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' - ABSTRACT

- : oy | |
., Let G be a locally compact group and let’ A(G) be the Fourier algebra of G. -
In this thesie we shall foc1ts" on the relationship bétween the Structure' of-G and ’

the nature oYthe closed 1dea.ls of A(G).

Necessary a.nd sufﬁcxenﬁ algebralc and topoioglca.l ttmdltxons are ngen for a

- J‘

clesed xdeal of A(G’) to possess a bounded apofﬁxlmate 1dent1ty Tt is sho%n that

* the exxstence of such a bounded approxxmate rdentlty Ts.mtlmately related to the
" amenability of G. HE s
- For amenable [SIN|-groups a comﬁiﬁg{e;e,}ié’i:a':citﬁéri‘iation of the closed ideals

- e
tos - L

in 4(G) with a ‘«bounded a;\)proximafé identity‘ﬁn;term& of the algebfaic structure’

“ -~ . . / Y
of thexr kernels is obtaxned Thxs generahzes a resu‘t*"f Q%“Roou and Wang.
' L Amenable locally corﬁpact groups are c_ha.racterized with Mespect to the struc- .

. D . . S .
ture of their cofinite ideals and to the nature of VN(G) = A(G)* as a Banach

*

1,34

A(G)- blmodule In partlcular we prove tha.t G"’Ss amenable if and only 1f every
derivation of G into a Banach A(G)-bimodule is continuous.

A necessary and sufficient condition for the ;CIOSe ideal I(H) to be comple-

mented in A(G) is given, when H is a closed subgroup of G. It is proved that if

the left reguler representatxon of H is completely reducxble then I(H) is comple-

2

mented in A(G). An example 1s presented of a’group G thh a normal abelian

closed subgroup H ior whxch I (H ) s not ‘,compélhex'nented in A(G).
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o CHAPTER 1 - |
ST . ; ¢ ‘ > ‘ (
#  INTRODUCTION .
4 _ : § ". \ - . ~ 0.
] |

. \ N - ) 4 . ' ’ .
I 964, Pierre Eymard [19] deﬁnm algebra A(G) and ‘the -

: ) N
Fourier-Stieltjes aggebra B( ) of an arb1trar§ locally com toup. B(G) can be - .

identified with the continuou¥linear function_als on the group C‘-algébra, C*(G).
, ) ] ’ ’
With the dual norm and pointwise  multiplication, B(G) becomes a Banach al-
gebra of continuous functions on G, and A(G) becomes a closed idkal of B(G)
2, T .
4

When G is abelian, these algebras éorrespond respectively to the algebras o&con- )

. \ %
tinuous functions obtained E; ap\;g'lg the Fourier transform to Ll(é) and the

- ' ®

Fourier-Stieltjes tra:7brm to M(G’) where & denotes @e dual group of G.

It has been sHown by Martm Walter in [64) and structure of

-

the group G is complefely determmed by both A(G) and B(Cf n this thesis,
ﬂ"" ~

‘we shall be primarily gprfternec\l with the relca?txonshg)s betweén G and A(G). OL:r
% principal focus w1]1 be the structure of the closed ideals of A(G). | 3

This the51s comprxses ‘seven chapters Ch”:er 2 contains the definitions of

most of the terms used in this introduction and throughout“the remainder of the

thesis..W¢ a:’lso collect much of the notation there for easy reference. 'Einally, we

introduce some important; notior.\‘s from t:ie t'heory of locally compact groups; frém
Banach algebré t}ieqry and from harmonic analysis.

| Chap%er 3 conce.rns itself lwith the existence of bounded approximate iden-

.tities'.in ideals of A(G’) Motivated by a theore\;p of b{}}tiﬁ[?@ﬂ which states that -

A(G) has a bounded apprdximate identity if and only if G is amenable, we estab-

\:;1 .
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@ o | ) |
lish as the theme of our investigation the deep connection between amenability
'

and the existence of bounded approximat.ﬂ'Adenti‘ties. Section 3.1 provides us with"

the algebraic and topologicaf:t\cLo'ls-v'vhich we will need throyghout.

4

i
~ -

~ In Section 3.3, we give a complete characterization of the closed ideals in
A(G) with_bounded. approximate identities when G is an amenable [SIN]-group.
v o . :
This generalizes [40, Theorem 13]. ) _ S

We close the chapter by determining the structure of closed cofinite idﬁ of
. _. )

b d

- A(G). This will be used in Chapter 6 to characterize amenable groups as the class
i . oy -

of locally compact groxzxp%;’r which A(G) has automati‘cally'corﬂnuous.derivatio_ps

(Theorerﬁ 6.1.4). L - (
| ' A

4 I Chapter 4, we investigate the properties of V N(G) (the dual of A(’}'))
\ . 4
‘as a Banac G)-bimodule. Our main r?SUIt (Theogem 4.2.2) establishes the

“~

connection between the existence of bound)ad approximate identities in ideals of,

A\

A(G) and the existenc{e of continuous projections on VN(G) which commute with

o
- AR
%)

the mpdhle action of A(G) on VN(&). Agaiﬁ amenable groups are characterized.

L o : : §
Applications argthen given to discrete groups.* :

Chapter 5 deals with the problem of de‘termining which closed ideals in A(G)

~
are complemented. We will restrict ourselves to idea’s of the form I(H), where H

’ .
is a closed subgroup of G.
In Section 5.1, we show that I{H, is ~ompiemented in A(G) if and only

if A(H) can be linearly and continuously embedded in A(G). We then show

N

that this can be done for any closed subgroup with a cor;fpletely reducible left

- Y



' * R 3 .
regplar_repreéentation (for exa?rnplg, all compact subgrpupj&fve this property).J

%
- [y »

We also give an exarnpli of a closed normal subgroup H of G for which I{H) is..

\ . -
not complemented in A(G) [cf. Example 5.1.11].

)
1 S

In Section 5.2, we go further towards the identification of subgroups which

e ) .

“determine complemented ideals. We look at t}le co‘rnplem'er@tion problem for

product groups. This leads to applications for certain large classes of groups. .

d

- Chapter 6 deals with derivations on A(G) In Section 6.1, we sRow that G #

o
B #
& ) /

. S \ / .
is amenabl¥ if and only if every derivation of A(Gb)\'glto a Banach A(G);bimé)dule
o A . v . . . .
is continuous.

In Section 6.2, we look at commutative A(G)-rr;b'dules. We show that if G is
. N - .

discrete, then A‘(G) is weakly amenable, a notion introduced and studied recently

2

b)(fBaae, Curtis'and Dales 8. -

Chapter 7 is a summary



CHAPTER 2

PRELIMINARIES AND NOTATION

~

A

~ §2.0. Introduction. '
. - . . e

- This chapter is intended to be a reference for the terms and the notation
-~ used throﬁghout the thesis. It is divided into three sections. The first section is an

intidductipn to classes of locally compact groups, while the secorid section deals

with Banach algebras.

E

Finally, we introduce the principal objects in non-commutative harmonic

analysis. We give a very brief summary of [19].

§2.1. Locally Compact Groups..
_Let G be a locally compact group. ‘Let A C G. Then A, ‘A% and bdy 4
~will denote the closure of A, the interior of A and the boundary of A res‘i.)ectively.
Let f be any cemplex valued function on G Define
(i) supp f ={z € G; flz) #0},
3 e s '
(i) f(z) = f(z™"),

v

(i) f(z) = f(=z71),
(ivk L:f(y) = f(z7'y) forevery y€G,
(v) R:f(y) : f(yz) ‘ for every y € G. "
Let CB(G) denote the ﬁaﬁach space of bounded complex valtied continuous |
‘functi‘?ns on G. vLet Co(G) and Cyy (G) denote the subspaces of C’B(G) consisting
of functions which Qanish at infinity and which have compagt suﬁport respe‘ct‘ively.

4

4



w4 >
Let M(G) denote the Banach space of bounded regular Borel measures on
G with the total variation norm. Then M(G) can be identified with Co(G)*, the

Banach sﬁace dual of CO(G).QLet ug be a fixed left invariant Haar measure on G.

The left invariant Haar integral on Cy(G) associated with ug Will be denoted by

[ 1&dus(a)
G

or if there is no ambiguity, simply by

| /G fe)z

If Ais.a Haar smeasurable subset of G, jchen the Haar measure of ‘A is denoted ~

€

by [A|. If A ‘is‘ any subset of G, then 14 will denote the characteristic function

of A.

For 1 < p < oo, let (LP(G),]| - ||p) be the usual Banach spaces associated

with G and pg. With the inner $roduct

(F,q) = /Gf(r) 0@ ds,  fgel}E),

L*(G) becomes a Hilbert space.
We w‘ill find the following classes of locally compact groups to be (;f particular
interest in subsequent chapters:
"1 Abelian groups
'} Compact groups
[V] Vector groups = Groups IR™ .for n=1"2....

(D] Discrete groups
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[Z] Central Topologz'ccfl groups = Groups G such that G/Z(G) is compact,

~

where Z(G) den~  1e  erof G.

[FC‘] Topol'ogz'cally Fir Zoncugecy gléss groups = Groups such that the
closure jof each conjugacy class is chpz'xpt.v

(SIN| Small Invariant Neighborhood groups = GrOu'ps such that every neigil-‘
borhood, of the identity contains a compact neighborhood v_vhif:h i§

invariant under all inner automorphisms. :

[IN] Invariant Neighborhbod 'groups = Groups having a compact neighbor- -

hood of the identity which is invariant under all inner automprphisms;n
. % .

Palmer’s survey [48] is an excellent summary of the vast literature on these

and other classes of locally compact groups. The diagraru: on pages 698 and 699

of [48] will serve ad our primary reference for the strncture of the elements of each

Fad
N .

of the above classes and the relationships between these classes. Any such result

stated without an explicit reference can be found in [48].

An element m € L®(G)" is ealled a mean if

~

1=|m| =m(g, .ad m(f) >0 whegever f 'g 0.
A

A mean m is said to be left invartant if '

m(sz)zm(f) for every IEG,. f € L*(G).

Let LIM(G) denote the set of left invariant means on L°°(G) Define

~

* [Am] Amenable groups = Groups G fdr which LIM(G) # 0. ‘.

The study of amen'able groups goes back to von Neumann (63} who called



these groups “mefBbar”. The-term “amenable” is due to Day |15]. Day's work is
‘the starting point for anyone interested in'the phenomenon of amenability.
4 ! #i.
Amenability isea remarkable property. The class of amenable groups can

-be characterized by many properfies which would appear at first glahcé to be

: . ) -
completely independent of the existence of an invariant mean. In addition, various

3

generalized notions of amenability have served useful purposes in other branches
4 . : :

of mathematics as well as providing rich theories in‘and of themselves. At knresent,

the most comprehensgive and up-to-date references for amenability are Pier’s book

[50] and A. Paterson’s A.M.S. monograph [49].

o

Am] contains all compact groups [cf. 50, p. 112] and all abelian groups
. pact g

LA

[cf. 50, p. 113]. The standard example of a non-amenable group is the free grcup
: %
on two generators [cf. 50, p. 123].

Finally, given any locally compacf group G and any subgroup /I of G we

will let Cg(H) denote the centralizer of H in G.

52.2. Banach Algebras.

Let A be a\Béhach algebra. A net {uq }qen in 4 is called a bounded left /re>sp.
rig)lt/ approzimate identity if lior‘n l|uqu —ul| = O [resp. li;n luwg — ull : 0] for every
u€ A, and if there exists an M such thai lual < M for every a € U {ug}uca

is a bounded approzimate identity if it is both a left bounded approximate identity

/
{

and a right bounded approximate identity. -
In many respects, Banach algebras with bounded approximate identities are

better behaved than those without. This is illustrated by Cohen’s remarkable



» ' . . ‘ 8
Factorization theorem [cf. 29, p. 268].
Let 4 be  commutative Banach algebra. Let A(4) denote the maximal ideal

space of A. By means of the Gelfand transform, ﬂ\can be realized as a subalgebra
. . Q )

of Co(A(4)).

Let I be an ideal in A. Define

Z(I) = {I'E A(ﬂ), u(z) =0 for every u € I}.
o ' |

Then Z(I) Is a closed subset of A(A). If E is a closed subset of A(A), define

.“\\
I(E)={u€ 4, u(z) =0 forevery z € E},
. )7

a

Io(E) = {u € 4; supp u € 7(4)},

s

where 7(E) = {K C A(4); K is compact and K N E =0}. Io(E) and I(E) are

ideals in A. I(E) is closed. Furthermore; if I is any ideal in A with Z(I) = E,

then Ip(E) C I C I(E).

fia s

A closed subset E of A(A) is said to be a set of spectral synthesis, or simply

N

an S-set, if I(E) is the only closed ideal I for Which'Z(I) = E. This is equivalent

. to the density of Io(E) in I(E) [cf. 29, Theorem 39.18].

A is said to be tauberian if § is an S-set. } is said to be regular if for every

(E:deset E C A(A) and each z ¢ E, there exists a u € A such that u(E) =0

and u(z) = 1. A is semisimple if whenever u(z) = v(z) for every z € A(A), then®

u=uv. R

A is said to satisfy Ditkin’s Condition if



A

e A S NI »
(T’)_fég'-@fﬁ)"“ € 3‘{ and z € A(A) such that u{z) = 0, there exists a se-
quence {v,} in ﬁ'sgch that each v, vanishes in some neighborhood of z

o

and lim Hﬁvn —ul =0. 0

- (ii) if A(A) is not compact, then, in.additiOn to (i), for every u € 4 there

<

exists a sequence {v,} in A such that each v, hés compact support and

lim ljuv, — uf| = 0 . ¢
n .

(14

§2.3.- Harmonic Analysis.

Let f,g € L'(G). We define the convolution of f by g as follows:

—_ {

Feolz) = /G zvlaly™

Then f + g € L'(G). Furthermore, “+ makés LY(G) into.a Banach algebra. We

can also define an involution on L*(G) by s
1) = o T
a Afz) ’

N

where A(z) denotes the modular function associated with ug. LY (G) becomes an

in.volubiv.e Banach algebra, called the Group algebra of G.

Y

By the Radbn—Nikodym“theorem, L'(G) is a closed subspace of M{G). We

extend the convolution on L!(G) to M(G) by

_ BN
werlf) = [ [ revdulz)nty
GJG s
for each u,v € M(G) and f € Cy(G). We extend the involution to M(G) by
[}

du' (z). = du(ar:."1 ).
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Again, M{G) is an involutive Banach algebra containiﬁ’g L'(G) as a closed two- .

sided ideal [cf. 17, Chapter 13].

- LetXg denote the class of equivalence classes of continuous unitary represen-
tations of G. Each m € L induces a coptinuous non-degenerate *-representation
i ‘. . . -

~
of L'(G) by means of the formula ' o <‘/

~

~ e = [ S

for each f € L}(G), ¢,n € ¥z, where Xy is the Hilbert space associated withg#. In

o~ S
. - . ' ¢ .
fact, every non-degenerate *-representation arises in this-manner. Therefore, we

~ will also denqte the class of equivalence clasges of non-hdegener_ate x-representations

» Se—

on L'(G) by J¢. -

[+

If * € T, we extend 7 to a *-representation on M(G) by

wlwsin) = |

(m(z)g, ~ dulz) for each p € M(G), ¢,n € Hr.
G .

We define a norm || - |

c-(¢) on L'(G) as follows:

1]

c+(6) = sup {Ir (DI »

where [}||is the usual operator norm in 8(X,), the Banach space of continuous oper-

ators on ¥r. The completion of L' (G) with respect to I llce (d) is denoted C*(G).

w

.

