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Abstract 

To combat global warming, Canada has committed to reducing greenhouse gases (GHGs) 40-

45% below 2005 emission levels by 2025. Monitoring emissions and deriving accurate 

inventories are essential to reaching these goals. GHGs can be measured at a small scale, often 

using ground measurements which are extrapolated to estimate regional emissions, or at larger 

scales using airborne or satellite methods to infer area sources. Airborne methods can provide 

regional and area source measurements if ideal conditions for sampling are met. For the first 

time, two airborne mass-balance box-flight algorithms were compared to assess the extent of 

their agreement and their performance under various conditions. The Scientific Aviation, SciAv 

Gaussian algorithm and the Environment and Climate Change Canada Top-down Emission Rate 

Retrieval Algorithm (TERRA) were applied to data from five samples. Estimates were compared 

using standard procedures, by systematically testing other method fits, and by investigating the 

effects on the estimates when method assumptions were not met. Results indicate that in standard 

scenarios the SciAv and TERRA mass-balance, box-flight methods produce similar estimates 

that agree (3-25%) within model errors (4-34%). Implementing a surface extrapolation procedure 

for the SciAv model may improve emission estimation. Models disagreed when non-ideal 

conditions occurred (under non-stationary conditions). Results from both models were largely 

unusable when a flight sample did not capture the top of an emission plume. Overall, the results 

provide confidence in the box-flight methods, and indicate that emissions estimates are not 

overly sensitive to the choice of algorithm, but demonstrate that fundamental model assumptions 

should be assessed for each flight. The box-flight mass-balance airborne methods provide in-

depth measurements by flying around a source to box in an emission plume. They can attain a 

low uncertainty (~ 2 %), but they require known sources, often require advance coordination 

with industry, and are quite expensive, so cannot always be easily applied. A different airborne 
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method, airborne imaging spectroscopy, takes a snapshot from above to estimate emissions, can 

sample large areas quickly, and can capture unknown emissions leaks and sources, but currently 

has larger uncertainty in emission estimates than mass-balance methods (<20%). Using a spectral 

remote instrument, the Airborne Visible InfraRed Imaging Spectrometer - Next Generation 

(AVIRIS-NG), an independent sample captured a large sporadic emission 4-7 times larger than 

the SciAv sample three days later. The range in estimates highlights the utility of supplementing 

airborne mass balance methods with other methods to get a more complete understanding of 

emissions. Both methods are limited by intermittent sampling and cannot be solely used to 

characterize day-to-day emissions operations, or seasonal variability. Current national emissions 

inventories could be improved by incorporating independent airborne samples for validation of 

independent repeated and, or continuous ground, and satellite measurements with industry-

reported inventories to provide better estimates. Advances in developing inventories using a 

combination of defendable methods at varying scales of measurement will enable more accurate 

and complete estimation of GHG fluxes, while holding nations and industry accountable to their 

emissions. These changes would be key steps to reducing emissions and addressing climate 

change goals. 
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Chapter 1 

1.1 Introduction 

 

The rate of warming of the Earth is greater now than at any other period over the last 22,000 

years and scientific consensus is that this warming is an unequivocal consequence of human 

activity since the Industrial Revolution (IPCC, 2021; IPCC, 2018; Etheridge et al. 1998; 

Dlugokencky et al. 2011; Ciais et al. 2014; Falkowski et al. 2019; Schuur et al. 2015; Saunois et 

al. 2020; Le Quéré et al. 2018). Carbon dioxide and methane emissions are the first and second 

greatest contributors to anthropogenic climate warming (Saunois et al. 2016). Emissions since 

the Industrial Revolution have increased the concentration of carbon dioxide in the atmosphere 

from approximately 277 parts per million (ppm) in 1750 to an estimated 410 ppm in 2019 and 

continue to increase unabated (Friedlingstein et al. 2020; IPCC, 2021). At that rate, in 15 to 30 

years, carbon dioxide concentrations in the atmosphere will exceed levels required to limit global 

warming below a 2 °C increase from pre-industrial levels (Rogelj et al. 2016). Global methane 

concentrations also continue to rise and have more than doubled from an approximate average of 

695 ppb between 1000 to 1800 to an estimate of 1866 ppb in 2018 (IPCC 2021; Saunois et al. 

2020; Etheridge et al. 1998). GHG emissions must be immediately reduced to have a 66% 

chance of staying on track to avoid drastic increases in global temperature (> 8.5°C) by the end 

of this century (Rogelj et al. 2016; Friedlingstein et al. 2020).  

Methane is the most abundant of the reactive trace gases in the troposphere (Schuur et al. 

2015; Le Quéré et al. 2018); and has 20 – 80 times the warming potential of carbon dioxide 

depending on the timeframe considered (Balcombe et al. 2018). While 82% of carbon dioxide 

emissions between 1959-2017 have been from fossil fuels, decreases in methane emissions are 

the most efficient way to combat global warming due to the larger methane warming potential 

(Dlugokencky et al. 2011; Le Quéré et al. 2018). The study and estimation of methane fluxes, 

sources and sinks has become increasingly common despite the small concentrations in the 

atmosphere (Dlugokencky et al. 2011). It is estimated that 60% of global methane emissions are 

from anthropogenic sources including fossil fuels (19%), agriculture and landfills (38%) and 

biomass and biofuel burning (5%), with the remaining 40% accounted for by natural sources 

such as wetland emissions (31%) and geological sources, permafrost thaw, wild animals, and 

termites (7% combined) (Saunois et al. 2020). Atmospheric methane is largely removed through 
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oxidation reactions with the atmosphere and within the soil within 10 years (Saunois et al. 2020). 

However, even if net-zero emissions were attained, atmospheric methane concentrations are 

estimated to continue to increase for three decades before stabilizing due to chemical feedbacks 

and the potential declining oxidative capacity of the global atmosphere (Turner, Frankenberg, 

and Kort 2019; Heimann et al. 2020).  

Independent estimates of fluxes used to derive the sources and sinks of the global carbon 

dioxide and methane budgets do not always agree with each other (Saunois et al. 2020; Le Quéré 

et al. 2018). Bottom-up methods aggregate estimates of numerous point source emissions to 

extrapolate an emission budget, whereas top-down methods measure the atmosphere at larger 

scales to estimate emissions from point and area sources (National Academies of Sciences, 

Engineering 2018). The largest atmospheric budget uncertainties arise from the differences in 

anthropogenic bottom-up inventory estimates and top-down budget estimates (Johnson et al. 

2017). This disagreement has led to a yearly increase in the uncertainty of the atmospheric 

carbon dioxide and methane budgets in 2018 of 2.7% and 3% respectively (Saunois et al. 2020; 

Le Quéré et al. 2018). Reducing uncertainties of methods that contribute to the disagreement in 

these greenhouse gas (GHG) estimates will be an essential step towards providing better 

estimation of local, regional, and global atmospheric GHG changes.  

International climate accords such as Kyoto (1997) and Paris (2005) have seen nations 

enthusiastically sign and then back out as governments’ commitments shift. Despite thirty years 

of collective agreements, carbon dioxide emissions have continued to rise at increasing rates, 

illustrating the failure of current initiatives (Maslin 2020). National inventories are essential to 

creating a global picture of climate change and generating international pressure for action. 

Nations that signed the United Nations Framework Convention on Climate Change (UNFCCC) 

agreed to use comparable methodologies to compile national inventories of anthropogenic 

emissions. As of 1996, the Intergovernmental Panel on Climate Change (IPCC) has developed 

and refined guidelines for creating national greenhouse gas inventories (IPCC 2008). The IPCC 

defines levels of assessment, and the first and simplest for calculating a bottom-up estimate of 

emissions involves combining human activity data with the extent of related emissions (IPCC 

2008). Inventory estimates that follow IPCC protocols combine tiers (1-3) of data spanning all 

methods of emission estimation to produce as complete an inventory as possible (IPCC 2008). 
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Industry inventories, environmental agencies, and academic research are relied upon in the 

protocol as sources of data. In North America, most inventory estimates tend to be on a smaller 

regional scale using the most accurate IPCC Tier 3 approaches, focusing heavily on industries 

and relying on ground-based methods in combination with emission intensity calculations using 

Continuous Emissions Monitoring System data to report to provincial, or state regulators 

(National Academies of Sciences, Engineering 2018, Liggio et al. 2019). Industry reporting 

derived from these inventories and indexes such as Canada’s National Pollutant Release 

Inventory (NPRI) (Figure 1) can be compiled and are relied upon in many fields of study for 

accurate spatial ground observations (Johnson et al. 2017). For example, industry inventories are 

often used as prior knowledge for modeling of satellite measurements for quantifying point 

source atmospheric emissions (Cusworth et al. 2019). Industry inventories provide vital 

summarized information used as a foundation for regulation.  

Independent measurements provide an essential check on industry reported values. 

Industry estimates utilizing solely ground-based measurements are often criticized as 

underestimating regional emissions (Liggio et al. 2019; Johnson et al. 2017; Liu et al. 2018; 

Lyon et al. 2015; Brandt et al. 2014). In a study systematically comparing 20 years of top-down 

and bottom-up estimates of anthropogenic methane emissions from the US natural gas and oil 

sectors, official bottom-up derived inventories were found to consistently under-report methane 

emissions (Brandt et al. 2014). Many factors contribute to this underestimation. The distribution 

of regional emissions is often mischaracterized so that the extent of emissions from ‘super-

emitters’ are under-represented, and potentially biased. Large confidence intervals of estimates 

can further contribute to under-reporting (Brandt et al. 2014). Inventories can also be incomplete 

and contradictory due to methodological issues. For example, the exclusion of abandoned wells, 

unknown sources, and emitters below detection limits as well as a lack of modern sampling 

technologies can all contribute to an under-estimation of methane emissions (Riddick et al. 2019; 

Brandt et al. 2014; Johnson et al. 2017). Currently some heavy oil production sites report zero 

methane emissions despite measurable sporadic releases still occurring, as reporting is only 

necessary when emissions are greater than a given threshold (Johnson et al. 2016). Upscaling 

using bottom-up methods that do not account for sporadic emissions are bound to produce 

inventories that underestimate emissions. 
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 Addressing the climate crisis has become a National and Provincial priority in Canada 

with the adaptation of carbon pollution pricing systems, improvements in the transport sectors’ 

fuel efficiency, and investment in renewable resources research and adaptation (Canada, 2016; 

Environment and Climate Change Canada, 2021). Canada contains the world’s third largest oil 

reserves, and of all nations has the fourth highest volume-weighted average crude oil upstream 

GHG intensities, just behind Algeria, Venezuela, and Cameroon (Masnadi et al. 2018).  

The province of Alberta emits approximately 54% of the nation’s GHG emissions and, as 

shown in Figure 1, contains 696 of the 1700 facilities reporting to the national greenhouse gas 

emissions program (Government of Canada 2021c). Approximately 35% of national GHG 

emissions are from oil and gas operations (Government of Canada 2021c). Canada has 

committed to reducing greenhouse gases (GHGs) 40-45% below 2005 emission levels by 2030, 

and the Government of Alberta has committed to a 45% reduction in methane emissions from the 

oil and gas sector by 2025 (Government of Alberta 2015; Government of Canada 2021b). 

Further, at the COP26 summit in Glasgow in the Fall of 2021, Canada committed to an emissions 

cap on the domestic oil and gas sector, with the goal of achieving net zero by 2050 (Government 

of Canada 2021a). 

Figure 1. Map of the 1,700 Canadian facilities reporting to the Greenhouse Gas Reporting 

Program for 2019, coloured by emission range. Source: Environment and Climate Change 

Canada. 
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A critical part of achieving these goals is the development and implementation of robust 

GHG emissions monitoring programs (Cronmiller and Noble 2018). The Joint Oil Sands 

Monitoring Program (JOSM) was created in 2012 to deliver scientifically defensible 

environmental monitoring and cumulative impacts assessment studies, under the shared 

leadership of the Governments of Alberta and Canada, and was renamed the Oil Sands 

Monitoring (OSM) Program in 2015. Since then, the program has produced rigorous scientific 

publications focusing on mineable oil sands operations in the Athabasca Oil Sands Region (e.g., 

Liggio et al. 2019; Baray et al. 2018; Liggio et al. 2016; Li et al. 2017; Small et al. 2015; Zhang 

et al. 2018; Shephard et al. 2015). OSM has an approximate $50 million per year budget funded 

under Alberta's Oil Sands Environmental Monitoring Program, which dictates that oil sands 

companies in Alberta contribute to funding in return for deemed compliance with conditions on 

regulatory approvals that relate to such activities (Government of Alberta 2013). In 2013, the 

Government of Alberta legislated the creation of an independent monitoring agency to perform 

environmental monitoring in Alberta (Alberta Environmental Monitoring, Evaluation and Report 

Agency; AEMERA), which was established and received its initial budget in 2015. However, the 

agency was dissolved in 2016, less than a year after its independence was functionally 

established, and reincorporated into the Government of Alberta as the Environmental Monitoring 

and Science Division (EMSD), a decision that has been criticized by the scientific community 

(Cronmiller and Noble 2018). Alberta’s EMSD has since been further integrated into the 

Government of Alberta, and monitoring work is now done under the Resource Stewardship 

Division. During the COVID-19 pandemic, in addition to the cancellation of a number of OSM 

monitoring programs and research studies, Alberta suspended many industrial reporting 

obligations when environmental monitoring was reduced across Canada (Goodday 2021).   

This history of discontinuity in Oil Sands monitoring has led to concerns about credibility 

and transparency (Cronmiller and Noble 2018). The lack of stability in monitoring programs has 

presented both scientific and management challenges. Given the goal of reducing methane 

emissions by 45% by 2025, it is critical to have a well coordinated emissions reduction plan. 

However, the Government of Canada and the Province of Alberta have adopted different and 

potentially conflicting emissions reduction regulations and targets, with increasing public 

disagreement between ministers, and while federal policies are found to be stronger, neither 

government is currently poised to achieve the 2025 target (Johnson and Tyner 2020; Canadian 
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Press 2021). The Government of Canada has pledged to end federal financing for foreign fossil 

fuel projects in 2022 (The Globe and Mail 2021). In 2019, the Government of Alberta initiated a 

“fight-back” policy which included creating the Canadian Energy Centre to promote Alberta's 

O& G sector, and a public inquiry into “anti-Alberta energy campaigns” and foreign investment 

in environmental initiatives (Government of Alberta 2019; Allan 2021). These recent 

developments suggest that environmental monitoring in the Oil Sands will continue to be a 

complex and contentious issue for the foreseeable future. 

Scientific autonomy from political mandates is essential to the credibility of monitoring 

and science programs. Instability, lack of scientific leadership, lack of clarity of purpose, and 

what can be complex technical issues are a challenge for any long-term monitoring program 

(Cronmiller and Noble 2018), let alone one that appears to be at odds with a government's stated 

public priorities and policies. Despite this complex history, the Government of Alberta remains 

engaged in implementing monitoring and emissions reductions plans (Boyd 2019). Ultimately, 

the success of any monitoring program will depend on the rigour of the science underpinning it, 

the use of appropriate technology enabling it, and adoption of a clear purpose and mandate. 

Comparisons of top-down and inventory-based estimates have suggested that the Alberta 

Oil Sand’s carbon dioxide and methane emissions are considerably under-estimated (Liggio et al. 

2019; Johnson et al. 2017; Baray et al. 2018). Increased monitoring for identifying and 

mitigating unknown methane emission leaks and large anomalous emissions is one of the most 

efficient approaches to reducing global GHG emissions (Frankenberg et al. 2016). The recent 

development and ongoing refinement of top-down methods make them an increasingly popular 

tool for independent estimation of point-source anthropogenic carbon dioxide and methane 

emissions. 

This review aims to provide an overview of current top-down, and bottom-up methods 

for estimating point source and regional anthropogenic carbon dioxide and methane emissions 

with the goal of assessing effective methods that might help improve monitoring accuracy. Three 

branches of point, and area source estimation methods are reviewed: a) relatively small-scale, 

ground-based methods, b) intermediary airborne methods, and c) regionalized satellite methods. 

Characterizing the strengths and weaknesses of methods and the potential for synergies between 

them is an essential step towards creating exhaustive estimations of anthropogenic emissions.  
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1.2 Top-down and Bottom-up Methods 

1.2.1 Overview of Top-down and Bottom-up Approaches 

The current uncertainty in the GHG fluxes that comprise emission budgets is epitomized 

by the gap between top-down and bottom-up estimates (Saunois et al. 2020; Le Quéré et al. 

2018). Bottom-up and top-down measurements can have varying definitions depending on the 

spatial scale and context of estimation (Gordon et al. 2015). In general bottom-up methods can 

be described as measurements to obtain component or site-specific emission data that are then 

extrapolated by some emission factor to estimate regional emissions (National Academies of 

Sciences, Engineering 2018; Karion et al. 2013). Top-down measurements attempt to constrain 

the overall budget of atmospheric GHG concentrations by sampling at larger spatial scales and 

utilizing modeling tools to infer point and area source emissions estimates (Gordon et al. 2015; 

National Academies of Sciences, Engineering 2018). National inventories are compiled from 

data using both methods (IPCC 2008). Top-down estimates provide crucial validation for how 

well external and industry bottom-up derived inventories estimate regional budgets; often 

estimates do not agree well and top-down estimates tend to be higher (Johnson et al. 2017; 

Liggio et al. 2019; Li et al. 2017; Brandt et al. 2014). By attaining greater knowledge of emission 

budgets, top-down sampling can help plan for and achieve GHG reduction goals (Johnson and 

Tyner 2020; Johnson et al. 2017). 

Top-down and bottom-up approaches to measure gas fluxes can be further defined as 

ground-based, airborne, or satellite approaches, which are examined in this review. Airborne 

methods are the primary focus of this study. Top-down methods can include measurements from 

global surface networks of large tower data, aircraft campaigns and satellites depending on the 

context and spatial scale (Conley et al. 2017). Examples of bottom-up, ground based methods 

include proximal spectral imaging, external tracer, and flux chamber measurements (Fox et al. 

2019; National Academies of Sciences, Engineering 2018). Data from both approaches are 

increasingly being included in multi-scale models (Zhang et al. 2018; Nambiar et al. 2020; Varon 

et al. 2018). Spectral imaging methods are unique in their ability to capture unknown, or 

anomalous point sources at the proximal, remote, or orbital level. A taxonomy (Figure 2) 

illustrates methods for quantifying atmospheric anthropogenic GHG emissions at the varying 

spatial scales. The ground-based heading is broken into stationary, mobile or tower sampling 
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methods and lower branches provide examples of techniques that utilize one, or multiple 

methods. Airborne methods sit in the middle between bottom-up and top-down approaches and 

can be classified as either depending on the scale, and context of sampling (National Academies 

of Sciences, Engineering 2018). Airborne methods are broken into the two main approaches of 

estimating point and area source emissions by flying and sampling through or around emissions 

to apply mass-balance algorithms (Conley et al. 2017; Gordon et al. 2015), or flying above 

potential emission sources and utilizing remote spectral imaging methods (Frankenberg et al. 

2016). Satellite spectral imaging methods are split into Lidar, thermal infrared, and shortwave 

infrared instruments. Almost all methods utilize direct, proximal, or remote spectroscopic 

methods to quantify the concentration of methane and, or carbon dioxide in their given sample. 

Table 1 discusses the main methods from Figure 2, provides coordinating references and 

summarizes their strengths and weaknesses. 

Figure 2. Taxonomy of methods for estimating anthropogenic atmospheric GHG emissions. A 

left to right, yellow-green-purple-blue gradient generalizes the spatial range of measuring of 

pixel size from less than 1-10 m2 to the upper range of 100 - 100 km2, and maps each method in 

the given order for bottom-up and top-down classification. More colour saturated upper 

branches depict main method subcategories, whilst the lightly coloured lower branches provide 

examples of techniques, data types, and algorithms. 
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Table 1. Descriptions, strengths, and limitations of the main methods for ground -based, airborne- 

and satellite-based anthropogenic carbon dioxide and methane emission estimation illustrated in 

the taxonomy (Figure 2). 

Method Discussion Strengths Limitations Main 

Reference(s) 

Ground: 

Core 

Samples 

Measured methane 

concentrations from 

core samples are used 

to approximate the 

release budget at a 

facility and extrapolate 

emission release by 

the extent of oil 

processing. 

Provides a unique approach 

to estimating emissions from 

below the ground. Used to 

estimate the regional 

methane emission budget 

constraints from rate of 

extraction and processing. 

Limited by the correlation 

between concentrations 

measured in samples and 

emissions released during the 

processes. Requires multiple 

samples from sites. Currently 

only used to estimate methane 

emissions. 

(Johnson, 

Crosland et al. 

2016)  

Ground:  

Chamber 

Based 

Directly measures 

emission concentration 

and flux rates from a 

small diffuse plume.  

Low uncertainty of emission 

estimation within the sample. 

Method is independent of 

atmospheric modeling 

methods. Can sample at 

night. 

Limited to small scales of 

sample and is very reliant on 

well-developed sampling 

schemes. Experiences bias 

from chamber artifacts. 

criticized for missing sources 

and variability in regional 

estimates. Difficultly 

capturing sporadic emissions.  

(Jeong et al. 

2019; 

Chaichana et al. 

2018) 

Ground:  

Proximal 

Spectral 

Imaging 

Proximal ground-

based imaging 

spectroscopy to 

quantify and 

characterize plumes. 

High spatial and spectral 

resolution to identify 

samples at near ambient 

levels. Does not rely on 

external sources for wind 

measurements. More cost-

effective than most airborne 

sampling. 

 

Uncertainties increase as 

temperature contrast of GHG 

to the background decreases. 

Reliant on isolating the 

absorption lines from 

background noise. Cannot 

quantify large areas and is 

restricted by the distance of 

sampling. 

(Gålfalk et al. 

2017) 

Ground: 

External 

Tracer 

Models emission 

concentrations from 

the downwind 

distribution of known 

concentration of a 

tracer gas from a 

plume source. 

Well developed, simplified 

method. Can handle complex 

sources and measure total 

emissions from a source 

area. 

Labour intensive. Requires 

consistent, stationary wind 

and stable atmospheric 

conditions. Method breaks 

down if the desired gas does 

not follow the same dispersion 

as the tracer gas. 

(Roscioli et al. 

2018; National 

Academies of 

Sciences, 

Engineering 

2018) 
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Ground:  

Inverse 

Dispersion 

Directly measures 

concentrations of 

downwind plumes to 

model the upwind 

emission rate. 

More cost-effective sampling 

than airborne methods and 

more robust than tracer or 

chamber-based methods. 

Can be used to quantify 

temporal trends. 

Larger errors can occur from 

non-stationary wind and 

plume sources. Difficult to 

quantify and isolate complex, 

mixed sources. Reliant on 

externally modelled 

atmospheric conditions that 

may not match sampling 

conditions. 

(Flesch et al. 

2005; National 

Academies of 

Sciences, 

Engineering 

2018) 

Ground: 

Micrometeorol

ogical 

measurements 

[e.g., “eddy 

covariance”] 

Models flux from 

direct measurements 

of plume transfer in 

the appropriately 

scaled area of 

sampling. 

Largest ground-based scale 

of atmospheric sampling. 

Ideal for capturing temporal 

trends. Measures uptake as 

well as atmospheric flux. 

More cost-effective method 

of sampling large areas than 

airborne sampling.  

Constrained by the need for 

homogenous terrain and stable 

atmospheric conditions for 

low error in estimates. 

Requires extremely rapid-

response sampling device, 

which is expensive. 

(Chaichana et 

al. 2018; 

Davidson et al. 

2002; National 

Academies of 

Sciences, 

Engineering 

2018) 

Airborne: 

Mass 

Balance 

Airborne 

measurements for 

quantification of 

localized, or regional 

plumes.  

Can attain very low 

uncertainty (~ 2 %) in 

estimating fully captured 

stationary plume sources.  

Provides ideal in-depth 

modeling of regional 

emissions. Used for 

validation of both ground-

based and satellite methods. 

Costly sampling that requires 

known sources. Limited by 

boundary layer height. Issues 

with external sources, shifting 

plumes and widely dispersed 

ground sources. Dependent on 

good extrapolation from 

lowest flight to the ground. 

