
Portable Software Update: A Framework for Dynamic
Software Updates in C-Language Programs

by

Marcus T. C. Karpoff

A thesis submitted in partial fulfillment of the requirements for the degree of

Master of Science

Department of Computing Science

University of Alberta

c© Marcus T. C. Karpoff, 2019

http://cbs.wondershare.com/go.php?pid=2990&m=db

Abstract

A Dynamic Software Update (DSU) system enables an operator to modify a

program without interrupting the execution of the program. Programs written

in certain programming language, in particular programs written in C, are

difficult to modify while they are executing. This thesis presents Portable

Software Update (PSU), a new framework for the creation of C-language DSU

programs. PSU offers a simple program interface to build DSU versions of

existing programs. Once a program is built using PSU, updates can be applied

using background threads that do have negligible impact on the execution of

the program. PSU supports multi-threaded and recursive programs without

the use of safe-points or thread blocking.

PSU uses function indirection to redirect DSU functions calls to the newest

version of the function code. DSU functions in a PSU program execute to com-

pletion with new calls to DSU functions always executing the newest version.

This simple mechanism allows PSU to load updates rapidly. PSU borrows au-

tomatic memory management techniques from garbage collection systems to

unload obsolete version of DSU functions after they are no longer in use. PSU

is the first DSU system for C-language programs which is able to unload older

versions of code. This use of resources enables many patches to be applied to

a long-running application.

The overhead of the DSU-enabling features is evaluated using a series

of custom synthetic micro benchmarks and of a DSU-enabled version of the

MySQL database storage engine. The MySQL storage engine maintains 95%

ii

of the performance of the non-DSU version while allowing the entire storage

engine to be updated while the database continues executing. The process of

modifying the storage engine to enable DSU is simple and straightforward.

iii

Preface

The design of the Portable Software Update framework has been filed as a

collaborative work by Kia Ting Wang, Brice Dobry, Marcus Karpoff, and José

Nelson Amaral for patent with the United States Patent and Trademark Office

with application number 15861132 and patent ID 85465103. The application’s

The current listed status of the application to be filed with the Patent Coop-

eration Treaty, with patent ID 85465112.

iv

To Jordan

For supporting me from the very beginning and every day after.

Always and Always

v

Naught Without Labour

— Greek Proverb

vi

Acknowledgements

First I would like to thank my supervisor, Dr. José Nelson Amaral, for his

constant guidance. If not for his inspiration and encouragement, I likely would

have not even started this journey let alone finished it. I’ve learned more from

you than the rest of my education combined.

Thank you to Jordan for constantly supporting me and helping me to be

the best I can be. I’ve weathered many tough challenges, that would have

been impossible alone, because of you.

Thank you to my parents for raising me with the mentality that education

is a critical part of my life. There was never a doubt that I would go to

university, just debate on what I would study.

Thank you to my fellow lab members who were always willing to help with

any challenges I was stuck on. Thank you whether you were a rubber duck or

a full blown debugger.

Thank you to (Amy) Kai Ting Wang, Brice Dobry, Rayson Ho, and Peng

Wu for the feedback and advice over the course of this project. Your experience

helped me get farther into this project than would have been possible if I had

restrict my studies to the academia.

Thank you to the Huawei Compiler Research Team for the resources you

provided me. Tens of thousands of hours were spent running benchmarks on

Huawei servers.

Thank you to Mitacs Accelerate Program for funding, in part, this work.

vii

Contents

Glossary xiii

PSU Specific Glossary xiv

1 Introduction 1

2 Dimensions of Dynamic Software Update 5
2.1 Multi-Threading Capability 5
2.2 Ability to Handle Recursion 7
2.3 Dynamic Update Granularity 7
2.4 Abstraction Layer . 8
2.5 Safe-Point Requirement . 8
2.6 Multiple-Version Support . 9
2.7 Binary Regeneration Requirement 9
2.8 Summary . 10

3 Procedure Linkage Table 11
3.1 Dynamically Linked Libraries 11
3.2 Lazy Linking . 12
3.3 PLTHook . 12
3.4 Procedure Linkage Table Unsuitability 13
3.5 Summary . 14

4 Description of PSU 15
4.1 Overview of PSU . 15
4.2 Update Supporting Library 18

4.2.1 PSU Logging System 18
4.2.2 Dynamic Function Versioning Table (DFVT) 18
4.2.3 DSU Function Counter 19
4.2.4 Intercepting Thread Calls 25
4.2.5 DSU Function Trampoline 26
4.2.6 Lock-Free Reference Counting for Reclamation 27

4.3 Application Program Interface 31
4.3.1 DSU Function List . 32
4.3.2 DSU Function Declaration 32
4.3.3 DSU Call tree . 34

4.4 Automated Transformation 35
4.5 Compilation of PSU application 36
4.6 Summary . 37

viii

5 Experimental Evaluation 38
5.1 Experimental Setup . 39
5.2 Synthetic Performance . 40

5.2.1 Function-Call Performance 40
5.2.2 Multi-threaded Function-Call Performance 43
5.2.3 Thread-Creation-Destruction Performance 46
5.2.4 DSU Initialization Performance 47
5.2.5 DSU Patch-Load Performance 49

5.3 MySQL Real World Application Performance 51
5.3.1 Experiment . 51
5.3.2 Complexity of Use . 53
5.3.3 Summary . 54

6 Related Work 55
6.1 Update Method . 55
6.2 Safe-Point . 56
6.3 Multi-threading . 57
6.4 Recursion . 57
6.5 Blocking Requirement . 58
6.6 Abstraction Layer and Binary Regeneration 59
6.7 Dynamic-Update Granularity 60
6.8 Multiple Versions . 61
6.9 Memory Impact . 61

7 Caveats 62
7.1 Updates to Function Signatures 62
7.2 Global Constant Variables . 63
7.3 Global Variables . 63
7.4 Process Forking . 64
7.5 Compatibility with C++ . 64

8 Conclusion 66

Bibliography 67

ix

List of Tables

2.1 Comparison of prevalent approaches and their features 6

x

List of Figures

4.1 Overview of PSU system . 16
4.2 Function counter with thread access pattern 24
4.3 Application Program threads and Patch Loader Thread access-

ing shared PSU Function Counter and DSU function pointer
without data race . 28

4.4 Application Program threads and Patch Loader Thread access-
ing shared PSU Function Counter and DSU function pointer
with data race . 29

4.5 Association between function pointers and counters due to the
potential data race . 31

4.6 Subsection of a call tree of a DSU program 34
4.7 The compilation flow for a PSU application with shared source

files . 36

5.1 Ratio of execution time between DSU function calls vs. non-
DSU function calls as the number of loop iterations increases
(Log Scale X-axis) . 42

5.2 Execution time of a DSU function call in a non-DSU system vs.
a DSU system. 42

5.3 Experimental results for Multi-Threaded Function-Call micro
benchmark . 44

5.3 Experimental results for Multi-Threaded Function-Call micro
benchmark . 45

5.4 Execution time of a DSU function call in a non-DSU system vs.
a DSU system. 47

5.5 Graph of time for Update Supporting Library to initialize as
number of DSU functions increases 48

5.6 Graph of time for Update Supporting Library to load an update
as number of DSU functions increases 50

5.7 The performance of a normal MySQL database and a DSU en-
abled version of the MySQL database 53

xi

Listings

4.1 A mutex based reference counting system for DSU function . . 22
4.2 Example of the requisite data structures and frameworks for a

DSU patch . 32
4.3 Example of the requisite data structures and frameworks for a

DSU function foo . 32
4.4 Example of the a DSU function before being transformed by

the Updating Weaver . 33

xii

Glossary

Dynamically Linked Library (DLL) Dynamically Linked Libraries are li-
braries whose contents are loaded at program startup. Also known as
Shared Libaries. 11–13, 15, 61

Dynamic Software Update (DSU) The process of modifying a program
at runtime. ii, iii, xi–xiv, 1–5, 7–20, 22, 24–66

Hardware Transactional Memory (HTM) A memory concurrency tech-
nique which implements transactional memory using specialized hard-
ware. 23, 24

Procedure Linkage Table (PLT) A table of function pointers for dynam-
ically linked functions that are initialized at runtime. 11–14

Software Transactional Memory (STM) A memory concurrency tech-
nique which implements transactional memory using software structures.
23, 24

Thread-Local Storage (TLS) “Thread-Local Storage (TLS) is a mecha-
nism by which variables are allocated such that there is one instance of
the variable per extant thread” [6]. 17, 24–26, 33, 39, 46, 64

Transactions Per Minute (TPM) The number of transactions a database
can perform in a minute. 52

Micro Service A subsystem of a larger system responsible for a specific task
in the larger systems overarching goal. 3

Micro-Service Architecture “The micro-service architecture is an ap-
proach to developing an application as a set of small independent
services.” [14]. 3

Monolithic Architecture A design principle that relies on highly coupled
components in a single large application. 3

MySQL A SQL database with an open source codebase. ii, xi, 2, 39, 51–54,
66

Safe-Point A location in a DSU application where a thread may be executing
code while an update may occure without causing errors. ii, 5, 7–9, 55–58

TPC-C A benchmark used to evaluate the performance of a databases. 52

xiii

PSU Specific Glossary

Dynamic Function Versioning Table (DFVT) A Table in the update
supporting library containing all versions of PSU functions. 16–19, 32

Portable Software Update (PSU) PSU Framework for building DSU ap-
plications in C. ii, xi, xiv, 2–6, 14–18, 21, 26, 27, 31–39, 41, 46, 47,
49–51, 53–66

Application Program An application that a user wants to make dynami-
cally updatable. xiv, 15, 17–19, 21, 27, 31–33, 35–37, 39, 48, 50, 51, 56,
59

Memory Reclamation Thread A thread in the update supporting library
responsible for unloading obsolete DSU code without interfering with the
application program. 16, 17, 19, 26

Patch Loader Thread A thread in the update supporting library responsi-
ble for loading new DSU code. 16, 17, 27, 28, 30, 31

PSU Function Counter A custom counter for reference counting DSU func-
tion in PSU. 16–19, 21, 25–27, 30, 32, 33, 35, 38, 39, 46, 57, 64

PSU Function List A List of functions that the update supporting library
should be able to update at runtime. 32, 33, 53

PSU Logging System A logging system in the update supporting library
used to provide information about the state of a PSU application. 17,
48, 50

PSU Patch Id A Patch Identifier used by the update supporting library to
report which patches have been loaded and unloaded. 18, 33, 53

PSU Thread Intercept A redefinition of the thread creation function that
allows PSU to control how threads are launched. 25

Update Supporting Library A dynamically linked library that contains
the runtime components of the PSU framework. xiv, 15–18, 20, 26,
31, 32, 35–37, 39, 41, 48–50, 56, 64

Updating Weaver An automated code transformation tool built to make
PSU applications easier to write. 35, 36, 53, 64, 66

xiv

Chapter 1

Introduction

Software systems are continuously evolving. Often new features are added

and bugs are fixed in programs after they are deployed for use. This fluidity is

even more prevalent in recent years as software has rapidly transitioned from

local applications to online services [2]. Individual applications running on a

personal device may be stopped and relaunched regularly causing impact to

a single user. However, when an online service is stopped and relaunched all

users connected to that service are affected. Downtime of an online service has

significant impact for users of the service. Moreover, in several industries that

rely on information technology some software applications are mission critical.

Updating such applications requires a very careful orchestration between an

existing running version and a new version, which must be warmed up and

prepped to run immediately upon switch over. Such switch-overs can be both

complex and risky, leading operators to be very conservative about installing

upgrades. In other situations online services are down for a period of time

on a regular basis to allow regularly scheduled upgrades. Dynamic Software

Update (DSU) systems provide a way to update programs while they are

executing. DSU allows operators to load fixes to bugs in the software, apply

security patches, and add new features without stopping the execution of the

applications.

Cérin, Coti, Delort, et al. show that the downtime of online services, even

for short periods of time, can cost significant amounts of money to the service

providers[3]. Between 2007 and 2014 these downtimes are estimated to have

1

cost almost 670 million USD for just 38 services. Unplanned downtime due

to failures, bugs, or security violations cannot be predicted. However, the

data from Cérin, Coti, Delort, et al. shows a need for a way to also mitigate

planned downtime to online services. DSU systems allow these services to

avoid planned downtime by updating the service’s software without requiring

software restarts. Moreover, with the ability to upgrade applications while

they are running, DSU enables operators to fix issues immediately and, thus,

potentially avoid unplanned downtime occurrences.

Another issue with service downtime is the loss of program state from

prior to the program’s shutdown. Many programs rely on caching commonly

used variables in memory to improve performance. An example of this is

MySQL’s query caching system. MySQL databases employ a method of saving

commonly executed queries in a cache memory. This system significantly

improves the performance of the database by avoiding the need to access disk

memory. To initialize these caches MySQL employs a warm-up period where

the database loads the common queries into the cache. Park, Do, Teletia, et al.

show that until a database’s cache has been properly warmed up, the database

may only perform at a fraction of it’s peak performance [19]. Park, Do, Teletia,

et al. also discuss the use of query caches in other databases. Enabling DSU

in a database application allows these databases to maintain their application

state, such as the query cache, during an update. The alternative to DSU is

the current state of the art where the updating of a mission-critical database

application requires a complex warming up of the new application followed by

a switch over.

This thesis presents Portable Software Update (PSU), a framework for

building portable DSU applications in C with minimal impact to memory

consumption and performance while adding minimal complexity. Kemerer

shows that as the complexity of software increases the cost of maintaining

that software also increases [12]. This phenomenon is easily understood as

the number of bugs due to programmer error increases with the complexity of

the software. A core principle in PSU’s design is to minimize the increase in

complexity the programmers must manage while providing the functionality

2

of a DSU system. The design of PSU is explained in detail in Chapter 4.

