
An Empirical Study of the Performance of Temporal Relational

Databases

Iqbal A� Goralwallaa� Abdullah U� Tanselb and M� Tamer �Ozsua

aLaboratory for Database Systems Research� bBaruch College�CUNY�
Department of Computing Science� University of Alberta �� Lexington Avenue� Box ����
Edmonton� Alberta� Canada T�G �H�� New York NY ������ USA�
fiqbal�ozsug	cs�ualberta�ca uztbb	cunyvm�bitnet
Fax
 ����
 ��� ����

Abstract

In this paper we describe an implementation of a temporal relational database management system

based on attribute timestamping� For this purpose we modify an existing software ��� which supports

set�valued attributes� The algebraic language of the system includes relational algebra operators� re�

structuring operators and temporal operators� We use this system to carry out a performance evaluation

of di�erent types of temporal databases� databases using attribute timestamping� databases using tuple

timestamping where relations are in temporal normal form and databases using tuple timestamping

where a single relation is used� We run sample queries against these types of temporal databases and

measure processing time of these queries� This study veri�es that the major performance trade o� is

between the restructuring 	unpack
 operation needed in databases using attribute timestamping and the

join operation needed in databases using tuple timestamping� Furthermore� keeping all temporal tuples

in one single relation does not prove to be an e�ective alternative�

Keywords
 temporal databases� attribute timestamping� tuple timestamping� temporal queries�



� Introduction

The ability to model the temporal dimension of the real world is essential for many applications� Examples

of these are econometrics� banking� inventory control� medical records� airline reservations� versions in

CAD�CAM applications� statistical and scienti�c data� etc� Yet� none of the three major data models�

namely� relational� network� and hierarchical supports the time varying aspect of real world phenomena�

Conventional databases can be viewed as snapshot databases in that they represent the state of an

enterprise at one particular time i�e they contain only current data� A database which maintains past�

present and future data �i�e object histories
 is called a temporal database �TDB
�

In the last decade� there has been extensive research activity on temporal databases� A summary of this

research can be found in ���� ���� and a bibliography on temporal databases is provided in ����� Snodgrass

reports on the results of a workshop on the infrastructure for temporal databases in ����� Mckenzie and

Snodgrass survey extensions of relational algebra that can query databases recording time�varying data

����� They identify criteria for evaluating temporal algebras and evaluate several time�oriented algebras

against these criteria� A recent book on this topic ���� provides a comprehensive treatment of the current

state�of�the�art in temporal databases�

Most of the research has concentrated on extending the relational model ��� to handle time in an

appropriate manner� These extensions can be grouped into two main categories� The �rst approach uses

First Normal Form ��NF
 relations in which special time attributes are added �tuple timestamping
 and

the history of an object �attribute
 is modelled by several �NF tuples ��� ��� ��� ��� ���� The second

approach uses Non�First Normal Form �N�NF
 relations and attaches time to attribute values �attribute

timestamping
 in which the history of an object is modelled by a single N�NF tuple ��� �� ����

Modelling temporal data and temporal query languages are the topics most investigated� However� there

has been very little work on the e�cient implementation of temporal databases� let alone the performance

analysis of such systems� Ahn and Snodgrass carry out a performance evaluation ��� of their prototype

system� TQUEL ���� in which the underlying model is based on attaching time stamps to tuples� hence �NF

relations� In this paper we describe the implementation ��� of a prototype temporal relational database

management system �TDBMS
 which uses attribute timestamping �AT
� We use this system to simulate a

database which uses tuple timestamping �TT
 where time varying attributes are distributed over multiple

relations� each in temporal normal form ���� ��� and a database which uses tuple timestamping �TTL


where a single relation is used to hold all its pertaining time varying attributes� We then investigate the

performance of AT� TT and TTL databases on di�erent types of queries�

�



Our prototype is the �rst implementation of a temporal database management system based on attribute

timestamping� It demonstrates the feasibility of such databases� Even though it needs more work for

incorporating indexing for query optimization� in its present form it provides a useful environment for

experimentation with temporal databases� Moreover� this is the �rst performance study which compares

the attribute timestamping and tuple timestamping approaches� The results reported here provide useful

insight into the design of temporal databases�

In Section �� the temporal relational model together with its algebra is reviewed� Section �� brie�y

describes the implementation of the temporal database management system� A detailed performance

evaluation study of implemented system is given in Section �� The paper concludes with Section ��

� Overview of the Temporal Model and Algebra

��� Temporal Relational Model

In our temporal model� each time�varying attribute value is a �time� value� pair� The time part of this

pair is taken to be the interval in which the value is valid as opposed to the time point at which the value

became valid� The latter approach creates complications in expressing and interpreting the relational

algebra operations since it splits the time interval between two successive pairs� causing the successor pair

to be examined if the time duration over which the value is valid is needed� Hence� we opted for the former

approach and represent the time component of time�varying attributes as intervals�
Let V be the set of all possible integers� reals� and strings and T be a set of time points which is totally

ordered under the less than�equal�to ��
 relation� The points are identi�ed relative to an origin t� as shown
below


T � ft�� t�� ���� ti� ���� nowg

t� � t���� � ti � ���now

ti � ti�� � � and ti � t� � i

t� is the starting time and now is the marking symbol for the current time� Time�varying attribute

values are represented as triplets of the form� � �l� u
� v �� �l�u
 is the time component �interval
� with l

and u standing for the lower and upper bounds of the interval respectively� v �v � V 
 is the data value

which is valid over the time interval �l�u
�

Sets of triplets represent the history of an attribute� A relation containing such attributes is called a

valid time relation ����� In our model� a valid time relation may have four types of attributes


� Atomic attributes
 contain atomic values from domains which are subsets of V �

�



E� Ename ��Department ��Salary

��� Tom
f��Jan ��� Jan ��
� Shoe��

��Jan ��� now�� Toys�g

f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

��� Ann f��Jan ��� now�� Sales�g f��Jan ��� now
� ��K�g

��� John f��Jan ���now�� Toys�g
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

Figure �
 Employee relation�

� Triplet�valued attributes
 contain triplets as atomic values� A triplet is of the form � �l� u
� v � where

l� u � T and v � V �

� Set�valued attributes
 are sets of atomic values� These values are considered independent of time�

� Set�triplet valued attributes
 contain sets of triplets as values� Each set is a collection of one or more

triplets� de�ned over a subset of the interval �t�� now� and represents the attribute�s history�

In order to di�erentiate di�erent types of attributes we use the following notation� Atomic attributes

are referred to by their names� Set�valued attributes are pre�xed by a ��� � e�g�� �A� �B� triplet�valued

attributes are pre�xed by a dollar sign� e�g�� �A� �B� and set�triplet valued attributes are pre�xed by a

star and dollar� e�g�� ��A� ��B� etc� To refer to the components of a triplet�valued attribute� �A� we use

�Al� �Au and �Av� They refer to the lower bound� upper bound� and value components of the triplet�

respectively� A valid time relation is a nested relation with one level of nesting� i�e�� attribute values can

be sets� Figure � gives an example historical relation� Tuples of Employee relation are homogeneous ����

TDBMS however� allows non�homogeneous tuples as well�

��� Temporal Relational Algebra

The set of Temporal Relational Algebra �TRA
 operations includes the �ve basic operations of the relational

algebra with slight modi�cations for handling temporal data� the two re�structuring operations� Pack and

Unpack ���� which directly apply to temporal relations and the new operations ���� ��� for manipulating

temporal data� The formal de�nitions of the TRA operations can be found in ���� ���� We now describe the

TRA operations we have implemented and illustrate the workings of each operation using the Employee

relation given in Figure �


�



�� Set operations �union� intersection� di�erence
�Cartesian product�Project�Natural Join


These operations are the same as the relational algebra operations�

�� Selection �select A from R where F 

 The selection operator selects the tuples of attribute�s
 A

from the valid time relation R which satisfy the formula F � F is a formula which could contain any

type of attribute� comparison operators �i�e�� �� ��� ���� ���
 and connectives �and� or� not
� These

comparison operators have been used instead of temporal operators like overlap� during� etc� to keep

the implementation simple� Note that temporal operators add to the user�friendliness of the query�

However� omitting them does not diminish the expressive power of TRA� In the Selection operation

when a triplet�valued attribute� say �X� is used� its components can be referenced� Note that our

selection operation includes the selection and projection operations of relational algebra�

�� Unpack �unpack R on A

 The unpack operation creates a family of tuples for each tuple of R

when it is applied on one of R�s set�valued or set�triplet valued attributes� A� One tuple is created

for each element of the set in the attribute value� As an example� the result of unpack Employee

on Department is shown in Figure ��

E� Ename �Department 
�Salary

��� Tom ��Jan ��� Jan ��
� Shoe�
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

��� Tom ��Jan ��� now�� Toys�
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

��� Ann ��Jan ��� now�� Sales� f��Jan ��� now
� ��K�g

��� John ��Jan ���now�� Toys�
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

Figure �
 Employeeunpack relation�

�� Pack �pack R on A

 The pack operation when applied to an atomic or triplet�valued attribute

A of a valid time relation R� collects the values in attribute A into a single tuple component for

tuples whose remaining attributes agree� For example� applying pack on the Department attribute

of Employeeunpack yields back the Employee relation�

�� Triplet�decomposition �tdec R on �A

 This operation breaks the triplet valued attribute �A

of the valid time relation R into its components� It adds two new attributes for representing the

