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Abstract

Diffeomorphic image registration is important for medical imaging studies because

of the properties like invertibility, smoothness of the transformation, and topology

preservation/non-folding of the grid. Violation of these properties can lead to de-

struction of the neighbourhood and the connectivity of anatomical structures during

image registration. Most of the recent deep learning methods do not explicitly ad-

dress this folding problem and try to solve it with a smoothness regularization on the

registration field.

We present a postprocessing layer for deformable image registration to make a

registration field more diffeomorphic by encouraging Jacobians of the transformation

to be positive. It is a differentiable layer which takes any registration field as its

input, computes exponential of the Jacobian matrices of the input and reconstructs a

new registration field from the exponentiated Jacobian matrices using Poisson recon-

struction. Our proposed Poisson reconstruction loss enforces positive Jacobians for

the final registration field. Thus, our method acts as a post-processing layer without

any learnable parameters of its own and can be placed at the end of any deep learning

pipeline to form an end-to-end learnable framework. We show the effectiveness of our

proposed method for a popular deep learning registration method Voxelmorph and

evaluate it with a dataset containing 3D brain MRI scans. Our results show that our

post-processing can effectively decrease the number of non-positive Jacobians by a

significant amount without any noticeable deterioration of the registration accuracy,

thus making the registration field more diffeomorphic. There are also some practical

limitations of our method which we demonstrate through experiments on 2D chest
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X-ray registration - pointing towards more future work.

Our code is available online at https://github.com/Soumyadeep-Pal/Diffeomorphic-

Image-Registration-Postprocess
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Chapter 1

Introduction

1.1 Deformable Image Registration

Image registration is a challenging task in computer vision which comprises of finding

correspondence between two images and spatially aligning them such that those im-

ages match [1]. Typically one image is kept fixed and another image (moving image)

is transformed for this matching process. Difference in such images may arise due to

images being obtained at different times, from different acquisition devices, different

perspectives or different acquisition modalities [1]. Based on the type of transforma-

tion associated with this registration problem, it can be classified into global trans-

formations and local or non-rigid or deformable transformations. We delve into this

division briefly in Section 2.1.

In this thesis, we focus only on deformable image registration. Deformable image

registration is one of the fundamental tasks of medical image analysis that has been

an active research topic for decades. It is extremely important for radiation therapy

[2], morphometry analysis of highly anatomically variable brain MRI images [3, 4],

diagnosis through multimodal medical image fusion [5] etc.

The transformation to align a pair of images is a dense, non-linear transformation.

We illustrate deformable image registration through an example in Figure 1.1. As

shown in Figure 1.1, our goal for deformable registration is to estimate a non-linear

deformation field which is used to warp the moving image to match with the fixed
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Figure 1.1: Deformable Image Registration: (a) Overview (b) Fixed Image F (c)
Moving Image with Grid (d) Warped Moved Image with Grid (e) Moving Image
M (f) |F − M | (g) |F − M(ψ)| Note: 1. This Cameraman Image is for ease of
understanding, we will apply deformable image registration to brain MRI and chest
X-ray images. 2. The ’Registration Algorithm’ may be a classical algorithm or a deep
learning pipeline (Section 2.3)
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image. In Figure 1.1, we use a simple image for illustrating the concept. The lower

rows contain the deformed images along with their grids providing insights into how

a deformation grid can warp the moving image. As we observe in the figure, the

difference between the fixed image and the warped image is zero denoting a perfect

match. We formalise these notions and pose this as an optimisation problem in

Section 2.2.

1.2 Diffeomorphic Image Registration

One of the desirable properties of the transformations for registration in medical

imaging is their one-to-one nature or invertibility, which ensures that there is no

folding in the grid. Folding of the registration grid over itself can lead to connected sets

becoming disconnected and disconnected sets becoming connected thereby destroying

the neighborhood structure that is detrimental for anatomical studies in medical

imaging [6].

We give an example of such undesirable effects in Figure 1.2. The way to prevent

this phenomenon is to ensure diffeomorphic transformations. We describe this in

details in Section 2.2.2 and Section 2.2.3.

Figure 1.2: Undesirable effects of folding: (a) Moving Image (b) Deformation Grid
with folding (c) Warped Moving Image
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1.3 Challenges and Research Gap

Classical diffeomorphic registration algorithms often use strategies, which ensure

smooth, invertible transformations. These traditional registration algorithms are of-

ten formulated as an optimization problem where a moving image is warped using a

displacement field and the goal is to maximize the similarity between a fixed image

and the warped moving image. This is usually solved using an iterative process, which

is fairly computationally intensive and time consuming. Moreover, to ensure diffeo-

morphism, constraints were often applied on the deformation field which may make

it more time and computation intensive. We give a brief overview of such algorithms

in Section 2.3.1.

Recently, deep learning approaches have been used in solving the deformable reg-

istration problem. The advent of deep learning has led to the development of faster

and more complex registration algorithms. These approaches maintain similar per-

formance in terms of registration accuracy and are much faster. However, deep

learning-based registration methods usually do not explicitly ensure invertibility and

non-folding of the transformations. Such foldings in the deformations are usually

constrained by enforcing spatial smoothness, which is controlled by a regularization

hyperparameter. This is the regularization term Lreg in Equation 2.1. However, a

large value of this hyperparameter can lead to inaccurate registration, while a small

value can lead to folding and local errors, which makes it challenging to tune it.

Few efforts have been made to explicitly ensure that the transformations estimated

using deep learning algorithms are diffeomorphic - this creates the premise for more

work.

1.4 Thesis Contributions

In this thesis, we explicitly address the issue of folding with a postprocessing layer,

which can be potentially inserted at the end of any registration pipeline giving a de-
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formation field as its output. Our postprocessing step takes a deformation field as its

input and provides another deformation with reduced foldings as its output with the

help of matrix exponential and Poisson reconstruction. Moreover, this postprocess-

ing layer is completely differentiable, hence it can fit in any deep learning pipeline for

registration with end-to-end learning. We describe our proposed method in Chapter

3.

A significant application of deformable registration is the alignment of 3D brain

magnetic resonance (MR) images for their analysis. Brain MR images can be acquired

from different sensors, different subjects or at different times and thus are misaligned.

Moreover, there is often a significant variability [7] between these scans due to differ-

ent anatomical variations and health states. Deformable image registration is useful

in this case for the purpose of comparing different anatomical structures in the brain

scans obtained from different sources. A similar application of deformable registra-

tion is X-ray chest image analysis - applications being multi-atlas segmentation and

pathology classification [8]. In all of these applications, addressing the folding problem

is important to maintain anatomical plausibility.

We demonstrate the effectiveness of our method in Chapter 4 by the registration

of 3D brain MR scans, which are obtained from [9]. We use our postprocessing layer

with a widely used registration method named Voxelmorph [10] and show that it

significantly reduces the amount of folding when compared to Voxelmorph.

We further test our method in Chapter 4 using 2D chest X-ray images, obtained

from [11, 12]. In these experiments, we discover the limitation of our method -

our method, though mathematically sound, can lead to instabilities and may be

impractical for training in different settings.
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Chapter 2

Image Registration

In this chapter, we discuss about image registration - specifically about deformable

and diffeomorphic image registration. We provide a general overview on registration,

diffeomorphisms and then discuss some related works. We introduce the classic image

registration techniques and then move on to discuss about modern deep learning

techniques in deformable image registration.

2.1 General Overview

Image registration entails estimating a mapping between a pair of images - a station-

ary or fixed image and the image which is spatially transformed called the moving

image. The estimated mapping is essentially a mapping from the pixel / voxel loca-

tions of the moving image to corresponding locations in the fixed image. The moving

image is warped according to this mapping (through interpolation or resampling)

such that it matches with the fixed image.

According to the type of transformation estimated, image registration methods

can be very broadly categorised into registration with global transformations and

non-rigid or deformable registration. Global transformations for registration involves

rotations, translations, shearing, scaling and projective transformations - the transfor-

mations for this category are applicable globally to the whole image. We demonstrate

such global transformations in Figure 2.1 with increasing degrees of freedom along

6



Figure 2.1: Global transformations in registration. Taken from [13]

the right of the x-axis.

In contrast to this, deformable image registration entails warping the moving image

with a dense voxel-wise non-linear spatial transformation so that it matches with the

fixed image. Thus it is a local operation.

Image registration is particularly useful in the context of medical imaging. Rigid

registration is useful in aligning solid structures like bones. However, this does not

apply for most of the human body. Non-rigid registration is of particular importance

for deformation of soft tissues, neuroanatomy etc. A typical registration process

involves a global alignment step between the fixed and moving image and then a

deformable registration step. In this thesis, we mainly focus on deformable image

registration.