A recent trend in software systems is to favour micro-service architecture

over larger monolithic architecture. In large monolithic architecture systems,

all components of an application are built into a single program. This is the in-

verse of micro-service architecture systems. In micro-service architectures the

application is composed of several sub-components called micro services . Each

of these micro services are responsible for a singular task in the overarching

system. These micro services communicate with each other through strictly

defined interfaces. This approach allows the components to have independent

task scopes, drastically reducing the complexity of the overall application.

This reduced complexity helps reduce the likelihood of software issues due to

programmer error.

The use of a micro-service architecture methodology in the core design

of PSU is reflected in the encapsulation of all components of DSU inside a

separate runtime library that is responsible for the loading and unloading of

all updates. By encapsulating this functionality, programmers who use PSU

are able to gain the benefits of PSU without having any need to understand

how the update happens. Section 4.2 explains the design details of this runtime

library.

The micro-service architecture design of PSU requires a communication

structure that enables the runtime library to encapsulate all requisite function-

ality. The specifications of this communication is demonstrated in Section 4.3.

To reduce the complexity of PSU’s interface further, PSU has a specialized

C-source-to-C-source compiler that is designed to add the necessary library

interface calls to a program. This compiler provides programmers the ability

simply to specify which portions of the application are DSU without having

to consider how to make these portions DSU. The details on this specialized

compiler are detailed in Section 4.4.

PSU uses system interfaces that are either operating-system agnostic or

have synonymous libraries in most operating systems. Basing the implemen-

tation of PSU on common libraries allows programmers to use PSU without

concerns for cross system compatibilities. The prototype for PSU is imple-

3

mented for POSIX systems using the pthread and dlfcn libraries. Only the

functionalities in these libraries, which are also readily available in other sys-

tems, are used.

PSU is designed to be a near full application DSU system. A full appli-

cation DSU system is able to update any component of the application. Full

application systems are very versatile because they can be applied to any ap-

plication. These systems are extremely difficult to build because they require

the system to be able to modify components of the application that might be

currently executing. This complexity led several previous systems to suffer

from race conditions and deadlocks [5], [13], [24].

PSU avoids the complexity of full application DSU systems by only ap-

plying updates to components that are specified to be dynamically updatable.

Programmers that use PSU specify which functions they desire to be updat-

able. In PSU, after an update, only future invocations to the updated functions

can use the updated code. Once an instance of a function is invoked, it must

run to an exit point using the same version of the code that was loaded in

the system when it was invoked. Moreover, all callees of a DSU function in

PSU also run using the version that was current when the caller was invoked.

This constraint allows a single DSU function to update an entire section of the

program’s call tree. Section 4.3.3 examines this interaction in more detail.

The performance impact of PSU is measured using a series of custom syn-

thetic programs that were created with the specific purpose of exposing each of

the aspects of PSU performance. By design, PSU applications must perform

more work than a non-DSU system. This extra work is necessary to allow

the applications to update during runtime. The synthetic programs measure

these overheads. Individual overheads may appear significant when examined

in isolation but in a realistic use case the increase in work that a PSU applica-

tion must perform is insignificant in comparison with a non-PSU application.

Chapter 5 explains the design of each benchmark and discusses their results

in detail.

4

Chapter 2

Dimensions of Dynamic
Software Update

There are multiple approaches to introduce DSU to an application. DSU sys-

tems may be characterized as points in a multi-dimensional space where the

dimensions are: (1) multi-threading capability, (2) ability to handle recursion,

(3) dynamic-update granularity, (4) abstraction layer, (5) blocking require-

ment, (6) safe-point requirement, (7) ability to maintain multiple versions

running at the same time, (8) and requirement for regeneration of binaries to

enable DSU.

Table 2.1 lists these dimensions and lists several other features of common

DSU systems as well as PSU. The following sections will discuss and explain

each dimension. The remaining features as well as the different implementa-

tions will be discussed in more detail in the Related Work in Chapter 6.

2.1 Multi-Threading Capability

DSU updates may be applicable to single-threaded programs or to multi-

threaded programs. In multi-threaded programs an important issue is the

coordination of the execution of the multiple threads with the updating. This

issue is more relevant when multiple threads are executing the same source

code that is subject to the updating [17]. The multi-threading capability

interacts with several of the other design dimensions, such as the blocking

requirement, the multi-version capability, and safe-point requirements.

5

Ginseng Kitsune Ksplice Upstare POLUS ISLUS PSU

Update
Load
Method

Dynamic
Library

Dynamic
Library

Dynamic
Library

Dynamic
Library

Process
Hijacking

+
Dynamic
Library

Process
Hijacking

Dynamic
Library

Update
Method

Function
Indirection

API calls
Binary

Rewriting
Function
Indirection

Binary
Rewriting

+
Function
Indirection

Binary
Rewriting

Function
Indirection

Safe-Point Manual Manual Automatic Manual Automatic None None
Multi-
Threading

Added Yes Yes
Potential
Deadlock

Yes Yes Yes

Recursion Yes Yes

Cannot
update
functions
on stack

Yes Yes Yes Yes

Blocking Partial Yes
Stops All
Cores

Yes Partial No No

Abstraction
Layer

Source
Code

Source
Code

Source
Code

Source
Code

Process Process
Source
Code

Update
Granularity

Future
Function
Calls

Future
Function
Calls

Future
Function
Calls

Stack
Unwinding

Future
Function
Calls

Stack
Recon-
struction

Future
Function
Calls

Multiple
Code
Versions

Yes No No No Yes
Rollback
System

Yes

Memory
Growth

Yes Yes Yes Yes Yes Yes No

Table 2.1: Comparison of prevalent approaches and their features

6

2.2 Ability to Handle Recursion

Cycles in a call graph, often referred as recursive calls, create a problem for

DSU because performing an update in the middle of a recursion requires the

system to keep track of dynamic function frames in the stack so that the cor-

rect version of the code associated with each frame is executed. To enable

this matching between stack frames and code, multiple versions of the same

function must be maintained within the system. Some systems avoid this

complexity by avoiding performing an update while a recursion is under exe-

cution [1]. However, such a design choice creates the need to detect and track

recursions, which may be not trivial in the presence of indirect calls through

function pointers. Other systems simply ignore or wish away the existence of

recursion. Systems that rely of safe-points can usually avoid issues with recur-

sion by simply not setting such points inside recursive code. However, in some

important practical applications it may be difficult to establish an execution

point that is safely outside recursive execution.

In DSU systems recursion is a common problem that breaks most ap-

proaches. Recursion is ignored because of the complexity it introduces [16].

Several systems [13], [15], [17] have solutions to this problem that are specific

to their approach. Our approach uses a simplification of the problem to handle

recursion similar to others [15], [17].

2.3 Dynamic Update Granularity

Some existing DSU systems are restricted to updating the entire program.

Some systems allow for a subset of the program to be dynamically updated.

Others systems only allow pre-specified subsets of the program to be updated.

Entire program DSU provides maximum flexibility for bug fixes and unplanned

changes. However, it may require safe-points or blocking at the DSU point [1],

[10], [11], [13], [15], [17]. Requiring the specification of program segments that

may be updated provides more control over sensitive portions of an application

that an organization may want to prevent from being dynamically updated.

7

A hybrid approach that allows both whole-program and subset updates would

provide the advantages of both systems.

Our approach focuses on function level changes to new calls to a function.

Existing functions are allowed to complete their execution while future calls

will always running the newest version of code available.

2.4 Abstraction Layer

Most existing solutions require that source code be modified to make the target

program DSU. The point of modification or transformation differs with the

majority being at a source to source level [10], [11], [13], [15], [17]. Some

approaches operated at the code object level [1]. Modifications at the code

object level allow these approaches to support programming languages that

compile to the same code object format but suffer in portability to systems

that do not support those formats. Approaches that operate at the source

level gain the benefit of expanded portability to varying machines as most are

able to be ported to other systems easily but suffer in that they rely on C

specific language modification.

2.5 Safe-Point Requirement

In many DSU systems safe-points must be identified prior to updating. The

update can only occur when the execution of the application reach these safe-

points [1], [10], [11], [13], [15], [17]. A safe-point may be explicitly declared by

a programmer in the source code [10], [11], [13], [15], [17] or it may be automat-

ically discovered by a program analysis [1]. Systems that employ safe-points

benefit from being able to perform updates with a guarantee that the system

will not result in a program failure. A more versatile DSU systems allows up-

dating at any execution point [5]. Such systems have a great advantage over

safe-point-based systems because discovering safe-points is a non trivial task

both for a programmer and for an automated analysis. A safe-point based

system also must ensure that there is no unbounded amount of execution in

between safe-points. There may also be a deadlock on loading an update if a

8

program has a thread that never reaches a safe-point [5].

2.6 Multiple-Version Support

There are several approaches to handle multiple versions of the same software

unit in a DSU. One approach is to only allow one version of DSU code to be

in execution at any given time. Once an update is completed the previous

version can be offloaded from the system memory. An alternative approach is

to allow a limited number of versions of the same software unit in the system.

For instance, after updating, two versions could be executing at the same time;

however, a new updating would not be permitted until the now old version

is no longer executing. A more versatile version would allow an unbounded

number of versions of the same software unit to be executing simultaneously. In

such system, another design decision is the management of memory resources.

Some systems are not designed to offload versions that become inactive [15],

[17]. A more efficient design will have a mechanism to detect that an old

version of the software unit is no longer in execution and will then offload such

old versions. Trade-offs, similar to the ones encountered in the automated

recovery of memory resources through garbage collection in managed memory

systems, are encountered here: how often does the system checks for inactive

versions and how much memory resources are free for use. Another important

aspect of tracking which versions are active is the linking between executing

threads and the software unit versions. An efficient system should minimize

synchronization overheads for this tracking.

2.7 Binary Regeneration Requirement

Some DSU systems require that the application be written with DSU annota-

tions and, thus, have limited applicability to legacy code [1], [10], [11]. Other

systems can be applied to existing code but do require that a one-time re-

compilation and restart of the application takes place before DSU can occur.

Some DSU systems require only recompilation of existing source code to gen-

erate DSU-enable, binaries [15], [17]. Yet other systems can perform DSU in

9

existing pre-compiled binaries [4], [5].

2.8 Summary

The seven dimensions of design for DSU presented in this chapter will be re-

visited in the Related Work discussion where the DSU design presented in

this thesis is compared and contrasted with other designs described in the

literature. The discussion of these design dimensions in this chapter is also

important for a better understanding of both the design and the design deci-

sions made for the DSU system presented here. For instance, the next chapter

details why the use of an existing linkage table would be a poor design decision.

10

Chapter 3

Procedure Linkage Table

When contemplating the implementation of a DSU system it is natural to

consider leveraging the use of the Procedure Linkage Table (PLT) from a

Dynamically Linked Library (DLL) system. The PLT should be considered

because such a system already manipulates function pointers and the DSU

system could leverage this function-pointer manipulation to implement the

replacement of function versions. However, such a DSU implementation has

significant disadvantages that make it unsuitable for a practical DSU system.

This Chapter describes how a DSU system could be implemented to lever-

age the PLT and then discusses the disadvantages that make such a solution

impractical.

3.1 Dynamically Linked Libraries

DLLs use a process where the location of a function can be determined and

changed at runtime. This functionality has been around for a long time because

of the obvious advantages of only linking code that is actually executed and

linking against the most recent version of a library. DLL also enables the use

of shared objects that can be used by multiple processes.

A DSU system can leverage this functionality to change the version of an

invoked function while a program is running. Thus, it makes sense to use

the same data structures as DLL for DSU. In particular, this DSU solution

leverages the PLT. The PLT is a table of function pointers that are initialized

to point to “dummy code” or stubs. These pointers are changed to point to

11

the code of the function on the first invocation of each function.

When the executable is loaded, all of the DLLs that the executable depends

upon are also loaded in to memory. The dynamic linker will then replace all

of the entries in the PLT with pointers to the location of the DLLs. The

executable is then able to start execution.

3.2 Lazy Linking

The process of replacing all the PLT entries can take a long time; thus, delays

the launch of the executable and leading to the concept of lazy linking. In the

lazy linking model, the actual functions are linked into the PLT only when

they are referenced. A call to a function that has not yet been linked triggers

the linker. The linker then resolves the symbol and patches the PLT entry

such that the next time that the same function is invoked, the PLT entry

contains a pointer to the location in the loaded shared library. Thus, after the

initial call to a function in the PLT, all future calls can jump directly to the

dynamically linked library.

Lazy linking drastically reduces the launch time for executables because

linking to PLT entries is delayed, to be performed on demand when each

function is invoked. Moreover, if a PLT function is not called during a given

execution of the program then the linking overhead for that function is avoided.

3.3 PLTHook

A method for building a DSU system is to use the PLT to store entries for

each DSU function. Each function has a 0 version, or start function, that

is initially linked using the standard dynamic linking process. When a new

version of a DSU function becomes available at runtime, its PLT entry is then

replaced with a pointer to this new version. This process is made relatively

simple because of the availability of an open-source tool called PLTHook [22].

PLTHook was designed to search the PLT for an entry and then replace

that entry with a specific pointer. PLTHook has a simple and straightforward

12

API that makes it easy to use and perfectly suited for the task of swapping

PLT entries at runtime.

3.4 Procedure Linkage Table Unsuitability

Using the PLT to store DSU functions and then using PLTHook to replace

them at update time suffers from disadvantages that make the combination of

the PLT and PLTHook unsuitable for a DSU system.

The primary issues with using PLT entries for a DSU system is that the

code for DSU functions must be removed from the main executable and placed

in a DLL. This DLL then needs to be linked to the executable. Placing DSU

code in a DLL would require every DSU executable to be composed of two

binaries: the executable containing the non-DSU code and the DLL with the

initial version of the DSU functions. The path to these binaries must be

known at compile time. If both the executable and DLL of DSU function are

not available or are not in the right location at runtime, then the dynamic

linker is unable to find the DSU code and the executable will not launch.