C*(G) is a C*-algebra, called the group C*-algebra of G.
\ ~

The dual of C*(G) will be denoted by B(G). B(G) is a linear space of

continuous functions on G which becomes an algebra with respect to pointwise

multiplication. B(G) is called the Fouricr—S‘ticltjcs algebra of G.



M ' ' DL SR A S

11

B(G) ’mvay be realized either as the space of coefficint functions of £¢, that

>

is, fynctions of the form L Lo

T

u(z) = {r(z)en)  for meTg, GmeMe, B

or asqthe- span of the continuous positive definite functions on G. A function f on

G is positive definite if for every zy,...,2, € G, A(,...,An € C %

/\ _ Z A(:\jf(:r,'x;l) > 0.
1)

The continuous positive definite functions on G, denoted by P(G), are the positive

linear functionals on C*(G).

‘=
-

Let || - [l denote the morm on B(G) induced by C*(G) with duality -

determined by the formula

(u,,f)z/c‘u(z:)f-('x)dx' for uweB(G), fel'(G).

a

If w € P(G), then [lu| pg) .= u(e). Since || - {c-(g) <1l -1l1, we see that || - 5

P

|- lB(c) on B(G). With || -||pc) and poibntwise multiplication, B(G) becomes a

commutative, regular, semisimple algebra.

". Let pg denote the represent'atidn of G on'L?(G) defined by
pc(z)f =L.f  for every z€ G’; feL}Q).

Then p¢ is called the left regular representation of G. Let A(G) denote the set of

. .
. -coefficient functions of pg. That is

|

AG = {u(z) = (ge(z), f,9" = /G flz™'y) 9(v) dy ] fi9¢ ‘LZ(G)}

={(f+9)"(a) L€ L*(G)}.
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called the Fourier algebra of G'.‘

12

Clearf‘y A{G) C B(@). In fact, A(G) is a Il * |(c) -closed ideal of B(G). A(G) is

»

A(G) is the norm closure in B(G)‘ of the linear span of {(J x j:)v (z);

) -

f € Co(G)} and the norm closure in B(G) of B(G) n COO(G).' We will of-

ten write || - [|ag) for the restriction of | -llBc) to A(G). With the norm

»

: .
ey, A(G) becomes a commutative, regular, semi-simple, tauberian alge-
(G) ; §

bra with A(A(G)) horneornc;rph ¢ to G. Futthermore, A(G) = B(G) if and only

if G is compact. ¢

i The dual of 4(G) will be denoted by VN(G). VN(G) is the von Neumann

subalge?ra of B(L*(G)) generated by either {L;; z € Gyor {Ly; f€LYG)};

where \
‘»

- (Lf)g&) =fx g(:cj ~ forevery f€ LY(G), g€ L*QG). /

The weak-* topology of VN'(G) can be identified with the weak operator topologz} :

on B(L%(G)) restricted to VN(G). The weak operator topology is the topology
‘ ,
generated by the family {p;q; f,9 € LQ(G)}. of semi-norms on B(L*(G)), where

Y
/

prg(T) = (T'f,g) forevery T & B(LZ(G))

If T € VN(G) and u(z) = (f * 3)"(z) € A(G), then

(T) u> = (Tf, g>L2(G) .

T =1L, for some £ € G, then
. . ’ S

Y

(T,u) = (Lz,u) =u(z) for evef; u € ’A(G).
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o~ . e ’ . 1
Let G denote the subset of ¢ consisting of irreducible representations. If G
v o

is abelian, then it is well known [cf. 29, p. 345] that every irreducible representation

of G is 1-dimensional. Therefore G consists of the continuous hOmomorphisxps of

G igto T {)\ e C; [/\' = 1}, the circle group. Also, when G is-abelian, G w1th

the relative weak-* topology it inherits as a subset of L°° (G) and whth pomtw1se

multiplication as a binary cperation becomes a locally compact abelian group as

well. In this case, CA; is called the dual group of G. A famous theorem of Pontryagin -

Y

4cf. 28, p. 376] asserts that G is isomorphic and homeomorphic to G.

| I\‘f G is abelian and p € M(§) ,"then we define the Fourier-Stieltjes transform

?

i € CB(G) of u by

One of the fundamental results in abelian harmonic analysis is that the“ier-

Stieltjes transform e’stablishes an isometric isomorphism between M (G} and B(é)

Y

Moreover, the Fourier transform, the restriction of * to L'(G), is an isometric

isomorphism of L!(G) onto A(G [cf. 56, p. 32].

The definitions of A(G) andﬂB(G)‘ for non-abelian locally compact groups are

i

due to Eymard in [19]. Eymard’s work is the cornerstone of non-abelian Fourier

analysis. Any fact about A(G), B(G) or VN.(G) stated without specific reference -

¢

in_ this or in subsequent chapters can be found in [19].



CHAPTER 3

s .

s AMENABILITY' AND BOUNDED APPROXIMATE IDENTITIES

§3.0. Introduction. -
Liu,’van Rooij and Waﬁg proved in [40, p. 479] that if G is a locally compact *

\ . .
abelian group and I is a closed ideal in L!(G), then I has a bounded approximate

identity if and only if I = IFA), where A'is a closed eler‘nent of the ring of subsets |

. ] ﬂ .
of G generated by the cosets of subgroups of G.

4

For abeliani groups G, this settled once and for all the question of which
closed ideals in L!(G) =~ 4(@) have bounded approximate i »ntities. This and

>

similar problems had previousfy been investigated by, among others, Rosenthyal
541, Gilbert [21] and [22], Schreiber [59] and Wik [66).
. v ,

Leptin in [39] showed that for any locally compact group G, A(G) has a
bounded approximate identity if and only<1{ G is amenable. Tt-should be noted
that the assumption that the approximate identity be bounded cannotbe removed.
If G is the free group on two'generators, then A(G) has an unbounded approximate
identity [cf. 50, p. 156]. By making use of Leptin'#tresult and the fact t“}1a§ A(G)

is the predual of a von Neumann algebra, Lau proved in [36] that I({e}) has a

bou%ied approximate identity if and only if G is amenable.

In this chapter, we will attempt to determine which closed ideals in 'A(G)
hgve boundeﬁ approximate identities for an arbitrar loéally compact group G.
Motivated by the results of Leptin and Lau, we shc‘xw in'Section 31 that the answer
to this question is intimz;.tely related to the amena.bility of G. We also establish

14
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topologicél an‘d..-alhg‘e'!bra_.ic. criteria for a ciosed ideal to be a qax;didate to, possess a
boundecf'approxi;nate identity. -

| . We charagterize;‘glx‘e weak— closed i_déals hav.ir}g bounded apprbximéte iden~

tities in Section-3.2. ‘Tlh.ec;rem 3.3 exten;is the résult c;f Liu, \-)an Rooij and Wang -

v

[40],to émenable [SIN|-groups.

/

Section 3.4 deals with the sj/rﬁ e

o . ’ . .
characterizations of amenable groups are given therein.

*cofinite ideals in A(G). A number of

S //‘\ . m——

§3.1. Amenability and Bounded Approximate Identities.

In this section, we establish the connection b.etvuieen amenability and the
s . . -
existence of bounded approximate identities in ideals of A(G). For a'closed ideal

I'in A(G), we will see that the existence of a bounded approximate identity im#Ns -
,‘ . . . ) P
dependent on the algebraic and topolocical properties of the set Z(I) of common

LY
o
-
‘ v

‘zeros of I. .

-~

DE}:‘INITIOI:I 3.1.1. Let A,’B be closed subsets of G. Let

\

S(A,B) = {u€ B(G); u(4)=1, u(B)sd},

s(A,B

1

) = inf{|ulle); u€ S(4,B)} if $(4,B) #0
e 2 | if$(4,B) =0

F(A)={K CG; Kiscompact, KnA=0},

]

s(A) :‘Fup{s(A,k); ‘K € F(A)}.

1

Sirfee ic € B(G) and ||1¢|/p(g) = 1 it is clear that if {4, B) < oo, then s(By4) <

oo and Is(4, B) ~ s(B, 4)| 5_‘1. If K is compact and A is a closed subset of
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AN

disjoint frorn-K, then s(A4, K) < co by the regularity of A(G).

3

Our principal toolsyin the idgntiﬁc@ion of closed ideals with bounded ap-

proximate identities are the 1.2xt two propositions.
. - : .

' ,PRO)i})SITION 3.1.2, Let G be ‘amenable. Let A be a closed set of speétral

synthesis. If s(A} < oo, then I(A) has an ap'proximaite identjty ;{ﬁa}aem which

B
(i) HuaHA(G) < 2;'ths('A) for every a L@:‘ﬂ, v

I

(ii) uq € A(G) N Coo{G) forevery a €,

“satisfies

(iii) if K € 7(A)\ there exists a sequence {ukn} C {uqg}acu such that v

lvug, —vllaf) g < for everyv EA(G) with supp v C K.

st
Proof. Let K € f‘(‘A‘)/nd.QO\Smce G is amenable, by a relult of H. Leptin
[38] there exists a compact set U = Ug, C G such that 1
|Ul>0 ahd JKU|<(1+ €U
- \ i s
Define
: v
UK.e (:L') | (1+ \lUl * 1U(:I’.)'

/ .
o Then UK. € A(G) and HuK, lag) <1 Also supp ug,e C KUU™ is compact.

If ve A(G) with supp v C K, then

v
1+¢

‘U.K'c‘l) =

Suppose that s(A4) < oo. Then there exists wg € S(A, K) with |lwk || pG) <

s(A) + 1. Define

"

L2

UKe = UKe — UKe WK.
ny‘%&’e K. Ke WK

Y <
ke



Then vKe € I(A) and

.
.

EA .
05

&

.%%G) <lukellae) +lukellac “u;}HB(G) |
<2+4s(4).

o .
If z € K, vke(z) = uke (z). Therefore, if suppv C K, ” .
v " N

v V=5,
K,E 1 :
\

on F(A) x R* by (K,e) > (Ki,e1) if and orly if

Defir.e a partial ord

K CKy)ande>ep.-
Let v € I(A) and € > 0Since A is a set of.spectral synt‘}}égpsis, Io(A) is dense =~

in (A) {29, Theorefn 39.18]. Therefore, there exists ve A(G) with'suppv = K €

PR S

7(4), lvllas < 2fullagc) and [u-viag) <e. Let (Ki,e1) > (K,€). Then |

fu - VK. ul]% <u-— UHA(G) +[Ju — vk, UH'A('G) + vk e v — VK e, U'HA(G),

< (s(4) +2+ 2ullag))e . \

Her.ce {vk, }7(a)xm+ is the desired approximate identity.,“_ . 0O

"LEMMA,3.1.3. Let A be a closed subset of G. Suppose that I{A) has a bounded
appraxiimate.identity {va}acy with fugllac) <M for every a € 2. Then lg\4 .
and 14 belong to B(G4), where G4 denotes the algebraic group G with the discrete

!

top'of]ogy. Furtherrﬂore, Ile\allBcs) <M and |14l <M+ 1.

Proof. Let u € I(A). Since lim ||uqu — “.HA(G) = O, limlugu — ullee =
a a

0. Therefore, {us}aca converges to 14 in the pointwise topology. For each

—~
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ac Y, u, € B(Ga) and {|ualB(cy) .'=‘; luallae) < M (19, p. 199]. Since the

set {v'€ B(GY; |vllBcy < M} is closed in th’e pointwise topology {19, p. 202],

Ie\a € B(Ga) and |l1e\a || Bcy) < M. Consequently, 14 =1g — 1lg\4 E;B(Gd)

and |1allpcy < M + 1. : o | g

. DEFINITION 3 1.4. For any locally combact gfoﬁp G, let R(G) denote the
ring of subsets of & generated by the left cosets of open subgroups of G. R(G) is
called the c;Jset ring of G. Define

R.(C) = {4 c G, A€R(Gy) and A'is closed in G}. e
The following result is due to Gllbert [22] and (independently) Schreiber [59]

for abelian groups. It is a stralght forward albelt somewhat lengthy task to verlfy

that Gilbert’s proof is valid for all locally compact groups.

LEMMA 3.1.5. Let A be a subset of G. Then A € R.(G) if and only if A is of

the form

A= U zi(Hi\Aj),

) . 1=1

where H®is a closed subgroup of G, A; € R(H;) and z; € G.

While Proposition 3,12 gives a sufficient topological condition for the exis-

- tence of a bounded app}pximate identity in I(A), the next proposition provides

v

us with a necessary algebraic condition. . -

i

PROPOSITION 3.1.6. Let A be a closed subset of G. - If I(A')‘%a.s a lbourided

. approximate\@entity, then A has the foHowing ‘form:

“ o A= UI‘H\A
. 1=1
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where H; is a closed sUbgroup of G, A; € R(H;) and z; €aG.

Proof. Use Lemmaﬁ.l.B; followed by Host’s non-commutative generalization

of Cohen’s Idempotent theorem [30], and finally "emma 3.1.5. 0

It is an easy observation that I(A) has a bounded approximate identity if

and only if I{zA) has a bounded approxikate ideiltity. As the sets identified in

Proposition 3.1.6 as possible candidates for the zero set of a closed ideal which

| o . \ 2
/possesses a bounded approximate identity are built from left cosets, it is important

to determine those closed subgroups H'for which I{ H) has a bounded approximate

J f)

LEMMA 3.1.7. Let G be a localgf compact group. Let H be a closed subgroup

identity.

of G which is either (i) open, (ii) compact or (iii) normal. Then s(.H) =1.

~ Proof. (i) If H is an open subgroup of G, then 15 €.B(G) and 11ullpe =1

(19, p. 203]. -
R
(ii) Assume that H is compact. Let K € F(H)." Since H is a subgroup,

, } ¢ P
we can find ar ¢ - . symmetric neighborhood V of the identity such that V7 is

compact and K"VHN HV?® = 0. Let

wr(0) = ) o [y (e ()

Iz HV n.HV| *
|HV| \"

Since uy is positi'vle definite [cf. 19, p. 189] and uy (¢) = 1, ||u‘)]|3(c) =1 If

€ H, uy(z) =1, whereas if z € K, uy(z) =0. Hence uy € S(H, K).



- . ‘ 20 -

(iii) Assume that H is norma.l Letr: G — G/H be the canonical homomor-
phism. Assume that K € F Hj’/ Then 7(K ) € Fo/n ( {e)} By (ii) above, “there
exists ug € B(G/H) with |uol|B(G/H) =-A-anduo(eH) =1, while uo(zH) = 0 for

every z € K. Let N

u(z) = uo(r(z).

Then v € B(G), |lullgey =1 (19, p. 199], u(z) =1if z € H and u(z) = 0 if

z€K. ' | | \ 0

PROPOSITION 3.1.8. Let G be an amenable locally compact group. Let H be a
closed subgroup of G which is either (i} open, (ii) compact or (iii) normal. Then

I(H) ha>§ bounded approximate identity.

Proof. Closed subgroups are S-sets (61, Theorem 3|. If H satisfics (1), (i)
: »

~or (iii), then s(F) = 1. By Proposition 3.1.2, I(H) has a bounded approximate

identity. : _ ' O

For non-amenable groups, Progﬁgfibp 3.1.8 is no longer valid. In fact,

Proposition 3.1.8 serves to cbaractenze the groups in [Am] (%g?heorem 3.1.10).

LEMMA 3.1.9. Let H bew closed subgroup of G. Then the quotie#t Banach

algebra A(G)/I(H) is isometrically isomorphic to A(H).

