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ABSTRACT

An algorithm is developed for the analysis of free induction decays generated by
nuclear magnetic resonance (NMR) spectroscopy experiments that does not require user
input. Procedures for the selection of optimal setup parameters necessary for time domain
analysis using linear prediction with singular value decomposition (LPSVD) is developed
empirically based upon simulation of a two-line spectrum. Also developed are procedures
for the identification and rejection of noise related lines which can be returned by the
LPSVD algorithm. The procedures are integrated into a single algorithm which requires
no input from the user to analyze NMR spectra and whose output is used to seed a
maximum likelihood estimation procedure that returns results having zero bias and
variances equal to the Cramer-Rao bounds. Testing was performed on simulated two-line

spectra, simulated six-line *'P spectra, and *'P data taken from human calf muscle.
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1.0 Introduction

Magnetic resonance spectroscopy (MRS) is a powerful technique for the
noninvasive analysis of the chemical composition and environment of tissues. Relative
concentrations can easily be obtained of many biologically important molecules based on
nuclei visible through MRS such as 'H, 3'P, and ">C. In some cases pH and even
temperature can be measured. With this information the state of a metabolic process can

be determined or diseases diagnosed.

In its simplest form a nuclear magnetic resonance (NMR) machine consists of a
high field magnet which produces a constant, homogeneous, magnetic field in a region
large enough to encompass the sample or volume of interest, a radio frequency antenna
for irradiating and receiving signal from the sample, and electronics designed to
demodulate the received signal and digitize it for analysis. Typically the frequency of
irradiation is in the 10's to 100's of MHz. The received signal. called a free induction
decay (FID), is ideally composed of a sum of k exponentially decaying sinusoids with
differing amplitudes, phases, decay rates, and frequencies, each related to a metabolite or
a particular chemical environment of a metabolite. After demodulation and sampling the

signal may be modelled as:

k
x(n) = D A e mTensee g < N~ [1.1]

=]

where x(n) is the nth sample of the signal. A, is the amplitude of the ith sinusoid, o; is the
decay rate of the ith sinusoid,  is the angular frequency of the ith sinusoid, 0, is the
phase of the ith sinusoid, At is the sampling interval, and N is the total number of samples

acquired. Additionally, noise is present in the received signal and is generally assumed to



be white, having a zero-mean Gaussian distribution with no correlation between the real
and imaginary parts. Normally, due to the low sensitivity of NMR, the experiment is
repeated a number of times and averaged until an acceptable signal to noise ratio (SNR) is

achieved.

Once acquired, the signal must be analyzed to retrieve the desired information,
namely, the parameters which characterize each sinusoid. Ideally, the analysis technique
should have several important characteristics. 1) It should identify all relevant spectral
components (sinusoids) without falsely identifying noise related components. Due to the
low SNR inherent in in-vivo signals this characteristic becomes difficult to achieve. 2) It
should quantify the component parameters with zero bias and variances equal to their
optimal values, the Cramer-Rao lower bounds of each parameter which are the minimum
theoretical variances in the presence of zero mean, Gaussian distributed noise. 3)
Repeated analysis should return exactly the same results, thus the technique should not
require any judgment by the operator. 4) The technique should allow for prior knowledge
of the results to be included in the analysis to allow for improvements in the precision. 5)
The analysis execution time should not be prohibitively long based on the nature of the

experiment and the desired confidence in the results.

Currently there are no techniques which have all of the above characteristics, each
technique having corresponding strengths and weaknesses. Generally, the techniques fall
into two categories: those that operate in the frequency domain and those that operate in
the time domain (signal domain). Most current analytical procedures that operate in the
frequency domain are based on discrete Fourier transformation (DFT). Traditionally, DFT
is performed on the raw data after a noise reduction step, usually multiplication with a
windowing function. Then. after phase correction to enhance visualization of the

spectrum. Lorentzian lines are fitted to the modified spectrum. Except in the simplest of

o
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cases this requires an experienced operator to setup and run the analysis. The quality of ‘
the results is dependent on the operator’s expertise. Other frequency domain techniques
use prior knowledge of each line in the spectrum to directly fit Lorentzian lines generated
using prior knowledge (parameters A, ¢, o, and o, for each line). It should be noted that
the definition of a Lorentzian line assumes an infinite data sequence which will lead to
nonzero bias in the results. For a truncated sequence we must compute the Fourier
transform of the truncated model function and then fit that to the Fourier transform of the
data. All frequency domain procedures suffer when rapidly decaying metabolites appear
in the signal, corrupting the first few data points in the time domain. A rapidly decaying
metabolite will generate a broad baseline underneath the frequency domain spectrum.
Frequency domain techniques generally rely on measuring the area under a Lorentzian

line which will lead to a bias in the area measurement.

Time domain methods can be subdivided into those which are interactive and
require initial guesses for the model parameters, and those which are noninteractive and
generate their own estimates. The major techniques which require initial guesses are
usually based on maximum likelihood estimation (MLE) [1, 2]. Using the initial guesses
as a starting point, they attempt to minimize a "closeness of fit" estimator based on the
difference between the FID regenerated from the model parameters and the original data
by modifying the parameters. Obviously, this requires detailed prior knowledge about the
signal. The major techniques which do not require initial guesses are based on
autoregressive (AR) modelling, also known as backward linear prediction [5, 6, 7]. In
backward linear prediction, each data point in the FID is defined to be a weighted sum of
the following data points. The weighting coefficients can then be used to determine the
frequency and decay parameters of the model function. The amplitude and phase
parameters are then determined using a simple least squares procedure. Ideally. the

number of exponentially decaying sinusoids in the signal is determined automatically and



the linear prediction procedure will require no input from the operator. There is, however,
signal dependent information required by the procedure which affects the performance of

the analysis.

A disadvantage of linear prediction methods, as opposed to maximum likelihood
methods, is that the resulting parameter estimates are biased and have variances larger
than the Cramer-Rao lower bounds, while maximum likelihood methods return results
which have zero bias and variances equal to the Cra;ner-Rao lower bounds [3]. On the
other hand, maximum likelihood methods have a need for good starting values to operate
effectively. Clearly, a procedure which has the advantages of both linear prediction
methods and maximum likelihood methods would be highly desirable for the analysis of

NMR data.

A time domain processing procedure which does not require initial estimates for
the model parameters and gives the optimal accuracy and precision in NMR spectroscopy
was developed by Ho (3, 12]. The MLE procedure, which results in optimal bias and
precision but requires initial estimates of the parameters, is preceded by linear prediction
with singular value decomposition (LPSVD) which generates the estimates. The resulting
algorithm has the advantages of optimal bias and precision, and removes the dependence
on the operator's knowledge of the signal components. However, signal dependent
parameters are still required by the procedure for proper analysis. Specifically, LPSVD
requires preselection of the number of acquired data points to be used in the analysis (N).
the model order (L), and a cutoff number for the SVD procedure [5. 6] needed to reduce
the effect of noise on the estimates. Incorrect selection of these values can lead to either
missing lines in the returned estimates or additional noise related lines. Once passed to
the MLE algorithm these starting values may lead to nonoptimal bias and precision in the

final results. Clearly, proper selection of N. L. and the cutoff number. plus reduction of



the number of noise related lines in the LPSVD generated estimates, is crucial to the
success of the MLE procedure. Essentially, the quality of the MLE results is dependent on

tﬁe quality of the starting values.

The main goal of this thesis is to improve the algorithm of Ho by automatically
setting values for N, L, and the cutoff number, while not degrading the accuracy and
precision of the results. Additionally, a reduction in the probability of missing lines or
including extraneous lines in the results is desired. To achieve this goal, procedures for
determining N, L, the cutoff number, and identifying extraneous lines were implemented

and tested, the results of which will be presented here.

Linear prediction methods are sensitive to the number of data points used.
Inclusion of data beyond an optimal N or truncation of the data before reaching an
optimal N can lead to a larger error in the resulting parameters and an increased
probability of missing lines or including noise lines. An estimate of the optimal number
of data points to use for analysis can be obtained by determining the main exponential

decay of the signal and the minimum frequency separation of the sinusoids in the signal.

Integral to linear prediction is the determination of the weighting coefficients in
the AR model. The number of weighting coefficients used is defined as the model order.
Under zero noise conditions the model order must be equal to the number of parameters
to be solved for [7]. In the case of the FID there is one complex parameter per component
to be solved for directly: the complex frequency. The real part is the decay rate and the
imaginary is the angular frequency (amplitude and phase are determined from a least
squares procedure). Thus, for a noiseless FID the model order is L = k. where k is the
number of exponentially decaying components in the FID. Unfortunately, when the signal

contains noise this equation no longer holds and the model order must be increased well
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beyond k. Practically, L is set to be anywhere from 0.25N to 0.75N. Experimentally it has
been shown that in this range the error in the parameter estimates from linear prediction is
relatively insensitive to L [12]. Alternatively, a procedure called Final Prediction Error
[13] can be used to determine the best model order for each data set and determine the
model order which gives the minimum variance to the error between the original data and

the modelled data.

Under the higher noise conditions which exist in most in-vivo NMR signals the
linear prediction procedure may attempt to fit the noise with damped sinusoids as well.
Two closely related procedures designed to reduce noise in the signal are based on
modification of the singular values returned from the singular value decomposition of the
linear prediction matrix. One of the procedures, called "discrete regularization”, reduces
noise by truncating the singular values at a threshold value [6]. All values below the
threshold are discarded and the weighting coefficients are then found. The number of
noise related damped sinusoids in the results is reduced substantially. A problem can
occur if the threshold is incorrectly specified. If the threshold is too high, signal
components will be missed; if the threshold is too low noise lines will be included. The
threshold can be determined from a comparison between the singular values and the noise
estimate of the FID and then used to set the truncation value. A method which ensures
that the maximum amount of signal is retained with the minimum amount of noise, called
"continuous regularization” [10], has the same effect on the results but has the advantage

of a continuously variable threshold which can be easily determined from the signal.

Although selection of the number of data points N, model order L, and
regularization threshold do much to reduce extraneous components in the results, noise
related components may still appear. Unless the person doing the analysis is experienced

and knows the components to be expected. these noise related components could be
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interpreted as signal leading to incorrect conclusions. As well, noise components will
affect the bias and variance of the overall results as these components are included in the
maximum likelihood procedure. To identify the noise related components in the results an
algorithm has been developed based on subsets of the original data. The FID is split into
two different sets and each analyzed separately. The results are compared with the results
from an analysis of the full FID. A component is identified as signal if it exists in all three
sets of results and is within a predefined equivalence region of the full result in the subset
results. Otherwise, it is considered to be noise and is ‘removed from the final results. The
equivalence region is specified by estimates of the parameter variances. This method of
identifying noise related components is based on the idea that each subset of the data
contains the same realization of the signal while having differing noise realizations. An
analysis of each subset should give similar results for the signal components while the

noise results will be random.

All methods of analysis in use today require some initial specification of analysis
parameters and/or some operator intervention. Even though linear prediction requires no
starting values for analysis, it does require several parameters to be specified to give the
best results. The goal of this thesis is to determine and automate the selection of these
parameters based on the data presented for analysis such that no user intervention and

expertise is required.



2.0 Magnetic Resonance Spectroscopy

In this chapter we will use a simple classical description of NMR to describe the
processes which are used to generate the NMR signal. Beginning with a description of the
spin of a nucleus we will move though a discussion of its behaviour in both static and
rotating magnetic fields. Next, the processes that allow meaningful NMR measurements
to be made: relaxation, chemical shift and shielding, J-coupling, as well as paramagnetic
shift agents, will be described. Finally, the system used for detecting the signal for
processing is explained and background theory for a time domain method used as a basis

in Chapter 3 for the analysis and quantitation of the signal is supplied.

All magnetic resonance phenomena are based on a property of nuclei called spin.
Associated with the spin is a magnetic moment which, when the nuclei are in a static
magnetic field, results in the nuclei existing in discrete energy states. Application of radio
frequency (RF) energy at an appropriate frequency can induce transitions between these
states. When the RF energy is removed the nuclei will return to equilibrium, losing
energy to the surroundings at the same frequency as the initial stimulus. Measurement and
quantitation of the energy released as the nuclei return to equilibrium allows information

about their state to be determined.

2.1 Basic Magnetic Resonance Spectroscopy

2.1.1 Spin of a Nucleus

Spin is the property of atomic nuclei that allows magnetic resonance

measurements to be made. The value of the spin depends upon the number of neutrons



and protons in the nucleus. Only those nuclei possessing an odd number of protons and/or
an odd number of neutrons will be NMR visible. Directly related to the spin is the nuclear
magnetic moment which can be modelled as a magnetic dipole with its axis along the axis
of spin. Nuclei with a spin of 12 + will have a net angular momentum resulting in a net
magnetic moment not equal to zero. The equation relating the spin and magnetic moment

is

p=2s, [2.1.1]

where | = the magnetic moment of the nucleus, y = the gyromagnetic ratio of the nucleus
(different for every nuclear species), h = Planck's constant, and I = the spin value of the

nucleus.

Common nuclei used in in-vivo NMR spectroscopy are IH, 13C, and 31P. All
have a spin of I = 1/2. In this description of NMR, only the case where [ = 1/2 will be

considered.

