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Abstract

The automation of choropleth mapping requires that cartographers identify and formalize
regularities in map design decisions. One important aspect of design is the classification
of data. This research examines data classification procedures to determine if a given type
of frequency distribution may be consistently associated with a particular classing method.
Eight classing methods were examined: quantiles, equal steps, arithmetic progressions,
geometric progressions, reciprocal progressions, nested-means, standard deviations, and
Jenks' "optimal" system. A selection of thirty-five variables is used to study the
classification methods. Three measure indices are employed to estimate the quality of the
classification. These measure indices are the Sum of Differences, the Tabular Accuracy
Index, and the Goodness of Variance Fit. The results indicate that some methods usually
operate more efficiently with a particular type of distribution. However, pronounced
leptokurtic distributions seem to be a problem for most of the classing systems. The
Jenks’ "optimal" method appears to be the best classing system for all types of
distributions, including leptokurtic distributions, but requires the data to be multimodal. It
is therefore possible to create a classing routine which involves only minimum

intervention from the user.
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CHADVER 1: INTRODUCTION

The growing demand for choropleth maps by private and public organizations has
created a definite need for carographically sound automated mapping. Although
choropleth mapping software already exists, the maps produced are not based upon good
cartographic principles (Lai, 1986; Noronha, 1987; Tumer, 1987). Choropleth maps
should be objective, be produced rapidly, offer flexibility (so that modifications can be
made with ease) and reproducibility, and be academically valid. It is the responsibility of
cartographers to improve the quality of maps produced by automated procedures, by
influencing the specifications of the hardware and software that produce these maps.

The first step in the process of producing better choropleth mapping software is to
build a model of choropleth mapping. This may be attained by defining objective
procedures to produce a choropleth map rather than depending on subjective decisions.
By defining the objective procedures for the process of choropleth mapping, a model may
be developed and may ultimately be integrated into an automated routine, where user
intervention may be minimal.

Choropleth maps are a planimetric representation of statistical distributions with
an areal symbology. Procedures to produce a choropleth map can be divided into four
major steps: preliminary decisions, classification procedures, polygon fill procedures, and
finalizing procedures. The first set of procedures accumulates information for the desired
map. This information has a major influence on the map, as it is needed in the following
steps. The second set of procedures, classification, groups values to obtain classes. Class
limits must divide the frequency distribution in an appropriate way. The third set of
procedures areally fills the polygon and a logical progression in the filling is necessary.
The last set of procedures considers the details or elements involved to complete a
choropleth map. Furthermore, some balance in the arrangement of the design elements
and the principal figure must be seen.

Based upon the premise that a choropleth mapping model can be developed and

integrated in an automated routine, this research concentrates on classification procedures
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in choropleth mapping. It attempts to identify and examine the objective elements of the
classification process. There are three major types of decision: whether or not to class, to
determine the number of classes, and to choose the most appropriate class limits. The
first type of decision, whether or not to class data, is still a source of diseszreement
among cartographers. The second, the choice of the number of classes, has yet to be
objectively done. While some parameters may be used to find the makimum or minimum
number of classes, the cartographer still makes the final decision on the number of
classes for representing a data distribution. However, for the third decision type, it seems
possible to reduce the intervention of the cartographer in the delimitation of class limits.
This research attempts to demonstrate that it is possible to do this. Eight classing methods
are compared for two different numbers of classes. This comparison may be qualitative
(using rank/size graphs, maps) or quantitative (using indices to measure the. quality of
class limits).

It is important to consider the environment in which this research stands. This
research observes every operation in the context of an environment where budget is a
concem. Therefore microcomputers are used, limited memory and processing speeds are
considered, and at best the output has a medium quality. Furthermore, because of the
subject of the thesis in itself, classification procedures, there is an emphasis on
information content of the map rather than output quality.

This thesis begins with a definition of choropleth mapping and a description of
the procedures required to build choropleth maps. This is followed by a more detailed
description of the classification procedures. That section also includes a comment on the
classing methods and evaluation measures employed in this research, and briefly reviews
what would be involved in setting these procedures into an automated routine. The next
chapter gives the objectives of this research and describes the methodology followed.
Then, each method is tested and evaluated with different measure indices and visual

verification. Finally, concluding comments and observations are presented.



CHAPTER 2: DEFINITION OF CHOROPLETH MAPPING

2.1 DEFINITION OF MAPPING AND CHOROPLETH MAPPING

Maps are the representation of concrete or abstract phenomena, localized in space.
A map is a reduced, generalized representation of the earth, on a plane showing the
situation, the distribution, and the relationships of natural and social phenomena.
Cartography is "the am, science and technology of making maps" (Robinson, Sale &
Morrison, 1978, p.3). Mapping can be either general or thematic. General mapping
(descriptive cartography) attempts to show the distribution of spatial information, while
thematic mapping (analytical cartography) is used as a tool for research (Kretschmer,
1978). Choropleth mapping is one kind of thematic mapping and it produces maps which
essentially have an analytical purpose. The emphasis is more on the attribute than on
location. Choropleth mapping tends to emphasize spatial relationships, the variations of a
variable in space. Therefore, features such as accuracy and functionality are required.

Choropleth is a name which derives from Greek ‘choros,’ for place, area or space,
and ‘plethos,” for magnitude, multitude or number. Choropleth maps symbolize
quantitative data for areas. They are included in the kind of mapping "which involves
some indication of quantity as well as of spatial distribution, known as quantitative areal
mapping" (Monkhouse & Wilkinson, 1971, p.39). Choropleth mapping has boundary lines
as a characteristic. The locations of the statistics represented coincide with the boundaries
of the unit areas (Monkhouse & Wilkinson, 1971; Robinson, Sale & Morrison, 1978).
However, no quantity is assigned to these boundary lines. Therefore choropleth mapping
could be defined as the kind of mapping which symbolizes, in some manner, a
qQuantitative magnitude (or z-value) that applies to a particular unit of area, usually an
administrative region.

Some restrictions have to be considered with choropleth mapping, particularly in
the type of data to yce. There is a high correlation between area and the number of items

found within the areal units. Therefore, choropleth maps created with raw values tend
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more to reflect the areal size of a data unit, and confusion between unit size and number
of items enumerated is created. To remove the effect of variations in the size of the unit,
values must be transformed into density measures, rvatios, averages or percentages. Values
cannot be absolute or raw (Cuff & Mattson, 1982; Robinson, Sale & Morrison, 1978;
Truran, 1975). The only exception is when all areal units have the same size (in the case
of population representation) or the same population (for other demographic variables

based on population).

2.2 CHOROPLETH MAPPING PROCEDURES

Different procedures are required to construct a choropleth map. Four groups of
procedures can be distinguished:

- preliminary decisions

- classification procedures

- polygon fill procedures

- finalizing procedures.

2.2.1 Preliminary Decisions

This procedure cumulates preliminary information about the desired map. This
information covers the phenomena that exercise a predominant influence on the map.
These phenomena are called "motivation factors" (DeBrommer, 1969). The motivation
factors allow the cartographer to determine the content of the map and the choice of the
expression modes. These factors are essentially the purpose or the use of the map, the
type of audience, and the levels of information quality and readability of the map.

Once it is decided to make a choropleth map, some motivation factors are already
answered. For example, it is already known that the map will be an information resource

and therefore requires features such as accuracy and functionality. The audience often
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tends to be of a scientific nature (analyst or specialist) and the size of this type of
audience tends to be smaller than the size of a general public audience. The purpose of a
choropleth map can be either of two kinds: analysis (including pattern recognition) or
illustration. The first approach implies a direct use of the map. With the second approach
the map is only a means of illustration and explanation of an author's research. However,
the "illustration" map users tend to be specialists themselves, familiar with the research
subject or field. Therefore, in terms of output controls, such a choropleth map may be
moderately to highly clear, simple, and the information quality may be of low to
moderate importance. If the choropleth map is built with an analytical purpose, the
importance of the two output controls is reversed. The design of the map emphasizes
information at th: expense of the simplicity. To obtain a generalized map clearly showing
patterns, the cartographer may prefer a compromise between information and readability,

i.e. the two are represented with an intermediate emphasis.

2.2.2 Classification Procedures

Classification procedures group the values to obtain classes. These procedures can
be omitted in the map building process if the cartographer intends to draw a choropleth
map without class intervals. In this case, each areal unit is assigned its real value rather
than a classed value.

To obtain a good data classification, the cartographer must decide on the number
of classes and the classification method. The number of classes is essentially a function
of the intended use, purpose, and type of audience of the choropleth map. A map used as
an analytical tool and by only a small group of researchers (or a single individual) may
have a greater number of classes than a map destined for a bigger audience. However, as
a general rule, the number of classes should not exceed ten (Burrough, 1986; Dickinson,
1963; Jenks, 1971). To classify a data distribution, the cartographer may agglomerate or
subdivide data (Johnston, 1968; Morrison, 1975; Robinson, Sale & Morrison, 1978). The

object of agglomeration is to find groups or clusters of similar objects (or spatial units) or
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items (Semple & Green, 1984). However, since agglomeration techniques may require
more effort and time (computing Vtime and memory space), subdivision methods may be
favoured. These methods may use mathematical functions or statistical measures, or
operate more arbitrarily or systematically. Generally, the selection of a classing method is
a function of the characteristics of the data distribution. Depending on the kind of data
distribution, one method may be more appropriate than the others.

Once a method is selected (when subdividing), classes can be generated and some
measure indices may be used to check the classification and perhaps move the class
limits slightly to get a better approximation to natural class breaks, if any (natural breaks
will be defined in Chapter 3).

2.2.3 Polygon Fill Procedures

The polygon fill procedures consider in which manner the areal units of the
choropleth map will be represent. For the polygon fill, it is imporant to use a logical
progression of shading or colours. Lower values should be represented by a lighter fill
and higher values should be represented by a darker fill. Three kinds of polygon fill are
available: pattemns, black and white (grey scale), and solid colour. Dots and lines are the
two essential features of an apparent structure fill. Lines may be parallel or crossing, with
or without an angle. There are three different arrangements of dots: square, oblique
square, and triangular (Figure 2.1). Only the triangular arrangement offers an even
distance in all directions between the dots. The quantitative progression from one
category to another is expressed by a variation in line thickness or dot size, the spacing

between the lines or dots, or a combination of the two, i.e. a change in size and spacing.



Figure 2.1 Arangements of dots
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To fill a polygon withi colour or in black and white, it is imporant to know the
three characteristics of colour: hue, chroma, and value. Hue is the obvious feature of
monochromatic light that varies with wavelength. It is used to denote various regions of
the spectrum. Chroma, or saturation, is the degree of brightness or purity of a hue.
Chroma refers to the lack of "whiteness” in a colour, or how much a colour differs from
white (or grey). Ultimately, all colours, with a chroma of 0, become grey. In general, on
a choropleth map, chroma tends to be the same for all categories. Value is the lightness
or darkness of a colour as raied on a grey scale from white to black. It is the attribute
that describes the perceived intensity of light. Value is the characteristic that changes for
each category. In black and white, the polygon fill is characterized by a series of grey
tones which give visually equal appearing steps from white to black. This is generally

called a grey scale. In colour, the principle remains the same.