Proof. Let u € B(G). Let uj, denote the restriction of u to H. Then
3

uly € B(H) (19, p. 199]. Ifu € A(G), then u), € A(#) [19, p. 199]. Furthermore,

if v.& A(I), then there exists a u € A(G) such that v = u), and |jvllam =

inf{||ulla@G); v, = v} with the infimum actually attained (27, Thecrem 16].

- o
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Define 4 : A(G)/I(H) — A(H) by
3 - ‘e
- Wi+ I(H) =,  for ue A(G).
: ~ o .
t+ J(H) = v+ I(H), then wu—v € I(H). Therefore ujz — v, =0 and ¥ is well

deﬁned%Clearly,"d) Is an a]gebravhomomorphism\. Ifu, =0, wel(H)s0¢is
1-1. Since A(G)),, = A(H), 9 is an algebra isqmﬂorphism.

Let u € A(G). Let | - || be the quotient norm on A(G)/I(H). Then

3 N
RS ~

lu + I(E)llg =inf{lvlac) ; v = v}

1

= llupg llagm -

THEOREM 3.1.10. Let G be a locally éompact group. Then the following are

equivalent:

>
4
+

(i) G is amenable
(ii) I(H) has a bounded approximate identity for some amenable c/@®d sub-

o Broup H of G.

1 ( o
Proof. Ass:me that G is amenable. Let H = {e}. Then (/) has a bounded
approximate identity by Proposition 3.1.8. \
Conversely, assume that H is an amenable closed subgroup of G such that
I(H) has a bounded épproximate identity. Lept'in"s theorem [39] implies that/A(H)
has a bounded approximate identity and hence that A(C)/I(H) has a bounded
. ~ .

approximate identity. If J{(H) and A(G’)/I(H) both have bounded approximate

= identities, so does A(G) [cf. 18, p. 173]. Therefore G is amenable. O

J
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COROLLARY 3.1.11. Let G be a locally compact group. Then G is amenable i

(.

N

and only if I({e}) has a bounded approximate identity. e

Corollary 3.1.I1 is due to A.T. Lau (36, Corollary 4.11]. His techniques are

entirely different from ours, in that they rely heavily.;)n the fact that A(G) is a

(3]

Banach algebra which is also the predual of a von Neumann algebra.

PROPOSITION 3.1.12. Let G be a locally ’E'ompact group. Let 4 be a compact

subset of G. If Iy(A) has a bounded’ gpproxfmgte identity, then G is amenable.

" Proof. If G is compact, G is amenable. Therefore we may assume that G is

" non-compact.

Let K C G be compact. Let V be a compact neighborhood of e. Let

= o 4

u(z) = l%’lv ly-r e (3)

= ITI/—I/GIV (:z:y)lv.—xx(y_l‘)ﬁy.

s Ifze K, v(2) = 1. Also supp v is compact. Let {uq}acu be a bounded

approsinjate identity for In(A) with [|ualla) < M. By translating A if necessary,

. h)

we may assume that ANsupp v = 0. Therefores € Ip(A) and lim luav—vlac) =
: 04

<

0. Let € > 0. There exists ag € U such that

® o inf{Re dao(z:); ze K} >1-e¢.

4

4

Let o € Cno(G), ¢ > 0 and supp ¢ C K. Then

(tag,©)| < [ Lwllev |uao lfa(e)

<M Lo|lco, ‘ A
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where || Lo||cv is the norm of v as a left convolution operator on L*(G). However

Refutyoe) = [ (Re ey (=)ol(z)dz > (1 - )]l

ahd
lolly < M| Lpflcy-
o
As K was arbitrary, ' :
#lly < M||Lp|ley for every % € Coo(G), ¥ > 0.
Given ¢ € Coo (G), wve
[1lF = 1" [l < MLy "{lew
< M”L’»[’Hcv"- °
Therefore,
)

\,' vl < M/n |IL||cw for every n.

. Tt follows that Uz/J[ll = ||Lt||cy for every ¢ € Co(G), ¥ > 0. This implies that G

is'amenable [cf. 50, p. 85).

Y

o

ideals with bounded approximate identities while for non-amenable gr.oups many

t

' potex{tial candidatgs are eliminated. Indeed, for non-amenable groups, if /{A) has

a bounded approximate identity, then A must be ﬁ‘Tf‘g_taopologically large.”

" We cannot remove completely the topological restrictions imposed on A in

the statement of Propositon 3.1.12. For example, fiG is any discrete group, ly)

is an identity for I(G\{e}).

~

Dé.

It appéars that the Fourier algebra of an amenable group is rich in closed
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Leptin’s theorem [39] shows that if G is amenable, then A(G) has a bounded

approximate identitlgr {ua}aex With ||uglla) < 1 for each a € U For ideals in

(G), this is n true. In fact, we have:

t

OPOSITION 3.1.13. Let A be a closed subset of G. Then‘I(A) has a bounded
approximate identity {uq}oea with lualla) <1 forevery a€ 91\1\ and*only if

G\A = zH for some z € G and some open amenable subgroup H of G.

\ .
Proof. Suppose that G\A = zH, where H is an open amenable subgroup

of G: Since H is an open subgroup, I(z™! A) can be identified \ ith A(H) As H is
amena.ble, A(H) has a bounded approximate identity {vg} .~ witn allagn < 1_.”
Conversely, assume that I(A4) has a bounded app’roxiﬁéte identity {ﬁa’}aei’i _

with |leqlla(g) <71 for every a € A. By Lemma 3.1.3,‘ 'IG\A € ‘B(Gd) andv
M\ 4 |13(gd) = 1. -Let r € G\A. .Then G\A = zH, where H is a @béroup of.
G |cf..23, p. 377]. \Since A is closed, H is open. Again, vs'/e‘ identify A(H) w-ith
Kz ' A). As I{z"VA) has a bounded apprqximate identity, H rr;ust,'be amenable.
. - I

In case A = H is a closed subgroup, Proposition 3.1.13 shows that I{H) has

a bounded approximate identity {tq}aex with |uallag) < 1if and only if H is
an amenable group and H has index two in G. It particular, I({e}) has such an
approximate identity if and only if G = {e, z}.

—

v

- §3,2. Boundedﬁ Approximate Identities in Weak-+ Closed Ideals..

Recall that B(G) is the dual of C*(G). The purpose of this section is to

;o
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characterize the ideals in A(G) which are closed in the re{tative weak-+ topology

, t
that A(G) inherits as a closed subspace of B(G) and at the same time possess

AY

bounded approximate identities.

DEFINITION 3.2.1. Let K C G be compact. Define

- Ag(G) ={uv€ A(G), suppu C K}. 7

[+

It is easy to see that Ax(G) is a closed ideal in A(G).
Assume that {us}aex C Ax(G) and {ug} coﬁvergesﬁto u € B(G) in the
weak—x* topology. Suppose that there exists zg €‘G\\K such that u(zo) # 0. Then "

there exists a compact neighborhood V of zg S\féh that VN K = 0. Let
v

f(I) =1y u(z:) s

Tﬁen fe Ll_(G) and

-0<'/;;1v ;(_:r—)u(af)dzz (f,u) |

:' hén (fa ua>

: N :
“ = li-m/ lv u(z) ua(z)dz
. : G

) a
=0
which is impossible. Therefore'supp u C K and Ag (G) is weak-# closed.

.

LEMMA 3.2.2. Let K C G be compact. If K is open, then K is the union of

'ﬁnitely,%any cosets of an open compact subgroup H of G.

Proof. For every z € k, let V; be a symmetric neighborhood of € such that

0‘:(-?’4.,
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V2 C K. As K is compact, there exists {z1,... ,Tn } such that

n

K = U :E,'in.
1=1

Let W = [ V;,. Let y € K. Then

1=1 N

y = zZ;,vi, for some z;, € K, and some vi, €V, . . 0
Hence
yW C zip Vo, W C i Vo € K. L
It follows that W generates an open compact subgroup ;I with KH = K. As H
\ .
is open and K is compact, K is the union of finitely many cosets of H. . o,
We now state the main result of this section. !‘v '
i
THEOREM 3.2.3. Let I be a closed non-zero ideal 'in,A.(G) which is weak—x 4~
closed in B(G). Then the following are equivalent: ¢
(i) I has an identity, ° A ]
s v,
(ii) I has a bounded approximate identity, ‘ : SR
(iii) I = Ag(G) for some compact open subset K of G. S
Furthermore, if any of the above holds, then ‘
n »
I=@ L, A(H) o
i=] N
for some cbmpact open subgroup H of G and {z,,...,z.} C G. o SN

Proof. Clearly (i) implies (ii).
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Assume that F has a bounded approximate identity {tuaqleex. We may
assume that {u,} converges in the weak—x topology to some u € I.. Let A= Z(I).
. P

Wice u € I, u € I(A) As I is non-zero, G\ A is non-empty.

-

If £ € G\ A, there exists v € I and an open neighborhood U of z such that-

|v{y| > Ofor every y € U. Since lim |luav—v||46) =0, {ua} converges uniformly
; a . .

to 1 on U. It follows that u = IG\A. Let K = G\A. Then K is open. But
‘ ' . P _

1 € A(G) C Co(G), so K is also compact. Jt is clear that I = Ax(G) = 1k A(G).

>

-+ Therefore (ii) = (iii).

Assume that K is compact and c;pen‘;md that ] = Ag(G). By Lemma 3.2.2,

o -

Q T - =] ' ' o
" for some open subgroup F- of G. It follows that K € R(G) and hence that

1k = A(G) [30]. Therefore 1x is an identity for I so (iii) implies (i).

In each case

! n
K=|JzH
1=1
. e
« " is the di#{oint union of finitely many cosets of a compact open subgroup H of G.
‘. ‘ ‘\
+ It is easy te see that )\
?; ’ »
¥ ‘a, . ) N
1 P Ag(G) = ©L,, A(H).
Y
2 :

It Gis compact, thcnﬁ(G) = B(G) and A(G) is itself a dual Banach space.
:@ . o - %{ {?‘ x

In [62], K. Tgylor’sh‘éwed R ‘%G is a separable group with a completely reducible

SRS : ‘ ' @ . : ) .
8% § . :
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left regular representation, therf A(G) is a dual space. The “az + b” group, which

consists of matrices of the form
) 1]

: a* b +
{(0\1>,'aEIR , bEIR},

is separable and has a completely reducible left regular representation, but it is

not compact cf. 34]. Therefore, if G is the “az + b” group, then A(G) is a dual

space. As G is also amenable, we shall see that this implies t}@multiplication on
)

A(G) is not weak—+ to weak—x se@ately continuous on bounded sphe.rés.
.

PRCPOSITION 3.2.4. Let G be a losally compact group for which A(G) is the

i

dual of a Banach space A.(G). Let A be a closed subset of G for which I(A) has
a bounded approximate identity. If for each u € A(G) the‘map v — uv is weak—+

to weak-* continuous on bounded spheres, then

- .

. n
G\A’ = | B
1=1

for some open compact subgroup H of G. : : -

Proof. Let {us}act be a bounded approximate identity in I(A). We may

assume that w* —limu, = u for some u € A(G).
a “~

Let T € A.(G). Let v € I{ 4). Then

~

() . e, T) = (0, T) < [(w0,T) = (220, T)| + [(4av, T) = (v, T)|.
As lignHuav -v|| =0and w' - liénuav = uv, (*) can be made as small as \e
like. Hence

~aw

(uv,T) = (v,T) for every T € A,(G) and every v € I(A).
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It follows that u(G\4) = 1. (.*f‘r
. \ . ¥
Let z € A®. There exists v € A(G) with supd v C A® and v(z) = 1. Let

T € A.(G). Then

4
A

(uv, T) = lim (uqv,T) = 0.

Y

Therefore, uv =0 and u = " 40. As u € A(G) C Cy(G), G\A? is.compact and

open. Apply Lemma 3.2.2. ; - U

COROLLARY 3.2.5. Let G be arr amenable locally compact group. Assume that
A(G) is a dual Banach space. Then the niu!tiplication on A(G) is weak—* to

weak—* separately continuous on bounded spheres if and only if G is compact.

o broof. If G is compact, A(G) = B(G). It is an easy task to verify that multi-

kon B(G) is always weak-x to weak—-* separately continuous on bounded

sphereé.

| ‘/Aiabnversely, since G is amenable, I({e}) has a bounded approximate identity

o

(Corollary 3.1.11). If multiplication on A(G) is weak-* to weak-* separately
. . W}

‘continu?us on bounded spheres, then G\{e}° is éofnpact by Proposition 3.2.4.

. .
(Hence G is compact. O

.
COROLLARY 3.2.6. Let G be the “az + b” group. Let A,(G) be a prédual
of A(G). Then multiplication op_A(G) is not weak-+ to weak-x separately

continuous on bounded spheres.
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§3.3.'BoundedlApproximate Identities and [SIN]-groﬁps.

Far locally compact abelian groups, Liu, van Rooij and 'Wang [40] proved

that ‘a closed ideal [ in'A(@) has .a b_p'un_dea _a_pproximéfe identity if and only if

. o e _ : .
' 5 = I(A),.where A € Rc(G).;'ﬁlivThg_rriilj)épurpgse of this section is tn extend this
result to amenable [SIN]—groups‘,"Tﬁ‘nggswhich contains [K]|, [4] and [Am] N DL

3 S, .
4

'LEMMA 3.3.1. Let A: B be closed subsrts of G. Suppose that I{A) and I(B)

2

have bounded approximate identities. Then so does I{AU B).

. . '\.I
Proof. Let {ui}ier, {vj}jes be approximate identities in I(A) and I(L)
"
with bounds M; and M; respectively. Let {w;,...,ws} C I(AU B) and € > 0.
. As I{A U B) C I(A), there exists 1y such that
* L
lwieug, —wkHA(G) <ef2 for k=1,2,...,n.°
As {wktio }5=y C I(B), there exists jo such that,
”wkuio - wkuiétﬁg‘}i,q(c) < 6‘/2 for" k=1,2,...,n
Then }lu,ovm lac) <M Mz, uy,vj € I(AU B) and
lwe — weuio vy flaey <€ for k=1,2,...,n.
Al i Yo :
L - P O
By .

= 1

I

LEMMA 3.392. Let A, B be digoint closed. subsets of G. Assume that there

3

exists u € B(&) with u(A) =1 and u(B) = 0. If G is amenable, then there exists
&

¢ - : it

[
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) .

a bounded approximate identity'in I(A U B)‘,i;f and onI} if there exists bounded

a;;pmximate identities in each of I(A'). and I(B) .

y
Proof. Assume that I(A UB)hasa bounfied;approximaté identity {uq }aea -
By Leptin's theorem [39], A(G)-has a bounded7a,pp~roxi‘mate'iden‘t'ity {vj}jes-
s , ‘ .
Then
{uau — (1 —u)vs}

. . -\ v
"is a bounded approximate identity in I(A) and

{(uq - Uqt) + uv,} | '

is a bounded approximate identity in I(B).

The converse is Lemma 3.3.1. O

X

The next proposition is of independent interest. .

Al

PROPOSITION 3.3.3. Let G be a [SIN|-group-and H a closed subgroub of G.

Then s(H) = 1.

Proof. Let K be a compact subset of G such that K NH=0. Let V bea

symmetric neighborhood of e Such that V is compact and-
- 0 ¢

b

(1) ‘ . VIHNnK! =9
As both G and H are unimodular [cf. 48], there exists a G-invariant measure

. i )
dg on the quotient space G/ H (20, p.267]. We may assume that the Haar measures

uc and pg are chosen such that

"  /G f(9)duc(g) = / [/Bf,ﬂ‘(gi.l)duy(h)’] dg fo;' every fj' E COO(G).'

