'Nation
% of Can

ahuurary' ;
B "Canadlan Theses Serwoe

Kmo NG \k

e

L ; : e o \v :) .
R
: NOTICE .

The quality of thns mncroform is hea%y dependentupon the —

qualny of the -original thesis 'submitted for microfilming.
Every effort has been made to ensuret e hxghest quahty of

reproductlon possub1e .
_ 'IL pa “e J mnssmg. contact the unuversnty whuch granted
the degtg¥. -

Sbme Pages may have indistinct print especnallgnf the |
~original pages were typed with loor typewriter ri bon or
if the umversnty sent us an inferior photocopy

-
by

»Prevnously copynghted materlals (journal amcles pub— ‘
: Ilshed tests, etc.) are not fllmed ,

»":Reproductlon it
. by.the Canadlan pynght Act R.S. C 1970 c. C 30.
- :
F .
; . -‘_J T

NU3M (1 8e0e)

(o Ottawa Canada L RRR ‘. o

rin part of this microform is governed 5

Bubliothé ue nationale '
duCang a’ ;o

Servnce d"s theses canadlennesn

; // . P "‘W%:’%if'; " x ."
?
. o
.s
. o~ : .’.
., . \
*
. -
: \.
t o L .
i . < "AVIS '

“La quamé de cette mlcroforme dépend grendement de la" -

qualité de la these soumise au microfilmage. Nous avons

- tout f&it pour a rer une | duc-
i loutt: |tp ur assurer une qua ité supéneure de\repro uc

-

»Sll manque des pages, veumez communlquer avec '

‘,1970 c.

l'universite qui a confére le grade -

La qualité Jnmpressuon de certaines pages peut. Iansser a
désnrer surtout si les pages originales ont été dactylogra- '~
h1ees 3 l'ide. d'un ruban usé ou si l'université nous a fant

rvenir une photocopne de quahté inférieure.

Les documents qui font déjé Iobjet d'un droit d'auteur
(articles de revue, tests publiés, etc.) ne” som -pas
mlcrofllmés . v . o

productnon méme partielle, de cette microfofme est
mnse :| I% Loi canadseune sur Ie droit d'auteur, SRC
C-3

. - : KA

_ THE UNIVERSITY OF ALBERTA
| " AFirst Order Logic Robot Planning System /.
. - W ' . : ~- D,
~ o .]anss,G. Borynec R

| = A THES -
SUBMITTED TO THE FACULTY OF GRADUATE STUDIES AND RESEARCH

‘4

IN PARTIAL FULFILMENT OF THE REQUIREMENTS FOR THE DEGREE

: OF 'Mastér‘of Science e
Y . /’\
Computing Science '
_’. . ~ . .“\\:
- 4| ,) K . A . .) ’) ‘
EDMONTON, ALBERTA - : ,

Fall, 1987 .

-~ has

- aQ

wPermissign has been grénted_-

to the National Library of
Canada to: microfilm’ this
thesis and to lend or- sell

- copies of the film.

.

The:author'(cépyright“ownerl
reserved

. neither. the

" may be printed or- ‘otherwise

' reproduced without . his/her

written permission.’ //

. »
“

P *{SBN

" du Canada . de

other.

publication rights, and -
thesis nor J
'extensive extracts from it

L]

L' autorisation a &té accordée
A la- Biblioth&que ‘nationale
‘microfilmer.
cette -thdse et de. prdter, oy,

.de vendre des exemplairea du

filp. . ,

'L'auteur (titu‘aire du droit

d'auteur) s réserve les,

-autres droitg/de publication;
. ni la thé

e “ni de longs’
extraits ‘de celle-ci ne
doivent @&tre imprimés 6u
autrement.reproduits sans-son
autorisation écrite.

*0-315-40904-5" -

- L4
| THE UNIVERSITY OF ACBERTA - 7 :
| YR.ELEASE FORM oL

NAME OF AUTHOR - James G Boryneq,
. TITLE OF THESIS . A F11;§1 Order Loglc Robot Planmng System

o _DEGREE FOR WHICH THESIS WAS_ PRESENTED Master of Sc1ence

YEAR THIS DEGREE GRANTED Fall 1987
T Permlssxon is hereby granted to THE UNIVERSITY OF ALBERTA LIBRARY
td reproduce smgle coples -of thxs thes1s and to lend-v pr sell such copies fM
scholarly or scxenufxc research purposes’ only | ’ ' '

The author reserves otber pubhcatlon nghts and nexther the thesm nor extensive

eXtracts from it may be pnnte&or otherwxse reproduced without the author s written -

permission: . LT

.

‘DATED ..'°.... .4. g :af.. 1997

!

\ B
-,

- . 3 ‘ A .
\ . THE-UNIVERSITY OF ALBERTA\\\ " , ..
FACULTY OF GBADU—ATE STUDIES AND RESEARC!‘S o .