2.1.2 Behaviour in Static Magnetic and RF Fields

Quantum mechanically, in a static magnetic field the magnetic moment of the
nuclei can assume discrete orientations only with respect to the field. A nucleus with a

spin of [ = 1/2 will have two possible orientations, one parallel to the field and one anti-

parallel. In a static field Eo , these two orientations have energies equal to

2nt

and the energy difference is proportional to the strength of the static field and is



hB
AE:EQ—Eézyzi. [2.1.3]

Describing the interaction of a magnetic moment with an applied magnetic field in a
classical sense, the rate of change of the angular momentum (hI/2m) is related to the

torque on a magnetic moment in the static field by

4 if- ixB
de| 2 [0
leading to

di -
B [2.1.4]
dr KL XYB,

Equation 2.1.4 shows that in a static magnetic field a magnetic moment will precess about
the field at an angular frequency of w;=yB,, known as the Larmour frequency. Although
nuclei exist in both states, there is a larger population of spins parailel to the field than

antiparallel according to the distribution

N,
§:=e, [2.1.5]

L3

where k is Boltzmann's constant and T is the absolute temperature. The net effect is a

total magnetic moment vector, M, in the direction of the applied static field

M=20,.
1
where [1, is the magnetic moment vector of each individual nucleus. Figure 2.1 shows the

net effect of the individual magnetic moments on the total magnetic moment in the

presence of a static magnetic field of strength B.

10
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Figure 2.1

Net effect of both parallel and antiparallel spins on the total magnetic moment vector in the presence of a
magnetic field B, .

Application of a rotating magnetic field to the system in the form of an RF field

such that B = 1—30 +1§,(t), where ﬁ,(t) = (B, cos(at),B, sin(wt),0) and ﬁo =(0,0,B,), will

influence the motion of the magnetic moments. The equations for each component of M

are
M, .
T = Y(MyBo - MlBl Sln(m[))v
dty =Y(M,B, cos(wt) — M, B,),
dM, .
and —-*=Y(M,B, sin(wt) - M, B, cos(ax)). [2.1.6]

Defining a rotating frame of reference with the static field in the z direction and an

XpYp plane rotating at the frequency of the RF field, w, such that both B, and 1_3l (t) are

static leads to the simplified equations of motion



dM
dt

== (1B, +@)M,,

dM,

—-d—t'— =-(yB, +o)M, +yBM,,
dM,

and _d_t—z_YB‘M” [2.1.7]

or combining into a single equation

dM, 5
—— x .
d[ ’YNI eff
= 0]
where B_; = (B, ,O,—Y—+ B,). [2.1.8]

Equation [2.1.8] shows that when @ is negative (B(t) rotates in a negative

direction) and is equal to YB,, Eeﬁ =(B,,0,0). M will then rotate in the zy, plane at a
frequency of @,=yB,. Various tip angles can be defined and are based on the time the RF

field is applied and its magnitude. For example, a 90° pulse (y, axis) requires the field to

be applied for a time t = n/2yB, while a 180° pulse (-z axis) requirest =t/ yB, . While

these two angles are the most useful in terms of spectroscopy, other tip angles are also in

use. Figure 2.2 shows the direction of the net magnetic moment vector MO for the two

cases described.
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Figure 2.2
Direction of the magnetic moment vector in a rotating frame after a pulse of correct magnitude and duration
. . . . 0 o
is applied to tip it by a) 90 and b) 180 .

2.1.3 Relaxation

At the end of an RF pulse the population of spins in each state is perturbed from

their thermal equilibrium values, and the component of M in the z direction, Mz, can take

on different values, i.e., for a 90° pulse M, =0, thus N, /N , =1, and for a 180° pulse

M, = [M|, thus, N, /N _, =e™. When the RF field is removed and B, =(0,0,B,) , the

recovery of Mz towards its equilibrium value is governed by the first order rate equation

dM,@®) _

1
& T [M,~M, ()], [2.1.9]

where T is called the longitudinal relaxation time. In longitudinal relaxation M, returns

to its thermal equilibrium value with a time constant of T,. Thus, following a 90°

pulse M, = M (1-e ™), and following a 180° pulse M, = My(1—2e™"™), where M, is

13



the net magnetization parallel to Bg and My is the net magnetization at thermal

equilibrium.
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Figure 2.3
Effect of longitudinal relaxation on the magnitude of the magnetic moment vector in the z direction after
90° and 180° pulses.

In a perfect system where all the spins are identical and do not interact, ﬁo is
perfectly homogeneous and the RF pulse is exactly at the Larmour frequency. the
transverse magnetization will precess around the z axis until longitudinal relaxation
overcomes the magnetization. However, in real systems the static magnetic field applied
to a large number of spins is never uniform and is always affected by the fields generated
by other dipoles and electron fields. Thus, the magnetic field, B, ., experienced by each
nucleus will be slightly different leading to different precessional frequencies. It should
be noted that the magnetic field variations are time dependent due to random motion of
the nuclei. After the RF field is removed there will be an irreversible dephasing of the

transverse magnetic field, My,, governed by the rate equation

- = ‘ [2.1.10]



with the transverse relaxation decay time denoted by T,.

A second cause of transverse relaxation is related to the inhomogeneity of B,

giving rise to non-time dependent variations in the magnetic field experienced by the
nuclei, leading to additional dephasing of the transverse magnetization. Because the spins
are now precessing at different rates, the result is a spreading of the transverse
magnetization over time. Unlike the dephasing generated by neighbouring nuclei, this
additional dephasing is reversible as can be demonstrated by first tipping the
magnetization into the xy plane with a 90° pulse and then, after the magnetization has
dephased, applying a 180° refocusing pulse which will reverse the transverse
magnetization along the y, axis in the rotating frame, causing the magnetization to
rephase. Figure 2.4 shows a simplified example of the refocusing of a small number of

spins.

a) b)

Figure 2.4
Dephasing of the transverse magnetization due to precessional frequency variations. a) initial dephasing.
b) rephasing after refocussing pulse.

The overall effect of the two types of transverse relaxation is a shorter transverse

decay time. denoted by T, . and an exponential decay in the received FID which, for a



system with only a single line, is equivalent to the decay rate a. Solving equation [2.1.10]
gives the envelope of the components of the transverse magnetization My, . Figure 2.5
shows how the two types of relaxation affect the received FID. For the irreversible

transverse relaxation the envelope is

M, () =M, (0)e™™ [2.1.11]

and the overall transverse relaxation envelope is

M, (1) =M, (0)e ™. [2.1.12]

Including the effects of relaxation in equation [2.1.4] gives the Bloch equation

dM — = (Mx-l.+My-j) (M —Mo)"
—_—= B- S 1.
m X T, + T k, [2.1.13]

where B =B, +B,(t) and 1, j, and k are unit vectors along the x, y, and z axes.

Decay constant = T,
0.5 - -
x
s 01 time
-0.5 4
-1 4
b 1
~ ~ _Decay constant = T,
0.5 -~
> e e
x — _— .
= wWifpw—————— time
-0.5 FID Refocus Refocus

Figure 2.5
Transverse relaxation effect on the received signal. a) effect of T, on a single FID, b) effect of T, on the
magitude of refocussed magnetizations.
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2.1.4 Chemical Shift

The resonance frequency of a nucleus is directly proportional to the magnetic field
it experiences. In terms of molecules with more complex chemical structures the field
experienced by the nuclei of interest will be modified by the field generated by the
electrons. Thus, the same nucleus in different molecules or different chemical
environments may have a slightly different resonant frequency. This frequency shift
forms the basis of spectroscopy and gives information about the chemical composition

and environment of the sample.

There are three major effects which contribute to chemical shift in biomedical

processes: chemical shielding, J coupling, and paramagnetic shift agents.
2.1.4.1 Chemical Shielding

The magnetic field experienced by an individual nucleus can be modified by the

electronic currents in the atomic orbitals which create an additional local magnetic field

which is proportional to the main field Eo . The resulting field is

B, = B,(1-0), [2.1.14]
where G is known as the linear shielding constant. As chemical shift caused by shielding

is dependent on By, it is reported in dimensionless units of parts per million (ppm):

Af-10°

ppm =""¢ [2.1.15]

ref

where fr is the reference frequency and Af is the difference between the frequency of

interest and the reference frequency.
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Since o is dependent on the electronic environment, the same nucleus in different
environments can have different resonant frequencies. An important example is in muscle
metabolism where >'P is measured. The different environments for the phosphorous
nucleus are phosphocreatine (PCr), phosphodiesters (PDE), inorganic phosphate (P; =
NaH2PO4), and the o, B, and Y phosphates of adenosine triphosphate (ATP). All have
differing chemical shifts due to the different chemical structure of the molecules.
Measuring the amplitudes of the resonances receivedh allows the state of muscle to be
determined. The resonant frequencies with example relative amplitudes are shown in

figure 2.6.

Additionally, the pH of the sample affects the electronic environment of P;,
changing its measured chemical shift. A simple method of determining the pH of a
sample is by measuring the frequency difference between the Pi and PCr resonances and

using the equation

Appm - 329
———] , [2.1.16]

H=677+1
P °g[ 568 — Appm

where Appm is the frequency difference in ppm between the Pi and PCr resonances.
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Figure 2.6
Differences in the precessional frequencies of some phosphorous containing chemicals present in muscle
showing the shift due to chemical shielding for the different molecules and the splitting of ATP due to J-
coupling. Amplitudes are for example only and change depending on the state of the muscle.

2.1.4.2 J-Coupling

J-coupling relies on the interaction between two nuclei possessing nonzero
magnetic moments in the same molecule which communicate through the electron cloud.
Information about the spin states of a nucleus is transmitted through the electronic bonds.

The coupling constant J is independent of Bg and has units of Hz.

An excellent example of J-coupling is seen in the a, B, and y phosphates of ATP
as illustrated in figure 2.6. The o and y phosphates are split into doublets because they
sense the two spin states of the B phosphate. They do not sense each others spin states as
the coupling only extends over two or three bonds. The  phosphate is split into a triplet

as it senses the states of both the o and 'y phosphates (both parallel and antiparallel. and



the two combinations of antiparallel and parallel with double the probability of the other

two).
2.1.4.3 Paramagnetic Shift Agents

The local magnetic field can be perturbed by neighbouring ions with unfilled
shells, i.e., the 3d iron series or the 4f rare earth series. Nuclei of the paramagnetic ions
are usually not observable themselves, but if they reside on the same molecule as the

nucleus of interest they can modify its resonant frequency.

It should be noted that nuclei of slightly different resonant frequencies can be
excited by a single RF pulse if the pulse is of the correct duration. A discontinuous RF
signal can be designed to irradiate the sample over a range of frequencies due to its

nonzero bandwidth.

2.1.5 Detection of the NMR Signal

At the moment the RF field is switched off after a 90° pulse we have transverse
magnetization precessing about Eo at the resonance frequencies of the nuclei. A
receiving coil placed with its axis in the transverse plane will have a voltage induced
across it due to the changing magnetic field. The voltage is proportional to the magnitude

of the transverse magnetization at the same precessional frequencies.

Electronically the signal is first amplified then demodulated with respect to two
signals. one being the same as the RF pulse frequency, the other the RF pulse frequency
Q . . .
phase shifted by 90 . to give a quadrature signal. Quadrature detection has the advantage

of an improved SNR, a centred reference frequency, half the required bandwidth. and no

20



folding of the spectrum compared with a single detector. Figure 2.7 shows the signals
received by the two channels for a single resonance when it is above and below the
reference frequency to demonstrate how quadrature detection allows separation of
positive and negative frequencies. A low pass filter then removes all high frequency
components generated by the demodulation, leaving signals which are easily sampled by
analog to digital converters. The sampling frequency of the converters must be higher
than twice the highest frequency component in the signal (Nyquist theorem) or aliasing
will result. Generally, the sampling frequency is mad.e much higher than the Nyquist rate.
with four times the cutoff frequency of the lowpass filter not being an unusual setting.
Figure 2.7 shows the relationship between the quadrature components of the sampled

signal for both positive and negative frequencies relative to the reference frequency.

a) , . b) 4.
o x channel X channel
3 0.5 0.5 1
: °
< 0.5 1 -0.5 1
-1 -1
0 500 1000 ) 500 1000
1 1W
]
S g3 y channel 0.5 ] y channel
?3 0 0
=
< 05 -0.5
-1 -1
0 500 1000 0 500 1000
Sample Sample
Figure 2.7

The quadrature signals observed after demodulation for the non-phase shifted channel (x) and the 90° phase
shifted channel (y). a) signals when the frequency of the signal is below the reference (negative frequency).
and b) above the reference (positive frequency).



2.2 Theoretical Form of the FID

Before demodulation and sampling the received NMR signal can be described as
being proportional to the precessional magnetizations of the nuclei attenuated by the

dephasing of the transverse magnetization:

k
s(t) = Y. a, cos[(®, +8,)tle™™ + w(t), [2.1.17]
1=l

where §; is the total frequency shift of the nuclei distributions corresponding to the ith
population of molecules, T; refers to the T, decay constant of each population, a; is the

relative amplitude of the signal from each population, and w(t) is the noise present.

