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Abstract

Spotting in the context of wildland fire refers to the creation of new fires,

downwind from an existing fire front, where the new fires result due to the

launch, and subsequent fuel bed ignition upon landing, of burning plant ma-

terial released from the main front. We will present a new integro-partial

differential equation (i-PDE) model which includes both local spread, com-

bustion/extinguishment, and non-local spread due to spotting. We will also

present a new model for firebrand transport in the atmosphere, which allows us

to incorporate existing physical or empirically-based submodels existing in the

literature to obtain the spotting distribution. We will use the spottting distri-

bution to investigate the problem of fire fronts breaching obstacles to local fire

spread, such as a highway or river, and the spotfire distribution appears as a

kernel for the integral term in our i-PDE model. We then investigate travelling

wave solutions to the i-PDE model, demonstrating that spotting can increase

the rate of spread, or cause acceleration of a fire front’s advance.
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Chapter 1

Introduction

1.1 The central problem of this thesis: the

role of spotting in wildland fire

1.1.1 The scope and importance of modelling in wild-

land fire

Forest fire spread in the boreal forest is a complex process, and is of major

concern both to industry and to the public from a fire management perspective

[67]. Over a billion dollars is spent each year between the United States and

Canada on fire management operations [89]. Further, in the wildland-urban

interface, forest fires pose a risk to assets and sometimes human lives [93]. An

accurate predictive model describing the growth of large-scale forest fires is

therefore important in a variety of contexts. Such models have been developed,

though there is still much room for improvement.

Wildfires occur in many ecosystems on Earth. The types of fire, their

intensity, and yearly time of occurrence can vary considerably depending on

geographic location [67]. Indeed, in very wet climates, wildland fire may not

be an issue. On the other hand, the Boreal forest, for example, which covers

much of Northern America, regularly experiences forest fires, and as such fire

as a disturbance process is vital in the preservation of the structure of the

Boreal forest [67].

Forest fires are constantly in the news these days. Not only are wildfires

1



an important ecological phenomenon, where wildfires meet the urban-wildland

interface, they pose possible danger to human assets, and even in extreme cases

to human life [67]. In particular around human housing, and industrial lands

used to harvest trees, understanding the behaviour of wildfires is paramount,

from both ecological and fire management perspectives.

1.1.2 The influence of spotting in wildland fire spread

Wildfires are capable of creating powerful updrafts, called convection columns,

which launch burning plant materials, referred to as firebrands, into the at-

mosphere [2]. These firebrands are then transported by the ambient wind-

flow, simultaneously combusting and decreasing in mass, until they reach the

ground. Upon landing, depending on the local fuel and weather conditions

at the landing site, a firebrand may ignite the local fuel and start a new fire.

Such a fire is called a spot fire, and the process by which new fires are cre-

ated by wind-driven firebrand ignition is called spotting (see Figure 1.1 for a

sketch of the spotting process). Historically the first scientific description of

the spotting process is credited to George Byram [20].

Spotting is not important in all fire contexts, but appears more frequently

in extreme fire situations. In Boreal forests of North America, there are vast

continuous stretches of coniferous forests, capable of creating incredibly intense

fires, called crown fires ([26],[5]). These crown fires are capable of prolific

spotting. Further, as reported in [5], current cannot account for the variability

in the rate of spread of such fires. The rate of spread is typically measured in

kilometres per hour, and is a measure of how fast the front is propagating.

In the chapparal brush of California, spotting from brushfires annually

threatens property in the wildland-urban interface [93]. In Australia, spotting

is a major issue for fires in Eucalyptus-grassland forests ([31], [56]). In the

case of certain Eucalyptus fires, severe burning conditions have led to the

observation that the fire’s boundary “appears to be moving as a continual

coalescence of spot fires” [31]. We will be interested in examining this spotting-

dominated case in detail later in this thesis.

Spotting is often mentioned as being one of the most difficult problems for

forest fire fighters, and has been incorporated in an ad-hoc way into existing
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Figure 1.1: Caricature of the spotting process. A distribution of firebrands are
launched to various heights y above a spreading ambient forest fire. The fire-
brands are then transported in the ambient windfield, combusting and falling
downward due to gravity, until they finally come to rest downwind of the main
fire. Depending on the local conditions for fuel and weather at the landing
site, a spot fire may be ignited by the combusting firebrand.

fire simulators to help deal with this issue [4]. Indeed, spotting is often the

cause of a fire breaching across an extended obstacle to local spread, such as

roads, rivers, or man-made fuel breaks [3].

The stochastic nature of the spotting process, whose key features are out-

lined in the caricature Figure 1.1, makes it very difficult for forest fire fighters

to predict where a spot fire is likely to occur. Indeed, the spotting distribution

is an under-addressed issue, with most prior modelling focusing on the maxi-

mum spotting distance (e.g. [2]). A consequence is that spotting is often the

cause of escape of prescribed fires [26]. Analagously, spotting may allow a fire

to spread faster across a region along which the local spread is relatively slow

[5]. The influence of spotting on the rate of spread is a major topic of this
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thesis.

When conditions aloft are favorable for strong convection column devel-

opment, or large-scale fire-induced vortices (fire whirls) exist, spotting may

contribute significantly to a fire’s spread. A spot fire 29 km downwind of an

existing fire in Victoria, Australia appears to be the longest recorded spot fire

event [56]. As reported by Ellis [31], the Ash Wednesday fires in Australia,

which occurred on the 16th of February 1983, produced spotting distances of

between 5 and 12 kilometres, with the most extreme incident measured being

25 kilometres from the primary fire.

In addition, there are examples in the literature which indicate that spot-

ting can at times lead to the acceleration of a fire’s rate of advance. During the

Beerburrum Fire No. 48, which occurred in Queensland Australia in 1994, the

firefighters observed “Spotting..accelerated its rate of spread and its advance

was halted only by Pumecestone Passage” [31].

1.1.3 Spotting and wildfire rate of spread, acceleration,

and the probability of breaching

The central problems which we would like to address in this thesis are:

• What is the spotting distribution, or the probability of spot fire ignition,

downwind of an existing fire front?

• What is the probability that a fire will breach an obstacle to local spread?

• What role does spotting play on the rate of spread of a fire front?

• Can spotting accelerate a fire’s advance?

We will develop an integro-PDE model for the instantaneous fire probabil-

ity, which incorporates combustion, local spread, and spotting. The kernel of

the integral term contains the spotting distribution, and we will see that it can

have a big influence on the fire’s rate of spread. From first principles, we will

derive the spotting distribution in Chapters 3 through 5, since it has been at

present investigated only in the recent paper by Wang [90], in a very limited

context. Further, there are no other existing models which incorporate local
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spread, and spotting via a spotting distribution. Understanding this distribu-

tion is also a first step towards addressing the problem of spot fire breaching.

The remaining questions will be addressed later, in Chapters 6 and 7.

The type of spotting scenario is determined by the fire’s convection column,

and the prevailing winds aloft [25]. The most extreme spotting occurs either

from a towering convection column, or if there are very strong winds which

cause shearing of a strong convection column higher in the atmosphere [25].

1.2 Prior efforts in modelling the local spread

of wildfires

Forest fire is a multi-scale phenomenon, and a variety of modeling paradigms

and methods have been involved in its description. Broadly speaking, mod-

els can be described as empirical, semi-empirical, or physics-based. Empirical

models are based solely on statistical relationships obtained through experi-

ment, while physics-based models rely on the numerical solution of combustion

and transport equations. Naturally, semi-empirical models are some hybrid of

the other two types. A complete review of almost all such modeling prior to

2007 can be found in the series of papers by Sullivan [82].

1.2.1 Scale in wildfire modelling: micro and macroscales

The authors in [79] propose a classification of the various spatial scales on

which forest fires operate. At each spatial scale, different modelling approaches

are appropriate.

At the microscopic scale, herbaceous material is a porous medium, consist-

ing of solid, liquid, and gaseous phases. Here, pyrolysis and vaporization are

the dominant physical processes, and the use of transport equations for the

constituents is the appropriate modelling framework. A good introduction to

transport processes is presented in [29].

At a coarser spatial scale one may speak of a combustion model, which

consists of the transport equations of an equivalent homogenized medium.

Recall that the fire environment is highly heterogeneous in space and time. A
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mathematical introduction to homogenization is presented in the monograph

[21].

Such combustion models can be scaled up to the macroscopic scale, for

which the typical flame length is very small compared to length scale of the

ambient windfield. Models appropriate at this scale include cellular automata

models (e.g., [18]), wavefront-propagation models (e.g., [69]), and reaction-

diffusion models (e.g., [91], [11]). At this scale, the ambient weather and wind,

fuel type distribution, and topography are the primary forces which drive a

wildfire’s invasion.

1.2.2 An empirical model for local spread: the Fire Be-

haviour Prediction System

The Canadian Forest Service’s Fire Behaviour Prediction System (FBP) is an

empirically-based system for predicting fire behaviour [40]. The original mod-

els accounted for 16 different fuel types found in Canada, classified according to

species-type, and whether the fuel type is coniferous, deciduous, mixedwood,

slash, or grassland. The system constructs models using regression analysis

on a data set consisting of over 500 monitored fires.

The FBP model accounts for fuel type and distribution, weather, topogra-

phy, and fuel moisture content. Primary outputs are the head, flank and back

rates of spread (discussed in the next subsection), fuel consumption, fire inten-

sity, and whether crowning occurs and the crown fraction burned. The model

accounts for diurnal variations in moisture content and wind/weather. The

most important output determining the ignition probability is the so-called

Fine Fuel Moisture Code (FFMC), which provides a measure of the moisture

content in the most combustible surface fuels. The greater the FFMC, the

lower the fine fuel moisture content.

Computation of the rate of spread depends naturally on the fuel type con-

sidered. The most extreme rates of spread are observed in dense coniferous

plantations, as occur naturally or in industrial horticultural stands. Further,

crown fires, where the spread occurs through the tree canopy, have much higher

intensities and rates of spread relative to the other fuel types (with the no-

table exception of grass fuel types). The FBP model provides a probability
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for crowning to occur, as well as the time lapse between ignition of the surface

fuels and crowning.

1.2.3 Macroscopic models: cellular automata and front-

propagation models

Cellular automata models

The first computer simulator used to compute the spatial spread of a fire

was a cellular automata model developed in 1971 by Kourtz and O’Regan [89].

These models are stochastic in nature. In such a model, the plane is divided

up into cells, each of which may be burning or not. The fuel inside each cell is

assumed to be of a particular type, and one defines a neighbourhood of adjacent

cells. These neighbourhoods could consist, for example, of the nearest North,

East, West and South neighbours. If a cell is burning, and a non-burning cell

is in the burning cell’s neighbourhood, then from one finite time step to the

next fire will spread to the non-burning cell with some probability.

Modelling the probability of spread between adjacent cells is a complicated

problem, and has been dealt with in a series of papers [89]. Many of them use

the idea that the waiting time for spread to occur should be inversely related

to the rate of spread R, which for example could be provided by the Fire

Behaviour Prediction system [40].

A recent cellular automata model [18] was the first to incorporate spot-

ting. The authors assumed a simple two-dimensional normal distribution for

the spotting distribution, where the spotting distribution represents the prob-

ability of ignition occurring in a non-burning cell in a given time step. This

model was considered separate from local spread, in which non-burning cells

can be ignited by their burning neighbours with some probability. Burning

cells become burnt-out in each time step with some probability. The simplicity

of the spotting distribution employed in this paper provided some of the initial

motivation for examining more realistic spotting kernels, as in this thesis.

In unpublished work, the author explored an extension of the model in

[18] to allow for spotting distributions which are normally distributed perpen-

dicular to the wind direction, but can take on a variety of functional forms

in the wind direction. We noticed the development of fronts propagating in
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the wind direction, which are principally-driven by the spotting mechanism,

as opposed to the local spread mechanism. We also noticed different rates of

spread depending on the spotting distribution.

The dynamics of the discrete-space, discrete-time fire probability evolution

model considered in Chapter 2, could be studied in such a cellular automata

framework. In particular, since cellular automata models are computationally

based, it would be relatively easier to incorporate the time-delays appearing

in the discrete models outlined in Chapter 2.

The models discussed thus far deal with the expansion of individual forest

fires. Cellular automata models, over large spatial and time scales, and where

there is a possibility for regrowth of burnt-out cells, have been considered in

the context of percolation theory [89]. One criticism of such models is that

they do a poor job of modelling individual fires, which may have an impact on

the long-time, multiple-fire landscape dynamics [89]. Again we see the need

for in improvement in the modelling of fire behaviour.

Richards’ model for curve expansion

A common observation amongst fire researchers, is that under homoge-

neous conditions for fire spread, a point-source fire ignition grows in a ‘cigar-

like’ shape, with semi-major axis parallel to the wind direction. This shape

is often approximated by an ellipse, though other shapes, such as teardrops

have been observed [69]. The Fire Behaviour Prediction system [40] provides

a description of these ellipses for various spread conditions, in terms of the

parameters a, b, c as shown in Figure 1.2.

Let Γ(t) denote our fire perimeter at time t, which we assume to be a

smooth, simple, closed curve in the plane. We parameterize Γ(t) = (x(t, s), y(t, s)),

0 ≤ s ≤ 2π.

Huygens’ principle, first phrased in this context by Anderson [8], states

that the fire perimeter Γ(t+ dt) is the envelope of all such ellipses, generated

at each point locally along the fire perimeter at time t (refer to Figure 1.3).

This allows for spread in a heterogeneous medium.

Richards’ idea [69] was to employ a Huygens’ principle for the growth

of such a curve, as follows. We imagine that each point (x(t, s), y(t, s)) on

the fire perimeter Γ(t), in small time dt, an ellipse grows in the principle

spread direction with parameters a(t, s), b(t, s), and c(t, s) exactly as if it were
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b
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Wind Dire
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Figure 1.2: Elliptical growth, starting from a point ignition at the center of the
ellipse, for homogeneous spread conditions. We assume that the principal rate
of spread occurs to the right in the diagram, and we assume direction of spread
is determined by the right-pointing wind (ignoring the effect of slope). The
parameters a, b, and c are provided by the Fire Behaviour Prediction system,
and correspond to the front, flank, and backing rates of spread respectively.

Figure 1.3: Huygens’ principle for elliptical fire spread, starting from an ellipse.
The curve Γ(t+∆)t, depicted by the larger ellipse, is the envelope of the family
of smaller ellipses, which are assumed to grow at each point along the curve
Γ(t), during time ∆t.

an isolated fire growing under the locally homogeneous conditions occurring

instantaneously at location (x, y) at time t.

Richards derived a system of hyperbolic PDE’s corresponding to such a

growth, by means of a transformation which maps ellipses to circles [69]. We

make the following definitions. Define the outward unit normal vector −→n ,
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displacement vector −→c , and transformation matrix A by

A =

(
a cos θ −a sin θ

b sin θ b cos θ

)
,

−→n =

(
ys

−xs

)
,−→c =

(
c sin θ

c cos θ

)
.

In the above, θ denotes the angle between the wind direction and the principal

spread direction (depending on the topography, these may not be the same).

Under the assumption that the ratio a/b is locally constant, Richards de-

rived the following deterministic system for the local evolution of the fire

perimeter,

∂

∂t

(
x(s, t)

y(s, t)

)
=
ATA−→n
||A−→n ||

. (1.1)

The model presented in Equation (1.1) was originally phrased in a different

form [69], with the form (1.1) first appearing in [14] (published in 2010).

Equation (1.1) is employed in both the PROMETHEUS [89] and FARSITE

[34] fire simulators. The numerical solution employs the marker method, in

which one discretizes the curve into a finite number of points, then traces

the evolution of these points according to a finite difference approximation to

(1.1).

Such numerical methods are hindered by complications such as the crossing

of trajectories, and the formation of internal loops as marker particles cross

each other [14]. Specific algorithms have been developed to address these

concerns [14], but a more promising approach is the level-set approach, which

is described in the monograph by Sethian [80].

The level set method implicitly describes the fire evolution described in

(1.1). Let us embed our curve Γ(s, t) as the zero-level set of a smooth function

φ,

φ(Γ(s, t), t) = 0. (1.2)

By differentiating the latter with respect to t, we obtain

d

dt
φ = φt +∇φ · Γt. (1.3)
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We suppose again that our curve grows locally according to Huygens’ prin-

ciple for ellipses. Then equation (1.1) provides an expression for Γt, and using

the fact that the outward normal is given by n = ∇φ
||∇φ|| , we see that Equation

(1.3) can be written:

φt + ||A∇φ||= 0. (1.4)

The Equation (1.4) is of Hamilton-Jacobi type [33]. The level set method

is a numerical method developed in [80] for solving (1.4), which resolves a

number of the issues with the finite difference scheme for (1.1). In particular,

the zero-level set of φ may contain two simple closed curves, corresponding

to separate fires. The level set method allows for effortless merging of such

separate interfaces, a major challenge facing finite difference schemes.

The implementation of an elliptical level-set formulation, in the context of

forest fire modelling, was first suggested and explored by Anne Bourlioux as

part of the MITACS project ‘Forest Fire Spread in Heterogeneous Landscapes’,

and publications of this method are under preparation.

1.2.4 Model types: probabilistic versus deterministic

The Richards model (1.1) for fire front propagation at the macroscale intro-

duced in the preceding subsection is deterministic, in the sense that given an

initial curve Γ(0), we will always obtain the same curve Γ(t) at time t > 0. This

is in part because the fire-atmosphere interaction is ignored, with a diurnally-

varying but otherwise static windflow prescribed over the terrain in advance

of simulation [89]. The rapid variation in local winds are not accounted for,

and there is no accounting for in-stand variability in the fuel.

It is physically improbable that a given initial curve will always evolve

into the same final curve, which suggests that a probabilistic approach to the

spread of wildland fire may be more appropriate. Further, as we have seen,

the spotting process is fundamentally stochastic in nature.

In the integro-PDE models we derive in Chapter 2, the stochastic aspect

of the process is captured in the spotting distribution, while the i-PDE models

themselves are deterministic in the sense that a given initial condition always

leads to the same evolution. The solution describes the expected fire probabil-

ity. A major advantage of our modelling approach is that rather than averaging
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the behaviour of Richards’ model for multiple evolutions, with slightly varying

winds so as to obtain a spatial expected-fire-probability map (a computation-

ally very expensive endeavour), in our model a single simulation can reveal

the spatial expected-fire-probability map.

1.3 Travelling wave models from invasion ecol-

ogy

The first example of a travelling invasion front was presented in 1937 [35],

as a model for the spread of an advantageous allele of a gene in a diploid

population. The model takes the form of a reaction-diffusion equation for a

density u(x, t) for x ∈ R and t ≥ 0,

∂u(x, t)

∂t
=
∂2u(x, t)

∂x2
+ r u(x, t)(1− u(x, t)), (1.5)

where r > 0 is the intrinsic growth rate, and the population’s carrying capacity

is u = 1. At any point x̃ ∈ R where u(x̃, 0) > 0, then asymptotically the

population will approach its carrying capacity, i.e. limt→∞ u(x̃, t) = 1.

To find travelling wave solutions to (1.5), we look for a solution u(x, t) =

U(x − ct), where c is the travelling wave speed, and U describes the con-

stant shape of the wave. We further require that limt→−∞ u(x, t) = K, and

limt→∞ u(x, t) = 0.

Fisher found that there is a unique constant c∗ such that the equation has

a travelling wave solution, with speed c ≥ c∗, and no traveling wave solutions

with slower speeds [35]. Kolmogorov, Petrovsky and Pishkunov obtained the

same types of solutions with a more general equation ut = uxx + f(u) [45],

with the so-called KPP condition f(u) ≤ f ′(0)u. Since these pioneering re-

sults, many people have investigated travelling waves for reaction-diffusion

type equations. Many examples are presented in the monograph by Britton

[19].

Integro-difference equation models are continuous space, discrete time mod-

els for a species which has two phases in its biological life, namely reproduction

and dispersal. These two phases are assumed to be non-overlapping. Results
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from these models applied to biological dispersal provided much motivation for

this thesis. In particular, the authors in [47] found accelerating solutions when

the redistribution kernel in the integral term was ‘fat’-tailed. In addition, the

results in [51] suggested that different dispersal kernels could lead to different

invasion speeds.

Integro-differential equations can be seen as the continuous space, con-

tinuous time analogues of integro-difference equations. Recently, integro-

differential equations with ‘fat’-tailed kernels have been shown to give rise

to accelerating waves ([36], [41]). This is further reason to examine whether

acceleration is possible in the models for fire spread which we derive in Chapter

2.

1.4 Thesis flowchart

In our thesis, we will examine integro-differential equation models, which are

continuous in space and time. This section is intended as a guide to the flow

of information in this thesis. In Figure 1.4, we show the connections between

the various chapters.

In Chapter 2, we derive integro-PDE’s (i-PDE’S) for wildland fire spread,

including spotting. However, we must determine the spotting redistribution

kernels appearing in the i-PDE models, which is the focus of Chapters 3

through 5.

In Chapter 3, we introduce a new model for firebrand transport and com-

bustion, and investigate its qualitative properties. We also introduce the no-

tion of the asymptotic landing distribution L(x,m), which is the density of

firebrands with mass m which eventually land at location x.

In Chapter 4, we review a number of submodels for the various subprocesses

which govern spotting. These are physical or empirical models from the liter-

ature which describe firebrand generation, launching, transport, combustion,

and ignition.

In Chapter 5, we examine how the asymptotic landing distribution, given

particular ignition models discussed in Chapter 4, gives rise to the spotting

distribution. We examine specific examples of the spotting distribution. These

spotting kernels can be used to discuss the probability of wildfire breaching.
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In Chapters 6 and 7, we return to the models from Chapter 2, to discuss the

effect of spotting on the rate of spread and possible acceleration of wildland

fires. The spotting distribution becomes the spotting kernel in the integral

term of our i-PDE models.

In Chapter 6 we take an analytic approach, examining travelling wave so-

lutions to the one-component fire probability integro-differential equation. We

derive solutions for the wave speed, and demonstrate analytically conditions

under which accelerating solutions are exhibited.

In Chapter 7, we primarily examine numerical solutions to the i-PDE mod-

els derived in Chapter 2, for the full model, which incorporates the available

fuel fraction. Travelling pulse solutions for the instantaneous fire probabil-

ity are examined, in the spotting-dominated case. These pulses are shown

to depend on the kinetics of combustion, as well as the spotting distribution

chosen.
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Chapter 2:
Derivation of 
i-PDE models

Chapter 3: 
A firebrand  transport 
model

Chapter 4: 
Physical models for 
spotting

Chapter 5: 
Specific examples of
 spotting kernels

Chapter 6: 
Analytic investigation
of i-PDE models

Chapter 7:
Numerical investigation
of i-PDE models

Figure 1.4: The organization of the thesis is indicated in this flowchart. The
lines with arrows indicate the dependence of each chapter. For example,
though we derive our central i-PDE model in Chapter 2, we do not return
to it until Chapters 6 and 7 (which may be read independently).
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Chapter 2

Derivation of a probabilistic

model for the spread of wildfires

including non-local spread by

spotting

2.1 Chapter Introduction

In this chapter, our goal is to derive models for the spread of a wildfire, in-

cluding both local dispersal, the interaction of the fire with fuel (i.e. com-

bustion/heat loss), and non-local dispersal by spotting. Since the spotting,

combustion and local spread processes occur continuously in space and time,

we will derive continuous-time models for these processes in terms of discrete-

time transition probabilities.

The first model we present is a discrete-space, discrete-time birth/death

and jump process model for the expected fire probability density u and total

available fuel load v, derived and explained in Sections 2.2-2.4. We then take

macroscopic limits of these jump processes, first arriving at a delayed integro-

partial differential equation system, (2.31) and (2.36) in Section 2.5.

In Section 2.2 we present a stochastic model for fire spread, in discrete

space and time. For clarity in what follows, we also assume that firebrands

move, in the horizontal direction, at the same velocity as the ambient local
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wind velocity. In this Chapter we assume both horizontal and vertical wind

velocities are constant, though in the following three chapters we will develop

a more accurate depiction of the transport and combustion of firebrands.

In Section 2.3 we discuss the launching probability. We make a simplifying

assumption, namely that the probability of launching at a location is equal

to the expected fire probability at that location. We eventually identify the

expected fire probability with the expected fire spotting probability, in the

case of extreme burning conditions.

For the purpose of analysis and applications, we discuss quasi-steady state

assumptions in Section 2.6, leading to the non-time-delayed model (2.39). We

also describe an approximation, which we refer to as the one-component model

later, in which we assume v = 1 everywhere, so that our model reduces to a

single equation for u. In Section 2.6.3 we generalize the latter equation for a

more general local movement operator, described by Equation (2.44), following

our discussion of anisotropic diffusion in Section 2.4. This anisotropic diffusion

arises because of the greater local spread rate in the wind direction.

In Section 2.6.5 we discuss many simplifications of the model (2.39), one of

which has recently been shown to permit accelerating wave-like solutions in the

paper by Jin and Lewis [41], in the case of a ‘fat-tailed’ asymmetric dispersal

kernel. It is one of our goals to show similar results for integral kernels derived

from the wind-driven spotting process, which are inherently asymmetric. The

derivation of such kernels is the subject of Chapters 3 through 5. We will also

derive an expression for the effect of spotting on the rate of spread from the

same paper.

The models derived in this chapter all depend on the so-called spotting

kernel (distribution) S(y), which we will derive in Chapters 3 through 5, by

introducing a separate framework for describing the transport and burning

processes. There will be no further discussion of our i-PDE models until

Chapters 6 or 7. Hence the reader may feel no loss of continuity proceeding

directly to either Chapters 6 or 7 after reading this chapter.

It is important to state here that though we start from a very general jump

process, in our later analysis we will restrict our attention to a homogeneous,

but possibly anisotropic medium. The assumption of homogeneity implies

that spread conditions are the same at each point in space. The assumption of
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anisotropy implies that the spreading speeds may depend on direction. We as-

sume spotting occurs only from left-to-right, which will lead to an asymmetric

spotting kernel,

We also must account for the increased local rate of spread in the wind

direction, which we model with anisotropic diffusion, and the addition of an

advection term. This explains how at a given point, the local spread in the

wind direction is greater than the corresponding spread rate perpendicular to

the wind, and consequently how our medium is anisotropic.

2.2 Derivation of a discrete probabilistic model

for linefire spread with spotting

We would like to model line-fire spread, in which the fire propagates essentially

as a front into the available fuel. Such fires occur in prescribed fires, e.g., in

experimental burns [5], as well as in natural fires [40].

As an example of how a line fire may occur in natural fires, there are several

reported cases where homogeneous spread conditions result in large fires which

spread in a ‘cigar’-like shape [40], with the interior of the ellipse burnt out.

If the wind now changes so that it points perpendicular to the major axis of

this burning front, an approximate line fire results as the direction of spread

changes to point into the wind.

From a mathematical perspective, considering line fires allows us to reduce

the number of independent variables in the problem. Consider that it is always

possible to choose our Cartesian (x, y) coordinate system for the plane so that

the line fire at a given time is parallel to the y-axis. The x-direction is thus

normal to the line fire at each point, and it is only spread in the normal

direction (often called the fire’s rate of spread [40]) which is relevant. This is

illustrated in Figure 2.1.

Hence we will develop spatially one-dimensional models, where the variable

x is chosen as in the preceding paragraph as our spatial variable. We ignore

for now variations in topography.

Let X(x, t) denote a random variable for the occurrence of a fire at location

x and time t. We assume that X(x, ·) describes a Poisson process with rate
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Figure 2.1: Shown is the basic fire scenario in the plane considered in this
Chapter. The jagged fire front is represented by a line, and the wildfire front
tracking problem is one-dimensional - we consider only spread in the positive
x-direction. The left half plane represents the burned region, and the right half
plane represents available fuel. The fire front forms the boundary separating
these disjoint regions of the plane.

λ = u(x, t). Then the expectation E of X depends on space and time,

E(X(x, t)) = u(x, t). (2.1)

Let A(x, t) be another process which contributes to or removes from the

local fire probability. Then we have:

E(X(x, t) + A(x, t)) = E(X(x, t)) + E(A(x, t)) (2.2)

= u(x, t) + E(A(x, t)),

since the expectation is linear.

Hence when we model on the level of expectations of a Poisson process

for fire occurrence, then different contributions from local spread, combustion,

and spotting can be considered to be additive. In what follows, we model

directly on the level of expectation of fire u(x, t), i.e. we model directly at the
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mean field equations.

For convenience, we call u(x, t) defined in (2.1) the “fire probability”, while

it is understood that u(x, t) really denotes the expected fire probability. Note

that this interpretation requires no upper limit on u(x, t), and the probability

distribution function for X(x, t) is

F (t) = 1− exp (−
∫ t

0

u(x, s) ds). (2.3)

We divide the real line into an even-spaced lattice, with the interpretation

that this represents the region through which the fire line may progress. Let

i, j be integers. We label points on the lattice xi := i∆x, where ∆x is the

distance between lattice points. Similarly we discretize the non-negative time

axis into points tj := j∆t, where ∆t is a fixed time-increment.

We will make the assumption that there is a fixed characteristic scale

∆x

∆t
:= w, (2.4)

where w > 0 is the mean windspeed in the direction of fire spread. The

direction of the mean windspeed is thus the positive x-direction.

We will also assume that spotting occurs only in the wind-direction, and

that firebrands travel horizontally at the same speed as the wind (the latter is a

good approximation, as described in Chapter 4), while local spread may occur

in either direction following a spotting event ahead of the main front. So in

considering the spotting process, we are only interested in firebrand launching

events which occurred to the left of our current position, since no firebrands

travel to the left.

In general, there is an increased local rate of spread in the wind direction,

relative to the back rate of spread. These rates are known for a variety of spread

conditions, including different fuel types, weather and wind, and topography,

from data analysis of real world fire experiments [40].

We begin our modelling with the discrete mean field equations. The quan-

tity ui(tj) ∈ [0, 1] is the discrete expectation that there is a fire burning at

location xi and at time tj, and will refer to it as the fire probability.

Second, the total fuel loading fraction is denoted by vi(tj) ∈ [0, 1]. This
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Figure 2.2: Here we discretize the plane uniformly, so that points are separated
a finite distance ∆x from each other, and we advance forward in timesteps of
magnitude ∆t. Also shown are the local spread, combustion, and extinguish-
ment processes which act to change the fire probability ui(t). The diagonal
arrow represents a spotting event indicates that occurs at time t − ∆t, such
that firebrands from xi−1 were launched which reach xi at time t. Similarly,
firebrands from location xi−2 and xi−3 reach location xi at time t, launched at
times t− 2∆t and t− 3∆t respectively.

variable describes the combustible material at location xi and at time tj. If

vi(t) = 0 (as in the case of no fuel being present) then no fire is possible at that

location, while vi(t) = 1 means no combustion has occurred at that location.

Our model takes the form of a space-jump and birth-death process for the

fire probability, and a coupled death-process for the available fuel. The space-

jump process for the fire probability accounts for both the local spread between

neighbouring lattice points, as well as non-local spread due to spotting. The

distinct processes are illustrated in Figure 1.1 from Chapter 1, and in Figure

2.2.

The coupling between the change in fire probability and available fuel is

analagous to combustion, and we investigate phenomenological models for this

interaction in a later subsection. More general space-jump processes are inves-

tigated in [7], while the models discussed here are based roughly on a model
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for cancer spread introduced in the thesis by Greese [39].

Given some initial distributions {ui(0) | i ∈ Z} and {vi(0) | i ∈ Z} when

t = 0, where Z denotes the integers, we propose the following discrete-time,

discrete space fire transport model, for any non-negative integer t:

ui(t+ 1) = ui(t) + ki,i−1ui−1(t) + ki,i+1ui+1(t)︸ ︷︷ ︸
Local Spread

+
∞∑
j=1

Si,i−j(ui−j(t− (i− j)∆t), vi(t))︸ ︷︷ ︸
Spotting

+ f (ui(t), vi(t))ui(t)︸ ︷︷ ︸
Growth and decay

, (2.5)

where ki,j, Si,j and f(ui(t), vi(t)) are explained below.

First we examine the local spread terms on the right hand side of (2.5). The

term ki,j denotes the probability that a fire at location xj spreads to location

xi in a given time step. We notice that the contribution to ui(t + 1) due to

local spread involves only the points immediately to the right, and left, of the

point xi. Unlike many other space-jump models, here the fire probability ui(t)

is not conserved, so no fire probability is lost due to local spread in a given

time step. We will discuss these probabilities in detail in Section 2.3.

The final term f(ui(t), vi(t))ui(t) describes the discrete-time birth and

death process, due to combustion or heat loss. We will describe several phe-

nomenological models for combustion in Chapter 4, and we postpone specific

functional forms until then, when we will present their continuous-time ana-

logues. However, in order to introduce an evolution equation for vi(t), let’s

say we can decompose the birth-death term f into combustion and heat loss

terms:

f(ui(t), vi(t)) = c(ui(t), vi(t)) vi(t)︸ ︷︷ ︸
Combustion

− δ︸︷︷︸
Linear heat loss to environment

(2.6)

The evolution equation for the available fuel thus has the general form:

vi(t+ 1) = vi(t)− γc(ui(t), vi(t)) vi(t). (2.7)

The constant γ will eventually be connected, in Chapter 7, to the efficiency
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with which the available fuel is able to increase the probability of having a

fire, due to combustion.

In Section 2.2, we discuss the summation appearing in (2.5), and in par-

ticular the spotting probability Si,i−j(ui−j(t− (i− j)∆t), vi(t)).

2.3 Determining the discrete spotting proba-

bility

2.3.1 Separating the launching and transport processes

In this section, we will focus in the spotting term Si,i−j. In words, we say

Si,i−j is the conditional probability that there was a fire at location xi−j at

time t− (i− j)∆t, and it then launched firebrands which are wind-transported

and land at location xi at time t, and ignite a new fire. Since we are assuming

spotting occurs only from left to right, it follows that the spotting term is zero

if i− j ≤ 0.