G/H
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By a result of Mosak {46], there exists a continuous non-negative central

A

function v on G such that

cupp v C V
and
L [, L] stomsas] )
o /G . :/Hv(ghivd'ua(h’) /év(gh)duff(h)]dg |
-/, /;@h’iili‘{{ﬂ) [ v(gh'h)fﬁgmm]dg
@ =/ /I;v(g)’v(gh)dufr(h:)duc(g).

For every z € G, déﬁne
/ / Yo(z ™t gh)dup (h)dpa(a .

Following @n argument of Cowling and Rodway (13, p. 95|, we see that v is a

d ‘

coefficient function of the unitary representation obtained by inducing the trivial
representation of H to G. Therefore, u € B(G). Furthermore, |ju[gc) < 1.

If z € K, then v(’g’)v(zzf1 gh) = 0 for every g€ G, h€ H by (1). Therefore,

w(K) =0 | ’
Also,if z € H,
u(z) */ / duH( )duc(g)
/ / gh duH(h')duG(g) * (sifice v is central)

=1 by (2).
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Hence u € SA(H, K). Since K € F(H) was arbitrary, s(H) = 1. =l

The proof of Proposition 3.3.3 uses an idea of Reiter [51] which was later

modifed by Cowling and Rodway in [13, p. 98] to show that if G isa [SIN]-grdﬁb

‘and H is a closed subgroup. of G, then for each v € B(H) there exists v € B(G)
’Vﬂ'—~» . .,

such that Viy = .

’

We are now in a positirn to completely characterize the ideals in the Fourier

algebra of an amenable [SIN]-group with bounded approximate identities.

. o ‘ \\ N
THEOREM 3.3.4. Let G be an amenable [SINl-group. Let I be hn ideal in A(G).

"Then I has a bounded approximate identity if and only if Z(I) € R.(G).
Moreover, each A'&. R.(G) is a set of spectral synthesis, so if I is closed,
I = I(Z{I)). In any case, the bounded =pproximate identity {u?}agm can be
chosiaf such thf.t
(i) ue € A(G) N Cxo(G)
(ii) Jf K € 7(A) then 'ther?‘exists a sequence {ug, } C_Z {ua}aca such that if

vel and supp.v C K, then -

lug, v —v]ae) <

[

S |-

Proof. Let A € R.(G). By Lemma 3.1.5,

n

A= U .’z:,'(H(\A,'), Ca

2 ‘ 1=1
A

e

where z; € G, H; is a closed subgroup of G and A; € 7 (H;).
By Proposition 3.3.3, s(H;) = 1 for each 1. Hence I{H;) has a bounded

approximate identity (Proposition 3.1.2). N
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-

r

As A; € R(Hi), 1a; € B(H,') by Host’s idempotent theorem [30].IBy [13,
Theorem 2], 1p, extends to a u € B(G) with u € $(A;, Hi\A;). Since G is
‘ amenable, I(H{\A,‘)'h'as a bounded approximate ‘ide.ntity by Lemma 3.3.2.-Hence
. H(zi(Hi\b4)) hasa Boundc;d approximate identity.

A careful examination of the proofs of each of the résults used above shows

that the bounded approximate identity in I{A) can be chosen to satisfy both (i)

and’(ii).

Tile approximate identity for I(A) lies in Coo (G) N A(G). Therefore A is an
S-set. If.I is any ideal with Z(I) = A, then Io(A) C i C I(A) [cf. 29, p. 493], .so
the bounded approximate identity for I(A) is also a bounded approximate identity
for 7. :

Assume that I ﬁas a boundéd approximate identity. Thenv Z(I) € R.(I),

~ exactly as in the proof of Lemma 3.1.3. . U

P

COROLLARY 2.3.5. Let G be either abelian, compact or amenable and discrete.

Let A€ R.(G). Then I(A) has a bounded approximate identity and A is an S-set.

.

For an arbitrary locally compact group, it is not true.that every u € B(H)
extends to some v € B(G). Therefore it is not clear tt  S(A, H\A) # 0 for every
hY
Ae€R(H). It mafﬁ well be that our techinique will not work for groups which are

far from [SIN]. _ T
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" §3.4. Cofinite Ideals in A(G).

&

DEFINITION 3.4.1. Let A be a Banach a.fgebra. Anideal I in A is cazﬂéd L
o

I
~

coAm'te if the dimension of A/I is finite. "The dimension of A/I ié called the

codimension of I. ;
/

n .o . EO
Let I* = { 3 uivi; w4, v; € I} Then I? °< an ideal of A contained in I. I is
said to factorize weakly if I* = I. Such ideéals are also calle ~ {dempotents.

s in"A(G) was motixat

Our interest in .cofinite'ideal
- . ‘ o

:. by three.papers of
& N \‘

- Gi‘WilIi;‘[67],‘{68].and [69} Wil;ii‘s succe‘edea in showing that if G is non-amenable,

t s -

then no closed gbﬁmtdlelf%’ideal inﬂLf}(G) has a\b'ound.ed »approxim'ate identity [67].
In contrast to this -r‘e;ult, he prdv;.d m 68] and [6&5} ti;'z}tvfor every lgcally compa"\ct
- group, every closed codimension -one idgal is Ai'dernpi)tent ‘and.for aé}arg;e class of
groups evéry codimension tvs;o ideal is idéfnpotént. In this section, we will show
that while the ,anal‘égue of W‘illis’ ﬁrst result hé)l_ds f{th.ue for A(G), it G is'non-':
‘ [ ]

amenab e, no‘cLb“‘secti'cqﬁn.ite ideal in A(G) s idempotent.

\d
7

We be"gjli_n with ;lemma that may ?é part of folklore.

'
-

LEMMA 3.4.2. Lét G be an amenable locally compact group. Then A(G) satis-
fies Ditkin’s condition.

Proof. Co'?dition (i) follows immediately from Lemma 3.1.7 and the proof of
Proposition 3.1.2. If G is non-compact, then condition (i) folloxilvs from Leptin's

theorem [39];‘ - : o ' a.

PROPOSITION"3.4.3. Let G be an amenable group. Let A be a closed subset,

\

of G. If bdy (A) contains no non-empty perfect set, then A'is an S-set.
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Proof. The proposition follows immediately from Lemma 3.4.2 and Ditkin’s

& \ .
theorem [cf. 29, p. 497]. ' O

COROLLARY 3.4.4. Let G be an amenable locally compact group. Let A be a
closed discrete subset of G. Then, A is an S-set. In particular, every finite subset

of G is an S-set and if G is discrete, every Subset is an S-set. =«

[

Proof. This is immediate from Proposition 3.4.3. g

CORC’ ARY 3.4.5. Let G be an amenable discrete group. Let A C G. Then

\
- s(A) <ooifandonly if14 € B(G). \

' Proof. If 14 € B(G), then s(A) = || 141l 5(q) -
‘ 3

If §(A) < oo, then J{A) has a bounded approximate identity (Proposi- k

a

tion 3.1.2) and 14 € B(G) by Lemma 3.1.3. {\

(

. COROLLARY 3.4.6. Let G be an amenable ‘Ioc;aHy:éompact group. Let I be a

clos\g}i cofinite ideal in A(G). Then I = I{A) for some finite set A = {zy,...,Za},
. . | /
where n is the codimension of I. Furthermore I* = I. LR

-

Proof. Let A = Z(I). Since [ is(\goﬁnite, A must be finite. Therefore A is an

S-set by Corollary 3.4.4 and I=1I(A). ¥ A={z),...,2,}, let u; € A(G) be such

that ﬁg(rg) =1, ui(z;)

* 0if ¢ # 7. TheI; {u; + I(A)} is a basis for A(G)/AI(,A)

LR

' et S
Proposition 3§1'2 implies that I{A) has= bounded approximate identity. By
Cohen'’s factorizatifh theorem (29, p. 268|, I*(A4) = I(A). T d

LEMMA 3.4.7. Let G be a non-amenablé locally compéct group: Let I = I{{e}).

Then I* is not closed in A(G).'
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Proof. {e} is an’ S-set [19, p. 229] and Z(I?) = {'e}(Therefore if I* is closed,

.

12 = I. Assume that I* = I. Let v € A(G). Let u € A{G)NCyxo (G) with u(e) = 1.
Then , : ' ' )

v=uv+(v-uv)

with v — uv € I. Hence

~

.

. n L e .
VMU = E WUy for wy,v; € 1.
1=1

As G is non-compact, there exists z € G\supp u. Since uv € I({z}) and I*({z}) =

~

I{z}), ' )

uy = E t,m;j for t;,m, e I{{z}).
7=1 ;

: Vi 4 &
Thus ot . A‘%
' ' n m o ‘
“which is impossible by a result of Losert [42, p. 139] ’ ' a

td

The prbof of this lemma can be easily; modified, tf(J) show that if G is a non-

amenable locally compact group, no ideal of the form I{“{:z:; ,---2In}) can be idem-

potent. We contrast this with 68) ‘and‘ [69], where Willis has shown that for any

s

P )
locally compact group G every closed codimension 1 ideal'in L' (@) is idempotent

* B v P 1 h '
and that there exist non-amenable groups for which every closed Todimension 2

ideal £} (G) is idempotent.

4

THEOREM 3.4.8. Let G be a locally compact group. Then G is a'}menbable if and
only if every cofinite ideal is of the form I(A) where A is a ﬁnité‘sulfi{éiﬁ_;af G o

Al
T
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Proof. If G is amenable, then every closed cofinite ideal is idempotent by

LY
1y

Corollary 3.4.6. By (14, Theorem 2.3}, every cofinite ideal is closed and hence is
of the-fornr I{A) for some finite subset A of G.

Conversely, if every cofinite ideal is closed, (14, Theorem 2.3] implies that

J2({e}) is closed. Therefore G is amenable by Lemma 3.4.7. g
o - \

[ N
”,

_ We can now answer the analogue of Willis and Dales’ “weak” automatic

continuity question [14, p. 397].

THEOREM 3.4.9. Let G be a locally compact group. Then the following are
4

equi vaIeI% -

(i) G Is amenable,

(i) ' each homomorphism from A(G) with finite dimensional range is continuous.

Proof. This follows immediately from Theorem 3.4.8 and from [14, Theo-

reniz,s]. | | ' .. 0O



CHAPTER 4
INVARIANTLY COMPLEMENTED SUBSPACES AND

BOUNDED APPROXIMATE IDENTITIES

In many respects, Banach algebras with bounded apprbximate identities are
better behaved than those without. This fact becomes particularly evident when

-,

one looks at their Banavch modules.

) M. Bekka showed that if Gris any locally compact groupfnd I is any closed
ideal in L!'(G), th;zn I has a bounded approximate .identity i»f and only if [+ =
{ge L™ ('67:72 g(x)f(r)duc(x) = 0 for every f € I} is the range of a continuous
projection on L®(G) which co;nmutes with the left module action of L!'(G) on
L*(G) [10]. We show, in Theorem 4.2.2, .that the analog of Bekka’s theo.rem holds
for A(G) when G is an amenab’le group. Moreover, the class of amenable groups

can be characterized by the equivalence of these two statements.

~We begin the chapter with some facts about general Banach-modules. In

. J—
Section 4.2, we apply\these results to the algebra A(G) and its closed ideals. In
. By > S .

particular, we show that G is amenable if and only if t}ie' a'naT/o‘% of Bekka's result
B )

holds. & - ]
Finally, we apply the results of this chapter ald of the previous chapter

to study A(G) for a discrete group G. Here again we are able to characterize

amenable discrete groups amongst all discrete groups.
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| §4.1. Banach Modul‘es. ‘ : : o ®
DEFINITION 4.1.1. Let A bea Banflch algebra. By a left Banach-A-module |

(resp. right Banach-A-module) [resp. Banach-A-bimodule] we will mean an alge-
braic left-module (resp. right-module) [resp. bimodule] X which is itself a Ba-
nach space and-is such that a2 < laf 2] (res. |1z - al < 2] lial) [resp.
la -zl < [lall |z}l and ||z all < [[] lla]] for every z € X, a € 4.

" Let X and Y be left (resp. right) Banach .4;modules. A linearmap ' : X —

Y is called a left (resp. right).module homomorphism if

{

" F(u-z)=u -T(z) [resp. T(z-u)=T(z)ul
I |

for every u € A, zé)é. » o J
.-

Let Homf (X,Y) [resp. H\omf}(X, Y)] denote the continuous left [resp. right]

module homomorphisms of X into Y. With respect to the usual operator norm,

&

Homf (X,Y) [resp. Hom&(X,Y)] is a Ban;xch space. If X and Y are Banach
A-bimodules, . then we denote Hom$ (X,Y) Hom‘TYY) by Hom X‘Y) In
case X = A, 'Hom}(4,Y) [resp. HomR(ﬂ,Y)] is the space m\/(csp. right/
(A, Y)-multspliers. If Y is a Banach A-bimodule, then Hom?* (.4 Y) is the space of

(A, Y)-multiplicvrs. i

Let X be a lef‘t [resp. right] Banach A-module. Tb&n\X‘ becomes a right

\
(resp. left] Banach A-module as follows: ' ) (/

\—‘
(T-u,z) = (T,u-1) forevery ue A, zeX, TeX'

fresp. (u-T,z)=(T,z-u) forevery"ue‘ﬂ, teX, TeX']
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Furthermore, a simple calculation shows that if I“:‘{'E Homf(X,Y) [resp. % €

Hom#$(X,Y)], then T* € Hom%(Y*, X*) [résp. I* € Hom{(X*,Y*)].

PROPOSITION 4.1.2. Let A be a Banach algebra with a bounded right [resp. lei]

approximate identity {uq}aca. Let X be a right [resp. left] Banach A-module.
LetT € Horn(f(ﬂ,X‘) [resp. T € Hom® (4, X*)). “Then there exists T. € X* such

that

)
v

[{v)=u-T . [resp. T{u)=T- 4

.

for every u € A.

R
“y,

Proof. '(u) = im ' (uts) for every v € A. As {u;}aeg is bounded, we may
o 2kd o (" » . .

S LY

assume that I'(u,) converges in the weak—+ topology tos me T"

Ther 4 , e B

Therefore, I'(u) = u - T. The proof of the second statement is identical. O

DEFINITION 4.1.3. Let X be a left [resp. right] Banach A-module. Let Y

be a left [resp. tight] Banach A-submodule of X. We say that. Y is left [resp.



right] snvariantly comyglementcd if there exists a projection P from X onto Y such
that P € Homj (X,Y) [resp. P € Hom$ (X,Y)]. If X and Y are both Banach #-

bimodules, Y is called invariantly complemented in X if there’exists a projection

P from X onto Y with P € Hom#(X,Y). -

. ; . ~.
Let I ®e a closed subspace of 4. Let
o It ={p € A% p(u) =0for every u € I}.
Let X be a closed subspace of A*. Let .
LX ={u€c 4; p(u) =0foreveryp € X}
? S 8
:& If Iis a closed Ileft [resp. right| ideal in A, then I+ is a weak—x closed right resp.

\lebft] submodule of A* and convérsely.

PROPOSITION 4.1.4. Let A be a Banach aIgebra with a bounded right [resp.
left] approximate identity. Let I be a closed left [raqp right| ideal in A. Then

I has a bounded right [resp. left] approximate identity if and only if I+ is right’

[resp. left] invariantly complemented.

Proof. Let {uq}aex be a bounded right approximate identity in I. We may

assume that {u, }oea converges in the weak-+ topology of A**. Define .

