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Abstract

A reduced gravity model with an outcropping interface developed by Cushman-
Roisin is presented to describe the evolution of geostrophic fronts. This model
describes a two layer system where only the uppermost layer is active and each
outcrop line describes a front.

This model is found to possess a time invariant Hamiltonian. This Hamil-
tonian is used to show that all fronts described by this model are linearly stable.
Nonlinear stability cannot be unconditionally established. However, a specific
geostrophic wedge-like front is found to satisfy these conditions and thus found
to be nonlinearly stable.

A weakly nonlinear wave packet theory is developed to describe the evolution
of this wedge-like front using neutrally stable modes found by Cushman-Roisin.
It is shown that the evolution of the wave packets is governed by the Nonlinear
Schrédinger equation.

Solutions for the Nonlinear Schrodinger equation are found. The Stokes
wave solution is also found to be moduiationally stable. Plane wave solutions as

well as a snoidal wave solution and a soljtary wave solution are found. Further

research areas are discussed.
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Chapter 1

Introduction

An oceanographic front is the boundary between two water masses with differing
temperature and/or density (Bowman and Esaias, 1978). They are dynamically
active zones where rapid spatial changes in water properties are observed. The
characterizing feature of a front is its large horizontal gradient of certain oceano-
graphic properties, e.g., the density (this large horizontal gradient being measured
in comparison with the relatively uniform distribution of the rest of the ocean).
Upper ocean fronts are also characterized by a strong convergence or divergence
of surface currents.

Fronts occur on a wide range of scales varying from the smaller scale fronts
found in estuaries caused by outflowing fresh water into sea water, to the planetary
scale fronts associated with warm salty water from lower latitudes entering the
colder waters of the higher latitudes (Bowman and Esaias, 1978). A smaller scale
front, for example, would be that created by the fresh water of the Mississippi
River forming a plume over the delta. An example of a planetary scale front would
be that caused by the Gulf Stream or Kuroshio (Federov, 1983).

Fronts play an important role in the dynamics of the ocean. They affect the
distribution of temperature, salinity and chemical constituents that in turn affect

the biological productivity of that area (Bowman and Esaias, 1978). They can



increase the biological productivity by extending the depth of light penetration
thereby increasing the concentration of phytoplankton, the base of the oceanic
food chain. In addition, the frontal water may have a lower salinity which also
leads to increased biological productivity in these waters.

Because of the convergence of the surface currents associated with fronts, they
hinder the ability of coastal waters to horizontally transfer such things as heat
and momentum (Bowman and Esaias, 1978). This convergence also effects the
transfer of pollutants and chemicals. Oil slicks have commonly been observed to
align themselves with the surface convergence of a front. Fronts may also hinder
the disposal of radioactive wastes to the outer ocean.

However, mixing across fronts does lead to the exchange of coastal and offshore
waters (Federov, 1983) and thus to the exchange of any energy, pollutants or
chemicals. Hence the dynamics leading to this mixing are important to identify
so that, for example, the disposal of wastes is only done in situations that will
lead to their eventual dispersion to the outer ocean. Some of the dynamics that
may be involved in this mixing include the mean flow associated with the front,
shear effects of the front and the baroclinic instability of the front. The role of
this latter property has led to the study of the causes of the instability of fronts.

The instability of oceanic fronts is important to determine as it governs the
release of energy in the form of eddies and rings and the possible mixing of, for
éxample, pollutants and chemicals with adjoining water masses.

Several attempts have been made to model the dynamics of ocean fronts. Most
earlier theoretical work was based on quasi-geostrophic theory. Quasigeostrophic
theory examines situations in which departures from geostrophy, where geostrophy
is defined as the balance between the Coriolis force and the buoyancy force, are
small (Cushman-Roisin et al,, 1992). This ‘smallness’ is measured by the Rossby
number which is the nondimensional parameter characterizing the ratio between

the natural time scale associated with the rotation of the earth and the dynamical



time scale of the motion. The small Rossby number assumption models situations
in which the dynamical time scale is much larger than the natural time scale
of the earth’s rotation. This characterizes much of the dynamics in the ocean.
Quasigeostrophic theory also makes the assumption that the thickness variations
of the layer of fluid are small in comparison to the mean thickness.

Because of this assumption, that the relative thickness variations of the layer
of fluid must be small, quasigeostrophic theory does not apply to the evolution of
fronts. For fronts, the thickness variation is on the order of the mean depth of the
front itself. In fact, for fronts in the coastal regions of the oceans, the isopycnals
usually intersect either the surface of the ocean or the ocean bottom.

Despite this shortcoming, quasi-geostrophic theory was still initially used to
examine frontal dynamics. Orlanski (1968) used a quasi-geostrophic approxima-
tion in describing two active density layers separated by a steep sloping interface.
Orlanski found that this model predicted baroclinic instabilities similar to those
instabilities found in other quasi-geostrophic models. Smith (1976) used a quasi-
geostrophic model to describe a two layer system where only the lower layer was
considered active imitating the overflow of Norwegian sea water through the Den-
mark strait. His model was able to explain the energetics of this situation quali-
tatively but not quantitatively. He reasoned that this might be due to nonlinear
effects.

The limitations of quasi-geostrophic theory though became apparent when
Griffiths and Linden (1981) conducted experiments where dyed water was released
into a salt water solution. The instabilities they found could not be explained
using quasi-geostrophic models. This led Griffiths, Killworth and Stern (1982)
to develop a model that was not quasi-geostrophic to describe a reduced-gravity
system where the lower active layer was parabolic in shape (a coupled front). Their
mode] showed that all linearized perturbations were unstable even when there

was no extremum in the potential vorticity as is required by quasi-geostrophic



theory (LeBlond and Mysak, 1978). Their model, however, still was deficient in
explaining some of the instabilities that they had observed in their experiments.
Killworth and Stern (1982) used a modified model in which they positioned a rigid
boundary on one side of a coastal current with the front on the other side of the
current. They found that this front was unstable to small amplitude perturbations
when the potential' vorticity increased towards the coast. Their model showed
better agreement with experiments. Paldor (1983) showed that a single layer
with uniform potential vorticity was always stable.

Although these single layer models did explain some of the results from ex-
periments they still did not explain all instabilities that were observed. Killworth
and Stern (1982) hoped they could explain these instabilities by examining a two
layer system where the lower layer was considered motionless but finitely deep.
This two layer system showed that the second layer had significant effects on the
stability of the model and therefore could not be neglected.

Despite this finding, Cushman-Roisin (1986) considered the much simpler re-
duced gravity system where only the uppermost layer was active. He reasoned that
the earlier studies proved that a wealth of knowledge about fronts could still be
obtained from a single active layer system. He represented his surface front by an
outcropping interface or, in other words, an interface that intersected the surface
of the ocean. Cushman—Roisin assumed that the Rossby number was small, not
by demanding that deflections in the upper layer were small, but by demanding
that the length scale of the motion was much larger than the deformation radius
of the earth which is defined as the distance in which fluid can flow before being
affected by the Coriolis force (LeBlond and Mysak, 1978). His model was applica-
ble to three different situations under certain limits. For the limiting case where
the beta effect was negligible, Cushman-Roisin found a small amplitude solution
for the stability problem where the wedge front, hg (y) = ay, was considered the

basic state. He suggested that this solution could serve as a basis for examining



the finite amplitude evolution of frontal waves. Using this model Cushman-Roisin
also found the wedge-front to be linearly stable.

Swaters (1993) modified this model by changing the length scale to a more
intermediate scale and also by including baroclinic processes. His system involved
two active layers over a linearly sloping bottom. He chose a length scale that was
much less than the internal deformation radius associated with the bottom layer
but much greater than the internal deformation radius associated with the top
layer. He also considered the linear stability problem for the barotropic limit of
his model and found all fronts to be linearly stable.

Most studies on frontal dynamics up to this point were limited to linear stabil-
ity analysis. Experiments however have showed that finite amplitude effects are
important considerations on the stability of flows (Griffiths and Linden, 1981).
Swaters (1993) considered the nonlinear effects of his model by developing and
exploiting a Hamiltonian formulation of his model. He was able to show nonlinear
stability under certain conditions. This nonlinear stability analysis however was
somewhat limited as it required the use of a certain Poincaré inequality.

Karsten and Swaters (1995) further examined the Hamiltonian formulation of
this model in an attempt to eliminate*ihe restriction of the Poincaré inequality.
They were able to show nonlinear stability under certain conditions without the
assumption of the Poincaré inequality by considering an alternate invariant of the
Hamiltonian system. The implications of this analysis for the barotropic limit of
their model will be used in this thesis.

The principle purpose of this thesis is to develop a finite amplitude instabil-
ity theory for the wedge—front profile examined by Cushman-Roisin (1986). We
will derive and examine the Cushman-Roisin (1986) model in the limiting case
where the beta effect is negligible using the asymptotic expansion ideas of Swaters
(1993). Furthermore, we will review the Hamiltonian formulation of this model

as outlined by Swaters (1993) and the linear stability analysis of this model using



the Hamiltonian formulation. As already discussed, all fronts are shown to be lin-
early stable. We will then examine the nonlinear stability problem by using this
Hamiltonian formulation. Using both the Hamiltonian invariant used by Swaters
(1993) and the invariant used by Karsten and Swaters (1995), nonlinear stability
will be proven but only under certain conditions. Specifically we will examine
the wedge—front introduced by Cushman-Roisin (1986) and show that it satisfies
these conditions and thus is nonlinearly stable.

Despite being a crude representation of a front, the wedge-shaped front still
captures the essential dynamics of the physics of this model. In addition, the
wedge-front profile is simplified enough so that analytical solutions for the linear
stability problem car be found (Cushman-Roisin, 1986). However an analytical
solution for the full nonlinear stability problem cannot be found. We will examine,
however, the nonlinear evolution of the flow by using & multiple scales analysis.
As suggested by Cushman-Roisin (1986), his linear stability solution will serve as
the basis for the analysis. This multiple scales analysis will involve introducing
slow space and time variables into the nonlinear stability problem. The frontal
height will then be asymptotically expanded about a small parameter, €, which
characterizes the nondimensional amplitude of the frontal perturbations. We will
consider the problems up to the O (¢2). Solvability conditions for the O (¢2) prob-
lem will show that the perturbation amplitude of the flow introduced in the O (1)
problem must satisfy the Nonlinear Schrédinger equation.

We will examine solutions to this Nonlinear Schrédinger equation. The Stokes
wave solution in particular will be examined and shown to be modulationally
stable reinforcing the conclusion made using the Hamiltonian formulation of the
model that this model is nonlinearly stable. Other solutions to the Nonlinear
Schrodinger equation that will be found are a snoidal wave solution and a solitary

wave solution.

The outline of this thesis is as follows. In chapter 2, the derivation of the gov-



erning equations for the barotropic model is given using the reasoning given by
Swaters (1993). The linear solution found by Cushman-Roisin (1986) is reviewed.
‘The Hamiltonian structure of the model is discussed and its linear and nonlinear
stability is also studied following the theorems given by Swaters (1993) and Swa-
ters and Karsten (1994). Specifically it is shown that all fronts are linearly stable
and that the wedge-front, in particular, is nonlinearly stable.

In chapter 3, the equations for the weakly nonlinear evolution of the wedge
front modes are derived using scaling arguments and slow space and time variables.
An asymptotic expansion is done and the various problems up to O (€?) are dis-
cussed. The perturbation amplitude is shown to satisfy the Nonlinear Schrédinger
equation.

In chapter 4, several solutions to the Nonlinear Schrédinger equation are de-
rived. Among these solutions is a snoidal wave solution as well as a solitary wave
solution. In chapter 5, the thesis is summarized and future research topics are

discussed.



Figure 1-1: The Physical Model
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Chapter 2

Governing Equations

2.1 Derivation of the frontal model

The derivation of the governing equations for this model begins with the shal-

low water equations (Pedlosky, 1979) and follows closely the reasoning presented

by Swaters (1993). The basic model is a reduced gravity shallow water system

assumed to be hydrostatic, homogeneous, non-viscous and incompressible. This

model can be derived from a two layer system in which the lower layer is assumed

to be infinitely deep (see Fig. 1-1), motionless and in hydrostatic balance.

A review of the derivation of the reduced gravity shallow water equations,

following Pedlosky, (1979) is first given beginning with the dimensional, inviscid,

incompressible equations for a homogeneous rotating fluid:

(B +u" V") u — fov* = =75 /p",
(G +u*-V*) 0" + fou* = —py-/p°,

(B + 0" V") w' = —5. /",



where t* is time, z* the along—front coordinate, y* the cross—front coordinate
and 2* the vertical coordinate; (u*,v*,w*) are the velocity components in the
(z*,y*,2*) directions respectively; 8, +u®-V* is the material derivative describing
the time evolution following the flow and will be denoted by TJPF (Kundu, 1990);
Jo is the constant Coriolis parameter, p* is the density, and 7" is the dynamic
pressure, that is, the total pressure, denoted p*, minus the hydrostatic component,
that is,

p'(z%,y,2",1") = —p*g2* + 7" (z*, 4", 2", 1°). (2.5)

In order to derive the reduced gravity equations the parameter, § = %, where
D characterizes the vertical lengthscale and L characterizes the horizontal length-
scale is introduced and assumed to satisfy the inequality, § < 1. This reflects that
in the ocean mesoscale disturbances have much longer horizontal lengthscales than
vertical lengthscales. Therefore, if W and U characterize the vertical and hori-
zontal velocity scale, respectively, from the continuity equation (2.1) the following

scaling is derived,

wl. >0 (%’) ~0 (%) , (2.6)

which suggests

W~0 (%) - 0(8U). - 2.7)

It follows that
. UW U DU\ _, (U \
W & = (B'T)‘O(T>' (28)

Assuming that the pressure is dynamically relevant at leading order in the hor-
izontal momentum equations, it follows from the horizontal momentum equations
that \

P=p'L.-0 (—g, Uf,foU)
max

— U0 (%U foL)m, (2.9)

10



where P is the scale for the dynamic pressure, 7.

‘Turning to the vertical momentum equation, the following is derived:

0 (P'%) _rE

= 5
_blF .,
U[,U ol
_ow_ (34,
Wt 4.
=5”ﬁ’—%]—w——. (2.10)

Examining equation (2.10), it is evident that if RUT or TLJO is O (1) or greater than
this ratio is of O (62). If these terms are smaller than O (1) then this ratio is
smaller than O (62) . Therefore, the term, B 'in equation (2.4) may be neglected
in comparison to the pressure gradient and the vertical momentum equation (2.1)

reduces, to leading order, to the hydrostatic balance,

7 o (2.11)
It follows from (2.11) that
P =A(z"y",t"), (2.12)

where A is an arbitrary function of its arguments. It therefore follows that the

total pressure, given by equation (2.5) is

pt=-p'gz" + A(z*,y",t*). (2.13)

11



The dynamic pressure, A (z*,3*,t*), must be related to the thickness of the
surface layer, denoted by h* (z*, ¢, t*). The dynamic boundary condition on the
interface between the upper and lower layers is that the total pressure must be
continuous across the interface. Since the lower layer is assumed to be motionless
and in hydrostatic balance the total Pressure in the lower layer is given simply by
—p292*, where p; is the density of the lower layer. There is no explicit (z*,9°,t)
dependence in the lower layer. If there was, then it would follow that there would
be horizontal motion in the lower layer.

Consequently, continuity of the total pressure across the interface z* = —h*

(see Fig. 1-1) implies
—pagh® (z*,y*,t*) = p*gh* (z*,y°,t*) + A" (z*,y*,t"), (2.14)
which can be rearranged into the form
A (z*,y7,t") = —g'p*R* (z*,y*, 1*), (2.15)

where

g'=gp2p—_p >0, (2.16)

is the reduced gravity which vanishes in the lower layer. The total pressure in the

upper layer is therefore given by
pr==p'gz" —g'p'h" (z*,y",t"). (2.17)

Differentiating equation (2.17) with respect to z* and y* implies, respectively,

aﬁ‘ — Nk Iah‘
g‘— =pg az.’ (2'18)
op ,On

= p* . 2.1

12



Since p* is independent of z*, horizontal accelerations will be independent of
z* and the horizontal velocities are assumed to be independent of 2*, in other
words,
ou* o
= — =0, 2.2
oz~ 5 (2.20)
Substituting equations (2.18) and (2.19) into the horizontal momentum equations

(2.2) and (2.3) and using equation (2.20) leads to

ou  ,Ou* |, Ou* . O
e +u Fyo +v 5 = fov*' = —g 5z’ (2.21)
o o O . O
PR =l w R U e (2.22)
or in vector form
(O +u*- V" + fogzx]u* = —¢g'V*h", (2.23)

where u” is the horizontal velocity vector in the upper layer. These equations are
valid as long as the wavelengths being studied are much longer than the depth of
the fluid so that vertical velocities are much smaller than horizontal velocities.

Following Pedlosky (1979), since u* and v* are independent of 2*, the conti-

nuity equation (2.1) can be integrated from z* = —h* to z* = 0 to give
ou* o'
w (z*,9%,0,t") —w(z",y", ~h", t*) + h° (8:2:‘ + 6y'> =0. (2.24)

This is simplified by using the kinematic boundary condition on the interface given

by the equation
Dh*
Dt

w(a:‘,y‘,—h‘,t') =- (2'25)

In addition, on the surface of the frontal layer, the rigid lid approximation is used
so that
w* (z*,9%,0,t") =0. (2.26)

13



Substituting these equations (2.25) and (2.26) into the continuity equation (2.24)
leads to

‘;i, +u VR + AV out =0, (2.27)
or
% +V* - (u'h) =0. (2.28)

In conclusion, the following reduced gravity shallow water equations hold for

the upper active frontal layer:
[0 +u*V* + foésx]u* = —g'V*h*, (2.29)

B h* + V*- u*h?] = 0, (2.30)

where u* is the horizontal velocity vector for the upper layer, and h* is the thick-
ness of the upper layer or the depth at which the front lies (Pedlosky, 1979).

It is now beneficial to nondimensionalize the model equations (2.29) and (2.30).
Kundu (1990) explains that by nondimensionalizing these equations, they can be
used to describe many dynamically different situations. In other words, different
situations may have different velocities and length scales than those initially ex-
amined but if certain relationships still hold between these quantities, expressed
as nondimensional parameters, the same nondimensional equations can be used
to describe both situations. Pedlosky (1979) also explains that the size of these
specific nondimensional parameters determined by the physical situation being
described, determine the relative sizes of each of the terms in the equations and
are helpful in determining which terms can be neglected so that the equations
may be examined analytically.

Following methods used in Pedlosky (1979) the nondimensionalization is car-

ried out by first introducing the following variables:
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(z*,9") = L(z,y), (2.31)

t'=Tt, (2.32)
(w"v*)=U(u,v), (2.33)
h* = hoh, (2.34)

where L, T, and U characterize the magnitude of the length, time and velocity
scales of the motion, respectively, and where hq is a characteristic thickness of the
front.

These variables are introduced first into the z-direction momentum equation

(2.21),

Ubu U? 8u U? 6u g'ho Oh

—— 4 —UY— + —Y— — == 2.

Tor T T T T V=" 5 (2.35)
which when divided through by U and f, gives

l1ou U O6u U 6&u _ gho Oh

ﬁvay 0= " fULbz

(2.36)

—_—

i R AT

The nondimensionalization is achieved by examining balances found in physical
situations. The first scaling is a direct result of the fact that the formation of the
front results primarily from a balance between the Coriolis force and the buoyancy
forces known as the geostrophic balance. This geostrophic balance is modelled by
making the last term on the left of equation (2.36) of the same order of magnitude

as the term on the right. This gives the relation

folU
g

ho = (2.37)

Secondly, fronts in physical situations show the approximate length and ve-
locity scales given by L =~ 100 km and U =~ 10 c¢m/s (Cushman-Roisin, 1994).

In addition, the size of the Coriolis parameter, fo, is approximately given as

15



Jfo = 1074, This suggests the introduction of the Rossby number, Ry, defined as

Ry = foiL <1 (2.38)

Rearranging this relation gives the following scaling for the magnitude of the

velocity,

U = RofoL. (2.39)

This scaling makes the nonlinear momentum terms small compared to the Cori-
olis acceleration terms because of the small Rossby number. Substituting the
scaling for U into the geostrophic balance, equation (2.37), gives the scaling for

the horizontal lengthscale,

2 9l _ g'ho

T U T RefZ T B L (240)

where L% is the internal Rossby deformation radius defined as

Ly = *ﬂ@, (241)
Jo
which describes the distance over which a geophysical fluid disturbance can travel
before being significantly affected by the Coriolis force (LeBlond and Mysak,
1978).
In order tu examine only planetary or subinertial motions and filter out inertial

oscillations and Poincaré waves the time scale is assumed to satisfy the inequality

T L, (2.42)
fo

so that only slowly evolving motions are considered. Since fronts evolve on a time
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scale of days to weeks (Cushman-Roisin, 1994) the following scaling is suggested:

1
T=——, 243
R (249
This completes the nondimensionalization with the new nondimensional (unas-

terisked) variables introduced as follows:

! /

(z*,y*) = L(z,y) where L = i‘%*&»”, (2.44)

. (1
o= () "
(u*,v°") = (foLRo) (u,v), (2.46)
h* = hgh, (2.47)

2

Ry = EL% (2.48)

The new nondimensional equations can now be derived. Substituting equations

(2.44)-(2.48) into equation (2.36) gives the z—direction momentum equation,

Ou 0 0 oh
RS+ Rouz + Rova—; —v= -z (2.49)

The derivation for the y~direction momentum equation follows similarly. The
nondimensional vector form of the momentum equations can be written in vector
form as

du

Rg_t + Rou-Vu+é&3xu+Vh=0. (250)

Putting the nondimensional variables in the continuity equation (2.30) for the

upper layer gives the nondimensional equation,

oh foLRo

i + 7 V. (uh) =0. (2.51)

foR}
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Dividing through by foRp gives the simplified equation
Oh
Roa + V- (uh) =0. (2.52)

In this equation the time derivative is an order of magnitude larger than in the
momentum equations. This corresponds to purely frontal dynamics since fronts
evolve much slower than quasi-geostrophic dynamics (Cushman-Roisin, 1986).

In summary, the nondimensional equations for the top layer are as follows:

Rf,% + Rou - Vu + &xu + VA = 0, (2.53)

RO% +V - (uh) =0. (2.54)

This model can be compared to some other models of fronts. Flierl (1984) in
describing the dynamics of a strongly nonlinear warm eddy considered situations
where the Rossby number was small and thus the horizontal velocity was small
but not negligibly small, that is, he considered the Rossby number to be of the
order Ry < 1, but not Ry < 1. This assumption resulted in a model in which the
nonlinear momeﬁtum terms were of the same order as the Coriolis acceleration
terms. Flierl also considered situations where the relative acceleration terms were
almost negligible ~ similar to the assumption made here.

Swaters and Flier] (1991) and Swaters (1991) considered a two layer system
where both layers were active over a sloping bottom to describe the motion of cold-
core mesoscale eddies. The nonlinear momentum terms in these studies were much
smaller than the leading order geostrophic motion in the horizontal momentum
equation and thus their model had somewhat weaker nonlinearities than the model
given here. In their continuity equation also the changes in the eddy thickness
were as important as the horizontal divergence whereas in this model the changes

in the eddy thickness are of the order, O (Rp), of the horizontal divergence terms.
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The smallness of the Rossby number suggests that a solution to the model
equations (2.53) and (2.54) can be constructed in the form of an asymptotic

expansion given by
(hyu) ~ (R, u®) + By (h®,u®) + 0 (R2), (2.55)

(Bender and Orszag, 1978). Substituting the expansions (2.55) into the nondi-
mensional equations (2.53) and (2.54) gives the O (1) problem,

&; x u® 4+ va® =0, (2.56)

V- (u®r®) =0, (2.57)

In component form equation (2.56) can be written as

Bh®
v = %, (2.58)
oh)
- _Z___
u 5 (2.59)

where u® and 1 are the velocities in the = and y directions, respectively. This

shows that the leading order velocity is geostrophically determined, that is,
u® =& x VAO, (2.60)
If equation (2.60) is substituted into equation (2.57) it follows that

\v (u(")h(o)) = (u(O)h(O)) n (,U(O) h(O))
T

¥

= — (hPh®) _+ (KORO)

(h(o) )yz +

Y

(h(°’)yz =0. (2.61)

N}

[N
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Equation (2.57) is therefore identically satisfied and the O (1) equations are said
to be geostrophically degenerate.
Therefore, in order to obtain a complete system, the O (Ry) equations must

be considered. These equations are given as

u©@. vu® 4 g, xu® 4 va® = g, (2.62)
h(0)
% +V - (uOhM 4 u®p®) = 0, (2.63)

Substituting equation (2.60) into equation (2.62) gives
&xul) + VA® = — (& x VA®) . V (& x VAO) . (2.64)

The z—direction component of equation (2.64) is given by

Oh) KO §2R0)  HRO) §21(0) or(M) 6h©)
() _ - ©
T e Y oy By T o o~ oa +"( oy " ) (2.65)

where J(A,B) = A.B, - Ay B; with subscripts denoting partial differentiation.

Following similarly for the y-direction component gives

o) oh
- _92¢° - — RO )
u oy +J(ax h ) (2.66)

Equation (2.65) and (2.66) may be written in the vector form
u® =g, x VAW 4+ J (VaO, h<°>) . (2.67)

In this equation, the &; x VA() term is the perturbation geostrophic flow and

the J (Vh(o), h(o)) term is the contribution to u(” from the nonlinear momentum

terms.
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Substituting these equations (2.60) and (2.67) into equation (2.63) implies

on©®

V- ((8s x VRO) B0 1 (85 x VA® 4+ J (VRO ™)) h®) = 0. (2.68)

Expanding this equation (2.68) and rearranging gives

ah(O) 0 0 1 0 0 0
T +J (h< AR + VKO - VRO, 1 >) =0, (2.69)

which describes the leading order evolution of the thickness of the front. This
equation is the same equation derived by Cushman-Roisin (1986) for a model
where the beta effect was negligible and the lengtn scale was much greater than
the deformation radius.

The dimensional position of the outcropping, that is, the position where the
front intersects the surface, z* = 0, is given by y* = ¢* (z*,t*). Since this variable
represents a horizontal quantity it can be nondimensionalized using L such that

¢* (z*,1")

y=¢(z,t)= —7p —on:z= 0. (2.70)

The dimensional kinematic boundary condition is that all particles on the bound-

ary will remain on that boundary. i.e.,

D [ ] » -—
Dw-e)=0 )

on y* = ¢°. Simplified, equation (2.71) becomes

Dy . D¢ 8y .04
D= T D T T e

(2.72)

on y* = ¢*. Using the nondimensional variables defined by equations (2.44)-(2.48)
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gives the nondimensional equation

” 2
Rofolv = LoR§ gt + Tl 50, (273)

which when simplified produces

g‘f + u-a—¢ ony=¢(z,t). (2.74)

The dynamic boundary condition is that the thickness of the front must be

zero on the outcropping, that is,
h(z,y,t) =0ony=¢(z,t). (2.75)

Just as the other variables were expanded asymptotically with respect to Ry,
@ is also expanded asymptotically to give

¢ (z,t) ~ 9 (z,1) + Ro¢™ (,t) + O (R3). (2.76)

Substituting this equation (2.76) into the kinematic condition, equation (2.72),
along with the asymptotic expansion for u (2.55) produces the following equation:

Rogl” + 6040 + Reu®¢) + Ru¢® = o + R + 0 (R}),  (277)

ony = ¢(z,t) = ¢ (z,t) + Ro¢™ (z,t) + O (R3). Before writing the O (1)
boundary conditions the terms in (2.77) are Taylor expanded about y = ¢(® (z, 1)

so that
(u(ﬂ)’ v(ﬂ)) (z,,1) = (u("),v(")) (.’I:,dJ(o), t)

+Ro (u, i) (=, 6,) 6@ + 0 (R2). (2.78)
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Using this Taylor expansion (2.78) in equation (2.77) gives
Bo [¢ 4+ vOg) 4 ug(® 1 4@ _ @y0) _ o]

+0Og0 _ @ g4 0 (Rg) , (2.79)

on y = ¢ (z,t).
Equating all terms proportional to O (1) gives the leading order boundary

condition, ,
0)
@ = U(O)Qg;‘ ony=¢© (z,t). (2.80)

The leading order momentum equations (2.58) and (2.59), however, are given as

© ©
O and v© = aah—:c’ (2.81)

so that equation (2.80) may be written in the form

Oh®  HrlO §gl0i
-+

p—t — (0) . .
5 5 5z Oony=¢'%(z,t) (2.82)

Substituting the asymptotic expansions (2.55) and (2.76) into the dynamic
boundary condition (2.75) and Taylor expanding about y = ¢(® (z,t) leads to

hO (2,6, 1) + Ro A9 (z, 4, t) +h (z,¢,1) ¢ =0+0 (R2) | (2.83)
and the O (1) dynamic boundary condition is given by

O (2,6 (z,t) ) =0. (2.84)

However, and this is an important point, the boundary conditions (2.82) and

(2.84) are not independent and in fact (2.82) follows from (2.84). Note differenti-
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ating (2.84) with respect to x gives

d
— (0 (0}
0= T h (:L', " (z,1), t)

= b0 (2,49 (,1) ,t) + 20 (2,6 (z,1), t) ¢, (2.85)

which is just equation (2.82).

For the most part, the working domain for this thesis will be unbounded in the
positive y—direction. It will be required then that the velocity field be bounded,
that is, as y — co, u® < oco. By using the leading order velocity equations, (2.58)
and (2.59), this means

,Vh(o), < 00 as § — 00. (2.86)

In summary, the reduced gravity model is given by

ah(O) 0 0 1 0 0 0
S+ (h‘ AR + STHO - ThO), p¢ >) =0, (2.87)

with the leading order boundary conditions,
O (2.6, t) =0, (2.88)

,Vh(o)l <00, as Y- 0o. (2.89)

An exact nonlinear solution to these equations is given as
h(0) — hao (y), ¢(0) = q, (2.90)

where a is a constant, kg (a) = 0 and |hg,| < o in order to meet the boundary
conditions. This is easily shown as hg; = hg; = 0 so that when equation (2.90) is

substituted into equation (2.87) it becomes
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——3220) +J (h<°>Ah<°) + %Vh@i' - VA, h‘°’) =

0+ (hm) ARO 4 %Vhw) . Vhw)) hO — (hm) ARO 4 %vh@ . Vhw)) KO
z

y

1 2 0 1 2
- (h<°>h§,g> +3 (n0) ) KO — (h( S+ 5 (1) )y 0

=0-h{" =0. (2.91)

2.2 Potential Vorticity Dynamics

In this Section, it is shown that the governing equation (2.87) is the leading order
potential vorticity equation for the flow. For the reduced gravity shallow water
equations, the conservation of potential vorticity is derived using the methods
demonstrated by Pedlosky (1979) which involves first examining the dimensional

horizontal momentum equation (2.29), in component form,

U +utyg. + vty — for' = —g'hl., (2.92)

v F UG vty + fou' = —g'h.. (2.93)

Taking the derivative with respect to z of the y-momentum equation (2.93) and
subtracting the derivative with respect to y of the z~momentum equation (2.92)

gives the equation

T

% (fo + 5. — u;.) + (fo + vl — u;.) (u;. + v;.) =0. (2.94)

This is simplified by using the continuity equation (2.30), written in the form,

Dh* ol . o\
S T (e + ) =0, (2.95)
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to give

% (fo + v — u;) - (fo * v};&‘ _ U;) gf: =0. (2.96)

Multiplying equation (2.96) through by 1/h* leads to

D (fot+v. —up.\
D ( o ) =0. (2.97)

Therefore for the shallow water equations, the potential vorticity given by

\%
P e ,

(2.98)

is conserved following the motion.

In order to consider the potential vorticity for the frontal equations, equation

(2.97) is nondimensionalized using relations (2.44)—(2.48) to give

RO(,% <1+R0(}:’)z—uy))+u|V(1+*R0(’:’)z_uy))=0. (299)

In examining the leading order potential vorticity, the equation is first rewritten

as

h(Rogt-(l+Ro(vz—uy))+u'V(1+RO(vz‘%)))

+ (14 Ro (vz — w)) (Ro% +u- Vh> =0. (2.100)

The frontal thickness and horizontal velocities are now expanded in the Rossby
number, Ry, following that done in equation (2.55) and substituted into equation

(2.100) giving the leading order problem,
—uOp0) _ v(o)hl(f’) = 0. (2.101)

However if the leading order momentum equations (2.58) and (2.59) are used to
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simplify this equation (2.101), it follows that
~uOh{ — SOR® = HORO — HORO - g, (2.102)

and the leading order potential vorticity is identically zero. Therefore, the first
nontrivial terms in the potential vorticity equation (2.99) are the O (R,) terms,

given by
B — ROWO . v (0 — u?) + u® . VAO 4 u®@ . yaM =, (2.103)

where equation (2.101) has been used. Equations (2.58) and (2.59) can again be
used to simplify this equation along with equation (2.67) to give

B — b (8 x VAO) - V (ARO) + (& x VAD) - vAO)

+J (VA®, ) . VRO (s x VA®) . vA®) =0 (2.104)

This can be simplified further by considering the quantity (&3 x VA) - VB which

car. be written as follows,
(83 x VA)- VB = (-Ay, A;) - (B, B,) = A, B, — AyB; =J(A.B). (2.105)
Using this identity in equation (2.104) gives
KO — pO g (R, AR®) + g (O, 1)

+J (VA®, k@) . ThO 4 J (h©, rV) =o. (2.106)

Two additional identities that can be used to simplify this equation are given as
J(A,B) = A.B, — A,B; = — (A,B; - A:By)=-J(A,B), (2.107)
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AJ(A,B) = A(A;B, — A,B;)
_Llre 1,0 1o
—E(A )zB,,—E(A )yB,=J(§A ,B). (2.108)
These identities simplify equation (2.106) further to

0=hr" _pOy (h(o), Ah(o)) +J (%Vh(o) . VRO, h(O))

_J (h(O), h(l)) +J (h(o), h(l))
= 1" + KO (ARO, hO) +J (%Vh(") - VhO), h“”) : (2.109)

The final identity that is required to simplify this expression is given by
AJ (B, A) = A(B,A, ~ B,A)

= AB,A, + A,BA, — A,BA, — AB,A,
= (AB), A, - (AB), A, = J (AB, 4). (2.110)

When this identity is used in equation (2.109) the resulting equation is given as

hO 4 g (h(o) ARO 4 %Vh“” : Vh“’),h‘°)) =0, (2.111)

which is just equation (2.87), the leading order governing equation of motion for
the frontal model being considered. Thus the conditions for the conservation
of potential vorticity leads to the identical dynamic relationship for the frontal
thickness as the derivations using the shallow water equations. In what follows

the (0) superscript in the model equation (2.111) will be deleted.
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2.3 Hamiltonian Formulation

Over the last several years successful attempts have been made to formulate the
equations of motion for fluid dynamics in Hamiltonian form. Salmon (1988) ex-
plains that development of the Hamiltonian equations for fluid mechanics initially
did not seem beneficial since the Eulerian equations for fluids are generally much
simpler than the Hamiltonian equations. However, Salmon (1988) points out that
there have proven to be some benefits to using Hamiltonian systems. First of
all, Salmon points out that the Hamiltonian formulation is a succinct way of de-
scribing the dynamics of the motion of fluids. Secondly, there is a connection
between the symmetry properties of the Hamiltonian and the conservation laws
of the dynamics and thus approximate conservation laws of the system can often
be deduced from these symmetries. Finally, Salmon (1988) points out that the
Hamiltonian mechanics are not tied to a particular choice of coordinates.

Olver (1982) demonstrated these benefits when he put the Euler equations
for inviscid-incompressible fluid flow into Hamiltonian form. He demonstrated
some symmetries of the system as well as some of the conservation laws using
this Hamiltonian formulation. Holm et al (1985) used Hamiltonian systems
to examine the stability of two dimensional flow systems, three dimensional flow
systems as well as plasma systems. The stability algorithm they develop is similar
to the one that will be used here.

Continuous systems, such as fluid flows, are infinite dimensional dynamical
systems. This is because each variable in the system can be Fourier expanded
and thus describing the system involves solving for the infinite number of Fourier
coefficients of the Fourier expansion (Courant and Hilbert, 1953). Infinite dimen-
sional systems are described by systems of partial differential equations where the
dependent variables are functions of space and time defined over some domain.

A system of partial differential equations is Hamiltonian if it can be written
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in the form (Olver, 1982; Morrison, 1982),
q =D (2.112)

where the q variable is a column vector of n dependent variables; the variable
H (q) is a functional (that is, a function of a function, as the dependent variable
q for a continuous system is itself a function) known as the Hamiltonian func-
tional and which must be a conserved quantity; and D is a matrix of differential
operators.

In addition to being able to write the dynamical system in the form given in
equation (2.112), it can also be described using a Poisson bracket for a Hamiltonian

system defined by (Morrison, 1982)

il 6G>, (2.113)

where F and G are arbitrary functionals depending on q and where an appropriate
inner product is chosen for the phase space being described. This bracket must

display the following algebraic properties (Arnold, 1978; Morrison, 1982):

[F,F] =0, (2.114)

[F,G] == [G’FL (2.115)
[aF + 8G,Q] = a[F,Q] + B[G,Q], (2.116)
[FG,Q] = F[G,Q] +[F,Q]G, (2.117)
[F,[G,Ql] +[G,[Q, F)| + [Q.[F,G]] = 0. (2.118)

This last property is called the Jacobi identity and is usually the most difficult

property to prove because it involves taking variations of inner products and then



using these variations in another inner product. These algebraic properties put
constraints on the matrix D.