(Conley et al. 

2017; Gordon 

et al. 2015) 

Airborne: 

Remote 

Spectral 

Imaging 

Absorption imaging 

spectroscopy of 

reflectance or thermal 

emissions to capture 

regional or facility 

emissions.  

Quick sampling. Best for 

large mapping of plumes in a 

region. Can identify 

unknown sources such as 

leaks. Avoids temporal 

issues inherent to mass-

balance methods. 

Limited by meteorological 

conditions due to spectral 

interference. Requires 

multiple sampling to 

determine persistence of a 

source.  

(Frankenberg et 

al. 2016; 

Bartholomew et 

al. 2017) 

Satellite: 

Remote 

Spectral 

Imaginga 

Quantification and 

imaging spectroscopy 

of reflectance or 

absorption to capture 

global, regional, and 

local estimates of 

emissions. 

Repeatedly samples global 

and regional emissions. 

Provides independent 

monitoring. 

Currently has coarse spatial 

resolution. Some methods are 

restricted by spectral 

interference and difficult 

sampling of dark scenes, or 

high reflectance scenes such 

as snow, or water. 

(Cusworth et al. 

2019; Kort et 

al. 2014; Jacob 

et al. 2016) 

aSee Table 2 for a further breakdown of the satellite methods.  
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1.2.2 Ground-based Methods 

Ground-based methods are currently the most direct route for continuous estimation of point 

source and regional anthropogenic emissions. Figure 3 illustrates the types of methods that can 

be applied through sampling on stationary towers, fixed sensors, portable handheld devices, or 

automobile laboratories (Fox et al. 2019). Tall towers provide continuous observations for 

estimating regional emissions and networks of towers can provide ground-based, top-down 

atmospheric estimates (Chan et al. 2020). Mobile laboratories are often used to provide 

numerous spatially explicit eddy covariance, flux chamber, or tracer gas samples to scale up to 

site and regional estimates (Johnson et al. 2017; Roscioli et al. 2018). Site features, such as tank 

vents, well pads, pump stations or shutoff valves, are often best estimated by ground-based 

measurements for pin-pointing source emissions due to their small spatial scale (Roscioli et al. 

Figure 3. Taxonomy of main ground-based methods for measuring anthropogenic carbon dioxide 

and methane emissions. Figures adapted from: (Chan et al. 2020; Gålfalk, Olofsson, and 

Bastviken 2017a; Johnson et al. 2016; Riddick et al. 2019; Roscioli et al. 2018; Wolf 2010). 
aReprinted with permission from Elsevier. 
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2018). Ground-based, bottom-up methods can be more challenging than airborne methods to 

quantify an regional area of emission as they are dependent on good extrapolation (Flesch, 

Wilson, and Harper 2005; Roscioli et al. 2018). Ground-based measurements provide validation 

data for top-down methods; tower data are essential for satellite validation and surface 

measurements provide validation for extrapolation calculations used in mass-balance airborne 

methods. (Gordon et al. 2015; Janssens-Maenhout et al. 2020; Nalli et al. 2020). 

1.2.2.1 Core Samples 

A novel approach to quantifying point source, fugitive methane emissions from heavy oil mine 

sites has been invented by Johnson et al. 2016. Fugitive emissions can be estimated by 

quantifying the amount of methane present in situ and subtracting the remaining gas after 

processing (Johnson et al. 2016). Measurements are limited by the reliance on industry to obtain 

the core samples and currently have high rates of uncertainty for estimates (34- 69%) (Johnson et 

al. 2016). This method presents a new way of constraining a budget for atmospheric methane 

emissions from below the ground, rather than from on or above the ground, and estimates the 

potential emissions of proposed mining sites (Johnson et al. 2016).  

1.2.2.2 Chamber Methods 

Chamber measurements are a simple way of measuring fluxes with few modeling assumptions 

and as such are commonly used for estimates by industry (National Academies of Sciences, 

Engineering 2018). Chamber sampling methods provide a direct measurement of emissions from 

sources and when instruments are mobile they can more completely cover an ecosystem 

(Chaichana et al. 2018); however, their spatial sampling range is very small. To address this, 

Jeong et al. 2019 assessed interpolation methods of point sampling to determine an efficient 

sampling scheme that maximizes distribution while minimizing the number of samples for a 

given spatial interpolation (Jeong et al. 2019). Poor design of stratified sampling, and or using a 

limited number of samples can result in large over, or under estimation of fluxes (Chaichana et 

al. 2018; You et al. 2021). Chamber artifacts must be minimized when placing the chamber as 

the act of measuring can bias the flux concentrations (Davidson et al. 2002). Closed chamber 

methods can be successful in accurately measuring emissions from well-known temporally 

distributed emissions (Johnson et al. 2016). Flux chambers are ideally suited to measuring small, 

contained sources (Riddick et al. 2019; You et al. 2021). Dynamic flux chambers were 
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successfully used in a campaign to estimate fugitive methane emissions from abandoned wells 

by fitting the chambers over the wells to estimate leakage (Riddick et al. 2019). Issues arise in 

extrapolating samples from complex sites, with large sporadic emissions, so chamber methods 

are not well suited for estimating annual emissions from an entire oil production site (Johnson et 

al. 2016; You et al. 2021).  

1.2.2.3 Proximal Spectral Imaging  

Recent proximal imaging spectroscopy methods are become increasingly popular as a cost-

effective way to capture unknown, fugitive emissions, produce imagery to characterize sources, 

as well as estimate emissions (Gålfalk, Olofsson, and Bastviken 2017; Kobayashi et al. 2010; 

Wojcik et al. 2015). A recent hyperspectral method can capture both known and unknown 

sources by simultaneously sampling meteorological variables, and methane and nitrous oxide in 

the 1.0 – 5.5 μm midwave range and the 7.7-9.5 μm longwave range to estimate emission flux 

from a single instrument (Gålfalk, Olofsson, and Bastviken 2017). Handheld, and mobile spectral 

devices are also being developed that utilize differential absorption lidar (DIAL) to detect, 

locate, and quantify carbon dioxide and methane emissions from oil and gas facilities (Wojcik et 

al. 2015; Johnson, Tyner, and Szekeres 2021). Both methods are used to scan scenes, take 

‘snapshots’ to locate fugitive leaks, and assess source emissions. Ideal samples are captured 

when conditions allow for a distinct emission enhancement that can be easily separated from the 

background (Gålfalk, Olofsson, and Bastviken 2017). Methods by Galfalk, Olofsson, and 

Bastviken 2017 produce near-ground measurements of the distribution of GHGs from various 

environments, sources and processes images compiled as movies to characterize plume 

behaviour.  

1.2.2.4 External Tracer and Dispersion Models 

The tracer-gas ratio method has been used to measure emissions from fossil fuel extraction sites 

for over 20 years (Roscioli et al. 2018). It applies the working assumption that a known gas has a 

dispersion distribution identical to the desired emission gas and estimates emissions based on a 

known ratio of concentrations (Roscioli et al. 2018). Dispersion models can be applied to, or 

combined with tracer measurements, eddy covariance, or spectral laser measurements to 

extrapolate given samples to the distribution of emissions from a site (Flesch, Wilson, and 

Harper 2005; Jeong et al. 2019). Inverse dispersion modeling works backwards sampling a 
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known concentration to estimate emission information from an upwind source (Flesch, Wilson, 

and Harper 2005). A recent study aggregated 6650 mobile ground-based measurements using 

external tracer and inverse dispersion model to produce estimates from the upstream Canadian 

oil and gas and found that inventories underestimated methane emissions by a factor of 1.5 

(MacKay et al., 2021). Methods for up-scaling to larger regional methods are still being 

developed, and methods are best used for well-known consistent concentrations (National 

Academies of Sciences, Engineering 2018). Both external tracer and dispersion modeling benefit 

from averaging, therefore the greater the spatial distribution and number of samples, the lower 

the error (Roscioli et al. 2018; Chan et al. 2020; Zavala-Araiza et al. 2018).  

1.2.2.5 Micrometeorological Methods 

Flux towers can directly measure methane and carbon dioxide fluxes as they occur using eddy 

covariance techniques. They are able to detect small changes in net ecosystem exchange, or the 

flux between the atmosphere and vegetation, by measuring eddies to calculate the covariance 

between GHG mixing ratios and vertical wind velocities (Baldocchi et al. 2001). Measurements 

can be analyzed independently or combined with samples acquired using other ground-based 

methods to model flux within the area of sampling. Regional Bayesian inverse dispersion 

modeling, using existing inventory estimates, was recently successful in modeling eight years of 

observations from four tall tower sites to estimate annual methane emissions from Alberta and 

Saskatchewan (Chan et al. 2020). Flux towers are often constrained by the scale of sample, a 

lack of homogeneous terrain and a stable atmosphere. For example, rugged mountainous areas 

with volatile atmospheric boundary layers make for inopportune flux tower locations. In spite of 

these limitations, flux towers are emerging as a fundamental source of GHG emission data as this 

technology becomes more available (AmeriFlux 2019). There is an increasing global abundance 

of flux tower sites providing continuous large scale measurements, and international networks 

such as FLUXNET are enhancing the value of using the eddy covariance method for validating 

airborne and satellite data (Baldocchi et al. 2001, AmeriFlux 2019).  
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1.2.3 Airborne Methods 

Airborne measurements are used to characterize and validate emissions from sites (Johnson et al. 

2017). They provide an intermediary sampling scale that can attain detailed quantification of 

emission budgets from sites and sample large regional areas (Karion et al. 2013). Methods for 

sampling atmospheric GHGs from the air tend to fall into two major categories: i) remote 

spectral imaging methods and ii) mass-balance spectroscopic methods. Figure 4 illustrates the 

difference between the sampling schemes and imagery produced from the two approaches. 

Accurate wind measurements are paramount to all airborne methods. Airborne methods are 

limited by airspace restrictions and can be costly and time intensive which makes them 

ineffective as continuous monitoring methods; but they provide in depth emissions estimates for 

supplementing and auditing emissions inventories, as well as follow up to emission hotspots 

flagged by satellite data (Varon et al. 2019). Airborne methods are weaker at assessing the 

temporal variability of emissions and rely on ground-based, or satellite measurements to upscale 

hourly emission rates to monthly and yearly estimates for inventories (Liggio et al. 2019, Thorpe 

et al. 2020). Drones have become popular in some fields to sample methane and carbon dioxide 

Figure 4. Taxonomy of main airborne methods for measuring anthropogenic carbon dioxide and 

methane emissions. Figures adapted from: (Baray et al. 2018; Bartholomew et al. 2017a; 

Frankenberg et al. 2016). a Reprinted with permission from SPIE. 
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emissions hotspots from the air, and progress is being made in emissions estimation, however 

they currently sample at too small a scale to get meaningful data for monitoring oil and gas 

facilities (Burgués and Marco 2020). As they avoid some ground access and safety issues, and to 

the extent that they can sample large areas over facilities, drones and airborne methods are often 

ideal tools for monitoring pipelines for leaks (Burgués and Marco 2020; Frankenberg et al. 

2016). Along with satellite methods, certain spectral airborne methods often complement ground 

measurements, particularly for the flux tower network (FLUXNET); this combination of direct 

flux assessment from the ground with remote sensing methods creates a particularly powerful 

synergy and is central to the emerging spectral tower networks (SpecNet) (Gamon et al. 2006; 

Baldocchi et al. 2001). 

1.2.3.1 Mass-balance Methods 

Mass-balance methods most commonly capture point and area source plumes by flying in 

transects, screens, or box-flights that constrain the emission plume as it traverses the flight path 

around the source (Gordon et al. 2015; Frankenberg et al. 2016; Jongaramrungruang et al. 2019; 

Baray et al. 2018; Karion et al. 2013; Kalthoff et al. 2002). Airborne mass-balance flights can 

sample following several sampling schemes. The simplest are single transects and screens which 

are faster, but have large errors (25 - 60%), or there are more complex time-intensive box-flights 

which attain lower estimate error ( ~2%) (Gordon et al. 2015). Two box flight mass-balance 

algorithms, the Top-down Emission Rate Retrieval Algorithm (TERRA) and SciAv (Scientific 

Aviation) model, have recently been applied to box-flight patterns when an aircraft encircles a 

source to estimate emissions by calculating the flux through the boxed-in source (Gordon et al. 

2015; Conley et al. 2017; Johnson et al. 2017; Frankenberg et al. 2016; Baray et al. 2018; Liggio 

et al. 2019; Duren et al. 2019). Full capture at the top of the box is often attained by operators 

flying laps up to the top of the (stable) atmospheric boundary layer, which typically caps the top 

of an emission plume (Gordon et al. 2015). Due to minimum flight height restrictions, a gap 

between the surface and the flight box is inevitable. Extrapolation to the ground has been shown 

to often be the largest error source, nearing ~30% in both models when the bottom of the plume 

is not captured (Conley et al. 2017; Gordon et al. 2015). Currently, mass-balance box flight 

methods can attain a lower uncertainty in emission estimates than the remote spectral imaging 

due to smaller background and wind measurement uncertainties, but require prior understanding 
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of plume sources, stationary conditions, take longer, and are more costly (Thorpe et al. 2020; 

National Academies of Sciences, Engineering 2018).  

1.2.3.2 Remote Spectral Imaging 

Remote spectral imaging from the air can be used to quickly cover broad areas providing 

snapshots of plumes for estimation, catch the large sporadic leaks that are common to fossil fuel 

extraction sites, and depict a distribution of plumes to characterize an area of interest (Thorpe et 

al. 2017; Bartholomew et al. 2017; Frankenberg et al. 2016; Sherwin et al. 2021; Johnson, Tyner, 

and Szekeres 2021; Cusworth et al. 2021). This method samples within seconds and therefore 

avoids the temporal limitations inherent to airborne mass-balance methods, and its ability to 

quickly capture unknown leaks and emission sources provides a cost-effective method for 

reducing GHG emissions over large regions (Thorpe et al. 2020, Schwietzke et al. 2019, Sherwin 

et al. 2021). By rapidly addressing methane leaks, a recent study of the Southern Midland Basin 

using an airborne hyperspectral imaging instrument recovered costs of their first flight campaign 

within 5 days (Johnson et al. 2021). However, remote spectral sampling is still collected on a 

“campaign” basis, and is not typically used for routine emissions monitoring (Duren et al. 2019).  

Passive airborne methods utilizing shortwave or thermal infrared spectroscopy have been 

developed to map carbon dioxide and methane concentrations, and detect and estimate emission 

rates over large areas (Duren et al. 2019; Frankenberg et al. 2016; Thorpe et al. 2017, Sherwin et 

al. 2021, Johnson, Tyner, and Szekeres 2021). A shortwave infrared instrument, the Airborne 

Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG; Hamlin et al. 2011), 

(NASA Jet Propulsion Laboratory, Pasadena, CA, USA), can attribute and estimate point source 

emission rates as small as 1-3 m with a detection limit of 2 kg h-1 to 5 kg h-1 depending on wind 

speed with uncertainties of ~ 30% (Thorpe et al. 2020, Duren et al. 2019). The Kairos 

LeakSurveyor (Kairos Aerospace, Mountain View, CA, USA), is a smaller, relatively 

inexpensive instrument designed for commercial deployment, rather than research purposes of 

the AVIRIS-NG (Schwietzke et al. 2019). It calculates a wind-adjust methane emission rate with 

a minimum detection level of 5 kg per hour per meter per second of wind (kgh mps-1) with a 

method error of ~ 30 - 40 % uncertainty (Sherwin et al. 2021). Shortwave infrared airborne 

sampling can be confounded by spectral inference from the surface (Thorpe et al. 2013), or 

reflectance from features such as tailings ponds (Krings et al. 2018). Thermal infrared airborne 
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sampling using instruments such as the Hyperspectral Thermal Emission Spectrometer (HyTes), 

(NASA Jet Propulsion Laboratory, Pasadena, CA, USA), provide a useful complement to 

shortwave infrared as they can sample when spectral interference impedes infrared sampling, but 

have coarser spatial resolution making them less ideal for emission estimation (Frankenberg et 

al. 2016). Several airborne imaging campaigns in California, Colorado, Texas, and New Mexico 

have been successful at mapping large regional methane plumes and estimating point sources 

and are increasingly becoming a popular method (Thorpe et al. 2020, Johnson, Tyner, and 

Szekeres 2021, Duren et al. 2019, Sherwin et al. 2021).  

Airborne Lidar methods are active methods that are ideal for quickly sampling large areas 

for unknown sources and to characterize regional patterns in background and anthropogenic 

emissions (Rashid et al. 2020; Li et al. 2010; Bartholomew et al. 2017). The IPDA Lidar (Ball 

Aerospace & Technologies Corp, Boulder, CO, USA) provided one of the first unique 

opportunities to the measure regional and temporal variability in background concentrations, 

which had largely been restricted to ground-based methods and modeling (Bartholomew et al. 

2017). Aircraft vibration can create stripes in the Lidar data, and determining the ideal beam 

diameter to measure at, and dependence on accurate geolocation data are weaknesses of the 

method (Bartholomew et al. 2017). The Gas Mapping LidarTM (Bridger Photonics, Bozeman, 

MT, USA) has a spatial resolution of 2 m, and can estimate methane emissions with an 

uncertainty range of 31 – 68 % (Johnson, Tyner, and Szekeres 2021). In 2019, the Bridger 

Photonics lidar completed a campaign across 167 geographically distinct sites in British 

Columbia and estimated 80 methane sources with a range in emission averages from 0.5 to 399 

kg hr-1 (Tyner and Johnson 2021). While estimate uncertainties are on average higher for 

airborne lidar than shortwave infrared, lidar methods can currently attain a lower detection limit 

of emission plumes (~ 0.6 kg hr-1 versus 2 kg hr-1) (Johnson, Tyner, and Szekeres 2021, Thorpe 

et al. 2020). 
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1.2.4 Satellite Methods 

Satellite measurements are ideal for identifying regional differences in methane 

emissions (Kort et al. 2014). Naturally, instruments on satellites provide the largest spatial top-

down atmospheric carbon dioxide and methane measurements (Fox et al. 2019). They allow for 

repeated sampling over regional to global scales and can produce estimates where it is not 

feasible to sample using other methods (National Academies of Sciences, Engineering 2018). 

Figure 5 depicts current methods for satellite observations of atmospheric methane and carbon 

dioxide by measuring the absorption of radiation by solar backscatter in either the shortwave 

infrared range (SWIR), or thermal emissions in the thermal infrared (TIR) wavelengths (Jacob et 

al. 2016). While each GHG has different measurement bands, each satellite instrument also 

measures absorption features in slightly differing spectral ranges called fitting windows. In 

Figure 5. Taxonomy of main satellite methods for measuring anthropogenic carbon dioxide 

and methane emissions. Figures adapted from: (Jacob et al. 2016; Cusworth et al. 2021; Nalli 

et al. 2020).  
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general, carbon dioxide is measured in SWIR and near infrared ranges (NIR) around 0.76 μm, 

1.61 μm and 2.06 μm and in TIR around 15 μm (Nassar et al. 2017). Methane is measured in the 

SWIR spectrum around 1.65 μm or 2.3 μm wavelengths, or in TIR wavelengths around 8 μm 

(Jacob et al. 2016).   

Table 2 summarizes some of the instruments used in the methods illustrated in Figure 5 

for measuring carbon dioxide and, or methane emissions from space. Atmospheric sensing 

satellites passively sample using large wavelength ranges and at a high spectral resolution to 

capture absorption features. Satellite imaging spectrometers aim to address the desire for fine 

pixel resolution to resolve point sources while increasing the spectral resolution (Cusworth et al. 

2019). TIR methods are not restricted by spectral interference and can sample dark sources, but 

tend to have poor sensitivity of lower tropospheric emissions which can make point source 

estimation difficult (Jacob et al. 2016). Satellite Lidar provide active measurements of emissions 

using its own laser light source, freeing it from sun illumination, and can therefore measure 

during the day or night (Wührer et al. 2019). This means satellite Lidar methods using Integrated 

Path Differential Absorption will uniquely provide the ability to measure methane emissions 

nearer the poles when daylight is limited (Jacob et al. 2016). 

The next decade of planned imaging satellites (ex. EnMap, PRISMA) are being 

developed to sample in more than one SWIR range. Hyperspectral, or even ultraspectral, 

sampling of the entire SWIR range combined with thermal infrared, using both solar backscatter 

and thermal emissions methods, will increase the accuracy and improve the precision of point 

source estimation by increasing the independent measurements within the given spectral window 

and allowing for better resolution of absorption features (Cusworth et al. 2019; Nalli et al. 2020). 

As most SWIR measurements rely on the quantification of solar backscatter they are greatly 

affected by cloud coverage and are sensitive to interfering reflectance from features such as 

bodies of water (Jacob et al. 2016).  

 

 

 



21 
 

Table 2. Examples of instruments for measuring carbon dioxide and methane using the satellite 

methods depicted in Figure 5a.  

Method Instrument Gas Discussion  Resolutionb 

Spectral (nmc)d 

Spatial (km2) 

Main 

Reference 

SWIR: 

Atmospheric 

Sensor 

SCIAMACHY 

 

CO2, 

CH4 

Large spatial coverage and achieved 

first global mapping. (2002 - 2012) 

0.4, 1.4, 0.2 

30 x 60 

(Buchwitz et 

al. 2005) 

GOSAT CO2, 

CH4 

Fine spectral resolution, measures 

select global locations. (2009 - present) 

0.02, 0.06, 0.10 

10 x 10 

(Kataoka et al. 

2017) 

GHGSat 

 

CO2, 

CH4 

Constructed with a very fine pixel 

resolution to measure facility scale 

emissions. Claire (2016 - present) 

Iris (2020 - present) 

0.1 

0.05 x 0.05 

(Jervis et al. 

2021) 

TROPOMI CH4 Can produce daily estimates of surface 

emissions of methane. (2017 - present) 

0.25 

7 x 7 

(Hu et al. 

2018) 

OCO - 2 CO2 Focuses on better quantification of the 

carbon cycle at regional scales.  

(2014 - present) 

0.04, 0.08, 0.10 

1.29 x 2.25 

(Reuter et al. 

2017)  

SWIR: 

Imaging 

Spectrometer 

PRISMA 

EnMap 

CO2, 

CH4 

The first two main satellites launched 

using hyperspectral sampling. Attains 

fine pixel resolution. (2019 - present)  

10 

0.03 x 0.03 

(Cusworth et 

al. 2019) 

TIR TES CH4 Achieved the smallest pixel size TIR 

instrument with fine precision (2004-

2011). 

0.8 

5 x 8 

(Worden et al. 

2012) 

IMG CO2, 

CH4 

Provided the first satellite sensing of 

methane (1996 - 1997) 

0.1 cm-1 

8 x 8 

(Shimoda and 

Ogawa 2000) 

CrIS CO2, 

CH4 

Hyperspectral method with the best 

vertical resolution through the 

troposphere. (2011 - present) 

0.625 cm-1  

14 x 14 

(Nalli et al. 

2020) 

Lidar MERLIN CH4 Intended to measure in dark conditions 

at a fine resolution. (Not launched yet.) 

N/A 

200 µm 

(Wührer et al. 

2019) 

a
 Full names of abbreviations: SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY 

(SCIAMACHY), Greenhouse gases Observing SATellite (GOSAT), Greenhouse Gas Satellite (GHGSat), TROPOspheric 

Monitoring Instrument (TROPOMI), Orbiting Carbon Observatory-2 (OCO-2), PRecursore IperSpettrale della Missione 

Applicativa (PRISMA), The Environmental Mapping and Analysis Program (EnMAP), Technology Experiment Satellite 

(TES), Interferometric Monitor for Greenhouse gases (IMG), Cross-track Infrared Sounder (CrIS), Methane Remote 

Sensing Lidar Mission (Merlin). b When the instrument measures both CO2 and CH4 at varying spectral resolutions, 

resolution is given as band1, band2, and band3. cExcept where otherwise noted. dGiven as the Full Width at Half 

Maximum (FWHM).   
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As methods improve, the trade-offs between spectral and pixel resolution, and global 

sampling versus point source attribution are becoming more relaxed (Cusworth et al. 2020). 