2.2 Deformable Image Registration

We consider Ω ⊆ Rn to be the image domain, such that n = 2 for 2D images and

n = 3 for 3D images. Let F be the fixed image and M be the moving image, where

M,F : Ω → Rd. In this thesis, we mainly perform experiments on structural images

for MRI, where d = 1. Formally, the goal of deformable registration is to estimate a

transformation or deformation field ψ : Ω → Ω which is used to warp M to match

with F .
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This can be posed as an optimisation problem - the objective of deformable regis-

tration is to find an optimal deformation field:

ψ∗ = argmin
ψ

Lsim(F,M(ψ)) + λLreg(ψ) (2.1)

where ψ∗ is the optimal deformation field, Lsim is a dissimilarity loss function and

Lreg is the function that enforces a smoothness regularization.

As seen in Equation 2.1, through the term Lsim, we aim to decrease the dissimilarity

or increase the similarity between the warped and the fixed image. Different such

similarity measures have been used in the literature like sum of squared differences

(SSD), sum of absolute differences (SAD), normalized cross-correlation (NCC) [14],

mutual information (MI) [15] , normalized mutual information (NMI) [16], Normalized

Gradient Fields (NGF) [17] etc. In our work, we perform our experiments with NCC

as a dissimilarity measure - we describe it in details in Section 3.5.1.

2.2.1 Regularization

Regularization is of particular importance for the problem of registration. This is be-

cause image registration is an ill-posed problem, a concept introduced in mathemat-

ical physics by J.Hadamard [18]. A mathematical problem is considered Hadamard

well-posed if it satisfies the following conditions [18]:

• a solution exists

• the solution is unique

• the solution’s behaviour changes continuously with the initial conditions

Now, it is straightforward to realise that the solution of image registration, like most

inverse problems is not unique. We give an example of such non-uniqueness phe-

nomenon in Figure 2.2. We consider global transformations in this example for sim-

plicity - this concept will still be valid for deformable registration.
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Figure 2.2: Importance of Regularization: We observe that different transformations
lead to the same result. A’, B’, C’ are the points in the transformed object (circle)
corresponding to the points A, B, C in the moving object. Transformations - Left:
Translation Right: Reflection about the line BB’ and translation.

A solution for ill-posed solution is using regularization. Hence, different kinds of

regularization methods are used in image registration. The regularization methods

can be implicit or explicit. Explicit regularization comprises of including a form of

penalty in the loss function as in Equation 2.1 or having the penalty condition as a

hard constraint [19]. Implicit regularization may constrain the transformations for

registration by parameterizing the deformations (eg. radial basis functions [20]) or

by constraining the space of deformations (eg. in LDDMM [6]) . We describe such

methods in Section 2.3.1.

2.2.2 Diffeomorphisms

In this thesis, we focus on developing diffeomorphic registration fields. Diffeormor-

phisms are important for image registration because of its different convenient prop-

erties. We motivate the importance of diffeomorphic registration in this section after

defining diffeomorphisms.

Let Ω be an open set of Rd. An open set U is essentially a set of elements such
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that for every element x in the set, all elements in a small neighbourhood of x also

lies in U .

Definition 2.1 ([21] p.183) A homeomorphism of Ω is a continuous bijection Φ :

Ω → Ω such that its inverse, Φ−1, is continuous. A diffeomorphism of Φ is a con-

tinuously differentiable homeomorphism Φ : Ω → Ω such that Φ−1 is continuously

differentiable.

Now, let us consider a diffeomorphic deformation f : Ω → Ω such that for each

point x ∈ Ω , y = f(x). In such a setting, because of the bijective nature of diffeo-

morphism, two keys points are enforced that make it an appealing choice for image

registration:

• Because the transformation is onto, for every y ∈ Ω, there exists a corresponding

x ∈ Ω. Thus this prevents any holes in the output.

• Since f is one-to-one, for any x1, x2 ∈ Ω, they do not have the same y, i.e.

f(x1) ̸= f(x2). Thus this prevents folding. More precisely, if folding occurs,

due to crossing of deformation fields, two different points x1 and x2 will be

mapped to the same y.

2.2.3 Diffeomorphisms and Orientability

The term orientation-preserving is used to denote mappings whose Jacobian determi-

nants are positive. Precisely, a mapping Φ ∈ C1(Ω;R3) is an orientation preserving

map if it satisfies det∇Φ(x) > 0 for all x ∈ Ω [22]. Under cetain boundary conditions,

these orientation preserving mappings are shown to be diffeomorphic.

Theorem 2.1 (adapted from Ciarlet. p.225 [22]) Let Ω be a bounded open con-

nected subset of Rn. Let Φ0 ∈ C0(Ω;Rn) be an injective mapping and let Φ ∈

C0(Ω;Rn) ∩ C1(Ω;Rn) be a mapping that satisfies:

det ∇Φ(x) > 0 for all x ∈ Ω

Φ(x) = Φ0(x) for all x ∈ ∂Ω
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then the mapping Φ : Ω → Φ(Ω) is a homeomorphism and Φ : Ω → Φ(Ω) is a C1

diffeomorphism.

In this theorem, C0(Ω;Rn) denotes the set of all continuous mappings from Ω to Rn,

while C1(Ω;Rn) denotes the set of all once diffentiable continuous mappings from Ω

to Rn.

Simply put, for a continuous mapping to be diffeomorphism, the theorem poses a

condition on the determinant of the jacobian of the mapping being positive and on

the mapping to be injective at the boundaries of the input open set.

2.3 Related Works

2.3.1 Classical Registration

Classical registration algorithms often model transformations as a physical model.

We describe some of the main classical approaches to deformable registration.

• In this type of registration, the image to be deformed is often considered to be an

elastic body [23]. The elastic body is deformed by the application of two forces:

an external force that ensures that the similarity measure between the fixed and

moving image is achieved and an internal force that counteracts any movement

due to the elasticity properties of the body. These forces compete against each

other until an equilibrium is reached. The image is thus considered to be an

elastic membrane whose movements are governed by the Navier-Cauchy PDEs.

We describe a similar framework based on fluid flow models in more details in

the next group of registration algorithms. The basic formulation of registration

considering elastic bodies has been extended in various studies [24, 25].

One of the main drawbacks of this model is that the elastic constraint is suit-

able only for small deformations and also that it resulted in inverse-inconsistent

transformations. Inverse consistency implies that when F and M in Equa-

tion 2.1 are interchanged, the resultant deformation field is the inverse of the
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former field ϕ. The inverse consistency problem was tackled with the elastic

body framework in [26, 27]. Large deformations were modeled by considering a

sequence of small deformations using linear elastic models in [28].

• The second catergory of physical models used in registration is the viscous

fluid flow model. Here the image is considered to be a viscous fluid - thus the

displacements for image registration would follow laws governing the flow of

viscous fluids. This was explored in [29], where the displacement flow was mod-

eled using the Navier-Stokes Equation. Unlike the previously described elastic

models, this allowed for large deformations while maintaining a homeomorphic

mapping. The fluid flow is governed by the following Navier-Stokes equation:

µ∇2v + (µ+ λ)∇(∇ · v) + b(u) = 0 (2.2)

In this PDE, λ and µ denote the fluid viscosity terms. The first term is asso-

ciated with the constant volume viscous flow of the moving image. The second

term in these equations denote the accelaration of the flow in space and thus

denotes the local growth or shrinkage of the moving image. The third term

denotes the body force on the fluid which is determined by the mismatch be-

tween the fixed image and the warped moving image. The PDE is solved using

iterative successive overrelaxation - this is stopped when the body force reaches

a certain threshold i.e. there is a good match in the fixed and warped moving

image. This fluid flow framework was explored more in future work in terms of

multiresolution [30] and increasing efficiency in computation [31, 32].

• One of the seminal methods of classical deformable registration comprises of the

Demons approaches to registration. This is inspired by Maxwell’s demons which

is a paradox in the second law of thermodynamics that is ensued by the presence

of demons or effectors that allow the travel of certain kind of gaseous molecules

from one side of a membrane to other. Hence, this essentially is a process of
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diffusion. Similar to this phenomenon, this registration approach places demons

along objects in the moving image and the moving image is deformed according

to the forces associated with the demons.

Concisely, two iterative steps are followed [33]: (a) Estimating the forces associ-

ated with the demons (b) Computing the transformation of the deformable field

based on such forces. Different choices associated with this process can give rise

to different methods - choices being available in selection of demon positions,

space of deformations, formula estimating the force of a demon.