The model just derived in Section 2.2 can be rewritten using this Hamiltonian
formulation. The derivation of this Hamiltonian formulation makes use of the
Jacobian formula, J (A, B) = A;B, — A, B;, and several of its properties. These

properties are demonstrated in the following lemma:

Lemma 1 The Jacobian J (A, B) = A, B, — A, B, ezhibits the following proper-

ties:
1.
J(A,B)=-J(B,A), (2.119)
2.
AJ (A, B) = %J (4,B), (2.120)
3.
J(AB,C)=BJ(A,C)+ AJ(B,C), (2.121)
/.
J(A,B) =V -[(& x VA) B], (2.122)
5.
J(A,B)=2& -(VAx VB), (2.123)
6.
J(A,B)J(C.D)+J(D,A)J(C,B)+ J(B,D)J(C,A) =0. (2.124)
Proof.
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J(A,B) = A;B, — A,B, = — (B.A,— ByA;) = —J (B, A). (2.125)

AJ(A,B) = A(A,B, - A B,) = % ([A"’L B, - [A?]sz)

J(4%B). (2.126)

N |

J(AB,C) = (AB),C, - (4B), C.

= (A.BC, — A,BC,) + (AB,C, — AB,C,)
= B(A:C, — 4,C;) + A(B,C, - B,C;)

= BJ(A,C) + AJ (B, C). (2.127)

J(A, B) = Asz - AyB.’L'

= A.B, + AzyB — AzyB - Asz
= (_AUB):z + (AzB)y
=V-B (_AV’AI)

= V. (B8&; x VA). (2.128)

J(A,B) = A,B, — A,B,
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= é3 . ([Asz - Asz] és)

= é3 . [VA X VB] . (2129)

J(A,B)J(C,D)+J(D,A)J (C,B) + J(B,D) J(C, A)

= (A:B, - 4,B:)(C,D, - C,D,) + (D, A, — D,A;) (C,B, — C,B;)
+(B:D, — B,D,) (Ca Ay — CyAy)
= A.B,C.D, - A,B,C,D, — A,B,C,D, + A,B,C,D,
+4,B,C.D; — A,B,C,D, — A;B,C.D, + A,B;C,D,
+A,B.C.D, — A.B,C,D, — A,B,C.D, + A,B,C,D, =0.  (2.130)
|

Before a description of the Hamiltonian formulation of this model (equation
(2.87)) can be given, the spatial domain also must be specified. This spatial

domain is denoted as 2 and it is the periodic channel given by
Q={(z,y)l —z0 <z < 20,¢(2,t) Ly < L < 0}. (2.131)

It is assumed that h(z,y.t) and ¢ (z.t) are smoothly periodic and that, of course,

h(z,¢,t) = 0. On the other wall located at y = L it is assumed that
h(z,L,t) = h; = constant, (2.132)
|Vh|(z,L,t) < oco. (2.133)

The boundary of this domain is denoted by 651.
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Theorem 1 The frontal model,
1
he+J (hAh +3Vh-Vh, h) =0, (2.134)
with boundary conditions,
h(z,6,t) =0, (2.135)
h(z,L,t) = hy = constant,
|Vh| (2, L,t) < oo, (2.136)

can be written as a scalar infinite dimensional Hamiltonian system in the form

(2.112) with

g=h, (2.137)

Hig) = -% [ koh-Vh dody, (2.138)
Q

Dx =J(q,%), (2.139)

where J is the Jacobian identity given by J (A, B) = A, B, — A, B, and where the

associated Poisson bracket is
6F 6G
[F,G] = é / =7 (h, E) dzdy, (2.140)
with Q given by equation (2.181).

Proof. In order to prove this theorem, it is first shown that the Hamiltonian
function is invariant. Then it is shown that this system can be written in the form
given in equation (2.112). This involves calculating the first variational derivative
of the prescribed Hamiltonian function. Finally it is shown that the corresponding
Poisson bracket of this system satisfies the five properties required of a Poisson

bracket given in equations (2.114)-(2.118).

34



First, it is demonstrated that H is conserved by showing that OH /8t = 0:

oH 1 1f oo
5 =3 9/ heVh-Vh dedy— {/ hVh-Vh, dedy+ { [  [(hVh-VH,, ¢¢d:z:}
1
=3 ,,/ heVh-Vh dzdy — Z/ hVh - Vh, dzdy, (2.141)

since h = 0 on y = ¢. Continuing with the calculation gives

O0H 1 1 )
= =3 /hch- Vh dzdy — 2//Vh  Vhydzdy
Q 0]
1 . 2
=73 Q/ heVh - Vh dzdy — fm hih(n- Vh)ds + o é [ hanazay,  (2.142)

where Green’s identity has been used and n is the outward normal to the boundary,

0f). Working only with the boundary integral in (2.142) yields,
x T0
/a _heh(n- Vh)ds = /¢ ooy [hehn VA, ds+ /  [hhn - VH),_y, ds

o 0
hehn - Vh),__ d / hh(n- YR d
+ d>(:ro,l.)[lt n-Vv ]z:z‘o s+ ‘-’to[t (n v )]y___L s

oc 7o
= ¢‘(_-TO,') [h’th’ (_h’T)]I=—IO dy + -[-:to [h’th‘n ¢ Vh’]y=¢(:z:.t) ds
x T
+ [hehha], o, dy + / [k (n-Vh)),_, ds. (2.143)
¢(101t) -x0

The second and the fourth integral given here vanishes, respectively, since h = Q on
y = ¢(z,t) and Qg—t" = 0. The remaining two integrals exactly cancel one another
since h and ¢ are smoothly periodic on the boundaries, z = +z,. Therefore the

boundary integral in equation (2.142) vanishes resulting in the integral,

0H 1

=3 é / heVh - Vh dzdy + % { / heAR?dzdy



- _ééfhth- Vh dzdy + %Z/h, (Vh- Vh+ hAk) dzdy

1
= [[h (EVh Vh+ hAh) dzdy, (2.144)
o
This integral can be simplified yet further by using equation (2.134) and substi-

tuting in for h, to give

oH

1 1
= - é / J (hAh +3Vh-Vh, h) (EVh- Vh+ hAh) dzdy

2
=— / / %J ( [hAh + %Vh- Vh] ,h) dzdy, (2.145)
Q

on using the identity (2.120). This can be simplified further by using the identities
(2.119) and (2.122) to give

OH . 1 ?
o é/v- [(e3 x Vh) (hAh+ SVh- Vh) ]dxdy

2
=/ (hAh+-1-Vh-Vh) (és x Vh) - nds
a0 2

2
- /m (hAh + %Vh : Vh) Vh - Tds, (2.146)

where the divergence theorem has been used and the identity (é3 x Vh)-n =VA-T
where T is the tangent vector to the boundary, 89. This last boundary integral
can be simplified in much the same manner as the boundary integral in equation

(2.142) giving

Ao e

==

z 2
+ [ [(hAh-}-%Vh-Vh) Vh-T] ds

—Zo y=¢(:z: 1‘)
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00 2
+ [(hAh+%Vh-Vh) h,,] dy

¢(30»t) z=xp

Zo 1 2
+ (hAh+ “Vh. Vh) he|  da. (2.147)
-0 2 y= L
Using the smooth periodicity of h and ¢ on the boundaries z = +z,, the first
and third integrals in this equation (2.147) exactly cs:icel one another. The last
integral also vanishes since 8—;} = 0. The remaining second integral with T =

(1, ¢z) becomes

T 2
OH _ [ | (ran+ 1k Vh) (he + hyd) dz=0,  (2148)
ot J-z 2 y=4(z.)

by using the boundary condition, h; + hy¢, = 0 on y = ¢ (z,t). Therefore since
O0H/O6t =0, H is conserved.

Secondly, it is shown that the model (2.134) can be written in the form (2.112).
This involves first calculating the variational derivative of H. In order to do this

the first variation of the Hamiltonian is calculated to give
1
6H = -5 [[ 6hVh- Vh dzdy - J[[ noh - Vsh dudy
Q )

To

1
+3 20 (hVh - VR),_gie) S¢dz. (2.149)

In this equation (2.149), the last integral vanishes since A = 0 on y = ¢(z,t) and

Green'’s theorem can be used on the second integral to give

§H = —% Z/éth . Vh dzdy — %é/ Vh? . Véhdzdy

1 . 2
=~ é / S§hVh - Vh dody — /a _hoh(n- Vh)ds+ 5 é / ShARYdzdy.  (2.150)

Before proceeding further boundary conditions on 6k must be specified. It is
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assumed that 6h is smoothly periodic at £ = +x¢ and that 6 = 0 on y = L. The
boundary integral
/m hSh (n- Vh)ds = 0, (2.151)

because h =0 on y = ¢ (z,t), 6h =0 on y = L and because of the periodicity at
z = *xo. The first variation of H then simplifies to

§H = -% é / ShVh - Vh dzdy + % ! f ShAR2dzdy

1
- Q/ ShVh - Vh dedy + é / §h(Vh- Vh+ hAk) didy

= [[on (-;-Vh Vh+ hAh) dady. (2.152)
[9]

The first variational derivative of H is therefore given by

Vh-Vh+ hAh. (2.153)

It follows that

~J (h, %Vh Vh+ hAh) = he (2.154)

Finally, it is shown that the Poisson bracket satisfies the five properties neces-
sary for a Hamiltonian formulation. It is assumed that all functionals must meet

the condition,
6F

=l =1 (), (2.155)

N

when evaluated on y = ¢ or y = L, where f is a smooth function of its arguments.
In other words this property states that the first variation of these functionals
must be an explicit function of h on the boundaries. It is also assumed that the

variational derivatives are smooth functions of their arguments.
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The first property of the Poisson bracket, i.e. (2.114), is easily proven:

[F,F]= <f5f 6F> // ( )dmdy
=5 [[7 (h [fsﬂ )da:dy
=[[v [(é3 x Vh) (‘;—i) 2} dzdy, (2.156)

where the Jacobian identities (2.120) and (2.122) have been used. The divergence

theorem can now be used to give

2
[F.F]= % /m [(és x Vh) - n] (%ﬁi) ds

§F
=—/ T. Vh(a;) ds

1 o 6F\? ]
_5 o(-z0,t) [(-6—}:) ("'hy)J dy
I=-Tp
1 §F\? ]
+§ 2o (37;) (l?.1+hy¢1.) dx
d y=¢(z.y)
1 oo [ [(6F\?
2/&0:) [(M) y] dy+2 2o [(g,?) hz} de—o, (2.157)
Tr=xo y=

since the first and third integrals cancel due to the periodicity of h on the bound-
aries * = =+, since %’j = 0 and since h(z,¢,t) = 0 implies hy + hy¢. = 0 on
y=a.

The second property, i.e. (2.115), is the skew symmetry property:

1 (£ (o)
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= _// ( ) dzdy
. / / J (f;f ‘;f ) dady + // %J (%, h) dzdy, (2.158)
Q

where the Jacobian identities given in equations (2.119) and (2.121) have been

used. Using equation (2.119) once more gives

e o (£ ) 2185
o o T 010

6F 6G
o Shoh (é3 x Vh) - nds — // ( )d:cdy, (2.159)

where the identity (2.122) and the divergence theorem have been used. The

boundary integral again disappears using the same reasoning as used for equation

(2.157) leaving the identity
[F,G] = — / / ( ) dzdy = — |G, F). (2.160)
The third property, i.e. (2.116), is the distributive property:

[aF + 6G, Q] E//z%(aF+ﬂG’)J( Zg) dzdy
Q

_// ( )dd+//ﬁ ( )da:dy

=a[F,Q] +8[C,Q). (2.161)
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The proof of the associative property, i.e. (2.117), is as follows:

[FG,Q] = // = FG)J( Q) dzdy
—//( ¢ +r2C )J(h fsf)dzdy,
_G// ( )d dy +F// ( )drcdy,

=G[F,Q|+ F[G,Q). (2.162)

Finally, the Jacobi identity must be proven, that is,
[F.[G,Qll +[G.[Q. Fl| + [Q,[F,G]) = 0. (2.163)

To begin this proof, it is noted that

Fi6.Ql==10.017 = (g (5.7 (1 5)).7 (1)), sy

In order to simplify the first term of this inner product, the first variation of the

inside inner product is found:

(5o o 5
[0 (322) + 5. 82)+ 2231 £90)

)
o 6Q -
- J (h )J Spdz. (2.165)
./—::o [6h oh y=e(zt)

This last boundary integral can be evaluated using the fact that the first

variational derivatives of the functionals must be explicit functions of h on y=¢.

This means that on the y = ¢ (z,t) where h = 0, the variational derivatives must
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be constant, that is,

oF

¥ = f (%) = f(0) = constant, (2.166)

y=¢(z,t)

where F is an arbitrary functional. However, away from the boundary, the first
variation of these functionals can be thought of as functions of z, y, and ¢, that
is,

— = f(z,y,1), (2.167)

where f is some smooth function of its argument. Assuming that 6F & approaches

its boundary value smoothly, it follows from (2.166) and (2.167) that

-2 (%],
R

This boundary condition (2.168) can be used in the boundary integral in

(2.165) to give
o ()]
J (h Spdzdy
./—zo [6/1 6h ] | sty
%o |6G 6Q Q
-/, [E ("= (3;:) —h (E) )J bpdzdy
y 2/ dy=¢(z.t)
20 | 6G 5Q 6Q
- [E (hz (5) +h, ( ) ¢)] Sy
y=¢(x,t)

/_ 20 [ 5h (6Q) (he + hy¢::)} 6¢dzdy = 0, (2.169)

y=¢(zlt)
since h; (z,¢,t) + hy (z,$,t) ¢, = 0. Therefore the boundary integral vanishes
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and equation (2.165) simplifies to
(& (+5))
{/ %2}7?5'” ( ) + <6h, fsf) +52 (h ‘;;‘fah) dady
=/ %%W( ) J(‘;fah, gf) — 6hJ (f;f ‘;g) dzdy

)
8G 62Q 62Q
- é / ( 57 55 O h) < ohJ 6h C b dady, (2.170)
where the Jacobian identities (2.119) and (2.121), have been used.
Simplifying further using identity (2.122) gives

G 8G 5G 6Q
6<6l ( )> //Fh—z&hJ( ) 6hJ(6h 6h>d:cdy
+ // f:}?éw( )d:rd + // V. [6—6‘3@3 ( 656}1)] dzdy

. 5G 62Q )J
- V- |hés x ( —6h || dzdy
é/ l > 8h 6h?
&G 5G 6Q\ | &Q,
Z/[éh ( ) J(éh 6h) T <6h h)] Shdzdy

6Q . 6G ) 6G 8°Q
+/ [é—,ea x V (ﬁéh> hés x V (6h 5 6h)} - nds, (2.171)

where the divergence theorem has been used on the last two integrals. The bound-

ary integral again simplifies to

5Q. 5G X 5G 8°Q
L [5_/"3 v (Eéh) — hég x V (6h _~ 6h)} -nds
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5Q(_[6G,1 [dC
5G 6°Q 5G 62Q
“/mh( [6h 6h26hJ [611 6h26hJ ) nds

= [° [6G5hJ dy— |~ @[ﬁah}

s-zot) Oh | 6B sieoty Oh | BB dy

z=x0

Viz=-2¢
= §Q [4G
+/,o 5h [6h6hJ %
zly=L
6Q 5G
- [’57 ((611 ) b+ <6h6h) )J az
%/ dy=¢(z,1)
o 6G 62Q (6G6Q
"[a(-z.,,qh (6h 6h? ‘5h)y - dy+/¢,(¢o,z, (EW‘”‘)V
GEQ,
[ [6h6h2 J l_ 4z
Tily=L
= [(6G6Q 5G 8°Q
+/_m " [(Eﬁméf‘)yd’” (5} 5h? 5") }

L] - 5 5]

dy

r=x0

dr
y=d(z,t)

dz

zly=L

LR (@) # () )o] e

Q 6G
_/_zo [6}1 % (6hyor + 6/1,—,)L=¢(r’t) dr, (2.172)

Oh 6h? oh | 6h

where the smooth periodicity at = £z has been used and the fact that & = 0
on y = ¢(z,t). The first remaining integral is also zero since ﬁ, fsff, 6h and h
are constant on y = L. Using equation (2.168) shows that the first term in this

second integral vanishes. The second term in the second integral can be rewritten
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6Q 6G
- (6hyps + 6h,)] dz
/.zo [m Sk st

6Q 0G z0 |
- [ﬁ 317] y=(a,t) /.z., dz (6hlymsey) dz =0, (2.173)

using the periodicity of §h.
Therefore the boundary integral vanishes so that the first variation (2.171) is

6Q
d < éh’ J ( "6H ) >
62G 6G 6Q 82Q
= // [w ( ) —J (E’E) + 5 6h G )| 6hdzdy.
Therefore the first variational derivative of this inner product is given as
] 6Q
6h <6h I (h 6H)>

_8G _(, 6Q 6Q 6G\  62Q
=’ (h 6h) +J(6h 6h) e\ h) (2.174)

Similarly, the other required variational derivatives associated with the inner

given by

products in the Jacobi identity (2.163) are given by

6Q
6h<6h J(’l 6h)>

_8Q §F 6Q\ . 8F (6Q i
6/2‘](} 3’}7)+J(6h 6h) 6h2J<6h h (2.175)
5§ /6F (. 6G
5 o (v5))
8F 6G §F\ &G
D)o (£50) S



It therefore follows that

[F[G, Q) +[G, Q. F]| + [Q,[F, G]]

=-[G,Ql, F] - [[Q,F],G] - [[F,G],QI,

(88 () -( (04 (D)
(@G (o) ()
- (5 () 2 (5)) - (G :) 2 (v5))
(52 () (1) (52 () o (20))
(6 8) (- 5)) - (5 (R0) o (45))
(5w (n52) 2 (500) - ( (8 58) 2 (- 59))

G 6Q
(595 (55.0).0(12)), wim
However since
524 6B 62A 6C
<6h2']<h’ 61) (am )> // 5h? < ) (6h h) dzdy
624 6B 6C

for any functionals A, B, C, the Jacobi identity can be rewritten as

[F,[G,Qll + G, [, Fl]| + [, [F,G]]

- (o (v50)7 ()~ 0 (5 ) 2 ()
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{588 D)2 (29)
() o225 (2) )
(s (58) 1 (8) - ( (3 58) o (450
_ <‘;27f J (%h) J (h, %%» (2.179)
Simplifying then gives
[F,[G,Qll+G,[Q. F]| +[Q,[F.G]]
=-O(@R) (7)) - (" R) (7))
)3
JIED )2 Do
// [ (‘;f if:) (h f;f)] dzdy = 0, (2.180)

where the last Jacobian identity (2.124), has been used. Therefore, the Jacobi
identity holds for this system and the bracket satisfies the five properties necessary
for a Hamiltonian formulation. This completes the proof of the theorem. W

The time evolution of any functional F, can be described by the following
property (Olver, 1982):
—- = [F,H]. (2.181)

The proof is simple:

E,D—5?> = [F, H), (2.182)



where the summation convention is applied. Therefore the evolution of h(z,y,t)

can be written using the Poisson bracket notation as
he = [h, H], (2.183)
provided h is interpreted as the functional,
h(z,y,t) = //6 (x—2)6(y—y)h(2,y,t)dr'dy. (2.184)
o
This is easily shown as follows. The Poisson bracket is given as
[h, H] = ! / g—ZJ’ (h, %g) do'dy’, (2.185)

where (' and J' are written with respect to the variables (z',%'). The first varia-

tional derivative of h calculated from equation (2.184) is given as

g—: =6(z-2")6(y—7). (2.186)

Using this equation (2.186) and the variational derivative of H (2.153) in the
Poisson bracket (2.185) gives

= [[6~)6(y-y)7 (h, %Vh Vh+ hAh) do/dy/
Ql

~J (h, %Vh Vh+ hAh)
= h,. (2.187)

Every Hamiltonian system possibly possesses two types of invariants. The
first type is related to underlying transformational symmetries of the system. The

relationship between the conserved quantity and the invariants of the Hamiltonian
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system is exposed through a special case of Noether’s Theorem (Courant and

Hilbert, 1953):

Theorem 2 If the Hamiltonian formulation is invariant under translations in the

variable s and if the functional M satisfies

IM_ (2.188)

6q

then M 1s invariant in time (Shepherd, 1990).

Since the Hamiltonian formulation given for this system has no explicit depen-
dence on the variable z then it must be invariant under translations in z (modulo

a factor of 2z¢ to account for the periodicity in z). Therefore, if a functional M

J (h oM ) = —h, (2.189)

exists such that
'"6h

then M will be invariant in time. The functional, M , 1s given by

M=- / / yhdzdy, (2.190)
o
since
OM =~ [[ ybh dzdy, (2.191)
f
so that
oM
E = -y, (2192)
and
J (h, %) = J(h,~y) = —h,. (2.103)

The second type of invariants are known as Casimirs and are due to the non-

invertibility of the D matrix operator (Shepherd, 1990). Casimirs are defined as
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functionals that satisfy the relation

oF 6C> , (2.194)

= [F,C] = < Do

where F can be any functional of q. Thus, since 4= is arbitrary, it follows that

Dy =0 (2.195)

If the inverse of the operator D exists then it follows

and C would be the trivial solution. However, for this Hamiltonian formulation
(Theorem 1), D! does not exist and thus there are nontrivial Casimirs. From
the definition of a Casimir (2.195) with the matrix D given by equation (2.139) ,

the following equation results

6C
J(h 5h) 0. (2.196)

In order to solve for the first variation of the Casimir, this equation is expanded

6C 5C 6C
0=9(1 ) = (), (&),

6C
= Vh x V_(SE (2197)

showing that

This demonstrates that the normal surfaces to h and gg are parallel meaning that
whenever h is constant, f;f: is constant. Therefore the first variation of the Casimir

must be a function of A, or in other words,

= f(h), (2.198)



where f (*) at this point is any function of h. Written in integral form this means
that
6C = / / £ (k) Shdzdy, (2.199)
)

so that the Casimir can be written as
C(h) = / / [® (B) - @ (0)] dzdy, (2.200)
0

where &' (h) = f (h).

It is also important to note that C is an invariant of the motion since

% =[H,C] =0, (2.201)

on using the definition of a Casimir. Since these Casimirs are nontrivial this

system is said to be noncanonical (Holm et al., 1985).

2.4 Linear Stability Theorems

2.4.1 The normal mode problem

In order to examine the linear stability of the steady solution to the model (see
equation (2.87)), a normal mode analysis following the derivations given by Swa-
ters (1993) is initially used. In equations (2.90)~(2.91) it was shown that a steady

parallel shear flow solution of the governing equation was given by
h=ho(y), (2.202)
with boundary condition,
ho(0)=0 on ¢ =0, (2.203)
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where it is assumed @ = 0. It is noted that in this section the stability analysis
is restricted to parallel shear flows but that in Section 2.4.2, a linear stability
analysis for a more general class of steady solutions is presented.

In order to study the linear stability of this solution, this steady state is per-

turbed such that the total frontal thickness and boundary are given by
h(z,y,t) = ho (y) + ¥ (z,9,t), (2.204)

=4 (z,t), (2.205)

where h' and ¢' are considered small quantities. Roughly speaking, if h' (z,y,t)
and ¢’ (z,t) do not grow with time then this steady state is stable. Consequently
the time evolution of A’ (z,y,t) and ¢’ (z,t) must be determined.

Substituting equation (2.204) into the governing equation (2.87) gives the fol-

lowing equation:
he + (ho + h) heag (hoy + hy) + (ho + h) hyya (hoy + By) + hohag (hoy + hy)

+ (hﬁy + hy) hyz (hﬂy + hy) - (hﬂ + h) h:czyhx - (hOy + hy) (hﬂyy + hyy) by
— (hg + h) (hoyyy + hyyy) he — hzhzyhy = 0, (2.206)

where the prime has been neglected. Since the perturbation, A, is assumed to be

small, quadratic and higher order terms of h can be neglected to form the linear

stability problem,

he + hohoyhasz + hohoyhyyz + (hoy)? hys — hoyhoyyha — hohoyyyhe = 0. (2.207)

Equations (2.204) and (2.205) are also substituted into the boundary condition

(2.88) to give
ho+h=0o0ny=¢(z,t), (2.208)
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where primes have again been neglected. The steady state frontal thickness and

the perturbed frontal thickness can be Taylor expanded about y = 0 to give

[ho (¥) , h(z,9,t)]

= [0 (0) A (2,0,)] + [hoy (0), by (,0,2)] 6 (z,2) + O (¢?), (2.209)

so that when substituted into equation (2.208) the following relation is given:
ho +hoyp + h+ by + 0 (¢*) =0 on y =0. (2.210)

Assuming that ¢ and h are both small, the quadratic terms of ¢ and h can be

neglected to form the linearized boundary condition
h+hoyp=00ny=0, (2.211)
where hg (0) = 0 has been used. Equation (2.89) gives the final boundary condition

|[Vh| < 00 as y — oo, (2.212)

in the case where L = co.

Since the coefficients of the linear stability problem (2.207) and the boundary
conditions (2.211) are independent of z and ¢, Drazin and Reid (1981) explain that
this problem can be solved using a Laplace transform in ¢ and a Fourier transform

in z. The perturbed frontal thickness can then be expressed in the form

h(z,y,t) =/x/ h(y; k, s) exp (st + ikz) dsdk, (2.213)
-oc JBr

where & is the real-valued along front wavenumber, s is the Laplace transform

variable and where Br is the Bromwich contour.



If this equation (2.213) is substituted into the linear stability equations, a
forced ordinary differential equation for A (y; k, 8) in which the forcing is propor-
tional to the initial condition, h(z,y,0), would be obtained. The coefficients of
this ordinary differential equation would depend on the parameters k and s. Once
the ordinary differential equation is solved for Tz(y; k,s) the frontal thickness,
h(z,y,t), could be computed from equation (2.213). In general, of course, there
would be poles associated with the singularities in & (y; k, 8) . The residues asso-

ciated with these poles are, in general, proportional to exp (s (k)¢ + ikz) where

the Laplace transform variable is a functi- - ™+ wavenumber, k. These rela-
tions, that is, s = s(k), are in fact the ¢ . .~ 'ations associated with the
homogeneous solutions to the ordinary dift: vaation for h (y; k,s) and the

accompanying homogeneous boundary cond': . is. This reletionship is crucial in
determining, as will be shown momentarily, the stability of g (y).
The eigenrelations can in fact be determined by making the normal mode

substitution,
h(z,y,t) = h(y)exp [ik (z — ct)] + c.c., (2.214)

where k is the real valued z-direction wavenumber, ¢ is the complex-valued phase
speed, and c.c. denotes complex conjugate, into the linear stability problem (2.207).
Note that in the normal mode substitution the coefficient of the time term is
written as —ikc. This is done to emphasize the wave-like interpretation of the
perturbations. The same justification is used for assuming a normal mode solution

for the perturbed boundary, ¢ (z,t), so that the substitution,
¢ (z,t) = pexp (ik (z — ct)) + c.c., (2.215)

in addition to the normal mode expansion for h, equation (2.214), is made into

the linearized boundary conditions (2.211).

By examining the form of the normal mode solution (2.214), it can be seen that
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as long as c is strictly real then this solution will merely oscillate in time. However,
if ¢ has a positive imaginary component, then A (z,y,t) will grow exponentially in
time and thus the flow will be unstable. The stability analysis will involve, then,
examining whether the eigenvalue, ¢, is strictly real or has a positive imaginary
component for any values of the wavenumber, k and any other parameters in the
problem.

This stability analysis will only determine if modes are growing exponentially
with time. Drazin and Reid (1981) explain that there could also be modes growing
algebraically, that is, proportional to t# where 8 > 0. However, exponentially
growing terms will ultimately dominate any algebraically growing terms and thus
the behavior of the exponential terms is more important. If exponentially growing
modes are not found, however, normal mode analysis will not rule out instabilities
due to algebraically growing terms. These must be dealt with using alternate
stability arguments (see Section 2.3.2).

The normal mode substitutions (2.214) and (2.21%) then are made into the lin-
ear stability problem given by equation (2.207) and into the boundary conditions
given by equations (2.211) and (2.212) resulting in the equation

hohoy (B ~ k2R) + (hoy)® R = (¢ + hoyhoyy + hohoyy,) o = 0, (2.216)

with boundary conditions

h+hoyp=0o0ny=0,
o? y (2.217)

|h|,|hy| < 00 asy — 0.

In order to obtain general stability conditions from the normal mode equa-
tions it is advantageous, following Swaters (1993), to introduce the function F (v)

defined by
h = ho, F(y). (2.218)

55



with its derivatives,

b = hoy, F + ho, F, (2.219)
R' = hoyyy F + 2hoyy B + hoy B, (2.220)

which when substituted into equation (2.216) yields, after a little algebra
[0 (hoy)? F']' — (k®hohay + ) hoy F = 0. (2.221)

The substitution (equation (2.218)) is also made into the boundary conditions
(2.217) to give
F+¢=0ony=0, (2.222)

IF, , lhoyyﬁ'l ,,F”, < 00 as y — oo. (2.223)

For the steady solutions that will be examined in this thesis, (i.e. the wedge-like
front given by hg (y) = ay), it follows from the differential equation (2.221) that
F o exp (—ky) for y — oco. Therefore it is assumed in further derivations that
IF' l — 0 asy— o0.

Further analysis is facilitated by multiplying equation (2.221) by the complex

conjugate, F**, and then integrating over the domain to give the balance
00 ~ 7/ ~ (2
/0 (F‘ (1o (hoy)? FY)' = (k2hohoy + ) hoy | F] ) dy = 0. (2.224)

Integrating once by parts and using the boundary conditions, hg(0) = 0 and
F (c0) = 0 produces

/ooo (h" (hou)? |F["+ (Khoho, + ¢) hoy |F '2) dy = 0. (2.225)

Since c is complex it is of the form ¢ = cg + ic;. As previously discussed

any normal mode of the frontal thickness, % (z,y,t), will be unstable if ¢; > 0. If
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¢ = cg +1cy is substituted into the integral (2.225) the imaginary part is given by
o /0 " hoy |F dy = 0. (2.226)

Assuming instability, i.e. ¢; > 0, this equality can only hold if
/0 " hoy | dy = 0. (2.227)

This can be used in the real part of equation (2.225) given by
/0 " ho (hey)? || dy + /0 ™ k2ho (hoy)? |F | dy + cr /0 " hoy |FI2dy = 0. (2.228)

to give the simplification

7 ho(hay)? (I + 21 FP) dy =0, (2.229)

It follows from (2.229) that F = 0 (unless hg or ho, is zero which is physically
uninteresting). It therefore follows that there are only trivial unstable solutions
to the linear stability equations. The above argument also applies to assuming
c; < 0 (i.e. asymptotically stable). Hence all steady parallel shear flows of the
form ho (y) are neutrally stable (i.e. ¢; = 0).

This analysis can also give sorne information about the character of the normal

modes. Since ¢; = 0 it follows trom (2.228) that

I8 ho (o) (1F + K2 |FI”) dy
"7 J5° hoy | FI dy '

(2.230)

The numerazor is positive definite and so the sign of the phase speed will depend
on the sign of the denominator. Therefore the phase speed will depend on the
slope of the front or hg,. If the slope is everywhere positive, i.e. hoy > 0, cg will

be negative and the waves will be travelling with the frontal outcroppiag to their
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left. If the slope is everywhere negative, i.e. hg, < 0, cg will be positive and the

waves will be travelling with the frontal outcropping to their right.

2.4.2 Formal Stability

The Hamiltonian formulation of a model can also be used to study the stability
of fluid flow. Arnold (1965, 1969) made important developments in this area by
using definitions of stability proposed by Liapunov. Holm .. al. (1985) expanded
these ideas into a “stability algorithm” which gave a systematic way in which the
stability or instability of a system could be determined using the Hamiltonian
formulation.

In the first part of this stability algorithm, Holm et al. (1985) outline methods
in which formal stability is established. Holm et al define that an equilibrium
point, %, of a dynamical system is fermally stable if a conserved quantity of the
system is found whose first variation equals zero at this equilibrium point and
whose second variation is either positive or negative definite at the equililsium
point. If such an equilibrium point is found then these derivations can be used to

prove linear stability in the sense of Liapunov.

Definition 1 The steady solution, @, (z,y), is said to be lir.early stable in the
sense of Liapunov with respect to the norm |||, if for every ¢ > 0, there ezists
a 6 > 0 such that if [|6%o|| < 6 then ||6¥) < € for all t > 0 where 6y (z,y) =
0V (z,y,0) and where 6% (z,y,t) solves the linear stability problem.

Formal stability is more general than normal mode stability. If formal stability
can be established then algebraic and normal mode instabilities are excluded. Also
the normal mode ctability analysis presented last section was restricted to parallel
shear fiows of the form, hy () and ¢ = a. The analysis presented here will apply

to a more generai class of steady solutions given by hg (z,y) and ¢, ().
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In this subsection, following the stability algorithm presented by Holm et al,
(1985) linear stability in the sense of Liapunov is established. Establishing linear
stability involves first establishing the linear stability problem involving pertur-
bations around the basic steady state or equilibrium point, hg (z,y). Secondly, it
involves determining a conserved quantity whose first variation vanishes at this
steady state, hg. In this case this conserved quantity is composed of a linear com-
bination of the Hamiltonian defined in equation (2.138) and a Casimir. A specific
Césimir is d-termined so that the first variation of this conserved quantity de.s in-
dsed vanish at the steady state. %g. Finally tie second variation of this conserved
quantity is shown to be negative definite. Using the conserved norm established
by tite second variation, linear stability in the sense of Liapunov is proven.

First of all, the linear stabilit> equation is formed by assuming that the steady

state is perturbed slightly such that the total flow takes the form,

h(z,y,t) = ho(z,y) + 6h(z,y,1), (2.231)
where hg (z,y) is a steady state solution satisfying

J (%Vho Vhe + holhg, ho) =0, (2.232)

and where 8/ (x.y,t) is initially a small perturbation. Previously in the normal
mode analysis this perturbation was denoted as 4’ (z,y, t) (see equation (2.204)).
However, this notation is used in this analysis to symbolize the variation of the

frontal thickness. The outcropping takes the form

¢ (z,t) = go(z) +5¢ (z,t), (2.233)
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where 6¢ is a small perturbation. The boundary condition at y = L is given by
hO ('Tg L) = h‘L: (2.234)

so that
6h (z, L,t) = 0. (2.235)

Also all fields are assumed smoothly periodic at £ = %x,.

The steady state equation (2.232) can be integrated using the same geometrical
argument used to establish equation (2.198). Equation (2.230) states that lines of
constant hg and lines of constant, %Vho « Vhy + hgAhg, are parallel so it follows
that

%Vho  Vho + holho = F (hy), (2.236)

where . .) is some function. Once the total flow (2.231) has been substituted
into the governing equation (2.87) quadrati~ ind higher order terms in the pertur-
bation, 6/, are dropped. This is valid since in small time intervals 6h is assumed to
remain small and thus quadratic and higher order terms are considered negligibly

smail. Therefore the general linear stability problem is given as
6hy + J (hoAbh 4 8hAhg + Vhey - V8h — F' (hg) 8h, he) = 0, (2.237)

on using equations (2.232) and (2.236) and where F” (hy) is the derivative of F' (hg)
with respect to its argument hg. This equation is a generalization of the linear
stability problem used in the normal mode problein (2.207) where equation (2.236)

has been used.

Secondly, a conserved quantity whose first variation vanishes at the steady

state must be determined. Swaters (1993) found that such a conserved quantity
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can be formed by constructing a constrained Hamiltonian defined as
H(h)=H(h)+C(h), (2.238)

where H (h) is the Hamiltonian given by equation (2.138) and C (k) is the Casimir
defined in equation (2.200). This constrained Hamiltonian is invariant in time

since both H (h) and C (h) are invariant in time, i.e.,

o] 0
5t (h) = 5 (H (R) +C(h)
O0H oC
=3 + N =0+4+0=0, (2.239)

by equations (2.148) and (2.201). Explicitly, the constrained Hamiltonian is given
by
(= [ [—-%th Vh+d(h) - (0)] dzdy, (2.240)
)

where equations (2.138) and (2.200) have been used.
A specific Casimir must now be determined so that the first variation of the
constrained Hamiltonian vanishes at the steady state solution hg (z,y). First, the

first variation is calculated as

5H (h) = / / [-—-;—6th. -Vh = hVh- Vh + &' (h) 6h] dzdy
Q

_ / e [—%th Vh+®(h) - (0)] b¢dzx

0 y=¢(.‘£,t)

= [[ én (—%Vh Vh+ @ (h)) dedy — -;- [ v Vohandy,  (2.241)
Q 9]

where the boundary integral is identically zero since h = 0 on y = o (z,t). It

is restated that 6h and 6¢ are assumed smoothly periodic at z = %z, and that
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6h =0 on y = L < 0o. Using Green’s theorem to simplify the last integral gives

ot () = [[ on (—%Vh- Vh+ &' (h) ) dody - |, 1oh(n- Vh)ds
J ..

1 2
+; [[ sy
Q
= [[ (~39h- Y+ () + VR VA + hAh) Shdady
Q

-/ (%Vh -Vt hh+ 8 (1)) Shdady, (2.242)
Q

where the smooth periodicity of & and 6k at z = £z and the boundary conditions
h=0ony = ¢(z,t) and 6h = 0 on y = L have been used to eliminate the
boundary integral. Substituting in the steady solution, h = hgy(z,y) and ¢ =

¢0 (.’E) ) yields

67 (ho) = [[ oh (%Vho - Vho + hoAAhg + &' (ho)) dzdy, (2.243)

where in this subsection
Qo= {(z,y)|do(z) <y <L < 00,~z9 < z < 70}, (2.244)

since

Q={(z,y)|¢(2,t) <y < L < 00,~z9 < z < Zp}. (2.245)

The first order necessary condition for an extremum, that is, 64 (he) =0, is
satisfied if
1
& (hy) = — (EVho  Vho + hoAho) (2.246)
~ —Fi{n}, (2.247)

where F' is the steady siate function defined in eguation (2.236). Consequently
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the Casimir density may be written in the form

@ (h) - ®(0) = — /0 "Fe)de, (2.248)

to ensure that §H (hg) = 0.
Finally, Swaters (1993) found the second variation of the constrained Hamilto-
nian H (k) evaluated at the steady state solution, hq (z,y) , to be negative definite.