Further suppose that the launching and transport processes are indepen-

dent, so we can split up the probability

Si,i−j(ui−j(t− (i− j)∆t), vi(t)) :=

πi,i−j(ui−j(t− (i− j)∆t))︸ ︷︷ ︸
Launch

· Ti,i−j(ui−j(t− (i− j)∆t), vi(t))︸ ︷︷ ︸
Transport and ignition

(2.8)

In the latter equation, the term πi,i−j(ui−j(t − (i − j)∆t)) represents the

probability that there was a fire launching firebrands at location xi−j at time

t− (i− j)∆t, while the term Ti,i−j = Ti,i−j(ui−j(t− (i− j)∆t), vi(t)) represents

the probability that those firebrands land at xi at time t and start a new

fire. The dependence on vi(t) corresponds to the fact that the probability of

ignition at xi depends on the presence of available fuel.

2.3.2 The launching probability π

In general, there is a buildup time after ignition before the fire reaches the

intensity required for spotting to occur [40]. In the context of our model,
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one might assume a threshold value u (analagous to a minimum intensity or

temperature) required for spotting to occur. Using the Heaviside step function

H(u), one could write:

πi,i−j(ui−j(t− (i− j)∆t)) = H(ui−j(t− (i− j)∆t)−u) ui−j(t− (i− j)). (2.9)

If we assume that the buildup time is negligible compared to the time scale

associated with the dispersal process, as may occur in extreme fire scenarios

where the fuel is very dry, we are lead to our main assumption about the

launching probability:

πi,i−j(ui−j(t− (i− j)∆t) = ui−j(t− (i− j)∆t). (2.10)

Given the assumption on π described in (2.10), we are assuming that the

probability that a fire is spotting at location xi and at time t is equal to ui(t).

This assumption will be crucial in much of the mathematical analysis to follow.

2.3.3 Transport and ignition probability T

It is not so simple to separate the transport and ignition probabilities. The

firebrands are combusting during transport, and the probability of ignition

depends on the exchange of energy between burning landed mass and the

surrounding terrain. For example, the transport time t∗ which is explored in

detail in Chapter 5, plays a role in determining ignition, since combustion

ensures that firebrands which take too long to reach their targets will already

be burned out, and thus be unable to generate a spot fire.

It will be the focus of Chapter 3 to develop a new model to study the

launching of firebrands above a powerful wildland fire, and their subsequent

transport and combustion through the atmosphere back towards the ground.

This model will incorporate realistic models based on physics and experiments

already existing in the literature on spotting. In this chapter we will focus on

a simple situation, where there is a constant wind speed w > 0 and firebrands

fall with constant terminal velocity v. In reality the velocity v will change with

time due to combustion, and we discuss this in detail in Chapter 4, though we

ignore this complication for now.
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Assume a large fire launches a vertical distribution of N total firebrands,

with corresponding probability density φ(z,m) for firebrand heights z, with

mass m = m(ρ, r, L), where ρ is the firebrand mass density, r is a characteristic

radius for the firebrand type, and L is a characteristic length for the firebrand

type. We will simply focus on φ(z,m).

To be precise, we define the vertical launching distribution φ(z,m), such

that for an impulse release of firebrands we have:

1 =

∫ ∞
0

∫ m

0

φ(z,m)dmdz, (2.11)

where m is the maximum possible firebrand mass.

It then follows that the total mass distribution M(z), which provides the

mass of N firebrands, launched at height z is given by:

M(z) = N

∫ m

0

mφ(z,m)dm. (2.12)

In order to determine T , we will make the simplifying assumption that the

mass distribution M(z) is the same where the fire is launching firebrands (i.e.

where u(x, t) 6= 0), corresponding to a homogeneous medium.

We discretize in the vertical direction, writing zi = i∆z for natural numbers

i. We will choose the width between grid points so that ∆z = v ∆t, where v

is the constant vertical firebrand falling velocity. This is a natural choice of

the grid width, since the firebrands fall a distance v ∆t during a span of time

∆t. This discretization is illustrated in Figure 2.3.

Consider that a fire at location xi−j = xi−j∆x will have firebrands released

from heights zi−j = (i− j)∆z at time t− (i− j)∆t, which reach the ground at

xi at exactly time t. We would like to determine the mass Mi,i−j which will

reach xi at time t, since we will make the assumption that ignition depends

only on landed mass, which has been justified in a variety of experimental

contexts [90].

To determine Mi,i−j, first we consider that the mass M(zi−j) is released at

height (i − j)∆z, at time t − (i − j)∆t, at location xi−j is determined from

Equation (2.12),
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z = 2 Δ z

Figure 2.3: Shown is our discretization of heights z, where ∆z = ν∆t.

M(zi−j) = N

∫ m

0

mφ((i− j) v ∆t,m)dm

= N

∫ m

0

mφ((i− j) v
w

∆x,m)dm, (2.13)

the latter equation following from the identity w = ∆x
∆t

.

Next, we must account for mass loss due to combustion during transport.

Later, in Chapter 4, we will introduce several models from the literature which

give realistic descriptions of combustion. Here we keep things abstract, and

introduce the discrete combustion operator Ci−j(m,∆t), which maps a mass

m at time t into what the resulting mass will be (i− j)∆t time units later. It

follows that the landed mass Mi,i−j is given by:

Mi,i−j = Ci−j(M(zi−j),∆t) (2.14)

Finally, our assumption that ignition is only a function of landed mass

means we can define the ignition operator E[m] ∈ [0, 1], which gives the prob-

ability that a firebrand with mass m generates a spot fire. In Chapter 5 we

will provide a variety of functional forms for E[m]. In terms of the mass Mi,i−j

described in (2.14) and its corresponding integral formula (2.13), we can in-
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troduce a description of the transport and ignition operator T in terms of the

ignition operator,

Ti,i−j = E[Mi,i−j] = E[Ci−j(M(zi−j),∆t)]. (2.15)

Remark: The formula (2.15) provides a transport and ignition operator for

the total mass which lands at x at time t. Experiments show that different

masses have different rates of combustion [54], so this is only an approximate

spotting distribution. Later, in Chapter 5, we will derive a model for the

spotting distribution which takes into account the mass distribution which is

launched at a given height, and which accounts for the burning of individual

firebrands as opposed to just the total mass. Nevertheless, in the case of

non-intersecting spatial trajectories, Equation (2.15) could provide a decent

approximation to the true spotting kernel.

2.4 Integrating local spread, continuous limit

We are interested in discussing the local spread term in the model (2.5), namely

the term

ki,i−1ui−1(t) + ki,i+1ui+1(t),

where we recall that t is a nonnegative integer.

As discussed previously, this is the augmentation in ui due to spread from

its immediate neighbours in a given time step. We will be interested in contin-

uous limits of this discrete model, and to do so we will investigate the simplified

equation

ui(t+ 1) = ui(t) + ki,i−1ui−1(t) + ki,i+1ui+1(t). (2.16)

We will introduce densities corresponding to the terms in (2.16),

ui(t) ≈ u(x, t)∆x∆t. (2.17)

with the interpretation that the expectation of having a fire in the [x+ ∆x)×
[t, t+ ∆t).

For the local process we can assume that we have a redistribution kernel k
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defined by:

ki,j ≈ lim
∆t→0,∆x→0

k(x, y)
∆t

(∆x)2
, i 6= j,

ki,i := lim
y→x,∆x→0

k(x, y)
∆t

(∆x)2
= 0, for all ∆t > 0. (2.18)

The Equation for ki,i in the previous system (2.18) implies that the prob-

ability of having a fire at location xi is neither augmented nor reduced by the

presence of a fire at location xi.

Employing these densities in Equation (2.16), we obtain

u(x, t+ ∆t)∆x∆t− u(x, t)∆x∆t (2.19)

≈ (∆x)−2∆t∆x∆t (k(x, x−∆x)u(x−∆x, t) + k(x, x+ ∆x)u(x+ ∆x, t)) .

The next step is to expand the kernel k(x, x±∆x in a Taylor series in its

second argument, about x,

k(x, x±∆x) ≈ k(x, x)±∆x

(
∂k(x, x̃)

∂x̃

)
x̃=x

+
∆x2

2

(
∂2k(x, x̃)

∂x̃2

)
x̃=x

+O(∆x3)

(2.20)

Provided our solution is sufficiently smooth, we may similarly expand the

fire density u(x±∆x, t) in a Taylor series in its first argument, about (x, t):

u(x±∆x, t) ≈ u(x, t)±∆x

(
∂u(x, t)

∂x

)
+

∆x2

2

(
∂2u(x, t)

∂x2

)
+O(∆x3).

(2.21)

Next we employ the formulae derived in Equations (2.20) and (2.21) into

the model (2.19). Cancelling factors of ∆x and ∆t from both sides of Equation

(2.19), we obtain:

u(x, t+ ∆t)− u(x, t) ≈ ∆x−2∆t
(
2k(x, x)u(x, t) + ∆x2J

)
, (2.22)

where the quantity J is defined by:
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J = u(x, t)
∂2k(x, x̃)

∂x̃2
+ 2

∂u(x, t)

∂x

∂k(x, x̃)

∂x̃
+
∂2u(x, t)

∂x2
k(x, x̃)

=
∂2

∂x̃2
(u(x̃, t)k(x, x̃))x̃=x . (2.23)

Dividing both sides of Equation (2.22) by ∆t, and using the second equation

in (2.18) to deal with the first term in (2.22), we find after taking the limit

∆t→ 0 that Equation (2.22) becomes a partial differential equation,

∂u(x, t)

∂t
=

∂2

∂x̃2
(u(x̃, t)k(x, x̃))x̃=x (2.24)

This type of anisotropic diffusion should be used, when the mean length of

the wind field is of the same order of magnitude as the flame generated by the

fire. It results in a faster spread to the right than to the left, when the wind

points left to right, and thus more accurately represents the local spread of a

fire than its isotropic approximation.

In the case of a homogeneous medium, where in addition the probabil-

ity of local spread is equivalent from the left and right (the 1-D analogue of

isotropy), the diffusion coefficient D is constant (and given in terms of the

discrete transition probabilities ki,j by Equation (2.29)). Put otherwise, the

spreading probabilities are the same at each spatial location x, and in each

direction, and we obtain the simple diffusion model:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
. (2.25)

In the spotting-dominated case, which we consider in Sections 2.6 and

7.7, the assumption of local isotropy is justified, since spotting completely

dominates the spread mechanism. However, in general the local spread is

greater in the wind direction, since the wind points the flame closer to the

ground, so that radiant energy is transferred more quickly to the right than

to the left [68].

The reader will notice that in Equation (2.24), and in particular the ex-

pansion (2.23), the presence of birth/death , advection, and isotropic diffusion

terms. These are, respectively, u(x, t)∂
2k(x,x̃)
∂x̃2 , 2∂u(x,t)

∂x
∂k(x,x̃)
∂x̃

, and ∂2u(x,t)
∂x2 k(x, x̃).

We will primarily focus on the approximation (2.25).
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A proper explanation of the transition probabilities and their derivatives

requires detailed knowledge of how fire spreads at the local scale, due to ra-

diation, advection, and conduction of heat [68]. At this scale, the fuel may

take on several phases (i.e. solid, liquid or gas), and is structured in terms of

the ground, ladder, and crown fuel distributions, the availability of oxygen, in

addition to topography. Certainly the medium is heterogeneous, and a one-

dimensional model seems inappropriate. Scaling up to our length scale, by

homogenization of some kind, may be possible in future work. In addition,

it may be possible to use the spread rates prescribed by the Fire Behaviour

Prediction system [40], which are already valid at the macroscopic scale.

Remark: By considering a simple change of the discrete transition proba-

bilities used to construct D in Equation (2.25), we could define ki,i+1 :=

ki,i−1 − εw := K − εw, where w is the windspeed and K = ki,i+1 > 0 is a

constant. This corresponds to a greater rate of spread in the wind direction,

and constant isotropic diffusion characterized by the constant K. Upon per-

forming similar expansions as in this section, we are left with an isotropic

diffusion term, subtracted by an advection term. The advection term is

characterized by the parameters ε and w, and in a PDE expansion leads to

an advection term f(ε, w)∂u
∂x

appearing in Equation (2.25), so that we have a

different advection-diffusion model. While we remark on this possibility, we

will not pursue it further in this thesis, and we disregard the wind pushing

the fire. We include, however, the wind-driven spotting.

2.5 Continuous limits of this chapter’s discrete

models: integro-partial differential equa-

tions (iPDE)’s for wildfire fronts

In light of the preceding subsections, we would now like to return to our models

for the expected fire probability ui(t) and the total fuel loading fraction vi(t),

described in Equations (2.5) and (2.7). We would also like to emphasize that

we are now interested in studying a homogeneous medium.

We would like to pass to a continuous limit for the discrete models presented

thus far, obtaining a model which is continuous in space and time. To this end,
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let us first re-write the governing Equation (2.5), incorporating the functional

forms for the various probabilities derived in the preceding subsections, as

ui(t+ 1) = ui(t) + (ki,i−1ui−1(t) + ki,i+1ui+1(t))

+
∞∑
j=1

ui−j(t− (i− j)∆t)Ti,i−jvi(t)

+f(ui(t), vi(t))ui(t).

(2.26)

In the first line we have nearest-neighbour interactions only, as described in

Section 2.3. In the second line we see the contribution from spotting, where

we have employed the simplest launching assumptions. The transition and

ignition operator T is described in the derivation leading to Equation (2.15).

We recall that we have discretized time, so that t is a nonnegative integer.

We now introduce the densities:

ui(t) ≈ u(x, t)∆x∆t,

vi(t) ≈ v(x, t)∆x∆t,

Ti,i−jvi(t) ≈ T (x, x− j∆x)∆x∆t v(x, t),

ki,j ≈ lim
∆t→0,∆x→0

k(x, y)
∆t

(∆x)2
, i 6= j,

ki,i :≈= lim
y→x,∆x→0

k(x, y)
∆t

(∆x)2
= 0 for all ∆t > 0,

f(ui(t), vi(t)) ≈ f(u(x, t), v(x, t))∆t. (2.27)

In terms of these densities, the spotting term appearing in the second line

of Equation (2.26) becomes:

∞∑
j=1

ui−j(t− (i− j)∆t)Ti,i−jvi(t)

≈ ∆t2∆x
∞∑
j=1

u(x− j∆x, t− (i− j)∆t)T (x, x− j∆x) v(x, t)∆x. (2.28)

If we assume we have an isotropic medium, ki,j = kj,i everywhere. This will

lead to the simple diffusion term D ∂2u(x,t)
∂x2 on the right hand side, as described

in Section 2.3. For the purpose of analyzing the spotting dominated case as
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in Section 7.6, this assumption is valid, since spread by diffusion is negligible.

We should note that the diffusion coefficient is calculated by taking the limit

[74]:

D := lim
∆t→0,∆x→0

ki,i+1
(∆x)2

∆t
. (2.29)

Let us drop the local spread terms from Equation (2.26) for the moment,

then divide both sides by ∆t, to obtain:

u(x, t+ ∆t)− u(x, t)

∆t
=

∞∑
j=1

u(x− j∆x, t− (i− j)∆x

w
)T (x, x− j∆x) v(x, t)∆x

+f(u(x, t), v(x, t))u(x, t).

(2.30)

Now we want to take the continuous limit, sending ∆x → 0 and ∆t → 0.

The reader will notice that the sum appearing in (2.30) is actually a Riemann

sum, which will converge to an integral in the limit as ∆x→ 0 (see Equation

(2.31) below).

Combining the results from Equation (2.30) together with the results con-

cerning local spread from Section 2.3, we are prepared to take the continuous

limit of (2.30), obtaining the model

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ v(x, t)

∫ ∞
0

u(x− y, t− x− y
w

)T (x, x− y)dy

+f(u(x, t), v(x, t))u(x, t).

(2.31)

Notice that the linear time-delay appearing in the integral term in Equation

(2.31), is the landing time required for firebrands launched from location x−y
at time t− x−y

w
, to reach location x at time t.

Of equal importance is to note that since our medium is homogeneous,

and we assume spotting occurs only from left to right, we expect the spotting

transition probability T (x, y) to depend only on the difference x− y. That is,

T (x, y) = S(x− y), (2.32)

for a new function S, where the argument (x− y) ≥ 0. Since spotting occurs
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only from left to right, it follows that S(x− y) = 0 for x− y < 0.

When one considers the term T (x, x − y) appearing in (2.31), in terms of

S we see:

T (x, x− y) = S(x− (x− y)) = S(y). (2.33)

Substituting the righthand side in (2.33) with the corresponding term ap-

pearing in (2.31), our model for the fire probability density reads:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+ v(x, t)

∫ ∞
0

u(x− y, t− x− y
w

)S(y) dy

+f(u(x, t), v(x, t))u(x, t).

(2.34)

Finally, the continuous analogue of Equation (2.7) is derived from the fol-

lowing:

(v(x, t+ ∆t)− v(x, t))∆x∆t = −γ c(u(x, t), v(x, t) ∆t v(x, t) ∆x∆t, (2.35)

and cancelling the common factor of ∆x and ∆t from both sides, dividing by

∆t, then sending ∆t→ 0, we obtain the equation governing v, namely

∂v(x, t)

∂t
= −γc(u(x, t), v(x, t)). (2.36)

2.6 Limiting equations, and generalizations of

our derived (iPDE)’s

2.6.1 A quasi-steady state assumption for the total fuel

loading

For the purposes of mathematical analysis, we would like to simplify the cou-

pled system of differential equations ((2.34), (2.36)). To this end, let us make

the assumption that the combustion process is very slow compared to the
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dispersal process. In particular, we would like to assume:

∂v(x, t)

∂t
≈ 0, (2.37)

so that the total fuel loading fraction is approximately constant.

For simplicity of notation, since we consider a homogeneous medium we

normalize v(x, t) = 1 everywhere. Physically this could correspond to a thick

coniferous forest, which forms a type of continuum medium where all points

may be burned. Then our problem is reduced to the solution of a single integro-

partial differential equation for u(x, t). This assumption will be relevant when

we discuss traveling wave solutions for (2.34). Allowing solutions v = v(x)

would be relevant should consider spotting across obstacles, since in this case

we will have v = 0 in the region blocking local spread.

We are thus led to consider a delayed integro-partial differential equation

for u(x, t), governed by

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+

∫ ∞
0

u

(
x− y, t− x− y

w

)
S(y) dy

+f(u(x, t), 1)u(x, t).

(2.38)

This is a delayed integro-partial differential equation, with a potential non-

linear birth-death term f(u(x, t), 1). The delay term x−y
w

is scaled by the

windspeed w, which could range up to 30 metres per second. Alternatively,

and in future work, we will replace the simple isotropic diffusion term by the

anisotropic term (2.24), which is especially important in the case where local

spread and spotting occur at approximately the same rate. Traveling wave so-

lutions for similar models have been investigated, for example, in Thieme [87].

Such models are, however, the subject of current research and as such are quite

complicated.

One thing that seems common across the modeling of invasions with non-

local dispersal, is that the behavior of the model is determined largely by

the redistribution kernel S(y) [51]. We will devote a great deal of effort, in

Chapters 3 and 4, to providing a mechanistic determination of a variety of

redistribution kernels.
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2.6.2 Further simplification: removing the time-delay

As an important remark, we notice that the delay appearing in (2.38), namely
(x−y)
w

:= t∗ is the landing time. This means t∗ is the time it takes a launch of

firebrands to travel from above location (x− y) to location x, just in time so

that this mass of firebrands reaches x at time t. Since spotting occurs from

left to right only, it follows that the landing times are always positive, since

we consider only values x− y > 0.

Since there is a finite combustion lifetime for any firebrand, those whose

landing time exceeds the combustion lifetime will be burnt out and unable

to ignite a spot fire. Since the landing time increases with increasing launch

heights, the upper bound on the possible values for heights z contained in the

integral in (2.38) will be a finite number in many instances. In turn, there is

an upper bound the possible time delays from launch to landing.

If we imagine the wind-driven transport process, the launching process,

and the ignition process is very rapid relative to the local spread of fire (valid

in the most extreme fire scenarios), we may make the extreme assumption that

the time-delay t∗ is neglibile in (2.38). With this assumption, we arrive at yet

another simplification, namely to consider an initial value problem for u(x, t)

satisfying

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+

∫ ∞
0

u(x− y, t)S(y) dy

+f(u(x, t), 1)u(x, t).

(2.39)

We will consider initial value problems on R for (2.39), with compactly sup-

ported initial conditions, and our only boundary conditions are that:

lim
|x|→∞

u(x, t) = 0. (2.40)

We now have a single equation, which we will employ for a variety of

purposes. One can think of Equation (2.39) as a model for a quasi-steady

state for the dispersal process, where the non-local dispersal occurs much more

rapidly than the launching of firebrands. Since this will usually be the case in

extreme spotting situations, we expect that the model (2.39) should provide

a reasonable approximation of the delayed equation (2.38) in a variety of fire
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scenarios.

Further, numerical investigations in Section 7.6, of solutions to initial value

problems on R for (2.39), with compactly supported initial data, showed that

such a quasi-steady spreading state emerges after an initial transient, at least

for spotting kernels S which exponentially bounded. Further, even in the

presence of fuel loading v, travelling pulses are shown to spread with constant

shape and speed. The shape and speed may not be influenced by time delays

in all cases, for these types of evolutions.

2.6.3 The diffusion operator L

Referring to the discussion in Section 2.4, the local movement can in general

be accounted for by a term L[u(x, t)] in the differential equation (2.39), so that

we must consider:

∂u(x, t)

∂t
= L[u(x, t)] +

∫ ∞
0

u(x− y, t)S(y) dy

+f(u(x, t), 1)u(x, t),

(2.41)

Here L[u(x, t)] is an elliptic differential operator, given by the right hand

side of either (2.24) or (2.25), as derived in Section 2.3. We are here restricting

ourselves to the case of a homogeneous, isotropic medium, so we simply have

L[u(x, t)] = D
∂2u(x, t)

∂x2
.

2.6.4 The spotting operator S

Given a kernel S(y), which in our case will be the spotting distribution S on

[0,∞), we can extend the kernel S to all of R, by defining a new kernel S̃ :

S̃(y) =

{
S(y), y ≥ 0;

0, y < 0.
(2.42)
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We associate with a density u(x, t) defined on R the spotting operator

S[u(x, t)] :=

∫ ∞
−∞

u(x− y, t)S̃(y) dy. (2.43)

With the above notations, we can rewrite our model (2.41) in the abstract

form:
∂u(x, t)

∂t
= L[u(x, t)] + S[u(x, t)] + f(u(x, t), 1) u(x, t) (2.44)

In Chapter 5 we will determine a variety of operators S, and in Chapters

6 and 7 we will investigate how our choice of kernel S affects the properties of

solutions. In particular we will determine a subclass of our derived kernels for

which we can guarantee existence and uniqueness of solutions in appropriate

spaces of mappings, and investigate wave-like solutions.

2.6.5 The spotting-dominated case

Let us suppose that the influence of local spread is negligible, so that we can

drop the local term. The result is another integro-differential equation,

∂u(x, t)

∂t
= S[u(x, t)] + f(u(x, t, 1) u(x, t) (2.45)

This form of the equation will be useful in our analytic investigation of

accelerating traveling wavefronts, later in Chapter 6. We are motivated by

analytical results for the spread of solutions, with ‘fat’-tailed kernels defining

S, for an equation of very similar form to the recent paper by Yu and Jin [41].

In order to apply their results here we will require assumptions on f , S, and

the initial conditions to be specified, all of which is discussed in Chapter 6.

Physically, there are two distinct important situations we wish to consider.

The first corresponds to prolific, short-to medium-range spotting, as occurs

in Eucalyptus-grassland fires in Australia [31], or in urban-wildland interface

fires [93]. The other is the situation where prolific long-range spotting is

occurring, as occurs in intense crown fires in dense coniferous coverings in

North America [26].
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2.7 Chapter summary

In this Chapter we considered first a discrete-space, discrete-time model for the

spread of an instantaneous expected fire probability ui(t), for t a non-negative

integer, as well as the total fuel loading fraction vi(t). The model explicitly in-

cludes local spread, non-local spread by spotting, and growth/decay analagous

to fire combustion. Our spread environment is one-dimensional, homogeneous,

but anisotropic, since in particular the wind is assumed to point from left to

right.

In subsections 2.2-2.4 we describe several assumptions we make, and the

resulting simplified models. In particular, we assume that launching and the

transport/ignition processes are independent. We discuss possible assump-

tions for the launching probability, and we merely assume that the launching

probability equals the instantaneous fire probability. Implicit in this assump-

tion is that wherever a fire exists, it is in the process of releasing firebrands,

and our assumption of spatial homogeneity implies this release distribution

must be the same everywhere.

We spend some time discussing the transport/ignition probabilities. We

assume constant horizontal wind, and vertical falling velocity, and postpone

a discussion of the validity of these assumptions until Chapter 4. We then

discuss the so-called combustion operator C, which is discussed at length in

Chapter 4, and which describes how the mass of a firebrand evolves with time.

An additional assumption is that the ignition of fuel beds depends only on the

landed mass, and is described by the ignition operator E[m] ∈ [0, 1] which gives

the probability of ignition. We then present an approximation to the spotting

distribution, which accounts only for how the total mass of firebrands evolves

with time.

Next we described how to convert from our discrete-space, discrete-time

transition probabilities, to continuous-space, continuous time densities. The

model for u derived takes the form of a time-delayed i-PDE, where the delay is

the travel time from the launching to ignition point. A simple ODE describes

the evolution of v. Since such time-delayed models are difficult to analyze, we

discuss how we can reduce our system to a single equation for u which does

not contain a time delay. Of particular relevance is the spotting-dominated
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case, which we consider last, where we can ignore the effects of local spread; in

this case non-local spread by spotting will be seen to really drive the invasion.
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Chapter 3

Transport model for firebrands

and the asymptotic landing

distribution

3.1 Chapter Introduction

In this chapter, we will consider a new mathematical model which describes

the transport of combusting firebrands in the atmospheric boundary layer. In

Chapter 2, we used a discrete random walk model (2.26) for the fire probability,

where we assumed that the mean horizontal wind and vertical terminal velocity

were constant.

The new transport-type model considered in this chapter is based on con-

servation laws, and it will allow us to incorporate the various physical or

empirically-derived models already existing in the literature. The physical

models will be discussed in Chapter 4, including models for atmospheric mean

windspeed, as well as firebrand generation and launching, terminal velocity

and combustion, and ignition probabilities. Hence we will be able to deter-

mine spotting redistribution kernels, for the continuous models from Chapter

2, which are based on physically realistic models for the spotting subprocesses.

In this chapter, we keep things abstract, preferring to define our transport-

type model and describe some qualitative features for its solutions. In Chapter

5, we will combine the model derived in this chapter with the physical processes
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described in Chapter 4 to derive a variety of new spotting kernels.

In this Chapter we consider only an impulse release of firebrands, with

firebrands released above the fire, with distribution φ(z,m) for heights z and

masses m, but only at time t = 0 and at location x = 0.

Of course, a real fire will continue to move forward, and there will be

firebrands launched from locations to the right of the fire’s initial location at

x = 0, unless there is a blockage to local spread. One can regard the release

of firebrands from this moving fire as a superposition of impulse releases, and

this is exactly what our i-PDE models from Chapter 2 are meant to emulate.

We must suppose this ‘continuum’ of impulse releases do not interfere with

each other in the transport phase, but can augment each other’s influence

upon landing, and the results can be seen directly in simulations of the i-PDE

models in Chapter 7.

Finally, the issue of release only at time t = 0 can be viewed as a math-

ematical approximation. If, for example, the fire reaches a barrier to local

spread, but there is a town downwind, the fire will burn near the edge of burn-

able material for a finite amount of time. A distribution for spotfires in a such

a situation, confined to a single spatial dimension, was described in [90]. In

more than two dimensions, in general this problem is more challenging since

one must keep track of the local fire perimeter so that knows where spotting

is occurring.

In what follows, we will primarily focus on the one-dimensional model

outlined later in this chapter. Let’s consider again the case where the fire

reaches a barrier to local spread. An alternative to the impulse release is to

replace the delta-function δ(t) with the difference of two Heaviside functions

H, i.e. p(t, x = 0, z,m) = (H(t)−H(t− n)), so that the fire spots up to time

t = n (see Equation 3.4 below for the launch model we employ). We will not

explore this type of release in this chapter, but we could in future work. In this

way the delta function serves as a mathematical approximation: we assume

the launching process is complete at t = 0, and now our task is to track where

the firebrands end up.
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3.2 Transport model for impulse release in the

plane

3.2.1 The vertical launch distribution, spotting distri-

bution

Suppose we have a large fire, burning so that its progress can be idealized as

the progression of a fire front, the latter separating the burned and unburned

regions of the plane.

The burned region Ω is assumed to form a simple closed domain, which

means its boundary is a simple closed curve denoted by δΩ. For points inside

Ω, the fire is burned out.

The unburned region is the complement of Ω in the plane, and it represents

fuel into which the fire front is expanding with time. We will be interested in

how a given fire front progresses into an unburned region. This separation of

the plane according to the fire front is illustrated in Figure 3.1.

In such models, valid at the macroscopic scale, we imagine that burning

takes place only in a narrow region, at the interface between the burned and

unburned regions. One then allows this region to collapse onto the curve

which we denote ∂Ω, by scaling the coordinates appropriately. For simplicity,

we will neglect the effect of topography, so that each point along the interface

is assumed to be at the same height. This assumption is generally valid for

example in dense tree plantings, where we expect the most significant spotting

to occur.

As described in the Chapter 1, the problem of outward curve expansion in

forest fire models has been treated extensively, and used in applications such as

PROMETHEUS [89] or FARSITE [34]. These models are based on Richards’

curve expansion equations [69], which are a system of first-order PDE’s for

the fire perimeter (1.1), and in which the spread in the normal direction is

given by the empirically-based fire behaviour prediction (FBP) system [40].

It should be noted that short-range spotting, up to about 30m, is already

implicitly accounted for in the FBP computations [40].

Spotting models such as that developed by Albini [2] have been incorpo-

rated into curve-propagation models in an ad-hoc way [4], but these spotting
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Figure 3.1: At a given instant of time, the plane is divided by the fire front
into disjoint subsets, according to whether a point has been burned or not.
These subsets consists of the burned region Ω, shown in a darker shade of
red as an ellipsoid in this figure, and the unburned region U := (Ω

⋃
δΩ)c, the

latter shown in green in this figure. The boundary of the burned and unburned
regions is the fire front ∂Ω, and this boundary expands outwards in time as
the fire burns into the unburned region.

models focus on the maximum spotting distance, rather than the downwind

spotting distribution. The advantage of our modeling is that we will be able

to obtain a downwind spotting distribution, which can then be incorporated

into the types of continuous models considered in Chapter 2, for a variety of

fire scenarios, including those where prolific long-range spotting is common.

The final goal of our efforts is to determine a continuous spotting distribu-

tion S(x) ∈ [0, 1], defined for points x in the unburned region U , which will

characterize whether a spot fire will ignite at some future time, at location x,

due to the impulse release of firebrands above ∂Ω at time t = 0. We also assume

that there are no subsequent launching of firebrands. We will consider, as we

do in Chapter 4, detailed models for spotfire generation, launching, transport,

combustion, and ignition. First in this chapter we will derive a model for the

impulse release of firebrands, and their subsequent transport and combustion

through the atmosphere.
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3.2.2 Transport model, initial and boundary conditions

We suppose that at each point along the fire boundary, and not at any point in

the interior, the updraft created by the fire carries a vertical launch distribution

φ(x, z,m) of firebrands, at each location x ∈ ∂Ω, with height z ≥ 0, and with

mass m ∈ [0,m]. Here the upper limit m in the domain of definition denotes

the maximum possible loftable firebrand mass.

The vertical launch distribution is normalized, so that given a release of N

firebrands, the total mass M(x) launched above the point x ∈ ∂Ω is given by

M(x) = N

∫ ∞
0

∫ m

0

φ(x, z,m) m dmdz (3.1)

We interpret the total mass as the product of the total number N of firebrands,

multiplied by the integral whose integrand is the probability to find a firebrand

at x and height z with mass m by the mass m.

To determine the subsequent transport and combustion of the firebrands

launched along the fire perimetre, we introduce the density of firebrands p :

(t, x, z,m)→ R, defined for (x, z,m) ∈ D and t ≥ 0, where

D = U × [0,∞)× [0,m], (3.2)

We interpret the variables in (3.2) as time t, location x, height z and mass m.

The density p is defined so that the mass M(t, x) of firebrands above loca-

tion x ∈ U at time t ≥ 0 is given by:

M(t, x) =

∫ ∞
0

∫ m

0

m p(t, x, z,m)dmdz (3.3)

The boundary conditions for the density p are given by:

p(t, x, z,m) = δ(t)φ(x, z,m), x ∈ ∂Ω, (3.4)

where δ(t) is the Dirac delta functional.

This boundary condition implies that no further firebrands are released

from the main fire for any time t > 0.

It is natural to assume that the firebrand density dies off at spatial infinity,
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p(t, x, z,m)→ 0, |x|→ ∞. (3.5)

It is also natural to assume that the firebrand density decreases to zero

with height, which leads to our final boundary condition,

p(t, x, z,m)→ 0, z →∞. (3.6)

We finally must provide initial conditions. We suppose that initially there

are no firebrands inside, or outside the burning domain when t = 0. Hence we

have:

p(t = 0, x, y,m) = 0, x /∈ ∂Ω. (3.7)

Since we are assuming that no firebrands are created or destroyed after

the initial launch, we are naturally led to a conservation law for the firebrand

density p. We think of the independent variables (x, y,m) as coordinates in a

phase space D, defined by

D = U × [0,∞)× [0,m]. (3.8)

To interpret our conservation law for firebrand density evolution in phase

space, we need to specify the density flux across a unit volume. We define the

evolution flux vector field J for constant t by:

J(x, y,m) := (w1p, w2p, vp, fp) |(t,x,z,m) . (3.9)

We interpret w(t, x, z,m) = (w1(t, x, z,m), w2(t, x, z,m))) as the horizontal

wind velocity vector, so that w1 is the windspeed in the x1-direction, and w2

is the windspeed in the x2-direction. We will only consider the case where

w = w(z), so that mean windspeeds depend only on height z.

The function v denotes the vertical velocity of the firebrand density, and

hence describes the change of height z. We will assume only functional forms

v(t, z,m), so that terminal velocity is independent of position.

