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Abstract 

As old-growth forest ecosystems become increasingly scarce in North America, the need 

to accurately and efficiently survey, monitor, and model old-growth specialists and keystone 

species, such as the Pileated Woodpecker (Dryocopus pileatus), becomes increasingly important. 

Little is known about the behaviour and habitat associations of the Pileated Woodpecker at the 

northern edge of its range in Alberta, Canada. Attempts at modeling Pileated Woodpecker habitat 

use for this region by the Alberta Biodiversity Monitoring Institute (ABMI) have high uncertainty, 

particularly for vegetation types. One explanation is that the data used to build these habitat 

selection models comes from surveys done in June, which may not capture the peak of Pileated 

Woodpecker detectability and breeding behaviour. As a large-bodied bird with an expansive home 

range, it is unknown how or if occupancy (traditionally used as the response variable in many 

habitat models) can effectively represent Pileated Woodpecker habitat associations. To model 

Pileated Woodpecker habitat, I first determined periods of peak detectability and evaluated how 

different methods of measuring and estimating use influence habitat models. 

I explored temporal variation in Pileated Woodpecker behaviour using passive acoustic 

monitoring methods. Peak detection periods for Pileated Woodpeckers were near sunrise in early 

April. Mean daily temperature and day length were the most influential environmental variables 

that affected the drumming of Pileated Woodpeckers. Based on these findings, I provide minimum 

recommendations for future survey efforts regarding the timing and number of surveys required to 

ensure accurate data collection for the Pileated Woodpecker in Alberta, Canada. These guidelines 

can be used for planning future surveys and methods to utilize existing non-optimized surveys to 

ensure the accuracy of Pileated Woodpecker site occupancy.  
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Using these guidelines, I optimized data collection and built regional habitat models for 

the boreal forest in Alberta, Canada. These models evaluated how different response metrics, land 

cover data sources, and scales affect Pileated Woodpecker habitat associations and the predictive 

accuracy of models. I compared two response metrics, occupancy and intensity of use, to determine 

Pileated Woodpecker habitat use. Biomass and canopy closure were important environmental 

variables for both response metrics. However, these models were not particularly predictive, 

possibly due to errors in land cover data, the nature of the acoustic sampling strategy, the species' 

biology, or a combination of these factors. Additionally, I determined that land cover data sources 

can greatly affect model predictive capacity and the number of reliable predictors identified. 

Furthermore, I determined that broad-scale land cover data, which may represent the environment 

at the landscape level, may be more predictive in determining Pileated Woodpecker habitat use 

than local definitions of land cover. From these results, I outlined considerations regarding 

sampling and modeling techniques for future Pileated Woodpecker studies and identified 

important habitat characteristics for the Pileated Woodpecker in Alberta, Canada.  
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1. Chapter 1. Introduction 

The study of wildlife behaviour is vital to understanding the roles and niches a species 

occupies. It is also essential for researchers to understand how behaviour influences our ability to 

survey a species. A commonly studied behaviour in birds is song. Birds use singing for various 

purposes, ranging from mate selection to territorial defence (Kilham 1959, Kroodsma and Byers 

1991, Catchpole and Slater 1995). Song also creates distinguishable auditory cues that researchers 

can use to identify and count species (Emlen 1972, Dodenhoff et al. 1998, Priyadarshani et al. 

2018). Most bird species show distinct seasonal patterns in breeding behaviour and frequency of 

auditory cues over the breeding season (Perrins 1970, Catchpole and Slater 1995, Helm et al. 2006, 

Tremain et al. 2008, Avey et al. 2011, Harms and Dinsmore 2014, Agostino et al. 2020, Upham-

Mills et al. 2020).  

Most research on the temporal variation of bird behaviours focuses on migratory songbird 

singing patterns. However, some bird species, namely woodpeckers, produce unique auditory cues 

(drumming) that are believed to be important for mate selection, territorial defence, and pair 

communication (Kilham 1959). Establishing how the frequency of drumming changes over the 

course of a breeding season or year is important to better understand the role that drumming has 

in the breeding ecology of woodpeckers. Furthermore, woodpecker species are typically non-

migratory. Breeding of non-migratory species usually occurs earlier in the season compared to the 

arrival of migratory species (von Haartman 1968, Samplonius et al. 2018). Therefore, we expect 

that resident species may not display the same temporal patterns in song or other auditory cues as 

migrants. How these unique features influence the frequencies and timings of behaviours is 

important to determine for researchers who wish to monitor and study these species. 

Variation in the frequency of auditory cues can affect the likelihood of whether researchers 

will observe their target species. One standardized bird survey program, the Breeding Bird Survey 

(BBS), employs surveys at times that capture a wide variety of species but are not necessarily 

timed to capture the peak in many species’ auditory cues. As species may react uniquely to 

environmental variables that trigger breeding season behaviours, it is necessary to establish how 
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the frequency of these auditory cues shifts across a temporal scale. In doing so, we can ensure that 

survey efforts have the highest probability of observing a target species. Additionally, by 

examining species-specific responses, we can increase the accuracy of data and limit the costs of 

sampling. Optimizing species-specific sampling designs will ultimately allow researchers to 

improve the predictive capabilities of species habitat models.  

 

Wildlife Habitat Use and Modeling  

Habitat use models typically use counts of a species collected during a fixed period, often 

referred to as point counts for bird surveys. Biologists use these counts to understand the spatial 

distribution of species by regressing counts against various environmental variables. Numerous 

ways of using these counts have been developed, such as occupancy, habitat preference, intensity 

of use, and temporal occupancy, each of which attempts to describe how species are utilizing 

aspects of the environment. Occupancy is commonly used to describe habitat use relationships 

(Mackenzie et al. 2002, 2006, Royle 2006). As a binary measure, occupancy tells us whether a 

species is present in a particular area or not, accounting for detection probability (Mackenzie et al. 

2002, 2006, Royle 2006). However, occupancy may not necessarily give an accurate estimation of 

habitat preference or importance. More detailed metrics have been developed to understand how 

a species interacts with its environment (i.e., intensity of use and temporal occupancy). However, 

the efficacy of these metrics is not well understood and are likely species-specific. Determining 

what measurements effectively explain and predict species' habitat use relationships is key to 

understanding how animals interact with the environment.  

Habitat use models can exhibit variability in how the land cover/habitat (predictor) 

variables are measured or calculated. Typical approaches used to investigate the influence of 

predictor variables (measures, scales, etc.) often examine land cover data at different spatial scales 

(Savignac et al. 2000, Mayor et al. 2009, Baumgardt et al. 2014, McGarigal et al. 2016). With the 

rapidly advancing field of remote sensing technologies, most land cover data are measured through 

satellite imagery. Land cover datasets are approximations of the true environment, which may not 

be entirely accurate or representative of the true habitat. The importance of variation in remote 
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sensing layers in understanding species’ habitat selection patterns is poorly understood in the 

boreal forest (e.g., Hedley et al. 2020).  

 

The Pileated Woodpecker 

This thesis explored the optimization of sampling, habitat use metrics, and other model 

variations for the Pileated Woodpecker (Dryocopus pileatus). As North America’s largest primary 

cavity excavator, the Pileated Woodpecker is a keystone species (Martin and Eadie 1999, Bonar 

2000, 2001, Aubry and Raley 2002, Martin et al. 2004, Aitken and Martin 2007, Tarbill et al. 

2015, Trzcinski et al. 2022). Keystone species are identified by fulfilling critical niches within an 

ecosystem, allowing additional species to inhabit the environment. Cavities excavated by Pileated 

Woodpeckers are used by various taxa, including other landbirds, waterfowl, bats, and weasels 

(Bonar 2000, 2001). Cavity nesting species, such as the diving ducks, only utilize cavities 

excavated by Pileated Woodpeckers and other large natural cavities due to their larger body size 

(Bonar 2000, 2001, Aubry and Raley 2002, Aitken and Martin 2007). The Pileated Woodpecker 

is an old-growth forest specialist relying on large-diameter trees to excavate these cavities (Bull et 

al. 1992, Renken and Wiggers 1993, Flemming et al. 1999, McClelland and McClelland 1999, 

Savignac 2000, Bonar 2001, Hartwig et al. 2004, Bull et al. 2007, Raley and Aubry 2010, 

Krementz et al. 2012). As the forestry sector has prioritized the extraction of high-value forest 

products, old-growth forest ecosystems have become rarer in North America over the past century. 

Habitat loss threatens old-growth specialists and keystone species such as the Pileated 

Woodpecker. 

Despite their ecological importance, little research has examined the Pileated 

Woodpecker’s habitat use at the northern extent of its range, the western Canadian boreal forest. 

Understanding Pileated Woodpecker ecology is particularly important in this region due to 

increases in development and industrial activities. Current species-habitat models for Alberta using 

data collected by the Alberta Biodiversity Institute (ABMI) do not show strong associations with 

specific forest types using point count data (Alberta Biodiversity Monitoring Institute and Boreal 

Avian Modelling Project 2023). This specialist species should have strong associations with 

specific age categories (old forests), structural stages (gap dynamic and old forest stand dynamic 
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stage), and forest types (deciduous/ mixed forest types) (Bull and Holthausen 1993, McClelland 

and McClelland 1999, Aubry and Raley 2002, Hartwig et al. 2004, Martin et al. 2004, Krementz 

et al. 2012, Hu and Tong 2022). It is possible that relationships are missing in these models because 

ABMI has not optimized the timing of surveys and modeling techniques for this specific species.  

 

Thesis Objectives 

The core objective of this thesis was to improve our understanding of Pileated Woodpecker 

habitat relationships by optimizing sampling and modeling methods in the western Canadian 

boreal forest. In Chapter 2, I explored how temporal variation of Pileated Woodpecker drumming 

affects detectability and identified environmental variables that can predict Pileated Woodpecker 

behaviour. In Chapter 3, I applied the results from Chapter 2 to generate habitat use models using 

data from peak detectability periods. I then examined how altering the response variable, land 

cover dataset, and scale affects the results and accuracy of the Pileated Woodpecker habitat use 

models.  
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2. Chapter 2. Temporal variation in Pileated Woodpecker 

behaviour: ecological explanations and management 

implications 

 

2.1 Introduction 

Accurate and reliable data collection for wildlife species is essential for designing and 

implementing effective monitoring. Wildlife species differ in activity levels throughout the day, 

so researchers are tasked with assessing when they will most likely be able to observe the target 

species. While useful for determining occurrence and trend for hundreds of species, surveys like 

the Breeding Bird Survey (BBS) are not well suited for some species because the timing of the 

surveys is not aligned with peak periods of activity resulting in higher false negative rates and less 

accurate data status, trend, and habitat modeling. Thus, determining when a species is most likely 

to be detected is crucial for minimizing costs, avoiding additional surveys, and maximizing data 

quality. 

Point counts, conducted through human observation and autonomous recording units 

(ARUs), primarily rely on each bird species to produce an auditory cue to detect a species’ 

presence. The rationale for the timing of the BBS (late May to early July; Ziolkowski et al. 2023) 

is that the greatest number of species are audible at that time because it is the peak breeding period 

for most songbirds (Ziolkowski et al. 2023). Vocalization is vital to mate selection and territory 

defence for many species (Kilham 1959, Kroodsma and Byers 1991, Catchpole and Slater 1995); 

thus, acoustic signals ebb and flow with each stage of the breeding cycle (Catchpole and Slater 

1995, Helm et al. 2006, Tremain et al. 2008, Avey et al. 2011, Harms and Dinsmore 2014, Upham-

Mills et al. 2020). As such, peak auditory activity does not occur simultaneously across all avian 

fauna because of variability in the breeding cycle (e.g., different time periods for each stage of the 

breeding cycle and asynchrony in the timing of the breeding cycle) (Perrins 1970, Tremain et al. 
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2008, Harms and Dinsmore 2014, Agostino et al. 2020, Hannah et al. 2020, Edwards et al. 2022). 

Furthermore, whether auditory behaviours align with breeding activities should be established for 

all species. This is especially true for non-migratory species that do not have to travel to breeding 

grounds to begin the breeding season. Additionally, cryptic species (vocalize infrequently or 

quietly) may have a low probability of detection and are often of particular concern because of 

limited data (Harms and Dinsmore 2014). If survey timing does not coincide with peak detection 

times for such species, they may appear rare when, in fact, they are simply less detectable when 

most surveys are conducted (Harms and Dinsmore 2014, Hannah et al. 2020, Hedley et al. 2020, 

Jeliazkov et al. 2022).  

One such species is the Pileated Woodpecker (Dryocopus pileatus), a species of 

conservation concern in Canada. As a primary cavity excavator, the Pileated Woodpecker plays a 

keystone role in forest ecosystems by creating cavities that are used by species across taxa (Martin 

and Eadie 1999, Bonar 2000, 2001, Aubry and Raley 2002, Martin et al. 2004, Aitken and Martin 

2007). Thus, researchers and land managers have emphasized the importance of monitoring this 

species more effectively (Aubry and Raley 2002, Aitken and Martin 2007, Trzcinski et al. 2022). 

Pileated Woodpeckers use auditory cues to attract mates and establish a breeding territory (Kilham 

1959, Tremain et al. 2008). The Pileated Woodpecker typically produces two types of auditory 

cues: calling and drumming (Kilham 1959). Pileated Woodpecker calling has been associated 

primarily with foraging but is also used to communicate between breeding pairs (Kilham 1959). 

Drumming is believed to occur primarily during mating displays and territorial defence but may 

also occur outside of the breeding season (Kilham 1959, Tremain et al. 2008). Foraging and 

excavation may sound like drumming in that the individual strikes a surface with their beak, but 

these taps do not produce the distinguishable rhythmic pattern of a drum (Kilham 1959). Thus, 

understanding temporal patterns of different acoustic cues may help inform us when and why 

Pileated Woodpeckers are using particular land-cover types. 

