 6.55     |
| P35637     | RNA-binding protein FUS                                                    | 9.65  | 10.46    | 2          | 6                   | 6          | 10     | 526   | 53.4        | 9.36     |
| D6R9A6     | High mobility group protein<br>B2 (Fragment)                               | 9.64  | 29.10    | 2          | 3                   | 4          | 6      | 134   | 15.4        | 9.79     |
| Q99459     | Cell division cycle 5-like<br>protein                                      | 9.62  | 7.61     | 1          | 4                   | 4          | 5      | 802   | 92.2        | 8.18     |
| P43686     | 26S protease regulatory<br>subunit 6B                                      | 9.56  | 23.44    | 1          | 4                   | 4          | 9      | 418   | 47.3        | 5.21     |
| P09758     | Tumor-associated calcium signal transducer 2                               | 9.53  | 10.84    | 1          | 3                   | 3          | 6      | 323   | 35.7        | 8.87     |
| P26373     | 60S ribosomal protein L13                                                  | 9.51  | 19.91    | 2          | 4                   | 4          | 10     | 211   | 24.2        | 11.65    |
| O00505     | Importin subunit alpha-4                                                   | 9.48  | 11.52    | 1          | 3                   | 3          | 12     | 521   | 57.8        | 4.94     |
| P11498     | Pyruvate carboxylase,<br>mitochondrial                                     | 9.39  | 6.54     | 1          | 5                   | 5          | 5      | 1178  | 129.6       | 6.84     |
| A0A087WXM6 | 60S ribosomal protein L17<br>(Fragment)                                    | 9.39  | 27.22    | 5          | 4                   | 4          | 10     | 169   | 19.6        | 10.04    |
| P08243     | Asparagine synthetase<br>[glutamine-hydrolyzing]                           | 9.38  | 3.57     | 1          | 2                   | 2          | 6      | 561   | 64.3        | 6.86     |
| P11216     | Glycogen phosphorylase,<br>brain form                                      | 9.33  | 12.46    | 1          | 4                   | 7          | 13     | 843   | 96.6        | 6.86     |
| P46087     | Probable 28S rRNA<br>(cytosine(4447)-C(5))-<br>methyltransferase           | 9.33  | 6.40     | 1          | 4                   | 4          | 6      | 812   | 89.2        | 9.23     |
| O15131     | Importin subunit alpha-6                                                   | 9.27  | 4.66     | 3          | 2                   | 2          | 6      | 536   | 60.3        | 5.16     |

| Accession  | Description                                                           | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|-----------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| 043143     | Pre-mRNA-splicing factor<br>ATP-dependent RNA                         | 9.22  | 6.92     | 1          | 5                   | 5          | 9      | 795   | 90.9        | 7.46     |
| H0YMZ1     | helicase DHX15<br>Proteasome subunit alpha                            | 9.22  | 44.55    | 3          | 7                   | 7          | 7      | 220   | 24.5        | 6.77     |
|            | type (Fragment)                                                       |       |          |            |                     |            |        |       |             |          |
| C9JXB8     | 60S ribosomal protein L24                                             | 9.12  | 26.45    | 3          | 3                   | 3          | 8      | 121   | 14.4        | 11.31    |
| C9JQ41     | Coiled-coil domain-<br>containing protein 58                          | 9.05  | 34.62    | 3          | 3                   | 3          | 5      | 130   | 15.3        | 8.88     |
| P54577     | TyrosinetRNA ligase,<br>cytoplasmic                                   | 9.03  | 9.85     | 1          | 4                   | 4          | 7      | 528   | 59.1        | 7.05     |
| X6RAC9     | Eukaryotic translation<br>initiation factor 1A, X-<br>chromosomal     | 9.03  | 12.93    | 3          | 2                   | 2          | 6      | 116   | 13.2        | 4.83     |
| P21281     | V-type proton ATPase<br>subunit B, brain isoform                      | 9.01  | 9.00     | 1          | 3                   | 3          | 5      | 511   | 56.5        | 5.81     |
| K7EKI8     | Periplakin                                                            | 8.95  | 7.53     | 3          | 9                   | 10         | 14     | 1754  | 204.4       | 5.62     |
| J3QLE5     | Small nuclear<br>ribonucleoprotein-associated<br>protein N (Fragment) | 8.92  | 14.20    | 3          | 3                   | 3          | 7      | 169   | 17.5        | 9.99     |
| O43399     | Tumor protein D54                                                     | 8.89  | 35.44    | 1          | 4                   | 4          | 6      | 206   | 22.2        | 5.36     |
| E7ETK0     | 40S ribosomal protein S24                                             | 8.89  | 29.77    | 3          | 3                   | 3          | 10     | 131   | 15.2        | 10.89    |
| Q14764     | Major vault protein                                                   | 8.85  | 12.32    | 1          | 6                   | 6          | 7      | 893   | 99.3        | 5.48     |
| P61758     | Prefoldin subunit 3                                                   | 8.85  | 28.43    | 1          | 4                   | 4          | 8      | 197   | 22.6        | 7.11     |
| Q9P2J5     | LeucinetRNA ligase,<br>cytoplasmic                                    | 8.85  | 11.90    | 1          | 8                   | 8          | 9      | 1176  | 134.4       | 7.30     |
| Q9UKX7     | Nuclear pore complex protein<br>Nup50                                 | 8.84  | 14.32    | 1          | 3                   | 3          | 6      | 468   | 50.1        | 7.06     |
| O14579     | Coatomer subunit epsilon                                              | 8.84  | 31.49    | 1          | 5                   | 5          | 5      | 308   | 34.5        | 5.12     |
| Q08J23     | tRNA (cytosine(34)-C(5))-<br>methyltransferase                        | 8.79  | 11.99    | 1          | 5                   | 5          | 7      | 767   | 86.4        | 6.77     |
| G3V4F2     | Acyl-coenzyme A<br>thioesterase 1                                     | 8.77  | 17.22    | 5          | 5                   | 5          | 5      | 395   | 43.7        | 6.99     |
| P55263     | Adenosine kinase                                                      | 8.73  | 28.45    | 1          | 5                   | 5          | 10     | 362   | 40.5        | 6.70     |
| A0A0A0MRA5 | Heterogeneous nuclear<br>ribonucleoprotein U-like<br>protein 1        | 8.71  | 4.44     | 3          | 2                   | 2          | 3      | 766   | 85.9        | 8.78     |
| E9PKG1     | Protein arginine N-<br>methyltransferase 1                            | 8.67  | 24.00    | 3          | 6                   | 6          | 9      | 325   | 37.7        | 6.15     |
| P17931     | Galectin-3                                                            | 8.64  | 20.40    | 1          | 4                   | 4          | 5      | 250   | 26.1        | 8.56     |
| P04792     | Heat shock protein beta-1                                             | 8.64  | 18.05    | 1          | 3                   | 3          | 4      | 205   | 22.8        | 6.40     |

| Accession  | Description                                       | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|---------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| 075400     | Pre-mRNA-processing factor                        | 8.60  | 7.52     | 1          | 6                   | 6          | 7      | 957   | 108.7       | 7.56     |
|            | 40 homolog A                                      |       |          |            |                     |            |        |       |             |          |
| P14314     | Glucosidase 2 subunit beta                        | 8.60  | 8.33     | 2          | 4                   | 4          | 7      | 528   | 59.4        | 4.41     |
| C9J1E7     | AP-1 complex subunit beta-1                       | 8.55  | 13.67    | 2          | 3                   | 6          | 10     | 578   | 65.3        | 5.19     |
|            | (Fragment)                                        |       |          |            |                     |            |        |       |             |          |
| C9JFR7     | Cytochrome c (Fragment)                           | 8.54  | 47.52    | 2          | 6                   | 6          | 10     | 101   | 11.3        | 9.66     |
| O43598     | 2'-deoxynucleoside 5'-<br>phosphate N-hydrolase 1 | 8.54  | 38.51    | 2          | 3                   | 3          | 8      | 174   | 19.1        | 5.05     |
| F8WJN3     | Cleavage and                                      | 8.52  | 10.25    | 2          | 3                   | 3          | 7      | 478   | 52.2        | 6.43     |
|            | polyadenylation-specificity                       |       |          |            |                     |            |        |       |             |          |
|            | factor subunit 6                                  |       |          |            |                     |            |        |       |             |          |
| P47985     | Cytochrome b-c1 complex                           | 8.51  | 12.77    | 1          | 2                   | 2          | 6      | 274   | 29.6        | 8.32     |
|            | subunit Rieske,                                   |       |          |            |                     |            |        |       |             |          |
|            | mitochondrial                                     |       |          |            |                     |            |        |       |             |          |
| P51572     | B-cell receptor-associated                        | 8.51  | 9.76     | 1          | 3                   | 3          | 7      | 246   | 28.0        | 8.44     |
|            | protein 31                                        |       |          |            |                     |            |        |       |             |          |
| C9JVE2     | DCN1-like protein                                 | 8.44  | 17.21    | 6          | 3                   | 3          | 7      | 244   | 28.3        | 4.98     |
| O60313     | Dynamin-like 120 kDa                              | 8.42  | 6.04     | 5          | 4                   | 4          | 4      | 960   | 111.6       | 7.87     |
|            | protein, mitochondrial                            |       |          |            |                     |            |        |       |             |          |
| Q9P258     | Protein RCC2                                      | 8.41  | 8.05     | 1          | 4                   | 4          | 6      | 522   | 56.0        | 8.78     |
| 015511     | Actin-related protein 2/3                         | 8.39  | 39.74    | 1          | 3                   | 3          | 9      | 151   | 16.3        | 5.67     |
|            | complex subunit 5                                 |       |          |            |                     |            |        |       |             |          |
| P36542     | ATP synthase subunit                              | 8.38  | 29.53    | 1          | 6                   | 6          | 7      | 298   | 33.0        | 9.22     |
|            | gamma, mitochondrial                              |       |          |            |                     |            |        |       |             |          |
| P63000     | Ras-related C3 botulinum                          | 8.29  | 19.79    | 1          | 2                   | 3          | 5      | 192   | 21.4        | 8.50     |
|            | toxin substrate 1                                 |       |          |            |                     |            |        |       |             |          |
| P62318     | Small nuclear                                     | 8.29  | 30.95    | 1          | 3                   | 3          | 5      | 126   | 13.9        | 10.32    |
|            | ribonucleoprotein Sm D3                           |       |          |            |                     |            |        |       |             |          |
| Q8WVC2     | 40S ribosomal protein S21                         | 8.26  | 34.57    | 2          | 3                   | 3          | 4      | 81    | 8.8         | 8.50     |
| A0A087X0K1 | Calcium-binding protein 39                        | 8.24  | 5.90     | 2          | 2                   | 2          | 5      | 339   | 39.4        | 7.11     |
| E9PNC7     | Dr1-associated corepressor                        | 8.22  | 14.84    | 4          | 3                   | 3          | 5      | 155   | 16.6        | 7.43     |
|            | (Fragment)                                        |       |          |            |                     |            |        |       |             |          |
| Q02750     | Dual specificity mitogen-                         | 8.21  | 9.67     | 1          | 2                   | 2          | 4      | 393   | 43.4        | 6.62     |
|            | activated protein kinase                          |       |          |            |                     |            |        |       |             |          |
|            | kinase 1                                          |       |          |            |                     |            |        |       |             |          |
| P62158     | Calmodulin                                        | 8.20  | 35.57    | 4          | 5                   | 5          | 11     | 149   | 16.8        | 4.22     |
| Q14558     | Phosphoribosyl                                    | 8.16  | 12.08    | 1          | 3                   | 3          | 6      | 356   | 39.4        | 7.20     |
|            | pyrophosphate synthase-                           |       |          |            |                     |            |        |       |             |          |
|            | associated protein 1                              |       |          |            |                     |            |        |       |             |          |
| K7EQ02     | DAZ-associated protein 1                          | 8.15  | 9.48     | 4          | 2                   | 2          | 5      | 327   | 35.0        | 7.85     |
|            | (Fragment)                                        |       |          |            |                     |            |        |       |             |          |

| Accession  | Description                     | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|---------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                                 |       |          |            | Peptides |            |        |       | [kDa] |          |
| J3QLH6     | 26S protease regulatory         | 8.13  | 19.07    | 5          | 2        | 3          | 4      | 215   | 24.2  | 7.97     |
|            | subunit 8 (Fragment)            |       |          |            |          |            |        |       |       |          |
| F8W031     | Uncharacterized protein         | 8.11  | 17.87    | 4          | 3        | 4          | 5      | 263   | 29.2  | 7.01     |
|            | (Fragment)                      |       |          |            |          |            |        |       |       |          |
| Q9Y295     | Developmentally-regulated       | 8.08  | 15.80    | 1          | 3        | 3          | 4      | 367   | 40.5  | 8.90     |
|            | GTP-binding protein 1           |       |          |            |          |            |        |       |       |          |
| P31949     | Protein S100-A11                | 8.05  | 34.29    | 1          | 3        | 3          | 9      | 105   | 11.7  | 7.12     |
| A5YKK6     | CCR4-NOT transcription          | 8.05  | 2.44     | 1          | 4        | 5          | 6      | 2376  | 266.8 | 7.11     |
|            | complex subunit 1               |       |          |            |          |            |        |       |       |          |
| Q9C0C2     | 182 kDa tankyrase-1-binding     | 8.04  | 5.26     | 1          | 6        | 6          | 6      | 1729  | 181.7 | 4.86     |
|            | protein                         |       |          |            |          |            |        |       |       |          |
| P55769     | NHP2-like protein 1             | 8.03  | 19.53    | 2          | 3        | 3          | 5      | 128   | 14.2  | 8.46     |
| K7ENK9     | Vesicle-associated membrane     | 8.02  | 35.29    | 7          | 2        | 2          | 3      | 68    | 7.8   | 8.79     |
|            | protein 2                       |       |          |            |          |            |        |       |       |          |
| P30085     | UMP-CMP kinase                  | 8.01  | 35.20    | 2          | 6        | 6          | 9      | 196   | 22.2  | 5.57     |
| P13473     | Lysosome-associated             | 8.00  | 4.88     | 1          | 2        | 2          | 4      | 410   | 44.9  | 5.63     |
|            | membrane glycoprotein 2         |       |          |            |          |            |        |       |       |          |
| P41567     | Eukaryotic translation          | 7.98  | 25.66    | 2          | 2        | 2          | 4      | 113   | 12.7  | 7.44     |
|            | initiation factor 1             |       |          |            |          |            |        |       |       |          |
| A0A1B0GWA2 | Alkyldihydroxyacetonephosp      | 7.98  | 6.45     | 2          | 2        | 2          | 5      | 543   | 60.9  | 6.25     |
|            | hate synthase, peroxisomal      |       |          |            |          |            |        |       |       |          |
|            | (Fragment)                      |       |          |            |          |            |        |       |       |          |
| Q7L576     | Cytoplasmic FMR1-               | 7.96  | 3.67     | 1          | 4        | 4          | 5      | 1253  | 145.1 | 6.90     |
|            | interacting protein 1           |       |          |            |          |            |        |       |       |          |
| A0A087WW66 | 26S proteasome non-ATPase       | 7.95  | 11.02    | 2          | 6        | 7          | 10     | 953   | 105.8 | 5.41     |
|            | regulatory subunit 1            |       |          |            |          |            |        |       |       |          |
| O00264     | Membrane-associated             | 7.91  | 16.92    | 1          | 4        | 4          | 5      | 195   | 21.7  | 4.70     |
|            | progesterone receptor           |       |          |            |          |            |        |       |       |          |
|            | component 1                     |       |          |            |          |            |        |       |       |          |
| A0A087WXM8 | Basal cell adhesion molecule    | 7.87  | 10.71    | 2          | 5        | 5          | 6      | 588   | 63.7  | 6.10     |
| P35908     | Keratin, type II cytoskeletal 2 | 7.87  | 7.36     | 1          | 2        | 4          | 7      | 639   | 65.4  | 8.00     |
|            | epidermal                       |       |          |            |          |            |        |       |       |          |
| Q9Y3U8     | 60S ribosomal protein L36       | 7.86  | 28.57    | 1          | 5        | 5          | 9      | 105   | 12.2  | 11.59    |
| Q08257     | Quinone oxidoreductase          | 7.86  | 18.24    | 2          | 3        | 3          | 4      | 329   | 35.2  | 8.44     |
| Q93009     | Ubiquitin carboxyl-terminal     | 7.85  | 6.53     | 1          | 4        | 4          | 5      | 1102  | 128.2 | 5.55     |
| 2,000      | hydrolase 7                     |       |          |            |          |            |        |       | 120.2 |          |
| P63092     | Guanine nucleotide-binding      | 7.83  | 17.26    | 2          | 3        | 4          | 7      | 394   | 45.6  | 5.82     |
|            | protein G(s) subunit alpha      |       |          |            |          |            |        |       |       |          |
|            | isoforms short                  |       |          |            |          |            |        |       |       |          |
| E5RJR5     | S-phase kinase-associated       | 7.82  | 26.38    | 2          | 3        | 3          | 5      | 163   | 18.7  | 4.70     |
|            | protein 1                       |       |          |            |          |            |        |       |       |          |

