

### BACKGROUND – CAD & REVASC

 $\diamond$  Despite advances in care, coronary artery disease (CAD) remains a leading cause of death, second to only cancer in Canada (Stats Can Data).

 $\diamond$  Over the last 20 years, PCI has become the revascularization modality of choice in most patients with CAD (Figure 1).



FIGURE 1: Changing pattern of revascularization from 1990-2008, compiled from published data from various trials (From Teo et al. 2014).

## BACKGROUND – CABG vs PCI in MULTI-VESSEL CAD

- $\diamond$  That said, early studies demonstrated benefit in terms of major adverse cardiovascular and cerebrovascular events (MACCE), MI, repeat revascularization and overall mortality supporting CABG over PCI in diabetics with mvCAD (CARDia, FREEDOM).
- II, SoS) and drug-eluting (SYNTAX, CARDia, FREEDOM) stents in mvCAD. ♦ Moreover, a recent meta-analysis suggests the benefits of CABG extend out over the long-term in both diabetic and nondiabetic patients with mvCAD (Figures 2 & 3).

|                                    |      | Statistics fo | r Each St | udy     | MACCE    | /Total   |     |             |            |     |
|------------------------------------|------|---------------|-----------|---------|----------|----------|-----|-------------|------------|-----|
| Source                             | RR   | (95% CI)      | Z Value   | P Value | CABG     | PCI      |     | Favors CABG | Favors PCI |     |
| ARTS <sup>10,11</sup>              | 0.53 | (0.45-0.64)   | -6.95     | <.001   | 132/584  | 250/590  |     | _           |            |     |
| CARDia <sup>7</sup>                | 0.59 | (0.38-0.90)   | -2.44     | .01     | 28/242   | 49/248   | < ∎ |             |            |     |
| SYNTAX multivessel <sup>9,12</sup> | 0.65 | (0.53-0.81)   | -3.83     | <.001   | 103/547  | 158/548  |     |             |            |     |
| FREEDOM <sup>16</sup>              | 0.71 | (0.57-0.89)   | -2.95     | <.001   | 112/947  | 158/953  |     |             |            |     |
| Meta-analysis                      | 0.61 | (0.54-0.68)   | -8.55     | <.001   | 375/2320 | 615/2339 | <   | >           |            |     |
|                                    |      |               |           |         |          |          | 0.5 |             | .0         | 2.0 |
|                                    |      |               |           |         |          |          |     | RR (9       | 5% CI)     |     |

FIGURE 2: MACCE According to Treatment Arm (N=5067) (From Sipahi et al. 2014).

 $\diamond$  Although CABG is superior in terms of all-cause mortality it is associated with longer recovery times and higher rates of stroke (Figure 4).

|                                    | Statistics for Each Study |              |         |         | Stroke/Total |         |     |             |                     |          |
|------------------------------------|---------------------------|--------------|---------|---------|--------------|---------|-----|-------------|---------------------|----------|
| Source                             | RR                        | (95% CI)     | Z Value | P Value | CABG         | PCI     |     | Favors CABG | Favors PCI          |          |
| ARTS <sup>10,11</sup>              | 0.92                      | (0.52-1.65)  | -0.27   | 0.79    | 21/584       | 23/590  |     |             |                     |          |
| MASS II <sup>6</sup>               | 1.73                      | (0.70-4.31)  | 1.18    | 0.24    | 12/203       | 7/205   |     |             |                     |          |
| CARDia <sup>7</sup>                | 7.17                      | (0.89-57.87) | ) 1.85  | 0.06    | 7/242        | 1/248   |     |             |                     | <b>→</b> |
| SYNTAX multivessel <sup>9,12</sup> | 1.14                      | (0.56-2.32)  | 0.38    | 0.71    | 16/547       | 14/548  | _   |             |                     |          |
| FREEDOM <sup>16</sup>              | 1.69                      | (1.01-2.85)  | 1.98    | 0.05    | 37/947       | 22/953  |     |             |                     |          |
| Meta-analysis                      | 1.36                      | (0.99-1.86)  | 1.91    | 0.06    | 93/2523      | 67/2544 |     |             |                     | >        |
|                                    |                           |              |         |         |              |         | 0.5 |             | 1<br>1.0<br>95% CI) | 2.0      |

FIGURE 4: Strokes According to Treatment Arm (N=5067) (From Sipahi et al. 2014).