Quadrature detection multiplies the signal by both cos(aot) and -sin(ot) to give

-uT,

X, (1) = 2., cos[(@, + 8, )t]cos(@,te ™™ + w(t)

= Zai F[cos(d;t) + cos(2w,t) cos(8;t) — sin(2w,t) sin(d, )le ™" + w(t),

t

Xgo(l) = z‘,al cos[(w, + 6,)t]sin(w,t)e” M+ w(t)

= E,ai FIsin(8,t) — cos(2w,t) sin(d;t) — sin(2w,t) cos(d,t)]e ™™ + w(t).

Using low pass filtering to remove the high frequency terms and amplification

leads to

x(1) = D AePee™ +w(t), [2.1.18]

where x(t) = Xo (t) + jXgo (t) and A; is a; after amplification. The sampled version is



ar

x(nAT) = 3 Ae®e®™Te™™ + w(nAT), [2.1.19]

where t = nAT. Normalized to the sampling interval,
x(n) = X(AT) = Y, A" ® & w(n), [2.1.20]

where o = ;AT and o; = AT/T;.

Noise in the received signal can come from innumerable sources including
background RF, regions of the sample outside the volume of interest (VOI), thermal noise
from the VOI, the receiver electronics, etc. Generally, the noise is assumed to be random,
white, and Gaussian distributed. A simple analysis of the noise from experiments with

and without samples has confirmed this.

2.3 Time Domain Analysis of the FID

2.3.1 Nonlinear Maximum Likelihood Estimation (NMLE)

Given a function which is an estimate of the FID, y(n) = f(n; Ay, ¢;, o, @y, ....Ax.
o, Ok, W), we want to find the best parameter set which allows the function y(n) to fit the
measured data according to a closeness of fit estimator. It is assumed that each data point
has a measurement error that is independent of the parameters A;, ¢;, o, and @, Is
random with a Gaussian distribution around its true value, and that the variance (6°(n)) of
each distribution is known for each point. The probability (P) of the dataset occurring
within a fixed range Ay for each point is then the product of the probabilities at each

point.

N BILISTLIRN

P=JJe™ ™ /ay, [2.3.1]

n=l



where x(n) is the measured value of data point n and y(n) is the model function value at
the corresponding n. Maximizing [2.3.1] is equivalent to minimizing its negative

logarithm which is
N 2
[x(n) — y(n)]
—In(P)= ) ——— ———-NlogAy. 2.3.2
n(P) Z} 25 (m) 0g Ay [23.2]
Since N and Ay are constant, and o(n) is assumed to be constant for all n, the maximum
likelihood estimate can be calculated from

2

bl l N
X' == > (x(n) - y(m)) | [2.3.3]

and we can use xz for a goodness of fit estimator.

Using an iterative approach for minimization of a non-linear function, for
example, the Levenberg-Marquardt method [22], will minimize equations [2.3.2] and
[2.3.3] and give estimates for the parameters A, ¢;, o;, and & with the largest probability
P for the given dataset. However, due to the possibility of the minimizing procedure
finding a local minima, good starting values for the iterative algorithm are required. Such
values can be determined using the automatic algorithm described in this thesis which is

based upon LPSVD.

2.3.2 Linear Prediction with Singular Value Decomposition

Linear prediction with singular value decomposition (LPSVD) involves fitting the
model to the data using a linear least-squares procedure based on singular value
decomposition (SVD). The method is a derivative of Prony's method [23] for

exponentially decaying signals.



Prony’s method determines the parameters of exponential signals contained in
noiseless signal samples. For a sampled data sequence assumed to consist of k complex

damped exponential signals,

k
x(n) =Y Ae*, n=0L..N=-I [2.3.5]

1=l

we wish to determine the complex unknowns A; and s; from the N samples. Since there
are 2k complex unknowns, at least 2k samples are needed to determine them. The
difficulty stems from the fact that the A;’s and s;’s enter bilinearly in equation [2.3.5].
Prony observed that the terms could be decoupled and then determined by solving two

sets of linear simultaneous equations and one polynomial root extraction.

Unfortunately, when the signal is corrupted by noise, Prony’s method will break
down and the resulting linear equations will have no solution. In this case a least-squares
approach is necessary. Since more than 2k samples are generally available, we can
overdetermine the simultaneous equations and, using a least squares algorithm, generate
estimates for the parameters A; and s;. It has been found, however, that the perforrﬁance
of a least-squares Prony’s method is poor, even at high SNR's. To improve this
Kumaresan and Tufts [6] proposed a noniterative method based on singular value
decomposition (SVD) which filters the noisy data and significantly improves the
estimates of A; and s;. The algorithm proceeds as follows. Using backward linear
prediction (AR modelling) each data point in the FID can be expressed as a linear

combination of the L (L is known as the model order) following data points:



—Xg =a,X; +2,X, .2 X[
—X; =a,X; +2,X;+..3, X,

— X, =a,X;+a,X;+...a, X, _,

= XNop-1 T 3 Xy FA Xy @ Xy

where L<N-1. In matrix form

h=Xa [2.3.6]
Xy X, X, X, a,
< R
where h=— . , X= . Tl oa=
LXN-L-1 L XL Xneper  XNar aL

The prediction vector a is solved for using a linear least-squares procedure based
on SVD. X is first decomposed using SVD into X = UZV*, where U is the column
orthogonal matrix of eigenvectors of XX", V is the column orthogonal matrix of
eigenvectors of X"X, = is the diagonal matrix of singular values, and u stands for
complex conjugate transposition. Then, the polynomial coefficient vector a is obtained

using the regularized inverse equation

a=VI;U", [2.3.7]

where Z;' is the inverse of the singular value matrix either truncated or regularized as a

noise reduction step (see sec. 3.3).

Vector a is used to form the polynomial equation
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=l
whose k roots, when reflected inside the unit circle (Izi| < 1), are used as estimates for the

zeros z, =e " Roots outside the unit circle are assumed to be noise and discarded.

Given the estimates for ¢; and @, estimates for A; and ¢; can be obtained through a linear

least squares solution to

Zb =x, [2.3.9]

where Z  =e ™" 0<pn<N-1, 1<m<k,

- o T
AleJ | xl
A,e™ Xy

b= 2 ,and x=
Akejok XN

k
The resulting parameters from the equation y(n) = ZAie""e‘"“""""n ,0<n<N-1, can

be used as starting values for the NMLE algorithm or further processed as in sec 3.4.



3.0 Automation of the LPANAL Algorithm

While the LPSVD algorithm is used to give initial estimates of the line parameters
to the NMLE procedure, setup information still exists which must be supplied to the
LPSVD procedure before the estimates are generated. The quality of the estimates is
dependent upon the choice of three parameters; the number of data points analyzed (N),
the model order (L) which, along with N, sets the rank of the linear prediction (LP)
matrix, and the cutoff (K) or regularization (A) value used to improve the condition of the
LP matrix through SVD. Here we describe the effect of each parameter and possible

methods for determining suitable values for them.

3.1 Specification of the Number of Data Points (N)

Generally, the acquisition of an FID is terminated when the signal is assumed to
have decayed to a small fraction of its original magnitude (5T, for example) and only
noise is being acquired. Depending on the choice of sampling rate chosen based on the
expected spectral width of the signal, this can lead to a large sample size, with 1024 to
2048 samples not being unusual. As the LPSVD algorithm has a process order of N°,
analysis of the entire data set becomes time consuming. In conflict with the time
constraint is the increase in precision of the results with increasing N. It has been shown
in [3], however, that the gain in accuracy and precision with increases in N becomes

negligible once a threshold value has been reached.

[t can be shown (see section 4.1.5) using a Monte Carlo simulation that the
LPSVD algorithm has an optimal sample size for a specific signal where the probability
of identifying all signal components is highest. Increasing N past this point may lead to

higher accuracy and precision in the parameter estimates if the threshold described above



has not been reached, but leads to a decrease in the probability of identifying all the
components to be supplied to the NMLE algorithm. In recent papers by Diop et al. [16.
17] it has been suggested that the optimal sample size to fit the data in the least-squared

sense using their enhancement procedure (EP) based LPSVD procedure is

3T;
T 1

N =

where Ts is the sampling interval and T, the largest relaxation time. Converting to

normalized components and including the sign of the decay constant o we have

Using this sample size with the EPLPSVD procedure gives an optimal fit
equivalent to that of the NMLE algorithm for the same N in a single step. Not addressed,
however, is its effect on the probability of missing a true line in the results (the failure
rate) when using the procedure. We propose that the optimum data length for the LPSVD
procedure for the lowest failure rate is dependent on signal decay and also on the smallest
line separation in the signal. To produce the optimal fits of EPLPSVD, the NMLE
procedure is applied to the results of the LPSVD procedure using as many data points as
needed for the accuracy and precision desired. From experiment we have determined that
. for a simple two-line case the optimum data length for the LPSVD procedure can be

approximated from the equation

1 2 3
== ] [3.1.1
N 2[Afm+am, } :

n

where Afqin is the minimum normalized frequency separation expected between the lines

and Oy, is the smallest normalized decay constant (longest decay) of the lines.



As the actual frequencies and decay constants of the signal components are not
available until analysis is completed, and as this information is desired before analysis to
éet N, a priori knowledge of the signal based on spectral width, knowledge of the
component frequencies and decays must be used to determine the optimal N. Assuming
that equation [3.1.1] holds for a multi-line case, a priori knowledge of component
frequencies and decay constants will give the minimum component separation (Afp;,) and
minimum decay (Otmin). Ideally, an iterative procedure which determines these two

parameters directly from the signal can be applied.

3.2 Specification of the Model Order (L)

The model order sets the rank of the linear prediction matrix (with N) and
determines the order of the polynomial whose roots are the signal poles. Under zero noise
conditions the minimum model order which will lead to the correct number and location
of the roots is k, where k is the number of exponentially decaying components in the
signal. With increasing noise the model order must be increased to improve the estimates
of the root locations and reduce the effect of extraneous roots. An example of the effect
noise has on the root locations for a constant model order is shown in figure 3.1. With the
increased noise in figure 3.1b the variation in the root locations begins to be visible. With
even higher noise levels as in figure 3.1c some of the roots are calculated incorrectly. The
model order is routinely set to be between 1/4 and 3/4 N [6]. Model order determining
algorithms such as the Akike Information Criterion [13], designed to give the lowest
order necessary to achieve a desired residual between the signal and its reconstruction
leading to the lowest order polynomial possible, are not applicable in this situation. The
goal is to find the polynomial with the true roots in the best positions [6]: extraneous

roots can be identified and removed later (see section 3.4).

30



o] LN LAY
B ANUEZ NP s AN

-1 0o 1 -1 0 1 1 0 1

Figure 3.1
Plot of pole locations for ten realizations with A, =200, ¢, =0, 0, =0.1 f;=-0.12, A;= 100, 9.=0, oy =
0.1, and f, = -0.16, at three different noise levels with N = 50, L = 25, and a cutoff of 2. 2) 6 =0,b) 0 = 30,
and c) 6 = 60.

The dimensions of the LP matrix are formed from the model order L and the
number of data points N and has a rank of min(L, N-L) which leads to a polynomial of
the same length and a maximum number of roots of min(L, N-L). The maximum length
of the polynomial occurs when L=N/2 and gives the minimum error in the positions of the
calculated roots [6]. For short data sequences the number of identifiable roots must be
maximized to prevent a loss of true roots. To maximize the number of roots found the
size of the polynomial must therefore be maximized [9]. For L in the range 1/3N <L <
3/4N it has been shown [12] that the bias and variance are insensitive to model order.

Proper selection of the model order will allow better starting values to be passed to the

NMLE procedure which will then generate results with zero bias and optimal precision.

3.3  Specification of the Cutoff Value

One of the advantages of using SVD to solve the linear prediction equations is
that it allows the application of a cutoff or regularization value to reduce the effect of
noise on the results. In a noiseless signal the number of nonzero singular values is equal
to the number of decaying exponentials in the signal. For low noise all singular values are

nonzero. but the distinction between those belonging to "true” signal and noise is clear by
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magnitude. Referring to figure 3.2, with higher noise no clear distinction can be made
between the two as the noise blurs all singular values, leaving no singular vectors
containing only noise or only signal. Even having a priori knowledge of the number of
components in the FID does not automatically give the best cutoff value. To ensure that
most of the signal is contained in the singular values kept the cutoff value must be higher
than the number of known components, but must be low enough to keep a minimum

amount of noise.

Three methods of defining cutoff will be discussed here: manual, discrete, and

continuous regularization.

3.3.1 Manual Regularization

This is the original method of noise reduction proposed by Kumaresan and Tufts
[6]. After performing singular value decomposition, perusal of the resulting singular
values for the steepest descent gives an indication of which singular values correspond to
singular vectors containing mostly signal and those containing mostly noise. The point of
where there is an abrupt change in the slope of a plot of the singular values is called the
cutoff value (K). When solving for the linear prediction coefficients using pseudo-
inversion, the inverses of the singular values, 1/gj, after the cutoff value are set to zero to
reduce their ill conditioning effects and effectively reduce the noise. In higher noise
conditions the difference between signal and noise related singular values is blurred and
choosing a cutoff is difficult or even impossible for a signal with an unknown number of
decaying exponentials in it. This is demonstrated in figure 3.2 where a two component
signal with and without noise is analyzed and the singular values plotted. Clearly the

noise causes difficulty in the selection of the cutoff value. Thus. an algorithm to



determine the best cutoff without user interaction is desirable. Sections 3.3.2 and 3.3.3

propose two possible methods of determining cutoff.

a) b) c)
1500 1500 1500
1000 }+ 1000+ 1000
+
500 500 500
+
O SHHHHHHHHHH 0 0
0 10 20 0 10 20 0 10 20
Figure 3.2

Effect of noise on the magnitude of the singular values and the identification of the cutoff value with A, =
200, ¢, =0, o, = 0.1 f;=-0.12, A;= 100, ¢, =0, ;= 0.1, and f, = -0.16, at three different noise levels with
N=50,and L =25.a)6 =0, b) =30, and ¢c) 6 = 60.