OCO-2 was built with the specific intention of better quantification of the global carbon cycle, 

but measurements have even been used to estimate power plant emissions that agree within 1-

17% of reported daily values (Nassar et al. 2017). Over the last decade several measurements 

have been made by satellites to estimate point-source emissions with increasing pixel and 

spectral resolution (Varon et al. 2019; Kort et al. 2014; Nassar et al. 2017; Varon et al. 2020; 

Jervis et al. 2021). In the fall of 2020 using a controlled release, GHGSat (Iris) accurately 

measured the smallest methane emission plume from space which was also validated by a 

simultaneous aircraft measurement (260 kg hr-1) (GHGSat 2020). Satellite technology will 

provide the remarkable capability to produce independent point source GHG measurements from 

space of international sites that may lack transparency of emissions (Nassar et al. 2017). At the 

time of writing, geostationary methods have not be launched, but they will allow for continual 

monitoring of a chosen region, rather having a predictable overpass time for each orbit (Sheng et 

al. 2018). The refinement of satellites in the next decade lends itself to the ability for temporally 

and spatially continuous point source emission quantification and attribution. Continuous 

monitoring and time-averaged satellite emissions estimates will be a unique tool for estimating 

annual emissions from facilities for monitoring and reporting, and validation (Varon et al. 2020).  

1.3 Conclusion 

This review has summarized ground-based, airborne, and satellite methods of estimating point 

and area source anthropogenic carbon dioxide and methane emissions. Methods of measuring 

anthropogenic GHGs can be used to complement each other to fill measurement gaps, clarify 

assumptions, and reduce uncertainty in overall regional inventories.  

Bottom-up, ground-based methods are ideal over small spatial scales with small 

emissions. These methods are often the most cost effective and accessible of emissions 

monitoring methods, provide essential data for temporal interpolation of top-down methods, 

but can be difficult to extrapolate to regional emissions. Chamber-based methods have been 

commonly used by industry to estimate from the smallest spatial scale and produce emission 

inventory estimates. They are starting to be replaced by proximal imaging methods that 

provide leak-detection capabilities as well as instantaneous variable measurement and plume 
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characterization (Fox et al. 2019). Towers using micrometeorological methods such as eddy 

covariance techniques and inverse dispersion modeling can provide continuous regional 

measurements of emissions to assess seasonal variability. Ground-based methods are ideal 

for targeting near ground plumes and assessing emissions from small facility components.  

Top-down methods provide vital atmospheric carbon dioxide and methane budget 

checks as industry inventories have been found to under-report atmospheric anthropogenic 

GHG emissions (Brandt et al. 2014). Airborne methods are an integral source of validation 

data between top-down and bottom-up estimates. Airborne mass-balance methods provide 

detailed point and area source estimates with a low uncertainty under ideal conditions. 

Remote spectral imaging can quickly map an area to characterize emissions and avoid the 

temporal issues inherent to mass-balance methods. As remote spectral imaging methods 

advance, and error is reduced, this method of sampling heralds the possibility for quick, 

exhaustive regional sampling to identify both known and unknown sources.  Annual 

estimates are often derived from limited airborne and ground-based methods to compare to 

industry estimates, and the methods for extrapolating from a limited number of samples are 

still being developed. Satellite data can be an ideal source for correlating sporadic 

measurements to an upscaled yearly extrapolation and have been proven as an essential tool 

to highlight larger emitters for follow up in-depth assessment through airborne campaigns 

(Kort et al. 2014). Future satellite instruments will approach airborne sampling precision 

and accuracy for source attribution and estimation of emission plumes (GHGSat 2020).  

International climate agreements have a history of poor implementation as nations sign 

and then back out as governmental priorities change (Maslin 2020). The development and 

continual refinement of a global GHG monitoring system, with point source emission attribution 

estimation, will increase global pressure on nations when emissions targets are not being met. 

Increased transparency using satellite monitoring will improve certainty, and address under-

estimation of emissions inventories whilst holding industry more accountable to their emissions. 

As anthropogenic methane emissions have a higher radiative greenhouse gas effect than carbon 

dioxide, and a short atmospheric lifetime, decreasing atmospheric methane emissions is an 

effective route towards combating global warming (Saunois et al. 2016; Balcombe et al. 2018). 

Reducing the uncertainty in quantifying atmospheric anthropogenic methane emissions is an 
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essential step towards producing the most effective policy for reducing climate change. 

Advances in obtaining regular coverage using spectral airborne and satellite sampling methods 

will make them ideal for quantifying process emissions and sporadic flaring events to monitor 

changes and capture leaks, enabling more accurate and complete estimates of carbon dioxide and 

methane fluxes. 
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Chapter 2 

2.1 Introduction 

Accurate quantification of GHG emissions, at a range of spatial scales, is an essential foundation 

for emissions reductions. Regional, national, and global CH4 and CO2 emissions are estimated 

using a combination of bottom-up and top-down methods. In general, bottom-up methods 

aggregate component, or site specific data, and extrapolate to estimating emissions at a larger 

scale; whereas top-down methods measure atmospheric GHG concentrations at a larger scale and 

infer point and area source emissions (National Academies of Sciences, Engineering 2018). 

Anthropogenic carbon dioxide and methane emissions are estimated using a) ground-based 

methods, b) airborne methods, or c) satellite methods (e.g., Conley et al., 2017; Frankenberg et 

al., 2016; National Academies of Sciences, Engineering, 2018). Large differences between 

bottom-up aggregated inventory estimates and top-down atmospheric budget estimates need to 

be reconciled to reduce the uncertainty in estimating global and regional greenhouse gas (GHG) 

emissions (Allen 2014; Le Quéré et al. 2018; Saunois et al. 2020; Kort et al. 2014; Dlugokencky 

et al. 2011; Liggio et al. 2019; Johnson et al. 2017; Nisbet and Weiss 2010; National Academies 

of Sciences, Engineering 2018). Improved emission estimates facilitate the best climate change 

policy, allowing us to adopt pathways for lower global warming increases (Le Quéré et al. 2018; 

Tian et al. 2016). This thesis focuses on airborne approaches as they are intermediate in spatial 

scale between proximal and satellite sampling methods, and are essential for the validation and 

synthesis of top-down to bottom-up estimates (e.g., Conley et al., 2017; Cusworth et al., 2020).  

Methods for sampling atmospheric fluxes from the air tend to fall into two major 

categories: i) spectral imaging methods and ii) mass-balance methods. These methods capture 

emissions using varying approaches that are affected by different biases and are complementary 

when creating emission budgets. Remote spectral imaging methods fly above potential sources 

and use absorption spectroscopy, or thermal emissions, to capture regional or facility emissions 

(Frankenberg et al., 2016). Spectral imaging can identify unknown sources, providing a unique, 

invaluable tool for monitoring sites for leaks of emissions, which can lead to cost savings for 

companies and reductions in global emissions if appropriate action is taken (Frankenberg et al., 

2016). Mass-balance methods quantify the mass flux, or change, in the mixing ratio of a species 

due to emissions from a known source area. Sampling schemes for mass-balance flights range 
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from flying a single transect downwind of a source, to multiple transects creating a vertical 

“screen” to catch the plume at various altitudes, or flying a “box-flight” using multiple (over 20) 

laps around a facility, or facility component, to constrain a plume (Conley et al. 2017). Currently, 

mass-balance box flight methods can attain a lower uncertainty from a single sample of emission 

estimates (~ 2 %) than the spectral methods (< 30%), due to smaller background and wind 

measurement uncertainties, but require understanding of plume sources to know where to fly, 

take longer, and are therefore more costly (Conley et al. 2017; Thorpe et al. 2020; Duren et al. 

2019). 

Airborne spectral methods can be considered as top-down methods that produce results 

similar to satellite data, but with higher precision and accuracy (Frankenberg et al. 2016; Kort et 

al. 2014). Repeated sampling is needed to infer regional emission budgets; however single flights 

are used as a sample to estimate emissions from sources. Stationarity of an emission plume 

occurs when the source of emission is consistent and meteorological conditions such as the 

boundary layer and wind are stable throughout the time of sampling. Remote spectral sampling 

provides quick “snapshots” of features and therefore avoids the stationarity issues inherent to 

airborne mass-balance methods, which have lengthy sampling time of one to nearly three hours. 

However, these methods are dependent on the uncertainty and accuracy of the nearest wind 

measurements available at the time of sampling (Jongaramrungruang et al., 2019). Remote 

spectral imaging methods are being advanced by the NASA Jet-Propulsion Lab which has had 

success in mapping, inferring wind vectors, and estimating emissions over large areas using their 

Airborne Visible InfraRed Imaging Spectrometer - Next Generation (AVIRIS-NG) (Duren et al., 

2019; Frankenberg et al., 2016; Jongaramrungruang et al., 2019; Thorpe et al., 2020). While 

routine sampling is essential for reliable monitoring, flight data is currently collected on a 

“campaign” basis, which cannot be easily used for routine monitoring (Duren et al., 2019; 

Thorpe et al., 2020).  

For mass-balance flights, the location of emission sources must be known. Mass-balance 

box-flights involve sampling in stacked, often cylindrical, flight laps, typically surrounding a 

known source or set of sources, at altitudes varying from the minimum safe flight altitude to the 

atmospheric boundary layer capping an emission plume (Conley et al. 2017; Gordon et al. 2015). 

The intention is to fully capture an emission plume within the ‘box’ created from the flight laps 
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and estimate the emission flux across the box (Gordon et al. 2015; Conley et al. 2017). Industry 

is often notified before sampling, so that site access can be coordinated. Due to minimum flight 

height restrictions a gap between the surface and the flight box is inevitable. Concurrent surface 

sampling is ideal, but often unavailable, so operators aim to fly at a distance from the source 

where the plume has risen enough, yet has not dispersed, to capture the plume inside the box 

(Conley et al. 2017). Extrapolation to the ground is often the largest error source, nearing ~30% 

when the bottom of the plume is not captured (Conley et al. 2017; Gordon et al. 2015). Mass-

balance airborne methods depend on the assumption that the emission plume is captured at the 

top of the box and does not change during sampling (i.e., that conditions are stationary). A 

moving boundary layer becomes a significant challenge when sampling and can directly affect 

the extent of plume capture and stationarity. Failure to capture the top of the plume can occur for 

two main reasons: sampling did not occur all the way to the top of the flight path, or the 

boundary layer was unstable, and emissions were not contained. Extrapolation to the top of the 

boundary layer can address this problem and avoid the inherent estimate bias when the plume is 

not fully captured. Unlike surface extrapolation, upward extrapolation is only occasionally 

applied. Upward extrapolation is appropriate when the emission plume extends beyond the top of 

the box and when the plume behaviour and height can be reasonably approximated. 

Methods applying mass-balance equations to aircraft measurements have been developed 

and refined over the last two decades (Alfieri et al., 2010; Kalthoff et al., 2002; Karion et al., 

2013). Recently, two box-flight mass-balance sampling methods, a Top-down Emission Rate 

Retrieval Algorithm (TERRA) developed by Environment and Climate Change Canada (ECCC) 

and a Gaussian theorem algorithm (SciAv) derived by Scientific Aviation, have been developed 

and provide two approaches to evaluate mass sampling from aircraft (Gordon et al. 2015; Conley 

et al. 2017).  

Both mass-balance methods involve flying around a known source in a box pattern to 

fully capture an emission plume for estimation, but they differ in their modeling approaches 

(Table 3). TERRA evaluates the entire dynamic system with terms to quantify the horizontal 

advective and turbulent flux through the box walls and box top, deposition of flux to the ground, 

chemical mass changes, and air density changes (Gordon et al. 2015). TERRA applies a simple 

kriging of the raw data to spatially interpolate between the raw lap data, then estimates the 



28 
 

dynamic terms to solve mass-balance equations and derive an overall total emission rate (Gordon 

et al. 2015). In contrast, the SciAv algorithm simplifies the system to a single horizontal flux 

through the box and estimates the divergence, or flux density, from the box by evaluating a mass 

balance equation derived from Gauss’s Theorem for relating flux through a closed surface, to a 

flux density from a volume integral (Conley et al. 2017). The SciAv and TERRA methods are 

described in further detail in Appendix A.  

Table 3. Characteristics of the mass-balance SciAv and TERRA models for box flights. 

 SciAv TERRA 

Parameterization 

of Flux 

Simplified to one horizontal flux term. Quantifies the dynamic system using 

several flux terms. 

Conceptual 

Algorithm Steps 

First step: For each lap, solves a single 

mass-balance integral equation, derived 

from a Gaussian theorem, using flight 

measurements decomposed into one 

single horizontal flux vector, to estimate 

the divergence due to an emission source 

within the box.  

 

Second step: Bin lap divergence estimates 

by altitude ranges, estimate an average 

divergence for each bin, then the integrate 

the bins across the total flight height to 

produce total emission rate estimates. 

First step: Applies simple kriging to 

interpolate flight lap measurements to a 

spatially resolved screen.  

 

Second step: Simultaneously solves two 

mass-balance equations with multiple 

integrals to fully constrain the system to 

evaluate a total emission rate estimate. 

The first equation quantifies emission 

flux using seven integral terms and the 

second has three air flux integrals to 

account for air flow. 

Surface 

Extrapolation 

Extends lowest bin average divergence as 

a constant to the surface. 

Spatially resolved screen of mixing ratios 

extended to the surface using one of five 

extrapolation options depending on 

plume character. 

Output Emission rate from point or area source. Emission rate from point or area source. 

Fundamental 

Assumptions 

Stationary plume, stable meteorological 

conditions, and full plume capture at the 

top of the plume. 

Stationary plume, stable meteorological 

conditions, and full plume capture at the 

top of the plume. 

Error Terms Three broad terms. Seven specific terms. 



29 
 

While both TERRA and the SciAv model collect data using the same box-flight 

processes, results from the two algorithms have not previously been compared. Coincident 

sampling using the SciAv and AVIRIS-NG methods at facilities indicates the methods tend to 

agree, within model errors, when conditions such as the wind speed are similar (Duren et al., 

2019; Frankenberg et al., 2016; Thorpe et al., 2020). If model comparisons indicate agreement, 

then emission estimates from multiple campaigns using mass-balance and spectral imaging can 

be aggregated, which will improve the certainty in top-down GHG budgets. 

Reducing GHG emissions in Canada has become a National and Provincial priority 

(Canada 2016; Johnson and Tyner 2020). Under the Specified Gas Emitters Regulation, Alberta 

committed to 45% reductions in CH4 emissions by 2025, and has set GHG emissions reduction 

targets for major GHG emitters while imposing per-tonne fees for those who do not comply 

(Government of Alberta 2015). Airborne, and ground-based campaigns suggest that the 

inventories used to facilitate National and Provincial policy are under-reporting GHG emissions 

(Brandt et al. 2014; Johnson et al. 2017; Thorpe et al. 2020; Chan et al. 2020; MacKay et al. 

2021). Greater certainty in top-down emissions estimates helps flag under-reporting in bottom-

up inventories, and better informs GHG policy makers of emissions, allowing them to enact 

meaningful GHG reductions. As part of the JOSM mandate to advance the understanding of 

Alberta’s emissions, a collaborative study was initiated in 2017 by Alberta Environment and 

Parks (AEP) and the U.S. National Oceanic and Atmospheric Administration (NOAA), 

contracted to Scientific Aviation, to use instrumented high-performance aircraft to quantify 

facility-and activity-specific GHG emissions from mineable and in situ oil sands developments 

in northern and east-central Alberta. Between August 2017 and October 2018, a campaign was 

completed for various facilities and repeated over several days, to assess both temporal and inter-

facility variability in GHG emissions rates.  

In this study, we compared emissions estimated using the same data from five box-flights 

from the 2017-2018 campaign using two airborne, mass balance algorithms (TERRA and 

SciAv). We had three algorithm comparison research objectives. The first objective was to 

produce and compare emissions estimates following standard model protocols and then assess 

model sensitivity using a varying surface extrapolation scheme. The second objective was to 

assess the importance of fundamental model assumptions. Our third objective was to examine the 
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potential for validation of mass-balance emission estimates using complementary AVIRIS-NG 

spectral imaging data. In addressing these objectives, our intention was to assess the 

comparability of emissions estimates from campaigns flown by ECCC and SciAv, which may 

provide greater certainty of GHG emissions from the Alberta Oil Sands and other regions where 

these methods are used.  

2 Methodology 

2.2.1 Algorithm Comparison Research Objectives 

The approach to achieving the research objectives of this study is summarized in the outline 

below: 

Objective 1: Compare emission estimates between methods  

Using 5 sample flights, determine if there are substantial differences in emissions 

estimates between the two box-flight mass balance methods. 

 

a. Evaluate overall final emission estimates using the standard methods of the 

two models given the same data set.  

b. Systematically test the effects of different surface extrapolation methods for 

each model. 

c. Assess SciAv methods used to integrate divergence and characterize 

uncertainties. 

Objective 2: Investigate model assumptions 

Using flights from the comparison analysis, investigate implications of violating the 

model assumptions of: 

a.  a stationary plume and stable meteorological conditions.  

b.  full capture of the plume. 

 

Objective 3: Examine potential for validation of mass-balance emissions estimate methodology 

through comparison to the spectral AVIRIS-NG method 
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2.2.2 Campaign Data Used in Comparison Analysis 

2.2.2.1 AEP - NOAA - Scientific Aviation Campaign Data  

The AEP-NOAA-Scientific Aviation 2017-2018 Alberta Oil Sands Flight Campaign conducted 

150 flight segments at 16 different facilities across Alberta. Many of these facilities include 

multiple components, such as a plant, a mine, and/or tailings ponds. The aircrafts flew in laps 

around either the entire perimeter of a facility, or around specific components. The data were 

collected and processed by Scientific Aviation (Boulder, CO, USA) on contract to NOAA. 

Flights were performed using two fixed wing, single-engine aircraft, a Mooney M20R (Aircraft 

N617DH) and a Mooney M20M (Aircraft N2132X) equipped with monitoring equipment. 

Concentrations of carbon dioxide and methane were measured using a cavity ring down 

spectrometer (Picarro 2301f, Picarro Inc., Sunnyvale, CA, USA) in its precision mode at 1 Hz as 

described by Crosson (2008). Other variables used in the analysis were measured using airplane 

primary flight information system and GPS, including wind speed components (m s−1), pressure 

(mb), temperature (K), heading (deg), altitude (m), and latitude and longitude.  

Five flights from three facilities were selected for the algorithm comparison, and are 

summarized in Table 4, with sample codes (F01 to F05) assigned for the purpose of the 

comparisons. The three facilities from the Athabasca Oil Sands Region included for the study 

were: Mildred Lake and Aurora North Plant Sites (Syncrude), and Horizon Oil Sands Processing 

Plant and Mine (CNRL), and Suncor Energy Inc. Oil Sands (Suncor). Flight paths around the 

facilities are shown in Figure 6, with a colour gradient depicting measured background mixing 

ratios of CH4 and CO2 in blue and enhancements from emission plumes in red. The five flights 

were chosen for the comparative analysis due to their varying profile shapes, type of flight, time 

of collection, and number of laps. Four of the five flights were selected as ideal samples due to 

their having ‘fully captured’ the top of the plume. One flight, F04 was chosen as a poor-quality 

sample, rejected during QA/QC as having ‘not fully captured’ the top of the emission plume, and 

was used to assess how the methods compare when fundamental assumptions of the method are 

not met. Boundary layer height was estimated by Scientific Aviation by assessing profile 

changes in potential temperature gradients before and after flights. All five flights were judged to 

have consistent, stationary winds and stable boundary layers through QA/QC done by Scientific 

Aviation and AEP. F02 had normal operating conditions and no flaring events reported by 
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CNRL Horizon. Operation conditions for F01, F03, F04, and F05 were not shared at the time of 

writing.  

 

 F01 F02 F03 F04 F05 

Facility Code Syncrude CNRL  Suncor  Syncrude Suncor  

Area Sampled Perimeter Plant Plant Plant Perimeter 

Date 2018-04-24 2018-07-19 2018-04-19 2017-08-14 2018-09-06 

Season Spring Summer Spring Summer Fall 

Min. Altitude (m) 168  173 139 150 157 

Max. Altitude (m) 1057 1246 775 1043 563 

Boundary Layer 

Height (m) 

1100 +/- 150 900 +/- 200 600 +/- 100 900 +/- 50 500 +/- 100 

# Laps 8 14 19 25 7 

Start Time (GMT) 20:17:06 20:48:38 17:14:36 19:11:37 17:36:56 

End Time (GMT) 22:47:42 21:43:31 18:12:12 20:09:09 19:55:00 

Figure 6. CH4 (left) and CO2 (right) mixing ratios for every one second are shown for the flight path 

of each facility sample used in the study. Perimeter flights are the large polygons, and plant flights 

the smaller ovals. Mixing ratios are shown in a gradient from background concentrations in blue to 

larger concentrations in yellow and red indicating the location of an emission plume. The colour 

scale is unique to each flight’s range of measured mixing ratios (see Appendix B). The highest laps 

are most visible as data are drawn on top of each other. Map layer data © 2017 Google. 

Table 4. Information on the five flight samples used in the comparative analysis. 

 F01 F02 F03 F04 F05 

Facility Code Syncrude CNRL  Suncor  Syncrude Suncor  

Area Sampled Boundary Plant Plant Plant Boundary 

Date 2018-04-24 2018-07-19 2018-04-19 2017-08-14 2018-09-06 

Season Spring Summer Spring Summer Fall 

Min. Altitude (m) 168  173 139 150 157 

Max. Altitude (m) 1057 1246 775 1043 563 

Boundary Layer 

Height (m) 

1100 +/- 150 900 +/- 200 600 +/- 100 900 +/- 50 500 +/- 100 

# Laps 8 14 19 26 7 

Start Time (GMT) 20:17:06 20:48:38 17:14:36 19:11:37 17:36:56 

End Time (GMT) 22:47:42 21:43:31 18:12:12 20:09:09 19:55:00 
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Figure 7 shows an example of a close view of a flight path for F04 CH4. A GoogleEarth 

historical image from 2016 was used as it shows an emission plume with wind conditions similar 

to the 2017, F04 flight. A KML file containing mixing ratios provided by Scientific Aviation was 

overlaid on the image. Each measurement of a mixing ratio is depicted as a dot and the layout 

traces the 25-lap flight path for sampling during F04. Blue dots indicate background levels in 

ppm and enhanced mixing ratios within the plume are in a gradient of cyan-yellow-red, with the 

largest enhancements in red. A large plume can be seen on the North-East section of the flight 

path in Figure 7. There is also evidence that the top of the plume is captured, as dots at the 

highest altitude show background concentrations, and the flight path goes above the estimated 

boundary layer. 

2.2.2.2 NASA - JPL Campaign Data 

Three days prior to the F04 flight a NASA – Jet Propulsion Laboratory (JPL) AVIRIS-

NG flight sampled the exact same CH4 emission source. This sample was part of a larger Arctic-

Boreal Vulnerability Experiment (ABoVE) which included flight lines flown over the Alberta 

Oil Sands region. The AVIRIS-NG measures ground-reflected solar radiation (380 – 2500 nm) 

with a 34° field of view, and a spectral resolution of 5 nm to estimate emission plumes from 

Figure 7. The flight path for F04 depicts the mixing ratio of CH4 (ppm) measured at 1 Hz 

intervals for each of the 25 laps around the Syncrude plant. 
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absorption features (Thorpe et al. 2020; Duren et al. 2019). Figure 8 shows the AVIRIS-NG 

plume data that was captured over the Syncrude plant site with the Scientific Aviation KML lap 

data shown in Figure 7 overlaid. By measuring a plume at the same location within a few days, 

this independent sample using a different method provides a contrast to the box-flight, mass-

balance data.  

