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Abstract

In recent years, due to the environmental concerns caused by the emissions from public

transit services relying on traditional fossil fuels, the electrification of the public transit

sector has attracted great attention from both automobile industry and academia. Specifi-

cally, the electric buses (EBs) potentially driven by decarbonized electricity can reduce air

pollutions while achieving energy savings from regenerative braking. Yet, for a large-scale

deployment of EBs in public transit services, technical challenges associated with charg-

ing schedule optimization for electricity cost and battery degradation cost reduction still

need to be addressed. These challenges are further complicated by the uncertainties in EB

operation related to the randomness in road and traffic conditions, passenger counts, and

arrival and departure times of EBs at bus stations. In this thesis, we address these technical

challenges by developing model-free reinforcement learning (RL) approaches to optimize

the charging schedules of EBs. Compared with the traditional model-based approaches,

the proposed RL approaches do not rely on specific models of the aforementioned uncer-

tainties, such that they can be implemented in real-world public transit services with great

flexibility. Specifically, three research topics related to EB charging schedule optimization

are investigated in this thesis.

Firstly, a Markov decision process (MDP) is developed to model the operation process

of EBs with in-station charging capabilities, for which the EBs are only charged at specific

bus stations such as terminals and/or transit centers with pre-determined charging dura-

tions. Then, a double Q-learning algorithm is utilized to optimize the amount of power to

charge each EB at each charging station. By utilizing the battery degradation cost as the

reward of the RL, the optimal charging strategy for EB operation cost reduction can be ob-

tained through an iteration process. In the case study, the performance of the proposed RL

approach is evaluated based on the real-world EB operation data obtained from St. Albert

Transit, AB, Canada. And the results indicate that our approach can reduce the battery

degradation cost in comparison with other existing approaches.
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By considering the en-route EB charging applications, for which the EBs are charged

momentarily when they pick up and/or drop off passengers, an extension of the above

MDP and RL approach is investigated in our second work. Specifically, a physical EB

model and a battery degradation model are built to calculate the EB energy consumption

and battery degradation cost, respectively. Then, a semi-Markov decision process (SMDP)

is developed to characterize the operation process of EB. The main difference between

the SMDP and MDP is that, for SMDP, the duration in between two adjacent charging

decision-making epochs can be random, which can better characterize the real-world en-

route charging operation conditions of EBs due to the randomness in road and traffic con-

ditions, as well as the uncertainties in passenger pick-up and drop-off times. Accordingly,

an average reward reinforcement learning (ARRL) approach is proposed to optimize the

en-route charging strategy of EBs. The efficiency of the proposed approach is demon-

strated via the real-world EB operation data provided by St. Albert Transit and the results

are compared with that of the traditional charging approaches.

To further improve the efficiency of EB en-route charging, a relative value iteration

reinforcement learning (RVIRL) approach is proposed in our third work. Based on the en-

ergy consumption and battery degradation models of EB operation, an extended SMDP

problem is formulated to determine the charging schedule of EB on the route by consid-

ering the SoC changes, number of charging stations, maximum sojourn time at charging

station, and real-time electricity pricing. Then, the RVIRL approach is utilized to obtain

the optimal EB charging strategy for each en-route charging station. The convergence of

the RVIRL approach is proved mathematically, which is critical to ensure the reliable op-

eration of public transit services with EBs. The performance of the proposed approach is

evaluated based on the real-world data obtained from St. Albert Transit. And the results

indicate that the proposed approach can significantly reduce the electricity cost and battery

lifetime degradation in comparison with other existing en-route EB charging approaches.
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1
Introduction

1.1 Background

Over the past few decades, environmental pollution and energy crisis are two of the ma-
jor challenges faced by the whole world. Traditional energy sources such as fossil fuels,
are major contributers to these challenges. Accordingly, renewable energy sources such
as solar and wind, have been widely utilized in recent years to generate electricity and
drive wheels. Aiming at reducing the metropolitan air pollution resulted from traditional
fossil fuel-powered automobiles, the electrification of public transportation sector based
on electric buses (EBs) has attracted great attention from both transportation industry and
academia. Compared to the conventional internal combustion engine (ICE) buses powered
by fossil fuels such as gasoline or diesel, the EBs can effectively alleviate the environmen-
tal concerns, reduce the speed of natural resource depletion, facilitate the generation of
electricity from renewable energy resources, and offer better fuel economy and higher en-
ergy efficiency for the public transit services. For example, St. Albert was the first city in
Canada to have EBs serving full-time transit routes. In 2017, St.Albert’s first EB went into
regular service. In the same year, a high-efficiency 301kW solar panel system was installed
at the transit facility which supports one-third facility’s electricity demand [1].

According to the data from CAIT Climate Data Explorer [2], the emission from the
transport sectors contributes to about 14% of annual emissions as well as around 25%
of the CO2 emissions from the burning fossil fuels of the world. In terms of the trans-
portation modes, over 72% of the global transport emissions comes from road vehicles,
especially conventional fossil-fuel buses. Aiming to reduce the local air pollution resulted
from gasoline or diesel-powered buses, more and more public transit services are turn-
ing to environmentally friendly alternatives such as liquefied natural gas and compressed
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Chapter 1. Introduction 2
natural gas. In the meantime, EBs have been gradually adopted by many public transit ser-
vices. The advantages of EBs can be attributed to the following points. Firstly, EBs driven
by de-carbonized electricity can reduce the air pollution and noise level. Secondly, EBs can
also recover electricity from regenerative braking, similar to the trolleybuses. Finally, EBs
do not rely on fossil fuel resources to produce the required traction force. Multiple envi-
ronmentally friendly energy sources (e.g., solar, wind, geothermal, hydropower, biomass,
tidal, and wave) can be utilized to generate electricity and drive wheels.

Around the world, many countries in North America, Europe, and Asia have used EBs
in their public transportation sectors for more than a decade. Specifically, the data from [3]
indicates that the EB market size exceeded USD 28 billion in 2020 and is expected to grow
at 11% CAGR to USD 53 billion between 2020 and 2027. And the global EB market size
is projected to reach 935 thousand units by 2027 from 137 thousand units in 2019, at a
compound annual growth rate (CAGR) of 27.2% [3]. The market is forecast to grow at
an exponential rate due to the rapid increase in uptake of EBs as a sustainable mode of
transport. The Asia-Pacific region is the largest electric bus market in the world at the
moment. The growth in this region can be attributed to the dominance of the Chinese
market and the presence of leading OEMs such as BYD, Yutong, Zhongtong, and Ankai
in the country, resulting in the tremendous growth of the Asia-Pacific electric bus market.
Middle East & Africa, which includes Egypt, South Africa, and UAE, is projected to be
the fastest-growing market during the forecast period. The increasing demand for electric
mass transit solutions, renowned OEMs expanding in the region, and government support
are factors driving the Middle East & Africa electric bus market. UK and Norway are
the domination forces of the Western Europe EB market. North America has the second-
largest EB market in the world. The key companies include BYD, Volvo, Proterra, Yutong,
Daimler, and Zhongtong. Other key contributors are Solaris, Ashok Leyland, Alexander
Dennis, EBUSCO, and New Flyer [4].

However, compared to the conventional buses using fossil fuels, the EBs generally have
a shorter driving range. Accordingly, EBs require a larger battery package and therefore
there are two main challenges that need to be considered: long charging time and the high
cost of large size batteries. Based on the data from BYD K9 EB [5], the battery capacity is
500 kWh, and the charging time is around 2.5 hours. The large battery packs also cost more
for the initial investment. In other words, the total cost of EBs is generally more than that
of the conventional buses. However, [6] indicates that the large batteries of EBs can also be
utilized as generation resources for resilient emergency response, which can be considered
as an extra benefit of EB applications.

Due to the challenges of the utilization of EBs, many research works are devoted to
address the corresponding issues. The sizing of the energy storage system plays an impor-
tant role for the EBs since the energy content and size of the energy storage system (ESS)
must satisfy the requirement of the energy and power density, charging rate, safety, cycle
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life, cost, etc. Based on the related research works in [7], a hybrid battery system (HBS) or
hybrid ESS (HESS) can be used to replace the traditional battery of the EBs. Besides the
replacement of the battery, some approaches have been proposed to optimize the battery
size in order to improve the performance of the EBs. However, due to the battery degra-
dation model and the switching nature of the HBS and HESS operation, the optimization
problem of ESS sizing is nonlinear with integer or mixed-integer variables. In other words,
this problem does not have a closed-form solution. In addition, power/energy manage-
ment can also be used to improve the efficiency of EB motor operation and control. Gen-
erally, convex optimization can be utilized to handle the energy management issue [8].
However, due to the non-convexity caused by the binary or integer variables in some EB
energy management problems, they cannot be included in the convex optimization. The
limitation of the operation range of EBs can be handled by a range of remedy methods.
The two common ways are battery swapping and battery charging [9], [10]. However, the
cost of the battery swapping and charging stations needs to be minimized through opti-
mal planning. Besides the installation of the battery swapping/charging stations, how to
optimize the charging schedule of EBs is also a challenging issue. This technical challenge
is further complicated by the uncertainties in EB operation related to the randomness in
road and traffic conditions, passenger counts, arrival and departure times of EBs at bus
stations. In this thesis, we address the EB charging schedule optimization by develop-
ing model-free reinforcement learning (RL) approaches. Compared with the traditional
model-based approaches, the proposed RL approaches do not rely on specific models of
the aforementioned uncertainties, such that they can be implemented in real-world public
transit services with great flexibility.

1.2 General Terms and Definitions

In this section, the important terms used in this thesis are defined to clearly identify the
scope of work done in this research.

1.2.1 Markov Decision Process

Markov decision process (MDP) is a discrete-time stochastic control process that has been
used in a discrete, stochastic, and sequential environment [11]. The key point of this model
is that at each state, the agent will choose appropriate action based on the current environ-
ment. After the agent selects the decision, the state will change to another state accordingly.
During this process, the immediate reward generated by the agent is affected by the state
of the environment as well as the probabilities of the next state transition. The goal of the
MDP is to find the optimal strategy for the agent to choose the suitable action at each de-
cision state, and accordingly, the long-term total reward during the process is maximized
based on the selected actions.
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1.2.2 Semi-Markov Decision Process

The semi-Markov decision process (SMDP) is an extension of the traditional MDP which
can be utilized in the modeling of stochastic control problems [12], [13]. The difference be-
tween SMDP and MDP is that the decision epochs of SMDP are not restricted to discrete-
time epochs like MDP. The decision epochs of SMDP are all-time epochs at which the sys-
tem enters a new decision-making state. The time between two decision-makers is defined
as the sojourn time. For SMDP, the sojourn time for each state is a general continuous ran-
dom variable that depends on the current state and the next state. Also, the decisions are
only made at specific system state change epochs based on the decision-makers. In other
words, between two adjacent decision epochs, the state of the system may change several
times. The continuous sojourn time of SMDP results in a distinguishing feature of the re-
ward functions of SMDP. Besides the immediate reward generated by the agent choosing
an action at an arbitrary state, the sojourn time between two adjacent decision epochs will
lead to a continuous reward based on the future accrual reward rate. The total reward for
SMDP is the summation of the immediate reward and continuous reward.

1.2.3 Reinforcement Learning

Reinforcement learning is used by the agents or decision-makers to obtain the optimal con-
trol policies [14]. In the RL, the rewards and punishments have been combined according
to the feedback generated during the active interactions of the agent with the current en-
vironment. There are four elements in RL including the environment, agent, action, and
environment feedback. During the process of RL, the agent selects an action at the cur-
rent decision-making state which will lead the system to reach the next decision-making
state under a unique path. Meanwhile, the agent and the system will decide on the next
action. Between the transition of two adjacent states, the agent can update the correspond-
ing information of the next state, the immediate reward, and the time spent for the state
transition. Based on the information mentioned above, the agent will change the related
knowledge and choose the next action. This is a whole step of the iteration process and as
the process repeats, the performance of the agent improves gradually.

1.3 Literature Review

In this section, the existing research works in literature are discussed.

1.3.1 Electric Vehicle Charging Schedule Optimization

In literature, there are many research works related to the optimization of charging sched-
ule of electric vehicles (EVs), which can shed some light on EB charging schedule opti-
mization. In [15], a deep policy gradient-based reinforcement learning approach has been
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proposed to optimize the charging strategy of EVs which can ensure the voltage security
of the local grid. A multi-option charging strategy has been proposed in [16]. The corre-
sponding charging strategy can help EVs find a suitable charging station that can reduce
the charging time and charging cost. In [17], a novel random-in-window (RIW) vehicle-
directed smart charging approach has been introduced. This RIW approach can reduce
the peak load on the local grid and also has a benefit for reducing transformer aging. An
adaptive-current charging strategy has been proposed in [18]. By using this strategy, the
charging losses for the lithium-ion battery for an electric vehicle can be reduced while im-
proving the charger efficiency. Also, in [19], an integrated algorithm has been proposed
for the optimal charging schedule of the battery swap station. Based on this algorithm,
the total cost can be minimized along with the potential battery damage from the utiliza-
tion of high-rate chargers. In [20], an optimized charging scheme has been developed
by considering the cycle battery aging effects. According to this method, the charging
electricity cost and the battery aging cost can be minimized. An optimal charging policy
based on fitted Q-Iteration (FQI) reinforcement learning has been introduced in [21]. In
this paper, the MDP has been used to formulate the characteristics of the charging sta-
tions. Under this condition, this method is more flexible when compared with the others
for cost reduction. In [22], the charging scheduling problem is investigated for EVs in a
park-and-charge system in order to lessen the degradation cost during the charging pro-
cess under the restriction of battery charging characteristics. An operation model of the
system by considering the customers, parking garage and the battery degradation model
has been proposed. Then, the algorithms based on the charging resource allocation and
dynamic power adjustment are introduced to minimized the charging cost. In [23], the
charging schedule of EVs has been combined with the photovoltaic system of the build-
ings. A smart EV charging method with PV system has been proposed in this paper by
considering the charging scheduling algorithm and prototype application. In this way, the
optimal schedules is designed based on the PV output and electricity consumption.