Likewise, requiring two separate binaries has the disadvantage that users

must have two sets of source code: the non-DSU code and the DSU code. The

compilation process would require two passes. A first pass to compile the DSU

functions into a DLL, and a second pass to compile the non-DSU code while

concurrently linking the DLL of DSU functions. This approach is inflexible

because of these extra steps and additional source codes.

Tracking multiple versions of DSU functions using the PLT is also a chal-

lenge. While the PLT would be suitable for a stack-tracing tracking method,

such methods are not feasible for large software systems where the stack can

be very large. The alternative tracking method consists of using reference

counting. However, using the PLT with this method would require a separate

set of tables for reference counters. These reference counters are not functions

and, as such, are not suited for placement in the PLT. A solution would be

to create a custom table, with similar functionality as the PLT, to store the

reference counters. Maintaining two tables leads to unnecessary duplication

13

of code in the DSU system. Therefore, even though the use of the PLT to

store active version of functions in a DSU application is intuitively appealing,

the need for multiple binaries and multiple sources, the difficulties in tracking

multiple version, and the lack of portability make it infeasible for a large scale

DSU system.

3.5 Summary

Now that this chapter has established that using the PLT to implement the

DSU system would be a poor design decision, even though it is intuitively

appealing, the next chapter provides a description of the PSU design, including

the mechanisms that were created to keep track of the use of versions of code

for each DSU function and how obsolete versions can be reclaimed.

14

Chapter 4

Description of PSU

4.1 Overview of PSU

PSU is a framework for running and building DSU programs. The two primary

parts in a PSU system are the update supporting library and the application

program. Each of these parts can be broken into several smaller components.

Figure 4.1 shows a diagram overview of the PSU.

The application program (8) is the program that a user wants to make

DSU. The PSU framework is designed to minimize the performance impact of

DSU on the code in the application program and to provide the user a sim-

ilar development experience. Typically, the vast majority of the application

program is composed of non-DSU code (7) . The DSU sub-section of the ap-

plication program contains several pieces of code for each DSU function in the

application program.

Each DSU function has its own trampoline function (5) . This trampoline is

used to enclose all the steps to make a call to a DSU function in a single location

and then to make this functionality available to the rest of the application

program in a single interface. Each DSU function has global pointers to the

active version of the DSU function (2) and the active counter for that function

(1) . The trampoline uses these global pointers to increment/decrement the

counters using PSU functions (13) (14) and to call the DSU function through

the global pointer. Patches for a PSU system (20) are created by compiling

a DLL containing all the DSU functions that are to be replaced (19) . They

can be compiled using the same source as the original executable or a separate

15

PSU Application

User ApplicationUser Application

PSU LibraryPSU Library

DSU PatchesDSU Patches

�Compiler Linked�

�Dynamically Loaded�

Executable Source

/* PSU global pointers*/

uint64_t * __dsu_foo_counter (1)

int (*__dsu_foo_function_pointer)(int arg) (2)

char * __dsu_function_list[] (3)

char * __dsu_patch_id (4)

/* DSU trampoline */

int foo(int arg) (5)
/* DSU function initial version */

int __dsu_foo_base_function(int arg) (6)
/* User code */

int main(int argc, char argv[]) (7)
. . .

(8)

Update Supporting Library

Dynamic Function Versioning Table (9)

Memory Reclamation Thread (10)

Patch Loader Thread (11)

PSU Logging System (12)

/* PSU API */

uint64_t *__dsu_increment_counter(uint64_t * counter) (13)

void __dsu_decrement_counter(uint64_t ** counter) (14)
/* Standard thread Create */

thrd_return thread_create(thread_args) (15)

(16)

Executable Source

char * __dsu_function_list[]

char * __dsu_patch_id

/* DSU function patch version */

int __dsu_foo_base_function(int arg)

Executable Source

char * __dsu_function_list[] (17)

char * __dsu_patch_id (18)

/* DSU function patch version */

int __dsu_foo_base_function(int arg) (19)

(20)

Figure 4.1: Overview of PSU system

source.

The second part of the PSU system is the update supporting library (16) .

The update supporting library is responsible for the majority of the runtime

work in the PSU framework. The update supporting library watches for new

patch files added to the system, maintains references to obsolete versions of

DSU functions, loads new DSU functions, and unloads obsolete versions when

they are no longer being referenced. In order to maintain a record of all of

the loaded versions of DSU functions, the update supporting library maintains

a custom table called the Dynamic Function Versioning Table (DFVT) (9) ,

which contains references to every loaded version of a DSU function as well as

its associated PSU function counters.

The update supporting library contains two threads. The first thread,

called the patch loader thread (11) , loads in new versions of DSU functions. The

second thread, called the memory reclamation thread (10) , offloads obsolete

versions of functions when they are no longer in use.

When a new patch becomes available, the patch loader thread parses

through the patch, loads all the DSU code from the patch, and initializes

PSU function counters and DFVT entries for each new version of each DSU

16

function. When the patch loader thread has finished all of these tasks it

overwrites the global pointers to the active DSU functions and PSU function

counter making them available to the application program.

The memory reclamation thread scans through the DFVT for entries that

have obsolete versions of DSU functions with PSU function counters which are

set to zero. It will then free up the counters and DFVT entry. When there

are no DSU functions that reference a patch, the memory reclamation thread

offloads that patch.

When there is no work to be done by the patch loader thread and the

memory reclamation thread, they both sleep until a new patch is available.

Whenever the patch loader thread finishes loading a new patch, it triggers the

memory reclamation thread to start its scans. If there are no obsolete versions

of DSU functions in the system, the cleaner goes back to sleep. Otherwise,

it repeatedly scans through the DFVT. To reduce the performance impact

of these repeated scans, the memory reclamation thread sleeps between each

scan. The amount of time that the memory reclamation thread sleeps between

scans increases at an exponential rate governed by a threshold.

The update supporting library contains a subsystem, called the PSU log-

ging system, that is used to monitor the status of the PSU application (12) .

The PSU logging system communicates the status of patch loading and un-

loading in a PSU application, to users via a log file. By avoiding the use of

standard input, standard output, or standard error, the PSU logging system

can communicate without interrupting the application program.

The update supporting library overrides the thread-create function for the

standard threading library (15) . When the thread creation function is called

from the update supporting library, a Thread-Local Storage (TLS) variable

is created to store an index for the PSU function counter. This TLS variable

allows each thread in the application program to access and increment the

PSU function counter for their thread without a chance of a race condition.

17

4.2 Update Supporting Library

The previous section described how the invocation of a DSU function will

always use the most recent version of the function that was loaded into the

system. However, for a long-running application, it is also important to release

resources that are used by obsolete versions that are no longer executing and

that will never be invoked again because they were superseeded by newer

versions. This section describes a logging system based on reference counting

that accomplishes this resource reclaiming.

4.2.1 PSU Logging System

Once invoked, a DSU function must execute to completion using the same

version of the code that was active when it was invoked. A DSU patch may

be unloaded only after all function invocations that use code from that par-

ticular patch have finished executing. Therefore, a patch may stay loaded for

an undetermined amount of time depending on the design of the application

program. Each PSU patch is provided with an optional PSU patch id . If the

PSU patch id is provided, then PSU is able to report information about what

patches have been loaded and unloaded at runtime. Because PSU operates as

a framework for providing DSU functionality to a application program, PSU

must be able to provide information without interrupting the I/O of the ap-

plication program. Therefore, the PSU logs the output for information in a

log file using the PSU patch id for reference.

4.2.2 Dynamic Function Versioning Table (DFVT)

PSU implements a reference counting approach to track when obsolete versions

of DSU functions can be retired. For each DSU function, PSU must store a

pointer to the current DSU function version and a PSU function counter that

serves as a version reference counter. The DFVT is a custom table of pointers

to DSU functions and PSU function counters. The DFVT scales to grow as

more versions of DSU functions are loaded and to shrink as these obsolete

versions are retired. An update supporting library accesses the DFVT to keep

18

track of where in the application program the active DSU function pointer

and active PSU function counters are stored. The DFVT also stores a list of

DSU function pointers and PSU function counters pairs that are no longer the

newest version but still have active references.

The outermost layer of the DFVT is a simple hash map. It maps a DSU

function’s name as a string to a table entry. Each table entry contains a

pointer to the location in the application program’s memory where the DSU

function pointer and the PSU function counter are stored. Each entry also

contains a queue of obsolete versions of DSU functions. PSU function counters

for obsolete versions of DSU functions cannot ever be increased after that

version has been updated. When the last element in the queue hits zero in the

PSU function counter, that function can be reclaimed because there are no

active stack segments using that DSU function. This scheduling is explained

in Section 4.2.6. During an update when a new DSU function is loaded, a

new PSU function counter is allocated and the pair are pushed to the front

of the queue. The memory reclamation thread periodically checks if there

are entries in the queue of obsolete functions and removes them if the PSU

function counter for that entry is zero.

4.2.3 DSU Function Counter

Obsolete DSU functions must be reclaimed as new DSU functions are loaded.

Each DSU function requires memory to store the newly loaded code. If a

program containing DSU functions that are updated multiple times runs for

an extended period of time, the memory used by obsolete code grows. Thus,

the space occupied by obsolete code must be reclaimed to prevent, potentially

catastrophic, wasted memory.

Automated memory management is well understood in the context of

object-oriented programming languages where a separate system, called the

garbage collector, is responsible for reclaiming memory which is occupied by

objects that can no longer be accessed by the program. This reclaiming may

be performed by sweeping the memory from a known collection of root objects

or by using reference counting. This session reviews several approaches for

19

memory reclamation that could be used in a DSU system.

The first approach is simply to not reclaim memory at all. This approach

has a considerable advantage in performance and implementation simplicity as

it has no requisite code added other than the base DSU function indirection.

Such a system would be ideal for systems that can be restarted semi-regularly.

An example of such systems are rapid prototyping systems. DSU without

memory reclamation would enable the rapid evolution of such system without

requiring a restart for each code change. Unfortunately reclaiming memory is

an necessary for systems that run for extended periods of time or that have

many updates. This is because the whole system may become slow due to

increased page swapping caused by the excessive memory usage.

The second approach is a reference-counting system. In such a system each

target location in memory is assigned a counter. When a reference to the loca-

tion is created, the reference counter is incremented. When that reference is no

longer used, the counter is decremented. In a DSU system the number of active

invocations associated with a given version of a function are counted instead of

counting references to a memory location. This approach is straightforward to

implement and has a minimal memory impact. However, in a multi-threaded

system all the reference counter updates must be synchronized. A reference

counter must be updated in each invocation and each termination of a DSU

function.

A third approach is to sweep through memory looking for references to the

targeted location in memory. When an active reference is found, it is marked

and the system assumes that the location in memory is in active use. These

systems have the advantage that they provide the minimal performance im-

pact on the programs they run. The execution pattern of the user threads in

this approach is identical to a system where memory is not reclaimed at all.

In such a system, the update supporting library would scan through the call

stack of the targeted threads looking for the call returns to any DSU functions.

When one is found, the update supporting library would then know it could

not reclaim that DSU function. The primary issue with scanning the call stack

for DSU function calls is that scanning an active call stack is difficult to imple-

20

ment. Scanning may require the system to pause the execution of the targeted

thread during the duration of the scan. While solutions created for concurrent

garbage collection in dynamic memory management could be adopted, they

are complex to implement and difficult to correctly implement [21]. Another

issue with such an approach is that in large systems these call stacks can be

quite large, especially in a recursive system.

PSU Function Counter

Of the approaches listed, PSU implements the reference-counting system. In

its core concept, its a relatively simple system to implement. PSU implements

a modified version of reference counters called PSU function counters because

the PSU is designed to work with multithreaded application programs. Multi-

ple threads trying to concurrently access a reference counter without synchro-

nization constitute a race condition. There are three approaches to deal with

this race condition, each with benefits and costs.

21

1 uint64_t * __dsu_foo_counter;

2 int (* __dsu_foo_pointer)(int arg);

3 mutex * __dsu_foo_mutex;

4
5
6
7 int __dsu_foo_function (int arg) {

8 /* foo body */

9 }

10
11 int foo(int arg) {

12 mutex_lock(__dsu_foo_mutex);

13 uint64_t * cache_counter = __dsu_foo_counter;

14 (* cache_pointer)++;

15 uint64_t * cache_pointer = __dsu_foo_pointer;

16 mutex_unlock(__dsu_foo_mutex);

17
18 int reval = cache_pointer ();

19
20 mutex_lock(__dsu_foo_mutex);

21 (* cache_counter)--;

22 mutex_unlock(__dsu_foo_mutex);

23 }

24
25 int main(int argc , char* argv []) {

26 /* Main body */

27 var_foo = foo(var_bar);

28 /* Main body finish */

29 }

Listing 4.1: A mutex based reference counting system for DSU function

The first approach is to place mutex locks before and after calls to DSU func-

tions. This is optimally done through a trampoline function. An example of

this approach can be seen in Listing 4.1. Inside the trampoline function, the

calling thread will acquire the lock, increment the counter, cache the function

pointer, release the lock, and then call the DSU function through the cached

pointer.

When exiting a DSU function inside the trampoline function, the calling

thread must first cache a copy of the return value from the DSU function,

acquire the lock, decrement the counter, release the lock, and then return the

value from the DSU function.

A mutex-based approach benefits from having a very strict guarantee that

every DSU function is tied to their counter with no race conditions. This leads

22

to a simple and intuitive proof of correct behaviour. This approach also ben-

efits from hardware and software support in existing systems. A limitation of

this approach is that the performance impact can be significant. Synchroniza-

tion via mutex can have substantial overhead. Contention in locks may lead

to additional traffic in the system buses, synchronizing instructions such as

atomic test and set are more expensive to execute. Advanced locking systems

such as ticket locks can be used to ameliorate the contention issues. However,

even an efficient locking system results in additional memory locations, ded-

icated exclusively for the locking operations, being accessed and generating

additional memory traffic.