3.3.2 Discrete Regularization

Discrete regularization was developed specifically for this thesis as an alternative
to manual regularization. Instead of visually or arbitrarily selecting a cutoff value, an
algorithm iteratively selects it by regenerating the FID using the truncated singular value
matrix and subtracting it from the original FID. Iteratively the cutoff value is selected
when the variance of the residual is smaller than or equal to the estimated variance of the
noise (see section 3.3.3). The final truncated solution is then used to generate the linear

prediction polynomial.

A shortcoming of manual and discrete regularization can by seen by looking at

figure 3.2. Even after selection of a cutoff number and truncating the singular value



matrix, the “true” singular values are still corrupted by noise. Comparing the value of the
first two singular values between figures 3.2a, 3.2b, and 3.2c clearly shows the noise
increasing the magnitude of the first two “true” singular values. Continuous
regularization alleviates much of this by adjusting all singular values to account for the

effect of noise.

3.3.3 Continuous Regularization

Continuous regularization [10] differs from both manual and discrete
regularization in that instead of setting 1/ej below the cutoff value to zero, a continuously

variable regularization parameter () is used to modify all singulars values, i.e.,

€.
(£, =€2;k,15i5min(L,N—L). [3.1.2]

Increasing A is comparable to successive truncation of the singular values in manual and
discrete regularization. When A = 0 the method is equivalent to the original Prony method
with no cutoff. A is iteratively found by determining where the variance of the residual

between the reconstruction and the original signal equals the noise variance.

Since continuous regularization is not limited to discrete levels of the
regularization parameter, finer control over the signal fit is available. Generally,
continuous regularization leads to inclusion of most of the signal plus some of the noise.
Spurious noise related lines are usually generated which need to be identified and
removed (see section 3.4). It has been found that continuous regularization performs
better than discrete regularization in terms of missed lines [10]. Discrete regularization
tends to miss true lines with amplitudes comparable to the noise due to the noise

corruption of all singular values.
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One of the requirements of both automatic techniques is determination of the
noise variance of the signal. Two possible methods are:
1) Taking the tail of the acquired FID and calculating the noise variance from this portion.
The assumption here is that the FID has decayed to a point where only noise is being
acquired.
2) Analyzing the signal using a large cutoff value and LPSVD, then regenerating the
sequence from the parameter estimates. This noise fre;e regeneration is subtracted from
the original to obtain a resulting signal which is assumed to contain only the noise plus a
very small residual signal components due to the parameter errors. The noise variance can

be calculated directly from the result.

It has been found through simulation that both methods estimate the noise level
accurately. Table 3.1 shows the noise estimates calculated using both methods on a two
line spectrum. Here we will use method 2 to automatically calculate the noise variance for

regularization as it does not require knowledge of the characteristics of the original FID.

Actual 0 5 10 20 30 40 50
Noise

Method | 0.0000 5.0369 10.0442 | 19.7231 | 29.8652 | 40.0302 | 50.1890
1

Method | 0.9490 4.9987 9.9917 | 19.9560 | 30.1103 | 40.7021 | 50.2482
2

r

Table 3.1
Noise estimates calculated from a 1024 point simulated FID A, = 200, ¢, =0, &, = 0.031 f; =-0.12. A, =
100, ¢.=0, 0, = 0.062, and f, = -0.16, using the two methods of section 3.3.3. Ten noise realizations were
generated for each noise level. Method 1 estimated the noise level from points 512 to 1024 of the FID.
Method 2 calculated a noiseless FID using LPSVD with N = 128. L = 64. and a cutoff value of 32 and
subtracted this from the original.
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3.4  Identification of Spurious Noise Related Lines

When using LPSVD to generate parameter estimates, spurious noise related lines
may appear in the results due to attempts to guarantee inclusion of all significant signal
lines. Regularization, while reducing the effect of noise on the results, generally still leads
to a larger number of lines in the results than there are true lines [15]. Since it is difficult
in most cases to prevent noise related lines from being generated by LPSVD without
missing true lines, a method of identifying noise lines based on their characteristics needs
to be developed. A general method of identifying noise related lines relies on the
assumption that between subsets of the data analyzed in a similar manner the parameters
found for signal related peaks will be relatively stationary while those of the noise will
vary. A simple test for equivalence between the parameter estimates for each subset using

estimates of the parameter errors allows identification of equivalent lines in the subsets.

Three methods of subsectioning the FID will be discussed here: even/odd,

real/imaginary, and multiple acquisitions.

3.4.1 Even/Odd Subsets

A single FID is separated into its even and odd numbered data points. The
intermediate points of each set are then interpolated, thus maintaining the resulting decay

rates and frequencies of the original set for the subsequent analysis.

Interpolation is achieved by mirroring each data subset around the y-axis, then
applying discrete Fourier transformation (DFT) based interpolation. The interpolation of
the even data points for the odd subset and the odd data points for the even subset occurs

by padding the even or odd subsets with zeros between the actual data points. A DFT is
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performed to convert to the frequency domain and the spectral image is set to zero. An
inverse DFT is performed to convert the signal back to the time domain where the padded
values now are smooth interpolations of the surrounding data points. Mirroring gives a
better estimate for the first few interpolated points of the subsets as the DFT assumes a

repeating sequence.

LPSVD is performed using best estimates for the number of data points (section
3.1), the model order (section 3.2), and using continuous regularization (section 3.3.3) on
the original FID, the interpolated even subset, and the interpolated odd subset. Using the
results from the original FID and an estimate of the noise found using an appropriate
method, parameter errors are generated using a multiple of the Cramer-Rao bounds and
the results of each analysis are compared. True lines are identified as those existing

within the error estimates for the three parameters A, @, and o in all three sets of results.

A side effect of subsectioning the FID into even and odd data sets is that the
spectral width of the signal is cut in half. If signal exists outside of the range -0.25<f<
0.25 (normalized frequency), aliasing will occur. It is possible to use the aliased signals to
test for equivalence outside the region of -0.25<f<0.25 by folding the full dataset results
into the region of -0.25<f<0.25, but complications will arise when the folded spectral
frequencies overlap and cannot be separated. A second side effect is that due to the
interpolation of the first point of the even subset, errors in phase are generated in the
results. Consequently, the first data point of all subsets is dropped and phase is not used

in the test of line equivalence. Figure 3.3 illustrates the even/odd subsectioning algorithm.
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Figure 3.3
Even-odd subset flowchart showing analysis results for each subset and the comparison test using the CR
bound calculated from the full dataset results. Not shown in the comparison is the test of decay rate
equivalence.

34.2 Real/Imaginary Subsets

A single complex valued FID is separated into its real and imaginary components.

LPSVD is performed on three different data sets, the original, the real only set, and the
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imaginary only set. As in the even/odd analysis a parameter error estimate is generated
from the results of the original data set and the results of all three compared to find the
true lines with the exception that the amplitude parameter is not used in the equivalence

test as the amplitudes in both domains can be different.

A side effect of the subsectioning using only the real or imaginary portions of the
signal is that all sign information for the frequency of each component is lost. All lines in
the results will be mirrored on both sides of f = 0. As well, in cases where two lines exist
at the same absolute frequency but having reversed signs the lines will not exist in either
the real part or the imaginary part of the FID and thus will not be identified. Figure 3.4

illustrates the real/imaginary subsectioning algorithm.

3.4.3 Multiple Acquisitions

Normally when acquiring spectroscopic data an average of many acquisitions
from the same sample volume is made to generate an FID with the desired SNR. Since all
acquisitions will have a different noise realization they can be separated into many
groups, an average of all even numbered acquisitions, an average of all odd numbered
acquisitions, and an average of all acquisitions or other combinations such as the first half
of the acquisitions and the last half of the acquisitions. However, due to the possibility of
the sample changing over the period of the experiment, even/odd acquisition separation is

probably the best as changes in the sample will be reflected equally in all groupings.
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Figure 3.4

Real-imaginary subset flowchart showing analysis results for each subset and the comparison test using the
CR bound calculated from the full dataset results. [Hustrated in this example is the large error caiculated for
the decay rates.
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Again, similar to even/odd and real/imaginary subsets, the results of LPSVD analysis of
the three sets are compared using a parameter error estimate generated from the

parameters of the complete average.

Unlike even/odd and real/imaginary subsectioning, there are no problems with
aliasing and reduction of bandwidth. A -}2- reduction in the SNR of the even and odd
acquisition data sets will occur. Changes in the sample over the period of the acquisition
averaging will be reflected in all data sets equally due to the interleaving of the averaging.

Figure 3.5 illustrates the acquisition subset algorithm.
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Figure 3.5
Multiple acquisition subset flowchart showing analysis results for each subset and the comparison test using
the CR bound calculated from the full acquisition results. Not shown in the comparison is the test of decay
rate equivalence.



4.0 Results and Discussion

In this chapter we show the effect of each input parameter (cutoff/regularization,
L, N) on the performance of the analysis. Performance criteria for the effect of each
parameter are the failure rate of the analysis procedure, the accuracy and precision of the
results, and, for the parameter N only, analysis time to show its independence on noise
and dependence on N. Having a low failure rate of the LPSVD procedure is necessary to
pass the proper starting values to the NMLE procedure as it will only fit as many lines as
are passed to it. Although the final accuracy and precision of the analysis results are
determined by the NMLE procedure which is performed after LPSVD, having small
errors in the intermediate results passed to the NMLE procedure is still important for its
optimal performance. For this reason the effect of the input parameters on the accuracy
and precision of the LPSVD results is discussed rather than those of the final NMLE
procedure. We will also introduce procedures for determining optimal values for the input
parameters and a noise line identification algorithm which will then be integrated to

generate a totally automated procedure for analysis.

In section 4.1 we will contrast three methods of selecting the
cutoff/regularization parameter in terms of failure rate and accuracy and precision. Two
of the methods, discrete regularization and continuous regularization, are totally
automated procedures. The third, manual regularization, is the original noise reduction

technique proposed by Kumaresan and Tufts [5] and is included as a baseline for



comparison. We will show that the method of choice is continuous regularization as

proposed for use in NMR by Kolbel and Schifer [10].

In this section and in sections 4.2, 4.3, and 4.6 a failure is defined to be the
absence of one of the two simulated lines and was determined to occur when there was no
line in the results with all of its parameters within 4 times the standard deviations of the
known signal parameters used to generate the simulation. The standard deviations for
each parameter were generated from the square root of the CR bounds calculated from the
simulation parameters, N, and noise. Later, in sections 4.4 and 4.5 the definition of failure

will be more stringent and will also include those results which contain extraneous lines.

In Section 4.2 we will find the optimal value (generally specified as a fraction of
N) for the lowest failure rate of the model order (L). In terms of accuracy and precision
the optimal L has been defined previously to be 0.48 to 0.72 [12]. We will extend this
definition to failure rate and show that the optimal L for the lowest failure rate falls in the

range of that for optimal accuracy and precision.

In section 4.3 we will demonstrate that there is an optimal value of N which gives
the lowest failure rate of the analysis procedure. We will show that in contrast to
reference [17] where the optimal number of data points for the Enhancement Procedure
(EP) which precedes LPSVD is completely dependent on the line having the largest

relaxation time (smallest magnitude of ¢t) and an arbitrary N for the LPSVD procedure.
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the optimal number of data points used for analysis using LPSVD preceding NMLE is

dependent not only on the signal decay, but is dependent on the resonance line spacing.

In section 4.4 the three different procedures developed in section 3.4 for
identifying and removing the spurious noise related lines from the results will be
demonstrated, contrasting the success rates of each procedure. We will show that
real/imaginary subsectioning performs poorly relative to the other two techniques and that

even/odd subsectioning and subsectioning by acquisition perform similarly.

Section 4.5 will show the results of a totally automated procedure incorporating
the optimal selection of input parameters N, L. and regularization, and noise line removal
processing in terms of failure, contrasted with LPSVD using a predetermined cutoff value

and N.

Section 4.6 expands the simulated two line spectra of the preceding sections into a
simulation of a typical muscle phosphorus spectrum containing 6 lines. The automated

processing of section 4.5 will be applied to simulations varying noise and Pi/PCr ratios.

Finally, in section 4.7 the processing technique (4.5) will be applied to actual data

acquired from human muscle.

All simulations in sections 4.1 through 4.5 are based on a two line spectrum with

relative amplitudes. decay rates, and frequencies which are representative of those found



in in-vivo spectroscopy. The basic parameters selected are shown in Table 4.1.

Throughout these sections these parameters will be referenced and specific values

modified to generate the simulation data. Figure 4.0.1a shows the real part of the

simulated FID generated from the parameters in Table 4.1 with noise levels of 6 =0, 20,

and 50. Figure 4.0.1b shows the real part of the frequency domain form. Note that the

direction of the positive x-axis is reversed in the frequency domain to be consistent with

the conventions of NMR spectroscopy.