%
(PT,u) = (T,u) ~ lim (ua,T-u) for TEA, u€A

P is a continuous operator on A* with [[P|| < 1 + sup{Jjua|l}. ¥ u € I,
“ ac

liorln(ua,T-u,) = (T,u),so PT € I+.
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Suppose T € I+, Then, if u € 4, (uuqs,T) = C for every a € UA. Hence:

-

; - (PT,u) =(T,u) forevery ué€ A
. h (~j

and PT = T. Therefore, P is a projection of A* onto I+,

Finally, if u,v € 4 and T € 4*, then

((PT)-u,0) = (PT,uv)e
) :
= (T, uv) — lién (a,T - uv)

M o

o i § = (T-u,v) — lim (ua, (T - u)v) -

= (P(T - u),v).

/

Therefore, P € Homfz (A*, I1).

Conversely, assume that I+ is right invariantly complemented and that
{ua}acn is a bounded right approximate identity o. A. Let P € Ho'mfi(ﬂ',ll)‘

' be a projection of A* onto I*+. Then (1 - P) .e Homj(A*, A4*), where 1 dCﬂOLCb:
the identity operator on A*. We have (1 -—HP)' € Homﬁ(ﬂ" , 4" ) and (1 - P)

is a projection of A** onto (IJ“)l = I™%"  the weak-+ closure of I in A*". Since

1- P)* € Hom? A, A*"), by Proposition 4.1.2, there exists ['g € A** such that
L ,

" ~,

(1-P)'(u)=u-Tg  forevery u€ A

Furthermore, we may assume that To = w® = lim(1 — P)*(u,) and Ty & (1),
a i ‘



g  w

\
¥
= (u,T). .
Therefore",“'t'l“o is a right identity for —w \
. ' A
) There exists a bounded net {vs}sep which converges in the weak—* topology

of To. Therefore {vs}peB is a bounded weak right approximate identity in I.

Hence I must
. ¥

also have a bounded approximate identity [cf. 11, p. 58]. I8

- LEMMA 4.1.5. Let A be a Banach algebra with a right_ [resp. Iléft} bounded h
approximate identity {ug}aca. Let T € Homﬁ(ﬁ,X') [resp. T € Homf} QA,X)].

Let 1 be 3 weak—+ limit point of {uq}aca in A**. If m: X — X**is the canonical

embedding, then
A(C(@) =4 T () [resp. m(T(x)) =" (i) -u]

for every u € 4.

e

Proof. Let T € Hom? (%, X3 Then

w' — HmD* (n(ua)) = I** (i).

a
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‘ ex15ts a h'neaptz;ap M : Homf (4, X) —(X* . A)* [resp. (A -X*)*] such that

St ’ - ' . ' : v - 45

ﬁence, for every' ueAand T X"
; (- T*(1),T) = lim {u - T** (n(uq)), T).
Therefore,

7r’(I‘(u)) =w' - l';mjr(T(u ‘Uq)) = w". = li;nn(; T{ug)) =u- F‘.' ().

&7 a

O
- The next.proposition is due to Gulick, Liu and van Rooij 26, p. 142 for -
A = LY(G). 1t is easy to see that their proof carries over to any Banach algebra
A with a bounded approximate identity.

o -

PROPOSITION 4.1.6. Let A bec a Banach algebra with a right [resp. left] ap-

proximate identity {uq}ecu such that [talleex < C for every a € U, Then there
4

\

B

I < IMTY| < C|iT|

1

for every T € Homé(ﬂ,X). Furthermore, ,M is onto if and' only if A- X** C W(X)\

[resp. X** A C m(X)]. - -

§4.2. Invariant Projections on VN(G).",

We now apply the results of Section 4.1 to the algebra A(G). N
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‘PRLQJPOSIT‘I)ON 4.2.1. Let A C G be closed. Suppose that I(A) has a bounded

approximate identity. Then there exists a projection P of V N(G) onto I(A)*

such that'u - P(T) =-P(u-T) for every u € A(G), T € VN(G).

Proof. This is simply Proposition 4.1.4, if we observe that the éxistehce of a
bounded approxima;te identity for A is not used in the “only if” direction of the
proof. ‘ g

Our main theorem is:

1

~

THEOREM 4.2.2. Let G be an amenable Io\éa.IIy compact group. Let X be a
weak-x closed A(G)-submodule of VN(G). Then the following are equivalent:
(i) X is invariantly complemented,

(ii) + X has a bounded approximate identity. .

Furthermore, if G is any locally compact group for which *+ X has a bounded

approximate identity whenever X is a weak—x closed invariantly complemented

N

submodule of V N(G), then G is amenable.

~ Proof:. The first statement is Proposition 4.1.4. The second statement follows
frormn the observation that X = {0} is weak—* closed and invaria.ﬁtly complemented,

while A(G) = * X hasa bounded‘approxi@ate identity if and only if G is amenable.

. £
1

U

DEFINITION 4.2.3. Following Granirer [24], we denote (A(G)-VN(G)) by

UC’B(@). If G is amenable, Cohen’s factorization theorem implies that 'UCB(@) =

e

A(G) -VN(G).
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PROPOSITION 4.2.4. Let G be amenable. Let T € Hom™® (UCB(G),UCB(G)).

S
Then there exists Ty € HomA(®) (VN(G),V N(G)) such that

~— '

| FOIUCB(Q = r » a{ld HFH = ”FOH

- | y
Proof. Let {ug}aecx be a bounded approximate identity for A(G) with

A(G) — C by

Ao(T,u) = (T(ua - T),u).

Then ||A,|| < ||T| for each & € 2. It follows from an argument similar to the proof
of the Banach—AIaoglu theorem [cf. 57, p. 66] that there exists a subnet {Aak} of
{A4} and a bilinear form Ag : VN(G)- x A(G) —-» C such that |.|A0]| < ||F|| and Ag,
converges pointwise to Ap. - |

. Define T : VN(G) = VN(G) by

(To(T),u) = Ao(T,u)  forevery TEVN(G), ue€ AG).
Then ||To|| < ||T|]. ¥ T € UCB(G), then |lug, - T - Tllvn) — 0. Hence,

lim (T (v, - T), %) = ((T), w), -

-~

SO ro =T. | ‘ B

| UCB(G)

i

PROPOSITION 4.2.5. Let G be an amenable locally compact group. Let X be a

4

weak—x closed A(G)-submodule of VN(G). Then X is invariantly complemented

in VN(G) ifand only if X N UCB(G) is im}ariantly complemented in UCB(G).

¢

uallag) <1 for_ each a. Given « € U define a bilinear form A, : V N(G) x

0
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© Proof. Let P be an invariant projection of‘VN(G) onto X. Let T =u-T1 €

UCB{E;). Then

P(T) = P(u-Tj) = v P(T}) € (A(G) .m(;» nx

an< hence PlUCB(@) is an invarianf projectién of UCB(@) onto UC’B(@) nX.
Conversely, let P be an invariant projection‘ of UCB(@) onto UCB(C’;) nX.

l%et Py be the extension of P tf) VN(G) constructed in the proof of Proposi-

tion 4.2.4 with respect to the bounded approximate identity {Ua}'ae?; of A(G).

Let 4 € X and T € VN(G). Then P(u,T) € X and

(P5(T),w) = lim (P(uq - T),u) = 0.

Therefore, BT € (+ X)* = X.

If T € X, then uqT EZU'C:B(@) N X. Therefore,

Y

(By(), ) = fim (P v T)s0)
g 'ff - \l}ma o
(i

lim (uy - T,u}

\: \r | o h . 1'
& . ‘= (T,u)  for every u€ A(G).

s T

Hence Py is a projection of VN (G) onto' X.

We do not know whether the assumption ’t,}"ll'ajt,’«G be ameiNble is necessary
. B . . ’_,:“ ’ . 7 é‘
in either Proposition 4.2.4 or 4.2.5. e T C .

*

~—
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§4.3. Applications to Discrete’Groups. }

We close this chapter with some applications t@ discrete groups. The first

result is an analogue of Lau and Losert’s {37, Corollary 4}.

< o

PROPOSITION 4.3.1. Let G be a discrete a.menable-gro/up, Then G has property .
B - 4 ‘ . B - M .

complemented subspace of VN(G),

-(¥) If X is a weak—x closed invariantly

&

then there exists a weak—* to weak-* continuous projectio}ln P fromV N(G).onto.

X such that ‘\ eN

“ P(u-T)=u-P(T) forever. € A(G), T €VN(G).

&

Convefsely, if G is a locally compact grou, with property (x), then G is discrete. .. .

Y

[

“antl plemented subspace of XN (G). B‘y«Theorerr\l~4.2.2',Ji-X has a bounded

approximatc identity, so X = I(M) for some Ac R(‘G) zh‘n"c’i 14 € B(G) by -
“Theorem 3.5.4 and Lemma 3.1.3. Define P VN(G) — X byf;} , ,

i
P

N ) Wiy
2 . }
o

i

P is indeed the desired projegtion.

Suppose that G has pro;;erty (+). As {L.), the 1-dimensional linear span:

of {L.}, is invariantly complemented (37, Theo'rérr? 2|, property (*) implies that
there exists a weak-» to weak—* continuous invariant projéction P, of VN(G) onto

P -
< 1



(Le).\If‘u,v\é\A(G), Pi(u) € A(G)and | C
R : - N
(B ), T) = (B (T),w)
=4Po(u-T),v),
e f<a-P5(v),T>.l

3

Therefore, P, ,A(G) € Hom#(® (A(G}?A(G)) There exists a continuous function

ug on G such that

| Py (u) = wou . for every u€ A(G).

. \S
o ﬁet zo € G. Then
N . - w
st %
§ (PO(Lzo)a.u) - (PO‘ (u)3LIO> 3
. < = (uuo, Lz, )
S £
‘ . = uo(zo)u(zo0)

T
|
I
o
——
Ix
(=]
=
e~
I
o
e
~

LN N X o ‘ﬁ' ’ o
As Py is a projection onto (L,) and Lz, ¢ (Le), we have ug(zo) <o ’fﬁerefor»e
ug = 1y and G is discrete, - ‘ O
. , . . 4 "

L4

"f,:-’;LEMMA 4)32 Let G be 4&1 amenable discrete group and let

I'€ HomA©) (VN(G),VN(G)). Then T is weak-+ to weak-* continuous.

Proof. Let u € A(G) .Singe G is amenable, u = wv for some w,v € A(G).

A

50
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Let T € VN(G). Then , | : o

-

- \ = (w,vI(T))
’ = (v T*(w),7)
By [35, Theorem 3.7), I*(u) = v - T*(w) € A(G). | O

2>

PROPOSITION 4.3.3. Let G be an a.menable discrete éroup. Let P be a contin-
uous projection of V.N(G) onto a weak& closed A(G)-submodule X of VN(G).
If P € Hom™©) (VN(G)', VN(G)), then X‘L.. - I(A) for some A € R(G). Furtiler-
more, o ‘

P(T)=14-T for“’eyefy T e VN(G].

Proof. Since G is amenable and discrete, P is weak—* to weak—* continuous

by Lemma 4.3.2. Therefore, there exists a function vy on G such that,

(W;(u) =uou  for every u€ A(G).

Let u € A(G), T €VN(G). Then

:<uou,vT> B &

= <U,U,0 ) T)a

éf@\

so P(T) = uo-T. Since Pis a projection, uo = 14 for some A and A = Z(*X). X

As X is invariantly cc;mplement‘ed and G'is amenable, Theorem 4.2.2 shows that
. . : t

I{A) has a bounded approximate identity. By Propesition 3.1.6, A € R(G). [
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PROPOSITION +.3.4. Let G be an amenable [SIN|-group. Let A € R.(G) and
I = I(A). Then there éxists a bounded linear map M from Hom!(I,I) into (I-I*)".

Furthermore, M is onto if and only if G Is discrete.

Proof. If G is an amenable |[SIN]-group, then, by Theorem 3.3.:';, I(A) has
“a bounded approximate identity. The existence of M follows immediately from

Proposition 4.1.6.
=
If G is discrete, A(G)- A" (G) C A(G) [35, Thecg{e'{n 3.7r. Cohen’s factoriza-
. . - ; .

tion theorem implies that I* = I. Therefore, I-I** = I-((I+)*) C (I-1)-A(G)** =

"I-{Ie¢A** (G)) C I. By Proposition 4.1.6, M is onto.

Conversely, assume that M is onto. By translating A if necessary,-we may

assume that e € G\A. Let ug €°P(G) NI with u(e) = 1. Following an idea of Lau

=3

o Stan ot B N’, I 'f»
! * Vg B v: E - » JJN i ! ", X
[35,.Theorem 3.7}, let O o L e 3 Rt
. . 2 7w ol
.- . ) ; EU L)
g o @y T Ewy

P
£,

K={uw-T; T€AG)™, T20, [DJ=1} * .

Since the map I' — ug - T is weak—# to weak-* continuous, K is weak—* compact. -

By Proposition 4.1.6, K is a weakly compact subset of A(G). Let A = {u €

P(gﬂ I; u(e) = 1}. Eor each u € A define

Ay(v) =uv - for every v€EK.

B33

Then {Ay; u€ A}isa ¢ommutative semigroup of continuous maps from { K, weak}

3
into { K, weak}. By the Markov-Kakutani fixed-point theorem, theré exists some

v € K such that

Auvo = vg for every u € A.
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¢ \

If £ # e, there exists u € A such that u(z) # 1. Therefore
~

vo = 1)

&

and G is discrete. ' : . O
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CHAPTER 5
/

_ COMPLEMENTED-.IDEAL; IN A(G)

§5.0. Introduction.

The problem of characterizing complemented ideals in the group algebra

LY(G) of a-locally compact abelian group has received considerable attention over

the last twenty-five years. D.J. Newmarf.éhowed that if T is the circle group

S

and H! is tlhe closed ideal of L!(T) consisting of all those f € L!(T) such that

f(n) = 0 f&r every n < 0, then H! is not complemented in L!(T) [47]. Rudin

extended Newman'’s result by showing that if I is com@ented in L!(T), then
N .
n * .
I = I{A) where A = |J a;Z + b; and conversely [58].
1=1 ‘ a '
In his memoir {55, p. 20|, H. Rosenthal proved that if, I is complemented in

0 . R
L'(G), where G is abelian, then I = I(A) for some 4 € RC(G)._ Sets belonging to

}Zc(a) were characterized in [22] and [59).

Alspach and Matheson ch;xracter;ized the closed complemented ideals in LYR).

They showed that I is complemexhted if and only if I = I(A) for some

A=

>

(RZ+B\F, - - ®
4 \ o ) 330 S

-
1t

g

~ where the T(;E)are pairwise rationally_déperlldeﬁ;t" and F" is finite [2-] _ t% s \?\l

In Tg], Alspach, Mathesoﬁ and Rosenblatt léoi(ed at thgc‘O@gleﬁler}gagion
problem —for arbitrary abelian locally compa;t' groups: They were sﬁccessful in
giving necessary and sufficient ébnditions for an ideal with a discrete hull to be
complemented [3, p. 265|. However, their proof is incobrrec't, and it was subse-

quéntiy corrected in [4]. They also gave a complicated inductive procedure for

54
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finding complemented ideals. This procedure was exploited by Alspach to identify

the complemented ideals in L!(IR?) [1]; though it is not likely that it will be of
much use for L! (IR") when n > 2. Little else is known for the abelian case.

We will attempt to take a small bite fromthe complementation problem for
-

~ ’ ' . ‘ N
A(G) of an arbit-arv locally compact group. For the most part, we will restrict .. .

. q‘:!;" . -
ourselves to identifying the closed subgroups H of G for which F#) is comple- .

[ S

k4

_~

' mented. We show that this is equivalent to the existence of a continuous linear

map [’ :-A(H) — A(G) such that Ty, =uforeveryue A(H) (Proposition 5.1,2).