# Quality of Life in Diabetics with Multi-Vessel Coronary Artery Disease: **Real-World Experience Comparing PCI and CABG**

## Brent M. McGrath, MD, MSc, PhD • Colleen M. Norris, MN, PhD, FAHA • Kevin Bainey, MD, MSc, FRCPC

Division of Cardiology, Mazankowski Alberta Heart Institute, University of Alberta, Edmonton, AB, Canada



 $\diamond$  In spite of advances in medical therapy, CABG has maintained its superiority when compared to both bare metal (ARTS, MASS

|                                    | Statistics for Each Study |             |         |         | Death    | /Total   |                        |
|------------------------------------|---------------------------|-------------|---------|---------|----------|----------|------------------------|
| Source                             | RR                        | (95% CI)    | Z Value | P Value | CABG     | PCI      | Favors CABG Favors PCI |
| ARTS <sup>10,11</sup>              | 0.97                      | (0.66-1.43) | -0.16   | .87     | 46/584   | 48/590   |                        |
| MASS II <sup>6</sup>               | 0.67                      | (0.37-1.23) | -1.29   | .20     | 16/203   | 24/205   | ← ■                    |
| SoS <sup>2,15</sup>                | 0.63                      | (0.41-0.95) | -2.23   | .03     | 34/500   | 53/488   | ←                      |
| CARDia <sup>7</sup>                | 1.02                      | (0.39-2.69) | 0.05    | .96     | 8/242    | 8/248    | <                      |
| SYNTAX multivessel <sup>9,12</sup> | 0.60                      | (0.39-0.92) | -2.36   | .02     | 31/547   | 52/548   | ← ■                    |
| FREEDOM <sup>16</sup>              | 0.73                      | (0.56-0.95) | -2.31   | .02     | 86/947   | 118/953  |                        |
| Meta-analysis                      | 0.73                      | (0.62-0.86) | -3.69   | <.001   | 221/3023 | 303/3032 |                        |

RR (95% CI)

FIGURE 3: Mortality According to Treatment Arm (N=6055) (From Sipahi et al. 2014).

 $\diamond$  In FREEDOM QOL was better with PCI at baseline, with CABG patients trending higher thereafter (Figure 5).



FIGURE 5: SAQ – Quality of Life (From Abdallah et al. 2013).

|      | METH                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
|------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| <br> | <ul> <li>The Alberta Provincial Project for Outcomes Assessment in Compatients undergoing cardiac revascularization.</li> <li>Like in FREEDOM, health status is measured using the well-valit</li> <li>✓ SAQ is a 19-item self-admin disease-specific questionnaire measurin Anginal Frequency, Exertional Capacity, Treatment Satisfaction and We identified 1319 diabetic patients (599 CABG and 720 PCI) we 2012 who reported health status outcomes using SAQ at basel Adjusted analysis was performed using a propensity score-mate</li> </ul> |
|      | RESU                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |
| ♦    | Baseline characteristics were similar between groups<br>following propensity matching (Table 1).<br>At baseline, CABG patients reported significantly lower<br>scores in terms of exertional capacity, angina stability,<br>angina frequency, treatment satisfaction and quality of life<br>(Figures 6-10).<br>At 1 year, CABG patients reported significantly higher<br>scores in terms of angina stability, treatment satisfaction                                                                                                                |