 

2.2.3 The Use and Adaptation of the Two Mass-balance Algorithms 

2.2.3.1 Use of the TERRA Algorithm 

Environment and Climate Change Canada (ECCC) provided the TERRA algorithm and detailed 

instructions on how to produce estimates using the algorithm with commercial plotting software 

(IGOR Pro 8, Wavemetrics, Lake Oswego, OR, USA). ECCC performed the first step of the 

TERRA algorithm, which provided the screen of spatially interpolated lap data by applying 

Figure 8. AVIRIS-NG captured CH4 column enhancements are shown inside the F04 raw CH4 lap 

data around the Syncrude plant. AVIRIS-NG data and imagery provided by the NASA-JPL and 

satellite imagery © 2020 Maxar Technologies, Google Earth. Large CH4 enhancements are 

depicted in red. The processed plume imagery is overlaid on a different day causing the ‘cut 

cloud’. The wind direction is shown by the white arrow. 
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simple kriging to the campaign data collected by Scientific Aviation. The spatially resolved 

screen of mixing ratios is a 2-dimensional unraveling of the lap data by altitude over the length 

of sampling and is commonly referred to as the ‘box’ (Gordon et al. 2015). The second step was 

completed as part of this study. 

TERRA has options for extrapolating emission concentrations from the lowest flight 

layer to the surface to account for fluxes below the flight path. The TERRA surface extrapolation 

fit options are background, constant, linear, linear interpolation to background, and exponential. 

A background extrapolation is used when there is a fully captured, elevated plume and there is a 

benefit to choosing one single mixing ratio extrapolated to the surface. A constant extrapolation 

is best in the general case of a fully captured, elevated plume as it avoids the assumption of a 

background value. The linear extrapolation is preferred in the scenarios when emissions occur 

towards the surface such as a low plume that was not fully captured, or a mixed plume with 

ground sources such as a tailings pond. The interpolate fit is ideal when there is evidence of 

decreasing emissions with only a trace of plume at the bottom of the flight path. Exponential 

extrapolation is largely avoided unless there is a strong argument that it best fits the plume 

behaviour as it can be unstable. 

Surface extrapolation was essential for this study as all flights had emission plumes that 

were not fully captured at the lowest flight track. For the TERRA standard estimates, a linear fit 

was used for F01, F03, and F05 for both CH4 and CO2 due their low position on the screen and 

likelihood of having an increasing emission towards the surface. An interpolate to background fit 

was applied to F02 for both CH4 and CO2, and F04 for CO2 as these cases largely captured 

plumes with low mixing ratios at the bottom of the flight path. A constant extrapolation was fit to 

F04 for CH4 to avoid an assumption about the background concentration as it was the one flight 

with a very large plume dispersion where plume behaviour was unknown (Appendix B). 

To use the interpolate, or background fit options, TERRA requires estimates of 

background concentrations of the desired gas present in the atmosphere, unrelated to the 

emission source. ECCC often flies separate samples to independently measure background 

concentrations, then removes background concentrations prior to running TERRA (Baray et al. 

2018). As these measurements were not collected, the background mixing ratios were determined 

by inspecting the histogram of concentrations, removing the tail of enhanced emissions, then 
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fitting a normal distribution to the values and estimating the background value as the mean of the 

distribution (Appendix B). Extrapolations are fit from the mixing ratio screen data at a height of 

300 m. All extrapolation outcomes were produced to calculate the surface extrapolation error and 

to compare with the range of possible outcomes from the SciAv method. The settings for the 

standard TERRA emissions estimate were chosen in consultation with ECCC by assessing the 

plume location, boundary layer conditions, and plume source information to determine the 

appropriate surface extrapolation (Baray et al. 2018; Gordon et al. 2015).  

The TERRA model total uncertainty estimate was calculated by adding seven error terms 

in quadrature (i.e., by taking the square root of the sum of squares). In consultation with ECCC 

four of the seven TERRA error terms were evaluated. The wind and measurement error have 

been previously determined to each be <1%, and the vertical turbulence term has been 

functionally removed from analysis (Baray et al. 2018; Gordon et al. 2015). The surface 

extrapolation error was calculated as the maximum percent change amongst the plausible surface 

extrapolation estimates produced. For example, background extrapolations were not considered 

for standard estimates when a flight has increasing emissions at the bottom of the screen. A 

description of the calculation of the box-top mixing ratio, air density, and box-top height error 

terms is given in Appendix B. 

2.2.3.2 Adaptation of the SciAv Method 

Scientific Aviation provided results from the first step of estimating the divergence for each lap. 

They applied their algorithm to the flight data and provided output that could be used to address 

the research objectives. This output included standard emissions estimates and uncertainties 

using the SciAv preferred settings. It also included profiles of divergence and uncertainty for 

each lap versus altitude and preferred bin altitude ranges. These were used in the second step 

analysis of binning lap estimates and integration of the flight profiles to test cases such as 

extrapolation to the surface in MATLAB 2020a. The method for applying the second step of the 

SciAv model was redeveloped and coded in MATLAB 2020a (The MathWorks, Inc., Natick, 

Massachusetts, United States) as part of this study, since Scientific Aviation did not provide their 

algorithm code. For this reason, the method of plotting the profile, averaging the data by the 

given bin, extrapolating to the surface, and summing the results all had to be recoded. To verify 

the accuracy of the MATLAB 2020a code, the SciAv emission estimates were reproduced from 



37 
 

the divergence profiles and binning information. Uncertainty estimates were not reproducible as 

the description of the error estimates (Conley et al. 2017) was ambiguous and clarification was 

not obtained within the time frame of this study (Equation 7, Appendix A).  

 Figure 9 provides an example profile of the average divergence per lap estimate 

calculated in the first step of the SciAv model. In the second step, the lap estimates were binned 

by altitude and averaged within each bin, as shown in red. Extrapolation to the surface is shown 

in green using the SciAv method of extending the lowest bin as a constant to the surface. The red 

and green estimates were integrated over altitude, binned estimates were multiplied by the height 

of each bin then summed up, to produce the methods final emission estimate. The estimated 

range of the atmospheric boundary layer is shown as light blue horizontal dashes.  

SciAv uses a constant extrapolation of the average divergence in the lowest bin, yet this 

may not always be the most appropriate fit when a sample is increasing towards the surface. For 

this study, the use of different surface extrapolations for the SciAv model were developed and 

tested. Differing surface extrapolation methods of constant (SciAv’s standard), background (no 

extrapolation), linear, linear weighted, linear interpolation to background, and the average, were 

applied to obtain a greater range of possible outputs from the model. Extrapolations were fit to 

Figure 9. An example of a SciAv profile used in the second step of the method. The blue points are 

the estimated divergence for each lap which are connected to show profile shape with the 

associated error (a dashed blue line). Red points are bin averages and the vertical red bar is the 

bin height range. The boundary layer height is drawn in light blue with error bars (light blue 

dashed lines). The standard SciAv surface extrapolation method of extending the lowest red bin to 

the surface is shown in green. 
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the profile points below a specific height that was chosen given the profile shape, location of the 

plume enhancement, and sparsity of points (Appendix C). Conley et al. (2017) found that 

binning by lap and using a constant extrapolation produces a stable estimate when 20-25 laps are 

flown (Conley et al. 2017). However, with larger area samples, such as perimeter flights, fewer 

than 10 laps are often flown. These types of samples may be better suited to a different type of 

integration as well as surface extrapolation. Therefore, trapezoidal integration of the divergence 

points over the profile was applied in MATLAB 2020a and the various surface extrapolations 

were fit to this estimate. A method of producing uncertainty in the trapezoidal integration 

method was devised by using the uncertainty of each lap divergence point provided by Scientific 

Aviation.  

 

2.2.4 Model Comparison 

2.2.4.1 Objective 1: Compare Emission Estimates Between Models 

a) Evaluate overall final emission estimates using the standard methods of the two models given 

the same data set. 

Standard Scientific Aviation (SciAv) emission results were compared to the estimates produced 

by applying TERRA to the same flight data. A constant extrapolation to the surface was used for 

all SciAv estimates, whereas the extrapolation for TERRA varied by the flight profile and 

sources.  

Model agreement was assessed by comparing the range of error for each estimate and the 

extent of overlap. The range in the SciAv estimate was provided by Scientific Aviation, 

calculated from the three uncertainty terms of the model. The range in the TERRA estimate was 

calculated from the total uncertainty as described in Appendix B. The difference between model 

estimates was calculated as: 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑆𝑐𝑖𝐴𝑣 − 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝐸𝑅𝑅𝐴. The relative percentage 

difference was calculated as the difference divided by the average of the two models: 

𝑃𝑒𝑟𝑐𝑒𝑛𝑡𝑎𝑔𝑒𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒𝑅𝑒𝑙𝑎𝑡𝑖𝑣𝑒 =
(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑆𝑐𝑖𝐴𝑣 −  𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝐸𝑅𝑅𝐴)

(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑆𝑐𝑖𝐴𝑣  + 𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝐸𝑅𝑅𝐴
2

)
× 100          (1) 

The relative percentage difference was compared to propagated percentage error of the 

difference which is the two models’ estimated errors added in quadrature. Model agreement 
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occurs when the percentage differences are near, or less than the models’ propagated error 

percentages. Statistically significance differences between model estimates for each flight and 

emission were first tested using a weighted t-test to include the error of each estimate. Nested 

model testing could not be run due to the small number of repetitions (non-singularity issues). 

The data are not normally distributed as estimates differ in scales between the boundary and 

plant flights, and have a very small sample size. Therefore, the non-parametric paired Wilcoxon 

signed-rank test was then used to test differences between the model outcomes (Rey and 

Neuhäuser 2011). Differences were chosen to be significant at a power of 0.1 given a sample size 

of n=5, when the absolute t-value is greater than 1.476 for the t-test and when the critical value 

(V) is equal to, or less than 3 for the Wilcoxon signed-rank test (Chernick and Friis 2003; James 

et al. 2013).  

b) Systematically test the effects of different surface extrapolation methods for each model. 

The standard SciAv emissions estimates assume that the divergence profile is constant below the 

lower flight altitude. However, in some cases the profile shape at the lower altitudes does not 

appear constant (see Sect. 2.3.1). As a new method, various surface extrapolations were applied 

to the SciAv divergence profiles. This approach was slightly different than for TERRA, which 

fits extrapolations to the screen interpolated mixing ratios. Furthermore, TERRA fits consistently 

from a height of 300 m, but the SciAv profile has fewer points to fit from so the height was 

selected to produce the most stable, sensible extrapolation fits. Along with the standard TERRA 

fits of constant, background, and linear, additional fits of a linear weighted, linear interpolated to 

background, and an average of the extrapolation were applied to the SciAv divergence profiles. 

An exponential extrapolation could not be fit due to the small number of points in the profile. 

Emissions were estimated using the SciAv binning method for the portion of the known 

divergence profile and then the emission estimate from the surface extrapolation was calculated 

as the area under the curve using trapezoidal integration and added to the binned estimate. 

Extrapolations were fit from the lowest bin estimate, rather than the lowest divergence point, to 

remain consistent with the SciAv method. The process of determining the fitting height is 

detailed in Appendix C.  

Model estimates of emissions along the measured flight path were compared by assuming 

no emission plume below the lowest lap measurement to remove the effect of the differing 
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surface extrapolation methods. For the SciAv method, background emissions were fit by 

applying no extrapolation and assuming the divergence was zero below the lowest flight path. 

The TERRA method has a fit to background option that runs the emission estimate algorithm 

assessing the integrals assuming a constant background of emissions below the lowest fight 

track. These two approaches are not exactly equal, but give a sense of how the models compare 

without the added step of choosing an appropriate surface extrapolation. Comparing the two 

models without surface extrapolation allows for better assessment of potential systematic bias in 

each model. Model estimates for each surface extrapolation were also compared for the four 

surface extrapolations fit by both models: linear, interpolate, constant, and background. 

Percentage differences between model estimates for each flight were calculated as per Equation 

1 and differences between models were assessed using a pairwise t-test and Wilcoxon signed-

rank test. 

For each flight, algorithm estimates for the varying surface extrapolations were 

resampled using the bootstrap method (described below) to estimate the range in the difference 

between model estimates given various surface extrapolations for each flight. The difference 

between the two models given the various surface extrapolation estimates was computed and 

contrasted with the standard estimate model’s error. To obtain a sense of the range of estimates 

from each model a distribution of randomly sampled mean differences was created. For each 

flight and gas, a bootstrap analysis was applied by randomly sampling an estimate given one of 

the extrapolations for each model individually and the difference computed as: 

𝑑𝑖𝑓𝑓𝑒𝑟𝑒𝑛𝑐𝑒 = 𝑚𝑒𝑎𝑛(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑆𝑐𝑖𝐴𝑣) − 𝑚𝑒𝑎𝑛(𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑇𝐸𝑅𝑅𝐴) (2)

Analysis was run in Rstudio using the two.boot function from the simpleboot package (Peng 

2019). 5000 replications were used for each bootstrap to obtain the distributional shape of the 

results. These distributions were used as a proxy for statistical confidence intervals. They were 

used to estimate testing of the null hypothesis that model estimates agree, and if the distributions 

do not overlap with zero then there is evidence that the models differ. 

c) Assess SciAv methods used to integrate divergence and characterize uncertainties. 

The flight data and associated uncertainties used for both the SciAv and TERRA models were 

identical, but the other error terms differed due to different approaches to assessing conditions 

and analysis of the data. A potential method of reducing error in the SciAv methods was 
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investigated by using trapezoidal integration rather than binning to estimate a total emission 

estimate from the lap divergence points. Figure 10 depicts the two methods of integrating the 

SciAv divergence profiles using the profile for F01 CH4 as an example. The same surface 

extrapolation estimation procedure was used for both the binning and trapezoidal methods 

(Appendix C). Surface extrapolation methods were fit to the lowest divergence lap point for the 

trapezoidal method, and the binning method fitted from the lowest bin. The SciAv temporal error 

term could not be reproduced with available information, so total error for estimates were not 

derived. 

The percentage relative difference between integration methods given estimates using the 

various surface extrapolation was calculated using Equation 1 as 𝑆𝑐𝑖𝐴𝑣𝐵𝑖𝑛𝑛𝑒𝑑 minus 

𝑆𝑐𝑖𝐴𝑣𝑇𝑟𝑎𝑝𝑒𝑧𝑜𝑖𝑑. The standard deviation in the percentage relative difference between integration 

method estimates was calculated and compared to the percentage relative standard deviation 

(%RSD) of the emission estimate for each set of estimates derived using the two integration 

methods. The mean estimate was derived for each method and tested using a pairwise t-test and 

Wilcoxon signed-rank test for statistically significant differences between the two sets of SciAv 

estimates. 

Figure 10. The two different integration method applied to the SciAv F01 CH4 profile is depicted as 

the red area. The left figure shows the standard binning method of estimating an average 

divergence for each bin and integrating by altitude over the area as rectangular boxes. The right 

figure shows the trapezoidal method of estimating an average area under the curve by connecting 

the divergence lap points. Both figures do not include the extra emission that would be included 

using surface extrapolation.  
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2.2.4.2 Objective 2: Investigate Model Assumptions 

Large, anomalous differences between the SciAv and TERRA estimates occurred for F04. This 

flight was used as an example for assessing the implications when model assumptions of a 

stationary plume and stable meteorological conditions are violated. The effects of violating the 

assumption of a fully captured plume were assessed using F05. Exploratory analysis of flight 

features was performed in RStudio and MATLAB R2020a. 

a) Investigate implications of violating the model assumptions of a stationary plume and stable 

meteorological conditions. 

Sampling of the five flights used in this analysis took, on average, an hour each. The laps 

collected were aggregated together by applying simple kriging to produce a screen of mixing 

ratios (TERRA), or calculating lap averages of the divergence and integrating over the profile of 

the lap estimates (SciAv). Initial QA/QC of the data used was performed by SciAv and methods 

involve inspecting the divergence profile over the whole flight to assess the model assumption of 

plume capture, but do not assess plume stationarity. Flight segments were examined for extent of 

capture of the plume, sufficient wind speed and consistent wind direction, and for significant 

upwind emissions affecting background estimates. 

The SciAv data did not include the explicit error term for the extent of stationarity of the 

wind and therefore error terms were not able to be reproduced. The TERRA error terms were 

calculated to assess stationarity. Additional analysis of the meteorological conditions for F04 

during the flight upward and downward was assessed in this study and is detailed in Appendix E.  

A novel approach of separating lap data into upward and downward flight components 

was developed in this study and applied in MATLAB R2020a to evaluate plume stationarity by 

comparing profile shapes and variation of the emission estimate. Results from a flight with a 

stationary plume (F02) and non-stationary plume (F04) were compared. TERRA estimates were 

not reproduced for the flight upward vs downward as time did not permit ECCC to run the 

necessary first step of TERRA. 
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b) Investigate implications of violating the model assumptions of full capture of the plume. 

Aircraft-based emissions estimates are only successful if the boundary layer confines the plume 

and measurements, or extrapolation can capture the full extent of the plume. Some flights were 

immediately rejected from the AEP-NOAA-Scientific Aviation Flight Campaign due to a 

collapsed boundary layer, as there was nothing to confine the emission plume. When emission 

plumes are not fully captured at the highest flight paths TERRA has the option to apply an 

extrapolation of the emission mixing ratios at the top of the box to the predicted boundary layer 

rather than discard the flight data. To highlight the implications when the top of an emission 

plume is not captured, the height of the box was increased by 300 m and emission mixing ratios 

were extrapolated upward for F05. F05 was chosen for this study as it provides an example of a 

flight that misses the top of the emission plume when sampling.  

2.2.4.3 Objective 3: Examine Potential for Validation of Mass-balance Emissions Estimate 

Methodology Through Comparison to the Spectral AVIRIS-NG Method 

AVIRIS-NG data were collected at 17.5 kft and industry was not informed before sampling. 

NASA-JPL provided CH4 emissions calculated using AVIRIS-NG data and three sources for 

hourly estimation of the wind: ECCC meteorological towers 3062696 and 3062697, and 

MERRA2 (Modern-Era Retrospective analysis for Research and Applications, version 2) 

reanalysis. MERRA2 is an atmospheric reanalysis method produced by NASA that utilizes 

numerous satellite observations to produce a global time series of atmospheric data (Gelaro et al. 

2017). To estimate the wind speed and direction, an average over a three-hour window was used 

for the met tower data, and nine kernels centred on the plume latitude and longitude were used 

for the MERRA2 analysis. The magnitude of the AVIRIS-NG estimates was compared to the 

SciAv estimates.  

2.3 Results 

2.3.1 Objective 1: Compare Emission Estimates Between Methods  

a) Evaluate overall final emission estimates using the standard methods of the two models given 

the same data set. 
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The standard estimate results, following the standard protocol of each method, from both models 

are shown in Table 5 and Figure 11. Standard emission estimates for four of the five flights agree 

within their errors. The error bars for each estimate are the calculated range of each estimate not 

a confidence interval. The error for the SciAv estimates are those provided by Scientific 

Aviation. The error estimates were not reproducible as the published description of the methods 

is ambiguous (Conley et al. 2017). SciAv was contacted for clarification, but did not reply within 

the time frame of this study. The error for the TERRA estimates was calculated as part of this 

study and is detailed in Appendix B. In Figure 11 the error bars for each model estimate overlap 

with each other, aside from F04 which has a large gap between estimates. The errors for the 

TERRA estimates are consistently smaller than for SciAv (averaging at ~ 8 % smaller). The 

ranges for each estimate as well as the estimate error as a percentage are stated for comparison in 

Table 5. Model agreement is implied when the ranges for each estimate overlap. For all flights 

except F04, the differences between the models are in the range of the estimate errors. For F04 

the emissions estimates disagreed as no overlap of the estimate range occurred. 

 

Table 5. Results of the CH4 and CO2 standard fit estimate from each model with their error as a 

percentage ± % and the range derived from the percentage error of each model’s standard 

estimate. 

Estimate Type F01 F02 F03 F04 F05 

SciAv  

CH4 (kg hr -1) 
3840 ± 18% 362 ± 21% 497 ± 17% 349 ± 11% 3470 ± 29% 

Range (3150 - 4540) (287 - 437) (415 - 579) (310 - 387) (2480 -4470) 

TERRA  

CH4 (kg hr -1) 
4810 ± 11% 395 ± 6% 476 ± 5% 125 ± 18% 3910 ± 15% 

Range (4310 - 5300) (373 - 418) (452 - 501) (102 - 148) (3330 -4490) 

SciAv  

CO2 (t hr -1) 
104 ± 22% 563 ± 18% 526 ± 11% 1170 ± 11% 850 ± 34% 

Range (807 - 1270) (464 - 662) (469 - 583) (1040 -1300) (561 - 1140) 

TERRA  

CO2 (t hr -1) 
1340 ± 10% 515 ± 6% 467 ± 4% 569 ± 7% 877 ± 26% 

Range (1200 - 1470) (486 - 545) (451 - 483) (561 - 60) (650 - 1110) 
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The difference between estimates, relative mean percentage difference, and the 

propagated error in percentage for the average estimate of the two models are shown in Table 6. 

Confidence intervals for the model estimates were not produced as there is only one estimate for 

each flight, and therefore the error bars are simply the range for each estimate. To compare the 

model estimates using the error range the relative mean percentage difference and propagated 

percentage error of the two estimates were calculated. A mean percentage difference that is 

approximately equal to, or smaller than the propagated percentage error of the model estimates 

indicates model agreement within the uncertainty of the estimates. The whole set of results from 

five flights were formally tested for differences between the SciAv and TERRA estimates using 

Figure 11. Flight emission estimates for CH4 (left) and CO2 (right) derived for each model are 

plotted as points along with the range of each estimate as error bars. TERRA standard estimates 

are shown in green and SciAv in purple. Samples of F01, F02, F03, and F05 produce estimates that 

coincide within each model’s error bars. 
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a weighted t-test and Wilcoxon signed rank test. As a collective, the differences between the 

model estimates were found to be insignificant for both CH4 and CO2 (Table 7).  

Table 6. Differences between models as SciAv estimate – TERRA estimate for each flight, relative 

percentage differences and the propagated percentage error of the estimates. 

 

Table 7. Results of parametric (weighted t-test) and non-parametric (Wilcoxon signed-rank test) 

significance testing of differences between the two box-flight models using the set of all five flight 

estimates. 

 Weighted t-test: 

p-value 

Weighted t-test: 

t-value 

Wilcoxon signed-

rank test: p-value 

Wilcoxon signed-

rank test: V 

CH4 0.306 -1.09 0.438 4 

CO2 0.366 -0.96 0.625 10 

 

b) Systematically test the effects of different surface extrapolation methods for each model. 

To test the effect of assumptions about plume shape below the lowest flight lap various surface 

extrapolations were applied to lowest bin of the SciAv divergence profiles for all five flights. 

Plots of the lap divergence estimates tend to follow three profile types. Examples of the three 

profile types for measured methane lap enhancements with error shown in Figure 12 are: an 

emission plume with constant enhancements persisting at the lowest flight track (Type I), an 

elevated emission plume where enhancements approach zero at lower altitudes (Type II), and a 

plume that has enhancements increasing towards the surface (Type III). A flight is classified as 

‘fully-capturing’ the emission plume when the mean divergence of the highest flight laps 

 F01 F02 F03 F04 F05 

CH4: Difference  

(kg hr -1) 

-967 -33.5 20.5 224 -436 

CH4: Relative 

Percentage Difference 
22% 8% 4% 94% 12% 

CH4: Propagated 
Percentage Error  

21% 22% 17% 18% 29% 

CO2: Difference  

(kg hr -1) 

-302000 47900 58700 602000 -27700 

CO2: Relative 

Percentage Difference  
25% 9% 12% 69% 3% 

CO2:  Propagated 
Percentage Error 

24% 19% 12% 13% 43% 
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approach zero. All the profiles shown in Figure 12 fully capture each emission plume. Of the five 

sample flights, three had clear profile shapes.  

 

Figure 13A shows that both emission profiles for F01 follows a type III shape with fits 

for linear, weighted linear, and averaged increasing towards the surface. The F01 surface 

extrapolation and resulting emission estimate would be larger and more closely follow plume 

behaviour if the lowest divergence point, rather than the lowest bin estimate (the method 

standard), was used (Figure 13A). The F02 SciAv profile follows a Type II shape (Figure 13B) 

with very little variation in the extrapolation fits, which are clustered around the standard 

constant fit. The F03 SciAv profile has a lot of between-lap variation with a profile shape that 

largely follows a Type I shape (Figure 13C). The F03 surface extrapolation was the most 

unstable fit due to the larger variation between laps at the bottom of the profiles. F05 was the 

only flight with varying profile shapes for and CH4 and CO2. The shape of the emission profile in 

Figure 13E for CH4 shows some constraining of the plume at the highest altitude; however the 

divergence is still larger than 2 kg m-1 hr -1 which is larger than the peak of divergence from 

plant samples. The profile for F05 in Figure 13E shows incomplete sampling for CO2 as the 

divergence points are still increasing at the highest altitude indicating that the plume was not 

fully captured.  