Over the past decade, the use of autonomous recording units (ARUs) has increased 

(Shonfield and Bayne 2017). ARU sampling occurs at a larger temporal scale (both in frequency 

and length of the sampling periods) to detect species throughout a much larger part of the day and 

year than traditional point counts. Little research has been done to evaluate how ARUs might be 

used to monitor Pileated Woodpecker occurrence and behaviour. As a non-migratory species, it is 
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well established that you can hear Pileated Woodpeckers at many different times of the year, but 

whether there are distinct peaks in activity is important to establish. Tremain et al. (2008) 

suggested that Pileated Woodpecker drumming patterns in Florida follow a similar seasonal 

pattern to that of many passerines, peaking in March. In Oregon, activities associated with breeding 

(e.g., cavity excavation, mate selection, territory defence) have been observed to begin in 

March/April (Bull and Meslow 1988). However, due to the extensive latitudinal range of the 

Pileated Woodpecker, it is necessary to first understand if these patterns differ at the northern edge 

of the species’ range where spring conditions are delayed. Furthermore, it is important to establish 

if Pileated Woodpeckers demonstrate behavioural patterns like other birds on a daily cycle (i.e., 

dawn chorus). With such an extensive range, the Pileated Woodpecker experiences a wide array 

of environmental conditions, so the timing of peak acoustic behaviour may vary considerably 

geographically (Tremain et al. 2008, Bull and Jackson 2020). Thus, evaluating the environmental 

cues that prompt a species to alter its acoustic behaviour is essential. Whether the Pileated 

Woodpecker uses photoperiod (Dawson 2008, Da Silva and Kempenaers 2017, Welklin et al. 

2023), average temperature (Bruni et al. 2014, Boelman et al. 2017, de Zwaan 2022), snowpack 

(Boelman et al. 2017), or seasonal rainfall (Welklin et al. 2023) as cues to begin giving acoustic 

cues for breeding is unclear. Additionally, it is unknown if Pileated Woodpeckers alter their 

vocalization behaviour in response to daily changes in weather conditions (de Zwaan et al. 2022). 

 We address these knowledge gaps with the following three objectives:  

(1) Evaluate how Pileated Woodpecker drumming behaviour changes on both daily and seasonal 

scales. To achieve this objective, we evaluated how drumming varies as a function of the hour of 

the day and day of the year.  By doing this, we determined the effort required to detect a Pileated 

Woodpecker at different times of the day and different days of the year.  

(2) Identify the environmental variables that best predict variation in Pileated Woodpecker 

drumming behaviour on a seasonal/yearly basis. In doing so, we test if Pileated Woodpecker 

drumming frequency is best explained by (a) static variables (low interannual variation) like Julian 

date, day length, and expected mean daily temperature; (b) dynamic variables (strong interannual 

variation) like mean temperature, snow cover, and days from green up; or (c) a combination of 

static and dynamic variables. 
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(3) Explain the degree to which Pileated Woodpecker drumming behaviour is affected by daily 

variations in weather (i.e., precipitation and deviation from the expected normal mean 

temperature).  

  

2.2 Methods 

Study Area: 

Our study area includes sites across the western Canadian boreal forest and Rocky 

Mountains of Alberta, Canada. Upland boreal forest ecosystems in this area are generally made up 

of jack pine (Pinus banksiana), trembling aspen (Populus tremuloides) and white spruce (Picea 

glauca; Larsen 1980, Krebs et al. 2001). Lowland boreal forests (i.e., muskegs, bogs, or fens) are 

dominated by black spruce (Picea mariana) and tamarack (Larix laricina; Larsen 1980, Krebs et 

al. 2001, Chen and Popadiouk 2002). Areas in the Rocky Mountains and foothills are characterized 

by more elevational variation and include three distinct ecozones: montane, subalpine, and alpine. 

We examined locations in the montane ecozone within the Rocky Mountain and foothills regions. 

The montane ecozone is typically made up of upland pine (lodgepole pine; Pinus contorta), spruce 

(white spruce), or mixed wood (containing spruce/pine and trembling aspen) forests (Habeck 

1987). 
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Figure 2.1 Map of Alberta, Canada, showing the sites where Pileated Woodpeckers were 

surveyed. Black dots represent the sites where hourly data was collected and analyzed. Red dots 

represent sites where data was collected daily, over a seasonal time frame, for the day of year 

analysis. Black dots represent sites where data was collected hourly for the time-of-day analysis. 

Major ecoregions of Alberta are displayed (Government of Canada 2016). Red triangles 

represent major cities. 
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Acoustic Data Collection and Processing: 

We deployed one ARU (model SM2, SM3, & SM4, Wildlife Acoustics Inc., Maynard, 

Massachusetts, USA) at each location in Figure 2.1. Each ARU was at least 600 meters from other 

ARUs at locations where community bird monitoring programs conducted by the Alberta 

Biodiversity Monitoring Institute (ABMI) previously detected Pileated Woodpeckers. In other 

words, we selected locations where Pileated Woodpeckers were known to be present. 

Sites selected for the seasonal analysis had ARUs deployed in the late winter/early spring 

(February/March) and were retrieved in July or August. We programmed ARUs to record one-

minute recordings around the approximate time of sunrise each day. We sampled these recordings 

by randomly selecting one recording per site per day. Recordings were all within two hours after 

sunrise to ensure consistency of the time of day for this subset of data.  

We deployed locations for the analysis of daily patterns in late May/ early June and 

retrieved them within a few days of deployment. The units deployed at these locations had a more 

frequent recording schedule, recording one minute every half-hour during the morning (~03:00-

10:00) and every other hour during the rest of the day. We took a subsample of these recordings 

to analyze one full day of recordings from each location. One full day included every recording 

that day (at least 20). We collected these recordings on the second day of the ARUs’ deployment. 

A total of 165 locations were used across both analyses. Once samples were chosen, we uploaded 

them to WildTrax (www.wildtrax.ca), where processing occurred.  

We used two types of acoustic processing methods: visual scanning and manual listening. 

Within Wildtrax, expert observers tagged target species as they processed each recording using 

visual (via spectrogram) and auditory cues. Observers visually processed each recording’s 

spectrogram to find the spectral signature of Pileated Woodpecker drumming and calling patterns 

(Figure 2.2). An observer could confirm correct identification when auditory cues align with the 

visual identification of the target spectral signatures (Figure 2.2). Observers tagged each instance 

where they could identify a Pileated Woodpecker and labelled whether it was a call or drum (Figure 

2.2). Three observers processed a total of 8,077 one-minute recordings. A single observer verified 
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all tagged vocalizations to ensure consistency and accuracy among identification. Pileated 

Woodpecker drumming patterns are approximately 3 seconds long and consist of 10-30 knocks 

with decreasing amplitude (Kilham 1959; Figure 2.2). Although all types of Pileated Woodpecker 

auditory cues were identified and tagged, this study focused on the drumming cues due to the low 

frequency of calling behaviour (only 70 recordings with observations of calling). This study only 

used locations that recorded Pileated Woodpeckers presence at least once.  

  

 

Figure 2.2 Example spectrograms of a Pileated Woodpecker drum (A) and call (B) in Alberta, 

Canada. The spectrograms were generated from WildTrax (www.wildtrax.ca).  

 

Environmental and Ecological Predictor Variables 

We assessed how various ecological and environmental variables influenced Pileated 

Woodpecker drumming behaviour. Specific variables included: hours from sunrise, day length, 

mean temperature, normal expected mean temperature, snow cover, days from green-up, 

precipitation, and deviation from expected normal temperature. A full description of these 

variables and which analyses they were used for is available in Table 2.1. 

We calculated time since sunrise for each recording with the suncalc package in the 

program R (Thieurmel and Elmarhraoui 2022). Sunrise is when the sun crests the horizon, while 

sunset is when the sun is entirely below the horizon (Thieurmel and Elmarhraoui 2022). Time 
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since sunrise is the difference between sunrise and recording time in hours. Day length was 

calculated as the time elapsed between sunrise and sunset.  

We downloaded daily mean temperature values for each recording from Wildtrax. Wildtrax 

extracts weather data from the closest publicly available weather station from Environment and 

Climate Change Canada. In addition, we determined the normal expected mean temperature from 

the weathercan R package (LaZerte and Alberts 2018). We extracted daily expected normal 

temperatures from the nearest publicly accessible temperature station for each day of the year. The 

normal expected mean temperature is calculated by the average of the daily mean temperatures 

observed for at that weather station for a particular day of year across the years 1981-2010 (LaZerte 

and Alberts 2018). We calculated the deviation from the expected normal temperature to determine 

if the weather on that day was hotter or colder than average for that specific time of the year. To 

do this, we calculated the difference between the daily mean temperature and the normal expected 

mean temperature. These weather stations also measured daily precipitation (in millimeters). 

We extracted snow cover values from the global snow cover dataset produced by Hengl 

(2021). This dataset uses MODIS imagery to create near-daily composites of snow cover at a 250-

meter resolution. The values derived from this dataset represent the fractional snow cover, or the 

number of pixels determined to be covered by snow at a 1-kilometer resolution. With these data, 

we determined snow cover (within 1 kilometer) for the nearest available date for each recording.  

We derived the green-up date from Friedl et al. (2019) for each site location. This dataset 

uses MODIS imagery to calculate the enhanced vegetation index (EVI) on a temporal frequency 

of approximately every other day (from 2000- 2020) and a spatial resolution of 500 meters. We 

determined the days since green-up by calculating the difference between the recording date and 

the date when EVI first crossed 15% of EVI amplitude (i.e., the green-up date). We calculated 

green-up dates for each location within a 500-meter buffer based on the year the location was 

sampled. The 500-meter buffer averages the green-up pixel values within the radius.   
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Table 2.1 Predictor variables that describe the relationship between time and Pileated Woodpecker 

behaviour. Objective indicates the study objective the variable was used to achieve. 

Predictor variable Description Objective  

Julian date Numeric index for the day of the year. January 1 

equates to Julian date 1. 

1,2 

Hour Hour of the day (1-24). 1 

Hours from sunrise The number of hours from the time the sun crosses 

the horizon.  

1 

Day length The number of hours the sun position was above 

the horizon. 

2 

Mean temperature Average observed daily temperature gathered from 

nearby weather station data. 

 2 

Normal expected mean 

temperature 

The expected mean temperature for a given date 

based on historical temperature data. 

2 

Snow cover Estimated average snow cover (% of ground 

covered within approximately 1 km). 

2 

Days from green-up The number of days from the green-up date of that 

location. 

2 

Precipitation Amount of daily precipitation (mm) occurring at 

the nearest weather station. 

3 

Deviation from the expected 

mean temperature 

The difference in observed temperature and 

normal expected temperature. 

3 
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Seasonal and Daily Patterns 

We utilized generalized additive mixed effect models (GAMMs) to determine the 

relationship between temporal variables and Pileated Woodpecker drumming behaviour. These 

models apply smoothing parameters to relationships, allowing non-linear relationships between 

predictor and response variables (Pedersen et al. 2019). We treated location as a random effect 

because each observation at a specific location was not independent. Using a circular spline 

transformation, we fit the smoothing terms used for the variables, hour since sunrise and hour of 

the day (Pedersen et al. 2019). We implemented a circular spline for these models because the 

values at the beginning and end of the distribution were equally close to the value minus one (i.e., 

hour 23 is equally close to hour 0 as it is to hour 22). We used a thin-plate spline for the Julian 

date model (Pedersen et al. 2019). These models are further described in Table 2.2. We predicted 

the peak detection windows from these models by finding the maximum drumming rate. To 

observe how latitude influenced these relationships, we created additional models that contained 

an interaction spline (Pederson et al. 2019) between the model’s main effect variable and latitude. 

We did not include the interaction in further models if there was no significant relationship 

between latitude and the corresponding variable. Significant p-values were used to determine how 

drumming rate could be predicted by time of day, time since sunrise, and day of year (objective 

1).  
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Table 2.2 The model set used to examine how Pileated Woodpecker (PIWO) drumming patterns 

change on a seasonal and daily scale. All models are GAMMs, and notation is described in the 

“mgcv” R package (Wood 2017). The notation “bs” indicates the base spline smoothing function 

used, “cc” indicates a circular spline and “re” indicates a random effect spline. The default thin-

plate spline (“tp”) was used if no base spline was specified. 

Model Set 1. Seasonal and Daily Patterns   

Model Input Variable Pattern 

Described 

gam(PIWO drum~ s(Julian Date, bs= “cc” )+ s(Location, 

bs= “re”)) 

 

Julian Date Seasonal 

gam(PIWO drum~ s(Hour, bs= “cc”)+ s(Location, bs= 

“re’)) 

Hour  Daily 

gam(PIWO drum~ s(Time Since Sunrise, bs= “cc”)+ 

s(Location, bs= “re”)) 

Time Since 

Sunrise 

Daily 

Surveys until detection confidence calculation 

A key question in monitoring is how much effort is needed to demonstrate whether a 

species is present or absent from a location. Thus, we calculated the detection probability for 

Pileated Woodpeckers. Detection probability is the likelihood of observing an individual during a 

survey and can be calculated by 
# 𝑜𝑓 𝑜𝑏𝑠𝑒𝑟𝑣𝑎𝑡𝑖𝑜𝑛𝑠

𝑠𝑢𝑟𝑣𝑒𝑦 𝑒𝑓𝑓𝑜𝑟𝑡
 . 

We used Equation 2.1 to estimate how many surveys (x) were required to obtain high 

confidence (90% d=0.1 and 99% d=0.01) if a Pileated Woodpecker was not detected at a site that 

the species would not use that site over the course of the breeding season. We calculated the 

probability of detection and the number of surveys for the peak detection intervals for the hour of 

the day, hour from sunrise, and Julian date. Additionally, we conducted these calculations for the 

standard BBS survey periods in June.  
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Equation 2.1 Sliwinski et al. (2015) estimated the number of surveys required (x) to obtain a given 

confidence level (d) to detect a Pileated Woodpecker during the breeding season if an individual 

occupied the site. P represents the probability of detecting a Pileated Woodpecker within the peak 

detection times.  