Amplitude (A) | Phase Angle (¢) | Decay Rate (@) Frequency (f)
Line 1 200 0 0.031 -0.12
Line 2 100 0 0.062 -0.16
Table 4.1

The parameters of the reference spectrum used to generate the simulations in sections 4.1 through 4.5.
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Figure 4.0.1a

The real part of a simulated FID generated from the parameters of Table 4.1 for various noise levels.
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Figure 4.0.1b
The real part of the frequency domain spectrum generated from the FID's in Figure 4.0.1a.

4.1 Specification of Cutoff or Regularization

Here 3 methods for determining the cutoff value or regularization parameter are

evaluated.

1. Manual regularization where the cutoff for SVD is arbitrarily set based on prior
knowledge of the signal.

2. Discrete regularization where an algorithm determines the cutoff value based on the
signal and its estimated noise variance.

3. Continuous regularization where a parameter A is used to adjust all the singular values
based on a noise estimate from the signal.

In all cases 100 realizations of noise were generated for each simulation of N, noise G.
and cutoff for the data. The parameters of table 4.1 were used to generate the simulated

data.
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4.1.1 Failure Rate with Noise for Manual Regularization

To demonstrate the effect the cutoff has on the parameters, the bias and variance of A,
is plotted in figures 4.1.1a, 4.1.1b, and 4.1.1c for N = 50, 100, and 150, respectively, for
cutoffs of 2, 10, and 20 for different noise levels. A lower cutoff seems to lead to a larger

bias in the parameter, especially for N = 50.

Figures 4.1.1d, 4.1.1e, and 4.1.1f show the failure rate versus noise for manual
regularization at N = 50, 100 and 150. Cutoffs of 2, 10, and 20 were used to show the
effect cutoff has on the failure rate. N = 50 is considered to be an optimal value of N for
the data set simulated (see section 4.3.3). A factor contributing to the decrease in the
failure rate as the cutoff is increased is that the number of lines returned from the analysis
increases along with the CR bounds making the probability of matching the original
simulation parameters higher. Although it is more important that true lines do not get
missed than it is that extra lines are returned by the LPSVD procedure, increasing the
cutoff value to lower the failure rate is not necessarily the best method for doing this.
Extra lines passed to the NMLE procedure will also appear in the final results and will
affect the final accuracy and precision of the results. For this reason procedures which
determine an optimal cutoff which does not miss the true lines and minimizes the number

of extra lines generated are desired. Sections 4.1.2 and 4.1.3 will demonstrate two such

methods.
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The accuracy and precision of parameter A, as a function of the cutoff and the noise, analyzed using
LPSVD only. Fifty data points were used and 100 simulations were analyzed for each cutoff and noise

level.
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Figure 4.1.1b

The accuracy and precision of parameter A as a function of the cutoff and the noise, analyzed using
LPSVD only. One-hundred data points were used and 100 simulations were analyzed for each cutoff and

noise level.
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Figure 4.1.1c

The accuracy and precision of parameter A, as a function of the cutoff and the noise, analyzed using
LPSVD only. One-hundred and fifty data points were used and 100 simulations were analyzed for each
cutoff and noise level.

100 + v v v v
© Cutoff=2
90 X Cutoft= 107
+ Cutoftf=20
. 80F <
9o
< 70k E
2
< 60F 4
(1
@ 50°F :
2
w 40} °© ]
w
30+ L
20 E
10" o) > .
-+
0 - —— R > 4 .
0 10 20 30 40 50 60
Noise
Figure 4.1.1d

The failure rate as a function of the cutoff and noise, analyzed using LPSVD. Fifty data points were used
and 100 simulations were analyzed for each cutoff and noise level.
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The failure rate as a function of the cutoff and noise, analyzed using LPSVD. One-hundred data points were
used and 100 simulations were analyzed for each cutoff and noise level.
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The failure rate as a function of the cutoff and noise. analyzed using LPSVD. One-hundred fifty data points
were used and 100 simulations were analyzed for each cutoff and noise level.



4.1.2 Failure Rate with Noise for Discrete Regularization

The results of the first of two automatic procedures for determining the cutoff is
illustrated in figure 4.1.2. Failures for different values of N versus noise are shown. As
seen in figure 4.1.4, the results for discrete regularization match those of manual
regularization (Section 4.1.1) with a cutoff of 2, the difference being that the cutoff was

not specified.
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Figure 4.1.2

Failure rate as a function of the noise for discrete regularization for different dataset lengths (N). One-
hundred simulations were run for each noise level and N.

4.1.3 Failure Rate with Noise for Continuous Regularization

Figure 4.1.3 shows the failure rate for the automatic regularization procedure of
continuous regularization. Figure 4.1.4 shows that the results compare favourably with
manual regularization with a cutoff of 10 for failure to identify the true lines. Figures

4.1.5a through 4.1.5e show the distribution of the number of lines returned from each



procedure for a noise level of 6 = 50 and dataset length of N = 50. A manual
regularization cutoff of 20 leads to an excessive number of noise lines being generated
from the datasets whereas continuous regularization generates a much smaller number.
Discrete regularization does not generate any noise lines for this case but missed a true
line in 33% of the cases. For this reason continuous regularization will be the method of

choice for determining the cutoff in the automatic procedure of section 4.5.
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Figure 4.1.3
Failure rate as a function of the noise for continuous regularization for different dataset lengths (N). One-
hundred simulations were run for each noise level and N.
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Failure rate as a function of the noise comparing manual, discrete, and continuous regularization for a
dataset length (N) of 50. One-hundred simulations were run for each noise level and algorithm.
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Figure 4.1.5a
A histogram showing the total number of results containing the specified number of lines for manual
regularization with a cutoff of 2. The number of data points was N = 50, and the noise level was 6 = 50.
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Figure 4.1.5b
A histogram showing the total number of results containing the specified number of lines for manual
regularization with a cutoff of 10. The number of data points was N = 50, and the noise level was ¢ = 50.
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Figure 4.1.5¢
A histogram showing the total number of results containing the specified number of lines for manual
regularization with a cutoff of 20. The number of data points was N = 50, and the noise level was ¢ = 50.
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Figure 4.1.5d
A histogram showing the total number of results containing the specified number of lines for discrete
regularization. The number of data points was N = 50, and the noise level was ¢ = 50.
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Figure 4.1.5e
A histogram showing the total number of results containing the specified number of lines for continuous
regularization. The number of data points was N = 50, and the noise level was ¢ = 50.

4.2  Specification of Model Order (L)

Here we show the dependency of the failure rate and accuracy and precision of the
results on the model order L. A two-line simulation varying the number of data points N
and the model order as a function of N was generated using the parameters in table 4.1.

N was varied from 20 to 200 and L from 1/8N to 7/8N. Five-hundred realizations for each



N and L were generated using a cutoff of 10 and noise level of ¢ = 30. A cutoff of 10 was
used as this gave the lowest failure rate of the LPSVD analysis procedure (see figure
4.1.4). The noise level was chosen to give the most visible change in the measured

parameters over the range of N and L used. Failure was as defined in section 4.1.1.

4.2.1 Accuracy and Precision with Model Order

Figures 4.2.1a through 4.2.1d show the effect of the model order (L) on the bias
and variance of the amplitude and frequency parameters of the results. A model order of
0.5N seems to give the lowest bias across all the parameters at N = 50 and the bias

response is fairly flat and higher for N = 200.
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The accuracy and precision of parameter A, as a function of the ratio L/N and the number of data points (N)
analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed for each L/N and
N with a noise level of ¢ = 30.
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The accuracy and precision of parameter A as a function of the ratio L/N and the number of data points (N)
analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed for each L/N and
N with a noise level of o = 30.
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The accuracy and precision of parameter f, as a function of the ratio L/N and the number of data points (N)
analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed for each L/N and
N with a noise level of ¢ = 30.
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The accuracy and precision of parameter f; as a function of the ratio L/N and the number of data points (N)
analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed for each L/N and
N with a noise level of ¢ = 30.

4.2.2 Failure Rate with L

Figure 4.2.2 shows the number of failures as a function of the relative model order
(L/N) for two different N values. As can be seen there is a broad range of L/N which
gives a relatively constant failure rate. One is justified in setting L to be anywhere from
0.4 10 0.7 N for all N shown with little variation in the failure rate. Because of the limited
dependency of failure rate on L and the minimum bias found at 0.5N in figures 4.2.1a
through 4.2.1h for N = 50, a model order of 0.5N has been used in all other sections in

this thesis and is assumed to be the optimal value of L.
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Failure rate as a function of the relative model order (L/N) analyzed for two different dataset lengths (N)
using LPSVD. A cutoff of 10 was used and 500 simulations at each order and N were analyzed with a noise
level of ¢ = 30.

4.3 Specification of Number of Data Points (N)

Here we show the dependency of analysis time, accuracy and precision, and
failure rate on the number of data points used in the analysis. The two-line simulation of
table 4.1 is used varying the noise level ¢ and parameters ¢ and f to demonstrate the

individual dependencies.

4.3.1 Dependency of the Analysis Time on N

The number of data points (N) was varied over the range 20 to 200 for noise
levels of ¢ =5, 20, and 50. Fifty different realizations for each noise level and N were

analyzed using LPSVD with a manual cutoff, LPSVD using continuous regularization,
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and NMLE, and the mean time for the realizations was calculated. The parameters used

for each realization were those given in table 4.1. The model order was set to N/2.

Figure 4.3.1 shows the mean analysis time for each N and & for all three
algorithms using a 166 MHz Intel Pentium based computer and Matlab 4.2¢.1. Of note in
the graph is the O(N?) dependency of the analysis time and the independence of the time
on signal noise. It is obvious that to minimize the amount of processing time needed and
hence the time between the experiment and the generation of the results we need to
minimize the number of data points used in the analysis and that arbitrary selection of this
parameter is not desirable. Also of interest is the fact that NMLE is the most time
consuming algorithm up to approximately N = 150 data points after which LPSVD with
continuous regularization becomes the most time consuming. An important point to
consider, though, is that the number of lines passed to the NMLE procedure will affect its
processing time. This is indirectly illustrated by the increase in the processing time for the
higher noise level of ¢ = 50. The processing time increases due to the increased number
of noise lines passed to the procedure which were generated by LPSVD. The NMLE
procedure processing time is linearly dependent on the number of lines passed to it. Thus,
a six line spectrum will take three times as long to be processed by NMLE as a two line
spectrum. From a processing time standpoint it is important to minimize the number of
false lines passed to the procedure. In terms of an experiment which could take an hour to
acquire hundreds of spectra, the savings of 10 to 20% of the processing time (at a few
minutes per spectrum for example) needed is substantial. Section 4.4 will attempt to

minimize this by subsectioning the data to identify these lines and remove them.
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Figure 4.3.1b illustrates the effect of the model order on the time required to

process using the LPSVD procedure. The cutoff has no effect on the time required for the

LPSVD procedure.
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Figure 4.3.1a
The mean analysis time required to process a two line spectrum using LPSVD with a cutoff of 2, LPSVD
with continuous regularization (LPSVDCR), and NMLE, for noise levels of 6 = 5 and 50. The number of
data points (N) used in the analysis was varied and the mean calculated from 50 realizations at each noise,
N. and algorithm..
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Figure 4.3.1b
The mean analysis time required to process a two line spectrum using LPSVD for different cutoffs, LPSVD
with continuous regularization (LPSVDCR), and NMLE, for a noise level of 6 = 5. The number of data
points (N) used in the analysis was varied and the mean calculated from 50 realizations for each cutoff , N,
and algorithm.

4.3.2 Accuracy and Precision with N

To demonstrate the effect N has on the accuracy and precision, figures 4.3.2a
through 4.3.2d show the bias and variance of the amplitude and frequency parameters as a
function of N for noise realizations of ¢ = 3, 30, and 50. Five-hundred realizations of
noise for each N and ¢ were added to the signal generated from the parameters of table
4.1. The signals generated were analyzed using LPSVD only with a model order L = N/2

and a cutoff of 10.

Obvious from the graphs is the increase in the parameter bias of the second line as
N is increased. Higher noise levels also led to a larger bias in all cases. Of note is the flat

response of the frequency to variations in N. The optimal value of N in this case would



seem to be 30 as this is where the bias seems to be minimized for all parameters with the
exception of ¢, at all noise levels. As will be seen in 4.3.3, this is not the optimal value of

N.

Since these parameters are the starting values that are passed to the NMLE fitting
procedure to produce results with zero bias and a variance equal to the Cramer-Rao (CR)
bound, it is important that the parameters generated by the LPSVD procedure are as close
to the true values as possible. The NMLE fitting procedure relies on a minimizing
algorithm which, given large enough biases in the starting values, can find false minima

and will then return results with larger than necessary biases.
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Figure 4.3.2a
The accuracy and precision of parameter A, as a function of the number of data points (N) analyzed using
LPSVD only for various noise levels. A cutoff of 10 was used and 500 simulations at each noise level and
N were analyzed.
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The accuracy and precision of parameter f; as a function of the number of data points (N) analyzed using
LPSVD only for various noise levels. A cutoff of 10 was used and 500 simulations at each noise level and

N were analyzed.
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Figure 4.3.2d

The accuracy and precision of parameter f; as a function of the number of data points (N) analyzed using
LPSVD only for various noise levels. A cutoff of 10 was used and 500 simulations at each noise level and
N were analyzed.