A

\

‘ : i .. 'J' ’ . " . . . \\ ’

' D . o : - \ :
" The undersigned certify that they have r‘ea_d.'and recommend to the Faculty of

Graduate Studies and Research, f or aéceptan‘ce, a thesis entit]edvA First prder -LogiE Robot
Co _ . 1 . . k i
Planpir;g.Sy_stem submitted by James G. Borynec in partial fulfilment of ttge requirements for .

the degree of Mauster of Science. B . ‘
. " .) .) V.\ - P »

- ‘ Y. Abstract

»

A planning system is a major component of any mdependent robot system. This thesrs

!

| pescrrbes a first order predicate calculus framework Which allows the statement and synthesrs
" of robot plans This f. ramework isa reductron of Rosenseheln 8 (1981) and Kautz s (1982)
- work in dynamlc logrc but has the potential to be more l'lexrble It is an attempt to provrde i
some middle ground betweéﬁ\the theoretical ff rbach of dynamrc logrc and the more
pragmatnc STRIPS-like planners An 1mplementatron of'a pl°anner is presented withm this

framework, Wthh rehes to some extent on default rules for karrymg_mf ormatron forward
4

from one state to the next, in addmon to carrying out deductron The planner synthg&rzes

~

plans surtable for,t,he University of Alberta] Kato—Heron robot . Q :

0 -

2

‘ _Proem -
1 &mow what you're thmkmg about said Tweedledum; "but it isn't so, notow."

o "Contranw:se. contmued(l“weedledee 1T it was so, it might be; and if it were so,)t
would be; but as ‘it isn t it ain t That s logic.” . v
L3 . . -

: Lewns Carroll‘
Thr‘augh the Looking:'Gl’a;s

. “Table of Contents e o ‘
,- Chapter : P o : .. Page
Abstract M ferrreesesseairenrentrennennnes iv:
e s | ®
. lmroduction -1 !
.. peererseeereeteseenneesasnns 3
o Ropgdli ey .o ... e Cevrrerere s saensees TR 4
| 2.2 Descnpnon Of The Kato- N o1o® ... [ettt ettt e s e nraeas 8
Robot Planning Systems e l(\% 13
3.1 Planning SyStemsc...cceereercan e e RN veren16
3.2 Thetneed FOr LOBIC «.vveevvreerernrens T v 24
A First Order Logical Afi:p.roach to Robot Planniig SRR 2
4. The Planning Language U S %
42 The Planning Probler R e T eaenenne eereaenns //;5 N
43 The Algorithm- e s s s 37
4 4 Support Functions Requxred by the Algonthm 46 : B
The Kato Heron Donfain “............ U SO 53
5.1 Choosmg, Progressmg, and Regressmg Acg:ons ‘53
| 5.2 ASxmple Examplq reessenssseens P __,“’ 61‘1: \
5.3 A variant of the chlster’ Exchange Problem T T P T 63
54 Disjunctive Goals e ‘ eerea—— reeeeereeenirenens 66
’).ihplemer\tation Issues not Conéeniing the Krfowledge. Base ...t S 68
~ Conclusions , rerermessons e 71
71 Strengths and Weaknesses vttt iR s 7.
.

.
.
! 2
'

' ’

7.2 Expanding Bigress ,Y‘73'

7.3 "Concluding Remarks ’78 |

Bibliqgrziphy v————— JD'79

.

i

.

3
. L 3
.
.
Ay -’
’
J
Al -
/ ,
-
- ¢

o .)

1

1 .

-
. '
—~—
‘h
- M .
"
-
-
M P
I4 -
-
.
-
.
L
“
\
- v
R .
e i i 4
L] o A d
.
-
v L]
-
.
- - -
s ¢
-

X vii

‘ ' Lo v
. o .

it
P

e :) , . B Introdm;tlon ' I W
. N\ ~\ g
Robotic research and Artlficlal Intclhgenoe/are mtertwlned Raphael (1970) states that -~
’

itis perf ectly natural to involve Al with robotrc research Furthermore interest in the
' devclopmcnt q robot like devices is both 4 natural conse"quence of past devclopments and a'
neces@pry sﬁTulus tof uture research.

¥
. ' N '
fforts have diverged into two separate

A,m:l yet, after some mltial success, resear

l;lds of study. one field dealmg with real worl onented robottc research, emphastzmg low

-

leveFeontrol_schemes, and the other. f ield specralrzmg- in generaltzed intelligence research.

lnou (1985) states that there is a significant gap between Al and robotics in spite of the

-

mumcatton and integration- between these T 1elds A major motivation for the

necessity
qu: of A robot project is to form™g_tiny part of »the bndgé‘between these two f 1elds.