We also prove that this criterion is satisfied by a class of:subgroups which includes

. all compact groups. By exploiting a geometric property posgsessed by A(G) for all

groups in the above class, we are able to exhibit a locally compact group G and a

closed normal subgroup H such that I(H) is not complemented in A(G).
In Section 5.2, we look at the complementation problem for product groups.

By making use of a number.of structure theorems, we are able to extend Ehe results
. ]

~.of Section 5.1 to larger classes of locally compact groups.

§5.1. The\Complemented Ideal Property for Closed Subgroups.
We will show that if H is a closed subgroup of a locally compact group, then

I(H) is complemented in A(G) if and only if A(H) can be exténded to A(G) in a
& : :
continuous linear manner. We will also show that for an arbitrary locally compact‘ |
gfoup every compact subgroup H has this extension %}operty.

DEFINITION 5.1.1. A closed ideal I in A(G) is said to be complemented if -

there exists a continuous prdjection P of A(G) onto I. Let H be a closed subgroup
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of G. H is said to have the complemented ideal property '(C'.I.PI.) in Gif I(H)is

complemented in A(G).

I -

[N

Let ' ,"“v

C.I.P.(G) = {H; HhasC.IP.in G)}.
57 .

“

PROPOSITION 5.1.2. Let H be an open subgroup of G. Then H € C.I. P. (G) In

| particular, if G is a dxscrete group, then every subgroup of.G belongs to C. I P.(G).

Proof. 1o\ € B(G). ,r’Furth?frloge A(G) = 1HA(G) & IG\CHA(G’) and

IG\HA(G).———I(H).. ' - ‘ O

'The next proposi_ti%provides us with our key tool in identifying subgroups

in C.I.P.(G).

4 '
- /

PROPOSITION 5.1.3." Let H be a closed subgroup of G. Then H € C/\'I.P.(G) if
_‘ P
and only if there exists a continuous linear map T : A(H) — A(G) such that -

Iy =u forevery u€ A(H).

Yy

) | >
¢ Proof. Assume H C.I.P..(G). Let Q be a continuous projexction of A(G)
&

onto I(H). Let u € A(H). Let.v € A(G) be such that

d
Wﬁvly =u and |vllae) = lluflam [27, Theorem 16].
' ) G

Define

Fu=v—-Qu.

Then

L

[ITull < llvlla@) +1QH llvllag) = 1 + QU iullacm

N

O
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/
Let v; be any other, gxte‘n'sion of u to G. Then

‘(.vl — Qvl) - (v-Qv)=(vy —v) —Q(v; —v) =0. h

. _Theref%é{i?r is well defined.

S0 5ﬁg&7ﬁ@zi,u2 € A(H), oy,02 € € and v;,v; be extensions of uy and uy
e L .

respectjvely in A(G). As ayvy + 202 is an extension of aju; + agus,
cr Y :.57;17"- N . PO ’ '

a

LN

[(a1uy + agug) = (a1v; + agv2) — Qo vy + agv)

e Ny

= oy (v — Q(v1) + a2 (v2 — Q(va))

= alI‘(ul) + agl“(ug),

-
A

so [ is l,ine—z'a.r.."‘ . . N
Conversely, assume;"thiét"l* QH) — A(G) is conytinuous,(ql\a'r}gar and Ty, =
. ,"‘: 7’

u for every u € A(H): For qdch v € A(G) define
Q(v) = v~ Tliy, ).

Q is linear and ||Q| <1+ IT||. SThce T(vjy )iy = vy, Qv) € I{H). If v € I{I]),

vy =0,50 = =wv. , ‘ ' O
S
N IR T - .
The next proposition’i§‘the starting point of [3]. It is not stated as such, but
: v !

v

the essential ideas of the pfqo'f'are included as a remark [3,.pi. 257|. We include

L PR

the details for the sake of m’ipleteness.

PROPOSITIOI\?%S.IA., L be an abelian locally compact group. Let H be a
s . : . . §
closed subgroup of G. Then'there exists a linear isometry I' : A(H) — A(G) such

that Tu, =u forve\}ery u € A(H).
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Proof. There exiéts a closed subgroup Ag C G such that H = @/Ao. Let ©

" . be a locally bounded, localy measurable function on G such that
/ plzy)dun, (v) =1
Ao

#ﬁ/Ao almost everywhere [cf. 52, Chapter 8].

Let f € L? (a/Aé). Then

Spf(n) = flr+ ho)ply)  forevery 4eG

defines a linear isometry of L! (@/Ao) intc L “A). Let

. 710 1(2) = [ Slas)du ()
; Ao .
Then 7, maps Ll(é) onto L} (G/Ag). Furthermore, Thy © Sy is the identity on
L'(G/Ao) and if k€ H,
(SeN)"(h) = f ® forevery fe L'(G/Ao)-

- Let Tq " A(H) — Ll(a/Ao) be the inverse of the Fourier transform. Define
I': A(H) — A(G) by

Tu =[S, (Tou)".

We have [|Tulla) = ||lulla and Tuj, = u for every u € A(H). | O

-3

GOROLLARY 5.1.5. Let G be an abelian locally compact groﬁp and let Hybe a

closed subgroup of G. Then H € C.I.P.(G).

A representation 7 € Ls is said to be c.ompletcly‘ reducible if

=B,

acy

t
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where o4 € G.

It is well known that if G is abelian, then the left reg

“

ular révpriesen‘tation PG
R a .t
is completely reducible if and only if G is compact [cf. 62]. .

We can now prove the main result of this section.

<

THEOREM 5.1.6. Let G be a locally compact group. Let H be a closea .. .1group
of G such that the left regular represeniation pr of H is completely reducible.
Then there exists-a linear isometry I' : A(H) — A(G) such that Tu|, = u for.,

every u € A(H).

g

RN

. o ‘
Proof. Let pg denote the left regulas representation of G. Since A(G)

v =
A(H) [27, Theorem 16, PGy, is quasi-equivalent to pr[G, p. 27]. Therefore, there
exist cardinal numbers ng and ngy such that nG(pGIH ) is unitarily equivalent tc

ngpy. It follows that there exists a Hilbert space isomorphism T : ng¥,, -

ngX,, such that

Tngeg,, =nupl [cf. 17, p. 118].

b

As pg is completely re‘ducible, we can write

)

;H = Z @‘maga and )'(pH = Z @ma)(aaa

acd a€l

Lears

where oy € o for every a € A. Each X,, is a closed subspace of ¥,,, , so T-'H,, -
8

is a closed subspace of ng Hoo o |
Let A, denote the closure in B(H) of the space F,,, of coefficient functions

. ) : A
of 04. Since o4 is irreducible, A5, is linearly isometrically isomorphic to ¥,, @ Xy,
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—_ . A '
6, 2-2me partie|, where ® denotes the projective tensor product [cf. 60, p. 188].
. >

For ¢,n € Ho, , define
Toy (0a()6m) = (nepc (VT Ty )

Then I',, extends to a linear map of Fy, =‘)(aa ® Ay, into Avgpc with-
B n o | . . n ) ‘
© o Ton Y (o ()i ma) | B@) < T sillwngee 177 nillingpo
Y=l 1=1 : O
. . | »
=3 lillteg 700,

1=1

= | Z (00 (Vsim4) |l aga) -

¥

Therefore, I'y, extends to a norm non-increasing linear map of Ay, into Angpg.

Since TngpclH = anHT,

(0a (R)s, ) = (ng.oG (W)™ ¢, T n)

L =TalwOsm i) - ¢

for every ¢,n € X, . Convergence in B(H) and B(G) implies uniform convergence
so : '
Lo ujy = u for every u € Ay, -
. o '

Furthermore, I'y.. is an isometry.
s . a

oo

The o, ’s are irreducible and thus pa;irwise‘aisjoint. Therefore,
A(H) = £- 9 4,, 6, p. 35].
Define I : A(H) — B(G) by

! =
Tu= L Lo, oy s
acd
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ey

where u = Y. ug, is thg unique ditect sum decomposition of u. Then -

acY
ITullbe) =1 Y o, to.llBc)
ac

< Z To, uo |l B(G)
= Z luo llagn,
acA" M :

= ||lu]lam
.As Tq, Yoo, =“_ug; for'every ‘a €U, T , =ufor every u € A(H). Therefore,

[ is a linear isometry of A(H) into B(G).
Finally, [y, o, € Angpc for each a € AU,%0 T'u € Anp;p, . However, ngpc

is quasi-equivalent to pg, so Ancp‘c = A, = A(G) [6, p. 27|. C O

R J

COROLLARY 5.1.7. Let H be a compact subgroup of G. Then there rxis:s a
linear isometry T :.A(H) — A(G’) such that Tuy, = u for every u € Al

Furthermore, H € C.I.P.(G).

Proof. It is 'well‘khown‘that if H is compact, pg is completely reducible

N

[cf. 29, p. 29]. . ' 0
Let G be a*unimodular group.bLet
G = {re G; 7 is square integrable}.

Let Ad(G) denote the closed subspace of A(Gﬁé’generated by the extreme points

of the unit ball of A(G). Mauceri [45] has shown that

—'el 6{9 Aw

/ wEGd
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A(G) = 44(G) ® Af(G) @ ¢ :
’ B aa

““Let H b,e' aglose(fsubgroup of:.G.‘"“The proof of "fhéorém 5.1.7 shows that

there emst a lmeal 1sometry I‘ Ad(H) — A(G) such that Tuj, = u for every

R : 0 ot
u E Ad(H J R
’ Ly . ‘ I

°lo

' ”reahzed é‘s the math\( group = 7,7y
. : ) i LR s :
AR N T SRS .
L Jfa
o {(0 1>; a€RT; bE-IR}.
Sy

Let Gi (n, IR de&ote the group of invertible n x n rnatrlces over IR with the

topo1ogy it 1nher1ts as a.subspace of IR"

/I .,’. .‘q )
PR {7 . K]
For any n 2

—’p

2-' 'G = GL(n,IR) contains closed subgroups H, which are

« y,*

' 'Theorem 3.1.7 shows that there exists a linear isometry I : A(H) — A(G) such
. #3‘"‘ ;
ruas :

" Jsom?t:\phxd "ﬁo H Lé’l: H1 be such a subgmé Let ¢ : H — H; be an isomorphism.

.

w{'?f %hat | ‘ e
Tu(p(h)) =u(h)  for every we€ A(H), heH.
(2) Let H :r R? ® GL(2,IR)" be the semidirect product of IR* with the

closed subgroup C‘r‘L(Z,IR)+ of GL(2,IR) consisting of matrices with .positiye de-

terminants. Then py is completely reducible 9].

E‘)”(ampie 5.1, 8 ( v)/Let H be the “ax:—{—l’:’b"”‘ g%bup. We recall that H can be

s (O8
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o

Let G=TR"»© GL(n,IR) for n > 2. Let - . L

A
}

) 0 0
Hl: (Iayao)oy"'ao)a 1 0

o OO O
— O O O

,

A€ GL(2, IR)+}

-

- Then Hi'is a closed subgroup of G isomorphic to H. It follows that there exists

r

" an'isomorphism ¢ : H — H) and a linear isometry I : A(H) — A(G) such that "
S | i
x Du(p(h)) = u(h) forevery ue A(H), hel. .
_

Furthermore, I(H) is complemented in A(G).
DEFINITION 5.1.9. A Baﬂach space X is said to possess the Rado'r.ll-Nil-(od?ym |
jProperty if for any ﬁnit? measure space ({1,Z,u) and any p-continuous’ vec‘tor‘
“measure L : £ — X of bounded total variation, Athere exists a Bochner integ“r’vablg‘

function ¢ : 1 — X such that

s
‘X

N
£

L(E) =/ gdp  forevery EEL ' ‘1“5;‘%
E ' i *

5 - B
L
. (“' "

[cf. 16].
In [12, p. 535] Chu showed that the pré-dual of a von-Neumann algebra has
the R.N.P. if and only if every closed bounded convex subset is the closed convex .

hull of its extreme points.

s

Granirer and Leinert provedl{that if K ¢ G is compact, Ag(G) has the

R.N.P. (25, p. 464]. K. Taylor showed that A(G) has the R.N.P. if and only if bc is
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CIqmplafély redicible [62]. As it is easy 1o see that the R.N.P. is preserved by linear

S

isomé;ries, thé previoﬁs examples ghow that if G is GL(n,IR) or R™ ® GL(nfR),
' Lhe‘n A(G) has cldse;d subspaces,w/ith R.N.P. which are not of the form Ag(G),
S : Ve .

~even thou.gh A(G) does not have R.N.P. [cf. 62]. However we have::
' '_' PROPOSITION 5.1.10. Let G be a locally compact group. Let H be a closed
- subgroup of G such that py Is .comp.letely reducible. Then I(H) has tha Radon-

“ Nikod}/m Property if and only if A(G) has the Radon-Nikodym Property.

Proof. If A(G) has the R.N.P., so does every closed subspace.
Conversely, assume that I{H) has the R.N.P. Since py is completely re-
ducible, A(H) has the R.N.P. It follows from Lemma 3.1.9, that A(G)/I(H) has

the R.N.P. and hence, so do%:s A(G) [cf. 16, p. 211}, ' -~

: P‘ROPOSITIO'N 5.1.11. Let G be a locally compact group for whichhA(G) has
the R.N.P. Let H b¥ a closed subgroup of G. If I(H) is cbmplemented in A(G),

‘then A(H) has the R.N.P.

A

Proof. Let P be a prOJectlon of A(G) onto I{H). Then (1 - P)(/f(G)) has

the R.N.P. Define Ty : ( P)(A(G)) — A(H) by

Fou =y, \forevery ue(l-P

o S A S
T'o is linear, ||To|| <,1and if welet T : A(H) — A(G) be thé‘,';riﬁa;i&mstructed from
P in the proof of Proposition 5.1.3, then T = 5! and ||T|| < co. Therefore, A(H)

and (1 — PJ(A(G)) are linearly isomorphic and homeomorphic. It follows that



65
every norm closed convex subset of A(H) is the closed convex hull of its extreme

points. Therefore, by Chu’s result [12}, A(H) has the R.N.P. 0

Example 5.1.12. Let G = R @ IR* be the “a.'(—}-b” group. Then A(G) has

the R.N.P. Also G has a closed normal vsubgroup H Vi{hich is isomorphic to IR.

But A(IR) does not have the R.N.P. [cf. 62|, Hence Proposition 5.1.11 shows that

X
I(H) is not complemented in A(G). e

k. .
Example 5.1.12 would seem'to imply that the complementation problem is

much more complex for arbitrary locally compact groups than it is for abelian

locally compact groups.

§5.2. Product Groups.

a P

Let G and Gy be locally compact groups. Let u; € A(G1) and uz € A(G2).

‘We can define an element u € A(G), x G3) by _

RVEN

u(z,y) = ui(z)ua (y)-

., A E : .
In this manner, we get a linear map ¢ : A(G,) ® A(G3) — A(G; x G.). Further-
. A ‘
more, Y(A(G1) ® A(Gz)) is dense in A(G) x Gz) and ||| <1 [cf. 43].
Losert [43] proved that if the dimension of the irreducible respresentations
of G; are bounded for either G or G2, then v is surjeetive. Morcover, |71 =
min(d;,dy), where d; = sup dimn. Consequently, if G, or.G; is abelian, then 1.
_ x€G; '
is an isometry, o
Conversoly; if ¢ is surjective, then one of the G;’s must have an open abelian

o

- subgroup of finite index and v is an isofﬁe'zfy only if one G; is abelian.
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- PROPOSITION 5.2.1. Let G = Gy x G3. Then for each § = 1,2, there exists a
linear jsometry Ty i A(Gi) — A(G) such that T'yuj, = u for every u € A(Gy).