4.3.3 Failure Rate with N

Figure 4.3.3 shows the total number of line identification failures as a function of
N and noise. Five-hundred realizations at each noise level and N were analyzed using
LPSVD only with a cutoff of 10 and a model order of N/2. LPSVD with a cutoff of 10
was chosen over continuous regularization (CR) in this instance as its performance for
this two-line simulation in terms of failure is similar to that of CR and it executes several
times faster. In general, for an unknown number of lines, CR should be used. The same
parameters as in 4.3.2 were used to generate the simulations. Failure was as defined in

section 4.1.

An interesting result can be seen in figure 4.3.3. There appears to be an optimal N

where the failure rate is minimized. In this case it appears at approximately N = 50 for a
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noise ¢ = 50. Increasing N past this has the effect of increasing the failure rate
substantially, especially at higher noise levels. Section 4.3.2 showed that increasing N
past a certain point did not improve the accuracy and precision generated by LPSVD.
Here we have shown that we might actually degrade the performance of LPSVD by
increasing N. As will be seen in section 4.3.4, this optimal N can be calculated from the

characteristics of the signal.
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Figure 4.3.3

Failure rate as a function of the number of data points (N) analyzed for several different noise levels using
LPSVD. A cutoff of 10 was used and 500 simulations at each noise level and N were analyzed.

4.3.4 Failure Rate with Maximum Line Frequency, Amplitude, and Phase

Figure 4.3.4a shows the failure rate as a function of the line frequency f, and N at
a noise of o = 30. The line separation was kept constant at 0.035. Larger line separations

did not exhibit clearly identifiable minima in the failure rate as they had large ranges
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where the failure rate was zero. Five-hundred realizations for each N and spacing were
run using LPSVD only and a cutoff of 10 and model order L = N/2. All other simulation
parameters were as in table 4.1 and the same criteria for failure were used as in section
4.1. Figure 4.3.4b shows the failure rate as a function of the amplitude of line 2. The line-
1 amplitude was kept constant at A; =200 and the line-2 amplitude was varied with A; =
50, 100, 150, 200. Figure 4.3.4c shows the total number of failures as a function of the
phase of line-2. The line-1 phase was kept constant at ¢; = 0 and the line 2 phase was

varied with ¢, = 0, 90°, 180°, 270°.
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Figure 4.3.4a

Failure rate of the LPSVD analysis procedure as a function of the number of data points (N) used and the
highest line frequency for a two line spectrum. A cutoff of 10 was used and 500 simulations at each N and
frequency were analyzed with a noise of 6 = 50.
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Figure 4.3.4b
Failure rate of the LPSVD analysis procedure as a function of the number of data points (N) used and the
amplitude of the second line for a two line spectrum. A cutoff of 10 was used and 100 simulations at each N
and line separation were analyzed with a noise level of ¢ = 50.
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Figure 4.3.4¢
Failure rate of the LPSVD analysis procedure as a function of the number of data points (N) used and the
phase of the second line for a two line spectrum. A cutoff of 10 was used and 100 simulations at each N and
line separation were analyzed with a noise level of ¢ = 50.
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There appears to be no dependency on the maximum line frequency, the
amplitude, or the phase as can be seen in figures 4.3.4a, 4.3.4b, or 4.3.4c. Of note is the
first minimum of each plot before N = 40. This minimum is believed to be caused by the
large CR bound calculated with a small N and high noise level matching many of the

results with at least 2 lines found, i.e., almost any result appears within 4G of the true

parameters.

The importance of choosing an N which gives the lowest failure rate becomes
apparent when trying to resolve closely spaced features in high noisé. Missing lines will
lead to biases in the results generated by the NMLE procedure as it attempts to fit two
lines in the FID using a single line. The NMLE procedure is not capable of changing the
number of parameters it will fit after the starting parameters are passed to it. Thus, itis

essential that the LPSVD procedure has as low a probability of missing lines as possible.

4.3.5 Failure Rate with Decay and Line Separation

Figure 4.3.5a shows the dependence of failure rate on the line decay parameter o
for a constant line separation of Af = 0.04 and o, equal to 0.1. 0.075, and 0.05. All other
parameters were as in table 4.1. The noise level was set at & = 50 such that a clear
minimum would be visible. There appears to be a dependency of the optimal N for
minimum failure rate on the decay parameter. Faster decays (larger a) cause the optimal

N to be reduced.

70



R TR ANLE T A O S e taey e Yenr F

or b o

Figure 4.3.5b shows the dependence of failure rate on Af for a constant value of
the decay parameter o = 0.075 with Af varied from 0.03 to 0.06 in 0.01 steps. The noise
level was set at ¢ = 50 as in figure 4.3.5a. All other parameters were as in table 4.1. There
appears to be a dependency of the optimal N for minimum failure rate on the line

separation. The further apart the two lines, the lower the optimal N appears to be.

A comparison between the optimal N calculated from equation 3.1.1 and the
optimal N estimated by smoothing the plots of figures 4.3.5a and 4.3.5b is shown in
figure 4.3.5c. A continuous plot of the calculated optimal N from equation 3.1.1 is
overlayed with the estimates generated. Equation 3.1.1 seems to give a reasonable
estimate of the optimal N based on Af and o for the ranges of these parameters simulated

here for a two line case.
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Figure 4.3.5a
Failure rate of the LPSVD procedure as a function of the number of data points (N) for three different decay
rates and a constant line separation Af = 0.04. A cutoff of 10 was used and 500 simulations were analyzed
for each N and decay with a noise level of ¢ = 50.
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Figure 4.3.5b
Failure rate of the LPSVD procedure as a function of the number of data points (N) for four different line
separations and a constant line decay rate of o, = 0.075. A cutoff of 10 was used and 500 simulations were
analyzed for each N and Af with a noise level of 6 = 50.
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A comparison of the optimal values of N approximated through equation [3.1.1] (calc.) and by
determination of the minimum failure rate through simulation (meas.) for various decay rates and line
separations.

4.3.6 Accuracy and Precision with Decay and Line Separation

Figures 4.3.6a through 4.3.6d demonstrate the bias and variance of the amplitude
and frequency parameters of the two-line simulation as a function of the decay parameter
a,. Figures 4.3.6e through 4.3.6h demonstrate the bias and variance of all the amplitude
and frequency parameters of the two line simulation as a function of the line separation
Af. Ttis clear that N should be greater than 30 data points for a reasonable bias in the
parameters. As in section 4.3.2 it is desirable to keep the number of data points analyzed
to a minimum such that the best estimates possible are passed to the NMLE algorithm

while at the same time minimizing the probability of missing lines.
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Figure 4.3.6a
The accuracy and precision of parameter A, as a function of the number of data points (N) and decay rate
(), analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed for each N
and o, with a noise level of 6 = 50.
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Figure 4.3.6b

The accuracy and precision of parameter A» as a function of the number of data points (N) and decay rate
(o). analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed for each N
and o, with a noise level of 6 = 50.
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Figure 4.3.6¢
The accuracy and precision of parameter f, as a function of the number of data points (N) and decay rate
(cty), analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed for each N
and o with a noise level of ¢ = 50.
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Figure 4.3.6d
The accuracy and precision of parameter f5 as a function of the number of data points (N) and decay rate
(). analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed for each N
and o; with a noise level of ¢ = 50.
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Figure 4.3.6e
The accuracy and precision of parameter A, as a function of the number of data points (N) and line
separation (Af), analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed
for each N and Af with a noise level of ¢ = 50.
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Figure 4.3.6f
The accuracy and precision of parameter A as a function of the number of data points (N) and line
separation (Af). analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed
for each N and Af with a noise level of & = 50.
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Figure 4.3.6g
The accuracy and precision of parameter f; as a function of the number of data points (N) and line
separation (Af), analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed
for each N and Af with a noise level of ¢ = 50.
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Figure 4.3.6h

The accuracy and precision of parameter f as a function of the number of data points (N) and line
separation (Af). analyzed using LPSVD only. A cutoff of 10 was used and 500 simulations were analyzed

for each N and Af with a noise level of ¢ = 50.
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4.4 Noise Line Identification

In this section the results of subsectioning to eliminate false lines is demonstrated.
Here a true line is defined as one found with parameters within 4c of their respective true
values as calculated from the CR bounds of the analysis results. Unless otherwise noted
100 realizations at each noise level were generated from the simulation parameters
defined in table 4.1, continuous regularization was used, N was set using equation 3.1.1
and the model order L was set to N/2. LPSVD failures are due to the initial LPSVD
procedure missing true lines. Failures due to missing true lines after subsectioning are
additional failures generated when the procedure eliminates a true line in the results.
Failures where no noise lines eliminated are when the subsectioning procedure fails to
remove any noise lines. Failures where some noise lines are eliminated are when the

subsectioning procedure removes some but not all noise lines.

Figures 4.4.1a through 4.4.1c show the failure rate and the cause of the line fitting
failure for each type of identification versus the noise level using the default parameters
of table 4.1. Referencing figure 4.4.1a we see that real/imaginary subsectioning
eliminates true lines in a very high percentage of cases especially at higher noise levels.
Generally it was not able to differentiate between noise lines and true lines. In figure
4.4.1b we see that even/odd subsectioning has an increased failure rate at low noise levels
mostly due to inclusion of npise lines in the final results. At higher noise levels its
performance is comparable to that of the muitiple acquisition algorithm and much

superior to real/imaginary subsectioning. Refering to figure 4.4.1c we see that overall the
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multiple acquisition subsectioning algorithm tends to perform best for the case used with

even/odd giving similar results. Real/imaginary subsectioning has very poor performance

relative to the other two and in most cases at higher noise levels will not recognize the

true lines in the subsets. Therefore real/imaginary subsectioning will not be considered

for further analysis. The main reason for all subsectioning procedures eliminating true

lines is that the subsets generated from the full dataset will have reduced SNRs and wil

effectively have a failure rate equivalent to a much higher noise level.

100
90 4

HEliminated some noise
lines
E Eliminated no noise lines

M Missing true lines

BWLPSVD failed

T T

10 15 35 50

40

20 25 30 45

Noise

Figure 4.4.1a

The cause of failure as a function of the noise for real/imaginary subsectioning for a dataset length (N) of

50.
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Figure 4.4.1b

The cause of failure as a function of the noise for even/odd subsectioning for a dataset length (N) of 50.
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Figure 4.4.1c
The cause of failure as a function of the noise for multiple acquisition subsectioning for a dataset length (N)
of 50.

Figures 4.4.2a through 4.4.2h show the failure rate and the cause of the line fitting
failure for the multiple acquisition algorithm compared with the failure rate without a
noise line identification algorithm for two decay rates and two line separations over a

noise range of ¢ = 5 to 50. Comparing figures 4.4.2a and 4.4.2b we see that for the high
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decay rate of &>=0.10 and line separation Af=0.06 multiple acquisition subsectioning is
able to identify most noise lines at lower noise levels but generally does not identify them
at higher nosie levels. Surprisingly, in figures 4.4.2c and 4.4.2d where the line separation
is decreased to Af=0.03 , we find that the multiple acquisition algorithm is able to identify
most noise lines at all noise levels analyzed. Shifting our attention to figures 4.4.2e
through 4.4.2h where the decay rate is reduced to ;=0.05 we find that for both line
separations analyzed the performance of the multiple acquisition algorithm is similar and
performs best at lower noise levels. Overall there is significant improvement in the failure
rate when using the multiple acquisition algorithm as opposed to not using a noise line

identification algorithm, especially at the lower noise levels.
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Figure 4.4.2a

The cause of failure as a function of the noise for multiple acquisition subsectioning for a decay rate of a, =
0.10 and a line separation of Af = 0.06.
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Figure 4.4.2b

The cause of failure as a function of the noise before subsectioning for a decay rate of o, = 0.10 and a line

separation of Af = 0.06.
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Figure 4.4.2¢c

The cause of failure as a function of the noise for multiple acquisition subsectioning for a decay rate of 0, =

0.10 and a line separation of Af = 0.03.
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Figure 4.4.2d
The cause of failure as a function of the noise before subsectioning for a decay rate of &; = 0.10 and a line
separation of Af = 0.03.
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Figure 4.4.2¢

The cause of failure as a function of the noise for multiple acquisition subsectioning for a decay rate of a, =
0.05 and a line separation of Af = 0.06.
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Figure 4.4.2f

The cause of failure as a function of the noise before subsectioning for a decay rate of o = 0.05 and a line

separation of Af = 0.06.
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Figure 4.4.2¢g

The cause of failure as a function of the noise for multiple acquisition subsectioning for a decay rate of «; =

0.05 and a line separation of Af = 0.03.
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Figure 4.4.2h

The cause of failure as a function of the noise before subsectioning for a decay rate of a; = 0.05 and a line
separation of Af = 0.03.