2.2.4 Finalizing Procedures

These procedures are concemed with the details or elements involved to complete
a choropleth map. Some balance in the arrangement of the principal figure and of the
design elements needs to be performed. The design elements are essentially the scale, the
title, the legend, the data sources and, if necessary, the orientation. To balance all the
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elements of the map, the size, the orientation, and the location of the principal figure anci
of the design elements must be considered. The importance or the necessity of every
element on the map must also be examined, since the map must always remain as simple
and clear as possible. The legend is an important component of the map; it should be
clear and easy to understand; if possible, round numbers should be used, and all classes
represented on the map should be defined.

The four procedures described above, are all effectuated in a certain order. The
sequence goes as follows: the cartographer determines under which circumstances the
choropleth map will be employed; once the motivation factors are defined and the data
acquired, classification of the data is effectuated and classes are generated; for each
category, a certain type of polygon fill is assigned, following a logical progression;
finally, the design elements are added and the cartographer ensures that all the elements

are relatively well balanced on the choropleth map (Figure 2.2).



Figure 2.2 Schema of choropleth mapping procedures
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Figure 2.2 Continued
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CHAPTER 3: CLASSIFICATION PROCEDURES

3.1 INTRODUCTION

Classification procedures arange data into groups to produce some kind of
categorization. This grouping is based on some similarity of properties or on relationships
between objects (Semple and Green, 1984). Since data are grouped to simplify a map,
classification is often considered as a form of generalization. This generalization of data
becomes important when the principal objective of choropleth mapping is to show
pattems of distribution. Therefore, classification may be defined as the "standard
intellectual process of generalization that seeks to sort phenomena into classes in order to
bring relative order and simplicity out of the complexity of incomprehensible differences,
inconsequential differences, or the unmanageable magnitudes of information" (Robinson,
Sale & Morrison, 1978, p.152).

Fisher (1982) states the following two main reasons why data should be
classified:

- to reduce the volume of detail work required of the mapmaker;

- to improve overall comprehension through the use of fewer numbers and

distinctions.
Classification is often necessary to reduce the complexity of a map and to increase the
user’s ability to understand and assimilate the information. In addition, it can be used to
extract the general patterns of a data distribution (Caldwell, 1981; Cuenin, 1972; Jenks,
1970).

In 1973, Tobler proposed a choropleth map without classed values. The
choropleth maps showed visual intensity exactly proportional to data intensity. Initially,
the symbology on unclassed choropleth maps consisted of crossing lines. The spacing
between lines changed proportionally to data intensity. With current technology, it is
possible to represent intensity values with different tones on a grey scale (e.g. Figure

3.1). The principal reason for producing unclassed choropleth maps is that, since there are

11
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no class intervals, there is no quantization error. Accuracy is one of the major advantages
of no-class mapping.

However, this approach is controversial. Opponents of unclassed mapping argue
that the lack of classification inhibits readers' ability to recognize information. As more
informetion is represented on a map, its clarity decreases and it becomes more complex
to interpret. As a result, more effort from the map reader is required to assimilate the
information (Brassel, 1979; Caldwell, 1981; Muller, 1979). Opponents also argue that
unclassed mapping may not be a regionalization of a variable, and therefore may not
meet one principal goal of choropleth mapping, which is to show pattems of distribution.
Referring to an important characteristic of choropleth maps, generalization, Stefanovic and
Vries-Baayens (1984, p.53) state that "accuracy cannot be the primary design objective."

Proponents of unclassed mapping indicate that accuracy is definitely increased
(Muller, 1979; Tobler, 1973), and that map readers can see and reorganize the elements
of an unclassed map in a consistent and logical fashion, to extract patterns of the
distribution (Cuff, 1982; Muller, 1979). Map readers can make more accurate estimations
of mapped values since the process of grouping data can distort the information (Cuff,
1982). Another advantage of unclassed choropleth mapping, according to its proponents,
occurs at the edges of each areal unit. Choropleth maps assume homogeneity within each
areal unit and often the change from one unit to another is abrupt. With unclassed maps,
this transition may be less abrupt, and estimation of the distribution within an areal unit
may be easier, by comparing it with its neighbours. However, it may also be an error to
assume that this transition is not abrupt. A geographical feature, acting as a barrier, may
coincide with the limits of two neighbouring units. In such a case, characteristics of both
populations may be different and the change may be abrupt in reality. A final argument
for unclassed mapping, by Muller (1979), is that visual discrimination should be higher in
importance than visual identification. A choropleth map should be seen and not read,
therefore the identification of the class to which each unit belongs is irrelevant. However,

Tobler proposed no-class mapping with the idea of inversion: a map user should be able
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to find the exact numerical value for any areal unit simply by extracting it from the map.
Under such conditions, the purpose of the map is to be both read and seen. Following the
inversion concept of Tobler (1973), a numerical table seems more appropriate and
centainly involves less work for the user. The choropleth map is not an illustrated table,
but a means to show partems of distribution.

Whether or not unclassed choropleth maps should be used is still a concem and it
does not seem that a solution to this problem has been found. While some cartographers
are trying to find techniques to define optimal class limits for a data distribution, others
believe that unclassed maps produce results as good as, if not berter than, classed maps.

In the context of this research, in order to schematize choropleth mapping
procedures for a general audience, classed choropleth mapping may appear to be the
appropriate choice. For a more specialized audience, the choice between classed and
unclassed mapping may remain in the hands of the cartographer or the specifications of
the user. For the purpose of pattem recognition, a choropleth map with classes may be
more suitable, while for detailed analysis or to locate data, unclassed mapping may be a
good solution. Since choropleth mapping is a generalizaticn of data which can vary in

degree, the map user should not face a map that is too complex.

3.1.1 Class Rules

Choropleth maps should give a good representation of the characteristics of the
data distribution and show good pattems of distribution. To be cartographically sound,
choropleth maps should follow some criteria or rules in the classification process

(Coulson, 1987; Davis, 1974; Fisher, 1982; Jenks & Coulson, 1963):

the class intervals should cover the full range of the data;

- no value should occur in more than one class, ie., the classes should not
intersect;

- no vacant class should appear;

- there should be minimum variation within classes while there should be
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maximum variation between classes.
Therefore, these criteria may be used to judge the quality of the class limits of a

data distribution.

3.1.2 Number of Classes
Studies on perception in mapping have demonstrated that map readers usually

cannot distinguish more than nine or ten different pattems on a map (Dickinson, 1963;
Jenks, 1971). In general, cartographers agree that choropleth maps should not have more
than eight to ten classes. Meanwhile, a map with only two classes may not provide
enough information to make worthwhile analysis. Therefore, it is possible to select
between five and ten classes as an appropriate number of categories for a choropleth map
(Burrough, 1986).

Although this procedure is of great importance, there is no established approach
for determining the most appropriate number of classes. Clustering techniques may be one
solution. A cluster of points identifies a subset of items which are morc similar to each
other than to other ijtems outside the cluster. The similarity of any items with respect to
the variables involved is measured by the distance between these points. Following the
clustering principle, Monmonier (1973) employs a method using eigenvalues to find
natural clusters in a data distribution in order to determine the most appropriate number
of classes. However, this technique requires a substantial amount of computer time and
memory. Davis (1974) and Monkhouse and Wilkinson (1971) discuss an objective
approach for determining a first approximation for the number of classes that should be
chosen. It appears that the maximum number of classes (c) should not exceed five times
the logarithm of the number of observations (n):

¢ = S+log,(n) 3.1

At times, a large number of classes may introduce the problem of empty

categories. Gaps between values may also increase the risk of having empty classes in a

data classification.
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In general, the intended use of the map, and implicitly the type of audience,
determines the choice of the number of classes. A choropleth map, created for an
illustrative purpose and for a relatively general audience, may require & minimum number
of categories. This type of map needs to be simple and clear. If the intended use of the
map is for analysis (specialist users), the number of classes may be increased. However,
as a general rule, this value may vary between S and 10. If the analysis is strictly pattem
recognition, the number of classes may be lower. Ultimately, the final decision of

choosing the number of categories still remains with the cartographer.

3.2 CLASSIFICATION METHODS AND CLASS EVALUATION
3.2.1 Types of Data Distributions
Different types of data distributions exist. It is important to know how to recognize
them and to be able to find the most appropriate classing method. Each type of distribution
is characterized by a particular shape, and this shape can be described in terms of skewness
and kurtosis indices. Skewness "measures the extent to which the bulk of the values in a
distribution are concentrated to one side or the other of the mean" (Ebdon, 1985, p.30).
Skewness is calculated as follows:
Z (x-%)
Skewness = ""_n"(;;"' v 3.2)
where X =distribution mean,
n =number of observations,
O =standard deviation,
x=value at i (Ebdon,
1985).
When the distribution is perfectly symmetrical around the mean, the skewness is
zero (Figure 3.2.a). A distribution is skewed when the peak or mode of the frequency
distribution does not correspond to the mean. The bulk of the distribution is on one side or

the other of the mean. If most of the values are less than the mean, the distribution is
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positively skewed (Figure 3.2.b). The skewness is greater than zero. If there are more
values greater than the mean, the distribution is negatively skewed and the skewness is
negative (Figure 3.2.c).

Kurtosis measures the extent to which values are concentrated in one part of a
frequency distribution — it refers to the notion of peakedness in a frequency distribution,

Kurtosis is calculated as follows:

§ (x-R)"
Kurtosis = n-g* (3-3)

Frequency distributions may also be very peaked or very flat. Generally, a kurtosis
of 3 represents a normal distribution. If the kurtosis is above 3 the distribution is
leptokurtic; there is a major peak (Figure 3.2.d). A distribution is leptokurtic if one class, or
a group of adjacent classes, in a frequency distribution contains a large proportion of all the
values in the distribution. A platokurtic distribution, characterized by a kurtosis below three,
is a flat distribution (Figure 3.2.e). Each class contains approximately the same proportion
of all the values. However, flat distributions are almost never encountered since most
geographical variables are positively skewed and leptokurtic (Ebdon, 198S; Silk, 1979).

The previous types of distributions are described in a unimodal form (single peak
on a frequency distribution histogram). However, often a frequency distribution has more
than one peak and is multimodal (Figure 3.2.f). An abrupt change of gradient in a
frequency distribution is characteristic of multimodal distributions. The value where this
abrupt change occurs is often called a natural break. Since the groups of values on each
side of a natural break tend to represent values with most similarities, natural breaks are

often used as class limits.
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3.2.2 Classification Methods
Evans (1977) mentions sixteen classing systems. These may be categorized into four

groups: exogenous, arbitrary, idiographic, and serial. Briefly, their characteristics are as
follows.