The second variation of the constrained Hamiltonian, H (), is given by

() = [f & (%Vh “Vh+hAh—F (h)) dzdy
Q

+ [[ 1 (Vh- V6h + 6hAh + hASK - F' (h) 6h) dudy
Q

-] GVh- Vh-+ 28k F (1)) 6] dgdudy. (2.249)

~Zo v=dé(z,t)

Substituting in the steady state solution h = ho (z,y) , gives

82H (hg) = f / 8h(Vho - Véh + 8hAhg + hgAbh — F' (ho) 6h) dxdy,  (2.250)
Qp

where equation (2.246) has been used to eliminate the first integral and the bound-

ary integral. This integral can be rewritten, via Green'’s theorem, as

8*H (ho) = / / (8h)? (Ahg = F (ho)) + 6h (Vho - V6 + hoAdh) dady
Q9

- / / ((6R)* (Aho — F' (hg)) + 8hVho - V6h — ¥ (hobh) - V6h) dedy
Qo

+ /8 .. hobh (- V6h) ds. (2.251)

The last boundary integral is again zero by using the smooth periodicity of h and
6h at z = £xo, ho = 0 on y = ¢ (z) and 6h = 0 on y = L < 0. The remaining
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portion of equation (2.251) can be simplified to give

8*H (ho) = / / ((6h)* (Aho = F* (ko)) + 6k ho - Vh) dady

- / [ (hoV6h - Vh + 6hVho - Véh) dady
U

- / / ((68)* (Aho - F* (o)) — hoV5h - VSh) dady. (2.252)

It is now demonstrated that 627 (ho) is an invariant of the linear stability
equation, that is,

d
=76°H (ho) =0, (2.253)

where 6h evolves according to the linear stability equation (2.237). Using the
second variation of the constrained Hamiltonian given in equation (2.252) its time

derivative is given by

d . .
= 6%H (o) = ,,/ f 26h6h, (Aho — F' (hg)) — 2hoV6h - V6h, dzdy

=2 / / [6heSh (Ahg — F' (ho)) — V (hobhy) - V6h + 6k, Vhg - VR dzdy
20
=2 / / [6h.6h (Aho — F' (ho)) + hobhyAbh + 6k Vhe - Véh] dady
Qo

) / hoSh.n - V6hds
Qp

=2 / / Shy (61 Aho + hoASh + Vhy - Véh — F' (ho) k) dzdy
Qo

= -2 / / [J (hoASh + 6kAhg + Vho - VR — F' (ho) 6h, ho)] X
o

[6hAhg + holASh + Vhe - V6h — F' (ho) k] dady, (2.254)
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where Green'’s theorem is used and where the boundary integral is zero because of
the periodicity of hg and 6h at x = £z, and the boundary conditions, hy = 0 on
y = ¢o(z) and 6h = 0 on y = L. Using the identities (2.120) and (2.122) followed

by the divergence theorem, this can be rewritten as

d

—8%H (ho) = ‘[ / [7 (Iha8h + 8hAho + Vho - Wk — F (ho) 6h1?  ho) ] dady

= / / V- [(hoAA6h + 6hAho + Vho - V6% = F (ho) 6h)? (85 X Vo)) dady
Qo

— L . [hoAbh +6hAhg + Vho - V6h — F' (o) 8h)’ (85 x Vho) - nds = 0 (2.255)

since (& % Vhg) n = U on y = ¢ () and L and because of the periodicity of
ho and 6h at z = +x,. This invariance will be used to establish linear stability in
the sense of Liapunov.

In order to determine the sign of the second variation (2.252), it must be
simplified somewhat first by eliminating the function F (ho) . This is done by
taking the derivative with respect to y of equation (2.247) yielding

I'I,()yAho + ’IoAh()y + Vh()y -Vhy = F (ho) hoy, (2256)

and solving for F"(ho) in order to substitute into equation (2.252). Using this

equation, the second variation (2.252) can be rewritten as

Vho - Vhey

) + hoV6h - Véh dzdy, (2.257)
hoy

*H (ho) = — )2 ho v
8*H (ho) Q/0/(61) (hoyAho +

where it is assumed that the slope of the steady state front, hg (y), is nonzero

everywhere in the domain. Simplifying using Green’s theorem on the first integral



and then rearranging gives

6*H (ho // (wh) h°) Vhoy + (6h)2V£-Vho, + hoV6h - V6h dzdy

+ / (6h)? En Vheyds.

The boundary integral again vanishes because of the periodicity of ho and 6h at
T = tx and the boundary conditions, hp =0 on y = ¢y (z) and 6h=0ony = L.

The remaining terms simplify as follows:

82H (ho) = // [(5") Vheo - Vhey — hov((‘;:‘j ) Vhoy] dzdy

_ / / [(5;,)2 ﬂ%l@ + hoV6h. - v&n] dzdy
o) Y

(6n)*

6h
A 2 -V

~——=Vho, - Vhg, — Véh - VéhJ dzdy

- // ho (hoy)? [((::)) Vhey - Vh, +2 ('::) ——V6h- VhoyJ dzdy

Jror[Sizien..

_ » (8hVho, = ho,V5hY (8Vhe, — hoyV6RY

_ / / ho (hoy)? V (}%) .V ( ii:,) dzdy. (2.258)

It is obvious that the second variation is negative definite since hg > 0 with hy > 0

in some region. Formal stability, as defined by Holm et al. (1985), has thus been
established.

These derivations can now be used to establish linear stability in the sense of
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Liapunov since the second variation establishes a conserved norm (Swaters, 1993).

Theorem 3 The steady state solution, hg(z,y), as defined by equation (2.282)
and that satisfies the first order necessary condition Jor an eztremum is linearly

stable in the sense of Liapunov with respect to the disturbance norm given by

k]l = [-82H (ho)]? .

Proof.
IR = [~82H (ho)]* = [-6H (h)] % = |IA", (2.250)

on using the invariance of 6*H (ko) and where (z,y) = h(z,y,t = 0). Therefore,
if ”77," < 6 = ¢ then [|h|| < € and linear stability in the sense of Liapunov is
established. B

2.4.3 Linear stability of parallel shear flow

In this thesis, the class of steady state solutions known as parallel shear flows are

of particular interest. Parallel shear flow solutions of this system are denoted by

ho = ho (y), (2.260)

%o = a, (2.261)

which satisfies the governing equation trivially. The stgbility of this parallel shear
flow is also examined by using the stability algorithm outlined by Holm et al.
(1985) and introduced in Section 2.3.2. However in this stbsection, a constrained
linear momentum invariant is used instead of a constrained Hamiltonian. The first
step in this algorithm involves forming the linear stability problem for the parallel
shear flow. The linear stability problem is formed by assuming that the basic

state, the parallel shear flow, hg (y), with outcropping, ¢p, is perturbed slightly



such that the total flow and outcropping becomes
h(z,y,t) = ho (y) + 6k (z,y,t), (2.262)

¢ (z,t) =a+ ¢ (z,t), (2.263)

where hg (y) is the parallel shear flow that satisfies the governing equation (2.87)
identically, where a is a constant that satisfies the boundary condition (2.88) and
where 6h and 6¢ are small perturbations.

This total flow (2.262) is substituted into the governing equation (2.87). The
perturbation terms associated with the frontal thickness and the outcropping, 6h
and &¢, respectively, are assumed small enough that the nonlinear effects can
be ignored. Thus quadratic and higher order terms of the perturbation can be

neglected resulting in the linear equation,
She + (hoy)? 6hyz + hohoyASh, — hohoyhoy, — Shehohoyy, =0,  (2.264)

which is identical to the linear stability equation (2.207) used for the normal mode

problem.

The next step in the algorithm involves determining a conserved quantity of
the present Hamiltonian system whose first variation vanishes at the steady state,
ho (y). In contrast to the constrained Hamiltonian considered in the previous
subsection, Karsten and Swaters (1995) found that the appropriate conserved

quantity for this analysis should be defined as
M((h)=M(h)+C(h), (2.265)

where M (h) is the invariant defined in equation (2.190) and C (h) is the Casimir
defined in equation (2.200). This functional, M (h), is also invariant in time as

it is a linear combination of the two invariant functionals, M (h) and C (h) (by
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Noether’s Theorem (2) and equation (2.201)). The expression for M (h) explicitly

becomes

M (h) = / / (~yh + @ (b)) dzdy, (2.266)

by using equations (2.190) and (2.200).

A specific Casimir is now found to ensure that the first variation of this func-
tional, M (h), vanishes at the steady state solution, kg (y). Karsten and Swaters
(1995) showed that the first variation is given as

SM (h) = / / (—y+ & (b)) 6h dzdy. (2.267)
)
The first variation evaluated at h = hy (y) and ¢ = a is given by

6M (ko) = [[ (~y+ & (ho)) 6h dady, (2.268)

where in this subsection
Qo={(z,9)Ja<y<L<oo,—19<z<0}. (2.269)

It follows that M (hg) = 0 if
' (ho) = . (2.270)

Written in terms of the steady state this may be written in the form
ho = (@] (4), (2:271)

where [®]7! is the inverse function associated with &'
The next step in the stability algorithm involves determining whether the
second variation of this invariant (2.266) is positive definite or negative definite.

The definiteness of the second variation of M (h) however cannot be determined
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without placing conditions on the Casimir function, @ (h). The second variation

is given as
82M (h) = / / (=y + &' () 6% + " (h) (6h)% dady, (2.272)
n
which when evaluated at the paralle! shear flow solution gives

5 M (ho) = f/ " (ho) (6h)2dzdy, (2.273)

since &' (ho) = y.
This second variation is an invariant of the linear stability equation (2.264)

which can be shown by first differentiating equation (2.270) to give

1
e

If this equaticy (?2.274) is substituted into the second variation (2.273) and the

3" (ho) = (2.274)

result is differei. jated with respect to time, it follows that

d, e
75 M (ho) = n// hﬂy&h&h, dzdy

- / / 2 sn (= (h0y)” By ~ hoho, Abhy + Shahoyhy, + Shahoheyy,) dady

1 hohg
=2 ,,/ 0/ (—hoyahahy, ~ hobhAbhs + 3 [(8R)?]_ (hoyy + h():“’)) dzdy

Q
=-2 / f (hoy8héhyy + hobhASh,) dzdy (2.275)
0

where integration by parts and the smooth periodicity of 6k (z,y,t), and hg (y)
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on the boundaries = £z has been used. Using Green’s theorem on the second

term in this integral gives

55 M(ho) =2 Qf o/ (—hoy6hbhys + V (hobh) - V6h,) dzdy

-2 /a _ hobhn - V (6h) ds

=2 / / (—hoy6hbhy, + hoybhbhye + hoVsh - Véh,) dzdy
Q0

+2 / [hobhbhze),__,, dy — 2 / " [ho6hheg], ., dy

~2 [ (hobh ($ebhsz — 6hey), g dx =2 [ [hobhbhy), _, do

-Zo —~Zo

- Q/O / ho (V6h - V6h), dzdy = 0,

where fg(a) = 0, 6h(x,L,t) = 0 and the smooth periodicity of all fields at
T = Fxo has been used. Therefore the second variation of this constrained linear
momentum invariant is invariant in time.

In order to establish linear stability of /g (y) . the definiteness of the second
variation must be established. It is easily seen from equation (2.273) that the
definiteness of the second variation is dependent on the definiteness of the Casimir

®” (ho) . In other words, the parallel shear flow h = hg (y) is stable if either

inf " (ho) >0, (2.276)
0
or
sup " (ho) <0 (2.277)
S

(Karsten and Swaters, 1995).

Theorem 4 The parallel shear flow h = hg (y) that satisfies the first order nec-
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essary condition for an exiremum is linearly stable in the sense of Liapunov with

respect to the perturbation norm,
l6nl®* = [ (8)? dady,
o
if the Casimir density satisfies
inf ®" (ho) > 0,
¢l

or
sup 9" (hg) < 0.
%

Prdof. Assume
inf ®" (hg) > 0.
Qo

Using the expression for §2M (hg) (2.273) then gives,

Ty [8h]* < 62M (ho) < T |18k 2,
where
Q
I'y = sup @" (hg) > 0.
S

On using the invariance of §2M (ho) in the inequality (2.282) gives

18R < (1) 62 M (o) = [(T3) ™ 62 M (ha)],_, < (T2) ' o 6

t=

where 6k (z,y) = 6k (z,y,0). Therefore, if

Job) <5~ ()"

1
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(2.281)
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(2.283)
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then

2 _ / /
l6h] < (IFT;)] 2”asn” < (-11:—1)1 i (%)1 feme (2.287)

and linear stability ir the sense of Liapunov is proven. The proof for
s L .p) <0, (2.288)

folli.#s similarly. ¥

2.5 A Linear Smail Amplitude Solution

The steady solutions to the frontal modei (2.87) were demonstrated to be linearly
stable in the sense of Liapunov. However, in general, it is very difficult to an-
alytically solve the linear stability problem for an arbitrary hg (z,y). One exart
solution that can be obtained {Cushman-Roisin, 1986) is for th:: wedge-like front

given by
ho (y) = ey, (2.289)

where a > 0 so that the thickness of the front increases in the positive y direction.
If this specific shear flow is substituted into the linear stability problem (2.207)

the following equation results
he + 0®Yhgr + aPyhyy, + a®hy, = 0, (2.290)

where /1 is the perturbation thickness. A solution to this equation is sought where
h(z,0,t) is bounded, that is, where the perturbation at the unperturbed interface,
y =0, is a finite value and also where h (z,¥,t) remains bounded as Yy — 00.

Following the discussion given i Section 2.4.1, a normal mode solution to this
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equation (2.290) is constructed in the jorm
h(z,y,t) = h(y) exp (ik (z ~ ct)) + c.c., (2.291)

where c.c. represents the complex conjugate, k is the along front wavenumber that
is chosen to be positive and real and c is the phase speed whose value is dependent
on k and is determined by the eigenvalue relation. Substituting this normal mode

solution into the linearized equation (2.290) and si:aplifying yields
R + T~ (k2y + :-?) f=o, (2.202)

where primes denote differentiation with respect to y.

In further solving of this problem, Cushman-Roisin (1986) introduced the new

variable,
¢ = 2ky, (2.293)

into equation (2.292) resulting in the differential equation,

-\
o T ( ¢ N
-{= h=0 2.294
Ch" +h (4+2ka2) , (2.294)
where primes now denote differentiation with respect to ¢. The =" ..i*an to equa-

tion (2.294) can be written in the fom
R(Q) =R (()exp(~(/2). (2.295)

Substituting this relation into equation (2.294) gives the differential equation,

SRl \ ! 1 (4 T
¢h +(1—§,h—(§+51—c-&-2—)h--0 (2.296)

According to differential equation theory (e.g., Nagle and Saff, 1993), ¢ =0 is
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a regular singular point of this equation (2.296). Therefore series solutions of this

equation take the form

RO =CS amc™, (2.297)
m=0

where 7 is a solution of the indicial equation,

r(r~1)+por+q =0, (2.298)
with
1= ()
Po = %13(1)( c and gy = P_l;t(l}( —c (2.299)

Taking these limits (2.299) and substituting into the indicial equation (2.298)

shows that the root r satisfies the equation
r(r=1)+r=r2=0, \?.300)

Therefore +»2 indicial equation (2.300) produces a double root of value + = 0 and

two linea: .nd-pendent solutions will be given by the series (Magle and Saf, 1993)

R (¢ Z am(™, (2.301)
m=0
hg Z mC + hl ln C (2302)

Since only solutions that are bounded at { = 0 are physically realistic, the
second solution must be discarded since In( — —oo as y — 0. If the first
series solution and its derivatives are substituted into the differential equation,

the following recurrence relation for the coefficients holds:

(b4 o) G +am +1) 3+ 5 +2) - (3
(m!)?

(2.303)
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However only solutions where h (z,y,t) = 0 as y — oo are being considered. This
means that k; () must remain smaller than exp ((/2) as ¢ — oo (see equation
(2.29%)). However the series expansion, equation (2.301), with its coefficients given
by equation (2.303) are only less than exp (¢/2) if the series terminates after a
finite number of terms. The expression for the coefficients (2.303) shows that the

power series terminates only if the following holds:

1 c
- (5 _2ka2) =n, (2.304)

where 7 is some positive int-ger.

Making this substitution into the differential equation (%.296) gives
R +(1=¢R +nh=0, (2.305)

which is recogitized ns the Laguerre differential equation with the solution given

by the Lagueiie pulynomials
1 (¢) = La (¢), (2.306)

where
(1 c ) —n
2 2%ka2)
and 7 is a non-negative integer.

Using the normal mode substitution (2.291) and the original variables (2.293)

the complete solution for the perturbation is given as
h(z,y,t) = AL, (2ky) exp (—ky) exp (ik (z — ct)) + c.c., (2.307)

where A is some free amplitude, c.c. stands for complex conjugate and where

equation (2.304) can be rcarcanged to show that the phasa speed, », satisfies the
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eigenvalue or dispersion relationship
= —ko? (2n+1), (2.308)

where n is a non-negative integer.

This solution describes waves that decay exponentially away from the frontal
outcropping. They are dispersive waves since the phase speed, c, depends on the
wavenumber, k. This relation also shows that waves with longer wavelengths prop-
agate at slower speeds compared to waves with shorter wavelengths. In addition,
since the wavenumber, k, is positive, ¢ will be negative for all n meaning that the
perturbation will propagate with the outcropping on its left. Most importantly,
this is a neutrally stable solution sinc+ the phase speed, ¢, is real and therefore
the perturbation, h (z,y,t), merely oscillates in time.

In conclusion, the complete solution to the linear stability problem using the

wedge profile as the basic state becomes
h(x,y.t) = ay + AL, (2ky) exp (—ky) exp (ik (x — ct)) + ¢ - (2.309)

with
¢c=-ka’(2n+1). (2.310)

This solution serves as the basis for studying the nonlinear evolution of finite

amplitude frontal waves in Chapter 3.
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2.6 Nonlinear Stability

2.6.1 Introduction

In Section 2.4, the linear stability problem was formed by substituting the expres-

sion
h(.’l},y, t) = h0+h($,y,t) ) (2311)

where hy was a steady state solution to the model (either a general steady solu-
tion or a parallel shear #~w) and h was a small perturbation, into the governing
equation (2.87). All quadratic and higher order terms of the perturbation thick-
ness, h, were subsequently neglected. It was argued that since the perturbation
thiqkness, h, was considered initially small that quadratic terms would be smaller
yet and could justifiably be dropped. However even though the perturbations
may initial’ ‘hey may grow to some finite value. When tl.is happens,
linearized . n0 longer valid. "sing this reason.ng it can be argued that
linearized thec., may only be considered valid during some finite time interval
(Eckhaus, 1965). If long time intervals are considered, nonlinear effects become
important and must be considered.

The nonlinear stability problem, just as the linear stability problem, can be ex-
amined using the Hamiltonian formulation. Whereas, in finite dimensional space
the definiteness of the second variation of some conserved quantity of the Hamilto-
nian system whose first variation vanishes at the steady state solution is sufficient
to establish nonlinear stability, in infinite dimensions these conditions are not suf-
ficient. This is a result of the topology of infinite dimensional vector space in
which the definiteness of the second variation does not necessarily ensure that the
norm used for nonlinear stability in the sense of Liapunov can be bounded away
from zero due to the loss of compactness of the vector space (Ebin and Marsden,

1970).

The additional conditions that are required to prove nonlinear stability are
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referred to by Holm ef al. (1985) as convexity conditions. These conditions are

determined by examining invariants of the form
Q1 (Au) + Q2 (Au) < B (ue + Au) — B (ue) + A(ue + Au) — A(w,), (2.312)

where u, is the steady state solution, A and B are conserved functior «!s of the
Hamiltonian system that meet the first order necessary condition for an extremum
and Au is the deviation from the steady state solution. Once estimates on the
magnitude of this invariant are determined thereby determining Q; and Q,, a

norm can be established such that
0 < Q1 (Au) + @, (Au) = || Aul?, (2.313)

which can be used to prove nonlinear stability in the sense of Liapunov:

Definition 2 The steady solution @, (z,y) iz - * he nonlinearly stable in
the sense of Liapunov with respect to ti ncrr: *||, and ||+ 11 if for every
€ > 0 there erists a 6 > 0 such that ||Ug — ||, < & then || ¥ — Wsll;; < € for all
t 2 0 where ¥y (z,y) = ¥ (z,y,t = 3) and where ¥ (z,y,t) solves the nonlinear

stability problem.

2.6.2 The constrained Hamiltonian argument

There is a technical problem related to the appropriate domain to be used in
the nonlinear stability problem. If the mean flow, hg (x,%), has any outcroppings
associated with it, its domain .f definition need not be the same as the total
flow, hrota (z,,t) = ho (2,y) + h(z,y,t) , where h (z,y,1) is the finite amplitude
perturbation due to dynamical oscillations of the outcropping. This leads to
difficulties in the integration by parts that need to be don‘e. ‘The resolution to this
difficulty is to assume that hg (z,y) and Ao (2,9, t) can be smoothly embedded
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in a fixed bounviary domain denoted here as Q. This domain is chosen so that the
dynamical distortions of the perturbed outcropping are always contained in the
interior of this domain and so that kg (z,y) can be smoothly extended to all of 0.

The domain that is needed for this section then is given by
Q={(a:,y)|B<¢(a:,t)<y<L$oo,-—:vo<x<:z:o}, (2.314)

in which all flow quantities are assumed to be smoothly periodic at £ = £z and,
if there is an outcropping located at y = ¢ (z,t), ho(z,y) = h(z,y,t) = 0 on
y = B. If there is no outcropping then hg (z,y) extends to ¥y = B in any event
and must satisfy ho (z, B) = hg = constant and h(z,B,t) =0.Ony = L it is
assumed that ko (z, L) = hy, = constant and h(z, L,t) = 0.

In examining the nonlinear stability of the basic steady state flow, hg (z,y),

Swaters (1993) introduces the functional A (k) given by
N(h)EH(ho+h)—H(ho)+C'(ho+h)—C(ho), (2.315)

where H is the Hamiltonian defined by equation (2.138) and C is the Casimir
defined by equation (2.200) both of which are assumed to be defined in the domain
() given by (2.314). The variable hy = ho (z,7) defines the steady solution and
h = h(z,y,t) represents the finite amplitude perturbation flow.

This functional, NV (%}, is invariant since H (hrowa) and C (Ryoia) are invariant
(see equation (2.148) and (2.201)) and since H (ko) and C {ho) are both indepen-
dent of time.

Using our expressions for H (h) and C (h), this functional can be expressed

explicitly as

N (1) = =3 [[ (ho+ W)V (o + ) - ¥ (ha + ) dady
Q
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+% ,,/ hoVho - Vhodzdy + { [ ® (ho + h) ey - é [ (h)daty (2316

1
5 [[ (ho+ 1) V.- Vhdady
Q

_Z/%V% - Vh + %tho + Vho + hVhg - Vh dzdy
+ é/ ® (ho + h) dady — é [ @ (ho) dady (2:317)
=% /tho-Vho—(ho+h)Vh-Vhdmdy
Q
- / / V (hoh) - Vho + %wﬁ - Vho dzdy
s
+ { / ® (ho + h) dzdy — é / ® (ho) dzdy (2.318)
= %é’/tho-Vho— (ho + h) Vh - Vh dzdy
+ [ hoh(n- Vho)ds + é [ hotisho + Sk ho tedy

1 2
—§/mh (n- Vho)ds

+£/<I>(ho+h)da:dy—-£/<1>(h0)dxdy
1
=5 / hVho - Vho — (ho + h) Vh - Vh dady
Q
1 2
+ é / hahdho + Sh2Ahg drdy

+ f / ® (ho + h) dzdy — / / & (ho) dzdy, (2.319)
N 1]
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where the bouzidar y in-’ta&;ra?s,
} - 2 .
./;Q hon (ll V ho) ds and Lﬂ h (ll V ho) ds,

vanish due to the periodicity of 2 and hg on z = +1 and the boundary conditions

h =0 ony = B and L, respectively. Using equations (2.236) and the definition
of the Casimir (2.248), ®, to simplify gives

N (h) = %//h"’Aho- (h+ ho) Vh - Vh dzdy
(]

- é li ( /h :°+h F(€)d€ — hF (ho)) dady. (2.320)

The second step involved in showing nonlinear stability is to determine ap-
propriate conditions tc ensure that A (h) is definite. It is possible to show *.at

N (%) is negative definite but not without certain conditions (Swaters, 19057,

Theorem 5 If the Casimir density sotisfies
sup (&hp) < a < F' (£) < B < o0, (2.321)
2
then the functional N (h) is negative definite for all h = h(z,y,t).

Proof. Suppose
a< F'(§)<p. (2.322)

Integrating this expression once with respect to ¢ from hg to 2z gives

a(z—ho) < F(2) ~ F (ho) < B (2 — ho). (2.323)
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Integrating once more with respect to the variable z and from kg to ho + h gives
ho+h
%iﬁ < /h " F (€)dE — hF (ho) < §h2. (2.324)
0
Substituting this into the expression for A (h) (2.320) gives the inequality,

//%hz(Aho_’g)_%(h+ho)Vh-Vh~d:cdy<N(h)
Q

1, 1
<£/§h (Aho = &) = = (h + ho) Vh- Vh dady

/ / Sh® (Aho = a) dady, (2.325)

since the total thickness of the front must be positive, i.e. hr = (h+ hg) > 0. By

supposition supg (Ahg) < @, so Ahg — a < 0 and the functional satisfies

N{(h) < // %h2 (Ahp — @) dzdy < 0. (2.326)
0

Therefore the functional N (h) is negative definite. B
Now that the definiteness of A (h) has been established, nonlinear stability
in the sense of Liapunov can be established. The same conditions to prove the

definiteness of A (h) however need to be assumed.

Theorem 6 The steady solution hy = hg (x,y) is nonlinearly stable in the sense

of Liapunov with respect to the perturbation norms,
2 _ [[,9,
A7 = | h*dzdy, (2.327)
Q

and
Ih)2, = / B+ (h+ ho) Vh - Vh) dzdy, (2.328)
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if the Casimir density
.Y
&(h) -2 (0) = — /0 F(E), (2.329)

satisfies
sup (Ahg) <a < F'(¢) < B < oo. (2.330)

Proof.  Suppose that the Casimir density meets the conditions stated above.

As was shown in equation (2.326) when the Casimir meets these conditions, the

functional A (h) satisfies the inequality
1 () < / / Sh* (Aho — 1) dady < 0. (2.331)
)
Therefore if the constant I is introduced as
1
= 3 suP (Ahg — @) < 0, (2.332)
Q
then the functional satisi.cs
N(h) <T / / h? dzdy or / / h? dady < T (h). (2.333)
o) )

The »arturhation norm becomes

IR)2 = / / Wdzdy < T7'W (h) =TV (), (2.334)
Q

on using the invariance of the functional, V" (k) , and where h (z, %) = h(z,y,t = 0).

Using the inequality found in equation (2.325), this can now be written as

1A < 15" [ 352 (ko = 8) = & (B + ho) V- VR dady
Q
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<T7'h, / / (B + (R + ho) VA VR) dudy, (2.335)
Q

where

Iy = min {inf-;- (Aho - 0), —1} <0. (2.3%6)

Therefore
IRl? < T;'T, / / (R2+ (A + ho) V- V) dedy = T5'T, IR}, (2387)
5
Liapunov stability can be prover by choosing
6= T, (2.338)
which would give
Ikl < (r're) ), < (r7'r) (mur7) e = (2.339)

and nonlinear stability in the sense of Liapunov is established. B

2.6.3 Nonlinear stability of parallel shear flow

The functional introduced here to examine the nonlinear stability problem for
the parallel shear flow is romposed of the invariants introduced to study the
linear stability of parallel shear flows. Karsten and Swaters (1995) show that this

functional takes the form.
L (h) == A (h + ho) - M (ho) + C(h + ho) -C (h{)) , (2340)

where M is the defined by equation (2.190) and C is the related Casimir given by
equation (2.200). The variables ho (y) and h(z,y,t) are the steady flow solution

and the finite amplitude perturbation flow, respectively. The functional £ (h) is
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a conserved functional since M (hTotat) and C (hroar) are invariant (by Noether’s
Theorem (2) and equation (2.201)) and M (hg) and C (k) are both independent

of time. This invariant can be written explicitly as

L(k) = [f <+ ho) +yho + & (h+ ho) — @ (ho) dody

- // ~® (ho) h+ @ (h + ho) — ® (ho) dzdy, (2.341)

where the first order necessary condition for an extremum, equation (2.270) has
been used to simplify.

Here, as in the stability argument developed using the constrained Hamilto-
nian, the working domain Q is assumed to be a periodic channel in which the
steady state flow hg{y) is extended to the boundaries of . However, since the
following derivations do not require any assumptions on the differentiability of
ho (y) , it is sufficient to assume that hg (y) is only continuously extended to all of

Q2. In what follows the domain § is assumed to be given by
Q={(r,y)|B<¢(z,t) <y<L<o00,—29<z< 20}. (2.342)

It is possible to show that £ (h) is negative definite but not without certain

conditions (Karsten and Swaters, 1995).

Theorem 7 If the Casinir density ® (h) satisfies
- < a; < ol (5) < /31 < 0, (2343)

or

0<a;<d(€) < B <o, (2.344)

where ay, oy, By, By are real constants, then the functional L (h) will be positive
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or negative definite, respectively, for all h = h(z,y, t).

Proof.  Suppose
a; <d'(¢) < B <0. (2.345)

Integrating this expression with respect to € from hy to z gives
a1 (2 — ho) < @' (2) - @' (ho) < B1 (2 — ho). (2.346)
Integrating once more with respect to z from hg to hg + h gives

92-‘h2 < ® (ho + h) — @ (ho) — hd' (he) < %hz- (2.347)

Substituting this equation (2.347) into the expression for £ (k) (2.341) results in
(03] 2 ﬁl 2 .
Sh? dady < L(h) < / 2 dady < 0, (2.348)
9 )

Therefore L (h) is negative definite for all h = h (z, y,t) . The argument for positive
definiteness follows similarly. B
"The conditions for the definiteness of the functional can now be used to estab-

lish nonlinear stability in the sense of Liapunov:

Theorem 8 The parallel shear flow hg = hg (y) is nonlinearly stable in the sense

of Liapunov with respect to the perturbation norm
Il = // h’dzdy, (2.349)
Q
if the Casimir density satisfies either

—co<a <®'(£) < B <0, (2.350)
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or

D<a; <’ (¢) < B <o, (2.351)

where o, oz, B, B2 are real constants (Karsten and Swaters, 1995).

Proof.  Suppose
—o<a <P (€)<B <0, (2.352)

so that from equation (2.348),
/ / Bire drdy or / / h? dzdy < —~c (). (2.353)

The perturbation norm then satisfies

Ih|? = / / h? dady < —L‘I(h) %c(ﬁ), (2.354)

on using the invariance of the functional £ (k) and where h (z,y) = h (z,y.t=0).
By using the second inequality for £ (k) given in equation (2.348), this becomes

Tk <b27 (%) < ;} o / R dedy = ;—:”}3”2. (2.355)
Therefore if , 12
7| <6 = (f—i) €, (2.356)

then

) < ( ) IRl < ( ) v (%)1/26 =¢, (2.357)

and nonlinear stability in the sense of Liapunov is proven. The proof assuming

0<ay <d(€) < By < o0, (2.358)
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follows similarly. B

2.7 The wedge profile
In Theorem 8, it was shown that if the Casimir density satisfied
0<ap<®"(£) < By <o,

then the steady solution kg (y) was nonlinearly stable. In Section 2.5, the wedge

profile
ho = ay,

was considered and a linearly stable solution was found. If this wedge profile is

used in Theorem 8, it can be shown that this steady solution is nonlinearly stable.

Theorem 9 The wedge profile
ho (y) = oy, (2.359)
where & > 0 is nonlinearly stable in the sense of Liapunov.

Proof.  The Casimir density as defined in equation (2.274) is given by

1
" -
" (ho) = Ty
For the wedge profile this becomes
3" (h) = =. (2.260)
o
Since
1
Q9 < a‘ < ,62, (2361)
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for some positive @, and S,, then by Theorem 8, the wedge profile is nonlinearly

stable in the sense of Liapunov.
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Chapter 3

Weakly Nonlinear Evolution of
Wedge-Front Modes

3.1 Introductioh

In chapter 2, the stability characteristics of steady solutions of the frontal model
(2.87) were determined. By using the Hamiltonian formulation of the model (The-
orem 1) it was found that all steady state solutions were linearly stable and that
certain steady state solutions meeting certain conditions (see Theorem 6 and The-

orem 8) were also nonlinearly stable. In particular, it was found that if the basic

state was the wedge front given by
ho (y) = ay, (3.1)

then the flow was nonlinearly stable.

In Section 2.4, the wedge front was assumed as the basic state and a solution
was found for the linear stability problem. However, if the wedge front is assumed
as basic state for the nonlinear stability problem (see equation (2.206)) the prob-

lem is not analytically solvable. In order to examine the nonlinear evolution of
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this solution a multiple scales analysis for the perturbation thickness, h(z,y,t),
and interface, ¢ (z,y,t), around a small amplitude parameter ¢ is developed. The
prcblems up to the O (€?) are solved and the free amplitude, A, introduced in
equation (2.307) is found to satisfy the Nonlinear Schrédinger equation (Newell,
1985)
iw" . 2
A-,- = —2—1455 + 2,6 IAl A, (32)

where 7 and £ are slow time and space variables introduced in the multiple scales
analysis.

The Nonlinear Schrédinger (NLS) equation appropriately describes the nonlin-
ear dynamics of this system for two reasons. As Newell (1985) explains, the NLS
equation describes dynamics that are weakly nonlinear but strongly dispersive.
The linear stability problem whose solution describes the fundamental mode of

the nonlinear stability problem yielded the dispersion relation,
c=-ka’(2n+1), (3.3)

where c is the phase speed, k is the wavenumber and 7 is a non-negative integer.
Since ¢ is a function of k, waves of different wavenumbers will travel at different
velocities or in other words these waves will disperse. In addition the group

velocity which is the velocity of energy propagation is defined by

Ow
¢g =~ =-2ka®(2n+1), (3.4)
ok
showing that the energy of the wave propagates at twice the phase velocity as the
wave implying that there is a group amplitude different from the phase amplitude.
The wedge froat is nonlinearly stable. Its nonlinear evolution, however, is

not analytically solvable. Through a multiple scales analysis and an asymptotic

expansion in the frontal thickness and interface, the nonlinear stability problem is
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divided into equations of different orders with respect to the ordering parameter
€ which can be solved. Thus the finite amplitude evolution of the wedge front is

determined.

3.2 The nonlinear problem

The complete nonlinear problem is derived by beginning with the governing equa-

tion,

.g? +J (hAh + %Vh . Vh, h) =0, (3.5)

and substituting in
h(z,y,t) = ho (y) + 2 (z,y,1), (3.6)

where hg (y) is a general parallel shear flow and h(z,y,t) is a small amplitude

perturbation, yielding
he + hohoyhzze + hohyhaae + hhoyhezz + hhyhegs + hohoyhyyz + hohyhyy,

thhoyhye + Mhyhyye + hohazhoy + hehaghy + (hoy)? hyz + 2hoyhyhye
+ (hy)? hyz — hohggyhy — hheayhz — hoyhoyyhe — hoyhyyhy — hyhoy, by
~hyhyyhe = hohoyyyhe — hohyyyhy ~ hhoyyyhy — hhyyyhy — heheyhy =0, (3.7)

where the overbar has been omitted and where subscripts denote partial differen-

tiation.

Nonlinear boundary conditions are also derived in the same manner by insert-

ing the perturbed interface,
¢(z,t)=a+¢(z,t) =¢(z,t), (3.8)

where a is set equal to zero, along with the total flow (equation (3.6)) into the
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boundary condition (2.88) to give the nonlinear condition,
ho+h =0, ony=¢(z,t), (3.9

where the overbar again has been omitted.
Initially the perturbation can be considered to be small, that is, of O (€) where
€ is introduced here as a small parameter and so the perturbation flow, h (z,y,t),

is rewritten as

h(z,y,t) = h(z,y,1), (3.10)

where h (z,y,1) ~ O (1) initially. Substituting (3.10) into the nonlinear problem
(3.7) gives

he + hOhOyh'.r.rz + fhohyhzz:r + fh'hOyhz:m + 62h'hfyh'a::r:r

+hohoyhyyz + ehohyhyye + €hhoyhy,, + 62h,hyhyyJr
+ehalazhoy + € hehezhy + (hoy)? hye + 2ehoyhyhys
+2 (hy)? hyr ~ ehohzzyhy — €hhagyhe — hoyhoyhe
—ehoyhyyhy — ehyhgyhy — e2hyh,yyh, ~ hohgyyyhy
—chohyyyhe — ehhoyy hy — e"’h.hyy_,,hr - e2h.1h,zyh, =0, (3.11)

where the tildes have been omitted and the equation (3.11) has been divided

through by ¢. Rearranging, equation (3.11) can be written as

he + hohoyhezs + hohoyhyyz + (hoy)? hyr — hoyhoyyhe — hohoyyyhe =

—ehohyhyr, — €hhoyhyzr — €hohyhyy, — ehhoyhyyz

—ehzhyzhoy — 2¢hoyhyhyy + €hohzzyhe + €hoyhyyh,

94



+ehyhoyyhs + ehohyyyhe + ehhgyyyhy — €hhyhag,
~€hhyhyye — Ehghaghy — € (by)? hyy + 2hhgayh,
+€2hyhyy by + €2hhyy by + €2hghyyh,. (3.12)

This equation (3.12) shows that the nonlinear effects are all O (€) or O (€?) com-
pared to the linear terms. In other words, the substitution h (z,9,t) = €h(z,y,1)
suggests that the nonlinear terms make slight but cumulative modifications on
the linear underlying motion, that is, this motion is weakly nonlinear.