�



E� Ename Department From To 
�Salary

��� Tom Shoe Jan �� Jan ��
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

��� Tom Toys Jan �� now
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

��� Ann Sales Jan �� now f��Jan ��� now
� ��K�g

��� John Toys Jan �� now
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

Figure �
 Employeetdec relation�

upper and lower bounds of the time interval to R� The value �eld replaces �A� For example� tdec

Employeeunpack on Department gives the relation shown in Figure ��

�� Triplet�formation �tform R on V � L� U

 tform creates a triplet�valued attribute from the three

attributes V� L� and U of the valid time relation R which correspond to the value component� lower

bound� and upper bound of the triplet respectively� Triplet�formation is the inverse operation of

triplet�decomposition� For example� tform Employeetdec on Department� From� To gives back the

Employeeunpack relation�

�� Slice �slice R �A by �B

 Let �A and �B be two triplet�valued attributes� The slice operator trims

the time of �A with respect to the time of �B� In other words� the intersection of intervals of �A and

�B is assigned to �A as its time reference� There are two other versions of this operation� Uslice

operation forms the union of the time intervals of �A and �B and assigns it as the time component

of �A� Dslice operation is similar to slice� except the di�erence of the time intervals of �A and �B

is assigned to the time component of �A� In both Uslice and Dslice operations� attribute A becomes

a set�triplet valued attribute� since union �di�erence
 of two intervals is not one single interval� For

example� after unpacking the Employee relation on the Department and Salary attributes� slice

Employee Department by Salary gives the relation shown in Figure �� Similarly� Figures � and

� give the relations obtained by applying a Uslice and Dslice operation on the Department and

Salary attributes of the Employee relation� respectively�

�� Drop�time �droptime R on A

 This operation gets rid of the time components of the triplet�

valued or set�triplet valued attribute A and converts it into an atomic or a set�valued attribute�

�



E� Ename �Department �Salary

��� Tom ��Jan ��� Jan ��
� Shoe� ��Jan ��� June ��
 ��K�

��� Tom ��Jan ��� June ��
� Toys� ��Jan ��� June ��
� ��K�

��� Tom ��June ��� now�� Toys� ��June ��� now�� ��K�

��� Ann ��Jan ��� now�� Sales� ��Jan ��� now�� ��K�

��� John ��Jan ��� June ��
� Toys� ��Jan ��� June ��
� ��K�

��� John ��June ��� now�� Toys� ��June ��� now�� ��K�

Figure �
 Employeeslice relation�

E� Ename 
�Department �Salary

��� Tom f��Jan ��� June ��
� Shoe�g ��Jan ��� June ��
� ��K�

��� Tom
f��Jan ��� Jan ��
� Shoe��

��June ��� now�� Shoe�g
��June ��� now�� ��K�

��� Tom f��Jan ��� now�� Toys�g ��Jan ��� June ��
� ��K�

��� Tom f��Jan ��� now�� Toys�g ��June ��� now�� ��K�

��� Ann f��Jan ��� now�� Sales�g ��Jan ��� now�� ��K�

��� John f��Jan ��� now�� Toys�g ��Jan ��� June ��
� ��K�

��� John f��Jan ��� now�� Toys�g ��June ��� now�� ��K�

Figure �
 EmployeeUslice relation�

respectively� For example� Figure � shows the Employee relation with the time of the Department

attribute dropped�

�� Enumeration �ENUM�� ENUM�

 The enumeration operation derives a table of uniform data� for

a set of speci�ed time points or intervals� from a three dimensional historical relation� To handle the

semantic issues which arise when applying aggregates to historical data� two versions of the enumer�

ation operation have been developed� Let X� be a set of atomic attributes and let X� be a set of

set�triplet valued attributes� ENUM� �enum� R �fX�g fX�g � fTg
 returns the values of the des�

ignated attributes at the speci�ed time points� For each of the speci�ed time points in T � each tuple of

the valid time relation R is retrieved� The triplets of the set�triplet valued attribute�s
 X� are exam�

ined in turn for intersection with the speci�ed time point� If an intersection is found� the data values

of the attribute�s
 X� and X� are retrieved� For example� enum� Employee�fE�gfDepartment

�



E� Ename 
�Department �Salary

��� Tom f��Jan ��� Jan ��
� Shoe�g ��June ��� now�� ��K�

��� Tom f��June ��� now�� Toys�g ��Jan ��� June ��
� ��K�

��� Tom f��Jan ��� June ��
� Toys�g ��June ��� now�� ��K�

��� John f��June ��� now�� Toys�g ��Jan ��� June ��
� ��K�

��� John f��Jan ��� June ��
� Toys�g ��June ��� now�� ��K�

Figure �
 EmployeeDslice relation�

E� Ename 
Department 
�Salary

��� Tom fShoe� Toysg
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

��� Ann fSalesg f��Jan ��� now�� ��K�g

��� John fToysg
f��Jan ��� June ��
� ��K��

��June ��� now�� ��K�g

Figure �
 Employeedtime relation�

Salaryg�f�������� ��������g gives the relation shown in Figure ��

On the other hand� ENUM� �enum� R � fX�g faggrf�X��g � fTg
 returns an appropriate aggre�

gated value for an attribute by utilizing all of its values which are valid over a speci�ed time interval

in T � For each of the speci�ed time intervals n T the triplets of the set�triplet valued attribute X� are

examined in turn for intersection� The aggregation function� aggrf is then applied to all qualifying

data values of attribute X�� The aggregated value and attribute�s
 X� are then retrieved� For ex�

ample� enum� Employee�fE�g �rst�Department
 sum�Salary
� f�������������� ��������������g

gives the relation shown in Figure ��

When applied to tuple timestamped �NF relations� projection� selection� set�operations� Cartesian Prod�

uct and natural join operations of TRA function like traditional algebra operations�

��� Example Queries

In this section we give example queries and their temporal algebra expressions� TAE� The queries use the

Employee relation of Figure � which is created in TDBMS� We also provide the results produced by the

�



E� Department Salary T

��� Toys ��K ��������

��� Toys ��K ��������

��� Sales ��K ��������

��� Toys ��K ��������

Figure �
 Employeeenum� relation�

E� Department Salary T

��� Shoe ��K ������������������


��� Toys ��K ������������������


��� Sales ��K ������������������


��� Toys ��K ������������������


Figure �
 Employeeenum� relation�

system in Figure ���

Query �
 What are the E�s of employees currently making more than ��K 

TAE
 select E� from �enum� Employee�fE�g fSalaryg�fnowg
 where Salary � ��

The enum� operation selects the salary values at the current time� now� The select operation then se�

lects the E�s of employees whose salary is more than ��K� Note that an unpack operation on the salary

attribute� followed by a selection is an alternative way to obtain the same result� However� for large rela�

tions� the enum� operation is more e�cient�

Query �
 What are the E�s and department history of employees who make more

than ��K in their salary history 

TAE
 select E� Department from �unpack Employee on Salary
 where SalaryV� ��

In this query� the entire history of salary values is searched for a match� As opposed to Query �� we

�



have to use the unpack operation here� After the unpack� the value �eld of each salary triplet �salaryV
 is

checked for a match�

Query �
 What are the E�s and current department of employees who make between

��K and ��K in their salary history 

TAE
 enum� �select E� Department from �unpack Employee on Salary
 where SalaryV �

�� and SalaryV � ��
�fE�g fDepartmentg�fnowg

This query is similar to Query �� It tests a condition in the history of salary values and retrieves the

current department values of the qualifying tuples�

Query �
 What were the E�s and salaries of employees when they worked for the

Toys department 

TAE
 select E� Salary from �slice �unpack �unpack Employee on Department
 on Salary


Salary by Department
 where DepartmentV � �Toys�

After the department and salary attributes are unpacked� the time component of the salary attribute

is aligned with respect to that of the department attribute� The E�s and salary values of the employees

who worked in the Toys department are then selected�

Query �
 What is the average salary each employee earned 

TAE
 �unpack Employee on Salary
�E� avg�Salary
�

� Implementation of TDBMS

TDBMS has been implemented on top of ERAM ���� a database management system which is based on

the extended relational model and extended relational algebra ���� ���� The extended relational model

allows relations with set�valued attributes where there is only one level of nesting� It has speci�cally

been formulated for statistical databases� and hence includes powerful aggregation features� The extended

relational algebra includes the �ve basic operations of relational algebra with extensions for handling

�



E�

���

E� ��Department

��� f��Jan ��� now�� Toys�g

E� Department

��� Toys

��� Sales

�Q�
 �Q�
 �Q�


E� �Salary

��� ��June ��� now�� ��K�

��� ��Jan ��� June ��
� ��K�

��� ��June ��� now�� ��K�

E� Salary

��� �����

��� �����

��� �����

�Q�
 �Q�


Figure ��
 Results of the Example Queries

set�valued relations� and the pack and unpack restructuring operations�

ERAM has been implemented in the C�programming language on top of the UNIX internal �le structure

and Unix standard I�O library� It is an operational system and has successfully been used and tested in

several universities over the past years� ERAM provides a natural environment for the implementation of