Exogenous methods define fixed class intervals that "are fixed according to
threshold values that are relevant to, but not derived from, the data set under study”
(Burrough, 1986, p.137). This type of method can be useful in map series.

Arbitrary methods emphasize simple class limits, which are easily understood and
have no reference to the data distribution. The class limits are usually round numbers and
often the intervals are regularly spaced.

Idiographic techniques choose class limits with respect to specific characteristics of
the data set. These systems usually produce irregular class limits. They include multimodal,
multi-step, contiguity-biased, correlation-biased, quantiles, and nested-means methods.

Serial techniques define class intervals by the use of a mathematical function. The
class limits are determined in relation to statistics for the overall frequency distribution (e.g.
median, mean, standard deviation, and range), but not to individual details of the
distribution. Class limits are generally regularly spaced. Normal percentiles, standard
deviations, equal arithmetic intervals with no variation in class width, equal intervals on a
reciprocal scale or on trigonometric scales, geometric progressions, arithmetic progressions
and curvilinear progressions, are all serial methods.

Since neither exogenous nor arbitrary methods consider the distribution of data,
idiographic and serial methods may be better altematives (Evans, 1977). Eight classing
systems are compared in this research. They have been selected because of their popularity
within the field of cartography or on different authors’ recommendations. Three systems are
idiographic: quantiles, nested-means, and Jenks’ "optimal” method. The other methods are
serial:  standard deviations, arithmetic progressions, geometric progressions, reciprocal
progressions, and equal steps.

There are two additional classing methods, not mentioned by Evans, which consider
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geographical area when defining class limits: the ‘clinographic curve and the cumulative
frequency curve. Both methods require visual examination of a graph. The Y-axis is scaled
arithmetically and represents the values of data. The X-axis shows the cumulative areas.
For the clinographic curve, the X-axis is scaled in percent of total area, with a square root
scale from O to 100% (Robinson, Sale, & Morrison, 1978). The X-axis is scaled
arithmetically for the cumulativé frequency curve. The critical points are the points where
the slope of the curve changes. In both cases, class limits correspond to the critical points.
However, these two systems rely heavily on the intervention of the cartographer since
critical points are located through a visual inspection of a curve, and this is why they are

not examined in this research.

3.2.2.1 Quantiles
The quantiles method divides data into equal frequencies and does not consider
individual values. To define class limits the data are first sorted. The total number of areal
units is then divided by the number of classes desired, and the result gives the freducncy
that should appear in each class. When the total frequency cannot be evenly divided by the
number of classes, the remainder are distributed among the lower categories (Chang, 1974).
The quantiles method may be preferred with data which cannot be easily classified or when
the type of frequency distribution is not evident (Davis, 1974). This method ensures that all
classes are approximately equal in importance (Davis, 1974; Evans, 1977).
The following notation is used in the discussion below:
n =number of observations,
¢ =number of classes,
f=number of units in a class i, i=1,2,...c,
s =remainder of n+c
U=upper class limit for class i, i=1,2,...c,
L=lower class limit for class i, i=1,2,...c,
x=value of data item j, j=1,2,...n,

M =maximum of the frequency distribution,
m =minimum of the frequency distribution.
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The class limits for the quantiles method are defined as follows:

. {m'r(-g-)u for i = 1,2,...8 (3.4
. T for i = s+l,....¢

where INT is a function that retums the largest integer less than or equal to the

argument,

U= x, where j = q}_&l f,

3.2.2.2 Equal Steps
The equal steps or equal intervals method employs data range. The data are divided

into equal classes and class limits are determined with this formula:
r=Mm (3.9

where r=range of the frequency distribution,
W=class width (constant).

Although class limits are easy to calculate this system does not provide great
correspondence between classing accuracy and s':ewness (Davis, 1974; Smith, 1986). Equal

intervals may be more appropriate for fiat frequency distributions.

3.2.2.3 Arithmetic, Geometric, and Reciprocal Progressions

For the three following methods, arithmetic, geometric and reciprocal progressions,
a mathematical relation between class limits is followed. All three techniques initially
calculate the rate of increase of classes frequencies and use it to determine class limits.
These methods may be useful for skewed distributions, since they find intervals which
become systematically smaller toward either the uppe: or lower end of the scale. They try

“to preserve the regularity of intervals as much as possible and at the same time they try to
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avoid a too heavy clustering of data in individual classes” (Stefanovic & Vries-Baayens,
1984, p.5S). Truran (1975) states that arithmetic progressions can be useful when the range

of values is not great. Arithmetic progressions determine class limits as follows:

Z= (3.6)

Z is interpreted as the rate of increase of class frequencies,
L=m
L=L.+({-2) for i=2,3,...c.
Geometric progressions may be more useful because they allow a wider range of
values to be represented and at the same time give greater consideration to the lower values

(Truran, 1975).

z = JogMog(m) 3.7

Uz 10t -2 for i=1,2,...(c-1)
U=M

For very positively skewed data distributions, reciprocal progressions may be a
good altemmative. This technique defines narrow class limits at the lower end of the range.
However, Davis (1974) recommends that reciprocal progresSions be used only with

continuous data.

D S W
7= _m_c__M__ (3.8)
Us —1— for i=1,2,..(c-1)

62
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3.2.2.4 Nested-Means and Standard Deviations

Nested-means and standard deviations methods should be employed with normally
distributed sets (Paslawski, 1984; Robinson, Sale & Morrison, 1978; Chang, 1974). Both
approaches are based on statistical properties of the data (i.e. the mean or the standard
deviation). With the nested-means system, the mean of the distribution is used as a point of
division to give two classes. Each of these classes may be subdivided at its own mean, and
the process may be pursued with these new means. Therefore, the number of classes always
equals 2%, where k is the number of levels of subdivision.

Standard deviations on the other hand define class width as fractional or integral
multiples of the standard deviation. Class intervals are above and below the mean.

Smith (1986) and Stefanovic & Vries-Baayens (1984) consider these two methods
unreliable for any type of distribution: the class intervals they produce can be regular or
irregular, but this is unpredictable, and the relationship with skewness and kurtosis is not

always strong.

3.2.2.5 "Optimal"

The "optimal” method (Jenks, 1977) selects class limits on the basis of variance or
of absolute deviations, after a certain number of iterations. A first set of class intervals is
defined and an objective function — either the pooled within-group sum of squares

(PWGSS) or absolute deviations from the class mean (DCM) — is calculated:

DeM=£ £ (x| (3.9)
“ where c=number of classes,
n=number of observations,
X=mean of class j.

PWGSS=E I (x-X) (3.10)

ol Il
¥ e

An observation at the edge of one class is moved to an adjacent class and the new PWGSS

or DCM is calculated. If this transfer reduces the objective function, the observation is left



24
in its new class. Otherwise, the observation is moved back to its original class. This
process is repeated until the objective function is minimized. Since the "optimal" method by
DCM gives similar results to the PWGSS method, comments are made only for the latter.
Smith (1986), suggests that this technique gives the best results. A weakness of the method,
as originally developed by Jenks, is that class limits are not necessarily contiguous. This
contravenes cartographic conventions and can become a source of confusion when the map
user refers to the legend or simply tries to understand the map. However, this can be

corrected very easily by finding an intermediate value between given limits.

3.23 Evaluation Measures

To analyze results of the different classing techniques described above, three
measure indices are employed: Sum of Differences (Jenks & Coulson, 1963), Tabular
Accuracy Index (Jenks & Caspall, 1971) and Goodness of Variance Fit (Smith, 1986).

The Sum of Differences index compares the actual weighted range of each class to

a theoretical one (median).

(.o
Sum of Differences= & (X - R +m1) G.11)

where c=number of classes,

Ri=range of class i,

X=mean of class i,

m=minimum of class i.
It is assumed that class limits should correspond to natural class breaks, and that the data
distribution for each class adopts approximately a normal shape. The Sum of Differences
index has a major weakness. Since the calculation of this index implies divisions, when the
denominator equals zero (e.g. when a class mean equals zero), the equation bccomes
meaningless.

The Tabular Accuracy Index (TAI) is derived from another index, the Tabular

Error. The Tabular Error is the "discrepancy between the category mean represented

cartographically and the value for an areal unit to be found by consulting a numerical, or
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tabular, representation of the data" (Monmonier, 1982, p.17). To calculate the Tabular
Accuracy index, the Tabular Error index is substracted from 1.0 (the maximum result), and
the values of the deviations from the class mean (DCM) and of the deviations from the

array mean (DAM) are found, -

TAI=1- D—%— n (3.12)
D where DAM= £ [x-% |

n=number of observations,
X=array mean.

DCM=% I |xX |

jol  im)

c=number ochlasses.
X=mean of class j.

The Goodness of Variance Fit (GVF) uses squared deviations rather than simple absolute
deviations. Cuulson (1987) refers to it as the best test to compare sets of classes and to
determine which set divides a distribution most adequately. The GVF index can use either a
base of 1 or a base of 100. The GVF index divides the "Sum of Squares Within" by the
"Sum of Squares Total" to measure the degree of classing accuracy. The "Sum of Squares
Within" (or squared deviations from the class mean, SDCM) sums the squared deviations of
class data values from the mean of each class, and then it sums these values over all
classes. The "Sum of Squares Total" (or squared deviations from the array mean, SDAM)
sums the squared deviations of individual data values from the overall mean of the data set.

Therefore, the formula for the Goodness of Variance Fit index is as follows:

GVF = (1 -g-%%MM-).loo ., (3.13)
where SDAM= 'le (x,-X)*

SDCM=E £ (x-X)?

j=1 i=]
i)

Both TAI and GVF indices operate in a similar way. They both also have a
weakness. Unless there is a verification procedure, they do not detect empty classes and

still may produce seemingly reasonable results.
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3.3 CLASSIFICATION PROCEDURES AND THE COMPUTER

This research looks at the relationship between frequency distribution types and
classing methods. It is assumed that such a relation exists, and that ideally a computer
routine, which objectively selects the appropriate classing method, can be generated. Such a
computer routine would require only a minimum intervention of a user and would produce
cartographically sound classifications.

Once the decision is made whether or not to classify, the classification process is
straightforward. While most of the procedures may be automated, the choice of the number
of classes still needs the intervention of the cartographer. A clustering technique may be
employed to determine the number of classes. However, the intended use of the map and
the type of audience are ignored in the process, and these are two significant variables to
consider when choosing the number of classes.