“ One important advan ge of IObOthS over virtually any other AI research domain is
that the robot must deal with the physical world thereby placmg the roles of knowledge
Tepresentation, programming languages, computer configurations, ete. into clear perspecuve.

| Another feature of robotics’is thof because actions perf ormed in the real v;'orld can never be
predncted with absolute certamty. any flexible robot system must have both a general purpose
planmng system and sonie sensory pattern recogmtron capability. The planmng system will '
allow the robot to fvunetton in the world, while the sensory capability will inform the“robot ;o
when,lts plans have gone awry, as well ‘as to serve to establish facts about the world. N '
This thesis presents a first order function free logic in clause'form which allows the
statement of robot plans. This logtc is a reductton of Rosenscléem s (1981) and Kautz 8
(1982) work in dynamic logtc Proposmons and acuons have time parameters and are ordered
\bv a simple syntactic notion of time ordering. The general form of the planning problem is to
f md a sequence of aetxons whic, together with the initial state, imply the desired or.gLool
. . .
- l N 1 | R

f -

. ') : . ' .
"stateK _ e _ - ‘ ‘ o ‘ ’
| The use of time parameters has great Potcnt'ial. With a pr(;perly extended semantics; it
would be possible to'e_xp'ress things which occur over time, and events which have dugauon. It
is 'also possible to express concurrent ac'ti‘on. This thesis.docs not discuss these matiers in any
detail. ’ “ | | -

‘ Next, a determ’inistic variant of Rosenschein '.s bigress a’lggrithm is présented which -
allows the synthesis.of rcbot plans in’a best -first manner. An implpmentatidn of this;:
al@!thm for the University of Alberta’ s Kato-Heron robot follows. This rmplementauon
uses a default rule of inference Wwhich, in ef fegl.-states tl\al uniess otherwise noted.\ cverything
remains rhe same. This is much more efficient than the frame axiom approach .whnch requires
an inference for everything which does not change. '

The robot has not executed any plans gegerated by the planner because, to qale, no
‘one has programmed the middle level control routines for nnvigation and sensory perception.
Thisis a major task made more difficult because of a lack of repealabrlnf of the robot's |
motions and because of drf f iculties in mterprenng the results of sonar scans

The maJor result of this work is that it is not necessary lo resort to a modal logic, but
that it is possible to create a feasible implementation of a planner based on first order

L2 . i F 4
function free logic. . -

)

L. - %, Some Robot Systems. ‘

Histprical Notes S P . A E
[J w (n‘
~ For centuries man has dreamed of making machines in hrs an image. Around 200

BC, Heron of Alexandria created statues ol‘ gods that spoke, gestured and even prophesred

He left a wntten account of how to construct them ” making him the first authority on

¢4
W

robolics The robot at'the U ol' A was named in his honouwt. —
As the years rolled by, auiomata" as theywere 1hen called, grew more and more
compllcated A lnghly realistic clockwork doll produced by Jaquet Droz (Aleksander and

Burneu 1983) around 1,775 could play amodel piano, wlule another could write words.

George Mtore (Aleksander and Burnett 1983), in 1893 built an automaton that could
walk around f r\eely It was pox‘vered by a srmple steam engine housed within the body The
exhaust was through a hollow cigar in ‘the frgure s mouth N
of course these things were ‘mcre to\ys Useful "robot

e

" ca‘r‘ne into being with the

Jaquard loom with punclr card programming in the late 17Q8's. About a cemury later, the

Warner and Swayze arithmatic turret lathe was developed. achme had erghr

‘mathematically laid out cams to program (in the sense of a computer program) the cycle of
~feed stock handling and product machining. A similar machine of the same time period was
~ the automatic milling machine which needed a human operator only for placing,and replacing
P -

However, these devices were not called robots;-the word did not even exist before

the metal stock.

1920, when Kﬁ&l’Capek in his play Rossum's Universal Robots used it to describe mechamcal

machmes modelled on the patte'm of human bemgs These machines supposedly did not have

.

1 —

:
‘Al - : -
_ - .

any of the many human weakngsses, but evenmally they turned on their human masters, The ‘

- wopd itself was coined from the Czeth word "robotrik ", 'meanin‘é sc'rf .
. There is no clear modern definitionof a robot; just dbout everybody has.a different .
idea of what can"and cannot be so designated. The Robotics Institute of America define a

robot to be a rcpfzgrammable manipylator designed<io move:pérts. todls‘. or special devices .

through variablé mmg:d motions for the perf. ormance of a.,varieiy of diffg_:i‘ent._tasks. "

Thls defi mmpn is not at all # the fradition of Capek. A better one is Nitzan's (1979)

definition, "A robot xs a general purpose mashme that, hke a human, can pcrform a variety,.
r

sof different tasks under conditions that may not be known a priori". This requires the robot "

~/Lo4\'a/ve a certain amount of jnherent flexibility”] :
, | K .
: - The lack of a priori knowfedge also requires that the robot be able to gather

informa;'ign during execution. Thus a set of sensors, together with some method of

ymderstanding' sensory input is essential in a robot; it must be a "closed loop” device. The first

)

'clos:d:)oop (or ecdﬁack) device was James Watt's (c. 1770) flyball "governor” for his steam

enginel 1t would, however, be stretchmg things to call it a robot

= 'One of the first "sensory” robots was the turtle buil by Greg Waller (Aleksander and
| Burnett, 1983). It was a small wheeled robot‘v‘mh a small photoelestric eye. The t’urtle coqld,
wander-around, a\‘giding collisions with its "eye", until its battery power began to run dowr.l;
- then it would search‘ for its hutéh. and slug gt;éelf ‘in to recharge its bapteries.