Since these nonlinear changes are of O (€) or O (€2), they make noticeable
changes only over long space and time periods. To emphasize these periods,

Newell (1985) suggests introducing the auxiliary slow variables,
T = et, X = ez, (3.13)

into the nonlinear problem. Since an asymptotic expansion up to the order of €2

will be carried out, the additional slow time scale,

T = (2t, (3.14)

is also introduced.

The various partial derivatives using these variables are given as follows:

0, = 0. + €Or + €20, (3.15)

8,: = 83 + Gax, Bu = Bm -+ 2683,\' + Gzaxx' (316)
aa:xz = Ozzzr + 356:1::)( + 3628:::)()( + 0 (63) H (317)

ayz = YT + fayx, ayym = yyxT + fayy‘¥, (3.18)
axzy = 6zzy + 266:Xy + 628XXy, (3.19)
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so that the nonlinear problem (3.11) becomes
he + €hy + €h, + hohg, (h::a::: + 3ehzzx + 362h,xx)

+ehohy (hoze +3ehaox +3chaxx) + hoyh (hoss + Sehgax + 3e*haxx)
+e%hh,, (hzz:z: + 3ehszx + 362hzxx) + hohoy (hyys + €hyyx)
+ehohy (hyye + €hyyx) + ehgyh (hyys + €hyyx)
+€%hhy (hyye + €hyyx) + ehoy (hy + €hy) (hm + 2eh, x + e"’hxx)
+€hy (he + ehix) (has + 2ehax + €hxx) + (hoy)? (hye + ehyx)
+2¢ehoyhy (hyz + €hyx) + €% (hy)? (hys + ehyx)
—ehg (hny + 2eh. xy + fzh»x.vry) (he + €hx)
—€2h (hmy + 2eh,x, + ezh_\rxy) (hze + €hx) — hoyhoy, (he + €hy)
—ehoyhyy (he + €hy) — €hoyyhy (he + €hy) — e2hyhyy (he + €hy)

—hohoyyy (hzy + €hy) — €hohyyy (hy + €hx) — €hoyyyh (he + €hy)

=€ hhyyy (he + ehy) = € (hy + ehx)? (hgy + €hxy) + O (¢)=0.  (3.20)

The corresponding boundary conditions are formed in the same manner. Since

initially the perturbed interface is considered small, it is rewritten as

¢ (z,t) = €d(z,t). (3.21)

Substituting this equation (3.21) along with equation (3.10) into the nonlinear

boundary equation (3.9) and dividing through by ¢ gives the boundary conditions

%ho +h=0, ony=¢p(z,t), (3.22)
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where the tildes have been omitted. The slow space and time variables given by

equations (3.13) and (3.14) are introduced into this boundary condition (3.22) to
givé

1

-E-ho+h=0, ony=ep(z,t). (3.23)

An additional simplification is made here by using Taylor expansion. The
frontal thickness evaluated on y = ¢ (z,t) can be Taylor expanded about y = 0
to give

(ho (e8) , h (z,€¢,t)) ~ (ho (0) , h (z,0, t)) + (ho (0), A (z,0, t)), o

+(ho (0, h(2,0,1)),,, (e6)* + O (&). (3.24)
Substituting this Taylor expansion (3.24) into the boundary condition (3.22) gives
the boundary condition:

hoy® + €hoyy®® + €hoyy @ + h + ehyd + by, ¢ + O (63) =0ony=0, (3.25)

where the boundary condition hg (0) = 0 has been used.
Finally the perturbation flow, h(z,y,t), and interface, ¢ (z,t), are asymptoti-

cally expanded in € so that

h=>" " h™ (z,y.1; X, T, ), (3.26)
n=0
p=> ¢ (2,4, X,T,7). (3.27)
n=0

In equation (2.55) an asymptotic expansion of the frontal thickness was also
introduced in order to determine the leading order motion of the front given
by the nonlinear equation being analyzed here (3.5). This present asymptotic
expansion, (3.26) and (3.27), can be thought of as expanding the leading order
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motion yet further. However since the leading order motion describes dynamics
that are greater then O (Rp) (R, being defined by equation (2.38)), this asymptotic
analysis is valid only as long as it remains greater than O (Ro). Since an expansion
up to O (e2) is geing to be considered, it is assumed then that the parameter, €,

satisfies the relation

O<R<ed<kex], (3.28)

in order to be asymptotically valid.

The asymptotic expansion (3.26) and (3.27) are introduced into the final form
of the governing equation (3.20) and the final form of the boundary conditions
(3.25). The next three sections will involve finding and solving the O (1), O (e),
and O (%) problem for the wedge front,

ho (y) = ay. (3.29)

3.3 The O (1) problem

After the asymptotic expansion of the perturbation thickness & has been included
in equation (3.20), the O (1) problem is formed by retaining only those terms that
contain no powers of €. The following equation results:

i + hoho,hD, + hoho,h(Q). + (hoy)” hQ — hoyhoyyh®® — hohoyy,h® = 0. (3.30)

TIT yyr

The steady state parallel shear flow will be considered to be ho (y) = ay, where
a > 0. Substituting this into the equation (3.30) yields

RO 4 a’yh®

IIT

+a’yh{) + a?h® = 0. (3.31)

yux

The O (1) boundary conditions are formed in the same way by equating all

terms in equation (3.25) that contain no powers of € to zero after the asymp-
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totic expansions (3.26) and (3.27) have been introduced. This gives the following

boundary condition:
h0y¢(0) + h© — 0 on y=0. (332)

Substituting in the wedge—shaped solution for the basic state gives the boundary

condition
0d® 4+ h® =0 on y = 0. (3.33)

Since the coefficients of this O (1) problem (3.31) and its boundary conditions

(3.33) are independent of z and ¢ a normal mode substitution is made such that
hO = A(X,T,7) % (y) exp (ik (z — ct)) + c.c., (3.34)

where A is the envelope amplitude function which depends on only the slow space
and time variables, k is the along-front wavenumber, ¢ is the along-front phase

speed and c.c. is the complex conjugate, to give
Py + oy — (kzazy + c) ¥ =0, (3.35)

where primes denote differentiation with respect to y. A solution to equation

(3.35) can be constructed in the form
¥ (y) = exp(—ky) F (y), (3.36)
with derivatives,
U (y) = —kexp (~ky) F (y) +exp (—ky) F' (y), (3.37)

" = k®exp (~ky) F (y) — 2kexp (~ky) F' (y) +exp (—ky) F" (y).  (3.38)

Substituting these expressions (3.36)~(3.38) into equation (3.35) and simplifying
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gives

yF" + (1 — 2ky) F' — (k + %) F=o. (3.39)

In order to simplify this equation somewhat, the change of variable z = 2ky is

made to give the equation

1
2ZF'"+(1-2)F - (5 + ﬁ) F=0, (3.40)

where primes now denote differentiation with respect to z. The only solution to
this equation that is bounded at z = 0 and approaches a finite value as 2 — oo
(so that the total amplitude 1 (y) decays exponentially) is given by the Laguerre
polynomials (Birkhoff and Gian-Carlo, 1978),

F(y) = Ln (2) = La (2ky) , (3.41)
with the eigenvalue or dispersion relationship
c=-a’%k(2n+1), (3.42)

where n is a any non-negative integer.

Therefore the complete solution to the O (1) problem is given as
h® = Aexp (—ky) L, (2ky) exp (i0) + A* exp (—ky) L, (2ky) exp (—i©), (3.43)

where A = A(X,T,7) is the envelope amplitude; A* is its complex conjugate;
© =k (z ~ ct); and c is given by the dispersion relationship (3.42).
The O (1) boundary, ¢@, is determined by substituting this solution (3.43)

into equation (3.33) to give

o0 = ——3 exp (ik (z — ct)) + c.c. (3.44)
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3.4 The O (e) problem

The O (€) problem is found by demanding that the coefficients of the terms propor-
tional to €! be zero in the nonlinear stability equation (3.20) after the asymptotic

expansion of h (3.26) has been included. The following equation results:
B + b+ hohoyh3, + 3hohoyhy + hohPRD, + hoy hORQ,

+hohoyh3e + hohayhyyx + hoh® R, + hoy KORD, + ho, hORD
+ (hoy)” 13 + (hoy)* hyx + 2hoy HPAZ ~ hoh(2,h
~hoyho b = hoyhoyyh’ = hoyhGhE) ~ hoy, hOH

~hohoyy b = hohayuy b’ — hohL Y — hoyy hKORD = 0. (3.45)

In order to examine the evolution of the wedge front, the parallel shear flow,

ho = ay, is substituted in and the equation is rearranged to give

hi + o?yhl), + +ayhll), +a?hl) = kY — 302yh®y — ayh®n®,

TIT yx
—ahOh), — o*yh{Dy — ayh{Oh®), — ah@hO, — ahOh® — o2h%
~20hPhQ + ayhQ h® + ahQr® + ayhl®) n©®. (3.46)

The expression for A%, (3.43), is substituted in and, after a little algebra, yields

the following nonhomegeneous differential equation:
Y + aPyh), + aPyhl, + o?h(D) =

IIT

(— Azt + 3a’yk® Axp — Py Axy"” — a2Ax1,b’) exp (i0)

+c.c. + aA%ik (2Ic21/)2 — gy —2 (W) + y¥'") exp (2i0) + cc.,  (3.47)
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where 9 = exp (—ky) L, (2ky) , © = k(z — ct), and c.c. stands for complex con-
jugate.

The O (¢) boundary conditions are found by retaining all terms from equation
(3.25) that contain €' after the asymptotic expansions (3.26) and (3.27) have been

included resulting in
hoy®® + hoyydDP® + hD 4+ KO¢® = ¢ on y = 0. (3.48)
Substituting in the wedge profile for the steady state solution gives
agM + ) 4+ K@ = ¢ on y = 0. (3.49)
These can be simplified using the O (1) boundary conditions (3.44) to give

R RO R0
¢(1) — __a_ + ya2 ony= 0. (3.50)

The solution to the O (¢) problem (3.47) is given as
R = p{l) 4 pD, (3.51)

where A{!) is the solution to the homogeneous problem and h{!) is the particular
solution to the nonhomogeneous equation. The homogeneous equation is identical

to the O (1) problem and its solution is given by
MY =b(y; X, T, 7). (3.52)

This solution (3.52) is a real-valued mean flow which will be determined in the
O (€?) problem. No terms proportional to the O (1) solution are included in the
homogeneous solution, h{!), since they can always be absorbed directly into the

O (1) solution (Newell, 1985).
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An examination of the nonhomogeneous equation shows that the right hand
side is composed of terms proportional to exp (£i0) and terms proportional to
exp (£2i©). Therefore, in principle, a particular solution associated with these

terms can be constructed in the form
h{ = C (X, T,7) G (y) exp (i0) + A% (X, T, 7) H (y) exp (2i0) +cc.  (3.53)

Substituting into the O () problem (3.47) gives the following two inhomogeneous

ordinary differential equations:
yG"'+G' — (Ky—k(2n+1))G

-1 ’
= (ike?C) [—AT‘Q/) + o Ax (3yk™yp — yy" — ¢')] , (3.54)

yH" + H' — (4k% — k (2n + 1))H

1 2,1,2 Y n2 "
= oz (26 -y’ — 2(u)’ +yu"y), (3.55)
where ¢ = exp (—ky) L, (2ky) and primes denote differentiation with respect to y.

The right hand side of these equations can be simplified somewhat by considering

equation (3.35) and its first derivative given by
y" + 20" — (k% — k (2n + 1)) W — k¥ =0, (3.56)

Solving equation (3.35) for y3" and equation (3.56) for 3" and substituting into
the right hand side of equations (3.54) and (3.55) gives the simplified equations,

yG"+G — (Ky-k(2n+1))G

= (ika®C) ™" [~ Artp + o®Ax (2K + k (2. + 1) ¥)], (3.57)
yH" + H' — (4k% — k (2n + 1)) H = 51&- (3k™? — ()" — 2y").  (3.58)
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The first differential equation (3.57) is initially considered. A solution to this
nonhomogeneous equation exists only if (3.57) satisfies the conditions defined by
the Fredholm Alternative Theorem (Zwillinger, 1989). The Fredholm Alterna-
tive Theorem states that an inhomogeneous ordinary differential equation of the
form LG = @ has a solution if and only if (®,$) = 0 where ¢ € Ker (CA), LA
being the adjoint operator of £. The homogeneous part of the differential equation

(3.57) given as
yGe + G, — (K*y —k (2n + 1)) Ge =0, (3.59)

can be written as

(yG.)' — (K — k(2n + 1)) Ge =0, (3.60)

demonstrating that this equation is self-adjoint. Thus all solutions in the kerne] of
the adjoint operator are just solutions of (3.59) itself and the Fredholm Alternative

Theorem states that

(@,G.) = [2(4)C(y)dy=0, (361)

where G, (y) is a solution to the homogeneous problem (3.59), & (y) is equal to
the right hand side of (3.57), and Q is the domain of y which in this case is
{yly € [0,00)}. Examining (3.59) shows that this is the same equation solved in
the O (1) problem (equation (3.35)). Its solution is given by

Ge (y) = exp (—ky) L (2ky) = ¥ (y). (3.62)

Therefore a solution exists to the differential equation (3.57) only if
0= /né(y)w(y)dy
= A, / Wy + oAy /0 " y? (2K + k(20 + 1)) dy
0
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= /0 ~ exp (—2ky) (L. (2ky))® [~ Ar + o?Ax (2k%y + & (20 + 1))|dy, (3.63)

where equation (3.62) has been used. This integral is easier to evaluate if the

variable change, z = 2ky, is made giving
/0 exp(=2) [Ln (2)" [~Ar + oAx (k2 + k(20 +1)]|dz=0.  (3.64)
On using integration by parts and the identity (Gradshteyn and Ryzhik, 1980),
2 () = (Lo = Ln_y) 3.65
2o-In(2) =n(La = Ln-1), (3.65)
the third term can be rewritten giving
/0 zexp (—2) [Ln (2)]2dz = /0 exp (2) [Ln ()] dz

+2n /O " exp (=2) ([La (I = Ln (2) Loy (2)) d. (3.66)

The integral (3.64) then becomes
(—Ar + 202 Axk [1 + 2n]) /0 ” exp (=2) [Ln (2)]* dz (3.67)

—2na’ Axk /Ooo exp (—2) Ln (2) Lp_q (2)dz = 0.

Using the orthogonality condition for the Laguerre polynomials given by (Grad-
shteyn and Ryzhik, 1980),

Aw exp (—2) Ly (2) L (2) dz = 6y, (3.68)

where 6y, is the Kronecker delta defined by

(3.69)

6mn - H

1 when m=n
0 when m#n
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makes the second integral zero and the first integral unity showing that the am-

plitude, A, must satisfy
Ar —20%k(2n 4+ 1) Ax = 0. (3.70)
Solutions to this equation are given as
A=A(X -¢T,71), (3.71)
where c, is the group velocity (3.4) given as
cg =—2a%k (2n+1). (3.72)
This leads to the introduction of a new variable, £, defined by
E=X—c,T, (3.73)

so that
A=A(,T). (3.74)

Thus it is shown that the O (1) envelope function is constant to O (¢) following the
group velocity. Note that the partial derivatives associated with this new variable

become

Or (*) = —c40¢ (*) = 20%k (2n + 1) &; () (3.75)
By (%) = B (). (3.76)

It therefore follows that (3.57) can be written in the form
yG" +G - (K —k(2n + 1)) G = (~2ky + (2n + 1)) ¥, (3.77)

where we have chosen C (€, 7) = i4;.
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The solution to this equation can be found by using variation of parameters

(Nagel and Saff, 1993). The homogeneous solution is given as
Ge = exp (~ky) Ln (2ky) = ¢ (y), (3.78)
so that the particular solution can be assumed to be of the form
Gy =P(y)¥(y). (3.79)

Substituting this into this differential equation and multiplying the equation by
the integrating factor v (y) gives the integral relation

2%
Pyt = 51; /0 exp (~2) [Ln (2)]% (20 + 1 - 2) dz. (3.80)
Using integration by parts simplifies the integral to give
1 2ky
142 __ T _ 2
Pyg? = o [ (exp (=2) [Ln ()" (204 1)) a2

+yexp (=2) (L () = 52 (@n 4 1) [ (exp (=) L (2)F)
n r2ky
+2 /0 exp (~2) Ln (2) Ln-1 (2) d2
= % [Qky exp (—2ky) [L, (2"’?1)]2]
1

+or [2n /0 i (exp (=2) Ly (2) Ln-1 (2)) dz] : (3.81)

Using the relation (Gradshteyn and Ryzhik, 1980),

Loy (¥) = Ly_y (¥) = Ly 5 (¥), (3.82)
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gives

Pyg? = 2kyexp< ~2ky) [Ln (2ky))?
4 [ exp (=2) Ln (2) (Lor () = L2y (2)) d

[2ky exp (~2ky) [Ln (2ky)]? - 4kny exp (~2ky) L, (2ky) LL_, (2ky)]

2l

+% [2n2 /(;%y exp (—2) (L,. (2) Ln_1 (2) = Ln_3 (2) Ly (z)) dzJ

1

= o [2kyexp (~2ky) [Ln (2ky)]? ~ dkny exp (—2ky) L, (2ky) L _a (2ky)]

+2k [271 /%y exp (—z) (—2L,1,_2 (2) Ln-1 (2) + Ln (2) L}, (z)) dzJ

n? [2ky
+F/0 exp (~2) Ly_5 (2) Lo (2)dz
1
= o [Qkyexp (—2ky) [Ln (2ky))* — 4kny exp (—2ky) L, (2ky) L _, (Zky)J

+21k 2n” [exp (~2ky) [Ln-, (2ky)] - 1]

+2]}f 271 ‘/02"-” exp ("Z) (L,ll_z (3) Ln-l (2) + Ln (‘7) Lrlz 1 (Z) + [Lﬂ—l (2)]2) dz

1
2k

[2ky exp (~2ky) [Ln (2ky)]? - 4kny exp (~2ky) L, (2ky) L, (2ky)]

1 2 2ky
+2k 2n? exp (—2ky) [Ln-, (2ky)]” -1 +/0 exp (—z) Ln_1 (2) Ln (z)dz

1, o [ A7l (- N AT () e
g2 [ e (=) (L (2) Lot (2) 4 L (2) L1 ()

i2n /m exp (—z) ([Ln-l (3)]2 = Ln-1(2) Ln (3)) dz

3 [2hvexp (~2k9) L, (R)]? — thny exp (~28y) L, (24) L. (2hy)]
1

2 % [2n exp (—2ky) [La-1 (2ky))? + 2n2exp (=2ky) L~y (2ky) L, (2ky)]
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+-Lop? /(; 2kyexp (—z2) (Ln-l (2) (Lyl;-z (2) - L;_, (Z)) + [Lny (2)]2) dz
gt [ " exp (=2) (n (2) (L2 (2) — L2, (2)) = Lo (2) Ln (2)) d2

% [2ky exp (~2ky) [Ln (2ky)] — 4kny exp (~2ky) L, (2ky) Ly _, (2Ky))|
+5-2nexp (~2ky) Ly (2ky) (2L (2ky) - nL (2ky))

4202 [ exp (=2) (= (Lot (I + (Los (2)?) de

+ 2 [ exp (=2) £ (2) Loy () = Lo () L 3}

1

oF | 2%y exp (—2ky) [Ly (2ky)]? ~ 4kny exp (—2ky) L, (2ky) L, (2ky)]

k4knyL1 1 (2ky) La-1 (2ky)
= yexp (—2ky) [Ln (2ky)]*
+2nyexp (~2ky) (Ly_y (2ky) Ln-s (2ky) — Lo (2ky) L1, (2ky)) . (3.83)

Therefore, solving equation (3.83) for P’ (y) gives

o (L3-1 (2ky) Loy (2ky) — L (2Ky) L1, (2ky))
P(y) = (1 +2n ( L. (2ky)}2

Integrating this equation from 0 to y gives

P(y) = (y + % [L—I':‘(T(Izczg)’—)D . (3.85)

Substituting (3.85) into the particular solution (3.79) and then substituting the
particular solution into (3.53) implies that C (X,T,7)G (y)exp (i0) takes the
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form

iAgexp (~ky) (yLn (263) + F L1 (2k)). (3.86)

The particular solution for the second differential equation (3.58) is not so
easily obtained. First, the right hand side of (3.58) is simplified by making the
substitution ¥ (y) = exp (—ky) L, (2ky) giving the equation

2
yH" + H' - (4k2y —k(2n+ 1)) H= —-2% exp (—2ky) x

(30 (20 By ko) + (22 ko))" + 20 k) 22, 8). (387

In order to eliminate the exponential term on the right hand side of this equation

(3.87) the substitution,
k
H(y) = Hy (y) = —exp (~2ky) ¥ (y), (3.88)
is made giving
yU' +(1-4ky) ¥ +k(2n-1) ¥
~ 2%k <3L,,L,’1_1 +(2) + 2L,,LZ-,_2) , (3.89)

where the argument of the Laguerre polynomials is 2ky. This argument suggests

making *he variable change, z = 2ky, giving the equation

2n —1

R R ) LR (T (L) +2La12,), (390)

where primes now denote differentiation with respect to z, and the argument of
the Laguerre polynomials is z.

This equation cannot be solved in general using variation of parameters or
other known methods for solving inhomogeneous differential equations. Thus it

must be solved for each individual value of n. This is done by substituting the
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Laguerre polynomials for each value of n defined by the formula (Gradshteyn and
Ryzhik, 1980)

i n+a ™
2(@)= 3" (—1)"‘( )—,, (3.9)
m=0 n—m m.
into the right hand side of equation (3.90). The following list of equations results:
25+ (1 - 22) Uy + (=3) Yo =0 when n =), (3.92)
20+ (1-22) 0, + (%) U, =(32—4) when n=1, (3.93)

20+ (1-22) Uy + (3) U = (32° - 1122+ 232 - 12) when n=2, (3.99)

U+ (1—22) 05 + (g) U,

(1 184, 584 ) 3
= (4z -+ - 60274 T4r —24) whenn=3,  (3.95)
7 1 47 ¢ 95 , 142 , 887
" _ ' L =2z 7 6, 7Y, 56 ___-T4 4 2903
20y + (1 - 22) \Il4+(2) U, wB: ~mt tigt 32 + 5 ?
—2352% + 170z — 40 when n = 4, (3.96)
"y ' 9 ig__sls 149 , 2606 5
2T 4 (1-22) W, + (2) Us = goo — s 1y — 52+ 682
. 1039 ,
—2472 +—2—z ~ 59522 + 3252 — 60 when n = 5, (3.97)

1y, 1, 107 . 43
2 ) Yo = opg00° ~ a3200° T 576°

209 5 203, 9841 ; 1607 ; 2660 ,

T240° T16° T 120 5 3
+14072° — 12602% + 5532 — 84 when n = 6, (3.98)

, 13) 1, T8, 203
22) U7 + (2 7= 1200600°  907200° T 86400°

3521 1o, 5353 o 25 6833, 142763 ; 3711

20 + (1 —22) Uy + (

207+ (1 -

T43200° T 1320° T727 TR0 7 T 380 ¢ T T30
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7574 , | 9653 ,

3 f 2 23662% + 868z — 112 when n = 7, (3.99)
15 1 191
lII" 1-— 2 \IJ' (_) = 15 214
e+ (1-2) U+ (5 ) U = oz 101606400

383 5 29 6329 ,, 45007 .,

3628800° 8400 86400~ 43200°

5197 o 39503 o 2032871 , 58481 3660
480 504 5040 40 10

+ 22+

~61322* + 65312° — 407422 + 1284z — 144 when n = 8, (3.100)
1
Vo +(1-2) %5 + (177> Vo= 48771107200 2 - 365718230400216
L9 1181 gy 38 g
40642560 11289600 129600
_ 3433 5, 929 507361 6 4 1296901
60480 1152 60480 20160

_ 810469 | 1512373 ; 35693 ¢ oonos  laoce s

1680 “ 1008 8
+12129z° - 65702% + 18152 — 180 when n = 9, (3.101)
and
19 1 299
20 1-2:)0 (—) = L9 _ 18
Y10+ ( ) Yo + 5 ) Yo 438939648000 658409472000

599 a7 1619 6, 48893 15 209711

14631321600 731566080 ° 609638100 ° 101606400 °
421 5 4999 ,, N 17809 ;, _ 288983 ,, 10664333 ,
1131007 9072 3024 © 6048 © 36288 °

1372283 4 , 4732123 , 284075 , s 4
os C T 008 " ar* + 212632° — 262242

1203
g°3z3 — 1006522 + 2475z — 220 when n = 10. (3.102)

+

Since the right hand side of these equations (3.92)-(3.102) is a polynomial of

degree 2n — 1, the solution to each of these equations is assumed to be & series of
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the form,
2n-1

Un= ) a2, (3.103)
k=0

so that each solution is also a polynomial of degree 2n — 1. By substituting this
series along with its derivatives into the differential equations, values for each
of the coefficients can be found. This is done by using a computer program,
Mathematica. The assumed series solution (3.103) is entered for the value of n
that is being considered. Mathematica is then asked to find the derivatives of
the series. Adding these together using the formulas given in equations (3.92)-
(3.102) and equating to the polynomials on the right hand side of the appropriate
equation in (3.92)-(3.102), Mathematica then solves for each of the coefficients,

ar. The results are summarized in the following tables:

n 0 1 2 3 4 5
28 856 2024 80772
a 0 —4 5 —77 221 4307
a; - -9 102 202 15924 75054
1 5 77 221 4807
an - - 16 1388 15364 343660
2 5 77 221 4807
an - - 1 _350 017 1010665
3 3 77 221 14421
a; - - . 7 3821 124494
4 1 663 48076
ar - - - 1 _13 30064
S 30 1326 4807
10 3671
8 - - - - 153 3933
ar - - - - 1 __ 865
7 504 10488
13
g - - - - - 3312
- . - - - 1
a9 12960

Table 3.1 ~ Series coefficients
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&g
a1
as
a3
84
as
ag
az
ag
ag
ao
aj
ajg
ap
an
ais
ale
a7y
ajg

aygy

6 7
442116 __ 17416304
32045 745085
__ 5123418 29756456
32045 745085
8913212 128207432
32045 745085
_ 17915506 _ 138802646
96135 447051
7894012 31414738
96135 149017
__ 4366978  _ 087288437
160225 11176275
8682241 864159590
1442025 33528825
_ 5435033 295876829
6211800 56897400
59953 2750701
730800 3793160
_ 991 2240299
208800 32341680
1 155563
6525 35154000
__1 8431
475200 46872000
_ 19
4536000
1
- = 23587200

8 9
850286006 __ 801925100
48612265 27378487

__ 2688062376 1888235690
9722453 27378487
6818230680 9354605480
9722453 27378487
— 21157693634  _ 24663598250
20167359 27378487
4629761710 24608201528
9722453 27378487
_ 57303200041  __ 75057625282
243061325 136892435
37328260117 97085888161
437510385 410677305
11979020955  _ 1705700025551
544457368 22997920080
7666325417 2355380027423
1884660120 137987574480
__ 51387457 __ 1030977858271
95024880 354825191520
40772833 120029361427
791874000 3268126764000
__ 72400151 __ 1956540301
20905473600 56836987200
115319 67435303
720878400 28418493600
__14n 1409077
305827200 119174432800
1 32791
130183200 7944955200
_ 1 ____3919
1524096000 41069306380
1
- 764080128
1
- ~124366233600

Table 3. 2- Series coefficients cont.

10
214918225916
9711234785

4178194798902
9711234785

2768588354232
1942246957

_ 11591083856827
5826740871

1456142057348
832391553

__ 8004283057208
6936596275

35872676266669
62429366475

_ 1038817447025699

4894462331640

571959382207301
9788924663280

_ 2135294760025933

176200643939040

247293495102877
129559297014000

_ 7779147847517
33932196837000

85495674833
4071863620440

_ 204867739
140409090360

1903323409
25018347009600

.__18940820 _
6491246791680

28013
351829094400

. 5543
3799754219520
1
62313753600

1
~12509779968000

These coefficients are substituted into the series solution (3.103) to form the par-

ticular solution to the second differential equation (3.89). In further derivations

these solutions will be denoted as ¥, (2ky.)

In summary, the particular solution for the differential equation, (3.58), is
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given as

k
Hy (y) = ~ exp (~2ky) Va (2ky), (3.104)

where Uy, (2ky) is the series solution given in equation (3.103) with coefficients
given by Table 3.1 and Table 3.2 and where solutions have been obtained forn=0
to 10.

The total solution for the O (€) can now be written as
K = h® + pH

=C(X,T,7)G (y)exp (i®) + D (X, T,7) H (y) exp (2i0) + c.e. + b(y; X, T, 7)

= % exp (—ky) [kyLn (2ky) + nL,-; (2ky)] exp (i0)

+£:—]E exp (~2ky) U, (2ky) exp (2i0) + c.c. + b (y; ¢, 7), (3.105)
where © = k(z —ct); A= A(£,7); U, (2ky) is the series (3.103) whose coeffi-
cients are defined by Tables 3.1 and 3.2; £ = X +2a2%k (2n+1)T;and b(y; X, T, T)
is the mean flow caused by the interaction of the fundamental mode with itself
and which will be determined in the O (€2) problem.

The corresponding boundary condition can also now be determined by taking
the O (€) solution (3.105) and the O (1) solution (3.43) and substituting into the
boundary conditions (3.50) to give

) _ _k[Aexp (i) + A*exp (-iO))* (1 + 2n) in [Ae exp (10) — Ag exp (—i@)J
pr=- a? - ka ‘

_k[A%exp (2i0) + A% exp (—2i@)]\p (0) - b(0; X,T,7)

> - (3.106)

where © =k (z —ct); A= A(€,7); U, (0) is the series (3.103) evaluated at y = 0
whose coeflicients are defined by Tables 3.1 and 3.2; £ = X + 202k (2n+1)T; and
b(0; X, T, ) is the mean flow evaluated at ¥ = 0 caused by the interaction of the
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fundamental mode with itself.

To facilitate the next calculation this solution (3.105) is written in the form
. 2k
M = %Q (y)exp (i0) + A?'Cz (y)exp (20©) + c.c. +b(y; X, T, 7), (3.107)
where
G (y) = exp (~ky) [2kyL, (2ky) + 2nLn, (2y)], (3.108)

G2 (y) = exp (—2ky) ¥y, (2ky), (3.109)

with ®,, (2ky) being the series (3.103) whose coefficients are defined by Tables 3.1
and 3.2.

3.5 The O (¢?) Problem

The O (€?) problem is formed by demanding that the sum of the coefficients of
the terms proportional to €? be zero after the asymptotic expansion (3.26) is
introduced into nonlinear stability equation (3.20). This results in the following

equation:
h£2) + hohoyhZ), + lzolmyhﬁ’, + (hoy)® hgr) = _h'(J} '~ % — 3h0h0yhilz)x

—3hohoy gy — hoh{®hY, — hoh{Dh, — 3hehORD — g, KORD,
—hoy KR = 3ho, KOGy — RORORE, — hoiigy hly ~ hoh®h(),
—hoh{PhQ) — hohPhyy — hoy KORL), — ho, KRS, — o, KORD,
—hORPRG), ~ hoy KRS ~ hoy KO — 2ho, KOKS, — ho, KORO)
~h R ~ (hoy)® By — 2hoy AR — 2ho, hORED — 2, hORO

2
- (h;°>) hi2 + hohl) h + hoh(®, B + 2hohle, b + hohQ, K
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+hORELAD + hoy AR + ho, RORD + hoy KO R + RO RO RO
2
+hohih + hohhE) + hohL D + KORGED + (h®)* R (3.110)

This equation is not solved for A®. Instead conditions for the solvability
of this equation (namely the Fredholm Alternative Theorem) establish equa-
tions governing the evolution of the envelope amplitude, A, introduced in the
O (1) problem and the mean flow, b (¥ X,T,7), introduced in the O (€) problem.
In order to obtain these equations the expressions for A (z,y,¢; X, T, 7) and
hO (z,y,t; X, T, T) as given in equations (3.107) and (3.43), respectively, and the
wedge profile, ho (y) = ay, for the steady state solution are first substituted into

equation (3.110) resulting in the equation,

B + oyh® + o’yh) 4 o?h) = — (bT + a®ybyyx + o?b, x)

1 1
+o(AxA* + A83) (3Kyu'y + 2677 + S §y¢"c;)
o (Ax AT + AAY) (! + 98 - 0'G - 2(9)?)

1 1
+o (A A" A5 (+E 0 + 500G = 00"+ o)

] 3alik ) .
+ (—gEAXTCl + %Axxyﬁ - 3a2lkAxxy¢> exp (i0)

- ((;—::Axxyq + %:;Aqu) exp (i0)

HLAL A" {BRUYY Go + Bk yc; + kG, — koG, — 2Py
HRP PG — KPUGY + kPG, — 2 — Ky
+2K7Y" G + k™" + 4k — b (1)° ) exp (i0) — A ppexp (i)
+iaA (KPyib, + kb — kyy"b, — kb — 2ky'b,+) exp (i)
+iaA (kbby, + kyipby,,) exp (i©)
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+B2 (y) exp (2i0) + Bs (y) exp (3i0) + c.c., (3.111)

where [, (y) and 85 (y) are the terms proportional to exp (240) and exp (3i0),
respectively, which will not be needed in the following calculations.

An examination of the right hand side of the O (¢?) problem (3.111) shows
that there are four parts to the particular solution where only the first two will
be discussed since they give the relevant information on the free amplitude that
is needed. The first part corresponds to the terms on the right hand side of
equation (3.111) which are independent of z and ¢. If & particular solution was
found for these terms this solution would be secular, that is, the solution would
be unbounded in either z or t. Thus in order to eliminate any such behavior

associated with these terms, the collection must be set to zero to give
br + a®yby,x + a?b,x = (AA%), (4k2y1,/)'1/) + 2k2z/:2)

1 1~ 1 "t " n
+o (A (GUe) = 500G~ 3 + )~ 97, )

1 1
+a (AAY), (—2 @) + SY¥G" - SW¥" G+ y¢¢”’> : (3.112)

The second part corresponds to the terms proportional to exp (+i®). In prin-
ciple, a particular solution associated with these terms can be constructed in the

form,
h? = N (X,T,7)T (y) exp (i0) + c.c. (3.113)

When this form is substituted into the O (¢?) problem (3.111), it implies that T (v)

is determined by

] 3a2ik
Niko®[yT" + " + k(2n +1 - ky)T] = —ﬁAerl + %Axxyfl - Ay

_ 2/64 _a_2zA 11_22_3.‘4 ! -A2Ac 6k4 ! 3k4 !
3o’k Axxyy o Axx¥81 — S Axx( 41 ( YW+ ylbfz)
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HIALA® (519G — 2Ky G + B G - BEGE + 3E%Gy)
+2'A2A. (_2k2,¢IC; _ k2yw éll + 2k2y¢m<~2 + k¢2¢lll + 4k3'l,[)2'l/}’ —k (wl)3)
+iaA (Kywb, + k2yb — kyy"b, — ky'"b — 2ky'b, + kb, + kybbyy,) . (3.114)

These two equations can be solved by first solving equation (3.112), since the
second equation (3.114) has mean flow, b, terms that need to be defined by the
first equation (3.112). First, the variable, z = 2ky, is introduced into equation
(3.112) to give

br+2ka? (zbzex +bax) = ak? (AA")y (4299 + 20 + 22/CY — 229" — 429"

+ak? (AA)x (4961 — 49"CL = 8 (W) + 2296¢)" — 220C; + 4zyy"), (3.115)

where primes now denote differentiation with respect to z. This equation can be
simplified further by using the relationship between X and T found in equation
(3.73) given by the variable

E=X+2%a’(2n+1)T, (3.116)
which gives the partial derivatives,
Or () = 2%k (2n+ 1) & (), 9x = &;. (3.117)
Substituting these derivatives into equation (3.115) gives the equation

[(2n+ 1)+ (b, + bo)]p = o (AA) (42 + 2% + 22003

o (AL), (~220/G) — day? + 4] — 447G,

+£— (A4 (-8 (W) + 229" — 229"y + 4y (3.118)
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The right hand side of this equation (3.118) can be simplified by using the differ-

ential equations for 9 and ¢,

2"+ + (2"; L g) Y =0, (3.119)
. ;'+c;+(2";1-§)<1=(2n+1—z)¢, (3.120)

(given in equations (3.35) and (3.77)) along with their derivatives taken with

respect to 2z :

Z¢III+2,(I)"+(2n+1_E)f(/)’—l’(/}:()’ (3.121)
2 1 4

. ” 2n+1 2 1

v+ (T -G ta=nrl-aw -y @)

These equations are solved for zy”, z 1> 2¢"" and z{}" and then substituted into
the right hand side of equation (3.118). After some simplifications, the resulting
equation is given by

[szz + bz + (272 + 1) b]f
k ! !
=52 AN (L + v —aw) ~8pp +97).  (3.123)

Integrating this equation once with respect to £ gives
b +b,+ (2n+1)b

k
= 55 (AA4) ($2n+ 1) v - 4 (&) - 8yu” +42). (3.124)

The right hand side can be simplified further using ¢ = exp (—z/2) L, (z) resulting

in the equation:

(AR exp (~2) (4 (0 + 1) [L])

zbu+bz+(2n+1)b=——&

_% (AA")exp (=) (8 (n+2) Ll +4(L3)" + 8L,.Lﬁ_2) . (3.125)
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vhere the argument of the Laguerre polynomials is z. The equation is now ready
to be solved.