#### TABLE 1: Baseline Patient Characteristics.

|                      | CABG<br>(N=366) | PCI<br>(N=366) | p-Value |                                                  | CABG<br>(N=366) | PCI<br>(N=366) | p-Va |
|----------------------|-----------------|----------------|---------|--------------------------------------------------|-----------------|----------------|------|
| Age (years)          | 65.2            | 65.2           | 0.992   | Age ≥ 75 years (%)                               | 11.2            | 16.4           | 0.04 |
| Women (%)            | 19.4            | 18.0           | 0.636   | Multi-Vessel CAD (%)                             |                 |                |      |
| Mean BMI             | 29.7            | 29.9           | 0.630   | 2 vessel disease                                 | 0.8             | 2.5            | 0.05 |
| HTN (%)              | 19.9            | 22.1           | 0.468   | 2 vessel > 75%<br>2 vessel with 95% LAD          | 5.0<br>5.8      | 5.6<br>6.4     |      |
| Dialysis (%)         | 1.1             | 0.5            | 0.412   | 2 vessel with 95% pLAD                           | 9.4             | 7.8            |      |
| Dyslipidemia (%)     | 79.0            | 80.9           | 0.518   | 3 vessel disease                                 | 0               | 0.3            |      |
| Smoker (%)           | 18.3            | 17.8           | 0.848   | 3 vessel with 1 vessel 95%<br>3 vessel with pLAD | 37.8<br>11.3    | 42.9<br>10.9   |      |
| X-Smoker (%)         | 48.4            | 48.1           | 0.941   | 3 vessel with 95% pLAD                           | 16.3            | 17.3           |      |
| Previous MI (%)      | 31.4            | 32.2           | 0.812   | Left Main<br>Severe Left Main                    | 9.7<br>3.9      | 3.6<br>2.8     |      |
| CHF (%)              | 13.4            | 12.3           | 0.659   | Severe Left Main                                 | 3.5             | 2.0            |      |
| Prior CABG (%)       | 4.6             | 5.5            | 0.613   |                                                  |                 |                |      |
| Prior PCI (%)        | 8.5             | 9.0            | 0.794   |                                                  |                 |                |      |
| Creatinine > 200 (%) | 4.1             | 3.3            | 0.556   |                                                  |                 |                |      |
| COPD (%)             | 11.5            | 10.1           | 0.551   |                                                  |                 |                |      |
| PVD (%)              | 8.7             | 9.3            | 0.796   |                                                  |                 |                |      |
| Stroke (%)           | 5.2             | 4.9            | 0.866   |                                                  |                 |                |      |

## CONCLUSIONS

- $\diamond$  In spite of a worse baseline status, diabetics with multivessel CAD reported greater improvement in Health Status and Quality of Life at 1 year following CABG when compared to PCI-treated patients.
- $\diamond$  By 5 years, the two groups were similar in all SAQ domains.  $\diamond$  These results confirm those of the FREEDOM trial in a realworld patient population and should be considered when deciding upon revascularization in diabetic patients with multi-vessel CAD.



## HOD

oronary Heart Disease (APPROACH) is an outcomes initiative for

- lidated Seattle Angina Questionnaire (SAQ):
- ng five domains of health status on a Likert scale: Anginal Stability, Quality of Life.
- with mvCAD requiring revascularization from Jan 2009 to Dec line, 1, 3 and 5 years.
- tching technique with a resultant 732 patients matched.

## JLTS









## REFERENCES

- CABRI Trial Investigators. Lancet 1995;346:1179-1184.
- Spertus JA, et al. JACC 1995;25:333-341.
- 4. BARI Trial Investigators. NEJM 1996;335:217-225.

2008:118:381-388.

- . Henderson RA, et al. RITA-1 Trial. Lancet 1998:352:1419-1425.
- Henderson RA, et al. Lancet 1998;352:1419-1425
- Serruys PW, et al. NEJM 2001;344:1117-1124.
- SoS Trial Investigators. Lancet 2002;360:965-970. 9. Serruvs PW. et al. ARTS Trial. JACC 2005;46:575-581
- 10. Hueb W. et al. MASS II Trial. Circ 2007:115:1082-1089 11. Booth J, et al. for the SoS Trial Investigators. Circ
- 12. Serruys PW, et al. for the SYNTAX Trial Investigators. NEJM 2009;360:961-972. 13. Chaitman BR, et al. for BARI 2D Study Group. Circ
- 2009;120:2529-2540.
- 14. Kapur A, et al. CARDia Trial. JACC 2010;55:432-440. 15. Fihn SD, et al. Circ 2012;126:e354-e471
- 16. Farkouh ME, et al. for the FREEDOM Trial Investigators. NEJM 2012;367:2375-2384. 17. Groot MW, et al. SYNTAX Trial. Herz 2012;37:281-286
- 18. Abdallah MS, et al. for the FREEDOM Trial Investigators. JAMA 2013;310:1581-1590. 19. Teo KK, et al. Can J Cardiol 2014;30:1482-1491