1.3.2 In-Station Charging Schedule Optimization for Electric Buses

In-station charging strategies are applicable for EBs which are charged at centralized charg-
ing stations or the depot locations after the daily service. In this way, EBs are under a
centralized charging control. However, the drawbacks are the huge charging power for
the charging stations, as well as a large battery pack for each EB to accommodate the daily
service energy demand. Many research has been introduced in literature in this aspect.

In [24], a novel charging load prediction based battery-swap station (BSS) is proposed
for EBs to extend the operating ranges. The study indicates that the stochastic charac-
teristics of EBs due to the randomness of battery swapping and charging patterns can
significantly affect the performance of the battery swap management method. To address
such randomness, four main variables need to be considered, including the number of
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battery swapping for an EB in one hour, starting time of the charging process, operating
distance, and charging duration. In [9], an EB battery exchange system was introduced
based on robots along with experimental data and advanced battery exchange technology.
The research work in [10] has established a new economic model for battery replacement
systems. Based on battery replacement, efficient and low-cost operation of public trans-
portation systems can be achieved. EBs battery charging method is also studied in [25].
This article examines the impact of EB fast charging on battery lifetime and degradation,
and the impact on the utility grid. As EB’s fast charging will put heavy pressure on the
local power distribution system, a new charging station with bidirectional external and
vector control technology was developed in [26]. This article provides detailed informa-
tion on charger design and its corresponding performance. In [19], an optimized control
strategy has been proposed by using the retired EB batteries for the charging stations. In
this paper, the number of second-use EB batteries and the charging-discharging power are
optimized which can reduce the overall annual cost and the daily electricity cost for the EB
charging stations. As for the fast charging of EBs, a hierarchical charging control strategy
has been proposed in order to solve the charging optimization issue for the EBs. There are
two layers in the method: the prediction layer and the scheduling layer. The prediction
layer is used for integration and transmission of the collected data, and the scheduling
layer is for the generation of the charging policy. By using this method, the voltage quality
and economic cost for the system can be guaranteed. In [27], a novel multi-objective bi-
level programming has been proposed to optimize the charging scheduling of electric and
traditional bus fleet. This model involves two layers. The upper layer addresses vehicle
selection that can reduce the operation cost and the carbon emissions by considering the
operating distance and the travel time during the trips. And the lower layer is to optimize
the charging strategy which can reduce the charging cost under the constraints of charging
time. Also, a wireless power transfer (WPT) system is introduced in [28] for the charging
of an EB. The goal is to derive a control strategy for the wireless electric vehicle charger
which can be utilized to achieve fast dynamics and to control the coil current and trans-
ferred power. Accordingly, a dual-loop controller based on the generalized state space
averaging approach is proposed.

1.3.3 En-Route Charging Schedule Optimization for Electric Buses

For the en-route charging strategy, the charging infrastructures are located along the oper-
ation route of the EBs. For example, the en-route charging indicates that EBs could have a
fast charging during the operation process or through the wireless power transfer infras-
tructures which are installed under the road. EB charging schedule optimization for the
en-route charging strategy is also investigated in many existing research works.

In [29], a novel EB system is introduced based on an innovative WPT technology de-
veloped by the Korea Advanced Institute of Technology (KAIST). This forms an online
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electric vehicle (OLEV) based EB system with road-vehicle integration. The benefits of
the OLEV are analyzed, and two methods focusing on commercial design optimization
have been proposed. In particular, the first method neglects the traffic conditions except
for the EBs, while the second method considers the normal traffic conditions. In [30],
the optimal placement of charging stations is investigated to reduce the installation cost
while satisfying the charging requirements of EBs. Two different cases, with and without
considering the limitation of battery capacity, are considered and two algorithms, named
electric charging station problem limited battery (ECSP LB) and electric charging station
problem (ECSP) are proposed for these two cases, respectively. Also, it is proved that the
ECSP algorithm can achieve the lower bound of the performance of the ECSP LB algo-
rithm. In [31], a non-contact charging method for wireless power transmission systems
is introduced. Some experimental results are obtained from [32]. In this paper, the struc-
ture, implementation, and applicability of the proposed online wireless charging system
are presented. Besides, an analysis of wireless charging systems for online electric buses
is presented in [33]. Based on the switching of the resistance circuit and the adjustment
of the resonant frequency of the sensor, the phases of voltage and current are analyzed.
Also, some methods are developed in literature to achieve optimal EB charging planning.
In [34], the charging strategy optimization for wireless charging EB is introduced. Based
on the day-ahead electricity market, the optimal reserved wholesale electricity can be de-
termined, along with the charging strategy which can reduce the operating electricity cost
of the bus system.

1.4 Thesis Motivation and Contributions

According to the discussion above, although there are many research works on EV and EB
charging schedule optimization, there are still several technical challenges that need to be
addressed. Firstly, the charging optimization strategy of EVs cannot be directly applied to
EBs. Compared with EVs, how the key features of EBs such as fixed route and schedule,
various passenger counts, and different driver habits affect the optimization model needs
to be investigated. Secondly, the optimization approach which can used to determine
the charging schedule with a lack of long-term historical data needs to be investigated.
This is of particular importance for many public transit services with newly adopted EBs.
Thirdly, how to model the operation process of EBs by considering the time inaccuracy of
bus schedule due to the uncertainties in traffic conditions and passenger count needs to
be investigated. Finally, for real-world applications, the convergence of the optimization
approach needs to be ensured for a smooth operation of public transit services. To address
these technical challenges, the main contributions of this thesis are summarized as follows.
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1.4.1 Double Q-Learning for Optimal In-Station EB Charging

In this work, we investigate the proper charging demand for in-station charging of EBs, in
order to minimize the operation cost of EBs during the working hours. Also, the battery
lifetime can be extended based on the selection of a suitable charging SOC. A model-free
double Q-learning approach is developed to achieve this objective. The main contributions
of this research are as follows:

• Developing an MDP to describe the operation process of the EBs by considering the
number of charging stations, the current SOC level, and the total cost;

• Developing a model-free double Q-learning approach based on the aforementioned
MDP to study the iterations of EBs’ charging amount at different charging stations;

• Proposing an optimized charging strategy for the EB at each charging station during
its operation process while taking into account the battery degradation cost and the
battery lifetime.

1.4.2 Average Reward Reinforcement Learning for Optimal En-Route EB Charg-
ing

In this work, we investigate the optimal en-route charging strategy of EBs based on SMDP
and average reward reinforcement learning (ARRL). The physical model of EB is utilized
to calculate the energy consumption between two adjacent charging stations based on the
velocity, distance, torque, and the corresponding slope of the road. Then, based on the
energy consumption of the EB, ARRL is used to generate the optimal en-route charging
strategy of the EB. The main contributions of this research are as follows:

• Developing a physical battery degradation model to calculate the total cost of EB
operation between two adjacent charging stations, based on which the corresponding
change of SOC as well as the cost of the battery can be estimated for EB operation;

• Developing an SMDP to characterize the operation process of EB according to the
physical model. The state transitions in the SMDP can be calculated based on the
energy consumption estimated from the physical model;

• Developing an average-reward reinforcement learning approach to optimize the en-
route charging strategy of the EB.

1.4.3 Relative Value Iteration Reinforcement Learning for Optimal En-Route
EB Charging

In this work, we proposed a smart charging approach for EBs based on the RVIRL al-
gorithm. The physical models of EB speed and torque are used to calculate the energy
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consumption of a EB in between any two adjacent charging stations while the EB operat-
ing model is utilized to constrain the state of charge (SOC) level of EB on the route. After
that, the battery degradation model has been implemented to calculate the battery lifetime
degradation parameter which is further used to obtain the degradation cost of the EB bat-
tery. Then, the optimal en-route charging strategies of EBs can be obtained from the RVIRL
algorithm by considering the total electricity cost and battery degradation cost. The perfor-
mance of the proposed approach is demonstrated by utilizing the real-world data obtained
from the public transit service St. Albert Transit, AB, Canada for the electricity price, re-
lated torque, and speed. The main contributions of this section are as follow:

• A physical model is developed to calculate the energy consumption of BEB between
charging stations during the operation process;

• The performance evaluation based on the real-world data collect from St. Albert
Transit, AB, Canada;

• An SMDP problem is formulated to modify the charging schedule of BEB on the
route by considering the SOC changes, number of charging stations, maximum stop
time at charging station, and electricity price;

• An RVIRL algorithm is developed to optimize the en-route charging schedule at each
charging station, and the convergence of the algorithm is proved from the mathemat-
ical aspect;

• The convergence of RVIRL algorithm has been proved in this chapter.

1.5 Thesis Outline

This thesis consists of five chapters which are organized as follows:

• Chapter 1: Introduction - The research background and definitions are introduced in
this chapter. Also, the related works for EB charging schedule optimization in recent
years are reviewed. Finally, the research motivation and contributions are presented.

• Chapter 2: Double Q-Learning for Optimal In-Station EB Charging - This chapter
presents a method to obtain the optimized charging strategy by using RL.An MDP
model is developed to characterize the operation process of EB. Based on the MDP
model, a double Q-learning algorithm is proposed to minimize the battery degrada-
tion cost of the EB at each charging station.

• Chapter 3: Average Reward Reinforcement Learning for Optimal En-Route EB
Charging - This chapter presents an ARRL approach to obtain the optimal en-route
charging strategy of the EB. A physical model is developed to calculate EB energy
consumption between adjacent charging stations by considering the velocity, speed,
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and passenger count. Then, an SMDP is developed to model the operation process
of the EB, based on which an ARRL algorithm is proposed to generate the en-route
charging strategies for the EB. The performance of the proposed ARRL approach is
evaluated based on data from St. Alberta Transit, AB, Canada.

• Chapter 4:Relative Value Iteration Reinforcement Learning for Optimal En-Route
EB Charging - In this chapter, a semi-Markov decision process (SMDP) based relative
value iteration reinforcement learning (RVIRL) approach is proposed to optimize the
en-route charging schedule of EBs. First, the energy consumption and battery degra-
dation model are developed to characterize the electricity cost and battery degrada-
tion during the operation process of EBs, respectively. Then, the RVIRL approach is
utilized to obtain the optimized charging schedule for the en-route charging stations.
The performance of the proposed approach is evaluated based on the real-world data
obtained from the EBs of the public transit company St. Albert Transit in Alberta,
Canada.

• Chapter 5: Conclusion and Future Works - In this chapter, the contributions of this
research and future works are summarized.



2
Double Q-Learning for Optimal In-Station EB

Charging

In this chapter, we present a model-free reinforcement learning approach to optimize the
charging schedules of EB when it arrives at the corresponding charging station, by con-
sidering the EB operation state estimation and battery degradation. An MDP has been
developed to model the operation process of EB during the operation hours. After that,
a double Q-learning approach is introduced to optimize the charging schedule of EB. The
performance of the proposed approach is evaluated based on the real data collected from
St. Albert Transit, AB, Canada.

2.1 System Model

A typical operating process of EB is shown in Fig. 2.1. The EB runs in a circulation trip,
which will departure from the terminal station with an initial SOC in the morning. The
information about the SOC of this EB and the total number of EBs at terminal station will
be sent to the vehicular communication network. Then, as shown in Fig. 2.2, during the
operation process, the SOC starts decreasing while this EB is running on the road. When
this EB arrives at a bus station, the driver sends the current SOC value and station number
to the vehicular communication network. After the vehicular communication network
receiving the EB information for the corresponding bus station, it gives feedback with the
charging information to the driver. The driver will follow the instruction to charge the
EB with specified target SOC or not to charge the EB. During the operating process, the
driver repeats the same steps at each bus station to determine whether to charge the EB or
not with the instruction provided by the vehicular communication network until the EB
finishes the trip and arrives at the terminal station. For EB system, there are a total of N

11
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Figure 2.1: A typical operating process of EB in smart grid.

Figure 2.2: A typical SOC profile of EB in operation process.

bus stations, and each bus station can have either a charging process or idle (not charging)
process. The bus stations are denoted as {(1, 0), (2, 1), . . . , (N, k)}, where k = 1 indicates
that the EB is being charged at this station, while k = 0 means that the EB is idled at this
station.