  

Figure 12. Sample data representing the three common types of divergence profiles for the 

SciAv method. Blue dots represent the divergence of each lap calculated in Equation 6 with the 

associated error drawn as blue dashes. 
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Figure 13C. 

Figure 13A. 

Figure 13B. 
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Figure 13D. 

Figure 13E. 

Figure 13. The SciAv profile is shown for F01-F05 in Figures 13A – 13E. The blue points are the 

estimated divergence for each lap which are connected to show profile shape with the associated 

error (a dashed blue line). Red points are bin averages and the vertical red bar is the bin height 

range. The boundary layer height is drawn in light blue with error bars (light blue dashed lines). 

The five surface extrapolations are drawn from the bottom of the lowest red bin. 
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The set of all results given the differing surface extrapolations was compiled (Appendix 

C) and estimates plotted together in Figures 14 and 15. In Figure 15, the F01 CO2 interpolated 

fits are so similar that the TERRA estimate overlaps the SciAv estimate. Estimates that clustered 

together for both models, such as F02 CO2, indicate a good agreement with little difference 

between the varying surface extrapolation estimates. F03 CO2 has the second most consistent gap 

between model estimates; however, the standard estimates still agree within their errors. F04 has 

large disagreement between models for both CH4 and CO2 (Figure 14 & 15). The mean emission 

estimate and standard deviation of each model’s various surface extrapolations were calculated 

(Appendix C). The larger the spread in estimates, the more sensitive the flight was to the choice 

in extrapolation. Systematic bias is not evident in the differences between models as emission 

estimates intersect and no one model produces consistently larger, or smaller estimates for all 

flights. 

Figure 14. CH4 estimates given various surface extrapolations are plotted in purple for the SciAv 

estimate and green for TERRA. Error bars are drawn onto each model’s standard estimate.  
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To remove the effect of the choice in surface extrapolation, model estimates were 

produced by fitting background concentrations below the lowest flight path. These estimates 

were compared and the SciAv and TERRA models were still found to agree. Emission estimates 

using a background fit were systematically lower than the standard estimates, but no clear pattern 

was identifiable that would indicate systematic model disagreement. For the five flights, the CH4 

background estimates agreed more than the standard estimates while the CO2 background 

estimates agreed less. The average of the model estimates using the same four surface 

extrapolation extrapolations was also computed. To compare significance between the standard, 

average, and background estimate, a Wilcoxon signed-rank test and pairwise t-test were run. 

There is no evidence that model agreement changes when removing the effect of surface 

extrapolation, and that there is consistent agreement between the model estimates (Appendix D).  

Figure 15. CO2 estimates given various surface extrapolation fits are plotted in purple for the SciAv 

estimate and green for TERRA. Error bars are drawn onto each model’s standard estimate.  
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To assess the sensitivity of emission estimates using different surface extrapolations, the 

differences between each model were calculated for the four surface extrapolations used for each 

model (Table 8). For most flights, the choice in surface extrapolation had only a small effect on 

the difference between the model estimates (≤ 3%, Table 8). The choice in surface extrapolation 

is a source of large variation between the models for F01, the one flight with large emissions at 

the lowest flight path. Fitting extrapolations with increasing emissions towards the surface 

increased model agreement for F01 CO2 from a percentage relative difference of 16% for the 

standard constant fit, to 7% using the linear fit.  

Table 8. Percentage relative difference of estimates between models, calculated as SciAv – TERRA, 

for each of the linear, interpolate, constant and background surface extrapolations. The standard 

deviation between the percentages rounded to the nearest integer for each flight is given in the last 

column. 

 

In Figures 16 and 17, the distribution of randomly sampled mean difference was plotted 

along with the propagated error range (see Table 6) for each flight and gas (CH4 and CO2). A 

value of zero implies that there is no difference between the models. Aside from F04, the 

distributions all either include zero, or the error of the standard estimates includes zero, 

indicating that there is good agreement between the models in most cases. While the distribution 

 Linear Interpolate Constant Background Standard 

Deviation 

F01 CH4  (%) 9 5 -12 5 9 

F02 CH4 (%) -16 -18 -13 -19 3 

F03 CH4 (%) 6 8 8 9 1 

F04 CH4 (%) 105 87 94 85 9 

F05 CH4 (%) -5 -4 -2 -9 3 

F01 CO2 (%) -7 0 -16 44 26 

F02 CO2 (%) 2 1 5 1 2 

F03 CO2 (%) 17 18 14 21 3 

F04 CO2 (%) 62 59 66 61 3 

F05 CO2 (%) -11 -11 -4 -18 6 
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for F03 CO2 just barely includes zero, the standard estimate uncertainty is small, and the models 

still agree within the errors (Figure 17). The extent of the differences in F04 is apparent from 

Figures 16 and 17. F04 is the only distribution where the error range of the mean difference of 

the standard estimate and the distribution of the mean differences of all the estimates are far from 

including zero. 

 

Figure 16. Distributions of the mean difference between all fits of CH4 for the SciAv and 

TERRA models are shown as a light blue histogram. The mean difference between the 

standard estimates of the models is plotted as a teal dashed lined and the range in the 

difference between standard model estimates is shown as a light teal box. A grey dot dashed 

line is drawn at zero as a reference point for the location of exact agreement between the 

models.  
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c) Assess SciAv methods used to integrate divergence and characterize uncertainties. 

For the five flights compared, the error from TERRA is lower than that from the SciAv model by 

an average of 8%. Conley et al. (2017) developed a ‘flux divergence’ term which is the largest 

uncertainty term of the SciAv method. The largest calculated TERRA uncertainty term was the 

surface extrapolation. The potential of using trapezoidal integration, rather than binning by 

altitude, for the SciAv model was examined. The resulting emissions estimates produced by 

comparing the two integration methods given varying extrapolations are provided in Appendix 

C.  

Model estimates did not significantly change when the trapezoidal integration method 

was used. Figures 18 and 19 show the binned estimates compared to the trapezoidal (Trapz). No 

systematic pattern is evident that would indicate that one integration method produces 

consistently larger or smaller emissions estimates. There is a systematic gap between estimates 

that could be attributed to the use of different extrapolation points (Figures 18 and 19). The 

Figure 17. Distributions of the mean difference between all fits of CO2 for the SciAv and TERRA 

models are shown as a light blue histogram. The mean difference between the standard estimates 

of the models is plotted as a teal dashed lined and the range in the difference between standard 

model estimates is shown as a light teal box. A grey dot dashed line is drawn at zero as a reference 

point for the location of exact agreement between the models. 
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binned method uses the lowest bin for extrapolation, whereas the trapezoidal method uses the 

lowest divergence point. The mean of the estimates derived using the six different surface 

extrapolations were calculated for each integration methods set of results, and differences were 

tested using a pairwise t-test and Wilcoxon signed-rank test. Results indicate no evidence that 

there is a difference in mean estimates for each flight between the two integration methods 

(Appendix C). 

 Inspecting Figures 18 and 19, there is a larger variation between estimates due to the 

chosen surface extrapolation than integration method. This indicates that the choice in surface 

extrapolation is more important than the type of integration method. There was one exception, 

there is a larger difference between the integration types when a constant extrapolation is chosen 

for F01. This flight has an increasing to surface profile point, and because the lowest divergence 

point differs greatly from the location of the lowest bin estimate, the extrapolation fits differ. 

Applying an appropriate surface extrapolation that follows the shape of the profile remedied the 

difference between integration methods (Figures 18 and 19).  

Figure 18. SciAv CH4 (kg hr -1) emission estimates derived using both a binning (red) and 

trapezoidal (blue) integration method. Mean values for each method are shown as a dotted line.  
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Percentage relative standard deviations (%RSD) were calculated (Table 9) to estimate the 

deviation in the surface extrapolation estimates given the binning and trapezoidal approaches to 

integrating the SciAv lap divergence data. These were compared to the %RSD of the difference 

between the two integration methods. Results showed that the range in emission output was a 

factor of ~3 times larger for the range in surface extrapolation estimates than the difference 

between using a binned or trapezoidal integration (Appendix C, Table 25). The choice in the 

surface extrapolation affected the range of emission outputs more than the integration type.  

Table 9. Percentage relative standard deviations (RSD) calculated from the set of seven SciAv 

surface extrapolations given a binned or trapezoidal integration method and for the difference 

between the two. The mean of each %RSD is calculated amongst all flights.  

 F01 

CH4  

F02 

CH4  

F03 

CH4  

F04 

CH4  

F05 

CH4  

F01 

CO2 

F02 

CO2  

F03 

CO2 

F04 

CO2 

F05 

CO2 

Mean 

 

Binned 

%RSD 

18 7 9 6 15 17 6 12 5 8 10 

Trapezoid 

% RSD 

15 7 9 5 15 17 5 14 3 8 10 

Difference 

% RSD 

12 1 1 2 2 9 1 3 3 0 3 

 

Figure 19. SciAv CO2 (t hr -1) emission estimates derived using both a binning (red) and 

trapezoidal (blue) integration method. 
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2.3.2 Objective 2: Investigate Model Assumptions 

a) Investigate implications of violating the model assumptions of a stationary plume and stable 

meteorological conditions. 

To assess the effect on each method when model assumptions are violated, we 

investigated flights with instances of the fundamental model assumptions not being met. For 

F04, the fundamental assumption of a stationary plume was violated. The change in the emission 

plume during sampling is apparent in each model when the data was separated into the ascending 

and descending flight periods. In the SciAv model, emission enhancements for the flight laps 

going up in altitude noticeably differ from those flying laps going down. In the TERRA model, 

ECCC split the flight data into the upward and downward portions which were noticeably 

different (Appendix E). ECCC reported that when running the first step of TERRA no 

meteorological or other factors indicated non-stationarity. No other flights had non-stationary 

conditions. 

Prior to the ad-hoc analysis of splitting the flight apart, the only measurement that 

indicated atmospheric instability was an air density error term calculated in TERRA. This 

produced an error estimate (4 - 6%) that was noticeably larger than the other four flights (1% - 

0.01%), but not an unusually high value for the method in general (Appendix B). 

The SciAv F04 profile contains two different profile shapes for the up (ascending) versus 

down (descending) flight (Figure 20 and 21). The up and down profiles for F02 remain similar, 

whereas the F04 profiles differ noticeably. The location of the red bin averages for F04 do not 

significantly change and the emission estimates produced from the up and down profiles remain 

near, or within the estimate range of the standard estimate for the whole flight (Table 10).  
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Table 10. F04 CH4 and CO2 standard estimates, ranges, and the emission estimates for the SciAv 

model split into the ascending and descending flight periods.  

 SciAv 

Standard 

Estimate 

SciAv  

Estimate 

Range 

SciAv 

Ascending 

Estimate 

SciAv 

Descending 

Estimate 

TERRA 

Standard 

Estimate 

TERRA 

Estimate 

Range 

F04 CH4 

(kg hr -1) 
349 (310,387) 387 303 125 (102, 148) 

F04 CO2 

(t hr -1) 
1170 (1050,13000) 1180 1130 570 (561, 608) 

F04 CH4 

(kg hr -1) 
362 (287, 437) 329 398 395 (373, 418) 

F02 CO2 

(t hr -1) 
563 (464, 662) 484 690 5153 (486, 545) 

 

Figure 20. F04 CH4 divergence profiles for the flight up (left) versus down (right). The profile 

shapes differ with a much more variable divergence in the up profile.  

Figure 21. F02 CH4 divergence profiles for the flight up (left) versus down (right). The profile 

shapes do not differ. 
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b) Investigate implications of violating the model assumptions of full capture of the plume. 

To explore the extent of bias when a plume is not fully captured, upward extrapolation of 

the emission plume was applied to F05, the flight that did not capture the top of the plume, in 

TERRA. When doing this, the standard estimate changed from 3910 kg hr -1 of CH4 to 20641 kg 

hr -1 and 877381 kg hr -1 of CO2 to 10340730 kg hr -1. This tenfold increase exhibits why the 

method may not produce sensible estimates when the emission plume is increasing at the top of 

the box. With these methods, flights that fail to capture the top of the emission plume can rarely 

be used due to the large uncertainty that can occur. 

 

2.3.3 Objective 3: Examine Potential for Validation of Mass-balance Emissions Estimate 

Methodology Through Comparison to the Spectral AVIRIS-NG Method 

Two intersecting CH4 plumes were captured at the Syncrude Plant site within the perimeter of 

the Scientific Aviation box-flight path of F04 at 21:17:24 on 08/11/2017 (111.6122455, 

57.04661388). The NASA-JPL provided data, analysis, and imagery calculated from their 

sample, as described in Duren et al. (2019), over the F04 site to help provide context for the 

aircraft measurements (Table 11). The average instantaneous CH4 emission rate from the three 

methods of calculating was 1,989 (kg hr -1) with an averaged uncertainty of 950 (kg hr -1). 

AVIRIS-NG estimates currently have on average larger uncertainties in emission estimates than 

the box-flight mass balance methods while avoiding the requirement of a stationary source and 

the need to extrapolate emissions to the surface. The estimated instantaneous emission rate 

measured by the monitoring of the NASA-JPL was approximately 4-7 times larger than 

emissions measured using the SciAv method three days later (349 kg hr -1). This may be due to 

industrial operations, such a flaring or venting events. It is possible only one of the two plumes 

observed by AVIRIS-NG were present when SciAv sampled. However, operating conditions 

were not shared by the facility, so the underlying reason for this difference could not be 

evaluated. 
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Table 11. AVIRIS-NG data captured on August 14, 2017, three days prior to the F04 flight is 

estimated using three sources of wind data.  

Estimate 

Wind Source 

Average 

Wind Speed 

(m s-1) 

Wind Speed 

Uncertainty 

(m s-1) 

CH4 Estimate  

(kg hr -1) 

CH4 Estimate  

Uncertainty  

(kg hr -1) 

Met 

3062696 
4.44 0.735 2230 973 (44%) 

Met 

3062697 
4.81 1.81 2420 1330 (55%) 

MERRA2 

reanalysis 
2.62 0.235 1320 543 (41%) 

 

2.4 Discussion 

2.4.1 Objective 1: Compare Emission Estimates Between Methods  

a) Evaluate overall final emission estimates using the standard methods of the two models given 

the same data set. 

The difference between models was computed (SciAv – TERRA) and compared as a relative 

percentage of the mean emission between the two models to the models’ errors added in 

quadrature (Table 6). Results support the assessment that four of the five flights produce 

estimates that agree between the two models. The considerably larger relative percentage 

difference of F04 compared to the percentage error in the estimates indicates that the difference 

between the model estimates is due to violated model assumptions, rather than error in the 

methods. The larger percentage difference is illustrated by the considerable gap between the F04 

estimates in Figure 11. In general, when model assumptions were met the models produced 

similar results. 

b) Systematically test the effects of different surface extrapolation methods for each model. 

If the first steps in each model’s algorithm produced estimates that disagreed, then it 

would be most evident when the second step of extrapolating emissions to the surface is removed 

as a possible confounding factor. The SciAv and TERRA model estimates were compared when 

no surface extrapolation was applied. Estimates agreed which suggests the first, core mass-

balance algorithm steps produce similar outputs. 
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The analysis did show one exception of a discernable pattern for flight F01, which 

indicates a source of bias between the models, due to the different methods of extrapolating to 

the surface. F01 was the only flight with a definitive SciAv profile type III and is an example of 

the difference in the model approaches to surface extrapolation when emissions are increasing at 

the lowest flight track. A linear weighted fit for profile III shapes, the scenario when emissions 

noticeably increase towards the surface, is recommended for SciAv to use as it fits the emission 

profile and is weighted by the uncertainty in each lap estimate (Figure 22). 

SciAv fits a constant surface extrapolation regardless of the behaviour of emissions at the 

lowest flight path, whereas TERRA choses the surface extrapolation from various fits by 

assessing the plume. When a flight has large emissions at the bottom of the plume, the SciAv and 

TERRA models agree more when some form of increasing to surface extrapolation is applied to 

the SciAv model compared to use of the standard, constant extrapolation. This indicates that the 

second step of each algorithm, the choice of an appropriate surface extrapolation, is likely a 

significant factor contributing to any differences between the models.  

Results from assessing multiple surface extrapolations indicates that the SciAv method of 

extrapolating as a constant is the most appropriate choice unless a specific pattern of increasing 

emissions at the lowest flight path is evident. The SciAv method of applying a constant 

extrapolation avoids the bias introduced assuming either increasing or decreasing emission 

estimates when the behaviour is unknown. In the scenario when large variation occurs between 

lap estimates, such as F03, the SciAv method of extrapolating as a constant seems the most 

Figure 22. Conceptual diagram outlining when to apply an increasing towards surface 

extrapolation, or the SciAv standard constant surface extrapolation based on the shape of the 

SciAv profile for a given flight. 
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appropriate as it avoids assumptions about the ambiguous profile behaviour at the bottom of the 

flight. F05 has an ambiguous emission profile, and while laps were flown to the height of the 

estimated boundary, emissions increase at the top of the profile, which indicates that the plume 

was breaking through the boundary layer. With so few sample laps to fit and a lack of capture at 

the top of the plume, extrapolating the emission as a constant to the surface likely introduces the 

least bias. F04 (the flight with non-stationarity) has large disagreement between the models, but 

the choice in the surface extrapolation has very little effect on the disagreement (3-9%). For the 

average flight scenario, the model estimates derived using various surface extrapolations tend to 

agree regardless of how the surface extrapolation is fit. This consistency between estimates 

provides larger certainty in the estimates and in the top-down regional budgets that are inferred 

from them. 

c) Assess SciAv methods used to integrate divergence and characterize uncertainties. 

Assumptions of the airborne, mass-balance algorithms include a stationary emission 

source, stationary meteorological conditions, and a fully captured emission plume. The smaller 

error for the TERRA estimates compared to the SciAv error estimates may be due to how each 

model quantifies the error in assuming these conditions are met. TERRA calculates seven 

specific error terms to address the error of these assumptions. Increases in the error of one 

assumption does not directly increase the error of others (see Appendix B). Whereas, SciAv uses 

two main broad terms, a temporal error term to capture the extent of stationarity, and a 

divergence error term to estimate capture of the plume. The divergence error of the SciAv 

method can become very large when few flight laps are flown. With a small number of laps (≤ 

10) fewer bins are used than the six proposed in the Conley et al. (2017) methodology. This can 

lead to large variation amongst lap estimates within each bin (see F01 profile in Figure 13A). 

This error is often augmented, as the lowest-altitude bin error is extended to the surface, then 

doubled, to estimate the uncertainty in the surface extrapolation. Applying a different integration 

method and divergence error calculation, such as the trapezoidal integration method detailed in 

Appendix C, could reduce the estimate error by reducing the influence that a small number of 

laps, capturing different trends within a single bin, has on the calculation of the standard 

deviation of each bin (Figure 23). A proposed method of calculating an estimate of the error is to 

randomly sampling 5,000 times within the confidence interval of each lap point and integrating 
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across the differing profiles to determine a percent change over altitude amongst the sampled 

profiles. This term could be added to an extrapolation error term assessing the percent change in 

plausible fits to produce an error term akin to the SciAv’s divergence term. 

The flight found to have non-stationarity, F04, has 25 laps to average out the increased 

variability in the upward and downward profiles. The error calculated by SciAv for F04 was 

smaller than the error of the other four flights whereas CH4 the error for the TERRA estimates 

was the largest for F04. This implies that current SciAv uncertainty terms are more influenced by 

the number of laps than by the degree of stationarity. More detailed knowledge of SciAv 

methodology, and analysis of a large sample of flights would be needed to determine the overlap, 

and influence model assumptions have on the temporal variability and divergence error terms 

described by Conley et al (2017). 

Previous studies using both the SciAv and TERRA methods report that a large 

component of uncertainty for each method is due to the extrapolation to the surface. Choosing 

appropriate surface extrapolations reduces bias and increases the accuracy of the emission plume 

estimate, but the extent of error in the choice remains dependent on the extent of uncertainty in 

assuming the behaviour towards the surface. The uncertainty in the surface extrapolation from 

the SciAv model could be reduced if it is decoupled from the current divergence error term and 

calculated following TERRA methods of using the maximum percentage change between 

probable fits. Coinciding surface measurements at the time of sampling, and more information 

about the behaviour of a plume is the most likely path towards further reducing the uncertainty in 

the surface estimates for both models.  

Figure 23. Conceptual diagram outlining when to use a differing integration method (such as 

Trapz), or the SciAv standard binning method given the number of laps in the SciAv profile for 

a given flight. 
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2.4.2 Objective 2: Investigate Model Assumptions 

a) Investigate implications of violating the model assumptions of a stationary plume and stable 

meteorological conditions. 

The difference between the models for F04 emerged due to conditions of a non-stationary 

emission plume. The contrasting approaches of kriging the data to produce spatially gridded data 

(TERRA) versus creating profiles of the divergence for each lap separately (SciAv) have varying 

sensitivities to the non-stationarity of the plume. The TERRA estimates are drastically lower 

than the SciAv estimates. This may be due to TERRA interpolating the screen of mixing ratios 

with grids averaging over the data from the flight up and down in one box, whereas SciAv may 

be more robust to non-stationarity as it averages each lap to estimate a divergence and then 

averages these over altitude bins.  

During the initial QA/QC of F04 by members of Scientific Aviation and AEP the non-

stationary plume was not identified as focus was placed on assessing meteorological conditions 

and plume capture (Appendix E). The SciAv F04 flight profile is an example of how a profile 

can look when many laps are sampled. In the scenario when the ideal 20-25 laps are sampled, 

averaging the laps over binned altitudes is necessary to smooth out the random variability in 

sampling. The whole (unsplit) F04 profile alone did not indicate non-stationarity of the emission 

plume (Figure 13D), but with post-hoc analysis (Figures 20 & 21), the consistent pattern of zig-

zagging points might indicate a temporally varying profile and could be used as a flag for further 

investigation during QA/QC. For samples with many laps (≥ 20) separating the SciAv 

divergence profile into upward and downward flight components would help identify non-

stationarity of an emission plume.  

Over the course of F04, the concentrations of methane and CO2 changed, both within the 

plume (downwind of the plant) as well as in background air masses (upwind of the plant). Based 

on available information, it is unknown whether changes in emissions contributed to the 

observed changes in concentration. Comments were reported by study operators (AEP) on this 

flight that during sampling, facility operators instructed researchers to only sample the boundary 

of the facility for future flights, but operating conditions were not provided by industry. NO2 and 

SO2 emissions are often used as tracer data for upscaling CH4 emissions (Baray et al. 2018; Li et 

al. 2017; Liggio et al. 2019). Continuous emissions monitoring system (CEMs) facility stack 
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emissions during F04 were consistent with typical operations and showed NO2 emissions spiked 

at the beginning of the day, before the aircraft measurements, and then continuously decreased. 

Furthermore, flaring data, including volume of gas flared and SO2 emissions, did not suggest 

unusual operations at the plant on the day of the flight. The disagreement between the two model 

estimates for F04 arise from the non-stationary emission plume and how this effects the differing 

algorithms.  

Meteorological conditions are often the most likely source of non-stationarity and as such 

are thoroughly assessed by explicit error terms in TERRA and through a QA/QC applied by 

Scientific Aviation that assesses whether conditions have been met. As the effects of violating 

the assumption of constant meteorological conditions are well assessed by both models, and due 

to the limited number of flights able to be compared, a flight with non-stable meteorological 

conditions was not intentionally included in the comparison analysis. 

b) Investigate implications of violating the model assumptions of full capture of the plume. 