| Accession | Description                                                                            | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pl |
|-----------|----------------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P62750    | 60S ribosomal protein L23a                                                             | 7.81  | 31.41    | 6          | 4                   | 4          | 6      | 156   | 17.7        | 10.45    |
| Q03252    | Lamin-B2                                                                               | 7.79  | 11.94    | 1          | 6                   | 6          | 7      | 620   | 69.9        | 5.59     |
| P19367    | Hexokinase-1                                                                           | 7.72  | 7.31     | 1          | 4                   | 6          | 11     | 917   | 102.4       | 6.80     |
| Q15819    | Ubiquitin-conjugating<br>enzyme E2 variant 2                                           | 7.67  | 24.83    | 2          | 3                   | 3          | 8      | 145   | 16.4        | 8.09     |
| H7C2W9    | 60S ribosomal protein L31<br>(Fragment)                                                | 7.62  | 29.63    | 5          | 3                   | 3          | 6      | 108   | 12.8        | 11.00    |
| G3V1U5    | Golgi transport 1 homolog B<br>(S. cerevisiae), isoform<br>CRA_c                       | 7.59  | 20.27    | 3          | 2                   | 2          | 4      | 74    | 8.2         | 10.26    |
| P09874    | Poly [ADP-ribose]<br>polymerase 1                                                      | 7.58  | 7.30     | 1          | 5                   | 5          | 6      | 1014  | 113.0       | 8.88     |
| Q9BT78    | COP9 signalosome complex<br>subunit 4                                                  | 7.54  | 13.05    | 2          | 3                   | 3          | 5      | 406   | 46.2        | 5.83     |
| P04908    | Histone H2A type 1-B/E<br>OS=Homo sapiens<br>GN=HIST1H2AB PE=1<br>SV=2 - [H2A1B_HUMAN] | 7.54  | 57.69    | 3          | 1                   | 5          | 9      | 130   | 14.1        | 11.05    |
| Q96KK5    | Histone H2A type 1-H                                                                   | 7.54  | 58.59    | 7          | 1                   | 5          | 9      | 128   | 13.9        | 10.89    |
| P16104    | Histone H2AX                                                                           | 7.54  | 47.55    | 1          | 1                   | 4          | 8      | 143   | 15.1        | 10.74    |
| H3BR35    | Eukaryotic peptide chain<br>release factor GTP-binding<br>subunit ERF3A (Fragment)     | 7.49  | 17.47    | 2          | 4                   | 4          | 8      | 475   | 52.9        | 5.63     |
| B5MCW2    | 60S ribosomal protein L3<br>(Fragment)                                                 | 7.49  | 20.22    | 3          | 4                   | 5          | 12     | 272   | 31.2        | 9.96     |
| K7EIG1    | Clustered mitochondria<br>protein homolog (Fragment)                                   | 7.48  | 5.92     | 2          | 7                   | 7          | 9      | 1251  | 140.5       | 6.40     |
| Q9BPX5    | Actin-related protein 2/3<br>complex subunit 5-like<br>protein                         | 7.47  | 16.34    | 1          | 2                   | 2          | 3      | 153   | 16.9        | 6.60     |
| Q13011    | Delta(3,5)-Delta(2,4)-<br>dienoyl-CoA isomerase,<br>mitochondrial                      | 7.43  | 16.16    | 1          | 3                   | 3          | 4      | 328   | 35.8        | 8.00     |
| Q92990    | Glomulin                                                                               | 7.42  | 12.12    | 1          | 4                   | 4          | 5      | 594   | 68.2        | 5.33     |
| 075874    | Isocitrate dehydrogenase<br>[NADP] cytoplasmic                                         | 7.41  | 23.19    | 1          | 7                   | 7          | 13     | 414   | 46.6        | 7.01     |
| P13693    | Translationally-controlled<br>tumor protein                                            | 7.39  | 29.65    | 3          | 4                   | 4          | 8      | 172   | 19.6        | 4.93     |
| Q92542    | Nicastrin                                                                              | 7.39  | 6.35     | 1          | 3                   | 3          | 4      | 709   | 78.4        | 5.99     |
| A2A2D0    | Stathmin (Fragment)                                                                    | 7.30  | 31.76    | 2          | 3                   | 3          | 8      | 85    | 9.8         | 7.42     |

| Accession | Description                                                                   | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|-------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| F8VVM2    | Phosphate carrier protein,<br>mitochondrial                                   | 7.29  | 11.11    | 2          | 3                   | 3          | 4      | 324   | 36.1        | 9.26     |
| E9PGT1    | Translin                                                                      | 7.26  | 21.97    | 2          | 4                   | 4          | 8      | 223   | 25.6        | 6.89     |
| Q7Z6Z7    | E3 ubiquitin-protein ligase<br>HUWE1                                          | 7.25  | 1.30     | 1          | 3                   | 4          | 4      | 4374  | 481.6       | 5.22     |
| Q9BZE1    | 39S ribosomal protein L37,<br>mitochondrial                                   | 7.24  | 6.86     | 2          | 2                   | 2          | 11     | 423   | 48.1        | 8.59     |
| E7ES33    | Septin-7                                                                      | 7.22  | 18.23    | 6          | 4                   | 5          | 10     | 417   | 48.7        | 8.73     |
| P04899    | Guanine nucleotide-binding<br>protein G(i) subunit alpha-2                    | 7.21  | 26.76    | 1          | 4                   | 6          | 15     | 355   | 40.4        | 5.54     |
| O60869    | Endothelial differentiation-<br>related factor 1                              | 7.20  | 15.54    | 1          | 2                   | 2          | 3      | 148   | 16.4        | 9.95     |
| Q9NZL9    | Methionine<br>adenosyltransferase 2 subunit<br>beta                           | 7.20  | 23.35    | 1          | 5                   | 5          | 7      | 334   | 37.5        | 7.36     |
| Q9Y266    | Nuclear migration protein<br>nudC                                             | 7.19  | 18.43    | 1          | 4                   | 4          | 7      | 331   | 38.2        | 5.38     |
| P25788    | Proteasome subunit alpha<br>type-3                                            | 7.16  | 24.31    | 1          | 5                   | 5          | 7      | 255   | 28.4        | 5.33     |
| P25398    | 40S ribosomal protein S12                                                     | 7.13  | 28.03    | 1          | 3                   | 3          | 5      | 132   | 14.5        | 7.21     |
| P21912    | Succinate dehydrogenase<br>[ubiquinone] iron-sulfur<br>subunit, mitochondrial | 7.12  | 11.07    | 1          | 3                   | 3          | 4      | 280   | 31.6        | 8.76     |
| D6RHZ5    | Protein transport protein<br>Sec31A                                           | 7.10  | 3.53     | 4          | 2                   | 2          | 3      | 877   | 96.4        | 6.38     |
| Q96C90    | Protein phosphatase 1<br>regulatory subunit 14B                               | 7.09  | 26.53    | 1          | 3                   | 3          | 5      | 147   | 15.9        | 4.86     |
| G3V153    | Caprin-1                                                                      | 7.09  | 10.99    | 3          | 4                   | 4          | 11     | 628   | 70.3        | 5.02     |
| P78347    | General transcription factor<br>II-I                                          | 7.06  | 4.71     | 1          | 2                   | 2          | 3      | 998   | 112.3       | 6.39     |
| Q06210    | Glutaminefructose-6-<br>phosphate aminotransferase<br>[isomerizing] 1         | 7.05  | 9.30     | 1          | 4                   | 4          | 6      | 699   | 78.8        | 7.11     |
| Q15843    | NEDD8                                                                         | 7.04  | 34.57    | 1          | 2                   | 2          | 7      | 81    | 9.1         | 8.43     |
| O60888    | Protein CutA                                                                  | 7.03  | 22.91    | 1          | 2                   | 2          | 4      | 179   | 19.1        | 5.50     |
| Q15424    | Scaffold attachment factor<br>B1                                              | 7.02  | 5.14     | 1          | 3                   | 3          | 7      | 915   | 102.6       | 5.47     |
| Q9HB71    | Calcyclin-binding protein                                                     | 7.02  | 25.44    | 1          | 3                   | 3          | 3      | 228   | 26.2        | 8.25     |
| P61088    | Ubiquitin-conjugating<br>enzyme E2 N                                          | 7.01  | 43.42    | 1          | 5                   | 5          | 7      | 152   | 17.1        | 6.57     |

| Accession  | Description                   | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|-------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                               |       |          |            | Peptides |            |        |       | [kDa] |          |
| Q14232     | Translation initiation factor | 6.99  | 32.46    | 1          | 5        | 5          | 6      | 305   | 33.7  | 7.33     |
|            | eIF-2B subunit alpha          |       |          |            |          |            |        |       |       |          |
| Q9HCY8     | Protein S100-A14              | 6.98  | 44.23    | 1          | 4        | 4          | 7      | 104   | 11.7  | 5.24     |
| K7EN20     | Hsp70-binding protein 1       | 6.96  | 37.11    | 2          | 2        | 2          | 3      | 97    | 10.6  | 7.80     |
|            | (Fragment)                    |       |          |            |          |            |        |       |       |          |
| M0R3D6     | 60S ribosomal protein L18a    | 6.95  | 21.99    | 5          | 3        | 3          | 6      | 141   | 16.7  | 10.77    |
|            | (Fragment)                    |       |          |            |          |            |        |       |       |          |
| O95831     | Apoptosis-inducing factor 1,  | 6.93  | 8.16     | 1          | 3        | 3          | 4      | 613   | 66.9  | 8.95     |
|            | mitochondrial                 |       |          |            |          |            |        |       |       |          |
| Q6NUK1     | Calcium-binding               | 6.92  | 10.27    | 1          | 3        | 3          | 3      | 477   | 53.3  | 6.33     |
|            | mitochondrial carrier protein |       |          |            |          |            |        |       |       |          |
|            | SCaMC-1                       |       |          |            |          |            |        |       |       |          |
| Q5T985     | Inter-alpha-trypsin inhibitor | 6.89  | 3.21     | 2          | 2        | 2          | 4      | 935   | 105.2 | 7.03     |
|            | heavy chain H2                |       |          |            |          |            |        |       |       |          |
| A0A0D9SFS3 | 2-oxoglutarate                | 6.88  | 6.09     | 4          | 5        | 5          | 6      | 1001  | 113.2 | 7.08     |
|            | dehydrogenase,                |       |          |            |          |            |        |       |       |          |
|            | mitochondrial]                |       |          |            |          |            |        |       |       |          |
| C9J8H1     | V-type proton ATPase          | 6.87  | 16.75    | 2          | 2        | 2          | 5      | 203   | 23.5  | 9.04     |
|            | subunit E 1 (Fragment)        |       |          |            |          |            |        |       |       |          |
| P19404     | NADH dehydrogenase            | 6.84  | 9.24     | 2          | 2        | 2          | 4      | 249   | 27.4  | 8.06     |
|            | [ubiquinone] flavoprotein 2,  |       |          |            |          |            |        |       |       |          |
|            | mitochondrial                 |       |          |            |          |            |        |       |       |          |
| Q5T4S7     | E3 ubiquitin-protein ligase   | 6.83  | 2.59     | 1          | 8        | 8          | 8      | 5183  | 573.5 | 6.04     |
|            | UBR4                          |       |          |            |          |            |        |       |       |          |
| Q96FQ6     | Protein S100-A16              | 6.81  | 40.78    | 1          | 3        | 3          | 4      | 103   | 11.8  | 6.79     |
| Q13409     | Cytoplasmic dynein 1          | 6.80  | 6.43     | 1          | 2        | 2          | 10     | 638   | 71.4  | 5.20     |
|            | intermediate chain 2          |       |          |            |          |            |        |       |       |          |
| A0A1B0GUC3 | Alpha-ketoglutarate-          | 6.78  | 7.33     | 7          | 2        | 2          | 7      | 450   | 51.8  | 5.16     |
|            | dependent dioxygenase FTO     |       |          |            |          |            |        |       |       |          |
| P55957     | BH3-interacting domain        | 6.77  | 29.74    | 1          | 3        | 3          | 4      | 195   | 22.0  | 5.44     |
|            | death agonist                 |       |          |            |          |            |        |       |       |          |
| P62304     | Small nuclear                 | 6.76  | 25.00    | 1          | 2        | 2          | 5      | 92    | 10.8  | 9.44     |
|            | ribonucleoprotein E           |       |          |            |          |            |        |       |       |          |
| O96019     | Actin-like protein 6A         | 6.74  | 15.62    | 1          | 5        | 5          | 5      | 429   | 47.4  | 5.60     |
| P14324     | Farnesyl pyrophosphate        | 6.74  | 7.64     | 1          | 3        | 3          | 4      | 419   | 48.2  | 6.15     |
| 1 14324    | synthase                      | 0.74  | /.04     |            | 5        | 3          | -      | +19   | +0.2  | 0.15     |
| Q9H2P9     | Diphthine methyl ester        | 6.72  | 13.33    | 1          | 2        | 2          | 7      | 285   | 31.6  | 5.31     |
| Q9H2P9     |                               | 0.72  | 15.55    |            | 2        |            |        | 285   | 51.0  | 5.51     |
| OOMP72     | synthase                      | 6 70  | 20.61    | 2          | 4        | A          | A      | 200   | 22.0  | 5.24     |
| Q9NP72     | Ras-related protein Rab-18    | 6.70  | 29.61    | 2          | 4        | 4          | 4      | 206   | 23.0  | 5.24     |
| H3BLU7     | Aflatoxin B1 aldehyde         | 6.70  | 10.83    | 2          | 2        | 2          | 3      | 314   | 34.7  | 7.18     |
|            | reductase member 2            |       |          |            |          |            |        |       |       |          |
|            | (Fragment)                    |       |          |            |          |            |        |       |       |          |

| Accession  | Description                                                                              | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|------------------------------------------------------------------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                                                                                          |       |          |            | Peptides |            |        |       | [kDa] |          |
| Q9UBX3     | Mitochondrial dicarboxylate<br>carrier                                                   | 6.69  | 14.98    | 3          | 3        | 3          | 3      | 287   | 31.3  | 9.54     |
| E7EQ69     | N-alpha-acetyltransferase 50                                                             | 6.69  | 25.00    | 2          | 4        | 4          | 4      | 168   | 19.3  | 8.81     |
| E9PN51     | NADH dehydrogenase<br>[ubiquinone] iron-sulfur<br>protein 8, mitochondrial<br>(Fragment) | 6.66  | 28.18    | 5          | 3        | 3          | 4      | 110   | 12.4  | 9.98     |
| A0AVT1     | Ubiquitin-like modifier-<br>activating enzyme 6                                          | 6.65  | 3.52     | 1          | 3        | 3          | 4      | 1052  | 117.9 | 6.14     |
| Q86U28     | Iron-sulfur cluster assembly 2<br>homolog, mitochondrial                                 | 6.65  | 20.78    | 1          | 3        | 3          | 3      | 154   | 16.5  | 5.25     |
| E7EMS6     | Catechol O-methyltransferase<br>(Fragment)                                               | 6.64  | 33.18    | 2          | 4        | 4          | 6      | 223   | 24.8  | 5.58     |
| P10620     | Microsomal glutathione S-<br>transferase 1                                               | 6.60  | 27.10    | 1          | 3        | 3          | 3      | 155   | 17.6  | 9.39     |
| P54727     | UV excision repair protein<br>RAD23 homolog B                                            | 6.59  | 21.03    | 1          | 6        | 6          | 11     | 409   | 43.1  | 4.84     |
| Q15404     | Ras suppressor protein 1                                                                 | 6.59  | 11.91    | 1          | 2        | 2          | 3      | 277   | 31.5  | 8.65     |
| P24539     | ATP synthase F(0) complex<br>subunit B1, mitochondrial                                   | 6.57  | 28.52    | 2          | 5        | 5          | 5      | 256   | 28.9  | 9.36     |
| C9JVN9     | L-2-hydroxyglutarate<br>dehydrogenase,<br>mitochondrial                                  | 6.57  | 13.38    | 2          | 4        | 4          | 5      | 441   | 48.4  | 8.65     |
| P09382     | Galectin-1                                                                               | 6.56  | 20.74    | 1          | 2        | 2          | 3      | 135   | 14.7  | 5.50     |
| A6NCQ0     | ADP-sugar pyrophosphatase                                                                | 6.55  | 16.11    | 4          | 3        | 3          | 5      | 180   | 19.9  | 4.75     |
| Q92621     | Nuclear pore complex protein<br>Nup205                                                   | 6.55  | 2.44     | 1          | 4        | 4          | 5      | 2012  | 227.8 | 6.19     |
| P29966     | Myristoylated alanine-rich C-<br>kinase substrate                                        | 6.54  | 19.88    | 1          | 3        | 3          | 4      | 332   | 31.5  | 4.45     |
| A0A087WYS1 | UTPglucose-1-phosphate<br>uridylyltransferase                                            | 6.53  | 8.66     | 3          | 3        | 3          | 7      | 508   | 56.9  | 7.88     |
| F8VY02     | Endoplasmic reticulum<br>resident protein 29                                             | 6.53  | 41.88    | 2          | 5        | 5          | 8      | 160   | 18.1  | 8.00     |
| P19013     | Keratin, type II cytoskeletal 4                                                          | 6.51  | 7.30     | 1          | 2        | 3          | 5      | 534   | 57.2  | 6.61     |
| P43490     | Nicotinamide<br>phosphoribosyltransferase                                                | 6.46  | 9.16     | 1          | 3        | 3          | 7      | 491   | 55.5  | 7.15     |
| Q86SX6     | Glutaredoxin-related protein 5, mitochondrial                                            | 6.45  | 21.02    | 1          | 2        | 2          | 4      | 157   | 16.6  | 6.79     |
| Q9P0J0     | NADH dehydrogenase<br>[ubiquinone] 1 alpha<br>subcomplex subunit 13                      | 6.44  | 25.00    | 1          | 3        | 3          | 4      | 144   | 16.7  | 8.43     |