Based on the discussion in [36], the battery degradation cost (Cd) can be determined as

Cd = cbat
Lc
Ltot

, (2.1)

where cbat is the total cost of battery, Lc is the lifetime degradation in a unit time, which
consists of the capacity fade and power fade, and Ltot is the total battery lifetime which can
be obtained experimentally based on the repeated charging/discharging processes until
the battery capacity drops below 80%. Based on [35], there are two significant factors
that can affect the battery lifetime degradation, i.e., the SOC and DOD. To simplify the
battery modeling process and improve the efficiency of battery degradation evaluation,
it is assumed that these two factors are independent and do not affect the battery aging
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process. This simplified battery model allows us to treat these two factors independently,
without considering the time-variant effects for battery degradation.

Based on the assumptions made for the impacts of battery SOC and DOD on capacity
fade and power fade, the battery degradation function (2.1) can be extended to as follows:

Cd = max
(

(CQSOC + CQDOD), (CPSOC + CPDOD)
)
, (2.2)

where CQSOC and CQDOD are the costs for capacity fade and CPSOC and CPDOD are the costs
for power fade. Further, by comparing with other costs, the costs caused by power fade
can be neglected for simplification [37].

The function for capacity fade cost caused by SOC, CQSOC , is formulated based on the
experimental data obtained in [38]. As for the formulation of cost function of capacity fade
caused by SOC, the assumption of time invariance, as discussed above, is utilized. Also,
due to the assumption about the independence of effects of SOC and DOD, the battery
lifetime degradation for a period is equal to the effect resulting from the battery stays at
average SOC for the same period. The equation relates the capacity fade cost caused by
the SOC and the average SOC of the battery is derived from the data in [38], which can be
formulated as

CQSOC = cbat ·
m · SOCavg − d
CFmax · ε · ζ

, (2.3)

where CFmax is the capacity fade when the battery capacity drops below 80%, which can
be calculated as 100%−QEOL/Q0 and the parameters ε, ζ are obtained by using the curve
fitting method based on the data in [38].

The capacity fade cost caused by the DOD, CQDOD, results from the SOC swing ∆SOC,
which is the difference between the daily maximum SOC and minimum SOC. This dif-
ference is equivalent to DOD. According to [39], the relationship between ∆SOC and the
battery lifetime in cycle L is given by

L(∆SOC) =

(
∆SOC

η

)−1
λ

. (2.4)

Here, we consider the effect on L for an arbitrary given ∆SOC is the same with average
SOC that changes at ∆SOC. According to [40], a concept named energy throughput can
be utilized to calculate the capacity fade cost due to a cycle with ∆SOC. From [36], the
energy throughput during battery lifetime can be represented as

Etp = L(∆SOC) ·∆SOC ·Q, (2.5)

where Q is the battery capacity. Based on the energy throughput theory, the battery degra-
dation cost arises from the capacity fade caused by DOD is given by

CQDOD = cbat ·
(ET,use − ET,discharge)

Etp
, (2.6)
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where ET,discharge is , for given ∆SOCdischarge, defined as

ET,discharge = L(∆SOCdischarge) ·∆SOCdischarge ·Q. (2.7)

Also, ET,charge is used when the EB is being charged. Since the battery charging curve is
nonlinear, the values of actual average SOC and theoretical average SOC are different. The
SOC swing ∆SOCi can change the average ∆SOC to ∆SOCavg,i. Then, the actual energy
throughput ET,use of one charging cycle of battery can be written as

ET,use = L(∆SOCavg,i) ·∆SOCavg,i ·Q+ ∆SOCi ·Q. (2.8)

2.2 Problem Formulation

One of the major obstacles of EBs charging scheduling optimization is the stochastic char-
acteristics. The existence of randomness in traffic conditions, road situations, and driver’s
behaviors increase the complexity of this problem. In order to address the stochasticity, a
model-free method is proposed based on RL. Firstly, a Markov Decision Process (MDP)-
based optimization problem is formulated for the EBs charging scheduling.

The MDP problem can be defined as a tuple (S,A, P (·, ·), R(·, ·), γ). More specifically,
S denotes the states of the corresponding system, A is the finite set of actions, P (·, ·) is the
state transition probability function, R(·, ·) is the immediate reward function, and γ is a
discount factor. The details of MDP for optimal EB charging scheduling is shown below

• State: the system state at each bus station n is defined as Sn = ((n, k), SOCn), where
n is the bus station in the transit system the EB stops at. Here, k indicates, at this bus
station, whether the driver chooses to charge or not, and SOCn denotes the SOC of
EB at bus station n.

• Action: the action an represents the charging power at the current state sn. When
an > 0, this means that the EB is under charging condition and an = 0 indicates that
the driver chooses not to charge the EB. The constrain of the an is given by

0 ≤ an ≤ SOCmaxcharging, (2.9)

where SOCmaxcharging is the maximum charging SOC of the battery of EB. The charging
station of EB provides discrete charging SOC and an ∈ {SOC1, SOC2, . . . , SOCmax}.

• State transition: the state transition probability gives the probability of transitioning
from state sn to sn+1 based on its corresponding action an, which is expressed as

P (sn, an, sn+1) = P (sn+1|sn, an). (2.10)

Based on the EB model, the state transition can be represented as sn+1 = sn +

SOC(n, n + 1) + an where SOC(n, n + 1) is the required SOC for EB running from
station n to station n+ 1.



Chapter 2. Double Q-Learning for Optimal In-Station EB Charging 15

• Reward: the reward during the operating process of EB is the summation of the cost
of battery degradation between any two adjacent bus stations in one complete bus
route. According to the discussion in the previous section, the cost of SOC related
degradation is formulated as

CQ,SOCn = cbat ·
m · (SOCavg(n, n+ 1)− d

CFmax · ε · ζ
, (2.11)

and the degradation cost caused by DOD is

CQ,DODn = cbat ·
(ET,usen − ET,discgargen )

Etpn
. (2.12)

For simplification of calculation, it is assumed that the SOC swing ∆SOCi make no
effort in the used energy throughput, as discussed in Section 2.1. Then (2.8) can be
rewritten as

ET,usen = L(∆SOCn) ·∆SOCn ·Q+ ∆SOCn ·Q, (2.13)

where ∆SOCn = SOCn − SOCn+1. The function of energy throughput in discharg-
ing can be formulated as

ET,dischargen = L(SOCdis(n, n+ 1)) · SOCdis(n, n+ 1) ·Q, (2.14)

where SOCdis(n, n + 1) = min(SOCn − SOCn+1, 0). The energy throughput during
battery lifetime can be reformulated as

Etpn = L(SOCn − SOCn+1) · (SOCn − SOCn+1) ·Q. (2.15)

Further, the reward at bus station n is defined as the battery degradation cost be-
tween bus station n and bus station n+ 1, which is expressed as

Rn = (CQ,SOCn + cbat ·
(ET,usen − ET,discgargen )

Etpn
), (2.16)

where CQ,SOC and CQ,DOD are the battery degradation costs due to capacity fade.

• Action-value function: the action-value function is defined as the expected value of
the sum of future rewards based on the current state and its corresponding action for
the next M bus stations. This can be formulated as:

Qπ(s, a) = E

[
M∑
m=0

γmRn+m|sn = s0, an = a0

]
, (2.17)

where Qπ(s, a) is the action-value function for state s and action a, while π is the
policy of EB charging which maps the current state to the corresponding action based
on the charging schedule.
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• Discount factor: The term γ in the action-value function is the discount factor which
is utilized to balance the weight between the current reward and future rewards of
the remaining bus stations. For example, if γ = 1, this means that the weight of
future rewards is equal to the current reward and the system is forward-looking.
When γ = 0, this means that the system only takes account of the effect of current
reward and the policy is myopic.

By combining the reward function and battery model of EBs, the objective function of
this problem, which aims at minimizing the battery degradation cost while satisfying the
EB charging requirement, can be formulated as

max
N∑
n=2

(−CQ,SOCn − cbat ·
(ET,usen − ET,discgargen )

Etpn
). (2.18)

The constrain for this optimization problem is that the SOC at each bus station should be
within the range of 20%− 90%, based on the specifications of the EB manufacturer.

2.3 Double Q-Learning for EB Charging Schedule Optimization

In this section, we present an algorithm based on RL to solve this formulated problem for
the optimization of daily EBs charging schedules. Based on the discussion in Section 2.2,
the action-value function of the EB system is defined in this section. Generally, the optimal
charging scheduling problem, formulated as an MDP, is to find an optimal policy π∗ to
maximize the action-value function in the form of

Q∗π(s, a) = max
π

Qπ(s, a), (2.19)

where Q∗π(s, a) is the optimal action-value function. To find the optimal action-value func-
tion, a direct method, Q-learning in RL, is introduced based on [47]. The main idea of
Q-learning is that when Qn approaches to Q∗, the policy is greedy and optimal.

For a finite MDP M = (S,A, P (sn+1, sn, an), R(sn, an) , γ), Q-learning keeps an as-
sumption of Qn(s, a) of Q∗(s, a) for each state-action pair (s, a) and the action-value func-
tion is updated through the following processes:

δn+1(Q) = rn+1 + γ max
an+1∈A

Q(sn+1, an+1)−Q(sn, an) (2.20)

Qn+1(s, a) = Qn(s, a) + αnδn+1(Qn). (2.21)

However, the performance of Q-learning in solving stochastic MDP problems may de-
grade for practical applications in EB charging optimization, since the action value in ba-
sic Q-learning is overestimated [41]. In other words, the maximum operator utilized in
Q-learning to determine the value of the next sate could result in an overestimation for the
action value. There will be a positive bias in approximating the maximum value as the
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Algorithm 1 Double Q-learning for charging scheduling optimization
Input: Current state s, current action a, immediate reward R, next state Y , action-value

function Q;
Output: Optimal state s∗ Initialize QA, QB, s

1: Choose a, based on QA(s, ·) and QB(s, ·), observe r, s′

2: Randomly choose either UPDATE(A) or UPDATE(B)
3: If UPDATE(A), then
4: Define a∗ = argmaxa Q

A(s′, a)
5: QA(s, a)← QA(s, a) + α(s, a)(r + γQB(s′, a∗)−QA(s, a))
6: else if UPDATE(B), then
7: Define a∗ = argmaxa Q

B(s′, a)
8: QB(s, a)← QB(s, a) + α(s, a)(r + γQA(s′, a∗)−QB(s, a))
9: end if

10: s∗ ← s′

11: Return s∗

maximum expected value which could cause a reduction in the performance of Q-learning
while handling MDP problems. To address this issue, an alternative algorithm is proposed
by using double estimator method to find the approximation of the maximum value for
the MDP, based on the concept of Double Q-learning [41]. The details of this algorithm are
illustrated in Algorithm 1.

In Double Q-learning, two value functions are defined and stored inside the Q-learning,
which areQA andQB , respectively. These two Q functions are updated based on the value
of Q function in each state for the next stage. In Algorithm 1, the action a∗ is the optimal
action with maximum value at state s′ for Q function QA. Unlike Q learning using the
optimal action to update its value function, the value of QB(s′, a∗) is used for the updating
of QA. The similar updating process is used for Q function QB . It’s worth noting that both
Q function are learned from separate sets of experiences but for the same MDP problem.
Under this condition, the excessive variance for selecting the max Q-value can be reduced,
and the action of Q-value can be slightly underestimated.

For each state-action pair in Double Q-learning algorithm, the action-value functions
for QA and QB can be updated, respectively, through the following equations

QA(s, a)← QA(s, a) + α(s, a)(r + γQB(s′, a∗)−QA(s, a)) (2.22)

QB(s, a)← QB(s, a) + α(s, a)(r + γQA(s′, a∗)−QB(s, a)). (2.23)

In these equations, α ∈ [0, 1] is the learning rate which gives the threshold of convergence
for the best action value function. The learning rate can be obtained by averaging the
randomness of the rewards and transitions [41]. Another important factor is the discount
factor γ ∈ [0, 1). The discount factor is the attribute indicates how critical is the immediate
rewards than the future rewards in the Double Q-learning. Secondly, if the tasks are non-
episodic, this parameter can guarantee each value function in Double Q-learning is finite
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Figure 2.3: Tested bus route for simulation.

Table 2.1: Simulation Parameters for Double Q-learning
Parameter Value

ε 15
ζ 8760
η 145.71
λ 0.6844
Ctot 400 $/kWh
m 0.04717
d 7.9245

Iteration times 100

Bus station 16

and well defined. By combining Algorithm 1 and EB model, for each iteration, the process
would include the transformation from the current state to the next state, the choice of the
optimal action, the calculation of the immediate rewards and future rewards, and the stor-
age of the Q values. This process will occur between any two adjacent bus stations, and the
total number of time steps is N − 1. For each state at each bus station, the number of SOC
levels and the actions of whether to charge or not need to be considered, when running
the algorithm to find the optimal charging schedule, and the number of variables are nf .
Thus, for I iterations, N bus stations, and nf variables, the computational complexity is
O(I ·N · nf ).

2.4 Simulation Results

In the simulation, the data from St. Albert Transit, AB, Canada is used to build the details
of MDP and Q-learning. The data used for simulation is from Sep. 1st. 2018 to Sep.
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Figure 2.4: Remaining SOC for each bus station based on Q-learning.

0 10 20 30 40 50 60 70 80 90 100

Number of iteration times

9

10

11

12

13

14

15

D
a

ily
 c

o
s
t(

$
)

Q-learning

Improved Q-learning

Double Q-learning

Figure 2.5: Performance among different Q-learning algorithms on daily reward.