< -

-

. \2 .1 Some Modern SensoryRobots.) . ‘ T
There have been a huge number of modern robots with sensory feedback in the past
few decades; some of the more notable have ?u.shakey, Jason, E’IILARE. and the JPL -

Tover.)

\ ' , LN) - -

: Research Instltute, was

encompassed by the

k The Shakey prOJect (Raphael 1976) developed between 1968 and 1973 at the Stanford

proneer in the freld of 1>telhgent robots The frelds of research -

“ representatnon and nat al language processmg It was equrpped wrth proxumty sensors and a

: TV carﬂera and was l:}ed to a central computer by. radio. Orders were fi ed~to it by typmg

' smlple Enghsh 1ntoa tgfminal lmked to the central computer

Shakey spent most of its tlme ina. world of seven rooms varlously mterconnected wrth

‘ 8 doors These rooms contamed several large boxes md a few ramps Shakey was able to _

) 'push the boxes f Tom room to roomy, and even stack them by pushmg a /box up a ramp placed

o ‘.nem to another box It drd Jthis m accordance wrth plans generatued\l?/lts main planmng

O .program called STRIPS

. of an. mterplanetary robot The robot had a mampulator arm a laser telemeter and a-

-
The JPL robot research program (Thompson 1977) was aimied at making a workmg

' robht operate ef f ectrvely 1n a real world envrronment with parucular emphas‘/s on the reatr?n

‘ .

»

’stereoscoprc camera. It was designed to analyse the general and then the local scene for

| Z
exammatron of possrble samples and to allow it to- navrgate approprrately m its envrronment

x

e

_ There were even plan generators to allow it to navrgate accordrng to orders sent from Ear,th

It mcorporated one partrcularly good 1dea the use of precalculated freeWays for

A
N qr

o movmg the mampulator arm, Thxs saved consnderable computatlon and guaranteed the

L avordance of okstacles such as camera mounts on the body of the Tover.

| The JPL robot borrowed heavrly l‘ rom knowledge gamed from the Shakey pro_tect In.
fact Charles Rosen of SRI referred t‘o 1t as "Son of Shakey (McCorduck 1979) Although

©

the robot had a large 1mpact on the development of various unmanned spacecraft such as

Voyager. and Vrkmg. the program was unfdrtunately abaﬁdoned in 1980 due to frscal ‘

[}
I R

vakey pro;ect mcluded pattern recogmnon problem solvrng, knowledge -

-

Y : :
restraint. T “

Jason (Smith and Coles, 1973' Coles Robb, Sinclair, Smith, ‘ands 'obelc 1975)
. dqveloped at Berkeley between 1970 and 1975 was a relatxvely mexpe ‘ we robot wlth the

abthty to mampulate srmple obJects and navrgate ina real world se}«tmg Its basrc purpose was e

* ,,‘D !

to mvestrgate how an mexpegsrve real WOrld robot systems mtg:t/he designed, add. what \J

: problems mrght be encounteredt In thts way. it was ‘very s1m1l to the Urol‘ A robot

Jason' 's senses consrsted of a TV camerd, mfrared a’nd ultrasomc proxrmrty SENSors,

together with con\tact f eelers it planned through a comblnatron of a $l‘ RIPS-like mechamsm “

/

and decrsron analysrs Jason demonstrated that an meXpensrve robot could be built, and be

_ " useful f or real research It provrded a testbed T or xwo plan generators. .
Th? French robot HILARE (Chatlla R 1982 Gtralt G Sobck R., Chattla R.

r_""“1979) ‘inspired by Jason, is under contmumg development at the Laboratory of At}tomauc

' Analysrs of Systems in Toglouse The I;I{LARE' has three main cumponent systems

1.; The locomotron system : / :

2. The c_omputer system, - _/ .)

3. The p%rception system - |
TMocomonon syste is mrcrocomputer controlled and consrsts of two stepper motor :

controlled rear drive whee)s, and af ree castering front wheel. “ Y .
The computer syéim Has three levels 5 a L ey -

1. On board mrcrocomputers which drrvg the perceptton system arld the locpmotlon system

.2. A dedicated mtm-computer whrch does /most of the data processmg, in Aparta_cular. -

handllng tasks assocrated wrth the navrgatron of the robort ' B - 2

3. An IBM 370/168 computer not central to the robot ‘which rntervenes for short penods)

' dunng the f unctronmg of the robot ie. durtng learnmg phases or for elaboratum ‘qf a

Dad

\ complex decnsxon :

The perceptnon system alserhas Thiree sub systems o ——

L \A 3- d perceptro system which is able tof md the position and onentatlon of observed .