The function f is the rate of combustion, and consequently determines the

rate of change of mass during transport. We will consider functional forms

f(t, z,m).
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All considered, none of the rates depend on the density p, which will be

important in what follows.

We are assuming our phase space is a subset of R4, equipped with a Carte-

sian coordinate system (t, x, z,m), for which we define the divergence operator

∇· in the usual way:

∇ · J =
∂(w1p)

∂x1
+
∂(w2p)

∂x2
+
∂(vp)

∂z
+
∂(fp)

∂m
, (3.10)

where x = (x1, x2) are coordinates in the plane.

The continuity equation for our system, which describes the conservation

of firebrand density, can thus be expressed:

∂p

∂t
+
∂(w1p)

∂x1
+
∂(w2p)

∂x2
+
∂(vp)

∂z
+
∂(fp)

∂m
= 0. (3.11)

Our full model then consists of the PDE (3.11), together with boundary

conditions ( (3.4), (3.5), (3.6) ), as well as the initial condition (3.7).

3.3 Impulse-release, transport-type model for

combusting firebrands

3.3.1 The characteristic equations and their solution

operators

Let us recall our transport model derived in the first section of this chapter,

for an impulse release of firebrands. We would like to determine the so-called

asymptotic landing distribution L(x,m), which is the density of landed masses

m at location x = (x1, x2), which land due to the impulse release at time

t = 0. The method of characteristics is typically used to produce solutions

for conservation laws such as (3.11). We review this method and the kind of

solutions it produces in Appendix A.

We recall that the transport-type model is given by Equation (3.11), which

for the functional forms for w1, w2, v and f described in the preceding section,
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is linear with respect to the dependent variable p:

∂p

∂t
+
∂(w1p)

∂x1
+
∂(w2p)

∂x2
+
∂(vp)

∂z
+
∂(fp)

∂m
= 0

where x = (t, x, z,m) ⊂ [0, T ] × D, and D is the phase space for our model,

determined in Equation (3.8).

Assuming that the functions w1, w2, v and f are smooth, we can rewrite

Equation (??) in the form:

∂p

∂t
+ w1 ∂p

∂x1
+ w2 ∂p

∂x2
+ v

∂p

∂z
+ f

∂p

∂m
+ p

∂w1

∂x1
+ p

∂w2

∂x2
+ p

∂v

∂z
+ p

∂f

∂m
= 0.

The first set of characteristic equations (see [33] or Appendix A), for a

curve (t(s), x1(s), x2(s), z(s),m(s)) with parameter s, in vector form are given

by:

(
dt

ds
,
d(x1)

ds
,
d(x2)

ds
,
dz

ds
,m′) =

(
∂F

∂ ∂p
∂t

,
∂F

∂ ∂p
∂x1

,
∂F

∂ ∂p
∂x2

,
∂F

∂ ∂p
∂z

,
∂F

∂ ∂p
∂m

)
= (1, w1, w2, v, f). (3.12)

By choosing s = t, solving the first equation, then we can parameterize our

so-called spatial characteristic curves in terms of the time parameter. These

curves solve the equations:

dx1

dt
= w1(z),

dx2

dt
= w2(z),

dz

dt
= v(t,m),

dm

dt
= f(t, z,m), (3.13)

where the arguments appearing on the right hand sides of the preceding equa-

tions incorporate all the functional forms which we will consider in this later

in Chapter 4.

The above system of ordinary differential equations must be equipped with
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initial conditions

y(0) := (x1(0), x2(0), z(0),m(0)). (3.14)

Although the equations (3.13) were derived under assumptions of smooth-

ness, we can consider a generalized type of solution for which we will assume

that the functions w1, w2, v, and f appearing in (3.13) are each locally Lip-

schitz continuous. With this assumption there exists a unique continuously

differentiable solution of the equations (3.13).

It will be useful to introduce the notion of a solution operator Φ(t, y(0))

corresponding to the Equations (3.13) with initial conditions given by y(0) as

in (3.14). The solution operator is defined in terms of the unique solution to

the IVP for by:

(x1(t), x2(t), z(t),m(t)) =: Φ(t, y(0)), t ≥ 0. (3.15)

Corresponding to a given solution operator, there is a unique inverse operator

which we denote by Φ(−t, y) = y(0).

Next consider the total derivative:

dp

dt
(t,Φ(t, y(0))) =

∂p

∂t
(t,Φ(t, y(0))) +

∂Φ

∂t
(t, y(0))) · ∇p(t,Φ(t, y(0))). (3.16)

Employing the property of the solution operator:

∂Φ

∂t
(t, y0) = (w1, w2, v, f), (3.17)

we can rewrite Equation (3.16) as:

dp

dt
(t,Φ(t, y(0))) =

∂p

∂t
(t,Φ(t, y(0))) (3.18)

+ (w1, w2, v, f) · ∇p(t,Φ(t, y(0))).

Now, when one examines the differential equation in (3.12), and considering

the expressions given in (3.17) and (3.18), we see that we can rewrite the

transport equation (3.11) in the form:

dp

dt
(t,Φ(t, y(0))) = −p(t,Φ(t, y(0))) ∇ · (w1, w2, v, f). (3.19)
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In the next subsection we will investigate problems of existence and unique-

ness for Equation (3.19).

3.3.2 Global existence and uniqueness of solutions in L1

and L∞

This subsection requires some notation and ideas, in particular the Banach

spaces L1(D) and L∞(D), both of which are discussed in Appendix B. In what

follows D given in (3.8) defines the phase space for our problem. We will show

that the regularity of the solutions to our impulse IBVP for the transport

process (3.19) depends on the initial conditions.

One reason for looking at less smooth solutions will be evident after Chap-

ter 5, where we will first discuss the spotting distribution S(x). We will there

derive kernels S which are both exponentially bounded, and exponentially

unbounded. In particular, while exponentially bounded kernels are both in-

tegrable and essentially bounded, exponentially unbounded kernels will not

be integrable, but will be essentially bounded. Hence we are interested in

solutions in L∞(D) as well as integrable functions.

Let us assume ∇ · (w1, w2, v, f) is uniformly bounded in L∞. Let us define

A so as to denote the negative of the divergence map for fixed (w1, w2, v, f):

A(t) := −∇ · (w1, w2, v, f). (3.20)

Then using this notation, we can rewrite Equation (3.19) as:

dp

dt
(t,Φ(t, y(0))) = A(t) p(t,Φ(t, y(0))), (3.21)

which is linear in p. Solving the latter, we obtain the solution along charac-

teristics:

p(t,Φ(t, y(0))) = exp (

∫ t

0

A(s)ds) p(0, y(0)). (3.22)

So we see that the initial conditions p(0, y(0)) play an important role in

our formula for the solution (3.22). Having an explicit formula for the solution

allows us to say much about the structure of solutions.
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Theorem 3.1: For the impulse IBVP consisting of the PDE (3.11), together

with boundary conditions ( (3.4), (3.5), (3.6) ), as well as the initial condi-

tion (3.7), we have:

1. If the initial condition p0 ∈ L∞(D), then so is the solution p.

2. If the initial condition p0 ∈ L1(D), then so is the solution p.

Proof. 1. To deal with the first statement, we suppose initial condition

p0 ∈ L∞(D). Then computing the norm of the solution, we find:

||p(t)||∞ = ||exp (

∫ t

0

A(s)ds) p(0, y(0))||∞

≤ ||p0||∞exp (||A||∞
∫ t

0

ds) <∞. (3.23)

This shows that the solution is bounded on any interval of the form [0, T )

for any T > 0, and hence we have global existence and uniqueness.

2. To prove the second statement, suppose the initial condition p0 ∈ L1(D).

Again computing the norm of the solution, we find:

||p(t)||L1 = ||exp (

∫ t

0

A(s)ds)p(0, y(0))||L1

≤
∫
D

exp (||A||∞
∫ t

0

ds)p(0, y))dy

≤ exp (||A||∞t)
∫
D
p(0, y) dy

= exp (||A||∞t); ||p0||L1<∞. (3.24)

Again we see our solution is bounded in L1(D) for all t ∈ [0, T ] for some

T > 0.

Our family of solution operators are solutions to a possibly non-autonomous

Cauchy problem, since the operator A(t) may depend on t. We would like to

characterize the solution family as an evolution semigroup [72].

Definition: A family {U(t, s)}t≥s of bounded linear operators on a Banach

space X is a strongly continuous evolution family if:
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1. U(t, s) = U(t, r) U(r, s), t ≥ r ≥ s.

2. U(s, s) = I, where I is the identity on X.

3. The map (t, s)→ U(t, s) is strongly continuous.

We can then define a strongly continuous evolution semigroup on L∞(R),

namely {T (t)}, according to the definition [72]:

(T (t)f)(s) := U(s, s− t)f(s− t), (3.25)

for f ∈ L∞(R).

Theorem 3.2: Consider the IBVP outlined in Theorem 3.1. In the context of

our problem, the strongly continuous evolution family is given by

U(t, s) := exp (

∫ t

s

A(v)dv), (3.26)

where U(t, s) acts as a multiplication operator. The semigroup T (t) defined

in (3.25) forms a strongly continuous evolution semigroup in L∞(R),

Proof. We will establish that U(t, s) defined in (3.26) forms a strongly contin-

uous evolution family. Notice that:

U(t, s) = exp (

∫ t

s

A(v)dv)

= exp (

∫ r

s

A(v)dv +

∫ t

r

A(v)dv)

= exp (

∫ r

s

A(v)dv) exp (

∫ t

r

A(v)dv)

= U(t, r) U(r, s), (3.27)

which establishes the first property.

From the definition (3.26), it is clear that U(s, s) = 1, the identity on

L∞(R). Further, since U(t, s) is an exponential function, and A(t) is con-

tinuous (since it is a linear mapping which is assumed bounded), the map

(t, s)→ U(t, s) is strongly continuous. This completes the proof.
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3.4 The landed branches L and the asymptotic

landing distribution L

In this section we will use an argument described in the thesis by Robbins

[70], where he determined a similar asymptotic distribution in the context of

seed dispersal. The transport process used in [70] is described either by an

advection-reaction diffusion equation, or by stochastic differential equations.

Let us suppose that up to some time T > 0 we have a unique solution p, as

would be guaranteed for example by the results in the preceding subsection.

Since we are only interested in firebrands which land on the canopy (we do not

consider within-canopy winds or resettling), we introduce the landed branches

distribution L(t, x1, x2,m) by

L(t, x1, x2,m) :=

∫ t

0

p(s, x1, x2, H,m)ds. (3.28)

The landed branches distribution can be integrated, against m, to determine

the total mass which lands at location (x1, x2) by time t.

Remark: In the limit where the launching heights are very large, and we are

interested mostly in the ‘tail’ of the landed branches distribution, then at

least for our constant-velocity models, we can approximate H ≈ 0. We

are interested in this case in firebrands which travel a long distance, and

relatively uninterested in local dispersal, so relative to the scale of such

dispersal a typical canopy height H is very small.

Thus L is the density of firebrands of mass m which have landed at (x1, x2)

on the canopy by time t. Also of interest is the asymptotic landing distribution

L(x,m), defined by

L(x,m) := lim
t→∞

L(t, x,m). (3.29)

The asymptotic landing distribution describes the density of firebrands

with mass m which will eventually land at location x = (x1, x2). We will

revisit this concept later, when we discuss continuous models for the spotting

distribution S(x) in Chapter 5.
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3.4.1 The one-dimensional case

To make our models more analytically approachable, in this section we return

to the case of a line fire, which propagates as a line in the direction of increase in

the single spatial variable x, as outlined in the introduction to the first chapter.

That is, in the horizontal direction we are only concerned with movement in

the x1 := x direction, where the x2-direction is assumed parallel to the fire

front.

The transport model in this case reads:

∂p

∂t
+
∂(wp)

∂x
+
∂(vp)

∂z
+
∂(fp)

∂m
= 0. (3.30)

The characteristic equations for this first-order PDE are the same as those

described in (3.13), except that the first spatial equations degenerate to a

single equation for the coordinate x:

dx

dt
= w(z),

dz

dt
= v(t,m),

dm

dt
= f(t, z,m). (3.31)

The initial conditions for the characteristic equations are chosen in terms

of the launching distribution φ(z,m), at location x = 0.

If we assume a homogeneous medium, then we have a single launching

distribution φ(z,m), assumed to be launched at time t = 0 at location x = 0.

The boundary conditions then reduce to:

p(t, 0, z,m) = δ(t)φ(z,m), (3.32)

where again δ(t) denotes the Dirac delta functional.

Hence we are supposing that no further firebrands are released from the

main fire for any time t > 0. We will also assume again that initially there are
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Φ(z,m)

z

L(x,m)

"Flight and 
burning"

Figure 3.2: Determining the “flight and burning” distribution L from the
vertical launch distribution φ. The “flight and burning” refers to the physical
details of firebrand flight and combustion, which we will discuss in the next
chapter. Shown in the vertical is a cross-section of the launching distribution
φ(z,m), which is then tracked via the density p(t, x, z,m). By examining the
landed branches L(t, x,m), which is the density of branches on the ground, we
determine in the limit as t→∞ the asymptotic landing distribution L(x,m)
as in (3.29). A possible asymptotic landing distribution is plotted here in the
horizontal.

no firebrands in flight ahead of the front, so that

p(0, x, z,m) = 0, x > 0. (3.33)

It will be our goal to determine what forms are possible for the asymptotic

landing distribution L(x,m) =
∫ t

0
p(s, x,H,m) ds, where H is the canopy

height. This was defined at the end of the previous section, and the formulas

(3.28) and (3.29) apply in this context, except now we have x ∈ [0,∞). The

distribution L(x,m) is dependent on the launching distribution φ(z,m), as

illustrated in Figure 3.2.
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3.5 Chapter summary

In this Chapter, we introduced a model for firebrand transport and combus-

tion, and described qualitative properties of its solutions. We showed how

it can be used to obtain the asymptotic landing distribution L(x,m), which

describes how an impulse release of firebrands leads to a landing distribution

at point x ∈ [0,∞) and m ∈ [0,m].

In the following chapters, we will largely focus on the one-dimensional

case, in the interest of mathematical analysis. In Chapter 4 we will examine

a variety of physical models for firebrand generation, launching, transport,

and combustion. The latter in turn will provide functional forms for the right

hand sides (w, v, f) appearing in the characteristic equations, the launching

distribution φ(z,m).

In addition, we will describe the ignition operator E(m), which gives the

probability that a mass m will ignite a fuel bed in a homogeneous medium.

After explaining our physical models for firebrand ignition and transport,

we will revisit the asymptotic landing distribution in Chapter 5, and obtain

from it the spotting distribution kernel S(x) ∈ [0, 1], which gives the probability

of a spotfire occurring at location x, due to an impulse release as described in

this section. The spotting distribution discussed in Chapter 5, and will provide

a candidate for the spotting kernel appearing in our models in Chapter 2.

From this we generalize the i-PDE models considered in the second chapter.

The reader will recall that there we assumed a constant windspeed w and

falling speed v, and this resulted in a constant landing time t∗(x) = x/w, the

latter being the travel time from launch to landing. We will obtain, in Chapter

5, a host of possible spotting kernels, by generalizing the falling time to include

more physical wind profiles. These will include exponentially bounded, and

exponentially unbounded kernels, and we will see very different behavior for

the i-PDE models depending on whether the kernel is bounded or not.

55



Chapter 4

Models for firebrand generation,

combustion, transport and fuel

bed ignition, new and old

4.1 Chapter Introduction

In this chapter we will discuss the modelling of physical subprocesses that are

involved in the spotting problem. We will review the extensive literature in

this area, and derive mathematical models for the firebrand mass distribution,

plume models and the vertical launch distribution, firebrand combustion and

temperature, vertical and horizontal transport speeds, and ignition probabili-

ties.

By considering all the possible permutations of the models considered here,

when we derive the spotting distribution in Chapter 5, we obtain an enormous

number of possible spotting distributions. Our goal is not consider to deter-

mine the corresponding spotting distributions for all such permutations, but

rather to synthesize the existing physical and empirical submodels into the

spotting distribution in the next chapter.

This chapter need not be read straight through; the Table 4.8 in the final

section of this chapter summarizes the models, and a given model can be

referred back to as needed. The reader interested in determining the spotting

distribution, as in Chapter 5, should read, at least, the subsection concerning
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the combustion operator C, and Section 4.7 in which we introduce the ignition

operator E[m]. Also of great importance is Subsection 4.5.2, where we describe

the type of spotting considered in this thesis.

4.2 Firebrand distribution generated from burn-

ing vegetation

4.2.1 Experimental results and challenges

Firebrand generation refers to the release of burning plant material, i.e. fire-

brands, from a wildfire. Unfortunately, there are only a few quantitative ex-

perimental studies which measure the important characteristics of such fire-

brands in relation to their ignition efficiency, in terms of type, mass, length,

and effective diameter.

Prior to the beginning of this thesis, there were no studies on this subject.

A series of studies by Manzello and colleagues ([53], [54], [55]) were a first

step in the right direction. These experimental studies investigated firebrands

emitted from the controlled burning of either pine or fir trees. The experi-

menters responsible for the Manzello studies are continuing their research at

the Building Research Institute in Japan [55], and with time hopefully a more

complete description of the firebrand distribution will emerge.

A prior investigation of Babrauskas [13] determined that Douglas fir trees

with moisture content greater than seventy percent will not sustain burning

after ignition; between thirty and seventy percent moisture results in partial

combustion, and below thirty percent moisture content complete combustion

occurs. The authors in [54] confirmed that Douglas fir do not emit firebrands

if the moisture content exceeds thirty percent and no external moisture is

applied. Complete combustion typically occurs within twenty seconds after

ignition in extreme burning conditions.

In the Manzello experiments, trees both 2.6 metre and 5.2 metres tall were

investigated. For each tree, more than 70 firebrands were collected. These were

all cylindrical in shape. The average firebrand length and diameter for the 2.6

metre class was 40 mm in length and 3 mm in diameter, while for the 5.2 metre

class the average was 53 mm in length and 4 mm in diameter. The most recent
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of the experiments, on Korean pine [54], confirmed that the distribution was

approximately the same. The total number of firebrands collected numbered

almost 1000.

With respect to mass, all three studies indicate that between 60 and 80

percent of the firebrands have masses less than 0.1 grams. Further, for both

pine and fir taller trees produce larger firebrands, with the largest found at

about 5 grams. In addition, between 58 and 65 percent of the firebrand mass

is needles, which are insignificant in long-range spotting, but may be effective

at igniting local fuel in short-range spotting [38]. When one removes the

needles from the mass distribution, one ends up with a very different-looking

distribution, which we call the ‘effective mass’ distribution.

Of course, we must be open to considering a variety of possible firebrand

mass distributions, since the data only covers a small subset of the possible

distributions. For example, with stronger winds or larger trees, we would

expect to see a greater proportion of large firebrands, as suggested by the

Manzello studies [54]. We have also not considered other types of firebrands

such as pine cones or Eucalyptus bark, which can be very dangerous as a

spotfire risk [37].

Fortunately, the framework developed in this subsection and the next will

allow us to formulate very general models, so that when more detailed ex-

perimental information is available, we can incorporate this information to

make our models more realistic. In the next two subsections, we present

experimentally-derived models for the mass probability distribution µ(m),

which we assume varies continuously on [0,m], where m is the maximum

loftable firebrand mass.

4.2.2 Model G1: Regression analysis on Manzello’s data

In order to determine a functional form for the effective mass distribution, we

reproduced the histograms from ([54], [55]), an example of which is shown in

Figure 4.1.

In general between 60 to 70 percent of the mass is needles as discussed in

section 4.2.1, which are negligible for long-range spotting. We decided to use

linear regression to try to find a mass distribution µ(m), 0 ≤ m ≤ m. Before
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Figure 4.1: The mass distribution for the 5.2m Douglas fir firebrands, re-
produced from the histogram in [47]]. The histograms for the other taller
specimens for each species studied are similar. Along the x-axis we plot fire-
brand mass in grams. It should be noted that most of the masses which are
less than or equal to 0.1 grams are needles, which make up about 70 percent
of the total distribution, and which are insignificant for long-range spotting.

doing this, we first removed the needles lying in the 0.1 gram mass class, to

obtain an effective firebrand distribution. To do this, we used Mathematica’s

FindFit command, which performs least-squares regression analysis on data

points chosen from the histograms, employing the functional form:

µ(m) = am−b, 0 ≤ m ≤ m. (4.1)

We set m = 4, corresponding to the maximum firebrand mass of about 4

grams. Then we found b = 1/2, and chose a = 1/4 for normalization. We

found this was a better fit than an exponential form.
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4.2.3 Model G2: Models obtained from burning slash

Another firebrand distribution was suggested in [90], which relates the possible

radius r of a firebrand to the mass consumption rate mf , in the form:

p(r) =
αmf

rσ
√

2π
exp

(
−1

2σ2
log (r/r0)2

)
, (4.2)

where r0 and σ were parameters determined by regression analysis, and α

represents the the number of firebrands generated per unit mass.

If we assume a relationship of the form m = m(r) = ρV (r), where ρ is the

density and V (r) is the firebrand volume, then from (4.2) we find the mass

density:

µ(m) =

∫ ∞
0

δ(m−m(r))p(r)dr, (4.3)

where δ denotes the Dirac delta distribution.

Remark: From the experiments of Manzello described in this chapter, it was

found that approximately one percent of the total mass lost during com-

bustion appeared as firebrands. This could inform our parameter α, and in

turn determine the total mass and total number of firebrands released when

a given number of trees begin to spot.

4.3 Firebrand combustion

4.3.1 The combustion operator C and its inverse

Several combustion models have been proposed in the literature, and the inter-

ested reader is invited to peruse the review in [93]. They are usually modeled as

continuous-time processes, so we will present functional forms for the density,

effective radius, or simply the mass as functions of time.

Suppose the mass m(t;m0) is the unique solution of the initial value prob-

lem
dm

dt
= f, m(0) = m0. (4.4)

Physically this means given a mass m0 which is combusting, m(t;m0) is the

mass of the same object observed t units later, and f is the rate of combustion.
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We introduce the operator C, defined

C(m0, t) := m(t;m0). (4.5)

We call C the combustion operator, and the right hand side f in the differ-

ential equation for m(t) is to be specified. The assumption of a unique solution

for the initial value problem places constraints on the function f .

Similarly we can define the inverse mass-solution operator C−1(m, t), which

is the unique solution to the initial value problem dm
dt

= −f,m(0) = m at time

t ≥ 0.

Remark: Before continuing, it is important to note that the combustion pro-

cess does not continue past the point where the firebrands have masses less

than or equal to zero. Hence the combustion operator is only defined up to

the burnout time tb, and similarly for its inverse.

To illustrate with a simple example, suppose the burning rate is a constant

f < 0, then we have m(t) = m(0) + ft < m(0), and C(m0, t) = m0 + ft. Then

C−1(C(m0, t), t) = m0.

Remark: The combustion operator C corresponding to Equation (4.5) is the

continuous-time, continuous-space analogue of the discrete combustion op-

erator introduced in Chapter 2, described in the paragraph leading to the

definition (2.14).

4.3.2 Model C0: Constant burning rate

While not as physically realistic, in several points of this discourse we discuss

models where the burning rate, say f > 0, is constant. Given an initial mass

m0, our first and simplest model for m(t) is:

m(t) = m0 − ft, (4.6)

so long as m(t) > 0.
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4.3.3 Model C1: Tarifa’s original experiments and mod-

els

The first experiments on the density and shape changes in combusting fire-

brands was carried out by Tarifa and collaborators at the Aerospace Corpo-

ration [2]. This data was fit by regression analysis obtained from windtunnel

experiments, where both spherical and cylindrical firebrands were examined

under a variety of ambient windspeeds.

Suppose ρ(t) represents the density of a firebrand at time t, and ρ(0) is the

initial density. Then Tarifa found the density varied:

ρ(t) =
ρ(0)

1 + ηt2
, (4.7)

where the constant η = 2.86× 10−4 is determined from regression analysis.

4.3.4 Models C2, C3: Caricatures of Tarifa’s model

C2 A common observation is that initially firebrands lose mass slowly, but

gradually this mass loss increases over time. If we assume that the fire-

brand transport process is very rapid compared to the firebrand combustion

timescale, we could assume that the change in shape is negligible. We then

could employ an analogue of Tarifa’s density evolution for the mass m(t),

namely

m(t) =
m(0)

1 + ηt2
. (4.8)

C3 If we take case C2 to its extreme, sending η → 0, then the trans-

port process is seen instantaneous compared to the combustion process, so we

assume

m(t) = m(0). (4.9)
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4.3.5 Model C4: Tse and Fernandez-Pello’s improve-

ments

Tse and Fernandez-Pello revisited Tarifa’s data set [85], and determined the

model which best fit the data for the effective radius evolution is:

r(t)4 = r(0)4 − χβ2t2

16
. (4.10)

Clearly the latter is only defined while r(t) > 0, which implies a finite burnout

time. Here the parameter χ depends on the wood species and moisture content

of the firebrand, and β is described below in the derivation of Equation (4.15).

Based on Tarifa’s data, the parameter χ = 3.5 gave the best fit [88].

To determine the mass m(t), we first employ the simple relation:

m(t) = ρ(t)Vol(r(t)), (4.11)

where Vol(r(t)) is the volume of the firebrand, and hence dependent on the

radius r(t).

As a simple example, suppose the firebrand is approximately spherical, so

that Vol(r(t)) = 4
3
πr(t)3. Then we combine Equations (4.8) and (4.10), so

that the mass evolution (4.11) is given by

m(t) = ρ(t)
4

3
πr(t)3

=
4

3

ρ(0)

1 + ηt2

(
r(0)4 − χβ2

16
t2
)3/4 (4.12)

Taking for example cedar wood as representative of forest fuel, as did the

authors in [16], the initial density ρ(0) of the firebrands would be 513 kg/m3,

while in the experiments of Manzello [54] he found radii ranging from one half

to five centimetres.

Remark: Another important result following the analysis in [88], is that one

can reasonably approximate extinction of the firebrand to occur once:

m(t)

m0

= mc, (4.13)
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where mc is a critical mass ratio which depends on the wood species.

Beyond this point all that remains is non-flaming char, whose temperature

then decreases according to Equation (4.23) described in the next subsection.

From regression analysis in [88], we find mc = 0.24 for maple and pine.

4.3.6 Model C5: Including more physical realism

Another model has been derived in [16], and is based in part on experimen-

tal fitting of data by Tse and Fernandez-Pello [88]. It is based on Nusselt’s

physically-motivated combustion theory, known as ‘shrinking drop theory’

([16],[42]).

We include a discussion of the model here because, as we will see later, the

firebrand’s burning temperature may influence its flight path significantly [16].

In Nusselt’s combustion theory, the firebrand’s surface is assumed to be

held at constant temperature, maintaining its geometrical shape while a py-

rolysis wave propagates inward. One employs the so-called Frossling relation,

in which we define the effective mass diameter deff, and an experimental con-

stant β, such that:
d

dt
(deff)2 = −β. (4.14)

The constant β, introduced earlier in Equations (4.10) and (4.12), is de-

termined physically from the equation:

β = β0
(
1 + 0.276R1/2

e S1/3
c

)
, (4.15)

where on the right hand side we have the Reynolds number Re, and the

Schmidt number Sc, and an experimentally determined constant β0.

The Reynolds number Re = 2|v|r
νair

, where |v| is the firebrand’s speed relative

to the surrounding air, r is the firebrand radius, and νair is the kinematic

viscosity of the surrounding air[16]. Re is a dimensionless constant which

measures the ratio of the effects of inertia to viscosity for the firebrand.

The Schmidt number Sc is a dimensionless constant which gives the ra-

tio for viscosity to mass density, for mass-transfer problems. For air Sc is

approximately constant, i.e. Sc ≈ 0.7 for a wide range of temperatures.

Based on the data from [88], which was computed experimentally for fire-
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brands with temperatures at about 993 K, we find the constant β0 which

appears in Equation (4.15) to be β0 = 4.8× 10−7 mˆ2/s.

Employing Tarifa’s model for the density evolution ρ (4.7), and the solution

to the differential equation for deff, the firebrand mass m is then approximated

by:

m = ρπd3
eff/6. (4.16)

4.3.7 Model C6: Albini’s combustion model within line

thermals

A final model was derived by Albini [3] in the context of firebrand transport

by line thermals. Line thermals are well-mixed horizontal columns of warm

air which rise above large forest fires, and are subsequently transported in

a coherent manner downwind. Albini modeled line thermals as well-mixed

cylinders of air rising above a fire.

If we assume that a firebrand has mass density ρ(t), and terminal velocity

v relative to the line thermal, Albini’s model reads:

d

dt
ρ(t) = −kρ(t)v, (4.17)

where the constant k = 8.15×10−3 was chosen to match wind-tunnel data [3].

4.3.8 A model for firebrand temperature

A model for firebrand temperature based on energy conservation is given

in [16]. Let us define the density ρ, volume V , specific heat capacity at constant

pressure cp, and surface area A for a given firebrand.

Then the temperature T (t) appears in the energy conservation equation,

(ρV c)
DT

Dt
= −A(qconv + qrad) (4.18)

where the terms qconv and qrad, appearing on the right hand side in the latter

equation, represent the heat loss due to convection and radiation; the notation
DT
Dt

represents the material derivative of T along the firebrand’s trajectory.
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The convective heat flux can be modelled by Newton’s law of cooling [16],

qconv = h(T − Ta), (4.19)

where h is an average heat-transfer coefficient, and Ta is the ambient temper-

ature.

To determine the heat-transfer coefficient, we first introduce the average

Nusselt number Nu,

Nu = 2 + 0.6Re1/2Pr1/3, (4.20)

where Pr the Prandtl number for air, and Re is the Reynolds number as

described following Equation (4.15) [16].

The Prandtl number is a dimensionless constant which measures the ratio

of viscosity to thermal diffusivity. For example, when Pr << 1, heat diffuses

quickly compared to momentum. For air, we have Pr ≈ 0.70 [16].

Then the average heat transfer coefficient is given by:

h =
kairNu

2r
, (4.21)

where kair ≈ 2.7× 10−2 mˆ2/s is the thermal conductivity of air, and r is the

firebrand’s radius.

The radiative heat flux can be approximated by the Stefan-Boltzmann law,

which states:

qrad = σε(T 4 − T 4
a ), (4.22)

where σ is the Stefan-Boltzmann constant, and ε is the emissivity. From

experiment, ε = 0.9.

It follows that the energy balance equation for the temperature evolution

can be written:

dT

dt
= − 6

ρV c2 r(t)

[
h(T − Ta) + σε(T 4 − T 4

a )
]
. (4.23)

This can be solved assuming the firebrand is initially at flaming tempera-

ture, e.g. T (0) = 993 K, to determine the temperature evolution once flaming

combustion has halted when m = mc.
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4.4 Terminal velocity

4.4.1 Drag, gravity and terminal velocity

Firebrands which are being lifted in the fire’s convection column are doing so,

because the plume’s upward drag force exceeds the firebrand’s weight. Since

the plume’s drag decreases with height, the drag is eventually balanced by

the firebrand’s weight, at which point the firebrand discontinues accelerating

in the vertical direction. We say that the firebrand has reached its terminal

velocity relative to this particular flow.

Similarly, firebrands traveling in the atmosphere experience drag. In or-

der to accurately model the transport of firebrands in the atmosphere, it is

important to model the drag experienced by the firebrand.

It is common to assume that either the drag is proportional to the object’s

speed, or speed squared, depending on the Reynolds number for the flow. For

firebrands, it is more accurate to model drag as proportional to the speed

squared, since we have a relatively high Reynolds number flow [16].

Let’s denote the drag force by D. Then the speed-squared assumption is

generally written:

D =
1

2
CdρaAv

2, (4.24)

where ρa refers to the mass density of the ambient fluid, and the object is

assumed to have constant cross-sectional area A.

The parameter Cd appearing in Equation (4.24) is called the drag coeffi-

cient. This is a dimensionless number, with values typically ranging between

0.001 and 2, assumed to vary with shape. This constant is typically determined

by experiment.

Mathematically, Newton’s Second Law then provides us with an expression

for terminal velocity. If we focus on the vertical direction, the balancing of the

drag force D with the weight W implies:

0 = Drag−Weight

=
1

2
CdρaAv

2 −mg. (4.25)
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Solving for v in Equation (4.25), we obtain an expression for the terminal

velocity:

v =

√
2mg

CDρaA
. (4.26)

4.4.2 Model V1: Constant terminal velocity

The general expression for a firebrand’s terminal velocity v as given in Equa-

tion (4.26) depends on the experimental determination of appropriate parame-

ters. The first effort in this direction was conducted by the Aerospace Corpora-

tion in the 1960’s [75], which consisted of windtunnel experiments on spherical

and cylindrical firebrands.

These experiments found that the firebrands quickly attained their terminal

velocity and configuration, for a variety of windtunnel windspeeds. Similar

windtunnel experiments performed recently by Ellis [31], on Eucalyptus bark

from Australia, found similar results.

While moving through the atmosphere, where the windspeeds tend to in-

crease as a function of height, it is natural to assume that firebrands quickly

attain terminal vertical velocity v. The simplest assumption (V1) is to assume

the terminal velocity does not change during transport.

4.4.3 Model V2: Experimentally determined model

Experimental analysis on the Aerospace Corporation’s experiments, appearing

in [63], revealed that for the cylindrical firebrands in the study the mass m(t)

is related to the terminal velocity v(t) according to:

v(t) = v(0)

(
m(t)

m(0)

)1/2

. (4.27)

Since m(t) is decreasing due to combustion, this means that the terminal

velocity is also decreasing with time.
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4.5 Firebrand lifting in the fire’s convection

column

4.5.1 Definition and characteristics of wildfire plumes

As stated earlier in this chapter, the greatest challenge in modelling spotting

is to determine how many firebrands, distributed according to their various

characteristics, are both generated and subsequently launched into the atmo-

sphere. The latter process takes place in the high-velocity, buoyancy-driven

flow induced by the combustion at the surface.

A fire plume is a vertically rising column of gas resulting from heating from

below by the fire’s flame [68]. The plume of a wildland fire is often called its

convection column [90]. A fire plume is principally buoyancy driven, meaning

the upward flow in the plume results from an increase in temperature (or

consequent decrease in fluid density) [68].