30th. 2018 for electric bus number 1402. Our case study is done in MATLAB 2021a on a
desktop computer with Intelr CoreTM i7-7700 CPU @3.60GHz. The average optimization
time consumption for charging schedule is 762.23 seconds. The tested bus route is shown
in Fig. 2.3. The red line on the map is the real bus route in the real world. There are a total
of 16 bus stations on each route during the day time and the operating time of EB 1402 is
from 8:00 am to 4:00 pm. The parameters used in this simulation is shown in Table I. In this
simulation, the improved Q-learning method which updates the Q-values of state-action
value and state-opposite action value simultaneously is used as a contrast [42]. The results
of three different Q-learning algorithms, i.e., basic Q-learning, improved Q-learning, and
the proposed Double Q-learning, are compared.

Fig. 2.4 shows the results of SOC under the real conditions and simulation situations.
Due to the randomnesses of traffic conditions, road conditions, and driver’s behavior, the
remaining SOC of EB in different bus stations and days are different. Under this condition,



Chapter 2. Double Q-Learning for Optimal In-Station EB Charging 20

the SOC collected from the bus company are treated as two parts, which are the maximum
SOC and the minimum SOC. According to Fig. 2.4, the blue line and red line are the
maximum and minimum values of SOC, respectively. The remaining three lines are the
SOC value for the three Q-learning algorithms. Since there are charging stations during
the operation process, the SOC fluctuates at around 90%. The reason for not considering
the on-route charging process is that StAT does not install any charging stations during the
operating route.

As discussed before, the Double Q-learning is used to optimize the battery degradation
cost by optimizing the charging schedule for EB. Based on the simulation result, as shown
in Fig. 2.5, the battery degradation cost of different Q-learning algorithms are different, the
results of Q-learning and improved Q-learning are almost the same which is close to 11.5$,
while the Double Q-learning has a better performance with significantly reduce battery
degradation cost. In addition, from Fig. 2.5, it can be observed that the iteration times of
the Double Q-learning is much smaller than the numbers of Q-learning and improved Q-
learning, which means that Double Q-learning is much more efficient. Fig. 2.6 shows that
the comparison of the battery degradation cost between real situation and simulation. For
each day, the battery degradation cost calculated based on the data collected from the com-
pany is used as a baseline. Then, the ratio between the simulation result and the baseline
for different Q-learning algorithms are illustrated by different lines. From the Fig. 2.6, the
percentages of the costs of Q-learning and improved Q-learning, in each day, are almost
the same, while the percentage of the cost for Double Q-learning is relatively low. If the
charging schedule is based on the Double Q-learning, according to the simulation result,
the cost will decrease by about 10% for each day. Besides the lower daily battery degrada-
tion cost for Double Q-learning, another benefit for this algorithm is that the Mean Square
Error (MSE) of Double Q-learning is much smaller than the Q-learning and improved Q-
learning, as shown in Fig. 2.7. As a result, the Double Q-learning algorithm converges
faster than the other two algorithms.

2.5 Summary

In this chapter, an optimal charging scheduling algorithm based on a model-free reinforce-
ment learning algorithm is proposed for the minimization of EBs battery degradation cost.
The battery degradation cost is analyzed by considering both the factors of battery SOC
and DOD. The formulation of MDP-based EBs charging scheduling problem is presented
in details. The transition probability is investigated to address the randomness of EBs
charging processes. Further, the Double Q-learning which is based on reinforcement learn-
ing is introduced to optimize the charging schedule for EBs. Extensive simulation results
based on real data collected from St. Albert Transit, AB, Canada are presented to evaluate
the performances of our proposed Double-Q learning based optimal EBs charging schedul-
ing algorithms. The simulation results show that our proposed algorithm can significantly
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reduce the battery degradation cost during the operating time of EBs, while giving a rela-
tively small errors when considering randomnesses of EBs charging processes. Moreover,
our proposed algorithm can reduce the computational complexity significantly for practi-
cal applications.



3
Average Reward Reinforcement Learning for

Optimal En-Route EB Charging

In this chapter, we develop an RL approach to optimize the en-route charging schedule for
the EBs to minimize its operation cost. First, the physical model of the EBs is introduced to
calculate energy consumption between adjacent charging stations on the route. Next, we
develop a battery degradation model which is used to calculate the battery cost of the EBs
during the charging and discharging processes. After that, an SMDP is utilized to model
the operating process of the EB with the battery degradation model embedded in the value
function of the ARRL algorithm to optimize the charging action for the EBs arriving at the
charging stations. The performance of the proposed approach is evaluated based on real
EB operation data provided by the St. Albert Transit, AB, Canada.

3.1 System Model

Fig. 3.1 shows the operating process of EBs in this chapter. According to the figure, the
EB leaves the terminal bus station n0 in the morning with an initial SOC0 at time t0. After
the completion of the first path, EB arrives at the first en-route charging station n1 with
the current SOC level SOC1, then EB needs to decide on charging or not. For example, if
the charging decision has been made, EB will depart the station with SOC2. By following
the operational schedule, the EB leaves the charging station at t2. And then arrives at the
second charging station n2. At this time, EB does not charge the bus, so the SOC remains
the same in the charging station. During the operation process, EB will repeat several
times until it runs back to the terminal station. pn1 , pn2 , . . . , pnk is the electric price at each
charging station, nk is the total charging station number and tm is the total operational
period of the EB.

22
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Figure 3.1: System model for electric bus

Consider the EB arrives the charging station n, the process between the adjacent charg-
ing station n and n + 1 can be acted as a whole charging and discharging cycle for the
battery. Then the battery degradation is given by:

Fd = Fc(SOC
a
n, SOC

d
n) + Fd(SOC

d
n, SOC

a
n+1). (3.1)

where Fc(·) and Fd(·) represent the battery degradation for the charging process at charg-
ing station and discharging process between charging stations, respectively, while SOCan
and SOCdn are the arrival and departure SOC for charging station n, respectively. Also,
SOCan+1 is the arrival SOC for station n+ 1.

3.1.1 Physical Model of EB Energy Consumption

The relationship between SOC and the energy consumption between the charging station
can be calculated as:

SOCdn − SOCan+1 =
1

Cbattery

∫ Tn+1

Tn

P (t)dt. (3.2)

whereCbattery is the total battery capacity of the EB. According to [43], power consumption
can be calculated as:

P (t) =
2π · τ(t) · ve(t)
βe · ηe · ηd

. (3.3)

where βe is a EB’s constant parameter, ηe and ηd are the engine’s efficiency and driver’s
efficiency respectively.

In (3.3), the angular engine speed can be calculated based on the current bus speed:

ve(t) =
βv · gr · v(t)

2πr
. (3.4)
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where βv is the constant parameter of the velocity

τ(t) =
r · F (t)

gr
. (3.5)

In (3.5), F (t) is the real-time total force of the EB during the running process, r is the radius
of the tire, and gr is the gear ratio. The total force of the EB consists of four parts: friction
force, aerodynamic dragging force, gravity decomposed force, and resultant force which
can be indicated as:

F (t) = Ff (t) + Fa(t) + Fs(t) + Fr(t). (3.6)

where Ff (t) is the friction force which is calculated by the mass of the EB m(t) and the
velocity of the EB v(t):

Ff (t) = cr ·m(t) · g · (βr + βr′ · v(t)). (3.7)

where cr is the road fraction coefficient, βr and βr′ are the constant parameters correspond-
ing to the fraction of the road.

In (4.1), Fa(t) represents the drag force during the operating process caused by the air
resistance for impeding the movement of the EB. In the function, ρ is the density of the air,
ca is the aerodynamic dragging coefficient, A is the front area of the bus:

Fa(t) =
1

2
· ρ · ca ·A · v(t). (3.8)

where Fs(t) is a part of gravity decomposed force when the EB is running up or down of
the road:

Fs(t) = m(t) · g · sin(fθ(d(t)))). (3.9)

where d(t) is the distance according to the time and fθ is the slope of that road correspond-
ing to the location of the EB.

The last part for (4.1) is the resultant force of the EB Fr(t):

Fr(t) = m(t) · dv(t)

dt
. (3.10)

Through the previous functions, the energy consumption for EB between two adjacent
charging stations can be calculated if the corresponding data is provided.

3.1.2 Battery Degradation Model

According to [48], the battery degradation between charging stations n and n + 1 can be
calculated based on the average SOCavg during this process and its corresponding nor-
malized deviation SOCdev for this time interval is:

∆SOCdev = 2

√
3 ·
∫ Tn+1

Tn
(SOC(t)−∆SOCavg)2dt

Tn+1 − Tn
. (3.11)
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where Tn and Tn+1 are the time that the EB arrives charging station.
Then the battery degradation parameter Φh for the battery cycles centered on 50% SOC

can be shown as:

Φh = Kσ ·N · exp(
(∆SOCdev − 1) · Ta

Kγ · Tb
) + 0.2 ·

tcycle
tlife

. (3.12)

where Kσ is the constant coefficient of throughput, Kγ is the exponent for depth of dis-
charge, tcycle is the time in seconds of a cycle, tlife is the total expected shelf life in seconds
to 80% capacity at 25◦C and 50% SOC, and N is the effective number of throughout cycles
in the time interval.

Based on the Zhurkov term, the following relationship can be utilized to simplify (4.12):

(∆SOCdev − 1) · Tb
Kγ · Ta

=
g · S
k · Ta

. (3.13)

where S is the stress level of the battery. In other words, it is a constant as the tensile stress
of the battery.

However, in real condition, the battery charging/discharging cycle is not fully centered
on 50%. In this way, the following function could extend (4.12) to a general function that
matches the battery cycle for any battery level:

Φ2 = Φ1 · exp(
Kη · (∆SOCavg − 0.5)

0.25
) · (1− L). (3.14)

where L is life aging parameter from 0 to 1.0

3.1.3 EB Operation Constraints

During the operation process of EBs, there are some constraints need to be considered.
First of all, when the EB arrives an opportunity charging station n with the SOC as SOCan.
After the charging, the leaving SOCdn needs to satisfy the energy consumption for the next
discharging process which can be defined as SOCd(n,n+1) and it can be formulated as:

SOCdn ≥ SOCd(n,n+1). (3.15)

Since the operating process of EB needs to follow the day-ahead schedule, the time interval
that it can stay at the charging station is limited. If the EB arrives the charging station n at
T an , then the departure time would be limited by:

T dn − T an ≤ Tmaxn . (3.16)

where Tmaxn is the maximum sojourn time for the EB at station n. The third is that due to the
limitation of the charging time, the maximum charging SOC should satisfy the following
equation:

SOCdn − SOCan ≤ Pch · Tmaxn . (3.17)

where Pch is the charging power in the charging station. Finally, the SOC of the EB during
the operation process should be in the manufacturer-specified range that can be protected
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the health of the battery which is:

SOCmin ≤ SOCn ≤ SOCmax. (3.18)

where SOCmin and SOCmax is the minimum and maximum SOC.

3.2 Problem Formulation

In order to formulate the EBs system more preciously, the semi-Markov decision process
[49] is more suitable than the traditional Markov decision process. The main difference
between SMDP and MDP is the time between two adjacent decision-making epochs. As
for the SMDP, this time can be random which is like the real condition of the EBs operation
process. Other is that the decision epoch for SMDP is not restricted to discrete-time epoch,
it is all time epochs that the state enters a new decision-making state. The decisions are
only made at specific system state change that depend on the decision-maker.

When combining the SMDP with the operation process of EB, the state space in SMDP
contains the number of charging station n and its corresponding battery level SOCn which
can be defined as S = {n, SOCn}. The action space A includes the amount of charging
SOCcharn at each charging station. The transition probability between states would not
be considered since the reinforcement learning algorithm is utilized to obtain the optimal
charging schedule. The policy π in the SMDP is the optimal charging decision made by
the EB in each station. When the EBs arrive the charging station, it can be acted as a
decision-maker. The current state of EB is sn = {SOCn, n} and the action chosen under
this condition is an ∈ A. Based on the energy consumption model of the EB, the next state
sn+1 = {SOCn+1, n+ 1} of EB can be calculated from the current state and action. And the
function for calculating total expected reward of the EB is given by:

r(sn, an) = k(sn, an) + E

{∫ Tn+1

Tn

c(Yt,n, sn, an)dt

}
= pn · an ∗ wSOC + Φ2(sn, an, sn+1) · Cbattery.

(3.19)

where the first part is the immediate economic cost due to the decision of the action for
charging the battery according to the current electric price pn, while parameter wSOC is
used to transfer the action ai from SOC value to power. The second part is the actual accu-
mulative cost due to battery degradation during the charging process and the discharging
process of the EB.

The sojourn time between two charging stations Tn,n+1 can be defined as:

τ(sn, an) = Eas {Tn+1 − Tn} =

∫ ∞
0

t
∑
j∈S

Q(sn, sn+1, dt|an)

= argmin(Tmaxn , an · wSOC · P char) +
f(i, j)

P disc
.