When the top of an emission plume is not fully captured, the resulting emissions 

estimates can have uncertainties so large that the flight is unusable. F05 lacks plume capture at 

the top of the flight, but analysis of the boundary layer height indicated that sampling occurred to 

the top of the boundary layer. A moving, or unstable boundary layer would allow the plume to 

seemingly ‘break-through’ the layer. By extrapolating the emission screens in F05 upwards in 

TERRA, emissions estimates increased by approximately a factor of 10 for CH4 and a factor of 

100 for CO2. If the bottom of a plume is not captured the extrapolation distance is restricted by 

the ground, but plume behaviour above the flight path is only approximately constrained by an 

estimate of the atmospheric boundary layer (Conley et al. 2017; Gordon et al. 2015). A ‘fully 

captured’ plume is essential to avoid the sampling bias that would lead to under-estimating 

emissions. Capture at the top of the plume by flying beyond the atmospheric boundary layer is 

essential for producing emission estimates with small uncertainties for mass-balance airborne 

flights.  

 

 



66 
 

2.4.3 Objective 3: Examine Potential for Validation of Mass-balance Emissions Estimate 

Methodology Through Comparison to the Spectral AVIRIS-NG Method 

While the SciAv and TERRA methods have lower uncertainties than the AVIRIS-NG method, 

they require prior knowledge of presumed sources and approval from facilities to sample. 

Therefore, the mass-balance methods are unlikely to identify unknown sources located outside 

sampling boundaries, and may not capture the higher sporadic emissions that spectral sampling 

can. Due to the sporadic tendency of CH4 emissions, and the different sampling date, the 

AVIRIS-NG results are not directly comparable to the mass-balance algorithms results for F04, 

but can provide an idea of the range of potential emissions. Unlike previously published 

comparisons that showed good agreement between spectral imaging and mass-balance methods 

(Frankenberg et al. 2016; Duren et al. 2019), the AVIRIS-NG data measured emissions 4-7 times 

larger than the SciAv estimates three days later. The large range in emission estimates from the 

same site outlines the importance of repeated sampling, and the benefit of using multiple 

methods to characterize source behaviour, estimate the distribution of emissions from facilities, 

and estimate regional, national, and global emission budgets.  

Currently, the Alberta and Canadian governments differ in their regulatory approaches to 

reducing methane emissions. It was estimated that Federal policy reduces emissions ~26% more 

than provincial regulations (Johnson and Tyner 2020). One of the key differences in policy was 

the increased number of oil and gas inspections required by the federal policy per year, 60,465 

versus 26,531, reducing emissions by 66% (Johnson and Tyner 2020). Methane emission from 

the oil and gas industry are sporadic, with higher emissions only captured 20-35% of the time 

when sampling using remote spectral methods (Duren et al. 2019). Methods based on imaging 

spectrometry (e.g., AVIRIS-NG, GHGSat) provide a unique opportunity for validation of 

ground-based measurements and to help develop satellite monitoring techniques, while also 

providing leak detection. 

Industrial upstream oil and gas CH4 emissions estimated using the SciAv method in two 

regions in Alberta were 5 and 17 times higher than values reported to the Alberta Energy 

Regulator (Johnson et al. 2017). In a comparable campaign by ECCC, TERRA derived CO2 

emissions rates from the Alberta Oil Sands indicated intensities were 13-123% larger than 

emission estimates presented in publicly available, bottom-up inventories (Liggio et al. 2019). 
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The SciAv and AVIRIS-NG methods have been independently tested and have shown to provide 

consistently similar emission estimates when conducted under similar conditions (Frankenberg et 

al. 2016; Thorpe et al. 2020). Given the results of these studies, the AVIRIS-NG data captured 

on August 14, 2017, may not be anomalously high, but could instead represent independent 

information on the variability of emissions from the region. Further work comparing these 

methods under comparable conditions, along with greater transparency in facilities operations, 

could help confirm these conclusions and support accurate emission budgets. 

2.5 Conclusion  

The results of this study indicate that when fundamental assumptions are met the 

airborne, mass-balance algorithms, SciAv and TERRA, produce similar estimates that agree (3-

25%) within model errors (4-34%). The implementation of a new method of applying different 

surface extrapolations to the SciAv estimates for flights with large increasing emissions towards 

the surface is recommended. The condition under which the models disagreed was when the 

fundamental model assumption of a stationary emission plume was not met. Stationarity has 

shown to be a more important factor for model agreement than plume capture, despite the surface 

extrapolation being the largest source of uncertainties in the model estimates. Introducing a more 

explicit procedure of screening for non-stationary emission plumes would improve confidence in 

the mass-balance models. Capturing the emission plume is a fundamental assumption of both 

models; lack of capture can produce large errors, yet model estimates closely agreed, despite 

producing equally under-estimated values for the flight that was missing capture of the top of the 

plume. This implies that estimates from these two methods can be combined to form a more 

comprehensive, cohesive dataset of airborne emission estimates. 

Airborne methods provide validation for top-down and bottom-up estimates, and 

determining that estimated emissions are consistent between two top-down mass-balance 

methods increases the confidence in GHG emissions estimates. Since samples can only be 

obtain on a intermittent campaign basis, airborne methods are dependent on being 

representative of normal facility operations and require complementary data to capture the range 

in sporadic emissions when upscaling to yearly emissions estimates (Liggio et al. 2019). 

Airborne mass-balance methods provide detailed point-source estimates with a low 

uncertainty that are essential to the validation of inventory estimates. Having increased 
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confidence in estimates from the two mass-balance airborne methods provides a more 

certain foundation for regulatory decisions. Including airborne spectral estimates in top-

down regional budgets improves characterization of emissions, provides more robust 

estimates, and increases the accuracy of bottom-up inventories. The current development of 

satellites specifically for monitoring GHG emissions has exciting potential to provide 

independent, top-down GHG budgets (Jacob et al. 2016).  

The ideal approach for characterizing and estimating GHG budgets would include 

repeated measurements, using a combination of airborne methods, in conjunction with new 

spectroscopic measurements from satellites for larger, continuous regional estimates, and by 

using ground-based equipment for small-scale point source quantification (Hardwick and Graven 

2016; National Academies of Sciences, Engineering 2018; Saunois et al. 2017). Observations 

that combine and cross validate multiple monitoring methods at varying scales of sampling will 

provide the most accurate modeling, improve GHG estimation and help reconcile the gap 

between top-down and bottom-up estimates. Continued advances in developing more accurate 

inventories will allow for more effective policy decisions that target the contribution of carbon 

dioxide and methane to climate change.  
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Chapter 3 

3.1 Conclusion 

There are many methods for estimating GHG emissions using top-down and bottom-up 

approaches which often result in estimates that are inconsistent with emissions inventory 

estimates. Ground-based methods are cost effective and therefore an accessible approach for 

continuous monitoring, but due to their small scale of sampling often fail to produce regional 

estimates. Airborne methods provide more exhaustive sampling of emissions for sites and at a 

regional scale. They are ideal for validation between ground-based and satellite measurements, 

but can be costly, time intensive, but they cannot provide continuous monitoring. There are two 

main airborne methods, spectral remote imaging, and mass-balance methods. Spectral imaging 

can quickly sample large areas and can monitor for unknown emissions such as leaks, whereas 

mass-balance methods can measure emissions with a very low error rate and are more commonly 

used to capture a known emission plume when sampling. Satellite methods can provide 

continuous, independent global and regional emissions estimates. The method of estimating 

point source emissions estimates using satellite methods is still somewhat in its infancy. As 

satellite methods develop and improve accuracy, they will be pivotal in developing a network of 

global GHG monitoring systems. All top-down and bottom-up methods have unique strengths 

that are important to contributing to the understanding of GHG emissions. 

Assessing how different estimation methods compare is vital for increasing credibility of 

greenhouse gas inventories and informing regulatory decisions. Numerous studies have shown 

that independent emissions estimates are larger than national inventories using industry 

estimates. Using tower data, methane emission estimates over eight years from oil and gas 

operations in Western Canada were estimated to be nearly twice those reported in Canada’s 

National Pollution Release Inventory (Chan et al., 2020). A study aggregated thousands of 

mobile ground-based emission rate estimates taken without notice to operators from upstream 

Canadian oil and gas and found that inventories underestimated methane emissions, and were 

significantly underestimated in Alberta (MacKay et al., 2021). Airborne campaigns measuring 

carbon dioxide and methane have also estimated emissions to be larger than national inventories 

(Liggio et al. 2019; Baray et al. 2018). The development of spatially resolved top-down and 
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bottom-up inclusive inventories will be crucial for regulation and in holding nations accountable 

to their climate commitments. 

In this study, for the first time two airborne mass-balance box flight methods, Scientific 

Aviation’s Gaussian theorem algorithm (SciAv) and Environment Canada’s Top-down Emission 

Rate Retrieval Algorithm (TERRA), were compared. While this comparison was limited by a 

small sample size (n = 5), a small sample size is not unusual as flights are costly, and analysis is 

time intensive. When fundamental model assumptions were met, the two methods produced 

results that agreed within model errors. SciAv model accuracy and uncertainty may be improved 

by applying an increasing surface extrapolation when an emission plume is increasing towards 

the surface. Meeting the model assumptions is essential to producing consistent and accurate 

emissions estimates with low uncertainty. Flights that indicate non-stationarity, or lacking plume 

capture should be thoroughly investigated before being used. A complementary, and independent 

AVIRIS-NG flight measured a sporadic emission nearly 4-7 times larger than a SciAv flight 

collected at the same facility three days earlier. This range in estimates from a single facility 

highlights the importance of accounting for large, sporadic emissions, which are inherent to the 

oil and gas industry, but seldom captured using the box-flight method, when producing yearly 

inventory estimates from airborne methods. Thus, to obtain a complete and accurate emissions 

budget, a mix of approaches involving validated, external monitoring will be needed to 

supplement the airborne methods used in this study. 

Airborne, mass-balance box-flights are ideal for assessing facility level emissions as they 

can attain small error, and the consistency between the SciAv and TERRA methods gives 

confidence when using these methods, but using them alone would not produce sufficient 

inventory estimates. Instead, these methods provide a sharper tool to assess problem areas, and 

will be essential to validate and connect the scale of sampling between satellite and ground 

modeling. The sample estimate using airborne spectral imaging demonstrates the range in 

estimates found from a single site when sampling on different days, using different methods, and 

independent of facility operations and notification. This temporal variability in emissions must 

be considered and included in any emissions budget if it is to be complete and accurate. 

Increasing the consistency, and agreement when comparing methods moves us closer to 
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achieving routine monitoring at different scales and will provide more complete, transparent 

measurements that are not constrained by industry practices.  

The ideal inventory would be built using industry reported ground-based data, in-depth 

airborne measurements, and independent, continuous monitoring using satellite methods. Using 

an array of emission estimation methods provides a check on accuracy depending on the 

conditions of operating. The resulting agreement between the SciAv and TERRA algorithms 

increases the certainty in regulatory decisions made from results when using these methods. 

Greater confidence in estimating GHG emissions from point and area sources using mass-

balance, box-flights will help target anomalous carbon dioxide and methane emissions and will 

help meet regulatory and policy goals to address the global climate crises. 
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Appendix A: Summary of Relevant Methods from the Literature 

The two mass-balance box-flight algorithms fundamentally differ in their parameterization of the 

emission flux and the mass-balance system of equations: SciAv simplifies the process to one flux 

and one mass-balance equation, whereas TERRA includes several flux terms to solve two mass-

balance equations. Both algorithms require the same fundamental assumptions, but their 

approaches to quantifying the uncertainty in meeting those assumptions and estimating emissions 

differ. TERRA evaluates the entire dynamic system and estimates integral terms of a mass-

balance equation used to derive an overall total flux (Gordon et al. 2015). 

1.1 Top-Down Emission Rate Retrieval Algorithm (TERRA) 

A strength of the TERRA model is its ability to capture and account for all the flux dynamics 

such as the emission vertical flux transport, chemistry, and deposition. It evaluates individual 

integral terms for the system of fluxes then adds them collectively. TERRA parameterizes a 

system of equations to derive flux and solves two mass-balance equations to estimate emissions 

(Gordon et al. 2015). Two common flux motions include advective transport following flow, and 

turbulent quasi-random, swirling traverses (Vinuesa and Galmarini 2009). The first mass balance 

equation for TERRA constrains the emission mixing ratio concentrations within the sampling 

box (the control volume), for each integral E term: 

EC =  EC,H +  EC,HT +  EC,V + EC,VT + EC,VD − EC,m −  EC,X (3) 

Where C is the emission of interest (in this study CH4 or CO2), H the horizontal advective flux 

through the box walls, HT the horizontal turbulent flux through the box walls, V the advective 

flux through the box top, VT the turbulent flux through the box top, VD the deposition of flux to 

the ground, m the mass increase within the box due to air density change, and X the mass 

increase within the box due to chemical changes. Figure 24 depicts the flux directions of each E 

integral term in Equation 3 given a cylindrical flight path to create the ‘box’. The walls of the 

box are the boundaries of the flight laps and arrows depict the flux that is occurring given a 

western wind (from the left).  
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The second mass balance TERRA equation accounts for air flow in the control volume:   

0 =  Eair,H +  Eair,V −  Eair,M (4) 

Where the three terms are: H the horizontal advective flux of air through the sides of the box, V 

the advective flux through the box top, and M the change in the airmass within the box 

respectively. The integrals are estimated using input variables derived directly from the raw data 

collected, or through functional equations as described in the methodology paper published by 

Gordon et al. (2015).  

There are seven error terms (δ) defined in methodology of TERRA that relate to the 

calculation of the integral terms in Equation 3 which are added in quadrature to estimate the total 

uncertainty (δTERRA
2 ) in the emission rate estimate (Gordon et al. 2015). 

δTERRA
2 =  δM

2 +  δEx
2 + δWind

2 +  δTop
2 +  δdens

2 + δVT
2 + δBH

2 (5) 

The seven error terms in Equation 5 pertain to the uncertainty in: measurement (δM
2 ), near 

surface extrapolation of the mixing ratio (δEx
2 ), near surface extrapolation of the wind (δWind

2 ), 

the box-top mixing ratio (δTop
2 ), the change in air density (δdens

2 ), the vertical turbulent flux 

(δVT
2 ), and the boundary layer height (δBH

2 ). The largest error term of the method is the 

extrapolation of the mixing ratio from the lowest flight to the near-surface (Gordon et al. 2015). 

Mixing ratio surface extrapolation is chosen as either background, constant, background to 

constant, linear, or as an exponential fit depending on the location and dispersion of the plume 

Figure 24. The TERRA integral E terms of Equation 3 with arrows depicting their contribution 

to estimating emission flux through the ‘box’, or volume.  
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and boundary layer conditions (Gordon et al. 2015). The contribution of the error of the vertical 

turbulent mixing term has been found to be functionally negligible and has been dropped from 

the overall calculation in TERRA (Baray et al. 2018; Gordon et al. 2015). The other uncertainty 

terms of TERRA are calculated from measuring the wind and mixing ratios, estimating the range 

in the box-top mixing ratio, calculating the uncertainty due to the height flown to capture the 

plume, and assessing atmospheric stability from the temperature and pressure ratios (Gordon et 

al. 2015).  

1.2 Scientific Aviation: Gaussian Plume Inversion Algorithm 

The SciAv model simplifies the dynamics within the box to estimate flux due to emissions from 

within the box. It assumes that the vertical flux is zero and that there is no flux deposition to the 

ground, so that only the horizontal flux needs to be estimated. As the name would suggest the 

Gaussian theorem algorithm utilizes Gauss’s theorem, also known as the Divergence Theorem, 

for relating a volume integral to an integral of a surface (the laps) enclosing the volume (the 

box). Conley at al. (2017) use the measurements to directly evaluate the balance budget of 

Equation 6 as described in their methods: 

Qc =  〈
∂m

∂t
〉 + ∫ ∮ c′uh ∙ n̂dldz

zmax

0

(6) 

The definition of terms and diagram of the SciAv method given a cylindrical ‘box’, derived from 

the laps of the flight path, is shown in Figure 25. Equation 6 is used to calculate the mean 

divergence for each lap. Gas expanding outwardly from the box, due to a larger positive than 

negative flux through the box, is an example of positive divergence, and gas collapsing would be 

negative divergence. An enhancement of the mixing ratio occurs when the emission plume is 

captured within a lap and a positive divergence is calculated. Bins are created for ranges of 

altitudes and the lap estimates are aggregated into bins according to altitude and average flux 

values are estimated for each bin as described by Conley et al 2017. The bin averages are 

multiplied by the height of their respective bin then summed together. The lowest bin average is 

extrapolated to the ground as a constant to estimate the emission to the surface, multiplied by its 

bin height, then added to the other bin estimates to produce the total emission. The final flight 
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emission estimate is the result of this discrete integration of bins of averaged lap estimates over 

the entire flight altitude (Chapter 2, Figure 9).  

 SciAv defines three error terms that are added in quadrature to estimate the uncertainty 

(δSciAv
2 ) in the final emission estimate:  

δSciAv
2 =  δM

2 +  δflux divergence
2 +  δtemporal

2 (7) 

The first term is the measurement error (δM
2 ) which contributes the smallest amount to the final 

estimate error (Conley et al. 2017). The second is the flux divergence error (δflux divergence
2 ) and 

is calculated by summing the variance of the divergence estimates within each bin. The error of 

the surface extrapolation is estimated as twice the error of the lowest bin and included in the flux 

divergence term (Conley et al. 2017). The flux divergence error accounts for the stochastic 

variation in plume capture for each lap and is often the largest component of the total error. The 

third error term is the temporal variance (δtemporal
2 ) and is a measurement of the stationarity of 

the plume. The error due to the time rate of change is extracted from a regression of the emission 

density over altitude and time (Conley et al. 2017).  

 

 

 

Figure 25. The SciAv method simplifies the mass-balance equation to one instananeous flux 

to calculate the overall horizontal sum of the source and sinks within the ‘box’, or volume. 
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Appendix B: Use of the TERRA Algorithm in Further Detail 

To use TERRA (top-down emission rate retrieval algorithm), the appropriate surface 

extrapolation needed to be chosen and the emission screens assessed, the error terms calculated, 

and a background value calculated to use certain fits for each flight. This document outlines the 

processes to evaluate those four requirements as instructed by Environment and Climate Change 

Canada (ECCC).  

Section 1.1: TERRA Flight Screens 

Chapter 2 section 2.3.1, details the surface extrapolation fitting process. The emission 

screens produced by TERRA after fitting the chosen surface extrapolation are shown in Figures 

26 - 35. The left y-axis gives the altitude above ground level in meters, the right hand the colour 

scale of CH4, or CO2 in ppm. The length along each lap s(m) is plotted along the x-axis with the 

direction of sampling overlaid. The surface is shown as grey and the gap between sampling has 

been filled in by the surface extrapolation. Most figures show a concentrated plume surrounded 

by a blue of background mixing ratio concentrations. The extent of the dispersion of the F04 CH4 

is noticeable in Figure 32. The surface extrapolation sometimes estimates a decreasing emission 

plume towards the surface as per Figures 27 and 35. This leads to a larger range in the mixing 

ratio and a change from the typical royal blue background colour to a lighter shade such as cyan, 

or even light green to adjust for the lower scale. The background values are not affected by the 

change in colour (see section 1.3). Aside from F04, the flight data used in the comparison 

analysis represent standard emissions screens for the TERRA method.  
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Figure 26. The TERRA screen for F01 CH4 in ppm. Altitude measured in meters is shown 

along the left y-axis and the colour bar on the right depicts the mixing ratio gradient in 

ppm. The length along each map (s) is plotted along the x-axis with the direction of 

sampling overlaid. The ground is shown in grey.  

Figure 27. Same as Figure 26 for flight F01 CO2 (ppm). 
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Figure 28. Same as Figure 26 for flight F02 CH4 (ppm). 

 
Figure 29. Same as Figure 26 for flight F02 CO2 (ppm). 
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Figure 28. Same as Figure 26 for flight F03 CH4 (ppm). 

 
Figure 29. Same as Figure 26 for flight F03 CO2 (ppm). 
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Figure 30. Same as Figure 26 for flight F04 CH4 (ppm). 

 
Figure 31. Same as Figure 26 for flight F04 CO2 (ppm). 
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Figure 32. Same as Figure 26 for flight F05 CH4 (ppm). 

 

Figure 33. Same as Figure 26 for flight F05 CO2 (ppm). 
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Section 1.2: TERRA Error Terms 

The calculated TERRA error terms are provided in Table 12 and descriptions of how the terms 

were calculated are detailed in this section. 

The box-top mixing ratio error is assumed to be normally distributed and is calculated as 

the percent change in the 95% confidence interval of the mean mixing ratio at the box top. The 

confidence interval was computed as the mean value +/- 2σ/ √n, where σ is the standard 

deviation of measurements and n the number of independent samples (Gordon et al. 2015). The 

value of n is determined by the length of a single lap divided by the length scale which was 

conservatively set to 3km as a maximum of the distance needed for the autocorrelation of the 

mixing ratio series to approach zero (Gordon et al. 2015). 

To calculate the density, change error air pressure and temperature measurements were 

extracted from independent towers near the sampling area. Four towers were identified near the 

flight locations: two at the Fort McMurray Airport (A and CS at 56.65 °N, 111.22° W, 

http://climate.weather.gc.ca) and the Wood Buffalo Environmental Association’s JP104 (57.12 

°N, 111.43° W) and JP311 (56.56°N, 111.95° W) meteorological towers (http://wbea.org). 

Average, maximum, and minimum changes in the ratio difference of pressure and temperature 

(Δpi/pi – ΔTi/Ti) among the four stations were calculated then used to estimate total emissions 

using those values (Gordon et al. 2015). The uncertainty percentage was then calculated as the 

uncertainty range between Emax/E to Emin/E. 

The box top height error was calculated in IGOR 9 using TERRA by estimating the 

percent change in the final emission estimate when the screen produced from kriging is redrawn 

100 m lower. ECCC was only able to provide two flights with a redrawn box for analysis, 

therefore two examples of the average, and extreme case for plume capture were used. Redrawn 

screens were provided by ECCC for two of the flights representing the change given a ‘fully 

captured’ plume (FO1), and a sample when the plume still had large enhancements at the top of 

the flight (F05). As part of a preliminary analysis of flights from the larger Alberta Campaign, 

AEP and Scientific Aviation deemed F02, F03, and F04 to have ‘fully captured’ the top of the 

emission plume. Therefore, the F01 error was rounded up to the nearest integer and used to 

estimate the box top height errors for F02, F03, and F04. 

http://climate/
http://wbea/
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Table 12. TERRA emission estimate uncertainties as a percentage of the total emission 

estimate. Error terms are added in quadrature to give the total percentage uncertainty (δ). 

Wind and measurement error were added in quadrature as values of 1 and the vertical 

turbulence term was dropped from the calculation. 

Flight Measurement 

Error 

δM 

Mixing ratio 

Extrapolation 

δEx 

Wind 

Extrapolation 

δWind 

Box-

top 

mixing 

ratio 

δTop 

Density 

Change 

δdens 

Vertical 

Turbulence 

δVT 

Box-

top 

height 

δBH 

Total 

Uncertainty 

δ 

F01 -

CH4 

<1% 10.13 <1% 0.89 0.03 N/A 0.56 10.28 

F01 -

CO2 

<1% 10.04 <1% 0.89 0.02 N/A 0.35 10.18 

F02 -

CH4 

<1% 4.80 <1% 2.15 1.06 N/A 1 5.64 

F02 – 

CO2 

<1% 5.43 <1% 0.38 0.89 N/A 1 5.78 

F03 – 

CH4 

<1% 4.16 <1% 2.30 0.48 N/A 1 5.08 

F03 – 

CO2 

<1% 1.71 <1% 2.30 0.83 N/A 1 3.45 

F04 – 

CH4 

<1% 17.08 <1% 2.42 5.79 N/A 1 18.28 

F04 – 

CO2 

<1% 3.53 <1% 2.43 4.93 N/A 1 6.76 

F05 – 

CH4 

<1% 9.54 <1% 1.00 0.04 N/A 11.17 14.79 

F05 – 

CO2 

<1% 7.33 <1% 1.11 0.10 N/A 24.82 25.94 

 

 

Section 1.3: Choosing the Background Mixing Ratio Values 

As part of ECCC’s methodology for TERRA, ideally independent samples are gathered 

to estimate the background mixing ratio value of each gas for a box-flight. Background values 

are used in the surface extrapolation for the “background” and “linear interpolate to background” 

fits. The data gathered by Scientific Aviation for this analysis did not have independent samples, 

so the background was estimated by assessing the distribution of the raw data and the values 

used are given in Table 13. The detailed process of choosing these values is described in this 

section. The “background” and “linear interpolate to background” fits were avoided for F04 CH4 

due to larger uncertainty in the choice of background value. 