Figures 4.4.3a through 4.4.3h show the failure rate and the cause of the line fitting
failure for the even/odd subsectioning algorithm compared with the failure rate without a
noise line identification algorithm for two decay rates and two line separations over a
noise range of ¢ =5 to 50. Comparing figures 4.4.3a and 4.4.3b we see that for the high
decay rate of a2=0.10 and line separation Af=0.06 even/odd subsectioning is able to
identify most noise lines at lower noise levels but generally does not identify them at
higher nosie levels. In figures 4.4.3c and 4.4.3d where the line separation is decreased to
Af=0.03 , we find that the even/odd subsectioning algorithm is also not able to identify
most noise lines at high noise levels and its performance at lower levels is not quite as
good as that of the multiple acquisition subsectioning procedure. Shifting our attention to
figures 4.4.3e through 4.4.3h where the decay rate is reduced to 0>=0.05 we find that for
both line separations analyzed the performance of the even/odd subsectionign algorithm

is similar and performs best at lower noise levels. Of note is the increase in the failure
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rate at very low noise levels as seen previously in figure 4.4.1b. Overall there is
significant improvement in the failure rate when using the even/odd subsectioning
aigorithm as opposed to not using a noise line identification algorithm, especially at the
lower noise levels. Unlike the multiple acquisition algorithm, even/odd subsectioning has
a fairly high failure rate at low noise levels mostly due to extra lines in the results but

does eliminate true lines in the results in some cases.
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Figure 4.4.3a
The cause of failure as a function of the noise for even/odd subsectioning for a decay rate of o; =0.10 and a
line separation of Af = 0.06.
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Figure 4.4.3b
The cause of failure as a function of the noise before subsectioning for a decay rate of a; = 0.10 and a line
separation of Af = 0.06.
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Figure 4.4.3c

The cause of failure as a function of the noise for even/odd subsectioning for a decay rate of &; =0.10 and a
line separation of Af = 0.03.
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Figure 4.4.3d

The cause of failure as a function of the noise before subsectioning for a decay rate of o; = 0.10 and a line
separation of Af = 0.03.
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Figure 4.4.3e

The cause of failure as a function of the noise for even/odd subsectioning for a decay rate of & = 0.05 and a
line separation of Af = 0.06.
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Figure 4.4.3f

The cause of failure as a function of the noise before subsectioning for a decay rate of o; = 0.05 and a line
separation of Af = 0.06.
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Figure 4.4.3g
The cause of failure as a function of the noise for even/odd subsectioning for a decay rate of @, =0.05 and a
line separation of Af = 0.03.
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Figure 4.4.3h
The cause of failure as a function of the noise before subsectioning for a decay rate of a; = 0.05 and a line
separation of Af = 0.03.
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4.5 A Totally Automated Algorithm

Here we integrate the results from sections 4.1, 4.2, 4.3, and 4.4 to produce a
single algorithm which will completely automate the selection of the parameters N, L,

and cutoff, as well as reduce the number of false lines in the spectra.

To determine N we will first analyze the FID using its first 256 points and
continuous regularization. The FID is regenerated from the resulting parameters and
subtracted from the original FID leaving mostly noise. An estimate of the G of the noise is
calculated from the difference. The optimal value of N is then calculated iteratively. First.
the FID is analyzed using N = 128. The resulting values of o and f are used to generate a
new N using equation [3.1.1]. Olmin and Afpy,;, are estimated using only the closest lines
whose amplitudes are larger than the estimated noise ¢ to reduce the effect of noise lines
on the calculated value of N. L is set to N/2. Continuous regularization is used for the
noise reduction step. The above procedure is repeated a maximum of ten times to obtain
the best N. Even/odd subsectioning was used for the noise line elimination step. It was
chosen over multiple acquisition due to the fact that it requires no change in how data is
acquired and therefore allows analysis of existing data such as that analyzed in section
4.7. In situations where it is known that the data is to be analyzed with the totally
automated algorithm, the multiple acquisition subsectioning procedure would be the
method of choice. Once the line parameter estimates are determined, the NMLE

procedure is applied to give optimal bias and variance to the results.

90



TV s et e 1 LR P S ey

Figures 4.5.1a through 4.5.1h show the performance of the totally automated
algorithm against analysis using normal LPSVD with N = 150 and a cutoff = 2 for
differing decay rates and line separations. In figures 4.5.1a through 4.5.1d we see that the
automated algorithm outperforms simple LPSVD in terms of failure rate for the faster
decay rate but does not perform as well for the slower decay rate of figures 4.5.1e through
4.5.1h. As well we see an increased error rate at lower noise levels. A possible
explanation is that the number of data points chosen for the simple LPSVD procedure is
closer to the optimal for a; = 0.05 than o, = 0.10. We also see that the automated
algorithm is outperformed by simple LPSVD for noise levels above 30 for the smaller
line separations. Again, it is likely that the number of data points chosen for LPSVD (N =
150) is closer to the optimal for Af = 0.03 than 0.06 and, more importantly, the automatic
procedure for determining N does not properly select N. An improperly selected N also
explains why the results in this section do not match the results of section 4.4 for the
even/odd subsectioning. Section 4.4 uses the ideal N determined from the known
simulation parameters. The difficulty in selecting N automatically arises due to the fact
that the line spacings and decay rates contained in the signal are unknown and can only be
estimated by first analyzing the signal. Unfortunately, to properly analyze the signal we
also need to know the line spacings and decay rates. The iterative procedure is an attempt
to determine these parameters but is affected by noise lines and missed lines in the
intermediate results perturbing the calculation of N for the next iteration. A more robust
algorithm for determining the optimal N is necessary. Of note is the fact that the

automatic algorithm rarely includes noise lines in the results. The cutoff of 2 for LPSVD
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prevents noise lines from appearing in the results of the nonautomated algorithm for the

two line case analyzed.

50

M Included noise lines
® Missing true lines

Figure 4.5.1a

The cause of failure as a function of the noise for the totally automated algorithm for a decay rate of a, =
0.10 and a line separation of Af = 0.06. Fifty simulations were run for each noise level.
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Figure 4.5.1b

The cause of failure as a function of the noise for normal LPSVD for a decay rate of a; = 0.10 and a line
separation of Af = 0.06. Fifty simulations were run for each noise level. with the dataset length setto N =

150.
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Figure 4.5.1c
The cause of failure as a function of the noise for the totally automated algorithm for a decay rate of o; =
0.10 and a line separation of Af = 0.03. Fifty simulations were run for each noise level.
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Figure 4.5.1d
The cause of failure as a function of the noise for normal LPSVD for a decay rate of &, = 0.10 and a line

separation of Af = 0.03. Fifty simulations were run for each noise level, with the dataset length set to N =
150.
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Figure 4.5.1e
The cause of failure as a function of the noise for the totally automated algorithm for a decay rate of a,; =
0.05 and a line separation of Af = 0.06. Fifty simulations were run for each noise level.
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Figure 4.5.1f
The cause of failure as a function of the noise for normal LPSVD for a decay rate of a; = 0.05 and a line

separation of Af = 0.06. Fifty simulations were run for each noise level, with the dataset length set to N =
150.
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Figure 4.5.1g
The cause of failure as a function of the noise for the totally automated algorithm for a decay rate of o; =
0.05 and a line separation of Af = 0.03. Fifty simulations were run for each noise level.
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Figure 4.5.1h
The cause of failure as a function of the noise for normal LPSVD for a decay rate of o, = 0.05 and a line
separation of Af = 0.03. Fifty simulations were run for each noise level, with the dataset length set to N =
150.

4.6  Simulated Muscle Phosphorus Spectra

Here an FID of a six component *'P spectrum is simulated and analyzed using the

automated algorithm. Since the main parameter of interest for this specific signal is the



Pi/PCr ratio, this is calculated for the successful fits and compared against the true value

for different ratios and noise values. The simulation parameters were taken from the

analysis of an FID acquired in-vivo from human calf muscle. Noise levels of 6 =5 and 10

were added to the simulations and were chosen by calculation of the actual noise levels

present during a typical NMR measurement of human calf muscle. In terms of the

amplitude of the ATP-B line, a noise level of ¢ = 10 correlates to a noise level of 6 =70

in the two line simulations using table 4.1. The ranges of P; and PCr for the simulation

were also chosen from the ranges that occurred in the same experiment on human calf

muscle. The parameter values are summarized in table 4.2.

Amplitude (A) | Phase Angle (¢) | Decay Rate (o) | Frequency (f)
Line 1 (ATP-B) | 14.0645 0.9919 0.0419 -0.4111
Line 2 (ATP-o) | 29.7062 -0.4286 0.0360 -0.2235
Line 3 (ATP-y) | 19.9034 -0.1793 0.0323 -0.1197
Line 4 (PCr) 72.0t055.0 -0.3521 0.0107 -0.0681
Line 5 (PDE) 12.5567 -0.6888 0.0309 -0.0045
Line 6 (P;) 10.8 to 24.75 0.0274 0.0178 0.0320
Table 4.2

The parameters of the reference FID used to generate the simulations in section 4.6. Note that the P, and
PCr lines were simultaneously varied to produce a P/PCr ratio of 0.15 t0 0.45.
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Figure 4.6.1
The frequency domain equivalent of the simulated FID generated from table 4.2 with noise levels of 6 =5
and 10 for a P/PCr ratio of 0.15.

Ten simulations were generated for each noise level and P/PCr ratio, and the
automated algorithm of section 4.5 was applied. As the automated algorithm of section
4.5 uses even/odd subsectioning and the frequency range of the lines in table 4.2 is
outside of the region -0.25 < f < 0.25, it was necessary to interpolate the simulated FID's
to reduce each frequency by a factor of two before processing to keep the simulation as
realistic as possible. At a noise level of ¢ =35 all lines were found in all simulations.
Table 4.3 lists the number of returned fits which failed to identify specific lines for the
case of o = 10. As expected, those lines with amplitudes close to the noise level such as
P; for small Py/PCr ratios and the ATP- peak were missed most frequently. Figures
4.6.2a through 4.6.2f show the resulting bias and variance of the amplitude of each line
compared to the original simulation values after processing with the automated algorithm.

For a noise level of ¢ = 5 the bias of the amplitude of each line is statistically equal to
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zero. For a noise level of ¢ = 10, however, there is a negative bias for some of the line
amplitudes measured. This may be due to the higher number of noise lines present in the
results even after the subsectioning procedure. Figure 4.6.3 shows the resulting Pi/PCr
ratio calculated from the individual P; and PCr results. In general, the amplitude
parameters of all six lines and the Py/PCr ratio are reasonable estimates of the original
parameters over the P/PCr ratio used. It is clear that the automated algorithm is useful for

the analysis of multiple line spectra such as the ones simulated here.

P/PCr 0.15 020 | 025 0.30 035 | 0.40 0.45
ATP-B 1 2 4 1 3 4 3
ATP-a 0 0 0 0 0 0 0
ATP-y 1 1 0 0 1 0 0
PCr 0 0 0 0 0 0 0
PDE 2 5 1 2 3 1 2
P, 3 1 0 0 0 0 0

Table 4.3

Line identification failure for each of the six lines contained in the simulations generated from table 4.2 at a
noise level of 6 = 10. Ten simulations were generated at each Pi/PCr ratio and the automated algorithm of
section 4.5 applied. At a noise level of 6 =5 all lines were found in all simulations.
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Figure 4.6.2a

The accuracy and precision of the amplitude of the ATP-B peak as a function of the P/PCr ratio analyzed
using the totally automated algorithm of section 4.5. Ten simulations were analyzed for each P/PCr ratio

and noise level.
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The accuracy and precision of the amplitude of the ATP-a peak as a function of the P/PCr ratio analyzed
using the totally automated algorithm of section 4.5. Ten simulations were analyzed for each P/PCr ratio

and noise level.
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The accuracy and precision of the amplitude of the ATP-y peak as a function of the P/PCr ratio analyzed
using the totally automated algorithm of section 4.5. Ten simulations were analyzed for each P/PCr ratio
and noise level.
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The accuracy and precision of the amplitude of the PCr peak as a function of the P/PCr ratio analyzed
using the totally automated algorithm of section 4.5. Ten simulations were analyzed for each P/PCr ratio
and noise level.

100



Rk e T I St TR L

10 T
(o] i =
5t 2 N3isg=z3o 4
ool g s
@ § o2 $ % § 2
st £ E . T
10 N R " " , . .
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
100 v
g © Noise =5
c X Noise =10
< ——CR bound Noise =5
’g 50F |---CR bound Noise =10 -
> x > x
0 A - B . S o S o -
0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
Pi/P Crratio
Figure 4.6.2¢

The accuracy and precision of the amplitude of the PDE peak as a function of thie Py/PCr ratio analyzed
using the totally automated algorithm of section 4.5. Ten simulations were analyzed for each P/PCr ratio
and noise level.
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The accuracy and precision of the amplitude of the P; peak as a function of the P/PCr ratio analyzed using
the totally automated algorithm of section 4.5. Ten simulations were analyzed for each P/PCr ratio and
noise level.
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The accuracy and precision of the amplitude of the measured P/PCr ratio as a function of the true P/PCr
ratio analyzed using the totally automated algorithm of section 4.5. Ten simulations were analyzed for each
P,/PCr ratio and noise level.

4.7  Actual Muscle Phosphorous Spectra

Here we apply the automated analysis algorithm of section 4.5 to actual data taken
using a 3.0-Tesla NMR machine. The data were taken as part of an experimental protocol
which measures the Py/PCr ratio in human calf muscle during repeated rest, work, and
recovery cycles. Ninety-three FID's were acquired during the course of the experiment
which repeated the cycle 3 times and were analyzed in exactly the same manner as the

simulated FID's in section 4.6.