(3.20)

where the first part for this function is the time for charging the EB and this value is con-
strained by the maximum stay time Tchar for the EB can stay in the charging station and the
second part is the period for the EB travel from the current bus station to the next charging
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station.
Then the gain (average reward rate) of an SMDP starting at state i and continuing with

policy π can be given as:

gπ(sn) = lim
N→∞

∑N
0 rπ(sn, an)∑N
0 τπ(sn, an)

. (3.21)

3.3 Average Reward Reinforcement Learning for EB Charging Sched-
ule Optimization

Average reward reinforcement learning is model-free reinforcement learning which is a
method of teaching the agent (EB) optimal policy under different states [50]. The optimal
policy learned from the agent is the optimal charging schedule for the EB. The policy is
aiming to find the action at each charging station that can minimize the battery cost due to
the degradation and also extend the lifetime.

The iteration reward function in the algorithm is defined as:
Rnew(sn, an) = (1− αn)Rold(sn, an) + αnr(sn, sn+1, an)

− {gnτ(sn, sn+1, an)−maxbRold(sn+1, b)}
(3.22)

where r is the actual reward from the decision epoch n to n + 1, and τ its corresponding
time between these two epochs. gn is the gain which is the ratio of the total reward and the
total simulation time until the nth epoch and it is defined in (3.21).

The algorithm of average reward RL is shown in Algorithm 3. By using this algo-
rithm, the optimal charging schedule can be obtained at each en-route charging station. In
the algorithm, the energy consumption for the next decision process has been considered
when the EB chooses the corresponding action at the charging station. Meanwhile, during
the iteration process, the maximum charging SOC is also involved which is limited by its
corresponding maximum stay time for EB at the en-route charging station.

Besides the iteration function during the operating process for the algorithm, learning
rate αm and exploration rate pm are also two important parameters. The learning rate
decides the rate of convergence in the process. The exploration rate is used to satisfy
the irreducibility of the Markov chain for the system to visit any state. According to the
Darken-Chang-Moody (DCM) search-then-converge procedure [51], the learning rate and
exploration rate are both decreases to 0 which is shown as follows:

αm =
α0

1 + θ
, θ =

m2

αr +m
, pm =

p0

1 + θ
, θ =

m2

pr +m
(3.23)

where am and pm are the learning rate and exploration rate for ARRL, respectively, while
m is the time step for the algorithm and θ is the decreasing rate which allows the am and pm
to reduce from its initial value to 0. In the next section, the performance of the algorithm
will be tested based on the collected historical data from St. Alberta Transit, AB, Canada.
Besides, the differences of SOC at each charging station will be indicated as well as the
action selected at the en-route charging station and terminal station.
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Algorithm 2 Average Reward RL charging schedule optimization
Input: Current state i, current action a, immediate reward r, next state j, average reward

value R;
Output: Optimal charging policy π∗ Initialize action values Rold(i, a) = Rnew(i, a) = 0,

cumulative reward cnew, total time tnew and reward rate gnew. Also initialize the input
parameters for the Darken Chang Moody scheme α0, αr, p0 and pr.

1: While m < maxsteps
2: Calculate pm and am using DCM scheme.
3: With probability 1−pm, simulate an action a ∈ A, that maximizesRnew(i, a). Otherwise

choose a random (exploration) action the action space A.
4: Simulate the chosen action. Let the system at the next state is j. Also, calculate the

corresponding transition time τ(i, j, a), immediate reward rimm(i, j, a).
5: Find Rnew(i, a) using: Rnew(i, a) = (1−αm)Rold(i, a) +αm{rimm(i, a)− gnewτ(i, j, a) +
maxbRold(j, b)}

6: in case a non exploratory action was chose in step(4):

• Update total reward cnew ← cnew + rimm(i, j, a).

• Update total time tnew ← tnew + τ(i, j, a).

• Update average reward gnew ← cnew
tnew

.

Else, go to next step. Set Rold(i, a)← Rnew(i, a).
7: Set current state i to new state j and m← m+ 1.
8: Return π∗

Table 3.1: Simulation Parameters for ARRL
Parameter Value Parameter Value

βv 50 ηe 0.8
βe 50000 ηd 0.9
cr 1.5 βr 0.008
βr′ 0.0008 g 9.8
ρ 1.32 ca 1.05
A 6 m 18000

3.4 Case Study

In our simulation, a specific bus route which is shown in Fig. 3.2 and schedule from St. Al-
bert Transit, AB, Canada is used to build the bus model and optimize the charging sched-
ule. Based on the historical data, the velocity, passenger number and road condition of the
simulation route can be obtained to calculate the accurate energy consumption between
two adjacent charging stations. The schedule of the EB is utilized to restrict the arrival
time and departure time of the EB in the charging station. At each charging station, the
maximum time that the EB can stay is 15 minutes. In one route, there is a total of 12 charg-
ing stations with 11 en-route stations and 1 terminal station. The running time interval
from the schedule is 9 hours per day. The parameters used in the simulation are listed in
Table 3.1. Our case study is done in MATLAB 2021a on a desktop computer with Intelr
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Figure 3.2: Tested bus route for simulation of ARRL.

CoreTM i7-7700 CPU @3.60GHz. The average optimization time consumption for charging
schedule is 2437.19 seconds. In the simulation, we test the date for a week’s operation pro-
cess of EB. There is a total of 84 charging stations include en-route stations and terminal
stations for 100000 times.

In Fig. 3.3, the SOC level at each charging station is indicated as well as the comparison
of the tendency. With the terminal charging strategy, EB only charged at each terminal
station with full charging. For the en-route charging policy, EB decides the charging SOC
at each charging station. In this way, compared to the terminal charging condition with a
large drop for SOC, en-route charging maintains the SOC in a smaller range which can
decrease the cost for battery degradation. Different value of charging SOC is shown in
Fig. 3.4. In this figure, the real charging strategy is that EB completes the path in the
daytime and has a full charge in the terminal station. However, the drawback is that peak-
load at the terminal station is higher when all EBs back to this station. Compare to the
terminal charging policy, en-route charging can allocate the terminal charging process to
each charging which can release the load stress in the local grid for the terminal station.

Fig. 3.5 is the R-value for the average reward RL. From the figure, it is clear that the
R-value is converged to a fixed value. Since the algorithm is finding the maximum R-value
during the iteration, to obtain the minimum cost of the EB, the value function should be
negative. Under this condition, the R-value for each iteration result will be negative and it
will accumulative to a fixed value.

3.5 Summary

In this chapter, a novel approach for optimizing the en-route charging schedule for EB is
proposed to reduce the electrical cost and release the heavy-duty cased by the peak load
at the terminal station when all the EBs are charging at the same time. Meanwhile, the
physical model of the EB is built to calculate accurate energy consumption during the
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Figure 3.5: Action value for ARRL algorithm

operating process. Finally, the simulation has been done by combining the optimization
approach and the physical model of the EB.



4
An RVIRL Approach En-Route EB Charging

Schedule Optimization

In this chapter, we proposed a charging schedule optimization approach for EBs based on
the RVIRL algorithm. The physical models of EB speed and torque are used to calculate
the energy consumption of an EB in between any two adjacent charging stations while the
EB operating model is utilized to constrain the SoC level of EB on the route. After that, the
battery degradation model is implemented to calculate the battery lifetime degradation
parameter which is further used to obtain the degradation cost of the EB battery. Then,
the optimal en-route charging strategies of EBs can be obtained from the RVIRL algorithm
by considering the total electricity cost and battery degradation cost, and the convergence
of the algorithm is proved from a mathematical aspect. The performance of the proposed
approach is demonstrated by utilizing the real-world data obtained from the public transit
service St. Albert Transit, AB, Canada for the electricity price, EB torque, and EB speed.

4.1 System Model

The operation process of EB is shown in Fig. 4.1. Consider a bus trip with N bus charging
stations in the set N = {1, 2, · · · , N}. Let T = {T1, T2, · · · , TN} be the set of the time
moments that the EB arrives at the corresponding charging stations. At each charging
station, based on the schedule of the bus, the maximum stop time for the EB is denoted
as T stop

n . And the real-time pricing (RTP) of electricity for EB charging can be represented
by pn [$/kWh]. Define the passenger count from charging station n to n + 1 as u(n,n+1).
According to [55], the random passenger count between adjacent charging stations can be
modeled based on log-normal distribution. The average mass of a EB passenger can be
defined as mh, while the mass for the empty EB is denoted by mbus. Different from an

31



Chapter 4. An RVIRL Approach En-Route EB Charging Schedule Optimization 32

Figure 4.1: Operation process for EB.

electric vehicle, EB will follow a deterministic schedule set by the public transit service.
If the EB follows the schedule closely, the time for the EB to arrive at each station is per-
determined, with very small variations due to the randomness in traffic conditions. In
other words, the RTP for en-route EB charging can be determined based on the order of
charging stations to be visited by each EB. During the operation, define the real-time speed
and the current position of EB as vt and dt, respectively.

When the EB arrives at the charging station, the charging station decides whether the
current EB needs to be charged or not, as well as how much energy is needed based on the
available information related to RTP for EB charging, and potential energy consumption
for the next trip of EB. It is worth mentioning that, in order to reduce EB charging cost
and battery degradation, a charging station may not charge the EB if the current RTP is
higher than that of the moment when the EB arriving at the next charging station, and the
remaining SOC of the EB can satisfy the energy consumption for the next trip.

4.1.1 EB Energy Consumption Model

During the operation of a EB, its energy consumption can be calculated by using the force
decomposition method. Based on the physical model of EB, the total force in EB operation
process on the road can be calculated as follows:

Ft = F ft + F at + F st + F rt (4.1)
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where each force can be calculated separately as follows:

F ft = ζr · (mbus + u(n,n+1)mh) · g · (γr + γr′ · vt) (4.2)

F at =
1

2
· ρa · ζa ·A · vt (4.3)

F st = (mbus + u(n,n+1)mh) · g · sin(fθ(dt))) (4.4)

F rt = (mbus + u(n,n+1)mh) · dvt
t
. (4.5)

Specifically, the calculation process is as follows:

• F f is the friction force with ζr representing the road fraction coefficient, while γr and
γr′ are the constant parameters corresponding to the fraction of the road. Also, mh is
the average weight of each passenger;

• F a represents the air drag force due to the air resistance of EB operation, and ρa is
the density of the air. Also, ζa is the aerodynamic dragging coefficient, and A is the
front area of the bus;

• Fs denotes a part of the decomposed gravity force, and fθ is the slope of road corre-
sponding to the location of the EB;

• Fr indicates the resultant force with vt being the real-time speed.

Based on the real time forces on the EB, the corresponding real time torque of is given
by τt = rbus·Ft

gr
where rbus is the radius of EB tire, and gr is the gear ratio. The angular speed

of the EB can be calculated according to the EB velocity, given by

vet =
ζv · gr · vt

2πr
(4.6)

where ζv is a constant parameter.
Then, based on the real time torque and velocity of the EB from (3.5) and (4.6), the

energy consumption between charging stations can be calculated as:

∆Ed,a(n,n+1) =

∫ Tn+1

Tn

2π · τ(t) · ve(t)
βe · ηe · ηd

dt (4.7)

where βe is a constant parameter, while ηe and ηd are the engine’s efficiency and driver’s
efficiency, respectively.

4.1.2 EB Operation Model

When EB arrives at the charging station, a decision needs to be made on whether the
current EB needs to be charged or not. If the charging power at the station is Pn,t, the
maximum SOC increment of the EB at the station is given by

∆SOCc
n =

∫ T stop
n

0 Pn,tdt

Cb
. (4.8)
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In order to satisfy the energy requirement of the EB for the next trip, the SOC of the EB
departing from the charging station should be larger than the energy consumption for the
EB to arrive at the next charging station, which can be represented as:

SOCa
n + ∆SOCc

n ≥ ∆SOCn,n+1 (4.9)

where SOCa
n is the arrival SOC of the EB when it arrives the station n, ∆SOCc

n is the charg-
ing SOC of the EB in the charging station, and ∆SOCn,n+1 is the SOC consumption of the
EB traveling from station n to station n+ 1.

During the operation process of the EB, the real-time SOC(t) of the EB should be in the
manufacturer-specified range to ensure the health of the battery:

SOC
max ≥ SOC(t) ≥ SOCmin. (4.10)

4.1.3 EB Battery Degradation Model

Between two charging stations n and n + 1, the EB operation process can be separated
into the charging process during the EB stay in station n and the discharging process from
station n to n + 1. Based on [48], the decrement of EB lifetime between two charging
stations can be calculated based on the average SOC and the normalized deviation SOC
for a whole charging and discharging cycle which can be defined as:

SOCv
(n,n+1) =

∆Ed,a(n,n+1)

Cb · (Tn+1 − Tn)

SOCd
(n,n+1) = 2

√√√√
3 ·
∫ Tn+1

Tn
(SOC(t)− SOCv

(n,n+1))
2dt

Tn+1 − Tn
.

(4.11)

The battery degradation parameter$h
(n,n+1) for the battery cycles centered on 50% SOC

from charging station n to n+ 1 is given by

$h
(n,n+1) = ασ ·N · exp(

(SOCd
(n,n+1) − 1) · Ta
αγ · Tb

) + 0.2 · tc
tl

(4.12)

where ασ is the constant coefficient of throughput, αγ is the exponent for depth of dis-
charge, tcycle is the time in seconds of a cycle, tlife is the total expected shelf life in seconds
to 80% capacity at 25◦C and 50% SOC, and N is the effective number of throughout cycles
in the time interval given by N =

∫ Tn+1

Tn

2|I(t)|
Qnom

where I(t) is the battery current at time t
and Qnom is the nominal capacity of the battery.