| Accession  | Description                                                                   | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|-------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q16836     | Hydroxyacyl-coenzyme A<br>dehydrogenase,<br>mitochondrial                     | 6.43  | 18.79    | 3          | 3                   | 3          | 5      | 314   | 34.3        | 8.85     |
| P67775     | Serine/threonine-protein<br>phosphatase 2A catalytic<br>subunit alpha isoform | 6.41  | 23.95    | 1          | 5                   | 5          | 6      | 309   | 35.6        | 5.54     |
| C9IZU3     | Septin-2 (Fragment)                                                           | 6.39  | 53.44    | 4          | 4                   | 4          | 11     | 131   | 14.8        | 5.96     |
| P55884     | Eukaryotic translation<br>initiation factor 3 subunit B                       | 6.37  | 11.55    | 1          | 6                   | 6          | 10     | 814   | 92.4        | 5.00     |
| P11233     | Ras-related protein Ral-A                                                     | 6.36  | 35.44    | 2          | 6                   | 6          | 6      | 206   | 23.6        | 7.11     |
| Q9NQG5     | Regulation of nuclear pre-<br>mRNA domain-containing<br>protein 1B            | 6.34  | 16.87    | 1          | 4                   | 4          | 5      | 326   | 36.9        | 5.97     |
| E5RH50     | La-related protein 1<br>(Fragment)                                            | 6.33  | 9.34     | 3          | 4                   | 4          | 6      | 610   | 69.7        | 6.47     |
| Q9NPH2     | Inositol-3-phosphate synthase<br>1                                            | 6.33  | 9.68     | 1          | 4                   | 4          | 7      | 558   | 61.0        | 5.76     |
| H0Y630     | Serine/threonine-protein<br>kinase 24 (Fragment)                              | 6.31  | 12.47    | 4          | 3                   | 3          | 11     | 369   | 40.9        | 6.32     |
| A0A087X0X3 | Heterogeneous nuclear<br>ribonucleoprotein M                                  | 6.30  | 7.40     | 4          | 3                   | 3          | 3      | 730   | 77.5        | 8.78     |
| O43678     | NADH dehydrogenase<br>[ubiquinone] 1 alpha<br>subcomplex subunit 2            | 6.29  | 31.31    | 1          | 2                   | 2          | 3      | 99    | 10.9        | 9.57     |
| Q9Y446     | Plakophilin-3                                                                 | 6.26  | 7.03     | 1          | 3                   | 3          | 5      | 797   | 87.0        | 9.32     |
| P37108     | Signal recognition particle 14<br>kDa protein                                 | 6.26  | 38.24    | 1          | 3                   | 3          | 5      | 136   | 14.6        | 10.04    |
| P26196     | Probable ATP-dependent<br>RNA helicase DDX6                                   | 6.23  | 10.35    | 1          | 4                   | 4          | 4      | 483   | 54.4        | 8.66     |
| B0QZ43     | Erlin-1 (Fragment)                                                            | 6.22  | 10.55    | 2          | 2                   | 2          | 3      | 275   | 31.1        | 7.96     |
| P55327     | Tumor protein D52                                                             | 6.22  | 22.77    | 1          | 1                   | 3          | 5      | 224   | 24.3        | 4.83     |
| B4DXZ6     | Fragile X mental retardation<br>syndrome-related protein 1                    | 6.21  | 13.49    | 4          | 6                   | 6          | 12     | 608   | 68.3        | 6.05     |
| Q9UMS4     | Pre-mRNA-processing factor<br>19                                              | 6.21  | 10.91    | 1          | 3                   | 3          | 7      | 504   | 55.1        | 6.61     |
| P23588     | Eukaryotic translation<br>initiation factor 4B                                | 6.19  | 16.20    | 2          | 6                   | 6          | 10     | 611   | 69.1        | 5.73     |
| P09110     | 3-ketoacyl-CoA thiolase,<br>peroxisomal                                       | 6.19  | 15.57    | 1          | 5                   | 5          | 5      | 424   | 44.3        | 8.44     |
| Q00059     | Transcription factor A,<br>mitochondrial                                      | 6.17  | 13.41    | 1          | 3                   | 3          | 4      | 246   | 29.1        | 9.72     |

| Accession  | Description                                                        | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|--------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| A0A087X2D0 | Serine/arginine-rich-splicing<br>factor 3                          | 6.16  | 49.47    | 2          | 4                   | 4          | 11     | 95    | 10.3        | 5.14     |
| Q07960     | Rho GTPase-activating                                              | 6.13  | 10.02    | 1          | 2                   | 2          | 3      | 439   | 50.4        | 6.29     |
| Q9NQP4     | protein 1<br>Prefoldin subunit 4                                   | 6.12  | 20.15    | 2          | 2                   | 2          | 4      | 134   | 15.3        | 4.53     |
| С9Ј931     | GTP-binding protein Rheb                                           | 6.11  | 32.91    | 2          | 2                   | 2          | 3      | 79    | 8.7         | 6.02     |
| P53004     | Biliverdin reductase A                                             | 6.09  | 22.30    | 1          | 4                   | 4          | 5      | 296   | 33.4        | 6.44     |
| A0A087X0K9 | Tight junction protein ZO-1                                        | 6.09  | 1.97     | 4          | 2                   | 2          | 3      | 1676  | 187.7       | 6.70     |
| Q9UBF2     | Coatomer subunit gamma-2                                           | 6.07  | 7.92     | 1          | 3                   | 4          | 6      | 871   | 97.6        | 5.81     |
| H0YL72     | Isocitrate dehydrogenase<br>[NAD] subunit alpha,<br>mitochondrial  | 6.07  | 11.78    | 3          | 3                   | 3          | 4      | 331   | 35.8        | 6.44     |
| Q6PI48     | AspartatetRNA ligase,<br>mitochondrial                             | 6.05  | 6.36     | 1          | 3                   | 3          | 4      | 645   | 73.5        | 8.02     |
| Q6ZRP7     | Sulfhydryl oxidase 2                                               | 6.04  | 6.02     | 1          | 3                   | 3          | 3      | 698   | 77.5        | 7.72     |
| P08708     | 40S ribosomal protein S17                                          | 6.03  | 41.48    | 1          | 3                   | 3          | 5      | 135   | 15.5        | 9.85     |
| O94826     | Mitochondrial import<br>receptor subunit TOM70                     | 6.03  | 4.77     | 1          | 2                   | 2          | 4      | 608   | 67.4        | 7.12     |
| Q9BR76     | Coronin-1B                                                         | 6.03  | 11.25    | 1          | 3                   | 3          | 6      | 489   | 54.2        | 5.88     |
| Q15075     | Early endosome antigen 1                                           | 6.03  | 8.01     | 1          | 8                   | 9          | 11     | 1411  | 162.4       | 5.68     |
| P49792     | E3 SUMO-protein ligase<br>RanBP2                                   | 6.03  | 1.46     | 1          | 3                   | 3          | 3      | 3224  | 358.0       | 6.20     |
| A6PVH9     | Copine-1                                                           | 6.02  | 11.23    | 4          | 4                   | 4          | 8      | 481   | 53.0        | 5.82     |
| P16435     | NADPHcytochrome P450<br>reductase                                  | 6.01  | 9.75     | 3          | 4                   | 4          | 4      | 677   | 76.6        | 5.58     |
| P46778     | 60S ribosomal protein L21                                          | 5.98  | 27.50    | 3          | 3                   | 3          | 4      | 160   | 18.6        | 10.49    |
| C9JJT5     | Protein ATP5J2-PTCD1                                               | 5.98  | 44.44    | 4          | 2                   | 2          | 3      | 54    | 5.9         | 9.32     |
| G3V1D1     | Ferritin                                                           | 5.96  | 32.74    | 3          | 4                   | 4          | 8      | 113   | 12.9        | 5.30     |
| A0A0C4DFU2 | Superoxide dismutase                                               | 5.95  | 16.67    | 3          | 3                   | 3          | 5      | 222   | 24.7        | 8.25     |
| P13489     | Ribonuclease inhibitor                                             | 5.92  | 13.67    | 1          | 4                   | 4          | 5      | 461   | 49.9        | 4.82     |
| G8JLG1     | Structural maintenance of chromosomes protein                      | 5.91  | 2.89     | 2          | 2                   | 2          | 2      | 1211  | 140.8       | 7.40     |
| A0A087WXR5 | NADH dehydrogenase<br>[ubiquinone] 1 alpha<br>subcomplex subunit 5 | 5.91  | 53.25    | 4          | 3                   | 3          | 6      | 77    | 8.8         | 4.96     |
| O75947     | ATP synthase subunit d,<br>mitochondrial                           | 5.90  | 26.71    | 1          | 3                   | 3          | 5      | 161   | 18.5        | 5.30     |
| F8W726     | Ubiquitin-associated protein<br>2-like                             | 5.89  | 2.22     | 2          | 2                   | 2          | 4      | 1079  | 113.6       | 6.68     |

| Accession  | Description                                                                        | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|------------------------------------------------------------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                                                                                    |       |          |            | Peptides |            |        |       | [kDa] |          |
| Q8N1F7     | Nuclear pore complex protein<br>Nup93                                              | 5.89  | 5.74     | 1          | 3        | 3          | 3      | 819   | 93.4  | 5.72     |
| P12830     | Cadherin-1                                                                         | 5.88  | 6.80     | 4          | 3        | 3          | 3      | 882   | 97.4  | 4.73     |
| Q7Z7H8     | 39S ribosomal protein L10,<br>mitochondrial                                        | 5.87  | 11.11    | 1          | 2        | 2          | 3      | 261   | 29.3  | 9.58     |
| Q9NUJ1     | Mycophenolic acid acyl-<br>glucuronide esterase,<br>mitochondrial                  | 5.87  | 21.24    | 1          | 4        | 4          | 6      | 306   | 33.9  | 8.57     |
| D3YTB1     | 60S ribosomal protein L32<br>(Fragment)                                            | 5.87  | 21.05    | 3          | 3        | 3          | 4      | 133   | 15.6  | 11.44    |
| G3V198     | Nuclear pore complex protein<br>Nup160 (Fragment)                                  | 5.84  | 2.82     | 2          | 3        | 3          | 4      | 1314  | 148.9 | 5.57     |
| K7EJE8     | Lon protease homolog,<br>mitochondrial                                             | 5.84  | 4.95     | 3          | 3        | 3          | 5      | 829   | 93.2  | 6.49     |
| E9PD53     | Structural maintenance of chromosomes protein                                      | 5.83  | 5.94     | 2          | 6        | 6          | 6      | 1263  | 144.4 | 7.12     |
| H0Y5R6     | Uroporphyrinogen<br>decarboxylase (Fragment)                                       | 5.82  | 23.25    | 3          | 4        | 4          | 5      | 228   | 25.4  | 5.31     |
| H0YC42     | Uncharacterized protein                                                            | 5.81  | 16.19    | 1          | 2        | 4          | 5      | 278   | 31.2  | 6.19     |
| Q96TC7     | Regulator of microtubule<br>dynamics protein 3                                     | 5.81  | 8.30     | 1          | 2        | 2          | 2      | 470   | 52.1  | 5.10     |
| Q96A33     | Coiled-coil domain-<br>containing protein 47                                       | 5.81  | 16.15    | 1          | 6        | 6          | 7      | 483   | 55.8  | 4.87     |
| F5GX77     | Multifunctional<br>methyltransferase subunit<br>TRM112-like protein                | 5.80  | 38.68    | 2          | 3        | 3          | 4      | 106   | 12.0  | 8.07     |
| A0A0U1RR22 | Protein kinase C and casein<br>kinase substrate in neurons<br>protein 2 (Fragment) | 5.80  | 6.87     | 2          | 3        | 3          | 4      | 451   | 51.8  | 5.34     |
| F2Z388     | 60S ribosomal protein L35                                                          | 5.78  | 23.96    | 2          | 2        | 2          | 7      | 96    | 10.6  | 10.29    |
| Q8WVM8     | Sec1 family domain-<br>containing protein 1                                        | 5.74  | 10.28    | 1          | 3        | 3          | 4      | 642   | 72.3  | 6.27     |
| O15143     | Actin-related protein 2/3<br>complex subunit 1B                                    | 5.73  | 6.18     | 1          | 2        | 2          | 3      | 372   | 40.9  | 8.35     |
| F8W7S5     | Ribosome-binding protein 1                                                         | 5.73  | 6.79     | 4          | 3        | 4          | 6      | 751   | 84.3  | 5.01     |
| Q5TEJ7     | Replication protein A 32 kDa<br>subunit (Fragment)                                 | 5.71  | 21.79    | 2          | 2        | 2          | 2      | 179   | 19.4  | 6.07     |
| P04080     | Cystatin-B                                                                         | 5.69  | 33.67    | 1          | 2        | 2          | 6      | 98    | 11.1  | 7.56     |
| E9PHA6     | DNA mismatch repair protein                                                        | 5.69  | 3.37     | 2          | 2        | 2          | 4      | 921   | 103.1 | 6.09     |
| J3QT28     | Mitotic checkpoint protein<br>BUB3 (Fragment)                                      | 5.68  | 22.66    | 2          | 5        | 5          | 7      | 278   | 31.7  | 8.16     |

| Accession  | Description                                                                   | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|-------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q9ULC4     | Malignant T-cell-amplified<br>sequence 1                                      | 5.68  | 36.46    | 1          | 4                   | 4          | 6      | 181   | 20.5        | 8.82     |
| P55145     | Mesencephalic astrocyte-<br>derived neurotrophic factor                       | 5.65  | 22.53    | 2          | 4                   | 4          | 5      | 182   | 20.7        | 8.69     |
| F8VR50     | Actin-related protein 2/3<br>complex subunit 3<br>(Fragment)                  | 5.62  | 28.57    | 3          | 2                   | 2          | 5      | 84    | 9.7         | 7.93     |
| A0A087WYD1 | AP-2 complex subunit beta<br>(Fragment)                                       | 5.62  | 13.62    | 5          | 2                   | 5          | 8      | 639   | 70.9        | 5.06     |
| R4GN49     | Protein S100-A2                                                               | 5.61  | 26.56    | 2          | 2                   | 2          | 5      | 64    | 7.3         | 4.49     |
| H0YJW7     | SRA stem-loop-interacting<br>RNA-binding protein,<br>mitochondrial (Fragment) | 5.59  | 52.63    | 6          | 3                   | 3          | 6      | 76    | 8.7         | 9.06     |
| B4E1C5     | HistidinetRNA ligase,<br>cytoplasmic                                          | 5.57  | 10.63    | 3          | 4                   | 4          | 5      | 395   | 43.9        | 5.10     |
| P20674     | Cytochrome c oxidase<br>subunit 5A, mitochondrial                             | 5.53  | 18.00    | 2          | 4                   | 4          | 5      | 150   | 16.8        | 6.79     |
| V9GYR2     | Sodium/potassium-<br>transporting ATPase subunit<br>beta (Fragment)           | 5.52  | 19.23    | 2          | 2                   | 2          | 3      | 130   | 15.1        | 6.16     |
| P49748     | Very long-chain specific<br>acyl-CoA dehydrogenase,<br>mitochondrial          | 5.50  | 13.28    | 1          | 6                   | 6          | 6      | 655   | 70.3        | 8.75     |
| E9PKV2     | 39S ribosomal protein L17,<br>mitochondrial (Fragment)                        | 5.50  | 11.27    | 2          | 2                   | 2          | 2      | 142   | 16.4        | 10.48    |
| J3KQ96     | Treacle protein (Fragment)                                                    | 5.48  | 2.48     | 3          | 3                   | 3          | 4      | 1414  | 144.0       | 8.29     |
| P10606     | Cytochrome c oxidase<br>subunit 5B, mitochondrial                             | 5.47  | 24.81    | 1          | 3                   | 3          | 7      | 129   | 13.7        | 8.81     |
| F5GXJ9     | CD166 antigen                                                                 | 5.40  | 12.22    | 2          | 3                   | 3          | 4      | 532   | 59.5        | 6.10     |
| H7C024     | Glypican-1 (Fragment)                                                         | 5.36  | 11.22    | 3          | 2                   | 2          | 3      | 294   | 32.9        | 7.40     |
| Q9NT62     | Ubiquitin-like-conjugating<br>enzyme ATG3                                     | 5.36  | 7.32     | 1          | 2                   | 2          | 3      | 314   | 35.8        | 4.74     |
| P22307     | Non-specific lipid-transfer<br>protein                                        | 5.33  | 7.68     | 2          | 4                   | 4          | 4      | 547   | 59.0        | 6.89     |
| O76070     | Gamma-synuclein                                                               | 5.32  | 29.13    | 1          | 3                   | 3          | 3      | 127   | 13.3        | 4.86     |
| M0QYS1     | 60S ribosomal protein L13a<br>(Fragment)                                      | 5.31  | 15.71    | 4          | 3                   | 3          | 4      | 210   | 24.2        | 10.86    |
| Q96HS1     | Serine/threonine-protein<br>phosphatase PGAM5,<br>mitochondrial               | 5.30  | 6.23     | 1          | 2                   | 2          | 3      | 289   | 32.0        | 8.68     |
| Accession  | Description                  | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                              |       |          |            | Peptides |            |        |       | [kDa] |          |
| С9ЛІД      | LSM8 homolog, U6 small       | 5.29  | 57.33    | 2          | 2        | 2          | 2      | 75    | 8.1   | 4.35     |
|            | nuclear RNA associated (S.   |       |          |            |          |            |        |       |       |          |
|            | cerevisiae), isoform CRA_a   |       |          |            |          |            |        |       |       |          |
| Q9H223     | EH domain-containing         | 5.29  | 6.65     | 1          | 3        | 3          | 4      | 541   | 61.1  | 6.76     |
|            | protein 4                    |       |          |            |          |            |        |       |       |          |
| Q96EL3     | 39S ribosomal protein L53,   | 5.27  | 27.68    | 1          | 2        | 2          | 3      | 112   | 12.1  | 8.76     |
|            | mitochondrial                |       |          |            |          |            |        |       |       |          |
| P63096     | Guanine nucleotide-binding   | 5.26  | 16.10    | 1          | 2        | 4          | 13     | 354   | 40.3  | 5.97     |
|            | protein G(i) subunit alpha-1 |       |          |            |          |            |        |       |       |          |
| P55011     | Solute carrier family 12     | 5.26  | 2.56     | 1          | 2        | 2          | 2      | 1212  | 131.4 | 6.40     |
|            | member 2                     |       |          |            |          |            |        |       |       |          |
| Q14498     | RNA-binding protein 39       | 5.23  | 10.00    | 1          | 4        | 4          | 5      | 530   | 59.3  | 10.10    |
| Q14914     | Prostaglandin reductase 1    | 5.23  | 11.25    | 1          | 2        | 2          | 3      | 329   | 35.8  | 8.29     |
| P30622     | CAP-Gly domain-containing    | 5.22  | 3.55     | 1          | 4        | 4          | 4      | 1438  | 162.1 | 5.36     |
|            | linker protein 1             |       |          |            |          |            |        |       |       |          |
| Q9Y3L5     | Ras-related protein Rap-2c   | 5.22  | 16.94    | 1          | 3        | 3          | 3      | 183   | 20.7  | 4.94     |
| H3BPC4     | SUMO-conjugating enzyme      | 5.21  | 51.43    | 4          | 4        | 4          | 5      | 70    | 8.0   | 9.72     |
|            | UBC9 (Fragment)              |       |          |            |          |            |        |       |       |          |
| P0C0S5     | Histone H2A.Z                | 5.20  | 46.09    | 2          | 2        | 4          | 10     | 128   | 13.5  | 10.58    |
| Q5U5X0     | Complex III assembly factor  | 5.17  | 25.96    | 1          | 2        | 2          | 2      | 104   | 11.9  | 9.66     |
|            | LYRM7                        |       |          |            |          |            |        |       |       |          |
| P30405     | Peptidyl-prolyl cis-trans    | 5.16  | 37.20    | 1          | 3        | 3          | 11     | 207   | 22.0  | 9.38     |
|            | isomerase F, mitochondrial   |       |          |            |          |            |        |       |       |          |
| H0Y394     | Vigilin (Fragment)           | 5.12  | 4.01     | 3          | 2        | 2          | 2      | 973   | 108.8 | 7.80     |
| O00203     | AP-3 complex subunit beta-1  | 5.12  | 5.03     | 1          | 5        | 5          | 6      | 1094  | 121.2 | 6.04     |
| Q9BRA2     | Thioredoxin domain-          | 5.12  | 30.08    | 3          | 3        | 3          | 5      | 123   | 13.9  | 5.52     |
|            | containing protein 17        |       |          |            |          |            |        |       |       |          |
| P27144     | Adenylate kinase 4,          | 5.11  | 17.49    | 1          | 3        | 3          | 4      | 223   | 25.3  | 8.40     |
|            | mitochondrial                |       |          |            |          |            |        |       |       |          |
| Q9UMX0     | Ubiquilin-1                  | 5.10  | 4.92     | 1          | 2        | 2          | 2      | 589   | 62.5  | 5.11     |
| A0A087X1A9 | Vesicle-trafficking protein  | 5.09  | 18.99    | 2          | 2        | 2          | 2      | 79    | 8.8   | 5.19     |
|            | SEC22b (Fragment)            |       |          |            |          |            |        |       |       |          |
| I3L3Q4     | Glyoxalase domain-           | 5.07  | 27.75    | 3          | 3        | 4          | 5      | 227   | 25.5  | 7.01     |
|            | containing protein 4         |       |          |            |          |            |        |       |       |          |
|            | (Fragment)                   |       |          |            |          |            |        |       |       |          |
| Q8WUM0     | Nuclear pore complex protein | 5.06  | 2.77     | 1          | 3        | 3          | 3      | 1156  | 128.9 | 5.10     |
|            | Nup133                       |       |          |            |          |            |        |       |       |          |
| P13861     | cAMP-dependent protein       | 5.01  | 7.92     | 1          | 2        | 2          | 2      | 404   | 45.5  | 5.07     |
|            | kinase type II-alpha         |       |          |            |          |            |        |       |       |          |
|            | regulatory subunit           |       |          |            |          |            |        |       |       |          |