This pioneering work was studied and extended based on different optimization

[34, 35] and regularization [36, 37] schemes and different similarity measures

[38, 39].

• A large body of registration methods use parameterization of displacement fields

where a linear parameterization using certain basis functions are used. This

presents a form of implicit regularization in the arrangement itself. Considering

the displacement for registration to be ϕ, these methods take the general form:

ϕ(x) =
∑︂
k

pkBk(x) (2.3)

where pk ∈ Rd are the optimizable parameters and Bk : Ω → R are the basis

functions.

Some of the most important families of basis functions include radial basis

functions [20], thin plate splines [40, 41], elastic body splines [42], Fourier bases

[26], cosine basis [43] etc.

While the above mentioned methods have been successful in image registration, they

do not guarantee diffeomorphic transformations. Hence, we consider a body of lit-

erature which focuses on diffeomorphic image registration and briefly describe such

works as follows:
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• One of the main approaches to forming diffeomorphic registration is to consider

flows of velocities: a seminal work along this line being the LDDMM framework

[6]. The diffeomorphic transformations ψ : Ω → Ω are obtained by integrating

velocity fields over time. Considering the velocity fields to be v : [0, 1]×Ω → Rd,

a transformation ψ is formulated as follows:

∂φ(t, x)

∂t
= v(t, φ(t, x))

φ(0, x) = x ∀ x ∈ Ω

(2.4)

Equation 2.4 has a unique solution for ψ under necessary smoothness conditions

for the velocity field [44] - velocity fields are regularized based on Sobolev em-

bedding theory [45]. Thus the ODE is solved till time t = 1 to obtain the final

deformation field ψ(x) = φ(1, x). The solution φ(t, x) obtained on solving the

above ODE is called the associated flow [46] of the velocity field v, which is a

diffeomorphism at all time points t [46](Theorem C.10). Using the constraints

of Equation 2.4, the diffeomorphic field is obtained by an optimization similar

to Equation 2.1. This is finally solved through two classes of methods namely

- relaxation [6] and shooting [47].

• One disadvantage of the LDDMM framework is the high computation cost and

the memory complexity associated with the integration of velocity fields. This

is combated by the framework DARTEL [48] which considered a stationary i.e.

a constant velocity field v : Ω → Rd. The final flow associated with the velocity

field was estimated using the scaling and squaring approach [49] - this results

in an exponentiated flow field thus making the mapping diffeomorphic. The

optimization was solved using the Levenberg-Marquardt method [50]. Another

advantage of this method is that the inverse transformation can be easily com-

puted simply by backward integration of the negative velocity field -v using

scaling and squaring.

• Other diffeomorphic registration approaches are based on physical models and
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constrained optimization approaches. In [51], the deformable template were

modeled as hyperelastic or non-linear elastic membranes and the registration

was performed using non-linear finite element approach [51]. Further develop-

ment involving hyperelastic regularization for diffeomorphic registration were

done in [52–55]. Other works apply a volume incompressibility constraint i.e.

penalizing expansion and contraction. Rohlfing et al. [56] introduce a incom-

pressibility based penalty term via the log of the determinant of the Jacobian

while Haber and Modersitzki [57] solve the equivalent KKT conditions with a

hard constraint of Jacobian determinant being 1.

2.3.2 Deep Learning Based Registration

Due to the advent of deep learning, recent works have used convolutional neural

networks (CNN) to perform registration. These methods can be broadly divided into

supervised and unsupervised ones.

Supervised deep learning methods for deformable registration usually learn a deep

learning model estimating displacement fields using ground truth images ([58–62]).

However, this may result in transformations biased by ground truths and in practical

problems, it is very difficult to obtain a large amount of ground-truth information.

Thus, unsupervised deep learning approaches have also been developed, which is the

focus of this thesis.

In this section, we describe unsupervised approaches using deep learning for image

registration. The advent of Spatial Transformer Networks [63] allowed the end-to-end

training of registration by optimizing a similarity metric between a fixed image and

a warped image.

Vos et al. [64] presented a deformable image registration network (DIRnet) - one

of the first end-to-end unsupervised deformable registration framework using deep

learning. In this work, the deformation field was parameterized using cubic B-splines

[65]. Patches extracted from the moving and fixed image were passed into a convo-
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lutional neural network regressor which gave the control points of the cubic spline

as its output. These control points were used by the spatial transformer [63] for

interpolation and warping of the moving image.

Li and Fan [66] developed on this basic idea by performing unsupervised registra-

tion on the full spatial dimension of the image. This was possible by the use of fully

convolutional networks (FCN)[67] which were used to learn the full deformation field

with the fixed and moving image as its input. This was trained using NCC as the

similarity metric and a total variation based regularizer [68].

However, these pioneering methods had certain limitations which were overcome

by [10]. Vos et al. [64] had a implicit regularization scheme, Li and Fan [66] demon-

strated their effectiveness on 3D subregions. Balakrishnan et al. [10] developed the

Voxelmorph (VM) framework where they proposed a UNet [69] based CNN which

predicts the deformation field given an input pair of fixed and moving image. The

application of spatial transformation in this context is described in Section 4.3.3. A

more extensive analysis of VoxelMorph on different registration settings and a vast

collection of datasets is performed in [70]. In this thesis, we consider VoxelMorph as

our primary DL pipeline for unsupervised image registration.

In [71], registration is performed with a multiscale and multiresolution approach.

Here CNNs are trained to obtain a coarse to fine registration field using a B-Spline

deformation model. Other related works for unsupervised image registration include

[72–74].

These deep learning methods do not typically consider the diffeomorphic prop-

erties of the registration field. There have been few works that look into learning

diffeomorphic registration fields.

• The first group of works primarily use the scaling and squaring algorithm for

producing diffeomorphisms. Dalca et al. [75] use a probabilistic generative CNN

model to estimate the mean and covariance of a stationary velocity field. A
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diffeomorphic deformation field is obtained from the velocity field by scaling

and squaring layers. Their variational inference formulation also assist in giving

an uncertainty estimate of the deformation field. This work was extended in

[76] with more analysis, experiments and results along with an extension of

their method to surface registration. Diffeomorphic deformation fields are also

obtained by similar scaling and squaring of SVFs (stationary vector field) found

via conditional variational autoencoders [77, 78]. Mok and Chung [79] use a

similar scaling and squaring theme, but also develop a symmetric similarity

framework considering both the forward and backward transformation between

a pair of images.

• The second group of works employ different kinds of regularization and losses

to maintain diffeomorphism. Zhang [80] introduced an inverse consistency loss

that penalizes the transformations from the respective inverse mappings along

with an anti-folding constraint that penalizes gradient of the flow along a point

of folding. Kuang and Schmah [81] use a penalty loss to constrain negative

Jacobians and train their CNN with a use cross correlation similarity loss. Kim

et al. [82] ensure cycle or inverse consistency using two neural networks - one

network approximating the transformation from moving to fixed and the other

from the fixed to moving image.

• The moving mesh grid parameterization is a technique that leads to diffeomor-

phic image registration [83, 84]. This method does not rely on any regulariza-

tion - rather it constrains the Jacobian determinant using a monitor function

and solves a divergence curl system for obtaining a diffeomorphic mapping [85].

Sheikhjafari et al. [86] trained a UNet which outputs the monitor function for

constraining the Jacobian. Then the div-curl system is solved and this is trained

in an unsupervised manner to obtain a deep learning approach to the moving

mesh method.
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In this thesis, we focus along this line of work which develops diffeomorphic regis-

tration fields using unsupervised end-to-end neural network training. We develop a

postprocessing layer that can reduce the number of non-positive Jacobians and can

potentially fit in any deep learning registration pipeline.
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Chapter 3

Postprocess Diffeomorphic Image
Registration with Matrix
Exponential

In this chapter, we discuss the proposed method for obtaining diffeomorphic image

registration using matrix exponential. We describe our method in the case of 3D

image volumes. This can also be applied to 2D.

Let F,M be two 3D image volumes. As mentioned before, the two image volumes

are initially aligned with a global deformation as a preprocessing step such that the

remaining misalignment between F and M is non-linear.

A function gθ(F,M) is modelled by a convolutional neural network (CNN), such

that the neural network outputs a displacement field ϕ [10]. The displacement field

is a four dimensional vector that determines the displacement between F and M .

Considering Id as an identity transform, the transformaton ψ = Id + ϕ is used to

warp the moving image, such that for each voxel location q, F (q) and M(ϕ(q)) are

identical.