The second approach is to use atomic variables as reference counters. Sim-

ilar to a mutex-based approach, atomic-reference counters would allow mul-

tiple threads to increment counters without incurring a race condition. This

approach is easier to implement because it simply requires that the type of the

counters be changed to an atomic type and the increment function be changed

to an atomic increment rather than a conventional increment. However, this

approach has a looser pairing between the function version and the counter

increment. It also has similar performance overhead issues to the mutex based

approach due to the expensive atomic increment and decrement instructions.

The atomic-reference-counter approach benefits over the mutex approach in

that as contention increases performance does not degrade due to the absence

of the spin lock when another thread is incrementing or decrement the counter

and making the function call or return.

A third approach is to use transactional memory. Transactional memory

is a technique that allows multiple memory loads and stores to be completed

atomically. Transactional memory assumes that there will be no concurrent

accesses and, thus, perform the operations optimistically. Then, in the cases

where a conflict does occur, a transaction rolls back and the sequence of mem-

ory operations is attempted again. When an excessive number of rollbacks

occur, the system can revert to a lock-based synchronization. There are two

forms of transactional memory: Software Transactional Memory (STM) and

Hardware Transactional Memory (HTM). STM is implemented using atomic

23

c0 Padding

c1

...

cn

T0

T1
...

Tn

Thelper

Cache Line Length

Figure 4.2: Function counter with thread access pattern

variables and only has benefits when a large number of memory locations are

modified within a transaction. For the reference counters in a DSU system,

there would be no benefit on using STM over atomic reference counters. HTM

can have a significant performance benefit over atomic variables and mutex

locks when there is low contention to the access of counters, which would be

expected in a DSU system. Unfortunately, HTM is only available in a very

limited number of machines.

HTM could potentially be the best solution for dealing with the function

counter race condition but it is not yet practical.

The final approach is to drop the need for synchronization between threads

entirely. The need for synchronization arises due to multiple threads accessing

the same reference counter for multiple invocations of a single DSU function.

The solution is to split this single counter into a set of counters where each

thread maintains its own counter. Therefore, without multiple accesses to the

same counter, there is no race condition. Each thread is assigned their own

index, which is stored in a TLS variable that is assigned at thread creation.

False sharing, where multiple threads could be accessing the same cache line

even though they are updating different counter, could result in performance

degradation. To prevent false sharing, padding is added around each counter

24

to guarantee that they are located on different cache lines. Figure 4.2 shows

the memory layout of such a system. This approach has the advantage of

eliminating a race condition for access to the counters by multiple threads

without relying on expensive atomic variables or mutex locks at the cost using

more memory. However, there is still a race condition between each individual

thread and the thread that reclaims memory used by obsolete functions. The

solution to these races is explained in Section 4.2.6.

4.2.4 Intercepting Thread Calls

A unique index is associated with each thread and stored in its TLS so that

the thread can use this index to access PSU function counters. However, a

TLS location can only be accessed by the thread that has access to the TLS.

Therefore, this variable can only be assigned after the thread has been created.

There are two approaches to solve this problem.

The first solution is to add code that reads the thread index to every

function call that may start the execution of a thread. This approach requires

a program to systematically go through the source code, discover all calls to

thread creation, and add the needed code. This is not a very robust system

because it would not be possible to discover function calls that create threads

inside libraries. This solution also makes the system much more difficult and

error prone to users as it requires a significant amount of user implementation.

The second solution is to intercept calls to thread creation and use a tram-

poline layer called the PSU thread intercept . The PSU thread intercept creates

a closure containing a pointer to the function that starts a thread and the val-

ues of its arguments. It then calls the original thread creation function with

the starting function being a second trampoline function called the PSU thread

initializer . The closure is passed to PSU thread initializer. The PSU thread

initializer then acquires a thread index and assigns it to TLS before finally

calling the original target function with its arguments. The acquisition of the

thread index must be performed synchronously with every other thread cre-

ation call. This adds an increased overhead to thread creation but allows for

calls to DSU functions to be performed more efficiently.

25

The prototype of PSU employs the trampoline approach because it is more

general and more robust than the code-insertion approach. The trampoline

approach is also easier to implement in large systems. The PSU prototype is

written for a POSIX system and uses the pthread threading library. Thus, in

this prototype, calls to pthread create are intercepted to invoke the tram-

poline. To monitor the use of thread indices, the update supporting library

maintains a boolean vector. A PSU thread initializer first acquires a global

thread-create lock and then searches for an unset value indicating that the

corresponding index is free. Then, it sets a TLS variable to the value of this

index. It then releases the thread-create lock and the newly created thread

calls the original target function. PSU thread initializer also registers a thread

cleanup function called PSU thread cleanup that will be called when the thread

exists. This function unsets the boolean value at the index’s location allowing

it to be set again by a new thread.

While the prototype is implemented for POSIX systems, similar function-

ality exists in other threading libraries. Therefore the techniques described

can be used in various multithreading systems.

4.2.5 DSU Function Trampoline

PSU implements a reference-counting approach to monitor when DSU func-

tion versions become obsolete. PSU also uses function pointers to swap out

versions of DSU functions that have been updated. In this approach the PSU

function counters must be incremented prior to calls to the DSU function

pointer. The PSU function counter must also be decremented after the DSU

function returns. This must be done so that the memory reclamation thread

knows when a DSU function can be reclaimed. The increment and decrement

must happen at every DSU call site. To simplify this, PSU uses a trampoline

function call. Inside this trampoline function, a pointer to the PSU function

counter is cached and incremented. The DSU function pointer is then derefer-

enced and called. When the DSU function returns, the cached pointer to the

PSU function counter is used to decremented the counter. The return value

from the DSU function call is then return. This approach guarantees that

26

the same PSU function counter is incremented when the DSU function call is

made and decremented when the call returns.

An alternative to using a function trampoline would be for PSU users to

add code to increment the PSU function counters prior to directly calling

the DSU function through the function pointer and to decrement it upon

function return. An advantage of this alternative would be a reduced number

of function calls required to call a DSU function. However it significantly

increases the amount of work required from a DSU user increases the likelihood

of user error. Moreover, there is a high probability that the trampoline function

will be inlined by a compiler and, thus, the additional function call overhead

would be eliminated.

4.2.6 Lock-Free Reference Counting for Reclamation

PSU employs a lock-free reference-counting approach and thus there are race

conditions between worker threads invoking a DSU function and the updating

of the version of the same function by the patch loader thread. This subsec-

tion explains how correct operation is guaranteed in the presence of such race

conditions. To change the version of a function, the patch loader thread must

update both the global pointer for PSU function counter and the DSU function

pointer. Logically these two memory locations should be updated atomically

to prevent inconsistency because the application program reads both pointers

when invoking a DSU function.

Let fi and fi+1 be two consecutive versions of a DSU function f . Let ci and

ci+1 be two consecutive PSU function counters for f associated with versions

fi and fi+1. Let pf be the global function pointer used by the application

program to call f . Let pc be the global PSU function counter pointer used by

the application program during a call to f .

27

pc← &ci+1

pf ← &fi+1

∗pf(. . .)

lc← pc

User Threads foo counter foo pointer Loader

(a) Patch Loader Thread starts and finishes update prior to DSU function invocation

∗pf(. . .)

lc← pc

pc← &ci+1

pf ← &fi+1

User Threads foo counter foo pointer Loader

(b) Application Program threads finish DSU function invocation prior to patch
loader thread update

Figure 4.3: Application Program threads and Patch Loader Thread accessing
shared PSU Function Counter and DSU function pointer without data race

28

∗pf(. . .)

lc← pc

pc← &ci+1

pf ← &fi+1

User Threads foo counter foo pointer Loader

∗pf(. . .)

lc← pc

pc← &ci+1

pf ← &fi+1

User Threads foo counter foo pointer Loader

Figure 4.4: Application Program threads and Patch Loader Thread accessing
shared PSU Function Counter and DSU function pointer with data race

29

When updating f from fi to fi+1 the patch loader thread must perform

the following sequence of events in this order:

(1) pf ← &fi+1

(2) pc← &ci+1

Where & stands for the “address of” operator. Step (1) sets the global

DSU function pointer pf to point to the new DSU function version fi+1 for

function f . Step (2) sets the global PSU function counter pointer pc to pointer

to the new PSU function counter version ci+1 for the function f .

When invoking a DSU function f a worker thread must execute the fol-

lowing sequence of events in this order

(1) lc← pc

(2) (∗pf)(. . .)

Step (1) creates a local copy lc of global pointer to the counter pc. Step (2)

dereferences the global function pointer pf to invoke the correct target DSU

function.

To address the issue of potential races between the patch loader thread

and worker threads’ function invocation, it is necessary to consider all in-

terleavings of the steps above. There are two cases to consider as shown in

Figures 4.3 and 4.4. Case 1 is when there are no inconsistency because one

thread performs both steps before the other thread performs its steps. This

occurs with the two interleavings shown on Figure4.3. Case 2 consists of four

interleavings, shown in Figure 4.4, that can lead to inconsistent state.

The inconsistency happens when the patch loader thread has updated the

function pointer to activate a newer version of the function, but has not yet

updated the counter pointer when a worker thread performs its steps to invoke

a DSU function f . The consequence is that the worker thread increments the

counter ci for a version fi while actually invoking a version fi+1 for the function

f .

Figure 4.5 summarizes the possible associations between reference counters

and function pointers that can be created because of the interleavings shown

30

c0 . . . cn cn+1 . . .

f0 . . . fn fn+1
. . .

Figure 4.5: Association between function pointers and counters due to the
potential data race

in Figure 4.4. Given that the steps in both the patch loader thread and

the worker threads are strictly ordered, it is impossible for a counter ci+1 to

be incremented for the invocation of a version fi of a function f . However, a

counter ci may be incremented when a version fj, j > i is invoked. This means

that the reference counter can only overcount the number of invocations of a

version fi and undercount the number of invocations of a version fj. Both

overcounting and undercounting could lead to issues when reclaiming versions

fi and fj. However, the overcounting only leads to a temporary delay in the

reclaiming of fi because, eventually, when the invocation fj terminates the

counter ci will be decremented. To prevent reclaiming fj too soon because of

the undercounting, a version fj can only be safely reclaimed when the counter

cj is equal to zero and all counters ck, k < j are also zero.

4.3 Application Program Interface

The PSU system is a framework for building DSU applications. PSU interfaces

with application programs using a set of data structures and functions as well

as a linked library. These interfaces must be declared following a specific

standard. This rigid standard makes these functions easily detectable by the

update supporting library at run time.

31

4.3.1 DSU Function List

Every DSU function in the application program must have its name listed in

a globally declared list of functions called the PSU function list . When a PSU

program is launched, the update supporting library scans the PSU function list

and creates entries in the DFVT for each DSU function. The DSU function

name listed in the PSU function list is also used by the update supporting

library to locate the information associated with that DSU function such as

the global DSU function pointer and the global PSU function counter pointer.

4.3.2 DSU Function Declaration

1 char * __dsu_function_list [] = [..., "foo", ..., NULL];

2 char * __dsu_patch_id = "...";

Listing 4.2: Example of the requisite data structures and frameworks for a
DSU patch

1 uint64_t * __dsu_foo_counter;

2 int (* __dsu_foo_function_pointer)(int arg);

3
4 /** DSU_FUNC */

5 int foo(int arg) {

6 uint64_t * counter

7 __attribute__ ((cleanup(__dsu_decrement_counter))) =

8 __dsu_increment_counter(

9 &__dsu_foo_counter[THREAD_ID * CACHE_LINE_SIZE]

10);

11 return __dsu_foo_function_pointer(arg);

12 }

13
14 int __dsu_foo_base_function(int arg) {

15 /* foo function body */

16 }

Listing 4.3: Example of the requisite data structures and frameworks for a
DSU function foo

32

1 /** DSU_FUNC */

2 int foo(int arg) {

3 /* foo function body */

4 }

Listing 4.4: Example of the a DSU function before being transformed by the
Updating Weaver

Listings 4.2 and 4.3 depicts a DSU function, named foo, and all requisite data

structures for the PSU framework. Listing 4.2 Line 1 shows the PSU function

list with the DSU function name. The PSU function list is defined as a NULL

terminated list of character arrays. Listing 4.2 Line 2 shows a PSU patch

id. The PSU patch id is used to provide information about the state of the

PSU program through its execution. The PSU patch id can be any string of

characters.

Listing 4.3 lines 1 and 2 show a global DSU function pointer and a

global PSU function counter pointer. Both the global DSU function pointer

and global PSU function counter pointer are named following these steps:

(1) prepend __dsu_ to the function name foo, (2) append _f_pointer for the

function pointer, (3) and append _f_counter for the PSU function counter.

The THREAD_ID in Line 9 is a thread specific global variable stored in TLS.

By storing the variable in TLS, the interface for the trampoline is identical

for each thread but the indexed value is unique to that thread. During the

creation of a thread in the application program the THREAD_ID is set to unique

value. The CACHE_LINE_SIZE in Line 9 is a global constant representing the size

of a cache line for the machines specific hardware.

The DSU function trampoline is named using the original DSU target name

foo. It’s content must follow the definition Listing 4.3 lines 5-12 exactly with

the exception of the trampoline name on Line 5. The original function is

renamed by prepending __dsu_ and appending _function to the function name.

Listing 4.3 Line 14 shows the base version for the DSU function foo.

33

. . .

DSU
foo()
v0

bar()
v0

. . .
v0

(a) Subsection of a call tree with a DSU
function

. . .