In order to solve this equation, first of all, the homogeneous solution to (3.125)
denoted by by, (z) is found which is needed in solving the nonhomogeneous problem

using Green’s functions. In solving the homogeneous problem, the variable change
v=2[2n+1)2)"2, (3.126)

is made to give
ba, + ;l;b,,,, +by =0, (3.127)

This is just Bessel’s equation of order zero (Zwillinger, 1989) so that

b (2) = Jo[2 (2n+1)z
" Yo[2y/en+1)2]

Since our equation for b is of the Sturm - Liouville type, that is,

3

(3.128)

%(sz) +(2n+1)b=f(za§17.))

where f(2;£,7) is the right hand of equation (3.125), the inhomogeneous solution
can be found by considering Green’s functions. The Green’s functions corre-
sponding to this problem are the functions, K (2;7) , that satisfy the differential

equation, (Zauderer, 1989)
7]
~5, (CFK (@) + @n+ 1) K (29) = ~6(z~ ), (3.129)

with the boundary conditions:

K (0;7) =0, lim K (2;7) =0. (3.130)
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The differential equation (3.129) reduces to the problem

o (=2K (259) + 20+ ) K (57) = 0, 2 £, (3.131)

with the jump conditions

K (2;7) continuous at z = +, (3.132)
OK(zm] _ 1 (3.133)
0z 2=y v )

The Green’s solutions to this differential equation is identical to the homoge-
neous solutions of the original equation for b (3.127) multiplied by constants, R;
and R,, which will be determined by considering the boundary conditions (3.132)
and (3.133). Thus the Green’s solutions are

RiJo [2 (2n+1)z], 0<z<y<o0

K(z7) = :
{ Rg)’o[2,/(2n+1)z', 0<y<z<oo

since Jp(0) = 0 and lim,_.. Y, [2\/(2n+ 1)2, = 0. The first jump condition
(3.132) is met when

m%P(%+nﬁ=mum%+nﬂ, (3.135)

(3.134)

which means that

_ RY, [2 (2n+1)y

Jo [2,/(27: + 1)7’ '

The second jump condition (3.133) gives the equation

(3.136)

—R2y0 [2\/(2T1)7J (2n + 1)/2 4121 [2\/@]

%hﬂm+nﬂ
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+Ry (2n + 1)V2 412y [2,/(2n +1) 7] = -%. (3.137)
Solving for Rp and simplifying gives

- Jo
fa = (Yodo — YgJo) (2n + 1) 4172 (3.138)

where the argument of the Bessel functions is assumed to be 2y/(2n + 1) 4. Using
the identity (Gradshteyn and Ryzhik, 1980),

1

JoY{ = YoJ, = ,
0fg 0 7r(2n+ 1)1/271/2

(3.139)

simplifies this equation to

Ry =7Jy [2\/(271 +1) ’)’} , (3.140)

and gives the first coefficient as

Ry = % [2,/(2n +1) 7] . (3.141)

Therefore the Green’s function is given as

Y. 2 2n+ 1) J; (2n+1)2], 0<z<y<o0
K (z4) LR \/( n )’YI 0 \/ n+1) , <7 . (3.142)
7rJ0 2\/(2n+1)’7IYo 2\/(2n+1)z| 0<y<z<oo

Using this Green’s function to form the particular solution, by, of equation (3.125)

b, = 7Yy [2\/(2n+ l)z} /02 Jo [2\/(2n+ 1) 'yJ f(v&T1)dy
+nJy [2\/(277, +1) z] /:o Yo [2\/(2n +1) 'y] f(v€71)dy, (3.143)

gives
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where
f(z€,7) = —5’; (A& exp (=2) (4(n + 1) [Ln () +8(n +2) La () L., (2))

k% (Ad)exp (=2) (4 L.y ()] +8La () L2 , ). (3.144)

This forms the solution to the first differential equation (3.125) given in solving
the O (¢?) problem. Because of the dependence of this solution on the Laguerre

polynomials and thus on n, the function, b, will be denoted as
LA
b(y:&,7) = o5 1417 (€ 7) b, (3.145)

where b, is given by (3.143) and (3.144) with the coefficient k |A? /2a factored
out.

The second differential equation (3.114) can now be considered. First of all, it
is simplified in much the same manner as the first differential equation by making

the variable change, z = 2ky, resulting in the equation

m+1 ) 3a?i
- Z) P) = -—ﬁAXTCI + TAXXzCI - Ay

N2ik2a? (;r" +T 4 (

3a?i
2

Axyzv — a"’iAxng{' —oliAxxC +iA2 A%k (629'Co + 3zv(h)
HAAKS (59G — 829Gy + 429’y — 120¢) + 1207Gy)
HATATK (=80'G) — 42yCy’ + 820" Gy + By + 8y — 8 @")°)
+iaAk® (2b, + b — dzy"b, — 49"b — 8y'b, + 4yb,, + d29b,,,).  (3.146)

The right hand side of this equation can be simplified by using the relations
given in equations (3.119)-(3.122) and solving them for =Y, 2(y, 24" and 201"
These relations are then substituted into the right hand side of equation (3.146)
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and the equation is simplified to give

N2ik2a? (zI‘” +T 4+ ( 2n2+ 1_ Z—) 1‘)

2n+1
2

HAAK (829G + 429G + TyGy — 82y/(Y — 12¢/G)

= o?idg (— G+ %z{; - %w ~ (2 +1) ¢) — A
+HAPAK (=2 (2n + 1) ¢ — 129¢" — 49"y — d29¢y)’
HAT AR (~4 (20 + 1) G + 82" + 8y — 8 @)°)
+io Ak® (b + 4y'b, + 2 (2n + 1) b, — 49"b) .
+ioAk® (—8Y'b, + d3hb,, + 4z9bb,,,) . (3.147)
In addition, the function ¢, and the mean flow, b, satisfy the equations,

2n+1

2G5+ G+ ( -~ z) G = 4§w2 — W) - 2", (3.148)

k *
b= o= (AA")bs, (3.149)
2(Bn)s; + (bn), + (14 20) bn = (4 (20 + 1) g — 4(3)? — By + ¥*), (3.150)

(see equations (3.58) and (3.124)). These equations cen be differentiated with

respect to z showing that ¢, and b also satisfy the equations,

2n+1

3
6+ 207+ )G G= S - -, (315))

4 (bn)zzz + 2 (bn)zz + (1 + 2n) bz
=4(2n+1) ()" +4(2n+ 1) Yy" — 169'%" — 8™ + 2, (3.152)

Solving these equations for zb,,, 2Gy, 2b,;, and 2¢}’ and then substituting into
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equation (3.144) simplifies further to

N (zl‘”+1'"+ (2n2+ 1_ f) P)

1
1 2n+1 1 1
= gadec (- TG 326~ 2aw - 20+ ) v)¢
A’f k2 2 4 1 1 1 1"
_2ia2k2¢ + 2agA A" (3YGe — 4 (g — 4y — 4 Gat)

k2 2 4» n2 2,1 ’l,/)bn
+ﬁAA (8(2n+1)1,/)(¢v) +8(2n + 1) ¢y +T)

2
+§'°55A2A' (=2¢/ (b), = (20 + 1)) (bn), — 20760 — 20 (by),,) . (3.153)

This equation is now ready to be examined.

In Section 3.4, it was explained that by the Fredholm Alternative Theorem a
solution to an inhomogeneous ordinary differential equation written in the form
LF = @ exists if and only if

(¢,®) =0, (3.154)

where ¢ € Ker (E") , L4 being the adjoint operator to £. Equation (3.133) can

be rewritten as

' 2 1 =z -
(zI")-}-(n; —Z)P=<I>(z;§,'r), (3.155)

which is a self adjoint equation. Any solutions then that are in the kernel of
the adjoint of £ are also in the kernel of £, that is, they are solutions of the

homogeneous equation,

(zTe) + (2n L 5) T.=0. (3.156)

This is again the same equation as that obtained in the linear stability problem
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and the O (1) problem (see equation (3.40)) and its solution is given by

Ie (2) =9 (2) = exp (-2/2) Ln (2), (3.157)

where Ly, are the Laguerre polynomials.
Therefore the Fredholm Alternative Theorem gives

1 o/ 2n+41
gde || (~T G+ 556 = 320~ @n+1)9) v ds

—2i;4;k2 /0°° ¢2d2 + '%Az/l‘ [8 (2n + l) /:o (.‘/)2 (¢I)2 + "/’3'%//'”) dz]

% =
+oa A4 [ 006 - 4G - a0t - ey ¢

e [ (B2-2v0 s (2416 ), ) v

K A%Ar 20"b, — 20 (b dz=0 3.158
o AT [T (20" — 20 (50),,) iz = 0. (3.158)

In order to evaluate this integral, the substitutions,
¥ (2) = exp (~2/2) La(2),

1 (2) = exp(~2z/2) (2L, (z) + 2nL,_, (z)),

are made in the first two integrals where only quadratic terms of these functions

are found. This gives the simplification
2”A&/ exp (—2) [( —(n+1)z- (2n+1)) (La (2)] ]

2k2A€E /°°exp(—2) (nz = n(2n+1)) Ly (2) Ln-; (2) dz

A, foo
" %a?k? /0 exp (—2) [Ln (2))*dz
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k? 0o
+aaa A4 | [ 06 - 406 - 40 - 4y )y ¢
k? 0
+o g A [8 (2n+1) /0 (v @) +9%y") dz]
k? b,
b [ (Y 2 ), — (an + D), ) v

kz o0 n
fo A /0 (—2¢"b, — 200 (by),,) ¥z = 0. (3.159)

In order to use the orthogonality conditions for the Laguerre polynomials (see

equation (3.68)) the first two integrals are integrated by parts to give

N (27;1:; I)Aee / exp (=2) [[Ln (2) + nLn (2) Ln-s (2)] dz

- 2i;4;k2 / " exp(~2) [La ()P dz

+—k—A2A' [ 06 - /G~ 4wy - 4Gy ]
+£;A2 A [8 (2n +1) /O > () + vy dz]
2 o {4
+-2%A A /0 <'d§n ' (ba), — (2 + 1)y (bn)z) Ydz

k?
o AA° / (=20"by, — 20 (b)) ¥dz = 0. (3.160)

The orthogonality condition makes the first term of the first integral equal to one

and the second term zero. The second integral is also equal to one resulting in

the simplifications

(2n+1) A, k9. 20002 | 3\ g
o A£5—2m2k2+82a2AA(2n+1)/0 (¥ ()" +*u") ds

k?
oA | [ 806 - 406 - a0t — 4w ¢
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k? o (b, '
oo aar [ (—¢2 — 2 (ba), — 20+ 1)9 (bn),) ¥ dz
k2 AQA‘ o ”b b d
+27¢2 /(; (—2¢"by — 20 (. n)z) Ydz = 0. (3.161)

The rest of the integrals are harder to evaluate. However they first can be

simplified somewhat using integration by parts resulting in

(2n+1) _ A, _52_ 2 a[_‘_l. 2 _]f o 13,01 ]
e~ g o A 5 (n+ 17+ 3 (1) [ utya

+2kT:QA2A‘ /0‘°° (3¢2 _ 4(¢I)2 _ 8’(/)1/)”) Codz

k2 2 ae (1 o "2 " '
oA [ (397 - 200)" - 4w +2(n+ 1)) bods

k2 ) %
tomg [AA - 497G + G
Ky 0
+5 5 AA (20t ~ (21 + 1) %2, — 29 ()] =0. (3.162)
Substituting in 3 from equation (3.157) gives

2 +1 AT k2 * 4 !
(Zkz )AEE_WJr_z_a;A?A [§(2n+l)2+4C2(0)+2(2n+1)C2(0)]

+2%A2A‘ [2(2n + 1) by (0) + 2 [ba (0)],]
A (0 [ o0 (=2) (320 () s @) + [2s ()] 2 ()]
b A [(8) [P e () 1 () o () G ()]
B [ e (2) (10 1) U 0 4) b () ]

_2—ZA2Aa [/0°° exp (~z) (2 (n+2)L,(z) L}_, (z)) & (2) dz]

N % A4 [(_2) | exe(-2) ( 22, (2)] +2La () L2, (z)) ba (2) dz]
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+§§IZ—1A2A‘ (2n +1) /0 L (D (Ln () + L, (2)) exp (~22) d2

+§2’%A"’A‘ (2n+1) /0 ” [La (2)]° L2_, (2) exp (—22) dz = 0. (3.163)

The first remaining integral is evaluated by considering the Laguerre polynomi-
als (see equation (3.91)) and the series solutions, ¢, (2), (see equation (3.103) with
the coefficients given in Tables 3.1 and 3.2) for different values of n. These poly-
nomials are multiplied out using the computer program, Mathematica, which is
also used to integrate the resulting polynomial. The last integral involves quartic
powers of the Laguerre polynomials and thus the orthogonality condition cannot
be used to simplify the terms. This integral, therefore, is also evaluated by con-
sidering the Laguerre polynomials for different values of 7 and using Mathematica
to integrate the polynomials. The second and third integrals contain the mean
flow b whose value involves calculating integrals of Bessel functions multiplied by
Laguerre polynomials (see equation (3.143)). These two integrals could only be
evaluated numerically (see Appendix A) for different values of n.

The results from the calculations for these four integrals are added and equa-

tion (3.163) becomes

(2n +1) A, k> ., ..

where [, is given by the following table of values:

Po 3.3638623
B 98.575693
B2 168.13063
Bz 539.89187

By 536.44862
Table 3.3 — Beta Values
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Most importantly, it is noted that the sign of this parameter, £, is positive and
seems to be growing with n. (Higher n values could not be obtained because of
computer limitations.) Also in calculating these values it is noted that the com-
puter calculations involving the mean flow, b, contribute a large positive portion
of the values for g,.

The equation governing the free amplitude, A, derived by using the Fredholm
Alternative Theorem then is given by

(2n+1) A,
ok ke 2ia2k?

k2 2 g
+ o5 AAB, =0, (3.165)
which when rearranged gives the Nonlinear Schrédinger Equation
z'w”
Ar = —-Age + kB, A%A, (3.166)

where,
W' = —2a% (2n + 1), (3.167)

and B, is a positive parameter.

131



Chapter 4

Solutions to the Nonlinear

Schrodinger Equation

4.1 Introduction

In chapter 2, a frontal model for buoyancy-driven flows was developed. The
Hamiltonian formulation of this model was used to show that all steady-state
solutions to this model are linearly stable and that certain steady state solutions
meeting specific criteria are nonlinearly stable. Specifically, the steady state solu-

tion given by the wedge-front,

ho (y) = ay, (4.1)

was found to satisfy these criteria and was therefore nonlinearly stable in the sense
of Liapunov.

In chapter 3, the weakly nonlinear evolution of this wedge front was examined.
The leading order solution, with respect to the amplitude expansion parameter €,
included a free complex valued envelope amplitude function, A (ex,et,€%t). The

O (€?) problem, however, demonstrated that the free amplitude, A, satisfied the
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Nonlinear Schrodinger (NLS) equation given as
/]
A= %—A« +ikiB, |AP A, (4.2)

where
w'=-2a%(2n+1), (4.3)

where [, is a positive parameter whose values dependent on n are given in Table
3.3, where 7 is a slow time variable given by 7 = €2, and where the variable §is
defined by

E=¢ (:z: + 202k (2n+ 1) t) . (4.4)

The evolution of this amplitude, A, is determined by the solutions to the NLS
equation (4.2). Once these solutions are determined, the complete form of the
nonlinear evolution of the perturbations to the wedge-front (4.1) is determined.

Therefore, in this chapter several of the solutions to the NLS equation are exam-

ined.

4.2 The Stokes Wave Solution

The first solution considered is the Stokes wave solution (Newell, 1985). The
derivation of this solution begins with first rewriting the complex amplitude in

the form
A =aexp(ig), (4.5)

where @ = a(£,7) and ¢ = ¢(£,7) are both real functions. Substituting this
form (4.5) into the NLS equation (4.2) gives, using the real and imaginary parts,

respectively,
" w”
ar = —Ww Qg — —é—aqﬁg, (4.6)
b= L5 (402 4 k1,07 (4.7)
TT 24 2\ e '



Newell (1985) explains the physical meaning behind these equations by exam-
ining the underlying wave motion of the fundamental mode of the perturbation
flow given by

h® = Ay (y) exp (ik (z — ct)) + c.c.,

= ay) (y) exp (i (k (z — ct) + ¢)) + c.c.. (4.8)

Newell defines the total local wavenumber, k, as the = derivative of the total phase

given by,
P =k(z—ct)+9, (4.9)

giving

k=k+ 6¢5, (410)

and the total local frequency, &, as the negative ¢ derivative of the total phase
giving
& = ke + cype — €20 (4.11)

The imaginary part of the NLS equation, that is (4.7), then expresses the change
in the local frequency at the O (e?). Also, if the conservation for the number of

waves is considered as follows

0= (D), + (~2,), = k¢ + &,

, W fa ,
= ¢y — cyye + €2cotee — €8 (7 (f)f — W behee + 2k4ﬁnaae)
w' ra
= gg, — ¢ (7 (f)f — " Peee + 2k4ﬂnaae) , (4.12)

and the imaginary part (4.7) is differentiated with respect to £ to give

w" fa
b= (f)e ~ " Bedee + 2k Paaay, (4.13)
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they are shown to be equivalent statements. Thus equation (4.13) expresses the
conservation of the number of waves or crests as well. The real part . of the NLS
equation (4.6) expresses the conservation of wave action (Newell, 1985).

The Stokes wave solution to these equations is given by the monochromatic

wave form (Newell, 1985),
a = ag, (4.14)

¢ = k*BnalT + const, 4.15)
a?

where ag is a constant. Using this wave form in the total phase (4.9) gives
S=k(z-ct)+¢(7)

=k (z — ct) + e’k*Bnalt + const., (4.16)

where the total local wavenumber (4.10) and total local frequency (4.11) are now

given as
k=k, (4.17)

& = ke — €’k*Bnal. (4.18)

Examining the local wavenumber (4.17) and frequency (4.18) shows that there
is no dependence on the variable . Using the monochromatic waveform, (4.14)
and (4.15) in the amplitude (4.5) gives the spatially independent amplitude as

follows
A = aexp (id) = agexp (ik"ﬁnagr + const.) . (4.19)

This amplitude is known as the Stokes wave.
The Stokes wave possesses an interesting property that could lead to instabil-

ities. The phase speed of the Stokes wave is given as

=Y BT ER Pnlp ¢ — €2k*Bqal, (4.20)



where c is the phase speed of the underlying linear wave structure and equations
(4.17) and (4.18) have been used. Examining this phase speed (4.20) shows that it
is dependent on the amplitude, ag, of the wave. This means that the wave motion
near the peak or the trough of the envelope described by A, travels faster than the
motion on either side of the peak. If the wave motion reinforces this effect, then

instabilities known as Benjamin-Feir instabilities could develop (Newell, 1985).

4.3 Benjamin-Feir Stability

In Section 2.7, the wedge—front was found to be nonlinearly stable for the frontal
model. Therefore all the solutions of the frontal model and thus of the NLS
equation should be stable. Newell (1985) demonstrated how the specific Stokes
wave solution can be examined for modulational or Benjamin-Feir instabilities.

Newell (1983) begins this stability analysis by perturbing the Stokes wave
solution given by equations (4.14) and (4.15) in the form

a=ao+4, ¢ = k*Braf7 + ¢, (4.21)

where @ and ¢ are assumed small perturbation variables. These perturbed vari-
ables are substituted into the real and imaginary parts of the NLS equation given
by equations (4.6) and (4.7), respectively. Neglecting quadratic and higher order

perturbation terms gives the linearized equations,

"

&., = ——2—005&, (422)
"~
k*Bual + &, = %Z—i’f + 2k*Braod. (4.23)

A single equation is formed by differentiating the first equation (4.22) once
with respect to 7 and the second equation (4.23) twice with respect to £. Adding
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the results gives the combined equation

_ W 2~ 5
Qry = — (—2—) aeeee — w"k4ﬂnaga&. (4.24)

Since the coefficients of this equation (4.24) are independent of £ and 7, a

normal mode solution of the form,
a = Cexp (irf +o1), (4.25)

is substituted into equation (4.23), where r and o are, respectively, a wavenumber
and growth rate and where C is a free amplitude constant. This substitution gives

the dispersion relation

" 2
o2 =— (?> ™ + W'k Bralr?, (4.26)

Examining the normal mode solution (4.25) shows that if o is purely imaginary
then the solution merely oscillates in time. However if ¢ has a positive real
component then the perturbation amplitude, a, grows exponentially with time.
Therefore the sign of 6? must be determined by examining the right hand side of

the dispersion relation (4.26). The relation
W' =-2a*(2n + 1), (4.27)
can be substituted into the dispersion relation to give
o= - [(a2 (2n + 1))27'4 +22*(2n+1) k"ﬂ,,agrz] . (4.28)

Since B, is a positive parameter (see Section 3.4), the right hand side of this
equation (4.28) is negative definite. Therefore 02 < 0 and ¢ is purely imagi-

nary meaning that the perturbation amplitude merely oscillates in time without
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increasing in size.

The Stokes wave solution,
A =ggexp (z’lc‘ﬁ,.agr + const) , (4.29)

is therefore stable which is consistent with the conclusions obtained using the
Hamiltonian formulation (see Section 2.7). This stability necessarily depends on
the fact that the parameter 4, is positive. Since, as noted earlier (Section 3.5),
the generated mean flow significantly contributes to making this parameter G,
Positive, the mean flow is a stabilizing influence on the evolution of the wedge-

front.

4.4 Plane Wave Solutions

4.4.1 The Derivations

Since the coefficients of the NLS equation (4.2) are independent of £ and 7, normal
mode solutions or plane wave solutions can also be formed in addition to the Stokes
wave solution. Normal mode solutions for the amplitude, A, are assumed to be of

the form

A =agexp [i (A + Q71)], (4.30)

where @, A, and Q are assumed real. If equation (4.30) is substituted into the NLS

equation (4.2) the corresponding dispersion relation is derived giving
Q= o’ (2n+1) + k*B, |aof. (4.31)
Thus the plane wave solution (4.30) satisfies the NLS equation provided the dis-

persion relation (4.31) is satisfied.
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The complete nonlinear evolution of the wedge-front is given as
h=oy+eh® (2,3,) + bW (z,9,t) + 0 ()

= ay + eAexp (i0) Ly (2ky) exp (—ky)
i ,
+€2EA€ exp (i0) [2kyL, (2ky) + 2nL,_, (2ky)] exp (—ky)
+e"’§A2 exp (260) ¥y, (2ky) exp (—2ky) + c.c.

k
e AP b (556,7) (432

where equations (3.43) and (3.105) have been used and where © = k(z—ct),
¢ = —ko?(2n+1), and £ = €(z + 2ka® (2n + 1)t) and where U, (2ky) is the -
series solution given in equation (3.103) with coefficients given in Tables 3.1 and
3.2 and where b, is the mean flow given in equation (3.143).

The plane wave solutions can be substituted for A into this description (4.32) of
the nonlinear evolution. Using the point generating programs given in Appendix
B.1 and the graphing program SpyGlass, Figures (4.1)~(4.4) are constructed to
give contour graphs of the perturbed front for these nonlinear plane wave solutions
of the amplitude function, A.

In these contour plots, the slope of the wedge front, a, the wavenumber, &, the
wave::amber of the plane wave solution, A, and the amplitude of the plane wave
solution, ag, are all set equal to 1.0 for simplicity. The plots give a picture of the
complete flow for ¢ = 0. The value chosen for ¢ for all four plots is 0.25 which is
quite large so that the effects of the perturbation can be seen on the total flow.

In each successive plot the value of the integer, n, is increased beginning with 0.
As n is increased the complexity of the flow increases as the Laguerre polynomials
describing the flow increase in degree. In the first plot for n = 0, there is simple

wave-like interface (contour height of 0.0) and the effects of the perturbation
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quickly die out as y gets large (~ 2). In the second plot for n = 1, the flow also
dies out quickly but the interface is more complicated and seems to be forming

eddies. For n = 2 and n = 3, the interface gets more complex and yet the

perturbation still dies out by y ~ 4.
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4.4.2 The Total Plane Front
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Figure 4-2: Total Plane Front -- n=1
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Figure 4-3: Total Plane Front -- n=2

4.0
— 37—

-2.9

R U NG
2.0 ‘/\/\/'2-1\/\/\

VAV AYSRN
AN AN A

Cross Front

0.1

2.0 , ,
5.0 0.0 5.0

Along Front

143



Cross Front

2.0 :

Figure 4-4: Total Plane Front -- n=3

Along Front

144



4.5 The Snoidal Wave Solution

4.5.1 The Derivations

The third solution given to the Nonlinear Schrédinger equation describes a quasi~
periodic solution for A (€,7). In order to find this solution, the NLS equation is

simplified somewhat by introducing the new independent variables

k4 A 1/2
g = —k*B,r. (4.34)

Substituting these variables (4.33) and (4.34) into the NLS equation (4.2) gives
 the standard form of the NLS equation

'iAq + Ayy — A%2A* = 0. (4.35)

Following methods used by Drazin and Johnson (1989), the amplitude is now

assumed to have a real and imaginary part in the form
A=aexpli(¢—mg)], (4.36)

where a = a (Y, g) is a real quantity; ¢ = ¢ (Y,q); and m is some constant value.
Substituting (4.3) into the standard Nonlinear Schrédinger equation (4.35) and

separating out the real and imaginary parts gives the following set of equations:
aq + 2¢yay + agyy = 0, (4.37)
ma ~ ¢ea + ayy —a(gy)? - a® = 0. (4.38)

The snoidal wave solution is a travelling wave solution so a new varizble defined
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as

Y=Y - kg, (4.39)

where & is the velocity of the travelling wave, is introduced into equations (4.37)

and (4.38). This gives the equations
—Kay + 2¢¢aw + a¢,,,,,, = 0, (440)

ma + Kya + ayy —a(¢y)? — a® = 0. (4.41)

In order to solve these equations, the first equation (4.40) is initially simplified.

Multiplying equation (4.40) by a and integrating once with respect to Y gives
—§a2 + ¢U’a2 = Cy, (4‘42)

where c; is a constant of integration, so that

1 Cy

bs = (l{ + E) : (4.43)

Equation (4.43) can now be used to simplify the second equation (4.41) to give

a —a"’-—ma—l—ifa+c—f (4.44)
e 47 4a¥ ‘

If this equation (4.44) is multiplied through by ay, it can be integrated once to
give
1 K2 c?
2 _ 14 K™Y 9 _ 4
(ay)" = 50 <m+ 1 ) a‘+ ¢y 2 (4.45)

where c; is another constant of integration. In order to simplify yet further,

equation (4.45) is multiplied through by 4a? to give

(2aa,)? = 24° — (4m + 52) a* + cpa? - . (4.46)
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The variable r = a? with r, = 2aa, is introduced into equation (4.46) to give the

simplified equation

2 2

(rg)2 =2 (r3 —2 (m + %) r? 4 cor — f21> =R(r). (4.47)

Different solutions to the NLS equation can be formed depending on how many
roots exist to R(r). The roots of this equation however depend on the value of
the integration constants ¢; and c,. Therefore the behavior of the resulting snoidal
wave will depend on the values chosen for ¢; and c,.

Following Drazin and Johnson (1989), the first thing that is considered in
this equation is the sign of R (r). Since ry is a real quantity, its square will be
positive and thus R (r) must necessarily be positive. Therefore in what follows
it is assumed that only r values for which R(r) is positive will be considered.
Secondly, since R (r) is a cubic polynomial with real coefficients, it follows that it
possesses at least one real root. The largest real root and possibly only real root
of R(r) will be denoted by 7. Since lim,— R (r) = o0 it is important to note
that R (r) > 0 for all 7 > r; and thus (ry)? is positive and ry real for all r > 7.

Drazin and Johnson (1989) demonstrate that there are three different classi-
fications of r; that need to be considered. The first classification is that r, is a

simple zero. If r; is a simple zero R (r) can be Taylor expanded around 7, so that
R(r)=R(n)+R (r)(r =) +0((r—1)?)

=R (rn)(r-m)+0((r-mn)?), (4.48)

for r — ;. This gives the differential equation

(ro)* =2R (r1) (r —=11) + O ((r —m)?). (4.49)
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Solving equation (4.49) for r gives
r=rit 3R (m) (0 -2+ O (- wi)Y), (4.50)

where 9, satisfies 1 (¢1) = r1. Examining equation (4.50) shows that since Ty (Y1) =
0 and ryy (¥1) = R’ (1) # 0 there must exist an extreme point at ¢ = ;. This
extreme point will be a maximum if ry, (1) = R (r;) < 0 and a minimum if
Tww (Y1) = R'(r1) > 0. In either case, the sign of Ty changes across r = r; and
thus for r < 7y, r is increasing with ¢ and for r > Ty, T is decreasing with v or
vice versa.

The second classification is that 7, is a double root which would make R’ (r) =

0 so that the Taylor expansion of R (r) becomes

R(r) = 5"2(&) (r - r1)2+0((7‘—r1)3), (4.51)
with the resulting differential equation,

(re)” = B (r) (r = 1)’ + O ((r - )*), (4.52)

as 7 — 7). Again in order that r,. be real, its square must be positive so R" (ry) >

0. By neglecting the O ( (r— 7‘,)3) the solution for  can be found to be
r—~71;~ Kexp [:t (R" (r)))"/? ¢‘] as ¥» — Foo, (4.53)

where the signs are vertically ordered throughout. This wave has only one peak at
¥ = 0 and approaches the constant 7, as 1) — +o0. As will be shown in the next
section, equation (4.53) describes the asymptotic structure of the soliton solution

to (4.47) as 3| — oo.
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Finally the root r; could be a triple root. This would mean that
3 %Y 2 c 3
R(r)=r"~-2 m+_|r +c2r—5=(r—r1) . (4.54)

In order to make R (r) a perfect cube in this way, values for the constants must

be set at )
4 2
=3 (m + %) , (4.55)
4 2\ 3/2
=37 (m + %) , (4.56)

with the root r; being given as
2 K?

When this occurs the differential equation becomes

ry = ( - g (m + ";))3/2. (4.58)

This is a simple first order differential equation that can be solved for 7 to give

4 2 2
T=m+§(m+%>, (4.59)

where c; is another constant of integration. This equation, however, is unbounded
at 1 = —c3. Therefore this solution is discarded since it is not bounded for all 1.

In summary, bounded solutions may exist to the Nonlinear Schrodinger equa-
tion if 7 = r; is a single root in which case r, changes sign across r = r; or if
T = 7y is a double root in which case » — r; only as ¥ — +o00. However within
these two classifications, bounded solutions only exist if the other roots of the
cubic equation meet certain conditions. In the case where r = 7, is a double root

the only possible case is that the other root 7, is a simple root. This solution is
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discussed in the next section.

In the case where r = 7, is a single root, r = 71 can, first of all, be the only

root of R(r). Therefore r = 7, will be the only point at which r, equals zero

and as shown earlier the sign of r, will change sign at r = r;. This means that

everywhere except at r = ry, 1y is either positive or negative and r is either
» Ty

increasing or decreasing with 1. As 1 — 00, then, r — %00 and the solution will

be unbounded. Thus the first case where r; is a simple root and the only root

must be discarded.

Secondly, r = r; can be a simple root and a second root, r = 75, can exist as

a double root of R(r). This can be written as
R(r)=(r—r)(r —ry)?%, wherer, < 1.
with the resulting differential equation,
re = V2(r —r)/? (r—my).

Solving this equation gives the value

- 1/2
r = (r; — ry) tan® ((7‘] 3 TQ) 1/1+C4) + 7.

This solution is not bounded for

Ty — 19\ /2 _ 7
( 2 ) "./’+C4— 2,

where 7 is any integer and thus must be discarded.

(4.60)

(4.61)

(4.62)

(4.63)

Finally, r = r; can be a simple root of R (r) and two other roots, 7 = r, and

T = 13 can also exist which both necessarily must be simple roots. In this case,

R(r)=(r—mr)(r—m)(r—rs),
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and
ry=V2(r- 7‘1)1/2 (r— 7'2)1/2 (r—rs)'/. (4.65)

This case gives the snoidal wave solution.

As established previously, R (r) > 0 in order to obtain a real solution for r (3).
Drazin and Johnson (1989) consider the situation where R (r) 2 0 for r € [r3, ry]
and r > r,. The roots 7y, T2, and r3 are all simple roots and as found previously,
7y will change sign across these roots. Therefore in the region r > 1, ry, will not
change sign and so 7 is either increasing or decreasing with 1. Thus for all r > 1,
7 — 100 as 1) — 0o or in other words the solutions are unbounded and must be
discarded. As a result, the values for » :+* . restricted to the region [r3, ry).
Since ry and r; are both simple roo.. t»*or of r around these points is

| approximated by
1.
T =Tast SR (r23) (U = ¥aa) + O (6 = 3)?) (4.66)

as 1 — 193. This shows that r is algebraic around r9 and 73 and therefore these
points will be separated by only a finite distance. Also, as a result of the fact
that they are simple roots, the sign of ry, will change at these points. Thus, r
will increase from r;3 to 7, but then since the sign of ry, changes at r,, r will start
decreasing again towards 3. Once it reaches 73, again the sign of r,, changes and
once again 7 increases towards ry. Thus r will oscillate between 7 and 73 and it

will have a periodic solution. The period of this solution is given as

T2 dp r2 dr
2 [FI 2/ — (4.67)
r3 Ty 3 [2R (7‘)]

The form of the periodic solution can be obtained by examining the differential

equation
Ty = \/.5.(7' - rl)l/2 (r- r2)1/2 (r - 7‘3)1/2. (4.68)
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Solutions to this equation (4.68) are given implicitly by

1 ds
Vi et

Y =1

, where 7y > 1y > 1. (4.69)
8 — 1'3)]1/ 2

In order to solve this implicit equation (4.69), Jacobian elliptic functions must
be considered (Milne~Thomson, 1950). First of all a change of variables in equa-
tion (4.69) is made by using the variable,

= (s""")m, (4.70)

Te—T3

to give the new integral equation,

2 \V2 B dd
V=it (rl - 7‘3) /o (1-M32)%(1 - g2)/* )

where B = (r —13)"? (r, - r3) Y2 and M = (ro —r3) /(r1 —73). This is one
form of an integral describing the Jacobian elliptic function, sn(+). In order to

solve for this function, a second change of variable is made so that,
® = sn (v|M). (4.72)

With B' =sn~! (B|AI), this variable (4.72) changes the integral equation (4.71)

again to
9 \I2 ;B en (v] M) dn (| M)
Y=qs+ ( _ ) / ) 172 2 72,
7L — T3 0 (1 - Msn?(v[M))"* (1 — sn? (v] M))
2 \Y? (B cen(v|M)dn (v]M)
=Yat (rl - r3> o dn(v|M)cn (v]M)dL’
9 1/2 B'd
. (n = Ta) " av. (4.73)
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This equation (4.73) simplifies to

1/2 - 1/2
1/)=¢3+( 2 ) sn‘l((r r3)
T —7T3 Tg—7T3

which can be solved for the variable 7 to give the solution,

To—T3 .
— ra) , (4.74)

™ —T3

7 = (rp — r3) sn? [ (T) ” (¥ ~ ts)

2= ’3] + 73, (4.75)
Ti—7T3

where 73 > ry > r3. This snoidal solution (4.75) is bounded and periodic with

period,

2 / " ds (4.76)

3 [(s—r1) (s —r2) (s — m5)]'/%
A special limit of this solution can be found by using the identity (Milne-

Thomson, 1950),
sn (u|1) = tanhu. (4.77)

In order to find this limit, the variable M is equated to one or

270 g, (4.78)
rh—r3

which is equivalent to stating that r; = ry. Therefore this reduces to the case
where r; = 73 = r is a double root and r3 = r is the other smaller simple root.

Substituting the identity (4.77) into the solution (4.75) gives the solution
—ra\1/2
R [ BT S) EE T

This is the sclution that will be discussed in the next section.
An exact solution for r can be found by finding values for r;, r, and r3 so that

they are simple roots of the cubic equation R (). The values of 77, 75 and r3 will
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be simple roots of R(r) if
R(r)=(r—r)(r—r)(r —m) withr; >ry >y, (4.80)

or in other words,
rd—2 m+'g2 2 4 o1 4
4 S

=r’—(ri+r+ r3) 12 + (r17rg + rors + TIT3) T — T1ToT3. (4.81)

Because r = a?, the variable r must be greater than or equal to zero. This means
that the minimum value of r, that is, 73, should be greater than or equal to zero.

In order to simplify equation (4.81) somewhat r; is set equal to zero so that
K2 2
) (m + I) r? 4 cor — 5’ =7% = (r1+ 1) 2+ (1) 7 (4.82)

It is obvious that ¢; = 0 aud thus the resulting cubic equations on both sides can

be factored to give

T (7‘—1?") (r—R*) =r(r—r)(r—ry), (4.83)
where
_ K2 2\ 2
re=R"= (m+T> :tJ(m-i-Z') — Co, (4.84)

and where the value of ¢, # 0 then will depend on the boundary conditions. The
exact solution for r is fum. . Ly substituting these chosen values for T1 and 73 given
in equation (4.84) and the assumption 73 = 0 into equation (4.75) to give
R\ /2
r = R sn? [(-—) (¥ — 1)

R
B (4.85)

2

where R* is given by equation (4.84).

Going back to the original variable a, the real part of the amplitude solutior,
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gives

Vi=a=(R)"m [(-’*2—)/ (%~ o)

The second function of the NLS equation, @, can be found by solving the

R-
E;] . (4.86)

resulting imaginary part of the NLS equation (4.43). This equation is simplified by
substituting equation (4.86) into equation (4.43) giving the d*Rerential equation,

K
by =73 ('H' '5) =3 (4.87)
since ¢; = 0 for this specific solution. The solution to this equation is simply
[

where the constant of integration is assumed to be zero. Thus the complete snoidal

solution using equation (4.86) and (4.88) in equation (4.36) is given by

. +\ 1/2 -
A= (5) " exp (i (S0 - mg) o [(RT) -l |
. . ) R\ V2 R-
= (R’) exp (z (§¢'+mk ﬂ,,'r)) sn (—2—) (¥ —s) | (4.89)
L
where . 12
o= () €+ (4.90)

and R* = (m + 543) + \/ (m + "72)2 — ¢p With ¢3 # 0 as a constant of integration
whose value depends on the boundary conditions.