| Accession  | Description                                                                 | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|-----------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q92905     | COP9 signalosome complex<br>subunit 5                                       | 5.00  | 4.79     | 1          | 2                   | 2          | 3      | 334   | 37.6        | 6.54     |
| Q9Y5M8     | Signal recognition particle receptor subunit beta                           | 4.98  | 29.52    | 1          | 5                   | 5          | 5      | 271   | 29.7        | 9.04     |
| C9J4Z3     | 60S ribosomal protein L37a                                                  | 4.97  | 44.12    | 2          | 2                   | 2          | 4      | 68    | 7.6         | 10.01    |
| C9JBI3     | Phosphoserine phosphatase<br>(Fragment)                                     | 4.88  | 24.60    | 2          | 4                   | 4          | 4      | 187   | 20.7        | 6.93     |
| P30837     | Aldehyde dehydrogenase X,<br>mitochondrial                                  | 4.87  | 9.09     | 1          | 3                   | 3          | 5      | 517   | 57.2        | 6.80     |
| Q9BQA1     | Methylosome protein 50                                                      | 4.86  | 10.53    | 1          | 2                   | 2          | 2      | 342   | 36.7        | 5.17     |
| K7EKW4     | Isochorismatase domain-<br>containing protein 2<br>(Fragment)               | 4.85  | 35.96    | 2          | 3                   | 3          | 3      | 178   | 19.4        | 8.10     |
| Q53GQ0     | Very-long-chain 3-oxoacyl-<br>CoA reductase                                 | 4.85  | 35.58    | 2          | 7                   | 7          | 7      | 312   | 34.3        | 9.32     |
| Q5RKV6     | Exosome complex<br>component MTR3                                           | 4.84  | 11.40    | 1          | 2                   | 2          | 2      | 272   | 28.2        | 6.28     |
| O75348     | V-type proton ATPase<br>subunit G 1                                         | 4.83  | 16.95    | 1          | 2                   | 2          | 2      | 118   | 13.7        | 8.79     |
| Q99615     | DnaJ homolog subfamily C<br>member 7                                        | 4.82  | 7.29     | 4          | 3                   | 3          | 3      | 494   | 56.4        | 6.96     |
| Q12904     | Aminoacyl tRNA synthase<br>complex-interacting<br>multifunctional protein 1 | 4.82  | 16.99    | 1          | 3                   | 3          | 3      | 312   | 34.3        | 8.43     |
| E7ER77     | Endoplasmic reticulum<br>metallopeptidase 1                                 | 4.81  | 5.47     | 3          | 3                   | 3          | 4      | 841   | 93.1        | 8.09     |
| O15355     | Protein phosphatase 1G                                                      | 4.80  | 5.31     | 1          | 2                   | 2          | 2      | 546   | 59.2        | 4.36     |
| Q9Y5B9     | FACT complex subunit<br>SPT16                                               | 4.79  | 3.53     | 1          | 2                   | 2          | 2      | 1047  | 119.8       | 5.66     |
| A6PVN7     | Serine/threonine-protein<br>phosphatase 2A activator<br>(Fragment)          | 4.77  | 35.94    | 10         | 2                   | 2          | 3      | 64    | 7.4         | 8.47     |
| J3KN66     | Torsin-1A-interacting protein<br>1                                          | 4.76  | 4.51     | 1          | 2                   | 2          | 2      | 599   | 67.8        | 7.90     |
| Q8IZ83     | Aldehyde dehydrogenase<br>family 16 member A1                               | 4.76  | 3.12     | 1          | 2                   | 2          | 3      | 802   | 85.1        | 6.79     |
| B1AKZ5     | Astrocytic phosphoprotein<br>PEA-15                                         | 4.75  | 24.07    | 1          | 2                   | 2          | 3      | 108   | 12.5        | 5.17     |
| A0A0C4DGY8 | Enolase-phosphatase E1                                                      | 4.74  | 28.19    | 3          | 2                   | 2          | 2      | 149   | 16.5        | 6.38     |
| Q13617     | Cullin-2                                                                    | 4.74  | 3.49     | 2          | 2                   | 2          | 2      | 745   | 86.9        | 6.92     |
| Q08945     | FACT complex subunit<br>SSRP1                                               | 4.70  | 3.67     | 1          | 2                   | 2          | 2      | 709   | 81.0        | 6.87     |

| Accession | Description                                                                                          | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pl |
|-----------|------------------------------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q96DG6    | Carboxymethylenebutenolida<br>se homolog                                                             | 4.70  | 20.82    | 1          | 2                   | 3          | 3      | 245   | 28.0        | 7.18     |
| Q99598    | Translin-associated protein X                                                                        | 4.69  | 9.66     | 1          | 2                   | 2          | 5      | 290   | 33.1        | 6.55     |
| Q9UJA5    | tRNA (adenine(58)-N(1))-<br>methyltransferase non-<br>catalytic subunit TRM6                         | 4.68  | 6.04     | 1          | 2                   | 2          | 3      | 497   | 55.8        | 7.55     |
| K7EQA1    | Programmed cell death<br>protein 5                                                                   | 4.66  | 40.23    | 2          | 3                   | 3          | 3      | 87    | 10.0        | 9.00     |
| Q9NVJ2    | ADP-ribosylation factor-like<br>protein 8B                                                           | 4.65  | 17.74    | 1          | 3                   | 3          | 4      | 186   | 21.5        | 8.43     |
| H0YAC6    | Lipopolysaccharide-<br>responsive and beige-like<br>anchor protein (Fragment)                        | 4.65  | 1.73     | 3          | 2                   | 2          | 2      | 1505  | 166.8       | 5.64     |
| E5RHG9    | Cytochrome b-c1 complex<br>subunit 7                                                                 | 4.65  | 31.58    | 3          | 2                   | 2          | 2      | 76    | 9.2         | 8.12     |
| Q9H444    | Charged multivesicular body<br>protein 4b                                                            | 4.63  | 12.05    | 1          | 2                   | 2          | 2      | 224   | 24.9        | 4.82     |
| J3KTL8    | Structural maintenance of<br>chromosomes flexible hinge<br>domain-containing protein 1<br>(Fragment) | 4.61  | 2.38     | 2          | 3                   | 3          | 3      | 1388  | 155.5       | 8.02     |
| P40616    | ADP-ribosylation factor-like<br>protein 1                                                            | 4.58  | 19.89    | 2          | 3                   | 3          | 6      | 181   | 20.4        | 5.72     |
| Q9P287    | BRCA2 and CDKN1A-<br>interacting protein                                                             | 4.56  | 10.83    | 1          | 2                   | 2          | 2      | 314   | 36.0        | 4.61     |
| Q15645    | Pachytene checkpoint protein<br>2 homolog                                                            | 4.56  | 8.33     | 1          | 2                   | 2          | 2      | 432   | 48.5        | 6.09     |
| O00487    | 26S proteasome non-ATPase<br>regulatory subunit 14                                                   | 4.56  | 6.45     | 1          | 2                   | 2          | 3      | 310   | 34.6        | 6.52     |
| Q9BXP5    | Serrate RNA effector<br>molecule homolog                                                             | 4.55  | 3.54     | 1          | 2                   | 2          | 5      | 876   | 100.6       | 5.96     |
| C9JW69    | Regulator of chromosome<br>condensation (Fragment)                                                   | 4.52  | 7.26     | 2          | 2                   | 2          | 2      | 372   | 39.6        | 8.37     |
| 095573    | Long-chain-fatty-acidCoA<br>ligase 3                                                                 | 4.51  | 6.11     | 1          | 3                   | 3          | 5      | 720   | 80.4        | 8.38     |
| H0YAX3    | 39S ribosomal protein L13,<br>mitochondrial (Fragment)                                               | 4.50  | 74.47    | 3          | 3                   | 3          | 3      | 47    | 5.8         | 4.65     |
| P69849    | Nodal modulator 3                                                                                    | 4.49  | 2.95     | 6          | 2                   | 2          | 2      | 1222  | 134.0       | 5.67     |
| Q9BRG1    | Vacuolar protein-sorting-<br>associated protein 25                                                   | 4.48  | 35.80    | 2          | 3                   | 3          | 4      | 176   | 20.7        | 6.34     |
| X6RJ95    | Prostaglandin E synthase 2<br>(Fragment)                                                             | 4.47  | 15.47    | 2          | 2                   | 2          | 5      | 265   | 29.1        | 9.67     |
| Q8WUT1    | POLDIP3 protein                                                                                      | 4.47  | 13.10    | 4          | 2                   | 2          | 2      | 229   | 24.8        | 10.70    |

| Accession  | Description                                                         | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|---------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q9UDY2     | Tight junction protein ZO-2                                         | 4.46  | 4.62     | 2          | 4                   | 4          | 4      | 1190  | 133.9       | 7.40     |
| Q96C01     | Protein FAM136A                                                     | 4.46  | 23.19    | 2          | 2                   | 3          | 3      | 138   | 15.6        | 7.61     |
| P67870     | Casein kinase II subunit beta                                       | 4.45  | 13.02    | 2          | 2                   | 2          | 2      | 215   | 24.9        | 5.55     |
| A0A087WUL2 | Proteasome subunit beta<br>type-3 (Fragment)                        | 4.45  | 45.52    | 4          | 4                   | 4          | 13     | 145   | 16.2        | 8.43     |
| Q07065     | Cytoskeleton-associated<br>protein 4                                | 4.45  | 4.49     | 1          | 2                   | 2          | 2      | 602   | 66.0        | 5.92     |
| Q9BTT0     | Acidic leucine-rich nuclear<br>phosphoprotein 32 family<br>member E | 4.41  | 13.06    | 1          | 2                   | 2          | 2      | 268   | 30.7        | 3.85     |
| A0A0U1RQD1 | Chromosome 12 open<br>reading frame 5, isoform<br>CRA_b             | 4.41  | 22.27    | 2          | 2                   | 2          | 2      | 211   | 23.6        | 7.28     |
| Q16540     | 39S ribosomal protein L23,<br>mitochondrial                         | 4.39  | 29.41    | 4          | 3                   | 3          | 3      | 153   | 17.8        | 9.69     |
| P51665     | 26S proteasome non-ATPase<br>regulatory subunit 7                   | 4.39  | 8.33     | 1          | 2                   | 2          | 2      | 324   | 37.0        | 6.77     |
| Q99848     | Probable rRNA-processing<br>protein EBP2                            | 4.38  | 7.19     | 2          | 2                   | 2          | 2      | 306   | 34.8        | 10.10    |
| O43747     | AP-1 complex subunit<br>gamma-1                                     | 4.36  | 7.42     | 1          | 3                   | 4          | 8      | 822   | 91.3        | 6.80     |
| F5H6P7     | Protein mago nashi homolog<br>2                                     | 4.35  | 55.88    | 5          | 4                   | 4          | 5      | 102   | 11.8        | 5.52     |
| K7EJR3     | 26S proteasome non-ATPase<br>regulatory subunit 8<br>(Fragment)     | 4.33  | 10.00    | 3          | 2                   | 2          | 4      | 250   | 28.0        | 8.18     |
| A0A1B0GV75 | Carnitine O-<br>palmitoyltransferase 2,<br>mitochondrial            | 4.31  | 9.03     | 5          | 3                   | 3          | 3      | 598   | 67.1        | 8.57     |
| F5H796     | Diablo homolog,<br>mitochondrial (Fragment)                         | 4.30  | 19.87    | 3          | 3                   | 3          | 4      | 156   | 17.7        | 4.89     |
| Q96A35     | 39S ribosomal protein L24,<br>mitochondrial                         | 4.29  | 12.50    | 1          | 2                   | 2          | 2      | 216   | 24.9        | 9.29     |
| Q9Y570     | Protein phosphatase<br>methylesterase 1                             | 4.29  | 6.99     | 1          | 2                   | 2          | 2      | 386   | 42.3        | 5.97     |
| Q06124     | Tyrosine-protein phosphatase<br>non-receptor type 11                | 4.28  | 8.04     | 1          | 3                   | 3          | 3      | 597   | 68.4        | 7.30     |
| P61599     | N-alpha-acetyltransferase 20                                        | 4.28  | 11.24    | 1          | 2                   | 2          | 2      | 178   | 20.4        | 5.03     |
| Q9H773     | dCTP pyrophosphatase 1                                              | 4.27  | 26.47    | 1          | 3                   | 3          | 5      | 170   | 18.7        | 5.03     |
| 075531     | Barrier-to-autointegration<br>factor                                | 4.26  | 19.10    | 1          | 3                   | 3          | 5      | 89    | 10.1        | 6.09     |