Any fire plume is more likely to be turbulent than laminar, and most

of our knowledge about plumes is experimental, rather than purely theoret-

ical [68]. In addition, in the case of a wildland fire, there is a complicated

interaction between the atmosphere and the fire, hereafter referred to as fire-

atmosphere interactions. This results in a distortion of the plume relative to

constant-wind conditions. The fire-atmosphere interaction has been exten-

sively studied from experiments, and from physics and numerical experiments

([1],[2],[16],[23],[24],[22],[27],[28],[59],[64],[66],[76],[83],[84]).

Experimental measurements of Rouse [72] determined that the normalized

vertical plume velocity Up, and temperature T of a turbulent plume, generated

by a small source, have Gaussian profiles in horizontal cross-sections across the

plume.

These Gaussian profiles are approximate solutions to the full Navier-Stokes

equations with combustion and buoyancy, which govern the fire plume’s be-

haviour [68]. A completely accurate physical model is complicated by the

fact that there are multiple of scales of turbulence acting on the fire plume.

At fine scales, high-frequency turbulence is responsible for fuel-oxygen mixing

and local combustion, while at large scales one observes the global ‘engulf-

ment’ of ambient air by the large eddy structures which curl around outside
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the plume [68].

There has been recent work which suggests that the fire-atmosphere inter-

action results in distinctly non-Gaussian distributions [16]. In the physically

realistic computer simulations of grass fire plumes of [16], which employs a

Large Eddy Simulator to model the atmospheric winds, the time-averaged ve-

locity profiles are not observed to be Gaussian. Further, the authors of this

paper call into question the validity of the so-called Baum and McCaffery

forest fire plume, which has been used widely in literature and in practice.

Their research suggests that the latter model, discussed in detail in the next

section, may only be appropriate for modelling the convection column above

a stationary fire [16].

As a final encouraging note, one can think of several important fire situ-

ations where stationary fires could produce spotting, such as when a fire is

approaching the wildland-urban interface [90], or an extended obstacle as in

the problem of spotfire breaching. This situation will be briefly discussed in

Chapter 5.

4.5.2 The types of spotting considered in this thesis

Depending on the convection column, there are seven types of spotting [73].

We want to be clear about the types of spotting which our impulse-release

model can describe.

A type 1 fire consists of a very powerful convection column, with light

surface winds, which rises vertically into the atmosphere. A type 2 fire is

similar, but the distinction is the presence of strong surface winds, which can

lead to spotting [73]. Since we model a vertical release, these fire types are

one of the main focuses of this thesis.

Spotting types 3 and 7 consist of spotting over mountainous topography, so

our models as they stand would be inadequate to model this type of situation.

Another extreme spotting situation [73] is a type 4 fire, where strong winds

aloft cause the shearing off of the top of the convection column. The result

is a nearly horizontal column aloft, which rains firebrands down well ahead of

the main fire. Clearly our boundary conditions as they stand cannot account

for this type of release. In future work, by considering the sheared-off portion
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of the column as a line thermal, as in the work by Albini [3], we could perhaps

obtain initial conditions based on release from such a thermal.

We could consider our model from Chapter 3 as an approximation to spot-

ting type 5, where the convection column leans towards the strong winds but

does not break off, and short and long range spotting is possible [73]. The more

intense the fire, the straighter the convection column, and the more intense

the wind, the more horizontal the convection column. In future work we could

consider initial conditions along a slanted line, which would approximate this

spotting type much better.

The spotting type 6 situation occurs where there are very strong winds

above the ground, so that no convection column forms [73]. In this case,

spotting could play an important role [73]. For example, in coniferous forests,

chapparal brush, slash, Eucalyptus-grassland forests, or even conflagration

fires in cities, enormous amounts of firebrands are generated. In all cases, the

firebrands are literally swept along by the wind. Our L3-model, where heights

and masses are independent of each other, and the constant wind assumption,

here are physically realisitic.

Since the flame height will be of the order of firebrand heights, an adequate

flame model should be provided (and do exist [40]). In a crown fire in a

coniferous forest, where the average combustion lifetime of needles emitted is

less than ten seconds [37], the massive amount of needles emitted could have

an effect on the rate of spread. It is likely that this is accounted for in the Fire

Behaviour Prediction system [40], though their models are entirely statistical

in origin. Perhaps a mechanistic model including this type of spotting, and

other effects like radiation and convection could be developed, and compared

to the data sets that the Fire Behaviour Prediction system are based on. This

is an opportunity for future work, and is relevant since current crown fire

models seem inadequate [5] to account for all situations.

4.5.3 The Baum and McCaffery plume

As stated at the end of the previous subsection, the most widely used fire plume

model in spotfire modelling is the model developed by Baum and McCaffery

([15],[24]), as used for example in ([2],[3],[16],[34],[66],[89],[93]). The model
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Figure 4.2: Sketch of a cross-section along the burning front. Presented are the
three regions of the Baum and McCaffery plume. Region I is the continuous
(canopy) burning region. Region II is a transition zone over which the plume
velocity is constant; the continuous flames flicker up and break off from Region
I. The plume is represented in Region III. The buoyant upward motion of the
plume is reinforced by large ambient eddies, which cause entrainment of air
into the plume. Both centerline velocity and temperature are assumed to fall
off according to a Gaussian profile, for the Baum and McCaffery plume (this
assumption may not be valid for real convection columns [16]).

consists of three burning regions, illustrated in Figure 4.2. The discussion

here closely follows that of the book [68], and the paper [16].

Region I lies at the base, and is the continuous burning region. Here

the flow is pulsating and unsteady. Region II is an intermittent zone, in

which flame patches break off from the below-anchored flame, while at the
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top of Region II all combustion ceases. Finally we have region III, the non-

combusting plume, where we assume that the time-averaged upward velocity

and temperature drop off radially in a Gaussian manner.

The relevant parameters are height z, plume velocity Up, and temperature

T . These are made dimensionless by the scaling:

z

zc
:= z∗,

Up
Uc

:= U∗,
T − Ta
Ta

:= T ∗, (4.28)

where:

zc :=

(
Q

ρacpT0
√
g

)2/5

, Uc :=
√
gzc. (4.29)

The parameters appearing in (4.29) are the heat release rate Q, the density

of air ρa = 1.2 kg m−3, cp = 1 kg−1 K −1 is the specific heat capacity of air

at constant pressure, Ta is the temperature of the ambient air, and g is the

gravitational constant.

The analysis in [57] then leads us to the following relationships in Region III

of the plume, providing us the mean plume-centerline velocity and temperature

as a function of the rescaled height z∗:

U∗ = 3.64(z∗)−1/3. (4.30)

T ∗ = 8.41(z∗)−4/3. (4.31)

Recall from our discussion of terminal velocity, that for a given height z in

the plume region there is associated a unique mass m(z), such that this mass

attains terminal velocity exactly at height z. In other words, the drag induced

by the upward plume velocity Up is balanced by the weight of the mass at this

height.

In the idealized case of a spherical particle, we have a direct connection

between the cross-sectional area A, the diameter d, the drag coefficient CD and

the density ρs. Employing the relation (4.30), we obtain the unique lofting
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height:

z =

(
40CDρa
4dρsg

)3/2

zc, (4.32)

Employing (4.29) in the latter equation, we can re-write the lofting height

as:

z =

(
40CDρa
4dρsg

)3/2(
Q

ρacpT0
√
g

)2/5

. (4.33)

For simplicity of notation in what follows, we will introduce a constant γ

which absorbs all the constants in (4.33), and re-write the Equation:

z(m,Q) = γm−3/2Q2/5, (4.34)

where the constant γ is defined by

γ :=

(
40CDρa

4dρsg
(
ρacpT0

√
g
)4/15

)3/2

(4.35)

It should be noted that there is also a maximum loftable diameter dmax, which

is defined as the maximum diameter above which no firebrands make it beyond

Region II [16]. Again solving for the height of force balance, one obtains:

dmax =
3mCD
4V ρag

(2.45Uc)
2 , (4.36)

where V is the volume occupied by the firebrand with mass m.

4.5.4 Mathematical models for the launching distribi-

tion φ(z,m)

In Chapter 2, we made the assumption that at any point where spotting is oc-

curring, the same vertical launch distribution φ is launched into the convection

column. We have seen in the previous subsection, in particular in Equation

(4.36), the existence of a maximum loftable diameter dmax. There is conse-

quently a maximum possible loftable mass, in the plume model described in

74



the previous subsection, which we denote m.

So we will henceforth assume the launching distribution is a probability

density φ(z,m) on [0,∞)× [0,m]. We will examine specific assumptions, and

possible functional forms for φ(z,m).

Model L1 We assume that each firebrand of mass m is lofted to a unique

height z = z(m), as for example in Equation (4.34). We can then define

φ(z,m) = δ(z − z(m))µ(m), (4.37)

where µ(m) is a given mass distribution, and δ represents the Dirac delta

functional.

This approach has been standard in the literature, where one is interested

in long-distance spotting events. The concern is generally in estimating the

maximum possible spotting distance for a given fire intensity (e.g. [2]).

Model L2 The convection column is inherently turbulent, due to its inter-

actions with the atmosphere. Instead of assuming that each mass is lofted to

a unique height, we might instead suppose that it is launched randomly about

the standard lofting height z(m).

For example, we could assume that the heights are normally distributed

about the lofting height, so we can write φ(z,m) = N(z(m), σ)µ(m), a one-

sided normal distribution with mean z(m) and variance σ. Again we are

assuming we know the mass distribution µ(m). We can express this normal

distribution as:

N(z(m), σ) :=
A

σ
√

2π
exp

(
−(z − z(m))2

2σ2

)
, (4.38)

where the constant A chosen so that the distribution is normalized. We allow

values of z to lie in some subset of [0,∞), such as [H, zmax, where H is the

canopy height and zmax is the maximum lofting height predicted by the Baum

and McCaffery plume.

If we choose z(m) like in the Baum and McCaffery case, this model repre-

sents a ‘smeared out’ version of the Baum and McCaffery distribution. On the

other hand, we are also free to explore other launching models, and employ

the same approach as in (4.38) to obtain the launching distribution φ(z,m).
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Another avenue for future research could be to examine, for the same

launching height formula z(m), which statistical distributions other than the

normal distribution may more accurately describe the firebrand’s turbulent

flight through the convection column. In addition, the Baum and McCaffery

plume may need to be replaced by a more accurate flame and plume model,

depending on the type of spotting we are modelling.

Model L3

Finally, we could assume that the launching heights z, and masses m, are

independent of each other, so we can write

φ(z,m) = Z(z)µ(m). (4.39)

In this context, Z(z) is a probability distribution which describes how fire-

brands are distributed with height z, and has the property that∫ ∞
0

Z(z)dz = 1. (4.40)

A similar sort of model was employed by Albini in the context of firebrand

transport by line thermals [3]. These are well-mixed columns of air which move

downwind as a coherent structure. In this case, we might assume firebrands

are well-mixed, between some minimum and maximum lofting heights,

Z(z) = U [zmin, zmax], (4.41)

where U represents the uniform distribution on [zmin, zmax].

On the other hand, if the maximum launching heights are very large, we

might for example model Z(z) = λe−λz for z ≥ 0, so that we are exponentially

less likely to find firebrands the higher we go. This is just one example; math-

ematically, exploring the possible statistical distributions, and their outcome

on invasions with non-local dispersal, is an interesting and important problem.
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4.6 Transport in the atmosphere

4.6.1 The atmospheric boundary layer

The atmospheric boundary layer (ABM) is the lowest portion of the atmo-

sphere, extending on average about one kilometre, and ranging up to at most

about three kilometres above the Earth’s surface [50]. It consists of a number

of distinct sublayers, and it is of utmost importance since the ABM is where

firebrand transport occurs.

At the bottom is the laminar sublayer, which has a thickness of only a few

millimetres. This is a region where high viscosity, induced by the ‘roughness’ of

the surface, results in molecular diffusion being the basis for transport of mo-

mentum and heat [95]. Above the laminar layer is a transition region, leading

into the Prandtl layer, in which turbulent convective motion is the dominant

transport process [95]. The lower boundary of the Prandtl layer is called the

roughness height y0. At the top of the ABM is the Ekman layer, throughout

which the effects of turbulent convection lessen with height, decreasing to zero

near the top of the Ekman layer [95].

Firebrands are transported by convection, and hence are subject to the

turbulent fluctuations in wind velocity present in the ABM. Turbulence is a

dissipative process which converts kinetic energy in a fluid into heat energy,

and it is essentially three-dimensional and rotational [52].

Turbulent eddies, which may be envisioned as large sheets of wind rolling

over one another, exist on length scales from 10−3 m to 103 m. The largest

eddies can therefore extend up to the height of the ABM [52]. In the case of

a fire’s convection column, the eddies swirling parallel to the column result in

the entrainment of ambient air into the column [16].

Because of the inherent variability in the transport process, we introduce

the standard Reynolds decomposition for the velocity components [52]. This

means we decompose the horizontal velocity w into a slowly-varying mean

component w and a rapidly-varying component w′, so that:

w := w + w′. (4.42)

In general the mean windspeed increases with height, though exactly how
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this happens is effected by surface roughness and variable topography, to say

nothing of the fire-ABM interactions. In our transport model we will be in-

terested in the time-mean behavior of the stochastic flight process, so we will

focus exclusively on the mean velocity w. We will drop the bar in what follows

for notational simplicity.

4.6.2 Model W1: Constant horizontal wind

The simplest assumption for the windspeed w is that it does not vary with

height z, so that

w(z) = w > 0. (4.43)

Based on the discussion in the previous subsection, this assumption is

not valid throughout the entire ABM. However, there have been reports of

fire situations where even short-distance dispersal of firebrands appears to be

leading the fire front’s advance [31]. In this case, where firebrands are not

lofted so high into the ABM, the assumption (4.43) may be better justified.

4.6.3 Model W2: Logarithmic horizontal wind

Another commonly used wind model is the logarithmic profile, introduced in

the context of spotting first by Albini [2]. This model is illustrated for some

representative cases in Figure 4.3, and mathematically is described as:

w(z) =
u∗
κ

log (
z − d
y0

). (4.44)

Appearing on the right hand side of Equation (4.44) is the von Karman

constant κ = 0.41, the roughness height y0, the zero-datum displacement d,

and the friction velocity u∗. The friction velocity is generally defined by

u∗ :=

√
T

ρ
, (4.45)

where T is the time-mean flux of tangential momentum towards the surface,

borne by turbulence outside the lower ABM and by viscosity within it [58].
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Figure 4.3: Velocity versus height for three of the logarithmic profiles, de-
scribed in Equation (4.44). We have chosen a canopy height of 10 m, a friction
velocity u∗ = 2 m/s, and three representative values for the roughness height
y0 and zero-datum displacement d.

Typical values for u∗ in a strongly upward-convective atmosphere are around

u∗ = 2 m/s, while for a roll-dominated atmosphere u∗ = 0.7 m/s [84].

Recall from the first subsection that the roughness height y0 corresponds to

the lower boundary of the Prandtl layer. At the upper end examples include

y0 = 0.5− 1.0 m for dense forest or suburbs, y0 = 0.1− 0.5 m for low crops or

bushes, and flat grassland has y0 = 0.03 m.

When there is significant roughness or dense forests, the zero-datum dis-

placement d is employed in Equation (4.44) to offset the height at which the

windspeed aloft vanishes. The value of d is usually about 2/3 the average

height of the obstacles. We show velocity versus height for three different

cases in Figure 4.3.

4.6.4 Model W3: Power-law wind profile

A third wind model was also first introduced in the context of spotting by

Albini [2]. It assumes a power-law profile for the horizontal velocity versus

79



Figure 4.4: A comparison of the wind profiles discussed in this Section. Shown
are three power-law models for different values of the parameter β, together
with a logarithmic wind profile and a constant wind profile. We have chosen
wH = 5 m/s, and the canopy height to be 10 m.

height,

w(z) = wH

( z
H

)β
, (4.46)

where H is the canopy height, wH is the windspeed at the canopy’s base, and

β ∈ [0, 1]. In Albini’s work, he chose the constant β = 1/7 [3].

It should be said that the model (4.46) is a better approximation to the

windflow when it is over terrain which is not covered by tall vegetation. Fur-

ther, this model may be seen as an approximation to the logarithmic profile,

and is consistent with the constant-wind model (to see this, set β = 0 in

(4.46)).

A comparison of our three functional forms is presented in Figure 4.4.
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4.7 Ignition of fuel beds by firebrands

4.7.1 Challenges in modelling fuel bed ignition

One of the most challenging problems in modelling the spotting process, is to

determine the ignition probability E, which is the probability for ignition to

occur once a firebrand has made contact with a given fuel bed. Since the fire

landscape is very heterogeneous, the ignition probability E may vary spatially,

and can depend on a variety of factors, like:

• The species of plants emitting firebrands.

• Landed firebrand characteristics like diameter, length, and mass.

• The travel time t∗ from launch to landing.

• The moisture content of the fuel bed and local weather.

• The surface area, and thermal conductivity between firebrand and fuel.

• Whether the firebrand is in a ‘glowing’ or ‘flaming’ state upon landing.

• Variability of firebrand type within the launching stand (e.g. a coniferous

tree might emit both small branches or cones).

• Whether there is a ‘re-settling’ after landing due to slope or wind.

• Whether there is a shading effect from the sun due to the presence of

the convection column.

An ideal model for ignition would account explicitly for all factors just

mentioned. Several physics-based models have attempted to do just that

(e.g. [76]), but necessarily include many equations whose analysis is mostly

limited to computer simulation. Since we are interested mostly in fire fronts,

which occur at the macroscopic scale, we can ignore some of the smaller-scale

details in our development of ignition models.
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4.7.2 Experimental investigations of firebrand ignition

Prior to 2006 the experimental investigation of this topic was limited to qual-

itative descriptions of ignition. The experiments show that fuel bed moisture,

firebrand mass and geometry are the most important characteristics determin-

ing ignition probability ([53],[17],[31]).

The Fine Fuel Moisture Code (FFMC) used by the FBP system [40], which

provides a numerical measure for the moisture contained in forest litter, has

been a useful standard for determining ignition probabilities. It is determined

in turn by the Fire Weather Index, another component of the FBP system

[40]. The lower the FFMC, the higher the fine fuel moisture content.

Experiments by the Aerospace Corporation ([62],[63]) found that for high

fine moisture contents only large flaming brands cause ignition, while for low

fine fuel moisture content glowing embers may easily ignite a fuel bed.

Albini [3] reports that spotting can be significant when fine fuel moisture

content is below ten percent, and confirmed the earlier results that for by [62]

glowing embers can be sources of ignition.

Following these experiments, in about 2006 Manzello [54] began qualitative

experiments on firebrand ignition, for brands emitted during controlled labo-

ratory burning of pine and fir trees. This work is a collaboration between the

National Institute of Standards and Technology in the USA, and the Building

Research Institute in Japan [55], where ongoing experiments may help further

quantify the ignition process.

One important result following from the combustion experiments of Manzello,

is that firebrands are not produced if the dead fuel moisture content exceeds

thirty percent. One can further postulate that there will always be a maxi-

mum moisture above which spotting does not occur. Together these results

suggest, as is common knowledge, that lower fine fuel moisture content (high

FFMC) can correspond to greater spotfire risk.

A still more recent paper [38], is the first to describe ignition probabil-

ities using regression analysis on rigorous experimental data. The authors

performed a number of controlled lab experiments to determine the time of

ignition, rate of spread, rate of combustion, maximum and mean flame heights,

and ignition frequency of fuel beds for a variety of fuel beds, representative of

the fuel beds common in the parts of the Mediterranean.
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Examples of fuel beds include a variety of pine, eucalyptus, and grass beds,

which could also be representative of fine fuels from forests in North America

and Australia. These fuels were ignited under varying values for fuel moisture,

ambient windflow, bulk density, and fuel arrangement (or loading).

In terms of firebrands, the authors examined pine cones, Eucalyptus bark,

acorns and twigs, and assessed their likelihood to cause ignition in terms of

the fuel bed properties just mentioned.

The general results of [38] are that grasses present higher flammability risk

compared to tree and bush litters, pine litter is more ignitable than hardwood

litter, and an increase of the fine fuel moisture and bulk density decreases the

time, but not necessarily the likelihood of ignition. Finally, firebrand type

and state (i.e., glowing or flaming) are the most important determinants of

ignition.

The glowing or flaming state of a firebrand had already been qualita-

tively discussed in a number of investigations (e.g., [31],[53],[93]). A rigor-

ous analysis of Eucalyptus firebrands by Ellis [31], and pine or fir firebrands

by Manzello [54], confirms the results of [38] that flaming firebrands present

greater risk of ignition. The time-to-burnout of flaming was investigated from

a theoretical perspective in [76]. Flaming ignition most likely plays a more

important role in short-range spotting, where ‘re’-flaming is possible upon

landing, and is important to consider [31].

Finally, the results of [37] suggested that there are three firebrand groups

which are important for spotting. These include: heavy firebrands with the

ability to sustain flames, which are efficient for long-distance spotting (e.g.,

pine cones, cylindrical brands); light firebrands with high surface area-volume

ratios are effective for short-range spotting (e.g., Eucalyptus or pine bark

plates); light firebrands with low surface-volume ratios fall somewhere in the

middle of the other two classes.

4.7.3 Ignition probabilities: Models I1, I2, I3

We propose a simple assumption, namely that the ignition probability E(x,m) =

E(m), where m is the total landed firebrand mass at location x. This corre-

sponds to a homogeneous medium, where the firebrand mass only is important
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in ignition. We will write E(m) ∈ [0, 1].

Further, we will assume there is some critical mass m above which ignition

of a fuel bed occurs with probability one. The existence of such a mass is

reinforced by a experimental studies (e.g., [38],[37],[53]). The idea is simply

that the greater the mass, the greater the energy exchange between firebrand

and fuel bed, increasing the likelihood of ignition.

Model I1: The first possibility is that below the threshold mass m, there

is a non-zero probability of ignition. One functional form appearing in the

literature is

E(m) :=

{
m/m, m < m;

1, m ≥ m
(4.47)

Model I2 A second possibility is that there is a transition region about a

threshold mass m, throughout which E(m) abruptly but smoothly transitions

from zero to one. For example,

E(m) = (1 + erf (Am− 2))) /2. (4.48)

Here the function erf (m) denotes the error function, related to the standard

normal distribution. The parameter A measures the steepness of the transition

region; the larger A, the steeper the transition.

Model I3 A third possibility is that below some threshold mass m, ignition

is impossible, while it is certain to occur above this threshold mass. Using the

Heaviside, or unit-step function, we can model the ignition probability in this

case by

E(m) = H(m−m). (4.49)

The reader will notice that this model is a caricature or the more physically

realisitic model presented in Equation (4.48). In the most extreme fire burning

situations, where the fuel beds are so dry almost any landed mass will cause

ignition, we can send m→ 0 as an approximation. This will be relevant, and

simplify the analysis in some cases that follow.

We conclude this subsection by presenting some representative examples

of the three models presented in this section, in Figure 4.5. One can see the
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linear increase corresponding to (4.47), the smooth sigmoidal increase about

m for the model (4.48), and the step function (4.49) as well.
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Mass (g)

E[m]

[

420.5

0.5

1.0

Figure 4.5: A comparison of the ignition models discussed in this section. On
the y-axis we have E(m) plotted versus m (measured in grams). The threshold
mass is m = 0.5, the parameter A in (4.48) is A = 5. The linear curve
represents the ignition model (4.47), the sigmoidal curve represents (4.48),
while the discontinuous-jump curve represents the model (4.49).

4.8 Summary of the models considered in this

Chapter

Considering the number of models described in this Chapter, it is helpful to

display the models, together with their references, in the Table in this Section.
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Chapter 5

Analytic examples of the

spotting distribution

5.1 Chapter Introduction

In this chapter we continue to investigate the one-dimensional impulse-release

IBVP for the firebrand transport equation introduced in Chapter 3, incorpo-

rating a variety of the physical models explored in Chapter 4.

The goal is to determine the asymptotic landing distribution L(x,m), and

then to use one of our ignition models, and in particular the ignition operator

E(m), to determine the downwind spotting distribution S(x) ∈ [0, 1] as in

(5.32). This formula is perhaps the most important contribution to science in

this thesis, as it synthesizes many possible spotting scenarios (more than 500)

into a single formula.

First, in Section 5.2, we concentrate on some analytically-determined ex-

amples of the asymptotic landing distribution, obtained for constant terminal

vertical velocity, for different wind models, and then in Section 5.3 we derive

the general formula for the spotting distribution.

Next, in Section 5.3, we illustrate a type of ‘averaged’ spotting kernel, in

which the realistic mass-evolution model (C4) is used, to illustrate qualitative

differences in the types of kernels obtained by varying the ignition model.

Which model is most applicable is a question for further research, but as

explained in Chapter 4 at least model I1 has been used in the literature. We
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also explain how we can obtain a family of spotting kernels, including a ‘fat’-

tailed kernel, which is used in Chapter 7 as the prototypical example.

We also explain, in Section 5.4 and based on the results of 5.3, how we

can extend the time-delayed i-PDE models from Chapter 2, to account for

different horizontal wind profiles. Finally, in Section 5.5 we discuss how the

spotting distribution provides a measure of the probability that an impulse

release is able to cross a boundary to local spread, i.e. spotfire breaching.

This is an important problem for forest fire fighters, and our approach here

will be expanded upon in future work.

Remark: About the combustion models used in this chapter, and with refer-

ence to Equation (3.22): All examples discussed employ combustion models

whose combustion rate does not depend on the firebrand mass. Hence we

do not require an exponential term multiplying the firebrand distribution as

in (3.22). In particular, in our averaged distributions, we employ the realis-

tic combustion model (C4), while in the final two examples we assume the

burning rate is constant (C0). Clearly both burning rates depend explicitly

only on time.

5.2 Analytically-determined landing distribu-

tions and travel times

5.2.1 Constant wind, constant terminal velocity

The simplest case results if we choose w > 0 and v < 0 to be constants,

corresponding to constant wind and constant falling terminal velocity. We will

also approximate the canopy height H ≈ 0, as we are interested in describing

long-distance spotting events, on which scale the canopy height is negligible.

The characteristic equations (see Chapter 4) in this case read:
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dx

dt
= w.

dz

dt
= v.

∂m

∂t
= f(t, x, z,m), (5.1)

where the right-hand side f appearing in the mass evolution models is deter-

mined by choosing any of the firebrand combustion models C0-C6 examined

in Chapter 4.

The first two characteristic equations are easily solved,

x(t;x0) = wt+ x0,

z(t; z0) = vt+ z0, (5.2)

where again x0 and z0 are the initial position and height respectively of a

particular firebrand. The equation for z(t; z0) in (5.2) is defined as long as

z ≥ 0.

As explained in the section 4.3.1, we define the combustion operator C(m0, t),

given an initial mass m0, so we we can express the mass m(t;m0) for future

times t > 0 using the definition m(t;m0) = C(m0, t), provided the function

f in (5.1) is Lipschitz continuous, and m(t;m0) ≥ 0. Again, we can define

the inverse combustion operator C−1(m, t), which we remind the reader is the

unique solution to the initial value problem dm
dt

= −f , m(0) = m, evaluated

at time t ≥ 0. We will keep things abstract for now, and explore specific

combustion models later.

Now consider a firebrand which has landed on the ground at location x′.

Tracing back along the spatial characteristics, we see that the firebrand began

its journey when x0 = 0 and z0 = |v|
w
x′.

Appearing in the latter expression for z is the landing time t∗(x′), defined

by:

t∗ :=
x′

w
, (5.3)

which is the time that passed before the firebrand reached the ground at x′.

The landing time t∗ will be important in what follows. To present a concrete
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example, if w = 1, v = −1, then the landing time for firebrands launched

initially at x = 0 to arrive at x = 2 is t∗ = 2.

Next, fix a point (x, z) in the quarter plane {(x, z) | x > 0, y > z}, and

assign a time t > 0. If x > wt, then the firebrands which started at x = 0

have not yet reached location x, so we can determine the firebrand density

p(t, x, z,m) from the initial condition for p. However, if x < wt, then we must

determine the firebrand density by integrating backwards along characteristics

to the boundary at x = 0.

It is clear, then, that the firebrand density, provided N firebrands are

released, is given by

p(t, x(t;x0), z(t; z0),m(t;m0)) =

{
Nδ(t− t∗)φ(z − vt, C−1(m, t)), x ≤ wt;

p(0, x− wt, z − vt,m0), x > wt,

(5.4)

where φ(z,m) is the vertical launch distribution discussed in Chapter 3.

We remind the reader that at t = 0 we have p = 0 for x > 0, from our

initial condition for an impulse release, so we find:

p(t, x(t;x0), z(t; z0),m(t;m0)) =

{
Nδ(t− t∗)φ(z − vt, C−1(m, t)), x < wt;

0, x ≥ wt.

(5.5)

Recalling that the distribution of landed branches L(t, x,m) is given by∫ t
0
p(s, x, 0,m) ds for t > 0, so we find:

L(t, x(t;x0),m(t;m0)) =

{
N
∫ t

0
δ(s− x(s;x0)

w
)φ(−vs, C−1(m, s)) ds, x < wt;

0, x ≥ wt.

= NH(t− x(t;x0)

w
)φ(|v| x

w
, C−1(m,

x

w
)) (5.6)

where H represents the Heaviside, or unit-step function, defined by H(x) = 0

for x < 0, and H(x) = 1 for x ≥ 0.

Taking the limit as t → ∞ in (5.6), we obtain the asymptotic landing
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distribution L(x,m) in terms of the inverse combustion operator C−1(m, t):,

L(x,m) = N φ(|v| x
w
, C−1(m,

x

w
)). (5.7)

We impose the assumption, that if:

C−1(m,
x

w
) < 0, we set L(x,m) = 0. (5.8)

This is to assure that we do not obtain any negative mass density.

We see that the asymptotic landing distribution in (5.7) is simply the

number of firebrands released N , multiplied by the vertical launch distribution

φ(z,m) with its arguments shifted. In Section 5.2.4 we illustrate some sample

asymptotic landing distributions, for a simple launch distribution, and how the

relative effects of wind, terminal vertical velocity, and combustion can play a

role.

5.2.2 Power law profile for w, constant vertical velocity

This section is a generalization of the constant-wind case, which we called

(W2) back in Chapter 4. Here we consider again a constant vertical velocity

v < 0, and we recall that the power-law horizontal wind profile satisfies

w(z) = wH

( z
H

)β
, (5.9)

where H is the canopy height, wH is the windspeed at the canopy’s base, and

β ∈ (0, 1). We are interested solely in values of z ≥ H. Further, we will not

consider resettling or within-canopy winds, so we assume once a firebrand has

reached z = H, it travels no farther, and may or may not cause ignition at

that location.

In this case, the spatial characteristics read:

dx

dt
= wH

( z
H

)β
,

dz

dt
= v. (5.10)

Again in this case we find the solution z(t; z0) = z0 + vt, which we then
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z(m)

x(m)

Figure 5.1: Spatial characteristics with velocity field for the power-law wind
profile, with constant vertical velocity, described in (5.12). The y-axis rep-
resents heights in metres, while the x-axis represents downwind distance in
metres. Here wH = 5, β = 0.5, H = 0.5 and v = −1.

use to solve the equation for x. Notice that since v < 0, the heights z are

decreasing with time. The equation (5.10) for x becomes:

dx

dt
=
wH
Hβ

(z0 + vt)β (5.11)

Integrating both sides with respect to t, we obtain:

x(t) = x0 +
wH

v(β + 1)Hβ

(
(z0 + vt)β+1 − zβ+1

0

)
. (5.12)

Trajectories for (5.12) are illustrated in Figure 5.1.

Now consider a firebrand which reaches the canopy at (x,H). We wish to

determine the landing time t∗(x) which it took for the firebrand to travel from

x = 0 at time t = 0 to the top of the canopy at z = H. As in the preceding

subsection, we will run the characteristics in reverse. To do this, we choose
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x0 = x, z0 = H, t = t∗ and x(t∗) = 0, and insert these values into:

x(t) = x0 +
wH

|v|(β + 1)Hβ

(
(z0 + |v|t)β+1 − zβ+1

0

)
. (5.13)

We obtain:

0 = x+
wH

|v|(β + 1)Hβ

(
(H + |v|t∗)β+1 −Hβ+1

)
. (5.14)

Solving for t∗ in terms of x in Equation (5.14), we obtain:

t∗(x) =
1

|v|
[

(
Hβ(β + 1)|v|

wH
x−Hβ+1

) 1
β+1

−H]. (5.15)

Similar to the previous subsection, we find the exact solution p of our

impulse IBVP for the transport and combustion process:

p(t, x(t;x0), z(t; z0),m(t;m0)) =

{
Nδ(t− t∗)φ(z − vt∗, C−1(m, t∗)), x <

∫ t
0
F(s) ds;

0, x ≥
∫ t

0
F(s) ds,

(5.16)

where

F(s) := w(z(s; z0)), (5.17)

so that the bounds on x appearing in (5.16) can be written in explicit terms,

using the relation (5.12), through the following expression:∫ t

0

F(s) ds :=
wH

|v|(β + 1)Hβ

(
(z0 + |v|t)β+1 − zβ+1

0

)
. (5.18)

We can interpret the latter integral (5.18) as the location of the leading edge

of the expanding firebrand distribution p(t), since p(t) = 0 for x ≥
∫ t

0
F(s) ds,

but p(t) ≥ 0 when x <
∫ t

0
F(s) ds.

In particular, from (5.18) we see that limt→∞
∫ t

0
F(s) ds = ∞. Hence we

can repeat the steps from the previous subsection (see e.g. (5.7) and the steps

leading up to it), and we find the asymptotic landing distribution is again:

L(x,m) = Nφ(H + |v|t∗(x), C−1(m, t∗(x))), (5.19)
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but in this subsection the landing time t∗ is given by (5.15), and again we set

L(x,m) = 0 if C−1(m, t∗(x)) < 0 (i.e. we only consider nonnegative masses).