100 
 

Table 13. Background mixing ratio values used in the surface extrapolation of each flight. 

 CH4 (ppm) CO2 (ppm) 

F01 1.91613 409.1896 

F02 1.88481 382.3219 

F03 1.93007 410.2672 

F04 2.05365 405.8721 

F05 1.93103 389.4703 

 

The mixing ratios of each emitted gas are enhanced when there is an emission plume and 

therefore the enhancements had to be removed from the raw data to approximate the mean 

background value for each flight. Summary statistics of the raw data before removing the 

enhancements are presented in Table 14. To calculate an approximate average background value, 

mixing ratios that could be assumed to be plume enhancements were excluded and a curve was 

fit to the remaining distribution of values. The limit for each fit was chosen by assessing the 

distribution of the raw data and conservatively set to exclude the distribution outliers of the large 

enhancements. The mean value was estimated from the new distribution and the values given in 

Table 15 were used for the background and linear interpolation to background surface 

extrapolations for TERRA. Values were also considered for continuity of the emission screen. 

Figure 36 illustrates the sensitivity to the different mixing ratio as it shows the different shade of 

blue for the surface extrapolation when using 1.90 ppm versus 1.88481ppm for the background 

values for F02. The left screen using 1.90 ppm shows a lighter background value that is 

mismatched with the rest of the screen, whereas the right screen using 1.88481 ppm has 

continuity and the location of where the surface extrapolation starts is not noticeable (Figure 36). 

Figure 37 shows the more variable F04 CH4 TERRA screens for a background surface 

extrapolation fit of 2.07 ppm (left) and 2.05365 ppm (right) illustrating the better cohesive fit of 

a lower background value. As a result, the CH4 emission enhancement exclusion cut off was 

dropped from 2.075 to 2.06 ppm. Due to the uncertainty in choosing the F04 background mixing 

values, a constant surface extrapolation was used for the final emission estimate as it does not 

require an estimate of the background value. 
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Table 14. Summary statistics of the raw flight data in ppm. 

Flight CH4 

Mean 

CH4 

Standard 

Deviation 

CH4 

Min 

CH4 

Max 

CO2 

Mean 

CO2 

Standard 

Deviation 

CO2 

Min 

CO2 

Max 

F01 1.91613 0.01414 1.9109 2.4218 409.365 2.108 408.686 475.404 

F02 1.88705 0.010898 1.8772 2.0283 383.262 4.878 378.229 445.840 

F03 1.93751 0.024372 1.9190 2.1470 411.398 5.970 408.692 528.732 

F04 2.06189 0.012393 2.0426 2.1255 409.705 13.350 394.518 522.505 

F05 1.94174 0.049252 1.9154 2.5649 389.923 5.584 382.474 463.807 

 

 

Table 15. Summary statistics of the raw flight data excluding emission enhancements in 

ppm. 

 

 

 

 

 

 

 

Flight CH4 

Exclusion 

Limit 

CH4 

Mean 

CH4  

Standard 

Deviation 

CO2 

Exclusion 

Limit 

CO2  

Mean 

 

CO2  

Standard 

Deviation 

F01 1.95 1.91613 0.003095 411 409.190 0.253334 

F02 1.90 1.88481 0.002692 390 382.322 1.46831 

F03 1.955 1.93007 0.006702 415 410.267 0.937985 

F04 2.06 2.05365 0.004063 420 405.872 3.96142 

F05 1.97 1.93103 0.006499 420 389.470 2.9545 



102 
 

 

Figure 34. TERRA produced screens of the measured emission plume for F02 CH4. The 

gap between the lowest flight lap and surface is filled using an estimated mean background 

value. The left screen shows the mismatch in the screen when a background concentration 

of 1.90 ppm is used in comparison to the value of 1.88481 ppm that was in analysis to 

calculate emissions.  

 

 

 

 

Figure 35. TERRA screens for F04 CH4 when using 2.07 ppm (left) and 2.05365 ppm 

(right) as the background value. 
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Section 1.4: Sensitivity Analysis of the Background Value 

A sensitivity analysis was run on two flights to see how the chosen background value affects the 

emission estimate for the “background”, and “interpolate to background” fits. F02 and F04 were 

analyzed as they are the two flights that use an interpolate to background surface extrapolation in 

the comparison analysis. F02 is an example of the average distribution of the flight raw data 

(Figure 38). It has a small variation in the mixing ratio and enhancements can easily be excluded. 

It illustrates the average shape of the distribution of the measured mixing ratio for each gas and 

the effect of fitting a new distribution that excludes the mixing ratio enhancements at a given 

limit (Table 15). F04 had a noticeably large dispersion of mixing ratio values compared to the 

other flights. The background value is more ambiguous for this flight and is described as the 

‘worst case’ for estimating the value without an independent sample to determine the 

background. Assessing the screen plot (Figure 37) as well as the distribution of values was 

imperative for choosing a reasonable estimate as the distribution alone could not be relied on to 

estimate the average background. Figure 39 plots the F04 raw CH4 values. Due to the large 

dispersion of mixing ratio values and the change in emission estimates given this range, fitting a 

surface extrapolation using a background value was discouraged. The sensitivity testing range 

for both flights included values chosen to span approximately the 1st percentile of the raw mixing 

ratio measurements to 90th, to assess sensitivity a large range of background values considered 

for the final analysis. For flights with a typical background value distribution, the emissions 

estimates were not sensitive to the choice in background value. 
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Figure 38. The histogram of F04 CH4 raw data collected every second during the flight 

(purple). Normal curves that were calculated using the whole set of values (dark blue) and a 

subset of the data excluding values larger than 2.06 (light blue) are overlaid.  

 

Figure 36. The histogram of F02 CH4 raw data collected every second during the flight (purple). 

Normal curves that were calculated using the whole set of values (dark blue) and a subset of the 

data excluding values larger than 1.9 (light blue) are overlaid.  
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The percentage sensitivity for flights F02 and F04 for both CH4 and CO2 are given in 

Table 16. The percentage change was calculated between the minimum and maximum emission 

estimate calculated using the span of the 1st mixing ratio percentile to the 90th to assess the 

maximum error that could occur. The error when choosing a background value would be less 

than the min to max calculated values. F04 CH4 was assessed three times due to its unusual 

distribution of values (Figure 39). The first percentage change was calculated for the span in 

percentiles, the second for a set excluding enhancements that were still evident (2.045 to 2.06 

ppm), and the third given a more sensible set (2.049 to 2.055 ppm), that would approximate the 

error when choosing the value rather than an approximate of the maximum. The emission 

estimates produced by using varying background values that were used to calculate the 

percentage change for F02 and F04 are given in Tables 17-20. Having to choose the background 

value for the TERRA model surface extrapolation without independent samples was not a 

significant source of error for the comparison analysis. 

 

Table 16. Percentage change in the emission estimate when using the min and max 

background values for the two surface extrapolations that require setting a background 

value in TERRA. 

 

Flight and Gas  Percentage change: 

“Background and “Background to Linear” 

F02 CH4 1.40 % and 0.67 % 

F02 CO2 2.40 % and 1.17 % 

F04 CH4: fit 1 40.3 % and 19.1 % 

F04 CH4: fit 2 16.0 % and 7.6 % 

F04 CH4: fit 3 4.22 % and 1.89 % 

F04 CO2 10% and 4.6 % 
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Table 17. F02 CH4 (kg hr -1) emissions estimates for each surface extrapolation fit given 

varying background mixing ratio values (ppm). 

 1.881 1.883 1.884 1.885 1.886 1.887 

Background 365.710 367.434 368.296 369.158 370.021 370.883 

B. to Linear 393.585 394.468 394.909 395.351 395.792 396.234 

 

Table 18. F02 CO2 (kg hr -1) emissions estimates for each surface extrapolation fit given 

varying background mixing ratio values (ppm). 

 379 380 382 383 384 

Background 477132 479497 484228 486593 488958 

B. to Linear 511313 51524 514947 516158 517369 

 

Table 19. F04 CH4 (kg hr -1) emissions estimates for each surface extrapolation fit given 

varying background mixing ratio values (ppm). 

 2.045 2.049 2.05 2.05365 2.0537 2.054 2.055 

Background 137.66 128.79 126.57 118.48 118.37 117.70 115.48 

B. to Linear 128.88 124.93 123.95 120.35 120.30 120.00 119.02 

 

 2.05796 2.0595 2.06 2.0605 2.061 2.065 2.07 

Background 108.92 105.50 104.40 103.29 102.18 93.31 82.22 

B. to Linear 116.10 114.58 114.09 113.60 113.10 109.16 104.23 

 

Table 20. F02 CO2 (kg hr -1) emissions estimates for each surface extrapolation fit given 

varying background mixing ratio values (ppm). 

 395 400 405 406 406.6 406.65 408 410 

Background 602807 576204 545777 535704 536040 535736 527520 515349 

B. to Linear 594083 584490 570964 564270 566636 566501 562849 557438 
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Appendix C: Adaptation of the SciAv Method in Further Detail 

The raw data files for the five flights can be accessed through the Government of Alberta Portal: 

http://ckandata01.canadacentral.cloudapp.azure.com/dataset/aep-noaa-greenhouse-gas-

measurement-flights  

The calculated average divergence for each lap, and associated errors provided by Scientific 

Aviation are provided in Table 21. The lap bin bounds also provided by Scientific Aviation are 

given in Table 22. Together these data can be used to recreate the SciAv profiles and emission 

calculations for each flight. 

Table 21. The average divergence and uncertainty for each flight lap. 

Flight Lap 

Number 

Altitude 

(m) 

CH4 

Average 

Divergence 

CH4 

Uncertainty 

CO2 

Average 

Divergence 

CO2 

Uncertainty 

F01 

1 168.3 10.1355 1.2505 3088.564 572.941 

2 319.1 3.0669 0.4684 1596.195 359.556 

3 614.8 3.2761 0.5843 722.717 185.185 

4 912.6 2.5053 0.3873 470.83 104 

5 1056.9 0.2748 0.0572 -65.667 26.51 

6 771.2 4.0707 1.0834 862.677 280.279 

7 464.3 3.1503 0.3544 706.667 97.554 

8 378.6 2.5528 0.3681 614.653 182.681 

F02 

1 173 0.2896 0.0831 392.011 81.71 

2 301.6 0.2762 0.0713 428.288 107.227 

3 454.7 0.3529 0.1409 439.68 76.177 

4 614.6 0.7203 0.1425 805.679 149.198 

5 778.3 0.1679 0.0682 379.872 81.875 

6 919.3 0.1575 0.0689 286.82 81.201 

7 1076.7 0.1021 0.0688 227.823 82.947 

8 1245.6 0.0194 0.0327 120.558 44.357 

9 1122.5 -0.0992 0.0231 -26.271 24.561 

10 863.2 -0.013 0.0299 224.649 84.076 

11 714.1 0.5437 0.0871 786.83 129.209 

12 546.2 0.7292 0.1357 1355.712 261.852 

13 407.8 0.2934 0.0943 169.528 60.786 

14 247.7 0.4213 0.1408 726.796 146.438 

F03 

1 217 0.64 0.264 0.981 0.16 

2 190 0.896 0.142 1.358 0.293 

3 146 0.713 0.151 1.065 0.17 

4 163 0.572 0.218 0.513 0.088 

http://ckandata01.canadacentral.cloudapp.azure.com/dataset/aep-noaa-greenhouse-gas-measurement-flights
http://ckandata01.canadacentral.cloudapp.azure.com/dataset/aep-noaa-greenhouse-gas-measurement-flights
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5 189 0.71 0.329 0.732 0.117 

6 238 0.651 0.166 0.708 0.121 

7 273 0.635 0.132 0.687 0.141 

8 305 0.232 0.159 0.698 0.105 

9 351 0.952 0.14 0.729 0.1 

10 411 1.216 0.133 1.404 0.165 

11 479 0.534 0.126 0.789 0.085 

12 760 -0.06 0.021 -0.034 0.007 

13 743 -0.086 0.014 -0.022 0.005 

14 685 0.394 0.095 0.089 0.006 

15 630 0.363 0.054 0.233 0.027 

16 541 1.693 0.137 0.366 0.052 

17 599 0.854 0.083 0.467 0.07 

18 377 1.166 0.272 0.439 0.064 

19 270 -0.383 0.282 1.454 0.173 

F04 

1 149.6 0.2452 0.0907 410.132 101.242 

2 213.1 0.426 0.0818 542.878 100.554 

3 271.9 0.533 0.0776 1481.367 243.59 

4 334.2 0.2294 0.0768 705.472 176.109 

5 404 0.3517 0.0959 1265.809 247.591 

6 461.4 0.6256 0.0987 1888.899 358.211 

7 524.4 0.6017 0.0773 2187.546 330.685 

8 593.1 0.4238 0.0633 1784.319 299.135 

9 657.3 0.29 0.0487 1041.434 164.144 

10 725.1 0.3704 0.0755 1836.424 375.014 

11 782.3 0.4037 0.0505 1402.95 202.694 

12 847.4 0.3731 0.0652 1396.115 239.28 

13 908.1 0.4542 0.0599 1293.877 176.586 

14 985.6 -0.0459 0.0167 -102.74 37.426 

15 1042.2 -0.0654 0.013 114.457 15.781 

16 926.7 0.2604 0.0403 861.268 146.277 

17 837.5 0.1892 0.0601 708.29 207.149 

18 745.7 0.3288 0.0589 968.067 194.864 

19 653.6 0.3971 0.0467 1426.952 186.054 

20 558.2 0.3413 0.0629 1543.505 230.08 

21 468.5 0.3703 0.0649 1323.173 180.568 

22 374.6 0.387 0.0648 1197.24 255.098 

23 280.2 0.3741 0.0591 1448.465 316.375 

24 211.6 0.3401 0.0593 1123.024 248.665 

25 159 0.2561 0.0724 1143.119 212.599 

F05 

1 157.2 7.8943 4.2509 1134.799 542.43 

2 306.6 7.9906 2.7143 1929.259 686.358 

3 455.8 8.117 3.0318 2176.205 1094.005 

4 562.7 3.6854 1.5554 2296.309 1159.373 

5 508.5 3.6561 1.4827 1717.746 1048.646 
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6 359.7 6.0673 2.7987 1119.228 812.077 

7 211.7 5.0426 3.222 611.016 578.053 

 

 

Table 22. The profile altitude bin bounds provided by Scientific Aviation. 

Flight 
Bin Lower Limit 

(m) 

Bin Middle 

(m) 

Bin Upper Limit 

(m) 

F01 

0 84.1 168.3 

168.3 316.4 464.5 

464.5 612.6 760.7 

760.7 908.8 1056.9 

F02 

0 86.5 173 

173 307 441.1 

441.1 575.2 709.3 

709.3 843.3 977.4 

977.4 1111.5 1245.6 

F03 

0 69.59 139.18 

139.18 202.76 266.34 

266.34 329.92 393.5 

393.5 457.08 520.66 

520.66 584.23 647.81 

647.81 711.39 774.97 

F04 

0 74.8 149.6 

149.6 238.9 328.1 

328.1 417.4 506.6 

506.6 595.9 685.2 

685.2 774.4 863.7 

863.7 952.9 1042.2 

F05 

0 78.6 157.2 

157.2 258.6 359.9 

359.9 461.3 562.7 
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Section 1.1: Fitting the SciAv Surface Extrapolation 

The following section provides the Scientific Aviation (SciAv) model surface extrapolation for 

all five different fits: Constant, Linear, Interpolate, Background, and Linear. The model’s 

integration method of binning the estimates and add adding in summation the average of each 

bin was applied for the measured part of the profile. For each surface extrapolation the lowest 

bin was extrapolated to the surface using the given fit. The final estimate was determined by 

combining the emissions calculated from the binned profile added to the trapezoidal integration 

of area between the extrapolation fit, the surface, and a flux enhancement of zero (Chapter 2, 

Figure 10). The estimates produced by fitting the different surface extrapolations to the SciAv 

model that are shown in Chapter 2, Figure 13A - 13E are given in Table 21. 

Table 23. SciAv method estimates. 

Flight Model Gas Method Extrapolation Emission (kg hr -1) 
F01 SciAv CH4  Binned Constant 3842.1 

F01 SciAv CH4  Binned Linear 5268.7 

F01 SciAv CH4  Binned Interpolate 3899.6 

F01 SciAv CH4  Binned Background 3046.7 

F01 SciAv CH4  Binned Linear Weighted 4686.3 

F01 SciAv CH4  Binned Averaged 4195.3 

F01 SciAv CO2 Binned Constant 1036685 

F01 SciAv CO2 Binned Linear 1248005 

F01 SciAv CO2 Binned Interpolate 1043900 

F01 SciAv CO2 Binned Background 783997 

F01 SciAv CO2 Binned Linear Weighted 1304495 

F01 SciAv CO2 Binned Averaged 1151884 

F02 SciAv CH4  Binned Constant 361.8 

F02 SciAv CH4  Binned Background 306.3 

F02 SciAv CH4  Binned Linear 359.6 

F02 SciAv CH4  Binned Interpolate 331.4 

F02 SciAv CH4  Binned Linear Weighted 358.7 

F02 SciAv CH4  Binned Averaged 360.9 

F02 SciAv CO2 Binned Constant 563238 

F02 SciAv CO2 Binned Background 488868 

F02 SciAv CO2 Binned Linear 556080 

F02 SciAv CO2 Binned Interpolate 522777 

F02 SciAv CO2 Binned Linear Weighted 563078 

F02 SciAv CO2 Binned Averaged 561828 

F03 SciAv CH4  Binned Constant 496.9 

F03 SciAv CH4  Binned Background 399.9 

F03 SciAv CH4  Binned Linear 505.5 

F03 SciAv CH4  Binned Interpolate 452.0 
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F03 SciAv CH4  Binned Linear Weighted 503.6 

F03 SciAv CH4  Binned Averaged 503.2 

F03 SciAv CO2 Binned Constant 525773 

F03 SciAv CO2 Binned Background 401449 

F03 SciAv CO2 Binned Linear 553281 

F03 SciAv CO2 Binned Interpolate 479194 

F03 SciAv CO2 Binned Linear Weighted 571394 

F03 SciAv CO2 Binned Averaged 547970 

F04 SciAv CH4 Binned Constant 348.8 

F04 SciAv CH4  Binned Linear 332.4 

F04 SciAv CH4  Binned Interpolate 312.9 

F04 SciAv CH4  Binned Background 294.5 

F04 SciAv CH4  Binned Linear Weighted 332.1 

F04 SciAv CH4  Binned Averaged 340.7 

F04 SciAv CO2 Binned Constant 1171101 

F04 SciAv CO2 Binned Background 1017928 

F04 SciAv CO2 Binned Linear 1089963 

F04 SciAv CO2 Binned Interpolate 1048606 

F04 SciAv CO2 Binned Linear Weighted 1110325 

F04 SciAv CO2 Binned Averaged 1139170 

F05 SciAv CH4  Binned Constant 3473.7 

F05 SciAv CH4  Binned Linear 3711.4 

F05 SciAv CH4  Binned Interpolate 3033.4 

F05 SciAv CH4  Binned Background 2413.0 

F05 SciAv CH4  Binned Linear Weighted 3672.1 

F05 SciAv CH4  Binned Averaged 3589.1 

F05 SciAv CO2 Binned Constant 849712 

F05 SciAv CO2 Binned Linear 782514 

F05 SciAv CO2 Binned Interpolate 750608 

F05 SciAv CO2 Binned Background 661413 

F05 SciAv CO2 Binned Linear Weighted 781836 

F05 SciAv CO2 Binned Averaged 806397 

 

Section 1.2: Change in SciAv Fitting Height 

To estimate different surface extrapolations from the SciAv profiles, a height must be selected to 

fit the extrapolation from the divergence points to the surface. Certain profile shapes can be used 

to determine the fitting height depending on the number of points, minimum height, and shape of 

the bottom of the profile. Type I and II profiles can be fit nearer to TERRA’s 300m profile with 

the aim to avoid fitting the enhancement whilst retaining the largest number of profile points to 

fit from. The type III profile is better suited to fitting over the whole sampling height to obtain a 

more robust estimate. The chosen fitting heights were: 1100m for F01, 400m for F02, 250m for 
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F03, 400m for F04, and 600m for F05. The extrapolation height was chosen by the density of 

points, (at least three points were required to fit), the profile shape (enhancements were avoided 

in the fittings), and the minimum flight height. To assess the stability of the chosen height for 

fitting the SciAv profile extrapolation a minimum height, and maximum height were fit to 

compare with the height chosen (Table 24). Estimates for the background, constant, and 

interpolate to background fits were not affected by a differing extrapolation height. Results are 

given in Table 25.  

Table 24. Fitting heights used to test the stability of the surface extrapolation of each flight. 

Flight Height Used Min Height Max Height 

F01 1100 400 1100 

F02 400 300 1300 

F03 250 175 800 

F04 400 225 1100 

F05 600 300 600 

Table 25. SciAv model emissions estimates in kg hr-1 given the heights in Table 24.  

Flight Gas Method Extrap Height 

Used 

Min 

Height 

Max 

Height 

F01 CH4  Binned Linear 5269 5353 5269 

F01 CH4  Binned LinearW 4686 5391 4686 

F01 CH4  Binned Averaged 4195 5193 4195 

F01 CH4  Trapz Linear 4596 5353 4596 

F01 CH4  Trapz LinearW 4770 5391 4770 

F01 CH4  Trapz Averaged 4734 5193 4734 

F01 CO2 Binned Linear 1248005 1469447 1248005 

F01 CO2 Binned LinearW 1304495 1461100 1304495 

F01 CO2 Binned Averaged 1151885 1277900 1151885 

F01 CO2 Trapz Linear 1294681 1516122 1294681 

F01 CO2 Trapz LinearW 1351171 1507776 1351171 

F01 CO2 Trapz Averaged 1332110 1458125 1332110 

F02 CH4  Binned Linear 360 330 381 

F02 CH4  Binned LinearW 359 330 379 

F02 CH4  Binned Averaged 361 341 375 

F02 CH4  Trapz Linear 355 325 376 

F02 CH4  Trapz LinearW 354 325 375 

F02 CH4  Trapz Averaged 354 334 368 

F02 CO2 Binned Linear 556080 489620 589286 



113 
 

F02 CO2 Binned LinearW 563078 489620 602214 

F02 CO2 Binned Averaged 561828 515188 585942 

F02 CO2 Trapz Linear 549825 483365 583031 

F02 CO2 Trapz LinearW 556824 483365 595960 

F02 CO2 Trapz Averaged 552360 505721 576474 

F03 CH4  Binned Linear 506 592 511 

F03 CH4  Binned LinearW 504 592 488 

F03 CH4  Binned Averaged 503 562 500 

F03 CH4  Trapz Linear 532 619 538 

F03 CH4  Trapz LinearW 530 619 514 

F03 CH4  Trapz Averaged 531 589 527 

F03 CO2 Binned Linear 553281 903011 574069 

F03 CO2 Binned LinearW 571394 903011 571686 

F03 CO2 Binned Averaged 547970 775085 554997 

F03 CO2 Trapz Linear 526782 876511 547569 

F03 CO2 Trapz LinearW 544895 876511 545187 

F03 CO2 Trapz Averaged 534039 761154 541065 

F04 CH4  Binned Linear 332 305 348 

F04 CH4  Binned LinearW 332 304 343 

F04 CH4  Binned Averaged 341 322 349 

F04 CH4  Trapz Linear 339 312 355 

F04 CH4  Trapz LinearW 339 311 350 

F04 CH4  Trapz Averaged 339 320 347 

F04 CO2 Binned Linear 1089963 1083590 1151001 

F04 CO2 Binned LinearW 1110325 1095482 1147692 

F04 CO2 Binned Averaged 1139170 1132098 1171972 

F04 CO2 Trapz Linear 1130430 1124057 1191468 

F04 CO2 Trapz LinearW 1157880 1135949 1188159 

F04 CO2 Trapz Averaged 1133658 1126586 1166460 

F05 CH4  Binned Linear 3711 4300 3601 

F05 CH4  Binned LinearW 3672 4300 3628 

F05 CH4  Binned Averaged 3589 3995 3538 

F05 CH4  Trapz Linear 3833 4422 3723 

F05 CH4  Trapz LinearW 3794 4422 3750 

F05 CH4  Trapz Averaged 3801 4207 3750 

F05 CO2 Binned Linear 782514 958552 795135 

F05 CO2 Binned LinearW 781836 958552 799407 

F05 CO2 Binned Averaged 806397 923982 816461 

F05 CO2 Trapz Linear 739880 915918 752501 

F05 CO2 Trapz LinearW 739202 915918 756773 

F05 CO2 Trapz Averaged 758750 876335 768815 
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Flight profiles for F01 through F05 and shown in Chapter 2, Figure 13 A-E and the 

profile shapes discussed and illustrated in Chapter 2 Figure 12. Flight profiles are described as 

stable if the emission estimates have low variation when the extrapolation fit type, or 

extrapolation heights are changed.  