| Accession  | Description                                                                  | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| J3QL26     | Serine/threonine-protein<br>phosphatase 4 regulatory<br>subunit 1 (Fragment) | 4.25  | 19.26    | 4          | 2                   | 2          | 2      | 135   | 15.5        | 5.03     |
| Q16204     | Coiled-coil domain-<br>containing protein 6                                  | 4.24  | 6.54     | 1          | 2                   | 2          | 2      | 474   | 53.3        | 7.34     |
| Q92878     | DNA repair protein RAD50                                                     | 4.24  | 3.05     | 1          | 3                   | 3          | 3      | 1312  | 153.8       | 6.89     |
| Q3MHD2     | Protein LSM12 homolog                                                        | 4.24  | 13.85    | 2          | 2                   | 2          | 2      | 195   | 21.7        | 7.74     |
| Q12996     | Cleavage stimulation factor<br>subunit 3                                     | 4.23  | 4.18     | 1          | 2                   | 2          | 2      | 717   | 82.9        | 8.12     |
| Q16850     | Lanosterol 14-alpha<br>demethylase                                           | 4.23  | 8.95     | 2          | 3                   | 3          | 3      | 503   | 56.8        | 8.53     |
| Q96E11     | Ribosome-recycling factor,<br>mitochondrial                                  | 4.22  | 18.70    | 1          | 3                   | 3          | 4      | 262   | 29.3        | 9.79     |
| Q96CN7     | Isochorismatase domain-<br>containing protein 1                              | 4.22  | 11.07    | 1          | 2                   | 2          | 2      | 298   | 32.2        | 7.39     |
| E9PF63     | Rho-associated protein kinase<br>2                                           | 4.21  | 4.19     | 3          | 4                   | 4          | 4      | 1145  | 133.2       | 5.78     |
| Q9H2G2     | STE20-like serine/threonine-<br>protein kinase                               | 4.20  | 1.86     | 1          | 2                   | 2          | 2      | 1235  | 142.6       | 5.15     |
| Q9P0I2     | ER membrane protein<br>complex subunit 3                                     | 4.18  | 9.58     | 1          | 2                   | 2          | 3      | 261   | 29.9        | 6.81     |
| P52657     | Transcription initiation factor<br>IIA subunit 2                             | 4.18  | 22.94    | 1          | 2                   | 2          | 2      | 109   | 12.4        | 6.62     |
| D6R967     | Inorganic pyrophosphatase 2,<br>mitochondrial (Fragment)                     | 4.17  | 15.71    | 3          | 2                   | 2          | 4      | 191   | 21.4        | 6.79     |
| A0A0B4J1W3 | N-alpha-acetyltransferase 15,<br>NatA auxiliary subunit                      | 4.16  | 6.13     | 2          | 3                   | 3          | 9      | 865   | 101.1       | 7.42     |
| P62906     | 60S ribosomal protein L10a                                                   | 4.15  | 23.04    | 1          | 4                   | 4          | 7      | 217   | 24.8        | 9.94     |
| Q16401     | 26S proteasome non-ATPase<br>regulatory subunit 5                            | 4.15  | 13.10    | 1          | 4                   | 4          | 4      | 504   | 56.2        | 5.48     |
| E9PB90     | Hexokinase-2                                                                 | 4.15  | 7.20     | 2          | 3                   | 5          | 6      | 889   | 98.9        | 6.04     |
| G5E9W7     | 28S ribosomal protein S22,<br>mitochondrial                                  | 4.14  | 14.11    | 3          | 3                   | 3          | 3      | 319   | 36.8        | 6.81     |
| Q13308     | Inactive tyrosine-protein<br>kinase 7                                        | 4.14  | 2.34     | 1          | 2                   | 2          | 2      | 1070  | 118.3       | 7.09     |
| P50416     | Carnitine O-<br>palmitoyltransferase 1, liver<br>isoform                     | 4.14  | 9.18     | 1          | 5                   | 5          | 5      | 773   | 88.3        | 8.65     |
| Q8NEW0     | Zinc transporter 7                                                           | 4.14  | 6.91     | 1          | 2                   | 2          | 2      | 376   | 41.6        | 6.95     |
| P22061     | Protein-L-isoaspartate(D-<br>aspartate) O-<br>methyltransferase              | 4.12  | 11.89    | 3          | 2                   | 2          | 3      | 227   | 24.6        | 7.21     |

| Accession  | Description                                                                   | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|-------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P24752     | Acetyl-CoA<br>acetyltransferase,<br>mitochondrial                             | 4.11  | 12.18    | 1          | 4                   | 4          | 5      | 427   | 45.2        | 8.85     |
| Q9Y2X3     | Nucleolar protein 58                                                          | 4.10  | 8.88     | 1          | 3                   | 3          | 3      | 529   | 59.5        | 8.92     |
| I3L378     | Ketosamine-3-kinase<br>(Fragment)                                             | 4.10  | 13.71    | 2          | 2                   | 2          | 2      | 124   | 13.9        | 5.67     |
| Q96CS3     | FAS-associated factor 2                                                       | 4.10  | 8.76     | 1          | 3                   | 3          | 3      | 445   | 52.6        | 5.62     |
| C9J0K6     | Sorcin                                                                        | 4.09  | 13.55    | 2          | 2                   | 2          | 3      | 155   | 17.6        | 5.60     |
| O43765     | Small glutamine-rich<br>tetratricopeptide repeat-<br>containing protein alpha | 4.09  | 12.46    | 2          | 3                   | 3          | 3      | 313   | 34.0        | 4.87     |
| Q9UHD1     | Cysteine and histidine-rich<br>domain-containing protein 1                    | 4.09  | 18.37    | 1          | 4                   | 4          | 4      | 332   | 37.5        | 7.87     |
| Q6IAK0     | Selenoprotein T                                                               | 4.08  | 24.82    | 3          | 2                   | 2          | 5      | 137   | 15.8        | 6.67     |
| Q15050     | Ribosome biogenesis<br>regulatory protein homolog                             | 4.08  | 12.33    | 1          | 2                   | 3          | 4      | 365   | 41.2        | 10.70    |
| Q9H3K6     | BolA-like protein 2                                                           | 4.07  | 29.07    | 6          | 2                   | 2          | 3      | 86    | 10.1        | 6.52     |
| B1AH77     | Ras-related C3 botulinum<br>toxin substrate 2                                 | 4.07  | 16.89    | 4          | 2                   | 3          | 4      | 148   | 16.8        | 8.06     |
| H0YAL7     | Eukaryotic translation<br>elongation factor 1 epsilon-1<br>(Fragment)         | 4.06  | 13.24    | 4          | 2                   | 2          | 2      | 136   | 15.3        | 8.40     |
| Q9H061     | Transmembrane protein<br>126A                                                 | 4.05  | 28.72    | 1          | 3                   | 3          | 3      | 195   | 21.5        | 9.26     |
| Q13136     | Liprin-alpha-1                                                                | 4.05  | 3.33     | 1          | 3                   | 3          | 3      | 1202  | 135.7       | 6.29     |
| G5EA06     | 28S ribosomal protein S27,<br>mitochondrial                                   | 4.04  | 15.36    | 2          | 3                   | 3          | 6      | 358   | 41.3        | 5.52     |
| P21283     | V-type proton ATPase<br>subunit C 1                                           | 4.04  | 10.99    | 1          | 3                   | 3          | 3      | 382   | 43.9        | 7.46     |
| Q9UL25     | Ras-related protein Rab-21                                                    | 4.04  | 21.33    | 1          | 3                   | 3          | 3      | 225   | 24.3        | 7.94     |
| A0A024QZ42 | HCG1985580, isoform<br>CRA_c                                                  | 4.04  | 17.36    | 2          | 2                   | 2          | 3      | 121   | 14.4        | 5.29     |
| Q8NBS9     | Thioredoxin domain-<br>containing protein 5                                   | 4.03  | 9.26     | 1          | 3                   | 3          | 4      | 432   | 47.6        | 5.97     |
| 075822     | Eukaryotic translation<br>initiation factor 3 subunit J                       | 4.03  | 19.77    | 1          | 4                   | 4          | 5      | 258   | 29.0        | 4.83     |
| Q8TBA6     | Golgin subfamily A member<br>5                                                | 4.01  | 2.87     | 1          | 2                   | 2          | 2      | 731   | 83.0        | 5.83     |
| Q15008     | 26S proteasome non-ATPase<br>regulatory subunit 6                             | 4.00  | 6.17     | 1          | 2                   | 2          | 3      | 389   | 45.5        | 5.62     |

| Accession | Description                                                                    | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|--------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| O60341    | Lysine-specific histone<br>demethylase 1A                                      | 4.00  | 2.93     | 1          | 2                   | 2          | 2      | 852   | 92.8        | 6.52     |
| O60271    | C-Jun-amino-terminal<br>kinase-interacting protein 4                           | 3.95  | 1.89     | 1          | 2                   | 2          | 2      | 1321  | 146.1       | 5.15     |
| O43920    | NADH dehydrogenase<br>[ubiquinone] iron-sulfur<br>protein 5                    | 3.94  | 22.64    | 1          | 2                   | 2          | 2      | 106   | 12.5        | 9.14     |
| V9GYP5    | Uncharacterized protein<br>(Fragment)                                          | 3.94  | 19.82    | 3          | 3                   | 3          | 3      | 217   | 23.8        | 9.31     |
| D3YTI2    | Low molecular weight<br>phosphotyrosine protein<br>phosphatase                 | 3.92  | 54.12    | 1          | 1                   | 3          | 3      | 85    | 9.4         | 8.35     |
| E9PNM1    | Squalene synthase                                                              | 3.92  | 6.59     | 2          | 2                   | 2          | 2      | 410   | 47.3        | 6.54     |
| Q13177    | Serine/threonine-protein<br>kinase PAK 2                                       | 3.91  | 7.82     | 1          | 3                   | 3          | 4      | 524   | 58.0        | 5.96     |
| Q9NS69    | Mitochondrial import<br>receptor subunit TOM22<br>homolog                      | 3.90  | 36.62    | 1          | 3                   | 3          | 3      | 142   | 15.5        | 4.34     |
| Q9NP97    | Dynein light chain<br>roadblock-type 1                                         | 3.90  | 29.17    | 2          | 2                   | 2          | 2      | 96    | 10.9        | 7.25     |
| Q8WWM7    | Ataxin-2-like protein                                                          | 3.89  | 4.56     | 1          | 3                   | 3          | 4      | 1075  | 113.3       | 8.59     |
| E9PFH4    | Transportin-3                                                                  | 3.89  | 6.53     | 2          | 3                   | 3          | 4      | 857   | 96.6        | 5.66     |
| Q9NYQ6    | Cadherin EGF LAG seven-<br>pass G-type receptor 1                              | 3.89  | 1.06     | 1          | 2                   | 2          | 2      | 3014  | 329.3       | 5.92     |
| H0YDD4    | Acetyltransferase component<br>of pyruvate dehydrogenase<br>complex (Fragment) | 3.89  | 16.08    | 3          | 4                   | 4          | 6      | 479   | 51.2        | 8.51     |
| Q9UBQ5    | Eukaryotic translation<br>initiation factor 3 subunit K                        | 3.88  | 18.81    | 3          | 3                   | 3          | 4      | 218   | 25.0        | 4.93     |
| H3BRL3    | Ubiquitin domain-containing<br>protein UBFD1                                   | 3.87  | 11.00    | 2          | 3                   | 3          | 5      | 300   | 32.6        | 5.96     |
| F5H1S8    | Malectin (Fragment)                                                            | 3.87  | 26.03    | 2          | 3                   | 3          | 5      | 146   | 16.7        | 5.57     |
| A0MZ66    | Shootin-1                                                                      | 3.87  | 3.33     | 1          | 2                   | 2          | 2      | 631   | 71.6        | 5.33     |
| P26006    | Integrin alpha-3                                                               | 3.87  | 3.43     | 1          | 3                   | 3          | 3      | 1051  | 116.5       | 6.77     |
| O75746    | Calcium-binding<br>mitochondrial carrier protein<br>Aralar1                    | 3.87  | 7.08     | 1          | 4                   | 4          | 4      | 678   | 74.7        | 8.38     |
| Q15717    | ELAV-like protein 1                                                            | 3.87  | 13.50    | 1          | 4                   | 4          | 5      | 326   | 36.1        | 9.17     |
| P11387    | DNA topoisomerase 1                                                            | 3.86  | 4.44     | 1          | 3                   | 3          | 5      | 765   | 90.7        | 9.31     |
| Q7Z2W9    | 39S ribosomal protein L21,<br>mitochondrial                                    | 3.83  | 14.15    | 1          | 2                   | 2          | 2      | 205   | 22.8        | 9.89     |

| Accession  | Description                                                              | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|--------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P78417     | Glutathione S-transferase<br>omega-1                                     | 3.83  | 13.69    | 1          | 3                   | 3          | 3      | 241   | 27.5        | 6.60     |
| P27105     | Erythrocyte band 7 integral<br>membrane protein                          | 3.83  | 19.10    | 1          | 3                   | 3          | 4      | 288   | 31.7        | 7.88     |
| C9IZ80     | Basic leucine zipper and W2<br>domain-containing protein 1<br>(Fragment) | 3.83  | 12.93    | 2          | 2                   | 2          | 3      | 294   | 33.4        | 7.85     |
| Q96DA6     | Mitochondrial import inner<br>membrane translocase<br>subunit TIM14      | 3.82  | 19.83    | 1          | 2                   | 2          | 2      | 116   | 12.5        | 10.10    |
| A0A087X1F5 | Protein SYNJ2BP-COX16<br>(Fragment)                                      | 3.80  | 38.82    | 4          | 5                   | 5          | 5      | 152   | 17.2        | 5.15     |
| G5E9R5     | Acid phosphatase 1, soluble,<br>isoform CRA_d                            | 3.79  | 65.00    | 2          | 2                   | 4          | 4      | 80    | 9.0         | 8.34     |
| D6RAY7     | Glucosamine-6-phosphate<br>isomerase (Fragment)                          | 3.79  | 10.13    | 4          | 2                   | 2          | 2      | 237   | 27.0        | 6.52     |
| Q9UKR5     | Probable ergosterol<br>biosynthetic protein 28                           | 3.78  | 20.00    | 1          | 2                   | 2          | 3      | 140   | 15.9        | 9.83     |
| Q8N5K1     | CDGSH iron-sulfur domain-<br>containing protein 2                        | 3.75  | 31.11    | 1          | 4                   | 4          | 4      | 135   | 15.3        | 9.61     |
| Q59FY4     | Acetyl-CoA carboxylase 1<br>(Fragment)                                   | 3.75  | 4.61     | 2          | 2                   | 3          | 3      | 998   | 114.5       | 6.73     |
| B1AHB1     | DNA helicase                                                             | 3.74  | 10.56    | 2          | 5                   | 5          | 6      | 691   | 77.5        | 8.60     |
| P36952     | Serpin B5                                                                | 3.74  | 14.40    | 1          | 4                   | 4          | 5      | 375   | 42.1        | 6.05     |
| C9JXZ7     | Replication factor C subunit<br>4 (Fragment)                             | 3.73  | 23.58    | 5          | 2                   | 2          | 2      | 123   | 13.3        | 9.26     |
| Q9UBI6     | Guanine nucleotide-binding<br>protein G(I)/G(S)/G(O)<br>subunit gamma-12 | 3.72  | 25.00    | 1          | 2                   | 2          | 3      | 72    | 8.0         | 8.97     |
| P16401     | Histone H1.5                                                             | 3.72  | 14.60    | 1          | 3                   | 3          | 8      | 226   | 22.6        | 10.92    |
| A0A0B4J1Z1 | Serine/arginine-rich-splicing<br>factor 7                                | 3.70  | 30.66    | 3          | 3                   | 3          | 5      | 137   | 15.8        | 9.80     |
| Q9NZ45     | CDGSH iron-sulfur domain-<br>containing protein 1                        | 3.70  | 25.93    | 1          | 2                   | 2          | 3      | 108   | 12.2        | 9.09     |
| P61009     | Signal peptidase complex<br>subunit 3                                    | 3.69  | 17.78    | 1          | 3                   | 3          | 3      | 180   | 20.3        | 8.62     |
| P07954     | Fumarate hydratase,<br>mitochondrial                                     | 3.67  | 6.47     | 1          | 2                   | 2          | 2      | 510   | 54.6        | 8.76     |
| P00403     | Cytochrome c oxidase<br>subunit 2                                        | 3.67  | 13.22    | 1          | 2                   | 2          | 5      | 227   | 25.5        | 4.82     |
| Q01105     | Protein SET                                                              | 3.66  | 23.10    | 4          | 4                   | 4          | 9      | 290   | 33.5        | 4.32     |

| Accession | Description                                                                   | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pl |
|-----------|-------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q9BU61    | NADH dehydrogenase<br>[ubiquinone] 1 alpha<br>subcomplex assembly factor<br>3 | 3.66  | 11.96    | 1          | 2                   | 2          | 2      | 184   | 20.3        | 8.22     |
| B8ZZA8    | Glutaminase kidney isoform,<br>mitochondrial                                  | 3.65  | 14.20    | 1          | 2                   | 2          | 2      | 169   | 18.6        | 6.86     |
| Q96I99    | SuccinateCoA ligase [GDP-<br>forming] subunit beta,<br>mitochondrial          | 3.60  | 14.35    | 1          | 4                   | 4          | 4      | 432   | 46.5        | 6.39     |
| Q8TAT6    | Nuclear protein localization<br>protein 4 homolog                             | 3.60  | 10.69    | 1          | 4                   | 4          | 6      | 608   | 68.1        | 6.38     |
| J3QQY2    | Calcium load-activated calcium channel                                        | 3.59  | 27.88    | 3          | 2                   | 2          | 5      | 104   | 11.4        | 9.66     |
| P55036    | 26S proteasome non-ATPase<br>regulatory subunit 4                             | 3.59  | 7.16     | 2          | 2                   | 2          | 2      | 377   | 40.7        | 4.79     |
| Q9H8Y8    | Golgi reassembly-stacking<br>protein 2                                        | 3.57  | 8.41     | 1          | 2                   | 2          | 2      | 452   | 47.1        | 4.82     |
| E7EPN9    | Protein PRRC2C                                                                | 3.55  | 1.42     | 2          | 3                   | 3          | 3      | 2819  | 308.6       | 9.07     |
| F8VPD4    | CAD protein                                                                   | 3.54  | 1.67     | 2          | 3                   | 3          | 3      | 2162  | 235.9       | 6.55     |
| Q04760    | Lactoylglutathione lyase                                                      | 3.54  | 21.20    | 1          | 3                   | 3          | 5      | 184   | 20.8        | 5.31     |
| E7EU96    | Casein kinase II subunit<br>alpha                                             | 3.54  | 7.79     | 3          | 2                   | 2          | 4      | 385   | 45.3        | 7.94     |
| P68402    | Platelet-activating factor<br>acetylhydrolase IB subunit<br>beta              | 3.53  | 12.23    | 1          | 2                   | 2          | 5      | 229   | 25.6        | 5.92     |
| Q9Y230    | RuvB-like 2                                                                   | 3.52  | 23.76    | 1          | 8                   | 8          | 12     | 463   | 51.1        | 5.64     |
| Q6NXT2    | Histone H3.3C                                                                 | 3.51  | 13.33    | 1          | 2                   | 2          | 3      | 135   | 15.2        | 11.11    |
| P62873    | Guanine nucleotide-binding<br>protein G(I)/G(S)/G(T)<br>subunit beta-1        | 3.51  | 6.76     | 1          | 2                   | 2          | 2      | 340   | 37.4        | 6.00     |
| E7EQV9    | Ribosomal protein L15<br>(Fragment)                                           | 3.50  | 29.31    | 3          | 4                   | 4          | 7      | 174   | 20.5        | 11.28    |
| Q9NR31    | GTP-binding protein SAR1a                                                     | 3.50  | 31.82    | 2          | 4                   | 4          | 7      | 198   | 22.4        | 6.68     |
| C9J9W2    | LIM and SH3 domain protein<br>1 (Fragment)                                    | 3.47  | 15.06    | 2          | 2                   | 2          | 4      | 166   | 19.0        | 9.01     |
| H3BR27    | RNA-binding motif protein,<br>X chromosome                                    | 3.45  | 44.87    | 7          | 3                   | 3          | 6      | 78    | 8.6         | 5.49     |
| Q5T8U5    | Surfeit 4                                                                     | 3.45  | 15.59    | 2          | 2                   | 2          | 4      | 186   | 21.1        | 6.52     |
| F8WBG8    | Drebrin-like protein                                                          | 3.43  | 20.31    | 2          | 2                   | 2          | 3      | 128   | 13.7        | 7.21     |
| Q13185    | Chromobox protein homolog<br>3                                                | 3.43  | 16.39    | 1          | 2                   | 2          | 5      | 183   | 20.8        | 5.33     |