DSU
foo()
v0

DSU
foo()
v1

bar()
v0

bar()
v1

. . .
v0

. . .
v1

(b) Subsection of a call tree with a DSU
function after a patch has been applied

Figure 4.6: Subsection of a call tree of a DSU program

4.3.3 DSU Call tree

In a PSU application, all functions can be transformed to be DSU except

the main. This would allow for the future invocation of every function to

be updatable at any point. This would incur an unnecessary performance

penalty. When a DSU function is compiled into a patch, all requisite sub-

functions that will be invoked will be compiled into the patch and invoked by

the DSU function. In PSU, a DSU function marks a point in the call tree that

should be able to be transferred to a new version.

Figure 4.6 depicts an example of a DSU function in PSU. Function bar may

be referenced from a non-DSU section of the program or from a DSU function.

When a DSU patch is applied to the application, foo is updated from v0 to v1.

When foo makes a call to bar, it will call the version of bar associated with it.

In Figure 4.6a, bar is invoked from both the non-DSU code and by the DSU

function foo. In Figure 4.6b, bar exists in two forms. The non-DSU code will

invoke the original version of bar (v0). The updated DSU function foo (v1) will

34

invoke the version of bar (v1) that was compiled with it.

An optimal use case for PSU in a program is to map sections of the ap-

plication programs which are optimally run from invocation to termination in

a single DSU version. This subsection of the application program’s call tree

must not be neither too large, as it would not be updated often enough, nor

too small, as it would incur an excessive performance penalty.

4.4 Automated Transformation

The rigid nature of the PSU interface is not only important for the runtime

interface of the update supporting library, but it also increases the likelihood

of a user error. To simplify this process, PSU has a source-to-source trans-

formation tool called the updating weaver . The updating weaver is written

using the Clang LibTooling interface [23]. The Clang LibTooling system is de-

signed to allow developers to use the clang parser and write their own backend

programs. This is typically used to create linting tools as well as code trans-

formation tools. The updating weaver scans the application program code

base and searches for a PSU specific function tag shown in Listing 4.4 Line 1.

It then transforms the function into a DSU function through the following

steps: (1) rename the function to the DSU base version format, (2) insert

the global DSU function pointer, (3) insert the global PSU function counter

pointer, (4) insert the DSU function trampoline using the original function

name, (5) and insert an include statement for the update supporting library

into any file that has a DSU function declaration.

The addition of the updating weaver to the PSU framework is a tool of

convenience. It allows for applications, not originally written with DSU in

mind, to be able to easily be rebuilt with entire subsection of them DSU. It

also allows users to build new applications without the extended complexity of

the PSU system. The updating weaver also allows users to run static analysis

tools on their code bases without the PSU interface interfering with them.

35

C
source
files

updating
weaver

DSU C
source
files

Any C
compiler

DSU
patches

DSU
info
files

DSU
executable

update
supporting
library

Figure 4.7: The compilation flow for a PSU application with shared source
files

4.5 Compilation of PSU application

With the updating weaver, PSU is able to make a non-DSU program easily

DSU. The steps involved are displayed in Figure 4.7 and listed as follows:

(1) add DSU Function Tag to the application program using /** DSU_FUNC */

or //! DSU_FUNC, (2) run the updating weaver on the application program code

base, (3) and compile the generated code using a standard compiler.

The DSU function tags in step (1) only need to be added if a partial DSU

application is being generated. The updating weaver can transform every

function in the application program, except the main function, into a DSU

function. This would allow for a near whole program to be DSU.

As manually annotating every function desired to be DSU may be tedious,

PSU allows users to use an alternative way of listing functions to be targeted

for transformation. A user simply creates a header file which contains function

declarations for each function to be targeted. This header file is then passed

to the updating weaver during step (2). This approach allows a large number

of functions to be declared in a single place.

The updating weaver can perform an in-place transformation to overwrite

the source files. Alternatively the updating weaver is able to generate a DSU

copy of the application program source files. This flexibility allows developers

to adopt a system that is suitable for their use case.

PSU applications are written in standard C and do not use compiler specific

functions. This allows PSU applications to be compiled using any C compiler.

The update supporting library requires that DSU functions be compiled with

36

their relocation data still available at runtime. In GCC and Clang this is done

by compiling with the flag -rdynamic.

An alternative to compiling with relocation data is to register the location

of each DSU function component prior to launching the main function. This

registering would be done through a call-back system. This call-back system

would be a series of function calls from the application program that would

have to occur after the update supporting library is initialized but prior to

the application program’s main function being invoked. This approach would

increase the complexity of the PSU system and would reduce the compatibility

with other complex systems but would potentially allow for better performance

of the PSU application.

The compilation process employed by PSU is simple and easy to use. This

allows PSU to add little extra complexity for a developer. PSU manages to

add the additional DSU functionality with minimal impact to the compilation

process. This is tested in Chapter 5.

4.6 Summary

This chapter presented the design of PSU describing how invocations of DSU

functions are executed indirectly through function pointers, how a carefully

designed low-overhead multi-threaded reference counting mechanism can be

used to reclaim resources occupied by obsolete versions of DSU functions, and

how a non-DSU function is recompiled with a weaver to make it DSU. All

these modifications will impose an overhead in comparison with the original

version of the program that could not be updated dynamically. The next

chapter presents an experimental evaluation that quantifies these overheads

both using synthetic programs designed specifically to measure each type of

overhead, and then the overall overhead experienced by a database application.

37

Chapter 5

Experimental Evaluation

The PSU system must perform more work than a normal C program. This

extra work encompasses all the extra steps that must be executed in order

for the program to update themselves when patches are available. Therefore

the experimental evaluation of a DSU system must determine how much is

performance is lost in these additional steps.

The evaluation of the DSU overhead requires the study of several compo-

nents of PSU programs: (1) the transformed DSU function, (2) creation of

threads, (3) destruction of threads, (4) program initialization, and (5) patch

loading. With each of these components a small amount of performance is

lost. This evaluation proposes several questions focused on each of these com-

ponents as well as the system as a whole.

The First component is the transformed DSU function. Each DSU function

is transformed from a direct function call to an indirect function call with

PSU function counters accesses. This adds a delay to the target program

in order to be able to execute the target function’s body. The Function-

Call Experiment, in Section 5.2.1 is designed to measure the precise cost in

performance introduced by the transformation from a direct function call to a

DSU function call.

The PSU function counters are implemented to have no cross thread im-

pact in performance between user threads. The Multi-threaded Function-Call

Experiment, in Section 5.2.2, proves that user threads have no cross thread im-

pact. This allows PSU to scale to applications with large numbers of threads.

38

During thread creation, each thread is assigned a TLS variable. These

variables are used for PSU function counter accesses and must be assigned

using expensive mutex locks. The Thread-Creation-Destruction Experiment

in Section 5.2.3 is designed to measure the precise cost of this sequential startup

of threads.

The update supporting library must be initialized prior to the main func-

tion of the application program may be invoked, which adds a delay to the

launch of the application. The DSU Initialization Experiment, in Section 5.2.4,

measures the delay before the user’s main application starts running as the

target application scales in number of DSU functions.

When a new DSU patch is loaded, new versions of DSU functions are exe-

cuted, on the first function call, immediately after they have finished loading.

The time it takes to load a DSU patch varies based on the number of DSU

functions that must be loaded. The DSU Patch-Load Experiment in Sec-

tion 5.2.5 measures the time it takes for a DSU patch to be loaded as the

target application scales in number of DSU functions.

The previous experiments mentioned rely on synthetic micro benchmarks

to measure the exact cost of the components. They do not fully reflect the

performance of a PSU application. The micro benchmarks show the worst-

case performance loss of the PSU system and not the performance relative to

a real world application. The MySQL Experiment in Section 5.3 is created

in order to measure DSU performance in a real world application. In the

MySQL Experiment we created a DSU version of used MySQL [18] and used

the HammerDB benchmarking software [9] to measure performance.

5.1 Experimental Setup

All experiments were run on a system with two Intel Xeon E5–2687W v4

CPUs with the CPU frequency locked at 2.0 GHz, with all forms of speed step

disabled, and with 125GB of memory. The system ran Ubuntu 16.04 with the

4.4.0–138–generic Linux kernel. In all experiments that use the GCC compiler,

the GCC–7.3.1 April 24, 2018 release is used. All experiments that use the

39

Clang Compiler use Clang–6.0.0 March 8, 2018 release. All references to to

executing with Perf in the subsequent sections, refer to executing the program

in question with Perf version 4.4.155 [20] monitoring cache-references, cache-

misses, branches, branch miss-predictions, page-faults, cpu-clock, and task-

clock.

All experiments which use synthetic benchmarks are compiled using both

Clang and GCC at optimization levels o0, o1, o2, and o3 to create a baseline

version of the benchmark program. The DSU library inclusion statements

are then added and the program is compiled again to create the experimental

version of the benchmark program. All synthetic benchmarks are executed 30

times with the average results reported. In all of the following bar graphs a

95% confidence interval is recorded. In several of the graphs the confidence

interval is so narrow that the confidence interval not being visible in the graphs.

5.2 Synthetic Performance

5.2.1 Function-Call Performance

The invocation of a DSU function must perform more work than the invocation

of a non-DSU function. The DSU function invocation requires a function

pointer dereference as well as the updating of a reference counter. Thus, the

performance implications of a DSU function invocation must be understood.

Experimental Design

In order to measure the performance loss caused by DSU function invocation,

a very simple synthetic program was created. This program has two core

components: a target function that dereferences a pointer to an integer and

returns the value of the integer and a loop that invokes this target function

many times. The time to execute a single invocation of the target function is

minuscule. Therefore the invocation has to be repeated a large number of times

in order to accurately measure the invocation cost. In different experimental

measurements, the loop invokes the target function a different number of times.

The synthetic benchmark is then run at all optimization levels with Perf.

40

Varying the number of iterations in the loop containing the function invocation

provides insight into whether the programs initialization cost may overshadow

the DSU function call cost.

The purpose of this experiment is to measure the cost of the indirect func-

tion call and reference-count update in relation to the baseline direct function

invocation. Thus, function inlining must be disabled for this experiment to

prevent the simple function target from been automatically inlined by the

compiler. If function inlining was allowed, it would not be possible to compare

the two function call costs and the baseline execution time would be very low

because the target function is extremely simple. Disabling function inlining

is reasonable for these measurements because functions that are optimal DSU

targets cannot be inlined.

Each experimental measurement was repeated thirty times and the aver-

ages of these thirty executions of each version of the synthetic program are

reported for each optimization level, compiler, and number of loop executions.

The performance difference between the baseline and the experimental version

of the benchmark show the difference in performance for function calls to DSU

functions.

Results

As the number of loop iterations increases, the ratio of execution time for the

baseline version of the program and the experimental version of the program

stabilizes. Figure 5.1 shows the ratio of execution time as the number of

iterations increases. As the number of loop iterations increases, the impact

of program startup and the initialization of the update supporting library

on the overall runtime are minimized. A figure of the experiment with the

largest number of loop iterations is included in Figure 5.2 because it has the

smallest impact from confounding factors. In this experimental evaluation, a

DSU function call using the PSU framework takes 2.97× and 4.24× as long to

perform the function call compared to a non-DSU function.

This additional overhead is due to (1) the extra function call to the tram-

poline layer, (2) the reference counter being incremented and decremented

41

105 106 107 108

5

10

15

Number of Loop Iterations

D
S
U

C
P
U

ti
m
e

C
o
n
tr
o
l
C
P
U

ti
m
e

Function-Thread Change in CPU-time as Number of Threads Increases

gcc-o0
clang-o0
gcc-o1
clang-o1
gcc-o2
clang-o2
gcc-o3
clang-o3

Figure 5.1: Ratio of execution time between DSU function calls vs. non-DSU
function calls as the number of loop iterations increases (Log Scale X-axis)

gc
c-
o0

cl
an

g-
o0

gc
c-
o1

cl
an

g-
o1

gc
c-
o2

cl
an

g-
o2

gc
c-
o3

cl
an

g-
o3

0

200

400

600

800

248 248 240

168

238

135 135 135

780
746

714 714 713

545 545 545

C
P
U

C
lo
ck

T
im

e
in

S
ec
on

d
s

Function-Without-Threads 100000000 CPU-time

Baseline
DSU

Figure 5.2: Execution time of a DSU function call in a non-DSU system vs. a
DSU system.

42

before and after the call to the DSU function, (3) the call to the DSU function

through a function pointer rather than a direct call.

5.2.2 Multi-threaded Function-Call Performance

Concurrent calls to mutable memory can have significant performance impact

on a multi-threaded system. The DSU approach described in this thesis relies

on mutable function pointers being accessible from multiple threads. Thus,

an interesting question is “What is the impact of DSU functions in the per-

formance of multi-threaded programs?”. A synthetic program is created to

to estimate the multi-threaded function invocation overhead by modifying the

program used in Section 5.2.1.

Experimental Design

The synthetic program to estimate multi-threaded function invocation over-

head spawns multiple threads. Each of these threads run the target loop from

the function invocation synthetic program described in Section 5.2.1. The vari-

able dereferenced by the invoked function in each thread is unique to avoid

interference from the memory accesses by the other threads. Each loop runs

for a set number of iterations. The number of threads spawned can be set for

each experiment.

For the same reasons as the Function-Call Benchmark, function inlining is

disabled. Then, different numbers of loop executions and threads are executed.

By varying both of these we can see the performance impact of making DSU

function calls, eliminating the startup cost as a distracting factor, and see the

impact of more threads trying to run the same DSU function.