For our experiments, we use the VoxelMorph-2 architecture [10] as our neural

network. We insert a postprocessing layer at the end of the neural network, which

takes in the displacement field ϕ and gives a new displacement field ϕp as an output,

which potentially contains much less folding when compared to ϕ.
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Figure 3.1: Overview of the proposed postprocessing layer for Diffeomorphic Image
Registration. The output from the registration pipeline ϕ is the input to out proposed
layer which gives ϕp as its output. Jϕ indicate the Jacobian matrices of a displacement
field ϕ. We omit the regularization loss for simplicity

3.1 Postprocessing Formulation

The postprocessing layer comprises of 3 steps as shown in Figure 3.1:

• Compute the Jacobian matrices at each voxel for displacement field ϕ

• Compute the Matrix Exponential of each Jacobian matrix

• Reconstruct the postprocessed displacement field ϕp by solving Poisson equa-

tions

Concretely, let ϕ, ϕp ∈ RH×D×W×3 be displacement fields such that ϕ = [ϕx, ϕy, ϕz]

and ϕp = [ϕpx , ϕpy , ϕpz ]. ϕi, ϕpi ∈ RH×D×W denotes the component of the displacement

fields along the i-th axis. Let q = (x, y, z) be a voxel location. H,D,W refer to height,

width and depth of the image volumes respectively.

The Jacobian matrix of the displacement field ϕ = (ϕx, ϕy, ϕz) at q is defined as:

Jac(ϕ(q)) =

⎡⎢⎢⎢⎣
∇ϕx(q)

∇ϕy(q)

∇ϕz(q)

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
∂ϕx(q)
∂x

∂ϕx(q)
∂y

∂ϕx(q)
∂z

∂ϕy(q)

∂x

∂ϕy(q)

∂y

∂ϕy(q)

∂z

∂ϕz(q)
∂x

∂ϕz(q)
∂y

∂ϕz(q)
∂z

⎤⎥⎥⎥⎦ (3.1)
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Thus we have one 3× 3 Jacobian matrix for each voxel location in the image volume,

resulting in H × D ×W matrices. We compute the matrix exponential of each of

these matrices. Thus for voxel location q, we get the matrix J ′(q) :

J ′(q) =

⎡⎢⎢⎢⎣
J ′
x(q)

J ′
y(q)

J ′
z(q)

⎤⎥⎥⎥⎦ = eJac(ϕ(q)) (3.2)

We compute the matrix exponential of the 3 × 3 matrix Jac(ϕ(q)) by a series sum-

mation scheme as follows:

eJac(ϕ(q)) =
∞∑︂
n=0

(Jac(ϕ(q)))n

n!
(3.3)

This scheme is in line with [87]. We truncate the series after 20 terms and observe

that is good enough to give accurate results.

We observe that at a particular voxel location q, the Laplacian of the postpro-

cessed displacement field is the same as the divergence of the Jacobian at that point.

Considering J ′
x(q) = [J ′

x1
(q), J ′

x2
(q), J ′

x3
(q)], we have:

∆ϕpx(q) =
∂J ′

x1
(q)

∂x
+
∂J ′

x2
(q)

∂y
+
∂J ′

x3
(q)

∂z
= ∇ · J ′

x(q) (3.4)

Thus, the final postprocessed displacement field is reconstructed from J ′ by solving

the following Poisson equations:

∆ϕpx = ∇ · J ′
x

∆ϕpy = ∇ · J ′
y

∆ϕpz = ∇ · J ′
z

(3.5)

3.2 Solving the Poisson Equations

We solve the Poisson equations using a fast FFT solver adapting from [88]. In this

subsection, we provide a comprehensive overview of the relevant numerical steps and

their justification.
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3.2.1 Linear System from discretizing Poisson Equations

Let us consider the first equation in Equation 3.5. The other two equations pertaining

to the y-axis and z-axis can be solved similarly. The first equation can be written as

follows:

∆ϕpx = ∇ · J ′
x

⇒
(︃
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)︃
ϕpx = ∇ · J ′

x

⇒
(︃
∂2

∂x2
+

∂2

∂y2
+

∂2

∂z2

)︃
ϕpx =

∂J ′
x1

∂x
+
∂J ′

x2

∂y
+
∂J ′

x3

∂z

(3.6)

We can compute the right hand side of the above Equation because J ′
x is known

from Equation 3.2.

We consider the solution of the Poisson Equations on a rectangular grid of dimension

H ×W × D, corresponding to the image volumes. Because of the rectangular mesh

arrangement, we can consider discrete Laplacian using finite differences for the left

hand side of Equation 3.6.

For the rectangular mesh, we take second order differences along x, y and z direction

for the discrete Laplacian. Specifically, these differences are of the form -1,2,1 along

each direction, which combine to form a ”7 point molecule”. Considering the finite

differences around a voxel q = (i, j, k), we have the following discrete Poisson equation:

6ϕpx(i, j, k)− ϕpx(i− 1, j, k)− ϕpx(i+ 1, j, k)− ϕpx(i, j − 1, k)

−ϕpx(i, j + 1, k)− ϕpx(i, j, k − 1)− ϕpx(i, j, k + 1) = ∇ · J ′
x(i, j, k)

(3.7)

Now, we recall that ϕpx is a grid of size H × W × D. Excluding the boundaries,

we convert ϕpx into a vector U. Similarly, ∇ · J ′
x is vectorized as F. Thus we get the

following linear system:

(K3D)U = F

U,F ∈ RM ,M = (H− 2)×(W− 2)× (D− 2)
(3.8)

where K3D is a matrix of size M ×M and Equation 3.7 corresponds to one row of

this linear equation.
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3.2.2 Eigenvalues and Eigenvectors of K3D

The matrix K3D has a special structure - it is a sparse matrix with 7 non-zero entries

which are six -1’s and a +6 according to Equation 3.7. This M ×M matrix has M

eigenvectors and corresponding M eigenvalues:

(K3D)ylmn = λlmnylmn

l = 1, ..., H ′,m =1, ...,W ′, n = 1, ..., D′

H ′ = H − 2,W ′ = W − 2, D′ = D − 2

where ylmn is an eigenvector and λlmn are the eigenvalues.

The eigenvectors and eigenvalues of K3D are as follows:

(i, j, k) component of ylmn = yijklmn = = sin
ilπ

H ′ + 1
sin

jmπ

W ′ + 1
sin

knπ

D′ + 1

λlmn = (2− 2 cos
lπ

H ′ + 1
) + (2− 2 cos

mπ

D′ + 1
) + (2− 2 cos

nπ

W ′ + 1
)

We can verify the eigenvectors and eigenvalues of the matrix due to the special

sparse structure of the matrix K3D.

3.2.3 Fast Solver using DST

We recall that F is the vectorized form of ∇·J ′
x which is a 3D array of size (H− 2)×

(W− 2)× (D− 2). Thus we can index F as Fijk which denotes the (i, j, k)th element

of ∇ · J ′
x. With this premise, we perform the 3D Discrete Sine Transform of ∇ · J ′

x to

get the following:

Fijk =
H′∑︂
l=1

W ′∑︂
m=1

D′∑︂
n=1

almn sin
ilπ

H ′ + 1
sin

jmπ

W ′ + 1
sin

knπ

D′ + 1
(3.9)

We observe that the sin terms of Equation 3.9 together also resemble the (i, j, k)

component of the eigenvector of the K3D matrix. Thus from Equation 3.9:

Fijk =
H′∑︂
l=1

W ′∑︂
m=1

D′∑︂
n=1

almny
ijk
lmn

=⇒ F =
H′∑︂
l=1

W ′∑︂
m=1

D′∑︂
n=1

almnylmn

(3.10)
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Moreover, by the property of eigenvalues, we have

(K3D)−1ylmn =
1

λlmn
ylmn (3.11)

Our goal here is to compute the vector U which is equivalent to the ϕpx . We also

note that the eigenvalues of the K3D matrix is always greater than zero - thus the

matrix is always invertible. So, from Equation 3.8 we have:

U = (K3D)−1F

= (K3D)−1

H′∑︂
l=1

W ′∑︂
m=1

D′∑︂
n=1

almnylmn [from Equation 3.15]

=
H′∑︂
l=1

W ′∑︂
m=1

D′∑︂
n=1

almn(K3D)−1ylmn

=
H′∑︂
l=1

W ′∑︂
m=1

D′∑︂
n=1

almn
λlmn

ylmn [from Equation 3.17]

(3.12)

Thus we can compute almn using a Discrete Sine Transform of ∇ · J ′
x. ylmn and

λlmn can be obtained from the eigenvector and eigenvalue formulation of the K3D

matrix. This is fast because we can go from the frequency space of F to that of U by

a simple division of scalar values of λlmn.