TDBMS since it supports �one level
 nested relations� It directly supports atomic and set�valued attributes

of valid time relations� Additionally� the pack and unpack operations in ERAM help in making and

breaking set�triplet valued attributes of a valid time relation� Moreover� with a coding method triplet�

valued and set�triplet valued attributes of a valid time relation can be translated to the corresponding

attributes of ERAM� Two alternatives are considered


�� The �rst alternative is to convert triplet�valued attributes into three separate atomic attributes such

that � �l� u
� v � becomes l� u and v� For the set�triplet valued attributes� we create three set�valued

attributes� As an example� consider the following set of triplets


f� �� �� a ��� �� �� b ��� �� �� c �g

�

�L �U �V

f�� �� �g f�� �� �g fa� b� cg

��



The lower bound values �l
 of each triplet in the set�triplet valued attribute are combined into a single

set�valued attribute i�e�� �L� The same is the case for the upper bounds i�e�� �U and the value i�e�� �V

�elds of triplets� Naturally� each of the set�valued attributes has components which have the same

type which is also required by ERAM� However� the problem in this alternative is to maintain the

order of the components in each set�valued attribute� Otherwise it would be impossible to reconstruct

the original triplets from these three separate attributes� Furthermore� duplicates are not allowed in

set�valued attributes� Duplicate values may appear when a set�triplet valued attribute is broken into

its components� This necessitates conversion of duplicates into unique values so that they can be

safely manipulated by ERAM� However� this would lead to considerable computational complexity

in manipulating and updating the pre�xes in each relational operation�

�� In the second alternative� a triplet is coded into a single value� That is� � �l� u
� v � becomes luv�

a single string� hence� a triplet�valued attribute becomes an atomic attribute in ERAM� Similarly� a

set�triplet valued attribute is converted to a set�valued attribute� Thus� the triplets of the preceeding

example become ��a� ��b� ��c� and hence the second method� converting triplets into strings is

prefered and is used in the implementation�

We use the following data structure in representing a triplet


lower bound �l
 upper bound �u
 value �v


where the lower and upper bounds are represented as time points� A time point is represented as ddmmyy

where dd �� bits
 refers to the day� mm �� bits
 refers to the month� and yy �� bits
 stands for the year�

Thus� the system can accommodate ��� years where t time granularity is a day� Hence� the lower and

upper bounds are compressed into a total of four bytes� The value of a triplet is concatenated to these four

bytes to form the �nal string� When needed� they are uncompressed to their original form� in presenting

the results and in implementing TRA operations� To keep the implementation task simpler we do not

consider time points beyond the current time� now�

We have modi�ed ERAM to accommodate TRA operations� We also have added code for the new

operations of TRA� Triplets are written into relations in compressed form� Most of operations require

decompression of these values into their components� i�e�� the selection operation or the unpack operation

which requires a sorting operation to eliminate the duplicate tuples in the result�

We brie�y comment on the implementation methodology used for the unpack� join and enumeration

��



operations since they are frequently used in the sample queries� For the unpack operation� a sequential

scan is made of the operand relation and each tuple of the original relation is written to a temporary �le

as many times as the number of instances of the speci�ed attribute� The temporary �le is then sorted

to eliminate duplicates before loading the tuples back to the relation� Unpack operation does not create

duplicates if one or more atomic attributes of the operand relation form a key� To accommodate this case�

we implemented another version of the unpack operation without sorting� In the join operation� only the

tuple identi�ers and the join attributes of the operand relations are written to temporary �les� These �les

are then sorted to eliminate duplicates after which a sequential scan is made to get the matching tuples

on the join attributes� The tuple identi�ers are used to fetch the qualifying tuples of the original relations

and load them into the new relation� The enum� operation returns the values of designated attributes

at speci�ed time points in one sequential scan over the operand relation� The triplets of the designated

attributes are examined in turn for intersection with the speci�ed time point� If an intersection is found�

the data values of the attributes are selected�

Our aim in this study is to demonstrate the feasibility of temporal databases using attribute times�

tamping� We have not considered alternative implementation methods for TRA operations� Optimization

of TRA operations by processing several operations in one scan over the operand relation is also beyond

the scope of this study� Because of the same reason� we do not consider temporal indexing either�

� Performance Evaluation

��� Overview

Performance evaluation of temporal DBMSs� especially of temporal query processing has received marginal

interest in the research community� In ���� Ahn and Snodgrass� run a benchmark set of queries to study

the performance of their prototype system on four types of databases
 static� rollback� historical and

temporal� Furthermore� they propose an analytical model which analyses the input and output cost of

temporal queries on various access methods ���� We follow an empirical approach and measure the actual

performance of representative sample of temporal queries on our system� The results that we report in

this section provide useful insight into the performance of temporal databases using tuple timestamping

and attribute timestamping�

The TDBMS can be used for evaluating the performance of temporal databases which support tuple

timestamping and and those that support attribute timestamping� A valid time relation consisting of only

atomic attributes is a regular �NF relation� In this relation� certain atomic attributes can be designated

��



for the time reference of tuples� Such a relation simulates tuple timestamping� Hence� our implementation

supports both tuple timestamping and attribute timestamping and provides a natural environment for

evaluating their performance� In this respect queries of both database types �tuple timestamping and

attribute timestamping
 have the same overhead due to the structure of TDBMS� However� the system

will be slightly biased towards attribute timestamping since set�valued attributes and some compression

are not required in the implementation of tuple timestamping�

Our aim is to measure the performance of di�erent types of temporal databases using various queries in

terms of processing time� which includes the CPU and I�O time� We have chosen a set of sample queries

with varying characteristics� comparison between atomic attributes� atomic and triplet�valued attributes

and triplet�valued and triplet�valued �time�varying
 attributes� A list of these queries is provided in Ap�

pendix A� This list covers many of the sample queries included in ���� except those that are de�ned for

testing the user friendliness of temporal query languages� A detailed listing of the algebraic expressions�

expressed in TDBMS for these queries can be found in Appendix B� We have executed these queries

against the following database types


� AT
 A temporal database using attribute timestamping�

� TTL
 A temporal database using tuple timestamping where a single relation is used�

� TT
 A temporal database using tuple timestamping where relations are in temporal normal form�

Note that we consider two cases for tuple timestamping� This will enable us to see how the performance

of temporal databases using tuple timestamping changes depending on whether a single relation is used to

hold all the temporal data belonging to similar objects �TTL
� or several relations are used to hold the

same temporal data �TT
� To ensure consistency� AT� TTL� and TT databases contain the same data�

��� Generating the AT Data

�	�	� Database Schema

A test database� eval has been created for the evaluation of the database types mentioned in the previous

section� It consists of four relations� namely� Emp� Dept� Proj and Assigned� These relations are


��



�a
 Emp�ssno� name� address� ��salary� ��skills� ��dname


�b
 Dept�dno� dname� ��budget� ��manager


�c
 Proj�pno� pname� ��budget


�d
 Assigned�ssno� pno� ��type of work� ��rating


The Assigned relation shows employees and the projects they are assigned to� Attribute type of work

denotes the di�erent types of work carried out by the employee� For each assignment� the employee gets

a rating� say� ����� for di�erent periods of time� The rest of the relations and their attributes are self�

explanatory� This database is created as a AT database under TDBMS� Temporal databases using tuple

timestamping are generated from it as described in Sections ��� and ����

�	�	� Populating the Database

Each of the relations mentioned in the previous section is populated with data generated randomly from

a uniform distribution� The random function� drand���� which returns non�negative double�precision

�oating�point values uniformly distributed over the interval ����� ���
� is used to generate random data�

The random number is then converted to an attribute value� The range of the attribute values is listed in

Table �� It should be noted that for each of the set�valued and set�triplet valued attributes in TDBMS�

two bytes are allocated in each tuple� These hold pointers to a bucket of set values� For convenience� two

assumptions have been made while creating the historical data


�� All the tuples of a relation are homogeneous� i�e�� each set�triplet valued attribute of a tuple has the

same starting and ending times� Note that TDBMS supports non�homogeneous tuples as well�

�� The instances of each set�triplet valued attribute are continuous� i�e�� we assume no null values or

discontinuities in the tuples of these relations�

��� Generating the TTL Data

The test database eval and the relations given in Section ����� are used to generate the relations which

use tuple timestamping where the whole temporal data of a relation is contained within a single relation�

These temporal relations are generated by �rst unpacking the relations on each set�triplet valued attribute

and then intersection slicing each �triplet�valued
 attribute by the other �triplet�valued
 attribute� This

will ensure that each attribute has the same time reference� A droptime operation is then carried out on