Equation 2.1: 𝑥 ≥ 𝑙𝑛 (𝑑 ) ∗ 𝑙𝑛(1 − 𝑃) − 1 

 

Variables influencing acoustic behaviour 

We created six GAMMs (Table 2.3), containing one predictor variable, as well as the 

random effect of location. We used these GAMMs to evaluate what environmental variables best 

predicted variation in Pileated Woodpecker drumming. We used the Akaike information criterion 

(AIC) score to select the model that best explained the data using these univariable models. From 

this comparison, we determined the most influential static versus dynamic variables that affected 

Pileated Woodpecker drumming behaviour on seasonal/yearly scales. Based on p-values, we 

determined that static variables that were important predictors of drumming were Julian date, day 

length, and normal expected mean temperature. The significant dynamic variables were mean 

temperature, snow cover, and days from green up. These variables are expected to shift yearly 

based on local conditions. To test the importance of static versus dynamic variables, we determined 

which static and which dynamic variable best explained variation in drumming behaviour via AIC 

comparisons of the univariable GAMMs (Table 2.3). Then we compared AIC scores of 

multivariable models which included the best static variable and the best dynamic variable. Ridge 

regression models were considered in the case of collinearity between the best static and dynamic 

variable. A correlation matrix can be found in the Appendix. Results generated via ridge regression 

and multivariable GAMMs were not noticeably different; therefore, the GAMMs were used for 

consistency and simplicity in analysis. The results of the ridge regression analysis can be found in 

the Appendix.   
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Table 2.3 The model set used to examine what environmental factors drive Pileated Woodpecker 

(PIWO) drumming patterns to change over a seasonal scale. All models are GAMMs, and notation 

is described in the “mgcv” R package (Wood 2017). The notation “bs” indicates the base spline in 

which the smoothing function should be used, “cc” is a type of circular spline and “re” indicates a 

random effect spline. A thin-plate spline (“tp”) is used if no base spline is specified.  

Model Set 2. Ecological Mechanisms  

Model Input Variable 

gam(PIWO drum~ s(Julian Date, bs= “cc” )+ s(Location, bs= 

“re”)) 

 

Julian Date 

gam(PIWO drum~ s(Day length)+ s(Location, bs= “re’)) Day length 

gam(PIWO drum~ s(Mean Temperature)+ s(Location, bs= “re”))  Daily Mean Temperature  

gam(PIWO drum~ s(Normal Temperature)+ s(Location, bs= 

“re”)) 

Daily Normal Expected 

Mean Temperature 

gam(PIWO drum~ s(Snow Cover)+ s(Location, bs= “re”))  Snow Cover 

gam(PIWO drum~ s(Days from Green-up)+ s(Location, bs= 

“re”)) 

 Days from Green-up 

 

The Effects of Daily Variation in Weather 

To determine the effects of daily variations in weather (objective 3), we created two 

generalized linear mixed models, including location as a random effect (Table 2.4). One model 

contained the predictor variable of deviation from the normal expected mean temperature, while 
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the other contained precipitation (Table 2.4). We evaluated the p-values from this generalized 

linear mixed model to determine if these weather variables influence Pileated Woodpecker 

drumming behaviour. Additionally, we compared AIC values to a null model to further investigate 

how these models performed. For this analysis, we used generalized linear models because we 

were not as concerned with model fit as we were in the previous analyses. Rather, we were more 

interested in detecting a signal (i.e., if the variables influenced drumming behaviour). We fit these 

models following the binomial distribution. 

 

Table 2.4 The model set of generalized linear models used to examine how daily variations in 

weather affect Pileated Woodpecker drumming patterns. 

Model Set 3. Daily Variation Effects  

Model Input Variable 

βNormal Temperature Deviation + εLocation 

 

Deviation from Normal Expected Mean Temperature 

βPrecipitation+ εLocation 

 

Precipitation 

 

2.3 Results  

We identified a total of 133 acoustic recordings that contained a Pileated Woodpecker drum 

during our time-of-year sampling across 42 locations. Across our time-of-year sampling design 

we detected a Pileated Woodpecker between 1-14 times at a site. In the time-of-day sampling, we 

identified 116 acoustic recordings with a Pileated Woodpecker drum across 68 locations. Across 

our time-of-day sampling design we detected a Pileated Woodpecker between 1-4 times at a site. 

Locations where Pileated Woodpeckers were not observed in this study were either sites where 

Pileated Woodpeckers had been observed in a previous year or locations outside of our sampling 

period. We found a significant relationship between the day of the year (Julian date) and Pileated 

Woodpecker drumming (p <0.05) (Figure 2.3). Both the hour from sunrise and the hour of the day 

(p <0.05) significantly affected Pileated Woodpecker drumming behaviour (p <0.05) (Figure 2.4). 
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Peak detection of Pileated Woodpecker drums occurred on April 2 (Julian date 92) (Figure 2.3) 

and during hours 06:00 or 1 hour since sunrise (Figure 2.4). The probability of detecting a Pileated 

Woodpecker drum on April 2 was approximately 9.00% (Figure 2.3). The probability of detecting 

a Pileated Woodpecker drum at hour 06:00 was 7.76%. The probability of detecting a Pileated 

Woodpecker drum 1 hour since sunrise was 7.01% (based on an average day of the year in the data 

set, June 4). There was no significant effect of an interaction with latitude on Pileated Woodpecker 

drumming, so we did not include this interaction in the models described below.  

With these estimated probabilities, we calculated the number of on-minute surveys 

required to be 90% and 99% confident that a Pileated Woodpecker would or would not use a site. 

During the peak detection window of April 2, we calculated that a minimum of 22 one-minute 

surveys were required for 90% confidence and 239 surveys for 99% confidence that a Pileated 

Woodpecker would or would not use a location. For the peak detection window of 06:00 AM, we 

calculated a minimum of 25 surveys for 90% confidence and 264 surveys for 99% confidence to 

ensure that a Pileated Woodpecker is not using a particular location. By combining peak detection 

dates (+/-5 days) and hours (+/- 2 hours), we obtained a detection probability of ~20%. At this 

detection probability, we calculated a minimum of 10 one-minute surveys at 90% confidence and 

20 one-minute surveys at 99% confidence are required to ensure that you can be confident that a 

Pileated Woodpecker is or is not using a particular location. Approximately 32 one-minute surveys 

are required during typical BBS survey timings (near sunrise in June) to obtain a 90% confidence, 

or 334 one-minute surveys at 99% confidence. 
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Figure 2.3 The predicted probability of detecting a Pileated Woodpecker drum on a seasonal 

scale. Predictions generated from the generalized additive model are described in Table 2. The 

shaded area represents the standard error. 

 

Figure 2.4 The predicted probability of detecting a Pileated Woodpecker drum based on a diel 

scale (hour of the day) (A) and hours since sunrise (B). Predictions generated from a generalized 

additive model are described in Table 2.2. The shaded area represents the standard error. 

 



21 

 

All models that contained environmental variables were significant and explained more 

variation in the data than the null model (Table 2.5). The models that explained the most variation 

in seasonal Pileated Woodpecker drum detection were the mean observed temperature (dynamic 

variable) and Julian date (static variable) (Table 2.5). The model, which contained the static 

variable day length, also explained a comparable amount of variation to the Julian date model (<1 

AIC score difference; Table 2.5). Therefore, both the Julian date and day length variables were 

used to test the static and dynamic variable hypotheses (Table 2.6). The snow cover model 

explained the least variation (Table 2.5). Peak drum detection occurred at approximately 0℃ 

(Figure 2.5).  

 

Table 2.5 Model results and Akaike information criterion (AIC) scores for models describing the 

relationship between Pileated Woodpecker drumming and seasonal predictor variables. Models 

were produced through a generalized additive mixed effect model, including location as a random 

effect. 

Seasonal predictor model p-value Effective 

degrees of 

freedom 

Degrees of 

freedom 

AIC 

NULL N/A 18.82 19.81 1061.26 

Julian date <0.005 4.19 24.74 1024.55  

Day length <0.005 3.21 26.15 1025.01  

Mean temperature  <0.005 4.06 24.42  1018.62  

Normal expected mean 

temperature 

<0.005 3.68 22.49  1030.29  

Snow cover <0.005 1.11 24.531  1036.73 

Days from green up <0.005 2.61 22.285  1036.55  
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Figure 2.5 Relationship of mean temperature and Pileated Woodpecker drumming detection 

probability as estimated by the smoothing term generated in the GAMM. The shaded area 

represents the bounds of the 95% confidence intervals. 

 

The multivariate GAMM containing day length and mean temperature explained the most 

variation via AIC scores (Table 2.6). Both multivariable models outperformed single variable 

GAMMs described in Table 2.5. All variables within the multivariable models were described 

nonlinearly (effective degrees of freedom >1; Table 2.6).  
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Table 2.6 Model results for multivariate GAMMs that include the most predictive static (Julian 

date and day length) and dynamic (mean temperature) interannual environmental variables.  

Model Variable Effective degrees 

of freedom 

p-value AIC 

Julian date + 

mean 

temperature 

Julian date 2.96 0.015 1012.92 

Mean 

temperature 

3.76 0.037 

 

 

Day length + 

mean 

temperature 

Day length 2.61 0.014 1010.06 

Mean 

temperature 

2.83 0.003  

 

Results from the generalized linear mixed effects model with location as a random effect 

found failed to find a significant relationship with daily precipitation (p = 0.650) on Pileated 

Woodpecker drumming (Table 2.7). However, we did identify a significant relationship of the 

deviation from the normal expected mean temperature (p = 0.021; Table 2.7). Furthermore, the 

model containing daily precipitation did not explain more variation than the null model. However, 

the model containing the deviation from normal expected temperature did explain more variation 

than the null model. The beta coefficient for the deviation from the normal expected mean 

temperature model demonstrated a positive relationship with Pileated Woodpecker drumming 

(Table 2.7). 
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Table 2.7 Table showing the results of the generalized mixed effects models describing the 

relationship between Pileated Woodpecker drumming behaviour and daily fluctuations in weather 

described by the model variable.  

Model Variable Beta coefficient p-value AIC 

NULL N/A N/A 1130.32 

Precipitation -0.013 0.650 1132.10 

Deviation from the normal expected mean 

temperature 

0.037 0.021 1127.03 

 

2.4 Discussion 

Our results not only provide baseline information for Pileated Woodpecker ecology, in 

terms of behavioural timings and environmental influences on behaviour, but also provide 

guidelines for optimizing detection in Pileated Woodpecker surveys. We demonstrated how best 

to use existing non-optimized surveys to obtain a high confidence in the accuracy of Pileated 

Woodpecker habitat use. 

The observed pattern of seasonal drumming variation of the Pileated Woodpecker supports 

the idea that Pileated Woodpeckers use drumming to attract mates (Kilham 1959). Similar 

relationships are supported by Tremian et al. (2008), who demonstrated a seasonal relationship 

between Floridian Pileated Woodpeckers' drumming and calling behaviours with drumming peaks 

in late March. However, Pileated Woodpecker drumming occurred throughout our sampling 

period, suggesting that the species also use drumming for purposes unrelated to mate attraction or 

breeding.  

We found that the peak drumming occurred on April 6 in the boreal forest at the northern 

edge of the species’ range. This peak drumming timing differs between Florida and Alberta, 

suggesting that latitudinal variation and potentially different cues may trigger changes in Pileated 

Woodpecker drumming behaviour. These results provide key information to optimize survey 

timing for future Pileated Woodpecker surveys. However, we did not demonstrate latitudinal 
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effects in our study. This could be due to our study's relatively small extent compared to the global 

range of the Pileated Woodpecker. It is likely that data from across the species’ range would be 

required to observe this latitudinal effect on Pileated Woodpecker drumming patterns.  

We also found a relationship between Pileated Woodpecker drumming and time of day. 

We observed that Pileated Woodpeckers were more likely detected by drumming during the 

morning, around sunrise. Most songbird species follow a similar daily pattern to what we observed 

with Pileated Woodpecker drums (Kacelnik and Krebs 1983, Stacier et al. 1996, Bruni et al. 2014), 

suggesting that the woodpecker drum is analogous to birdsong. Additionally, we observed a 

secondary peak in drumming activity near dusk; many avian species demonstrate a similar pattern 

of crepuscular activity (Catchpole and Slater 1995, Stacier et al. 1996, Hannah et al. 2020). A 

possible explanation for this change in drumming activity is that the sunlight, visibility, and 

temperature in midday hours may be more conducive for activities such as foraging. The Pileated 

Woodpecker specializes in consuming ectotherm invertebrates, mainly carpenter ants (McClelland 

and McClelland 1999), which rely on temperature for mobility. Therefore, the more active the 

carpenter ants are, the more likely Pileated Woodpeckers may be successful in hunting and 

capturing their prey. 

Our findings suggest that standard BBS procedures focused in June do not adequately 

capture the peak detection windows for Pileated Woodpeckers. During typical BBS timings (near 

sunrise in June), a minimum of 32 surveys should be conducted to obtain high confidence about 

Pileated Woodpecker use of a site. This survey requirement is rarely met due to the BBS protocol's 

design and temporal constraints (Ziolkowski et al. 2023). However, this guideline will be helpful 

for other projects that follow similar protocols to the BBS and have repeat surveys at a single site 

(e.g., ABMI). The optimal daily timing of Pileated Woodpecker drums occurs simultaneously with 

typical songbirds (Kacelnik and Krebs 1983, Stacier et al. 1996, Bruni et al. 2014). Therefore, the 

daily timing of BBS surveys maximizes the likelihood of detecting a Pileated Woodpecker drum. 