Results

The runtime performance of the multi-threaded version of the function-

invocation performance study follows the same trend as the single-threaded

version: the ratio between the baseline and the DSU versions stabilizes as the

number of loop iterations increases because the impact of the startup and

shutdown cost is reduced. The results of the highest number of loop iterations

43

gc
c-
o0

cl
an

g-
o0

gc
c-
o1

cl
an

g-
o1

gc
c-
o2

cl
an

g-
o2

gc
c-
o3

cl
an

g-
o3

0

500

1,000

1,500

494 496 483

337

479

270
337

269

1,617

1,486

1,353 1,351 1,352

1,082

1,234

1,082

C
P
U

C
lo
ck

T
im

e
in

S
ec
on

d
s

Function-Threads 2 100000000 CPU-time

Baseline
DSU

(a) Execution time of a DSU function call in a non-DSU system vs. a DSU system
with 2 threads running the target function

gc
c-
o0

cl
an

g-
o0

gc
c-
o1

cl
an

g-
o1

gc
c-
o2

cl
an

g-
o2

gc
c-
o3

cl
an

g-
o3

0

1,000

2,000

3,000

988 991 970

673

960

539
673

538

3,221

2,964

2,696 2,696 2,696

2,158

2,456

2,158

C
P
U

C
lo
ck

T
im

e
in

S
ec
on

d
s

Function-Threads 4 100000000 CPU-time

Baseline
DSU

(b) Execution time of a DSU function call in a non-DSU system vs. a DSU system
with 4 threads running the target function

Figure 5.3: Experimental results for Multi-Threaded Function-Call micro
benchmark

44

gc
c-
o0

cl
an

g-
o0

gc
c-
o1

cl
an

g-
o1

gc
c-
o2

cl
an

g-
o2

gc
c-
o3

cl
an

g-
o3

0

2,000

4,000

6,000

1,975 1,981 1,938

1,345

1,917

1,076
1,345

1,076

6,417

5,920

5,384 5,383 5,383

4,308

4,901

4,308

C
P
U

C
lo
ck

T
im

e
in

S
ec
on

d
s

Function-Threads 8 100000000 CPU-time

Baseline
DSU

(c) Execution time of a DSU function call in a non-DSU system vs. a DSU system
with 8 threads running the target function

2 3 4 5 6 7 8

3

3.5

4

Number of Threads

D
S
U

C
P
U

ti
m
e

C
o
n
tr
o
l
C
P
U

ti
m
e

Function-Thread Change in CPU-time as Number of Threads Increases

gcc-o0
clang-o0
gcc-o1
clang-o1
gcc-o2
clang-o2
gcc-o3
clang-o3

(d) Ratio of performance between DSU function calls vs. non-DSU function calls as
number of threads increases

Figure 5.3: Experimental results for Multi-Threaded Function-Call micro
benchmark

45

is included in Figures 5.3a, 5.3b, and 5.3c. If the use of multiple threads had

an impact on the performance of DSU functions in PSU then the ratio of

execution time would increase as the number of threads increased. Figure 5.3d

shows that there is no significant change in ratio between the baseline version

and the DSU version as more threads are added. Therefore, the addition of

DSU functionality in multithreaded applications introduces no performance

impact between threads during thread execution of DSU function. This is

because in the PSU framework PSU function counters are designed to have

no inter-thread interaction with each other.

5.2.3 Thread-Creation-Destruction Performance

The creation of a new thread in a DSU program requires the initialization of

global DSU function table values and the creation and initialization of TLS

variables. This TLS must also be released for reuse by the system when a

thread is destroyed. These additional steps are necessary for all threads in a

DSU system regardless of the presence of actual DSU functions in the program.

Thus, the characterization of a multi-threaded DSU system must determine the

additional overhead incurred at thread creation and destruction. A Thread-

Create-Destruction synthetic program is used to estimate this overhead in the

DSU system described in this thesis.

Experimental Design

The synthetic program is composed of a simple thread function that increments

a global counter. This function is executed in a thread that is created in the

body of a loop. The loop creates the thread and then waits for the thread to

join back. A sufficient number of iterations of this loop are executed such that

the total execution lasts for a measurable time.

The Thread-Creation-Destruction Benchmark is run at each optimization

level and run with perf. The programs were executed with an increasing

number of loop body iterations. The variation in loop body execution allows

us to isolate the cost of performance in thread creation from the rest of the

program.

46

gc
c-
o0

cl
an

g-
o0

gc
c-
o1

cl
an

g-
o1

gc
c-
o2

cl
an

g-
o2

gc
c-
o3

cl
an

g-
o3

0

2

4

6

0.300 0.296 0.303 0.290 0.310 0.296 0.303 0.298

7.152

6.711

7.145

6.660

7.132

6.694

7.171

6.677

C
P
U

C
lo
ck

T
im

e
in

S
ec
on

d
s

Thread-Creation-Destruction 100000 CPU-time

Baseline
DSU

Figure 5.4: Execution time of a DSU function call in a non-DSU system vs. a
DSU system.

Results

The additional overhead of creating a thread in a PSU application is very sig-

nificant. Figure 5.4 shows that a thread created in a PSU application takes

as much as 24× longer to launch. In a typical application, thread creation

is already considered an expensive operation to perform. Therefore, thread

creation is typically kept to a minimum and is generally performed at appli-

cation startup using a technique call a Thread Pool [7]. Thus, in a typical

application, the increase in thread creation cost has a minimal impact on the

overall performance.

5.2.4 DSU Initialization Performance

DSU programs must initialize reference tables with entries for each DSU func-

tion during startup. This initialization is done prior to the main method. Each

DSU function requires its own entry in the reference table. Therefore, the

time it takes to initialize the reference table scales with the number of DSU

functions. In order to measure this cost, we created the DSU-Initialization

synthetic program.

47

gc
c-
o0

gc
c-
o1

gc
c-
o2

gc
c-
o3

cl
an

g-
o0

cl
an

g-
o1

cl
an

g-
o2

cl
an

g-
o3

0

100

200

300

400

500

2.4 2.3 2.3 2.22.1 2.0 2.1 2.1
23.0 23.3 23.0 23.321.3 21.3 21.4 21.5

422.7 425.5 425.7 429.3

309.3 305.6 312.4 305.5
C
P
U

C
lo
ck

T
im

e
in

M
il
li
se
co
n
d
s

Update Supporting Library Launch Time

1000
10000
100000

Figure 5.5: Graph of time for Update Supporting Library to initialize as num-
ber of DSU functions increases

Experimental Design

The core of the DSU-Initialization is a simple tool created to generate C func-

tions. These functions do little more than return a random variable. This

tool is then used to generate DSU programs that have a variable number of

DSU functions. Even though the main function will not actually use the DSU

functions, the update supporting library will still load them before the main

function executes. Thus, measuring the performance while varying the num-

ber of DSU functions that will be loaded provides insight into the load time

per DSU function.

The program was compiled with an increasing number of DSU functions.

An instrumented version of the update supporting library was used to record

the time from the initial launch of the update supporting library to when it

relinquished control to the application program. This information was then

logged using the built-in PSU logging system in the update supporting library.

48

Results

Figure 5.5 shows the time, measured in milliseconds, that it takes to launch

a DSU application using PSU. The number of DSU functions starts at 1000

because with fewer DSU functions the load times were negligible. This ex-

periment shows that PSU has a negligible impact on the start time of an

application with a very large number of DSU functions still only taking 0.43

seconds to launch.

5.2.5 DSU Patch-Load Performance

A DSU program built using PSU does not need to stop its execution to perform

an update. Each function is individually loaded and made available to the

executing user code when it is available. An important characteristic of a

DSU system is the average time between the installation of a new version of a

DSU function and the first time that an invocation of that function uses this

new version. This time is called the “patch load time”.

Experimental Design

A DSU-Patch-Load synthetic program is used to measure the patch load time.

The DSU-Patch-Load synthetic program follows the methodology described

for the DSU-Initialization synthetic program. It consists of a program with

a variable number of DSU functions. However, instead of the empty main

function used in the DSU-Initialization synthetic program, the DSU-Patch-

Load synthetic program has an infinite loop in the main function. A patch is

generated containing a variable number of DSU functions and the load time

is measured.

Similar to the DSU-Initialization synthetic program, the DSU-Patch-Load

synthetic program was compiled with an increasing number of DSU functions.

The DSU library already reports into a log file when it detects a patch file as

well as when it has finished loading a patch. Unfortunately, this measurement

is not accurate enough for a performance evaluation. To remedy this, we cre-

ated an instrumented version of the update supporting library that accurately

49

gc
c-
o0

gc
c-
o1

gc
c-
o2

gc
c-
o3

cl
an

g-
o0

cl
an

g-
o1

cl
an

g-
o2

cl
an

g-
o3

0

500

1,000

1,500

2,000

2,500

17.6 16.4 16.6 16.516.5 16.4 16.4 16.3

166.3 165.3 165.4 166.6164.5 164.7 165.0 164.8

2,126.1 2,126.0 2,132.8 2,130.32,113.7 2,112.7 2,109.5 2,111.3

C
P
U

C
lo
ck

T
im

e
in

M
il
li
se
co
n
d
s

Update Supporting Library Update Time

1000
10000
100000

Figure 5.6: Graph of time for Update Supporting Library to load an update
as number of DSU functions increases

reports the time from detection of a patch to the completion of the patch

loading. The update supporting library recorded the time it took to load a

full update. This information was then logged using the built in PSU logging

system in the update supporting library. The experiment was run 30 times

and the average update time is reported.

Results

Figure 5.6 shows the time in milliseconds it takes to update a DSU applica-

tion using PSU. The number of DSU functions starts at 1000 for the sake of

consistency with the DSU-Initialization Benchmark. This experiment shows

that updates do not take very long. The extreme examples test taking 2.15

seconds at their peak. These patches take, on average, less than 0.005 mil-

liseconds per DSU function to load. As updates are performed on separate

threads concurrently with the application program threads, there is no impact

on the performance of the application by performing an update.

50

5.3 MySQL Real World Application Perfor-

mance

PSU introduces many steps to allow the application program become DSU.

The synthetic programs described in the previous sections can be used to

characterize the performance effects of these additional steps and are able to

show the exact performance loss of the various subcomponent. Examined in

isolation, some of these performance effects appear to be significant. However,

it is interesting to study their effect on an actual application. This section

describes a case study which provides evidence about such effects in a realistic

application. This case study consists of transforming the MySQL database

into a DSU application.

5.3.1 Experiment

Experimental Design

To simulate a typical subsystem that might be made fully DSU, the entire

storage engine is changed to be DSU. The source code for MySQL was pulled

from Github [18]. The program was compiled with GCC using optimization

level o2 and the default MySQL build configurations provided with the MySQL

sources from Github [18].

The heap storage engine in particular was chosen for this experiment. This

choice was made for a few reasons. The first is that the heap storage engine

is not dependent on disk access. This allows the experiment to more closely

resemble the performance of a database which is already fully warmed up.

Park, Do, Teletia, et al. show that the performance of a fully warmed up

database far exceeds that of a partially warm database [19]. As a database

warms up it loads frequently used queries into memory. By using the heap

storage engine, which stores data exclusively in memory, the database is able

to provide a closer representation to a warm database. The second reason is

at the time of this work the MySQL database was transitioning to a C++

implementation. The current implementation of PSU only supports C style

functions in C++. At this time the heap storage engine is one of the few

51

MySQL storage engines which is still implemented in C.

To measure the performance HammerDB [9] was used to run the TPC-C

benchmark. TPC-C simulates a warehouse with a large amount of database

transactions. HammerDB allows for concurrent simulated users to simultane-

ously interact with the database. HammerDB was configured to run a three-

minute ramp-up phase prior to performing the TPC-C benchmark. The ramp-

up is a sequence of database queries designed to warm up the database cache.

During the ramp-up period, no performance metrics are recorded. HammerDB

was scripted to run TPC-C with one, two, and four virtual users for five min-

utes. A virtual user is a simulated user that will run the benchmark script.

This is done to assess the performance of databases with concurrent access.

The TPC-C database configuration was saved from the default values to

a database dumb file and was restored prior to each benchmark run. Each

configuration was run thirty times. To avoid potential biases due to system

variations, a batch containing all the configurations is executed, then the con-

figurations are randomly shuffled before running the next batch.

At the end of every run, the average Transactions Per Minute (TPM) is

recorded. The TPM is dependent both on the database’s implementation of

the TPM counter and on the type of transactions performed. Therefore, in

a typical database benchmarking, TPM is generally considered an unreliable

measurement for comparison of database performance [8]. However, in this

study, TPM is an appropriate metric because the comparison is between differ-

ent versions of the same database rather than between two different databases.

In such case the TPM is measured in the exactly the same way. Moreover, the

experiments also use the same benchmark and, thus, the same transactions

are performed on the database.

Results

The results in Figure 5.7 indicate that the DSU modified MySQL database

maintains 95.02% of the performance of the standard MySQL database. This

is a modest reduction in performance for the functionality that is gained with

a DSU system.

52

1 2 4
0

500

1,000

1,500

2,000
1,833.1

2,025.3

2,208.6

1,763.9

1,918

2,078.8

T
ra
n
sa
ct
io
n
s
P
er

M
in
u
te

MySQL Performance

Control
DSU

Figure 5.7: The performance of a normal MySQL database and a DSU enabled
version of the MySQL database

5.3.2 Complexity of Use

As the MySQL experiment is an evaluation of the real world application of

PSU, this section focuses on the use complexity of PSU. The necessary steps

to transform the baseline version of the MySQL database to a DSU version are

listed as follows: (1) a simple header file containing function declarations for

each function in the heap storage engine was passed to the updating weaver,

(2) the updating weaver then performed an inplace transformation on the

codebase, (3) the new C source file containing the PSU patch id and PSU

function list was added to the heap storage engine’s CMakefile source list,

(4) the PSU runtime was added to CMakefile library linkage list, (5) and the

-rdynamic flag was added to the compiler flags.

As reduced complexity is a core design principle of PSU; each of these

steps are quite trivial to perform. This simplicity allows PSU to add DSU

functionality to the MySQL database’s heap storage engine without overly

increasing the compilation complexity. Aside from the modifications listed,

MySQL was able to be compiled using its default build process.

53

5.3.3 Summary

The MySQL experiment show that in a real world scenario PSU is able to

be used with a moderate 4.98% performance penalty while adding DSU func-

tionality to the whole storage engine. This modification to the storage engine

was simple to implement and allowed the majority of the MySQL source code

to be left entirely unmodified. This experiment also shows that with proper

placement of the DSU functions, the performance can easily be maintained.