Figure 4.7.1 shows a typical FID from the experimental data and its frequency
domain equivalent showing the six main lines in the spectrum and the noise level present.
Figures 4.7.2 and 4.7.3 show the P;/PCr ratio and the pH calculated directly from the

analysis results. The P; and PCr peaks were identified in each of the resulting parameter

102



sets for all ninety-three acquisitions and the ratio calculated. The divisions of the protocol

cycles are labeled with RO, R1, and R2 for a rest period, W1, W2, and W3 for a work

period, and Z1, Z2, and Z3 for a recovery period; the resulting changes in the Pi/PCr ratio

and pH in each region is clear. The automatic algorithm of section 4.5 can give useful

results when used to analyze real data of this nature and does not require any input from

the spectroscopist.
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An example of a real 3'p FID acquired from human calf muscle in the NMR experiment FI052795 and its
frequency domain equivalent showing the major phosphorous lines.
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Figure 4.7.2
The P/PCr ratio calculated from the analysis of 93 acquisitions from the experiment FI052795 identifying
the different regions of the experimental protocol, rest (RX), work (WX),and recovery (ZX) and the change
over time of the ratio.
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Figure 4.7.3
The pH calculated from the analysis of 93 acquisitions from the experiment FI052795 identifying the
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over time of the pH.
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5.0 Conclusions

Previously, Ho [12] proposed a technique that integrated LPSVD with NMLE to
produce an algorithm which generated parameter estimates with zero bias and variances
equal to their Cramer-Rao bounds while requiring no initial estimates to be supplied. The
algorithm was an improvement over conventional frequency domain techniques which
required experienced operator intervention. Although not requiring a priori knowledge of
the acquired spectrum, Ho's method did require setup parameters for the LPSVD
procedure such as the number of datapoints to use in the analysis, the model order, and a
cutoff for the SVD singular value matrix. Ho showed that the setup parameters for the
LPSVD procedure affected the accuracy and precision of the intermediate results which
would be passed to the NMLE procedure. The accuracy and precision of the entire
algorithm was generally dependent on the NMLE procedure. All that was necessary was
that the LPSVD procedure generate reasonable intermediate results. As such, the setup

parameters chosen for LPSVD did not seem to be extremely critical.

We found through simulation that even though the accuracy and precision of the
LPSVD estimates was not extremely sensitive to the setup parameters, the probability of a
fitting failure was. In the case of the setup parameter N needed by LPSVD, we found an

extremely high sensitivity.

One of the main goals of this thesis was to develop a procedure which required

absolutely no input from the user in terms of setup parameters or initial guesses. There
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were three parameters which could change depending on the FID input to the algorithm:
the SVD cutoff or regularization parameter, the model order, and the number of

datapoints to use in the analysis.

In terms of the SVD cutoff or regularization parameter, two automatic procedures
were evaluated against the original SVD cutoff of Kumaresan and Tufts [5, 6] which we
called manual regularization in this thesis. The first automatic algorithm, discrete
regularization, was developed here as an automatic method of selecting a discrete SVD
cutoff value based on the noise. Its performance was equivalent to manual regularization
with a cutoff value of two in terms of failure to fit a basic-two line simulation (see figure
4.1.4). Its biggest drawback was that it tended to miss lines when it failed. The second.
continuous regularization, was a procedure proposed by Kolbel and Schafer [10] which
relied on direct modification of the singular values. Its performance was equivalent to
manual regularization with a cutoff of 10 in terms of failure to fit. Unlike discrete
regularization, it tended to include noise related lines in the results. Continuous
regularization was chosen as the method of choice for selection of the SVD cutoff or

regularization parameter without user intervention.

Model order was the second setup parameter which was required to be optimized
for the LPSVD procedure. Through extensive simulation looking at both the accuracy and
precision and the failure rate for different model orders, number of datapoints, and noise
levels for a two line-simulation, it was found that a broad range of model orders

(0.4N<L<0.7N) existed where the bias and variance, and failure rate were minimized (see
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figures 4.2.1 and 4.2.2). Hence, a value of L = N/2 was selected near the midpoint of the

range as the optimal value for the LPSVD procedure.

The third setup parameter for LPSVD which affected the performance
significantly was the number of datapoints used in the analysis. It was found through
simulation that the failure rate was highly dependent on the value chosen for N and, when
plotted against N, exhibited a clearly defined minima. Through extensive simulation it
was found that this minima was dependent on only two parameters, the minimum decay
rate of the lines in the spectrum and the smallest line separation in the signal. No
dependence was found on line amplitude, phase, or absolute frequency. As an
approximation of the optimal N for a two-line simulation equation 3.1.1 was developed
empirically. In an attempt to work around the problem which existed in selecting the
optimal N, section 4.5 included an iterative procedure for determining N without a prior
knowledge of the results in the totally automated procedure. Unfortunately, the iterative
procedure was not perfect which affected the performance of the totally automated

algorithm.

As the LPSVD procedure developed generally included noise related lines in the
results when using the optimal setup parameters, section 4.4 evaluated three procedures
based on subsectioning of the FID which could be implemented to remove them;
real/imaginary subsectioning, even/odd subsectioning, and multiple acquisition
subsectioning. Real/imaginary subsectioning was found to have a very poor performance

relative to the other two as it removed true lines in a high percentage of cases. Even/odd
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and multiple acquisition subsectioning had similar performances with respect to failure
rate (see figures 4.4.1a through 4.4.1c). Both were able to significantly reduce the number
of noise lines in the results especially at low noise levels. They did, however, slightly
increase the chances of failure due to missed lines in the final results. Ideally, for the
analysis of new data, the multiple acquisition subsets would be generated during the
NMR experiment. For the analysis of existing data, even/odd acquisition was found to be
the most useful but required a sampling rate of 4x the highest frequency line in the signal
to prevent aliasing while multiple acquisition subsectioning only required a sampling rate

of 2x.

Although the optimal parameter settings were determined using a two line
simulation, the totally automated algorithm was applied in sections 4.6 and 4.7 to
simulated six line spectra and actual 31p spectra to gauge its performance. It was found
that the algorithm was able to properly analyze the six line spectra and return reasonable

results from the actual data.

Possible future research would include developing a better procedure for selection
of the optimal N from the dataset, a more robust analysis of the effect of three or more
lines on the optimal values of N, the SVD cutoff or regularization parameter, and the

model order. As well, a more extensive evaluation of the strengths and weaknesses of the

algorithm when applied to actual data is necessary.
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Appendix A The Cramer-Rao Lower Bound

The Cramer-Rao (CR) bound specifies the lowest bound on the variance of
unbiased parameter estimates. In this thesis the CR bound is used in comparison with the
variance of estimated parameters determined from the analysis algorithms and as an
estimate of the magnitude of a parameter's error in a test of equivalence. For a more

complete discussion of CR bounds the reader is referred to [24].

The CR bounds used in this thesis were calculated from the equations developed

using the following method:

For the sampled sequence

X, = D A aTmR 0<n<N-1,1<i<k, [A.1]

let p be the parameter vector [Ay, o, @1, 1, -.... Ay, 0y, Ox, O]

For the case of a sum of exponentially damped sinusoids as given in equation [A.1], the

unbiased CR bounds are the diagonal elements of the inverse of the Fisher information

S calculated from

matrix
___Z dRe(x,) dRe(x, ) dIm(x ) dIm(x, )
=5 | 9p dp op; dp

I<i<k,1<q<k.[A.2]

9 q
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The first order partial derivatives of Equation [A.]] are:

Ea):: = gm0 [A.3]
g;.: _ _Aineﬁz,n-@j(winﬂ).) , [A.5]
%2)2_ = jne amriwa) [A.6]

and the corresponding minimum variances of each parameter are extracted from the

inverse of the Fisher information matrix.

Thus,

var(Ai) = [S-l]u.-sxu-z) ’ [A‘7]
var(0) =[S}y peaicay - (8]
var(oy) = [S-l ](4i-l)(4i—l) ’ [A.9]
var(a;) = [S"]MK“). [A.10]

110



References

I. S. Parthasarathy and D.W. Tufts, "Maximum-Likelihood Estimation of Parameters of
Exponentially Damped Sinusoids", Proceedings of the IEEE 73, 1528-1530, 1985.

2. M. Joliot, B.M. Mazoyer, and R.H. Huesman, "In Vivo NMR Spectral Parameter
Estimation: A Comparison between Time and Frequency Domain Methods", Magn.
Reson. Med. 18, 358-370, 1991.

3. E.K.-Y. Ho, R.E. Snyder, and P.S. Allen, "Accuracy and Precision of In Vivo
Magnetic-Resonance Parameters”, J. Magn. Res. 99, 590-595, 1992.

4. C. Decanniere, P. van Hecke, F. Vanstapel, H. Chen, S. van Huffel, C. van der Voort,
B. van Tongeren, and D. van Ormondt, "Evaluation of Signal Processing Methods for the
Quantification of Strongly Overlapping Peaks in 31P NMR Spectra, J. Magn. Res. B
105, 31-37, 1994.

5. D.W. Tufts and R. Kumaresan, "Singular Value Decomposition and Improved
Frequency Estimation Using Linear Prediction”, IEEE Trans. ASSP 30, 671-675, 1982.

6. R. Kumaresan and D.W. Tufts, "Estimating the Parameters of Exponentially Damped
Sinusoids and Pole-Zero Modeling in Noise", IEEE Trans. ASSP 30, 833-840, 1982.

7. H. Barkhuijsen, R. de Beer, W.M.M.J. Bovée, and D. van Ormondt, "Retrieval of
Frequencies, Amplitudes, Damping Factors, and Phases from Time-Domain Signals
Using a Linear Least-Squares Procedure”, J. Magn. Res. 61, 465-481, 1985.

8. R. de Beer, D. van Ormondt, and W.W_F. Pijnappel, "SVD-Based Quantification of
Magnetic Resonance Signals”, J. Magn. Res. 97, 122-134, 1992.

9. R. de Beer and D. van Ormondt, "Analysis of NMR Data Using Time Domain Fitting
Procedures”, NMR Basic Principles and Progress 26, 201-248, 1992.

10. W. Kolbel and H. Schifer, "Improvement and Automation of the LPSVD Algorithm
by Continuous Regularization of the Singular Values", J. Magn. Res. 100, 598-603, 1992.

11. A.-J. van der Veen, E.F. Deprettere, and A.L. Swindlehurst, "Subspace-Based Signal
Analysis Using Singular Value Decomposition”, Proceedings of the IEEE 81, 1277-
1308, 1993.

12. EXK.-Y. Ho, "Parameter Estimation in NMR Using LPSVD", MSc. Thesis,
Department of Applied Sciences in Medicine, University of Alberta, 1991.

13. N. Ishii, A. Iwata. and N. Suzumura, "Evaluation of an Autoregressive Process by
Information Measure", Int. J. Svstems Sci. 9. 743-751. 1978.

111



14. M. Astridge and R.E. Snyder, "Rejection of Noise Related Peaks in In-Vivo Magnetic
Resonance Spectroscopy”, Proceedings of the SMR 2, 1189, 1994.

15. A. Diop, W. Kélbel, D. Michel, A. Briguet, and D. Graveron-Demilly, “Full
Automation of Quantitation of In-Vivo NMR by LPSVD(CR) and EPLPSVD". J. Magn.
Res. B 103, 217-221, 1994.

16. A. Diop, A. Briguet, and D. Graveron-Demilly, "Automatic In-Vivo NMR Data
Processing Based on an Enhancement Procedure and Linear Prediction Method", Magn.
Reson. Med. 27, 318-328, 1992.

17. A. Diop, Y. Zaim-Wadghiri, A. Briguet, and D. Graveron-Demilly, "Improvements of
Quantitation by Using the Cadzow Enhancement Procedure Prior to Any Linear-
Prediction Methods", J. Magn. Res. B 105, 17-24, 1994.

18. Yung-Ya Lin, Nien-Hui Ge, and Lian-Pin Hwang, "Multiexponential Analysis of
Relaxation Decays Based on Linear Prediction and Singular-Value Decomposition”, J.

Magn. Res. A 105, 65-71, 1993.

19. P.S. Allen and C. Hanstock, ASM 575 Course Notes, Dept. of Applied Sciences in
Medicine, University of Alberta, 1994.

20. Y. Zaim-Wadghiri, A. Diop, D. Graveron-Demilly, and A. Briguet, "Improving data
acquisition parameters of 31P in-vivo spectra for signal analysis in the time domain”,

Biochimie 14, 769-776, 1992.

21. W. H. Press, B. P. Flannery, S. A. Teukolsky, and W. T. Vetterling, Numerical
Recipes: The Art of Scientific Computing, Cambridge University Press, 1989.

22. S.K. Mitra and J.F. Kaiser, Handbook for Digital Signal Processing, John Wiley and
Sons, 1993.

23. R.A. DeCarlo, Linear Systems, Prentice-Hall, 1989.

24. R. Fante, Signal Analysis and Estimation: An Introduction, John Wiley and Sons,
1988.

25. A.V. Oppenheim and R.W. Schafer, Discrete-Time Signal Processing, Prentice Hall,
1989.

26. E.O. Brigham, The Fast Fourier Transform and its Applications, Prentice Hall, 1988.