Since some classing methods may operate more efficiently with particular types of
distributions, the characteristics of the frequency distribution must be known. Skewness and
kurtosis can give this kind of information and a computer routine must calculate their
value. With these two indices, it is possible to know approximately what shape the
frequency distribution has: normal, positively or negatively skewed, peaked or flat. To
verify if a frequency distribution is reasonably normal, the Kolmogorov-Smimov test can be
used (Barber, 1988). When the shape of the frequency distribution is known, a classing
method can be selected to define class limits. Different classing methods would be available
in this computer routine. Cartographic rules must be followed and it must be ensured that
there are no empty or overlapping classes, and that all data are covered by the
classification.

To verify if the class limits are a good approximation of the natural breaks in a
frequency distribution, measure indices are calculated. The computer routine can easily
include this calculation. When the measure index has a low value, the computer routine (or

the cartographer) may either modify the class limits or use another classing method.
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In the scenario above, the assumption is made that the essential decisions on data

classification and design are formalized to the point that they can be automated. The

cartographer is still supervising the process and can override the decision of the computer.

The cartographer may be guided by computer-generated statistics such as the measure
indices described earlier, but is still the one making the final decision.

The next chapter documents a series of experiments, to study the outcomes of

applying the classification procedures and measure indices described above, to realistic data.



CHAPTER 4: EXPERIMENT PLAN
4.1 OBJECTIVE OF THE RESEARCH

The objective of this thesis is ultimately to identify regularities in choropleth map
design decisions. These regularities would lead to the creation of a model which could be
incorporated in an automated system producing cartographically sound maps. In order to
generate such a choropleth mapping mo&el and programme, it is necessary to examine
thoroughly the four major mapping procedures: preliminary decisions, classification
procedures, polygon fill procedures, and finalizing procedures. This thesis concentrates on
the classification procedures. An attempt is made to find a relationship between classing
methods and types of frequency distributions. Therefore, this research attempts to determine
if one classing method can be more appropriate than another for a particular type of
frequency distribution. If this idea tested true, it would mean that the selection of a classing
method could be done objectively, and therefore automatically. In the context of a
classification routine, less subjectivity (less intervention from the user) is preferred to avoid
cartographic errors on the chorobleth map. This research also determines if one method can
be better than any other for any type of distribution. Therefore, tests are conducted with
eight classing methods, relatively efficient or popular among cartographers, on different

types of frequency distributions.

4.2 DATA ACQUISITION

The City of Edmonton is used as an example of how the classification procedures
can be applied. Edmonton is chosen because of the author’s familiarity with the city. The
125 census tracts in Edmonton were digitized from a 1981 UTM base map. Different types
of demographic information were gathered from Statistics Canada (1981) for each of

Edmonton’s census tracts. The variables chosen cover a variety of distributions, and the
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problems involved in the construction of choropleth maps. Table 4.1 gives a list of the
thiny-five variables present in the data base and they are represented graphically in the
Appendix A. Most of the variables are expressed as a percentage of the total population of
each areal unit, since choropleth mapping requires that the values be spatially intensive.

) X '
X,= — 100 @.1)
P

where x=value at i, p=population of observation i. Three variables are not expressed as a
percentage: "Density,” "Average Income Male" and "Average Income Female."

Table 4.2 shows the skewness and kurtosis for each variable. According to the
skewness index, nine variables, with a skewness lower than 0.20, can be characterized as
"normal” or at least close to normal. They are "Density," "Catholic,” "Bom in Canada,”
"Male 0-14," "Male 15-19," "Male 35-S4," "Female 0-14," "Female 35-54," and "Female
55-64." These variables have varied kurtoses (leptokurtic, platokurtic or normal). Only the
variables "Male 15-19" and "Female 35-S4" have normal skewness and normal kurtosis.
When skewed, most of the variables are positively skewed. With a skewness index less
than -2, only one variable, "Female, Total," could be considered as definitely negatively
skewed. One variable, "Grades 9-13," is characterized by a relatively flat frequency
distribution. Therefore the variables sampled exhibit these different types of shape: normal

or relatively normal, positively and negatively skewed, relatively peaked or flat.



Table 4.1 List of variables

30

1 Poﬁu{adon density per square kilometre

2 Religion Catholic

3 Religion Protestant

4 Religion Eastem Orthodox

3 Place of Birth Bom in Canada

6 Place of Birth Bom in Alberta

7 Place of Birth Bom outside Canada

8 Place of Birth Bom in Canada, outside Alberta ¥
9 Scholarity Less than Grade 9

10 Scholarity Grades 9-13 (with and without secondary

certificate) ¢

11 Scholarity University (with and without degree) ¥
12 Average Income Male

13 Avemge Income Female

14 Male Population Total

15 Male Population 0-14 years ¥

16 Male Population 15-19 years

17 Male Population 20-24 years

18 Male Population 25-34 years

19 Male Population 35-54 years *
20 Male Population §5-64 years
21 Male Population 65 years and over *
22 Female Population Total
23 Female Population 0-14 years *
24 Female Population 15-19 years
25 Female Population 20-24 years
26 Female Population 25-34 years
27 Female Population 35-54 years *
28 Female Population 55-64 years

29 Female Population
30 Marital Status

31 Marital Status

32 Mother Tongue
33 Mother Tongue
34 Mother Tongue
35 Mother Tongue

65 years and over *
Single (15 years and over)
Married

English

French

Ukrainian

German

¥ Variable created by combination of other variables



Table 4.2: Skewness and Kurtosis for each variable

Variable

(1) Density

(2) Catholic

(3) Protestant

(4) Orthodox

(5) Bom in Canada

(6) Bom in Alberta

(7) Bom outside Canada

(8) Bom in Canada, outside
Alberta

(9) Less than Grade 9

(10) Grades 9-13

(11) University

(12) Average Income, Male

(13) Average Income, Female

(14) Male, Total

(18) Male, 0-14

(16) Male, 15-19

(17) Male, 20-24

(18) Male, 25-34

(19) Male, 35-54

(20) Male, 55-64

(21) Male, 65 and over

(22) Female, Total

(23) Female, 0-14

(24) Female, 15-19

(25) Female, 20-24

(26) Female, 25-34

(27) Female, 35-54

(28) Female, 55-64

(29) Female, 65 and over

(30) Single

(31) Married

(32) English

(33) French

(34) Ukrainian

(35) German

Skewness

16
-00
-.63
1.07
-16
-78
33

1.75
1,22
-40
1.47
1.74
94
2.86
08
-.03
74
46
07
52
a2
-2.31
05
2.73
.89
.63
14
20
1.02
.26
-23
-.66
1.89
1.31
1.97

Kurtosis
3.76
3.52
3.03
3.97
5.65
4.22
6.47
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3.01
2.25
4.14
351
324
5.21
9.75
4.43
8.11
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4.3 RESEARCH METHODOLOGY

In the context of this research, the first step after data acquisition is to choose an
appropriate number of classes. For 125 observations, the formula S-log(n) (Equation 3.1)
indicates that ten classes should not be exceeded. Therefore, nine class limits were
determined by each method, for each variable. This limit may seem too large, but it helps
to test the robustmess of the classing systems. Since a minimum of five classes is often
desirable, each method is also used to define four class limits for each variable.

The next step is to select classing methods. Eight classing systems are compared in
this research: quantiles, equal steps, arithmetic progressions, geometric progressions,
reciprocal progressions, nested-means, standard deviations and Jenks' "optimal" method.
Fortran routines were written for each method to find a fixed number of class limits. These
routines define class limits for thirty-five variables, and give the opportunity to test the
eight classing methods. The classing routines are designed to ensure that classes do not
overlap, and that they cover the full range of the data. Another Fortran routine is developed
to measure how well class limits minimize variation within classes and maximize variation
between classes, with three different indices: the Sum of Differences, the Tabular Accuracy
Index, and the Goodness of Variance Fit. These three indices are calculated to measure the
accuracy of each method and to determine the most appropriate classing system for each
type of data distribution. The indices for each method are compared for a variable at a
time. This indicates which method operates most efficiently for the type of frequency
distribution examined. TAI and GVF have a common base of 1 and 100 for all variables.
Therefore, the values of these two indices are compared across all the variables, one
method at a time. This information determines which type of frequency distribution
responds best with each method. The Sum of Differences index cannot be compared across
variables, since it does not have a fixed base like the TAI or the GVF (e.g. base of 1 or
100). To determine to which type of frequency distribution the variable corresponds,

histograms are plotted. Skewness and kurtosis indices are also calculated.
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Ten vanables are selected for a visual inspection of the different classifications.
They reflect the different types of frequency distributions. These variables are: "Catholic,"
"Protestant,” "Bom in Canada, outside Alberta," "Less than Grade 9," "Grades 9-13,"
"University," "Male 0-14," "Female, Total," "Female 35-54," and "Single." The graphic
representation of these variables includes the location of class limits and the area covered
on the map by each class. A Postscript routine is used to plot a choropleth map of
Edmonton, using the classes determined by a particular classing method. All this
information is compiled and compared, and the efficiency of the different classing systems

is discussed in the next chapter.



CHAPTER §: EVALUATION OF CLASSIFICATION METHODS

In this chapter, the eight classing methods — quantiles, equal steps, arithmetic
progressions, geometric progressions, reciprocal progressions, nested-means, standard
deviations, and Jenks' "optimal" system — are tested with the thirty-five variables
introduced in the last chapter. Differences for classifications with two different numbers of
classes (five and ten) only seem to occur in the number of empty classes and the value of
the TAI and GVF indices. Since class ranges are greater when a five class system is used,
it is normal to observe fewer empty categories. A five class system offers a wider range of
values of measure indices and these values seem to be lower than with a ten class system.

Since most of the classing methods do not consider the characteristics of the data
distribution, most of the class limits they define may not minimize variation within classes
and maximize variation between classes. The majority of the classing systems use a
mathematical or statistical function. It may be possible to incorporate natural breaks in a
classification defined by one of these systems. However, it would become hard to recognize
which mathematical function is used. Furthermore, for the purpose of this study, class
limits must remain intact. Nevertheless, to examine the different classifications visually, ten
variables were selected. The eight classing systems were applied on each variable and
histograms were created. Each histogram revealed the class limits, and the area covered on
the map by each class. To visualize the way the different classing systems operate, each
method is illustrated in this chapter with the variable that generated the best GVF. It
includes a rank-size graph with the class limits (horizontal lines), and three other graphs:
one showing the width of each class, another one showing the size (or frequency) of each
class, and a last one showing the area covered on the map by each class. Area covered on
the map is not really an issue in this study; however, it was of interest to observe this
variable. To see if "good" classifications, according to the different measure indices, result
in good choropleth maps, the best classification for each method was plotted as a

choropleth map.

34
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§.1 QUANTILES

As indicated earlier, quantiles never show empty classes. Quantiles also ensure the
maximization of information-content of a statistical map (Stegenav& Csillag, 1987), since
all classes are equal in frequencies (i.e. one class does not contain too much information, at
the expense of the others).