In the Figures 4-5 and 4-6, the amplitude function, A, given by (4.89) and
(4.90) is depicted alone. The first figure (4~5) shows the solution when R~ = R,
that is, in the Iimiting case of when the snoidal function becomes the hyperbolic

tangent functicn. In order to achieve this the parameters are set so that m = 0,
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k =1, and ¢; = 0.25. ‘Che rest of the parameters are chosen arbitrarily so that
k=1, a =1 and € = 0.025. The simplest value for n, that is, n = 0, is also
chosen. The hyperbolic tangent structure can be easily seen in this figure.

Figure 4-6 shows the amplitude where the constants have been chosen arbi-
trerily asm =4,k =1, k=1, a =1 and ¢, = .25 so0 that R* = ¥ + 3\/2. The
simplest value of n, n = 0, has again been chosen. These parameters show that
this amplitude function is bounded and quasiperiodic. Even though the snoidal
function is periodic, the amplitude function involves multiplying this solution by
zn expenéntial and thus true pericdicity is lost.

Sinuiar to the plane wave solutions prescated last section this sn~idal wave
sotution (4.89) is substituted into the cor.plete nonlinear evolution of the wedge-
Bront given by equation {4.32). "Tie point generating programs for this solution
is given in Appendix B.2. Pussing the generated coordinates through SpyGlass
yielded Figures 4.7-4.15.

Figures 4-7 to 4-11, however, illustrate the perturbation thickness alone. This
is achieved by running the programs with the basic state, ay, oniitted in the
fun-tion. Figure 4-7 is the total perturbation thickness with the parameters set
equal to the parameters used in graphing 4-5. the hyperbolic tangent limit. The
dotted lines show negative perturbation thicknesses whereas the solid lines show
positive perturbation thicknesses. As will be observed, this perturbation flow has
many of the same characteristics as the solitary perturbation wave flow. Figure
4-8 is the total thickness with the same parameter values as those chosen for
Figure 4-6. The quasiperiodicity is again evident in this figure. In Figure 4-9,
the domain from Figure 4-8 is simply extended to show that this perturbation
flow does in fact exhibit definite quasiperiodicity.

Figures 4-10 and 4-11 are identical to Figures 4~7 and 4-8, respectively, except
that the value of € has been increased by tenfold so that the magnitude of the

perturbation thickness has increased. The periodicity is again evident. These are
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the perturbations to which the wedge-front is added in creating Figure 4-12 and
4-13.

The total snoidal front is shown in Figures 4-12 to 4-15. The parameters set
for Figure 4-12 are again identical to the parameters chosen for the hyperbolic
tangent limit shown in Figure 4-5 except that the larger ¢ = 0.25 is chosen so
that the effects of the perturbation can be seen on the flow. Figure 4-12 shows
that the hyperbolic tangent amplitude gives the flow a basic periodicity except
for a small nodal ' vint at £ ~ —2. Figure 4-13 is the total snoidal front with
the parameters chosen to be the same as for Figure 4-6 except that again € is
increased to € = 0.25 so that the effects of the perturbation can be seen. This
flow has a definite periodicity.

In Figure 4-14 and 4-15 the same parameters as for Figure 4-12 and Figure 4-
13, respectively, are used except that this time the value for n has been increased
to 2. The basic structure of Figure 4-12 and Figure 4-13 is repeated in Figure 4-
14 A4 Figure 4-15, respectively, except for some increased complexity. In both of
thes. ilows also, a nodal line exists at y ~ 2. This occurs because of the increased

complexity of the Laguerre polynomial: with n.
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4.5.2 The Snoidal Amplitude
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Figure 4-5: The Snnidal Amplitude - Hyperbolic Tangent Limit
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4.5.3 The Snoidal Perturbation Thickness

Figure 4-7: Gravest

Mode -~ m=0 -- Small Epsilon
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Figure 4-8: Gravest Mode -- m=4 -- Small Epsilon
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Figure 4-10: Gravest Mode -- Hyperbolic Tangent Limit
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4.5.4 The Total Snoidal Front

Figure 4-12: Gravest Mode -- Hyperbolic Tangent Limit
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Figure 4-13: Gravest mode -- m=4
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Figure 4-14: n=2 -- Hyperbolic Tangent Limit
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4.6 The Solitary Wave Solution

4.6.1 The Derivations

The final solution to the NLS equation given in this thesis describes a solitary
wave. Ablowitz ¢nd Clarkson ( 1991) explain that a solitary wave is a solution of a
nonlinear equation which represents a wave of permanent form in that it does not
change its shape and propagates at a constant velocity. Ablowitz and Clarkson
(1991) also explain that a solitary wave solution is a travelling wave solution of

the form
u(7) =u(€ - K1) =u(2), (4.91)

where 2 = £ — k7, whose transition is from one constant asymptotic state as
Z — —00 to possibly another or the same constant asymptotic state as z —
+00. Solitary waves are formed when the effects from the nonlinear steepening or
breaking represented by the cubic term of the NLS equation and the effects from
the dispersive spreading balance to create a stable soliton.

This solitary wave solution results when there is & double root, 7, and a
simple root, vy, with 71 > r; to the cubic equation considered in equation (4.46).
Briefly reviewing how this cubic equation is derived, recall that the amplitude A

is assumed to be of the form
A =aexpi(¢p— mgq)]. (4.92)

Substituting this form (4.92) into the standard NL3 equation (4.35), equating real
and imaginary parts and introducing the variable Y =Y — Kq results in the tw.

differential equations

1 c
bo=5(x+3), (4.93)
2 _ 1 £\ cf
(aw) = 504 - (m + z- + ¢y — E, (494)
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where this last equation (4.94) has been integrated twice with respect to 9 and
¢ and r are introduced as the constants of integration. The variable r = g2
is intro. ced into vhe second differential equation (4.94) resulting in the cubic
equation

(ry)? —2(1‘ —2(m+ 2\-"2+cr—%2> R(r). (4.95)

As was shown in the last section, bounded solutions for r exist only if R(r) has
three simple ; .5 which gave t! . - . ‘4al wave solution or if B (r) has one double
root, ry, and a simple root, vy, . .. . > r,. This latter case is the one considered
h=re and gives the solitary wave so.ution.
Suppose R(r) has vne "-uble root, r = r, and a simple root, 7 = 7, with
i > Tg, so that
R(r)=2(r - r-)'2 (r—my), (4.96)

so that

re = V2(r—r)(r—r))"?, (4.97;

where 7; > ry. Sclutions tu this equation ere given as
ry— 1\ /2
T =71y + (1] — ry) tanh? ((%) v+es), (4.98)

which is a bounded solution for all ¢ and where c; is another ~=r:stant of integra-
tion. This solution is identical to the limiting case of the snojdzl wave solution
given in equation (1.79).

The qualita‘: ‘e nature of tkis solution can be examined using the fact that as

¥ — 00, tanh® (x) — 1 and thus
roryt(ri—r) =m, (4.99)

a coustant value. This is the same result that was found previously when ex-

amining 7 as a double root. This solution also dips to 7 = 75 when ¢ =
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—V2¢5/ (1, - 7‘2)1/ 2 but quickly approaches +he value of r; as 9 gets slightly big-
ger. This describes a upside-down soliton shape that is known as a dark soliton
(Drazin and Johnson, 1989). Thersfore when the largest root of R {r) is a double
root and the second root is a siriple r~ot, the solution to the differential equation
forms a sclitary wave.

Now that the conditions for forming a soliton solution are known they can be
used to form = specific solution by determining valnes for the integration constants
¢1 and c;. Methods similar to the ones used to find the specific snoidal wave
solution are used. The conditions are that R (r) must have one double root that

is larger than the remaining single 1vot. Thes+ are met when

R(r)=(r—r)?(r - ry) wherer; >y, (4.100)

or in other words,

&t

2 2
P—2(m+ 2 ror—A =3 2r1 + 7o) 2+ {r2 4 27y ) P —12r,. (4.101
2 P ) 1 1

Equating coefficients uf the powers of r is equation (4.101) shows ‘3at 7y, ry, ¢

and ¢, must satisfy the relations

2
2 (m -+ Z) =2r; + 1y, (4.102)
ca =71 (r + 2r3), (4.103)
1 = 2riry, (4.104)
71 > To. (4105)
The values
Ty =m, (4.106)
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and
ry = k2/2 with m > k?/2, (4.107)

satisfy these relations (4.102)—(4.165) and when substituted into (4.97) results in

the differential equation,

K,2\ 1/2

re = V2(r —m) (r— -2-) . (4.108)

It can be shown that these values. (4.102) to (4.105), correspond to the boundary

conditions

T — m as P — 00, (4.109)
Ty, Tyy — 0 as w -~ 0Q. (4110)

Using these values and the solution obtained previously (equation 4.98), r is given

as
1 « s 1 ]/2 "\
N 2 2 [1 _ 2 ,
r=g <n +(2m -k )tanh [2 (2m K ) d}) , (4.111)
or, in the alternate form,
r=m-— ! (an - Rz) sech? (l (2m - r:?)m 1/)) (4.112)
2 2 ’ '

where the constant of integration is assumed zero and m > K?/2. Recalling that
a? = r, the solution for the real part of the Nonlinear Schrédinger equation is then

given by
AR A Y2 a2 \\1? K
a= (m -5 (2m, - K )sech (5 (2771 — K zp)) ym> o (4.113)

The imaginary part of the Nonlinear Schrédinger equation in this instance will
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be the solution of the differential equation (see equation (4.93)),

_1 5]
b = 2 ('H—a?)

sech? (1 (2m — k2)/?
= - (2m—w?) (5 - ) 7 (4.114)
2 k2 + (2m — k?) tanh (% (2m — k2) zb)
Making the substitution
(2m K ) "2 tanh (2 (2m n2) v ¢) = ktand, (4.115)

transforms this equation (4.115) into
do = —d#,
so that
1., 1/2 1 172
Sy 4§ .2 1 .,
¢ =—0:=~ten (N (2m K ) tanh (2 (2m a zp)) . (4.116)

Thus the complete solution to the Nonlinea: Schrédi 1, sr egquation correspond-

ing to the boundary coaditions

a? — m as ¥ — o0, (4.117)
Ay, Qyy — 0 as P — 00, (4.118)
is given as
A =exp(i(mg+9)a(¥)
= exp (imgq) exp( —itan” (’% (2 - ) v tanhk (2m -K )1/21/)))) X
1 9 (1 1/2 1/2 K2
( —E(Qm—n sech (2 2m n 'zp)) , m > 5 (4.119)
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This can be simplified on using the identity
exp (i0) = cos@ + isin 6, (4.120)

so that the second exponential in equation (4.119) can be rewritten as
exp (—itan‘1 (l (2m K ) tanh( (2m K )1/21/)))) =
K

cos (fian—1 (% (2m ) tanh (2 (2m —F )1/2 w)))
~isin (tan“ (% (2m - fcz)l/ tanh ( (2m K )1/2 'p)))
= [k (om = 2) 1o (2 (om - 1))

y -1/2

1 172\
2 sechi2 (= 19 — 42
(2m - (2m— K )se‘]\ (2 (2m—& ) w)) . (4.121)
Substituting this into the soliton solution (4.119) and simplifying gives

1 ” . 12 1 1

A= 7 exp (img) [fi -1 (Qm ~ rc2) ! tanh /5 (2m - r;z) & 1,/))] , o (4.122)
where m > k%/2 and ¢ = Y — kq.

The final form for this particular soliton solution of the Nonlinear Schrodinger

equation is found by substituting the original variables in to give

1
A=— -mk*3,
5 exp( mk® g, T) X
) 1/2 1 1/2
[R —1 (2m - 52) tanh (—2- (2m - 52) ?,/J)] ) (4.123)
where m > £?/2 and
) = —_——— v 371 N -1
U <a2(2n+1)> £+ kKB, T (4.124)

174



This solution is graphed in Figure 4-16. The dark soliton structure is clearly
evident as the graph dips down at % = 0 and asymptotically approaches a constant
(=~ 2) as 9 — *o0. The parameters chosen for this graph are as follows: € = 0.025,
k=1m=35n=0,k=1,and @ = 1. These parameters are chosen because
they showed the most obvious dark soliton structure.

This solution can also be substituted into the complete nonlinear evolution of
the wedge~front given by equation (4.32). The point generating programs for this
solution are found in Appendix B.3 and by using SpyGlass results in the pictures
shown in Figures 4.16—4.26.

Figures 4-17 to 4-21 give only the perturbation flow. The parameters for these
graphs are the same as those chosen for Figure 4-16, however the value of m has
been changed so that m = 1 in Figures 4-17 and 4-19 and the value of 7 has been
increased to 3 for Figures 4-19 to 4-21. In Figure 4-17 where m = 1 the dark

soliton structure is not as evident as it is in Figure 4-18. Figure 4-17 does show

more per an is evident in Figure 4-18. In Figure 4-18 the perturbation
also se¢ . more far-reaching effects as it is still evident at y ~ 6. Figure
4-16 anc.-  ; >uow how the flow increases in. complexity with increased n. The

choice of m = 1 in Figure 4-19 again shows somewhat more periodicity whereas
the choice of m = 5 in Figure 4-2CG shows more of the dark soliton structure.
Figure 4-21 is simply Figure 4-20 but with an extended z—domain. The dark
soliton structure is clearly evident in this plot.

Figures 4-22 and 4-23 give simply the perturbation flow with tk: same pa-
rameters as used in Figure 4-16 except that € is increased tenfold so that € = 0.25.
The value for n has also been increased to 3 in Figure 4-23. Figure 4-22 looks
identical to Figure 4-17 except that the perturbation flow has increased in magni-
tude somewhat. Figure 4-23 shows the same ‘far-reaching’ effects as Figure 418
in that the perturbation is still observed at y =~ 4.

The total solitary wave front is found in Figures 4-24 to 4-26. The same
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pasa;neters used for Figures 4-22 and 4-23 are once again used here except that
in Figure 4-24, m = 5, in Figure 4-25, m = 1 with n '+ 2 and Figure 4-26, m =1
with 7 = 5. Figure 4-24 shows the effects of choosing a relatively large value for
€ as the perturbed interface extends quiic a distance from the front. The small
hump in the contours at £ = 0 is a result of i}z dark soliton structure. Increasing
n in Figure 4-25 once again increases the complexity of the flow and the choice
of m =1 does not make the soliton structure as evident. Figure 4-26 shows a bit
more periodicity with the somewhat flattened contour at z = 0 due to the soliton

structure.
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4.6.2 The Solitary Wave Amplitude
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4.6.3 The Solitary Wave Perturbation Thickne:s

Figure 4-17: Gravest Mode -- m=1 -- Small Epsilon
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Figure 4-18: Gravest Mode -- m=>5 -- Small Epsilon
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Cross Front
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Figure 4-19: n=3 -- m=1 -- Small Epsilon
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Cross Front

Figure 4-20: n=3 -- m=5 -- Small Epsilon-
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Figure 4-21: Extended Domain -- n=3 -- m=5 -- Small Epsilon
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Figure 4-22: Gravest Mode -- m=1
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Cross Front
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Figure 4-23: n=3 -- m=1
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4.6.4 The Total Solitary Wave Front
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Chapter 5

Conclusions

An analytic asymptotic theory examining the finite-amplitude evolution of a
wedge-shaped front has been derived by using a barotropic reduced gravity model
describing a two layer non-viscous and incompressible water system where only
the uppermost layer was considered active. The derivation of the model began
using the shallow water equations on a f-plane to describe the motion of the
active layer. The nondimensionalization of the model was achieved so that the
leading order motion was in geostrophic balance and so that the nonlinear terms
in the horizontal momentum equations were somewhat weaker. This model was
shown to possess a Hamiltonian structure. Using this Hamiltonian structure it
was shown that all steady state solutions to this model were linearly stable. Non-
linear stability could not be shown unconditionally. However the wedge-shaped
front given by ho(y) = oy was found to satisfy these conditions necessary for
stability and thus was found to be nonlinearly stable.

The nonlinear evolution of the perturbed wedge-shaped front was examined
using a multiple-scales analysis. The frontal height was asymptotically expanded
around a small amplitude parameter, €, and problems up to the O (¢2) were ex-
amined. Conditions for the solvability of the O (€2) problem showed that the

amplitude of the perturbation waves was governed by the Nonlinear Schrédinger
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equation.

In order to determine the complete form of the finite amplitude evolution of
the wedge front, solutions for the Nonlinear Schrédinger equation were derived.
In addition to the Stokes wave solution and a plane wave solution, a snoidal wave
solution was also found. The final solution to the Nonlinear Schrédinger equation
described a solitary waveform. This solution described a dark soliton which went
out to a constant at infinity.

In conclusion, this analysis revealed that:

1. This model possesses a Hamiltonian structure that demonstrated that any

front described by this model is linearly stable.

2. The Hamiltonian structure also showed nonlinear stability but only under

certain conditions.

3. Evolution of a wedge-shaped front governed by this reduced-gravity barotropic

model is nonlinearly stable.

4. The amplitude of the perturbation waves is described by the Nonlinear

Schrodinger equation.

5. Several solutions exist to this Nonlinear Schrodinger equation including a

snoidal wave solution and a solitary wave solution.

There are several ways in which the theory presented could be modified. First
of all. a different method could be used to examine the leading order equation.
Multiple scales analysis. an analytical analysis. was used in this instance. However.
numerical methods could have also been used to examine the stability of the
wedge—shaped front.

Secondly, the shape of the front considered in the finite amplitude evolu-

tion could be changed. Some other interesting and realistic fronts might take
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a parabolic form or maybe a triangular form. The stability of these different
shapes could also be examined.

Finally the model itself could have been modified. The theory presented here
considered a barotropic model where the lower layer was considered motionless.
However Killworth et al. (1984) demonstrated that motion in the second layer
can significantly change the stability properties of a front. In other words the
baroclinic stability mechanism is an important consideration. Swaters (1993)
developed a model to describe a baroclinic two-layer system where both layers
evolved over a sloping bottom. His analysis using the Hamiltonian structure of
the model also revealed that the baroclinic model was nonlinearly stable but only
under certain conditions. The same multiple scales analysis used here could be
used in examining this baroclinic model for the evolution of the wedge-shaped
front. Even though this analysis would be difficult, if this model shows instability
then one can deduce that this instability is due to the baroclinic effects since in
the barotropic limit the wedge-like front was stable.

Another concept that could be added to the model is the interaction between
the layers. This model assumes that the two layers do not exchange mass or
momentum even at the boundary between the layers. The effects of the interaction
between the layers on the stability of the front could be examined also. Mixing
across fronts is a very important consideration for those involved in waste disposal.
A final variation of the model might be to consider the evolution on the beta-
plane instead of the f-plane as was done here. This would result in considering a
different lengthscale in which the beta effects become important. Cushman-Roisin
(1986) derived a leading order governing equation for this instance as well.

Realistically this model is quite simplified but different components could be
added one-by-one to examine the effects of each. This would be at the cost of
complicating the mathematics and numerical work may have to be used. However,

it would also give a better understanding of the stability of geostrophic fronts.
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Appendix A

Computer Calculations for Beta

oNoNoNoNoNoNo N o NoNe Ne Ko

LA S SR AR R SRS SR EEES R RS R E R R E R R R R R ]

* PROGRAM BETA

*
*
* PURPOSE: THIS PROGRAM WILL FIND A VALUE FOR BETA *
* USING NUMERICAL INTEGRATION. *
* WRITTEN: AUGUST, 1994 *
* BY: CAROL SLOMP *

*

LEEEE R R ERE SRR RS RN E R R R R R R AR R

REAL F,A, AERR, RERR, INT, WK(1000),ERR, INT1, INT2
REAL WK2(1000),J0,Y0,ERR],ERR2,WK1(1000)
INTEGER MO, NUM, IERR, L, M, NM, IWK(250),NUM1
INTEGER IWK2(250),IWK1(250),N, IERR2,NUM2, IERRL
EXTERNAL F, YO, JO

COMMON/CAR/N

N =20

L = 250

M = 1000

A = 0.0000001
MO =1

AERR = .00001EOQ
RERR = .00001EQ

CALL QAGI (F,A,MO,AERR,RERR, INT,ERR, NUM, IERR,
L,M,NM, IWK, WK)
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15

20

25

35

40

non

OO0 a0

WRITE (7,%)
FORMAT (‘THESE ARE THE RESULTS FOR N = 0.')
WRITE (7,10) ERR
FORMAT ('THE VALUE OF THE ABSOLUTE ERROR IS:’, F11.8)
WRITE (7,15) IERR
FORMAT (‘THE VALUE OF IERR IS:’, I4)
WRITE (7,20) NUM
FORMAT ('THE NUMBER OF POINTS AT WHICH F WAS
EVALUATED', I7)
WRITE (7,25) N
FORMAT (‘THE NUMBER CF SUBINTERVALS IN THE PARTITION
Is’, I4)
WRITE (7,30) INT
FORMAT ('THE VALUE OF THE INTEGRAL IS’, F13.9)

CALL QAGI (JO,A,MO,AERR, RERR, INT1,ERR1,NUM1, IERR]1,
L, M,NM, IWK1,WK1)
WRITE (7,35) INT1
FORMAT ('THE VALUE OF THE INFINITE INTEGRAL OF JO
IS:',F10.6)

CALL QAGI (YO, A,MO,AERR, RERR, INT2, ERR2,NUM2, IERR2,
) L, M, NM, IWK2,WK2)
WRITE (7,40) INT2
FORMAT ('THE VALUE OF THE INFINITE INTEGRAL OF YO
IS:',F10.6)

STOP
END

REAL FUNCTION F(Z)

THIS FUNCTION WILL CALCULATE THE INDEFINITE INTEGRAL
OF BESSEL FUNCTIONS AND MULTIPLY THEM BY THE ALTERNATE
BESSEL FUNCTION TO SEND TO THE MAIN PROGRAM.

REAL Z,A,ABSE,RELE, IJ, IY,ERR]1,ERR2,WRK1(1000)
REAL F1,F2,F3,J0,Y0,WRK2(1000)

INTEGER NB1,NB2, IERR1,IERR2,P,Q,R,S, IWRK1(250)
INTEGER IWRK2(250),M02,N

EXTERNAL JO, YO

COMMON/CAR/N

A = 0.0E0
ABSE = .00001EO
RELE = .00001EQ

P = 250
Q = 1000
MO2 = 1
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C35

c40

000N

CALL QAGS (JO,A,Z,ABSE,RELE, 1J,ERR]1,NB1, IERR],
P,Q,R, IWRK1,WRK1)

CALL QAGI (YO,Z,MO2,2BSE,RELE, IY,ERR2,NB2,IERRZ,
P,Q,S, IWRK2,WRK2)

Fl = YO(2) * IJ
F2 = JO(Z) * IY
F= (Fl + F2)

WRITE (7,30) F
FORMAT ('THE VALUE OF F IS:’, F15.7)

WRITE (7,35) IERR1

FORMAT ('THE VALUE OF IERR1l IS:‘, I4)
WRITE (7,40) IERR2

FORMAT (‘'THE VALUE OF IERR2 IS:’, I4)

RETURN
END

REAL FUNCTION JO(Z)
THIS FUNCTION GIVES THE FUNCTITON REPRESENTATION FOR

BESSELJ WITH ARGUMENT 2*SQRT((2*N+1)*Z).

INTEGER N
REAL 2
COMPLEX ZC,W
COMMON/CAR/N

ZC = CMPLX (2.C0E0O*SQRT((2.0EQ*FLOAT(N)+1,0E0)*Z),0.0E0)
CALL BSSLJ (2C,0,W)

IF (N.EQ.0) THEN

JO = REAL (W) *EXP(-2Z)

ENDIF

IF (N.EQ.1l) THEN

JO = REAL (W)*EXP(-Z)*{9.0E0-10.0E0*Z+2.0EQ*Z**2)

ENDIF

IF (N.EQ.2) THEN

JO = REAL (W)*EXP(-2Z)*(3.0E0*Z**4/4.0E0-10.0E0*Z**3
+41.0E0*2**2-60.0E0*2+25.0E0Q)

ENDIF

IF (N.EQ.3) THEN

JO = REAL (W)*EXP(-2)*(49.0E0-182.0E0*Z+215.0E0*Z**2
~-328.0E0*2**3/3.0E0+313.0E0*2**4/12.0E0-17.0E0*2**5/6 . 0E(
+Z**6/9.0E0)

ENDIF

IF (N.EQ.4) THEN

JO = REAL (W) *EXP(-2)*(81.0E0-408.0E0*Z+687.0E0*Z**2
-534.0E0*Z2**3+2603.0E0*2**4/12.0E0-145.0E0*2**5/3.0EQ
+47.0E0*2**6/8.0E0-13.0E0*2**7/36.0E0+5.0E0*Z2**8/576.0E0)
ENDIF

RETURN
END
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REAL FUNCTION YO(Z)
THIS FUNCTION GIVES THE REPRESENTATION FOR BESSELY

WITH ARGUMENT 2*SQRT((2*N+1)*Z).

INTEGER N
REAL 2
COMPLEX ZC,T
COMMON/CAR/N

ZC = CMPLX (2.0EO0*SQRT((2.0EQ0*FLOAT(N)+1.0EQ0)*Z),0.0E0)

CALL BSSLY (z2C,0,T)

IF (N.EQ.0) THEN

YO = REAL (T)*EXP(-2)

ENDIF

IF (N.EQ.1l) THEN

YO = REAL (T)*EXP(-Z)*(9.0E0-10.0E0*Z2+2.0EQ0*Z**2)

ENDIF

IF (N.EQ.2) THEN

YO = REAL (T)*EXP(-2)*(3.0E0*Z**4/4.0E0-10.0EQ0*Z**3
+41.0E0*Z**2-60.0E0*2+25.0E0)

ENDIF

IF (N.EQ.3) THEN

YO = REAL (T)*EXP(-2)*(49.0E0-182.0E0*Z+215.0E0*Z**2

-328.0E0*Z**3/3.0E0+313.0E0*Z**4/12.0E0-17.0E0*2**5/6.0E0

+2**6/9.0E0Q)

ENDIF

IF (N.EQ.4) THEN

YO = KEAL (T)*EXP(-Z)*(81.0E0-408.0E0*Z+687.0E0*2**2

-534.0E0*Z2**3+2603.0E0*2**4,/12,0E0-145.0E0*Z**5/3.0E0Q

+47 .0E0*2**6/8.0E0-13.0E0*2**7/36.0E0+5.0E0*Z**8/576.0EQ)

ENDIF

RETURN
END
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Appendix B

Graphing Programs

B.1

O000000000000N0N0000N00NNON

Plane Wave Solution

AR RS S EARARRERES SRR R R S R R R R AR T Yy,

* PROGRAM FRONTGRAPH *
* *
* PURPOSE: THIS PROGRAM WILL CALCULATE A TABLE OF *
* VALUES DESCRIBING THE EVOLUTION OF *
* THE FRONT WITH THE PLANE SOLUTION *
* DESCRIBING ITS AMPLITUDE. THESE *
* RESULTS CAN BE USED BY A GRAPHING *
* PROGRAM TO PRODUCE A 3-D GRAPH OF *
* THE MOTION. *
* WRITTEN: MARCH, 1995 *
* BY: CAROL SLOMP *
*******************************************************

THE N=0 RESULTS ARE IN: N=0 FORT 25, N=1 FORT 26,
N=2 FORT 27, N=3 FORT 28, N=4 FORT 29

VALUES FOR JUST THE PERTURBATION ARE FOUND IN: N=0
FORT 85, N=1 FORT 86, N=2 FORT 87, N=3 FORT 88, N=4
FORT 89.

INTEGER L,R,J,N,I,F

REAL Z(500,500),P,E,K,M,C,D,PI,H,LL,GG,G,LAG
REAL X0,Y0,HNULL(500,500),2I

COMPLEX A

EXTERNAL H, LAG,G
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P=1.0E0O

C P GIVES THE SLOPE OF THE WEDGE-SHAPED FRONT

E=0.25E0

E IS THE SMALL PARAMETER EPSILON

K=1.0E0

K IS THE WAVENUMBER

N=4

N IS THE MODE BEING CONSIDERED

M=1.0EQ

M IS THE WAVENUMBER FOR THE GROUP OF WAVES WITH
AMPLITUDE A

A=CMPLX (1.0E0,0.0E0)

C A IS THE AMPLITUDE OF THE SLOW MOVING GROUP OF WAVES
L =100
PI=3.0EQO

0 0 0

0n

DO 50 I=0,L
DO 25 F=0,240
X0=-2.0E0*PI+FLOAT(I)*4.0E0*PI/FLOAT (L)
Y0=-12.0E0+12.0E0*FLOAT (F) /240.0E0
HNULL(I+1,F+1)=0.0E0
WRITE (29,12) X0,Y0,HNULL(I+1,F+1)

12 FORMAT (' ',F14.3,*' ',F14.3,' ',F14.9)
25 CONTINUE

50 CONTINUE

c

DO 120 R=0,L
DO 110 J=0,240
C=-2.0EO0*PI+FLOAT(R)*4.0EQ0*PI/FLOAT (L)
D=12.0E0*FLOAT (J) /240.0E0
Z(R+1,J+1)=H(P,E,A,K,N,M,C,D)

C LL=LAG (N, 2*D)
C GG=G (N, 2*D)
WRITE (29,75) C, D, Z(R+1,J+1)

75 FORMAT (' ',Fl14.3,' ',F14.3,' ',Fl14.9)
110 CONTINUE
120 CONTINUE

STOP

END
C
C

REAL FUNCTION H(P,E,A,K,N,M,X,Y)
C THIS FUNCTION WILL CALCULATE THE HEIGHT OF THE FRONT.
Cc

INTEGER N

REAL El1,E2,P,E,K,M,X,Y,G,LAG

COMPLEX CE1,CE2,A,AA, HC,SCEl, SCE2,NCE1, NCE2
COMPLEX NSCE1,NSCE2

EXTERNAL G, LAG

CE1=CMPLX(0.0EQ0, K*X)
NCE1=CMPLX(0.0EQ, -K*X)
CE2=CMPLX(0.0E0, 2.0E0*K*X)
NCE2=CMPLX (0.0E0, -2.0EQ0*K*X)

200



[oNg®]

PR

R R

El=-K*Y

E2=-2.0EQ0*K*Y
SCE1=CMPLX(0.0EQ, E*M*X)
NSCE1=CMPLX(0.0EQ, -E*M*X)
SCE2=CMPLX(0.0EQ0,2.0E0*E*M*X)
NSCE2=CMPLX(0.0EQ, -2.0EQ*E*M*X)
AA=CMPLX (REAL(A),-IMAG(A))

HC:E*(A*CEXP(CEI)*CEXP(SCEl)+AA*CEXP(NCE1)*CEXP(NSCEl))
*EXP(E1l) *LAG(N, -E2)
-E**2*M/(2.0E0*K) * (A*CEXP(CE1) *CEXP (SCE1) +

AA*CEXP (NCE1l) *CEXP (NSCE1l) ) *EXP(E1)

*{-E2*LAG(N, -E2)+2.0E0*FLOAT (N) *LAG (N-1, -E2) )
+E**2*K/P*G (N, ~E2) *EXP (E2)
*(A**Z*CEXP(CEZ)*CEXP(SCEZ)+AA**2*CEXP(NCE2)*CEXP(NSCEZ))
+B*Y

H=REAL (HC)

RETURN
END

REAL FUNCTION G(N,E3)
INTEGER N
REAL E3,GS

IF (N.EQ.0) THEN

GS=0.0EQ

ENDIF

IF (N.EQ.1) THEN

GS=-4.0E0-2.0E0*E3

ENDIF

IF (N.EQ.2) THEN
GS=28.0E0/5.0E0-102.0E0*E3/5.0E0Q
+16.0E0*E3**2/5.0E0~E3**3/3.0E0

ENDIF

IF (N.EQ.3) THEN
GS=-856.0E0/77.0E0+292.0E0*E3/77.0E0+
1388.0E0*E3**2/77.0E0-359,0EQ0*E3**3/77.0E0+
7.0E0*E3**4/11.0E0-E3**5/30.0E0

ENDIF

IF (N.EQ.4) THEN
GS=2024.0E0/221.0E0-15924.0E0*E3/221.0E0

+15364 .0E0*E3**2/221.0E0~4917.0E0*E3**3/221.0EQ+
3821.0E0*E3**4/663.0E0-1135.0E0*E3**5/1326.0E0
ENDIF

IF (N.EQ.5) THEN
GS=-80772.0E0/4807.0E0+75054.0E0*E3/4807.0E0
+343660.0E0*E3**2/4807.0E0~1010665.0E0*E3**3/14421.0E0+
124494 .0E0*E3**4/48076.0E0-30064.0E0*E3**5/4807.0E0+
3671.0E0*E3**6/3933.0E0-865.0E0*E3**7/10488.0E0
+13.0E0*E3**8/3312.0E0-E3**9/12960.0E0

ENDIF



G=GS
RETURN
END

REAL FUNCTION LAG(N,E4)
THIS FUNCTION CALCULATES THE VALUES OF THE LAGUERRE

POLYNOMIALS

o000 0

INTEGER N, T
REAL E4,LN,FACTORIAL
EXTERNAL FACTORIAL

LN=1.0EQ
DO 150 T=1,N
LN=LN+(-1.0E0Q) **T*FACTORIAL(N) / (FACTORIAL (N-T)
& *(FACTORIAL(T))**2)*E4**T
150 CONTINUE
LAG=LN
RETURN
END

REAL FUNCTION FACTORIAL(Q)
THIS FUNCTION CALCULATES THF. FACTORIAL OF A NUMBER.

INTEGER Q,S,F1

0 00

Fl=1
DO 200 s=1,Q
F1l=F1*S

200 CONTINUE
FACTORIAL=FLOAT(F1)

RETURN
END
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*

PURPOSE:

PROGRAM MEANFLOW

VALUES DESCRIBING THE MEANFLOW OF THE
FRONT WITH THE PLANE SOLUTION

DESCRIBING ITS AMPLITUDE.

RESULTS CAN BE USED BY A GRAPHING

PROGRAM TO PRODUCE A 3-D GRAPH OF THE

THIS PROGRAM WILL CALCULATE A TABLE OF

MOTION.

* WRITTEN: MARCH, 1995
* BY: CAROL SLOMP

hhkhkdkhkdhkhkhhkhhkhhkhhkhhk ARk hkk ko hkkh kA kA hkkhkhkhrhkhkdhkkkxkhk

THE RESULTS FOR N=0 AREIN FORT 30, N=1 FORT 31, N=2

FORT 32, N=3 FORT 33, N=4 FORT 34.

VALUES FOR SMALL EPSILON ARE FOUND IN: N=0 FORT 90,
N=1 FORT 91, N=2 FORT 92, N=3 FORT 93, N=4 FORT 94.

INTEGER N,L,R,I,S,J

REAL K,P,E,PI,U(500), TOTAL,Y,Z,F,LL,X,LAG,LAG1

REAL XO0,Y0,LAG2,G,HNULL(500,500)
COMPLEX AA,A
EXTERNAL TOTAL, Y,LAG,LAGl,LAG2
COMMON/CAR/N

B e

P IS THE SLOPE OF THE WEDGE-SHAPED FRONT
E=0.25E0

E IS THE SMALL PARAMETER EPSILON
A=CMPLX(1.0E0,0.0EQ)

A IS THE AMPLITUDE OF THE SLOW MOVING GROUP OF WAVES

AA="MPLX (REAL(A),-IMAG(A))

A2 IS THE COMPLEX CONJUGATE OF a
L=100

PI=3.0EC

DO 50 J=0,L
DO 25 S$=0,240

X0=~2 .0EC*PI+FLOAT(J) *4.0E0*PI/FLOAT (L)
Y¥0=-12.0E0+12.0E0*FLOAT(S) /240.0E0

HNULL(J+1,S+1)=0.,0EQO

WRITE (34,12) X0,Y0,HNULL{J+1,S+1)

FORMAT (' ',F14.3,’ ',Fl4.3,'
CONTINUE
CONTINUE
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75
100
125

oNo SN

a0 00

DO 125 I=0,L
DO 100 R=0,240
X=-2.0EQ0*PI+FLOAT(I)*4.0E0*PI/FLOAT (L)
G=12.0EO0*FLOAT(R) /240.0E0
2=2.0EQ0*K*G
U(R+1)=TOTAL(K,A,3AA,P,E, 2)
WRITE (34,75) X,G,U(R+1)

FORMAT (' ‘,F14.3,' ',F14.3, * ',F14.9)
CONTINUE

CONTINUE

STOP

END

REAL FUNCTION TOTAL(K,A,A2,P,E,Z)

THIS FUNCTION CALCULATES THE TOTAL VALUE OF THE MEAN FLOW

INTEGER N

REAL ZI1l

REAL PI,P,E,K,TT,F,Y,2Z
COMPLEX 2C1,Y8,J8
COMPLEX A, AA

EXTERNAL F,Y
COMMON/CAR/N

2I1=(2.0EQ*FLOAT (N)+1.0E0Q) *2Z
ZC1=CMPLX(2.0E0*SQRT(2I1),0.0EQ)
CALL BSSLJ (2C1,0,J8)

IF (2Cl1.EQ.(0.0E0,0.0EQ)) THEN
Y¥8=(1.0E0,0.0E0)

ELSE

CALL BSSLY (2C1,0,Y8)

ENDIF
TT=-E**2*K*ACOS(-1.0D0) *REAL (A) *REAL(AA) / (2.0EQ0*P) *
(REAL(Y8) *F(2)+REAL{J8) *Y(Z))
TOTAL=TT

RETURN
END

REAL FUNCTION F(2Z)
THIS FUNCTION WILL CALCULATE THE FIRST INTEGRAL IN
THE FORMULA FOR b, THAT IS, THE INTEGRAL FROM 0 TO 2*Y.