3.3 Postprocess Analysis

In our proposed postprocessing formulation, we exploit the properties of matrix expo-

nential and Poisson reconstruct to attain a reduced number of non-positive Jacobians.

For any complex square matrix A, the following identity holds true [89, p.41]:

det(eA) = etr(A) (3.13)

where tr(A) represents the trace of A. Since we compute J ′ through matrix exponen-

tial of the Jacobian matrices as in Equation 3.2, using the above identity:

det(J ′(q)) = det(eJac(ϕ(q))) = etr(Jac(ϕ(q))) > 0 (3.14)

24



Thus, if the matrices J ′ are valid Jacobian matrices, then a perfect reconstruction of

the field results in a postprocessed field with positive Jacobian matrices in all voxel

locations. However, it is not always certain that the exponentiated matrices will be

valid Jacobian matrices and thus integrable. Our framework can combat this issue

because of the variational properties of the Poisson equation. In the following section,

we investigate the conditions required for perfect integrability and also the relevant

properties of the Poisson equation that help our framework to reduce non-positive

Jacobians.

3.4 Integrability of exponentiated Jacobian matri-

ces J ′

A Jacobian matrix for a displacement field (like ϕ or ϕp) consists of three rows of

vector fields which are the gradients of the x,y and z components of the corresponding

displacement field. For example, from Equation 3.1, the Jacobian matrix for the

displacement field ϕ is made of three rows which are gradients of ϕx, ϕy and ϕz.

Thus, for J ′ to be integrable, we need J ′
x, J

′
y and J

′
z to be vector fields which are valid

gradients of a function.

Theorem 3.1 (Hubbard, 2015. p.571 [90]) If U ∈ R3 is convex, and F⃗ is a vec-

tor field on U , then F⃗ is the gradient of a function f defined on U if and only if

curlF⃗ = 0.

In our case, the domain of the vector field is the image domain Ω, which essentially

lies in a solid parallelopiped. Hence it is a convex set. Thus the vector fields J ′
x, J

′
y

and J ′
z need to have the following conditions for them to be valid gradients, resulting

in J ′ to be integrable:

∇× J ′
x = 0

∇× J ′
y = 0

∇× J ′
z = 0

(3.15)
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Hence we need the above special structure on the exponentiated matrices for perfect

integrability, which will result in a reconstructed displacement field with theoretically

guaranteed positive Jacobians. However, as we will see in Section 3.4.2, satisfying

Equation 3.15, though possible, is non-trivial. However, we can still achieve a re-

constructed displacement field which is close to a field with theoretically guaranteed

positive Jacobians due to the properties of Poisson equations.

3.4.1 Integrability and Poisson Equations

We get the final postprocessed displacement by solving the Poisson equations given

by Equation 3.5 and computing the matrix exponential of the Jacobian matrices of

the starting displacement field, ϕ. We consider the variational formulation of the

Poisson equation in Equation 3.5 using the Euler-Lagrange equations.

We consider the first equation of Equation 3.5. The solution of the following

minimization problem:

min
ϕpx

∫︂
Ω

||∇ϕpx − J ′
x||22 with ϕpx|∂Ω = ϕ∗

px|∂Ω (3.16)

is the unique solution of the Poisson equation with the Dirichlet boundary condition

[91]:

∆ϕpx = ∇ · J ′
x with ϕpx|∂Ω = ϕ∗

px|∂Ω

Here ∂Ω denotes the boundary of the set Ω which is our image domain. Thus, the

solution of the Poisson equations in Equation 3.5 signifies minimizing the difference

between the exponentiated Jacobian and the Jacobian of the resultant field ϕpx .

3.4.2 Condition for perfect Integrability

In this section, we derive the conditions on the initial displacement field ϕ, which

results in J ′ to be an integrable Jacobian i.e. the Jacobian of conservative vector

fields.
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Lemma 3.2 If Y X = ZY , where X, Y , Z ∈ Rd×d are square matrices, the following

are true:

• [X, Y ] = (X − Z)Y = A1Y

• [X, [X, Y ]] = (X2 − 2XZ + Z2)Y = A2Y

• [X, [X, ..., [X⏞ ⏟⏟ ⏞
(n-2) times

, [X, Y ]]...]] =

(︃
n∑︁
r=0

(︁
n
r

)︁
Xn−r(−Z)r

)︃
Y = AnY

for n = 2, 3, .... Here, [., .] denotes the Lie bracket and we consider An =
n∑︁
r=0

(︁
n
r

)︁
Xn−r(−Z)r

Proof.

• [X, Y ] = XY − Y X = XY − ZY = (X − Z)Y = A1Y

• [X, [X, Y ]] = [X,AY ] = XAY − AYX = XAY − AZY = (XA − AZ)Y =

(X(X − Z)− (X − Z)Z)Y = (X2 − 2XZ + Z2)Y = A2Y

• We will prove the general case by induction. We consider the induction hypoth-

esis to be the given statement i.e. the predicate P (n) is the third statement of

the lemma.

Base Case. We consider the base case when n = 2. Then

[X, [X, ..., [X⏞ ⏟⏟ ⏞
(2-2) times

, [X, Y ]]...]] = [X, [X, Y ]]

= (X2 − 2XZ + Z2)Y

=
2∑︂
r=0

(︃
2

r

)︃
X2−r(−Z)r

Inductive Step. We assume P (n) to be true. Our proof will be complete if

27



P (n+ 1) is true.

[X, [ X, ..., [X⏞ ⏟⏟ ⏞
((n+1)-2) times

, [X, Y ]]...]]

= [X, [X, [X, ..., [X⏞ ⏟⏟ ⏞
((n-2) times

, [X, Y ]]...]]]

= [X,

(︄
n∑︂
r=0

(︃
n

r

)︃
Xn−r(−Z)r

)︄
Y ]

= X

(︄
n∑︂
r=0

(︃
n

r

)︃
Xn−r(−Z)r

)︄
Y −

(︄
n∑︂
r=0

(︃
n

r

)︃
Xn−r(−Z)r

)︄
Y X

= X

(︄
n∑︂
r=0

(︃
n

r

)︃
Xn−r(−Z)r

)︄
Y −

(︄
n∑︂
r=0

(︃
n

r

)︃
Xn−r(−Z)r

)︄
ZY

=

(︄
n∑︂
r=0

(︃
n

r

)︃
Xn+1−r(−Z)r −

n∑︂
r=0

(︃
n

r

)︃
Xn−r(−Z)rZ

)︄
Y

=

(︄
n∑︂
r=0

(︃
n

r

)︃
Xn+1−r(−Z)r +

n∑︂
r=0

(︃
n

r

)︃
Xn−r(−Z)r+1

)︄
Y

=

(︄
n+1∑︂
r=0

(︃
n+ 1

r

)︃
Xn+1−r(−Z)r

)︄
Y

which proves P (n+ 1). So it follows by induction that P (n) is true for all n ≥ 2.

Proposition 3.3 If J is a Jacobian matrix of a vector field, then eJ will also be a

Jacobian matrix of a vector field, when there is a 3×3 matrix A, such that ∂J
∂x
J = A∂J

∂x
,

∂J
∂y
J = A∂J

∂y
, and ∂J

∂z
J = A∂J

∂z
.

Proof.

Let J be the Jacobian of the vector field ϕ = [ϕx, ϕy, ϕz]. Rewriting Equation 3.1,

Jacobian at voxel location q:

J(q) =

⎡⎢⎢⎢⎣
∂ϕx(q)
∂x

∂ϕx(q)
∂y

∂ϕx(q)
∂z

∂ϕy(q)

∂x

∂ϕy(q)

∂y

∂ϕy(q)

∂z

∂ϕz(q)
∂x

∂ϕz(q)
∂y

∂ϕz(q)
∂z

⎤⎥⎥⎥⎦ (3.17)

Let us consider:

eJ(q) =

⎡⎢⎢⎢⎣
Fx

Fy

Fz

⎤⎥⎥⎥⎦ =

⎡⎢⎢⎢⎣
Fx1 Fx2 Fx3

Fy1 Fy2 Fy3

Fz1 Fz2 Fz3

⎤⎥⎥⎥⎦ (3.18)
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For eJ to be a valid Jacobian matrix, from Equation 3.15, we need the following to

hold true:

∇× Fx =

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓
i j k

∂
∂x

∂
∂y

∂
∂z

Fx1 Fx2 Fx3

⃓⃓⃓⃓
⃓⃓⃓⃓
⃓ = 0

∇× Fy = 0

∇× Fz = 0

(3.19)

The above conditions give rise to a set of 9 equations, which can be equivalently

rewritten as:

∂eJ(q)