The asymptotic landing distribution is still determined by the vertical

launch distribution φ(z,m), as in the case (5.7). Again, the asymptotic land-

ing distribution is a scaled version of the launch distribution. In this case

the landing time has the more complicated form (5.15), and in addition we

include the canopy height H in the final form of the distribution . Further, the

formula for the landing time derived here is consistent with the zero-canopy,

constant-wind case (5.3), which is easily seen by setting β = 0 in (5.15).

5.2.3 Logarithmic profile for w, constant vertical veloc-

ity

In this subsection, we again assume a constant vertical velocity v < 0, and we

recall that the logarithmic horizontal wind profile satisfies

w(z) =
u∗
κ

ln (
z − d
z0

). (5.20)

where the various parameters are discussed in Chapter 4, Section 5.3. In

particular we recall that z ≥ H + d ≈ H, where H is the canopy height and

d is the distance above the canopy where horizontal winds begin. We will

approximate d ≈ 0.

In this case, the spatial characteristics read:

dx

dt
=
u∗
κ

ln (
z − d
y0

),

dz

dt
= v. (5.21)

We will define A := u∗
κ

, and introduce the new variable z̃ = z − d. The

first differential equation in (5.21) then reads dx
dt

= A ln z̃
z0

(dropping the tilde

under the logarithm in what follows for convenience).

As in the preceding subsection, we consider a point (x0, H) at the top of

the canopy and then determine the landing time t∗. Using the initial condition

z0 = H, and running the characteristic equations (5.21) in reverse, we see that

z(t) = H − vt = H + |v|t, and inserting this into our transformed equation for
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x, we find:

x(t) = x0 − A
∫ t

0

(ln (H + |v|s)− ln y0) ds

= x0 − tA ln y0 − A
∫ t

0

ln (H + |v|s)ds. (5.22)

Now setting u := H − vs, we see du = −vds, so we can further simplify

Equation (5.22) to obtain:

x(t) = x0 − tA ln y0 +
A

v

∫ H+|v|t

H

lnudu

= x0 − tA ln y0 +
A

v
(u lnu− u) |H+|v|t

H

= x0 − tA ln y0 +
A

v
(H ln (H + |v|t) + |v|t ln (H + |v|t) + vt) .

(5.23)

Next we set x(t∗) = 0 in the latter Equation (5.23), and substituting back

in our original variables for A we find an implicit expression for the landing

time t∗, replacing x0 with x,

u∗
κ
H lnH − x+

t∗u∗
κ

(lnH − 1) =
u∗
vκ

((H + |v|t∗) ln (H + |v|t∗)) (5.24)

For given values of the parameters (u∗, H, v) we can then use a numerical

method, like Newton’s iterative root-finding method, to compute the landing

time as a function of x to any desired precision.

Because the landing time t∗ must be increasing with x by uniqueness of

firebrand trajectories and the monotonicity of w(z), we repeat the steps of the

preceding subsection, leading to Equation

p(t, x(t;x0), z(t; z0),m(t;m0)) =

{
Nδ(t− t∗)φ(z − vt∗, C−1(m, t∗)), x <

∫ t
0
F(s) ds;

0, x ≥
∫ t

0
F(s) ds,

(5.25)
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where

F(s) := w(z(s; z0)). (5.26)

Again we can argue that limt→∞
∫ t

0
F(s) =∞, so as in the previous examples

we can first obtain L(t, x,m), and then the asymptotic landing distribution,

L(x,m) = Nφ(H + |v|t∗(x), C−1(m, t∗(x))), (5.27)

which has exactly the form (5.19), except in this case t∗ in this case must be

solved implicitly from (5.24).

5.2.4 Model (W1, V1, C0, L3): a simple illustration of

L(x,m)

In this subsection we consider a simple scenario in order to visualize the asymp-

totic landing distribution. So, we choose w > 0, v < 0, and f < 0 to be

constants. Further, we suppose that the launching distribution φ(z,m) :=

Z(z)µ(m), so that the launching heights are independent of mass. We de-

note this model (W1,V1,C0,L3) with reference to Chapter 4. We also assume

that N is the total number of firebrands being launched, and Z and µ are

probability distributions for the continuous random variables z and m.

Case 1 First suppose Z = U(H, z), where U is the uniform distribution on

the interval z ∈ (H, z), and z is the maximum possible lofting height. That is,

Z(z) :=

{
1

z−H , z ∈ [H, z];

0, otherwise.
(5.28)

Physically, H denotes the minimum lofting height, like the height of the forest

canopy in a crown fire.

Next, let us require that the masses are also uniformly distributed, so that:

µ(m) :=

{
1
m, m ∈ [0,m]];

0, otherwise.
(5.29)

Again m represents that maximum loftable firebrand mass. The experiments

of Manzello [54] suggest the maximum firebrand mass is about 4 grams; one
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Figure 5.2: We present an illustration of 500 realizations of the random vari-
ables for height z and mass m, measured in metres and grams respectively,
uniformly and independently distributed as in Equations (5.28) and (5.29).
The parameters are H = 1, z = 10, and m = 4. Because of the number of
points, the surface φ(z,m) appears continuous, although in fact the blue check-
ered plane is really an interpolation of the 500 random variable realizations
from the launching distribution.

must bear in mind this data applies only to cylindrical firebrands emitted from

the conifers studied in [54]. If one considers other firebrand classes, like pine

cones, one could expect larger values for m.

Such a launching distribution could correspond, for example, to the lofting

of firebrands by well-mixed line thermals, or the prolific and significant short-

range spotting which has been observed to drive fire fronts in Eucalyptus-

grassland fires in Australia [31].

In Figure 5.2, we show N = 500 realizations of the random variables z

and m, distributed according to φ(z,m), for the uniform distributions just

described.

Next, we wish to determine how this initial distribution φ becomes the

asymptotic landing distribution L. As discussed in the derivation of (5.7), we

find

L(x,m) = NZ(|v| x
w

)M(m+ f
x

w
). (5.30)

The important parameters are v, w, and f . In Figure 5.3 we show L(x,m)

for v = w = 1, and vary the combustion constant f to demonstrate its effect.
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1010

Figure 5.3: Here we illustrate the asymptotic landing distribution as a surface
above the (x,m)-plane, corresponding to the initial distribution illustrated in
Figure 5.2. Distance is measured in metres, while mass is measured in grams.
Here v = w = 1 in both graphs, while H = 1, z = 10. In the leftmost graph,
the burning rate |f |= 0.1, while in the right graph |f |= 0.5.

It is clear that if we have higher burning rates, both that less mass is observed

asymptotically, and also higher burning rates constrain firebrands to travel

less distance. Also notice that there are fewer larger firebrands the further we

proceed along the x-axis, as illustrated by the slanted cutoff on the L(x,m)

surfaces.

Next, in Figure 5.4, we have N = 1000 firebrands, and we fix |f |= 0.1,

v = 1, and vary w between w = 4 and w = 8. Doubling the windspeed results

in firebrands traveling much further, and in addition less firebrands reach the

ground. Another observation is that the lower bound on the distance x at

which the firebrand density is non-zero moves to the right when we double the

windspeed.

Finally we are interested in the effect of changing the terminal velocity.

This is illustrated and described in Figure 5.5. It is clear that more firebrands

are conserved, and the firebrands travel farther, when v is made smaller. Also

the spatial lower bound at which L(x,m) drops off to zero increases as we

decrease v.
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Figure 5.4: Here we illustrate the asymptotic landing distribution as a surface
above the (x,m)-plane, corresponding to a similar initial distribution illus-
trated in Figure 5.2, but this time with H = 10, N = 1000, m = 4, v = 1,
|f |= 0.1, and z = 100. The figure on the left corresponds to setting w = 4,
while the figure on the right corresponds to setting w = 8.
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Figure 5.5: Here we illustrate the asymptotic landing distribution as a surface
above the (x,m)-plane, corresponding to a similar initial distribution illus-
trated in Figure 5.2, but this time with H = 10, N = 1000, m = 4, w = 4,
|f |= 0.1, z = 100. The figure on the left corresponds to setting v = 4, while
the figure on the right corresponds to setting v = 1.

5.3 The spotting distribution S(x) determined

from L(x,m)

The uniqueness of firebrand trajectories considered in this Chapter, and the as-

sumption that the ignition probability E(m) depends only on the landed mass,

will allow us to use the asymptotic landing distributions L(x,m) obtained in

the previous section, to obtain the spotting distribution S(x).

Recall that L(x,m) denotes the mass distribution which eventually lands

at location x due to an impulse release at location x = 0. Hence the total

landed mass distribution M(x) is what we need to determine the ignition dis-
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tribution, since we are assuming our medium is homogeneous, and ignition is

approximated to be instantaneous.

We can determine the total landed mass distribution by integrating L(x,m),

in terms of the inverse combustion operator C−1(t,m):

M(x) =

∫ m

0

m L(x,m) dm

= N

∫ m

0

m φ(H + |v|t∗(x), C−1(m, t∗(x)) dm. (5.31)

Finally, since the continuous ignition operator E(m) ∈ [0, 1] depends only

on the landed mass, it follows that the spotting distribution S(x) ∈ [0, 1], which

characterizes the probability of a spotfire igniting due to an impulse release

from x = 0, is given by:

S(x) = E (M(x))

= E[N

∫ m

0

m φ
(
H + |v|t∗(x), C−1(m, t∗(x))

)
dm], (5.32)

where the time t∗(x) is the landing time.

We can extend this concept to firebrands released at location x−y, at time

t− t∗(x− y), to determine:

S(x− y) = E (M(x− y)) . (5.33)

The expression S(x) in (5.32) will be used to define spotting redistribution

kernels, which appear in our i-PDE models from Chapter 2. The formula

(5.33) describes the kernel for a firebrand release at x− y, at time t− t∗(x−
y). We notice that our formula generalizes the expression for the spotting

distribution determined in Chapter 2, where we considered the continuous

limit of a discrete-time transport and ignition model.
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5.4 Some example spotting kernels

In this section, we will make the approximation H ≈ 0, or instead one could

consider the line y = 0 as the canopy height H.

5.4.1 Case (I1): Spotting kernel for (W1,V1,C4,L1)

The ignition model (I1) prescribes a threshold mass m, with the probability

of ignition E(m) increasing in a piecewise linear manner. We can rewrite the

functional form for the ignition probability as

E(m) =
m

m
+

(
1− m

m

)
H(m−m), m ∈ [0,m]. (5.34)

Example 1. Consider the combustion model (C4) from Chapter 4. We

further assume constant windspeed w and terminal velocity v. Finally we

assume we have the launching model L1, which assumes a unique launching

height for each firebrand mass. We denote this model (W1,V1,C4,L1).

The total landed mass distribution was described in Equation (5.31). Since

we assume we have cylindrical firebrands, we can compute their masses:

m = ρV ol(r, L) = ρπr2L, (5.35)

where ρ is the mass density, r and L are values for the firebrand radius and

length respectively. According to the results of Manzello [53], the average

radius is r = 0.004 m, and the average length is L = 0.05 m. There is a linear

relationship between the radius and length [53], so we could determine an

upper and lower bound for the masses using the relationship (5.35) and the

results from [53]. Of course, we already know from [53] that the masses range

between 0.1 and 4 grams.

For the combustion model (C4), it follows that the mass m(t) resulting due

to combustion of a single firebrand, with initial mass m(0) = ρ(0)πLr(0)2 (for

the average choices of L and r(0) listed in the previous paragraph), after an

impulse release at the origin satisfies:

m(t) = ρ(t)V ol(r(t), L) = π L (
ρ(0)

(1 + ηt2)
(r(0)4 − χβ2

16
t2))1/2, (5.36)
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Recall that in the model (I1), each firebrand mass m(0) is launched to

a unique height z(m(0)). In this example we do not necessarily assume the

same launching height as the Baum and McCaffery plume’s predictions from

Chapter 4, but just that there is such a unique launching height.

Because of the uniqueness of the spatial firebrand trajectories, we can de-

termine the distribution M(x) resulting from an impulse release of firebrands

of mass m(0) = ρ(0)Lπr(0)2 at x = 0 and time t = 0. The uniqueness of

trajectories implies the uniqueness of a landing time x
w

for each location x. By

inserting this landing time into (5.36), we obtain the landed mass distribution

M(x):

M(x) = 4

(
ρ(0)

(1 + η( x
w

)2)
(r(0)4 − χβ2

16
(
x

w
)2)1/2

)
, (5.37)

provided M(x) ≥ 0, and otherwise we set M(x) = 0.

This is a sort of average mass distribution, in the sense that we fix r(0)

to be the average firebrand radius, and L to be the average length. We do

not compute the launching height z(M(r(0), L)), but know that the launching

height varies continuously, so as to produce a continuum of landing locations

x and corresponding landing times x
w

.

We then replace the mass at that height z(M(r(0), L)) with four times the

average firebrand mass (determined by average values for r(0) and L in (5.35)),

to produce the averaged spotting distribution. The mass was chosen so that

approximately four grams of firebrands are launched at each point. We will

examine a similar model with the other two ignition models I2 and I3, so that

we will demonstrate a simple way of visualizing some qualitative differences

between spotting distributions for models I1,I2, and I3.

Then according to our ignition model (5.34), and the expression (5.37), the

spotting distribution S(x) is given by:

S(x) =
1

m

(
4 πL

ρ(0)

(1 + η( x
w

)2)
(r(0)4 − χβ2

16
(
x

w
)2))1/2

)
+

1

m

(
1− 4 πL

ρ(0)

(1 + η( x
w

)2)
(r(0)4 − χβ2

16
(
x

w
)2)1/2

)
×

H

(
4 πL

ρ(0)

(1 + η( x
w

)2)
(r(0)4 − χβ2

16
(
x

w
)2)1/2 −m

)
,

(5.38)
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Figure 5.6: Here we show the spotting distribution S(x) corresponding to
Equation (5.38) and the case (I1) of unique launching heights, for mass thresh-
old values m = 0.001 kg, m = 0.002 kg, and m = 0.004 kg. The variable x
is measured in metres and is plotted along the x-axis. The parameters are
χ = 3.5, the initial density of wood is ρ(0) = 513 kg/mˆ3, the Schmidt num-
ber is 0.7, the Reynolds number is 2, the windspeed w = 4 m/s, r(0) = 0.004
m, β = 6.5× 10−7 m while L = 0.05 m.

provided S(x) > 0, and otherwise we set S(x) = 0. The parameters χ and β are

as described in the subsections from Chapter 4 which discuss the model (C4).

We will plot this distribution for a variety of the possible ignition thresholds

m, in Figure 5.6. The probability of spotting clearly decreases with an increase

in the threshold m. The square root appearing in the formula (5.34) means in

this case the spotting distribution is 0 for x > 210 m.

5.4.2 Case (I2): Spotting kernel for model (W1,V1,C4,L1)

The ignition model (I2) is similar to the case (I1), in that there is again a

threshold mass m, except that E(m) is smoothed out. In particular, we recall

that

E(m) = (1 + erf A(m− 2))/2, (5.39)

where A is a parameter which determines the steepness of the transition from

E = 0 to E = 1.

We could choose, for example, A = 1, and we find a smooth transition to
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Figure 5.7: A plot of the ignition probability E(m) described in (5.39), for the
choices A = 1, 2, 4, which correspond to the transition of E to 1 at m = 1, 2, 4
grams respectively. Modifying the parameter A can be thus be thought of as
changing the ignition threshold.

E(m) = 1 when m = 4 g. Alternatively, by choosing A = 2 we find this the

probability goes to 1 about when m = 2, and choosing A = 4 we find the

probability E goes to 1 at about m = 1. This is visualised in Figure 5.7 below.

Example 2: As Example 1 from the preceding subsection, consider the

case of constant wind w and terminal velocity v, and apply the combustion

model (C4). We will again assume the launching model L1, so each mass is

launched to a unique height. So again we deal with the model (W1,V1,C4,L1).

For comparison’s sake we follow the same steps as in Example 1 leading

to the expression (5.37) for the averaged landed mass distribution. Recall that

we assume there is a unique launching height for each z as is usual with model

L1, however here the height is not necessarily that specified by the Baum and

McCaffery plume. However, because of uniqueness of firebrand trajectories,

there is a continuum of landing locations and times, and consequently a con-

tinuum of launching heights, so we can safely assume the existence of these

unique launching heights for each mass. Our trick is then to replace each mass

by four times the average firebrand mass.

Having repeated the steps to arrive at (5.37), employing the ignition model
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Figure 5.8: A plot of the spotting distribution (5.40) versus x (measured in
metres), for the same choices of parameter described in the caption to Figure
5.6, but allowing A to vary between A = 1, 2, 4. Varying A like this corresponds
to changing the threshold mass m at which ignition is certain, from m = 4, 2,
and 1 grams respectively.

(5.39) we find the spotting kernel reads:

S(x) = 4
1

2

[
1 + erf [N

(
4 πL

ρ(0)

(1 + η( x
w

)2)
(r(0)4 − χβ2

16
(
x

w
)2))1/2

)
− 2]

]
,

(5.40)

where the factor N = 1000 is required to convert from kg to grams.

In Figure 5.8 below, we illustrate the spotting kernel S(x) for (5.40), for

the different values of A appearing in the ignition probability considered in

this Section, and as illustrated in Figure 5.7.

5.4.3 Case (I3): The kernel for model (W1,V1,C4,L1);

The kernel for (W1,V1,C0,L3) from 5.1.4.

Our final ignition model I3 again contains a threshold mass m, except in this

model we suppose that below the threshold no ignition occurs, while above

the threshold ignition is certain. We repeat that the functional form for E(m)

is given by

E(m) = H(m−m), (5.41)

where H(m) is the Heaviside, or unit step function.
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Figure 5.9: A plot of the ignition probability densities given in (5.41), changing
the threshold mass m at which ignition is certain, from m = 4, 2, and 1 grams
respectively. These ignition probabilities assume that ignition does not occur
if the landed mass is less than the threshold mass, so that for example H(m−1)
is zero for m < 1.

This ignition model is illustrated for three threshold masses, namely m = 1,

2, or 4 grams, in Figure 5.9.

It will also be useful to consider the case where m→ 0, which results in

E(m) = H(m), (5.42)

and since E(m) > 0 for any m > 0, consequently any landed mass will result

in ignition. This would correspond to a fire scenario where the fuel beds are

extremely dry.

Example 3: First we consider the model (W1,V1,C4,L1), and as discussed

in Examples 2 and 3 we will determine the landed mass distribution by as-

suming each mass is launched to a unique height, to obtain an averaged landed

mass distribution by replacing the mass at each height by four times the av-

erage initial firebrand mass. To reiterate, we assume constant w > 0, v < 0,

and the combustion process is governed by Equation (5.36).

Repeating the process from Examples 1 and 2 used to arrive at (5.37),

assuming that N firebrands are launched, employing the ignition model (5.39)
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Figure 5.10: A plot of the spotting distribution (5.43), changing the thresh-
old mass m at which ignition is certain, from m = 4, 2, and 1 grams respec-
tively (see Figure 5.9 for an illustration of the corresponding ignition operators
E(m)). We notice that in contrast to Examples 1 and 2, the spotting distribu-
tion suddenly jumps from E = 1 down to E = 0 at a single point. The support
of the spotting kernel S(x) for the cases m = 1 or m = 2 is considerably less
than the corresponding spotting kernels described in the Examples 1 and 2
above.

we find the spotting kernel reads:

S(x) = H
(

10004
ρ(0)

(1 + η( x
w

)2)
(r(0)4 − χβ2

16
(
x

w
)2)1/2 −m

)
, (5.43)

where the constant 1000 appearing in (5.43) is the conversion factor between

g and kg, and it is required since we measure m in grams.

In Figure 5.10 below, we illustrate the spotting kernel S(x) for (5.43), for

different values of m appearing in the ignition probability considered in this

subsection, in particular for the ignition operators E depicted in Figure 5.9.

Example 4:

In this example we assume constant w > 0, v < 0, we choose the com-

bustion model C0 with burning rate f < 0. The launching model L3 means

that the launching heights z and masses m are independent, so that the launch

distribution has the general form φ(z,m) = Z(z)µ(m). We denoted this model

(W1,V1,C0,L3) earlier in this chapter. Further, we assume a constant canopy

height H and consider only values of z ≥ H.
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Let’s prescribe the threshold mass to be m = 1, and consider the asymp-

totic landing distributions determined in Chapter 5.1.4. Recall there we chose

Z(z) = U(H, z)(z), the uniform distribution on z ∈ [H, z), where z is the maxi-

mum possible lofting height. To determine the landed mass distribution M(x),

we will employ the formula (5.31), for an impulse release on N firebrands.

For the choice prescribed in Equation (5.30), we find:

M(x) = N

∫ 4

0

mZ(|v| x
w

)µ(m+ f
x

w
)dm

= NZ(|v| x
w

)

∫ 4

0

mµ(m+ f
x

w
)dm. (5.44)

The quantity under the integral in the final equality is zero if m+ f x
w

does

not lie in the interval [0, 4], and 1/4m otherwise. In particular if m+ f x
w
< 0,

then the integral is zero, and similarly if m+ f x
w
> 4 then the integral is also

zero. So to get a nonzero value for M(x) we require that:

x <
m w

|f |
and x > (4−m)

w

f
. (5.45)

So, the region where we expect a nonzero value for M(x) is the interval

((4 −m)w
f
, mw|f | ). However, since m ≤ 4, w ≥ 0 and f < 0, it follows that the

lower bound (4 − m)w
f
< 0, so instead we could expect non-zero values for

M(x) possibly for x ∈ (0, m w
|f | ).

Further, we require that H < |v| x
w
< z in order to get a nonzero solution

i.e. we require x > H w
|v| and x < zw

v
. Set

δ = min (
zw

v
,
mw

|f |
). (5.46)

. Then we can only expect non-zero values for M(x) for:

x ∈ (
Hw

|v|
, δ). (5.47)
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Finally, for x satisfying (5.47), we now know that (5.44) simplifies to:

M(x) =
1

m

N

z −H
1

4

∫ δ

Hw
|v|

mdm

=
Hw

|v|
N

8
((δ)2 − (

Hw

|v|
)2). (5.48)

So our spotting operator becomes, for values of x where M(x) ≥ 0 as

above,

S(x) = E[M(x)] = H(1− Hw

|v|
N

8
((δ)2 − (

Hw

|v|
)2)), (5.49)

for values of x satisfy (5.47), and we find S(x) = 0 for all other values of x.

Kernels of compact support like the one derived here will be generic in

realistic spotting models.

5.4.4 A family of ‘fat-tailed’ kernels

Let us consider again the ignition law presented in the introduction to the

previous subsection, in the case where m → 0 (see Equation (5.42)). Then

any firebrand landing on a location which is not burning will instantly generate

a fire. We again have constant w and v, and further we will suppose that no

mass is lost during transport corresponding to the burning law C0 with zero

rate of combustion (the transport process being assumed very rapid).

Let’s assume that the firebrand vertical launching distribution φ(z,m) sat-

isfies the assumption (L3), so that

φ(z,m) = Z(z) µ(m). (5.50)

This says the lofting heights z are independent of the masses m. We can

choose the mass distribution µ(m) in accordance with experiments such as in

the experiments by Manzello [53], or out of mathematical curiosity we could

consider any other probability distribution.

What is most important is to assume that Z(z) is not exponentially bounded,
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Figure 5.11: A comparison of the exponentially bounded kernel 2e−2x versus
the exponentially unbounded kernel e−x

1/2
. We see that there is more weight

in the ‘tail’ of the unbounded kernel.

in order to obtain a fat-tailed kernel. For example, one could assume:

Z(z) = e−z
β

, (5.51)

for β ∈ (0, 1). This kernel decays sub-exponentially, and has been shown in

integro-difference models equations to give rise to accelerating propagation of

the corresponding solution in space [47]. Physically this could correspond to

extreme spotting conditions like in the presence of fire whirls. A comparison

of an exponentially bounded kernel versus kernels of the form (5.51) is given

in Figure 5.11.

From Equation (5.31), with the form (5.51) appearing in the landed mass

distribution M(x), we find that for a release of N firebrands is:

M(x) = N

∫ m

0

m Z(|v| x
w

) µ(m) dm

= N

∫ m

0

m e−(|v| x
w

)β µ(m) dm

= e−(|v| x
w

)β N

∫ m

0

m µ(m) dm

:= he−(|v| x
w

)β , (5.52)
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where h > 0 is the total landed mass at x, namely

h := N

∫ m

0

m µ(m) dm <∞. (5.53)

Since we are assuming instant ignition, the spotting distribution is the

same as the landed mass distribution. Referring to (5.52), we can then write

the spotting kernel in this case:

S(x) = he−(
|v|x
w

)β . (5.54)

Of course, this whole procedure can be generalized. If instead of the kernel

(5.51) we use an arbitrary kernel Z(z), fat-failed or not, repeating the steps

leading to (5.54), we obtain the spotting distribution:

S(x) = hZ(|v| x
w

). (5.55)

We can also extend the latter formula to include our other combustion

models, by altering h defined in (5.53) to read

h := N

∫ m

0

m µ
(
C−1(m,

x

w
)
)
dm, (5.56)

however the resulting kernel (5.55) will now have compact support, since we

define C−1(m, x
w

) only for values of x where C−1(m, x
w

) ≥ 0.

5.5 Extending the delayed-(iPDE) model de-

rived in Chapter 2

Recall the delayed integro-partial differential equation model introduced in

Chapter 2. We defined the landed mass distribution M(x− y) as usual by:

M(x− y) = N

∫ m

0

m φ(|v|t∗(x− y), C−1(m, t∗(x− y)))dm. (5.57)

And then defined the spotting redistribution kernel in terms of the formula
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(5.57):

S(x− y) = E[M(x− y)]. (5.58)

In the expression (5.57) we have a mass M(x− y). This mass is found by

tracing back in time, starting from the ground, using the inverse combustion

operator, to find the total mass which was launched to height |v|t∗(x − y)

at time t − t∗(x − y). Clearly this total mass is eventually decreasing as

we increase the magnitude of the y variable, since the probability of finding

firebrands eventually decreases with increasing height.

Since we are taking ignition to be instantaneous relative to the fire’s overall

progress, and we are only considering models where the spatial trajectories of

firebrands do not cross, we can extend our time-delayed iPDE model to include

two different landing times, for the power-law profile, and the logarithmic

profile (5.24). This gives us two new families of models, each corresponding

to a different landing time model for t∗(x− y):

∂u(x, t)

∂t
= D

∂2

∂x2
(u(x, t)) + f(u(x, t))∫ ∞

0

S(x− y) u(x− y, t− t∗(x− y)) dy,
(5.59)

This is a natural extension of our delayed i-PDE model from Chapter 2,

since (5.59) reduces to the equation derived there when w and v are constant.

Models where the time delays have such complicated expressions will be very

difficult to treat analytically, but numerical simulations of (5.59) with the

new landing times discovered in this section should provide more realistic

simulation results.

5.6 The spotting distribution and spotfire breach-

ing

The formulae for the spotting distributions S(x) obtained in this section were

obtained from an impulse release of firebrands at x = 0 and at t = 0. One

can imagine the situation in which a large front reaches an impasse to local
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spread at x = 0, and then one wants to know whether the fire will spot

across the impasse. In this section, we limited ourselves to the case of a

homogeneous medium, which could be relevant for spread in a relatively flat,

densely canopied environment, as in large coniferous industrial plantations.

The spotting distributions obtained in this chapter can then provide an

estimate, depending on the downwind location x, of the probability that a

spotfire ignition will occur at x, namely S(x) ∈ [0, 1].

Considering Example 1 from this chapter, in the case where the threshold

mass m = 1, we see in Figure 5.6 that spotting can occur up to 200 metres

downwind of the firebreak. Hence, if the obstacle to local spread is less than

200 metres in length, it is almost certain that a spotfire will be ignited down-

wind, sometime shortly after the initial release. Further, we find a non-zero

probability up to about 200 metres that a spotfire event will take place at a

given location. It is important to note how increasing the threshold mass leads

to a decrease in the spotting distribution’s magnitude.

5.7 Chapter summary

In this chapter, we began by examining a specific case of the asymptotic land-

ing distribution, starting from a very simple vertical launch distribution, and

illustrated the effect of varying the windspeed, falling speed, or combustion

rate. We then showed how the asymptotic landing distribution can be used

to obtain the spotting distribution, by employing the ignition operator E[m]

introduced in Chapter 2. The general formula obtained reads:

S(x) = E[N

∫ m

0

mφ(H + |v|t∗(x), C−1(m, t∗(x))) dm].

This formula is somewhat remarkable, in that we are free to explore an

enormous number of possible spotting kernels. However, given the limited

knowledge of many of the spotting subprocesses at the moment, it is difficult

to decide which is the most realistic model. In particular, the sparcity of data

from real fires currently makes this an impossible task, but in the future it may

be possible to use satellite data, or infrared imaging of real fires to determine

real spotting distributions.
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We chose three different ‘averaged’ spotting distributions for each of the

three ignition models, and their differences can be seen by examining Figure

5.6, Figure 5.8, and Figure 5.10. The purpose of this comparison is to illustrate

the very distinct differences between the ignition types, rather than to achieve

maximum physical realism. Prior to the commencement of this thesis, very

little was known about threshold masses for various fuel types. Experimental

work like that in [37] should eventually lead to our ability to choose a best

ignition model, and to fit it to data so that our models could be applicable in

real world application.

At the macroscopic scale, the rapid variations in spread conditions within

a typical ‘grid’ cell, which could for example be 100 square metres in area

[89], must be homogenized so as to produce a threshold mass for the entire

cell. This is a challenging problem, both from a modelling as well as from an

experimental perspective. The Fire Behaviour Prediction system [40] contains

predictive models for weather and other spread factors, based on experiment,

and could be of use in this homogenization procedure.

In this chapter we showed some realistic and some extreme examples of

the spotting distribution. As we discussed in Chapter 4, there is an impossible

number of permutations of the submodels to treat in this thesis. One result of

importance is how compactly supported, or ‘fat’-tailed spotting distributions

can be obtained; in fact, all manners of distribution. The scarcity of data on

the spotting distribution from real world fires makes the choice of the most

physically correct distribution impossible at this stage.

Our physically realistic but simple models show, as in Figure 5.8, spotting

distributions that we might expect to occur in the field. The extreme cases dis-

cussed in section 5.4.4 allow for fat-tailed distributions, which we will further

analyze in Chapters 6 and 7. In fact, in Chapter 6 we will show analytically

in the context of our i-PDE models, that such fat-tailed kernels can accelerate

a fire front, and we will observe this behaviour through numerical examples in

Chapter 7.
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Chapter 6

Analytic investigation of

solutions to the i-PDE models:

rates of spread and acceleration

6.1 Chapter Introduction

Having derived a host of spotting kernels S(x) in Chapter 5, in this chapter

we will revisit our i-PDE fire probability spread model derived in Chapter 2.

Recall that u(x, t) denotes the probability density for there to be a fire spotting

at location x at time t, while v(x, t) denotes the total fuel loading fraction at

location x at time t.

We will focus on the case where v = 1 everywhere, assume the medium is

homogeneous and isotropic, and ignore time delays in the integral term, which

as explained in Chapter 2 results in a model:

∂u(x, t)

∂t
= D

∂2u(x, t)

∂x2
+

∫ ∞
0

u(x− y, t) S(y) dy + f(u(x, t)). (6.1)

Also of interest is the spotting-dominated case, where we set D = 0 in the

above equation.We will be interested in problems of existence and uniqueness,

as well as spreading speeds for initial value problems with compact support,

and travelling wave solutions to initial value problems. Recall that we are

modelling the spread of a wildfire front in a one-spatial dimensional habitat.
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In Sections 6.2 and 6.3, we employ results from Appendix B on semigroups

to establish well-posedness of the initial value problem for (6.1), first on a

bounded domain, and then on an unbounded domain.

In Section 6.4 we present a brief history of modelling of biological invasions,

and introduce some important concepts which we elaborate on in the rest of

the chapter, in which we focus on the spotting dominated case. In particular,

in Section 6.5 we discuss travelling wave solutions, in Section 6.6 we discuss

spreading speeds, and in Section 6.7 we show how to obtain solutions which

accelerate.

In each section we deal with possibly different assumptions, which we try

to make as clear as possible without disrupting the flow.

6.2 Existence and uniqueness of solutions in

L2(Ω), for bounded Ω ⊂ R

In this first section we will consider well-posedness for Equation (6.1), on a

smooth bounded subset Ω ⊂ Rn, with Dirichlet boundary conditions:

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]. (6.2)

And with initial conditions u0 ∈ L2(Ω). The case of Neumann or periodic

boundary conditions are similar, but must be treated separately.

We recall Theorem B.5 from Appendix B, which gave us existence and

uniqueness of a solution u ∈ C0(0, T ;L2(Ω)) for T > 0, and continuity of the

map u0 → u(t) in L2(Ω). We will assume the hypotheses of (B.5) hold in what

follows.

The existence, uniqueness, and continuous dependence on initial conditions

for this problem, established in Appendix B, allow us to define solution oper-

ators ψ(t) for the Dirichlet problem, which forms a C0 semigroup of bounded

linear operators on L2(Ω). In particular, the solution u(x, t;u0) := ψ(t)[u0](x).

To use the Bounded Perturbation Theorem (Appendix B, Theorem B.4),

we must discuss the generator A of the semigroup ψ(t), which happens to be:

Af := fxx, D(A) := {f ∈ C2(Ω) | f(x) = 0, x ∈ ∂Ω}. (6.3)
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It can be shown ( [32], E.g. 2.2.12) that A is the generator of a strongly

continuous semigroup on C0
c (Ω). Its maximal domain of definition D(A) can

be extended by the density of C0
c in L2, so that A generates a C0 semigroup

on L2(Ω).

Let us now recall spotting operator S from Chapter 2,

(Su(t))(x) :=

∫ ∞
0

S(y)u(x− y, t)dy

:= S ∗ u(t), (6.4)

where S ∗ u(t) denotes the convolution of the kernel S(x) with the function

u(t) on [0,∞).

We will require that S, equipped with Dirichlet boundary conditions, is

bounded from L2(Ω) into itself. A special case is if S a Hilbert-Schmidt oper-

ator, so that the kernel S(y) satisfies (B.2.31) from Appendix B. Alternatively,

as stated in Appendix B, if S satisfies Holmgren’s inequality (B.2.32), then it

is bounded. It should be noted that many important integral operators, such

as the Fourier transform or the Laplace transform, may fail to satisfy either

of these inequalities, yet are bounded in L2 nonetheless.