We recommend that surveys of Pileated Woodpeckers in Alberta, Canada (or locales within similar 

latitudinal/environmental boundaries) begin in the first week of April to ensure the greatest 

likelihood of detection. It is most beneficial to focus sampling near sunrise to increase the 

likelihood of detecting Pileated Woodpeckers. Specifically, one hour from sunrise is the optimal 

time for detecting Pileated Woodpecker drums. Combining the seasonal and daily optima requires 
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at least ten 1-minute recordings to ensure with 90% confidence that the Pileated Woodpecker is or 

is not using a location. A caveat of this recommendation is that the Pileated Woodpecker may not 

be using a particular location on a given day, so distributing these recordings across multiple days 

will increase the probability of detecting the species. Additionally, we emphasize that these survey 

requirements are a minimum requirement. Because we calculated our detection probability only 

from sites where we observed Pileated Woodpeckers, we established the ‘best case’ for Pileated 

Woodpecker survey requirements based off locations where we established their presence.  

 These recommendations highlight the utility of ARUs for sampling Pileated Woodpeckers. 

It is costly in terms of time and money to send human observers to a single location upwards of 

ten times to conduct point count surveys. ARUs allow researchers the ability to survey a site 

numerous times and technicians only need to access a site twice, once on deployment and once on 

retrieval of the ARU. In this study we essentially established optimal ARU deployment/retrieval 

timings (day of year) and optimal ARU recording schedule timings (time of day) for Pileated 

Woodpecker surveys.  

Although there is significant variation in Pileated Woodpecker seasonal drumming 

detection, it is important to note that we were able to detect drums throughout the sampling period. 

Financial and institutional constraints, along with more inclement weather in many parts of the 

world, make sampling difficult during March/April. Challenging weather conditions can often 

result in suboptimal sampling via reduced ability for observers to hear or see their surroundings. 

How often poor weather influences the ability to detect Pileated Woodpeckers in March/April 

should be compared to May/June.  

The single-variable model mean temperature explained the most variation in the seasonal 

detection of Pileated Woodpecker drums, suggesting that the initiation of the Pileated Woodpecker 

breeding season is linked to conditions that may change yearly. This finding suggests that this 

species may be more flexible to changes in phenology caused by climate change (Stenseth et al. 

2002, Visser et al. 2012, Samplonius et al. 2018). However, as we further investigated this 

relationship, we discovered that static variables such as Julian date and day length, in addition, to 

mean temperature, better explain variation in seasonal Pileated Woodpecker drumming patterns. 

This suggests that Pileated Woodpeckers are both hard-wired to begin breeding behaviours 
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(increased frequency of drumming) based on a combination of the local environmental conditions 

and the static patterns of seasonal change. These relationships are nonlinear in nature which 

suggests Pileated Woodpeckers prefer conditions that are not too late in the season and not too hot 

or cold temperature for drumming. We observed that the peak detection of Pileated Woodpecker 

drums occurred when the daily mean temperature was approximately 0 ℃, and detection was 

highest in April. It is probable that the early onset of warmer conditions (above freezing) may be 

more conducive for Pileated Woodpecker drumming. 

Since Pileated Woodpeckers utilize dynamic environmental variables such as the observed 

temperature as a cue to start breeding, they are less at risk of initiating nesting during unfavourable 

breeding conditions. Food availability is a limiting factor in reproductive success and survival for 

all birds. The timing of peak invertebrate egg hatching, and therefore prey abundance, is often 

linked to temperature (Powell and Logan 2005, Dunn et al. 2011, Nadolski et al. 2021). Thus, 

warmer spring temperatures could create a timing or phenological mismatch between invertebrate 

phenology and avian nest initiation. The combination of static and dynamic interannual variables 

which influence Pileated Woodpecker drumming suggests that this species may be less susceptible 

to phenological mismatches created by climatic change than migratory species. Although, 

additional research should examine how Pileated Woodpeckers react if the optimal conditions are 

not met. Additionally, limited research has been conducted on the seasonality of the Pileated 

Woodpecker’s primary food source, carpenter ants (McClelland and McClelland 1999, Powel and 

Logan 2005, Bull and Jackson 2020). We suggest further research to investigate the environmental 

triggers influencing carpenter ant egg hatch timing and whether these factors correlate with 

drumming frequency or nest initiation. Additionally, it is important to note that all the 

environmental variables explored in this analysis (mean temperature, normal expected mean 

temperature, snow cover, and days from green up) proved to influence the Pileated Woodpecker 

drumming. Therefore, it is likely multiple static and dynamic interannual variables could influence 

Pileated Woodpecker behaviour. 

We found a relationship between the deviation from the expected normal temperature and 

Pileated Woodpecker drums, suggesting that the daily weather can influence Pileated Woodpecker 

drumming behaviour. This result further supports our findings that temperature influences the 

seasonal/interannual variation in drumming. The positive relationship observed suggests that 
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Pileated Woodpeckers are more likely to drum on warmer than average days. Furthermore, we 

found no relationship with precipitation. However, weather is often variable across the landscape. 

Weather stations used in this study were occasionally >10 kilometers from the site, and even 

stations as close as 1 kilometer away from the survey site may not accurately represent the local 

weather conditions. 

Prior to this study, there had been no formal attempt to standardize acoustic sampling for 

Pileated Woodpeckers in Alberta. Current survey standards employ data collection during the 

songbird breeding season, but our results demonstrate that Pileated Woodpecker drumming 

activity and detection are non-optimal during this period. Modeling attempts using this sub-optimal 

period may only partially capture how the species uses the landscape, especially for breeding 

purposes. We recommend that future modeling and survey efforts for Pileated Woodpeckers in 

Alberta be focused during the optimal periods of March/April. From our calculated detection 

probabilities, land managers can reliably assess whether potential suitable Pileated Woodpecker 

habitat occurs within their operating areas. This is increasingly important for land managers due 

to regulations put in place by the Government of Canada’s Section 70 of the Migratory Birds 

Regulations (2022), stating that Pileated Woodpecker nesting cavities may not be disturbed for 36 

months after being deemed unoccupied. This regulation affects industries such as the forestry and 

energy sectors, which are prevalent in Alberta and have competing interests with the Pileated 

Woodpecker’s associated habitats of old-growth forests (Bull and Holthausen 1993, McClelland 

and McClelland 1999, Aubry and Raley 2002, Hartwig et al. 2004, Krementz et al. 2012). 

Following this study's temporal survey guidelines and minimum survey effort requirements, these 

industries can adequately detect a Pileated Woodpecker and make informed adjustments when 

operating.   
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3. Chapter 3. Pileated Woodpecker habitat use in the boreal 

forest of Alberta: The relative importance of response 

variables, land cover, and scale 

 

3.1 Introduction 

The study of species distribution and habitat preference is fundamental to understanding 

ecology and informing conservation and management strategies. Traditional species occupancy 

models (MacKenzie et al. 2002, 2006) have become a common tool to provide insights into the 

relationships between species and their habitats. Occupancy modeling advanced species-habitat 

modeling by accounting for detection error. Detection error is the probability that a species is 

present at a location but not observed by the researcher during the observation period. This 

modeling approach provides many benefits, such as the simplicity of data collection and the ability 

to give an absolute estimate of the proportion of locations where a species is present. However, 

population closure is a critical assumption of traditional occupancy models. Thus, occupancy may 

misinform our understanding of habitat use patterns if animals move in and out of the sampling 

area. Because mobile wildlife species typically violate the closure assumption, the interpretation 

of occupancy shifts from an absolute probability of a site being occupied to a probability of 

observing the species at least once throughout the survey or study period (Otto et al. 2013, Hayes 

and Monfils 2015). Various approaches have been developed to correct violations of the closure 

assumption through modified study designs or adjustments to the temporal resolution at which 

detection rates are estimated (Otto et al. 2013, Hayes and Monfils 2015, DiRenzo et al. 2022).  

Sedentary species or species with small home ranges can more easily meet the closure 

assumption than large-ranging species due to their lack of extensive movement. How temporary 

migration, where individuals leave or enter the sampling area, is affected by environmental 

conditions that change throughout the survey period is an important part of understanding habitat 

preference. Environmental variables like temperature can affect species' activity levels, and 
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predator abundance or presence can affect species’ movement patterns (Cuddington and Yodzis 

2004, Berger-Tal and Bar-David 2015). Such patterns cause mobile species to occupy habitats of 

various qualities at any given time and for different durations. As occupancy requires only a single 

detection to determine use, this can lead to an inflation of the perceived importance of habitat 

quality that is less preferred. Snell Taylor et al. (2021) demonstrated how different measures of 

temporal occupancy (proportion of years where researchers observed a species at the same 

location) improved species distribution models relative to traditional occupancy models based on 

a single year of data. Temporal occupancy gives greater weight to sites visited more regularly. 

Whether temporal occupancy provides a better estimation of habitat importance or preference than 

traditional occupancy models warrant further study as a result.  

Like temporal occupancy, remote camera analysis has developed the response metric of 

intensity of use as an alternative to occupancy (Keim et al. 2019). The intensity of use is the 

number of use events (when the target species triggers a camera trap photo) occurring over a 

sampling period (Keim et al. 2019). The same concept can be applied to acoustic data collected by 

autonomous recording units (ARUs). However, ARUs are subject to detection error when animals 

are present but not vocalizing. When applied to acoustic data, intensity of use is typically used to 

assess if the detection rate influences standard occupancy estimates. In an occupancy model where 

the closure assumptions are met, a change in detection rate as a function of environmental variables 

means that auditory cues are less/more frequent in particular habitats or that sound travels a 

shorter/longer distance. However, when animals move in and out of the sampling area, there are 

two processes at play: imperfect detection and movement. Ideally, we would separate these 

processes, but even if separation is impossible, evaluating how the importance of habitat variables 

changes depending on whether you model them in an occupancy versus intensity of use context is 

crucial. The intensity of use at an ARU site may increase with more sampling, while occupancy 

rates may plateau after relatively few surveys and remain static. Thus, evaluating both occupancy 

and intensity of use is essential for understanding habitat preference or importance for a species, 

especially those with home ranges larger than the sampling area as movement within the home 

range will likely violate the closure assumption of standard occupancy. 

While the estimation of occupancy/intensity of use is often debated as the most influential 

factor influencing species-habitat model accuracy, variation in habitat covariates can cause 
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discrepancies in estimating species-habitat relationships. Land cover data, primarily from satellite 

imagery, are often modelled as if they are the truth. However, there is often considerable variation 

in the same variable measured using different satellites or created using different processing 

methods (Barry and Elith 2006, Hedley et al. 2020). Error in habitat covariate values can lead to 

changes in the beta coefficients and, thus, the relative importance of habitat variables in models 

(Barry and Elith 2006). With imperfect information relating to habitat conditions, evaluating which 

products are most reliable is important. Thus, we explored how differences in the variables affect 

the overall model outputs. In doing so, we assessed whether there was a difference in the modeling 

outputs using one measurement versus another.  

In addition to the data source of landscape variables, the scale at which the land cover data 

is extracted can influence model output (Savignac et al. 2000, Mayor et al. 2009, Baumgardt et al. 

2014, DiRenzo et al. 2022). With the improvement of remote sensing technology, researchers have 

access to high-resolution land cover data. However, higher resolution land cover data may not 

necessarily improve modeling attempts for many species, primarily if the species responds to 

larger landscape-level changes or features that fine-resolution land cover data may not capture. A 

standard method to solve this issue is to apply a buffer around a given point, averaging the 

surrounding pixels and increasing extent. There is no silver bullet for the correct resolution to 

assess species-habitat relationships, as they are dependent on species and habitat attributes 

(McGarigal et al. 2016). Species-habitat relationships do not necessarily translate across spatial 

scales, creating challenges in species distribution modeling (Mayor et al. 2009). To improve these 

models, assessing species-habitat relationships across multiple scales is needed to provide insight 

into the ecological processes driving species’ distributions across a landscape (McGarigal et al. 

2016, Hallman and Robinson 2020).  

The Pileated Woodpecker (Dryocopus pileatus) is a suitable study species for testing how 

different response measures, remote sensing layers, and scales influence species-habitat models. 

They are a large-bodied species that regularly violate the closure assumption due to their extensive 

home range size (Mellen et al. 1992). Home range size estimates for Pileated Woodpeckers are 

250-1,500 hectares (Renken and Wiggers 1989, Mellen et al. 1992, Bull and Holthausen 1993, 

Bonar 2001). Pileated Woodpeckers use various habitat types to meet their life requisites across 

their home range. For example, Pileated Woodpeckers require (1) large trees for nesting and 
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roosting (Bull et al. 1992, McClelland and McClelland 1999, Hartwig et al. 2004, Tomasevic and 

Marzluff 2020), (2) foraging sites containing carpenter ants or bark beetles (McClelland and 

McClelland 1999, Raley and Aubry 2010), and (3) drumming posts (places in which a woodpecker 

repeatedly visits to establish territory and attract mates) located on specific trees (e.g., typically 

dead trees with a particular sound resonance) and in specific locations within their home range 

(e.g., typically near the boundary) (Lawrence 1967, Tomasevic and Marzluff 2018). Areas in 

which Pileated Woodpeckers conduct these activities are not contained within a single area. In our 

study area, current habitat models using an occupancy model framework explained limited 

variation in ecological relationships for the Pileated Woodpecker despite over ten years of data 

(Alberta Biodiversity Monitoring Institute 2019). Two possible explanations for this outcome are 

that (1) current surveys do not sample at optimal time periods to detect most Pileated Woodpeckers 

(Chapter 2) or (2) current modeling frameworks that emphasize presence over intensity of use may 

misrepresent the actual use of key resources. 

The need to improve existing habitat models for this species is needed to meet conservation 

and management objectives. Pileated Woodpeckers are often referred to as ecosystem engineers 

due to their role as excavators of the largest tree cavities in North America (Martin and Eadie 1999, 

Bonar 2000, 2001 Aubry and Raley 2002, Hartwig et al. 2004). Ecosystem engineers are vital to 

ecosystems as they provide crucial structural modifications to their habitat which has a cascading 

effect throughout the ecosystem. Many species across taxa (e.g., waterbirds, bats, rodents, weasels 

and owls) rely on the cavities excavated by Pileated Woodpeckers for different life stages, 

including nesting and roosting (Bull et al. 1992, Bonar 2000, 2001, Aubry and Raley 2002). As 

the largest extant woodpecker in North America, the Pileated Woodpecker is vital to a variety of 

ecosystems, including western temperate coastal forests (Hartwig et al. 2004), the boreal forest 

(Bonar 2000), interior mixed wood forests (Martin et al. 2004), southern United States pine forests 

(Saenz et al. 1998), southeastern United States bottomland hardwood forests (Krementz et al. 