‘ obstacles ‘usmg a laser range finder for position and onentatton and a camera to
- Tecognize obJects , T o St

2. A trackmg system used in a room deltmxted by beacons.using infrared emltters

An ultrasomc system Wthh does obstacle avordance and some ngvigation tasks;

HILARE f orms plans wnth a productnon system, whose rules have two parts; the left

hand srde states what» condrtrons must exist for the rule or action to frre while the rnght hand

merely al set of rules "ordered only by a set of plan constraints.

’I‘hrs allows parallel executron i. L. several rules may be applred at once. In addmon

this mtnrmal ordermg permlts the plans to be in a very general form Thus pla)ns and plan

fragments can be easxly adapted or reused under a variety of condmons \

~The CMU rover is v&yxother mobrle robot Moravec (1984) one of 1ts codevelopers
» . ‘ .
feels that the mobile robot is’ essentral to the development of mtelhgent robots because these

4 must be able deal with unf amtlrar terram thus requiring a. hrgh degree of flexrbrhty

The CMU rover forms plans by use of a system very similar to the Hearsay 11 speech 4
understander (Erman "1980). A number of mdependent processes operate thhm the robot
s1multaneously They commumcate via-a "blackboard" ~For example if* the touch sensor's ‘

process reports an imminent collrsron to-the blackboard the colhsron avordance process wrll

4

. X4

speed up its: executron by berng gtven a hrgher~prronty
\‘~ *
Carnegre -Mellon Umversrty isa very actrve site and has been responstble for the

' development of a number ‘of other bots including the Neptune mobrle robot (Podnar
Blackwell and Dowling, 1984}, the Terregator outdoors robot (Kanade, and Thor_pe -1985}
'_and the new Uranus robot (Podnar 1986) A field of partrcular relevance to the Universrty of .

' Alberta s robot pro_]ect has been therr work in sonar mapprng (Elfes 1987).

2.2 Descrlptlon Of The Kato-I{eron Robot , o R

The Tobot is a heavrly modif 1ed Heathkrt ET-18 Hero robot. lt rs mobile and [possesses
an arm with 4 degrees of freedom The robot's major: sensory device rs an ultrasomnic \sonar
device although plans exist to mount a camera on it. T }

The basic robot came equrpped wrth a 6808 mrcroprocessor d removable hex/keypad

’

and a varrety of motors and sensors It has now been connected, vra a 9600 baud serial llnk

to our Vax 11/780 SO that its computatronal ability has been greatly enhanced Our robot also'

w -

f came with the optronal voice module. and the optional arm-grrpper assembly.. o

There are three major parts to the robot: the chassis, the torso ar;d the head. The " .

- chassis holds the batterres and the. wheels the torso contains the maJorrty of the electromcs*

1’

and the head contarns the sensors and the arm

Kato has a steerable front drive wheel, and two rear roadwheels The robot can tum

. almost entirely within its own drameter Some problems wrth the predrctabrlrty of the robot's .

_ motron have been partrally overcome by proper cahbratron and sensory f eedback Larger

batterres have been mstalled allowrng extended perrods of operaoon unconnected to the . ‘

*

'ba_ttery charger.

_,,) B E = .) ¢ : v ‘ - f v

\., L . : B . .) { /\
The head with its arm and sensors is the most used part of the robot. The arm is’

Yy
qutte weak, capable of lif tmg onLy about a pound and able to grip easily only certam specxal

shapes. There are numerous sensors, ranging f Tont ultrasonic sonar to light detection.

-

-ol N ' | ' ' ")
Sense Specif’ ications : . ¢
~ Kato's maJor perceptual sensor is the ultrasonic range f mder Whlch perf orms various
navrgattonal and obstacle detectton functions.. The maximum range of the sonar device is

L-4

about 2.4 meters and tts resolutton is 1 cm. The broadcast frequency ts around 32 KHz
" Beam width 1s-advertised to be about 30 degrees verttcally and honzontally_ In reahty, 1t is
. about 40 degrees Wn!ﬁ a horn shaped sound cone attachment to the ultrasound broadcaster
the beam width 1s narro\i}qd to about 20 degrees. Katg% other sensing devices mclude a light’ .
sensor Whlch pro,,vides ‘an amblent hght measurement and a sound sensor Whlch provrdes an’
ambtent sound measurement m the range 200 to 5000 Hz. ' |

In addmon there exists'a motion detector whrch can provrde an mterrupt to the CPU
. if a stgntftcant change in the ultrasomc echo pattern is detected' 1t w111 pick up an average

sxzed adplt walkmg toward the robot at-a drstance of about four meters.