By the Bounded Perturbation Theorem, S+A is the generator of a C0 semi-

group (T (t))t≥0. The maximal domain of definition is D(A+ S) = D(A) [32].

We may then rewrite the i-PDE (6.1) in the abstract form:

du

dt
= (A+ S)u(t) + f(u(t)), (6.5)

to which we can express the unique solution u in terms of the variation-of-

constants formula [65]:

u(t) = T (t− s)u(s) +

∫ t

s

T (t− τ)f(u(τ)) dτ. (6.6)

Strong continuity of the solution operators also implies continuity of the map

u0 → u(t) in L2(Ω), so with the assumptions in this section the IBVP for (6.1)

is well posed.
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6.3 Existence and uniqueness of solutions in

L2(R)

We consider the model (6.1) on R, by extending S to all of R by setting

S(x) = 0 if x < 0. We assume that f ∈ L2(R) is Lipschitz continuous, and

further that the integral operator is a Hilbert-Schmidt operator (or at least

bounded from L2 → L2). As in the preceding section, we can then use the

Bounded Perturbation theorem twice, for each of the bounded terms f(u) and

S ∗ u, so as to obtain another strongly continuous semigroup which solves the

IVP for (6.1), since we already know that the heat semigroup forms a strongly

continuous semigroup (B.2.58) on L2(R), by Theorem B.6 in Appendix B.

We thus have established existence, uniqueness, and continuous depen-

dence on initial conditions for the IVP for (6.1), in the case of an unbounded

domain. We will now proceed to examine the spotting-dominated case, where

we neglect the effect of diffusion.

6.4 The spotting-dominated case: Some back-

ground and notation

Recall that the spotting-dominated case is a special case of Equation (6.1),

∂u(x, t)

∂t
= (S ∗ u(t)) (x) + f(u(x, t)), (6.7)

where the convolution term (S ∗ u(t)) (x) was defined in Equation (6.4), on the

domain x ∈ [0,∞). In the remainder we will assume f is at least Lipschitz

continuous, and the convolution defines a regular Borel measure, for Borel

measurable functions u(t) on [0,∞).

In Chapter 7 we divide the possibly nonlinear kinetics term f into a neg-

ative contribution due to to heat loss, and a positive contribution due to the

availability of fuel,

f(u(x, t)) = c̃(u(x, t))− du(x, t), (6.8)
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so that an alternative to Equation (6.7) reads:

∂u(x, t)

∂t
= (S ∗ u(t)) (x) + c̃(u(x, t))− du(x, t), (6.9)

where c̃ is a Lipschitz-continuous and monostable function of u, and d > 0 is

constant.

The non-linear Equations (6.7) and (6.9), which differ only in their de-

scription of the kinetics term, and even systems of such equations, have been

studied for some time in epidemiology, invasion ecology and combustion mod-

elling, amongst other subjects. Such models go beyond Fisher’s PDE, allowing

for a finer description of the ‘tail’ of the spotting distribution, and the analy-

sis of their invasion properties ([35],[45]) go far beyond those outlined in the

Introduction.

The first spreading results for an i-PDE system, resulted from the study

of a model for an epidemic invasion, and presented in Kendall [43], was an

investigation of an extension of the classic epidemic model due to Kermack and

McKendrick [44]. This paper utilized a diffusion approximation to the right

hand side of (6.7), and in this approximation Kendall was able to show that

the possible velocities had a lower bound c0, and hence the velocity spectrum

for such epidemics is [c0,∞).

Mollison then proceeded to investigate the 3-component i-PDE system of

Kendall directly, and Mollison showed that for an exponentially bounded, non-

negative, probability kernel the diffusion approximation due to Kendall works

well [60]. Mollison did this by reducing the study to that of a single equation.

Definition: A travelling wave solution with profile Γ(z) to Equation (6.7),

is a solution u(x, t) which depends only on the variable z = x − ct, i.e.

u(x, t) = Γ(x − ct), where c ≥ 0 is the wavespeed. Such solutions simply

propagate to the right with time, without changing their shape. Typically

we require limz→∞ Γ(z) = 0, while limz→−∞ Γ(z) = σ, where σ > 0.

Mollison constructed travelling wave solutions for all speeds greater than

or equal to a minimum speed c0, for exponentially bounded kernels [61]. For

exponentially unbounded kernels, Mollison explained how no finite bound can

be placed on the speed of propagation of such waves [60].
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Definition: We define an exponentially unbounded kernel, to be a kernel S

which decays super-exponentially as x→∞, so that

∀ η > 0, ∃ xη ∈ R, S(x) ≥ e−ηx, x ∈ [xη,∞) (6.10)

The opposite case is that of an exponentially bounded kernel, where there

exists η > 0 such that: ∫
R
S(x) eη|x| dx <∞, (6.11)

for a kernel defined on all of R.

The value σ > 0 described in Definition 6.4 is often the spatially homo-

geneous steady state, i.e. the long-time solution of the ODE ut = f(u) for

u0 ≥ 0. The problem of constructing a connection between u = 0 and u = σ

depends on the model one deals with, and the initial conditions provided.

Another relevant parameter in mathematical models of invasion is the

asymptotic speed of spread c∗, or simply the spreading speed, a concept intro-

duced by Aronson and Weinberger in the context of reaction-diffusion equa-

tions [10]. The concept was then applied by Aronson to Kendall’s model [9],

given certain assumptions on the kernel and kinetics function. The techniques

employed in [9] re-appear as part of the construction of spreading speeds for

many subsequent models.

Definition: Suppose u(x, t) is the unique continuous and bounded solution

to (6.7) in L∞(R). Suppose further that u(x, 0) := u0(x) is compactly

supported. We say that c is a spreading speed of an invasion [9], governed

by Equation (6.7), if:

lim inf
t→∞,|x|>c t

u(x, t) = 0, (6.12)

and

lim sup
t→∞,|x|≤c t

u(x, t) > 0, (6.13)

In words, the first item in the latter definition says if you move faster than

speed c, you outrun the invasion, while if you move at any speed c′, where

c0 < c′ < c, the invasion overtakes you.
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For the models studied by Kendall [43], both Diekmann [30] and Thieme

[86] independently proved that the asymptotic speed of spread c∗ corresponds

to the minimum travelling wave speed c0 found by Mollison. Weinberger ex-

tended these results to a finite-time recursion process, which has had much

subsequent applications in the study of spreading speeds [92].

An assumption which appears frequently in these papers, and which we

will employ in our study, is that there is a unique positive, stable fixed point

for the kinetics f , captured in the following definition.

Definition: A kinetics term f ∈ C1([0, 1],R) is monostable on [0, 1], if

f(0) = f(1) = 0, f(s) > 0 for all s ∈ (0, 1), f ′(0) > 0. (6.14)

6.5 Spotting dominated case: existence of trav-

elling wave solutions

6.5.1 Some recent results on travelling waves

In this subsection we discuss some results concerning travelling wave solutions

of ut = Ŝ ∗ u+ f(u), where Ŝ defines a nonnegative, regular, probability Borel

measure on R.. We assume f is Lipschitz continuous and monostable on [0, 1]

(unless otherwise specified).

Then as noted in Yagista [94], the function

G(u) := Ŝ ∗ u+ f(u), (6.15)

is Lipschitz-continuous on L∞(R). By the usual well-posedness theory of or-

dinary differential equations [65], the Equation:

ut = Ŝ ∗ u+ f(u) (6.16)

generates a semiflow on L∞(R).

Given these assumptions, Schumacher determined that there is a minimal

speed c∗ of travelling wave solutions to (6.16), such that travelling wave solu-

122



tions with speeds c ≥ c∗ exist, provided the KPP condition:

f(u) ≤ f ′(0)u, (6.17)

and some further conditions hold ([77], [78]).

More recently, Yagista has generalized these results to discuss existence

and nonexistence of travelling waves as follows [94]:

Theorem 6.1: ([94], Theorem 1) Suppose there exists a positive constant

λ > 0 such that ∫ ∞
−∞

Ŝ(y) eλy dy <∞. (6.18)

Then there exists a constant c∗ such that Equation (6.16) has a traveling

wave solution with monotone profile and speed c ≥ c∗. There are no traveling

wave solutions when c < c∗.

We notice that the integral appearing in (6.18) is the moment-generating

function of the density Ŝ, so by requiring it to exist for a single value of

λ > 0, we are placing weak constraints on the kernel Ŝ, as well as weaker

conditions on the non-linearity f relative to the monostable-KPP assumptions,

in order to guarantee the existence of monotone travelling waves. There is also

no symmetry assumption on the kernel, which is assumed in almost all such

models in the literature.

6.5.2 Travelling wave solutions for our model (6.9)

We would like to connect our model (6.9) to the results in the preceding

subsection. To do so, we first extend our nonnegative kernel S from [0,∞) to

all of R, by defining

S̃(χ) :=

{
S(x), x ≥ 0;

0, x < 0
, (6.19)

where in what follows we will drop the tilde S̃, and instead write S, where it

is understood that S is the fully supported kernel in (6.19).

We suppose that our kernel S integrates to a finite positive value s0,∫
R
S(x) dx = s0. (6.20)
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We introduce a scaling in space:

χ = s−1
0 x. (6.21)

Employing our change of variables (6.21), we obtain:∫
R
S(x) dx =

∫
R
S(s0χ)s0 dχ

= s0,

from which we define yet another kernel

S(χ) := S(s0χ), (6.22)

with the property that it integrates to one:∫
R
S(χ) dχ = 1. (6.23)

Further, let’s recall the function f(u) in (6.9) reads:,

f(u) := c̃(u)− d u,

where c̃(u) is assumed to be Lipschitz continuous and monostable on [0, 1].

Then with our change of variables, the differential equation (6.9) becomes:

∂u(χ, t)

∂t
= (S ∗ u(t))(χ) + f(u(χ, t)). (6.24)

It is clear that f(0) = 0, and f(1) = d since c̃(1) = 0, so the latter equation

is not monostable on [0, 1]. The roots of f are u = 0, and the value γ > 0

where c̃(γ)− d γ = 0, which we assume to exist.

Let us next introduce a new dependent variable y,

y(χ, t) =
1

γ
u(χ, t), (6.25)

The differential equation (6.24) becomes

∂y(χ, t)

∂t
= (S ∗ y(t))(χ) +

1

γ
f(γ y(χ, t)). (6.26)
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For simplicity of notation, we set

g(y) :=
1

γ
+ f(γ y), (6.27)

so that our original equation (6.9), following from (6.24), becomes:

∂y(χ, t)

∂t
= (S ∗ y(t))(χ) + g(y(χ, t)). (6.28)

Lemma 6.1: Assume that there is a constant λ > 0 such that (6.18) holds for

our kernel S, where S is a probability measure, and g(y) is Lipschitz contin-

uous and monostable on [0, 1]. Then Theorem 6.1 implies that there exists

some constant c∗, such that there exist monotone travelling wave solutions

y(χ, t) to Equation (6.28), for speeds c ≥ c∗.

Proof. Notice S is nonnegative and integrates to one, and the function g de-

fined in (6.27) Lipschitz continuous, and monostable on [0, 1]. By assumption

the technical condition (6.18) holds for some λ > 0. Then we are guaranteed

the existence of a monotone travelling wave solution y(χ, t) to (6.28), for all

c ≥ c∗, by Theorem 6.1.

Thus for our spotting model (6.9), we are able to establish the existence of

monotone travelling waves:

Theorem 6.2: Suppose the hypotheses of Lemma 6.1 hold. Then there exists

a constant c
(1)
∗ such that Equation (6.9) has a monotone travelling wave so-

lution, for all speeds c ≥ c
(1)
∗ . The amplitude of the travelling wave solution

for (6.9) is γ times the amplitude of the corresponding travelling wave so-

lution for (6.28). Further, the travelling wave solution for (6.9) travels at

speed s0 c, relative to the corresponding travelling wave speed c for (6.28).

Proof. According to Lemma 6.1, Equation (6.28) has a unique monotone trav-

elling wave solution y(χ, t), for each wave speed c ≥ c∗, for some constant

c∗ > 0. Of course, Equation (6.28) is related to (6.9) by the scaling of vari-

ables introduced in this subsection. Let us denote this solution u(χ, t). Let

us now invert our transformations determined in this chapter, to obtain the
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solution u(x, t) to (6.9):

u(s0 x, t) = γy(χ, t). (6.29)

Hence we see that the solution u to (6.9) is a scaled version of the solution

(6.28). So necessarily the solution u(x, t) describes a monotone travelling wave.

The amplitude of u(χ, t) is γ times the magnitude of the travelling wave y(χ, t).

However, in terms of our original variable x, we have u(x, t) = u(s0χ, t). So

if the travelling wave y(χ, t) travels at speed c, the travelling wave for u(x, t)

moves at speed s0 c. This can be seen by approximating the wavespeed for

y(χ, t) as c ≈ ∆χ
∆t

= s−1
0

∆x
∆t

.

6.6 Spotting dominated case: spreading speeds

and acceleration

6.6.1 Spreading speeds in the linearized case

In this subsection, we will explore spreading speeds for our model (6.7). We

will follow a method which is old in the literature, probably due to Mollison

[61]. In this method, we will suppose that the leading edge of the wave is

linearly determined. To explore this, we consider a linearized version of the

nonlinear model (6.7),

ut = ru+ S ∗ u(t), (6.30)

where r := f ′(0) > 0 is the linearization of f(u) at u = 0, and S is as defined

in the preceding section, in Equation (6.26). Recall that S is the normalized

extension of our one-sided kernel S from [0,∞) to all of R.

We assume a solution of the form:

u(x, t) = Γ(x− ct), (6.31)

where c is the wavespeed. Further, we assume a wave profile Γ of the form:

Γ(z) := e−λz. (6.32)
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We also impose the requirement:

lim
z→∞

Γ(z) = 0. (6.33)

Inserting the forms (6.31),(6.32) for the solution into the equation ut =

ru+ Ŝ ∗ u(t), we obtain:

cλe−λz = re−λz +

∫ ∞
−∞

S(y)eλ[(x−ct)−y] dy, (6.34)

which leads us to the formula:

cλ = r +

∫ ∞
−∞

S(y)eλy dy. (6.35)

We define the moment generating function µ0(λ) for a given kernel S,

µ0(λ) :=

∫ ∞
−∞

S(y)eλy dy. (6.36)

Comparing the formulas (6.35) and (6.36), we find an expression for a

candidate for the invasion speed c, in the exponentially bounded case:

c =
r + µ0(λ)

λ
. (6.37)

Now, from the preceding expression, we define the following quantities,

which will define the right and left-traveling wavespeeds respectively:

c+ := inf
λ>0

r + µ0(λ)

λ

c− := inf
λ>0

r + µ0(−λ)

λ
, (6.38)

The latter formulae (6.38) were derived heuristically, by examining a par-

ticular form for the leading edge of a traveling wave. In order to justify that

they are in fact the spreading speeds for the nonlinear model, we will appeal to

the theory for spreading speeds, for asymmetric dispersal kernels, developed

in Jin and Lewis [41].
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6.6.2 Recent results on spreading speeds and accelerat-

ing solutions

Jin and Lewis [41] consider a model which is very similar to our own, namely

ut = u(x, t)g(t, u(x, t))− a(t)u(x, t) + a(t)

∫
Ω

k(t, x− y) u(y, t) dy, (6.39)

where each of g, a, and k are positive and ω-periodic in t [41].

In order to obtain spreading speeds, Jin and Lewis make the following

assumptions about Equation (6.39): (H1):

• g ∈ C(R2
+,R), and gu(t, u) < 0 for all (t, u) ∈ R2

+. This says the per

capita combustion rate decreases with an increase in fire probability u.

• There is a û > 0 such that g(t, û) ≤ 0, so that the growth rate is negative

if the population exceeds û.

•
∫ ω

0
g(t, 0) dt > 0.

• The transfer rate a(t) > 0, and a(t) is continuous.

• There exists a constant L > 0 such that

|u1g(t, u1)− a(t)u1 − (u2g(t, u2)− a(t)u2)|≤ L|u1 − u2|, (6.40)

for all u1,u2 ∈ [0, û] := W . This implies ug(t, u) − du is uniformly

Lipschitz continuous in u on W .

(H2):

• k(t, x) ≥ 0, and
∫
R k(t, x)dx = 1, for all t ≥ 0.

• k(t, x) is continuous in t ∈ R uniformly in x on any bounded interval of

R.

• The moment generating function, defined in (6.36)

µ0(t, λ) :=

∫
R
k(t, y)eλydy,
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exists for all λ ∈ (−∆−,∆+) and t ≥ 0, with M(t0,−∆−) = ∞ and

M(t1,∆+) = ∞ for some t0,t1 ≥ 0, where ∆± are positive and may be

infinity. In the case where ∆± = ∞, the dispersal kernel k(t, x) has

exponentially bounded tails, and the tails are uniformly bounded for all

t ≥ 0.

The spreading speeds are then obtained as follows, in terms of the Poincare

map Qω, which maps the solution at time t into the solution at time t+ω, i.e.

one period later from time t.

Proposition 6.1: (Jin and Lewis [41], Proposition 2.1) Assume that (H1) and

(H2) hold. Let Qω be the Poincare map of Equation (6.39). The spread-

ing speeds of Qω in the downstream (c+
ω ) and upstream (c−ω ) directions are,

respectively,

c+
ω = inf

0<α<∆+

∫ ω
0

(g(s, 0)− a(s)) ds+
∫ ω

0
a(s)

∫
R k(s, y)eαy dy ds

α
, (6.41)

and

c−ω = inf
0<α<∆−

∫ ω
0

(g(s, 0)− a(s)) ds+
∫ ω

0
a(s)

∫
R k(s, y)e−αy dy ds

α
, (6.42)

Now let

c+ =
c+
ω

ω
, (6.43)

and

c− =
c−ω
ω
. (6.44)

Theorem 6.3: (Remark following, and established by, Theorem 2.1 in Jin and

Lewis [41]): c+ and c− are the spreading speeds of solutions to (6.39), in the

downstream and upstream directions, respectively.

Since constant functions are ω-periodic for any ω ∈ R, the results which

apply for (6.39) also apply in the case where g, a, and k do not depend on time,

as in our models (6.7) or (6.9). Indeed, this is described in Section 4.1 from

Jin and Lewis, where they deal explicitly with the autonomous case, where g,

a, and k are time-independent, which results in an equation of the form [41]:

ut(x, t) = u(t, x) f(u(t, x))− du(t, x) + d

∫
R
u(y, t) k(x− y) dy. (6.45)
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As stated in Section 4.1 from Jin and Lewis [41], it follows from Theorem

6.3, that we have the following Theorem:

Theorem 6.4: Suppose f , d, and k in (6.45) satisfy the corresponding condi-

tions for g, a, and k in (H1) and (H2), then the spreading speeds for (6.45)

in the upstream and downstream directions are given by

c+
0 = inf

0<α<∆+

f(0)− d+ d
∫
R k(y) eαy dy

α
, (6.46)

and

c−0 = inf
0<α<∆−

f(0)− d+ d
∫
R k(y) e−αy dy

α
. (6.47)

The reader will notice that the latter spreading speeds are consistent with

the formulae (6.38). In the next section we will apply the formulae (6.46) and

(6.47) to our model (6.9) to establish results concerning spreading speeds.

To describe accelerating solutions, we employ the following Theorem:

Theorem 6.5: (Jin and Lewis [41], Theorem 2.4) Consider the model (6.39),

and the spreading speeds c+ and c−, given in (6.43) and (6.44), and estab-

lished in Theorem 6.3.

Then the spreading speed c+ (c−) in the downstream (upstream) direction

of the solution to (6.39), is infinite if and only if
∫
R k(x)eλxdx =∞ for all

positive λ (negative λ).

The latter theorem tells us that if the spotting kernel does not possess a

moment generating function, then there is no upper bound on the spreading

speeds. Numerical investigation in Chapter 7 for analogous models suggests

that such solutions have a leading edge which accelerates.

6.6.3 Computing spreading speeds, or acceleration for

our model (6.9)

Let us recall our model (6.9),

∂u(x, t)

∂t
= c̃(u(x, t))− d u+

∫ ∞
0

S(y) u(x− y, t) dy.
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In this subsection, we will make use of the following assumptions for the

kernel S, denoted (S1):

• The kernel S is nonnegative and bounded,

• The kernel S is nonzero only on some subset of [0,∞), because we assume

spotting occurs only from left to right.

• The kernel is exponentially bounded, i.e. there is some η̃ > 0 such that∫ ∞
0

S(x)eη̃ x dx <∞. (6.48)

The previous subsection modelled movement in a stream, which is analo-

gous to our wind-driven flow. What we called the upstream spreading speed,

is here the upwind spreading speed, and the downstream spreading speed is

called the downwind spreading speed. We expect the upwind spreading speed

to be zero, while the downwind spreading speed should be nonzero.

Comparing our model to (6.45), we see that the kernel k appearing there

plays an analogous role to our spotting kernel S appearing in (6.9). However,

the results in Theorem 6.3 and Theorem 6.5 are for kernels defined on all of

R. We define the extension of our kernel S(y) to all of R, by requiring S(y) to

be zero for y ≤ 0, as done before. We will continue to refer to this extended

kernel using the same notation, namely S.

We thus rewrite (6.9) in our usual notation,

∂u(x, t)

∂t
= c̃(u(x, t))− d u(x, t) + (S(y) ∗ u(t))(x),

where it is understood that x ∈ R.

Now, consider that S(y) = d S(y)
d

, which allows us to define a new kernel

S1(y) :=
S(y)

d
. (6.49)

Examining the conditions (H2) from the preceding subsection, our spotting

kernel S is nonnegative, but does not necessarily integrate to one. We will

normalize the kernel S1.

131



We suppose that our kernel S1 integrates to the finite value s1,∫
R
S1(x) dx = s1. (6.50)

Next we introduce a scaling in space:

χ = s−1
1 x, (6.51)

such that

S1(χ) := S1(s1χ), (6.52)

integrates to one.

Since we assume S is nonnegative, it follows S1 is also nonnegative. Since

we assume that S is exponentially bounded, so is S1. Our kernel does not

depend on time t.

Further, the moment generating function of S1 is defined analogously to

(6.36),

µ0(λ) =

∫
R
eλχ S1(χ) dχ. (6.53)

Since our kernel S1 is zero for all y ≤ 0, we can rewrite the moment generating

function µ1 in (6.53) as

µ1(λ) =

∫ ∞
0

eλχ S1(χ)dχ. (6.54)

It is natural to suppose that c̃(0) = 0, since if there is no fire, there is no

combustion. Hence we can define a new function, f̂(u), which describes the

per capita growth rate of the expected fire probability, so that:

c̃(u(χ, t)) := u(χ, t)f̂(u(χ, t)). (6.55)

In terms of this new expression for c̃, we may rewrite our Equation (6.9):

∂u(χ, t)

∂t
= u(χ, t)f̂(u(χ, t))− d u(χ, t) + d (S1 ∗ u(t))(χ). (6.56)

The function f̂(u) defined in (6.55) is analogous to the function f(u) ap-

pearing in (6.45), in that both are per capita growth rates. Let’s examine
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the assumptions from (H1), which must be met, adapted to our autonomous

situation.

We call the following group of assumptions (J1):

• f̂ ∈ C(R), and f̂ ′(u) < 0 for all u ∈ R+.

• There exists a threshold value û > 0, such that f̂(u) ≤ 0, for all values

of u ≥ û. This says once the fire probability reaches a threshold value,

the per capita growth rate of fire probability is negative.

• We assume
∫ ω
0 f̂(0)ds

ω
= f̂(0) > 0.

• The constant d > 0 (and constants are continuous).

• We assume that G(u) := uf̂(u)− d u is uniformly Lipschitz continuous,

with respect to u, on [0, û].

Lemma 6.2: If the assumptions (S1) on S presented in this subsection, as

well as the assumptions in (J1) hold, then the spreading speeds for solutions

to Equation (6.56) are given by:

c+
0 = inf

0<λ<η

f̂(0)− d+ d
∫∞

0
S1(χ) eλχ dχ

λ
, (6.57)

in the downwind direction (positive x), and in the upwind direction (negative

x) by:

c−0 = inf
0<λ<∞

f̂(0)− d+ d
∫∞

0
S1(χ) e−λχ dχ

λ
. (6.58)

Proof. Our model (6.56) is completely analogous to the autonomous model by

Jin and Lewis presented in (6.45). We will check to see that assumptions (H1)

and (H2) are satisfied, so that we may use the spreading speed formulae (6.46)

and (6.47), adapted to our model (6.56).

By assumption, our kernel S1 is exponentially bounded, there exists η > 0

such that:

µ0(η) =

∫ ∞
0

S1(χ) eηχ dχ <∞, (6.59)

which guarantees that µ0(λ) exists at least for λ ∈ [0, η) for the kernel S1.

We also know µ0(λ) < ∞ for each λ < 0, since again by the assumption of
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exponential boundedness we have

µ0(−|λ|) =

∫ ∞
0

S1(χ) e−|λ|χ dχ <∞, (6.60)

which is the Laplace transform of the kernel S1 on [0,∞). Since the condition

for the existence of the Laplace transform is that kernel S1 is itself exponen-

tially bounded, our assumption of exponential boundedness implies that the

moment generating function exists for λ ∈ (−∞, 0].

In the language of the preceding subsection, the moment generating func-

tion exists on (−∆−,∆+], where ∆− = ∞ and ∆+ = η. Since our kernel S1

is in addition nonnegative, and integrates to one, all assumptions in (H1) are

satisfied for the kernel S1 (for comparison, recall the kernel was denoted with

the symbol k).

Further, the assumptions (J2) imply that the assumptions (H2) are met

for (6.56). Hence all conditions in (H1) and (H2) are met for the autonomous

model (6.45), so Theorem 6.4 guarantees that the spreading speeds are (6.57)

and (6.58).

Finally, since Equation (6.45) is directly connected to our model (6.9),

we can establish spreading speeds for the solution u(x, t) to (6.9). We must

be careful however, since the solution to (6.45) is given as u(χ, t). We can

approximate the spreading speeds c± given in (6.57) and (6.58) respectively as

c±0 ≈
∆χ
∆t

= s−1
0

∆x
∆t

. It is clear that the spreading speeds in x-coordinates are

s1 c
±
0 .

We thus have our main spreading result:

Theorem 6.6: Suppose the assumptions in (S1), and (J1), described in this

subsection hold. The spreading speeds for solutions of Equation (6.9), with

compactly supported initial data in R, are:

c+ = s1 inf
0<λ<s0η

dc̃
du

(0)− d+ s−1
1

∫∞
0

S(y) eλs
−1
1 y dy

λ
, (6.61)

in the downwind direction (positive x), and in the upwind direction (negative

x) by:

c− = s1 inf
0<λ<∞

dc̃
du

(0)− d+ s−1
1

∫∞
0

S(y) e−λ s
−1
1 y dy

λ
. (6.62)
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Proof. This Theorem follows from Lemma 6.2, as we will see. As explained

in that Lemma, the assumptions (H1) and (H2) required in Theorem 6.4 are

satisfied. By definition, S1(χ) = S1(s1χ) = 1
d
S(x), from which it follows

d

∫ ∞
0

S1(χ) eλχ dχ =

∫ ∞
0

S(x) eλs
−1
1 x d(s−1

1 x) (6.63)

which explains the absence of d, and the presence of the term s−1
1 multiplying

the integral term in Equations (6.61) and (6.62), when one compares the latter

formulae to the spreading speeds (6.57) and (6.58) respectively (established in

Lemma 6.2).

Further, that dc̃
du

(0) = f̃(0) is easily seen from Equation (6.55). Finally, the

bounds on λ are determined by noticing that χ ∈ [0, η] ⇒ x ∈ [0, s1η], so in

addition χ→∞⇒ x→∞.

As an important note, consider that as λ → 0+, we have c− appearing in

(6.62) tending to infinity. Further, it is clear that the infimum term in c− is a

decreasing function of λ for λ > 0, and tends to zero as λ→∞. It follows that

c− for our model is zero, as expected: there is no spread in the wind direction,

in the spotting dominated case.

Finally, we notice that if S does not possess a moment generating function,

then neither does S1. This establishes our final primary result of this chapter,

namely the existence of spotting accelerated solutions.

Theorem 6.7: With the assumptions (S1) on S in this subsection, except the

assumption of exponential boundedness, the spreading speed c+ in the down-

wind direction of the solution to (6.9), is infinite if and only if
∫∞

0
S(x)eλxdx =

∞ for all positive λ.

Proof. As in the proof of Lemma 6.2, Equation (6.45) is completely analo-

gous to the model (6.56), and consequently we can apply Theorem 6.5 to

(6.56). Hence the spreading speed of solutions to (6.56) is infinite if and only

if
∫∞

0
S(x)eλxdx =∞ for all positive λ. But the spreading speed of solutions to

(6.56) are proportional to the spreading speeds for (6.9), with proportionality

constant s1 > 0. So if compactly supported data for (6.56) evolves to an accel-

erating solution, so does compactly supported data for (6.9), as required.
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6.7 Chapter summary

In this Chapter we investigated the well-posedness of initial value problems

for Equation (6.1) and (6.9), which were derived in Chapter 2.

For the case where local spread occurs on the same timescale as spotting,

in Sections 6.2 and 6.3 we proved the well-posedness of (6.1). This will be

relevant for future study, where we would like to study conditions under which

spotting is the dominant spreading mechanism. Further, it is important to

know we have unique solutions before embarking on numerical investigation,

as we will do for analogues of these equations in Chapter 7.

In addition, for the spotting-dominated case, which will prove to be the

most important case in our numerical investigations in Chapter 7, we obtained

several results. By appealing to abstract results on traveling waves in [94], in

Chapter 6.5 we were able to establish the existence of monotone travelling wave

solutions to (6.7). In Chapter 6.6, in the case of an exponentially bounded

kernel, we found expressions for the asymptotic rate of spread of initially com-

pactly supported solutions, by appealing to spreading results established by

Jin and Lewis [41]. We further demonstrated that if the kernel is exponen-

tially unbounded, then there is no lower bound for the spreading speed, and

we must have acceleration. Numerical investigation of analagous equations,

for exponentially unbounded kernels explored in Chapter 7, reveal acceleration

in the leading edge of solutions.

The spreading speed results obtained in Chapter 6.7 indicate that the

spread rate depends on the kinetics, the heat loss rate, as well as the spotting

kernel. This result is significant, since we will see that even compactly sup-

ported spotting kernels may give rise to spreading speeds greater than that

predicted for a corresponding reaction-diffusion equation.
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Chapter 7

Numerical investigation of

traveling waves and pulses for

the iPDE models from Chapter

2.

7.1 Chapter Introduction

In this Chapter we perform numerical investigation of the continuous-type

equations derived in Chapter 2, with no time delay. We proceed in increasing

levels of complexity, first examining the one-component model for the expected

fire probability u(x, t), as in Equations (2.39) or (2.45). We discuss numerical

methods used to solve initial value problems in Section 7.2.

In Section 7.3 we display that solutions arising from an i-PDE model with

a compactly-supported kernel, with compactly supported initial conditions for

u(t) evolve into right-travelling wavelike solutions, with constant wavefront

shape and spreading speed. For a choice of an exponentially unbounded kernel,

we show a solution whose shape and spreading speed are changing with time.

The leading edge of this solution appears to be increasing its spread rate with

time, i.e. accelerating. Further, for a compactly supported uniform kernel

(an approximation to some of the ‘averaged’ spotting kernels, in particular

example 1, from Section 5.3), we show a constant-speed travelling wave.
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In the remainder of the chapter, we augment our models for u, to consider

models including the total fuel loading fraction v. In section 7.3 we begin by

investigating some kinetic models for u and v, ignoring the spatial parts of the

process. We propose some qualitative models for how the presence of v can

increase u. This is analogous to combustion, or to a predator-prey type model,

where u is the predator that ‘feeds’ off v. These models provide the nonlinear

growth/decay terms appearing in the modified version of (2.39), given by

∂u(x, t)

∂t
= c(u(x, t), v(x, t))v(x, t)− du(x, t), (7.1)

and the Equation governing v is again (2.36), namely vt = −c(u, v)v Similar

models for combustion waves have been proposed in the literature and are

mentioned where they appear.

In Section 7.5 we add diffusion to the temporal dynamics of fire probability

and fuel loading fraction, outlined in the preceding paragraph. We obtain a

reaction-diffusion equation for the expected fire probability u. We do so by

adding a diffusion term to the right hand of the kinetic equations, and for

compactly supported initial data we see the emergence of travelling pulse-

type solutions, which move with constant shape and spreading speed. We

investigate how different kinetics result in different pulse shapes and speeds,

as well as the total fuel loading fraction v remaining.

Such models can be compared to real data: spread rates are known for

various scenarios [40], and these can be related to the diffusion coefficient.

Further, the expected fuel loading fraction remaining, as well as well as the

‘residence time’ (think of the lapse of time during which the leading edge at a

given location takes until the trailing edge reaches the same location), are both

outputs of the FBP system [40]. An important question, for future research,

is to address the relative effect of local spread and spotting on realistic models

of fire invasions.

In Section 7.6 we add in the spotting operator, and for the parameter,

kinetics, and kernel choices we make, spotting dominates the dynamics. Diffu-

sion is seen to have little to no influence for the latter choices, so we confine our

investigation to the spotting-dominated case (2.45). We investigate how dif-

ferent choice of kinetic models, as well as different spotting kernels, can effect
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the spreading speed and possible acceleration of initially compactly-supported

initial data. Our purpose here is qualitative, since by combining all possible

spotting kernels derivable from our general formula, we must consider more

than 500 models together with their parameters. Such an investigation is

beyond the scope of this thesis.

It has been noted as early as Mollison’s 1972 paper [60], for one-component

models, that exponentially bounded kernels allow finite spreading speeds, while

exponentially unbounded kernels do not. Hence the exponentially bounded

kernel provides a measure of how fat the ‘tail’ of a spotting kernel can be.

We include it in our analysis in Section 7.6, in addition to the uniform and

exponentially unbounded kernels explored in Section 7.3, in part to illustrate

analogous results for our two-component models. In future research we would

like to explore analytically how the travelling pulses exhibited in this chapter

are connected to model parameters, given a more realistic spotting kernel and

improved local spread/combustion modelling.