INTEGER NB1, IERR1, P,Q,R,IWRKI1(250)

REAL JO, A,ABSE,RELE,IJ,ERR1,WRK1(1000),2
EXTERNAL JO

COMMON/CAR/N

A=0.0E0Q

ABSE=.00001E0
RELE=.00001EQ
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P=250
Q=1000

CALL QAGS (JO,A,Z,ABSE,RELE,IJ,ERRl,NBl,IERRl,P,Q,R,IWRKl,WRKl)

F=IJ

RETURN
END

REAL FUNCTION Y(Z)

THIS FUNCTION WILL CALCULATE THE SECOND INTEGRAL
IN THE FORMULA FOR b, THAT IS, THE INTEGRAL FROM
2*Y TO INFINITY.

INTEGER C,D,S, IWRK2(250), NB2,MO1, IERR2
REAL Z, AERR, IERR, 1Y, ERR2, WRK2(1000),YO
EXTERNAL YO

COMMON/CAR/N

MO1l=1
AERR=0.00001E0Q
IERR=0.00001E0
C=250

D=1000

CALL QAGI(YO,Z,MOI,AERR,IERR,IY,ERRZ,NBZ,IERRZ,
C,D, S, IWRK2,WRK2)
Y=IY

RETURN
END

REAL FUNCTION JO(Z)
THIS FUNCTION CALCULATES THE INTEGRAND FOR THE FIRST
INTEGRAL FOR THE VALUE OF b.

INTEGER N

REAL ZI

REAL Z,LAG,LAG1,LAG2
COMPLEX ZC,T

EXTERNAL LAG, LAGl, LAG2
COMMON/CAR/N

ZI=(2.0E0*FLOAT(N)+1.0EQ) *Z
ZC=CMPLX(2.0EO*SQRT(ZI),0.0E0)

CALL BSSLJ (zC,0,T)
JO=REAL(T)*EXP(—Z)*(4.0E0*FLOAT(N+1)*(LAG(Z))**2+8.0EO*
FLOAT (N+2) *LAG(Z) *LAG1(Z)+4.0E0* (LAG1(Z)) **2+8.0E0*
LAG(Z) *LAG2(Z))

RETURN
END
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REAL FUNCTION YO(Z)
THIS FUNCTION CALCULATES THE INTEGRAND FOR THE SECOND
INTEGRAL FOR THE VALUE OF b.

INTEGER N

REAL ZI2

REAL 2Z, LAG,LAG1, LAG2,WR
COMPLEX 2C2,W

EXTERNAL LAG,LAG1, LAG2
COMMON/CAR/N

212=(2.0EO0*FLOAT(N)+1.0EQ) *2
ZC2=CMPLX(2.0E0*SQRT(Z2I2),0.0E0)

CALL BSSLY(ZC2,0,W)

YO=REAL (W) *EXP (~-Z) * (4.0E0*FLOAT (N+1) * (LAG(2Z) ) **2
+8.0EQO*FLOAT (N+2) *LAG(Z) *LAG1 (Z) +4.0E0* (LAG1(2) ) **2
+8.0EQ0*LAG(Z) *LAG2(Z))

WRITE (30,*) YO

RETURN
END

REAL FUNCTION LAG(E4)
THIS FUNCTION CALCULATES THE VALUES OF THE LAGUERRE
POLYNOMIALS

INTEGER N, T

REAL E4,LN, FACTORIAL
EXTERNAL FACTORIAL
COMMON/CAR/N

LN=1.0EO

DO 150 T=1,N

LN=LN+(-1.0EQ) **T*FACTORIAL (N) / (FACTORIAL(N-T)
* (FACTORIAL(T) ) **2) *E4**T

CONTINUE

LAG=LN

RETURN

END

REAL FUNCTION LAGl(E4)
THIS FUNCTION CALCULATES THE FIRST DERIVATIVE OF THE

LAGUERRE POLYNOMIALS.

INTEGER N,H

REAL LN1,FACTORIAL,E4
EXTERNAL FACTORIAL
COMMON/CAR/N
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LN1=0.0E0Q

DO 200 H=1,N

LN1=LN1l+(~1.0EQ) **H*FACTORIAL (N) *FLOAT (H) /
& (FACTORIAL(N-H)* (FACTORIAL(H))**2) *E4** (H-1)

200 CONTINUE
LAG1=LN1

C
RETURN
END

C

C

REAL FUNCTION LAG2 (E4)

C THIS FUNCTION CALCULATES THE SECOND DERIVATIVE OF
C THE LAGUERRE POLYNOMIALS.
C
INTEGER N, I
REAL LN2, FACTORIAL, E4
EXTERNAL FACTORIAL
COMMON/CAR/N
C
LN2=0
DO 250 I=2,N
LN2=LN2+(—1.0EO)**I*FACTORIAL(N)*FLOAT(I)*FLOAT(I—I)/
& (FACTORIAL(N—I)*(FACTORIAL(I))**2)*E4**(I—2)
250 CONTINUE
LAG2=LN2
C
RETURN
END
C
C

REAL FUNCTION FACTORIAL(Q)
C THIS FUNCTION CALCULATES THE FACTORIAL OF A NUMBER.
INTEGER Q,S,F1

Fl=1
Fl=F1*S

400 CONTINUE
FACTORIAL=FLOAT(F1l)

RETURN
END

(3}
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*******************************************************

PROGRAM HADDITION

*

*

* PURPOSE: THIS PROGRAM WILL CALCULATE A TABLE OF
* VALUES DESCRIBING THE BOUNDARY OF THE
* FRONT WITH THE PLANE SOLUTION
*
*
*
*
*

DESCRIBING ITS AMPLITUDE.
THESE RESULTS CAN BE USED BY A

GRAPHING PROGRAM TO PRODUCE A 3-D

GRAPH OF THE MOTION.

* WRITTEN: MARCH, 1995
* BY: CAROL SLOMP

******************************************************

THE RESULTS FOR N=0 ARE IN FORT 35, N=1 FORT 36, N=2

FORT 37, N=3 FORT 38, N=4 FORT 39.

INTEGER N,L,R,F,I,J

REAL K,M,P,E,PI,C,D,2,HADD(500,500),HATYO, PHI

REAL X0,Y0,ZI, HNULL (500,500)
COMPLEX A
EXTERNAL HATYO, PHI

N=0

N IS THE MODE NUMBER
A=CMPLX(1.0E0,0.0EQ)

A IS THE AMPLITUDE OF THE WAVE
K=1.0E0D

K IS THE WAVENUMBER OF THE WAVE
M=1.0EO

M IS THE SLOW TIME WAVENUMBER.
P=1.0E0

P IS THE SLOPE OF THE WEDGE FRONT
E=0.25E0

E IS THE SMALL PARAMETER EPSILON.
PI =3.0E0

L=100

DO 270 R=0,L
DO 150 F=0,240
C=-2.0E0*PI+4*PI*FLOAT(R) /FLOAT (L)
D=-12.0E0+12.0E0*FLOAT (F) /240G .0EQ
Z=PHI(N,A,K,M,P,E,C)
ZI=HATYO(N,A,K,M,P,E,C)
IF (Z.GE.0.0E0Q0) THEN
HADD(R+1,F+1)=0
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ELSEIF (D.LT.Z) THEN
HADD (R+1,F+1)=0
ELSE
HADD (R+1,F+1)=HATY0 (N,A,K,M,P,E,C)*(D-2)/Z
ENDIF
WRITE (39,25) C,D,HADD(R+1,F+1)
25 FORMAT (' ',F14.3,"’ ', F14.3," ', F14.9)
150 CONTINUE
200 CONTINUE
DO 300 J=0,L
DO 250 1=0,240
X0=-2.0E0*PI+4*PI*FLOAT(J) /FLOAT (L)
Y0=12.0EQ0*FLOAT(I)/240.0E0
HNULL (J+1,I+1)=0.0EQ
WRITE (39,225) X0,Y0,HNULL(J+1,I+1)

225 FORMAT (' ',F14.3,’ ', F14.3,"' ',F14.9)
250 CONTINUE
300 CONTINUE
C
STOP
END
C
C
REAL FUNCTION PHI(N,A,K,M,P,E,XC)
C THIS FUNCTION CALCULATES THE DEFORMED BOUNDARY.
C
INTEGER N

REAL PER1l,K,M,P,E,XC,G,B
COMPLEX A, CPHI
EXTERNAL G,B

C
PER1=K*XC+M*E*XC
C
CPHI=-2.0E0*E*A/P*COS (PER1)
& -2.0EQ*E**2*A**2/P**2*C0S(2.0EQ0*PER])
& *(K+2,0E0*K*FLOAT(N) ) -E**2*a**2 /pP**2*
& (K+2.0E0*K*FLOAT(N))*2.0E0
& +E**2*2 0EO*FLOAT (N) *M*A/ (K*P) *COS (PER1)
& <-2.0EQ*E**2*A**2*K/P**2*C0OS(2.0E0*PERL) *G (N)
& +B(N)/P
cC
PHI=REAL(CPHI)
RETURN
END
c
C
REAL FUNCTION HATYO(N,A,K,M,P,E,X)
C THIS FUNCTION CALCULATES THE HEIGHT OF THE FRONT AT Y=0.
c

INTEGER N

REAL E,K,X,M,P,G,B

COMPLEX CE1,NCEl,CE2,NCE2,SCEl,NSCE1l, SCE2,NSCE2, AA, A
COMPLEX CHATYO

EXTERNAL B, G
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CE1=CMPLX(0.0E0,K*X)
NCE1=CMPLX(0.0EQ, -K*X)
CE2=CMPLX (0.0EQ, 2.0E0*K*X)
NCE2=CMPLX(0.0E(Q,-2.0E0*K*X)
SCE1=CMPLX{0.0EQ,E*M*X)
NSCE1=CMPLX(0.0EQ, ~-E*M*X)
SCE2=CMPLX(0.0EQ,2.0E0*E*M*X)
NSCE2=CMPLX (0.0E0Q, -2 .0EQ*E*M*X)
AA=CMPLX (RE2AL (A) , -IMAG(A))

CHATY(0=E* (A*CEXP (CE1) *CEXP (SCE1) +AA*CEXP (NCE1)
*CEXP (NSCE1))

~-E**2*M/K* (A*CEXP(CE1l) *CEXP (SCE1) +AA*CEXP (NCE1)
*CEXP (NSCE1) ) *FLOAT (N)
+E**2*K/P*G (N) * (A**2*CEXP (CE2) *

CEXP(SCE2) +AA**2*CEXP (NCE2) *CEXP (NSCE2) )

+B (N)

HATYO=REAL (CHATYO)
RETURN
END

REAL FUNCTION G(N)

THIS FUNCTION REPRESENTS THE POLYNOMIAL FUNCTION FOUND
IN THE SOLUTION FOR THE HEIGHT OF THE FRONT EVALUATED

AT Y=0.
INTEGER N

IF (N.EQ.0) THEN
G=0.0EO0

ENDIF

IF (N.EQ.1l) THEN
G=-4.0EQ

ENDIF

IF (N.EQ.2) THEN
G=28.0E0/5.0E0Q
ENDIF

IF (N.EQ.3)THEN
G=-856.0E0/77.0EQ
ENDIF

IF (N.EQ.4) THEN
G=2024.0E0/221.0E0
ENDIF

RETURN
END

REAL FUNCTION B(N)

THIS FUNCTION REPRESENTS THE VALUE OF THE MEAN FLOW

AT Y=0 FOR EPSILON EQUAL TO 0.25.
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IF (N.EQ.0) THEN
B=-.087146886E0
ENDIF

IF (N.EQ.l1) THEN
B=0.306398422E0
ENDIF

IF (N.EQ.2) THEN
B=0.285505891E0
ENDIF

IF (N.EQ.3) THEN
B=0.025252942E0
ENDIF

IF (N.EQ.4) THEN
B=-0.243944064E0
ENDIF

RETURN
END
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* PROGRAM CFRONTGRAPH *
* *
* PURPOSE: THIS PROGRAM WILL CALCULATE A TABLE OF  *
VALUES DESCRIBING THE EVOLUTION OF THE  *
FRONT WITH THE SNOIDAL SOLUTION *
DESCRIBING ITS AMPLITUDE. *
THESE RESULTS CAN BE USED BY A *
GRAPHING PROGRAM TO PRODUCE A 3-D GRAPH  *
OF THE MOTION. *
*

*

*

*

* % % * ¥ *

*

* WRITTEN: MARCH, 1995
* BY: CAROL SLOMP
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THE VALUES FOR N=0, M=0, ARE IN FORT7, N=0 M=4 ARE IN
FORT 8, N=2, M=0 ARE IN FORT9, N=2,M=4 ARE IN FORT10,
N=4 ARE IN FORTI1l.

THE VALUES FOR JUST THE PERTURBATION ARE AS FOLLOWS:
N=0 M=0 FORT30; N=0 M=4 FORT 31; N=2 M=0 FORT 32;
N=2 M=4 FORT 33; N=4 KAY=1 FORT 34.

THE VALUES FOR JUST THE PERTURBATION BUT SMALL EPSILON
ARE AS FOLLOWS: N=0 M=0 FORT 50, N=0 M=4 FORT51,
N=2 M=0 FORT52, N=2 M=4 FORT 53, N=4 FORT 54

THE VALUES FOR THE EXTENDED X N=0 M=4 FORT 60

INTEGER L,R,J,N,I,F

REAL 2(1000,1000),P,E,K,CE,DE, PI,H,LL,GG,G, LAG
REAL X0,Y0,HNULL(1000,1000),TA

COMPLEX A

EXTERNAL H,LAG,G,A

P=1.0EQ

P GIVES THE SLOPE OF THE WEDGE-SHAPED FRONT
E=0.25E0

E IS THE SMALL PARAMETER EPSILON

K=1.0E0

K IS THE WAVENUMBER

N=0

N IS THE MODE BEING CONSIDERED

L =500

PI=3.0E0
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DO 50 I=0,L
XO=—4.0E0*PI+FLOAT(I)*S.OEO*PI/FLOAT(L)
Y0=-1.0E0+1.0EO*FLOAT(F) /40.0E0
HNULL{(I+1,F+1)=0.0EQ
WRITE (7,12) X0,Y0,HNULL(I+1,F+1)

FORMAT (' ',F14.3,' ',Fl14.3,’' ',Fl14.9)
CONTINUE
CONTINUE

DO 120 R=0,L
DO 110 J=0,160
CE=-4.0E0*PI+FLOAT(R) *8.0E0*PI/FLOAT (L)
DE=4.0EO*FLOAT (J) /160.0E0Q
Z(R+1,J+1)=H(P,E,K,N,CE,DE)
WRITE (7,75) CE, DE, Z(R+1,J+1)
FORMAT (' ',F14.3,' ',F14.3,' ',Fl14.9)
CONTINUE
CONTINUE
STOP
END

REAL FUNCTION H(P,E,K,N,X,Y)
THIS FUNCTION WILL CALCULATE THE HEIGHT OF THE FRONT.

INTEGER N

REAL El,E2,P,E,K,M,X,Y,G,LAG
COMPLEX CEl,CE2, IA,AA,HC,NCE1l,NCE2
COMPLEX IDA,DAA,A,DA,I

EXTERNAL G, LAG,A,DA

CE1=CMPLX(0.0EOQ, K*X)
NCE1=CMPLX(0.0EQ, -K*X)
CE2=CMPLX(0.0E0,2.0E0*K*X)
NCE2=CMPLX(0.0EQ, -2.0E0*K*X)
El=-K*Y

E2=-2.0EQ0*K*Y
IA=A(E,K,N, P, X)
IDA=DA(E,K,N, P, X)

WRITE (7,*) IDA

AA=CMPLX (REAL(IA),-IMAG(IA))
DAA=CMPLX{(REAL (IDA), -IMAG(IDA))
I=CMPLX(0.0E0,1.0E0)

HC=E* (IA*CEXP(CEl) +AA*CEXP (NCE1) ) *EXP (E1) *LAG (N, -E2)
~E**2*I/(2*K) * (IDA*CEXP(CE1l) -DAA*CEXP (NCE1) ) *
EXP(El)*(-E2*LAG(N, -E2) +2.0E0*FLOAT (N) *LAG (N-1, -E2) )
+E**2*K/P*G(N, -E2) *EXP(E2) * (IA**2*CEXP (CE2)
+AAX*2*CEXP (NCE2) ) +P*Y
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H=REAL (HC)

RETURN
END

REAL FUNCTION G(N,E3)

INTEGER N
REAL E3,GS

IF (N.EQ.0) THEN

GS=0.0E0

ENDIF

IF (N.EQ.1l) THEN

GS=-4.0E0-2.0E0*E3

ENDIF

IF (N.EQ.2) THEN
GS=28.0E0/5.0E0-102.0E0*E3/5.0E0
+16.0E0*E3**2/5.0E0-E3**3/3,0E0

ENDIF

IF (N.EQ.3) THEN
GS=-856.0E0/77.0E0+292.0E0*E3/77.0E0+
1388.0E0*E3**2/77.0E0-359.0E0*E3**3/77.0E0+
7.0E0*E3**4/11.0E0-E3**5/30.0E0Q

ENDIF

IF (N.EQ.4) THEN
GS=2024.0E0/221.0E0-15924.0E0*E3/221.0E0
+15364.0E0*E3**2/221.0E0~-4917.0E0*E3**3/221.0E0+
3821.0E0*E3**4/663.0E0-1135.0E0*E3**5/1326.0E0
ENDIF

IF (N.EQ.5) THEN

GS=-80772.0E0/4807.0E0+75054 .0E0*E3/4807.0E0
+343660.0E0*E3**2/4807.0E0-1010665.0E0*E3**3/14421.0E0+
124494 .0E0*E3**4/48076.0E0-30064.0E0*E3**5/4807.0E0+
3671.0EQ0*E3**6/3933.0E0-865.0E0*E3**7/10488.0E0
+13.0E0*E3**8/3312.0E0-E3**9/12960.0E0

ENDIF

G=GS
RETURN
END

REAL FUNCTION LAG(N,E4)
THIS FUNCTION CALCULATES THE VALUES OF THE LAGUERRE

POLYNOMIALS

INTEGER N, T

REAL E4,LN,FACTORIAL
EXTERNAL FACTORIAL

LN=1.0E0
DO 150 T=1,N
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LN=LN+(-1.0EQ) **T*FACTORIAL(N) / (FACTORIAL (N-T) *
(FACTORIAL(T) ) **2) *E4**T
CONTINUE

LAG=LN

RETURN
END

REAL FUNC1.iON FACTORIAL(Q)
THIS FUNCTION CALCULATES THE FACTORIAL OF A NUMBER.

INTEGER Q,S,F1

Fl=1

DO 200 s=1,0Q
Fl=F1*S

CONTINUE
FACTORIAL=FLOAT(F1)

RETURN
END

COMPLEX FUNCTION A(E,K,N,P,X)
THIS FUNCTION CALCULATES THE VALUE OF THE AMPLITUDE
THAT SATISFIES THE NONLINEAR SCHROEDINGER EQUATION.

INTEGER IERR,N

REAL S,C,D,KAY,LE,AK,0OM,Y,Q,NR,R,RPSI, CONST, BETA
REAL K,P,E,X,B,AY

COMPLEX SCE1l

EXTERNAL BETA

OM=1.0E0Q
AK=1.0E0/SQRT(2.0E0Q)
B=0.25E0

B IS A CONSTANT THAT MUST BE LESS THAN (OM-AK**2)**2
CONST=1.0EQ

R=(OM-AK**2) +SQRT ( (OM-AK**2) **2_B)

NR= (OM-AK**2) -SQRT ( (OM-AK**2) **2_B)

KAY=NR/R

LE=SQRT (1-KAY**2)

AY=SQRT (K**4 *BETA(N) / (P**2* (2. 0EO*FLOAT (N) +1.0EQ) ) ) *E*X
RPSI=SQRT(R/2) *AY+CONST

CALL ELLPF (RPSI,KAY,LE,S,C,D, IERR)
FOR THIS FUNCTION KAY"2+L"2=1, S=SN(RPSI),C=CN(RPSI),
D=DN(RPSI). IF IERR=0 THEN ELLIPTIC FUNCTIONS WERE

COMPUTED, IERR=1, KAY"2+LE~2=1 IS NOT SATISFIED,
IERR=2, RPSI IS TOO LARGE FOR KAY.
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SCE1=CMPLX(0.0EQ, AK*AY)
A=CEXP (SCE1) *SQRT (NR) *S

RETURN
END

COMPLEX FUNCTION DA(E,X,N,P,X)
THIS FUNCTION CALCULATES THE DERIVATIVE OF THE
AMPLITUDE GIVEN BY THE FUNCTION A(E,K,N,X)

INTEGER N, IERR

REAL E,K,X,0M, B, D, CONST, NR, R, KAY, LE, AY,RPSI, S, C
REAL AK, BETA, PARA, P

COMPLEX I,SCE2

EXTERNAL BETA

OM=1.0E0Q

AK=1.0E0/SQRT(2.0EQ)

B=0.25E0

B IS A CONSTANT THAT MUST BE LESS THAN (OM-AR**2) **2
CONST=1.0EQD

R=(OM-AK**2) +SQRT ( (OM-AK**2) **2_B)

NR= (OM-AK**2) ~SQRT ( (OM-AK**2) **2_B)

KAY=NR/R

LE=SQRT (1-KAY**2)
PARA:SQRT(K**4*BETA(N)/(P**Z*(z.OEO*FLOAT(N)+1.0EO)))
AY=PARA*E*X

RPSI=SQRT(R/2) *AY+CONST

I=CMPLX(0.0EQ0,1.0EQ)

CALL ELLPF (RPSI,KAY,LE,S,C,D,IERR)

FOR THIS FUNCTION KAY”~2+LE~2=1, S=SN(RPSI),C=CN(RPSI),
D=DN(RPSI). IF IERR=0 THEN ELLIPTIC FUNCTIONS WERE
COMPUTED, IERR=1, KAY"2+LE"2=1 IS NOT SATISFIED,
IERR=2, RPSI IS TOO LARGE FOR KAY.

SCE2=CMPLX (0.0EQ, AK*AY)
DA:SQRT(NR)*CEXP(SCEZ)*PARA*(I*AK*S+C*D*SQRT(R/2))

RETURN
END
REAL FUNCTION BETA(N)

INTEGER N
REAL BT

IF (N.EQ.0) THEN

BT=7.3638623E0
ENDIF
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IF (N.EQ.l) THEN
BT=47.828495E0
ENDIF

IF (N.EQ.2) THEN
BT =190.530625E0
ENDIF

IF (N.EQ.3) THEN
BT=495.425275E0
ENDIF

IF (N.EQ.4) THEN
BT=531.2647044E0
ENDIF

BETA=BT

RETURN
END
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* PROGRAM CMEANFLOW
*

* PURPOSE: THIS PROGRAM WILL CALCULATE A TABLE OF
* VALUES DESCRIBING THE MEANFLOW OF THE
* FRONT WITH THE SNOIDAL SOLUTION

* DESCRIBING ITS AMPLITUDE.

* THESE RESULTS CAN BE USED BY A GRAPHING
* PROGRAM TO PRODUCE A 3-D GRAPH OF

* THE MOTION.

*

* WRITTEN: MARCH, 1995

* BY: CAROL SLOMP
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THE RESULTS FOR N=0, M=0 ARE IN FORT 12, N=0,M=4
FORT 13, N=2 FORT 14, N=2, M=4 FORT 15, N=4 FORT 16.

THE VALUES FOR JUST THE PERTURBATION BUT FOR SMALL
EPSILON ARE AS FOLLLOWS: FOR N=0,M=0,FORT55,

N=0, M=4, FORT 56, N=2 M=0 FORT 57, N=2 M=4 FORT 58,
N=4 FORT 59

INTEGER N,L,T,I,S,J

REAL K,P,E,PI,U(500), TOTAL,Y,Z,F,LL,X,LAG,LAGL, LAG2
REAL X0,Y0,G,HNULL(500,500)

EXTERNAL TOTAL, Y,LAG,LAGl,LAG2

COMMON/CAR/N

K=1.0E0

K IS THE WAVENUMBER

N=0

N IS THE MODE BEING CONSIDERED

P=1.0E0Q

P IS THE SLOPE OF THE WEDGE-SHAPED FRONT
E=0.25E0

E IS THE SMALL PARAMETER EPSILON

L=400

PI=3.0EQ

DO 50 J=0,L
X0=-4.0E0*PI+FLOAT(J)*8.0E0*PI/FLOAT(L)
Y0=-1.0E0+1.0EO*FLOAT(S)/40.0E0Q
HNULL(J+1,S+1)=0.0E0
WRITE (12,12) XO0,Y0,HNULL(J+1,S+1)
FORMAT (' ‘,F14.3,* ',Fi4.3,' ',F14.9)
CONTINUE

CONTINUE
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DO 125 I=0,L
DO 100 T=0,160
X=-4.0EO0*PI+FLOAT(I)*8.0E0*PI/FLOAT (L)
G=4.0E0*FLOAT(T) /160.0E0Q
Z=2.0E0*K*G
U(R+1)=TOTAL(K,P,E, X, 2)
WRITE (12,75) X,G,U(R+1)

75 FORMAT (' ',F14.3,' ',F14.3, ' ',F14.9)
100 CONTINUE
125 CONTINUE
STOP
END
Cc
C
REAL FUNCTION TOTAL(K,P,E,X,Z)
c THIS FUNCTION CALCULATES THE TOTAL VALUE OF THE MEAN FLOW
C
INTEGER N
REAL ZT1

REAL PI,P,E,K,TT,F,Y,2,X
COMPLEX 2ZC1,Y8,J8
COMPLEX A,AA,AI

EXTERNAL F,Y,A
COMMON/CAR/N

ZI1=(2.0EO*FLOAT(N)+1.0E0)*Z

ZCl=CMPLX(2.0EO0*SQRT(2I1),0.0E0)

CALL BSSLJ (2C1,0,J8)

IF (ZCl1.EQ.(0.0E0,0.0E0)) THEN

¥8=(1.0E0,0.0E0)

ELSE

CALL BSSLY (2C1,0,Y8)

ENDIF

AI=A(E,K,P,X)

AA=CMPLX (REAL(AI),-IMAG(AI))

TT=-E**2*K*ACOS(~1.0EQ) *AI*AA/ (2.0EQ*P) *
& (REAL(Y8)*F(Z)+REAL(J8)*Y(Z))

TOTAL=REAL(TT)

RETURN
END

REAL FUNCTION F(Z)
THIS FUNCTION WILL CALCULATE THE FIRST INTEGRAL IN THE
FORMULA FOR b, THAT IS, THE INTEGRAL FROM 0 TO 2*Y.

0o

INTEGER NB1l, IERR1, P,Q,R,IWRK1(250)

REAL JO, A,ABSE,RELE,IJ,ERR1,WRK1(1000),2Z
EXTERNAL JO

COMMON/CAR/N

A=0.0E0

ABSE=.00001E0
RELE=.00001E0
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P=250
Q=1000

CALL QAGS (JO,A,Z,ABSE,RELE, IJ,ERRL1,NB1, IERR],
P,Q,R, IWRK1l,WRK1)

F=IJ

RETURN
END

REAL FUNCTION Y(2)

THIS FUNCTION WILL CALCULATE THE SECOND INTEGRAL IN
THE FORMULA FOR b, THAT IS, THE INTEGRAL FROM 2*Y TO
INFINITY.

INTEGER C,D,S, IWRK2(250), NB2,MOl, IERR2
REAL Z, AERR, IERR, IY, ERR2, WRK2{(1000),YO
EXTERNAL YO

COMMON/CAR/N

MO1=1
AERR=0.00001E0
IERR=0.00001E0
C=250

D=1000

CALL QAGI(YO,Z,MO1,AERR, IERR, IY,ERR2,NB2, IERR2,
C,D, S, IWRK:,WRK2)

Y=IY

RETURN
END

REAL FUNCTION JO(Z)
THIS FUNCTION CALCULATES THE INTEGRAND FOR THE FIRST

INTEGRAL FOR THE VALUE OF b.

INTEGER N

REAL ZI

REAL Z,LAG,LAG1,LAG2
COMPLEX 2ZC,T

EXTERNAL LAG, LAGl, LAG2
COMMON/CAR/N

ZI=(2.0E0*FLOAT (N)+1.0EQ) *2
2C=CMPLX (2 .0EO0*SQRT(ZI), 0.0E0)
CALL BSSLJ (2C,0,T)

JO=REAL(T) *EXP(-Z) * (4 .0EO*FLOAT (N+1) * (LAG(Z) ) **2+8.0E0*
FLOAT (N+2) *LAG(Z) *LAG1(Z) +4.0E0* (LAG1(Z) ) **2+8.0EQO*

LAG(Z) *LAG2(Z))
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RETURN
END

REAL FUNCTION YO(Z)
THIS FUNCTION CALCULATES THE INTEGRAND FOR THE
SECOND INTEGRAL FOR THE VALUE OF b.

INTEGER N

REAL ZI2

REAL Z,LAG,LAG1,LAG2,WR
COMPLEX 2C2,W

EXTERNAL LAG, LAGl, LAG2
COMMON/CAR/N

212=(2.0E0*FLOAT(N)+1.0EQ) *2Z
ZC2=CMPLX (2 .0EO*SQRT (Z2I2),0.0E0)

CALL BSSLY(2C2,0,W)

YO=REAL (W) *EXP(-2) * (4.0EO*FLOAT (N+1) * (LAG(Z) ) **2
+8.0EO*FLOAT (N+2) *LAG(Z) *LAG1 (Z)+4.0E0* (LAGL(Z) ) **2
+8.0E0*LAG(2Z) *LAG2(Z))

RETURN
END

REAL FUNCTION LAG(E4)
THIS FUNCTION CALCULATES THE VALUES OF THE LAGUERRE
POLYNOMIALS

INTEGER N, T

REAL E4,LN, FACTORIAL
EXTERNAL FACTORIAL
COMMON/CAR/N

LN=1.0EQ

DO 150 T=1,N

LN=LN+(-1.0EQ) **T*FACTORIAL(N) / (FACTORIAL(N-T) *
(FACTORIAL(T) ) **2) *E4**T

CONTINUE

LAG=LN
RETURN
END

REAL FUNCTION LAG1l{(E4)
THIS FUNCTION CALCULATES THE FIRST DERIVATIVE OF THE
LAGUERRE POLYNOMIALS.

INTEGER N, H

REAL LN1,FACTORIAL, E4
EXTERNAL FACTORIAL
COMMON/CAR/N
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LN1=0.0E0O
DO 200 H=1,N
LN1=LN1+(-1.0EQ) **H*FACTORIAL (N) *FLOAT (H) /
& (FACTORIAL(N-H)*(FACTORIAL(H))**2)*E4** (H-~1)
200 CONTINUE

C
LAG1=LN1
C
RETURN
END
C
C
REAL FUNCTION LAG2(E4)
C THIS FUNCTION CALCULATES THE SECOND DERIVATIVE OF
C THE LAGUERRE POLYNOMIALS.
C
INTEGER N, I
REAL LN2, FACTORIAL,E4
EXTERNAL FACTORIAL
COMMON/CAR/N
C
LN2=0
DO 250 I=2,N
LN2=LN2+(—1,0E0)**I*FACTORIAL(N)*FLOAT(I)*FLOAT(I-I)/
& (FACTORIAL(N—I)*(FACTORIAL(I))**2)*E4**(I—2)
250 CONTINUE
C
LAG2=LN2
C
RETURN
END
C
C
REAL FUNCTION FACTORIAL(Q)
C THIS FUNCTION CALCULATES THE FACTORIAL OF A NUMBER.
INTEGER Q,S,F1
C
Fl=1
DO 400 s=1,0Q
Fl=F1*S
400 CONTINUE
FACTORIAL=FLOAT(F1)
C
RETURN
END
C
C
COMPLEX FUNCTION A(E,K,P,X)
C THIS FUNCTION CALCULATES THE VALUE OF THE AMPLITUDE
C THAT SATISFIES THE NONLINEAR SCHROEDINGER EQUATION.
C

INTEGER IERR,N
REAL S,C,D,KAY,LE, 2K,0OM,Y,Q,NR,R,RPSI,CONST, BETA
REAL K,P,E,X,B,AY
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COMPLEX SCE1l
EXTERNAL BETA
COMMON/CAR/N

OM=1.0E0Q

AK=1/SQRT(2.0E0)

B=0.25E0

B IS A CONSTANT THAT MUST BE LESS THAN (OM-AK**2)**2
CONST=1.0E0Q

R=(OM-AK**2) +SQRT ( (OM-AK**2) **2_R)

NR= (OM-AK**2) —-SQORT ( (OM~AK**2) **2_R)

KAY=NR/R

LE=SQRT (1-KAY**2)

AY=SQRT (K**4*BETA(N) / (P**2* (2 ,.0E0*FLOAT (N)+1.0EQ))) *E*X
RPSI=SQRT(R/2) *AY+CONST

CALL ELLPF (RPSI,KAY,LE,S,C,D,IERR)

FOR THIS FUNCTION KAY**2+L**2=1, S=SN(RPSI),C=CN(RPSI),
D=DN(RPSI). IF IERR=0 THEN ELLIPTIC FUNCTIONS WERE
COMPUTED, IERR=1,KAY**2+LE**2=1 IS NOT SATISFIED,
IERP=2, RPSI IS TOO LARGE FOR KAY.

SCE1=CMPLX(0.0EOQ, AK*AY)
A=CEXP (SCEl) *SQRT(NR) *S

RETURN
END

REAL FUNCTION BETA(N)

INTEGER N
REAL BT

IF (N.EQ.0) THEN
BT=7.3638623E0
ENDIF

IF (N.EQ.1l) THEN
BT=47.828495E0
ENDIF

IF (N.EQ.2) THEN
BT=190.530625E0
ENDIF

IF (N.EQ.3) THEN
BT=495.425275E0
ENDIF

IF (N.EQ.4) THEN
BT=531.2647044E0
ENDIF

BETA=BT

RETURN
END
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* PROGRAM CHADDITION *
% *
* PURPOSE: THIS PROGRAM WILL CALCULATE A TABLE OF  *
* VALUES DESCRIBING THE BOUNDARY OF THE *
* FRONT WITH THE SNOIDAL SOLUTION *
* DESCRIBING ITS AMPLITUDE. THESE *
* RESULTS CAN BE USED BY A GRAPHING *
* PROGRAM TO PRODUCE A 3-D GRAPH OF *
* THE MOTION. 4
* *
* WRITTEN: MARCH, 1995 *
* BY: CAROL SLOMP *
*******************************************************

THE RESULTS FOR N=0,M=0 ARE IN FORT 17, N=0, M=4 FORT18,
N=2 FORT 19, N=2, M=4 FORT 20, N=4 FORT21.

THE VALUES FOR THE PERTURBATION CAN BE FOUND AS FOLLOWS:
N=0 KAY=1 FORT 40; N=0 M=4 FORT 41;

INTEGER N,L,R,F,I,J

REAL K,M,P,E, PI,CE,DE,HADD(500,500), HATYO, PHI
REAL HNULL(500,500),X0,Y0,2R,Z,TA

COMPLEX ZC,A

EXTERNAL HATYOQ, PHI,A

N=0

N IS THE MODE NUMBER

K=1.0E0

K IS THE WAVENUMBER OF THE WAVE
P=1.0EQ

P IS THE SLOPE QF THE WEDGE FRONT
E=0.25E0

E IS THE SMALL PARAMETER EPSILON.
PI =3.0E0

L=400

DO 200 R=0,L
DO 150 F=0,40
CE=-4.0EQ0*PI+8.0E0*PI*FL.OAT(R) /FLOAT (L)
DE=-1.0E0+1.0EQ0*FLOAT(F)/40.0E0
Z=PHI(N,K,P,E,CE)
IF (Z.GE.0) THEN
HADD(R+1,F+1)=0
ELSEIF (DE.LT.Z) THEN
HADD (R+1,F+1)=0
ELSE
HADD (R+1,F+1)=HATY0 (N,K,P,E,CE)*(DE-Z)/Z
ENDIF
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WRITE (17,25) CE,DE,HADD(R+1,F+1)

25 FORMAT (' ',F14.3,° *,F14.3," *,F14.9)
150 CONTINUE
200 CONTINUE

DO 300 J=0,L
DO 250 I=0,160
X0=-4 .0E0*PI+8.0E0*PI*FLOAT (J) /FLOAT (L)
Y0=4.0EO0*FLOAT(I)/160.0E0
HNULL (J+1,I+1)=0.0E0
WRITE (17,225) X0,Y0,HNULL(J+1,I+1)

225 FORMAT (* ',F14.3,' ',F14.3,’ ', F14.9)
250 CONTINUE
300 CONTINUE
C
STOP
END
c
Cc
REAL FUNCTION PHI(N,K,P,E,XC)
C THIS FUNCTION CALCULATES THE DEFORMED BOUNDARY .
C
INTEGER N

REAL K,P,E,XC,G
COMPLEX CEl,CEZ2,NCE1,NCE2,CI,AA,DAA,A,DA,AI,IDA,CPHI,B
EXTERNAL G,B,A,DA

CE1=CMPLX(0.0E0,K*XC)
CE2=CMPLX{(0.0EQ, 2.0EQ0*K*XC)
NCE1=CMPLX(0.0EO, -K*XC)
NCE2=CMPLX(0.0EQ, -2.0EQ0*K*XC)
AI=A(E,K,N,P,XC)

AA=CMPLX (REAL(AI), -IMAG(AI))
IDA=DA(E,K,N, P, XC)

DAA=CMPLX (REAL(IDA), ~IMAG(IDA))
CI=CMPLX(0.0EO0,1.0E0)

CPHI=-E/P* (AI*CEXP(CE1l)+AA*CEXP(NCE1))
~E**2/P**2* (AI*CEXP (CE1)+AA*CEXP (NCE1l) ) **2
*(1.0E0+2.0E0*FLOAT(N)) *K

+E**2/ (P**2*K) *CI* (IDA*CEXP(CEl)-DAA*CEXP(NCE1))
*FLOAT (N)

—E**2*K/P**2* (AI**2*CEXP(CE2) +AA**2 *CEXP (NCE2) ) *G (N)
-B(E,K,P,N,XC) /P

R R R

PHI=REAL (CPHI)
RETURN
END

REAL FUNCTION HATYO(N,K,P,E,X)
c THIS FUNCTION CALCULATES THE HEIGHT OF THE FRONT AT Y=0.