According to the TAI and GVF measure indices, the reliability of the quantiles
method may vary. The average GVF is relatively high: 91.923 for 10 classes and 82.463
for 5 classes. However, the ranges of the two measure indices are quite wide, so this
method does not work well for all types of frequency distributions. It appears that quantiles
should not be used with very skewed and, more importantly, highly peaked data
distributions. Variables With the lowest TAI and GVF indices (i.e. "Canadian non-Albertan,"
"Male Total," "Female Total," "Female 15-19," and "French") show skewed (skewness
greater than 1.5 or less than -2) and peaked (kurtosis greater than 9) data distributions.
Conversely, the quantiles system operates most efficiently with a relatively normal
(skewness=0.20) and platokurtic (kurtosis=2.25) frequency distribution: "Female 55-64"
(Figure 5.1). Since classes have approximately equal frequencies, the graph of the area
covered on the map by each class usually does not show major differences, unless the areal
units vary considerably in size. Therefore, the resulting map should be relatively well

areally balanced (Figure 5.2).
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EDMONTON, FEMALE POPULATION
BETWEEN §5 AND 64 YEARS OLD (in %)

O 000179 W 440572
180341 W 573100
W 342439 [0 Novalve

Source: Statistics Canada 1981

4 Km

Figure 52 Chorapleth map with classification defined by the quantiles system
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5.2 EQUAL STEPS

The equal steps technique has the drawback of allowing empty classes. When the
data are divided into 10 categories, 17 variables show empty classes. Only 3 variables have
this problem with § classes. A characteristic that emerges from these particular variables is
that they tend to show a peaked frequency distribution. The degree of skewness does not
appear to be a factor in the generation of empty classes.

In spite of the presence of empty classes, the equal steps method seems to give
relatively good results, according to both GVF and TAI indices. With 10 classes,
approximately 65% of the variables sampled get a TAI greater than 0.8. With § classes,
this value is never attained. In both cases however, most of the variables get GVF values
higher than 8S5. This method shows one of the smallest ranges in GVF indices for both §
and 10 classes, which suggests that for such a sample the equal steps system appears to bz
relatively reliable. This observation appears to be in disagreement with Smith (1986), who
considers the equal steps system unreliable because of its "little correspondence between
classing accuracy and skewness" (Smith, 1986, p.64). The direction the data distribution
takes, that is, normal, positively or negatively skewed, is not very significant. However,
within the limits of the observed sample of variables, the best results appear with relatively
normal distributions. The equal steps technique also seems to operate less effectively as the
peakness of the distribution increases. This classing method is definitely more appropriate
for platokurtic distributions (at best, flat distributions), and this agrees with Evans (1977).
For example, the equal steps system gives the best classification with "Female 55-64,"
which is relatively normal and platokurtic (Figure 5.3). Both quantiles and equal steps
methods operate very well with this variable characterized by a normal and platokurtic
distribution. Therefore, it is not surprising that the resulting maps (Figures 5.2, 5.4) are

quite similar. The main difference occurs with the central class.
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EDMONTON, FEMALE POPULATION
BETWEEN §5 AND 84 YEARS OLD (in %)

000-165 W 4.97-661
166330 W ss2-1000
B 331-498 [J Novalue

1 0 1 2 3 4Km

Sourco: Statistics Canada 1981

Figuro 5.4 Choropleth map with classification dafined by the equal stops systom
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5.3 ARITHMETIC PROGRESSIONS

As with the preceding technique, the arithmetic progressions system has the
drawback of allowing empty classes (22 with 10 categories; 8 with § categories). For the
- variables sampled, this method operates less effectively with a large number of classes.
More than three empty classes can often be observed. A characteristic of these distributions
is that they usually are leptokurtic. As with the equal steps technique, the direction of the
skew does not seem to matter in the generation of unfilled categories.

In terms of GVF and TAI indices, arithmetic progressions could be considered as
giving relatively good classifications. Most of the distributions have GVF indices greater
than 85 and those indices show relatively small ranges for both § and 10 categories. The
variables with the poorest classifications, according to the two indices, usually show peaked
data distributions. Therefore, the arithmetic progressions method is least suitable for
leptokurtic distributions. However, it does not seem possible to determine the kind of
frequency distribution shape for which this system is most appropriate. The variables
showing the highest GVF results with arithmetic progressions present ail types of skews
(positive, negative, normal) and kurtoses. Truran (1975) recommends this technique for
sinall range distributions, and indeed, most of the variables with the highest GVF index
show a range of values smaller than 20%. However, since variables with lower results do
not necessarily have a wide roage of values, arithmetic progressions should not be
systematically used with data distributions offering a small range of values. Figure 5.5
shows that arithmetic progressions tend to have narrow classes towards the lower erd of the

frequency distribution, Therefore, the resulting map shows less of the light tones.
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EDMONTON, FEMALE POPULATION
BETWEEN 25 AND 3¢ YEARS OLD (in %)

(] 000-492 W 9071238
493 -658 W 12391700
B 659-906 [J Novawe

Source: Siatistics Canaca 1981

Figure 5.6 Choroplath map with classification dofined by the arithmetic progressions systom



S.4 GEOMETRIC PROGRESSIONS

Since the logarithm of zero is undefined, no classification can be achieved by the
geometric pmgress{ons system when the minimum value of a data distribution equals zero.
Therefore, variables with a minimum valuc of zero have been ignored, and only 19
varigbles are classed by geometric progressions, These geometrically classified variables
are: "Density,” "Catholic," "Protestant," "qu in Canada," "Bom in Alberta,” "Grades 9-
13," "Average Income, Male," "Average Income, Female," "Male, Total," "Male 0-14,"
"Male 20-24," "Male 25-34," "Male 55-64," "Female, Total," "Female 0-14," "Female 25-
34," "Single," "Married," "English." Geometric progressions can produce empty categories.
This system seems particularly sensitive to severely leptokurtic distributions, since as many
as 7 or 8 empty classes may be observed. This technique also does not operate effectively
with negatively skewed data distributions. This is obvious, since the equation employed is
supposed to be used with positively skewed distributions.

Geometric progressions show results comparable to other methods. The average
GVF value is close to the highest ones observed with other techniques (83.76 with §
classes; 94.284 with 10 classes). This system operates more «ffzctively for positively
skewed data distributions. Figure 5.7 gives an example of a relatively cood classification
built with the geometric progressions systems. As expected, this system ogerates quite
similarly to the arithmetic progressions method and the maps for both systems differ only
slightly. However, a relatively wide range of values within the data distribution can lead to
a relatively good classification even if the skew is not positive. Therefore, regardless of the
skew, if the frequency distribution is very peaked, this system may not work as well as

with a relatively normal distribution.
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EDMONTON, FEMALE POPULATION
BETWEEN 25 AND 34 YEARS OLD (in %)

J ooo541 W 946125
sd2-715 W 1251-17.00
W 716945 [J Novalue

1 0 1 2 3 4Km

Source: Statistics Canada 1981

Figure 5.8 Choroploth map with classification defined by the geometric progressions systom
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§.8 RECIPROCAL PROGRESSIONS

Since the formula for reciprocal progressions implies the division of one by the
minimum value of a distribution, when this minimum is zero, no results can be obtained.
Therefore, class limits are calculated for only nineteers variables (named in the preceding
section). The reciprocal method may also show empty classes, and these tend to occur
when a data distribution is relatively peaked.

The reciprocal method may seem unreliable on the basis of GVF values. These
values range from 44.653 to 92.342 with S classes and from 64.811 to 97.933 with 10
classes ("Average Income Female" (lowest); "Female 25-34" (highest)), and the TAI can be
as low as .307 ("Average Income Female"). Therefore, even with a GVF index average of
90.194 with 10 classes, reciprocal progressions do not give the best overall classing results.
The variables with the worst classing results tend to have peaked data distributions. The
variable with the best classification, "Female 25-34," is positively skewed and relatively flat
(Figure 5.9). This technique shows a definite progression in the definition of class limits,
and higher classes have high frequencies. Therefore, it is not surprising to observe very
dark maps, when classed with reciprocal progressions (Figure 5.10). Surprisingly, reciprocal
progressions tend to work with negatively skewed distributions as well as with positively
skewed ones. Davis (1974) and Paslawski (1984) recommended that this system be
employed with very large positively skewed data distributions, but based on the results on

this research, it is difficult to agree with these theoretical statements.
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EDMONTON, FEMALE POPULATION
BETWEEN 25 AND 3¢ YEARS OLD (in %)

O 000-482 W 7.47-1028
403-585 W 1029-17.00
W 586746 [ Novalue

Source: Statistics Canada 1981

Figure 5.10 Chorapleth map with classification defined by the reciprocal progressions system
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8.6 NESTED-MEANS

The nested-means technique has a very low risk of generating empty classes, unless
the number of classes is too large for the data distribution. None of the variables sampled
showed empty categories with a nested-means classification. Since this method always
employs the means of a set of data in a distribution, there is at least one value on each side
of the mean, unless there is only one value in this data set. As Chang (1974) and Paslawski
(1984) indicated, and according to GVF and TAI indices, nested-means appear to be more
appropriate to data distributions which are close to normal, than to skewed or leptokurtic
distributions. Most of the variables show GVF indices higher than 80, and variables with
the highest scores usually show normal or approximately normal data distributions. For
example, the best classification is given for a normal and peaked distribution: "Male 35-S4"
(Figure S.11). Because of the way this technique operates (it employs means), classes tend
not to differ significantly in size and tend to cover approximately the same amount of
surface on the map (Figure 5.12). Finally, a marked peak does not seem to have a critical

influence.

5.7 STANDARD DEVIATIONS

The standard deviations technique may create empty classes for a data distribution.
Unfilled categories tend to occur with leptokurtic distributions. Nevertheless, the standard
deviations technique does have its advantages. For more than half of the variables, this
technique proposed classes with a GVF index superior to 85. However, this index can reach
values as low as 56.747 (S classes) or 73.367 (10 classes), both with the "Average Income
Female" variable. Consequently, this technique gets average GVF values of 84.281 and 91.2
with 5 and 10 categories respectively. It may not be possible to determine what kind of

data distribution is less appropriate for a standard deviations classification, because of the
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EDMONTON, MALE POPULATION
BETWEEN 35 AND 54 YEARS OLD (in %)

L] o00-06¢ W 13021800

8651064 [J Novalue

B 10651301 1 0 1 2 3 4Km

Source: Statistics Canada 1981

Figure 5.12 Chorapieth map with classification defined by the nested-means system
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small number of lower GVF or TAI indices. It still appears that this technique is more
suited for approximately normal distributions (e.g. "Male 35-54," Figure 5.13).