~There is a speech generator on the robot. It is not the one supphed by Heathkit, but -

/

the somewhat better SSI 23‘5?:h1p All development of the speech synthésis routines were

carried out by Scott Stacey (1986). These routines have proven t useful when debugging -

: the robot, because the robot cah explam its 1ntended actions béfore it actually ‘executes them.

Tt | | SRR 4 1
Motor Specifications - : v S : f ' _ ,
Thehead of the robot rotates about 340 degree: ;I;he robot's atm ha? four degrees of
freedom. Including the r,otatlon of the hgad and the main dnve of. the robot almost gtves th/
* am the illusion of 6 degrees of freedom. ' S oS
The shoulder motor rajses and lowers the arm over 150 degrees of motion; the extend
nyér extends and Tetracts the gripper 5 mches. a wrrst pivot motor prvots the grtpper 180
degrees; c}he wrist Totaie motor rotates the gripper 180 degrees and the g:lpper motor opens
the effector 9 centrmeters. The maximum f‘ayload f or the arm is 509 gm, and its grippmg
. fdr‘ce at-the tip of. the paraliel acting gripper ie about 140 grams oT "
There are two micro- swrtch touch sensors on the ‘gnpper One acts as a probe,
informing the robot of the presence of an ob_}ect thle the other mdrcates to the robot when,
the gripper has closed on an object | B .
The arm has now been /ret'ocated on the head to operate in the same general dxrectlon
as the sonar. This faclhtates measuring with the sonar and graspmg with a minimum of head
moyement., - |

Unfortunately, there is only one motor controller for the robot head and arm, so tha't

only one arm motor at a time can be activated. Thxs makes c) mplex movements of the arm

- well mgh rrnpossrble It is possible, however to ‘fhove the j* ’e whecl the steermg wheel and

the head (or mdeed any arm motor) srmultaneously To da . thts has pmved Qﬁrmlted use.
' Prolected Modlftcatrons

image analysrs. . ‘ T

a.)

[

Software = '~ ' -
j . X . . B L .) . . :)
There is a resident program on the M6808 processor on the robot. Its major furctions

.

" are to conttol the robot motors and service the serial communications link. It is also capable -

of performmg a somar scan over a set of angles. - -f . : \ }
| The Vax low level sof tware ts essenttally a set of C routmes These are called by user
: programs and provrde the mterface to the robot processor } :

Some of these routines are:

1. Getmem, Putmem - to transfer data to and from the robot's memory. ..
. o ’ -v . ’
_2. . Motor functions - to drive the varibus motors. ~~ ° - "

i

3. Cscan,scan- to perform an ultrasonic scan of environment:
L4 . .

. Sense- to give reports from various sensory equipment.

A

Speak- to speak the designated words.

e

There are also some routines for ou'r Sun workstatrons which draw and maintain a’

image of the robots locatron and vanous scan results T‘hese have proven to be quite

v kY
<.

“useful when trying to mterpret incoming sonar images.,
“ Cuxrently! the robot is able to locate, close with, and pick up one of the sonar trees. -
These trees axe objects specrf rcally desrgned to be vrsrble to the sonar and easily mampulated
by the gnpper t then places the tree at a predesrgnated locatmn Dunng executron of these
actrons the robot&rves a running commentary with its speech synthesrsmechamsm
Concurrently. the Sun workstation graphrcally drsplays the robots locatron and the: results ol‘
its sonar scans® The University has produced a vrdeotape @ the robot performing these
a_ctions. s ' | _ L

All of this @,bccbmplished by a program written in Franz lisp. In order to expand this
program, or to get the robot to do even slightly different tasks requires_a significant |

o . * IR

4

Ny

N -

)

‘ programmmg effort The need for the robot to have more flcxibdny{ns acuons without

such great ef! fort was a maJor motrvatlon for thxsplanning ptoject T \//«

D . roe ce

a*

4

#

»
"

2,
“ . | — 3 Robot Plaun:ug Systems.

Robots must_perf orm a varrety of tasks under condmons thab are not entxrely known
beforehand. This typrcally requtres that the robot have some way to decide- what it should do.
shottly-before it does rt. thus it needs some form of planning system. |

lndustnal robots rarely do any plannmg Inst®ad, in much the’ same manner as the

current fixed programmmg of the Kato Heron robot they do only as they are told, and

+ invariably, a great deal of effort is expended in tellmg them exactly what should be done,

'l'here is a clear require'ment for some form of flexible robot plan‘ner.
Robot Programming Languages | | k
- Industrial robots are traditionally programmed in one of . two ways They can be
§hown how to do the]Ob by usrng a simple teach and repeat system, .or they can be
programmed via a robot programmmg language For a sensory robot, whose actions are not
wholly predetermined a robot plannmg 'language isa necessrty For a detailed survey of robot
planning langnages see Gruver, Soroka Crarg, and Turner (1983), and for greater detail on
what robot plannmg languages can't do see Soroka (1983).