Consequently, G; € C.I.P.(G). : A ro

Proof. Let uy'€ A(Gy) be such that us(e2) = 1 and |luzfla@c) = 1. Define !

M

Tiv=¢(v®uy)  for every 'vEA(GI);

q

Then ||[Tyvllac) < llvllaey) |lU2.HA(Gg) < |vlla@,) - But Ty, = v Hence -

S

IT1vllAc) = llvila,) - We can define I'z similarly. ' O

H

LEMMA 5.2.2. Let G = Gy x Gy. Let A= A x Az, where A; is.closed in Gi.

Assume that A is a set of spectral synthesis in G. Then Ig(A) is the closed linear

[ i

span of
of

J = {(Ic, (A1) 8,A(G2)) U(A(G1) ® Ig, (42))}.

Proof. Let u; € I, (A;) and uz € A(G2). Then
P(uy @ ug)(z1,22) =0 if (zl,;g)eAl X Asq. |
Similarly,‘if .ul‘e A(G1) and ‘U,2' € Ig, (A2), then
| z,l)(ﬁl Q ug)(z1,22) =0 if (z1,22) € Ay XAA%‘

Let (J)™ be the closed linear span of J in A(G, x G3). Then (J)~ g Iz (A).

Letv e A(G). Then there exists a net { i Wo; ® 2q, }ae% in A(G1)® A(Gz)

1=]

such that !

14 :lignv,b(iwm ® 24 )-

1=1



fort =1,2. Then'Ig(A) is complemented in A(G).

67

Y(uy ®up)v = 1i(§n¢<(m ® uz)(iwai ®za‘.)> .

1=1
. . =tm (Y (urwe,) © (u22)),
= 1=1

B

so ¥(uy @ ug)v € (J)~ . Similarly, if u; € A(G,) and ug € IG;'(A) then

h(u; ® ug)v € (J)7. It follows that (J)~ fs a closed ideal in A(G).

‘Assume (z1,z2) ¢ A1 X A2. We may assume z; ¢ A. There exists uy €

Ig, (A1) such that u;(z;) =1. Let uy € A(G2) be such that UQ(I;) = 1. Then

¢(u1 ® u2)(111,122) =1L

Hence Z({J)™) = A; x A2 = A. Sin¢e A is an S-set, (J) = Ig(4). O

¥

PROPOSITION 5.2.3. Let G = G x Gq, where G has an abelian subgroup of
finite jndex. Let A = A; X Ag, where each A; is closed in G;. Assume that A is

a set of spectral synthesis in G. Suppose that Ig, (A;) is complemented in A(Gj;)

_Proof. Let P; be a continuous projection of A(G;) onto Ig, (4;). Define

P : A(G) = A(G) by

\

L CPu=u-y((1-P)® (L= P)(¥7 ).

e Since Gy has an abelian subgroup of finite index, ! u exists and ||~ || < oo by

[43]. Therefore, P is continuous and linéar.
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Letu; € A(G)) and ug € A(Gz), Let (z),72) € Ay x Az andu = ¢(U1®UQ)'. -

Then

Pulzy,22) = u(o1,21) — 9((1 = P) ® (1= P2) (0™ w)) (21, 2)
 wa(on)unlen) ({1 - ) (@)1~ PaJua)(o2)]
= uy(z1)uz(z2) — usz1)us(z2)

o

*“Therefore, Pu € IG(Aj for every u € A(G).

Let u; € v'Icl (A;) and u € A(Gs). Let v = ¥{u; ® uz) Then

(1= P1) @ (1 - P)(p~1w) = (1 ~ P ® (1~ PoJuz)
— (08 (1 - Pr)u2) |

- =0.

Therefore Pu = u. Similarly, if u; € A(G;) and ué € Ig,(4;), then Pu = u for '

u=1(u; Qug). It follows from Lemma 5.2.2 that Pu = u for every u € Ig(A). u
0 | |

COROLLARY 5.2.4. Let G = G’1 x G4 be a locally compact group. Assume that
G, has a closed abelian subgroup of finite index. Iét;Hl be a closed subgroup of

G, and let Hy € C.I.P.(Gz). Then H = Hy; x H; € C.I.P.(G).
Proof. LeL‘J.be a closed abelian subgroup Qf G, with finite inde);. Since’J

is open, 1; € B(Gy) and B(J) C B(G1). Also Hy N J is of finite index in Hy.

Therefore, we can write

n
U (Hy N J),



5 ' | ‘ : 69
where the z;’s are distinct coset representatives and 1g,ny € B(H;). Let u €

A(H;). Then
u.= Z LJ:" Uy,
. i=1

where ﬁ; = L, (Lz;(mn0) v) € A(Hl NJ). Since J is abelian, there exists a linear
_.isometry T': A(Hy NJ) — A(J) such that Toyny = for every v € A(H, N J)

(Proﬁbsition 5.1.4). Define I'"": A(H) 5 A(G1) by

[Ny = Z L;‘. (Tuy).
1=1 <

3

I’ is continuous, linear "and I"u,‘H1 = u for every u € A(H,). Therefore, H, €

,C'.I.P.(G{). The result now follows imnfiediately from Proposition 5.2.3. U

PROPOSITION 5.2.5. Let H be a closed subgro:ugv of a separable locally compact
group. Lgt C be a subgroup of C¢(H) and K = CH. g%K is closed in G, then
theré exists a linear isometry T' : A(H) — A(K) such tbat Ty, =u for every

u € A(H). In particular, H € C.I.P.(K). o 5}

Proof. K/H = CH/H = C/C’ﬂ H. Let ¢ : K/H %é?; C/Cﬂ H be the

canonical isomorphism. Let 3, : C/C N H — C be a Borel c@ sectlon [cf. 44,

LI 1{‘\ 1»:}

p. 102]. Definey : K/H — K by Y =10 ¢- Then 1 is a Borel 'e,‘;pé)s':':section and

,.‘ -~

¥(€) € C for every £ € K/H.

~ Let 0 be a compact subset of K/H with #K/H-(m > 0. Let z € K and

¢ € K/H. Define
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. - \ | . . ..\
" where K — K/H is the canon.um@hﬁz“ and y € K is such that
N

~—

m(1 =& ,
Defin. 7: ¥ x K/H — F by

() (e).

o E

For eacn u <= A/ (YN o 7).

_ Tou(z, ——/ 10(6%)1a(&)ulr(z, §))dukym (£).
- px/H (Q) Jr/m :
Then supp [ou is compact. Furthermore, Tou € A(K) with |[Toul[ax) < “U“A(l{,)

cf. 27, p. 114].
Let h € H. Then /

. r
A

and since ¥ (&) € C, o
/

_ Therefoie

 Hence Tou, = u and |[Toullagx) = l|ullagn . As A(H) N Coo(H) is dense in

A(H), To can be extended to an isometry T of A(H) into A(K') which is such that

luy, = u for every u € A(H). O
COROLLARY 5.2.6. Let G be a separable locally compact group. Then thére
exists a linear isometry T : A(Z(G)).i—> A(G) such that

Tujz —u for every u€ Z(G).
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e

In partieular, Z(G) € C.I.P.(G).

T : sl

(:JO':RTOLLARY"L 527 Let G be é sep;iqeéle :]bca]‘]y compact groqvp_}_gi’,,fhégh open

central sub';roup. Let H bé a clogga sﬁbgroup of G. -Thg_'n-.‘t:h'e;r'éu‘e;xists a linear
F

" isometry T : A(H) — A(G) wit}}

: v’:gf’

Tugk =u  forevery u€ A(H).
g o .
i @,
In particular, H € C.I.P.(G).

Proof. If Z(G) is open, K = Z(G)H is an open subgroup of G, and hence is
closed in G. ‘ o o . O

?
{

We are now in a position to expand our investigation to larger classes of

: P
groups. ‘

4

PROPOSITIQN 5.2.8. Let G € [Z] be almost connected a.nd separab]e Let
K =CH, %‘xere Z(G) C C C Cg(H) and C is a closed subgroup. If K is closed

in G, then H € C.I1.P.(G).

Proof. Since G is almost connected, there exists a compact subgroup K of

G and a :;ector subgroup V of G such that G =V x K (48, p. 6‘.58].‘
Assufne that K is closedin G. Let 7 : G =V x K; — K, be th\e canonical
homomorphism. Since V C Z(G) C K, =(G) is a compact subgréup of K;.
' Furthermc;re, K =V x n(G). Ey Proposition’I5.2.5, H'E C.I.P.(K). However,
sihcé‘ﬁr(G) € C.I.P(K;) (Cc;rollary 5.1.7), K € C.I.P.(G) bby Proposition 5.2.3.

O
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PROPOSITION 5.2.9. Let G € [SIN] be mparable and. a!most connectcd Let

’s
"

Hbea cIosed subgroup of G. Let K =CH, Where Z(G) C a.q/d Cis
WY

a closed subgroup. IfK is cIosed in G, then .H £ C I.P.(G). )

¥
e

Proof.. As G is "almost*"‘cdnnected,:th'eré exists a compact subgroup 1 m G

and a vector.,sﬁbgroup V in G such fhatV X K is of finite index in G [cf 4870

p. 698]"; If K is closed in G, then K NV x K, is closed in V x K. Furthermdre,

- “ N
.,t' . - o

- KnVx K1 is of ﬁmte index in K and there exists a compact subgroup K of K

suchthatKﬂVxKI &xK' ByProposmon523 VXK’ECIP(VXKI)

and hence V x K* e C. I P(G) . » {)' _‘) :. ’ .
| 4 ._

Let I‘o' : A(V x K‘_‘) '— A(G) be a linear isometry such that Touy, .. =

“

for every u € A(V;x K*). Then K = |J z;(V x K*) and if v € A(K)
=1 -

u—iL Uy,

1=1

v;ilere‘ﬂ,' = I;z‘ (lz;(VxK‘) u). Define I': A(K)—+ A(G) by

n
Tu = Z L, T(ug).
, =
Then T is continuous, linear and Ty, = u for every‘u € A(K). Therefore,

K € C.I.P.(G). By Proposition 5.2.5, H € C.I.P.(K), so H'€ C.I.P.(G). O

COROLLARY 5.2.10. Let G € [SIN] be separable and almost connected. Let

H be a closed subgroup of G. If H is abelian, then H € C.1.P.(G).

PROPOSITION 5.2.11. Let G € [IN] be separable and aImost‘g:bnnected. LetV

be a c}o,sedqve_ctor subgroup of G.," ThenV € C.I..P.(G).
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1

Proof.-As G is almost connected, G has a compact normal subgroup K
such that G/K is an almost-connected [SIN]-group [cf. 48, p. 698]. Let ¢ :
G —*IG’/K be the canornical homomorphism. Si‘nce VNK ={e}, p:V —
©(V) is a topological isomorphism and p(V) is .a vector subgroup of G/K. l}y
Cdﬁllary 5.2.10, there g.xi‘sts To: A(p(V)) = A{G/K) such that Tis continuous,

linear and

Touf,y, =u forevery u€ A(ga(V).").

For each u € A(V'), we have u* € A(p(v)) defined by

»u"(go(v)).: u(v) for ever& vevV. T

Define I' : A(V) — A(G) by N
Tu = (Tou)op [cf. 19, p. 21].
Then I‘ub, =y for every u € A(-V) Also T' is linear and continuous. 0

PE POSITON 5.2.12. Let G be a separable [FC|~ group. Let H be a closed

subgroup of G with no non-trivial compact subgroups. Then H € C.I.P.(G).

Proof. Let G be an [FC]™ group. Then G has a compact normal sﬁbgroup

K stich that G/K is the direct product of a vector group and a discrete group

]

[48, p. 698]. It follows that any subgroup which intersects K *trivially belongs to

CLP(G). | | e o

Up to this point we have concerned ourselves with complementation of ideals

of the form I(H), where H is a closed subgroup of G. We close this chapter with

-

I

oLr ﬁum
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a fev_v‘additional observations on the general complementation problem for I(A),
A ;
when A is'an arbitrary closed subset of G.

. ;ﬂf""".\{“&‘ g

'PROPOSITION. 5.2.13. Let A,B be closed subsets of G. Suppose that there

exists.,cont.fnuous projections P of A(G) onto I{A) and Q of A(G) onto I(B).

If,s(A/B,B/A) < 00, then there exists a continuous projection T of A(G) onto
I(A U B) with ||T|| < (s(A\B, B\A) + 2)(| P + [|@l])-

x T . .
Proof. Let u € ${A\B, B\A) with ||u|/gc) < s(A\B,B\4) + 1. Let ve€

A(G). Define

. I'v=uPv+ (1-u)Qu.
. A

It is easy to see that [ is the desired projection. - s o O

COROLLARY 5.2.14. Let A be a closed sLbSet of G. Let F be finite. If there

exists a continuous®projection of A(G) onto I(A), then there exists a continuous

prlojection of A(G) onto I(AU F\,ﬂ

COROLLARY 5.2.15. Let A, B be disj?;z:ni'-c'lb,é’e'd subsets of G. Assume that

) ) . , R ) _'\ . R l . :
" s(A, B) < co. Then, there exists a continuous projection of A(G) onto I(AU B)
if and-only if there exists continuous })rojec,tibnsvof A(G) onto I(A) and I(B)
5 . R ) .. .

respectively.

'

>

" Proof. If both I(A) and I(B) are"cofnpl,eme.nted, then by Propdsitior’l“".Z.B,

L]

I(AUB)is coinplémentedf - S
Cdnverfse_l'y, assume that P is a continuous projection of A(_G) onto I(AU B).

14

i
[



Let u kgﬁS(A,B). Define ' v . 7

Qv = P(uv) + v — uv,

Qv = P((1 - u)v) — uv.

Then Q is a continuous projection of A(G) onto-I(A) and @ is a continuous

. . & , .

projection of A(G) onto I(B). ' . ' o . O

. ‘ . ,
:
\-
¢
4}
4’
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CHAPTER 6

AMENABILITY AND DERIVATIONS ON A(G)

§6.0. Introduction.

PRCA]

" In this chapter‘,"?i&eeé{;iillffocus our attention on the nature of the derivations

on the Fourier algebra of a locally compact group. We shall concern ourselves with

: ;
two specific problems. -
!

First, for which‘locally compact groups are all derivations on A(G) neces-
sarily continuous? We show, in Section 6.1, that every derivation from A(G) to a
Banach A{G)-bimodule X ig continuous if and only if G is amenable. i

Recently, Bade, Curtis and Dales (8] introduced the notion of a weakly

§

amenable Banach algebra. In Section 6.2, we examine ,th‘e‘aerivations of A(G)
into a commutative Banach A(G)-bimodule. In particular, we show that if G is

discrete, then A(G) is weakly amenable (Theorem 6.2.11).

- §6.1. Continuity of Derivations on A(G).
: ’ ' 14

;Let 4 be a Banach algebra and X be a Banach A-
,g« c ’ : . :

, . A
bimodule. A derivation D : A — X is a linear map which satisfies

IS .

: DEF’XNITION 6.1.1.

o

E

D(ab) = aD(b) + D(a)b for every a,b € A.

Much work has been done towards-characterizing those groups G for which
every derivation D from L'(G) into an L'(G)-bimodule is continuou‘s'[cf? 70]. In
this section, we will examine the analogue of this problem.for A(G).

76
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LEMMA 6.1.2. Let G be a non-amenable locally comﬁ'j’iét’grcﬁp. Then there
* . .
exists a discontinuous derivation on A(G) with finite-dimensional range. .