2012), forested Floridian wetlands (Leonard and Stout 2006), and many more. Furthermore, in 

2022, the Government of Canada highlighted the importance of Pileated Woodpecker nest cavities, 

protecting them for up to three years after they are deemed vacated (Government of Canada 2022). 

This legislation creates several challenges in mature forests containing large-diameter trees that 

provide crucial habitat for Pileated Woodpeckers because they are also high-value forest types for 
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harvesting (Savignac et al. 2000, Bonar 2001, Hartwig et al. 2004, Hu and Tong 2022). Therefore, 

it is a top priority for industries such as the forestry and the energy sectors that operate in the boreal 

forest to identify areas where Pileated Woodpeckers are more likely to create nesting cavities. 

This study investigated the influence of occupancy and intensity of use, different land cover 

datasets, and spatial scale on the variables incorporated into habitat models for the Pileated 

Woodpecker in forested areas of Alberta, Canada. In doing so, we explored the following 

objectives: 

 (1) Determine the most important habitat variables for characterizing Pileated Woodpecker 

response variables (occupancy and intensity of use) and compare model results generated from 

these metrics.  

(2) Evaluate how differences across land cover data sources affect the predictive accuracy of the 

occupancy and intensity of use models.  

(3) Assess how the scale at which land cover data is extracted and summarized affects the 

predictive accuracy of the occupancy and intensity of use models, thereby assessing the scale in 

which Pileated Woodpeckers respond to environmental characteristics. 

By achieving these objectives, we created a set of guidelines that demonstrate the most effective 

way to measure, model, and evaluate how Pileated Woodpeckers use the landscape.  

 

3.2 Methods 

Site selection 

The Alberta Biodiversity Monitoring Institute’s (ABMI) maintains a province-wide 

systematic grid known as the Ecosystem Health Program. The grid consists of over 1,000 sites, 

separated by 20 km each. From the +1,000 ABMI locations, we selected sites within the boreal 

forest ecosystem with at least 60% tree cover within a 565-meter radius of the site, according to 

Beaudoin et al. (2017). This left us with 258 sites for the current study. One ARU was deployed 

at each site to record audio from March to July. We scheduled ARUs to record audio at set time 
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intervals each day. From each ARU, 15 one-minute recordings from the first week of April and 

within a window of 3 hours from sunrise were randomly selected. As described in Chapter 2, we 

calculated a priori how many recordings were needed to ensure greater than 90% confidence that 

a Pileated Woodpecker did not use that location within the desired time frame (during the first 

week of April within two hours from sunrise). In so doing, we can be more confident that we 

observed all the locations where Pileated Woodpecker occurred. The recordings were uploaded to 

the open data platform WildTrax (www.wildtrax.ca). 

http://www.wildtrax.ca/
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Figure 3.1 The study area of Alberta, Canada. Black dots represent the approximate locations of 

deployed ARUs. Ecoregions, as defined by the Government of Canada (2016), are denoted by 

colour. Red triangles represent major cities. 
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Data processing 

In Wildtrax (www.wildtrax.ca), spectrograms were produced, and expert observers used 

visual scanning to identify a Pileated Woodpecker auditory cue (calls, drums) and tag the 

associated spectrogram. As described in Chapter 2, we utilized visual scanning processing 

techniques to identify auditory cues. We identified calls and drums because we were interested in 

any behavioural auditory cue associated with Pileated Woodpeckers.  

 

Occupancy and Intensity of Use 

A site was considered occupied if a Pileated Woodpecker was detected at least once during 

our sampling period. As we sampled during the peak detection window described in Chapter 2 (the 

first week of April, between sunrise and 2 hours after), we expected to detect a Pileated 

Woodpecker as present with 90% confidence, given the sampling effort of fifteen one-minute-long 

recordings. Therefore, by design, we eliminated the probability of the detection side of the 

occupancy equation described in MacKenzie et al. (2002, 2006). We defined the intensity of use 

variable as the number of recordings where a Pileated Woodpecker was observed at a site. We 

defined the occupancy variable as a binary measure of whether a Pileated Woodpecker was 

detected during sampling at a given site (yes = 1 / no = 0). The differences between variables are 

illustrated in Figure 3.2. 

 

http://www.wildtrax.ca/
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Figure 3.2 Conceptual model demonstrating the differences between occupancy and intensity of 

use described in this study. Circles represent a sampling site across the number of visits (or 

surveys), and the colours indicate unique sites. The Pileated Woodpecker silhouettes represent a 

detection of the target species during that visit. The output for each site’s occupancy and intensity 

of use are summarized below the corresponding site. 

 

Land Cover 

We collected habitat covariates from Canada-wide publicly available data sources, 

Beaudoin et al. (2017) and the National Terrestrial Ecosystem Monitoring System for Canada 

(NTEMS) datasets. These land cover datasets are publicly accessible Canada-wide datasets; 

therefore, studies throughout the western boreal forest can use and adapt these models to fit their 

specific study locations. These datasets differ in modeling technique, year in which data was 

sampled, resolution, and equipment used to generate values. Beaudoin et al. (2017) apply a k-

nearest neighbour statistical approach to coarser grain MODIS satellite imagery to generate a 250-

meter resolution map of land cover in Canada. Specifically, this approach used satellite imagery 
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from 2001 and 2011 to predict land cover as influenced by the surrounding pixel values. In 

contrast, the NTEMS dataset applies a Random Forest machine learning algorithm to Landsat 

satellite imagery from 2019 (age and deciduous composition) and 2015 (biomass) to predict land 

cover at a finer-grain resolution of 30-meter (Matasci et al. 2018).  

The habitat covariates we examined in this study reflected ecologically important variables 

for Pileated Woodpeckers, as established by previous studies. The variables examined in the 

Beaudoin et al. (2017) land cover dataset (250-meter resolution) included forest age, percentage 

of forest composition that is deciduous, aboveground biomass, canopy closure, and forest 

composition identified as deadwood (in biomass) (Table 3.1). The variables within the NTEMS 

dataset (30-meter resolution) included forest age (Maltman et al. 2023), percentage of forest 

composition that is deciduous (Hermosilla et al. 2022), and total aboveground biomass (Matasci 

et al. 2018) (Table 3.2). As Pileated Woodpeckers are often associated with old growth forests, 

forest age is often described as the best predictor across various Pileated Woodpecker habitat 

studies (Bull et al. 1992, Renken and Wiggers 1993, Flemming et al. 1999, McClelland and 

McClelland 1999, Savignac 2000, Hartwig et al. 2004, Bull et al. 2007, Raley and Aubry 2010, 

Krementz et al. 2012, Hu and Tong 2022). Therefore, we included forest stand age in our models. 

Deciduous trees are essential habitat resources for many cavity-nesting species like the Pileated 

Woodpecker, so we included the percentage of deciduous trees in our models (Martin 2002, Martin 

et al. 2004, Cockle et al. 2019). Finally, we included aboveground biomass because it indicates 

tree size (tree diameter/stem thickness), often a limiting factor for Pileated Woodpecker roosting 

and nesting habitat (Bull et al. 1992, Renken and Wiggers 1993, McClelland and McClelland 

1999, Bonar 2000, Aubry and Raley 2002, Krementz et al. 2012). Aboveground biomass has also 

indicated structural features necessary for Pileated Woodpecker foraging activities (Renken and 

Wiggers 1993, McClelland and McClelland 1999, Aubry and Raley 2002, Finley et al. 2009, 

Tremblay et al. 2015, Dufour-Pelletier 2020, Martin et al. 2021, Hu and Tong 2022). Furthermore, 

biomass is a good measure of the productivity of an environment, which can affect species 

composition (Finley et al. 2009). Both latitude and longitude were included in the models so that 

we could examine if there were spatial differences in the Pileated Woodpecker habitat use within 

our study area. Latitude is especially relevant as our study takes place at the northern edge of the 

estimated Pileated Woodpecker range. As there has not been a formal attempt to establish the range 
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edge in Northern Alberta/the western boreal forest, latitude was used to examine how Pileated 

Woodpecker habitat use may change with distance from the species’ northern range edge. 

Beaudoin et al. (2017) examined two covariates not found within the NTEMS dataset: 

deadwood and canopy closure. Both variables are effective predictors for Pileated Woodpeckers 

in prior studies (Savignac et al. 2000, Hartwig et al. 2004, Nappi et al. 2015, Dufour-Pelletier 

2020, Hu and Tong 2022). With the Beaudoin et al. (2017) land cover data, we created model sets 

that contained only these variables (deadwood and canopy closure), but also created model sets 

that only contained variables found in both NTEMS and Beaudoin et al. (2017) (i.e., excluded 

deadwood and canopy closure) so that we could examine how measurements of the same land 

cover variable (e.g., forest age) affect model predictive accuracy. We examined correlations via 

the Pearson correlation coefficient across all variables within a dataset. If variables were 

considered highly correlated (coefficient greater than |0.75|), we removed one of the variables to 

ensure that variance inflation did not occur in our dataset.  

The Beaudoin et al. (2017) dataset used land cover data extracted in 2011, while NTEMS 

used land cover data extracted in 2019 (age and deciduous percentage) and 2015 (biomass). We 

calculated the age of stands relative to the year in which the location was visited. After assessing 

the sampling design, we concluded that most of our forest age values lay within the range of 20-

80 years old; therefore, we assigned age values over 150 (about five sites) a value of 150 to ensure 

that outliers in the dataset would not skew results. We examined the correlation of values for 

variables across the two datasets to assess the similarity of the two land cover datasets (i.e., are 

they measuring the same thing). We calculated Pearson's correlation coefficient between variables 

measuring the same habitat variable at all scales (150, 565, and 1000 meter) and land cover dataset.  
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Table 3.1 Variables selected from the Beaudoin et al. (2017) dataset (250-meter resolution). 

Italicized variables are exclusive to this dataset. 

Variable Name Description   

Forest Age Derived age of forest in 2011   

Forest % Deciduous Percentage of the area (250 m) classified as containing 

deciduous tree species 

  

Aboveground 

Biomass 

Calculated biomass as a function of tree species, tree height, 

DBH and stand volume within an area  

  

Latitude 

Longitude 

Site location in decimal degrees 

Site location in decimal degrees 

  

Forest Deadwood Calculated biomass of standing dead trees (Boudewyn et al. 

2007) 

  

Canopy Closure Amount of area that is not covered by forest canopy   

  

Table 3.2 Variables selected from the NTEMS dataset (30-meter resolution) Italicized variables 

are exclusive to this dataset. 

Variable Name Description 

Forest Age Derived age of forest in 2019 

Forest % Deciduous Percentage of the area (30m) classified as containing deciduous 

tree species 

Aboveground 

Biomass 

Calculated biomass as a function of tree species, tree height, DBH 

and stand volume within an area 

Latitude 

Longitude 

Site location in degrees 

Site location in degrees 
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Land cover extraction scale 

We calculated the average value of each habitat variable within a 150, 565, and 1000-meter 

buffer radii for comparisons of spatial scale. These buffers take the average value of each variable 

in the specified buffer radius around the location. Buffer scales were chosen to demonstrate a 

noticeable difference between covariate values and represent a gradient from the local to landscape 

scales. The smallest scale (150 meters) was slightly larger than the Pileated Woodpecker’s 

effective detection radius (Edwards et al. 2022) and represents the local environment immediately 

surrounding the ARU. The 565-meter scale was used to examine a gradient of scale sizes that may 

represent an area within an individual’s home range (i.e., foraging or nesting site). We investigated 

the effects of the macrohabitat by estimating landscape variables within 1000-meter buffers. As 

the 1000-meter scale is slightly larger than the maximum distance a Pileated Woodpecker will 

respond to playback calls (Savignac et al. 2000), we decided that this scale would appropriately 

capture the broader environmental characteristics which are present at a home range scale.  

 

Model structure 

We used the logit link function to fit the mean response within a binomial distribution and 

for ease of comparison in occupancy models. We used the log link function for the intensity of use 

models and the count distribution. Generalized linear models were created for each combination 

of scale (150, 565, and 1000-m buffers), data source (Beaudoin et al. 2017 and NTEMS), and 

response variable (occupancy and intensity of use) (total 12 combinations) (Table 3.3, Table 3.4). 

We implemented a binomial distribution for occupancy models and a Poisson distribution for 

intensity of use models to predict the relationships of Pileated Woodpeckers with our habitat 

variables of interest. Due to repeated use events occurring within our sampling period (15 

recordings), the Poisson distribution fit our count data the best. We tested the negative binomial 

distribution, and it did not have a noticeable effect on the model’s beta coefficients.  

Predictor variables in models varied according to the scale and data source. Each model 

was multivariable and contained a measure of the following non-correlated variables: forest age, 

forest composition that is deciduous, above-ground biomass, latitude, and longitude. If variables 
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were found to have an unreliable impact (explained further in Bayesian Modeling) across 

simulations, then the variable was not included in the final model.  
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Table 3.3 Model Set 1 describes variables in the base occupancy models (binomial). Variables 

were extracted through the land cover data source, and scale is denoted for each model. The final 

predictive models included only reliable variables (they did not cross the threshold of 0 across 

95% of their simulated beta coefficients). 

Model Set 1. Occupancy     

Variables Data source Scale 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

Beaudoin et al. 

2017 

150 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

Beaudoin et al. 

2017 

565 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

Beaudoin et al. 

2017 

1000 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

NTEMS 

  

150 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

NTEMS 565 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

NTEMS 1000 meter 
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Table 3.4 Model Set 2 describes variables included in the base intensity of use models (Poisson). 

Variables were extracted through the land cover data source, and scale is denoted for each model. 

The final predictive models included only reliable variables (they did not cross the threshold of 0 

across 95% of their simulated beta coefficients). 