The profile shapes and best fit were investigated. The F01 type III profile shape is 

hypothesized to benefit from not following SciAv’s methods of applying a constant 

extrapolation. By applying a linear weighted extrapolation and fitting over the whole profile the 

behaviour of the plume can be captured. Due to the small number of laps flown, fitting over the 

whole profile avoids the instability introduced when just the lowest profile points are used for 

extrapolation. F02 extrapolations were stable with very little difference in estimates. Due to type 

II shape of F02 fits that followed the behaviour of the plume may have been more appropriate, 

however the lower profile had some emission spikes requiring more information about the source 

to assume the divergence is approaching zero near the surface. As such a profile height was fit to 

maximize fitting along the points below the enhancement rather than tailor the height to profile 

behaviour. F03 had differing profile behaviour for each gas. The emission estimates from the 

profile for CH4 was stable for both the height below the enhancement and extrapolation chosen. 

The profile of F03 CO2 is unstable at the lower flight paths due to the highly variable divergence 

points. Both F03 samples are well suited to the SciAv method of fitting a constant extrapolation. 

By fitting a constant extrapolation F03 CH4 avoids an arbitrary choice in the extrapolation type 

and F03 CO2 avoids assuming an appropriate extrapolation height. F04 provides a unique profile 

type due to the differing profiles for the flight up compared to down. Averaging over a larger 

number of points was necessary to avoid fitting the profile spikes between the divergence points. 

F04 had very little difference in the extrapolation type chosen and the extrapolation height would 

have likely also been stable had there not been a dichotomy in profile points. F05 is a sample 

defined by the lack of plume capture and ambiguous plume behaviour. The extrapolation height 

was set to fit over the whole profile to avoid the instability of the highly variable divergence 

point profile shapes (Chapter 2, Figure 13D).  

This sensitivity analysis of profile fit, and height indicates that the SciAv method of 

fitting a constant extrapolation is on average the best approach. When a profile has a prominent 

type III profile shape where emission enhancements are largely at the bottom of the profile and 
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are increasing towards the surface a differing extrapolation type might be more appropriate. A 

linear weighted extrapolation fit at an extrapolation height over the whole profile would capture 

the behaviour of the emission plume, account for the uncertainty in the laps, but provide a 

conservative assumption about the extent of the increasing surface emissions.  

Section 1.3 Scientific Aviation Trapezoidal Integration Estimates 

The current SciAv method uses a binning method for integrating the profile points over altitude 

to estimate the overall emission estimate. This method can produce large flux divergence error 

terms when a small number of laps have been flown and divergence points differ greatly between 

laps, which can inaccurately estimate error if the variation is due to a trend such as emissions 

increasing to the surface. In these scenarios it may be beneficial to use trapezoidal integration 

rather than binning to estimate emissions. Rather than grouping into altitude bins the trapezoidal 

integration estimates the area under the curve by a trapezoidal fit between each point. 

Trapezoidal integration fits the area by altitude between a divergence of zero and the positive 

divergence calculated for each lap using the lines connecting the points. This method parallels 

the calculation of the SciAv divergence error term whilst avoiding the potential bias from a small 

number of flight laps. 

Emissions estimates using the trapezoidal integration are given in Table 26. Figures 40A 

- 40E show the SciAv profiles given the trapezoidal integration method. Surface extrapolations 

are fit from the lowest mean divergence lap estimate. The estimated end point for the surface 

extrapolation does not change between the two integration methods as it is determined by fitting 

curves by the position of the points and fitting height. As the surface extrapolation points were 

the same for both profiles which caused the F01 trapezoidal profiles to decrease despite their 

noticeable increasing to surface trend (Figure 40A). A less conservative fitting height procedure 

would likely produce a large range in emission estimates, and should be explored if the 

trapezoidal method is adapted, as it could produce an extrapolation truer to the nature of the 

divergence profile.  
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Figure 40C. 

Figure 40B. 

Figure 40A. 
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Figure 40D. 

Figure 40E. 

Figure 40. A - E of the SciAv profiles for flights F01 through F05. The blue points are the 

estimated divergence for each lap which are connected to show profile shape with the 

associated error (a dashed blue line). The red area is the trapezoidal integrated area of the 

blue divergence points excluding the surface extrapolation. The boundary layer height is 

drawn in light blue with error bars (light blue dashed lines). The five surface 

extrapolations are drawn from the bottom of the lowest blue divergence point. 

 

 

Figure 41. A - E of the Scientific Aviation profiles for flights F01 through F05. The blue 

points are the estimated divergence for each lap which are connected to show profile shape 

with the associated error (a dashed blue line). The red area is the trapezoidal integrated 

area of the blue divergence points excluding the surface extrapolation. The boundary layer 

height is drawn in light blue with error bars (light blue dashed lines). The five surface 

extrapolations are drawn from the bottom of the lowest blue divergence point. 
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Table 26. Emission estimates from an adapted SciAv method. Trapezoidal integration is 

used to estimate emissions over the profile rather than the binning method.  

Flight Model Gas Method Extrapolation Emission 

(kg/hr) 

F01 SciAv CH4  Trapezoid Constant 4836.4 

F01 SciAv CH4  Trapezoid Background 3130.6 

F01 SciAv CH4  Trapezoid Linear 4596.4 

F01 SciAv CH4  Trapezoid Interpolate 3983.5 

F01 SciAv CH4  Trapezoid Linear Weighted 4770.2 

F01 SciAv CH4  Trapezoid Averaged 4734.3 

F01 SciAv CO2 Trapezoid Constant 1350478 

F01 SciAv CO2 Trapezoid Background 830672 

F01 SciAv CO2 Trapezoid Linear 1294681 

F01 SciAv CO2 Trapezoid Interpolate 1090575 

F01 SciAv CO2 Trapezoid Linear Weighted 1351171 

F01 SciAv CO2 Trapezoid Averaged 1332110 

F02 SciAv CH4  Trapezoid Constant 351.9 

F02 SciAv CH4  Trapezoid Background 301.8 

F02 SciAv CH4  Trapezoid Linear 355.0 

F02 SciAv CH4  Trapezoid Interpolate 326.8 

F02 SciAv CH4  Trapezoid Linear Weighted 354.2 

F02 SciAv CH4  Trapezoid Averaged 353.7 

F02 SciAv CO2 Trapezoid Constant 550432 

F02 SciAv CO2 Trapezoid Background 482614 

F02 SciAv CO2 Trapezoid Linear 549825 

F02 SciAv CO2 Trapezoid Interpolate 516523 

F02 SciAv CO2 Trapezoid Linear Weighted 556824 

F02 SciAv CO2 Trapezoid Averaged 552360 

F03 SciAv CH4  Trapezoid Constant 530.4 

F03 SciAv CH4  Trapezoid Background 426.3 

F03 SciAv CH4  Trapezoid Linear 531.8 

F03 SciAv CH4  Trapezoid Interpolate 478.3 

F03 SciAv CH4  Trapezoid Linear Weighted 530.0 

F03 SciAv CH4  Trapezoid Averaged 530.7 

F03 SciAv CO2 Trapezoid Constant 530440 

F03 SciAv CO2 Trapezoid Background 374950 

F03 SciAv CO2 Trapezoid Linear 526782 

F03 SciAv CO2 Trapezoid Interpolate 452695 

F03 SciAv CO2 Trapezoid Linear Weighted 544895 

F03 SciAv CO2 Trapezoid Averaged 534039 

F04 SciAv CH4  Trapezoid Constant 338.1 

F04 SciAv CH4  Trapezoid Background 301.4 
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F04 SciAv CH4  Trapezoid Linear 339.3 

F04 SciAv CH4  Trapezoid Interpolate 319.7 

F04 SciAv CH4  Trapezoid Linear Weighted 338.9 

F04 SciAv CH4  Trapezoid Averaged 338.8 

F04 SciAv CO2 Trapezoid Constant 1119751 

F04 SciAv CO2 Trapezoid Background 1058396 

F04 SciAv CO2 Trapezoid Linear 1130430 

F04 SciAv CO2 Trapezoid Interpolate 1089074 

F04 SciAv CO2 Trapezoid Linear Weighted 1150792 

F04 SciAv CO2 Trapezoid Averaged 1133658 

F05 SciAv CH4  Trapezoid Constant 3775.9 

F05 SciAv CH4  Trapezoid Background 2534.9 

F05 SciAv CH4  Trapezoid Linear 3833.4 

F05 SciAv CH4  Trapezoid Interpolate 3155.4 

F05 SciAv CH4  Trapezoid Linear Weighted 3794.1 

F05 SciAv CH4  Trapezoid Averaged 3801.1 

F05 SciAv CO2 Trapezoid Constant 797169.3 

F05 SciAv CO2 Trapezoid Background 618778.9 

F05 SciAv CO2 Trapezoid Linear 739880 

F05 SciAv CO2 Trapezoid Interpolate 707974 

F05 SciAv CO2 Trapezoid Linear Weighted 739202 

F05 SciAv CO2 Trapezoid Averaged 758750 

 

 

Table 27 gives the standard deviations of the surface extrapolation estimates for each 

integration method and the standard deviation for the difference between integration methods for 

all five fives. Table 28 gives the results from significance tests on the differences between the 

estimates. The choice of surface extrapolation leads to a greater standard deviation than the 

choice of integration method.  

Table 27. Standard deviation of the surface extrapolation estimates for each integration 

and the difference between integration method extrapolation estimates (calculated as: 

binned estimate – trapezoidal estimate). 

 SD Binned 

Extrapolation 

Estimates 

SD Trapezoidal 

Extrapolation 

Estimates 

SD Difference in 

Methods Extrapolation 

Estimates 

CH4 (kg hr -1) 1735.372 1812.275 581.476 

CO2 (kg hr -1) 274004.9 314857.1 138748.7 
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Table 28. Results of parametric (weighted t-test) and non-parametric (Wilcoxon signed-

rank test) significance testing of differences between the two SciAv integration method, by 

calculating the mean of the estimates for each flight and tested over the whole set of five 

flights.  

 Weighted t-test: 

p-value 

Weighted t-test: 

t-value 

Wilcoxon signed-

rank test: p-value 

Wilcoxon signed-

rank test: V 

CH4 0.9517 -0.062 0.1875 2 

CO2 0.9524 -0.062 1 8 

 

To further compare the two methods of integrated a distribution of the mean differences 

for each flight was computed by bootstrapping the mean difference between randomly sampled 

estimates. The mean difference was computed as:  

difference = mean(SciAvEstimateBinned) − mean(SciAvEstimateTrapz) (8) 

As shown in Figure 41, the distributions for all flight samples of each emission type cover zero 

indicating that the two integration methods produce similar estimates. The trapezoidal integration 

may be a useful method for profiles with a small number of laps, but the choice of an appropriate 

surface extrapolation has a larger effect on the emission estimate than the type of integration 

used. The SciAv divergence error term could be calculated by using the lap data and 

bootstrapping the trapezoidal integration over thousands of profile points that are randomly 

sampled within the uncertainty of each point to estimate the random sampling error between each 

lap by altitude. A surface extrapolation term could be derived following methods used in 

TERRA by assessing the maximum percent change between plausible extrapolations.    
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Figure 42. Distributions of the mean difference between all fits of CH4 (top panel) and CO2 (bottom 

panel) given the SciAv model for the binning and trapezoidal integration methods are drawn in light 

blue. The mean difference between the standard estimates of the models is plotted as a teal dashed 

lined and the range in the estimate as the light teal box behind the distribution. A grey dot dashed 

line is drawn at zero as a reference point for the location of exact agreement between the models. 
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Appendix D: Comparison of SciAv and TERRA Methods Using Background Surface 

Extrapolation Fits 

To remove the effect of the surface extrapolation the two models were compared when using 

each model’s “background” surface extrapolation fit. This section details the analysis and results. 

For TERRA this meant fitting the chosen background mixing ratio value below the lowest flight 

lap, and for SciAv calculating zero divergence below the lowest flight lap. Neither model would 

choose background extrapolation for the standard estimate to the flights as increasing or trace 

emissions were present at the bottom of each the flight track. 

The results of calculations using the assumption of no emission plume below the lowest 

flight track were compared to the standard fit in Figure 42. The estimate uncertainties were only 

calculated for each model’s standard fit, therefore estimates using other fits have no error bars. 

The mean of the surface extrapolation estimates and the difference between the mean model 

estimates is given in Table 29. Results of parametric (weighted t-test) and non-parametric 

(Wilcoxon signed-rank test) significance testing of differences between the two box-flight 

models using the set of all five flights given each the standard fit, background fit, and average of 

the fits estimates is given in Table 30.  

Emission estimates using a background fit are systematically lower than the standard 

estimates (Figure 42), but no clear pattern is identifiable that would indicate systematic model 

disagreement. There is a considerably larger TERRA estimate for F01 between the standard fit 

compared to the background. The choice of surface extrapolation influences the extent of model 

agreement. The models tend to agree more when the effect of a different surface extrapolation is 

removed as much as possible. This indicates good agreement between the methods. When 

fundamental model assumptions are met, variation between the model estimates can largely be 

attributed to different surface extrapolation methods. 
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Figure 45. Model estimates for CH4, and CO2 given the background mixing ratio fit of no emission 

plume extrapolation to the surface compared to the standard estimates. 
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Table 29. Mean estimates and the standard deviation of each model’s surface extrapolation 

emission estimate. The difference between the mean model estimates is calculated as SciAv estimate 

– TERRA estimate. 

 

 

SciAv’s Six 

Surface 

Extrapolations 

Mean Estimate 

SciAv’s Six 

Surface 

Extrapolations 

Standard 

Deviation  

TERRA’s Five 

Surface 

Extrapolations 

Mean Estimate 

TERRA’s Five 

Surface 

Extrapolations 

Standard 

Deviation 

Difference 

Between 

Mean 

Model 

Estimates 

F01 CH4 (kg hr -1) 4156.5 763.6 4042.5 745.7 114.0 

F02 CH4 (kg hr -1) 346.5 22.8 402.9 21.6 -56.4 

F03 CH4 (kg hr -1) 476.9 42.8 437.5 47.7 39.4 

F04 CH4 (kg hr -1) 326.9 19.9 118.5 8.5 208.4 

F05 CH4 (kg hr -1) 3315.5 505.6 3381.7 501.9 -66.2 

F01 CO2 (kg hr -1) 1094828 186156 1061833 329776 32995 

F02 CO2 (kg hr -1) 542665 30583 524562 24944 18103 

F03 CO2 (kg hr -1) 513177 63253 424136 61742 89041 

F04 CO2 (kg hr -1) 1096182 56721 572560 18916 523622 

F05 CO2 (kg hr -1) 772080 63429 858699 44441 -86619 

 

Table 30. The mean differences between the two model outputs amongst the five flights and results 

from significance testing were calculated for comparison between the standard, background and 

average of the models fit.  

 CH4 

Standard 

CH4 

Background 

CH4 

Average 

CO2  

Standard 

CO2 

Background 

CO2 

Average 
Mean Difference 

(kg hr
−1

) 

-238.5 12.4 47.8 75803 141445 115425 

Pairwise t-test: p-

value 
0.8569 0.9888 0.9687 0.7237 0.3209 0.5248 

Pairwise t-test: t-

value 
-0.1865 0.0145 0.0404 0.3669 1.0673 0.6651 

Wilcoxon signed-

rank test: p-value 
0.4375 1 0.625 0.625 0.3125 0.3125 

Wilcoxon signed-

rank test: V 
4 8 10 10 12 12 
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Appendix E: QA/QC and Meteorological Conditions Analysis During Flight F04 

The potential cause of the non-stationarity of F04 was thoroughly investigated. Analysis of the 

raw data and emission profiles indicates that the emission plume itself was non-stationary as the 

mixing ratios enhancements noticeably differed between the upwards and downwards portion of 

the flight, but other potential causes such as changing meteorological conditions were inspected. 

Along with the QA/QC provided by Scientific Aviation and Alberta Airshed Stewardship, 

conditions were assessed using the full data and then split into upwards (ascending) and 

downwards (descending) sections for comparison. The various analysis provided in this 

document supports the conclusion that meteorological conditions were not the cause of the FO4 

non-stationarity.  

Prior to this study, Scientific Aviation and Alberta Airshed Stewardship performed a 

quality assurance and quality control (QA/QC) analysis and inspection of all flights in the AEP-

NOAA-Scientific Aviation 2017-2018 Alberta Oil Sands Flight Campaign. This process includes 

looking at ‘circle’ files and assessing the wind direction and mixing ratio measurement for each 

lap. The circle files help detect plume capture, non-stationarity of the wind, and any upwind flux 

that is not coming from the intended emission source. The SciAv lap divergence profiles are also 

inspected for plume capture and the shape of the plume. A summary of their findings and the 

decision to accept F04 is shown in Figure 43.  

Figure 44 shows the CH4 and CO2 mixing ratios values over the length of the flight by 

altitude. Plotting the raw values did suggest potential non-stationarity of the emission plume. 

Larger mixing ratio values can be seen on the left side of the figures during the flight up. The 

cause of the non-stationarity was investigated. Time was measured by Scientific Aviation in 

EPOCH Time, also called Unix time, as a count of the total seconds since January 1, 1970, at 

midnight. 
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Figure 48. Summary of the preliminary QA/QC of flight F04 provided by the Alberta Environment and 

Parks and Scientific Aviation. 
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Figure 44. Mixing ratio values of CH4 (top panel) and CO2 (bottom panel) for F04 in 

ppm, plotted by altitude (in m above ground level) over time (EPOCHTime). Values 

were scaled by size to make enhancements more noticeable. 
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Meteorological conditions tend to be the most common source of non-stationarity of an 

emission plume and thus these were thoroughly examined. The wind profiles in the West to East 

(u - component) and South to North (v – component) wind directions were assessed along with 

the changes in wind components. Profiles were plotted following practices by Dai et al 2014. 

The profiles were plotted for the whole flight (Figure 45) and then separated into the flight up 

and the flight down (Figure 46) to assess any significant changes in their spread, shape, or 

direction. While there are fewer sample points for the flight down (1358) than the flight up 

(2092) the shape of the profiles does not noticeably change. This analysis along with the prior 

QA/QC work indicates that the winds remain stationary during the flight for F04. 

 

Figure 45. Wind profiles for the u and v components and change in the wind components (d) 

for the whole F04 flight.  
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Figure 46. Wind profiles for the u and v components and change in the wind 

components (d) for the flight up (top panel) and the flight down (bottom panel). 

A few outliers occur that change the axis of the dV profile the shape. 
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The non-stationarity of F04 was not confirmed until post-hoc analysis was applied by 

Environment and Climate Change Canada. The TERRA step of kriging the data analyzes uses 

the lap data to produce spatially gridded emission mixing ratios. Figure 47 shows the middle step 

of gridded screen for F04 CH4. Some boxes contained a high (red) emission and a low (blue) 

emission enhancement (Figure 47) which is evidence of non-stationarity as the plume and 

background mixing ratios changed over time. The change in mixing ratios may have occurred 

due to changing operating conditions at or near the facility, but operations conditions were not 

shared by the facility. The non-stationarity of the emission plume biased the TERRA estimates 

as the large mixing ratio differences in each square led to lower estimates from the kriging. For 

the TERRA model, there is a noticeable difference in the CH4 mixing ratios in the upward flight 

compared to the downward, with higher mixing ratios (red) detected in the ascending portion of 

the flight (Figure 48).   

 

 

Figure 47. A zoomed in look at the final F04 CH4 box of kriging-interpolated data. A black circle is 

drawn around a gridded square that contained a large red enhancement at the same location as a 

low blue mixing ratio. The square was averaged to a yellow CH4 value. Imagery provided by 

Environment and Climate Change Canada. 
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As part of the meteorological conditions’ analysis, the stability of the boundary layer was 

assessed. To thoroughly investigate conditions multiple variables were calculated to produce 

multiple estimates of the boundary layer. Following previous calculations for estimating the 

boundary layer from aircraft flight data (Dai et al. 2014) six variables were computed: gradient 

Richardson number, bulk Richardson number, change in virtual temperature, change in potential 

temperature, and the change in virtual potential temperature. Figure 49 shows the calculated 

values for each measurement by time and altitude. The profiles for these values over the whole 

flight (Figure 50) and for the flight up and down (Figure 51) were also inspected. There was no 

obvious change in the variables used to estimates the boundary layer during the flight. 

Figure 48. Per lap CH4 mixing ratio screen data for the box upward (left) and downward 

(right) prior to kriging of the data. Imagery provided by Environment and Climate Change 

Canada. 
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Figure 49. The gradient potential temperature, gradient virtual potential temperature, bulk 

Richardson number, and gradient Richardson numbers by altitude over time. Values were scaled by 

size to make enhancements more noticeable.  
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Figure 50. F04 profiles for the calculated potential temperature, virtual potential temperature, 

gradient (d) virtual potential temperature, gradient virtual temperature, gradient Richardson 

number, and bulk Richardson number.  
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  Figure 51. Same a for Figure 50, but for the F04 flight up (top panel) and flight down (bottom 

panel). 
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Code was developed as part of this thesis to estimate the boundary layer height from the 

maximum of each of these variables to assess any changes during the flight up versus down. 

These values were also compared to the SciAv estimate that was provided which was estimated 

the day of the flight. The calculated maximum values used to estimate the boundary layer are 

plotted in Figure 52 for F04. Analysis by Dai et al 2014 suggest the best practice is to estimate 

the boundary layer at maximum change in the virtual potential temperature. For this flight, the 

boundary layer estimate is very near SciAv’s estimate and appears stable. This method was then 

applied to F04 split into approximate upwards and downwards flights (Figure 53 and 54). If the 

meteorological conditions caused a shift in the boundary layer this would likely show up during 

the reanalysis. While the max change in virtual temperature changed (which would not be used), 

the rest of the estimates remain the same. The consistency in boundary layer estimates for the 

flight up versus down further indicates that the boundary layer was stationary during the flight.  

Thorough analysis of the boundary layer, and the wind components supports the 

conclusion that meteorological conditions were not the source of the non-stationarity of the 

emission plume for F04. Ruling out changing meteorological conditions leaves a change in the 

background mixing ratio, or a change in the facility emissions during the flight as potential 

causes of the non-stationarity. However, the cause of the non-stationarity of the emission plumes 

for F04 remains unknown as there was no independent measurement of the background mixing 

ratio during sampling, and the operating conditions near and at the facility were not shared. 
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Figure 52. The five boundary layer estimates for the full F04 flight are plotted as the 

maximum: gradient Richardson number (maxG.Rich), bulk Richardson number (maxB.Rich), 

change in virtual temperature (dVT/dz), change in potential temperature (dPT/dz), and change 

in virtual potential temperature (dVPT/dz). The acronym dz is the change in altitude above 

ground level. The y-axis gives the estimated boundary layer in meters above ground level. 
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Figure 53. Same as for Figure 52 given the F04 split into the upward lap data for the flight. 
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Figure 54. Same as for Figure 52 given the F04 split into the downwards lap data for the flight. 

 