| Accession  | Description                                                      | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| Q8TCS8     | Polyribonucleotide<br>nucleotidyltransferase 1,<br>mitochondrial | 3.42  | 8.81     | 1          | 5                   | 5          | 5      | 783   | 85.9        | 7.77     |
| Q9P2I0     | Cleavage and<br>polyadenylation specificity<br>factor subunit 2  | 3.41  | 3.45     | 1          | 2                   | 2          | 3      | 782   | 88.4        | 5.11     |
| P19623     | Spermidine synthase                                              | 3.41  | 6.95     | 1          | 2                   | 2          | 2      | 302   | 33.8        | 5.49     |
| O60762     | Dolichol-phosphate<br>mannosyltransferase subunit<br>1           | 3.37  | 10.38    | 3          | 2                   | 2          | 3      | 260   | 29.6        | 9.57     |
| P18031     | Tyrosine-protein phosphatase<br>non-receptor type 1              | 3.37  | 8.28     | 1          | 3                   | 3          | 3      | 435   | 49.9        | 6.27     |
| A0A075B730 | Epiplakin                                                        | 3.35  | 6.06     | 3          | 3                   | 3          | 4      | 5063  | 552.8       | 5.60     |
| G8JLP4     | Meiosis arrest female protein<br>1                               | 3.32  | 2.16     | 3          | 2                   | 3          | 4      | 1577  | 174.9       | 7.28     |
| Q9UMX5     | Neudesin                                                         | 3.27  | 13.95    | 1          | 2                   | 2          | 2      | 172   | 18.8        | 5.69     |
| Q96TA1     | Niban-like protein 1                                             | 3.24  | 4.96     | 1          | 2                   | 3          | 4      | 746   | 84.1        | 6.19     |
| Q92734     | Protein TFG                                                      | 3.18  | 12.50    | 1          | 2                   | 2          | 3      | 400   | 43.4        | 5.10     |
| J3QQV6     | Pyridoxine-5'-phosphate<br>oxidase (Fragment)                    | 3.17  | 17.50    | 2          | 2                   | 2          | 2      | 120   | 13.9        | 7.87     |
| P39748     | Flap endonuclease 1                                              | 3.16  | 11.32    | 1          | 2                   | 2          | 2      | 380   | 42.6        | 8.62     |
| E9PLT0     | Cold shock domain-<br>containing protein E1                      | 3.15  | 5.54     | 2          | 2                   | 2          | 7      | 668   | 74.5        | 6.09     |
| E7ETJ9     | Nucleolysin TIAR<br>(Fragment)                                   | 3.10  | 21.21    | 2          | 2                   | 2          | 2      | 132   | 14.6        | 8.15     |
| H0YDP7     | 39S ribosomal protein L49,<br>mitochondrial (Fragment)           | 3.07  | 20.47    | 2          | 2                   | 2          | 2      | 127   | 14.7        | 10.21    |
| Q14739     | Lamin-B receptor                                                 | 3.04  | 7.32     | 1          | 3                   | 3          | 3      | 615   | 70.7        | 9.36     |
| P52788     | Spermine synthase                                                | 3.00  | 26.78    | 1          | 5                   | 5          | 6      | 366   | 41.2        | 5.02     |
| 075663     | TIP41-like protein                                               | 2.89  | 10.66    | 1          | 2                   | 2          | 2      | 272   | 31.4        | 5.91     |
| Q15056     | Eukaryotic translation<br>initiation factor 4H                   | 2.88  | 14.92    | 1          | 2                   | 2          | 2      | 248   | 27.4        | 7.23     |
| Q9UBB4     | Ataxin-10                                                        | 2.87  | 20.63    | 1          | 5                   | 6          | 6      | 475   | 53.5        | 5.25     |
| D6R991     | Matrin-3 (Fragment)                                              | 2.78  | 12.24    | 4          | 3                   | 3          | 5      | 433   | 48.1        | 7.50     |
| Q99959     | Plakophilin-2                                                    | 2.77  | 3.75     | 1          | 2                   | 2          | 2      | 881   | 97.4        | 9.33     |
| Q8N766     | ER membrane protein<br>complex subunit 1                         | 2.76  | 3.22     | 1          | 2                   | 2          | 2      | 993   | 111.7       | 7.66     |
| Q6IAA8     | Ragulator complex protein<br>LAMTOR1                             | 2.76  | 16.15    | 1          | 2                   | 2          | 3      | 161   | 17.7        | 5.15     |

| Accession  | Description                   | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|-------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                               |       |          |            | Peptides |            |        |       | [kDa] |          |
| Q93034     | Cullin-5                      | 2.71  | 6.54     | 1          | 3        | 3          | 3      | 780   | 90.9  | 7.94     |
| B7Z6D5     | Probable ATP-dependent        | 2.71  | 3.66     | 2          | 2        | 2          | 2      | 765   | 86.6  | 9.25     |
|            | RNA helicase DDX27            |       |          |            |          |            |        |       |       |          |
| C9JQD4     | Peptidyl-prolyl cis-trans     | 2.69  | 34.72    | 2          | 4        | 4          | 4      | 144   | 15.8  | 8.72     |
|            | isomerase (Fragment)          |       |          |            |          |            |        |       |       |          |
| H0YD13     | CD44 antigen                  | 2.69  | 12.14    | 3          | 2        | 2          | 3      | 206   | 22.7  | 8.19     |
| Q5K651     | Sterile alpha motif domain-   | 2.68  | 2.27     | 1          | 2        | 2          | 2      | 1589  | 184.2 | 7.83     |
|            | containing protein 9          |       |          |            |          |            |        |       |       |          |
| P61970     | Nuclear transport factor      | 2.67  | 29.13    | 1          | 2        | 2          | 4      | 127   | 14.5  | 5.38     |
| H0YA83     | Beta-hexosaminidase subunit   | 2.63  | 18.24    | 3          | 2        | 2          | 2      | 170   | 19.5  | 5.71     |
|            | beta (Fragment)               |       |          |            |          |            |        |       |       |          |
| P62310     | U6 snRNA-associated Sm-       | 2.62  | 19.61    | 1          | 2        | 2          | 2      | 102   | 11.8  | 4.70     |
|            | like protein LSm3             |       |          |            |          |            |        |       |       |          |
| O60306     | Intron-binding protein        | 2.60  | 2.49     | 1          | 2        | 2          | 2      | 1485  | 171.2 | 6.37     |
|            | aquarius                      |       |          |            |          |            |        |       |       |          |
| Q9BSD7     | Cancer-related nucleoside-    | 2.58  | 18.42    | 2          | 2        | 2          | 2      | 190   | 20.7  | 9.54     |
|            | triphosphatase                |       |          |            |          |            |        |       |       |          |
| A0A087WZK9 | Eukaryotic translation        | 2.57  | 10.89    | 3          | 2        | 2          | 2      | 349   | 39.6  | 6.39     |
|            | initiation factor 3 subunit H |       |          |            |          |            |        |       |       |          |
| P49790     | Nuclear pore complex protein  | 2.53  | 3.25     | 1          | 3        | 3          | 3      | 1475  | 153.8 | 8.73     |
|            | Nup153                        |       |          |            |          |            |        |       |       |          |
| Q96HY6     | DDRGK domain-containing       | 2.52  | 9.87     | 1          | 2        | 2          | 2      | 314   | 35.6  | 5.12     |
|            | protein 1                     |       |          |            |          |            |        |       |       |          |
| P62993     | Growth factor receptor-bound  | 2.51  | 11.98    | 1          | 2        | 2          | 2      | 217   | 25.2  | 6.32     |
|            | protein 2                     |       |          |            |          |            |        |       |       |          |
| Q9Y3B4     | Splicing factor 3B subunit 6  | 2.46  | 20.00    | 1          | 2        | 2          | 2      | 125   | 14.6  | 9.38     |
| P68036     | Ubiquitin-conjugating         | 2.44  | 51.95    | 1          | 4        | 4          | 5      | 154   | 17.9  | 8.51     |
|            | enzyme E2 L3                  |       |          |            |          |            |        |       |       |          |
| P53634     | Dipeptidyl peptidase 1        | 2.43  | 5.62     | 1          | 2        | 2          | 2      | 463   | 51.8  | 6.99     |
| E9PS17     | N-terminal kinase-like        | 2.43  | 3.48     | 3          | 2        | 2          | 3      | 775   | 85.7  | 5.67     |
|            | protein                       |       |          |            |          |            |        |       |       |          |
| P48147     | Prolyl endopeptidase          | 2.42  | 4.37     | 1          | 2        | 2          | 3      | 710   | 80.6  | 5.86     |
| P11279     | Lysosome-associated           | 2.41  | 5.04     | 1          | 2        | 2          | 5      | 417   | 44.9  | 8.75     |
|            | membrane glycoprotein 1       |       |          |            |          |            |        |       |       |          |
| A0A087X020 | Ribosome maturation protein   | 2.38  | 21.20    | 2          | 4        | 4          | 6      | 250   | 28.8  | 8.75     |
|            | SBDS                          |       |          |            |          |            |        |       |       |          |
| Q9UGP8     | Translocation protein SEC63   | 2.37  | 4.61     | 1          | 2        | 2          | 3      | 760   | 87.9  | 5.31     |
|            | homolog                       |       |          |            |          |            |        |       |       |          |
|            |                               | 2.37  | 20.74    | 2          | 2        | 2          | 3      | 135   | 15.4  | 8.59     |

| Accession   | Description                              | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW     | calc. pI |
|-------------|------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|--------|----------|
| D11177      | D (111 D                                 | 0.07  | 0.01     |            | -                   |            |        | 359   | [kDa]  |          |
| P11177      | Pyruvate dehydrogenase E1                | 2.37  | 8.91     | 1          | 2                   | 2          | 2      | 339   | 39.2   | 6.65     |
|             | component subunit beta,<br>mitochondrial |       |          |            |                     |            |        |       |        |          |
| A0A0A0MRA3  | Titin                                    | 2.27  | 0.10     | 3          | 2                   | 2          | 2      | 27118 | 3012.1 | 6.71     |
| AUAUAUMIKA3 | 1 itin                                   | 2.37  | 0.10     | 3          | 2                   | 2          | 2      | 2/118 | 3012.1 | 6./1     |
| 075083      | WD repeat-containing protein             | 2.37  | 7.26     | 2          | 3                   | 3          | 3      | 606   | 66.2   | 6.65     |
|             | 1                                        |       |          |            |                     |            |        |       |        |          |
| Q9P2B2      | Prostaglandin F2 receptor                | 2.35  | 2.73     | 1          | 2                   | 2          | 2      | 879   | 98.5   | 6.61     |
|             | negative regulator                       |       |          |            |                     |            |        |       |        |          |
| C9JRP1      | Anion exchange protein                   | 2.35  | 2.76     | 4          | 2                   | 2          | 2      | 1051  | 118.4  | 7.31     |
|             | (Fragment)                               |       |          |            |                     |            |        |       |        |          |
| Q9NQR4      | Omega-amidase NIT2                       | 2.33  | 32.61    | 1          | 6                   | 6          | 6      | 276   | 30.6   | 7.21     |
| F5GYN4      | Ubiquitin thioesterase                   | 2.32  | 10.37    | 4          | 2                   | 2          | 3      | 241   | 28.0   | 5.29     |
| 190114      | OTUB1                                    | 2.52  | 10.57    | - T        | 2                   | 2          |        | 271   | 20.0   | 5.27     |
| E7EPW2      | 28S ribosomal protein S25,               | 2.31  | 20.00    | 2          | 2                   | 2          | 2      | 110   | 12.9   | 9.74     |
| E/EI WZ     | mitochondrial                            | 2.31  | 20.00    | 2          | 2                   | 2          | 2      | 110   | 12.9   | 9.74     |
| P48507      |                                          | 2.31  | 10.58    | 1          | 2                   | 2          | 2      | 274   | 30.7   | 6.02     |
| P48507      | Glutamatecysteine ligase                 | 2.31  | 10.58    | 1          | 2                   | 2          | 2      | 274   | 30.7   | 6.02     |
| D(1000      | regulatory subunit                       |       | 20.25    |            |                     |            |        | 1.55  |        | 4.01     |
| P61923      | Coatomer subunit zeta-1                  | 2.31  | 28.25    | 8          | 4                   | 4          | 4      | 177   | 20.2   | 4.81     |
| P35270      | Sepiapterin reductase                    | 2.29  | 19.54    | 1          | 3                   | 3          | 3      | 261   | 28.0   | 8.05     |
| Q01082      | Spectrin beta chain, non-                | 2.29  | 0.97     | 2          | 1                   | 2          | 2      | 2364  | 274.4  | 5.57     |
|             | erythrocytic 1                           |       |          |            |                     |            |        |       |        |          |
| G5EA31      | Protein transport protein                | 2.28  | 4.89     | 2          | 3                   | 3          | 4      | 1042  | 111.9  | 6.37     |
|             | Sec24C                                   |       |          |            | -                   |            |        |       |        |          |
| F5H365      | Protein transport protein                | 2.28  | 6.25     | 2          | 3                   | 3          | 4      | 736   | 82.9   | 7.46     |
| 1011000     | Sec23A                                   | 2.20  | 0.20     | _          | Ū.                  |            |        | ,20   | 0217   | /        |
| Q15813      | Tubulin-specific chaperone E             | 2.28  | 7.59     | 1          | 2                   | 2          | 6      | 527   | 59.3   | 6.76     |
| 2           |                                          |       |          |            |                     |            |        |       |        |          |
| P61163      | Alpha-centractin                         | 2.27  | 15.16    | 2          | 3                   | 3          | 3      | 376   | 42.6   | 6.64     |
| P50552      | Vasodilator-stimulated                   | 2.27  | 10.53    | 1          | 2                   | 3          | 4      | 380   | 39.8   | 8.94     |
|             | phosphoprotein                           |       |          |            |                     |            |        |       |        |          |
| P01111      | GTPase NRas                              | 2.25  | 19.58    | 2          | 2                   | 2          | 4      | 189   | 21.2   | 5.17     |
| Q9UI09      | NADH dehydrogenase                       | 2.25  | 20.00    | 1          | 2                   | 2          | 2      | 145   | 17.1   | 9.63     |
| Q)010)      | [ubiquinone] 1 alpha                     | 2.23  | 20.00    | 1          | 2                   | 2          | 2      | 145   | 17.1   | 7.05     |
|             | subcomplex subunit 12                    |       |          |            |                     |            |        |       |        |          |
| P30740      | Leukocyte elastase inhibitor             | 2.25  | 11.08    | 1          | 3                   | 3          | 3      | 379   | 42.7   | 6.28     |
|             |                                          |       |          |            |                     |            |        |       |        |          |
| B4DE93      | NADH dehydrogenase                       | 2.24  | 5.23     | 3          | 2                   | 2          | 2      | 363   | 39.4   | 6.46     |
|             | [ubiquinone] flavoprotein 1,             |       |          |            |                     |            |        |       |        |          |
|             | mitochondrial                            |       |          |            |                     |            |        |       |        |          |
| A0A087X1A5  | Double-stranded RNA-                     | 2.24  | 5.07     | 3          | 2                   | 2          | 2      | 493   | 54.9   | 9.67     |
|             | binding protein Staufen                  |       |          |            |                     |            |        |       |        |          |
|             | homolog 1                                |       |          |            |                     |            |        |       |        |          |