Model Set 2. Intensity of Use     

Variables Data source Scale 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

Beaudoin et al. 

2017 

150 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

Beaudoin et al. 

2017 

565 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

Beaudoin et al. 

2017 

1000 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

NTEMS 

  

150 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

NTEMS 565 meter 

βAge + βDeciduous + βBiomass + 

βLatitude + βLongitude 

  

NTEMS 1000 meter 
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Table 3.5 Model Set 3 describes variables scale and response metrics used in creating models 

exclusively in the Beaudoin et al. 2017 dataset. Each model's response metric (occupancy and 

intensity of use) and scale are denoted. The final predictive models included only reliable variables 

(they did not cross the threshold of 0 across 95% of their simulated beta coefficients). 

Model Set 3. Beaudoin exclusive   

Variables Response 

Metric 

Scale 

βAge + βDeciduous + βBiomass + βLatitude 

+ βLongitude + βDeadwood + βCanopy 

Closure 

  

Occupancy 150 meter 

βAge + βDeciduous + βBiomass + βLatitude 

+ βLongitude + βDeadwood + βCanopy 

Closure 

  

Occupancy 565 meter 

βAge + βDeciduous + βBiomass + βLatitude 

+ βLongitude + βDeadwood + βCanopy 

Closure 

  

Occupancy 1000 meter 

βAge + βDeciduous + βBiomass + βLatitude 

+ βLongitude + βDeadwood + βCanopy 

Closure 

  

Intensity of 

use 

  

150 meter 

βAge + βDeciduous + βBiomass + βLatitude 

+ βLongitude + βDeadwood + βCanopy 

Closure 

  

Intensity of 

use 

565 meter 

βAge + βDeciduous + βBiomass + βLatitude 

+ βLongitude + βDeadwood + βCanopy 

Closure 

Intensity of 

use 

1000 meter 
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Bayesian modeling 

We estimated the extent to which habitat covariates contribute to describing occupancy or 

intensity of use using a Bayesian approach through JAGS (Plummer 2003) that we called from the 

R environment using the rjags and coda packages (Plummer et al. 2023). Using a Bayesian 

approach allowed us to identify variables that reliably predict Pileated Woodpecker habitat use 

without relying on arbitrarily assigned significance thresholds. Furthermore, the Bayesian method 

of modeling produces full probability distributions, rather than point estimate with confidence 

intervals as produced via frequentist approaches. This probability distribution clearly identifies the 

magnitude and uncertainty of the estimated beta coefficients. Finally, Bayesian inference allowed 

us to specify complex hierarchical structures to explore potential interactions of variables without 

altering the base model (methods used to identify interactions explained further below).  

We calculated beta coefficients for each habitat variable across iterations and determined 

a distribution of values for beta coefficients (posterior distribution). We define a reliable predictor 

as one in which the calculated beta coefficients are consistently (in 95% of iterations), either 

positively or negatively, associated with the response variable. Parallel to frequentist statistics, 

these consistently associated predictive variables significantly impact the response variable. 

Furthermore, variables that have a posterior distribution that crosses zero (i.e., inconsistently 

associated with the response variable) do not significantly affect the response variable or the rest 

of the simulated beta coefficients. Thus, post-hoc model selection is not required in a Bayesian 

modeling (Gelman et al. 2013). If no variable proved to be consistently associated, then no 

meaningful predictive model could be created for that specific combination of response variable, 

land cover data source, and scale.  

Each model ran 400,000 iterations across four chains after an equally long burn-in phase 

(400,000 iterations). The burn-in phase allows the independent chains to explore the probability 

space of each variable and to converge to the value that satisfies the relationships specified in the 

model and is thus discarded. The computational Bayesian statistics we used are based off Markov 

Chain Monte Carlo (MCMC) processes. Markov Chains are memoryless; therefore, they simulate 
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values based only on the pervious iteration. Complex models (e.g. non normally distributed, 

hierarchical, interactions, etc.) may require a larger gap between retained values to prevent 

autocorrelation (Gelman et al. 2013). Given the complexity of our models we deemed it 

appropriate to retain one of every 40 simulated between estimates (see below for details on model 

validation) (Gelman et al. 2013). Models using the metric of intensity of use were fitted using the 

Poisson probability distribution to describe the response variable. Models using the occupancy 

metric followed a specific case of the binomial probability distribution, known as the Bernoulli 

distribution, where the number of attempts equals one. For the occupancy model (binomial), we 

used a logit link function for our linear expression to ensure relatability with the values chosen for 

each response variable (i.e., a real number between zero and one).  Alternatively, we used a log 

link function for the intensity of use model (Poisson). 

We compared model performance through a five-fold cross-validation. We subsampled 

one-fifth of our data and predicted the occupancy and intensity of use using each model, thus 

effectively covering the entire distribution of our data. We combined the results of these five cross-

validation sets to compare predictive accuracy. We observed the results of each model, which is 

used to establish the best predictive model for each response variable (occupancy and intensity of 

use). We calculated the accuracy of the occupancy models by dividing the expected occupancy 

produced by the model’s median beta value by the total observed occupancy. We decided that 

there were few ecological differences between certain intensity of use values (i.e., the difference 

between 4 and 5 use events ecologically means about the same thing). To account for this, we 

created categories of not used (0 use events), low (1 use event), medium (2-3 use events), and high 

(4+ use events) intensity of use per location when doing the cross-validation. Furthermore, we also 

analyzed the data using the raw estimated intensity of use values (i.e., no binning) and found no 

notable differences in accuracies. We considered accurate predictions as ones for which the 

predicted intensity of use category fell within the observed intensity of use categories per location. 

From these calculations, we calculated the total number of locations where the estimated intensity 

of use was accurately described and divided by the total number of sites.  

Equation 3.1 exemplifies the modeling framework used for the intensity of use models. 

The prior distribution values specified influence the range of values the simulations explored for 

the specified coefficients. By specifying uninformative (broad and zero-centered) prior 
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distributions for all parameters, we ensure unbiased simulated values (i.e., we are not limiting them 

to be very small or centered around positive or negative numbers) at the cost of slower simulations. 

This allows for confident (because of the width) and fair (because of the zero-centering) 

comparisons of posterior (after the simulation) and prior (before the simulation) distributions for 

all variables. 

 

Equation 3.1 Modeling framework used in the estimation of posterior coefficients for a Poisson 

distribution of intensity of use (y) across a site (q) with habitat covariates (cov). This model 

demonstrates the intensity of use through the likelihood estimation of the Poisson distribution. 

Here, the observations are indexed with “q”, whereas the covariates are with “w”. Note that we are 

describing normal distributions using precision (τ) instead of variance, as required by JAGS. To 

clarify, the smaller the precision, the bigger the variance, as these are reciprocal functions. Thus, 

we are opting for uninformative priors that require longer times to converge but usually allow for 

more objective inference (Gelman et al. 2014). 

𝑦[𝑞] 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆[𝑞]) 

𝑙𝑜𝑔(𝜆[𝑞]) = 𝛽0 + 𝛽1 ∗ 𝑐𝑜𝑣𝑞1 … + 𝑐𝑜𝑣𝑞𝑛 ∗ 𝛽𝑤 

𝛽0 𝑁𝑜𝑟𝑚(𝜇 = 0, 𝜏 = 10−3) 

𝛽𝑤 𝑁𝑜𝑟𝑚(𝜇 = 0, 𝜏 = 10−3) 

 

After the models from Model Set 1 and 2 (Table 3.3, Table 3.4) were created, we explored 

whether the relationships between the habitat covariates included interactions or followed a non-

linear relationship with all the response variables. In doing so, this ensured we identified all 

important habitat variables this dataset allows. We created a flexible interaction term within our 

models to explore non-linearity and interactions between variables. We ran these models through 

simulations using the same parameters as previous models (as described in Equation 3.2). From 

the model posterior, we identified variables with interactions and non-linear relationships. If the 

posterior distribution generated by running simulations with Equation 3.2 signalled that 

approximately 50% of the simulations contained an interaction/nonlinear term, we included this 

as a fixed effect within our model. These new models were run using the same priors, iterations 
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and thinning as stated previously. If no interactions or non-linear effects were identified through 

the posterior distribution, they were not added as a fixed effect to the model. In this case, we used 

the models derived from Model Sets 1 and 2 (Table 3.3, Table 3.4) to determine predictive 

accuracy. 

 

Equation 3.2 Example modeling framework where interaction and non-linearity are examined. 

Here, we describe the “inter” parameter to allow for flexible interaction between variables by 

taking advantage of the multiplicative effect of summing exponents, allowing us to use a binary 

switch (Bernoulli) variable “indβ” to include (or not) each covariate to participate (or not) in the 

interaction. The success probability of each binary switch variable is hierarchically modelled by a 

Beta prior (bp) with scale and shape equal to 1. This use of the conjugate Beta prior is equivalent 

to a uniform distribution to start with, but it allows for very high flexibility as the parameters vary. 

Finally, we allow for non-linear relationships by raising each covariate to the power of a dedicated 

exponent variable (expo), which follows a uniform distribution between -3 and 3. Note that 

different models (occupancy /intensity of use) have different likelihoods for the response variable 

(i.e., Bernoulli). 

𝑦[𝑞] 𝑃𝑜𝑖𝑠𝑠𝑜𝑛(𝜆[𝑞]) 

𝑙𝑜𝑔(𝜆[𝑞]) = 𝛽0 + 𝛽1 ∗ 𝑐𝑜𝑣𝑞1 … + 𝑐𝑜𝑣𝑞𝑛 ∗ 𝛽𝑤 + 𝑙𝑛(𝑖𝑛𝑡𝑒𝑟) 

𝑖𝑛𝑡𝑒𝑟 = 𝑒
(𝑖𝑛𝑑𝛽[1]∗𝛽[1]

𝑒𝑥𝑝𝑜[1]
+𝑖𝑛𝑑𝛽[2]∗𝛽[2]

𝑒𝑥𝑝𝑜[2]
+...+𝑖𝑛𝑑𝛽[𝑛]∗𝛽[𝑛]

𝑒𝑥𝑝𝑜[𝑛]
)
 

𝑖𝑛𝑑𝛽𝑤 ~𝐵𝑒𝑟𝑛𝑜𝑢𝑙𝑙𝑖(𝑏𝑝𝑤) 

𝑏𝑝𝑤 𝐵𝑒𝑡𝑎(1,1) 

𝑒𝑥𝑝𝑜 𝑈𝑛𝑖𝑓𝑜𝑟𝑚(−3,3) 

 

After exploring how the land cover variables found mutually in the Beaudoin et al. (2017) 

and the NTEMS datasets predicted woodpecker occupancy/use, we investigated model 

performance using covariates exclusive to each dataset. We evaluated deadwood and canopy 

closure from the Beaudoin et al. (2017) land cover dataset and evaluated their reliability in 

predicting Pileated Woodpecker occupancy and intensity of use across the three spatial scales. We 

also explored any interactions or non-linear relationships for these variables. 
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We visually inspected trace plots to ensure convergence across chains and conducted three 

diagnostic tests. These tests included the Gelman-Ruban, Heildberger and Welch, and effective 

size tests in the coda R package (Gelman et al. 2013, Plummer et al. 2023). The Gelman-Ruban 

test is designed to determine the reliability of the simulated beta coefficients. The Heidelberger 

and Welch test tells us whether the simulations were run for an appropriate number of iterations 

(Gelman et al. 2013). The effective size test determines whether the retained simulated values 

correlate, essentially determining whether the thinning processes are sufficient for the simulation 

(Gelman et al. 2013). After the models passed these tests, we ran a 5-fold cross-validation to 

validate our results and determine model prediction accuracy. 

 

3.3 Results 

While attempting to measure similar forest stand characteristics, the variables found in the 

Beaudoin et al. (2017) and the NTEMS dataset were not always highly correlated (Table 3.6). The 

least correlated variable between datasets was age (0.611), and the most correlated variable was 

the amount of deciduous (0.877). 

 

Table 3.6 Pearson’s correlation coefficients for variables extracted from the Beaudoin et al. (2017) 

and NTEMS datasets at 565 meters (used as a representative scale). 

Variable Pearson’s correlation 

coefficient 

Age 0.611 

Deciduous Composition 0.877 

Biomass 0.762 

 

Pileated Woodpeckers were detected at 80 out of 258 (~33%) of the ABMI sites sampled. 

At any specific location, the maximum number of times a Pileated Woodpecker was detected was 

five out of fifteen recordings (Figure 3.3). Therefore, the highest detection probability at any given 
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location was approximately 33% (Figure 3.3). The mean detection probability is approximately 

3% (Figure 3.3).  

 

 

Figure 3.3 Scatterplot showing the proportion of recordings where a Pileated Woodpecker (PIWO) 

was detected (out of 15 recordings). A jitter was applied to the points to illustrate the amount of 

approximate number of locations represented with certain proportions of recordings where Pileated 

Woodpeckers were detected. Locations assorted x-axis randomly. 

 

Visual inspection of the trace functions for all models resulted in good convergence, and 

models passed all diagnostic and validation tests. The results of the Gelman-Ruban scale reduction 

factors (Ȓ) demonstrated the scale at which estimated coefficients would have reduced if the 

simulation approaches infinity iterations. All Ȓ values were between 1 and 1.01, confirming good 

convergence across chains and reliability in the estimated coefficients. The Heidelberg diagnostics 
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results showed that the vast majority of variables passed the half-width test, and the ones which 

did not pass the stationarity test stated that the number of iterations to keep/discard was 

appropriate. Retained simulated values also passed the effective size test. These diagnostic tests 

allow us to be confident that the models generated accurately represent the relationships found 

within the data. Furthermore, we found no interactions or signs of non-linearity across all variables 

in occupancy and intensity of use models via our flexible inter term (Equation 3.2). Therefore, we 

did not include interactions or non-linear variables as fixed effects within our models.  