��



Attribute Relation Value Range Time Range Size �bytes


ssno Emp ����� � �

name Emp E��E��� � �

address Emp A��A��� � �

salary Emp ��K����K ���������now �

skills Emp S��S�� ���������now �

dname Emp D��D�� ���������now �

dno Dept ���� � �

dname Dept D��D�� � �

budget Dept ����K�����K ���������now �

manager Dept M��M�� ���������now �

pno Proj ���� � �

pname Proj P��P�� � �

budget Proj ����K�����K ���������now �

ssno Assigned ����� � �

pno Assigned ���� � �

type Assigned W��W�� ���������now �

rating Assigned ����� ���������now �

Table �
 Attribute Ranges�

each temporal attribute except one� Triplet�decomposition on this attribute gives the desired relation� For

example� the Deptttl is created using the following algebra expression


Deptttl 
� tdec �droptime �slice �slice �unpack �unpack Dept on budget� on manager�

budget by manager� manager by budget� on budget� on manager

For ease of reading� we rename the attributes Av� Al� and Au of the result of triplet�decomposition

operation with the attribute names A� from and to respectively� The resulting TTL relations are as

follows


�a
 Empttl�ssno� ename� address� salary� skills� dname� from� to


�b
 Deptttl�dno� dname� budget� manager� from� to


��



�c
 Projttl�pno� pname� budget� from� to


�d
 Assignedttl�ssno� pno� type of work� rating� from� to


��� Generating the TT Data

The test database eval and the relations given in Section ����� are used to generate the relations which use

tuple timestamping and are in temporal normal form� From each relation using attribute timestamping�

a family of relations is created� The non�time varying attributes are collected into a relation whereas each

time�varying attribute and the key are kept in a separate relation� These temporal relations are created

by �rst projecting out the desired attributes from the original relations� unpacking the set�triplet valued

attributes and then performing a triplet�decomposition operation� For example� the Empsl is created

using the following algebra expression


Empsl 
� tdec �unpack �project Emp on ssno salary� on salary� on salary

We rename the names of attributes created as a result of triplet�decomposition operation similar to the

TTL case� The resulting TT relations are as follows


�a
 Empa�ssno� ename� address


�b
 Empsl�ssno� salary� from� to


�c
 Empsk�ssno� skills� from� to


�d
 Empd�ssno� dname� from� to


�e
 Depta�dno� dname


�f
 Deptb�dno� budget� from� to


�g
 Deptm�dno� manager� from� to


�h
 Proja�pno� pname


�i
 Projb�pno� budget� from� to


�j
 Assignedt�ssno� pno� type of work� from� to


�k
 Assignedr�ssno� pno� rating� from� to


��� Queries

The list of example queries used for the performance evaluation is given in Appendix A� Each query is

executed against the database types AT� TTL and TT� We consider two types of queries
 ATC� TTLC

��



and TTC stand for queries involving only current data� On the other hand� ATH� TTLH and TTH are

the queries which involve part or all of the historical data represented in a temporal database�

��� Database Parameters

Maintaining longer histories increases the database size� Similarly� the frequency of update and insertion

operations also a�ect the database size� However� the performance degradation is obvious upon increasing

the database size� Thus� we use the length of history kept as the determining factor of the database size

and perform our experiments by changing the number of triplets in set�triplet valued attributes� To see the

e�ect of the length of history on the performance of di�erent databases� we consider two cases by changing

the number of triplets in a set�triplet valued attribute� In case A�� a set�triplet valued attribute contains

� triplets� whereas in case A�� it contains �� triplets� Thus� the A� represents a database which carries

a longer history and A� represents a relatively shorter history� If the length of history is the same� A�

represents a database where there are frequent changes� Table � gives the relation sizes for these two cases�

The cardinality of the Empttl relation in case A� could not be calculated since the intermediate relations

resulting from the unpack operations were too large�

Query processing times for parameter set A� and A� are given in Table �� In the table of run A�� the

second and third columns represents the results for the temporal databases using attribute timestamping�

The second column �ATC
 gives processing time of the queries involving current data� The third column

�ATH
 is the processing time for the historical queries� The next two columns show processing time of

queries in the case of temporal databases using tuple timestamping �TTC and TTH
 where relations are

in temporal normal form� The last two columns show processing time of queries in the case of temporal

databases using tuple timestamping �TTLC and TTLH
 where a single temporal relation is used� We did

not run the queries for the TTL type database for run A� since the resulting relations are too large and

obviously its performance would be much slower�

��� The Computing Environment

All the experiments were carried out on a Sparc ELC workstation on a local area network� Some �marginal


interference is possible since the machine was connected to network �Ethernet
� However� most of Ethernet

work is done by the controller� not by the CPU� Hence the interference can be ignored� Moreover� since all

three database types are subjected to the same �marginal
 interference� and therefore� we do not expect

that the interferance would unfavourably a�ect a database type�

A query is executed once against each database type� We do not expect signi�cant changes in the

��



Relations Case A� Case A�

Tuple length Cardinality Tuple length Cardinality

Emp �� ��� �� ���

Dept � �� � ��

Proj � �� � ��

Assigned � ���� � ����

Empttl �� ���� �� �

Deptttl �� ��� �� ���

Projttl �� ��� �� ���

Assignedttl �� ����� �� �����

Empa �� ��� �� ���

Empsl � ���� � ����

Empsk � ���� � ����

Empd � ���� � ����

Depta � �� � ��

Deptb � ��� � ���

Deptm � ��� � ���

Proja � �� � ��

Projb � ��� � ���

Assignedt �� ����� �� �����

Assignedr �� ����� �� �����

Table �
 Relation sizes for Case A� and A��

processing time of a query from one execution to the next for the reasoning stated above� Even if there

are changes� we believe that they are minor and would not a�ect the conclusions of the paper�

The processing times are given in terms of the time the process spent in user mode� Since we are

concerned primarily with retrieval type of queries� we do not consider the time spent in system�kernel

mode�

��� Experiments and Results

All experiments are based on databases given in Section ���� and sample queries listed in Appendix A� We

conducted three experiments� In the �rst experiment� the sample queries were run against the sample AT

��



Q ATC ATH TTC TTH TTLC TTLH

��� ��� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ����� ���� ����

���� ���� ���� ���� ����� ���� ����

���� ���� ���� ���� ���� ���� ����

��� ���� ����� ���� ���� ���� ����

��� ���� ����� ���� ���� ���� ����

��� ���� ����� ���� ���� ���� ����

��� ���� ����� ���� ���� ���� ����

��� ���� ���� ���� ���� ���� ����

��� N�A ���� N�A ���� N�A ����

��� ���� ���� ���� ���� ����� ����

��� ���� ����� ���� ���� ����� �����

��� ���� ���� ���� ���� ���� �����

��� ���� ���� ���� ���� ���� �����

��� ���� ���� ���� ���� ���� ����

���� ���� ���� ���� ���� ���� ����

���� ���� � ���� ���� ���� ����

���� N�A ���� N�A ���� N�A ����

���� ���� ���� ���� ���� ���� ����

���� ���� ����� ���� ���� ����� ����

���� N�A ����� N�A ���� N�A ����

Q ATC ATH TTC TTH

��� ���� ���� ���� ����

��� ��� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

���� ���� ���� ���� �����

���� ���� ���� ���� �����

���� ���� ���� ���� �����

���� ���� ���� ���� ������

���� ���� ���� ���� ����

��� ���� ����� ���� ����

��� ���� ����� ���� ����

��� ���� ����� ���� ����

��� ���� ����� ���� ����

��� ���� ���� ����� ����

��� N�A ���� N�A ����

��� ���� ���� ����� ����

��� ���� ����� ����� �����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

��� ���� ���� ���� ����

���� ���� ���� ���� ����

���� ���� � ���� �����

���� N�A ���� N�A ����

���� ���� ���� ���� ����

���� ���� ����� ����� ����

���� N�A ����� N�A ����

A� A�

Table �
 Processing times �in seconds
 for runs A� and A�

��



database� In the second experiment the queries were run on the TT database and the third experiment

was run on the TTL database� In the following interpretation� we mostly refer to the results of parameter

set A� shown in Table �� The table for case A� gives the results for larger databases and con�rms the

results obtained in case A��

Q�	
� Q�	� and Q�	� are point queries which select one tuple i�e�� the salary of a particular employee�

AT databases perform better then TT and TTL databases since the salary history of an employee is

contained within a single tuple� On the other hand� TT and TTL databases have the salary history of an

employee spread over multiple tuples requiring multiple accesses� Additionally� TTL databases perform

slower then TT databases due to the longer tuple length and increased cardinalities of TTL relations�

Q�	� and Q�	� are also point queries selecting a tuple but retrieving two and three attributes� respec�

tively� There is not much di�erence between these queries and Q�	
� Q�	� and Q�	� in the performance

of AT databases since the multiple attributes are retrieved from a single qualifying tuple� Similarly� there

is not much di�erence in the performance of TTL databases since the number of qualifying tuples does

not vary signi�cantly from those of Q�	
� Q�	� and Q�	�� The performance of TT databases however

degrades due to one join operation for Q�	� and two join operations for Q�	�� The join operation is

necessary since the attributes to be retrieved are distributed over multiple relations�

Q�	�� Q�	� and Q�	� are range queries which retrieve one set�triplet valued attribute� the salary of

employees� Q�	� retrieves employees whose names are less than E���� This selects ��! of the employee

relation� i�e�� �� tuples since employee names are character strings and string comparison is used in the

query� More speci�cally� employees with names E�� E���E��� and E����E��� are selected �Employee names

range from E� to E��� as shown in Table �
� Q�	� selects ��! of the employee relation� i�e�� ��� tuples

and Q�	� selects all the salary values in the employee relation� i�e�� ��� tuples� The performance of all

three types of databases degrades from Q�	� to Q�	� due to �� more tuples being selected� TT databases

do not perform as well as AT databases due to the join operation� The time required for AT databases

almost doubles from Q�	� to Q�	�� This is due to the entire salary values being retrieved and the length

of the salary attribute� In contrast� the time required for TT databases decreases from Q�	� to Q�	��

Although all tuples are selected� the absence of a join improves the performance� The TTH version of

Q�	� is a simple projection� In the TTL databases case� the time for TTLC increases from Q�	� to

Q�	� due to more tuples being selected in Q�	�� However� TTLH is a simple projection� hence the time

decreases from Q�	� to Q�	�

��



Q�	
� Q�	� and Q�	�
 are range queries which retrieve two set�triplet valued attributes� the salary

and departments of employees� The number of tuples selected are identical to Q�	�� Q�	� and Q�	�

respectively� The response times in these queries are higher then their Q�	�� Q�	� and Q�	� counterparts

due to the retrieval of an additional set�triplet valued attribute� Again� TT databases do not perform as

well as AT databases due to the join operation� Two join operations are required in Q�	
 and Q�	� as

compared to a single join in queries Q�	� and Q�	�� Even though a single join is required for the TTH

version of Q�	�
� the time spent in processing the query is quite high due to the join being on the entire

Empsl and Empd relations� The explanation for the performance of TTL databases is similar to the one

given for queries Q�	�� Q�	� and Q�	��

Q�	��� Q�	�� and Q�	�� are range queries which retrieve three set�triplet valued attributes� the salary�

departments and skills of employees� The number of tuples selected are identical to Q�	�� Q�	� and Q�	�

respectively� As expected� the times for these queries are higher then Q�	
� Q�	� and Q�	�
 due to the

retrieval of an additional set�triplet valued attribute� Other trends are similar to those noticed for queries

Q�	
� Q�	� and Q�	�
� Three join operations are required in Q�	�� and Q�	��� The performance

degradation in the TTH version of Q�	�� is quite striking due to the joins between the entire Empsl�

Empd and Empsk relations�

Q�	�� selects the current department of the employees who satisfy a condition in the past �i�e�� salary

� ��K on ��������
� The time required in processing the TT queries is higher then the AT queries due

to the requirement of a join operation in TT� TTL queries take longer to process due to longer tuples and

larger cardinality of selected tuples�

Q�	
 selects ssno�s of employees whose salary is greater than ��K� Q�	� is similar to Q�	
 except

the skills of employees are retrieved instead of ssno�s� The processing time of AT and TT databases

increases from Q�	
 to Q�	� due to the retrieval of a set�triplet valued attribute in the latter query� The

processing time of TTL however is almost constant due to retrieval of an atomic attribute in both Q�	


and Q�	�� Processing the ATH query takes signi�cantly longer than the TTH query� ATH query requires

an unpack operation for reaching the historical values� The unpack operation has heavy I�O overhead since

it reads�writes entire historical tuples which are longer into temporary relations� Elimination of duplicates

also requires sorting which is very costly� Q�	� retrieves skills of employees� It requires a join operation in

processing TT queries� thus increasing their processing time� However� TT database still performs much

better than the AT database�

Q�	
 is a range query which returns ssno�s of employees whose salary is between ��K and ��K� Q�	�

is similar but retrieves skills of employees� The performance trends in Q�	
 and Q�	� are similar to Q�	


��



and Q�	� respectively�

Q�	
 is a join query� The historical versions of all types of databases perform better than the current

versions due to the extra selection operation required in the current queries� All types of databases require

a join� but the length and cardinality of selected tuples is greater in TTL� followed by TT� and �nally

AT databases� This is substantiated by the increase in processing time from AT to TT to TTL as seen

in Table �� Q�	
 also shows a similar performance pattern�

Q� and Q� are join queries� The �rst one involves a salary value and the second one involves a range

of salary values� The explanation for the increase in proccesing time from AT to TTL databases in Q� is

similar to that of Q�	
� The performance of AT databases degrades in Q� due to the unpack operation�

Q
 involves a join operation between two time�varying attributes� Processing times are more or less

the same for AT and TT databases� The processing time for TTLH query in both Q
 and Q
	� is very

high since the entire Deptttl and Projttl relations are joined� The number of tuples participating in the

join and their length is quite large� hence the increasing the processing time�

Q� is another join query� Processing times of ATC and TTC queries are not signi�cantly di�erent�

Although an unpack operation is needed in the ATH query� since only a single tuple is unpacked� the

processing time does not increase much�

Queries �� through �� are aggregation queries� In larger databases we were not able to complete Q��

for ATH since the unpack operation created too many intermediate tuples� beyond the capacity of the

system� Furthermore� the unpack operation required for the ATH queries increased the processing time

signi�cantly in comparison to the other database types� Overall� in queries Q�	
 to Q�� AT databases had

better performance in ��! of the current queries whereas TT databases performed better in ��! of the

current queries� In historical queries� TTL databases performed better only in ��! of the queries when

compared to AT databases�

� Conclusions

We can derive several useful conclusions from the experiments of Section ����

�� As one would expect� large volume of data in temporal databases increase the processing time of

temporal queries� However� as the size of the database decreases from parameter set A� to A� and

shorter history is maintained in the database the performance of temporal databases would converge

to the performance of snapshot databases�

��



�� In case of point queries selecting one attribute value of fewer tuples� the AT database performs better

than the TT database� ATC queries executing on a single relation take less processing time than their

TTC counterparts since AT databases contain fewer tuples than TT databases� Additionally� in AT

databases� the set�membership operator is used to select the desired triplet�s
 from the history of a

set�triplet valued attribute� Moreover� TT database requires join operations when several temporal

attributes are requested by the query� It can be seen that ATC queries involving more than one

temporal attribute require less processing time� In the TTC queries however� the join operation

increases the processing time� Similarly� ATH queries involving more than one temporal attribute

require less processing time since a simple select operation is used to fetch the entire history values

of the desired attribute� TTH queries on the other hand require a join operation to fetch the desired

values� Thus� as the number of qualifying tuples increase and one or more attributes are retrieved�

TT queries become more expensive�

�� Unpack is a costly operation to reach the values of historical attributes� Though the unpack operation

can be completed in one scan� it still needs sorting to eliminate duplicates� Furthermore� the inter�

mediate tuples are written to temporary �les� This creates an extra overhead for AT databases since

the tuples are longer and require more I�O time� Queries requiring unpack operation degrades the

performance of AT databases faster than the performance of TT queries requiring join operations�

In TDBMS� the join operation is carried out in an e�cient way� Optimization procedures for the

unpack operation are also needed� Furthermore� an operation which allows access to the elements

of a set�triplet valued attribute can be added to TRA� This operation will be used in most of the

queries requiring an unpack on a set�triplet valued attribute� Such an operation is similar to enum�

and can be processed by a sequential scan of the operand relation�

�� It was also seen that having all temporal attributes within a single relation �TTL
 gives better

performance then TT only in a few queries not involving joins of temporal attributes� In general�

TTL databases require more processing time than AT and TT databases due to the large size of

TTL relations� For joins involving temporal attributes� the performance of TTL database degrades

substantially as seen by queries Q
	
 and Q
	�� Therefore� for tuple timestamping TTL is not a

better choice than TT relations�

�� As the size of the temporal database increases� we observe degradation in the performance of AT

and TT databases� The length of history kept in the database as well as the frequency of changes

in attribute values directly a�ects the size of the database� However� magnitude of the performance

��



degradation is more than the proportional change in the database size� Furthermore� processing time

of queries for AT and TT databases in general are stable from one query to another with occasional

jumps� These jumps occur in queries requiring an unpack operation in AT databases whereas they

occur in queries requiring excessive join operations in TT databases�

In this work� we obtained attribute values from uniform distributions� Our results can be veri�ed by

analytic cost estimations� However� in real life attribute distributions are not uniform� on the contrary

most of the time they are skewed� We focussed our attention on retrieval queries and we have not consid�

ered update operations� We do not expect much of a di�erence for simple update operations requiring few

tuples� However� certain update patterns as well as update operations a�ecting larger number of tuples

may cause a performance di�erence in AT and TT databases� We plan to consider these issues� possible

optimization of TRA operations and their e�ect on the performance of AT and TT databases in a separate

work�

Acknowledgement

We would like thank Professors Gultekin Ozsoyoglu and Meral Ozsoyoglu for permitting us to use the

ERAM database package� The work of Abdullah Uz Tansel is partially supported by the PSC�CUNY

research grant ������� The work of Iqbal A� Goralwalla and M� Tamer "Ozsu has been supported by the

Natural Sciences and Engineering Research Council of Canada under research grant OGP�����

References

��� Ariav� G�� �A Temporally Oriented Data Model�� ACM TODS� Vol���� No��� �����

��� Ahn� I�� Snodgrass� R�� �Partitioned Storage for Temporal Databases�� Information Systems� Vol����

No��� pp �������� �����

��� Ahn� I�� Snodgrass� R�� �Performance Analysis of Temporal Queries�� Information Sciences� Vol����

����� pp ��������

��� Cli�ord� J�� Croker� A�� �HRDM
 A Historical Relational Data Model�� Proc� of the Third IEEE

International Conf� on Data Engineering� �����

��� Codd� E�F�� �A Relational Model of Data for Large Shared Data Banks�� Comm� of ACM� Vol���

No�� �����
 pp ��������

��



��� Hou� Wen�chi�� �The Implementation of the Extended Relational Database Management System�� MS

thesis� Case Western Reserve University� �����

��� Gadia� S�K�� �A Homogeneous Relational Model and Query Languages for Temporal Databases��

ACM TODS� Vol���� No��� �����

��� Goralwalla� I�A�� �An Implementation of a Temporal Relational Database Management System�� MS

thesis� Bilkent University� June �����

��� Jensen� C�S�� et al�� �A Consensus Test Suite of Temporal Database Queries�� Aalborg University�

Technical Report R�������� November �����

���� Lorentzos� N�A�� Johnson� R�G�� �Extending Relational Algebra to Manipulate Temporal Data�� In�

formation Systems� Vol���� No��� �����

���� Mc Kenzie� L�E� Jr�� Snodgrass� R�T�� �Evaluation of Relational Algebras Incorporating the Time

Dimension in Databases�� ACM Computing Surveys� Vol���� No��� Dec� �����

���� Navathe� S�B�� Ahmed� R�� �TSQL � A Language Interface for History Databases�� Conf� on Temporal

Aspects of Information Systems�� �����

���� Ozsoyoglu� Z�M�� Ozsoyoglu� G�� �An Extension of Relational Algebra for Summary Tables�� Proc�

Second LBL Workshop on Statistical Database Management� �����

���� Ozsoyoglu� G�� Ozsoyoglu� Z�M�� Matos� V�� �Extending Relational Algebra and Relational Calculus

with Set�Valued Attributes and Aggregate Functions�� ACM Trans� Database Syst�� Vol���� No���

Dec� ����� pp ��������

���� Sarda� N�� �Extensions to SQL for Historical Databases�� IEEE Trans� on Knowledge and Data En�

gineering� Vol��� No��� June ����� pp ��������

���� Snodgrass� R�� �The Temporal Query Language� TQuel�� ACM Trans� Database Syst�� Vol���� No��

pp��������� June �����

���� Snodgrass� R� �Ed�
� �Research Concerning Time in Databases
 Project Summaries�� ACM SIGMOD

Record� Vol���� No��� �����

���� Snodgrass� R� �Ed�
� IEEE Data Engineering� Vol���� No��� �����

��



���� Snodgrass� R�� �Temporal Databases
 Status and Research Directions�� ACM SIGMOD Record�

Vol���� No��� Dec� ����� pp ������

���� Soo� M�D�� �Bibliography on Temporal Databases�� Vol���� No��� March ����� pp ������

���� Tansel� A�U�� �Adding Time Dimension to Relational Model and Extending Relational Algebra��

Information Systems Vol��� No�� �����
 pp ��������

���� Tansel� A�U�� �A Statistical Interface for Historical Relational Databases�� Proc� of the Third IEEE

International Conf� on Data Engineering� ����� pp ��������

���� Tansel� A�� et al�� �Temporal Databases
 Theory� Design� and Implementation�� Benjamin�Cummings�

�����

A Sample queries

In the following we give six versions of a query for the query Q�	
� current and historical for AT� TT

and TTL databases� The other queries follow a similar format� To save space� we only list current and

historical versions in a generic format�

��



Q��� Point Query

ATC � What is the current salary of the employee with a ssno of ��
ATH � What is the salary history of the employee with a ssno of ��
TTC � What is the current salary of the employee with a ssno of ��
TTH � What is the salary history of the employee with a ssno of ��
TTLC � What is the current salary of the employee with a ssno of ��
TTLH � What is the salary history of the employee with a ssno of ��

Q��� Point Query
Same as Q���� except the ssno of the employee is ����

Q��� Point Query
Same as Q���� except the ssno of the employee is ����

Q��� Point Query

C � What are the current salary and manager values of the employee with a ssno of ����
H � What is the salary and manager history of the employee with a ssno of ����

Q��� Point Query

C � What are the current salary� manager and skills values of the employee with a ssno of ����
H � What is the salary� manager and skills history of the employee with a ssno of ����

Q��� Range Query

C � What are the current salaries of employees whose names are less than E����
H � What are the salary histories of employees whose names are less than E����

Q��� Range Query

C � What are the current salaries of employees whose names are less than E����
H � What are the salary histories of employees whose names are less than E����

Q��� Range Query

C � What are the current salary values of employees�
H � What are the salary histories of employees�

Q��	 Range Query

C � What are the current salaries and departments of employees whose names are less than E����
H � What are the salary and department histories of employees whose names are less than E����

Q��
 Range Query

C � What are the current salaries and departments of employees whose names are less than E����
H � What are the salary and department histories of employees whose names are less than E����

��



Q���� Range Query

C � What are the current salary and department values of employees�
H � What are the salary and department histories of employees�

Q���� Range Query

C � What are the current salaries� departments and skills of employees whose names are less
than E����

H � What are the salary� department and skill histories of employees whose names are less than
E����

Q���� Range Query

C � What are the current salaries� departments and skills of employees whose names are less
than E����

H � What are the salary� department and skill histories of employees whose names are less than
E����

Q���� Range Query

C � What are the current salary� department and skill values of employees�
H � What are the salary� department and skill histories of employees�

Q���� Point Query

C � What is the current department of the employee whose salary was ��K on ���������
H � What is the current department of the employee whose salary was ��K at any time�

Q��� Range Query

C � What are the ssnos� of employees currently making more than ��K�
H � What are the ssnos� of employees who make more than ��K in their salary history�

Q��� Range Query

C � What are the skills of employees currently making more than ��K�
H � What are the skills of employees who make more than ��K in their salary history�

Q��� Range Query

C � What are the ssnos� of employees currently making between ��K and ��K�
H � What are the ssnos� of employees who make between ��K and ��K in their salary

history�

Q��� Range Query

C � What are the skills of employees currently making between ��K and ��K�
H � What are the skills of employees who make between ��K and ��K in their salary

history�

��



Q� Join between two Atomic attributes

C � What is the current budget of project number �� and what are the ssnos� and current types
of work of the employees assigned to it�

H � What is the budget history of project number �� and what are the ssnos� and histories of the
types of work of the employees assigned to it�

Q� Join between two Atomic attributes

H � What are the ssnos� of employees who worked in project number ��

Q� Join between two Atomic attributes

C � What is the current type of work done by employees whose current salary is ��K�
H � What is the history of type of work done by employees who made ��K at

any time�

Q� Join between two Atomic attributes

C � What is the current type of work done by employees whose current salary is �
��K�

H � What is the history of type of work done by employees who made � ��K
at any time�

Q	�� Join between two set�triplet attributes

C � What are the department and project numbers of the departments and projects whose current
budget is the same�

H � What are the department and project numbers of the departments and projects which have
the same budget values at the same time�

Q	�� Join between two set�triplet attributes

C � What are the department numbers� managers and project numbers of the departments and projects whose
current budget is the same�

H � What are the department numbers� managers and project numbers of the departments and projects which
have the same budget values at the same time�

Q
 Join between two set�triplet attributes

C � What is the current budget of the departments for which the employee whose ssno is ��� is currently
working�

H � What is the budget history of the departments for which the employee whose ssno is ��� worked at
any time�

Q�� Selection on a set�triplet attribute and retrieval from another set�triplet attribute

C � What are the current salaries of employees currently working in department number ��
H � What were the salaries of employees when they were working in department number ��

��



Q�� Aggregation ��


C � What is the current average salary of employees currently working in
each department�

H � What was the average salary of employees in each department�

Q�� Aggregation ��


H � What are the number of projects each employee has been assigned to�

Q�� Aggregation ��


C � Which department has currently the maximum budget�
H � Which department has the maximum budget�

Q�� Aggregation ��


C � What was the current average rating of each employee for the projects he was
assigned to�

H � What was the average rating of each employee for the projects he was
assigned to�

Q�� Aggregation ��


H � What was the highest salary earned by each employee�

��



B Algebra expressions for the sample queries

B�� Algebra expressions for the AT queries

Q��� Point Query

C � select salaryV from emp where ssno � � and salaryt � ��������
H � select salary from emp where ssno � �

Q��� Point Query

C � select salaryV from emp where ssno � ��� and salaryt � ��������
H � select salary from emp where ssno � ���

Q��� Point Query

C � select salaryV from emp where ssno � ��� and salaryt � ��������
H � select salary from emp where ssno � ���

Q��� Point Query

C � select salaryV dnameV from emp where ssno � ��� and salaryt � �������� and dnamet � ��������
H � select salary dname from emp where ssno � ���

Q��� Point Query

C � select salaryV dnameV skillsV from emp where ssno � ��� and salaryt � �������� and dnamet � ��������
and skillst � ��������

H � select salary dname skills from emp where ssno � ���

Q��� Range Query

C � select salaryV from emp where ename � �E���� and salaryt � ��������
H � select salary from emp where ename � �E����

Q��� Range Query

C � select salaryV from emp where ename � �E���� and salaryt � ��������
H � select salary from emp where ename � �E����

Q��� Range Query

C � select salaryV from emp where salaryt � ��������
H � project emp on salary

Q��	 Range Query

C � select salaryV dnameV from emp where ename � �E���� and salaryt � �������� and dnamet � ��������
H � select salary dname from emp where ename � �E����

Q��
 Range Query

C � select salaryV dnameV from emp where ename � �E���� and salaryt � �������� and dnamet � ��������
H � select salary dname from emp where ename � �E����

��



Q���� Range Query

C � select salaryV dnameV from emp where salaryt � �������� and dnamet � ��������
H � project emp on salary dname

Q���� Range Query

C � select salaryV dnameV skillsV from emp where ename � �E���� and salaryt � �������� and
dnamet � �������� and skillst � ��������

H � select salary dname skills from emp where ename � �E����

Q���� Range Query

C � select salaryV dnameV skillsV from emp where ename � �E���� and salaryt � �������� and
dnamet � �������� and skillst � ��������

H � select salary dname skills from emp where ename � �E����

Q���� Range Query

C � select salaryV dnameV skillsV from emp where salaryt � �������� and dnamet � ��������
and skillst � ��������

H � project emp on salary dname skills

Q���� Point Query

C � select dname from 	select salaryV dnameV from emp where salaryt � �������� and dnamet � ��������

where salary � ��

H � select dnameV from emp where dnamet � �������� and salaryv � ����

Q��� Range Query

C � select ssno from 	select salaryV ssno from emp where salaryt � ��������
 where salary � ��
H � select ssno from 	unpack emp on salary
 where salaryv � ��

Q��� Range Query

C � select skills from 	select salaryV skills from emp where salaryt � ��������
 where salary � ��
H � select skills from 	unpack emp on salary
 where salaryv � ��

Q��� Range Query

C � select ssno from 	select salaryV ssno from emp where salaryt � ��������
 where salary � �� and salary � ��
H � select ssno from 	unpack emp on salary
 where salaryv � �� and salaryv � ��

Q��� Range Query

C � select skills from 	select salaryV skills from emp where salaryt � ��������
 where salary � �� and salary � ��
H � select skills from 	unpack emp on salary
 where salaryv � �� and salaryv � ��

��



Q� Join between two Atomic attributes

C � project 		select budgetV pno from proj where budgett � �������� and pno � �
 njoin 	select typeV ssno pno
from assigned where typet � ��������

 on ssno type budget

H � project 		select pno budget from proj where pno � �
 njoin assigned
 on ssno type budget

Q� Join between two Atomic attributes

H � project 		select pno from proj where pname � �P��
 njoin assigned
 on ssno

Q� Join between two Atomic attributes

C � project 		select ssno from 	select salaryV ssno from emp where salaryt � ��������
 where salary � ��
 njoin
	select typeV ssno from assigned where typet � ��������

 on type

H � project 		select ssno from emp where salaryv � ����
 njoin assigned
 on type

Q� Join between two Atomic attributes

C � project 		select ssno from 	select salaryV ssno from emp where salaryt � �������� where salary � ��
 njoin
	select typeV ssno from assigned where typet � ��������

 on type


H � project 		select ssno from 	unpack emp on salary
 where salaryv � ��
 njoin assigned
 on type

Q	�� Join between two set�triplet attributes

C � project 		select budgetV dno from dept where budgett � ��������
 njoin 	select budgetV pno from proj
where budgett � ��������

 on dno pno

H � project 	dept njoin proj
 on dno pno

Q	�� Join between two set�triplet attributes

C � project 		select budgetV dno manager from dept where budgett � ��������
 njoin 	select budgetV pno from
proj where budgett � ��������

 on dno pno manager

H � project 	dept njoin proj
 on dno pno manager

Q
 Join between two set�triplet attributes

C � project 		select dnameV from emp where dnamet � �������� and ssno � ���
 njoin 	select budgetV dname
from dept where budgett � ��������

 on budget

H � project 		unpack 	droptime 	select dname from emp where ssno � ���
 on dname
 on dname
 njoin dept

on budget

Q�� Selection on a set�triplet attribute and retrieval from another set�triplet attribute

C � select salary from 	select salaryV dnameV from emp where salaryt � �������� and dnamet � ��������

where dname � �D��

H � select salary from emp where dnamev � �D��

��



Q�� Aggregation ��


C � 	select salaryV dnameV from emp where salaryt � �������� and dnamet � ��������
�dname avg	salary
�
H � 	unpack	unpack emp on salary
 on dname
�fdnameg avg	salary
�

Q�� Aggregation ��


H � assigned�ssno count	pno
�

Q�� Aggregation ��


C � 	select budgetV dno from dept where budgett � ��������
�dno max	budget
�
H � 	unpack dept on budget
�dno max	budget
�

Q�� Aggregation ��


C � 	select ratingV ssno from assigned where ratingt � ��������
�ssno avg	rating
�
H � 	unpack assigned on rating
�ssno avg	rating
�

Q�� Aggregation ��


H � 	unpack emp on salary
�ssno max	salary
�

��



B�� Algebra expressions for the TT queries

Q��� Point Query

C � select salaryv from empsl where ssno � � and salaryu � ��������
H � select salaryv from empsl where ssno � �

Q��� Point Query

C � select salaryv from empsl where ssno � ��� and salaryu � ��������
H � select salaryv from empsl where ssno � ���

Q��� Point Query

C � select salaryv from empsl where ssno � ��� and salaryu � ��������
H � select salaryv from empsl where ssno � ���

Q��� Point Query

C � project 		select ssno salaryv from empsl where ssno � ��� and salaryu � ��������
 njoin 	select ssno dnamev
from empd where ssno � ��� and dnameu � ��������

 on salaryv dnamev

H � project 		select ssno salaryv from empsl where ssno � ���
 njoin 	select ssno dnamev from empd where
ssno � ���

 on salaryv dnamev

Q��� Point Query

C � project 			select ssno salaryv from empsl where ssno � ��� and salaryu � ��������
 njoin 	select ssno dnamev
from empd where ssno � ��� and dnameu � ��������

 njoin 	select ssno skillsv from empsk where ssno � ���
and skillsu � ��������

 on salaryv dnamev

H � project 			select ssno salaryv from empsl where ssno � ���
 njoin 	select ssno dnamev from empd where
ssno � ���

 njoin 	select ssno skillsv from empsk where ssno � ���

 on salaryv dnamev

Q��� Range Query

C � project 		select ssno from empa where ename � �E����
 njoin 	select ssno salaryv from empsl where
salaryu � ��������

 on salaryv

H � project 		select ssno from empa where ename � �E����
 njoin empsl
 on salaryv

Q��� Range Query

C � project 		select ssno from empa where ename � �E����
 njoin 	select ssno salaryv from empsl where
salaryu � ��������

 on salaryv

H � project 		select ssno from empa where ename � �E����
 njoin empsl
 on salaryv

Q��� Range Query

C � select salaryv from empsl where salaryu � ��������
H � project empsl on salaryv

Q��	 Range Query

C � project 			select ssno from empa where ename � �E����
 njoin 	select ssno salaryv from empsl where
salaryu � ��������

 njoin 	select ssno dnamev from empd where dnameu � ��������

 on salaryv dnamev

H � project 			select ssno from empa where ename � �E����
 njoin empsl
 njoin empd
 on salaryv dnamev

��



Q��
 Range Query

C � project 			select ssno from empa where ename � �E����
 njoin 	select ssno salaryv from empsl where
salaryu � ��������

 njoin 	select ssno dnamev from empd where dnameu � ��������

 on salaryv dnamev

H � project 			select ssno from empa where ename � �E����
 njoin empsl
 njoin empd
 on salaryv dnamev

Q���� Range Query

C � project 		select ssno salaryv from empsl where salaryu � ��������
 njoin 	select ssno dnamev from empd
where dnameu � ��������

 on salaryv dnamev

H � project 	empsl njoin empd
 on salaryv dnamev

Q���� Range Query

C � project 				select ssno from empa where ename � �E����
 njoin 	select ssno salaryv from empsl where
salaryu � ��������

 njoin 	select ssno dnamev from empd where dnameu � ��������

 njoin 	select ssno
skillsv from empsk where skillsu � ��������

 on salaryv dnamev skillsv

H � project 				select ssno from empa where ename � �E����
 njoin empsl
 njoin empd
 njoin empsk
 on
salaryv dnamev skillsv

Q���� Range Query

C � project 				select ssno from empa where ename � �E����
 njoin 	select ssno salaryv from empsl where
salaryu � ��������

 njoin 	select ssno dnamev from empd where dnameu � ��������

 njoin 	select ssno
skillsv from empsk where skillsu � ��������

 on salaryv dnamev skillsv

H � project 				select ssno from empa where ename � �E����
 njoin empsl
 njoin empd
 njoin empsk
 on
salaryv dnamev skillsv

Q���� Range Query

C � project 			select ssno salaryv from empsl where salaryu � ��������
 njoin 	select ssno dnamev from empd
where dnameu � ��������

 njoin 	select ssno skillsv from empsk where skillsu � ��������

 on
salaryv dnamev skillsv

H � project 		empsl njoin empd
 njoin empsk
 on salaryv dnamev skillsv

Q���� Point Query

C � project 		select ssno salaryv from empsl where salaryv � �� and salaryl � �������� and salaryu � ��������

njoin 	select ssno dnamev from empd where dnameu � ��������

 on dnamev

H � project 		select ssno salaryv from empsl where salaryv � ��
 njoin 	select ssno dnamev from empd where
dnameu � ��������

 on dnamev

Q��� Range Query

C � select ssno from empsl where salaryv � �� and salaryu � ��������
H � select ssno from empsl where salaryv � ��

Q��� Range Query

C � project 		select ssno from empsl where salaryv � �� and salaryu � ��������
 njoin empsk
 on skillsv
H � project 		select ssno from empsl where salaryv � ��
 njoin empsk
 on skillsv

Q��� Range Query

C � select ssno from empsl where salaryv � �� and salaryv � �� and salaryu � ��������
H � select ssno from empsl where salaryv � �� and salaryv � ��

��



Q��� Range Query

C � project 		select ssno from empsl where salaryv � �� and salaryv � �� and salaryu � ��������
 njoin empsk

on skillsv

H � project 		select ssno from empsl where salaryv � �� and salaryv � ��
 njoin empsk
 on skillsv

Q� Join between two Atomic attributes

C � project 		select pno budgetv from projb where pno � � and budgetu � ��������
 njoin 	select ssno pno
typev from asst where typeu � ��������

 on ssno typev budgetv

H � project 		select pno budgetv from projb where pno � �
 njoin asst
 on ssno typev budgetv

Q� Join between two Atomic attributes

H � project 		select pno from proja where pname � �P��
 njoin asst
 on ssno

Q� Join between two Atomic attributes

C � project 		select ssno from empsl where salaryv � �� and salaryu � ��������
 njoin 	select ssno typev from
asst where typeu � ��������

 on typev

H � project 		select ssno from empsl where salaryv � ��
 njoin asst
 on typev

Q� Join between two Atomic attributes

C � project 		select ssno from empsl where salaryv � �� and salaryu � ��������
 njoin 	select ssno typev from
asst where typeu � ��������

 on typev

H � project 		select ssno from empsl where salaryv � ��
 njoin asst
 on typev

Q	�� Join between two set�triplet attributes

C � project 		select dno budgetv from deptb where budgetu � ��������
 njoin 	select pno budgetv from projb
where budgetu � ��������

 on dno pno

H � project 	deptb njoin projb
 on dno pno

Q	�� Join between two set�triplet attributes

C � project 			select dno budgetv from deptb where budgetu � ��������
 njoin 	select pno budgetv from projb
where budgetu � ��������

 njoin deptm
 on dno pno managerv

H � project 		deptb njoin projb
 njoin deptm
 on dno pno managerv

Q
 Join between two set�triplet attributes

C � project 		select dnamev from empd where ssno � ��� and dnameu � ��������
 njoin 		select dno budgetv
from deptb where budgetu � ��������
 njoin depta

 on budgetv

H � project 		select dnamev from empd where ssno � ���
 njoin 	deptb njoin depta

 on budgetv

Q�� Selection on a set�triplet attribute and retrieval from another set�triplet attribute

C � project 		select ssno from empd where dnamev � �D�� and dnameu � ��������
 njoin 	select ssno salaryv
from empsl where salaryu � ��������

 on salaryv

H � project 		select ssno from empd where dnamev � �D��
 njoin empsl
 on salaryv

��



Q�� Aggregation ��


C � 		select ssno dnamev from empd where dnameu � ��������
 njoin 	select ssno salaryv from empsl where
salaryu � ��������

�dnamev avg	salaryv
�

H � 	empd njoin empsl
�dnamev avg	salaryv
�

Q�� Aggregation ��


H � asst�ssno count	pno
�

Q�� Aggregation ��


C � 	select dno budgetv from deptb where budgetu � ��������
�dno max	budgetv
�
H � deptb�dno max	budgetv
�

Q�� Aggregation ��


C � 	select ssno ratingv from assr where ratingu � ��������
�ssno avg	ratingv
�
H � assr�ssno avg	ratingv
�

Q�� Aggregation ��


H � empsl�ssno max	salaryv
�

��



B�� Algebra expressions for the TTL queries

Q��� Point Query

C � select salary from empttl where ssno � � and dnameu � ��������
H � select salary from empttl where ssno � �

Q��� Point Query

C � select salary from empttl where ssno � ��� and dnameu � ��������
H � select salary from empttl where ssno � ���

Q��� Point Query

C � select salary from empttl where ssno � ��� and dnameu � ��������
H � select salary from empttl where ssno � ���

Q��� Point Query

C � select salary dnamev from empttl where ssno � ��� and dnameu � ��������
H � select salary dnamev from empttl where ssno � ���

Q��� Point Query

C � select salary skills dnamev from empttl where ssno � ��� and dnameu � ��������
H � select salary skills dnamev from empttl where ssno � ���

Q��� Range Query

C � select salary from empttl where ename � �E���� and dnameu � ��������
H � select salary from empttl where ename � �E����

Q��� Range Query

C � select salary from empttl where ename � �E���� and dnameu � ��������
H � select salary from empttl where ename � �E����

Q��� Range Query

C � select salary from empttl where dnameu � ��������
H � project empttl on salary

Q��	 Range Query

C � select salary dnamev from empttl where ename � �E���� and dnameu � ��������
H � select salary dnamev from empttl where ename � �E����

Q��
 Range Query

C � select salary dnamev from empttl where ename � �E���� and dnameu � ��������
H � select salary dnamev from empttl where ename � �E����

��



Q���� Range Query

C � select salary dnamev from empttl where dnameu � ��������
H � project empttl on salary dnamev

Q���� Range Query

C � select salary skills dnamev from empttl where ename � �E���� and dnameu � ��������
H � select salary skills dnamev from empttl where ename � �E����

Q���� Range Query

C � select salary skills dnamev from empttl where ename � �E���� and dnameu � ��������
H � select salary skills dnamev from empttl where ename � �E����

Q���� Range Query

C � select salary skills dnamev from empttl where dnameu � ��������
H � project empttl on salary skills dnamev

Q���� Point Query

C � select dnamev from empttl where dnameu � �������� and dnamel � �������� and dnameu � ��������
and salary � ��

H � select dnamev from empttl where dnameu � �������� and salary � ��

Q��� Range Query

C � select ssno from empttl where salary � �� and dnameu � ��������
H � select ssno from empttl where salary � ��

Q��� Range Query

C � select skills from empttl where salary � �� and dnameu � ��������
H � select skills from empttl where salary � ��

Q��� Range Query

C � select ssno from empttl where salary � �� and salary � �� and dnameu � ��������
H � select ssno from empttl where salary � �� and salary � ��

Q��� Range Query

C � select skills from empttl where salary � �� and salary � �� and dnameu � ��������
H � select skills from empttl where salary � �� and salary � ��

��



Q� Join between two Atomic attributes

C � project 		select pno budgetv from projttl where budgetu � �������� and pno � �
 njoin 	select ssno pno
type from assttl where ratingu � ��������

 on ssno type budgetv

H � project 		select pno budgetv from projttl where pno � �
 njoin assttl
 on ssno type budgetv

Q� Join between two Atomic attributes

H � project 		select pno from projttl where pname � �P��
 njoin assttl
 on ssno

Q� Join between two Atomic attributes

C � project 		select ssno from empttl where salary � �� and dnameu � ��������
 njoin 	select ssno type from
assttl where ratingu � ��������

 on type

H � project 		select ssno from empttl where salary � ��
 njoin assttl
 on type

Q� Join between two Atomic attributes

C � project 		select ssno from empttl where salary � �� and dnameu � ��������
 njoin 	select ssno type from
assttl where ratingu � ��������

 on type

H � project 		select ssno from empttl where salary � ��
 njoin assttl
 on type

Q	�� Join between two set�triplet attributes

C � project 		select dno budget from deptttl where manageru � ��������
 njoin 	select pno budgetv from projttl
where budgetu � ��������

 on dno pno

H � project 	deptttl njoin projttl
 on dno pno

Q	�� Join between two set�triplet attributes

C � project 		select dno budget managerv from deptttl where manageru � ��������
 njoin 	select pno budgetv
from projttl where budgetu � ��������

 on dno pno managerv

H � project 	deptttl njoin projttl
 on dno pno managerv

Q
 Join between two set�triplet attributes

C � project 		select dnamev from empttl where dnameu � �������� and ssno � ���
 njoin 	select budget dname
from deptttl where manageru � ��������

 on budget

H � project 		select dnamev from empttl where ssno � ���
 njoin deptttl
 on budget

Q�� Selection on a set�triplet attribute and retrieval from another set�triplet attribute

C � select salary from empttl where dnamev � �D�� and dnameu � ��������
H � select salary from empttl where dnamev � �D��

��



Q�� Aggregation ��


C � 	select ssno salary dnamev from empttl where dnameu � ��������
�dnamev avg	salary
�
H � empttl�dnamev avg	salary
�

Q�� Aggregation ��


H � assttl�ssno count	pno
�

Q�� Aggregation ��


C � 	select dno budget from deptttl where manageru � ��������
�dno max	budget
�
H � deptttl�dno max	budget
�

Q�� Aggregation ��


C � 	select ssno ratingv from assttl where ratingu � ��������
�ssno avg	ratingv
�
H � assttl�ssno avg	ratingv
�

Q�� Aggregation ��


H � empttl�ssno max	salary
�

��


