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Abstract

Conversational agents, also known as chatbots, are desidgie have a real-time
conversation with humans. Closed domain chatbots are lingitl to a speci c
task they're designed to do. They can be rule-based or infoation retrieval
based chatbots while open domain chatbots are meant to mimimmans in
conversation.

For a conversational agent to have a human-like conversatipthe agent
needs to generate grammatically correct and coherent outprelative to the
input. However, it is also crucial for the agent to have comnmosense and be
equipped with basic facts about the world. For example,coiter the follow-
ing statement: \He gave birth to a baby." For humans, it is comnon sense
that males cannot give birth. Therefore, the given statemens nonsensical.
However, for a system, it is challenging to distinguish betwa sensical and
nonsensical statements. Moreover, it is even more challémg for a system
to generate an explanation stating why the given statemensinonsensical.
We propose UNION, a uni ed end-to-end framework, to generate aeaning-
ful explanation to a given nonsensical statement that utilies several existing
commonsense datasets to allows a model to learn more dynaafic under
the scope of commonsense reasoning. To perform model selace ciently,
accurately and promptly, we also propose a couple of auxiygautomatic eval-
uation metrics so that we can extensively compare the moddl®m di erent
perspectives. Our submitted system results in an excelleperformance in the

proposed metrics. It outperforms its competitors with the lghest achieved
i



score of 2.10 for human evaluation while maintaining a BLEUcsre of 15.7.



Preface

As part of this manuscript, our paper at SemEval 2020 was acdeg but yet

to be published.

1. Anandh Perumal, Chenyang Huang, Amine Trabelsi, Osmar R. Zae,
"ANA at SemEval-2020 Task 4:muUlti-task learNIng for cOmmonsers
reasoNing (UNION)", the 14th International Workshop on Semant
Evaluation collocated with COLING. [37]

The above paper is covered in Chapter 3. | contributed most tiie ideas
and experiments and writing. However, Dr. Osmar Zaiane, Dr. rébelsi,
and Chenyang also helped in constructive input. We are cumgy trying to
publish our state-of-the-arts results in the CoS-E dataseh Section 4.3 in the

form of conference paper or journal.



We are shaped by our thoughts; we become what we think.

- Gautam Buddha, Philosopher.
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Chapter 1

Introduction

1.1 Motivation

Conversational Agents (CA), also known as chatbots, are desig to have real-
time conversations with humans. Conversational agents fahto two categories
Open Domain chatbots and Goal-oriented chatbots.

An Open Domain chatbot can have conversations with humans abia
vast array of topics; it has a wide range of knowledge and miosi human-like
conversation by keeping the user engaged.

A goal-oriented chatbot, on the other hand, has a prede nedes of objec-
tives. It helps the user accomplish a particular set of tasksnd has minimal
knowledge about domains outside of it is responsible taskscannot answer
any general question that lies outside its domain of expest. For example, a
closed domain chatbot for a restaurant can handle inquirieglated to orders,
their delivery, etc., but is incapable of answering questieirelated to weather,
as that is outside its domain [18] [59]. Unlike open domain ctieots that can
have more exciting and engaging conversations with usersetgoal oriented
chatbots meant o have short, task-oriented conversations.

Both open domain and goal-oriented chatbot respond to a sp@cquestion
either by rule-based approach or by response generation.

The rule-based chatbots have a prede ned heuristic apprdador picking



the best possible response for the given inputs and conversaal history. This

heuristic approach can be a simple rule-based template mhator information

retrieval or can depend on Machine Learning classi ers. Susystems do not
generate a spontaneous response. Hence the response is nepetitive and

leads to less interaction with the system.

Generative models, on the other hand, are typically based aleep learning
techniques. They generate an impromptu response for eaclpun by learning
to predict over the sequence of words in the training data, selting in the gen-
erative model producing a more diverse range of responsesjilar to human
conversations.

The biggest challenge encountered by chatbots in replicag a human-like
conversation is the lack of common sense - the necessaryrmi@ation about the
environment and the general awareness about the world. An@himpediment
is the need to generate responses that are coherent and dalesior any given
input. Most chatbots generate responses on the assumptidmat given input
is a sensical statement or question. When the given input i©nsensical, then
the system fails to generate a sensical explanation of whyetlgiven input is
nonsensical.

Nonsensical statement classi cation and explanation geraron can help
dementia detection. Dementia causes aphasia [10] [30], evhis a compre-
hension and communication disorder. Aphasia is the loss ofethability to
express oneself and understand, which may lead to the forraat of a nonsen-
sical statement. Thus, our proposed commonsense pipelinstem can help
detect the given nonsensical statements and help the userp&in why the
given statement is nonsensical. While detecting confabuiah or nonsensical
statements is of obvious value toward detecting hallucinen or dementia, we
do not prove in our work our position regarding the usefulnesof explaining
nonsensical statements for dementia disclosure. We leaves texploitation of
this supposition to future work.

For a system to respond to a nonsensical statement, the systeneeds to
have some common sense to ascertain why a given statementsdnet make

sense and generate a response that is coherent to the givepuin In this
2



research, we study the challenges related to the classi tat of a sensical and
nonsensical statement. If the given statement is nonseralicthen our model

generates an explanation of why the given statement does nobke sense.

1.2 Problem Statement

For chatbots to have conversations like humans, they need tmderstand the
world and make judgments based on their knowledge. In humagnsommon
sense may vary from person to person depending on varioustéas such as
education, culture, religion, and other demographics.

C.S. Lewis [26] de ned common sense asound practical judgment con-
cerning everyday matters, or an essential ability to perceive, understand, and
judge that is shared by ("common to") nearly all peopleHumans generally
learn things in a structured way; for example, we learn basimaths before
learning to apply the BEDMAS rule, and this better facilitates our under-
standing of algebra, in this case. This structured learning applicable across
various elds. Whether it is day-to-day conversations or sdpsticated Quan-
tum Physics, we need to have a basic understanding of topics kearn and
progress. Thus knowledge is used to answer questions and engkactical
judgments.

Similarly, for a chatbot, to start being more lifelike, it needs to infer the
knowledge that it has gained and make judgments based on thamd generate
a response accordingly.

If someone saysthe sky is greeft we know the sky is blue, the response
should be "the sky is blue, not green." This example is commesense reasoning
since it requires some amount of general knowledge to answach questions.

A rule-based chatbot cannot be used for common sense reasgrhecause,
as discussed earlier, the rule-based approach will always kepetitive, and we
cannot foresee all cases and de ne rules for all condition8nother essential
problem is that it cannot automatically generate a sensicaksponse, which is

imperative for common sense response generation. The resgmorelies on the



understanding of several statements or facts; some answeray need in-depth
knowledge and the ability to co-relate between the things dened like human
beings. For example, givenAlberta is in Europe." as an input to a chatbot,

then it needs to make a judgment based on its prior learning #t Alberta is

in Canada and Canada is in North America. It should generate asponse,
"Alberta is in North America." To develop such systems, informaon retrieval

via a database or a rule-based system is not an easy task angegirise to
several questions.

1. What is considered common-sense in terms of a chatbot?

Unlike humans, expert systems, or Machine Learning chatbotdo not learn
from the conversations they have with users. Their knowledgis limited to
data on which they are initially trained. Therefore, we de re common sense
for the chatbot as not a domain, religion, or culture-specc, but rather based
on general open-domain knowledge that includes common arataptable facts
across various groups of people, such as "Earth is coverednhng/4 water".

2. How to classify whether a given statement is sensical or not?

We train a discriminative model (Statement Discriminator) to classify
whether the given statement is sensical or not. If the givertagement is non-
sensical, then further actions are taken.

3. How can a chatbot learn common sense and generate a re-
sponse based on a nonsensical statement?

For reasoning, we train a generative model, muUlti-task learMp for cOmmon-
sense reasoNing (UNION), on open-domain knowledge that can gexte an

explanation to a given nonsensical statement.

1.3 Thesis Statement

In this study, we address the problem of common-sense reasgnin open do-
main chatbots: Deduct whether the given statement is againsommon sense
and generates a valid explanation if the given statement isgainst common

sense. The following is the deduction based on the research:



We hypothesis thata language model can generate a common-sense re-
sponse to a nonsensical statement provided the system has already common
knowledge about the world in the form of a text corpus from which to learn the

language model.

1.4 Thesis Contribution

In this dissertation, we work mainly on common-sense reasng for a nonsen-

sical statement. The main contributions of this research aras follows:

1. Reward Augmented Model: We explore Reward Augmented Maximu
Likelihood (RAML) for explanation generation. Our results sow that
RAML performs better than our baseline model.

2. UNION Model:
We train and evaluate a generative model for common-sens@asening.
Our proposed model achieves state-of-the-art for commonnse expla-
nation generation. We also propose several automatic auaily metrics

to evaluate common-sense NLU systems.

3. Common-sense system:
We propose a pipeline for chatbots to inherit our common-ssa system
with minimal changes. We also train a discriminator model, &imated
Approval, which evaluates the generated reasoning for the mgensical
statement, making it easier to evaluate the generated expiation for

any given input.

4. Evaluation metrics:
The human evaluation for the generated explanation is expsine, and
BLEU is not an appropriate measure as it does not consider tlsemantic
similarity in the statements. Hence, we propose several amatic auxil-

iary metrics to evaluate the explanations generated by di®nt models.



1.5 Thesis Organization

The remainder of the dissertation contains four chapters. nlchapter 2, we
discuss the various advanced deep learning techniques usedatural language
processing. In chapter three, we focus on related work and roproposed
architecture, and in chapter four, we will discuss the restsl of each model
discussed in chapter 3. Chapter ve address the contributioof this research
and possible future work to extend this research. Having thebave overview
in mind, the four chapters in this research are as follows:

Chapter 2: Background and Related Work

We discuss in detail the advantage and disadvantages of ugideep learn-
ing techniques for language models over statistical-baskthiguage models. We
look into the latest deep-learning techniques for develom a generative lan-
guage model such as Recurrent Neural Network, LSTM, transfoers, and the
earlier framework in common-sense reasoning and drawbadktmse systems.

Later, we describe the baseline models and the drawback obs® models.
Further, we will look into our proposed UNION architecture.

Chapter 3: Experiments and Results

We provide a detailed description of the di erent data sets w used in this
research. Moreover, we will also discuss in detail the draatks of di erent
metrics and advantage of our proposed metric for evaluatiaand also analyze
the performance of the baseline model and our proposed maodel

Chapter 4: Conclusion and Future work

In this chapter, we summarize the results and our contribubn to the
common-sense explanation generation system, and we lodioipossible future

ways to extend this research.



Chapter 2

Background and Related work

Machine common sense has been one of the most challenging éati Intelli-
gence (Al) problems, and a major, critical missing componewtf Al. It might
be helpful in various aspects of day-to-day life. Below aréé¢ few of the broad

uses given in [17] where common sense for Al could be helpful:

1. Sensemaking:
Given any data or problem to the system, it needs to interpreand
understand the various aspects of that data or problem basexh real-

world situations.

2. Reasoning Capabilities:
A machine's common-sense reasoning can help monitor and arstand

Al systems while making a crucial decision.

3. Communication:
We tend to assume while communicating with fellow humans thahey
have background knowledge about the world. For a machine tave a
successful interaction with humans, it also needs to have i@ common

sense, which would help create more useful and exciting coomitation.

4. Transfer Learning:

The common-sense knowledge of one domain could be helpfubther



areas too. For example, quantitative reasoning could be bewgial in

chatbots as well as in Al systems for physics.

For humans, common-sense reasoning comes naturally andtthalps us
understand statements, but, it is a sophisticated process.

In this chapter, we explain the latest deep learning technigps for Natural
Language Processing (NLP), that are mainly used for commome+sse reasoning
frame-works. Later, we discuss earlier work in this area arsgveral fundamen-
tal concepts and critical issues for common-sense reasgnfor machines. Fi-
nally, we introduce our proposed models, the UNION model and ¢hbaseline

model.

2.1 Technical Background

2.1.1 Language Model

The language model is useful for several natural languageopessing appli-
cations such as information retrieval [28], machine traraion [55] [50] and
part-of-speech tagging [43]. A statistical language modettimates the prob-
ability distribution over the sequence of tokens in the traiing corpus. Given
a sentence of length, it estimates the probability for the whole sequence by
computing the joint probability of the tokens in the given satence. Thus, the
sentence which appears the most in the corpus has a high prbbigdy compared
to the sentence which appears less often. Therefore, anyeagivsentence that
is not grammatically correct will have a low likelihood, sine such a sentence

has not been encountered in the corpus.
P (w5 w) = P (wa) P (Wojwi) P (Wajwi; wo) P (wijwa; tiiwg 1) (2.1)

Equation 2.1, is the joint probability for the sentence of legth | and
P(wjwy;:i;w 1) is the conditional probability for predicting the word ws
that occurs in the sequence after;::;;w; ;). However, computing the joint

probability over the entire sequence has two signi cant lintations:

8



1. As the number of tokens in the training corpus increases, ahnumber
of possible combinations increases exponentially, and $stmot feasible to
have enough data to have all the possible combinations of &s in a

given language.
2. The computation costs increase as the sequence lengthréases.

3. How to prevent the language model from assigning zero prdiiléy to a

sequence that did not occur in the training corpus.

Markov Assumption helps overcome the above problems by apgmmating

the conditional probability, i.e., for each state, it only cepends upon a few
past states. Instead of computing joint probability over tle entire sequence
for predicting the next word, we solely depend on the past words, which is

called ann gram language model.
P(wjwg;iiwi 1) P(wijw o) (2.2)

Equation 2.2 estimates the probability ofv; depending only on the previous
word w;, ;. This model is called eébi gram model. The most commonly used
n gram models are unigram, bi-gram, and tri-gram. In the unigram mael,
the probability of each word in the given sentence depends atself. Such
models are used mainly in information retrieval tasks. Theigram depends
upon the previous word, while the trigram depends on the prewus two words.
The n in the n gram model indicates the number of previous words on
which the language model depends, on predicting the next vebin the given
sequence.

Smoothing techniques like Laplace Smoothing, Backo , Intpolation, Kneser
Ney, Additive Smoothing, etc., prevent assigning a zero probdity to the sen-
tence that did not occur over the training data. Then gram language
model is parameter-less optimization that makes it easientimplement and
train. However, the higher then value the better the model is, which means
much computation. Furthermore, it leads to a sparse represgtion of the

language. Moreover, for conversational NLU systems, the s#dical language

9



model cannot spontaneously generate responses for the giuweput, making

the conversation boring.

2.1.2 Deep Learning

Deep learning for language models has been very successafithey learn com-
plex representation data. Deep learning for NLP has the follong advantages

over the traditional statistical language model:

1. It reduces the e orts needed in developing handcrafteddtures

2. It learns multi-level abstraction, and is not limited NLP It is applicable

across various domains, and is one of the critical featuredeep learning.

3. Recurrent Neural Networks (RNN) help capture the linguistic @cursion
in the language. Every language follows a speci c set of rgland pat-
terns such as grammatical structure and other linguistic ements. These
patterns or rules repeat over the sequences, and these répdaegula-

tions or patterns are known as linguistic recursion.

2.1.3 Word Embedding

Machine learning models only understand numeric data. Wordmbedding
helps the text data convert into a numeric format. In Bag Of Wods (BOW)
embedding, each token in the vocabulary will have a unique e+hot vector
representation, which makes the BOW a sparse representatias the number
of the words in the vocabulary increases.

The word embedding learned through unsupervised deep leeny tech-
nigues such as GloVe and Word2Vec has achieved great sucdesseveral
NLP tasks.

Word2Vec and Global Vectors for Word Representation (GloVeare two of
the most successful and popular word embedding models. Theya continuous
and dense vector representation for the token in the vocalany. Moreover,

they also capture the syntactic and semantic relationshipbetween words.

10



Word2Vec has two popular models to convert word to vector, Gbinuous Bag-
of-Words (CBOW) and Skip-gram, which was proposed by [32]. @BOW, the

training strategy is to predict the word given its context; &ip-gram to predicts
the context given the word GloVe focuses on the co-occurrenaf the words in
the provided window of the sequence. The word embedding gested by these
models does not consider the context of the sentence. The @wambedding
for \bank" in \John went to the river bank today", and \John visi ted the

bank to withdraw his salary" has the same vector representain. ELMo [38]
and Byte-pair [46] embedding overcome the contextual embadidg problem
in earlier embedding models. ELMo is a character-level langge model that
helps handle the out-of-vocabulary words. It uses a deep bigctional LSTM

architecture, which allows ELMo to learn the deep contextdaneaning of each
word. Byte-pair is a sub-word embedding, where rare wordseabroken down
into sub-words to handle out-of-word vocabulary. Therefe, the word vector
generated for the word \river" by Byte-pair and ELMo is di erent based on

the context of the sentence.

2.1.4 Neural Language Model

Bengio [5] proposed the rst Neural Language Model (NLM) whiclgave rise to
several other neural language processing tasks using desgrming. An NLM
model takes a xed length of tokens as input to predict the neéxword in the
sequence. The respective word embedding replaces eachriokghe sequence.
Embeddings for each token are concatenated together as a nratind passed
as an input to the NLM, and later, to the feed-forward layers filowed by a

softmax layer.

z=f(W'h + b (2.3)

In Equation 2.3 above,f is a non-linear activation function such as relu,
tanh, sigmoid, W2 RY K and b 2 RY, where V is the vocabulary size, and K
is the dimension of the word embedding.

The output from the h, is passed to the softmax activation function to

11



Figure 2.1: RNN encoder-decoder with attention mechanism

generate a conditional probability distribution to predict the next word in the

sequence.
exp(z)

> =1 exp(z)

To capture long term dependency in the sequence using a feed-forward

P(wl\wl_n, ceey wl_l) = (24)

neural network, the window size n needs to be big enough, which makes it

practically impossible due to the computational requirements [33].

2.1.5 Recurrent Neural Network

Recurrent Neural Networks (RNN) [16] belongs to the family of Neural Net-
works, where output for each time step depends upon the current input and
output from the previous time step as shown in the Figure 2.1 . RNN’s have
been very useful for several NLP tasks as they conditions on all the previous

tokens generated in the past, which helps learn the long-term dependencies.

ht = f(b + Wht_lU.’L’t) (25)

In Equation 2.5, h; is the hidden state at timestep t. At every timestep, it
takes the input from the previous timestep h,_; and the input at that timestep
x; where W and U are the learnable parameters and f is the activation func-
tion. As at each timestep, the RNN depends upon the previous hidden cell
state, which helps in learning long-term dependencies in the sequence. RNN’s
are uni-directional, i.e., depend only on past tokens. Thus, it makes it difficult

to learn the given input representation.

12



The bidirectional RNN's overcome the above problem by havinggvo-time
directional RNNSs, i.e., bidirectional. The forward state RNN ¢arns positive-
directional dependency while the backward state RNN learnbé negative-time
directional dependency. At each timestep, the informatiofrom both the RNN
states is combined to generate the output for the respectitanestep.

However, Pascanu shows in [36] that during backpropagatiothe gradi-
ent of the loss function decays exponentially with time, wish makes RNNs

challenging to train in longer sequences despite their thextical capability.

216 LSTM

The Long Short-Term Memory (LSTM) is a special kind of RNN thatwas
introduced by Hochreiter and Schmidhuber in [19]. LSTM ovemnes the
vanishing gradient problem in RNNs with the help of three gatesan input
gate, an output gate, and a forget gate. In Equation 2.6, thefget gate helps in
removing the information that is no longer needed. In contst, the input gate
in Equation 2.7 adds new information to the cell state, and # information
from the output gate in Equation 2.8 becomes the previous hién state for

the next timestep. The LSTM cell block is shown in Figure 2.2.

fi= (Wixi+ Ushy 1+ ) (2.6)
it = (Wix¢+ Uhy 1+ b) (2.7)
0= (Wox¢ + Ughy 1+ k) (2.8)

The key component on the LSTM is the cell state, denoted b§; for the
timestep t in the Equation 2.10. The cell state stores the reVant information
in itself through the input gate and removes the irrelevantriformation with

the help of the forget gate.

¢ = tanh(Wee + Ughe 1+ hy) (2.9)
Ct = ft Ct 1+ it ét (210)
hy=0o (C) (2.11)

13
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Figure 2.2: LSTM block https://bit.ly/2zfn6y4

LSTM architecture helps RNN to learn longterm dependencies and over-
comes the traditional problem in the RNN; i.e., vanishing gradient. However,
there are certain other limitations in the LSTM based language models. In
the LSTM or RNN-LSTM models, the decoder relays on the single encoder
vector to decode the complete information during decoding, ignoring essential

or relevant information needed for the particular timestep during decoding.

2.1.7 Encoder - Decoder

The sequence-to-sequence (Seq2Seq) architecture in the Figure 2.3 proposed
by Sutskever in [50] is the backbone for many natural language applications.
The Seq2Seq model maps the given input sequence to the output sequence.
The key architecture of Seq2Seq is an RNN or Transformers that helps to
model on map varying length of input to output sequences. In the Section
2.1.9, we will discuss Seq2Seq architecture in detail using Transformers. The
Seq2Seq architecture has two main components, the encoder, and the decoder,
as shown in Figure 2.3.

The encoder is a stack of several RNNs, in each timestep, the RNN accepts
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Figure 2.3: Encoder-Decoder Architecture. The “ABC” is the source state-
ment to the model and “WXYZ” is the target sequence. The < EFOS >

indicates the last token in the sequence. [57]

a token from the input sentence X = xq, 2o, ..., T,,.

he = fF(W"h,_y + Whez,) (2.12)

Each token in the input sequence is translated to a vector of real numbers
using word embeddings discussed in Section 2.1.3. The Equation 2.12 is used
to compute the hidden states in the RNN, where t in the equation represents
the timestep. The W and W is a learnable parameter and h, is the hidden
state at the timestep ¢. The final hidden vector, z, by the encoder, encapsulates
the entire information in the input elements.

The decoder is another RNN model. During training, the target statement
is augmented by adding < EOS > as the last token to the statements. The
hidden state of the decoder RNN is initialized with z.

The z helps the decoder to represent the complete information in the input
sequence. A fully connected layer follows the RNN component. At each time

step in the decoder, the RNN predicts a token ¢, in the target sequence Y.

g = argmax(softmax(W?hy)) (2.13)

In Equation 2.13, the softmax function is used to compute a probability
distribution over the target vocabulary. The argmax function is used to select
the next token ¢, in the sequence with the highest probability. The predicted 9,
is the input to the decoder in the following steps. When the decoder predicts
the < eos > with the highest probability, it indicates the last token in the
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Figure 2.4: RNN Encoder-Decoder with attention mechanism [3]

sequernce.

2.1.8 Attention Mechanism

The attention mechanism proposed by Bahdanau [3] solves the problem of
depending on only the final vector from the encoder to decode the complete
information. During the decoding step, the attention layer in between the
encoder and the decoder generates a context vector. The context vector in
Equation 2.14 helps the decoder pay more attention to important or relevant
tokens and less attention to the irrelevant tokens at that timestep. The archi-

tecture of the RNN with attention mechanism shown in Figure 2.4.
J
n=1

The attention weight «;; is a learnable parameter. The input to the atten-
tion layer in Equation 2.19 is the current target hidden state and the source
hidden state.

exp(score(si—1, hy) (2.15)

=
Y SO exp(score(s;_y, hy)
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scorg(s; hj) = vl tanh(W,[st; ;1) (2.16)

vl and W, are learnable weight matrix.

2.1.9 Transformer

The Transformer architecture as shown in Figure 2.5 proposdasy Vaswani
[57] is a relatively new model compared to RNN. RNN consumes theput
in every timestep; it helps the RNN incorporate the position fothe word in
the sequence. Transformers use pure attention mechanisnasd the whole
sequence is passed as an input to the model. Thus, it fails toedentiate the
position of the words in the sequence. The architecture of énTransformer

model is shown in Figure 2.5.

Positional Encoding

Positional Encoding (PE) helps the transformers learn the gsition of each
word in the sequence. PE is a time series embedding value thatadded to
each token in the input sequenc& = (Xo;Xq;::: X 1) to di erentiate the

position of each word in the sequence.

PE(pos;2i) = sin(pos=000@dmoce ): (2.17)
PE(pos;2i +1) = cogpos=1000G-dmocel ) (2.18)

The cyclic nature of thesin(x) and cossin(x) functions in Equation 2.17
and 2.18, respectively, help to retain the positional infonation of the word in

the sentence.

Transformer Architectures

The encoder of the transformer has amN identical layer; each of the lay-
ers consists of mainly multi-head, self-attention, and feeforward networks,
along with residual connections followed by a layer normahtion after each

part. The decoder of the transformer has masked multihead tahtion along
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with multi-head attention and feed-forward networks. The nasked multi-head
attention helps to prevent the ow of information from right-to-left, making
the decoder behave in an autoregressive fashion. At each ¢istep, the decoder
can only have access to the token it predicted so far, where@asthe encoder,
it has access to past and future tokens. The encoder and deeoth the trans-
former architecture have the same number of layers and attion-heads.
Each head in the self-attention layer has three major compents, Queries
(Q), Keys (K), and Value (V) all the three are learnable parameters. Equation
2.19 is scaled dot-product attention that is used to computéhe attention
matrix, where Q and K help in determining the importance of dier words in
the sequence while encoding the particular word. The weightatrix computed

by QK| is normalized to one wherel, is the dimension of both K and Q.
T
Attention (Q;K;V ) = softmax(%lfj:)v (2.19)
k

The multi-head in each layer helps to learn a more complex amti erent rep-
resentation of the sentence, and each head has a varying rarg§ contribution

towards the nal output.
MultiheadAttention (Q;K;V) = concalhead;:::; head,)W®° (2.20)

head = Attention (QW.; KW < ; VW) (2.21)

The attention weights in the encoder and decoder head do ndbae the
parameters. TheW?; WK and WV are learnable parameters for each head,

and WO is the weight matrix for the feed-forward layer.

2.1.10 Multitask Learning

Caruana proposed the Multitask Learning (MTL) architectule for Neural Net-
work in [8]. During MTL, the training signals from di erent r elated tasks help
the model to better generalize and prevent over tting.

The traditional Seq2Seq model usually solves a single prety, for example,
sequence prediction, classi cation, structure predictim where a single output

is predicted at the end as shown in the Figure 2.6. Training mighle-tasks
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increases the noise in the data, and adding noise to backpropagation may help
the model to generalize better [20]. Thus, MTL helps to reduce the overfitting
[4] as the model has to simultaneously capture the representation of all the
tasks. MTL is not limited to NLP, but is also applicable to various other
domains, such as computer vision.

For MTL to work, all the subtasks must be related. The tasks need to be
related because all the subtasks depend on the common hidden layers.

Thus training multiple related subtasks helps to obtain a stronger inductive
bias among the tasks. We go on to discuss further details about the underlying

mechanisms.

Data Amplification:

MTL helps to increase the sample size for training by combining multiple
task datasets. Each task has independent noise in its training data. In order
for each task to perform well, they have to generalize the overall noise in
the dataset together. Thus, by ignoring all the noise and learning a joint

representation among the shared tasks helps the model to generalize better.
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Attribute Selection:

If the training data is limited and very noisy, it could be di cult for the
model to di erentiate between relevant and irrelevant featres for solving the
problem. Thus, jointly training related subtasks helps themodel determine

the relevant features.

Eavesdropping:

Let's say we were to train two tasks, A and B, with the hidden Iger features
F helpful for both tasks. But learning those hidden feature§ through Task
B alone can be di cult due to the complex representation of Tak B dataset
or maybe because of the residual error in B. So, by training twsubtasks
together, Task B can eavesdrop the relevant features leaththrough A. Sim-
ilarly, Task A can make use of the important features learnethrough Task

B. Eavesdropping among the features is called catalytic hs[1].

Representation Bias:

Since the model is initialized with random weights for eachun cause, the
model yields di erent backprop nets each time. Thus, each $k may generalize
over di erent local minima. Training multiple tasks cause he model to prefer
the hidden layer representation or minima, which is prefeed by all tasks, i.e.,
the representation common among the subtasks. Also, MTL pek to avoid
that hidden representation that the individual task itselfwould not prefer.
Figure 2.6 shows the multitask learning architecture for fautasks. The
model takes a single vector as an input while it produces fodr erent outputs
for each task. All four tasks share some hidden layers whilevnag a task-
speci c layer followed by the shared layers according to thask to solve. This
architecture is called a Multi-Head Architecture (MHA). Each had in the
MHA solves a di erent task. But while training multiple relat ed tasks together
improves the accuracy among the tasks, it increases the coumgtional cost of

learning.
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Figure 2.7: Transformers bidirectional information flow in the encoder com-

ponent https://bit.1ly/37e8ZWz

2.1.11 Encoder-only Transformer

The Transformer architecture discussed in Section 2.1.9 is an Encoder-Decoder
Transformer Architecture. Transformers have also been widely used as an
encoder-only [11] and decoder-only transformer [39]. In the encoder-only trans-
former, the output from the final attention head is passed to a linear layer in-
stead of a decoder. Bidirectional Encoder Representations from Transformers
(BERT) architecture proposed by Devlin [11] is an encoder only Transformer.
BERT is trained in a multitask learning setup. The BERT model has two
language heads; one for the Masked Language Model (MLM) and another for
Next Sentence Prediction (NSP).

Masked Language Model

For MLM, in a given sentence, 15% of the tokens are masked with a special
symbol at random, and BERT’s training objective is to predict those masked
tokens. To predict a masked token, the model needs to have a better under-
standing of the whole sentence. Unlike the decoder architecture, the encoder

architecture allows the model to look into the future tokens to predict the
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masked word as shown in the Figure 2.7. This task is also knows the Cloze
task [54].

Next Sentence Prediction

The training objective of NSP is to predict whether or not the gyen sentence
B actually follows given sentence A 50 % of the time sentencei®the actual
sentence, while 50% of the time it is a random sentence. The N3$#&sks
helps the model learn the correlation between the given senices. Hence,
NSP tasks help the model solve several downstream applicatsosuch as the
Question Answering task, and the Entailment task.

BERT's architecture is very similar to the encoder of encodelecoder
transformer architecture. The main di erence is that the otput from the
encoder is passed to two di erent fully connected layers. Tis, the model has
two heads to solve the NSP and MLM tasks simultaneously. Latgto solve the
di erent downstream tasks, only the shared transformer lagrs in the BERT
is used with a new head, this approach is called Transfer |le@mg. Transfer
learning is a machine learning approach where the model isined on Task

A. Later, the model trained on Task A is now used to solve Task B.

2.1.12 Decoder-only Transformer

The Generative Pretrained Transformer -2 (GPT2) is a decodeonly trans-
former proposed by Radford [39]. The GPT2 is a generative melgd while
the BERT we discussed in Section 2.1.11 is a discriminativeoglel. The in-
formation ow in the encoder is bidirectional. For each toka in BERT, the
attention is applied to the tokens which appeared before ardafter it, whereas,
GPT2 is autoregressive [16], as shown in the Figure 2.8 modelhere each
token can attend to only the previous tokens. The informatio ow in GPT2
is from right to left.

Unlike the decoder discussed in the Section 2.1.9, the decedsly trans-
former does not have multi-head attention for the input fronthe encoder. The
GPT2 is trained as an unsupervised language model manner ofagge corpus
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Figure 2.8: Transformers left-to-right information flow in the decoder compo-

nent https://bit.1ly/37e8ZWz

of Wikipedia and Reddit data. When given a sequence of tokens, the model
predicts the next token in the sequence. Similar to BERT, the pre-trained lan-
guage model GPT2 is used to solve several downstream tasks. The final layer
of the GPT2 is replaced with the fully connected layer with the task-specific
layers, and further fine-tuned on the downstream tasks. The advantage of
using a pre-trained model reduces the data samples needed for the model to

learn.

2.1.13 Generative Adversarial Network

Ian Goodfellow proposed the Generative Adversarial Network (GAN) in [15].
It is a generative model. GAN architecture has two main components: a gener-
ator model to generate new samples and a discriminator model to differentiate
whether the generated sample by the generator is real or fake.

The generator G takes input noise p,(z) defined over a fixed distribution
pg- Here the generator is a multilayer perceptron. The input is sample over
the distribution each time as a seed for the generator to generate output.

The discriminator D is another multilayer perceptron. The input to the
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Figure 2.9: Generative Adversarial Network Architecture https://bit.ly/
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discriminator is the output from the generator, i.e., D(G(z,60,)). The discrim-
inator is a binary classification model, which indicates whether the generated
output from the generator came from data rather than the p,. The Figure 2.9
exhibits the architecture of GAN.

Initially, the discriminator is trained with a labeled dataset to discriminate
the input from real and fake. When a generator generates a sample the dis-
criminator assigns the correct labels. So the objective of D is to maximize the
probability of assigning the correct label to the input while G is trained to
minimize log(1 — D(G)).

min G max DV(D, G) =spyura(@) 109D (2)] +2np. () [log(1 — D(G(2))] (2.22)

In the first step, the early samples generated by G are poor, and D rejects
the example with high confidence as a fake sample. Over time, training G
converges to generate samples to deceive D into accepting the sample as a
real sample. In the second step, we stop training G, and start fine-tuning
D with the samples generated G as a fake example. The GAN architecture

is a minimax game between D and G, as shown in Equation 2.22; in each
25



iteration, G tries to cheat D while D gets better in di erentiating the real and

fake examples.

2.2 Related Work

2.2.1 Representation learning

For any Al system to generate common-sense reasoning, it ne¢ol understand
and build a representation of the given situation [34].

Given, You will never nd a dog that likes to eat meat.

Humans intuitively build a knowledge graph that dogs are caiwores and
carnivores is a meat-eaters, so the given sentence is a fatgement. Sim-
ilarly, for a machine to answer questions about general s#tions or facts, a

knowledge graph or formal logic system could be bene cial.

2.2.2 Common-sense reasoning using Formal Logic

John McCarthy proposed a system that uses formal logic [29]rfoommon-
sense reasoning. For exampléV akeU (p) indicates that person p wakes up,
and the uent Awake(p) indicates that person p is awake at that moment
where uent (f) means the time-varying property of the worldat a timepoint;
it is a boolean variable. It indicates whether the particulaevent (e) can occur
at a given time (t) or not. So, Awake(p) takes two possible values. True, if
the person is awake, and false if the person is a sleep.

Based on the given axioms, we can infer that if a person wakep, uhen

the person will no longer be a sleep:
Initiates (e;f;t) 09 p(e= WakeUgp) * f = Awake(p)) (2.23)
If the person falls asleep, then the person will no longer bevake.
Terminates(e;f;t) 0 9 p(e= FallAsleep(p)Af = Awake(p)) (2.24)

Initiates indicates that the uent will be true if event e occurs at timet

and T erminates represents that the uent will be false if the event e occursta
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time t. Based on the above set of axioms, a system can make afenence that
a person can sleep, or a person can be awake but not both togethSo, the
system can induce common-sense reasoning given all the pmssaxioms of
that domain or about the world. However, it is not feasible to gnerate all the
reasonable axioms about the world, but this gave rise to seaé other logic-
based approaches for common-sense reasoning and numerau&smo create
logic-based ontologies, e.g., situation calculus [14], @O [49], DBpedia [2],
and Event2mind [42].

2.2.3 Taxonomic reasoning

A taxonomy or ontology is a collection of entities, that show the relationship
between those entities and their properties. ATOMIC [45] ign ontology of
the everyday activity about mental states as shown in the exaple 2.10.

The following statement, X repels Y's attack contains inferential knowl-
edge, represented in the graph through if-then relations tdistinguish cause
vS. e ect, and actions vs. mental states. The ATOMIC knowlede graph can
be used to answer common-sense reasoning on mental stasetample, if \X
repels Y's attack”, it causesX to save himself fromY. The [45] used an RNN
based encoder-decoder framework to train the ATOMIC datasewhere the
input is an event, an if-then relation, and the target is to geerate a response
if the cause or e ect is based on the given relationship.

ConceptNet [47] is another example of a semantic network fooramon-
sense knowledge about practical events.

The authors of [7] took advantage of ConceptNet and the ATOMI&nowl-
edge graph to train a decoder-only transformer model (COMBT Given two
entities, COMET predicts their relationship. They represated both the graph
in the triplet format, such as entity ;; relationship; entity ,. Given a entity ;
and entity ,, COMET generates theirrelationship given subject and object.
It helps Al systems with continuous learning (like humans), @ithe system pre-
dicts the new relationships between the nodes in the knowlgel graph based

on prior knowledge. In order to predict the relationship bateen the entities
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multiple-choice question answering datasets. Given texbif comprehension
and a question, any system would need common-sense reasprmapabilities
to understand and answer the given question. Researchersy@achieved com-
petitive performance in question answering tasks requiigncomprehension or a
document as a source of information [41] [11] [23] [53]. Irl]4the researchers
use a pre-trained language model GPT2 for the generation ofptanation for
each multi-choice question. Later, the generated explanah is concatenated
with the question and passed to the BERT. The generated explation acts
as a hint for the BERT to pick the correct choice among the plasible choices.
Whereas, the authors in [11] train a transformer-based langge model with
the multitask objective function as CLOZE [54] task and preidt whether the
given two sentences are the next sentences or not.

In [56], the authors trained a language model on a vast volunw com-
mon sense dataset. Later, the model was ne-tuned for sevedownstream
tasks. All these models help stimulate common-sense reasgnin the lan-
guage model. However, they still rely on a passage as a sourcmfmrmation,
which makes those models limited to speci ¢ domains.

Bhagavatula in [6], has proposed a task for investigating monon sense
reasoning through abductive reasoning. In an abductive conon sense rea-
soning task, given two observations, the task is to generatevalid hypothesis
in which both the observations are correct. The authors havachieved sig-
ni cant results by netuning the pretrained decoder only GPT2 transformer
model. The response generated by the language model expdaihen the given
observation is likely to happen.

In order for an Al system to process common sense like humartsshould
not depend on a source of information for each query; insteatishould learn
and generate a response from previously learned informatioThus, our pro-
posed model does not rely on any other source of informationrthg inference
other than its own prior knowledge. And unlike, [6], our taskd to generate a
response as to why a given statement is not possible. We tradar proposed
model on a wide range of common-sense datasets which helpsmadel rea-

son on a wide range of topics and domains such as general smeiacts [31],
29



day-to-day topics [41] [58], and a large common-sense knealde fact-base [60].
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Chapter 3

Proposed systems

The language generation task models the conditional probiity of P(Y]jX),
whereX andY are both sequences of words. In this work, we use the 36-layer
decoder-only transformers based on the architecture of th@enerative Pre-
trained Transformer (GPT2) [39] as the backbone of the langge generation
task for all the presented models. The decoder only transfoer architecture is
similar to the original decoder transformer architecture pposed by Vaswani
et al. [57]. The main dierence in the case of the decoder-gntransformer

is that the decoder component does not have a multi-head attigon for the
encoder input. All our models are initialized with large weilgts of the pre-
trained language model GPT2. In this section, we review thealseline models

and the architecture of our proposed UNION model.

3.1 Language generation baseline

The main objective of our task, given a false statement as iaf is to obtain
an explanation as to why the given statement false. The dateswe use to
train our baseline model is ComVE [58] subtaskTask C data. Thsubtask
C dataset is formatted as off X';Y'g, where each statemeniX' is paired
with three possible explanationsy' = (Y{;Y};YJ). Thus, we formulate our

task as sequence-to-sequence generation. We train a coiodidl language; it
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generates an explanation based on the input, i.e., the falsatement. A false
statement X ' is considered as the source to the language model, while ofie o
the explanations fromY' becomes the target. Therefore, as a rst step, we
reformat our dataset. It is no longer represented ax(; Y, ; YJ;YJ4), but rather

of (X';Y{'), whereY 2 Y' forj =1;2;3. Next, we train our baseline language
model GPT2 with the new dataset format. The nal goal is to esmate the
P(Yj‘jX‘).We ne-tune a pre-trained language model as a baseline meldo

generate an explanation for the false statements.

3.2 Multitask Learning Baseline

We train a language model in the Multitask learning (MTL) seting and we
call this model BMTL. The model has two heads, one for the lanigge model
task and another for the classi cation task. Ra el et al. [4Q, Liu et al. [27],
and Devlin et al. [11] have shown that training language moteusing an MTL
technigue helps the language model to better learn and geakze.

We chose to train an MTL model using ComVE's Task B and Task C
datasets because of their similarity. Task B of ComVE is a muithoice clas-
si cation problem. For each false statemeniX', there exist three plausible
explanations from¥' = (¥/;¥};¥i). Although; only one of these is correct,
each have the same syntactic structure and similar wordingonly di ering
by a few words. Moreover, all of the correct explanations pent in Task
B are a subset of explanation¥ provided in Task C (Generation). We, we
hypothesized that adding this task in an MTL setting would h& the model
better discriminate between a valid and an invalid explanan, and conse-
guently learn to recognize the subtle di erences, thus alang it to generate
better valid reasons. Moreover, training on more similar exnples to those in
Task C would make the generated text more aligned with the syauctic struc-
ture and keywords of the task's data. We convert the datasebfmat from
a multi-label to a binary classi cation format (X';Y,;b), where b is a binary

label (correct or not), andk = 1;2; 3. The Tasks B and C have the same set of
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false statementsX as input. Thus, we pair the dataset according to the false
statement. The new data format is the following:f (X'; Y;'); (X'; 9, bg. We
train the language modeling and the classi cation heads ingpallel. The loss
is computed by taking the summation of both heads' losses.

In multitask learning, the model takes a single input to the madel while
it has several heads to solve dierent subtasks simultanesly. Therefore,
another major issue in training the multitask learning withlanguage generation
and classi cation task simultaneously is the input format 6 the model. The
language model takes only , whereas the classi cation head takeX + ¥.
So, we combine both the tensors thedf X J[c+ X + Y]] generate response as
well as a classi cation label for both tensors. But during Iss computation, we
ignore the language head loss for the classi cation tensancthe classi cation
loss for the language tensor. It helps us train the classi tan and language

generation simultaneously.

3.3 RAML

We proposed the Baseline + REINFORCE model for common-sensesponse
generation, we call this model RAML. Our work was inspired by &N archi-
tecture [15] and REINFORCE algorithm [13] [51].

X
L()= yjlog(9) + ( (blogB) + (1 blog(l H)) (3.1)

(=1;vi)

Lrame ()= L() Pea(X;¥) (3.2)

The architecture of the RAML model is closely related to the ahitecture

of the BMTL model. But the loss function for the LM head of the RAML
model is di erent from that of the BMTL. In Equation 3.1, the rst part of
the equation is the language head loss; the second part of tequation 3.1
is the classi cation loss. Equation 3.2 is the RAML model logswvhere the
multitask learning equation is multiplied with the reward generated by the

Estimated Approval.
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3.4 Why UNION?

A language model is a probability distribution learned ovethe sequence of
tokens in the training corpus. Thus, the performance of the adel strongly
depends on the quality of the data used for its training. When &investigated
the explanations generated by the baseline and MTL modeld,9eemed that
these tended to often negate the given input statement, foxample refer to
the 4.11. Although this may still make them valid explanatios, it did not
necessarily make them express reasoned explanations abwhy the input is
a false statement. Part A of Table 4.11 provides examples oka valid ex-
planations where the rst is just a negation of the input wheeas the second
is a better systematic explanation of why the given statemeéns false. The
root cause for generating a simple negation of a statementeova reasoned
explanation is the ComVE dataset itself. More than one-thirdf it contains
negating statements, which most probably signals to the metito learn to
negate any given input. To deal with this issue, we may eithetemove the
explanations that negate to the false statement or increasbe dataset by
adding better explanations. Since the dataset for explananh generation is
limited, deleting any explanations may have a negative imgé while creating
a new dataset is a tedious task in itself. Therefore, we resed to using other
common-sense related datasets, CoS-E, OpenBook, and OMC&8ong with
the ComVE dataset, to train the language model to generate ket responses.
These additional datasets treat di erent issues. OpenBoois a question an-
swering dataset related to science facts. CoS-E is for gesmlecommon-sense
guestion answering. OMCS contains common knowledge fact$taining all
four together leads to two main di culties or questions to arswer:

1. Each dataset is related to a dierent issue while our mainatsk is to
generate an explanation for a false statement. How can we ferthe
model to generate an explanation response that is speci c tbe false
statement and not just to any random generic statement relad to it?

2. Each dataset has a di erent number of classi cation choes. How do we

train all of them together in an MTL setting?
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Our proposed architecture, described in Section 3.5, satvehe rst problem

with the help of a contextual keyword and the second by mergnall the

classes.
False Statement Explanation
A) The chocolate cried. 1) Chocolate cry. (Baseline)
2) Chocolate is an inanimate, non human thing and cannot cr{lUNION)
B) Sugar is used to make co eeour. | 1) Sugar is used to make co ee t (UNION)
2) Sugar is used to make co ee sour. (Baseline)

Table 3.1: Examples from ComVE explanation (Generation), Eample A is

from the baseline model and B is from the UNION model

3.5 UNION

The backbone of the mUltitask learNIng for cOmmonsense reasaolyi(UNION)
architecture in Figure 3.2 is a decoder-only transformer.

The UNION model has four major layers: shared, pre-trained, se-shared,
and task-speci c.

The rst layer is a shared layer. It is the base layer and shadelayer for
the remaining layers.

The UNION model is trained in a multitask learning structure. The mul-
titask learning de ned in the previous section 2.1.10 usesdi erent head to
solve each task in parallel, whereas in the UNION architecturgve use a single
language model head to train all three response generatiasks, i.e., ComVE
[58], CoS-E [41], and Openbook [31].

The model generates an explanatioff for ComVE, CoS-E, and Openbook
dataset given a conditional context as inputX. In Equation 3.3, X is the

input to the model, andy is the response.

Y
P(YiX)= PMiXiy1iyar iy 1) (3.3)

t=1
On the other hand, the OMCS [60] dataset has over a million gEments

as facts and common knowledge, e.g., \You are likely to nd ahglf in a

cupboard”. The source and target for the OMCS dataset are th¥. The
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as the OMCS head predicts the next token in the sequence givartoken, as
shown in 3.4.
Y1 -
P(X)= P(XX1;X2; 5 X 1) (3.4)

t=1

Thus, it makes it an obvious choice for training the OMCS as aeparate
head rather than training it along with other explanations. The OMCS dataset
is general common knowledge about science and psychologyug, we pre-
train our language model head with the OMCS dataset. Duringrp-training,
we set the loss of other heads to zero. The pre-training helffee model learn
general facts and knowledge about the world. As a reason, wergkea separate
layer called a pre-trained layer for the OMCS dataset. Whilene ComVE,
OpenBook, and CoS-E share the same layer called a semi-shdegyer.

Even though the semi-shared layer is a conditional languadeead, the
explanation generated is not coherent to the given task. Faxample, given
statements such as, Me ate a tomato from the dirt, from the ComVE dataset
it is di cult even for humans to classify it as a false statemat and explain
why it is a false statement. Thus, the response generated dyet model during
inference is an explanation that is not related to the ComVE tsk but more of
a general explanation because of the OpenBook and CoS-E datiin uence.
But the main hypothesis of our research regards the non-séa statement and
generation of a response that explains why that given statemt is nonsensical.
As per our hypothesis, the desired explanation isnbbody would eat a tomato

from the dirt.” In order to solve this problem, we use a contextual keyword.

P(Yjc; X) = Y P(yidc; X y1; ¥a; 5 W 1) (3.5)
t=1
The contextual keywordc is a special token that signals the model indi-
cating the task to generate an explanation that is coherenbtthe given task.
We use a dierent contextual keyword for each dataset in theesni-shared
multi-head, i.e., \cose" for CoS-E, \comve" for ComVE, and \@enbook" for
OpenBook. The contextual keywords are case sensitive. Edatyword is not

part of our training vocabulary. Thus it gives a unique signlato the model
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indicating what type of explanation is expected as an outputDuring infer-
ence, we only use the contextual keyword \comve" since thevgn input to
the model is always a nonsensical statement. Though the layie complete it
is shared among di erent tasks, and the explanation geneian also depends
on the contextual keyword; hence we call it a semi-shared &y

The nal layer in the UNION model is a multi-class classi cation layer.
Unlike the language model head, it is not possible to use a sieglassi cation
layer for all the tasks as the number of labels is di erent. Tea ComVE tasks
have three plausible explanations for each, whereas OpemiRchas four, and
CoS-E has ve . So, we have three heads for the multi-choiceh&re each head
solves the independent multi-choice classi cation. Durm training based on
the contextual keyword, the UNION model triggers the respeacte classi cation
head.

The limitation of the UNION model it assumes as the given inputs al-
ways a nonsensical statement. If a valid statement is givers @n input, then
the UNION model generates a negation of the valid statement. Eu a false
statement can be true given valid context; for example, \He weastarving to
death. Hence he ate a tomato from the dirt." The UNION model takea single

statement as input, ignoring the context before and after th given statement.

3.6 Common-sense System

The primary assumption of the UNION model is that the given inptis a
false statement. In order to incorporate our common systemto a dialogue
system, it is essential to classify whether or not the giveriaiement is sensi-
cal. We train a Statement Discriminator (SD), as a discrimiative model. It
classi es whether the given statement is sensical or nonsgal. If the given
statement is sensical, then the follow of information in thelialogue system
is unchanged,whereas if the SD classi es the statement asngensical, then
the input is passed to the UNION model. The UNION generates a regspse

that explains why the given the input statement is nonsensit. The SD is an
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Chapter 4

Experiments and Results

In this chapter, we discuss in detail the various datasets wesed in this study,
and we evaluate our UNION model with the di erent evaluation mé&ics we
proposed. We compare the UNION model against two baseline m¢si8ase-
line and Baseline+MTL. We evaluate each model for di erent reasures such as
BLEU, perplexity for uency of the generated response, Estiated Approval,
and Uniqueness for the acceptance of diverse responses. HRmale investi-
gate the signi cance of each dataset for commonsense resp®igeneration by

ignoring the particular data set during training.

4.1 Datasets

4.1.1 Common Sense Validation and Explanation

The primary dataset we use for common sense explanation geximn is Com-
mon sense Validation and Explanation (ComVE)[58]. The ComVE ataset
has three tasks in it. The rst task is binary classi cation; given two state-
ments with similar wordings, it must choose which makes semand which does
not.( For examples, refer to Table 4.1.) The second task is éhmulti-choice
classi cation, as shown in Table 4.2. This nds the best podsle explanation
from the three options that explains why the given statementioes not make
sense. The third task is a response generation task shown iable 4.3; given
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a false statement, the model needs to generate an explanatias to why the

given statement does not make sense.

Input

Label

A) He wrote an exam in pen

B) He wrote an exam in knife

Table 4.1: Binary Classi cation

Question

Choices

Label

He wrote an exam in knife

A) Knife is very sharp to kill the exam

B) Knife is stainless but the exam is usually white

C) Knife is not supported to write in paper

Table 4.2: Multi-Choice Classi cation

False Statement

Possible Explanation

He wrote an exam in knife

A) Knife is not supported to write in paper.
B) No one can write with a knife.

C) Knives are not writing utensils.

Table 4.3: Explanation Generation

4.1.2 Open-book Question Answering

The open-book question [31] answering is an elementary legeience fact

guestion answering dataset that probes common knowledgedanstanding of

the system. It is a multi-choice classi cation dataset.

Edt question has

four possible explanations and a science fact associatedhitthe question that

indirectly helps the system pick the best viable option fronthe question. Refer

to Table 4.4 for examples.
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Question Choices Label

Which of these items would let the most heat travel through? A) a new pair of jeans. B
B) a steel spoon in a cafeteria
C) cotton candy at a store.

D) a Calvin Klein cotton hat.

Science Fact Metal is a thermal conductor

Table 4.4: Open book Question Answering

4.1.3 Common-Sense Explanation

The Common sense Explanation (CoS-E) [41] dataset is a mutthoice ques-
tion answering dataset with a human explanation for each gagon. The CoS-
E dataset is an extension of the Common sense QA [52] datasetere the
initial dataset did not have the human explanation for each gestion. Table
4.5 is an example of the CoS-E dataset.

Question Choices Label

If a person doesn't have pants that t, what should he do? A) buy a monkey C
B) let himself go
C) buy clothes

D) bank money

E) catch a cold

Explanation new pants must be bought

Table 4.5: CoS-E Example

4.1.4 Open Mind Common Sense

The Open Mind Common Sense (OMCS) [60] dataset is a large eclion
of common sense knowledge. It has more than a million facts English.
The OMCS dataset has di erent types of common-sense-basettements.
Some facts convey the relationships between objects and e while some
statements contain information about the emotional contebof situations. For
example, \A coat is used for keeping warm ", \The last thing yo do when
you cook dinner is wash your dishes", \Spending time with fends causes

happiness", etc.
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Training Data size | Dev size| Test size
ComVE LM | 30,000 997 1,000
ComVE MC | 10,000 997 1,000
CoS-E LM | 6819 1948 974
CoS-E MC | 6819 1948 974
Open book| LM | 4957 500 500
Open book| MC | 4957 500 500

Table 4.6: Dataset Statistics

The Table 4.6 summarizes the statistics of the dataset sizead for training.
The ComVE, CoS-E and Open-book was divided into train, dev anigst split.
While the OMCS dataset was used only to pretrain the model wiglno dev

or test split was carried for that.

4.2 Evaluation

4.2.1 BLEU and Human Evaluations

The BLEU score [35] is widely used in tasks such as machinertsdation [50]
[9], which calculates the overlap between the candidates cathe reference
text. However, similar to dialogue generation, we found it i:mot an ideal

measurement because it does not tolerate diversity. For exple, as shown
in Table 4.7, \Book is not a time keeping device." has little werlap with the

reference but it should still be considered a good generatioTo remedy this,

the submitted systems are evaluated by human evaluations.

The human evaluation score is based on the agreement betwebree re-
viewers. The evaluation is carried out on a subset of 100 ram samples of
the test set. The rubrics are as shown below:

0 - If the generated reason is grammatically incorrect or theeason itself
does not make sense.
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1 - If the generated explanation is just a negation of the gimestatement.

2 - If the generated reason is relevant to the given false séabent, but
there are grammatical errors or irrelevant explanations iit, too.

3 - If the generated reason is a valid explanation with no gramatical
errors.

The BLEU score and human evaluation are carried out by the SeBwval
task organizers. Our proposed model achieves a human evéilba score of
2.10, highest human evaluation score obtained in the ComVE @aet in the

Sem-Eval task. However, human evaluations are very expereand risk being

subjective.
False Statement We use book to know the time
Referential Reasons a) A book is used to study

b) A book does not have the ability to show what time it is.

c) A books doesn't tell the time

Generated Explanation Book is not a timekeeping device.

Table 4.7: UNION Model Generated Explanation

4.2.2 Additional automatic metrics

In order to better evaluate the proposed systems and conduaiblation studies,
we additionally measure the quality of the explanation gemated by our models

using several auxiliary automatic metrics.

Models BLEU | PPL - Gen. | PPL - Trg. EA UNI Length

Baseline 10.36 970.05 495.35 0.86|3.55 1.77| 55 1.97
Baseline + MTL 12.4 357.59 331.22 0.93/3.31 168|559 1.89
Baseline + REINFORCE 10.70 229.99 332.83 0.90| 6.81 2.38|4.87 229
UNION + No CoSE 13.28 62.89 238.64 0.96|5.82 210|851 208
UNION + No Open book 13.75 142.19 260.38 0.95/4.29 1.87|6.46 219
UNION + No OMCS 15.7 194.66 243.83 094429 179|641 206
UNION 16.36 135.1 2121 0.97|453 205| 6.59 23

Table 4.8: Results on an average of 1000 test samples from @@mVE task
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Model Precision | Recall | F1-Score
SD - Base 0.8679 | 0.8583| 0.8631
SD - Large | 0.8752 | 0.8604| 0.8678
SD - Random| 0.359 0.4927| 0.4258

Table 4.9: Estimated Approval Classi er Results

Model Precision| Recall | F1-Score
EA - Base 0.8258 0.7477| 0.7867
EA - Large 0.8199 0.7715| 0.7957
EA - Random | 0.4284 0.4994| 0.4639

Table 4.10: Statement Classi er Results

Perplexity:

We rst use perplexity to measure the grammatical correctres of the gener-
ated text. Particularly, we use two variants of perplexity: general perplexity
(ppl-gen and target corpus perplexity ppl-trg). We measureppl-gen by us-

ing GPT-2 LM head directly, as it is pre-trained on large scal corpus (reddit,

wiki). It gives an indicator of how uent the generated contat is in general. In

the meantime, we also want to measure how well the generatgoan in terms
of tting into the dialect of the target corpus. We achieve ths by training an

n-gram language model with Kneser-Ney smoothihg

Informative:
We observe that the generations by the baseline models ar¢eof are derived
from X by changing very few words, as shown in Table 4.11. Therefpre
we propose two auxiliary metrics:Estimated Approval (EA) and Uniqueness
(UNI) .

UNI metrics measure how much more information is given by the awer;
it calculates the number of tokens that are not present in theiven input.

A higher UNI value suggests more diverse and potentially moraformative

Ihttps://github.com/kpu/kenlm
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False Statement Possible Explanation

The room was dark, so | turned on the stereq. A) A stereo does not provide illumination.

B) A stereo does not provide illumination.

C) A stereo does not make light.

Table 4.11: Issues with ComVE Generation Task dataset

keywords are used. On the other hand, an entirely irrelevariext may also
achieve a high UNI score. Therefore, in addition to UNI, we use EAedcribed
in Section 3.3.

Moreover, we evaluate the generated explanation by the lathgof the re-
sponses. The length metric helps us to understand the aveealgngth of the
generated response. Similar to UNI, a random set of tokens caelfnto get a
better length score. Thus, it is crucial to have the right baince between the

UNI and the length score.

4.3 CAGE Framework:

The CAGE framework proposed bycose, for multi-choice classi cation, has
achieved state-of-the-art results in the CoS-E dataset. EhnCAGE framework
consists of a language model (GPT2) and a discriminator (BER for clas-
si cation. The language model is trained to generate an exghation given a
guestion and multiple-choice answers. Later, the explariah generated by the
LM is appended to the input. The new data is in the format of a gestion, ex-
planation, and multiple-choice answer. The new format is gaed as an input
to the discriminator for classi cation.

By replacing the LM model with the UNION, the model shows incredile
results in the classi cation task. Table 4.12 summarizes #hresults of the
UNION model and other related models. Unlike the CAGE language odlel,
the UNION model only takes the question as an input and not the nitiple-
choice answer. Only, the language model is replaced with thiNION model,
while the remaining of the framework remainder the same as Gk. The

generated response is appended to the question along witle tmultiple-choices

a7



Method Accuracy (%)

RC [52] 47.7
GPT2 [52] 54.8
CoS-E open-ended [41] 60.2
CAGE reasoning [41] | 64.7
CAGE + UNION 74.12
Humans [52] 95.3

Table 4.12: CAGE + UNION results

answers.

4.3.1 F1 Score:

The dataset used to train the SD and EA is class imbalanced, #sioe cost of
each label is di erent. Hence we report F1-score, Precisionné Recall for

each model over accuracy.

3 TrueP ositive
TrueP ositve+ FalseP ositive

(4.2)

TrueP ositive

= : : 4.2
TrueP ositve+ FalseNegative (4.2)

Recall Precision
Fl=2 Recall + Precision (4.3)

P is the precision,R is the recall, andF 1 indicates the F1-score, which is

the weighted average of Precision and Recall.

4.4 Analysis

Table 4.8 summarizes the results obtained by the various meld that we have
tried for this task. The di erence betweenUNION - No CoS-E, UNION - No
OpenBook UNION - No OCMS, and UNION is only the training datasets,
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while the architecture for all the models remains the same. hE - No stands
for without. It indicates that a particular dataset was ignaed while training
the UNION model. The perplexity, EA score, and the average letig of the
generations byUNION - No CoS-E are better than UNION - No OpenBook

It is important to note that the CoS-E dataset is open-ended;ommon sense
guestion answering. The ComVE dataset, however, has been stvacted by
annotators who were in uenced by ConceptNet to generate fasstatements.
ConceptNet is a semantic graph of commonsense knowledge tgved from
the OMCS dataset. Thus, training the UNION model with the OMCS dtaset
leads to better results than theUNION - No OCMS model The OpenBook
dataset is related to scienti c facts, which is similar to tte OMCS dataset.
Thus, the UNION - No CoS-E performs better than UNION - No OpenBook
while the UNION model performs better than all the other modelsThe initial
model we submitted to the SemEval2020 Task 4 iINION - No OCMS. It
achieved a BLEU score of 15.7 and a human evaluation score df@®®(Ranked
1st). Later, when training the model with the OMCS dataset, he BLEU score
of the model increased by 0.7. Examples of generated explaoas from all
models are provided in Appendix A.1.

The boxplot in Figures 4.1 and 4.2 represents the average stfehe expla-
nation and the average number of unique words in the explanah over 1000
sentences. The higher the length of the explanation, the Higr the probability
of having unique words in the explanation. In the average szboxplot and
unique words boxplot the explanation generated by the UNION + N&CoSE
has higher value compared to other models. It is because theseage length
of the explanations and the multi-choices in the CoS-E datesis short, and
consequently it hurts the explanation length for UNION. Yet, weinclude the
COSE dataset while training the UNION model because it improgethe qual-
ity of the explanation that is evaluated by the EA and even thenodel receives
a better BLEU score. The dots in both the boxplot represent ta outliers.
Whereas, the center line inside the box represents the mediaalue of the

average length and average number of unique words in the exyphtion.
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Chapter 5

Conclusion

In this thesis, we have addressed the problem of common sefsethe con-
versational agent. The conversational agent recently hagen very successful.
However, the most open domain model lacks in common sense kiealge. For
a chatbot to have a human-like conversation, chatbots need have common
sense. We have introduced a common-sense system devotedotoraon sense
reasoning. For a chatbot to stimulate and have a conversatidike humans, it
needs to detect and generate reasoning only for those inptitat do not make
sense or the question it has been asked.

In this research, we proposed an end-to-end common sensesosing Sys-
tem. The statement discriminator model helps to detect whéer the given
statement makes sense or not. The UNION model is used to generan ex-
planation for the given non-sensical statement. This ardacture helps to plug
our proposed system into any of the pre-de ned chatbot sysies with ease.

At times the generated explanation by an end-to-end modelsélf may not
make sense or may not be coherent with the given input. To selthis problem,
we use an estimated approval model that evaluates the genterd explanation
by the UNION model during runtime. If the generated explanatia is not good
enough, we can rely on the default conversational agent.

To train the UNION model, we use four di erent common sense reted
data set. We primarily use the ComVE for a common-sense expktion gener-

ation. Based on the human evaluation score, we achieve statethe-art results
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on the ComVE dataset.

As human evaluation can be expensive and BLEU score for the sersa-
tional task, especially for reasoning tasks, could be an ic@urate metric for
comparison of models. Thus, we propose automatic auxiliargetrics for the
comparison of our proposed models.

For future work, we would like to investigate further in the bllowing areas:

1. The UNION model we de ned, is common-sense reasoning basedloe
general facts about the world. It does not consider the domraknowledge
for common reasoning, where domain knowledge can be usezeig de-
tails. Humans learn about other humans through conversatioand gen-
erate a response based on the learned knowledge during thevessation.
In the future, we would like to generate common sense basedpense

by continuous learning through conversation.

2. We would also like to work on answering questions related tommon
sense rather than just generating an explanation to the fasstatement.
The question answering could be general knowledge quessipor it could
be a simple mathematical problem or generating a complicatexplana-
tion based on the quantitative number from a database.
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Appendix A
Apendix

A.1 Examples of generations for di erent mod-
els

False statement : The Pokemon caught Ash
Baseline : a pokemon is not a bird

Baseline + MTL : pokemon are not animals

UNION + No Cose : a pokeball is used to catch a pokemons
UNION + No OpenBook : pokemon are not alive
UNION + No OCMS : pokemon are not alive

UNION : Ash is a human and cannot be caught by a pokemon.

False statement : You should iron your clothes before you wash them

Baseline : ironing clothes is not the same as washing

Baseline + MTL : ironing clothes is not a good thing to do

UNION + No Cose : ironing clothes before washing them will make them
dirty.

UNION + No OpenBook : ironing clothes before washing them will make
them dirty.

UNION + No OCMS : ironing your clothes before washing them will

make them cleaner

UNION : you should wash your clothes before you iron them

False statement : | was on date with lion yesterday.
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Baseline : lion was not on date with girl

Baseline + MTL : lion is not a date.

UNION + No Cose : lion is not a human to be on date with.

UNION + No OpenBook : lion is a wild animal and cannot be on a date.
UNION + No OCMS : lion is not a human to date.

UNION : Lions are wild animals and are not meant to be on dates.

False statement : He broke his leg and went to get a burger
Baseline : burgers are not dangerous

Baseline + MTL : burgers are not broken.

UNION + No Cose : you don't get a burger from breaking your leg.
UNION + No OpenBook : a burger is not a medical treatment
UNION + No OCMS : burgers are not used to heal broken legs.
UNION : Break your leg and you will get a cast.

False statement : People use cars to .
Baseline : cars are not the most e cient

Baseline + MTL : cars are not used for ying

UNION + No Cose : cars don't have the ability to .
UNION + No OpenBook : cars don't .
UNION + No OCMS : cars cannot V.

UNION : Cars are not designed to .

A.2 Examples of UNION model

False statement : Firetrucks are green
UNION :  retrucks are red

False statement : Plastic is more expensive than gold.

UNION : Gold is more expensive than plastic.
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False statement : The sun sprays water on the planet

UNION : the sun is too hot to spray water

False statement : We need re to survive.

UNION : Fire is not necessary to survive.

False statement : A family do not need a house.

UNION : A house is necessary for a family to live in.

False statement : Helicopters can speak English
UNION : helicopters can only y

False statement : A normal person has 4 arms

UNION : A normal person has only two arms.

False statement : The sun comes out at night

UNION : the sun comes out at day

False statement : You should leave the lights on when you leave the room.

UNION :  You should turn o the lights when you leave the room.
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