Proof. If G is non-amenable, then by Lemma 3.4.6, either (i) I2({e}) is not

3

cofinite, or (ii) I?({e}) is cofinite but not closed. In either case, there exists a -

2

non-closed ébﬁnité‘ ideal I of A(G) such that

1

12({6}).9 I C I({e}).

T as shown in {14, p. 402], the finite dimensional space I({¢})/I can be .
, S

nade nto a Banach A(G)-bimodule and a discontinuous derivation D : A(G).—

I{.,) I can be constructed. ’ O

\ ]

/
"FMMA 6.1.3. Let G be an amenakie iocally compact group. Let I be a closed

ideal ‘1 A(G) with infinite codimension. Then there exists sequences {un}, {va}

in A'G) such that upvy...vn—1 € I but u,,vlr...v,, € [ foralln>2.

Proof. Let A'= Z(I). Since G is amenablerand I has infinite codimension,

i

-

A is infinite.

Assume that z is a cluster point of A. Let z; € A, z; # z. ket V] be a_

compact neighborhood of z; with z ¢ Vi. Choose z; € A\V), z3 # z. Let V3

be a compact neighborhood of z3 sych that z ¢ Vz and V; NV, = 0. Proceeding

' ' n—1 :
inductively, we get z, € A\ |J Vi, zn # z and a compact neighborhood Vy of z,

1=1
. n—1-
such that z¢ Vy and Vo N (U Vi) =0. -
1=1 )
If A has no cluster points, then there exists a discrete set {z;,z3,...} C A.

Let V1 be a compa;:t neighborhood of z; with {I;,Ig,...} NV, =0. With V,_,
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chosen, let V;, be a conipact neighborhood of z, such that Van{Znt1,Zn+2,-.. }=

n—1 o '
Pand V. n (U Vi) =0.
, i=1 '
) In either case, we get a sequence {Vn} of compact neighbdrhoods of points

/

<o

-

{In}inAsuchthatV N ( U V)——(bforn>2

1=1
\

For’ each n=12...,let un’ function in A(G ) with u, >0, supp un €
Vo, un(za) >Oand HunHA =1/2".

- For k=1,2,... define

, _ i=kt1 |
Since Y |luxllag) < o0, each vy € A(G). ¥
N k=1 ) ‘; . a
Ifn 2 2, then

t - ¢

" UpVy ... Un- (In,) > 0. ' l

Hence unvll'. ..vp—1 ¢ I. However, sup;’;‘ -u,, C V, and v, (Va) = 0. Therefore,

| )
e {

~ v 3

4

¥ "
v T uavy..vg =0€ L

'THEOREMA.1.4. Let G he a IocaHy compact group. Then the following are

LN

equivalent:

(i) G is amenable,

1

> (ii) every derivation of A(G) into a finite dimensional Banach A(G)-bimodule

-~
o

is continuous, {

-

(iii) .every derivation of A(G) into a Banach A(G)-bimodule is continuous.
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Proof. That (iii) implies (ii) is trivial. That (ii) implies (i) follows immedi-

Py
ately from Lemma 6.1.2.

-Assume thdt G is amenable. Let I be a closed cofinite ideal in A(G). By
, . , 4 ; .
Corollary 3.4.5, I is idempotent. This, together with Lemma 6.1.3 and [32nghco-

rem 2|, implies that every derivation from A(G) into a Banach A(G)-bimodule is

continuous. That is, (i) implies (iii). . S O

§6.2. Weak Amenability of A(G).i
DEFINITION 6.2.1. Let ¢ be a multiplicative.linear functional on a Banach

algebra A. A point derivation at ¢ is a linear function d : £ — € such that

.
b

d(uv) = p(u)d(v) + p(v)d(x)  for every" u,v € A.

.'(

PROPOSITION 6.2.2. Let G be a locally compact group. Then A(G) has no

. . .. Lo
continuous non-zero point derivations at any point in the spectrum of A(G).

Proof. Let z € G = A(A(G)) [cf. 19, p. 229]. Let d be a continuous point

derivétion at.z. Lét v € A(G) be such that v(z) =1 and |Jv||4¢) = 1. Then
d(v"*) =nd(v) . for, n=1,2,... .
 Since d is bgundéd,

@

N ' i ' B N : - .
- . .
¥y Al — . . . .
Ty — 0. R . N &
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Iz(ﬁz}) is an ideal in A(G)'with Z(Iz({xl})) = {z}. As {z} is an S-set, I*({z})

is dense in I{{z}). Therefore
d(u) =0. ' for every u € I({z}).

However, if u € A(G), then u = u(z)v + (u — u(z)v) and

. d(u) = u(z)d(v) + d(u — u(z)v) )

D.

LEMMA 6.2.3. Let I be a closed ideal in A(G) of infinite codimension in A(G).

Then A(G)/I is.not.an integral domain.

Proof. Since I has infinite codimension, there exist z,y € Z(I) such that
,«# S
z # y. Let V] and V; be ‘compacﬁneighborhoods of z ahd y respectively with

VinVy = 0. Let u; € A(G), 1=1,2, supp u; C Vi, ui(z) #0 and uy(y) # 0.

Then u; ¢ I, but 0 = ujug € I.

PROPOSITION 6.2.4. Let G -be a separable compact group. Let A be a com-

. . o o0
mutative Banach algebra with identity and radical X. If {) X™ =0, then every
) . n=1

homomorphism from A(G) into A is continuous.

o)
S

Proof. If G is separable and compact, A(G) is separable and has amidéhtity.

It follows from Theorem 6.1.4 that each point derivation on A{G) is continuous.

et

. y
P
a5

Lemma 6.2.3.ignplies that no closed ideal I of infinite codimension in A(G) isv‘such .

1

N X" =0, a result of Bade and Curtis

n=1]

that A(G)/I‘ is an integral domain. As
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" [7, Theorem A} shows that gveryhomomorphism from A(G) into A is continuous.
O

LEMMA 6.2.5. Let G bea locally compact group. Let'z € G. Then there exists -
S | o

a continuous invariant projection of VN(G) onto (L;). x

Proof. We follow an idea of P, Renaud [53]. Let {V4}aea be a neighborhood
basis at e. Let u, € P(G) N A(G) be such that uq(e) = 1'and suppvua C 'Va. Let

m € VN(G)® be é:veak—* cluster point of {L:ua}:l Then, as in [53, Proposition 3
. . ‘ ot » -
_and Theorem 4],

.
e

m(u-T) = u(z:)‘m.‘(T) for every u € A(G), VII_T € VN(G).

Furthermore, : '. e
Therefo;é, define

P is an invariant projection of VN(G) onto (LB'- - - -
4o , |

LEMMA 6.2.6.. Let D : A(G) = VN(G) be 2 continuoﬁs derivation. Let z € G

\d

and P, be a continuous invariant projection of V N(G) onto (L;). Define

Dp, (u);t: PI(D(q),)’ for evéry‘ .'15 .E. .A(,G)'

7
e

Then Dp, is a continuous point derivation at z. In S)articular, Dp, =0.
, v 3 :

.\)
Voo
Y.
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Proof. Let u,v € A(G). Then

Dp,

z.

(uv) = P=(D(uv)) = Pz(u- D(v) +v- D(u))

L2

= u-P,(D(v)) +v- P:(D(x))

= u(z)Dp, (v) + v(2) D (u).

DEFINITION 6.2.7. A Banach A-bimodule X is said to be commutative if
u-z=z-uforeveryu € A, z€ X.
A Banach algebra A is called weakly amenable [8] if every continuous deriva-

tion of A into a commutative Banach A-bimodule is zero.

The main idea in the next lemma.is due to Bade, Curtis and Dales [8].

s

LEMMA 6.2.8. Let X be a commutative Banach A(G)-bimodule. Let D : .

A(G) —\X be a continuous derivation. For each p € X* and u € A(G), de-

Q

fine Ty € VN(G) by ‘ S

e

(T v) = (v D(w).

Then D,, : A(G) — VIV(G), defined by |

%

ﬁtp (u) =Tpyu,

is a continuous derivation. Furthermore, if D is non-zero, then for some p € X*,

~

D, is non-zero.



Proof. Let u,v,w € A(G).

(Bip(wo)) () = plw - D(uv) = p(w-u-D(v) + w-v- D(u))

~ ~

= (D (v)) (uw) + (D (w)) (vw)

~

= [u- B(o)w) + [o - Di(u)|(w)

Hence 13@ is a derivation. Since p € X* and D is continﬁous, ]5(,0 is also contin-
© wous.
As A(G)? is dense in A(G), if D is non-zero, there exist u,v € A(G) such

that D(uv) # 0. Howeyer,

so we may assume that D(u?) # 0 for some u € A(G). Let ¢ € X* be such that

o(D(u?)) # 0. Then e

D)) = p(u- D)) = zp(D(u?) A0 :

S

DEFINITION 6.2.9. Let T € V N(G). We define the support of T by

: : A
suppT ={z€ G; ufz)=0 fof every u€ A(G) with u-T =0}

(see [19, p. 224]).

%

EROPOSITI(-)N 6.2,10. Let X be a commutative Banach A(G)-bimodule. Let
© € X* and u € A(G). Let D : A(G) — X be a continuous derivation. If

Etp(u) # 0, then supp ﬁp(u) contains no isolated points.
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Proof. Assume that V is an open neighborhood of z € supp ﬁw(u) with '

V A supp Dp(u) = {z}. Let v.€ A(G) be such that v(z) = 1 and suppv C V.

i

Define Dy : A(G) — VN(G) by

Do(w) =v-Dp(w)  for every w € A(G).

Then L is a continuous derivation. Since v(z) = 1, z € supp Do(u) [19, p. 225].
But supp v - Dp(u) C supp v Nsupp Dy (u) = {z}. Hence {z} = supp Do(d) and

Do(u) = AL, for soime X #:0 [19, p. 229)].

1

By Lemma 6.2.5, there exists a continuous invariant projection P, of V. N(G)

onto {L;). By Lemma 6.2.6, P; o Do is a non-zero continuous point derivation

y -

which contradicts Proposition 6.2.2.- Therefore suppllﬂjcp(u) cp{tains no isolated
_ . o ,

v

points. , ' 0

THEOREM 6.2.11. Let G be a discrete gr\oup. Then A(G) is weakly amenable.

Proof. This follows immediately from Lemma 6.2.8 and Proposition 6.2.10 if

we note that supp T = 0 if and only if T =0 (19, p. 224]. O

THEOREM 6.2.12. Let G be a discrete group. Then the following are equivalent:

(i) G is amenable,
(1) every derivation>rom" A(G) into a commutative Banach A(G)-bimodule is
]

Zero.

Proof. If G is amenablg, then every derivation is continuous (Theorem 6.1.4).

6.2.11. If G is non-amenable, then the proof of

~ Therefore (ii) holds by TheoTe

3
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>

Lemma 6.1.2 gives a non-zero derivation of A{G) into a commutative Banach

A(G)-bimodule. SR

#
"
.
B
.
N
- .
= 1".,'!.
5 Y
.
e
P
* °
[y ',
.




CHAPTER 7 °

SUMMARY AND OPEN PROBLEMS

In Chapter 3, we exhibited the connection between the amenability of G
and Xe existence of closed ideals with bounded approximate identities. Proposi-

“tion 3.1.6 states that if 1(A) has,.a bounded approximate identity, then

n

s-Uatmsgerier

1=1

where H; is a closed subgroup of G, z; € G and ‘A,' € coset ring of H. ‘In
Section 3.3, we showed that if G is an amenable [SIN]-.groﬁp, then the converse
also holds.

Problem 1. If G is an amenable locally compact‘f:f;g?;oup ér}d if A€ R (G),
does I(A) have a bounded approximate identity? If‘ .hot, then for wh‘at'classes éf

locally compact groups must I(A) have a bounded approximate identity if A €

e/ L

Problem 2. For a non-amenable group G, _characte-:?,rjszef those A € R(G) for

y

which I(A) has a bounded approximate identity. o

[

We have seen that if G is non-amenable and if I(A4) has a bounded ap-

proximate identity, then A must be topologically large (see Proposition 3.1.12).

. n i
We suspect that in this case, if A = |J z;(H;\A;), then one of the H;’s should

1=1
have finite index in G and the A;’s should be unions of cosets of open amenable
—subgroups of G.— e

Also,‘in Chapter 3, we proved that G is amenable if and only if every homo-

morphism from A(G) with finite dimensional range is continuous (Theorem 3.4.8).
¢ . o 86 .

Y
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Problem 3. If G is an amenable locdlly compact group, is every homomor-

phism froh A(G) into a Banach al-gebra A continuous?
A ' i’
In [37], Lau and Losert proved that if G is amenable, then a weak-+ closed

* " translation invariant subspace X of L*(G) is complemented.if and onl'y if there

exists a continuous project_idn from L®(G) onto X which commutes with left
t_ranslations. Conversely, they showed that this property characterizes amenable
groups.‘ Bekka [10] showed that the same result holds true with left ‘translatior; ’
replaced by left convolution. Hence, for abelian groups a weak—x closed submod@le |

X of VN(G) is complemented if and only if it is i.nifariantly complemented.

Problem 4. If G is an amenable locally compact group, is every weak—+ closed

submodule X of V N(G) which is complemented in V N(G) necessarily invariantly

complemented?

A positive answer to Problem 4 would prove to be very useful. In particular,

if 7(A) is compleinented in A(G) then X = I(A)* is a weak—x closed complemented

submodule of VN(G). If X is invariantly complgmgnted, then we can conclyde
from Theorem 4.2.2 and Proposition 3.1.6 that I{A4) has a bounded approximate
identity and A € R.(G). This would therefore provide us with an immediat% Iink

between chapters 3 and 5.

In Chapter 5, we showed that if H is a closéd subgroup of G, then I(H)

is complemented in A(G) if and onl{¥f A(H) can be linearly and continuouély

v

_ embedded in A(G) Using this fact, we can exhibit a closed normal sung‘z&up H

of an amenable group G for which I(H) is not corppiemented in A(G). This is

¥,
A



rather surpa®g wher contrasted with the abelian case (see Proposition 5.1.4) and _

the compact case (The’orérp 5.1.(-5)4&here I(H) is com lemente;i for every closed |
subgroup H of G. In lieu of t‘he remarks foilowingksroblem 4 and of the lirﬁited
success than has been met with in solvix'-lg‘the genera{Complementation p;oblem for ‘ ‘
abelian groups, we feel tﬂat any.further foc.us‘s_hould be on ﬁndirlg some necessary
'algeb’ra;icvcpnditoh on A for I(A) to be complerﬁented. In particular:
"Problem 5. If I(4) is comple{nen;ed in A(G), is A € R(G)?

The main result of Chapter 6 is that a locally comi.)agt group C is amenable.

if and only if every derivation of A(G) into a Banach A(é)-bimodule is continuous’

(Theorem 6.1.4).
v

In Section 6.2, we gave evidence to suggest that if G is any B;ally compact
| group a'.nd\_D, a.r‘1y, continuous derivation of ‘A(G) into & commutative Banach
A(G)-bimodule, then D = 0. That is, ‘A(G) is weakly amenable [cf. 8.
) hv.'NProblem 6. Find classes of lo;ally combact groups for» whi.ch A(G) is weakly | \
amenable for every elerﬁent of these classes. Moreover, is A(G) ;weakly amenable
for every locally compact group G? L

We proved (Theorem,6.i’2.\11) that if G is discrete, then A(G) is weakly
amenable. It is well known that if G is abelian, then A(G) is weakly amenable

[cf. 33, Theorem 2.5].
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