 

Occupancy Results 

Two occupancy models containing consistently associated variables were produced (Table 

3.7). The predictive accuracy determined through the cross-validation of these models was 

approximately 70%. Biomass from land cover Beaudoin et al. (2017; 250-meter resolution) was a 

reliable predictor at the 565 and 1000-meter scales. Biomass was the only variable found to be a 

reliable predictor of Pileated Woodpecker occupancy across land cover sources and scales. No 

reliable variables were found at a 150-meter scale using both datasets. 
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Table 3.7 Occupancy model’s reliable variables with the calculated posterior distribution of beta 

values and model accuracy based on cross-validation results. If more than one variable is identified 

as reliable per model, the beta values are listed in order of appearance in the reliable variable 

column. Models are identified by response metric (occupancy or intensity of use), dataset 

(Beaudoin et al. 2017 or NTEMS), and scale (150, 565, 1000 m). 

Beaudoin et al. 2017         

Scale Reliable Variables 2.5% quantile 

beta values 

50% quantile 

beta values 

97.5% 

quantile beta 

values 

Cross-

validation 

accuracy 

150 m: No reliable variables N/A N/A N/A N/A 

565 m: Biomass 0.233 0.754 1.287 68.63% 

1000 m: Biomass 0.179 0.732 1.292 68.63% 

NTEMS         

Scale Reliable Variables 2.5% quantile 

beta values 

50% quantile 

beta values 

97.5% 

quantile beta 

values 

Cross-

validation 

accuracy 

150 m: No reliable variables N/A N/A N/A N/A 

565 m: No reliable variables N/A N/A N/A N/A 

1000 m: No reliable variables N/A N/A N/A N/A 

 

Intensity of use results 

Three intensity of use models contained consistently associated variables (Table 3.8). The 

predictive accuracy determined through the cross-validation of these models was approximately 

70%. Biomass from land cover Beaudoin et al. (2017; 250-meter resolution) was a reliable 

predictor at 565 and 1000-meter scales, and latitude was a reliable predictor at all three scales: 

150, 565, and 1000 meter. The most accurate intensity of use model contained the Beaudoin et al. 

(2017) land cover data at the 565 or 1000-meter scale.   
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Table 3.8 Intensity of use model’s reliable variables with the calculated posterior distribution of 

beta values and model accuracy based on cross-validation results. If more than one variable is 

identified as reliable per model, the beta values are listed in order of appearance in the reliable 

variable column. Models are identified by response metric (occupancy or intensity of use), dataset 

(Beaudoin et al. 2017 or NTEMS), and scale (150, 565, 1000 m). 

Beaudoin et al. 2017         

Scale Reliable Variables 2.5% quantile 

beta values 

50% quantile 

beta values 

97.5% 

quantile beta 

values 

Cross-

validation 

accuracy 

  

150 m: Latitude 0.001 0.125 0.190 65.09% 
  

565 m: Latitude 

Biomass 

0.025 

2.626 

0.216 

0.494 

0.408 

0.802 

67.05% 
 

1000 m: Latitude 

Biomass 

0.035 

0.083 

0.226 

0.436 

0.420 

0.772 

67.05% 
  

NTEMS         

Scale Reliable Variables 2.5% quantile 

beta values 

50% quantile 

beta values 

97.5% 

quantile beta 

values 

Cross-

validation 

accuracy 

  

150 m: No reliable variables N/A N/A N/A N/A 
  

565 m: No reliable variables N/A N/A N/A N/A 
  

1000 m: No reliable variables N/A N/A N/A N/A 
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Models containing Beaudoin exclusive variables 

Including the two Beaudoin exclusive variables, deadwood and canopy closure, we 

produced two reliable occupancy models and three reliable intensity of use predictive models 

across all scales. Deadwood was not a reliable predictor in any model across response variables 

(occupancy, intensity of use) or scale. Canopy closure was found to be a reliable variable and had 

a negative relationship with both occupancy and intensity of use. Latitude and biomass were 

reliable predictive variables, demonstrating a positive relationship with occupancy and intensity 

of use. The most accurate predictive occupancy model from this model set included latitude, 

biomass and canopy closure at the 1000-meter scale. The intensity of use models at the 565 and 

1000-meter scale had approximately the same predictive accuracy (~60%).  

 

Table 3.9 Table of habitat covariates that consistently influence Pileated Woodpecker occupancy. 

Models included deadwood and canopy closure only found within the Beaudoin et al. (2017) 

dataset. Quantiles describe the beta coefficient value at each percentile of their distribution across 

the simulations. 

Occupancy (Beaudoin exclusive)         

Scale Reliable Variables 2.5% quantile 

beta values 

50% quantile 

beta values 

97.5% 

quantile beta 

values 

Cross-

validation 

accuracy 

  

150 m: No reliable 

variables 

N/A N/A N/A N/A 
  

565 m: Latitude 

Biomass 

Canopy Closure 

0.010 

0.519 

-0.998 

0.318 

1.205 

-0.494 

0.634 

1.916 

-0.004 

67.45% 
 

1000 m: Latitude 

Biomass 

Canopy Closure 

0.053 

0.511 

-1.105 

0.368 

1.238 

-0.599 

0.280 

1.983 

-0.051 

69.80% 
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Table 3.10 Table of habitat covariates that consistently influence Pileated Woodpecker intensity 

of use. Models included deadwood and canopy closure only found within the Beaudoin et al. 

(2017) dataset. Quantiles describe the beta coefficient value at each percentile of their distribution 

across the simulations. 

Intensity of use (Beaudoin exclusive)         

Scale Reliable Variables 2.5% quantile 

beta values 

50% quantile 

beta values 

97.5% 

quantile beta 

values 

Cross-

validation 

accuracy 

150 m: Latitude 

Biomass 

Canopy Closure 

0.407 

0.985 

-6.983 

0.951 

1.093 

-0.811 

3.770 

10.823 

-0.002 

46.77% 

565 m: Latitude 

Biomass 

Canopy Closure 

0.407 

0.965 

-1.688 

1.080 

2.226 

-0.829 

2.140 

4.301 

-0.132 

60.39% 

1000 m: Latitude 

Biomass 

Canopy Closure 

0.474 

0.910 

-2.103 

0.890 

2.165 

-1.140 

2.069 

4.213 

-0.371 

60.39% 

  



57 

 

3.4 Discussion 

Occupancy versus intensity of use  

Both occupancy and intensity of use were only 65-70% accurate in predicting Pileated 

Woodpecker habitat use based on cross-validation. Thus, none of our models were highly 

predictive. We expected intensity of use models would provide more information to resolve 

important predictor variables than occupancy models. This expectation assumed that detecting 

more drumming at a location would reveal areas where Pileated Woodpeckers were spending more 

time and thus had more suitable resources. However, both occupancy and intensity of use models 

identified (across all models using the same response variables) the same relationships with habitat 

variables (biomass, latitude and canopy closure). One explanation for this result could be that the 

factors which influence complex measures, such as intensity of use are more complicated or 

nuanced (Nielsen et al. 2005). Once detectability is accounted for, occupancy may be sufficient 

for creating predictive habitat models for species management. Importantly, our measure of 

occupancy used a multiple-visit approach during the optimal time of the year for detecting Pileated 

Woodpecker. How models that use a single visit to a location are predicted by these covariates 

should be evaluated. Hundreds of thousands of single-visit ARU and point count data locations 

are available in Alberta (www.wildtrax.ca) to build Pileated Woodpecker models, but most of that 

data is collected in June. Given the effort required to collect multiple visit data, it is important that 

future work compare different model structures.  

The maximum number of times a Pileated Woodpecker was detected at any given location 

across fifteen one-minute surveys on different days was five (~33% of surveys). This suggests that 

Pileated Woodpeckers are either highly mobile animals and/or the sampling effort and coverage 

were insufficient to detect specific patterns of habitat use within large home ranges. We speculate 

that we observed the low detection probability because Pileated Woodpeckers are highly mobile. 

Our sampling design was fully random in areas that were forested. While our sample size was 

relatively large, the probability that an ARU was located near a particularly important resource 

like a nest or foraging tree was low. Explanations could be that the availability of such resources 

might be relatively low or, more likely, that the spatial coverage of ARUs was too coarse to detect 

high-use activity areas like drumming posts or foraging areas. Clearer signals may be observed if 

http://www.wildtrax.ca/
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many ARUs were placed within an individual’s home range. This assumes that Pileated 

Woodpeckers are more likely to drum in areas with key resources. We are currently using and 

collecting additional data using two different approaches to answer this question: (1) we are 

placing ARUs at known nest and foraging trees; (2) we are using varying sized grids of ARUs to 

assess how an individual or pair of Pileated Woodpeckers may use habitat over the entire home 

range. The models in this paper give us a glimpse into second-order selection (i.e., where a home 

range might be located). These future data will help uncover whether greater detail in third-order 

selection (i.e., where specific habitats are used within a home range) can be revealed using ARU 

data. The Pileated Woodpecker can be heard by human observers (and ARUs) at distances between 

100-150 meters (Edwards et al. 2022), meaning grids of ARUs spaced at approximately a 200-

meter distance would be required to understand third-order selection within a typical Pileated 

Woodpecker >250-hectare home range (Renken and Wiggers 1989, Mellen et al. 1992, Bull and 

Holthausen 1993, Bonar 2001). This contrasts the ARU spacing distance used within our study of 

>20 kilometers. 

We speculate our model would be more predictive if we had included areas that are likely 

less suitable, as the models would have likely accurately confirmed null use in unsuitable 

environments, but this should be confirmed. Our models examined how fine scale differences in 

one ecosystem type, the boreal forest, affect Pileated Woodpecker habitat use. By including 

Pileated Woodpecker non-habitat, such as grasslands, our models should be able to identify a 

negative relationship, both in occupancy and intensity of use, for these environments. Due to the 

life history requirements of nesting, foraging, and roosting in trees, we speculate that non-forested 

environments would be easily classified as non-habitat (null occupancy and null intensity of use) 

for Pileated Woodpeckers. However, the utility of adding non-habitat ecosystem types is negligible 

because researchers do not survey for Pileated Woodpeckers in these ecosystem types. 

 

Land cover  

An alternative explanation for the limited predictive accuracy of our models is the limited 

number of land cover variables we examined. While these remote sensing layers had other 

variables that could be used, they were highly correlated with variables we did include. Correlation 
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analysis suggests that the same variable derived by different remote-sensing layers is only weakly 

correlated. This phenomenon is more common than many ecologists recognize (i.e., Hedley et al. 

2020) and demonstrates the importance of evaluating different ways of describing vegetation 

conditions and land use when building habitat models for managers to use. Land cover data 

collected on the ground might produce more accurate and informative models but can not be 

mapped easily and are very expensive to collect. Additionally, smaller regional land cover datasets, 

such as the Alberta Vegetation Inventory or a growing LiDAR inventory, may be more 

representative of the local environment and produce better models. However, these products do 

not allow us to build models to the large extent that managers desire. Future work should evaluate 

how predictions from models built using different remote sensing products overlap in space and 

then use that information to study further areas consistently identified as important. Such an 

approach was used by Hedley et al. (2020) for the Yellow Rail (Coturnicops noveboracensis) in 

Alberta, whereby predictions of models from three different remote sensing products were used to 

find areas that were consistently identified as important across all layers rather than one. External 

validation demonstrated that the fused map of all three products was more accurate in finding the 

species than any of the individual remote sensing products. 

We were surprised that the models produced using the Beaudoin et al. (2017) land cover 

dataset (250-meter resolution) were more likely to include reliable predictive variables. The 

NTEMS land cover dataset has a much finer resolution (30 meters), which often improves 

prediction accuracy. One explanation of why these datasets performed differently could relate to 

how they estimated biomass (the most predictive variable). The Beaudoin et al. (2017) dataset 

used the approach developed by Boudewyn et al. (2007), whereby ground measurements of DBH, 

stand volume, and tree species were recorded at sample locations and then using k-nearest 

neighbour clustering were correlated with remote sensing data. The NTEMS land cover dataset 

calculated biomass values using LiDAR data from a sample of locations to extract height, volume, 

and canopy cover (Matasci et al. 2018). They then estimated biomass through machine learning 

algorithms at a national extent. While LiDAR can have comparable accuracy to ground-based 

validation (Zellweger et al. 2013), the limited predictive ability of our models suggests that this 

approach to measuring biomass may be limited. Our current results indicate that the Beaudoin et 
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al. (2017) land cover dataset will provide more reliable predictions for those interested in 

developing Pileated Woodpecker habitat selection models.  

 

Scale 

We did not produce meaningful predictive models at our finest scale (150 meters). A likely 

explanation is that Beaudoin et al. (2017) dataset pixel size (250m × 250m) is greater than this 

buffer size. When the resolution of the dataset is less than the scale at which the land cover is 

extracted, you are effectively taking the pixel value within which the sampling point occurs. This 

may be problematic with coarse resolution data because that point may be on the edge of a pixel 

that could be unrepresentative of the actual location where the Pileated Woodpecker is occurring. 

Furthermore, since Pileated Woodpeckers home ranges span an extensive area (Renken and 

Wiggers 1989, Mellen et al. 1992, Bull and Holthausen 1993, Bonar 2001), they may be selecting 

for areas that contain more suitable habitat (i.e., bigger trees) at a larger than a local scale. We 

found comparable predictive accuracies and relationships between 565-meter and 1000-meter 

scale models, suggesting these buffers are within the same domain of scale for Pileated 

Woodpeckers. This is consistent with Savignac et al. (2000), who used a 1000-meter scale to build 

their models. However, small scale buffers (i.e., 150 meter) may be more valuable for 

understanding drumming near nests or foraging trees, so we caution against using a single buffer 

size in future studies. However, we emphasize that researchers should aim to match the relevant 

scales associated with wildlife to the available land cover data resolutions to ensure that the 

resolution is not coarser than the scale. 