5.8 "OPTIMAL"

The "optimal” method, either using variance or absolute deviations, may give the
best classifications, according to the indices. In most cases, GVF indices are superior to 90,
and in the case of a 10-class map, most of the GVF values are greater than 97. Since they
base their class limit determination on absolute deviations or on variance, both types of
"optimal” methods almost always show the best results according to the TAI and the GVF
indices; TAI is calculated from absolute deviations and GVF is derived from variances.
This explains why TAI generally produces higher values for the "optimal" method from
absolute deviations, while GVF shows higher values for the "optimal" routine from
variances. This method becomes inefficient when a data distribution seems to be unimodal,
since it tries to identify natural groups to find class limits. In the context of this research, a
GVF index less than 97 with 10 classes, or less than 80 with § classes, indicates a
problem: in such cases, the distribution may be unimodal or only have two slight modes.
When this occurs (with variables such as "Male 0-14," "Male 15-19" or "Female 0-14"), the
GVF index can be as low as 18 or 19, and such values considerably lower the GVF
average for this method. This technique appears to be most effective when the unimodal
dara distributions are excluded, and gener.ly the type of distribution does not seem to be
significant. The "optimal" system operates as well with normal or skewed distributions.
Nevertheless, an additional problem remains. The memory space required to accommodate
the matrices generated by this routine precludes the classification of the Average Income

variables.
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EDMONTON, MALE POPULATION
BETWEEN 35 AND 54 YEARS OLD (in %)

O oc0-785 W 13431800
7.06-1084 [ Novalug
B 10651342

1 0 1 2 3 4Km

Sourco: Statistics Canada 1981

Figure 5.14 Choropleth map with classification dsfined by the standard deviations systom
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EDMONTON, FEMALE POPULATION,
85 YEARS OLD AND OVER (in %)

O o000-220 W 851-1500

221-550 W 15011800
B ss51-850 [J Novalwe

Source: Statistics Canads 1981

4 Km

Figure 5.16 Chorapleth map with classification dofined by tho *optimal* systom
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5.9 CONCLUDING COMMENTS

Evans (1977) stated that, depending on the shape of the data distribution, some
methods are more appropriate than others to define class limits, The nested-means method
may be used with a normal distribution, geometric progressions may be used with very
skewed distributions, and arithmetic progressions may be useful for small range
distributions. Otherwise, when the kind of data distribution is hard to define or seems hard
to divide, the quantiles method may be the most appropriate (Davis, 1974).

This research found that for data distributions with skewness equal or close to zero
(normal distribution), the equal steps method seems to be the appropriate option. Both TAI
and GVF tend to show higher values with the equal steps method than with the other
techniques when the data distribution is close to normal. The literature (Chang, 1974,
Paslawski, 1984) recommends the standard deviation method to divide a normal distribution
into classes. This technique is only a second option after the comparison of the eight
methods. Equal steps also seems a good alternative for data distributions that are only
slightly skewed (skewness less than 1 or greater than -1). The Sum of Differences index
selects nested-means or standard deviations methods for slightly skewed distributions (close
'to normal), and this supports statements from Paslawski (1984) and Chang (1974).
Although Evans (1977) rejects the arithmetic method, for the variable sampled, the
arithmetic technique tends to produce relatively good results for very positively skewed
distributions. GVF and TAI indices select the standard deviations or the nested-means
method for distributions with a skewness greater than 2 or smaller than -2. For a flat
distribution, the equal steps method appears to be the most appropriate choice.

As expected, different methods operate more efficiently with a particular type of
frequency distribution, Quantiles and e/juzi steps methods operate best with a relatively
normal distribution (e.g., "Female, S55-64"). Arithmetic, geometric, and reciprocal
progressions give their best results with the variable "Female, 25-34," which is slightly

positively skewed. Nested-means and standard deviations systems work the most efficiently
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with a relatively normal data distribution, "Male, 35-54." Jenks’ "optimal" method does not
depend on the shape of the data distribution to operate efficiently, but on the presence of
modalities in the distribution. Therefore, for a normal distribution, a cartographer may
choose between quantiles, equal steps, nested-means, and standard deviations methods, to
define class limits. The cartographer may also have the choice between arithmetic,
geometric, and reciprocal progressions to define class limits for a skewed data distribution.
Finally, it appears that the Sum of Differences index, tends to select the "best"
classification in agreement with theoretical concepts, whether or not the class limits
correspond with natural breaks. Conversely, since they measure absolute deviations or
variance for every class, TAI and GVF tend to favour class limits which reflect most the

natural groups of a distribution.



CHAPTER 6: CONCLUSION

This research examined the classification process in choropleth mapping. Eight
different classing systems were tested with thirty-five variables to examine if a relation
between classing methods and type of frequency distribution exists. It appears that there is
such a relationship. Four systems operate more efficiently with normal distributions:
quantiles, equal steps, nested-means, and standard deviations. Arithmetic, geometric and
reciprocal progressions are mcrv appropriate for skewed data distributions. However, none
of these systems produce good class limits with pronounced leptokurtic distributions.

This study essentially considered the statistical aspect of classification when
evaluating each method. However, areal balance must be considered in the creation of a
choropleth map. It is desired to create a relatively balanced map, where the different classes
all tend to occupy approximately equal aggregate geographic areas. Because it considers the
number of areal units by class, the quantiles tends to produce maps which are relatively
well balanced. However, this system does not consistently guarantee an areally balanced
map. The nested-means system also tends to give relatively well balanced maps. In general,
the quantiles and nested-means systems offer classifications with the least variations in area
covered by each category. The classing methods examined do not consider areas, but only
the value of the variable for each mapping unit. Therefore, one cannot expect to achieve a
classification with a relatively good balance in the areas covered by each class. To improve
the appearance of the map, the cartographer may choose shades that will try to mask the
areal imbalance of the map. It also can be possible to use the clinographic curve or the
frequency cumulative curve to obtain a better areally balanced map.

Considering the results of this research, it seems possible to develop an automated
approach to class a data distribution. Given a computer system with adequate memory and
processing speed, a form of univariate clustering, using eigenvalues (as discussed in
Chapter 3) can be employed to define the number of classes. However, this technique

considers only the statistical aspect of the data and ignores factors such as the purpose and

60
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the type of audience of the map. When classing data automatically, the user may be
presented with different options, which depend on the size of the sample and the computer
capacity. If the frequency data distribution is multimodal, the "optimal" method appears to
be the most effective classing technique. However, the problem of non-contiguous class
limits still remains. This can easily be solved with an automated routine which finds an
intermediate value between two neighbouring class limits. This value would become the
new class limit between two adjacent classes. If the "optimal" technique cannot be used, a
routine (ensuring that there is no empty class) can automatically select one or more classing
methods depending on the type of distribution. Class limits can be evaluated and the best
classification is chosen for the map. It therefore seems possible to create an automated
classification routine which defines good class limits without the intervention of a user.

In conclusion, there is adequate evidence that there are regularities in the process of
classification in choropleth mapping and that a classification model could be integrated in

an automated system, producing maps that are cartographically sound.

6.1 TOWARDS THE AUTOMATION OF CHOROPLETH MAPPING?

In Chapter 2, it was argued that classification was one of the four principal
procedures — preliminary decisions, classification, polygon fill and finalizing — in
choropleth mapping. The conclusions of this study are extremely encouraging: it is clear
that classification procedures readily lend themselves to automation. Certain types of
distributions are evidently more amenable to classification by some methods than by others.
This forms the basis of a model of classification in choropleth mapping. Such a model
could lead to the creation of an integrated choropleth mapping programme.

It remains to investigate whether the other three procedures can be formalized, and
eventually automated. At this point in time they still seem to require the intervention of the

cartographer (or user, if in the context of a computer routine}. This is clearly an exciting
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area for possible research in the future where all the regularities of choropleth map design
must be determined. In the event of the complete automation of choropleth mapping
procedures, the resulting routine would follow this certain order to operate. Knowing the
motivation factors of the map, it would only take a few minutes to define classes
automatically. With these classes, a routine wouid automatically fill the polygons. If a
colour fill is employed, this routine should consider more than just the three physical
characteristics of colour (hue, saturation and value), but also the perceived intensity or
value of colour. The last set of routines must ensure that all the elements on the map have
an appropriate size and location, to ensure a cartographically accurate but esthetically
pleasing choropleth map. This seems to be the step where most of the difficulties in
achieving a computer routine would occur. The different elements of information (e.g., title,
legend, scale) should not look more important than the principal figure.

If all the procedures to create a choropleth map can be carried out objectively, and
put into a model, this can be done for other types of maps as well. The creation of a
completely automated choropleth mapping software could be a first step for the generation
of a mapping expert system (Gondran, 1986). The number of human operations or
procedures transposed into computer routines is increasing rapidly, and camography is not
excluded. It is therefore our duty, as carographers, to ensure that these automated

procedures are giving a product as good, if not better, as the product done manually.
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Appendix A

Rank-size graph, frequency histogram and table of results for each variable.
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Reciprocal Progressions 1.817 1.974 .496 .634 65.808 77.168
Nested-Means .208 2.944 .523 .669 69.200 80.177
Standard Deviations .263 .399 .54S .674 71.985 81,306
*Optimal® (Variance) 3.728 19,993 .761 .891 92.465 98,929
*Optimal® (Abs.Dav.) 3.740 4.119 .761 .894 92.450 98.839
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Catholic (%)
Method Sum of Differ: ices | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes 5 10 5 10 5 10
Quantiles .304 .170 . 690 .815 (5.516 94.355
Equal Steps .088 .137 .678 .8217 88.574 96.016
Arithmetic Progressic~s .150 .510 .638 .802 86.589 95.559
Geometric Progressions .483 .479 .617 .786 85.001 95.149
Reciprocal Progressions ..450 .604 .523 727 74.257 90.431
Nested-Means .316 .173 .543 .740 76.031  91.159
Standard Deviations .222 .072 .559 .738 77.686 91.458
"Optimal® (Variance) .236 .351 .683 .877 91.562 98.488
"Optimal” (Abs.Dev.) .179 .349 112 .817 90.913 98.486
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Protostant (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit

Number of classes S 10 5 10 5 10
Quantiles .046 .023 .139 .8386 90.079 96.268
Equal Steps .017 .015 .746 .852 92.164 97.340
Arithmetic Progressions .023 .066 . 708 .833 90.360 96.885
Geometric Progressions .018 .104 .691 .832 90.005 96.976
Reciprocal Progressions .019 .087 .676 .824 89.018 96.720
Nested-Means .036 .008 .682 .827 89.242 96.787
Standard Deviations .039 .019 .685 .81S 89.288 96.341
"Optimal* (Variance) .026 .024 .756 .895 94,512 98.819
"Optimal® (Abs.Dev.) .030 .024 .763 .895 92.939 98.819
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Orthodax (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes 5 10 S 10 5 10
Quantiles .607 .173 .694 .821 86.863 95,238
Equal Steps - - .696 .839 89,604 96.759
Arithmetic Progressions - - .688 .841 89.783 97.123
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested~-Means - - .655 .752 82.189 86.20%
Standard Deviations - - .660 .151 84,033 87.965
"Optimal® (Variance) - - .129 .885 93.740 98.834
"Optimal® (Abs.Dev.) - - .736 .887 93.024 98.678
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Bomin Canids (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit

Number of classes ) 10 5 10 S 10
Quantiles .025 .010 .572 .744 75.686 87.7714
Equal Steps .006 .008 .571 775 81.369 92.472
Arithmetic Progressions .007 .035 .534 .762 80.831 93.281
Geometric Progressions .009 .005 .559 .766 83.082 94.094
Reciprocal Progressions .006 .008 .5855 .768 83,522 94.5¢68
Nested-Means .024 .006 .554 .772 82.3904 94.532
Standard Deviations .009 .006 .558% .762 82.454 94.359
"Optimal® (Variance) .009 .012 .670 .852 91.763 98.366
"Optimal® (Abs.Dev.) .005 .009 .676 .861 91.393 98.358
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Born in Alborta (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes 5 10 5 10 5 10
Quantiles .135 .088 .682 .814 85.635 94,255
Equal Steps .025 .055% .649 . 825 87.281 96.002
Arithmetic Progressions .081 .365 .616 .184 85.602 94.879
Geometric Progressions .098 .292 .613 .78 85.883 95.018
Reciprocal Progressions .244 .292 .568 .154 82.046 93.915
Nestad-Means .112 .052 .581 .762 82.805 94,183
Standard Deviations .117 .073 .587 .153 83,340 93,996
"Optimal® (Variance) .0S0 121 .680 +870 91.283 98,448
"Optimal® (Abs.Dav,) .106 .121 721 .870 89.862 98,435
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7. Born outside Canada
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Bom outside Canada (%)
Method Sum of Differences | Tabuladr Accuracy | Goodness of
Index Variance Fit

Number of r~lasses S 10 5 10 S 10
Quantiles .838 .474 .579 . 744 74,325 86.678
Equal Steps - - .561 .755 79.913 91.477
Arithmetic Progressions - - .543 .736 80.115 92.093
Geometric Progressions - - - - - -
Reciprocal Progressions -~ - - - - -
Nested-Means - - .784 .845 93.216 95,069
Standard Psviations - - .813 .866 94.681 96.336
"Optimal®™ (Variance) - - .641 .825 89.871 97,955
"Optimal™ (Abs.Dev.) - - .629 .844 83.152 97.816
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Born in Canada, ousside Alborta (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes 5 10 S 10 5 10
Quantiles 1.107 945 .591 .718 67.548 78.607
Equal Steps - - .557 .708 76.294 86.395
Arithmetic Progressions - - .532 .689 77.896 88,378
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - . 790 .841 92.733 94.766
Standard Daviations - - .817 .864 94.170 96.137
"Optimzl® (Variance) - - .628 .851 89.235 98 .230
"Optimal®” (Abs.Dev.) - - .673 .854 84.765 94,109




9. Less than grade 9
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Lass than grade 9 (%)

Tabular Accuracy
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78

Goodness of

Index Variance Fit
Number of classes S 10 S 10 S 10
Quantiles 682 .740 . 705 .838 84,690 93.436
Equal Steps - - .688 .839 87.953 95.577
Arithmetic Progressions - - 677 .839 88.517 96.253
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - .709 .775 86.595 87.681
Standard Deviations - - 722 . 788 88.219 89.821
"Optimal® (variance) - - .712 .878 92.884 98.623
"Optimal®” (Abs.Dev.) - - .758 .884 90.822 98,527
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Grados 9-13 (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes 5 10 S 10 5 10
Quantiles .122 .075 .686 .8217 86.873 94.488
Equal Steps .042 .186 .689 .834 89,141 96.161
Arithmetic Progressions .060 .349 .653 .807 87.008 95.651
Geometric Progressions .066 .268 .638 .803 86.447 95.783
Reciprocal Progressions .076 .299 .605 .781 83.378 94.848
Nested-Means .122 .053 .614 .787 83.755 94.908
Standard Deviations .085 .027 .618 M 84,228 94.596
"Optimal® (Variance) .049 .098 117 .870 92.734 98.505
"Optimal® (Abs.Dev.) .051 .047 .721 .878 92.372 98.369
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Univarsity (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes 5 10 5 10 5 10
Quantiles .953 .167 .715 .823 84.165 92.187
Equal Steps - - .699 .810 87.857 94.512
Arithmetic Progressions - - .693 .816 88.918 95.549
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - . 728 .782 86.593 88.604
Standard Deviations - - .741 .791 88.346 90.577
"Optimal™ (Variance) - - 711 .878 92.805 98.690
"Optimal® (Abs.Dev.) - - .741 .877 91.000 98.049
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Avorage income, male ($)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number cf classes 5 10 5 10 5 10
Quantiles .924 .890 .597 .818 74.641 93.977
Equal Steps 2.044 2.546 .552 .783 78.417 94.790
Arithmetic Progressions 2.836 3.670 .502 .731 76.546 93,227
Geometric Progressions 3.440 3.690 .387 .629 59.034 85.995
Reciprocal Progressions 1.573 2.283 .310 .503 47.227 68.796
Nested~Means .900 .879 .358 .557 52.868 73.357
Standard Deviations .923 3.356 .390 .580 $7.031 76.345
"Optimal® (Variance) - - - - - -
"Optimal® (Abs.Dev,) - - - - - -
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13. Average income, female
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Avarage incoma, famale ($)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit

Number of classes 5 10 5 10 S 10
Quantiles .882 .882 .701 .835 86.558 96.069
Equal Steps 2.447 2.849 .593 .750 81,625 93.615
Arithmetic Progressions 3.039 3.267 .511 .673 74,422 89.172
Geometric Progressions 3.28¢% 3.459 .383 .589 55.817 81,013
Reciprocal Progressions 1.8a% 2.391 .307 .471 44.653 64.811
Nested-Means .883 .880 .364 .529 51.670 70.052
Standard Deviations .889 2.337 .404 .556 56.747 73.367
"Optimal" (Variance) - - - - - -
"Optimal® (Abs.Dev.) - - - - - -
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Male, total (%)
Method Sum of Differences | Tabular Accurscy | Goodness of
Index Variance Fit

Number of classes 5 10 5 10 5 10
Quantiles .045 .022 .336 .595 47.696 70.276
Equal Steps .008 .103 .422 .663 68.524 83.343
Arithmetic Progressions .006 .034 .432 .679 73.883 87.544
Geometric Progressions .008 .006 455 .679 77.865 89.686
Reciprocal Progressions .012 .009 .485 .697 80.520 91.277
Nested-Means .018 .009 .490 .704 79.672 91.275
Standard Deviations .010 .009 .499 .699 79.941 91.806
"Optimal®™ (Variance) .017 .011 .621 .830 92.182 98.462
"Optimal® (Abs.Dev.) .020 .014 .641 .836 98.367

88.505
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Male, 0-14 yoars old (%)
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Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes 5 10 S 10 5 ) 10
Quantiles .145 .053 .729 .853 91,723 97.521
Equal Steps .083 .216 .745 .866 93,181 98.071
Arithmetic Progressions .184 .074 .730 .852 92.399 97.715
Geometric Progressions .132 ,082 .716 .846 91.535 97.497
Reciprocal Progressions .183 442 .608 .762 80.215 90.941
Nested-Means .210 .040 .620 177 81.796 92.031
Standard Devioations .049 .109 .629 . 769 63.107 92.173
"Optimal® (Variance) 1.762 .569 .614 .757 47.374 67.020
"Cptimal®™ (Abs.Dev.) 1.729 1.707 .613 .710 47,637 50.609
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16. Male, 15-19 years ok
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82

Method Sum of Differences | Tabular Accuracy| Goodness of
Index Variance Fit
Number of classes 5 10 S 10 5 10
Quantiles .626 .659 .742 .851 91.847 96.913
Equal Str.:s - - .725 .847 92.077 97.378
Arithmetic Progressions - - .690 .825 89.987 36.805
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - .733 .801 88.692 91.036
Standard Deviatjons - - .158 .815 90.878 92.797
"Optimal®™ (Variance) - - .330 .423 18.917 19.839
"Optimal®™ (Abs.Dev.) - - .332 .424 18.902 19.788



17. Male, 20-24 years old
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Male, 20-24 yanrs old (%)

Rank
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Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes S 10 S 10 5 10
Quantiles .083 .058 .734 .863 91.001 97.315
Equal Steps .069 .018 .132 .859 91.957 97.761
Arithmetic Progressions .069 .124 117 .848 91.364 97.562
Geometric Progressions .027 .027 .715 .84¢6 91.391 97.532
Reciprocal Progressions .044 .200 .693 .836 89.646 97.016
Nested-Means .079 .061 .695 .839 89.900 97.071
Standard Deviations .077 .067 .695 .824 89,988 96.592
"Optimal"™ (Variance) 2.326 1.060 .456 .576 27.044 38.90S
"Optimal™ (Abs.Dev.) 2.427 1.078 .459 .578 26.385 38.879



18. Male, 25-34 yaars old
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Method Sum of Differences | Tabular Accuracy | Goodness of
' Index Variance Fit
Numbsr of classes 5 10 5 10 5 10
Quantiles 071 .024 .744 .880 92.852 98.234
Equal Steps .058 .020 .749 .873 93.461 98.332
Arithmetic Progressions .046 .015 .734 .864 92.618 98.080
Geometric Progressions .037 .015 .733 .866 92.504 98.092
Reciprocal Prugressions .060 .028 .713 .854 90.446 $7.434
. Nested-Means .081 .021 L711 .856 90.499 97.497
A Standard Deviations .050 .044 .706 .834 90.414 96.649
"Optimal® (Variance) .044 .030 .765 .892 94.745 98.806
"Optimal® (Abs.Dev.) .074 .021 .74 .895 94,238 98.673
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Malo, 36-84 years old (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes S 10 S 10 S 10
Quantiles .821 .784 .694 .821 85,330 92.720
Equal Steps - - .666 .804 86.897 94,595
Arithmetic Progressions - - . 605 .774 83.057 94,027
Geometric Progressions - - - -
Reciprocal Progressions - - - -
Neated-Means - - .792 .848 93.898 95,560
Standard Deviations - - .822 .868 95.306 96.675
"Optimal® (Variance) - - .701 .864 92.038 58.362
"Optimal® (Abs.Dev.) - - .923 .867 88.729 98.109
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Mala, 5564 yoars old (%)
. Mathod *|sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes S 10 5 10 5 10
Quantiles .323 .325 .730 .839 88.591 94.898
Equal Steps .125 .344 .720 .845 90.550 96.441
Arithmetic Progressions .291 .470 .706 .845 90.256 96.848
Geometric Progressions L7171 .658 .675 .826 87.333 96.049
Reciprocal Progressions 1.409 1.364 .561 .734 72.601 86.090
Nested~Means .153 .380 .581 .749 74.998 87.691
Standard Deviations .278 .226 .595 .46 76.943 88.524
"Optimal® (Variance) .193 .264 .701 .84¢ 87.840 91.514
"Optimal® (Abs.Dev,) .570 .264 .701 .84¢ 79.299 91.514
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Valuo