∂x

⎡⎢⎢⎢⎣
0 0 0

1 0 0

0 0 0

⎤⎥⎥⎥⎦− ∂eJ(q)

∂y

⎡⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦ = 0

∂eJ(q)

∂x

⎡⎢⎢⎢⎣
0 0 0

0 0 0

1 0 0

⎤⎥⎥⎥⎦− ∂eJ(q)

∂z

⎡⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦ = 0

∂eJ(q)

∂y

⎡⎢⎢⎢⎣
0 0 0

0 0 0

1 0 0

⎤⎥⎥⎥⎦− ∂eJ(q)

∂z

⎡⎢⎢⎢⎣
0 0 0

1 0 0

0 0 0

⎤⎥⎥⎥⎦ = 0

(3.20)

Thus eJ(q) is a valid Jacobian matrix if Equation 3.23 hold true. We also observe that

using Lemma 3.2, for t = x, y, z:

∂J

∂t
J = A

∂J

∂t

=⇒ [J,
∂J

∂t
] = (J − A)

∂J

∂t

and [J, [J,
∂J

∂t
]] = (J2 + A2 − 2JA)

∂J

∂t

... and so on

(3.21)

We consider Qn =
n∑︁
r=0

(︁
n
r

)︁
Jn−r(−A)r
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Now, using the differentiation formula [89, p.115], we get:

∂

∂t
eJ(q) = eJ(q)

I − e−adJ

adJ

∂J(q)

∂t

= eJ(q)
(︃
∂J(q)

∂t
− 1

2!
[J(q),

∂J(q)

∂t
] +

1

3!
[J(q), [J(q),

∂J(q)

∂t
]]− ...

)︃
= eJ(q)

(︃
∂J(q)

∂t
− 1

2!
Q1
∂J(q)

∂t
+

1

3!
Q2
∂J(q)

∂t
− ...

)︃
= eJ(q)

(︃
I − 1

2!
Q1 +

1

3!
Q2 − ...

)︃
∂J(q)

∂t

= eJ(q)Q
∂J(q)

∂t
, t = x, y, z,

(3.22)

We prove that the series
(︁
I − 1

2!
Q1 +

1
3!
Q2 − ...

)︁
converges to Q in Section A.1.

Using the above result,

∂eJ(q)

∂x

⎡⎢⎢⎢⎣
0 0 0

1 0 0

0 0 0

⎤⎥⎥⎥⎦− ∂eJ(q)

∂y

⎡⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦

=eJ(q)Q
∂J(q)

∂x

⎡⎢⎢⎢⎣
0 0 0

1 0 0

0 0 0

⎤⎥⎥⎥⎦− eJ(q)Q
∂J(q)

∂y

⎡⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦

=eJ(q)Q

⎛⎜⎜⎜⎝∂J(q)∂x

⎡⎢⎢⎢⎣
0 0 0

1 0 0

0 0 0

⎤⎥⎥⎥⎦− ∂J(q)

∂y

⎡⎢⎢⎢⎣
1 0 0

0 0 0

0 0 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

=eJ(q)Q

⎛⎜⎜⎜⎝
⎡⎢⎢⎢⎣
∂2ϕx(q)
∂y∂x

0 0

∂2ϕy(q)

∂y∂x
0 0

∂2ϕz(q)
∂y∂x

0 0

⎤⎥⎥⎥⎦−

⎡⎢⎢⎢⎣
∂2ϕx(q)
∂x∂y

0 0

∂2ϕy(q)

∂x∂y
0 0

∂2ϕz(q)
∂x∂y

0 0

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎠

=0 [ Clairaut’s theorem ]

(3.23)

Now, we can easily verify that the matrix eJ is curl-free.

Even though the set of conditions in the lemma is technical, it is quite general and

we point out that such conditions hold for a large family of functions. For example,

for the 2D cases, we can verify that any harmonic function and its conjugate [92]

together obey these conditions and provide us with such conservative vectors fields.

Non-trivial families of functions following these conditions also exist in 3D.
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3.5 End to End Pipeline

In this thesis, we propose a postprocessing layer, which can be potentially inserted

at the end of a general deep learning registration framework and then the system

can be trained end-to-end. Along with the postprocessing layer, we also propose

an additional Poisson reconstruction loss for training. The full training pipeline is

depicted in Figure 3.1.

In our experiments, we formulate the loss used for training according to the form

of Equation 2.1. The loss consists of three components: Lsim, which discourages

dissimilarity between the moving and fixed image, Lreg, that penalizes large local

variations in the displacement field and Lpoisson, that helps our postprocessing layer

in reducing non-positive Jacobians.

3.5.1 Cross–Correlation Loss

In our experiments, we take Lsim to the cross-correlation loss as in [10]. Essentially, we

consider the negative local normalized cross correlation loss as the similarity measure.

Considering the fixed image to be F and the moving image to beM , the moving image

is spatially transformed using the deformation field ϕp. Thus we find the similarity

measure between F and M(ϕp).

The cross-correlation is computed locally i.e. for a voxel location p, we consider a

local cubic volume V of size n3. Considering such a volume V around p, we compute

the local mean ( we consider the fixed image F here):

F̂ (p) =

∑︁
i∈V F (pi)

n3

Similarly, local means around any voxel location is also found for the warped image.

Now, the cross-correlation loss is given by [10]:

CC(F,M(ϕp)) =
∑︂
p∈Ω

(︂∑︁
pi
(F (pi)− F̂ (p))(M(ϕp(pi))− M̂(ϕp(p)))

)︂2(︂∑︁
pi
(F (pi)− F̂ (p))2

)︂(︂∑︁
pi
(M(ϕp(pi))− M̂(ϕp(p)))2

)︂
(3.24)
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Here pi iterates over the cubic volume of size n3 as mentioned before. For our exper-

iments, we consider n = 9. Now, it is to be noted that conventional cross-correlation

would be defined as the square root of the terms summed in Equation 3.24. However,

the aforementioned form is commonly used in the image registration literature [14].

Efficient Computation. The local cross-correlation loss mentioned in Equa-

tion 3.24 is computed efficiently using convolution operation. Specifically, we consider

a convolution kernel of size 9×9×9 and convolve it over the image volumes with stride

1 and a padding of 4. This allows us to compute a volume containing
∑︁

pi
(F (pi))

in a single convolution pass. The local means are obtained by simply dividing the

above by n3. Similar computation is applicable for
∑︁

pi
(M(ϕp(pi))). Thus this helps

in efficient computation of the similarity measure.

3.5.2 Diffusion Regularizer

We use the diffusion regularizer as Lreg, which is defined as follows [10]:

Lreg =
∑︂
p∈Ω

∥∇ϕp(p)∥2

The diffusion regularizer is a commonly used regularizer in image registration [10,

93, 94] and was inspired from the field of optical flow [95]. Essentially, the registration

field in an neighbourhood in an image should vary smoothly. Thus this regularizer

adds a smoothness constraint by penalizing the square of the magnitude of the gra-

dient of the deformation field.

3.5.3 Poisson Reconstruction Loss

The Poisson reconstruction step plays a crucial role in reducing the non-positive

Jacobians. Note that a lower resultant value in Equation 3.16 implies a better inte-

grability condition for the matrix J ′. Hence, adding such three terms for x, y and z

components, we introduce a Poisson reconstruction loss Lpoisson as follows:

Lpoisson =
∑︂
q

∥eJac(ϕ(q)) − Jac(ϕp(q))∥22 (3.25)
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3.5.4 Complete Loss

Using the individual components mentioned above, the complete loss function L(F,M)

is as follows:

L(F,M) = −CC(F,M(ϕp)) + λ
∑︂
p

∥∇ϕp(p)∥2 + λpLpoisson, (3.26)

Here λ is the hyperparameter that controls the strength of the diffusion regularizer

and λp is the hyperparameter determining the strength of the Poisson reconstruction

loss.

Thus every component mentioned in our method is differentiable and we train this

pipeline end-to-end using the above loss.
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Chapter 4

Experiments and Results

4.1 Dataset

In this work, we primarily use the open-access OASIS dataset [9] to evaluate our

postprocess step. The dataset contains 414 T1-weighted brain MRI scans from sub-

jects aged 18 to 96. We obtain the preprocessed dataset from [96]. The MRI scans

were preprocessed [97] using Freesurfer [98] by standard steps like resampling, bias

correction, skull stripping, affine normalization and center cropping into volumes of

160 × 192 × 224. For our experiments we split the dataset into training, validation

and test set of sizes 255, 15 and 144 respectively.

We perform atlas-based registration for our experiments i.e. we aim to establish

anatomical correspondence between the moving images and the reference image/atlas.