| Accession  | Description                                                                                             | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|---------------------------------------------------------------------------------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                                                                                                         |       |          |            | Peptides |            |        |       | [kDa] |          |
| H7BZ20     | Thymidylate kinase<br>(Fragment)                                                                        | 2.23  | 11.98    | 2          | 2        | 2          | 2      | 192   | 21.8  | 8.18     |
| B4DIH5     | COP9 signalosome complex<br>subunit 2                                                                   | 2.23  | 15.57    | 2          | 4        | 4          | 5      | 379   | 44.2  | 5.87     |
| Q5T3Q7     | HEAT repeat-containing<br>protein 1                                                                     | 2.23  | 1.36     | 2          | 2        | 2          | 2      | 2063  | 233.1 | 6.60     |
| P31937     | 3-hydroxyisobutyrate<br>dehydrogenase,<br>mitochondrial                                                 | 2.23  | 8.04     | 1          | 2        | 2          | 2      | 336   | 35.3  | 8.13     |
| A0A0A0MRM8 | Unconventional myosin-VI                                                                                | 2.22  | 2.47     | 4          | 2        | 2          | 3      | 1253  | 144.9 | 8.56     |
| Q9NTX5     | Ethylmalonyl-CoA<br>decarboxylase                                                                       | 2.22  | 9.45     | 1          | 2        | 2          | 2      | 307   | 33.7  | 8.21     |
| E9PE82     | Short-chain-specific acyl-<br>CoA dehydrogenase,<br>mitochondrial                                       | 2.21  | 9.31     | 2          | 2        | 2          | 2      | 408   | 44.0  | 8.35     |
| A0A0A6YYA0 | Protein TMED7-TICAM2                                                                                    | 2.20  | 16.49    | 2          | 2        | 2          | 2      | 188   | 21.2  | 6.20     |
| P50897     | Palmitoyl-protein<br>thioesterase 1                                                                     | 2.19  | 9.48     | 1          | 2        | 2          | 2      | 306   | 34.2  | 6.52     |
| Q15006     | ER membrane protein<br>complex subunit 2                                                                | 2.19  | 9.76     | 1          | 2        | 2          | 2      | 297   | 34.8  | 6.57     |
| Q9H2W6     | 39S ribosomal protein L46,<br>mitochondrial                                                             | 2.16  | 15.77    | 1          | 3        | 3          | 4      | 279   | 31.7  | 7.05     |
| A0A0A0MSW4 | Phosphatidylinositol transfer protein beta isoform                                                      | 2.15  | 20.66    | 4          | 3        | 3          | 5      | 271   | 31.6  | 6.87     |
| C9JLU1     | DNA-directed RNA<br>polymerases I, II, and III<br>subunit RPABC3 (Fragment)                             | 2.14  | 19.59    | 2          | 2        | 2          | 3      | 148   | 16.9  | 4.68     |
| J3KTJ8     | 60S ribosomal protein L26<br>(Fragment)                                                                 | 2.13  | 27.08    | 9          | 4        | 4          | 4      | 96    | 11.5  | 10.90    |
| C9JVB6     | Mitochondrial ribonuclease P<br>protein 1 (Fragment)                                                    | 2.12  | 7.37     | 2          | 2        | 2          | 4      | 312   | 36.8  | 9.16     |
| O60264     | SWI/SNF-related matrix-<br>associated actin-dependent<br>regulator of chromatin<br>subfamily A member 5 | 2.12  | 2.38     | 1          | 2        | 2          | 3      | 1052  | 121.8 | 8.09     |
| Q9P1F3     | Costars family protein<br>ABRACL                                                                        | 2.12  | 19.75    | 1          | 2        | 2          | 3      | 81    | 9.1   | 6.29     |
| O95837     | Guanine nucleotide-binding<br>protein subunit alpha-14                                                  | 2.11  | 9.58     | 2          | 2        | 2          | 2      | 355   | 41.5  | 6.07     |
| Q15637     | Splicing factor 1                                                                                       | 2.11  | 5.32     | 1          | 2        | 2          | 3      | 639   | 68.3  | 8.98     |
| P62253     | Ubiquitin-conjugating<br>enzyme E2 G1                                                                   | 2.10  | 25.88    | 1          | 2        | 2          | 2      | 170   | 19.5  | 5.30     |

| Accession  | Description                                                                           | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|---------------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P35237     | Serpin B6                                                                             | 2.10  | 9.31     | 3          | 2                   | 2          | 2      | 376   | 42.6        | 5.27     |
| Q6ZXV5     | Transmembrane and TPR<br>repeat-containing protein 3                                  | 2.08  | 2.40     | 1          | 2                   | 2          | 2      | 915   | 103.9       | 8.87     |
| G3XAH6     | Poly(A) polymerase alpha                                                              | 2.07  | 4.14     | 2          | 2                   | 2          | 3      | 724   | 80.6        | 8.10     |
| Q15020     | Squamous cell carcinoma<br>antigen recognized by T-cells<br>3                         | 2.07  | 2.39     | 1          | 2                   | 2          | 3      | 963   | 109.9       | 5.57     |
| P46977     | Dolichyl-<br>diphosphooligosaccharide<br>protein glycosyltransferase<br>subunit STT3A | 2.05  | 4.54     | 1          | 2                   | 2          | 3      | 705   | 80.5        | 8.07     |
| B4DWA1     | Brain-specific angiogenesis<br>inhibitor 1-associated protein<br>2                    | 2.05  | 9.07     | 3          | 2                   | 2          | 2      | 375   | 40.6        | 9.06     |
| Q9H3N1     | Thioredoxin-related<br>transmembrane protein 1                                        | 2.05  | 8.93     | 1          | 2                   | 2          | 3      | 280   | 31.8        | 4.98     |
| A0A0G2JS82 | AP-2 complex subunit alpha-<br>2 (Fragment)                                           | 2.04  | 3.71     | 2          | 2                   | 2          | 2      | 917   | 101.6       | 6.86     |
| Q3LXA3     | Triokinase/FMN cyclase                                                                | 2.04  | 4.87     | 1          | 2                   | 2          | 2      | 575   | 58.9        | 7.49     |
| P35573     | Glycogen debranching<br>enzyme                                                        | 2.04  | 1.63     | 1          | 2                   | 2          | 2      | 1532  | 174.7       | 6.76     |
| E9PFT6     | Hemoglobin subunit delta                                                              | 2.03  | 13.48    | 3          | 2                   | 2          | 3      | 141   | 15.4        | 7.91     |
| P06730     | Eukaryotic translation<br>initiation factor 4E                                        | 2.02  | 8.29     | 2          | 2                   | 2          | 2      | 217   | 25.1        | 6.15     |
| H7BZI1     | Nucleobindin-1 (Fragment)                                                             | 2.02  | 8.14     | 2          | 2                   | 2          | 2      | 295   | 34.9        | 5.21     |
| Q13155     | Aminoacyl tRNA synthase<br>complex-interacting<br>multifunctional protein 2           | 2.02  | 18.44    | 3          | 3                   | 3          | 4      | 320   | 35.3        | 8.22     |
| P62280     | 40S ribosomal protein S11                                                             | 2.02  | 36.08    | 2          | 5                   | 5          | 6      | 158   | 18.4        | 10.30    |
| H7BZT7     | S-formylglutathione<br>hydrolase (Fragment)                                           | 2.02  | 17.83    | 3          | 2                   | 2          | 2      | 230   | 25.5        | 6.86     |
| Q9BRX8     | Redox-regulatory protein<br>FAM213A                                                   | 2.01  | 17.47    | 1          | 4                   | 4          | 4      | 229   | 25.7        | 8.84     |
| Q9NQH7     | Probable Xaa-Pro<br>aminopeptidase 3                                                  | 2.00  | 4.73     | 1          | 1                   | 2          | 7      | 507   | 57.0        | 6.83     |
| Q5SZE2     | Ceramide synthase 2<br>(Fragment)                                                     | 2.00  | 19.53    | 6          | 2                   | 2          | 2      | 128   | 15.3        | 9.69     |
| E7EMB6     | Aspartyl aminopeptidase                                                               | 2.00  | 9.76     | 3          | 2                   | 2          | 3      | 410   | 45.0        | 6.79     |
| Q9HCC0     | Methylcrotonoyl-CoA<br>carboxylase beta chain,<br>mitochondrial                       | 1.99  | 3.91     | 1          | 2                   | 2          | 2      | 563   | 61.3        | 7.68     |

| Accession | Description                                                           | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pl |
|-----------|-----------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| H0YNG3    | Signal peptidase complex<br>catalytic subunit SEC11                   | 1.98  | 17.79    | 4          | 3                   | 3          | 4      | 163   | 18.6        | 9.55     |
| Q13423    | NAD(P) transhydrogenase,<br>mitochondrial                             | 1.94  | 2.58     | 1          | 2                   | 2          | 2      | 1086  | 113.8       | 8.09     |
| O00743    | Serine/threonine-protein<br>phosphatase 6 catalytic<br>subunit        | 1.94  | 9.18     | 1          | 2                   | 2          | 2      | 305   | 35.1        | 5.69     |
| F8W7Q4    | Protein FAM162A                                                       | 1.93  | 21.53    | 2          | 2                   | 2          | 3      | 144   | 16.5        | 9.77     |
| Q70UQ0    | Inhibitor of nuclear factor<br>kappa-B kinase-interacting<br>protein  | 1.93  | 8.29     | 1          | 2                   | 2          | 2      | 350   | 39.3        | 9.17     |
| Q9P0L0    | Vesicle-associated membrane protein-associated protein A              | 1.92  | 11.24    | 1          | 2                   | 3          | 4      | 249   | 27.9        | 8.62     |
| H3BP78    | Fanconi anemia group I<br>protein (Fragment)                          | 1.90  | 1.56     | 3          | 1                   | 2          | 2      | 1090  | 122.9       | 6.52     |
| F5GWX5    | Chromodomain-helicase-<br>DNA-binding protein 4                       | 1.90  | 2.15     | 3          | 3                   | 3          | 3      | 1905  | 217.0       | 5.81     |
| P00568    | Adenylate kinase isoenzyme<br>1                                       | 1.89  | 20.10    | 2          | 3                   | 3          | 4      | 194   | 21.6        | 8.63     |
| E9PES6    | High mobility group protein<br>B3 (Fragment)                          | 1.86  | 35.95    | 4          | 3                   | 4          | 5      | 153   | 17.5        | 9.79     |
| Q9NX63    | MICOS complex subunit<br>MIC19                                        | 1.86  | 11.45    | 3          | 2                   | 2          | 2      | 227   | 26.1        | 8.28     |
| Q9Y3D6    | Mitochondrial fission 1<br>protein                                    | 1.86  | 21.71    | 1          | 3                   | 3          | 3      | 152   | 16.9        | 8.79     |
| P58546    | Myotrophin                                                            | 1.86  | 43.22    | 2          | 3                   | 3          | 5      | 118   | 12.9        | 5.52     |
| Q9NTI5    | Sister chromatid cohesion<br>protein PDS5 homolog B                   | 1.85  | 3.94     | 1          | 4                   | 4          | 4      | 1447  | 164.6       | 8.47     |
| P05556    | Integrin beta-1                                                       | 1.84  | 6.27     | 1          | 4                   | 4          | 5      | 798   | 88.4        | 5.39     |
| R4GN98    | Protein S100 (Fragment)                                               | 1.84  | 17.65    | 2          | 2                   | 2          | 2      | 85    | 9.7         | 5.45     |
| Q7L014    | Probable ATP-dependent<br>RNA helicase DDX46                          | 1.84  | 3.69     | 2          | 3                   | 3          | 3      | 1031  | 117.3       | 9.29     |
| C9JA36    | Sodium/potassium-<br>transporting ATPase subunit<br>beta-3 (Fragment) | 1.84  | 19.55    | 2          | 2                   | 2          | 3      | 133   | 15.0        | 5.22     |
| H0YFY6    | Nuclear mitotic apparatus<br>protein 1 (Fragment)                     | 1.82  | 2.18     | 2          | 2                   | 2          | 2      | 964   | 107.3       | 9.09     |
| P60983    | Glia maturation factor beta                                           | 1.82  | 19.72    | 2          | 2                   | 2          | 4      | 142   | 16.7        | 5.29     |
| Q13618    | Cullin-3                                                              | 1.79  | 5.99     | 1          | 3                   | 3          | 3      | 768   | 88.9        | 8.48     |
| M0R0P1    | rRNA 2'-O-methyltransferase<br>fibrillarin (Fragment)                 | 1.78  | 18.42    | 6          | 3                   | 3          | 4      | 228   | 24.5        | 10.11    |

| Accession  | Description                                                                    | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|------------|--------------------------------------------------------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
| P06396     | Gelsolin                                                                       | 1.78  | 4.48     | 1          | 2                   | 2          | 2      | 782   | 85.6        | 6.28     |
| 075306     | NADH dehydrogenase<br>[ubiquinone] iron-sulfur<br>protein 2, mitochondrial     | 1.77  | 6.70     | 1          | 2                   | 2          | 3      | 463   | 52.5        | 7.55     |
| 095292     | Vesicle-associated membrane<br>protein-associated protein<br>B/C               | 1.77  | 12.35    | 1          | 2                   | 3          | 3      | 243   | 27.2        | 7.30     |
| Q13243     | Serine/arginine-rich splicing<br>factor 5                                      | 1.76  | 13.24    | 1          | 1                   | 3          | 4      | 272   | 31.2        | 11.59    |
| P30419     | Glycylpeptide N-<br>tetradecanoyltransferase 1                                 | 1.76  | 5.44     | 1          | 2                   | 2          | 2      | 496   | 56.8        | 7.80     |
| O00515     | Ladinin-1                                                                      | 1.76  | 6.77     | 2          | 3                   | 3          | 3      | 517   | 57.1        | 9.67     |
| Q13247     | Serine/arginine-rich splicing<br>factor 6                                      | 1.75  | 8.72     | 1          | 2                   | 3          | 6      | 344   | 39.6        | 11.43    |
| A0A087X2B5 | Basigin (Fragment)                                                             | 1.75  | 17.19    | 3          | 3                   | 3          | 3      | 221   | 23.9        | 5.25     |
| E1CEI4     | Glutamatecysteine ligase<br>catalytic subunit                                  | 1.75  | 3.34     | 2          | 2                   | 2          | 2      | 599   | 68.6        | 5.94     |
| Q96DC0     | DCI protein                                                                    | 1.75  | 11.93    | 2          | 3                   | 3          | 3      | 243   | 27.0        | 6.77     |
| B1AJY5     | 26S proteasome non-ATPase<br>regulatory subunit 10                             | 1.73  | 18.38    | 3          | 2                   | 2          | 2      | 185   | 20.2        | 5.58     |
| O15481     | Melanoma-associated antigen<br>B4                                              | 1.72  | 6.07     | 1          | 1                   | 2          | 5      | 346   | 38.9        | 9.25     |
| K7ER90     | Eukaryotic translation<br>initiation factor 3 subunit G<br>(Fragment)          | 1.72  | 9.69     | 3          | 3                   | 3          | 3      | 227   | 25.4        | 5.49     |
| P13726     | Tissue factor                                                                  | 1.71  | 21.36    | 1          | 3                   | 3          | 4      | 295   | 33.0        | 7.03     |
| A0A087WXS7 | ATPase ASNA1                                                                   | 1.71  | 5.74     | 2          | 2                   | 2          | 2      | 331   | 37.1        | 5.14     |
| Q00765     | Receptor expression-<br>enhancing protein 5                                    | 1.70  | 9.52     | 1          | 2                   | 2          | 2      | 189   | 21.5        | 8.10     |
| M0QXU7     | Mitochondrial import inner<br>membrane translocase<br>subunit TIM44 (Fragment) | 1.70  | 10.99    | 2          | 3                   | 3          | 3      | 273   | 31.1        | 9.48     |
| F8VR84     | UPF0160 protein MYG1,<br>mitochondrial                                         | 1.70  | 9.39     | 3          | 2                   | 2          | 3      | 213   | 24.0        | 5.39     |
| P48163     | NADP-dependent malic<br>enzyme                                                 | 1.69  | 5.24     | 1          | 2                   | 2          | 5      | 572   | 64.1        | 6.13     |
| P35244     | Replication protein A 14 kDa<br>subunit                                        | 1.68  | 51.24    | 2          | 4                   | 4          | 4      | 121   | 13.6        | 5.08     |
| P52732     | Kinesin-like protein KIF11                                                     | 1.67  | 4.36     | 1          | 2                   | 3          | 4      | 1056  | 119.1       | 5.64     |
| Н0ҮЈН9     | Polyadenylate-binding<br>protein 2 (Fragment)                                  | 1.67  | 26.04    | 4          | 2                   | 2          | 2      | 96    | 11.1        | 11.27    |