Froquency

s

0

Pj=
n‘

Renk

C2esrRUBNDZY
Male,

| SNSS AENd mak Sun Suun S Sun aeu o

65 yaars old and over (%)

87

Method Sum of Differences | Tabular Acruracy | Goodness of
Index Variance Fit
Number of classes S 10 S 10 5 10
Quantiles .781 .225 .740 .867 89.181 85,052
Equal Steps - - .742 .867 91,305 96,646
Arithmetic Progressions - - . 745 .868 91.641 97,154
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - 742 .782 87,601 86.271
Standard Deviations - - 137 .7179 87,928 87.551
"Optimal® (Variance) - - . 764 .884 88.453 97,398
*Optimal® (Abs.Dev.) - - . 765 .884 88.371 97.246
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22. Female, total
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Fomaln, total (%)
Method Sum of Differences | Tcbular Accuracy | Goodness of
Index Variance Fit

Number of classes 5 10 S 10 5 10
Quantiles .029 .006 .369 .645 53.559 79.367
Equal Steps .123 .120 .463 .680 71.705 87.983
Arithmetic Progressions .129 157 .482 .682 75.986 90.303
Geometric Progressions .110 .110 .495 .702 79.523 92.002
Reciprocal Progressions .014 .102 .507 .696 81.513 92.680
Nested-Means .018 .011 .512 .714 81.553 93.342
Standard Deviations .010 .092 .518 L7212 81.959 93.676
"Optimal®" (Variance) .023 .018 .703 .862 94,913 98.937
"Optimal® (Abs.Dev.) .023 .018 . 704 .861 94.553 98.551



23. Femals, 0-14 years old
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Famala, 0-14 years old (%)
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Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes 5 10 S 10 5 10
Quantiles .162 .026 .759 .863 93.176 97.828
Equal Steps .178 .144 . 765 .863 94,052 98.19%
Arithmetic Progressions .138 .045 .738 .859 92.590 97.919
Geometric Progressions .141 .083 .716 .850 91.047 97.577
Reciprocal Progressions .09% 474 .617 .773 80,595 91.377
Nested-Means .178 .056 .634 .787 82.389 92.410
Standard Deviations .022 .127 .645 .780 83.769 92.547
"optimal®™ !Variance) 1.517 1,205 .652 .740 54,224 60.881
"Optimal® (Abs.Dev.) 1.365 1,343 .652 .741 54,386 59.245
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24. Female, 15-19 years old
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Fomalo, 15-19 yoars old (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit

Number of classes 5 10 5 10 S 10
Quantiles 1.331 1.024 .604 .719 62.004 69.944
Equal Steps - - .496 .708 69.263 82.050
Arithmetic Progressions - - .453 .703 71.135 86.098
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - .652 .764 80.210 86,792
Standard Deviations - - .684 .786 82.729 89.523
"Optimal® (Variance) - - .648 .862 90,989 98.644
"Optimal® (Abs.Dev.) - - .876 .860 87.470 97.794




25. Female, 20-24 yoars old
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Femala, 20-24 yowre old (%)

Method Sum of Differences | Tabular Accuracy | Goodness of

. Index Variance Fit
Number of classes S 10 S 10 S 10
Quantiles .821 .678 .640 .791 81.490 92.469
Equal Steps - - .635 .799 85.569 94.855
Azithmetic Progressionas - - .610 .787 85.252 95.106
Geometric Progressions - - - - - -
Reciprocal Proqressions - - - - - -
Nestad-Means - - . 126 .801 88.387 91.494
Standard Deviations - - .7150 .818 90.459 93.248
"Optimal® (Variance) - - +700 .869 91.432 98.046
"Optimal® (Abs.Dev.) - - 122 .870 89,924 98.043
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Female, 25-34 yoars old (%)

Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes S 10 S 10 L] 10
Quaiitiles .042 .010 .758 .891 92,732 98,343
Equal Steps .041 .018 774 .892 94,089 98.594
Arithmetic Progressions .035 .019 . 762 .886 93,563 98.469
Geometric Progressions .035 .025 .762 .887 83.544 98.516
Reciprocal Progressions .044 .018 . 750 .876 92.342 97.953
Nested-Means .066 .014 . 748 .876 92.329 98.007
Standard Deviations .042 .042 <744 +860 92.259 97.457
"Optimal® (Variance) .040 .023 <798 .904 95.403 98.871
"Optimal® (Abs.Dev.) .050 .025 .797 .908 95.287 98.854



27. Female, 35-54 years old
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Fomale, 35-54 yaars ol¢ (%)

83

Method Sum of Differences | Tabular Accuracy | Goodness of

! Index Variance Fit
Number of classes S 10 S 10 S 10
Quantiles .781 .716 .724 .833 89.418 95.334
Equal Steps - - .698 .837 89.891 96.534
Azithmetic Progresaions - - .658 .817 87.410 96.013
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - .7176 .836 92.624 94.376
Standazd Deviations - - .803 .854 94.253 95.695
"Optimal® (Varianca) - - . 147 .877 92.536 98.520
"Optimal® (Abs.Dev.) - - .749 .883 92.115 98.407
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28. Female, 55-64 years old
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Famale, 55-64 years old (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit

Number of classes -] 10 5 10 L 10
Quantiles .402 .329 .159 .864 93.585 98.087
Equal Steps : - - .759 871 94,103 98,347
Arithmetic Progressions - - .740 .867 93.122 98,193
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - .708 .177 85.273 87.234
Standard Deviations - - .718 .779 87.242 88,896
"Optimal® (Variance) - - .723 .829 81.919 86,974
"Optimal® (Abs.Dev.) - - .733 .830 81.310 86.953
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29. Femals, 85 years old and over
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Fomals, 85 yoars oid and ovar (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit

Number of classes 5 10 S 10 S 10
Quantiles .668 .661 .736 .853 87,042 93.460
Equal Steps - - .123 .864 89.787 95.487
Arithmetic Progressions - - .129 .869 90,571 96.763
Geometric Progressions - - - - - -
_Reciprocal Progressions - - - - - -
Nested-Means - - 727 .794 86.625 86.892
Standard Deviations - - .720 .179 87.084 88.263
"Optimal® (Variance) - - - . 792 .909 95.706 99.186
"Optimal® (Abs.Dev.) - - 177 .910 92.128 99.179
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30. Single
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Single (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes S 10 S 10 L 10
Quant{les .040 .008 .649 .811 85,269 96.049
Equal Steps .023 .009 .655 .826 88.683 97.134
Arithmetic Progressions .023 .019 . 646 .819 88.994 897.070
Geometric Progressions .038§ .016 .661 .823 90.020 97.270
Reciprocal Progressions .035 .020 . 623 .811 87.315 96.871
Nested-Means .042 .013 . 628 .813 87.522 96.926
Standard Deviations .034 .031 634 .804 88.042 96.648
"Optimal® (Variance) .041 .025 . 733 .871 94,148 98.71¢
"Optimal® (Abs.Dev.) .039 .02¢ . 735 .880 94.124 98.663



31. Married
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Maried (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes S 10 5 10 9 10
Quantiles .019 .008 .665 .836 87.785 96.652
Equal Steps .006 .007 L6175 .841 90.064 97.394
Azithmetic Progressions .008 .007 .660 .828 89,294 97.130
Geometric Progressions .015 .008 664 .828 89.769 97.265
Reciprocal Progres:ions .01e6 .072 .658 .822 89.387 97.150
Nested-Means .020 .007 .653 .821 88.924 97.086
Standard Deviations .013 .009 880 .802 88.911 96.414
"Optimal® (Variance) .013 .013 117 .864 93.378 98.510
"Optimal® (Abs.Dev.) .012 .012 .723 .867 93.181 98,270




32. English
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Engligh (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes s 10 5 10 S 10
Quantiles .056 .038 .680 . 797 83.028 90,481
Equal Steps .037 .110 .632 .789 84.601 93.401
Arithmetic Progressions .159 .176 .584 . 754 81.820 93.082
Geometric Progressions .026 .086 .569 .15% 81.896 93,622
Reciprocal Progresssions .032 .127 .561 .748 81.389 93.638
Nested-Means .088 .028 571 .157 81,500 93.415
Standard Deviations .080 .155 .573 .748 81.599 93.333
"Optimal® (Variance) .028 .028 657 .863 89,565 98.077
"Optimal® (Abs.Dev.) .054 .036 .687 .862 83.688 97.883



33. French
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Franch (%)
* Meathod Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit

Number of classes 5 10 5 10 S 10
Quantiles 1.004 .499 .579 . 120 69.434 81.730
Equal Steps - - 581 .755 78.307 89,393
Arithmetic Progressions - - .589 .758 81.400 91.719
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - .609 .115 76.760 83,752
Standard Deviations - - .615 . 724 78.456 86.067
"Optimal” (Variance) - - .301 475 30.166 43,703
"Optimal® (Abs.Dev.) - - .310 .478 30.106 43.700
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34. Ukrainian
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Ulcrainian (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes S 10 S 10 S 10
Quantiles .708 .502 .714 .839 86.584 95.513
Equal Steps - - .716 .841 90.065 96.819
Arithmetic Progressions - - 711 .837 90.775 97.037
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - .681 . 7152 83.796 86,200
Standard Deviations - - .688 .783 85,511 88.085
"Optimal® (Variance) - - .507 669 36.683 55.743
"Optimal* (Abs.Dev.) - - .514 .627 33.27% 45.643
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35. German
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Gorman (%)
Method Sum of Differences | Tabular Accuracy | Goodness of
Index Variance Fit
Number of classes S 10 5 10 S 10
Quantiles .910 .484 566 .789 71.982 90.523
Equal Steps - - .579 .789 80.291 93.794
Arithmetic Progressions - - .588 .792 83.046 94.975
Geometric Progressions - - - - - -
Reciprocal Progressions - - - - - -
Nested-Means - - .615 .726 78.538 84.060
Standard Deviations - - .628 .729 80.853 86.178
"Optimal® (Variance) - - .382 .648 34.879 61.792
"Optimal® (Abs.Dev.) - - .356 .649 22.898 61.790