An atlas can be a single volume or an average of volumes in the same image space.

Atlas-based registration is commonly applied to register inter-subject images. In this

paper, we use an atlas constructed from a different dataset [99] and also used in the

official implementation of Voxelmorph [10].

4.2 Evaluation Metric

We evaluate the performance of our postprocessing layer with two metrics: Dice Score

(DS) and the percentage of non-positive Jacobian determinants (|Jϕp | ≤ 0) [79].
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Figure 4.1: Architecture of VoxelMorph-2. Taken from [10]

4.2.1 Dice Score

The Dice Score measures the volume overlap of different segmented anatomical struc-

tures. Considering SkF and SkM(ϕp)
to be the sets of voxels for an anatomical structure

k for F and M(ϕp), respectively, the Dice Score [100] is given by :

DS(SkF , S
k
M(ϕp)) = 2×

SkF ∩ SkM(ϕp)

|SkF |+ |SkM(ϕp)
|

(4.1)

For our analysis, we consider 30 anatomical structures for the computation of Dice

Score [70]. A Dice Score of 1 is highest since it indicates complete overlap and no

overlap gives the lowest score of 0.

4.2.2 Non-positive Jacobian determinants

The goal of our postprocessing step is to reduce the number of non-positive Jacobians

to ensure a diffeomorphic transformation (Section 2.2.3). Hence we also measure the

percentage of voxels which have non-positive Jacobian determinants to evaluate our

layer.

4.3 Implementation Details

4.3.1 Architecture

We use the VM2 architecture [10] as the neural network pipeline (gθ(F,M)) for our

experiments. We concatenate the fixed and moving image to obtain an input of di-
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Figure 4.2: Illustration showing the effect of the Postprocessing Layer on foldings in
the grid used for registration for one slice. VM = Voxelmorph. Red circles indicate
folding of the grid over itself. Green circles indicate no foldings in same region.

mension 160×192×224×2. The convolutional neural network architecture is based on

UNet [69], which contains an encoder stage and a decoder stage which are connected

via skip connections. In the VM2 architecture, both the encoder and decoder network

consists of convolutional blocks, which typically consist of a convolution with a kernel

size of 3 × 3 × 3 followed by a Leaky ReLU activation with a negative slope of 0.2.

The encoder networks use the convolutions with a stride of 2 because that reduces

the spatial dimensions by half in each layer. As shown in Figure 4.1, the encoder

network consists of 5 layers with 16, 32, 32, 32 and 32 channels. Due to the strided

convolutions the spatial size of the input volumes along each dimension are reduced

till 1
16

of the original size at the last encoder stage. The decoder network consists of 6

layers of 32, 32, 32, 32, 16 and 16 channels where the spatial dimension is upsampled

gradually as shown in Figure 4.1. Like UNet, skip connections are employed to pass

features learned in the encoder stage directly to the decoder stage.
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Table 4.1: Average Dice Score (higher is better) and Average Percentage of Non-
Positive Jacobians (lower is better) with λ = 1, 2 and increasing λp. VM = Voxel-
morph. Standard Deviation Given in Parenthesis

Method λ λp Avg. Dice % of |Jϕp | ≤ 0

VM 1.0 - 0.8056 (0.0084) 0.6895 (0.0950)

1.0

0 0.8051 (0.0081) 0.2964 (0.0461)

VM + 0.01 0.8053 (0.0082) 0.2589 (0.0411)

Postprocess 0.05 0.8045 (0.0087) 0.2255 (0.0378)

0.1 0.8024 (0.0095) 0.1154 (0.0280)

VM 2.0 - 0.8048 (0.0086) 0.2881 (0.0501)

2.0

0 0.8025 (0.0092) 0.0639 (0.0187)

VM + 0.01 0.8032 (0.0100) 0.0609 (0.0190)

Postprocess 0.05 0.8043 (0.0096) 0.0672 (0.0201)

0.1 0.8025 (0.0103) 0.0207 (0.0001)

Table 4.2: Average Run Time in secs for Registration of Pair of Images (lower is
better). VM = Voxelmorph. Standard Deviation Given in Parenthesis

Method Time in sec

VM 0.60 (0.10)

VM+Postprocess 1.87 (0.20)

4.3.2 Training details

Since we propose a postprocessing layer in this paper, we compare the results between

an existing framework, namely the VoxelMorph framework (VM) [10] and that of

our layer used in conjunction with the VoxelMorph framework. We implement our

method using Pytorch [101] . We train our models using the Adam optimizer [102]

with a learning rate of 1e−4 for 300 epochs and a batch size of 1. We train both VM

and VM in conjunction with our proposed postprocess layer and tune the respective

hyperparameters with grid search. Based on the best dice score from the validation

set, we get the best result for our setting using λ = 1.0 and λp = 0.01.
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Figure 4.3: Box Plot of Dice Scores of different anatomical structures for VM, model
of VM with Postprocessing Layer giving best Dice Score and VM with Postprocess-
ing Layer giving lowest percentage of non-positive Jacobians. NPJ = Percentage
of non-positive Jacobians. Structures with left and right hemispheres are combined
into one for this illustration. Anatomical structures: Brain Stem (BS), Thalamus
(Th), Cerebellum Cortex (CblmC), Cerebral White Matter (CrlWM), Cerebellum
WM (CblWM), Putamen (Pu) , Ventral-DC (VDC), Pallidum (Pa), Caudate (Ca),
Lateral Ventricle (LV), Hippocampus (Hi), 3rd Ventricle 3V), 4th Ventricle (4V),
Amygdala (Am), Cerebral Cortex (Ceblc), Choroid Plexus (CP) and CSF. Table cor-
responding to this Box Plot is given in Section A.2.

4.3.3 Spatial Transform function

The spatial transformation function, inspired from spatial transformer networks [63] is

an integral part of the unsupervised registration DL pipeline. It helps us in computing

M(ϕp) from ϕp, which we obtain as an output of the neural network or as an output

of our postprocessing layer.

For a voxel location p, we compute M(ϕp(p)) using the eight neighbouring voxels

of p (denoted as Z(ϕp(p)):

M(ϕp(p)) =
∑︂

q∈Z(ϕp(p))

M(q)
∏︂

d∈x,y,z

(1− |ϕpd(p)− qd|)

These operations are almost differentiable everywhere - enabling us to train the

pipeline end-to-end through backpropagation.
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4.4 Results

4.4.1 Registration Performance

Table 4.1 shows the average dice score and the average percentage of voxels with non

positive Jacobians for all subjects in the test set for our experiments for different val-

ues of λ and λp. We observe that adding our postprocessing layer does not noticeably

alter the dice score performance, however it reduces the percentage of non-positive

Jacobians by a significant amount. Thus our proposed postprocessing layer can re-

duce folding (see Figure 4.2 for an example) of the registration grid while maintaining

a high registration accuracy (in terms of dice score), thus giving more diffeomorphic

transformations.

In Figure 4.3, we also show the average dice score for different anatomical structures

in the brain as a boxplot. We demonstrate that for VM, VM with postprocessing layer

giving the best Dice and VM with postprocessing layer giving the lowest percentage

of non-positive jacobians.

4.4.2 Effect of the Poisson Reconstruction Loss

We also demonstrate the effect the proposed reconstruction loss in Table 4.1. We

show the average percentage of non-positive jacobians for increasing values of λp

with the gradient regularization λ = 1, 2. As the weight of the reconstruction term

increases through λp, we observe that amount of non-positive Jacobians decreases;

however there is not much of a decrease in Dice score. Thus, with increasing λp,

the reconstruction loss tries to reconstruct a displacement field ϕp, whose Jacobian is

increasingly closer to eJϕ and thus is more diffeomorphic. Hence, our proposed loss

is successful in making the deformations more diffeomorphic without sacrificing too

much registration accuracy.
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4.4.3 Runtime Analysis

Table 4.2 shows the average time required to register a pair of images when we use

a VM trained model and when we use a VM model trained along with our layer.

We perform the deformable registration of a MRI scan of a test subject to the atlas

using a NVIDIA Tesla P100 GPU and an Intel Xeon (E5-2683 v4) CPU. The runtime

for registration when we add our layer is greater than that for VM by just about 1.2

seconds. Thus, it maintains the advantage of deep learning methods being faster than

traditional registration methods.

4.5 Limitation

In this section we explore a limitation of our work revealed through more experiments.

For these experiments, we consider 2D chest X-ray images with high inter-subject

anatomical variability for registration using our proposed postprocessing layer and

Voxelmorph.