 

Summary and Management Implications 

Very few studies have attempted to assess Pileated Woodpecker habitat use at a regional 

extent, especially in the western boreal forest. As a species of conservation concern due to their 

role as ecosystem engineers and associations with declining old-growth forest types (Bull and 

Holthausen 1993, McClelland and McClelland 1999, Bonnar 2000, 2001, Aubry and Raley 2002, 

Hartwig et al. 2004, Krementz et al. 2012), it is crucial to determine how Pileated Woodpeckers 
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use habitat to inform their management. This is especially important in our study area, as industrial 

activities of forestry and the energy sector’s interests overlap with old-growth species specialists, 

such as the Pileated Woodpecker. Currently, we have a weak baseline for understanding this 

species. Our results emphasize the importance of biomass as an indicator of Pileated Woodpecker 

habitat use. We believe that biomass is a proxy for tree stem thickness, which is a limiting factor 

for Pileated Woodpecker nesting, foraging and roosting habitats (Bull et al. 1992, Renken and 

Wiggers 1993, Flemming et al. 1999, McClelland and McClelland 1999, Savignac 2000, Bonar 

2001, Hartwig et al. 2004, Bull et al. 2007, Raley and Aubry 2010, Krementz et al. 2012). 

Additionally, our results suggest a negative relationship between Pileated Woodpecker occupancy 

and intensity of use with canopy closure. Canopy closure indicates denser forests, typically 

occurring at earlier seral stages in forest development (Duncanson et al. 2015). This suggests that 

Pileated Woodpeckers rely on mature and old forests with complex gap structural dynamics caused 

by the death and decay of trees (Conner et al. 1976, McClelland and McClelland 1999, Jackson 

and Jackson 2004, Nappi et al. 2015, Tremblay et al. 2015, Dufour-Pelletier et al. 2020, Martin et 

al. 2021). However, despite the logic of these predictor variables, they were only weakly 

predictive, suggesting more information is needed to fully understand and map the habitat use of 

the Pileated Woodpecker. 
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4. Chapter 4. Conclusions 

Summary of key findings 

Little research has been conducted on Pileated Woodpecker behaviour and habitat use at 

the northern edge of their range in the western Canadian boreal forest. Throughout this thesis, I 

attempted to assess how to best sample and model habitat relationships for this species in Alberta, 

Canada.  

Previous attempts at habitat modeling in this area (conducted by ABMI) used data from 

temporal periods in which detection probability is suboptimal (Alberta Biodiversity Monitoring 

Institute and Boreal Avian Modeling Project 2023). This potentially increases false negative rates, 

which impact the accuracy of habitat selection models. In addition, these models are based 

primarily on single-visit data. Our findings in Chapter 2 suggested that surveys for Pileated 

Woodpeckers in Alberta should be conducted earlier than traditional bird surveys like the BBS. 

Early to mid-April periods are optimal. Our analysis indicated that the peak timing may change 

due to the observed temperature on a given day but is also heavily influenced by static interannual 

variables such as day length. Additionally, we demonstrated that Pileated Woodpeckers' highest 

period of detectability during any given day is in the morning hours around sunrise. These results 

are consistent with BBS protocol and other passerine survey techniques (Staicer et al. 1996, Da 

Silva and Kempenaers 2017, Ziolkowski et al. 2023).  

In Chapter 3, we assessed how variation in how habitat use models are created impacts 

predictive accuracy. Our habitat use associations were consistent with previous studies 

demonstrating positive relationships for old-growth forests undergoing stand gap dynamics. We 

showed that the response variable, land cover measurement techniques (datasets), and land cover 

extraction scale influenced model prediction accuracy. Occupancy models were slightly more 

accurate in predicting Pileated Woodpecker habitat use than intensity of use models. Only the land 

cover data measured using the methods described by Beaudoin et al. (2017) produced meaningful 

model results, suggesting that the measurement and resolution of land cover data greatly impact 

model performance. Finally, larger-scale buffers produced more meaningful models, implying that 
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Pileated Woodpeckers likely react to environmental attributes more represented at a regional or 

landscape scale. 

We were surprised that our models did not include the percentage of deciduous forest 

variables. Previous work has demonstrated that Pileated Woodpeckers are strongly associated with 

old-growth forests with high deciduous tree compositions (Bull and Holthausen 1993, Renken and 

Wiggers 1993, Hartwig et al. 2004, Martin et al. 2004, Krementz et al. 2012, Hu and Tong 2022). 

While the land cover data we used may not represent the true forest composition, it may be possible 

that other regional or compositional factors may influence the importance of deciduous trees for 

Pileated Woodpecker habitat use. 

 

Conservation implications 

The Pileated Woodpecker is a species of special concern for conservation due to its vital 

role as a keystone species and strong associations with increasingly rare old-growth forest types 

(Bonar 2000, 2001, Aubry and Raley 2002, Aitken and Martin 2007, Trzcinski et al. 2022). The 

correlation between drumming behaviour (and presumably breeding state) and dynamic 

environmental conditions (mainly temperature) suggests that the Pileated Woodpecker may be less 

at risk of phenological shifts due to climate change. Mismatches in breeding phenology and food 

availability have been demonstrated for many birds. It is important to note that this non-migratory 

bird may change their breeding timing in response to local weather and environmental conditions 

which may lead to more successful breeding and survival (Stenseth et al. 2002, Powell and Logan 

2005, Dunn et al. 2011, Visser et al. 2012, Lany et al. 2016). However, better continuous 

monitoring is needed to understand and track changes in Pileated Woodpecker populations and 

potential phenological mismatches that may be caused due to climate change. 

Challenges imposed by climate change are not the only threat Pileated Woodpeckers face. 

As old-growth forests become increasingly scarce across North America, having accurate 

population estimations of old-growth specialist species, such as the Pileated Woodpecker, is 

essential to maintaining populations. Chapter 3 confirmed the Pileated Woodpecker’s old-growth 

forest associations observed in other local studies (Bull et al. 1992, Renken and Wiggers 1993, 
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Flemming et al. 1999, McClelland and McClelland 1999, Savignac 2000, Hartwig et al. 2004, Bull 

et al. 2007, Raley and Aubry 2010, Krementz et al. 2012, Hu and Tong 2022). These habitat 

associations are at odds with the growing demands of the forestry sector in Alberta, which harvests 

large-diameter trees preferentially. Balancing the demands for wood products with the need to 

maintain a stable population of Pileated Woodpeckers in Alberta is an increasingly complex 

conservation challenge.  

 

Recommendations for future research 

Throughout this thesis, I highlighted considerations for future biologists who aim to sample 

and model relationships and distributions of the Pileated Woodpecker in Alberta. The Government 

of Canada recently imposed legislation protecting Pileated Woodpecker nest sites, so the 

incentives to survey and study this species are high (Government of Canada 2022). 

As survey methods are imperfect at detecting Pileated Woodpeckers, we recommend that 

optimizing survey timing may increase the accuracy of use data, and we demonstrated techniques 

that may help eliminate or reduce detection error. Important questions remain regarding how to 

optimize the detection and observation of other behaviours/vocalization to improve monitoring. In 

Chapter 2, we did not detect many calls across our recordings. Future research can build on our 

data and results to determine optimal periods in which calls may be observed, the environmental 

triggers of calling, and whether they can help us inform different scales of habitat selection (i.e., 

nest locations).   

Our results from Chapter 2 outline recommendations that future research should consider 

when surveying Pileated Woodpeckers. We recommend that surveys should be conducted during 

the observed peak detection periods. However, with existing large datasets that do not sample 

during peak detection periods for Pileated Woodpeckers, it is important to note that high 

confidence in Pileated Woodpecker occupancy at a site can still be achieved through repeated 

surveys. The number of repeated surveys required to have high confidence in Pileated Woodpecker 

occupancy will increase as the surveys become less temporally optimized (i.e., at least 10 surveys 

required during peak detection periods versus at least 30 during standard BBS protocol timing).  
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In Chapter 3, we demonstrated that the response variable intensity of use can create species-

habitat models with comparable predictive accuracy to occupancy models for Pileated 

Woodpeckers. However, neither of these approaches was particularly predictive. Different 

methods to conduct passive acoustic monitoring surveys using ARUs may reveal new insights. 

Research examining optimized sampling effort and coverage, varied grids or arrays of ARUs, and 

targeted sampling at nesting and foraging trees should be conducted to improve our understanding 

of intensity of use as a response metric and perhaps bolster the predictive capabilities of these 

models. In doing so, we may be able to use passive acoustic monitoring to determine areas of 

highest importance and preference for Pileated Woodpeckers within their home ranges.  

It is possible that passive acoustic monitoring may ultimately not be an effective method 

for measuring the habitat use of highly mobile animals such as Pileated Woodpeckers. Additional 

targeted studies using woodpeckers tagged with GPS transmitters may be needed to obtain detailed 

habitat use and selection data at multiple scales and orders of selection. However, the logistic 

challenges of conducting this work at a regional extent, the high cost, and the invasive nature and 

impacts on Pileated Woodpeckers suggest the need to investigate various passive acoustic 

monitoring approaches.  

Finally, I emphasized the importance of accurate land cover data. Smaller-scale regional 

land cover datasets such as the Alberta Vegetation Inventory (AVI) and LiDAR need to be 

evaluated as they may give a more accurate representation of the localized environment. AVI also 

contains additional land cover variables not represented in the datasets examined in Chapter 3. The 

trade-off between creating many local models using high-resolution data versus models made at 

larger extents using lower-resolution data is a crucial challenge for wildlife management. Many 

high-resolution vegetation cover products (i.e., AVI and LiDAR) are not publicly available, which 

creates numerous challenges for developing effective models for conservation and is necessary for 

governments and industry to continually improve.  
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6. Appendices 

 

Annotated code for Chapter 2: Temporal variation in Pileated Woodpecker behaviour: 

ecological explanations and management implications can be found online in the open 

repository: https://github.com/austinczeller/Temporal_PIWO. 

 

Annotated code for Chapter 3: Pileated Woodpecker habitat use in the boreal forest of 

Alberta: The relative importance of response variables, land cover, and scale can be found online 

in the open repository: https://github.com/austinczeller/PIWO_Model_Comparison.  

 

 

 

Figure 6.1 Current species habitat associations in forested regions of Alberta for the Pileated 

Woodpecker derived by ABMI (Alberta Biodiversity Monitoring Institute and Boreal Avian 

Modelling Project 2023). Bars show the predicted relative abundance of Pileated Woodpecker as 

a function of habitat type. 90% confidence intervals are depicted by vertical lines. Additional 

information on these model results can be found through ABMI’s “Biodiversity Browser”: 

https://beta.abmi.ca/species/pileated-woodpecker. 

 

https://github.com/austinczeller/Temporal_PIWO
https://github.com/austinczeller/PIWO_Model_Comparison
https://beta.abmi.ca/species/pileated-woodpecker
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Figure 6.2 Correlation matrix for variables examined in Chapter 2, objective 2: environmental 

factors influencing Pileated Woodpecker drumming. “NormDev” is the deviation from the 

expected normal temperature and “DaysSinceGUP” is the days since green up. 
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Figure 6.3 Relationship of day length (hours) and Pileated Woodpecker drumming as estimated 

by the smoothing term generated via GAMM (Chapter 2). Dotted lines represent the bounds of 

the 95% confidence intervals. 
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Table 6.1 Ridge regression model results for the multivariate models containing interannual static 

and flexible terms. Quadratic terms were used in these models because they demonstrated 

nonlinearity within the GAMs. 

Model Variable Beta coefficient 

Julian date + mean temperature Julian date -2.648e-04 

 Julian date2 -7.637e-07 

 Mean temperature 1.015e-03 

 Mean temperature2 

 

-1.195e-04 

Day length+ mean temperature Day length -1.566e-03 

 Day length2 -1.114e-04 

 Mean temperature 5.460e-04 

 Mean temperature2 1.374e-04 

 

 

Table 6.2 Model results for multivariable models with/without interactions between variables 

explored in Chapter 2, objective 3. Interaction term represents the interaction between precipitation 

and deviation from the expected mean temperature. 

Model Variable Beta coefficient P-value  AIC 

Precipitation + 

deviation from the 

expected mean 

temperature  

Precipitation -0.009 0.755 1128.929 

Deviation from the 

expected mean 

temperature 

 

 

0.038 

 

0.022  

Precipitation X 

deviation from the 

expected mean 

temperature 

Precipitation 

 

-0.033 0.376 1128.026 

Deviation from the 

expected mean 

temperature 

 

0.043     0.009  

Interaction Term -0.013 0.075  
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Figure 6.4 The relationship between the deviation from the expected normal temperature (Celsius) 

and the probability of detecting a Pileated Woodpecker drum. Shaded area represents the 95% 

confidence interval.   
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Figure 6.5 Sample trace plot. The abscissae represent the iterations run through JAGS after burn-

in, starting at 400,000. The ordinates represent the values taken by the sample variable at each 

iteration, and the colours of the different trace lines represent the four independent Markov Chains. 

This plot displays significant overlap, and the traces span most of the same ordinates' values, 

indicating exploration of the same approximate probability space. 
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Figure 6.6 Histogram showing the distribution of age values extracted from Beaudoin et al. (2017) 

at 565-meter buffer scale (used as a representative) for locations used in Chapter 3. 

 

Figure 6.7 Histogram showing the distribution of age values extracted from NTEMS at 565-meter 

buffer scale (used as a representative) for locations used in Chapter 3. 
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Figure 6.8 Histogram showing the distribution of deciduous percentage values extracted from 

Beaudoin et al. (2017) at 565-meter buffer scale (used as a representative) for locations used in 

Chapter 3. 

 

Figure 6.9 Histogram showing the distribution of deciduous percentage values extracted from 

NTEMS at 565-meter buffer scale (used as a representative) for locations used in Chapter 3. 
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Figure 6.10 Histogram showing the distribution of biomass values extracted from Beaudoin et al. 

(2017) at 565-meter buffer scale (used as a representative) for locations used in Chapter 3. 

 

Figure 6.11 Histogram showing the distribution of biomass values extracted from NTEMS at 565-

meter buffer scale (used as a representative) for locations used in Chapter 3. 
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