2
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INTEGER N
REAL E,K,X,P,G,RHATYO

COMPLEX CEl,CEZ,NCEl,NCEZ,CI,AA,DAA,A,DA,AI,IDA,CHATYO,B

EXTERNAL B, G,A,DA

CE1=CMPLX(0.0EQ,K*X)
CE2=CMPLX(0.0E0,2.0E0*K*X)
NCE1=CMPLX (0.0EOQ, -K*X)
NCE2=CMPLX (0.0EQ0, ~2.0E0*K*X)
AI=A(E, KINI Pl x)

AA=CMPLX (REAL(AI),-IMAG(AI))
IDA=DA(E,K,N,P,X)
DAA=CMPLX (REAL (IDA) , ~IMAG (IDA))
CI=CMPLX(0.0E0,1.0E0Q)

CHATYO=E* (AI*CEXP (CE1l) +AA*CEXP (NCE1) )
-E**2*CI/K*(IDA*CEXP (CE1l) -DAA*CEXP (NCE1) ) *FLOAT (N)
+E**2*K/P* (AI**2*CEXP (CE2) +AA**2*CEXP (NCE2) ) *G (N)
+B(E,K,P,N, X)

RHATYO=REAL (CHATYO)
HATYO0=RHATYO0
RETURN

END

REAL FUNCTION G(N)
THIS FUNCTION REPRESENTS THE POLYNOMIAL FUNCTION FOUND
IN THE SOLUTION FOR THE HEIGHT OF THE FRONT EVALUATED

AT Y=0.
INTEGER N

IF (N.EQ.0) THEN
G=0.0E0

ENDIF

IF (N.EQ.1l) THEN
G=-4.0E0D

ENDIF

IF (N.EQ.2) THEN
G=28.0E0/5.0E0
ENDIF

IF (N.EQ.3)THEN
G=-856.0E0/77.0E0
ENDIF

IF (N.EQ.4) THEN
G=2024.0E0/221.0E0
ENDIF

RETURN
END
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COMPLEX FUNCTION B(E,K,P,N,X)
THIS FUNCTION REPRESENTS THE VALUE OF THE MEAN FLOW
AT Y=0 FOR EPSILON EQUAL TO 0.5.

INTEGER N

REAL E,K,P,X
COMPLEX O,J8,AI,AA,A
EXTERNAL A

AI=A(E,K,N,P,X)

AA=CMPLX (REAL (AI), -IMAG(AI))

O=CMPLX(0.0E0, 0.0EQ)

CALL BSSLJ (0,0,J8)

IF (N.EQ.0) THEN

B=-E**2*K*ACOS(-1.0EQ0) *AI*AA/(2.0E0*P) *REAL (J8)

*0.887670875E0

ENDIF

IF (N.EQ.1) THEN

B=-E**2*K*ACOS(-1.0E0) *AI*AA/ (2.0E0*P) *REAL (J8)
*-3.120948553E0

ENLIF

IF (N.EQ.2) THEN

B=-E**2*K*ACOS(-1.0E0) *AI*AA/(2.0E0*P) *REAL (J8)
*-2.908138990E0

ENDIF

IF (N.EQ.3) THEN

B=-E**2*K*ACOS(~1.0EQ) *AI*AA/(2.0E0*P) *REAL (J8)
*1.0EQ

ENDIF

IF (N.EQ.4) THEN

B=-E**2*K*ACOS(-1.0E0) *AI*AA/(2.0E0*P) *REAL (J8)
*2.484793901E0

ENDIF

RETURN
END

COMPLEX FUNCTION A(E,K,N,P,X)
THIS FUNCTION CALCULATES THE VALUE OF THE AMPLITUDE
THAT SATISFIES THE NONLINEAR SCHROEDINGER EQUATION.

INTEGER IERR,N

REAL S,D,C,KAY,LE, AK, OM, Q,NR, R, RPSI, CONST, BETA
REAL K, P,E,X,BO,AY,BI

COMPLEX SCEl

EXTERNAL BETA

OM=1.0E0
AK=1.0E0/SQRT(2.0E0)
BO=0.25E0

BO IS A CONSTANT THAT MUST BE LESS THAN (OM-AK**2)*%2

CONST=1.0E0
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R=(OM-AK**2) +SQRT ( (OM-AK**2) **2_B0)

NR= (OM-AK**2) -SQRT ( (OM-AK**2) **2_B0)

KAY=NR/R

LE=SQRT (1.0EQ0-KAY**2)

BI=BETA(N)

AY=SQRT (K**4*BETA (N) / (P**2* (2, 0EO*FLOAT (N)+1.0EQ) ) ) *E*X
RPSI=SQRT(R/2.0EQ0) *AY+CONST

CALL ELLPF (RPSI,KAY,LE,S,C,D,IERR)

FOR THIS FUNCITON KAY**2+LE**2=1, S=SN(RPSI),C=CN(RPSI),
D=DN(RPSI). IF IERR=0 THEN THE ELLIPTIC FUNCITON WERE
COMPUTED, IERR=1,KAY*82+LE**2=1 IS NOT SATISFIED,
IERR=2, RPSI IS TOO LARGE FOR KAY.

SCE1=CMPLX(0.0EQ, AK*AY)
A=CEXP (SCE1l) *SQRT (NR) *S

RETURN
END

COMPLEX FUNCTION DA(E,K,N,P,X)
THIS FUNCTION CALCULATES THE DERIVATIVE OF THE AMPLITUDE
GIVEN BY THE FUNCTION A(E,K,N,P,X)

INTEGER N, IERR

REAL E,K,X,0M,BO,D,CONST,NR,R, KAY, LE,AY,RPST, S,C
REAL AK, BETA,PARA, P

COMPLEX CI,SCE2

EXTERNAL BETA

OM=1.0E0Q

AK=1.0E0/SQRT(2.0E0)

BO=0.25E0

BO IS A CONSTANT THAT MUST BE LESS THAN (OM-AV**2)**2
CONST=1.0E0Q

R=(OM-AK**2) +SQRT ( (OM-AK**2) **2_R0O)
NR=(OM-AK**2) -SQRT ( {OM~AK**2) **2_B0)

KAY=NR/R

LE=SQRT(1.0EQ0-KAY**2)

PARA=SQRT (K**4 *BETA (N) / (P**2* (2, 0E0*FLOAT (N)+1.0E0Q)))
AY=PARA*E*X

RPSI=SQRT(R/2.0EQ) *AY+CONST

CI=CMPLX(0.0EO0,1.0EQ)

CALL ELLPF (RPSI,KAY,LE,S,C,D,IERR)

FOR THIS FUNCTION KAY**2+LE**2=1, S=SN(RPSI),C=CN(RPSI),
D=DN(RPSI). IF IERR=0 THEN THE ELLIPTIC FUNCITON WERE
COMPUTED, IERR=1,KAY**2+LE**2=1 IS NOT SATISFIED,
IERR=2, RPSI IS TOO LARGE FOR KAY.

SCE2=CMPLX (0.0EQ, AK*AY)
DA=SQRT (NR) *CEXP (SCE2) *PARA* (CI*AK*S+C*D*SQRT (R/2.0E0) )
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RETURN
END

REAL FUNCTION BETA(N)

INTEGER N
REAL BT

IF (N.EQ.0) THEN
BT=7.3638623E0(
ENDIF

IF (N.EQ.l1) THEN
BT=47.828495E0
ENDIF

IF (N.EQ.Z2) THEN
BT=190.530625E0
ENDIF

IF (N.EQ.3) THEN
BT=495.425275E0
ENDIF

IF (N.EQ.4) THEN
BT=531.2647044E0
ENDIF

BETA=BT

RETURN
END
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B.3 Solitary Wave Solution

*******************************************************

* PROGRAM SFRONT *
* *
* PURPOSE: THIS PROGRAM WILL CALCULATE A TABLE *
* VALUES DESCRIBING THE EVOLUTION OF THE  *
* FRONT WITH THE SOLITON SOLUTION *
* DESCRIBING ITS AMPLITUDE. *
* THESE RESULTS CAN BE USED BY A *
* GRAPHING PROGRAM TO PRODUCE A 3-D *
* GRAPH OF THE MOTION. *
* *
* WRITTEN: MARCH, 1995 *
* BY: CAROL SLOMP *

*

******************************************************

THE RESULTS FOR N=0 ARE IN FORT 10 N=0 M=5
FORT 11,N=2 FORT 12, N=2 M=5 FORT 13 AND N=4 FORT14;
N=3 M=1 FORT 30; N=3 M=5 FORT 31;

THE VALUES FOR JUST THE PERTURBATION ARE FOUND AS ;
N=0 M=1 FORT 50; N=0 M=5 FORT 51; N=2 M=1 FORT 52;
N=2 M=5 FORT 53; N=3 M=1 FORT 60; N=3 M=5 FORT 61.

THE VALUES FOR SMALL E ARE AS FOLLOWS: N=3 M=5 FORT 70;
N=3 M=1 FORT 71; N=0 M=1 FORT 72; N=0 M=5 FORT 73 ;
(WITH CHANGED X-VALUES FORT 74;SECOND FORT 75)

(')OOOﬂ(’)(‘)(’)(’)OOOOOOOOOOOOOOODOOOOO

INTEGER L,R,J,N,I,F

REAL Z(lOOO,1000),P,E,K,M,C,D,PI,H,LL,GG,G,LAG,KAP
REAL XO0,Y0,HNULL(1000,1000),HATY0

EXTERNAL H, LAG,G

P=1.0E0O

P GIVES THE SLOPE OF THE WEDGE-SHAPED FRONT
E=0.25E0

E IS THE SMALL PARAMETER EPSILON

K=1.0E0

K IS THE WAVENUMBER

N=0

N IS THE MODE BEING CONSIDERED

L =500

PI=3.0E0

0O 0O o o
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DO 50 I=Ol L
DO 25 F=0,80
X0=—4.0E0*PI+FLOAT(I)*B.OEO*PI/FLOAT(L)
Y0=-2.0E0+2.0E0*FLOAT (F) /80.0E0Q
HATYO=H(P,E,K,N, X0, 0)
HNULL(I+1,F+1)=0.0E0
WRITE (11,12) XO0,Y0,HNULL(I+1,F+1)
FORMAT (' ',F14.3,' ',Fl14.3,*' ',F14.9)
CONTINUE

CONTINUE

DO 120 R=0,L
DO 110 J=0,240
C=-4.0E0*PI+FLOAT(R)*8.0E0*PI/FLOAT (L)
D=6 .0E0*FLOAT (J) /240.0E0Q
Z(R+1,J+1)=H(P,E,K,N,C,D)
WRITE (11,75) C, D, Z(R+1,J+1)
FORMAT (' ',F14.3,' ',Fl14.3,' ',F14.9)
CONTINUE
CONTINUE
STOP
END

REAL FUNCTION H(P,E,K,N,X,Y)
THIS FUNCTION WILL CALCULATE THE HEIGHT OF THE FRONT.

INTEGER N

REAL El1,E2,P,E,K,X,Y,G,LAG

COMPLEX CE1,CE2,HC,NCE1,NCE2,I,A,AI,AA,DA, IDA, DAA
EXTERNAL G, LAG,A,DA

CE1=CMPLX(0.0E0,K*X)
NCE1=CMPLX(0.0E0, ~-K*X)
CE2=CMPLX(0.0E0,2.0E0*K*X)
NCE2=CMPLX(0.0EQ, -2.0EQ0*K*X)
El=-K*Y

E2=-2.0EQ0*K*Y
I=CMPLX(0.0EQ0,1.0EQ)
AI=A(E,N,K, P, X}
AA=CMPLX (REAL (AI), -IMAG(AI))
IDA=DA(E,N,K, P, X)
DAA=CMPLX (REAL (IDA), -IMAG(IDA))

HC:E*(AI*CEXP(CEl)+AA*CEXP(NCE1))*EXP(El)*LAG(N,-E2)
+E**2*I/(2.0E0*K) * (CEXP(CEL) *IDA-DAA*CEXP (NCE1) ) *
(—E2*LAG(N,-E2)+2.0E0*FLOAT(N)*LAG(N-l,-E2))*EXP(El)
+E**2*K/P*EXP(E2) *G (N, -E2) * (AI**2*CEXP (CE2)
+AA**2*CEXP (NCE2) ) +P*Y

H=REAL (HC)

RETURN
END
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COMPLEX FUNCTION A(E,N,K,P,XE)
THIS FUNCTION WILL CALCULATE THE AMPLITUDE OF THE FLOW

INTEGER N

REAL KAP,CE,PSI,M,PARA,K,B,P,XE,E,BETA
COMPLEX I

EXTERNAL BETA

KAP=1.0E0

M=5.0E0

CE=SQRT(2.0E0*M-KAP**2) /2.0E0

M MUST BE GREATE THAN KAP**2/2

B=BETA (N)
PARA:SQRT((K**4*B)/(P**2*(2.0E0*FLOAT(N)+1.0E0)))
PSI=PARA*E*XE

I=CMPLX(0.0E0,1.0E0)

A= (KAP-2.0E0*I*CE*TAN4 (CE*PSI)) /SQRT(2.0EQ)

RETURN
END

COMPLEX FUNCTION DA{(E,N,K, P, XR)
THIS FUNCTION CALCULATES THE FIRST DERIVATIVE
OF THE AMPLITUDE

INTEGER N

REAL E,K,P,XR,B,KAP,CE,M, PARA, PSI,BETA
COMPLEX I

EXTERNAL BETA

KAP=1.0E0

M=5.0E0

CE=SQRT,2.0EQ0*M-KAP**2)/2.0E0

M MUST BE GREATE THAN KAP**2/2

B=BETA(N)

PARA=SQRT ( (K**4*B) / (P**2* (2 ,0EO*FLOAT(N)+1.0E0)))
PSI=PARA*E*XR

I=CMPLX{(0.0EO,1.0EQ)

DA=-SQRT (2.0EQ) *I*CE**2/ (COSH(CE*PSI)) **2*PARA*E
RETURN
END

*EAL FUNCTION G(N,E3)
INTEGER N
REAL E3,GS
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IF (N.EQ.0) THEN

GS=0.0E0

ENDIF

IF (N.EQ.1l) THEN

GS=-4.0E0-2.0E0*E3

ENDIF

IF (N.EQ.2) THEN
GS=28.0E0/5.0E0-102.0E0*E3/5.0E0
+16.0E0*E3**2/5.0E0-E3**3/3.0E0

ENDIF

IF (N.EQ.3) THEN
GS=-856.0E0/77.0E0+292.0E0*E3/77.0E0+
1388.0E0*E3**2/77.0E0-359.0E0*E3**3 /77 .0E0+
7.0E0*E3**4/11.0E0-E3**5/30.0E0Q

ENDIF

IF (N.EQ.4) THEN
GS=2024.0E0/221.0E0-15924.0E0*E3/221.0E0Q
+15364.0E0*E3**2/221.0E0-4917 .0E0*E3**3/221.0E0+
3821.0E0*E3**4/663.0E0-1135.0E0*E3**5/1326.0E0
ENDIF

IF (N.EQ.5) THEN
GS=-80772.0E0/4807.0E0+75054.0E0*E3/4807.0E0Q
+343660.0E0*E3**2/4807.0E0-1010665.0E0*E3**3/14421.0E0+
124494.0E0*E3**4/48076.0E0-30064.0E0*E3**5/4807.0E0+
3671.0E0*E3**6/3933.0E0-865.0E0*E3**7/10488.0E0
+13.0E0*E3**8/3312.0E0-E3**9/12960.0E0

ENDIF

G=GS
RETURN
END

REAL FUNCTION LAG(N,E4)
THIS FUNCTION CALCULATES THE VALUES OF THE LAGUERRE
POLYNOMIALS

INTEGER N, T
REAL E4,LN,FACTORIAL
EXTERNAL FACTORIAL

LN=1.0E0

DO 150 T=1,N

LN=LN+ (-1.0E0) **T*FACTORIAL(N) / (FACTORIAL (N-T)
* (FACTORIAL(T) ) **2) *E4**T

CONTINUE

LAG=LN

RETURN

END

REAL FUNCTION FACTORIAL(Q)
THIS FUNCTION CALCULATES THE FACTORIAL OF A NUMBER.
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INTEGER Q,S,F1

Fl=1
DO 200 s=1,Q
Fl=F1*S

200 CONTINUE
FACTORIAL=FLOAT(F1l)

(9]

RETURN
END

REAL FUNCTION BETA (N)
THIS FUNCTION SETS THE VALUE FOR BETA, THE POSITIVE
PARAMETER IN THE NONLINEAR SCHROEDINGER EQUATION.

nOO 0N

INTEGER N
REAL B

(9]

IF (N.EQ.0) THEN
B=7.3638623E0
ENDIF

IF (N.EQ.1) THEN
B=47.828495E0
ENDIF

IF (N.EQ.2) THEN
B=190.530625E0
ENDIF

IF (N.EQ.3) THEN
B=495.425275E0
ENDIF

IF (N.EQ.4) THEN
B=531.2647044E0
ENDIF

BETA =B

RETURN
END
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*******************************************************

* PROGRAM SMEANFLOW *
* *
* PURPOSE: THIS PROGRAM WILL CALCULATE A TABLE OF  *
VALUES DESCRIBING THE MEANFLOW OF THE *
FRONT WITH THE SOLITON SOLUTION *
DESCRIBING ITS AiiPLITUDE. *
THESE RESULTS CAN BE USED BY A *
GRAPHING PROGRAM TO PRODUCE A 3-D *
TO PRODUCE A 3-D GRAPH OF THE MOTION. *
*

*

*

*

* % * * ¥ % *

* WRITTEN: MARCH, 1995
* BY: CAROL SLOMP

******************************************************

THE VALUES FOR N=0 ARE IN FORT 15, N=0 M=5 FORT 16;
N=2 FORT 17; N=2 M=5 FORT 18 AND N=4 FORT 19.

INTEGER N,L,R,I,S,J

REAL K,P,E,PI,U(500,500), TOTAL,Y,Z,F,X,LAG,LAGl,LAG2,G
REAL X0,Y0,KAP,M,C,HNULL(500,500)

COMPLEX LL,A

EXTERNAL TOTAL, Y,LAG,LAGl,LAG2,A

COMMON/CAR/N

K=1.0EQ

K IS THE WAVENUMBER

N=0

N IS THE MODE BEING CONSIDERED
P=1.0E0Q

P IS THE SLOPE OF THE WEDGE-SHAPED FRONT
E=0.25E0

E IS THE SMALL PARAMETER EPSILON
L=400

PI=3.0E0

DO 50 J=0,L

DO 25 S=0,80
X0=—4.0E0*PI+FLOAT(J)*8.0EO*PI/FLOAT(L)
Y0=-2.0E0+2.0E0*FLOAT (S) /80.0E0
HNULL (J+1,S+1)=0.0EQ
WRITE (15,12) XO0,Y0,HNULL(J+1,S+1)
FORMAT (' ‘,Fl14.3,*' ',F14.3,' ',F14.9)
CONTINUE

CONTINUE
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DO 125 I=0,L
DO 100 R=0,240

X=-4 .0E0*PI+FLOAT(I)*8.0E0*PI/FLOAT (L)
G=6.0E0*FLOAT (R) /240.0E0
2=2.0EQ0*K*G

C LL=A(E,K, P, X)
U(I+1,R+1)=TOTAL(K,P,E,2Z,X)
WRITE (15,75) X,G,U(I+1,R+1)

75 FORMAT (' ',F14.3,’ ',F14.3, ' ',F14.9)
100 CONTINUE
125 CONTINUE
STOP
END
c
C
REAL FUNCTION TOTAL(K,P,E,Z2,X)
C THIS FUNCTION CALCULATES THE TOTAL VALUE OF THE
Cc MEAN FLOW
C
INTEGER N
REAL ZI1

REAL P,E,K,F,Y,2Z2,X

COMPLEX 2Cl1,Y8,J8,TT,IA,2A,A
EXTERNAL F,Y,BETA,A
COMMON/CAR/N

IA=A(E,K,P,X)

AA=CMPLX (REAL(IA),-IMAG(IA))

ZI1=(2.0E0*FLOAT(N)+1.0EQ) *2

ZC1l=CMPLX(2.0EO*SQRT(2I1),0.0ED)

CALL BSSLJ (2C1,0,J8)

IF (2Cl.EQ.(0.0E0,0.0E0)) THEN

Y8=(1.0E0,0.0EQ)

ELSE

CALL BSSLY (ZC1,0,Y8)

ENDIF

TT=-E**2*K*ACOS(-1.0E0) *IA*AA/ (2.0EQ*P) *
& (Y8*F(Z)+J8*Y(Z))

TOTAL=REAL(TT)

(@]

RETURN
END

COMPLEX FUNCTION A(E,K,P,XE)
THIS FUNCTION CALCULATES THE VALUE OF THE
AMPLITUDE FUNCTION

OO 00

INTEGER N

REAL BI,K,P,KAP,PSI,M,PARA,XE,E,BETA
COMPLEX I

EXTERNAL BETA

COMMON/CAR/N
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BI=BETA(N)

KAP=1.0E0

M=1.0EOQ

CE=SQRT (2 .0E0*M-KAP**2) /2, 0EO

M MUST BE GREATER THAN KAP**2/2

PARA=SQRT (K**4*BI/(P**2*(2,0E0*FLOAT(N)+1.0E0Q)))
PSI=PARA*E*XE

I=CMPLX(0.0EQ,1.0E0Q)

A= (KAP-2.0EQ*I*CE*TANH (CE*PSI) ) /SQRT(2.0E0Q)
RETURN
END

REAL FUNCTION F(2)
THIS FUNCTION WILL CALCULATE THE FIRST INTEGRAL IN

THE FORMULA FOR b, THAT IS, THE INTEGRAL FROM 0 TO 2*Y.

INTEGER NB1, IERR1, P,Q,R,IWRK1(250)

REAL JO, A,ABSE,RELE,IJ,ERR1,WRK1(1000),2
EXTERNAL JO

COMMON/CAR/N

A=0.0E0
ABSE=.00001E0
RELE=.00001EQ
P=250

0=1000

CALL QAGS (JO,A,Z,ABSE,RELE, 1J,ERR1,NB1, IERR]1,
P,Q,R, IWRK1,WRK1)

F=1J

RETURN
END

REAL FUNCTION Y(Z)

THIS FUNCTION WILL CALCULATE THE SECOND INTEGRAL I.]
THE FORMULA FOR b, THAT IS, THE INTEGRAL FROM 2*Y TQO
INFINITY.

INTEGER C,D,S, IWRK2(250), NB2,MO1l, IERR2
REAL Z, AERR, IERR, IY, ERR2, WRK2(1000),YO
EXTERNAL YO

COMMON/CAR/N

MO1l=1
AERR=0.00001E0Q
IERR=0.00001E0
C=250

D=1000
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CALL QAGI(YO,Z,MO1,AERR, IERR, IY,ERR2,NB2, IERR2,
C,D, S, IWRK2,WRK2)

Y=IY

RETURN
END

REAL FUNCTION JO(Z)
THIS FUNCTION CALCULATES THE INTEGRAND FOR THE FIRST
INTEGRAL FOR THE VALUE OF b.

INTEGER N

REAL ZI

REAL Z,LAG,LAGl,LAG2
COMPLEX ZC,T

EXTERNAL LAG, LAGl, LAG2
COMMON/CAR/N

ZI=(2.0EO*FLOAT(N)+1.0EQ) *Z
2C=CMPLX (2 .0E0*SQRT(2I),0.0EQ)

CALL BSSLJ (2C,0,T)

JO=REAL(T) *EXP(-2) * (4 .0EO*FLOAT (N+1) *(LAG(Z) ) **2+8.0E0*
FLOAT (N+2) *LAG(Z) *LAG1(Z)+4.0E0* (LAG1(Z) ) **2+8.0E0*
LAG(Z) *LAG2(Z))

RETURN
END

REAL FUNCTION YO(2Z)
THIS FUNCTION CALCULATES THE INTEGRAND FOR THE
SECOND INTEGRAL FOR THE VALUE OF b.

INTEGER N

REAL 212

REAL Z,LAG, LAG1, LAG2,WR
COMPLEX ZC2,W

EXTERNAL LAG,LAG1, LAG2
COMMON/CAR/N

Z12=(2.0EO0*FLOATIN)+1.0E0) *Z
ZC2=CMPLX(2.0E0*SQRT(ZI2),0.0E0)

CALL BSSLY(2C2,0,W)

YO=REAL (W) *EXP(-2) *(4.0EO*FLOAT (N+1) * (LAG(Z) ) **2
+8.0EQO*FLOAT (N+2) *LAG(Z) *LAG1(Z) +4.0EQ* (LAG1(Z) ) **2
+8.0EO0*LAG(Z) *LAG2(Z) )

WRITE (30,*) YO

RETURN
END
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REAL FUNCTICN LAG(E4)

c THIS FUNCTION CALCULATES THE VALUES OF THE LAGUERRE
c POLYNOMIALS
INTEGER N, T

REAL E4,LN, FACTORIAL
EXTERNAL FACTORIAL
COMMON/CAR/N

(@)

LN=1.0EO

DO 150 T=1,N

LN=LN+(~1.0EQ) **T*FACTORIAL(N) / (FACTORIAL (N-T) *
& (FACTORIAL(T))**2)*E4**T

150 CONTINUE
LAG=LN
RETURN
END

C

C

REAL FUNCTION LAG1(E4)
THIS FUNCTION CALCULATES THE FIRST DERIVATIVE OF THE
LAGUERRE POLYNOMIALS.

0o

INTEGER N,H

REAL LN1,FACTORIAL,E4
EXTERNAL FACTORIAL
COMMON/CAR/N

LN1=0.0EQ
DO 200 H=1,N
LNl:LNl+(—l.OEO)**H*FACTORIAL(N)*FLOAT(H)/(FACTORIAL(N—H)*
& (FACTORIAL(H) ) **2) *E4** (H-1)
200 CONTINUE

LAG1=LN1
RETURN
END

REAL FUNCTION LAG2/E4)
THIS FUNCTION CALCULATES THE SECOND DERIVATIVE OF THE
LAGUERRE POLYNOMIALS.

Nnnon

INTEGER N, I

REAL LN2, FACTORIAL,E4
EXTERNAL FACTORIAL
COMMON/CAR/N

LN2=0
DO 250 I=2,N
LN2=LN2+(—1.0EO)**I*FACTORIAL(N)*FLOAT(I)*FLOAT(I—l)/
& (FACTORIAL(N-I)* (FACTORIAL(I))**2)*E4**(I-2)
250 CONTINUE
L2G2=LN2
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RETURN

END
C
C
REAL FUNCTION FACTORIAL(Q)
C THIS FUNCTION CALCULATES THE FACTORIAL OF A NUMBER.
C
INTEGER Q,S,Fl1
C
Fl=1
DO 400 s=1,Q
Fl=F1l*S
400 CONTINUE
FACTORIAL=FLOAT (F1)
C
RETURN
END
C
C
REAL FUNCTION BETA(N)
C THIS FUNCTION SETS THE VALUE FOR BETA, THE POSITIVE
C PARAMETER IN THE NONLINEAR SCHROEDINGER EQUATION.
C
INTEGER N
REAL BT
C
IF (N.EQ.0) THEN
BT=7.3638623E0
ENDIF
IF (N.EQ.l) THEN
BT=47.828495E0
ENDIF
IF (N.EQ.2) THEN
BT=190.530625E0
ENDIF
IF (N.EQ.3) THEN
BT=495.425275E0
ENDIF
IF (N.EQ.4) THEN
BT=531.2647044E0
ENDIF
C
BETA=BT
RETURN
END
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********************************************************

* PROGRAM SHADDITION *
* *
* PURPOSE: THIS PROGRAM WILL CALCULATE A TABLE OF *
VALUES DESCRIBING THE BOUNDARY OF THE *
FRONT WITH THE SOLITON SOLUTION *
DESCRIBING ITS AMPLITUDE. *
THESE RESULTS CAN BE USED BY A *
GRAPHING PROGRAM TO PRODUCE A 3-D GRAPH  *
OF THE MOTION. *
*

*

*

*

* o ok % ¥ F

*

* WRITTEN: MARCH, 1995
* BY: CAROL SLOMP

*******************************************************

THE DATA FOR N=0 IS IN FORT 20, N=0 M=5 FORT 21 N=2
FORT 22, N=2 M=9 FORT 23 AND N=4 FORT 24, N=3 M=1
FORT 40, N=3 M=5 FORT 41

INTEGER N,L,R,F,I,J

REAL K, P,E,PI,C,D,Z2,HADD(500,500),HATY0, PHI,H
REAL HNULL(500,500),X0,Y0,aa

COMPLEX BI,B

EXTERNAL HATY(,PHI,B

N=0
N IS THE MODE NUMBER
K=1.0E0

K IS THE WAVENUMBER OF THE WAVE
P=1.0E0

P IS THE SLOPE OF THE WEDGE FRONT
E=0.25E0

E IS THE SMALL PARAMETER EPSILON.
PI =3.0E0Q

L=400

DO 200 R=0,L
DO 150 F=0,80
C=-4.0E0*PI+8.0E0*PI*FLOAT(R) /FLOAT(L)
D=-2.0E0+2.0EQ0*FLOAT(F) /80.0EQ
Z=PHI(N,KX,P,E,C)
IF (Z.GE.0.0E0) THEN
HADD(R+1,F+1)=0.0EQ
ELSEIF (D.LT.Z) THEN
HADD (R+1,F+1)=0.0E0
ELSE
HADD (R+1,F+1)=HATY0 (N,K,P,E,C)*(D-2)/2
ENDIF
WRITE (20,25) C,D,HADD(R+1,F+1)

241



25 FORMAT (* ',F14.3,' ',Fl14.3,' *',F14.9)

150 CONTINUE

200 CONTINUE

DO 300 J=0,L

DO 250 I=0,160
X0=4.0E0*PI*(-1.0E0 + 2.0EO0*FLOAT(J)/FLOAT(L))
Y0=4.0EQ0*FLOAT(I)/160.0E0
HNULL (J+1,I+1)=0.0EQ
WRITE (20,225) X0,Y0,HNULL:J+1,I+1)

225 FORMAT (' ',Fl14.3,' ',F14.3,' ',Fl4.9)
250 CONTINUE
300 CONTINUE
c
STOP
END
c
C
REAL FUNCTION PHI(N,K,P,E,X)
C THIS FUNCTION CALCULATES THE DEFORMED BOUNDARY.
c

INTEGER N

REAL K,P,E,X,G

COMPLEX CE1,CE2,NCE1l,NCE2

COMPLEX I,CPHI,AI,AA,A,DA,DAI,DAA,B
EXTERNAL G,B,A

AI=A(E,N,K,P,X)

AA=CMPLX (REAL(AI), -IMAG(ATI))
DAI=DA(E,N,K, P, X)
DAA=CMPLX (REAL (DAI), -IMAG(DAI))
CE1=CMPLX(0.0EQ,K*X)
NCE1=CMPLX(0.0EQ, ~K*X)
CE2=CMPLX(0.0E0,2.0E0*K*X)
NCE2=CMPLX(0.0E0, -2.0EQ0*K*X)
I=CMPLX{(0.0E0,1.0E0Q)

CPHI=-E* (AI*CEXP(CE1)+AA*CEXP(NCEl) ) /P
-E**2*K/P**2* (CEXP(CE1l) *AI+CEXP (NCE1) *AA) **2*
(1.0E0+2.0E0*FLOAT(N))

-E**2*I/(P*K) *DFLOAT (N) * (DAI*CEXP (CE1) -DAA*CEXP (NCE1) )
~E**2*K/P**2*G(N) * (AI**2*CEXP(CE2) +AA**2*CEXP (NCE2) )
-B(N,E,K,P,X) /P

R R

PHI=REAL (CPHI)
RETURN
END

REAL FUNCTION HATYO(N,K,P,E,X)
THIS FUNCTION CALCULATES THE HEIGHT OF THE FRONT AT Y=0.

00 0N

INTEGER N
REAL K,P,E,X,G
COMPLEX CE1,CE2,NCE1l,NCE2
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COMPLEX I,CHATYO,AI,A,AA,DAI,DA,DAA,B
EXTERNAL G,B,A,DA

AI=A(E,N,K, P, X)
AA=CMPLX (REAL (AI), -IMAG(AI))
DAI=DA(E,N,K,P,X)
DAA=CMPLX (REAL (DAI), ~IMAG(DAI))
CE1=CMPLX(0.0EQ, K*X)
NCE1=CMPLX(0.0EQ, -K*X)
CE2=CMPLX(0.0E0,2.0E0*K*X)
NCE2=CMPLX(0.0E0, -2.0E0*K*X)
I=CMPLX(0.0E0Q,1.0EQ)

CHATYO0=E* (CEXP(CE1) *AI+CEXP(NCEl) *aA)
+E**2*T/K*FLOAT (N) * (CEXP(CE1) *DAI-CEXP (NCE1) *DAA)
+E**2*K/P* (CEXP (CE2) *AI**2+CEXP (NCE2) *AA**2) *G (N)
+B(N,E,K,P,X) /P

HATYO0=REAL (CHATYO()

RETURN
END

REAL FUNCTION G(N)

THIS FUNCTION REPRESENTS THE POLYNOMIAL FUNCTION FOUND
IN THE SOLUTION FOR THE HEIGHT OF THE FRONT EVALUATED
AT Y=0.

INTEGER N

IF (N.EQ.0) THEN
G=0.0EO0

ENDIF

IF (N.EQ.1l) THEN
G=-4.0E0

ENDIF

IF (N.EQ.2) THEN
G=28.0E0/5.0E0
ENDIF

IF (N.EQ.3)THEN
G=-856.0E0/77.0E0
ENDIF

IF (N.EQ.4) THEN
G=2024.0E0/221.0E0
ENDIF

RETURN
END

COMPLEX FUNCTION B(N,E,K,P,X)
THIS FUNCTION REPRESENTS THE VALUE OF THE MEAN FLOW
AT Y=0 FOR EPSILON EQUAL TO 0.25.
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INTEGER N

REAL E,K,X,P

COMPLEX J8,S,AI,AA,BN,A
EXTERNAL A

S=CMPLX(0.0ED, 0.0EQD)

CALL BSSLJ (S,0,J8)
AI=A(E,N,K,P,X)
AA=CMPLX (REAL (AI), ~-IMAG(AI))
IF (N.EQ.0) THEN
BN=-E**2*K*ACOS(-1.0EQ) *AI*AA/(2.0EQ*P)
*J8*0.887670875E0

ENDIF

IF (N.EQ.1) THEN
BN=-E**2*K*ACOS(-1.0EQ) *AI*AA
*T8*%-3,120948553E0/ (2.0E0*P)
ENDIF

IF (N.EQ.2) THEN
BN=-E**2*K*ACOS(-1.0EQ) *AI*AA
*J8*-2.908138990E0/(2.0EQ0*P)
ENDIF

IF (N.EQ.3) THEN
BN=-E**2*K*ACOS(-1.0EQ) *AI*AA
*J8%-0,257224351E0/(2.0EQ0*P)
ENDIF

IF (N.EQ.4) THEN
BN=-E**2*K*ACOS(-1.0EQ) *AT*AA
*J8%2,.484793901E0/(2.0E0*P)
ENDIF

B=BN
RETURN
END

COMPLEX FUNCTION A(E,N,K,P,XE)
THIS FUNCTION COMPUTES THE AMPLITUDE OF THE GROUP

VELOCITY

INTEGER N

REAL KAP,CE, PSI,M, PARA,K,B,P,XE,E, BETA
COMPLEX I

EXTERNAL BETA

KAP=1.0EO

M=1.0EO

CE=SQRT(2.0E0*M-KAP**2) /2 ,.0EQ

M MUST BE GREATER THAN KAP**2/2

B=BETA (N)

PARA=SQRT ( (K**4*B) / (P**2*(2.0E0*FLOAT (N)+1.0E0)))
PSI=PARA*E*XE

I=CMPLX(0.0EQ0,1.0EO0)

A= (KAP-2.0E0*I*CE*TANH (CE*PSI) ) /SQRT(2.0E0)
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RETURN
END

COMPLEX FUNCTION DA(E,N,K,P,XR)
THIS FUNCTION CALCULATES THE DERIVATIVE OF THE
AMPLITUDE FUNCTION

INTEGER N

REAL E,K,P,XR,B,KAP,CE, M, PARA, PST, BETA
COMPLEX I

EXTERNAL BETA

KAP=1.0EQ

M=1.0EOQ

CE=SQRT (2.0E0*M-KAP**2) /2 .0EQ

M MUST BE GREATER THAN KAP*82/2

B=BETA (N)

PARA=SQRT{ (K**4*B) / (P**2* (2 ,0E0*FLOAT (N)+1.0E0D)))
PSI=PARA*E*XR

I=CMPLX(0.0E0,1.0E0)

DA=-SQRT (2.0EQ) *I*CE**2/ (COSH(CE*PSI) ) **2*PARA*E

RETURN
END

REAL FUNCTION BETA(N)

THIS FUNCTION SETS THE VALUE FOR BETA, THE POSITIVE

PARAMETER IN THE NONLINEAR SCHROEDINGER EQUATION

INTEGER N
REAL BT

IF (N.EQ.0) THEN
BT=7.3638623E0
ENDIF

IF (N.EQ.l) THEN
BT=47.828495E0
ENDIF

IF (N.EQ.2) THEN
BT=190.530625E0
ENDIF

IF (N.EQ.3) THEN
BT=495.425275E0
ENDIF

IF (N.EQ.4) THEN
BT=531.2647044E0
ENDIF

BETA=BT

RETURN
END
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