Based on the Zhurkov term [52], the following relationship can be utilized to simplify
(4.12):

(SOCd
(n,n+1) − 1) · Tb
αγ · Ta

=
g · S
k · Ta

(4.13)

where S is the stress level of the battery. In other words, it is a constant related to the
tensile stress of the battery.
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In order to utilize the function of battery degradation at any condition inside 50% SOC,
the corresponding function can be extended to a general function as follows:

$g
(n,n+1) = $h

(n,n+1) · exp(
Kη · (SOCv

(n,n+1) − 0.5)

0.25
) · (1− L) (4.14)

where L is aging parameter from 0 to 1.0 [53].

4.2 Problem Formulation

In this paper, we utilize SMDP to formulate the charging schedule optimization of the
EBs. SMDP is a generalized version of the MDP. Compared to MDP which is based on
the decision making in each time slot, the decision making in SMDP can only happen at
decision maker instants, and the sojourn time between decision makers can be random
[54]. In this way, SMDP is more suitable for charging schedule optimization of EB in real-
world applications. For EB en-route charging, it is not necessary to make charging decision
at each time moment especially on the way, because EB is only charged when stopped at
the charging stations. Since during the EB operating process, the longer the EB running
on the road, the more energy is consumed. It is inappropriate if we only consider the total
cost of the energy consumption for the decision making. Under this consideration, the
average cost is more suitable for EB en-route charging schedule optimization and thus, it
is considered in the following problem formulation.

As for SMDP, the five basic tuples are defined as: {S,A, π, T (i, j, t, a), r(i, a)} where S
is the state of EB in charging stations,A is the charging amount of the EBs, π is the charging
schedule, T (i, j, t, a) is the transition probability between two charging stations, and r(i, a)

is the total cost for the corresponding charging stations.
In detail, the state S = {S1,S2, · · · ,Sn} with each state Sn can be defined as Sn ={

SOCn, n, pn, T
stop
n , u(n,n+1)

}
for EB operation. The action at nth decision epoch Aτn is

defined as Aτn = {Aτ1 ,Aτ2 , · · · ,Aτn} where the action is Aτn = {∆SOCc
n} and the deci-

sion epoch sequence τ = {τ0, τ1, · · · , τn} where τn means the time duration from charging
station n − 1 to n. π is the policy for the state-action pair at each decision epoch. Define
the transition probability when the current state is i with the selected action a and the next
epoch state is j within t time duration as follows:

T (i, j, t, a) = p(Xn+1 = j, τn+1 − τn ≤ t|Xn = i,An = a)). (4.15)

Define the probability that the next decision epoch appears within t time duration if the
current state is i while action a is selected as T (i, t, a). Then, the probability can be calcu-
lated as:

T (i, t, a) =
∑
j∈S

p(j, t|i, a) = P(τn+1 − τn ≤ t|Xn = i,A = a)). (4.16)
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Between two decision epochs, define r(i, a) as the expected total reward which can be
formulated as:

r(i, a) = rimm(i, a) + E

{∫ τn+1

τn

racc(Yt, i, a)dt

}
(4.17)

where rimm(i, a) is the immediate fixed reward which can be defined as:

rimm = pn ·∆Ecn. (4.18)

Also, in (4.17), racc(Yt, i, a) is the accumulated additional reward rate which can be cal-
culated based on the battery degradation mentioned in the aforementioned section as
racc = Ĉb$

g
n,n+1, where Ĉb is the total cost of the battery of EB, while Yt(τn ≤ t ≤ τn+1)

indicates that the accumulative reward process is a natural process. For state i ∈ S and
a ∈ A, the mean of the stop time at state i and action a is given by

O(i, a) =

∫ ∞
0

sT (i, ds, a) = E [τn+1 − τn|Xn = i,An = a]]. (4.19)

Since in SMDP, besides the expected total reward between two decision epochs, the ex-
pected total time is also dependent on the policy. In this way, the average reward under
policy π is defined in SMDP as follows:

δπ(i, a) =
r(i, a)

O(i, a)
. (4.20)

For a policy π∗ and any policy v ∈ Π, if they satisfy δπ
∗
> δv, we call that policy π∗ is the

average reward optimal policy and δπ
∗

is the optimal average reward.

4.3 Relative Value Iteration Reinforcement Learning for Charg-
ing Schedule Optimization

In this section, an RVIRL algorithm is developed to optimize the en-route charging sched-
ule of EB based on SMDP which does not rely on the optimal average reward in the process
of learning iteration. In this way, the algorithm can converge faster since it does not need
to wait the learned policy approaches to the optimal policy. The sensitivity analysis intro-
duced in [49] is used to calculated the iteration function of RL. Based on the perturbation
analysis theory, we have the following relation between the average reward and the state
transition probability function under a given policy π ∈ Π:

δπ = T π(Ψπrπ + Ωπ) (4.21)

where Ψ is the infinitesimal generator, and Ω is the average reward. The infinitesimal
generator for states i and j under action α can be defined as follows:

Ψ(i, j, a) =
[T (i, j, a)− I(i, j, a)]

O(i, a)
. (4.22)
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If we define the transition probability from i to j under the action a as T (i, j, a) = lim
t→∞
T (i, j, t, a) =

P {Xn+1 = j|Xn = i,A = a}, then we have

Ω(i, a) =

∑
j∈S T (i, j, a)Ω(i, j, a)O(i, j, a)

O(i, a)
. (4.23)

Based on (4.21), the average reward among different policies of SMDP can be calculated as
follows:

δπ − δv = pπ [(Ψπrv + Ωπ)− (Ψvrv + Ωv)] , ∀v, π ∈ Π. (4.24)

The optimal condition for SMDP is that a policy π∗ is optimal if and only if:

Ψπ∗rπ
∗

+ Ωπ∗ ≥ Ψπrπ
∗

+ Ωπ. (4.25)

Based on (4.25), the optimal policy π∗ is given by

δπ
∗
e = max

π∈Π

{
Ψπ∗rπ

∗
+ Ωπ∗

}
. (4.26)

Accordingly, we have

δπ
∗
e+ rπ

∗
= max

{
Ωπ + Ψπ∗rπ

∗
+ rπ

∗
}

= max

{
Ωπ − [T (i, j)− I(i, j)]

O(i)
rπ
∗

+ gπ
∗
}

= max

{
Ωπ − (1− I(i, j)

O(i)
)rπ

∗
+
T (i, j)

O(i)
rπ
∗
}

= max

{
Ωπ − (1−

∑
j∈S I(i, j)

O(i)
)rπ

∗
+

∑
j∈S T (i, j)

O(i)
rπ
∗
}
.

(4.27)

Based on the definition of the Q factor [57], given any policy π ∈ Π with potentials
gπ(j), j ∈ S , and the average reward ηπ, for every state-action pair (i, α), the state-action
value function is given by

Qπ(i, α) = Ωπ(i, α) +

[
1− 1

O(i, α)

]
Qπ(i, α) +

∑
j∈S T (i, j, α)rπ(j)

O(i, α)
− δπ, α ∈ A(i), i ∈ S.

(4.28)
Taking the maximum on both sides over the action space A(i) and the optimal policy π∗,
we have

max
α∈An

Qπ
∗
(i, α) + δπ

∗
= max

α∈An
{Ω(i, α)+

[
1− 1

O(i, α)

]
Qπ
∗
(i, α) +

∑
j∈S T (i, j, α)rπ

∗
(j)

O(i, α)

}
.

(4.29)
By comparing (4.27) and (4.29), for the optimal policy π∗, we have:

rπ
∗
(i) = max

α∈A(i)
Qπ
∗
(i, α). (4.30)

By combining (4.30) with (4.28), the optimality equation for Q factor under the gain-optimal
policy π∗ is given by

Qπ
∗
(i, α) = Ω(i, α) +

[
1− 1

O(i, α)

]
Qπ
∗
(i, α) +

∑
j∈S T (i, j, α)

[
max
β∈A(j)

Qπ
∗
(j, β)

]
O(i, α)

− δπ.

(4.31)
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When the exact value of transition probability is unknown, we need to observe the state
transitions on a sample path to obtain the information about the transition probabilities.
Based on the aforementioned discussion, Q factors play an important role for the state-
action pairs, which can be estimated by visiting all the state-action pairs for the sample
path. If the action α is taken at time τ with Xτ = i and stop time ∆τ , then we have

∑
j∈S
T (i, j, α)

[
max
β∈A(j)

Q(j, β)

]
= E

{[
max

β∈A(Xτ+∆τ )
Q(Xτ+∆τ , β)

]
|Xτ = i, Aτ = α

}
. (4.32)

Accordingly, the iteration functions for RVIRL can be formulated as follows:

Qk+1(xn, an) = Qk(xn, an) + γkHk(xn, an)

Hk(xn, an) = δk(xn, an,O(xn, an)) + (1− 1

O(xn, an)
) max
α∈An

Qk(xn, α)

+
1

O(xn, an)
max

β∈An+1

Qk(xn+1, β)−Qk(xn, an)− η

(4.33)

where γk is the step size for RL which satisfies

∞∑
k=0

γk =∞,
∞∑
k=0

(γk)2 <∞. (4.34)

According to [56], the optimal average reward η is not need for the EB en-route charg-
ing schedule optimization since the convergence rate might be slow or the ratio between
the total reward and total time might be unexpected. Based on the definition of Q factor
and function (4.31), during the process of policy iteration, the Q factor may converge to
a constant which depends on the relative values of Q factor. Therefore, η can be replaced
with relative Q factor, and the relative value iteration function is given by

Hk(xn, an) = δk(xn, an, τ(xn, an)) + (1− 1

O(xn, an)
) max
α∈An

Qk(xn, α)

+
1

O(xn, an)
max

β∈An+1

Qk(xn+1, β)−Qk(xn, an)− Q̃k(xn, an).
(4.35)

However, in order to ensure the convergence of the algorithm, the relative Q factor Q̃k(xn, an)

can be replaced by a reference Q factor state-action pair Q(i∗, a∗), such that

Hk(xn, an) = δk(xn, an, τ(xn, an)) + (1− 1

O(xn, an)
) max
α∈An

Qk(xn, α)

+
1

O(xn, an)
max

β∈An+1

Qk(xn+1, β)−Qk(xn, an)− Q̃k(i∗, a∗).
(4.36)

Besides the iteration function, learning rate γk and exploration rate ιk are also two
important parameters. The learning rate determines the rate of convergence in the process,
while the exploration rate is used to satisfy the irreducibility of the Markov chain for the
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Algorithm 3 RVIRL for Charging Schedule Optimization
Input: State space S , action space A and reward r
Output: Optimal charging policy π∗

1: Initialize Qold(i, a) = Qnew(i, a) = 0. Also initialize the input parameters for the
Darken Chang Moody scheme γ0, γr, ι0 and ιr.

2: While m < maxsteps
3: Calculate ιk and γk using DCM scheme.
4: With probability 1− ιk, simulate an action a ∈ A, that maximizesQnew(i, a). Otherwise

choose a random (exploration) action the action space A.
5: Simulate the chosen action. Let the system at the next state is j. Also, calculate the

corresponding stop time τ(i, j, a), immediate reward rimm(i, j, a).
6: Find Qnew(i, a) using:

Qnew(i, a) = (1− γk)Qold(i, a) + γk((1− 1

O(i, a)
) max
α∈An

Qold(i, α)

+
r(i, a)

O(i, a)
+

1

O(i, a)
max

β∈An+1

Qold(j, β)− Q̃old(i, a))

7: Set Qold(i, a)← Qnew(i, a).
8: Set current state i to new state j and m← m+ 1.
9: Return π∗

system to visit any state. According to the Darken-Chang-Moody (DCM) search-then-
converge procedure [51], the learning rate and exploration rate are given by

γk =
γ0

1 + θγ
, θγ =

k2

γr + k
, ιk =

ι0
1 + θι

, θι =
k2

ιr + k
(4.37)

The details of the proposed RVIRL approach is shown in Algorithm 3. At first, initialize
the state space, action space, reward as well as the parameters of the DCM scheme. During
the iteration, the learning rate and exploration rate can be updated based on the iteration
numbers. The selected action at each state result in the next state, the reward and stop
time. Then the Q-value will be updated based on the last Q-value and the corresponding
reward and stop time. When the iteration is done, the algorithm could return the optimal
charging schedule for EB.

4.4 Convergence Analysis of the RVIRL Approach

In this section, of the proposed RVIRL approach is analyzed. In particular, such conver-
gence is crucial for the reliable operation of public transit services with EBs, such that the
optimal charging schedule can always be found. The basic idea for the proof of conver-
gence is based on the stability of ordinary differential equation (ODE) [58]. Here, we first
introduce three assumptions which will be used in the following convergence analysis.

Assumption 1 Define Υ as a Lipschitz function, given by

Υ(Qk) = Qk(i0, a0), i0 ∈ S, a0 ∈ A (4.38)
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where i0 and a0 are the prescribed state and action, respectively, during the iteration process.