Srmple pushbutton teach and repeat schemes are 'adequate to program a robot for a
wrde vanety of relatrvely simple tasks. For more complicated tasks such as prclrmg up obJects
froma pallet,\where each new posmon can be calculated from a start posrtron and an
increment measurement, a progratrm’rmg language is indispensable. A further advantage of an
robot plannmg language is that it allows a robot to be programmed of f-line. In. fact, a proper
programmmg system should fntegrate CAD/CAM systems so that the robot program is
generated automattcal&as a by- product of the CAD Pprocess. Fmally,,provrded sufficient

accuracy between robots is avarlable textual robot programs have the pofennal‘to\be portable t

13

L , 14

v,

In 1974, the Stanford group began to dcvelop an Algol base'd robot programming
langdage AL, incorporating constructs for controlling multiple atms in parallel and
cooperatlve tasks An interactive teaching module was added to'an exlstmg compiler, leading
to the highly interactive system in use today | |

O'thet institutes quickly followed with their ow.rl robot planning lt"ng'uages.;Since 1976,
;IBM has been responsible for & number of languages inchiding EMILY, ML," AUTOPASS,
and AML. SRI Intemanonal developed RPL, and the Jet Propulsion Laboratorywrote JARS
in PASCAL. JARS wls part of the NASA ef fort to control robots in the constructlon of solar
cells. The fxrst commercially available robot language was Unimation's VAL, in 1979. It is an

" ¢éxtension of BASIC. .
In 1981 Automatix developed RAIL to control v1sual inspection, apd ‘McDonnel

Dooglas- developed APT. Two more came out m 1982, AML f rom IBM, and 'HELP from

General Electric. Even more new languages are no doubt forthcoming. ' |

|
Unfortunately today s robot programming languages are def ment ina vanety of

ways. The control level is typlcally separated from the user mterface 80 that new algorithms

~ are hard to test and debug. They achieve completene_ss in robot perf ormance only by addmg

15

Vd
-

complcxity; Communicatiog with ekternal devices is difficult, and they cinnot adapt to .

" chariges in architecture such adding an arm or adding an additional processor

~

S There are other oroble with the curregt’ r:rop of robot plannmg languages Many
_ actions in a factory include two or more machmes Most current robot ‘planning languages

‘) have greal diff: iculty in coordmaung several machmes even for the simplest of tasks, so that
I is very cmtly to program several robots with a robot planning 1anguage | \

A final difficulty with current robot plannmg languages, is that they are installetion (
speoif ic. This means thatsthe program that you slaved' to write will be thrown away with next
years crop of “improved" robo'ts. or z{t rhe very least th‘e user will be tied\forever to one =
manufacturer's robot line. This portaoility issue is nothing new, for oomputer languages.

What-is needed is a task description language. This will prevent situation$ whcre the

®

failure of one robot in a team of two robots, causes both rebots o becomie idlg, even if: the
working robot could réach the'érea\acceSSed by its partner. In addition, task descriptions can
allow a ternporarily idle robot to assist the o;hor robots around it. - R

Furthermore, the language must have clear notions of priority and interrupts, along « .

with\mechanisms for describing parallel activitfes. Things, such as the points at which a

~

can be interrupted safely, and the relative priorities between two tasks must be

, , .o ? .
specified. The exact decision of which arm does what task can then be left to an "intelligent”

—

scheduling program. » N

' Ogher importim fearures are ‘good knowledge representations, the ability to do pirallel
cornputirig. good ways to describe obstacles, and hierarchical methods to distribute computing

resources.

GPS finds the "biggest", difference betwee

. generated. GPS now reduces the new o ject's €if ferences.

16

3.1 Planning systems

0y
\ Y

The better robot planning languages shift the burden away from the progtammcr and
onto the robot. Thus the robot no longerexecutes an inmcate series of instructions, but

actually creates its own plans based on a given set of goals This problem solvmg ablllty is the '

N

’ key to flexible robotics, ' ’) 2 . \

7/

An influential early problcm solvmg system was Newell, Shaw and Simon's (1960)
General Problem Solver (GPS). It was first concewed in 1957 Smce that umc thc program

'y
hag._ekisted in several versions, each of which was designed to face a slightly different set of

difficulties arising' in the construction of a gene[_al/problem‘solvcr‘. ‘
There are three parts to GPS. First is the problem formulation, followed by the

problem solving fmethods. Finally, there is GPS's internal representation of the

’thg;problem Formulation consists of an initial objec\t (ie worlgefate) and.a sef of
desired dl)jects (the goal states), together with-a se{ of operatorgWhich will transform objects
from one Q@m to auother.