| Accession  | Description                            | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|----------------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                                        |       |          |            | Peptides |            |        |       | [kDa] |          |
| M0R0C3     | Mitochondrial import inner             | 1.67  | 26.92    | 3          | 2        | 2          | 3      | 104   | 12.0  | 7.25     |
|            | membrane translocase                   |       |          |            |          |            |        |       |       |          |
|            | subunit TIM50 (Fragment)               |       |          |            |          |            |        |       |       |          |
| Q00688     | Peptidyl-prolyl cis-trans              | 1.66  | 14.29    | 1          | 3        | 3          | 3      | 224   | 25.2  | 9.28     |
|            | isomerase FKBP3                        |       |          |            |          |            |        |       |       |          |
| E9PQK4     | CUGBP Elav-like family                 | 1.65  | 34.48    | 5          | 2        | 2          | 2      | 87    | 9.9   | 6.52     |
|            | member 1 (Fragment)                    |       |          |            |          |            |        |       |       |          |
| C9J0J7     | Profilin                               | 1.65  | 31.87    | 5          | 2        | 2          | 2      | 91    | 9.8   | 9.17     |
| O00231     | 26S proteasome non-ATPase              | 1.65  | 25.59    | 2          | 8        | 8          | 9      | 422   | 47.4  | 6.48     |
|            | regulatory subunit 11                  |       |          |            |          |            |        |       |       |          |
| P52888     | Thimet oligopeptidase                  | 1.65  | 3.05     | 1          | 2        | 2          | 2      | 689   | 78.8  | 6.05     |
| O14874     | [3-methyl-2-oxobutanoate               | 1.64  | 6.31     | 1          | 2        | 2          | 3      | 412   | 46.3  | 8.82     |
| 0170/7     | dehydrogenase [lipoamide]]             | 1.04  | 0.51     | 1          | 2        |            | 5      | 712   | -0.5  | 0.02     |
|            | kinase, mitochondrial                  |       |          |            |          |            |        |       |       |          |
| A0A087X142 | Septin-8                               | 1.64  | 3.99     | 5          | 1        | 2          | 4      | 426   | 49.3  | 6.20     |
| H0Y3P2     | Eukaryotic translation                 | 1.64  | 3.45     | 3          | 2        | 2          | 5      | 869   | 98.1  | 6.99     |
| H013P2     | initiation factor 4 gamma 2            | 1.04  | 5.45     | 5          | 2        | 2          | 5      | 809   | 96.1  | 0.99     |
| P42677     | 40S ribosomal protein S27              | 1.64  | 38.10    | 2          | 3        | 3          | 5      | 84    | 9.5   | 9.45     |
| P420//     | 408 ribosomai protein 827              | 1.04  |          | 2          | 3        | 3          | 3      | 84    | 9.5   | 9.45     |
| Q08380     | Galectin-3-binding protein             | 1.64  | 7.52     | 1          | 3        | 3          | 3      | 585   | 65.3  | 5.27     |
| Q13347     | Eukaryotic translation                 | 1.64  | 11.69    | 1          | 3        | 3          | 3      | 325   | 36.5  | 5.64     |
|            | initiation factor 3 subunit I          |       |          |            |          |            |        |       |       |          |
| P49756     | RNA-binding protein 25                 | 1.62  | 4.98     | 1          | 3        | 3          | 4      | 843   | 100.1 | 6.32     |
| E5RIZ4     | 39S ribosomal protein L15,             | 1.62  | 16.88    | 3          | 3        | 3          | 3      | 237   | 27.2  | 9.57     |
|            | mitochondrial (Fragment)               |       |          |            |          |            |        |       |       |          |
| O75940     | Survival of motor neuron-              | 1.62  | 13.03    | 1          | 2        | 2          | 3      | 238   | 26.7  | 7.24     |
|            | related-splicing factor 30             |       |          |            |          |            |        |       |       |          |
| Q8N3D4     | EH domain-binding protein              | 1.62  | 2.10     | 1          | 2        | 2          | 2      | 1523  | 161.8 | 4.83     |
|            | 1-like protein 1                       |       |          |            |          |            |        |       |       |          |
| O14656     | Torsin-1A                              | 1.61  | 7.53     | 1          | 2        | 2          | 2      | 332   | 37.8  | 6.99     |
| P69905     | Hemoglobin subunit alpha               | 1.61  | 16.90    | 1          | 2        | 2          | 2      | 142   | 15.2  | 8.68     |
| P48637     | Glutathione synthetase                 | 1.60  | 10.55    | 1          | 3        | 3          | 3      | 474   | 52.4  | 5.92     |
| Q8NC51     | Plasminogen activator                  |       |          | 1          |          | 2          | 4      | 409   | 44.9  |          |
| Qoncor     | inhibitor 1 RNA-binding                | 1.60  | 6.62     | 1          | 2        | 2          | 4      | 408   | 44.9  | 8.65     |
|            | -                                      |       |          |            |          |            |        |       |       |          |
| P84090     | protein<br>Enhancer of rudimentary     | 0.00  | 30.77    | 1          | 2        | 2          | 2      | 104   | 12.3  | 5.92     |
| r 84090    |                                        | 0.00  | 50.77    | 1          | 2        |            | 2      | 104   | 12.3  | 5.92     |
| D02074     | homolog<br>Thioredoxin-like protein 4A | 0.00  | 21.02    | 1          | 2        | 2          | 3      | 142   | 16.0  | 5.85     |
| P83876     |                                        | 0.00  | 21.83    |            |          |            |        | 142   | 16.8  |          |
| Q16537     | Serine/threonine-protein               | 0.00  | 5.78     | 1          | 2        | 2          | 2      | 467   | 54.7  | 6.95     |
|            | phosphatase 2A 56 kDa                  |       |          |            |          |            |        |       |       |          |

| Accession | Description                   | Score | Coverage | # Proteins | #Unique<br>Peptides | # Peptides | # PSMs | # AAs | MW<br>[kDa] | calc. pI |
|-----------|-------------------------------|-------|----------|------------|---------------------|------------|--------|-------|-------------|----------|
|           | regulatory subunit epsilon    |       |          |            |                     |            |        |       |             |          |
|           | isoform                       |       |          |            |                     |            |        |       |             |          |
| O00170    | AH receptor-interacting       | 0.00  | 7.27     | 1          | 2                   | 2          | 2      | 330   | 37.6        | 6.29     |
|           | protein                       |       |          |            |                     |            |        |       |             |          |
| Q9BPX3    | Condensin complex subunit 3   | 0.00  | 2.76     | 1          | 2                   | 2          | 2      | 1015  | 114.3       | 5.59     |
| O43237    | Cytoplasmic dynein 1 light    | 0.00  | 6.30     | 1          | 2                   | 2          | 2      | 492   | 54.1        | 6.38     |
|           | intermediate chain 2          |       |          |            |                     |            |        |       |             |          |
| Q7L2H7    | Eukaryotic translation        | 0.00  | 12.03    | 3          | 3                   | 3          | 7      | 374   | 42.5        | 5.63     |
|           | initiation factor 3 subunit M |       |          |            |                     |            |        |       |             |          |
| Q9BS26    | Endoplasmic reticulum         | 0.00  | 6.40     | 1          | 2                   | 2          | 2      | 406   | 46.9        | 5.26     |
|           | resident protein 44           |       |          |            |                     |            |        |       |             |          |
| Q13158    | FAS-associated death domain   | 0.00  | 20.19    | 1          | 3                   | 3          | 3      | 208   | 23.3        | 5.69     |
|           | protein                       |       |          |            |                     |            |        |       |             |          |
| P06241    | Tyrosine-protein kinase Fyn   | 0.00  | 4.10     | 1          | 1                   | 2          | 4      | 537   | 60.7        | 6.67     |
| O76003    | Glutaredoxin-3                | 0.00  | 12.84    | 1          | 3                   | 3          | 3      | 335   | 37.4        | 5.39     |
| Q8TCT9    | Minor histocompatibility      | 0.00  | 9.02     | 1          | 2                   | 2          | 2      | 377   | 41.5        | 6.43     |
|           | antigen H13                   |       |          |            |                     |            |        |       |             |          |
| Q13907    | Isopentenyl-diphosphate       | 0.00  | 14.10    | 1          | 2                   | 2          | 2      | 227   | 26.3        | 6.34     |
|           | Delta-isomerase 1             |       |          |            |                     |            |        |       |             |          |
| P20042    | Eukaryotic translation        | 0.00  | 8.41     | 1          | 2                   | 2          | 3      | 333   | 38.4        | 5.80     |
|           | initiation factor 2 subunit 2 |       |          |            |                     |            |        |       |             |          |
| Q9Y4Z0    | U6 snRNA-associated Sm-       | 0.00  | 17.27    | 2          | 2                   | 2          | 2      | 139   | 15.3        | 9.99     |
|           | like protein LSm4             |       |          |            |                     |            |        |       |             |          |
| Q9Y2Q5    | Ragulator complex protein     | 0.00  | 40.00    | 1          | 2                   | 2          | 4      | 125   | 13.5        | 5.40     |
|           | LAMTOR2                       |       |          |            |                     |            |        |       |             |          |
| Q9Y316    | Protein MEMO1                 | 0.00  | 9.43     | 1          | 2                   | 2          | 2      | 297   | 33.7        | 7.14     |
| Q9Y6C9    | Mitochondrial carrier         | 0.00  | 13.86    | 2          | 3                   | 3          | 3      | 303   | 33.3        | 7.97     |
|           | homolog 2                     |       |          |            |                     |            |        |       |             |          |
| P22033    | Methylmalonyl-CoA mutase,     | 0.00  | 3.20     | 1          | 2                   | 2          | 2      | 750   | 83.1        | 6.93     |
|           | mitochondrial                 |       |          |            |                     |            |        |       |             |          |
| Q14CX7    | N-alpha-acetyltransferase 25, | 0.00  | 2.37     | 1          | 2                   | 2          | 2      | 972   | 112.2       | 6.64     |
|           | NatB auxiliary subunit        |       |          |            |                     |            |        |       |             |          |
| Q09161    | Nuclear cap-binding protein   | 0.00  | 3.29     | 1          | 2                   | 2          | 3      | 790   | 91.8        | 6.43     |
|           | subunit 1                     |       |          |            |                     |            |        |       |             |          |
| Q9Y2A7    | Nck-associated protein 1      | 0.00  | 3.46     | 1          | 2                   | 2          | 2      | 1128  | 128.7       | 6.62     |
| Q9BV86    | N-terminal Xaa-Pro-Lys N-     | 0.00  | 10.76    | 1          | 2                   | 2          | 2      | 223   | 25.4        | 5.52     |
|           | methyltransferase 1           |       |          |            |                     |            |        |       |             |          |
| Q01970    | 1-phosphatidylinositol 4,5-   | 0.00  | 2.35     | 1          | 2                   | 2          | 2      | 1234  | 138.7       | 5.90     |
|           | bisphosphate                  |       |          |            |                     |            |        |       |             |          |
|           | phosphodiesterase beta-3      |       |          |            |                     |            |        |       |             |          |
| Q92900    | Regulator of nonsense         | 0.00  | 2.57     | 1          | 2                   | 2          | 3      | 1129  | 124.3       | 6.61     |
|           | transcripts 1                 |       |          |            |                     |            |        |       |             |          |

| Accession | Description                                                       | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pl |
|-----------|-------------------------------------------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|           |                                                                   |       |          |            | Peptides |            |        |       | [kDa] |          |
| Q8IXM3    | 39S ribosomal protein L41,<br>mitochondrial                       | 0.00  | 27.74    | 1          | 4        | 4          | 4      | 137   | 15.4  | 9.57     |
| P82930    | 28S ribosomal protein S34,<br>mitochondrial                       | 0.00  | 11.93    | 2          | 2        | 2          | 2      | 218   | 25.6  | 9.98     |
| P08579    | U2 small nuclear<br>ribonucleoprotein B"                          | 0.00  | 16.44    | 1          | 2        | 2          | 2      | 225   | 25.5  | 9.72     |
| P60903    | Protein S100-A10                                                  | 0.00  | 27.84    | 1          | 2        | 2          | 4      | 97    | 11.2  | 7.37     |
| 095347    | Structural maintenance of chromosomes protein 2                   | 0.00  | 6.10     | 1          | 6        | 6          | 6      | 1197  | 135.6 | 8.43     |
| Q96JX3    | Protein SERAC1                                                    | 0.00  | 4.43     | 1          | 2        | 2          | 2      | 654   | 74.1  | 7.68     |
| Q9UEW8    | STE20/SPS1-related proline-<br>alanine-rich protein kinase        | 0.00  | 4.22     | 1          | 2        | 2          | 2      | 545   | 59.4  | 6.29     |
| O43776    | AsparaginetRNA ligase,<br>cytoplasmic                             | 0.00  | 5.66     | 1          | 2        | 2          | 2      | 548   | 62.9  | 6.25     |
| P29144    | Tripeptidyl-peptidase 2                                           | 0.00  | 2.80     | 2          | 2        | 2          | 3      | 1249  | 138.3 | 6.32     |
| Q9Y2W1    | Thyroid hormone receptor-<br>associated protein 3                 | 0.00  | 2.30     | 1          | 2        | 2          | 2      | 955   | 108.6 | 10.15    |
| O95881    | Thioredoxin domain-<br>containing protein 12                      | 0.00  | 17.44    | 1          | 2        | 2          | 3      | 172   | 19.2  | 5.40     |
| Q9Y4E8    | Ubiquitin carboxyl-terminal<br>hydrolase 15                       | 0.00  | 2.85     | 1          | 2        | 2          | 2      | 981   | 112.3 | 5.22     |
| P07947    | Tyrosine-protein kinase Yes                                       | 0.00  | 5.16     | 2          | 1        | 2          | 3      | 543   | 60.8  | 6.74     |
| E7EWK3    | ATP-dependent RNA<br>helicase DHX36 (Fragment)                    | 0.00  | 3.14     | 2          | 2        | 2          | 2      | 797   | 91.4  | 7.28     |
| B4DFG0    | Protein DEK                                                       | 0.00  | 6.92     | 3          | 3        | 3          | 3      | 347   | 39.5  | 8.51     |
| B5MCT8    | 40S ribosomal protein S9                                          | 0.00  | 19.42    | 3          | 4        | 4          | 4      | 139   | 16.6  | 11.06    |
| C9JFE4    | COP9 signalosome complex<br>subunit 1                             | 0.00  | 7.22     | 5          | 3        | 3          | 4      | 471   | 53.3  | 6.74     |
| J3KT68    | Transmembrane protein 97                                          | 0.00  | 25.00    | 2          | 2        | 2          | 2      | 92    | 11.0  | 7.97     |
| H3BTA2    | Serine/threonine-protein<br>phosphatase (Fragment)                | 0.00  | 8.99     | 2          | 2        | 2          | 2      | 267   | 30.5  | 5.31     |
| F8VZN8    | Protein phosphatase 1<br>regulatory subunit 12A<br>(Fragment)     | 0.00  | 3.76     | 4          | 3        | 3          | 4      | 692   | 76.5  | 5.31     |
| C9K0M0    | Trifunctional enzyme subunit<br>beta, mitochondrial<br>(Fragment) | 0.00  | 23.81    | 5          | 2        | 2          | 2      | 84    | 9.3   | 10.77    |
| J3QL05    | Serine/arginine-rich-splicing<br>factor 2 (Fragment)              | 0.00  | 11.54    | 4          | 2        | 2          | 3      | 130   | 15.1  | 10.96    |

| Accession  | Description                  | Score | Coverage | # Proteins | #Unique  | # Peptides | # PSMs | # AAs | MW    | calc. pI |
|------------|------------------------------|-------|----------|------------|----------|------------|--------|-------|-------|----------|
|            |                              |       |          |            | Peptides |            |        |       | [kDa] |          |
| X6RM00     | ELKS/Rab6-                   | 0.00  | 2.87     | 4          | 2        | 2          | 2      | 976   | 111.9 | 6.49     |
|            | interacting/CAST family      |       |          |            |          |            |        |       |       |          |
|            | member 1                     |       |          |            |          |            |        |       |       |          |
| B8ZZZ0     | 3-hydroxyisobutyryl-CoA      | 0.00  | 9.16     | 2          | 2        | 2          | 2      | 273   | 30.0  | 10.48    |
|            | hydrolase, mitochondrial     |       |          |            |          |            |        |       |       |          |
|            | (Fragment)                   |       |          |            |          |            |        |       |       |          |
| F8WAU4     | Elongation factor G,         | 0.00  | 3.09     | 3          | 2        | 2          | 2      | 453   | 50.9  | 9.31     |
|            | mitochondrial                |       |          |            |          |            |        |       |       |          |
| B5MBZ8     | Protein phosphatase 1        | 0.00  | 14.60    | 5          | 2        | 2          | 3      | 274   | 31.3  | 4.63     |
|            | regulatory subunit 7         |       |          |            |          |            |        |       |       |          |
| J3KS15     | Protein MRPL58 (Fragment)    | 0.00  | 12.50    | 2          | 2        | 2          | 2      | 192   | 21.9  | 9.72     |
| C9J2Z4     | EH domain-containing         | 0.00  | 10.13    | 4          | 2        | 2          | 2      | 306   | 34.7  | 6.14     |
|            | protein 1 (Fragment)         |       |          |            |          |            |        |       |       |          |
| H7C3G1     | Protein ECT2 (Fragment)      | 0.00  | 11.96    | 2          | 1        | 2          | 2      | 209   | 24.0  | 7.91     |
| H7C3Z9     | Anterior gradient protein 2  | 0.00  | 23.53    | 3          | 2        | 2          | 2      | 119   | 13.5  | 6.35     |
|            | homolog (Fragment)           |       |          |            |          |            |        |       |       |          |
| H7BY36     | RNA-binding protein EWS      | 0.00  | 9.42     | 5          | 2        | 2          | 4      | 308   | 32.2  | 9.82     |
|            | (Fragment)                   |       |          |            |          |            |        |       |       |          |
| E9PC52     | Histone-binding protein      | 0.00  | 5.77     | 2          | 2        | 2          | 4      | 416   | 46.9  | 5.07     |
|            | RBBP7                        |       |          |            |          |            |        |       |       |          |
| A8MX29     | Kinesin light chain 2        | 0.00  | 12.91    | 2          | 2        | 2          | 2      | 333   | 36.6  | 6.34     |
| A0A087X1B2 | U4/U6.U5 tri-snRNP-          | 0.00  | 6.98     | 3          | 2        | 2          | 2      | 487   | 56.4  | 8.38     |
|            | associated protein 2]        |       |          |            |          |            |        |       |       |          |
| E7ENN3     | Nesprin-1                    | 0.00  | 0.54     | 3          | 2        | 3          | 5      | 8392  | 964.2 | 5.54     |
| A0A096LNZ9 | Ubiquitin-like protein ISG15 | 0.00  | 23.08    | 3          | 2        | 2          | 2      | 143   | 15.6  | 6.29     |
|            | (Fragment)                   |       |          |            |          |            |        |       |       |          |
| A0A0G2JQN5 | 1,2-dihydroxy-3-keto-5-      | 0.00  | 21.21    | 2          | 1        | 2          | 2      | 99    | 11.8  | 5.80     |
|            | methylthiopentene            |       |          |            |          |            |        |       |       |          |
|            | dioxygenase (Fragment)]      |       |          |            |          |            |        |       |       |          |