Assumption 2 Define ‖Q‖∞ = max
i∈S,α∈A

|Q(i, a)| and ‖Q‖s = max
i∈S,α∈A

Q(i, a)− min
i∈S,α∈A

Q(i, a)

as the max norm and span semi-norm of the corresponding Q factor.

Assumption 3 |Υ(Q)| ≤ ‖Q‖∞ for all Q ∈ Rd

In order to analyze the convergence of the RVIRL algorithm for SMDP, the iteration
function (4.33) can be rewritten as follows:

Qk+1(i, a) = Qk(i, a) + γk(U(Qk(i, a))−Υ(Qk(i, a))−Qk(i, a) +Mk+1) (4.39)

and U is the function defined by:

U(Q(i, a)) = (1− τ(i, a)) min
α∈A

Q(i, α) +
∑

p(i, j, a)r(i, j, a) + τ(i, a) min
β∈A

Q(j, β)). (4.40)

For any k ≥ 0 we have

Mk+1(i, a) = r(i, j, a) + (1− τ(i, a)) min
α∈A

Q(i, α) + τ(i, a) min
β∈A

Q(j, β)− U(Q(i, a)). (4.41)

Define Uα and Uβ as follows:

Uα(Q) = U(Q)− κe

Uβ(Q) = U(Q)−Υ(Q)e = Uα(Q) + (κ− f(Q))e
(4.42)

where κ is the optimal cost which can be calculated as κ = Qk(i∗, a∗), with i∗ ∈ S, a∗ ∈ A
Since the iteration process (4.39) is in the form of a standard stochastic approximation

algorithm, based on the stability of ODE, we have

Q̇(t) = U ′(Q(t))−Q(t)). (4.43)

Then, the convergence of the iteration can be analyzed. By combining with function (4.42),
the stability function can be rewritten as follows:

Q̇(t) = Uβ(Q(t))−Q(t). (4.44)

Clearly, function (4.43) has a unique equilibrium point atQ∗ since Υ(Q∗) = κ and U ′(Q∗) =

Uβ(Q∗) = Q∗. On the other hand, if U ′(Q) = Q, we have Q = Uβ(Q)− (κ−Υ(Q))e. Since
the Bellman equation Q = Uβ(Q) + ce has a solution if and only if c = 0. As a result, if
Υ(Q) = κ, we have Q = Q∗. As for function (4.44), if we define ζ(·) and ε as the solution
and an equilibrium point of the corresponding function, we can see that ‖ζ(t)− ε‖∞ is
non-increasing, and ζ(t)→ ζ∗ for equilibrium point ζ∗ of (4.44) which depends on ζ(0).

Lemma 1 Define two functions %(·) and ς(·) satisfying (4.43) and (4.44), respectively, with %(0) =

ς(0) = %0. Then %(t) = ς(t) + ϑ(t)e, where r satisfies the ODE:

ϑ̇(t) = −ϑ(t) + κ−Υ(ς(t)). (4.45)
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Proof. Based on the variation of the constant formula for %(τ) and ς(τ):

%(τ) = %0e
−τ +

∫ τ

0
e(−τ − s)Uβ(%(s))ds+ e

∫ τ

0
e( − τ − s)(κ−Υ(%(s)))ds (4.46)

ς(τ) = %0e
−τ +

∫ τ

0
e(−τ−s)Uβ(ς(s))ds. (4.47)

Then, if we use Uβn to represent the nth component of Uβ , the max and min relationship for
function %(·) and ς(·) are:

max
n

(%n(τ)− ςn(τ)) ≤
∫ τ

0
e(s−τ) max

n
(Uβn (%(s))− Uβn (ς(s)))ds+ e

[∫ τ

0
es−τ (κ−Υ(%(s)))ds

]
(4.48)

min
n

(%n(τ)− ςn(τ)) ≥
∫ τ

0
e(s−τ) min

n
(Uβn (%(s))− Uβn (ς(s)))ds+ e

[∫ τ

0
es−τ (κ−Υ(%(s)))ds

]
.

(4.49)
According to Assumption 2, we have:

‖%(τ)− ς(τ)‖ ≤
∫ τ

0
es−τ

∥∥∥Û(%(s))− Û(ς(s))
∥∥∥ ds ≤ ∫ τ

0
es−τ ‖%(s)− ς(s)‖ ds. (4.50)

According to the Gronwall’s inequality, ‖%(τ)− ς(τ)‖ = 0 for all τ ≥ 0. Since we have
% = ce⇔ ‖%‖ = 0 for some c ∈ R, we can derive %(τ) = ς(τ) + eϑ(τ). Based on the fact that
%(0) = ς(0) and ϑ(0) = 0, we have

Û(%+ ce) = Û(%) + ce

Υ(%+ ce) = Υ(%) + c.
(4.51)

If ϑ ∈ R, then we have

ϑ̇(τ)e = %̇(τ)− ς̇(τ) = (Uβ(%(τ))− %(τ) + β −Υ(%(τ))e)− (Uβ(ς(τ))− ς(τ))

= e(ε− ϑ(τ)−Υ(ς(τ))).
(4.52)

So, ϑ̇(t) = −ϑ(t) + κ−Υ(ς(t)) is proved. �

Theorem 1 Q∗ is a globally asymptotically stable equilibrium point for equation (4.43).

Proof. Based on the variation of a constant formula, function χ(t) can be defined as:

χ(t) =

∫ t

0
e−(t−τ)(κ−Υ(ς(τ)))dτ. (4.53)

If we assume that equation (4.43) has a unique equilibrium pointQ∗, then ς(t)→ ς∗. Based
on the above result, we have χ(t)→ κ−Υ(ς∗) so that %(t)→ ς∗ + (κ−Υ(ς∗))e. In order to
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prove the asymptotic stability, the Lyapunov stability condition should be satisfied by the
iteration, given by

‖%(t)−Q∗‖∞ ≤ ‖ς(t)−Q
∗‖∞ + |χ(t)| ≤ ‖ς(0)−Q∗‖∞ +

∫ t

0
e−(t−τ)|κ−Υ(ς(τ))|dτ

≤ ‖%(0)−Q∗‖∞ +

∫ t

0
e−(t−τ)|Υ(Q∗)−Υ(ς(τ))|dτ.

(4.54)
According to Assumption 1, Υ(·) is Lipschitz, such that

|Υ(Q∗)−Υ(ς(τ))| ≤ L ‖ς(τ)−Q∗‖ ≤ L ‖ς(0)−Q∗‖ = L ‖%(0)−Q∗‖ . (4.55)

If we assume L > 0, then we have

‖%(τ)−Q∗‖∞ ≤ (1 + L) ‖%(0)−Q∗‖∞ . (4.56)

Lemma 2 Define D as an open bounded set of Rn and C be a set containing D. We define a
mapping ΛD,C : Rn → D̄ as follows:

ΛD,C(x) = λD,C(x) · x (4.57)

where λD,C : Rk → (0, 1) is given by

λD,C =

{
0 if x ∈ C

max
{
β > 0 : βx ∈ B̄

}
if x /∈ C

(4.58)

where B̄ is the closure of B. Let ‖x‖s = maxi xi−mini xi define the span semi-norm on Rn. Then,
we can denote the iteration as xk+1 = Gk(xk, ζk) , where

{
ζk
}

is a random process and
{
Gk
}

satisfies the following condition:∥∥∥Gk(x, ζ)−Gk(y, ζ)
∥∥∥
s
≤ ‖x− y‖s . (4.59)

Then the sequence
{
x̃k
}

generated by the iteration x̃k = Gk
(
ΛD,C(x̃

k), ζk
)

converges, based on
which we can say that sequence

{
x̃k
}

remains bounded.

According to [59], we considerB as an open neighborhood ofQ∗, and C = {x : V (x) ≤ c}
with c > 0 is chosen to be large enough so as to ensure that B ⊂ interior(C). Then, we
define Z : Rd×r → C as follows:

Z(x) =

{
x ifx ∈ C

Q∗ + η(x)(x−Q∗) ifx /∈ C
(4.60)

where η(x) = max {a > 0 : Q∗ + a(x−Q∗) ∈ B}. Then, the scaled version of the iteration
process under state i and action a can be defined as follows:

Q̄k+1(i, a) = Q̂k(i, a) + γk(r(i, a) + (1− τ(i, a)) min
α∈Ak

Q̂k(i, α) + τ(i, a) min
β∈Ak+1

Q̂k(i, β)− f(Q̂k))

(4.61)



Chapter 4. An RVIRL Approach En-Route EB Charging Schedule Optimization 43

Figure 4.2: EB data collection APP and EB routes.

where Q̂k = Z(Q̄k). Based on the result of [59], iteration function (4.61) remain bounded.
Finally, based on Lemma 2 and the bounded result of iteration process (4.61), ‖Q̄k −

Qk‖s ≤ D where D is an arbitrary constant. Then, based on the previous result, we have:

sup
k

∥∥∥Qk∥∥∥
s
≤ sup

k

∥∥∥Q̄k∥∥∥
s

+ sup
k

∥∥∥Qk − Q̄k∥∥∥
s

:= K <∞. (4.62)

Based on Assumption 1 and 3, the convergence of Q value, given the current state i,
selected action a, and the state at next decision epoch j, can be formulated as:

|min
ϕ∈A

Qk(j, ϕ)−Υ(Qk(i, a))| =|Υ(Qk(i, a)− emin
ϕ∈A

Qk(j, ϕ))|

≤
∥∥∥∥Qk(i, a)− emin

ϕ∈A
Qk(j, ϕ)

∥∥∥∥
∞

≤
∥∥∥Qk(i, a)

∥∥∥
s
≤ K.

(4.63)

Define D = max(
∥∥Q0

∥∥ , max
i,j∈S,a∈A

|r(i, j, a)|+ K). Then, the boundary of the Q factor can be

derived as follows:

|Qk+1(i, a)| ≤ (1− γk)
∥∥∥Qk(i, a)

∥∥∥
∞

+ γk( max
i,j∈S,a∈A

r(i, j, a) + K) ≤ (1− γk)
∥∥∥Q(i, a)k

∥∥∥
∞

+ γkD

(4.64)
Based on (4.64), we have

∥∥Qk∥∥∞ ≤ D for all k. In other words, the value function for the
proposed algorithm is always smaller than a constant as the iteration goes to infinite which
means that the algorithm converges. �

4.5 Case Study

In the case study, we use the real-world data from the public transit service St. Albert
Transit from Jun. 1 to Sept. 1, with an Android APP develop by ourselves, as shown in
Fig. 4.2. The parameters used for the calculation of the energy consumption are provided
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Table 4.1: Simulation Parameters for RVIRL
Parameter Value Parameter Value

ζv 50 ηe 0.8
βe 50000 ηd 0.9
ζr 1.5 γr 0.008
γr′ 0.0008 g 9.8
ρa 1.32 ζa 1.05
A 6 mbus 18000
ασ 3.66e-5 αγ 0.717
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Figure 4.3: Convergence of RVIRL algorithm.
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Figure 4.4: An illustration of the total battery lifetime increment.

in Table 4.1. These values are based on the EB model BYD K9 currently used by St. Albert
Transit [5]. Our case study is done in MATLAB 2021a on a desktop computer with Intelr

CoreTM i7-7700 CPU @3.60GHz. The average optimization time consumption for charging
schedule is 5869.78 seconds. According to the data, the battery capacity we used in the
simulation is 300 kWh and the maximum charging power of the EB is 80 kW/h. For the EB
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Figure 4.5: A comparison of the electricity cost among different algorithms.
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Figure 4.6: A comparison of the total cost among different algorithms.
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route schedule of the transit company, there are 12 en-route charging stations on the street.
As for the algorithm in the simulation, we set the exploration rate as 0.8, while the step
size is 0.2. The proposed algorithm is compared with the existing algorithms including the
fitted Q iteration (FQI) RL algorithm from [21] and the greedy algorithm [27] .

Based on the aforementioned case study setup, the simulation results and the perfor-
mance comparison among different algorithms are presented in the following. Fig. 4.3
indicates the convergence of the Q-value iteration for the RVIRL algorithm. Similar to our
theoretical analysis, it is clear that during the iteration process, the Q-value of the algo-
rithm can converge to a constant. The results of the total lifetime increment parameter
are shown in Fig. 4.4. Since both the RVIRL algorithm and FQI algorithm utilize battery
degradation parameter as part of the reward in the iteration function, the total battery life-
time loss ratio of the greedy algorithm is the largest. Compared to the FQI algorithm, the
charging schedule obtained from the RVIRL algorithm has a better performance in terms
of battery lifetime saving. The results for the electricity cost during the simulation period
are shown in Fig. 4.5. In comparison with the charging strategies obtained from the FQI al-
gorithm and greedy algorithm, the electricity cost based on the charging strategy from the
RVIRL algorithm is the lowest. A comparison of the total cost among different algorithms
is shown in Fig. 4.6. As we can see, the accumulative cost of the RVIRL for the simulation
period is the lowest, and the greedy algorithm leads to the highest cost. The reason is that
when the greedy algorithm selects the charging strategy, the electricity price is the only
considered part. However, in RVIRL and FQI algorithms, not only the electricity price
is considered, but also the degradation cost of the battery. Besides the cost comparisons
among different algorithms, the relationship between the charging schedule for the RVIRL
algorithm and the electricity price is shown in Fig. 4.7. According to the result from the
figure, when the electricity price is high, the EB might not select a charging decision, and
when the price is low, the EB might charge itself. The only difference is that when the
battery SOC level is low, the EB will select a charging station in order to minimize the bat-
tery degradation cost and reduce the battery lifetime lost, even the electricity price is high.
Based on the results from Fig. 4.7, the EB does not charge at the first charging stations since
public transit service (St. Albert Transit) requires full charge overnight for safety concerns.
However, if not full charge, our algorithm still applies. For charging station 3-7, even if
the electricity price is low, EB does not charge a lot since the SOC is enough. After that, EB
will select charging decision even the electricity price is high because the current SOC may
not satisfy the energy consumption to the next charging stations. For lasted three charging
stations, the EB charge itself since the electricity price is low.