54

Chapter 6

Related Work

There are several core design features that distinguish the various approaches

to DSU. Chapter 2 outlines many of the common dimensions of DSU systems.

Some of these dimensions can be characterized by the system supporting or

not supporting a feature: (1) safe-point requirement, (2) multi-threading capa-

bility, (3) ability to handle recursion, (4) blocking requirement, (5) and ability

to maintain multiple versions running at the same time. Other dimensions are

characterized by a system falling in one amongst several possible design points:

(6) the abstraction layer and requirement for regeneration of binaries to enable

DSU, (7) the dynamic-update granularity, (8) and the memory impact of DSU

functionality.

DSU approaches can also be distinguished by the method used to apply

the update to a system. The method of updating a program determines other

features of the DSU system. Table 2.1 shows an overview of the various dis-

tinguishing features of the prevalent DSU systems. The subsequent sections

will discuss each in detail.

6.1 Update Method

Most approaches have two components to the update method: the method of

loading new code and the method of inserting the new code into the running

application. Similar to PSU, Ginseng [15], [17], Kitsune [10], [11], Upstare [13],

POLUS [4] and Ksplice [1] use dynamic loading to insert new code into the

system.

55

Like PSU, both Ginseng and Upstare rely on function indirection to invoke

DSU functions. Therefore, they have the same benefits and hindrances as PSU

relating to the impact of function calls on performance.

Kitsune requires programmers to manually insert calls to a Kitsune API,

both to invoke and to update DSU functions. Kitsune depends more heav-

ily on manual programmer intervention than PSU, it allows programmers to

explicitly control how an update happens.

Ksplice [1], POLUS [4], and ISLUS [5] use binary rewriting to overwrite

the code in the target application at run time. Ksplice and ISLUS overwrite a

whole target function at runtime. POLUS inserts a jump to the new version of

a DSU function into the start of the old version of the DSU function. Therefore,

several updates to the same function in POLUS may lead to more significant

performance degradation.

6.2 Safe-Point

In the vast majority of systems for DSU, an update may only occur when the

program execution is at specific points in the code base called a safe-point. If

an update is made available while the target program is not in a safe-point

the target program will wait for the target program to reach a safe-point.

These safe-points may be inserted by a programmer as in Ginseng [15],

[17], Kitsune [10], [11], and Upstare [13] or there can be automatically defined

safe-points as in Ksplice [1].

These safe-points are necessary for these approaches to guarantee that a

catastrophic failure does not occur when an update happens. A disadvantage

of safe-point DSU systems is that an extensive number of safe-points might

have to be inserted. Guaranteeing that a thread will not run for a long time

without reaching a safe-point is, very difficult. Moreover, these systems require

all threads to reach a safe-point prior to performing an update.

PSU does not rely on safe-points. The moment an update is made available,

the update supporting library starts updating DSU functions in the application

program. This allows PSU to quickly update a program. Existing invocations

56

of the updated function continue executing the previous version while all new

invocations execute the updated code for the function.

6.3 Multi-threading

The ability of systems to handle multi-threading can be impacted by the safe-

point requirement. For instance, the first implementation of Ginseng [17]

was unable to handle multi-threading because it required safe-points. The

complexity that was introduced in guaranteeing that all threads are in a safe-

point made it difficult to implement DSU in multi-threaded applications. This

limitation was not addressed for a couple of years [15]. Other DSU systems

that rely on safe-points do support multi-threaded applications; however, they

do have limitations.

Chen and Qiang show that Upstare suffer from potential deadlocks in mul-

tithreaded applications during the stack reconstruction phase of an application

update [5]. This is due to the unique way that Upstare unwinds the stack dur-

ing an update.

PSU naturally handles multi-threading by simplifying the problem to sim-

ple function indirection. The careful engineering of the PSU function counter

allows PSU to handle multi-threaded applications without any increased per-

formance overhead in comparison with a single threaded applications during

thread runtime. PSU also does not have a risk of deadlocks during updates.

6.4 Recursion

Some DSU systems are limited in their ability to handle recursive function

calls. The requirement that all threads be executing the same safe-point can

lead to difficulties in handling recursion.

In Kitsune [10], [11], safe-points are inserted manually by a programmer.

The instructions explicitly prohibit the programmer from placing safe-points

in a recursive function. This requires programmers to be very conscientious of

where they are inserting the update statements and introduces the opportunity

for the insertion of difficult-to-find bugs.

57

Ksplice [1] is unable to handle updates to DSU functions that have active

stack invocations. The consequence is that it cannot dynamically update any

recursive function during the execution of the recursion.

PSU handles recursive functions by updating a pointer such that future

invocations of DSU functions call the newest version of the DSU function.

Existing invocations to DSU functions are allowed to execute to completion as

they were invoked. Therefore, in PSU multiple versions of a recursive function

may be present in an active recursion stack.

6.5 Blocking Requirement

In a simple implementation of a DSU system all threads must typically stop

execution to avoid crashes or inconsistency in program state when an update

is applied to running program. For instance, if a running thread tries to

execute a piece of code while it is being updated, that thread may end up in

an inconsistent state and may crash. To avoid such incorrect behaviour, most

systems implement some form of thread blocking to prevent the user threads

from executing code while the code is being updated. The requirement of

thread blocking is strongly correlated with the requirement of safe-points.

Ginseng [15], [17] is almost able to perform updates without interrupting

the executing threads by using safe-points. All user threads “check-in” with a

runtime library responsible for loading in the update. When a thread reaches

the end of the safe-point they must “check-out”. An update only occurs when

all threads have checked-in. If they reach the end of the safe-point before the

update is complete, they then stall until the update completes.

Kitsune [10], [11] and Upstare [13] rely both in the use of safe-points and on

thread-blocking. When an update is available, all threads will stop execution

upon reaching their next safe-point. The update will only commence when

all the threads have paused their execution. A flag is used to indicate that

an update is available. Whenever a thread executes a safe-point, it checks the

flag to determine if it should pause execution or if it should continue executing

until the next safe-point.

58

Ksplice [1] is designed explicitly to operate within the Linux kernel. Thus

it uses kernel directives such as stop_machine when an update needs to be

performed. stop_machine stops all cores on the machine while it runs a specified

function. In this case the specified function is the Ksplice update directive.

stop_machine freezes not only the target application but all other applications

on the machine. Thus is optimal for updating the OS Kernel as an update

to the kernel typically impacts all applications in the OS. However, using

stop_machine in a user application is not desirable because it causes unrelated

applications to suspend their execution.

ISLUS [5] redirects threads into intermediary functions and blocks them

while transforming the call stack of the program. ISLUS only redirects func-

tions that will access the function being updated during the update. This

allows most threads to avoid blocking.

One of PSU’s most distinguishing features is that it does not require the

application program to pause the execution of threads while an update is in

progress. In contrast, the majority of the competing approaches require the

target application to suspend execution. Therefore, in PSU, updates have less

impact on the executing program.

6.6 Abstraction Layer and Binary Regenera-

tion

The abstraction layer specifies how a DSU system interfaces with the target

program. Most solutions rely on transforming the source code to perform

DSU. Thus, they cannot modify existing binaries and must regenerate the

executables. When transforming a non-DSU application into a DSU applica-

tion, Ginseng [15], [17], Kitsune [10], [11], Upstare [13], Ksplice [1], and PSU

must re-compile a modified application source code into a DSU binary. This

requirement makes them unsuitable for applications that have already been

deployed.

POLUS [4] hijacks a running application using memory-mapping tools to

insert code that dynamically loads the POLUS runtime library into the run-

59

ning application. POLUS then uses thread traces to redirect threads into the

POLUS runtime library, which is responsible for coordinating the rewriting of

the binary.

ISLUS [5] uses a similar technique to POLUS to hijack the running ap-

plication. Rather than inserting a runtime library as POLUS does, ISLUS

directly loads new DSU code. ISLUS then inserts jump instructions into the

code that is being updated but is executing in a thread. It then rewrites the

binary using a semantic mapping.

The approaches used by POLUS and ISLUS has a significant advantage

over PSU because those system can apply dynamic updates to existing binary

files.

6.7 Dynamic-Update Granularity

The dynamic-update granularity is a measurement of the portion of code of an

executing program that can be dynamically updated using a DSU system. An

optimal system would be able to apply DSU to the whole application; thus,

be able to update the largest amount of code in an executable. For a number

of reasons, most existing approaches avoid whole program DSU updates.

Ginseng [15], [17], POLUS [4], Kitsune [10], [11], and PSU only allow

updates to future invocations of functions. Existing invocations of functions

must complete their execution with the same version of the code with which

they were invoked. PSU differs from Ginseng and POLUS in that PSU is

able to optionally allow some or all of the functions to be DSU. Because these

approaches rely on updating only future invocations, the main function is not

able to become DSU.

Ksplice [1] only allows updates of functions that do not have calls on the

call stack. This prevents it from performing an update to existing invocations

of DSU functions. This also prevents it from updating future invocation of

DSU functions that might have a permanent function on the call stack.

Upstare [13] unwinds the call stack and reassembles it using special trans-

formation functions. Thus, it is able to update existing calls to DSU functions

60

on the stack.

ISLUS’s [5] use of binary rewriting and state transformation allows it to

update the whole program including function calls already on the stack.

6.8 Multiple Versions

DSU systems can also be characterized by their ability to enable multiple ver-

sions of DSU code to exist concurrently in the system. Several approaches like

Ginseng [15], [17], POLUS [4], and PSU allow multiple versions of the same

function. Thus, they present a much more versatile DSU model to program-

mers.

Approaches such as Upstare [13], Kitsune [10], [11], and Ksplice [1] explic-

itly avoid having multiple versions of functions executing concurrently. This

constraint allows them to maintain a consistent state but requires complex

state transformers for stack variables.

ISLUS [5] runs multiple versions as part of a rollback mechanism. It com-

bines the use of state transfers and multiple versions. Maintaining multiple

versions allows it to recover in the event of a critical failure on a new version

of DSU code by falling back to a previous version.

6.9 Memory Impact

DSU systems load new code and functionality into programs. This new code

must exist in the program’s memory and, unless the space used by obsolete

code is reclaimed, obsolete versions will consume resources. This may result in

performance degradation. Ginseng [15], [17], Kitsune [10], [11], Upstare [13],

Ksplice [1], and PSU all load code through DLLs. ISLUS directly loads new

code into memory using memory mapping tools. PSU is the only approach that

is able to unload versions of DSU functions that are no longer necessary. This

provides more efficient management of resources and allows PSU to remain

memory efficient indefinitely provided that invocations to earlier versions of

DSU functions eventually return.

61

Chapter 7

Caveats

There are several limitations to the types of changes to a program that could be

included in an update in PSU. This section discusses some of these limitations

and also provides insights into the difficulties of creating a system like PSU

for object-oriented languages such as C++.

7.1 Updates to Function Signatures

Most changes to a function in a DSU system occur in the code within the body

of the function. However, in some cases a programmer may which to change

the signature of the function, which is formed by the list of arguments passed

to the function and the return value. The signature includes the number of

arguments, the types of the arguments and the type of the return value. In

PSU programs there are three scenarios to consider for signature changes.

First, a change to the signature of a function that is invoked only in points

of the call graph that are dominated by a DSU function f . The code invoking

these functions will change to match the expected signature changes and will

be compiled into the same namespace as f . These functions are always invoked

within the same version of f and therefore their signature can be changed when

the version of f changes.

Second, a signature change to a function that is invoked only in a point of

the call graph that is not dominated by DSU functions. These functions will

never be updated as there is no code from a DSU function that invokes them.

This means that even if their signature is changed the code that invokes them

62

will never reach the new versions of the functions.

Third, a signature change to a function that is invoked in a point of the call

graph that can be reached from a DSU function and in at a point in the call

graph that is reached without going through a DSU function. The updated

version of the function will only be used by invocations in the sections of code

that followed an invocation path through a has a DSU function. Invocations

through paths that do not pass through a DSU functions will always invoke

the baseline version of the function, thus signature changes have no effect on

them.

7.2 Global Constant Variables

Constant variables in PSU can only be changed if all references to the variable

are in the code of functions that are invoked within a region of the call graph

that is dominated by a single DSU function f . The new version of the constant

variable is created during the compilation of the patch file for f . The global

constant variables are encapsulated in the name space of the dynamic shared

library system. In most scenarios these global constant variables are replaced

with constants rather that references to global variables by the compiler.

7.3 Global Variables

The management of the name space that the majority of PSU relies on makes

it challenging to handle global variables. Global variables may only change if

they are exclusively accessed from within the DSU code and their state values

can be transferred from non-DSU code to the DSU code. Developers must be

cognizant of this constraint when designing their application.

A solution is to create a DSU function interface to all accesses to global

variables that will be changed by updates. This DSU function interface would

be responsible for converting the variable’s data layout to the format that

is expected by the invoking function. This conversion includes transforming

structures when their definition changes. These interface functions must be

DSU functions because they need to be able to handle new transformations

63

as the application evolves. This mechanism to handle global variables was

not explored in the prototype because it may have a non-trivial performance

degradation for programs that rely heavily on global variables.

7.4 Process Forking

The prototype for PSU does not implement the functionality to support pro-

cess forking. Support for forking can be added using the same principles used

to enable threading support described in Section 4.2.4. To add this support,

the original fork function must be overwritten so that calls to the fork function

are intercepted in a similar way to thread intercept. The fork intercept needs

to first call the original fork function, splitting the process. Upon returning

from the original fork, the fork intercept would check the process identifier

to determine if the process is the original process or the forked child process.

In the case of the original process, the fork intercept returns and the process

continues it’s execution. In the case of the child process, the fork intercept

first makes a call to a update supporting library. This update supporting

library resets all PSU function counters and reinitializes all TLS thread in-

dexes. Upon completion of this initialization the thread intercept returns and

the child process resumes execution.