7.2 Numerical solutions of the equations in

this Chapter

We wrote code in Matlab to determine solutions to the types of initial value

problems from this Chapter. We used very simple numerical methods in each

case.

Each of the ordinary differential equations is solved by forward-differencing

[6]. We divide time and space into a mesh, with constant ∆x = 1, which we

interpret to represent 1 metre, and set time ∆t = 0.5. To approximate the

temporal derivative at u(xi, t), where t is a nonnegative integer, we approxi-

mate
∂u(xi, t)

∂t
≈ u(xi, t+ 1)− u(xi, t)

∆t
+O(∆t), (7.2)

where the order symbol O(∆t) indicates that we have first-order convergence

in time [6].

Similarly, we use the approximation (7.2) in the other equation types to

model the temporal derivative. This restricts our scheme to first order accu-

racy. Higher-order solvers, e.g. Runge-Kutta solvers, could be implemented
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[6] to improve temporal convergence.

Wherever a diffusion term appears, we use central differencing in space to

approximate the second-derivative term, this time to second-order accuracy

[6],

∂2u(xi, t)

∂x2
≈ u(xi + ∆x, t) + u(xi −∆x, t)− 2u(xi, t)

4∆x2
+O(∆x2) (7.3)

The integral term is approximated using Matlab’s trapz routine, a trape-

zoidal rule.

The error in the solution arising from the use of the trapezoidal rule can

be reduced by using improved quadrature methods for approximating the in-

tegral term, like when using Legendre polynomials as the quadrature weights

in a Newton-Cotes formula [81]. This may be needed in situations where the

diffusion-wave is close in speed to the spotting-driven wave for the fire proba-

bility, in future research.

7.3 Traveling waves for the single equation model

in the spotting-dominated case, with no

time-delay

In this section, we will consider the model:

du

dt
= α r u(1− u)− d u+

∫ ∞
0

S(y) u(x− y, t) dy, (7.4)

where the nonlinearity is of logistic form. In the final sections of this chapter,

we will consider other types of kinetics and their influence on spotting, in the

context of the full model where we include the total fuel loading fraction v.

Unless otherwise specified, the parameters are α = 0.7, r = 1, and d = 0.5.

7.3.1 An uniform spotting kernel, travelling waves

In this section we consider the spotting kernel S given in (7.4), with compactly

supported initially conditions for u. We choose a uniform spotting kernel for

u given in Equation (7.23) below. The results are plotted in Figure 7.1.
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u

x(m)

(s)

Figure 7.1: We illustrate how a compactly supported initial condition for (7.4),
with uniform spotting kernel given in (7.23) for L = 5 We plot u(t) versus x,
for various snapshots in time; the arrows point out the leading edge.

We see that the solution grows into a right-travelling wave, moving with

constant speed and shape after an initial transient period. We notice that u

is zero for x < 0, since in this spotting-dominated case we only have motion

to the right (and no diffusion term). Hence this is not a travelling wave in the

traditional sense, since limx→−∞ u(x, t) = 0.

Of notice is that the spreading speed of this wave, which is compactly sup-

ported, is significantly greater than the diffusion wave with the corresponding

T4 kinetics model descried in Section 7.5.

7.3.2 A fat-failed kernel, accelerating solution

Here we consider the model (7.4), with the fat-tailed kernel

S(y) = exp (−√y). (7.5)

For compactly supported initial data u(0), the solution evolves into an
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u

x

u

x(m)

Figure 7.2: We plot accelerating solutions u(t) to (7.4) versus x, where x is
measured in metres, for the exponentially unbounded kernel S(y) from (7.5),
showing the solution at various snapshots in time (measured in seconds), and
the spatial extent reached. Different coloured waves correspond to different
instances of time. Upon close comparison of the level sets at the different
snapshots, close to u ≈ 0.2 one can distinctly note the spatial separation
between level sets expanding with time. Further, the wave does not evolve to
have a constant shape.

accelerating wave, depicted in Figure 7.2 below.

Notice that the distance between the leading edges of the u-waves is growing

with time, a clear indication of acceleration. Further, the shape of the wave is

evolving with time, rather than becoming a wave of fixed shape.
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7.4 The temporal dynamics of combustion and

heat loss

Here for the first time we determine the time-evolution of fire probability

density u(x, t) and total fuel loading fraction v(x, t) first defined in Chapter 2,

ignoring the spatial process. That is, we consider the system of equations:

du

dt
(x, t) = α c (u(x, t), v(x, t)) v(x, t)︸ ︷︷ ︸

Combustion

− δ (u(x, t))︸ ︷︷ ︸
Heat loss

dv

dt
(x, t) = − c (u(x, t), v(x, t)) v(x, t)︸ ︷︷ ︸

Combustion

, (7.6)

where α ∈ [0, 1] represents the efficiency with which the burning of combustible

fuel is converted into an increase in the local fire probability.

The specific functional forms which we will employ in Equations (7.6), are

based on the combustion wavefront models in ([1], [11]), with the exception of

the logistic model which is new (at least in this context). We will assume that

the heat loss term is linear, so we write

δ(u(x, t)) = d u(x, t), d > 0. (7.7)

This type of heat loss is analogous to Newton’s Law of Cooling, with heat

being lost to the surrounding environment.

Unless otherwise specified as in the preceding section we assume α = 0.7,

d = 0.5.

7.4.1 Case T1: Mass-action kinetics

In our first model we consider mass-action kinetics with heat loss:

du

dt
(x, t) = α u(x, t) v(x, t)− d u(x, t)

dv

dt
(x, t) = −u(x, t) v(x, t). (7.8)

This type of model was used by Billingham and Needham, as reported in [1],

to model an isothermal autocatalytic chemical reaction of mixed order, where
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v

v

u

Figure 7.3: We plot a partial phase portrait for mass-action kinetics model
(7.8), with a few arrows to indicate the direction of trajectories. The param-
eters are α = 0.7, and d = 0.5. On the y−axis we plot the total fuel loading
fraction v, while on the x-axis we plot the fire probability density u.

u is the reactant and v is the autocatalyst. There is a direct analogy between

reactant/autocatalyst and fire probability/total fuel loading fraction densities.

Presented in Figure 7.3 below is a partial phase portrait for the dynamics

of u, v, illustrating the general behavior of the model. In particular, both u

and v are decreasing, and u decreases to zero very rapidly as v tends to zero.

7.4.2 Case T2: Second-order kinetics in u

In this section we present another model used by Billingham and Needham [1],

corresponding to a higher-order autocatalytic reaction, and which is non-linear

in u:

du

dt
(x, t) = α u(x, t)2 v(x, t)− d u(x, t)

dv

dt
(x, t) = −u(x, t) v(x, t). (7.9)
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v

u

v

u

Figure 7.4: We plot a partial phase portrait for u-nonlinear kinetics model
(7.9), with a few arrows to indicate the direction of trajectories. The param-
eters are α = 0.7, and d = 0.5. On the y−axis we plot the total fuel loading
fraction v, while on the x-axis we plot the fire probability density u.

Again, in the following Figure 7.4 below we show a partial phase portrait

for the dynamics of u, v described in (7.9).

Relative to the mass-action case, the trajectories are similar, with most

of the trajectories accumulating close to v = 0 where trajectories are very

rapidly decreasing in u. Notice also the relatively higher end-values of v along

trajectories, relative to Figure 7.3.

7.4.3 Case T3: Arrhenius kinetics

Another commonly used model [12] is the so-called Arrhenius kinetics, de-

scribed by the system

du

dt
(x, t) = α exp

(
−k

u(x, t)

)
v(x, t)− d u(x, t)

dv

dt
(x, t) = − exp

(
−k

u(x, t)

)
v(x, t), (7.10)
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v

u

Figure 7.5: We plot a partial phase portrait for the Arrhenius kinetics model
(7.10). On the y−axis we plot the total fuel loading fraction v, while on the
x-axis we plot the fire probability density u.

where k > 0 is a constant. In the heat-flow analogy, k is related to the

activation energy Ea, and the universal gas constant R.

Plotted in Figure 7.5 below we show a sample phase portrait for the system

(7.10). Relative to the preceding cases, we find a very strong accumulation of

trajectories which head to the v-axis, for low values of v.

Examining the upper left portion of Figure 7.5, we notice that for u < 0.1,

trajectories head straight to the v-axis, while for slightly larger values there is

first an increase in u, followed by a subsequent decrease. Notice also it is only

for approximately u < 0.2 that the final total fuel loading fraction is above

about v ≈ 0.2.

Finally, we choose k = 0.5, as we did in the first section of this chapter.
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7.4.4 Model T4: Logistic-type kinetics

In this section we will build a model around the idea of logistic growth for u,

du

dt
(x, t) = α r u(x, t)(1− u(x, t)) v(x, t)− d u(x, t)

dv

dt
(x, t) = −r u(x, t)(1− u(x, t)) v(x, t). (7.11)

where r is the linearized growth rate for r near u = 0, called the intrinsic

growth rate. Irrespective of the initial conditions, u = 1 is the unique global

attracting equilibrium of the ODE u′ = r u(1− u).

Plotted in Figure 7.6 below we show a sample phase portrait for the system

(7.11), with r = 1 (since we have α = 0.7 already, and it’s only the product r α

which matters). We find that for u > 1, we have trajectories where the fuel

fraction v is increasing, which is clearly not physical. Hence we must restrict

our choice of model parameters so that u stays below unity.

7.4.5 Model T5: Ignition thresholds

It is important to note that many models (see e.g. [11]) use the notion of an

ignition temperature, below which combustion does not occur.

We would like to use an analogy here, namely that if the fire probability

is below a threshold u, then combustion does not occur. This can be modeled

using the Heaviside (or unit step) function H(u), to produce a very general

model:

du

dt
(x, t) = α H(u− u) h(u(x, t)) v(x, t)− d u(x, t)

dv

dt
(x, t) = −H(u− u) h(u(x, t)) v(x, t), (7.12)

where h(u(x, t)) is a prescribed function which determines the burning kinetics.

In the extreme case of timbre-dry conditions, we may approximate u ≈ 0

in (7.12), so that we may obtain any of the preceding kinetic models in this

limit. We will not pursue the case (7.12) for u 6= 0 in what follows.
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Figure 7.6: We plot a partial phase portrait for the logistic kinetics model
(7.11). On the y−axis we plot the total fuel loading fraction v, while on the
x-axis we plot the fire probability density u. The parameters are α = 0.7,
d = 0.5 and r = 1. We notice that for u > 1, there are trajectories where v is
increasing with time, which is physically impossible. Hence we must restrict
ourselves to choices of the parameters such that u ≤ 1.

7.5 Adding diffusion to the temporal dynam-

ics

In this section, we add diffusion to most of the temporal dynamical models

introduced in the previous section. We do this because many fires travel pri-

marily by local spread, which we are modelling using diffusion. In addition, a

major question for further research is when the local spread drives the invasion,

as opposed to the cases considered in Section 7.6, where spotting dominates

the fire’s invasion.
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Here and in what follows, I choose the parameters α = 0.7, d = 0.5, and

D = 0.5, unless specified otherwise. This is for comparison’s sake, so we can

examine the effect of changing the type of kinetic model used.

7.5.1 Traveling pulses for the mass-action model T1

Let’s first consider the type of behavior we expect to find for the augmented

diffusion model corresponding to the case T1. The augmented model for (7.8)

reads:

du

dt
(x, t) = D

∂2u(x, t)

∂x2
+ α u(x, t) v(x, t)− d u(x, t)

dv

dt
(x, t) = −u(x, t) v(x, t). (7.13)

In Figure 7.7, we illustrate how a compactly supported initial condition for

u, given v = 1 everywhere, evolves with time. Instead of traditional traveling

waves, we observe traveling pulses for u(x, t), appearing in the left-most pic-

ture, propagating rightward with space. Notice that behind the wavefront, u

tends to 0, as the combustion ends and heat is lost to the environment.

The right-most picture in Figure 7.7 illustrates the time-evolution of v,

which is effected only by the presence of fire. The fuel fraction in this case

decreases as the front passes through a region, but not to zero for this choice

of parameters, indicating incomplete combustion.

7.5.2 Traveling pulses for the non-linear case T2

Next let’s consider the diffusion model corresponding to the T2-kinetics, namely

du

dt
(x, t) = D

∂2u(x, t)

∂x2
+ α u(x, t)2 v(x, t)− d u(x, t)

dv

dt
(x, t) = −u(x, t)2 v(x, t). (7.14)

This model also exhibits traveling pulses, but not necessarily for the pa-

rameter values we’ve been assuming thus far. To observe the pulses in Figure

7.8, we choose α = 0.9 and d = 0.5. Clearly the stability of these pulses

depends on the model parameters. We find that the shape of the u-waves is
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Figure 7.7: Illustration of traveling pulses for the solution to the system (7.13),
with dynamics determined by model T1. In the left figure we plot u(t) versus
x, measured in metres, for several values of the time t, measured in seconds.
The different colours represent different snapshots in time, and the arrows
serve to identify the wavefront’s location at each of these times. In the right
graph we show similar snapshots in time of the total fuel loading fraction v(t)
versus x.

more sharply peaked than those exhibited in Figure 7.7, the peaks have greater

amplitude, and the u-waves travel more slowly relative to the T1 case.

In addition, in the right-most graph in Figure 7.8 we observe that the total

fuel loading fraction v → 0 as the front passes by, corresponding to complete

combustion.
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Figure 7.8: Illustration of traveling pulses for the solution to the system (7.14),
with dynamics determined by model T2. In the left figure we plot u(t) versus
x for several values of the time t. In the right graph we show similar snapshots
in time of the total fuel loading fraction v(t) versus x.

7.5.3 Travelling pulses for the Arrhenius model T3

In this subsection we consider the diffusion model corresponding to the Arrhe-

nius kinetics model (7.10),

du

dt
(x, t) = D

∂2u(x, t)

∂x2
+ α exp

(
−k

u(x, t)

)
v(x, t)− d u(x, t)

dv

dt
(x, t) = − exp

(
−k

u(x, t)

)
v(x, t), (7.15)

The dynamics are demonstrated in Figure 7.9 below. Analogous to the T2

case, traveling pulses do not appear for all parameter values. In particular,
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Figure 7.9: Illustration of traveling pulses for the solution to the system (7.15),
with dynamics determined by the Arrhenius model T3, in the case where
k = 0.5. In the left figure we plot u(t) versus x for several values of the time t.
In the right graph we show similar snapshots in time of the total fuel loading
fraction v(t) versus x.

setting k = 3, and keeping the values for α and d, the initial condition for u

simply decreases to zero without propagating.

We observe in Figure 7.9 very sharply peaked traveling pulses for u, which

travel the fastest of all cases considered so far. Further, the right-most graph

shows that again v → 0 as the fire front passes by, corresponding to complete

combustion.
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7.5.4 Traveling pulses for the logistic model T4

Next let’s consider the diffusion model corresponding to the logistic kinetics

model (7.11),

du

dt
(x, t) = D

∂2u(x, t)

∂x2
+ α r u(x, t)(1− u(x, t)) v(x, t)− d u(x, t)

dv

dt
(x, t) = −r u(x, t)(1− u(x, t)) v(x, t), (7.16)

In Figure 7.10 below, we illustrate traveling pulses for this model, with the

choice r = 1 for simplicity (it is only the product α r which is important).

We have also illustrated the early evolution of the left-traveling pulse. Notice

that the magnitude of the traveling pulses for u are small compared to the

preceding cases, and the speed of propagation is dramatically slower.

From the right-most graph in Figure 7.10, the resulting fuel fraction v is

not completely exhausted by the passage of such a front. One can also notice

from the right-most graph, at the leftmost portion, a dip in the total fuel

loading fraction, which corresponds to the effect of the left-traveling u-wave.

7.6 The spotting-dominated case: traveling pulses

In this section we consider finally the full model including the spotting term,

du

dt
(x, t) = D

∂2u

∂x2
(x, t) + α c (u(x, t), v(x, t)) v(x, t)− d u(x, t) (7.17)

+

∫ ∞
0

S(y) u(x− y, t) dy

dv

dt
(x, t) = −c (u(x, t), v(x, t)) v(x, t). (7.18)

Simulations with all cases in this section indicate that the effect of diffusion

is negligible on the evolution of u and v. In particular, the right-most region

of the right-traveling u-pulse is identical if we include diffusion or not, and

the right-traveling pulse moves with the same speed and shape in either case.

The left-spreading speed is negligible compared to the right-spreading speed

for the u-pulses in all cases. This is partly due to ‘sweeping up’ of leftward

diffused probability by the spotting process. Finally, after an initial transient
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Figure 7.10: Illustration of traveling pulses for the solution to the system
(7.16), with dynamics determined by the logistic model T4. In the left-most
graph we plot u(t) versus x for several values of the time t. In this case we also
illustrate the left-traveling pulse which results from the compactly supported
initial condition, at least up to t = 25. It evolves identically in shape and
speed to the right-traveling pulse. In the right-most graph we show similar
snapshots in time of the total fuel loading fraction v(t) versus x.

period, the region behind the right-traveling u-pulse looks essentially identical

with or without diffusion.

Perhaps more importantly, the spotting-dominated case is the one of pri-

mary interest for this thesis: if the diffusion-wave is faster than the spotting-

wave, then the main front will overrun all spot fires, so there is no need to

account for spotting. An interesting problem, which we will leave open, is

for completely realistic spotting kernels S(y), to determine conditions on the

model parameters such that the diffusion-pulse overruns the spotting-pulse.

It is therefore sufficient to consider the spotting-dominated model:

du

dt
(x, t) = +α c (u(x, t), v(x, t)) v(x, t)− d u(x, t) +

∫ ∞
0

S(y) u(x− y, t) dy

dv

dt
(x, t) = −c (u(x, t), v(x, t)) v(x, t). (7.19)
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This results of this section show explicitly how spotting can drive a front’s

spread. The results are qualitative, and the kernels we determine are chosen for

comparative purposes, as opposed to attempting to employ the most physically

realistic kernels. To see how one could derive the spotting kernels seen here,

see the ‘fat’-tailed kernel example from Chapter 5.

In keeping with the preceding sections, unless otherwise specified we set

α = 0.7, d = 0.5, and where relevant k = 0.5 and r = 1.

For T4 kinetics, we choose

c (u(x, t), v(x, t)) = r u(x, t) (1− u(x, t)). (7.20)

For T1 kinetics, we choose

c (u(x, t), v(x, t)) = u(x, t). (7.21)

For T3 kinetics, we choose

c (u(x, t), v(x, t)) = exp (− k

u(x, t)
). (7.22)

Remark: The results for T2 type kinetics are very similar to those for the

T3 kinetics, with appropriate choice of parameters, so we will not consider

them in this section, for the sake of brevity.

7.6.1 T4 kinetics, uniform probability distribution ker-

nel

The first case we consider is that of a uniform kernel spotting kernel S, defined

by S(y) := U(0, L)(y), where:

U(0, L)(x− y) :=

{
1
L
, (x− y) ∈ [0, L];

0, otherwise.
(7.23)

We choose L = 5 in Figure 7.11, in which we initially set v = 1 everywhere,

and observe how a compactly supported initial condition for u evolves into a

traveling pulse with constant shape and speed.

The cusp appearing in Figure 7.11 in the right-most graph for v appears
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Figure 7.11: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the logistic model (7.20), with uniform
spotting kernel given in (7.23), and with L = 5. In the left-most graph we plot
u(t) versus x for several values of the time t. The different colours represent
different snapshots in time, and the arrows point out the leading edge. In the
right-most graph we show similar snapshots in time of the total fuel loading
fraction v(t) versus x.

to stabilize, indicating that v need not be differentiable everywhere. We can

also see the in the right-most graph that the progress of the u-front is with

constant speed, by comparing the spatial separation for the level set v = 0.8

between the final few snapshots for v.

7.6.2 T4 kinetics, exponential spotting kernel

Next we consider the case where our spotting kernel S is exponentially bounded,

S(y) = λ exp (−λ y), (7.24)

and in this section we choose λ = 0.5.

In Figure 7.12 we show the solutions to the model (7.19), with the spotting

kernel as in (7.24), and with logistic kinetics (7.20).

Notice that a rightward propagating traveling pulse u(t) moving with con-

stant shape and speed to the right develops, and that the shape of the pulses

is different from those displayed in Figure 7.11. Also of importance is that u-

pulse’s peak travels much more slowly relative to those shown in Figure 7.11.
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Figure 7.12: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the logistic model (7.20), with exponen-
tial spotting kernel given in (7.24), and with λ = 0.5. In the left-most we plot
u(t) versus x for several values of the time t. In the right-most graph we show
similar snapshots in time of the total fuel loading fraction v(t) versus x.

This is an example of a compactly-supported kernel (7.23) producing faster

invasion speeds than a kernel supported on R (as in (7.24)).

The snapshots for v in the right-most graph indicate incomplete combus-

tion, though the fuel fraction remaining after the fire’s passage is less than

that remaining with the uniform spotting kernel (7.23).

7.6.3 T4 kinetics, fat-tailed kernel, : acceleration

Next we consider the fat-tailed kernel

S(y) = λ exp (−√y), (7.25)

where we choose λ = 0.5. Again we choose logistic kinetics (7.20).

For compact initial data for u(t) as usual, in Figure 7.13 we illustrate an

example of an accelerating wave for u. The shape is changing with time, and

the spatial extent is growing much more rapidly than in the previous two

examples. The level sets of u are spreading apart from each other from one
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Figure 7.13: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the logistic model (7.20), with exponen-
tial spotting kernel given in (7.24), and with λ = 0.5. In the left-most graph
we plot u(t) versus x for several values of the time t. In the right-most graph
we show similar snapshots in time of the total fuel loading fraction v(t) versus
x. Notice that the shape of the graph for v is also continually evolving with
time.

time step to the next, as the leading edge accelerates forward.

The acceleration may also be seen by examining the total fuel loading frac-

tion remaining, displayed in the right-most graph in Figure 7.13, by noticing

spatial separation growing between subsequent level sets v = 0.8 for the final

few snapshots.

7.6.4 T1 kinetics, uniform kernel

Here and in the following two subsections, we repeat the steps as in the pre-

ceding three subsections, examining solutions to the system (7.19), but now

we use the mass-action kinetics model T1 as in (7.21). We will again assume

throughout that α = 0.7, and d = 0.5 in (7.19).

In this subsection we choose the same spotting kernel as in (7.23), again

for the value L = 5. We examine such an evolution in Figure 7.14 below.

In the left-most graph we plot snapshots of u(t) versus x. As in the logistic

kinetics case, again the initially compactly supported initial condition for u
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Figure 7.14: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the mass-action model (7.21), with uni-
form spotting kernel given in (7.23). In the left-most graph we plot u(t) versus
x for several values of the time t. In the right-most graph we show similar
snapshots in time of the total fuel loading fraction v(t) versus x.

evolves into a traveling pulse u-pulse, eventually assuming constant shape and

speed. Notice however that the magnitude of the u-pulses are significantly

higher in this case, relative to the corresponding T4 kinetics as illustrated in

Figure 7.11, while the shape of the waves are similar.

Further, from the right-most graph in Figure 7.14, where we plot snapshots

of v(t) versus x, we observe that we have complete combustion as such a wave

passes by, in contrast to the logistic kinetics example with the same uniform

spotting kernel.

7.6.5 T1 kinetics, exponential kernel

Next, we examine solutions to (7.19), with mass action kinetics T1, and spot-

ting kernel given by the exponential kernel (7.23), again choosing λ = 0.5.

The results are plotted in Figure 7.15 below.

The evolution for u(t) and v(t) is almost identical in this case to the corre-

sponding T4 kinetics case (which is illustrated in Figure 7.12). In particular,
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Figure 7.15: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the mass-action model (7.21), with ex-
ponential spotting kernel given in (7.24). In the left-most graph we plot u(t)
versus x for several values of the time t. In the right-most graph we show
similar snapshots in time of the total fuel loading fraction v(t) versus x.

in the left-most graph we see that u(t) evolves into a traveling pulse, with

approximately the same shape and rate of spread as in the T4 kinetics case,

although the amplitude of the u-pulses is greater relative to the T4 kinetics

case.

The most noticeable difference between the evolutions displayed in Figure

7.12 and Figure 7.15 is observed in the right-most graph for v(t), where we

see that initially the total fuel loading fraction drops to zero. After the initial

transient period, by examining subsequent snapshots for v(t), we see that the

total fuel loading fraction remaining is constant, and slightly lower than the

corresponding snapshots in Figure 7.12. This makes sense, since the amplitude

of the u-waves is higher in this case.

7.6.6 T1 kinetics, fat-tailed kernel: acceleration

To complete this group of results, we examine solutions to (7.19), with mass

action kinetics T1 (7.21), and spotting kernel given by the exponentially un-
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Figure 7.16: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the Arrhenius model (7.21), with expo-
nentially unbounded spotting kernel given in (7.25), with parameter λ = 0.5.
In the left-most graph we plot u(t) versus x for several values of the time t.
In the right-most graph we show similar snapshots in time of the total fuel
loading fraction v(t) versus x.

bounded kernel (7.25), again choosing λ = 0.5. The results are plotted in

Figure 7.16.

As in the T4-kinetics case, in the left-most graph of Figure 7.16 we observe

that the solution u(t) grows into an accelerating wave, whose shape is changing

continuously with time. The farthest distance reached at the final time is very

similar to that displayed in Figure 7.13, though we see that the amplitude

of the solution grows much more rapidly with time. Specifically, the solution

u(t) is of greater magnitude, over a much larger spatial extent, relative to the

preceding case.

In this case, by comparing subsequent level set for v(t, x) = 0.6 in the

right-most graph of Figure 7.16, we can see acceleration by noting that these

level sets are spreading apart spatially. Further, we have complete combustion

in this case, for the time period considered, in contrast to the evolution for

the fuel fraction displayed in Figure 7.13. In addition, notice that the shape of

the total fuel loading fraction curve is evolving with time, with the transition
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Figure 7.17: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the Arrhenius model (7.22), with uniform
spotting kernel given in (7.23). In the left-most graph we plot u(t) versus x for
several values of the time t. In the right-most graph we show similar snapshots
in time of the total fuel loading fraction v(t) versus x.

from v = 0 to v = 1 occurring over a larger spatial region.

7.6.7 T3 kinetics, uniform kernel

In these final three subsections, we repeat the steps as in the preceding three

subsections, examining solutions to the system (7.19), but now we use the

Arrhenius kinetics model T3 as in (7.22). We will again assume throughout

that α = 0.7, and d = 0.5 in (7.19), and k = 3 in (7.22).

In this subsection we choose the same spotting kernel as in (7.23), again

for the value L = 5. We examine such an evolution in Figure 7.17.

In the left-most graph of Figure 7.17 we plot snapshots of u(t) versus x. As

in the corresponding T4 and T1 kinetics cases, again the initially compactly

supported initial condition for u evolves into a traveling u-pulse, eventually

assuming constant shape and speed. The magnitude of the u-pulses are sig-

nificantly higher in this case relative to the T4 case, but comparable to the

peaks displayed for the T1 kinetics, as illustrated in Figures 7.11 and 7.14.
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Figure 7.18: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the Arrhenius model (7.22), with expo-
nential spotting kernel given in (7.24). In the left-most graph we plot u(t)
versus x for several values of the time t. In the right-most graph we show
similar snapshots in time of the total fuel loading fraction v(t) versus x.

The flat-shape for the u-pulses observed in the T1 and T4 cases with the same

spotting kernel, are observed in Figure 7.17 after an initial transient.

In right-most graph in Figure 7.17, where we plot snapshots of v(t) versus

x, we observe that we have complete combustion as such a wave passes by.

The constant speed of the the u-pulse can again be observed by comparing a

level set of v between subsequent time steps.

7.6.8 T3 kinetics, exponential kernel

Next, we examine solutions to (7.19), with Arrhenius kinetics T3, and spotting

kernel given by the exponential kernel (7.24), again choosing λ = 0.5. The

results are plotted in Figure 7.18.

The evolution for u(t) illustrated in Figure 7.18 is slightly different with

these kinetics, compared to the corresponding T4 and T1 kinetics cases, the

latter illustrated in Figures 7.11 and 7.15 respectively. We see that the travel-

ing pulses for u are sharper peaked, have greater amplitude, and travel faster
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Figure 7.19: Illustration of traveling pulses for the solution to the system
(7.19), with dynamics determined by the Arrhenius model (7.22), with expo-
nentially unbounded spotting kernel given in (7.25). In the left-most graph we
plot u(t) versus x for several values of the time t. In the right-most graph we
show similar snapshots in time of the total fuel loading fraction v(t) versus x.

than in the preceding cases.

The evolution for v(t), illustrated in the right-most graph in Figure 7.18,

indicates complete combustion as the u-pulses pass by. This is in contrast to

the corresponding fuel fraction evolutions for the corresponding T4 and T1

kinetics cases.

7.6.9 T3 kinetics, fat-tailed kernel: acceleration

Finally, we exhibit solutions to (7.19), with Arrhenius kinetics T3, and spotting

kernel given by the exponentially unbounded kernel (7.25), again choosing

λ = 0.5. The results are plotted in Figure 7.19.

The left-most graph for u(t) in Figure 7.19 illustrates a solution u(t), which

rapidly evolves to a constant maximum-amplitude traveling pulse. The spatial

extent of the wavepeak is widening with time. Further, the spatial extent

reached is much greater relative to the corresponding T4 and T1 kinetic models

with the same spotting kernels, and the evolution of the waveshape occurs

much more rapidly.

The right most graph in Figure 7.19 shows that again we have complete
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combustion as the fire front passes by. It is more difficult in this case to observe

the acceleration from an examination of the snapshots for v(t), relative to the

T4 and T1 kinetic cases, though one can observe that the shape of these

snapshots is evolving with time.

7.7 Chapter summary

We tested many more scenarios than presented here. The choice of kinetic

model T1 (mass action), T2 (non-linear mass action), T3 (Arrhenius) and

T4 (logistic) plays an important role, as it changes the form and amplitude

of the invasion pulse, and the total fuel loading fraction left behind, both the

diffusion-only and spotting dominated cases.

We noticed that for the leading edge, diffusion does not play a role if spot-

ting is significant. So for the purpose of illustration we considered primarily

the spotting-dominated case in Chapter 7.6, where we first considered the first

model.

In the spotting-dominated case, we found a compactly supported uniform

spotting kernel which produced faster advancing waves than an exponentially-

decreasing kernel, whereas an exponentially unbounded kernel leads to accel-

erating pulse-like solutions, in all cases studied. This is important, since most

spotting kernels will have compact support, due to the finite lifetimes of the

firebrands combustion. The results even with v concerning spreading speeds

appear to be qualitatively consistent with the results from Chapter 6.
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Chapter 8

Discussion

In the introduction, we formulated several scientific questions which we wished

to address in this thesis. These were:

• What is the spotting distribution, or the probability of spot fire ignition,

downwind of an existing fire front?

• What is the probability that a fire will breach an obstacle to local spread?

• What role does spotting play on the rate of spread of a fire front?

• Can spotting accelerate a fire’s advance?

In Chapter 2, starting from a discrete-time, discrete-space model for local

spread and spotting, we derived a new model continuous in space and time, for

the expected instantaneous fire probability and the total fuel loading fraction.

The full model is an i-PDE system with time delay. We then discussed various

simplifications of the model, such as removing the time delay, and ignoring

the fuel fraction, the latter resulting in a one-component model for the fire

probability. Appearing in the integral term of these models is the spotting

distribution, so before proceeding with further analysis, this needed to be

determined.

In Chapter 3, we focused on the spotting process of individual firebrands,

and introduced a new transport-type model for firebrand transport and com-

bustion. We showed how such a model can be used to determine how a particu-

lar vertical launch distribution of firebrands evolves in time, and in particular,
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determined the firebrand asymptotic landing distribution. In Chapter 4, we

reviewed most of the submodels from the literature for firebrand generation,

launching, transport, combustion, and ignition.

In Chapter 5, we combined the results from Chapters 3 and 4 to determine

a general formula for the spotting distribution. The general formula resulted

in an enormous number of possible spotting distributions, depending on the

permutations of the various submodels chosen from Chapter 4. We then de-

rived some analytic examples of the spotting distribution, for the purpose of

illustration.

Hence in Chapter 5 we finally addressed the first main question of this

thesis. The spotting distributions determined in Chapter 5 were determined

from an impulse release of firebrands. Physically, we explained how this might

result from a fire which reaches a barrier to local spread, but is able to spot

along the barrier. Hence the spotting distribution, for each point downwind of

the release, in the context of Chapter 5, provides an estimate of the probability

that a fire will breach the barrier. We would like to expand upon this problem

in future research, since in reality once a local barrier is reached, the fire will

launch firebrands for a finite time period prior to its extinction.

Perhaps a more realistic model to address breaching would be to use the

full i-PDE model from Chapter 7, with initial conditions for the fire probabil-

ity non-zero to the left of the barrier; in reality, we do not observe an impulse

release as a fire reaches a barrier, but rather the fire launches firebrands for a

finite amount of time. The probability of breaching could then be measured by

considering the cumulative probability distribution for the instantaneous fire

probability, by integrating at each spatial point the instantaneous fire prob-

ability against time. Alternatively, the remaining total fuel loading fraction

could provide another indicator of the breaching probability.

The final two main questions concerning rates of spread, and acceleration,

were addressed in Chapters 6 and 7. In Chapter 6, we performed qualita-

tive analysis for the no-time-delay, one-component i-PDE model for spotting

from Chapter 2 (ignoring the evolution of the total fuel loading fraction). We

showed that for exponentially bounded kernels, compactly supported initial

data for the solution will evolve into a travelling wave with finite speed and

fixed shape, and exhibited formulae for these wavespeeds. In addition, in the
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case of unbounded kernels, we showed no travelling wave solutions exist, but

rather we see wave-like accelerating solutions.

In Chapter 7, we addressed the rate of spread and acceleration problem

numerically in the context of view of the full model i-PDE system, including

now the total fuel loading fraction as a state variable. We presented a number

of kinetic models for how combustion can be related to an increase in the fire

probability, and then adding diffusion we found a number of travelling pulse

solutions.