4.5.1 Dataset

For this experiment, we consider the Shenzen Hospital chest X-ray [8, 11, 12] database

which was collected in Shenzhen No.3 Peoples Hospital, Guangdong Medical College,

Shenzhen, China. It consists of 662 X-ray images of variable sizes with the width

and height ranging from 2400 to 3000 pixels. The dataset is essentially a tuberculosis

dataset containing 326 normal and 336 pathological images. Manual lung segmenta-

tions for each image are present in the dataset, which help us to evaluate our method.

We resize each image to 1504 × 1504 for ease of computation and for uniformity of

size among images. For our experiments, we split the dataset into 542, 60 and 60

images as training, validation and test set respectively.
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4.5.2 Experimental Setting

As discussed in Section 4.2, we use Dice Score and percentage of non-positive Jacobian

as our main evaluation criterion for our method. The dataset cotains masks for lung

segmentations for each image. Hence, we calculate Dice Score based on such masks.

For our experiments, we use the same VM2 architecture[10] as mentioned in Section

4.1. We train our models using Adam [102] with a learning rate of 0.001 for 300

epochs and a batch size of 1 and use the mean squared error as the loss function for

registration.

4.5.3 Results

We initially use only Voxelmorph for registration with the Shenzen dataset to un-

derstand the viability of Voxelmorph as the underlying deep learning pipeline. In

Table 4.3, we present the dice scores for different hyperparameters of λ. We observe

that for λ = 0.01, we attain an acceptable registration performance [103] for the

Shenzen dataset.

Table 4.3: Dice Score for VM with Shenzen Dataset

λ Dice Score

1.0 0.62

0.5 0.63

0.1 0.80

0.01 0.86

Thus Voxelmorph can serve as an acceptable pipeline for our postprocessing layer.

We observe the performance of the postprocessing layer in Table 4.4 - the addition of

our layer leads to instability in training. We have demonstrated the training curves

for different hyperparameter settings in Table 4.4.
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Table 4.4: Training Curves demonstrating instability when training
VM2+postprocessing layer with Shenzen Dataset

λ λp Training Curves

1.0 0.0

1.0 0.001

0.1 0.001
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0.01 0.001

0.01 1.0

We observe that either there is no decrease in training loss with sudden spikes in

the loss or the training loss completely blows up to an extremely high value. We

observe such behaviour across a range of different hyperparameters.

To understand this phenomenon in depth, we choose one such hyperparameter

combination i.e. learning rate = 0.001, λ = 0.01 and λp = 0.001. We track the L2

norm of the gradient with respect to parameters and different stages of our pipeline as

shown in Figure 4.4. We observe that the all the tracked norm of gradients except one

(gradient of mean of Jϕ with respect to parameters of the network) become unstable

and rise exponentially at around epoch 1000. This is the same time that the loss

blows up as seen in Table 4.4 row 4.

Our intuition is that the instability may also arise from unboundedness of the

norm of the Jacobian Jϕ. Hence , we similarly track the L2 norm of the Jacobian in
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Figure 4.4: Tracking L2 norm of gradients. wrt ’A’ denotes L2 norm of gradients of
loss with respect to ’A’. ’B’ wrt ’A’ denotes L2 norm of gradients of ’B’ with respect
to ’A’. Jacobian = Jϕ. exp(Jac) = J ′.

Figure 4.5: Tracking mean L2 norm of Jacobian matrix Jϕ. Mean is taken over the
voxels.

Figure 4.5. We observe that a similar phenomenon occur i.e. the norm increases in

an unstable manner around the same epoch.

This presents a practical limitation in our current approach and points towards

the need of further investigation.
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Chapter 5

Conclusion

Deformable image registration is an important problem in medical image applications.

A very important requirement of such deformable registrations is diffeomorphism -

diffeomorphic registration preserves topology, prevents singularity. Classical registra-

tion literature have solved the diffeomorphic problem by either constraining the space

of velocity fields, certain forms of regularization etc. However, classical registration

performs slow pairwise registration. The advent of deep learning has enabled fast

registration during test time - which is a desirable property. However, due to such

advances being recent, there are few efforts to attain diffeomorphic image registration

using deep learning.

In this thesis, we have presented a postprocessing layer which can fit in a deep

learning registration framework with end-to-end learning. The purpose of our layer is

to reduce the number of non-positive jacobians in the displacement field obtained from

the DL framework - thus obtaining more diffeomorphic mappings. We evaluate our

layer using large scale brain MR dataset with the Voxelmorph framework and show

that our layer is successful in reducing folding in the registration grid and maintaining

high registration accuracy. Even though we employ a Poisson equation solver, our

layer still maintains the advantage of fast registration, a desirable characteristic of

deep learning algorithms. We hope that our postprocessing layer can be used in other

registration frameworks desiring more diffeomorphic registration fields.
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The exponentiated Jacobian is not always integrable, but under certain conditions

it can give a valid Jacobian as explored in 3.3 and that will lead to a theoretical

guarantee of strictly positive Jacobians. Thus, for future work, we hope to develop

constrained registration fields that can lead to a theoretically guaranteed, fully dif-

feomorphic registration.

Additionally, we demonstrate a limitation of our work based on experiments of

2D chest X-ray data. Addition of our layer makes the training unstable - we find

that this occurs due to gradient explosion and is possibly correlated with explosion

of norm of Jacobians. Hence this presents a stage for future work which can properly

investigate and mitigate this phenomenon, thus helping in development of a general

postprocessing layer leading to diffeomorphic registration.
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Appendix A:

A.1 Convergence of series in 3.3

Here we prove the convergence of the series
(︁
I − 1

2!
Q1 +

1
3!
Q2 − ...

)︁
where Qn =

n∑︁
r=0

(︁
n
r

)︁
Jn−r(−A)r

Proof. We know that if a series converges absolutely, the series converges. So we

look at the convergence of the following:
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Thus the series is absolutely convergent, hence convergent.
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A.2 Table corresponding to Figure 4.3

Table A.1: Table of Average Dice Scores (higher is better) of different anatomical
structures for Voxelmorph, model of Voxelmorph with Postprocessing Layer giving
best Dice Score and Voxelmorph with Postprocessing Layer giving lowest percentage
of non-positive Jacobians. NPJ = Percentage of non-positive Jacobians. Structures
with left and right hemispheres are combined into one. Anatomical structures: Brain
Stem (BS), Thalamus (Th), Cerebellum Cortex (CblmC), Cerebral White Matter
(CrlWM), Cerebellum WM (CblWM), Putamen (Pu) , Ventral-DC (VDC), Pallidum
(Pa), Caudate (Ca), Lateral Ventricle (LV), Hippocampus (Hi), 3rd Ventricle 3V),
4th Ventricle (4V), Amygdala (Am), Cerebral Cortex (Ceblc), Choroid Plexus (CP)
and CSF. VM = Voxelmorph. Standard Deviation Given in Parenthesis.

Anatomical VM VM + Postprocess VM + Postprocess

Structures (Lowest NPJ) (Best Dice)

BS 0.9026 (0.0074) 0.9074 (0.0076) 0.9045 (0.0079)

Th 0.8761 (0.0092) 0.8740 (0.0109) 0.8645 (0.0113)

CblmC 0.8818 (0.0107) 0.8798 (0.0128) 0.8857 (0.0104)

CrlWM 0.8420 (0.0044) 0.8352 (0.0053) 0.8441 (0.0039)

CblWM 0.8320 (0.0127) 0.8405 (0.0133) 0.8365 (0.0130)

Pu 0.8400 (0.0088) 0.8409 (0.0097) 0.8340 (0.0096)

VDC 0.8043 (0.0149) 0.8152 (0.0168) 0.8020 (0.0135)

Pa 0.8405 (0.0151) 0.8336 (0.0195) 0.8298 (0.0166)

Ca 0.8353 (0.0182) 0.8244 (0.0283) 0.8357 (0.0185)

LV 0.8903 (0.0117) 0.8814 (0.0155) 0.8922 (0.0119)

Hi 0.8083 (0.0222) 0.8109 (0.0242) 0.8108 (0.0215)

3V 0.8056 (0.0192) 0.8050 (0.0245) 0.8036 (0.0192)

4V 0.7789 (0.0230) 0.7794 (0.0298) 0.7775 (0.0250)

Am 0.7778 (0.0263) 0.7873 (0.0237) 0.7788 (0.0237)

Ceblc 0.7304 (0.0131) 0.7002 (0.0159) 0.7341 (0.0127)

CP 0.4605 (0.0543) 0.4486 (0.0569) 0.4644 (0.0546)

CSF 0.8447 (0.0130) 0.8393 (0.0165) 0.8482 (0.0122)
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