4.6 Summary

In this chapter, an SMDP based average reward RVIRL algorithm has been proposed to
optimize the en-route charging schedule of EBs. At first, the energy consumption model
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has been introduced to calculate the energy consumption of EB between any two adjacent
charging stations. And then, the operation model of EB on the route has been developed to
characterize the changes in the SOC level and the constraints of the battery manufacturer
range. After the calculation of the energy consumption of EB, the battery degradation cost
of the EB can be evaluated based on the corresponding SOC level during the operation
process and its related normalized deviation for a whole charging and discharging pro-
cess. Based on the system model, an SMDP is used to formulated the operation process of
the EB, considering the number of the charging stations, the current SOC level, the maxi-
mum stop time in the charging station, and the electricity price for the charging decision.
Then, the average reward RVIRL algorithm is utilized to obtain the charging policy. Com-
pared with the ARRL algorithm mentioned in the Chapter 3, the key feature for the RVIRL
algorithm is that the reference state-action pair is used to estimate the average reward rate
in ARRL algorithm. For EB en-route charging schedule optimization, due to the uncer-
tainty of stop time (T stopn ), the average reward rate could be very large if the EB needs a
large charging amount within a short stop time. In this way, the rate of convergence could
be slow down. Finally, a case study based on the real-world data obtained from St. Albert
Transit is conducted, and the performance of the RVIRL algorithm is compared with the ex-
isting FQI algorithm and greedy algorithm. According to the results from the simulations,
the total cost of RVIRL is reduced by about 17% and 33% when compared with the FQI
algorithm and greedy algorithm, respectively. Besides the comparison among different al-
gorithms, the convergence of the RVIRL algorithm is theoretically proved and verified by
simulations



5
Conclusion and Future Works

In recent years, EBs have attracted much attention from transportation system agents and
industry due to the economic and environment-friendly futures. However, the battery
sizes of the EBs can limit their operation range, and the high charging power compare to
the electric vehicles may challenge the local power system. In order to reduce the impact
of EBs on the local power system and extend the operation range, RL has been utilized to
optimize the charging strategies of EBs. First, a double Q-learning is used to generate the
charging amount at each charging station of EB. During the learning process, the historical
energy consumption and battery degradation cost are considered. Then, an ARRL ap-
proach is presented to generate the en-route charging strategies. SMDP is used to model
the operation process of EBs considering the randomness of the time duration between
charging stations. Finally, an RVIRL approach is developed to obtain the charging strategy
of EB during its operation process. In this approach, besides the energy consumption, the
real-time electricity price at the charging station is considered in the proposed method.
Differences among these three works are that the first work requires the EB only charge
in the terminal station which is a common charging method for the public transit ser-
vices with newly adopted EBs, while the second and third works are suitable for the EB
which charges during the operation process. During the operating process, if the charg-
ing stations are locating in the exchange station and the EB follows the operation schedule
under less congested traffic conditions, the second work is suitable for the optimization of
charging schedule. If the charging stations are combined with bus shelters with an uncer-
tain charging time, or the EB is operating under congested traffic conditions, the charging
schedule can be optimized based on the third work.

48
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5.1 Contributions of Thesis

The main contributions of this thesis can be summarized as follows:

• An optimal charging scheduling algorithm based on a model-free reinforcement learn-
ing algorithm is proposed for the minimization of EBs battery degradation cost. The
battery degradation cost is analyzed by considering the factors of battery SOC and
DOD. The formulation of MDP-based EBs charging scheduling problem is presented
in details. The transition probability is investigated to address the randomness of
EBs charging processes. Further, the double Q-learning which is based on reinforce-
ment learning is introduced to optimize the charging schedule for EBs. Extensive
simulation results based on real data collected from St. Albert Transit, AB, Canada
are presented to evaluate the performances of our proposed double-Q learning based
optimal EBs charging scheduling algorithm.

• For en-route EB charging schedule optimization, specific physical model and bat-
tery degradation model are built for the calculation of the energy consumption and
the cost of EB operation, respectively. The SMDP is utilized to model the operation
process of the EBs, and the ARRL approach is introduced to optimize the en-route
charging schedule for the EBs. The optimized charging policy and its efficiency are
demonstrated based on the real EB operation data provided by the St. Albert Transit,
AB, Canada.

• An extension of ARRL is further investigated for the optimization of charging strat-
egy. Besides the physical model for the energy consumption, real-time electricity
prices at charging stations as well as the corresponding charging power are also con-
sidered for the SMDP of EB. After that, an RVIRL approach with the consideration
of battery cost, electricity cost, and the impact on the power system is utilized to
find the optimal charging schedule. And the convergence of the RVIRL approach is
proved mathematically.

5.2 Directions for Future Work

In this thesis, the charging strategy of EB can be obtained by using the RL and its exten-
sions. However, there are still some open issues that need to have future research, such
as the charging strategy of multiple EBs and the energy management for the renewable
energy sources. In particular, the following topics will be investigated in our future works:

• In order to obtain a more accurate estimation of energy consumption of EBs on the
road, additional stochastic parameters need to be considered such as weather con-
ditions, traffic conditions, and passenger trip profiles. Also, the accuracy of the en-
ergy consumption can be improved by involving the influences of the region, time,
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weather, and season. According to the improved EB energy consumption model, the
real-time charging load on the power system can be investigated;

• Based on the previous discussion, the RL method can be utilized to obtain the opti-
mal charging strategy for the EB. However, multiple EBs operating simultaneously
might affect the charging schedules among each other. To address this issue, a multi-
agent RL can be developed to jointly optimize the charging schedules of multiple
EBs.

• The en-route charging station with renewable energy sources such as solar and wind
as well as energy storage devices can also be investigated for the optimization of the
charging strategy for each EB. Accordingly, new RL approach needs to be developed
by considering the energy remaining at the station, the current charging load for the
EBs as well as the electricity price for different charging stations. The MDP or SMDP
based models can also be utilized to predict the amount of solar and wind energy for
the charging stations.
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[36] A. Hoke, A. Brissette, D. Maksimović, A. Pratt, and K. Smith, “Electric vehicle
charge optimization including effects of lithium-ion battery degradation,” in Proc. IEEE
VPPC’11, Oct. 2011.

[37] J. C. Hall, A. Schoen, A. Powers, P. Liu, and K Kirby, “Resistance growth in Lithium
Ion satellite cells,” in Proc. 208th ECS Meeting, Oct. 2005.



Bibliography 54

[38] T. Markel, K. Smith, and A. Pesaran, “Improving petroleum displacement potential
of PHEVS using enhanced charging scenarios,” in Proc. WEVA EVS’09, May 2009.

[39] C. Rosenkranz, “Deep-cycle batteries for plug-in hybrid application,” in Proc. WEVA
EVS’03, Nov. 2003.

[40] V. Marano, S. Oroni, Y Guezennec, G. Rizzoni, and N. Madella, “Lithium-ion batteries
life estimation for plug-in hybrid electric vehicles,” in Proc. IEEE VPPC’09, Sept. 2009.

[41] H. van Hasselt, “Double Q-learning,” in Proc. NIPS’10, Dec. 2010.

[42] M. Pouyan, A. Mousavi, S. Golzari and A. Hatam, ”Improving the performance of Q-
learning using simultanouse Q-values updating,” in Proc. IEEE ICTCK’14, Nov. 2014.

[43] M. T. Sebastiani, R. Luders, and K. V. O. Fonseca, “Evaluating electric bus operation
for a real-world BRT public transportation using simulation optimization,” IEEE Trans.
Intell. Transp. Syst., vol. 17, no. 10, pp. 2777-2786, Oct. 2016.

[44] J. Temple, “The $2.5 trillion reason we can’t rely on batteries to clean
up the grid,” MIT Technology Review, July 2016. [Online]. Available:
https://www.technologyreview.com/s/611683/the-25-trillion-reason-we-cant-
rely-on-batteries-to-clean-up-the-grid/. [Accessed: 25-Apr-2019].

[45] Y. Liu and H. Liang, “An MHO approach for electric bus charging scheme optimiza-
tion based on energy consumption estimation,” in Proc. IEEE PES GM’18, Aug. 2018.

[46] X. Xu, W. Liu, X. Zhou, and T. Zhao, “Short-term load forecasting for the electric bus
station based on GRA-DE-SVR,” in Proc. IEEE ISGT ASIA’14, May 2014.

[47] C. Szepesvari, “Algorithms for reinforcement learning,” in Synthesis Lectures on Arti-
ficial Intelligence and Machine Learning, Morgan & Claypool Publishers, 2009.

[48] A. Millner, ”Modeling Lithium Ion battery degradation in electric vehicles,” in Proc.
IEEE CITRES’10, Sept. 2010.

[49] Xi-Ren Cao, ”Semi-Markov decision problems and performance sensitivity analysis,”
IEEE Trans. Autom. Control, vol. 48, no. 5, pp. 758-769, May 2003.

[50] T. K. Das, A. Gosavi, S. Mahadevan, and N. Marchalleck, ”Solving Semi-Markov De-
cision Problems Using Average Reward Reinforcement Learning,” Manage. Sci., vol. 45,
no. 4, pp. 560–574, 1999.

[51] C. Darken, J. Chang and J. Moody, ”Learning rate schedules for faster stochastic gra-
dient search,” in IEEE Neural Networks for Signal Processing’92, Aug.-Sept. 1992.

[52] Zhurkov, S.N. ”Kinetic concept of the strength of solids”, Int J Fract 26, Dec.1984.



Bibliography 55

[53] G. Ning and B. N. Popov, “Cycle life modeling of lithium-ion batteries,” J. Electrochem.
Soc., vol. 151, no. 10, pp. A1584–A1591, 2004.

[54] R. Howard, “Semi-Markovian decision processes,” Bull. Inst. Intcernat.Statist., vol. 40,
pp. 625–652, 1963.

[55] B. Hu, S. Feng, J. Li, and H. Zhao, “Statistical analysis of passenger crowding in bus
transport network of Harbin,” Physica A, vol. 490, pp.426-438, Jun. 2018.

[56] Yanjie Li and Fang Cao, ”RVI reinforcement learning for semi-Markov decision pro-
cesses with average reward,” in Proc. WCICA’10, July 2010.

[57] X. R. Cao, Stochastic Learning and Optimization: A Sensitivity-Based Approach. New York:
Springer, 2007.

[58] V. S. Borkar and S. P. Meyn, “The ode method for convergence of stochastic approxi-
mation and reinforcement learning,” SIAM J. Control Optim., vol. 38, no. 2, pp. 447–469,
2000.

[59] D. P. Bertsekas, J. Abounadi, and V. Borkar, “Stochastic approximation for nonexpan-
sive maps: Application to Q-learning algorithms,” SIAM J. Control Optim., vol. 41, no.
1, pp. 1–22, 2003.


	Introduction
	Background
	General Terms and Definitions
	Markov Decision Process
	Semi-Markov Decision Process
	Reinforcement Learning

	Literature Review
	Electric Vehicle Charging Schedule Optimization
	In-Station Charging Schedule Optimization for Electric Buses
	En-Route Charging Schedule Optimization for Electric Buses

	Thesis Motivation and Contributions
	Double Q-Learning for Optimal In-Station EB Charging
	Average Reward Reinforcement Learning for Optimal En-Route EB Charging
	Relative Value Iteration Reinforcement Learning for Optimal En-Route EB Charging

	Thesis Outline

	Double Q-Learning for Optimal In-Station EB Charging
	System Model
	Problem Formulation
	Double Q-Learning for EB Charging Schedule Optimization 
	Simulation Results
	Summary

	Average Reward Reinforcement Learning for Optimal En-Route EB Charging
	System Model
	Physical Model of EB Energy Consumption
	Battery Degradation Model
	EB Operation Constraints 

	Problem Formulation
	Average Reward Reinforcement Learning for EB Charging Schedule Optimization
	Case Study
	Summary

	An RVIRL Approach En-Route EB Charging Schedule Optimization
	System Model
	EB Energy Consumption Model
	EB Operation Model
	EB Battery Degradation Model

	Problem Formulation
	Relative Value Iteration Reinforcement Learning for Charging Schedule Optimization
	Convergence Analysis of the RVIRL Approach
	Case Study
	Summary

	Conclusion and Future Works 
	Contributions of Thesis
	Directions for Future Work

	References