For the spotting-dominated case, which we found to have essentially the

same spreading results as the full model with diffusion, we focused again on

a number of kinetic models, and some simple spotting kernels, both exponen-

tially bounded and unbounded. In Section 7.6 in particular, by keeping model

parameters the same, we found that the shape, rate of spread, and possibility

of acceleration of the travelling pulse-like solutions for u depended on both the

kinetics and the spotting kernel. In addition, the remaining fuel fraction after

the fire front passes by was qualitatively different depending on the kinetics

and spotting kernel, as evidenced by the corresponding snapshots for v.

Several simplifying assumptions were made throughout. For instance, we

have neglected the time-delay appearing in the the first i-PDE (2.34) appearing

in Chapter 2, in all further discussion. Recall that this time-delay corresponds

to the finite travel time it takes, to travel from the launching point above a

fire, to landing point somewhere downwind. In the sort of quasi-steady spread

states illustrated in the travelling pulses in Chapter 7, perhaps it is more

reasonable to neglect the time-delay.

However, there are many other scenarios not considered here where the

time-delay could be very important. In addition, we have not considered the

time to crowning (and hence spotting) after ignition [40], which could add

significantly to the time delay. Ignoring the time delay in such a scenario

could lead to erroneous results. In future work we would like to incorporate

the time-delay, either in the i-PDE or discrete models presented in Chapter 2,

and examine its role in the front’s evolution.

Another major assumption is that of homogeneity. While most fire models

employ some form of homogenization process (the Fire Behaviour Prediction

system does not account for within-stand variability [40]), in reality the fire
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environment is highly variable in space and time. We have ignored variability

in fuel type and loading, topography, and weather, which are amongst the most

important factors governing wildfire spread at the macroscopic scale, and are

also amongst the most highly variable either in space or time. Fire tends to

spread faster upslope, since the radiation emitted by the rising flame is closer

to the upslope fuel. In addition, fire tends to spread faster in the direction

of prevailing winds. Finally, the rate of spread depends on the type of fuel,

which varies spatially. Future work should incorporate heterogeneity in these

spread factors.

We have considered only the far-field plume, mostly ignoring the actual

flame structure, and the fire-atmosphere interaction. This is more appropriate

for highly intense fires, where the convection column rises almost vertically

up to the upper bound of the atmospheric boundary layer, since such fires

can launch firebrands much higher, and consequently further downwind. The

further one moves away from the flame, the more the ambient windflow ap-

proximates its fire-free counterpart. Our model may not be appropriate for

modelling the spread of smaller scale fires, where the maximum launching

height and flame height may be of the same order.

Further, ignoring turbulence and the fire-atmosphere interaction are very

strong assumptions. While many efforts have been made to incorporate these

factors in other models (see plume models from Chapter 3), we have chosen

to ignore them, primarily so that we can obtain analytically tractable mod-

els. Existing operational computer models (e.g., [40], [34]) do not include

the fire-atmosphere interaction, but rather use a computational fluid dynam-

ics simulator to approximate windflow over fixed topography, accounting only

for diurnal variations. Further research efforts should include an approach at

modelling the windfield surrounding the fire more accurately, perhaps incor-

porating Large Eddy Simulations as a necessary component ([16], [83], [84]).

We have also created qualitative models, as opposed to typical transport-

type models which are based on conservation of mass, momentum, or energy.

We would like these to provide accurate models for the spread of a wildfire’s

front. To do this, we need to connect our models to data. Fortunately, there

is a fair amount of data about a wildfire’s local spread, ignoring long-distance

spotting events.
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There needs to be a direct connection made between the diffusion coef-

ficients appearing in our equations, and the fire’s local rate of spread. This

could be done by first computing the mean-squared displacement of a point

on the front, < x2 >, which was at the origin at time t = 0, with the diffusion

coefficient D, namely < x2 >= 4Dt, where t > 0 is the time. Alternatively,

the known rate of spread R (units space
time

) provided by FBP [40], can similarly

give the displacement at time t, namely displacement = R t. We can clearly

connect D with R in this way.

Further, the burned crown fraction is an output of the FBP system. This

could be connected directly to the remaining total fuel loading fraction after

the passage of a fire, and could aid in parameterizing our model kinetics. Also

of use would be knowledge of the fire’s residence time in a fuel type given

a particular spread scenario; we could choose our parameters so that these

correspond to one another.

For these results to be used in the field, we need further experimental

investigation into the spotting distributions. Our systematic approach outlined

in Chapters 4 and 5 allows for the design of controlled experiments, for specific

fuel, weather, wind etc., to be able to fit realistic spotting distributions. The

spotting distribution could be measured in future prescribed burns, by setting

up traps in the region surrounding the fire.

As mentioned earlier, we have only considered firebrands of a single type,

while evidence suggests that other firebrand types, like pine cones or Euca-

lyptus bark, can be very effective firebrands. We have not incorporated the

notion of firebrand type into the firebrand launching distribution, though this

can certainly be done. The absence of experimental data on the generation of

these other firebrands makes determining a mass distribution impossible right

now, but in the near future it might be possible to incorporate other firebrand

types into the model framework.

Finally, perhaps one of the most important applications of the models in

this thesis could be to fire spread in the urban environment. There are some

natural ways to extend the type of models we’ve derived to two-dimensions,

which would be necessary to accurately model the spread from house to house

in an urban environment. Some of the greatest conflagrations in history have

been driven by spotting, for example in post-Earthquake fires (see e.g. the ex-
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cellent review [46] for more details). With the appropriate parameterizations,

we could use our models to better describe spread in situations where spotting

is important.
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Appendix A

Smooth solutions for first-order

BVP’s and the method of

characteristics

A.1 The characteristic equations

Equation (3.11) is an example of a non-linear first-order partial differential

equation (PDE). We will denote the solution p : Rn → [0,∞), and its first

(classical) derivative by DP ∈ Rn. In this subsection we will investigate

smooth solutions to boundary value problems (BVP) for general first-order

PDE’s, in the form [33]:

F (Dp(x), p(x), x) = 0, x ∈M ⊂ Rn, (1.1)

subject to the boundary condition:

p(x) = g(x), x ∈ ∂M. (1.2)

We will assume that the function F : Rn×R×Rn → R, the function g and

the boundary of M are smooth. The classical solution p to the boundary value

problem, which we will refer hereafter to as the solution, is a map p : M → R,

which:

• Satisfies the boundary condition (1.2).
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• Possesses a continuous derivative:

Dp := (
∂p

∂x1
,
∂p

∂x2
, ...,

∂p

∂xn
). (1.3)

• The map p solves the PDE (1.1) pointwise in M .

The usual strategy for constructing classical solutions is the method of

characteristics. Let us define a curve parametrically by

x(s) :=
(
x1(s), x2(s), ..., xn(s)

)
, s ∈ [0, T ]. (1.4)

Assuming that p is a twice-continuously differentiable solution of (1.1), we

further define:

a(s) := p(x(s)), x ∈ [0, T ], (1.5)

as well as:

v(s) := Dp(x(s)) =

(
∂p

∂x1
(x(s)),

∂p

∂x2
(x(s)), ...,

∂p

∂xn
(x(s))

)
. (1.6)

The characteristic equations determine x(s), a(s), and v(s), provided they

can be solved [33]. In vector notation (here primes indicate derivatives with

respect to the curve parameter s):

x′(s) = DvF (v(s), a(s), x(s)). (1.7)

a′(s) = DvF (v(s), a(s), x(s)) · v(s). (1.8)

v′(s) = −DxF (v(s), a(s), x(s))−DaF (v(s), a(s), x(s)). (1.9)

Notice that whenever p is a classical solution to the BVP, and x(·) solves

Equation (1.7), then a(·) and v(·) solve Equations (1.8) and (1.9) respec-

tively [33]. Further, if one knows the solutions x(·) and v(·), one sees that

(1.8) decouples and may be solved separately from the other equations. The

solutions x(·) and v(·) are called the base characteristic curves [33].

The characteristic equations, which form a system of 2n+1 ordinary differ-

ential equations, will possess unique differentiable solutions, given appropriate

initial conditions x(0) := x0, v(0) := v0, and a(0) := a0, assuming the vector

field on the right hand side in the characteristic equations is at least locally
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Lipschitz continuous [33].

Assuming unique solutions to the characteristic equations exist, we will

express them in terms of the initial conditions:

x(s) := x(s;x0), a(s) := a(s; a0), v(s) := v(s; v0). (1.10)

It will be useful to introduce the notion of a solution operator ψ for each

of the characteristic equations. For example, the combustion process for a

mass m(t) is discussed at length in Chapter 4, and in particular we introduce

the combustion operator C which is defined by C(m0, t) := m(t;m0), where

m(t;m0) is the portion of the initial mass m0 remaining at time t.

In the context of this chapter, we introduce the solution operator σ for the

spatial part of the base characteristics, defined by:

σ(x0, t) := x(t;x0). (1.11)

When it exists, we define the inverse solution operator σ−1(t, x) corre-

sponding to the operator defined in (1.11), such that

σ−1(t, x(t;x0)) := x0. (1.12)

A.2 Constructing smooth solutions using char-

acteristics

Since by assumption p = g on the boundary ∂M , it is natural to choose initial

conditions:

a0 = g(x0), x0 ∈ ∂M. (1.13)

In addition to the previous equations, we require a compatibility condition

to hold for v0 [25], namely that the components vi0 satistfy:

vi0 =
∂a(x0)

∂xi
. (1.14)

F (v0, a0, x0) = 0. (1.15)
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We note that x0 and z0 are determined by the boundary condition (1.2),

there is some freedom in our choice of the derivative v0. A triple of initial

conditions (v0, a0, x0) satisfying Equations (1.13) and (1.14) is called admissi-

ble [33].

We say an admissible triple (v0, a0, x0) is non-characteristic if the following

holds [33]:
∂F (v0, a0, x0)

∂v
· n(x0) 6= 0, (1.16)

where n(x0) denotes the unit outward normal to ∂M at x0.

Remark: Geometrically, Equation (1.16) says that the initial surface is or-

thogonal to the characteristic curves through (v0, a0, x0).

Remark: The key idea of the method of characteristics is to choose initial con-

ditions for the base characteristics (x0, v0) in just this way, so that we may

ultimately determine a using Equation (1.8), along the base characteristics,

in some neighbourhood of the initial surface ∂M .

Proposition A.1: ([25], Ch. 3.2., Lemma 2) Suppose that (v0, a0, x0) is

an admissible, non-characteristic triple of initial conditions for the charac-

teristic equations {(1.7), (1.8),(1.9)}.
Then for every x0 ∈ ∂M , there exists a neighbourhood W ⊂ Rn containing

x0, and an open neighbourhood V ⊂ Rn−1 also containing x0, with V ⊂ ∂M ,

such that for every x̃ ∈ W there exists a unique s ∈ [0, T ] and y ∈ V , for

which:

x̃ = x(s;x0 = y), (1.17)

and the maps (s, y)→ x are twice-continuously differentiable and invertible.

In other words, we can uniquely determine the solutions to the base char-

acteristic equations locally, for points y ∈ V ⊂ Rn−1 in some neighbourhood

of x0. The spatial characteristics in this case form a congruence [49] for some

neighbourhood of ∂M , such that each point in W lies on exactly one charac-

teristic curve connected to the boundary. This situation is illustrated in Figure

1.1.

One can then define the solution p(x) = z (s(x); y(x)) for x in some neigh-

bourhood of the boundary ∂M [33]. In this way, the characteristic ODE’s,

175



Figure 1.1: Illustration of Proposition A.1, in the planar case. Here M is the
plane R2, excluding the larger disc which is shaded darker in brown, and the
boundary ∂M which is the circle bounding the larger disc. The neighbourhood
W of x0 is shown as the smaller circle, shaded in pink. The set V has the same
dimension as the boundary, and is denoted by the arrows extending from x0

parallel to the large circle. The curves with arrows extending from V do not
intersect in W , in the case of admissible and non-characteristic boundary data.

equipped with admissible and non-characteristic initial data, allow us to con-

struct a classical solution p for the BVP in some neighbourhood of the bound-

ary. We call the graph of p the integral surface of the PDE (1.1), and with

out stated assumptions the integral surface is smoothly embedded in Rn [49].

This method works up to the first point where the base characteristic curves

intersect. At this point, the map x → (s, y) described in Proposition A.1

is no longer invertible, and our solution p(x) becomes multi-valued [33]. To

extend the solution further, we must introduce the notion of a weak solution to

the BVP, which in general are Lipschitz-continuous mappings, and which may

possibly be discontinuous or possess discontinuous derivatives. Weak solutions

are discussed in detail in [33].

Remark: To illustrate the method of characteristics in the simplest case,

consider an initial value problem for a density p : R2 → R, and constant
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c > 0:
∂p

∂t
(x, t) + c

∂p

∂x
, x ∈ R. (1.18)

The x-characteristic equation gives ·x = c, which has solution x(t) =

x0 + ct. The momentum characteristic equation provides no information.

The characteristic equation for Z(t) := p(t, x(t) gives Z ′ = 0, so that the

solution is constant along characteristics. In this case the curve t = 0 carries

information contained in the initial condition f(x), with speed c, into the

region t > 0.

The solution to the IVP, with u(x, 0) = f(x), is given by

u(x, t) = f(x− ct), x ∈ R, t ≥ 0. (1.19)

i.e. the graph of the initial condition u(x, 0) is translated to the right with

time, with speed c.
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Appendix B

Essentials of semigroup theory

This section serves to introduce notation and a variety of preliminary math-

ematical results, which will be used in Chapter 6 to discuss solutions to the

iPDE models from Chapter 2.

B.1 The Lebesgue spaces Lp

For the first four subsections we take definitions and notation from [71]. First

of all, we introduce the space C0(Ω) of continuous real-valued functions f :

Ω−→ R, where Ω ⊂ Rn is a bounded open set with smooth boundary. This

space is a Banach space when equipped with the supremum norm ||·||∞

||f ||∞:= maxx∈Ω |f(x)|. (2.1)

We say a function f ∈ C0(Ω) has compact support in Ω if there is some

compact set K ⊂ Ω such that f(x) = 0 for x in the complement of K. In

particular, f(x) = 0 for x ∈ ∂Ω. We define the space of continuous, compactly

supported functions on Ω:

C0
c (Ω) =:= {f ∈ C0(Ω)|∃K ⊂⊂ Ω, f(x) = 0 if x /∈ K}, (2.2)

where the notation K ⊂⊂ Ω means K is a compact subset of Ω.

One can then define a new space Lp(Ω), for 1 ≤ p <∞, as the completion

of C0
c (Ω) in the metric topology induced by the functional (7.1.2). This means

any element f ∈ Lp(Ω) can be approximated arbitrarily closely by a sequence
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φn ∈ C0
c (Ω), such that ||φn− f ||p−→ 0 as n−→∞. The Lp spaces are Banach

spaces when equipped with the ||·||p norm.

A special case is L∞(Ω), which is a Banach space when equipped with the

sup norm ||·||L∞ :

||f ||L∞= ess sup
x∈Ω
|f(x)| (2.3)

Of particular interest in our study is the space L2(Ω), which is a complete

inner product space, or Hilbert space, when equipped with the following inner

product < ·, · >: L2(Ω)× L2(Ω)−→ R:

< f, g >=

∫
Ω

f(x)g(x)dx. (2.4)

B.2 The Sobolev spaces W k,p

We will also be interested in the Sobolev spaces W k,p. In order to introduce

these spaces, one must first develop the notion of the weak derivative.

It is helpful to introduce the multi-index vector α consisting of natural

numbers α = (α1, α2, ...αm), and we write |α|= α1 + α2 + ... + αm. We can

represent the partial derivatives of all orders for a smooth function f by

Dαf =
∂|α|f

∂xα1
1 · · · ∂xαmm

. (2.5)

With this definition, we introduce the space Cr(Ω),

Cr(Ω) = {f : Ω−→ R|Dαf ∈ C0(Ω), |α|≤ r}. (2.6)

From the latter spaces we can define the smooth functions C∞(Ω), by

C∞(Ω) =
∞⋂
r=0

Cr(Ω). (2.7)

More importantly, we are interested in a subset of (7.1.3) of functions with

compact support in Ω, C∞c (Ω), which we will refer to as test functions:

C∞c (Ω) = {f ∈ C∞(Ω)|∃K ⊂⊂ Ω, f(x) = 0 if x /∈ K}. (2.8)
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To introduce the weak derivative, we first introduce a subset of Lp(Ω) which

are locally integrable, that is integrable on every compact subset K ⊂⊂ Ω:

Lploc(Ω) := {f |f ∈ Lp(K),∀K ⊂⊂ Ω}. (2.9)

For a given function u ∈ L1
loc(Ω), we say that v is the weak derivative of u

with respect to the coordinate xj , written v = Dju, if v ∈ L1
loc(Ω) and∫

Ω

vφdx = −
∫

Ω

u
dφ

dxj
dx, (2.10)

holds ∀φ ∈ C∞c (Ω).

The latter formula results from the integration by parts in the xj variable,

and the fact that φ = 0 on ∂Ω. We can similarly define higher-order weak

derivatives: if u, v ∈ L1
loc(Ω), then v is the αth weak derivative of u, v = Dαu,

if: ∫
Ω

vφdx =

∫
Ω

(−1)|α|uDαφdx, (2.11)

holds ∀φ ∈ C∞c (Ω).

We are now in the position to define the Sobolev spaces W k,p, where the

expression Dαu refers to the weak derivative of u as in (2.11):

W k,p := {u|Dαu ∈ Lp(Ω), 0 ≤ |α|≤ k}, (2.12)

with norms,

||u||Wk,p :=
∑

0≤|α|≤k

{||Dαu||pLp}
1/p. (2.13)

These spaces are Banach spaces, and of particular interest is the case p = 2.

We will introduce the notation

Hk(Ω) := W k,2(Ω) = {u|Dαu ∈ L2(Ω),∀0 ≤ |α|≤ k}. (2.14)

The spaces Hk are Hilbert spaces when equipped with the inner product

((u, v))Hk :=
∑

0≤|α|≤k

< Dαu,Dαv >, (2.15)
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where < ·, · > denotes the L2-inner product.

It turns out that C∞c (Ω) is not dense in Hk(Ω), so we define the comple-

tion of the test functions with respect to the Hk-norm, denoted Hk
0 (Ω). In

particular we are interested in H1
0 (Ω)

H1
0 (Ω) := {u ∈ H1(Ω)|Tu = 0}, (2.16)

where T is the “trace operator”, which for functions u ∈ H1
⋂
C0(Ω), we

have Tu = u∂Ω. In essence, what this technical definition tells us is that H1
0 (Ω)

is the subset of H1 which vanishes on the boundary of.

B.3 The dual space of important function spaces

We recall here some important facts concerning the dual space X∗ of a Banach

space X. The dual space is the space of continuous real-valued mappings on X.

The dual space X∗ is a Banach space itself, when equipped with the operator

norm:

||L||X∗= sup
x 6=0

||Lx||X
||x||X

. (2.17)

The dual space of Lp(Ω) is Lq(Ω), where p and q are said to be conjugate,

i.e. 1/p+1/q = 1. In particular, the Hilbert space L2(Ω) is its own dual space.

The cases L1 and L∞ must be handled separately.

We will be interested in the dual space to the Sobolev space Hk
0 defined in

(7.1.3). We define:

(Hk
0 )∗ := H−k. (2.18)

B.4 Banach-space valued functions

In the context of time-evolution problems like the one we are considering, we

must discuss Banach-space valued functions. Suppose I is some interval in the

real line, and X is a Banach space. Then we define the space of continuous
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functions from I into X,

C0(I,X) := {u(t) : I−→ X | u(t)−→ u(t0) in X as t−→ t0}, (2.19)

where convergence in X is understood with respect to the norm.

On this space we can define the functional

||u||Lp(I,X):=

(∫
I

||u(t)||pXdt
) 1

p

. (2.20)

We can then define the space Lp(I,X) as the completion of C0(I,X) with

respect to the norm defined in (7.1.5), and it is a Banach space when equipped

with this norm.

We will also be interested in the dual spaces to these function spaces. For

example, if I = (0, T ), we have

(Lp(0, T ;Lr(Ω))∗ = Lq(0, T ;Ls(Ω))), (2.21)

where both (p, q) and (r, s) are conjugate indices.

Of extreme importance are the Sobolev spaces for Banach-space valued

functions. For example, we can define

H1(0, T ;L2(Ω)) := {u ∈ L2(0, T ;L2(Ω))|Du ∈ L2(0, T ;L2(Ω))} : (2.22)

B.5 Semigroups of bounded linear operators

The existence, uniqueness, and continuous dependence on initial conditions

for solutions to initial value problems, as considered in Chapters 2 and 4, for

an appropriate function space V , allows us to define the notion of a solution

operator Ψ(t) to an IVP:

Ψ(t)u0 := u(t;u0), (2.23)

where u(t;u0) is the unique solution to the IVP with initial condition u0 ∈ V ,

at time t > 0.
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We will be particularly interested in families of solution operators {ψ(t)}t≥0

which form a so-called strongly continuous semigroup of bounded linear oper-

ators.

Definition: ([65], Definition 2.1) Let X be a Banach space. A one parameter

family {T (t)}, 0 ≤ t <∞ of bounded linear operators from X into itself is

a strongly continuous, or a C0 semigroup of bounded linear operators on X,

if:

• T (0) = I, where I is the identity operator on X.

• T (t+ s) = T (t) T (s), for all t, s ≥ 0.

• limt→0+ T (t) = x, for all x ∈ X.

Also important is the idea of the infinitesimal generator A of a C0 semi-

group, formally defined by [32]:

Ax := lim
h→0+

(T (h)x− x), x ∈ D(A), (2.24)

with domain D(A) given by:

D(A) := {x ∈ X | t→ T (t)x is differentiable}. (2.25)

The connection to our differential equation problem is that the existence,

uniqueness, and continuous dependence on initial conditions in L2(Ω) for

reaction-diffusion equations, defines a strongly continuous semigroup on L2(Ω):

(ψ(t))t≥0, which provides us with the unique solution ψ(t)u0 = u(t;u0) to the

abstract Cauchy problem ut = Au + f(u) with u(0) := u0 ∈ L2(Ω), where A

is the abstract operator associated with the Laplacian operator in Rn, defined

later in this appendix.

To use this abstract framework for our iPDE spotting model, in the next

subsection we investigate properties of integral operators.
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B.6 Boundedness of integral operators

This subsection is based on Chapter 16 from the manuscript by Lax [48]. Let

X and Y be Banach spaces. We define the integral operator K : X → Y

K(f)(x) :=

∫
X

K(x, y)f(y)dy, f ∈ X, (2.26)

where the integral is taken with respect to Lebesgue measure. The mapping

K : Y ×X → R appearing in Equation (2.26) is called the kernel of K.

We will determine conditions on f and K so that the integral (2.26) defines

a measurable function on Y .

Theorem B.1: ( [48], Theorem 16.1.1) The map K defined in (2.26) is

bounded:

• As a mapping L1(X)→ L∞(Y ), provided:

||K||≤ ess sup
x, y
|K(x, y)| <∞. (2.27)

• As a mapping L∞(X)→ L1(Y ), provided:

||K||≤
∫
Y

∫
X

|K(x, y)|dx dy <∞. (2.28)

• As a mapping L1(X)→ L1(Y ), provided:

||K||≤ ess sup
y

∫
X

|K(x, y)|dx <∞. (2.29)

• As a mapping L∞(X)→ L1(Y ), provided:

||K||≤ ess sup
x

∫
Y

|K(x, y)|dy <∞. (2.30)

Further, when the kernel K is nonnegative, the sign of equality holds in the

first inequalities of (2.29) and (2.30), respectively.

Of particular interest is the L2-case.

Theorem B.2: ( [48], Theorem 16.1.2), The map K is bounded L2(X) →
L2(Y ) provided:

||K||2L2(X×Y )≤
∫
Y

∫
X

|K(x, y)|2dx dy <∞. (2.31)
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The inequality (2.31) is due to Hilbert and Schmidt, and operators K sat-

isfying this inequality are called Hilbert-Schmidt operators.

A second inequality due to Holmgren ensures K is bounded in the L2-case:

Theorem B.3: ( [48], Theorem 16.1.3), The map K is bounded L2(X) →
L2(Y ), provided:(

sup
x

∫
|K(x, y)|dy

)1/2(
sup
y

∫
|K(x, y)|dy

)1/2

<∞. (2.32)

We should point out that there are several important integral operators,

namely the Fourier and Laplace transforms, which despite not satisfying either

of these inequalities are nevertheless bounded from L2 to L2.

B.7 The Bounded Perturbation Theorem

In this subsection we investigate bounded perturbations of strongly continuous

semigroups of bounded linear operators. As a preliminary result towards the

main theorem of this subsection, we require a Lemma:

Lemma B.1: ( [32], Prop. 1.5.5) For every C0 semigroup (T (t))t≥0, there

exists constants w ∈ R and M ≥ 1 such that:

||T (t)||≤Mewt, t ≥ 0. (2.33)

So, without loss of generality, we may always assume strongly continuous

semigroups possess constants w and M ≥ 1, which appear in the following

Theorem:

Theorem B.4: ( [65], Thm. 3.1.1) Let X be a Banach space and let A be the

generator of a C0 semigroup (T (t))t≥0 on X, satisfying ||T (t)||≤ Mewt. If

B is a bounded linear operator on X, then A + B is the generator of a C0

semigroup S(t) on X, satisfying ||S(t)||≤Me(w+M ||B||)t.
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B.8 The initial value problem for reaction-diffusion

equations in an open bounded domain

Our goal is to investigate the existence and uniqueness problem for non-linear

reaction-diffusion equations. We will then perturb these equations with an in-

tegral term, and use techniques from semigroup theory to argue well-posedness

for the model (2.34) below. In this subsection and the next we follow closely

the arguments and assumptions presented in [71].

The scalar reaction-diffusion equation for a density u : Ω ⊂ Rn×[0, T ]−→ R
is an equation of the form

∂u(x, t)

∂t
= ∆u(x, t) + f(u(x, t)), x ∈ Ω, t ∈ [0, T ]. (2.34)

Here, ∆u(x, t) = ∇ · ∇u(x, t) is the Laplacian, i.e. the divergence of the

gradient of u, and f(u) is a birth/death term.

The domain Ω ⊂ Rn is an open, bounded domain with smooth boundary,

and we prescribe homogeneous Dirichlet boundary conditions for the solutions

u(x, t), for values of x in the boundary of the domain ∂Ω

u(x, t) = 0, x ∈ ∂Ω, t ∈ [0, T ]. (2.35)

We also require an initial condition,

u(x, 0) := u0(x). (2.36)

Following the argument in Robinson [71], we will view u(x, t) as a trajectory

in a Banach space, regarding u(·, t) as a sequence of functions u(t), each defined

on Ω, such that

u(t)(x) = u(x, t), u(t) : Ω−→ R. (2.37)

It will be important to characterize the various Banach spaces in which

both the initial condition u0(x), as well as the various solutions u(t) reside.

186



B.9 Weak solutions to reaction-diffusion equa-

tions

We now return to the equation (2.34), together with boundary conditions

(2.35), and initial conditions (2.36). Multiply the PDE by a test function φ ∈
C∞c (Ω), and integrate:

∫
Ω

φ(x)
∂u(x, t)

∂t
dx−

∫
Ω

φ(x)∆u(x, t)dx =

∫
Ω

φ(x)f(u(x, t))dx (2.38)

We now use integration by parts on the second term, to obtain

∫
Ω

φ(x)
∂u(x, t)

∂t
dx−

∫
Ω

∇φ(x) · ∇u(x, t)dx =

∫
Ω

φ(x)f(u(x, t))dx. (2.39)

From the second term we can define a bilinear form a(u, φ),

a(u, φ) =

∫
Ω

∇φ(x) · ∇u(x, t)dx. (2.40)

For each u ∈ L2(Ω), the map

v−→ a(u, v) (2.41)

is a linear functional on L2(Ω), since if one assumes v ∈ L2(Ω), we have

|a(u, v)|= |< u, v > |≤ ||u||L2||v||L2 , (2.42)

the final inequality following from the Cauchy-Schwarz inequality.

It follows that one can define a linear operator A : L2(Ω)−→ (L2(Ω))∗, by

< Au, v >= a(u, v), (2.43)

for all v ∈ L2(Ω). It can also be shown that A defines a bounded operator

from H1
0 into its dual H−1.

Further, the nonlinear term in (2.34) defines a linear functional on φ ∈
C∞c (Ω), for fixed f , defined by [f(u(t))](x) := f(u(x, t)) (see the discussion
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leading up to (2.37), namely∫
Ω

φ(x)f(u(x, t))dx =< f(u(t)), φ >:=< f(u), φ > . (2.44)

The density of C∞c (Ω) ⊂ H1
0 allows us to define < f, φ > for f ∈ H−1 and

φ ∈ H1. In this case the notation < f, φ > denotes the action of the functional

f on the function φ in the abstract, and not L2-sense.

To deal with the first term in (2.34), we weaken the condition that du
dt

exists

as a continuous function, and define the weak derivative du
dt

.∫ T

0

du

dt
φ(t)dt = −

∫ T

0

u(t)
dφ(t)

dt
, (2.45)

for test functions φ ∈ C∞c ([0, T ],R).

Putting all of this together, we can rewrite (2.34) as:

<
du

dt
, φ > + < Au, φ >=< f(u), φ >, (2.46)

for all φ ∈ C∞c (Ω). The density of C∞c (Ω) ⊂ H1
0 allows us to rephrase the

latter (2.46) as equality for all φ ∈ H1
0 .

We can re-express the PDE (2.34) as an abstract operator equation,

du

dt
+ Au = f(t). (2.47)

where equality holds in L2(0, T ;H−1). The operator A = −∆ is the Laplacian

equipped with Dirichlet boundary conditions. We are now prepared to state

our main result:

Theorem B.5: ( [71] Robinson Theorem 8.4)

Suppose f is a C1 function satisfying

−k − α1|s|p≤ f(s)s ≤ k − α2|s|p, f ′(s) ≥∼ l, p > 2, (2.48)

Then the IBVP for (2.34) with Dirichlet boundary conditions has a unique

weak solution: for any T > 0, given an initial condition u(x, 0) = u0(x) ∈
L2(Ω) there exists a solution u with

• u ∈ L2(0, T ;H1
0 (Ω))

⋂
Lp(0, T ;Lp(Ω)).
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• u ∈ C0(0, T ;L2(Ω)).

• The map u0−→ u(t) is continuous on L2(Ω).

• Equation (7.1.6) holds as equality in Lq(0, T ;H−s), where q is conjugate

to p in (7.1).

B.10 The Fourier transform and the heat equa-

tion on Rn

In this subsection we investigate the Cauchy problem for the heat equation on

Rn, defined by

∂u(x, t)

∂t
= ∆u(x, t), x ∈ Rn, t ∈ [0, T ]. (2.49)

with initial conditions u(x, 0) := u0(x).

This problem requires different methods than the bounded domain case

considered in the previous section. Unless otherwise specified, the discussion

and results in this subsection were obtained from Chapter 3 of [85].

For unbounded domains, the Schwartz space plays an analogous role to

the space of test functions C∞c (Ω) in the bounded case. The Schwartz space

Y (Rn) of rapidly decreasing functions is defined by:

Y (Rn) := {u ∈ C∞(R) | xβDαu ∈ L∞(Rn),∀α, β ≥ 0}, (2.50)

where xβ := xβ1

1 ...x
βn
n , Dα = Dα1

1 ...Dαn
n , with Dj := ∂

∂xj
.

The Schwartz spaces are intimately connected to the Fourier transform F ,

defined by

Ff(s) = f̂(s) = (2π)−n/2
∫
R
f(x) exp (−ix · s)dx. (2.51)

We define the inverse Fourier transform F∗ by

F∗f(x) = (2π)−n/2
∫
f(x) exp (ix · s)dx. (2.52)
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On the Schwartz space, we have the Fourier inversion formula F∗F =

FF∗ = I. One can show that both F and F∗ extend uniquely to isometries

on L2(Rn), and are there inverses of each other. Fourier analysis is an essential

tool in investigating PDE’s on unbounded domains.

We can equip Y (Rn) with a topology. We start with the seminorms

pk(u) :=
∑
|α|≤k

sup
x∈Rn
|Dαu(x)|. (2.53)

The distance function

d(u, v) :=
∞∑
k=0

pk(u− v)

1 + pk(u− v)
(2.54)

then makes Y (Rn) into a complete metric space.

We can then talk about continuity of maps L : Y (Rn)→ R. It is necessary

and sufficient that there exists k, C, such that

|< u, l > |≤ Cpk(u), ∀u ∈ Y (Rn). (2.55)

The space of temperered distributions, denoted Y ′(Rn), is the set of all

continuous linear functionals on the Schwartz space. In the space of tempered

distributions we have the weak∗ topology, in which we say a sequence Ln ∈
Y ′(Rn) converges weak∗ to w if < u,Ln >→< u,w > for all u ∈ Y (Rb).

Now consider the IVP for Equation (2.49), with f ∈ Y ′(Rn). We seek

smooth solutions u ∈ C∞([0, T ];Y ′(Rn)).

Of primary importance is the fundamental solution G(x, t), defined for

t > 0 by

G(x, t) = (4πt)−n/2e−
|x|2
4t . (2.56)

We can use the fundamental solution (2.56) to construct the solution to

the IVP, using convolution:

u(x, t) = (G(·, t) ∗ u0)(x). (2.57)

Further, if f ∈ Lp(Rn), then the solution u ∈ C0([0, T ];Lp(Rn)) for all T > 0.
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B.11 The heat semigroup on Rn

In this section we consider the family of operators T (t) defined on Lp(Rn),

which are the solution operators for the hear equation, written in terms of the

fundamental solution G:

T (t)f(x) := (G(x, t) ∗ f(x))(x)

= (4πt)−n/2
∫
Rn
e−
|x−r|2

4t f(r)dr, (2.58)

for t > 0, x ∈ Rn, and f ∈ Lp(Rn).

Theorem B.6: ( [32], E.g. 2.13) If we define T (0) := I, then the family (T (t))

defined in (2.58) forms a strongly continuous semigroup of operators on

Lp(Rn). The generator A coincides with the closure of the Laplace operator

on the Schwartz space.
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