7.5 Compatibility with C++

The design of PSU relies on the accessibility to pointers. While many languages

have this support, this section will focus on C++ and the challenges that need

to be overcome to support DSU in C++.

First, the C++ function name mangling must be either disabled or made

accessible by the DSU system. The update supporting library relies on the

names of functions matching supplied names. The updating weaver used to

make functions DSU in PSU would need to be able to track the supplied names

to the mangled names.

Second, class member functions would have to be transformed with the

same trampoline layer that PSU uses in C to allow PSU to function in a

64

majority of cases. However, this trampoline-layer-based solution could po-

tentially fail in the presence of class inheritance. For class inheritance to be

implemented, PSU would need to be modified so that the behaviour of class

inheritance of DSU class member functions are specified. The current design

of PSU does not contemplate class inheritance. Solutions to incorporate class

inheritance could require all classes to have their own version of a DSU mem-

ber function even in inherited classes or could require all the inherited DSU

functions to use the same version. Both of these solutions have potential ben-

efits to be explored. The first provides a fine grained update mechanic, while

the second is simpler to reason about.

Third, changes to class definitions in C++ in PSU present a difficult chal-

lenge. When a class signature is changed, it must be interpreted throughout

the call tree. If the data layout of a class’s member variables are changed then

the class cannot be correctly interpreted by code from different patch versions.

The PSU prototype can handle C-style functions in C++. While this

support is a promising first step, there are many other challenges besides those

listed in this section. Thus, creating a system like PSU for languages like C++

will require substantial additional research and development.

65

Chapter 8

Conclusion

This thesis presents Portable Software Update a framework for building DSU

applications in C. While PSU is not the first framework for building DSU

applications, it presents several key new advantages over previous works.

PSU performs DSU updates to applications through a simple function indi-

rection framework. New versions of DSU functions are loading into a running

application using Dynamically Linked Libraries. Obsolete versions of DSU

functions in a PSU application are then able to execute to completion and are

able to be unloaded from memory once they are no longer executing. Combined

with the updating weaver, PSU drastically simplifies the process of building

DSU applications; thus, reducing the likelihood of a programmer error.

The design of PSU allows for it to be easily ported to a wide range of

systems. This portability comes from PSU’s exclusive use of standard func-

tions as well as library functionality that is readily available in most operating

systems.

PSU is evaluated using several custom synthetic benchmark programs as

well as the MySQL database. The findings from these experiments shows

that the PSU framework is able to enable DSU functionality in real world

applications with acceptable performance levels.

66

Bibliography

[1] J. Arnold and M. F. Kaashoek, “Ksplice: Automatic rebootless ker-
nel updates”, in Proceedings of the 4th ACM European Conference on
Computer Systems, ser. EuroSys ’09, Nuremberg, Germany: ACM, 2009,
pp. 187–198, isbn: 978-1-60558-482-9. doi: 10.1145/1519065.1519085.
[Online]. Available: http://doi.acm.org/10.1145/1519065.1519085. 7–9, 55, 56, 58–61

[2] R. Buyya, C. S. Yeo, S. Venugopal, J. Broberg, and I. Brandic, “Cloud
computing and emerging it platforms: Vision, hype, and reality for de-
livering computing as the 5th utility”, Future Gener. Comput. Syst.,
vol. 25, no. 6, pp. 599–616, Jun. 2009, issn: 0167-739X. doi: 10.1016/
j.future.2008.12.001. [Online]. Available: http://dx.doi.org/10.
1016/j.future.2008.12.001. 1

[3] C. Cérin, C. Coti, P. Delort, F. Diaz, M. Gagnaire, Q. Gaumer, N. Guil-
laume, J. Lous, S. Lubiarz, J. Raffaelli, et al., “Downtime statistics of
current cloud solutions”, International Working Group on Cloud Com-
puting Resiliency, Tech. Rep, 2013. 1, 2

[4] H. Chen, J. Yu, C. Hang, B. Zang, and P.-C. Yew, “Dynamic software
updating using a relaxed consistency model”, IEEE Trans. Softw. Eng.,
vol. 37, no. 5, pp. 679–694, Sep. 2011, issn: 0098-5589. doi: 10.1109/
TSE.2010.79. [Online]. Available: http://dx.doi.org/10.1109/TSE.
2010.79. 10, 55, 56, 59–61

[5] Z. Chen and W. Qiang, “Islus: An immediate and safe live update system
for c program”, in 2017 IEEE Second International Conference on Data
Science in Cyberspace (DSC), Jun. 2017, pp. 267–274. doi: 10.1109/
DSC.2017.50. 4, 8–10, 56, 57, 59–61

[6] (2019). GCC GNU online docs: 6.63 thread-local storage, [Online]. Avail-
able: https://gcc.gnu.org/onlinedocs/gcc/Thread-Local.html
(visited on 02/13/2019). xiii

[7] B. Goetz. (2002). Java theory and practice: Thread pools and work
queues, [Online]. Available: https://www.ibm.com/developerworks/
java/library/j-jtp0730/index.html (visited on 03/05/2019). 47

[8] HAMMERDB. (2018). Comparing HammerDB results, [Online]. Avail-
able: https://www.hammerdb.com/docs/ch03s04.html (visited on
10/20/2018). 52

67

https://doi.org/10.1145/1519065.1519085
http://doi.acm.org/10.1145/1519065.1519085
https://doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
http://dx.doi.org/10.1016/j.future.2008.12.001
https://doi.org/10.1109/TSE.2010.79
https://doi.org/10.1109/TSE.2010.79
http://dx.doi.org/10.1109/TSE.2010.79
http://dx.doi.org/10.1109/TSE.2010.79
https://doi.org/10.1109/DSC.2017.50
https://doi.org/10.1109/DSC.2017.50
https://gcc.gnu.org/onlinedocs/gcc/Thread-Local.html
https://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
https://www.ibm.com/developerworks/java/library/j-jtp0730/index.html
https://www.hammerdb.com/docs/ch03s04.html

[9] ——, (2018). HammerDB. version 3.1, [Online]. Available: https://
www.hammerdb.com/index.html (visited on 10/20/2018). 39, 52

[10] C. M. Hayden, K. Saur, E. K. Smith, M. Hicks, and J. S. Foster, “Kit-
sune: Efficient, general-purpose dynamic software updating for C”, ACM
Trans. Program. Lang. Syst., vol. 36, no. 4, 13:1–13:38, Oct. 2014, issn:
0164-0925. doi: 10.1145/2629460. [Online]. Available: http://doi.
acm.org/10.1145/2629460. 7–9, 55–61

[11] C. Hayden, E. Smith, M. Denchev, M. Hicks, and J. S. Foster, “Kitsune:
Efficient, general-purpose dynamic software updating for C”, vol. 47,
Oct. 2012, pp. 249–264. doi: 10.1145/2384616.2384635. 7–9, 55–61

[12] C. F. Kemerer, “Software complexity and software maintenance: A sur-
vey of empirical research”, Annals of Software Engineering, vol. 1, no. 1,
pp. 1–22, Dec. 1995, issn: 1573-7489. doi: 10.1007/BF02249043. [On-
line]. Available: https://doi.org/10.1007/BF02249043. 2

[13] K. Makris and R. A. Bazzi, “Immediate multi-threaded dynamic soft-
ware updates using stack reconstruction”, in Proceedings of the 2009
Conference on USENIX Annual Technical Conference, ser. USENIX’09,
San Diego, California: USENIX Association, 2009, pp. 31–31. [Online].
Available: http://dl.acm.org/citation.cfm?id=1855807.1855838. 4, 7, 8, 55, 56, 58–61

[14] D. Namiot and M. Sneps-Sneppe, “On micro-services architecture”, In-
ternational Journal of Open Information Technologies, vol. 2, no. 9,
pp. 24–27, 2014. xiii

[15] I. Neamtiu and M. Hicks, “Safe and timely updates to multi-threaded
programs”, in Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation, ser. PLDI ’09,
Dublin, Ireland: ACM, 2009, pp. 13–24, isbn: 978-1-60558-392-1. doi:
10.1145/1542476.1542479. [Online]. Available: http://doi.acm.org/
10.1145/1542476.1542479. 7–9, 55–61

[16] I. Neamtiu, M. Hicks, J. S. Foster, and P. Pratikakis, “Contextual effects
for version-consistent dynamic software updating and safe concurrent
programming”, in Proceedings of the 35th Annual ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages, ser. POPL
’08, San Francisco, California, USA: ACM, 2008, pp. 37–49, isbn: 978-
1-59593-689-9. doi: 10.1145/1328438.1328447. [Online]. Available:
http://doi.acm.org/10.1145/1328438.1328447. 7

[17] I. Neamtiu, M. Hicks, G. Stoyle, and M. Oriol, “Practical dynamic soft-
ware updating for C”, in Proceedings of the 27th ACM SIGPLAN Confer-
ence on Programming Language Design and Implementation, ser. PLDI
’06, Ottawa, Ontario, Canada: ACM, 2006, pp. 72–83, isbn: 1-59593-
320-4. doi: 10 . 1145 / 1133981 . 1133991. [Online]. Available: http :

//doi.acm.org/10.1145/1133981.1133991. 5, 7–9, 55–61

68

https://www.hammerdb.com/index.html
https://www.hammerdb.com/index.html
https://doi.org/10.1145/2629460
http://doi.acm.org/10.1145/2629460
http://doi.acm.org/10.1145/2629460
https://doi.org/10.1145/2384616.2384635
https://doi.org/10.1007/BF02249043
https://doi.org/10.1007/BF02249043
http://dl.acm.org/citation.cfm?id=1855807.1855838
https://doi.org/10.1145/1542476.1542479
http://doi.acm.org/10.1145/1542476.1542479
http://doi.acm.org/10.1145/1542476.1542479
https://doi.org/10.1145/1328438.1328447
http://doi.acm.org/10.1145/1328438.1328447
https://doi.org/10.1145/1133981.1133991
http://doi.acm.org/10.1145/1133981.1133991
http://doi.acm.org/10.1145/1133981.1133991

[18] M. D. team Oracle. (2017). MySQL github repository. version 5.7 com-
mit 0138556a55168da12eaf0bc3038947148d6b0863, [Online]. Available:
https://github.com/mysql/mysql-server. 39, 51

[19] K. Park, J. Do, N. Teletia, and J. M. Patel, “Aggressive buffer pool
warm-up after restart in sql server”, in 2016 IEEE 32nd International
Conference on Data Engineering Workshops (ICDEW), May 2016,
pp. 31–38. doi: 10.1109/ICDEW.2016.7495612. 2, 51

[20] (2018). Perf performance monitor. version 4.4.155, [Online]. Available:
https://pkgs.org/download/perf (visited on 03/05/2019). 40

[21] F. Pizlo, E. Petrank, and B. Steensgaard, “A study of concurrent real-
time garbage collectors”, in Proceedings of the 29th ACM SIGPLAN
Conference on Programming Language Design and Implementation,
ser. PLDI ’08, Tucson, AZ, USA: ACM, 2008, pp. 33–44, isbn: 978-
1-59593-860-2. doi: 10.1145/1375581.1375587. [Online]. Available:
http://doi.acm.org/10.1145/1375581.1375587. 21

[22] K. Takehiro. (2017). PLTHook github repository, [Online]. Available:
https://github.com/kubo/plthook (visited on 08/24/2017). 12

[23] T. C. Team. (2017). Clang 8 documentation LibTooling, [Online]. Avail-
able: https://clang.llvm.org/docs/LibTooling.html (visited on
08/24/2017). 35

[24] D. Zou, H. Wang, and H. Jin, “StrongUpdate: An immediate dynamic
software update system for multi-threaded applications”, in Human Cen-
tered Computing, Q. Zu, B. Hu, N. Gu, and S. Seng, Eds., Cham: Springer
International Publishing, 2015, pp. 365–379, isbn: 978-3-319-15554-8. 4

69

https://github.com/mysql/mysql-server
https://doi.org/10.1109/ICDEW.2016.7495612
https://pkgs.org/download/perf
https://doi.org/10.1145/1375581.1375587
http://doi.acm.org/10.1145/1375581.1375587
https://github.com/kubo/plthook
https://clang.llvm.org/docs/LibTooling.html

	Abstract
	Contents
	Glossary
	PSU Specific Glossary
	Introduction
	Dimensions of Dynamic Software Update
	Multi-Threading Capability
	Ability to Handle Recursion
	Dynamic Update Granularity
	Abstraction Layer
	Safe-Point Requirement
	Multiple-Version Support
	Binary Regeneration Requirement
	Summary

	Procedure Linkage Table
	Dynamically Linked Libraries
	Lazy Linking
	PLTHook
	Procedure Linkage Table Unsuitability
	Summary

	Description of PSU
	Overview of PSU
	Update Supporting Library
	PSU Logging System
	Dynamic Function Versioning Table (DFVT)
	DSU Function Counter
	Intercepting Thread Calls
	DSU Function Trampoline
	Lock-Free Reference Counting for Reclamation

	Application Program Interface
	DSU Function List
	DSU Function Declaration
	DSU Call tree

	Automated Transformation
	Compilation of PSU application
	Summary

	Experimental Evaluation
	Experimental Setup
	Synthetic Performance
	Function-Call Performance
	Multi-threaded Function-Call Performance
	Thread-Creation-Destruction Performance
	DSU Initialization Performance
	DSU Patch-Load Performance

	MySQL Real World Application Performance
	Experiment
	Complexity of Use
	Summary

	Related Work
	Update Method
	Safe-Point
	Multi-threading
	Recursion
	Blocking Requirement
	Abstraction Layer and Binary Regeneration
	Dynamic-Update Granularity
	Multiple Versions
	Memory Impact

	Caveats
	Updates to Function Signatures
	Global Constant Variables
	Global Variables
	Process Forking
	Compatibility with C++

	Conclusion
	Bibliography