The problem solving methods inolude a set of "iff e}cn‘ceé ”/ between various abjects,

and a difference ordering. This difference ordegingAs often the secret to success. Poﬁr

The bgsic heyristic used by GPS in’

s

ding its search is means-endsb?ysis. First
hat is given and what is desired. It then goes

about reducing the difference by épplyin operations onto the objects. A new object is thus

T ,of problems such as the Towers of Hanox and the

6
owever most of its cleverness, was contained in its

- GPS successf ully solved a nu
missionaries and cannibals psoblem.

difference ordering. When an inai)p& priate difference ordergpé, was given to GPS, it would

e | 17

4

.

- usually be unable to solve the problem. For example, when dealing with the Towers of Hanoi
problem, the diff erenoee between objects would include the location of each of thevarious
disks."The location of the larger disks are more important than the location of the smaller
disks, because once a la&er disk is in location, it %oesn't have to be movecl to get a smaller
disk in the‘correct locetion This gives us our dif’ {erence osdering.

Cordell Green (1969) was a proneer in applying predicate logic to robot planning
problems. He used axioms to cles::rrbe the effects of actrons updn state descriptions. Each)
* state was specif red by a set of formulae. TO keep the formulae describing each state distinct,
he included a state designator as a part of every proposition. |

Problems were solved by éivlng to a resolution theorem ptover a set of axioms

-descrrbmg the effects of acttons together with a set of predrcatw describing the initial .
conditions. Tl-re‘theorem prover was then asked to prove the exrstence of a state where the
given goal descnptron was true Since the method of prool' was constructrve knowmg that the
state existed, also meant knowmg.how to achieve that state.

On(A,B,Do(stack(A,B,S0))) is a typical proposition. It translates roughly as given
that you stl{ck AonBin statekSOV then ther’e is a new state called Do(stack(A,B,S0)) where
AisonB.A successful proof attempt would generate a plan expressed as a cornposrtron of
Do ’functnons For example, if the next action was to stack’block £ on block D, one
proposition of that state would be: On(A, B, Do(stack(C, D, Do(stack(A, B, S0))))).

Unfortunately, this system requires not only axioms whiclr éxpress the changes that a
certain action wrll mvolve but also requires axioms to express what hasn't changed after a

‘ certam actlon, these are called frame axroms Ina large system, there are a lot of f acts whrch

don t change after a certain action so that frame axxom:mhm a bxg burden upon the

) theorem prover, In addition, the amount ‘of theorem proving search requrred for a problem

)

: ‘ - ¥ N
\ ‘ . w M 18

-

solution expands cxplosiv’ely with the diff iculty of the problem.

These two problems, the frame problem and the search problem, made Green)
. f orrhulation unworkablc for nontrivial problcms and were a major incentive to’/lhe
development of other forms of robot planmng

One subsequent system was Fikes and Nilsson's (1971) influential STRIPS system.
STRIPS was implg:meﬁted on the .Shaqu robot, and did trojan‘servicc until 1975 \;vhen the
" Shakey project was closed. |

STRIPS matig‘mingéa stack of g‘(\mls. and focuses on solving the top goal in the stack.
When the top goal is satisf ied;"it is removed f rom the .stack. and the next goal is considered.

If the Top goal is a compound goal, then the ‘compound-is broken up, and its subject
parts (sub-goals) are plac@ on top of the stack. Each part is then worked on until it is
solved. When all of the -parts are solved, the entire compound goal is reexamined. If it is all
true then it is considered solved. If not (due to goal interaction) then the sub-goals are
re-ordered, a{ld the entire compound goal reconsidered.

All goals in STRIPS are statements about the state of the world. For example,
regarding Qo blocks A, and B, a ‘i'ypical goal would be On(A,B). With the addition of an
. additional block C., another goal could be (On(A,B) & On(C.A)). |
. Changes in-the state of the world are accomplished by operator; gch’ opcra.tbr has
-an "add list” and & "delete hst The add l!st is a list of statements at;gul the wor\d which
become true.when the operator‘xs applied. Similary the delete lxst removes statements which
are no longer true, For example a simple operator might be Stack(A,B). The add list would
contain On(A B). and the delete list would contam Clear(B). In this way STRIPS sldcstcps
tHie frame problem. Everything that hasn't been deleted must still be true! This saves an
enc;rmous amoﬁh}; of computation. : ; ~ -

. _ . ‘
' N <

. . »

19

o n ~ Not all operators can be performed a all times. foblock C was on block B, the
operatton Stack(A,B) could not be performed drrectly Each operator then ‘has a list of ',

, (precondrtrons whtch must be true/before the operator can be apphed _
| STRIPS resolves a goal ltteral by first attemptutg a proof attempt of‘ the current goal
. clause against the current state. If the proof attempt sueceeds then the current goal: must be
t true, and 1t is removed from the goal stack If it farls it tries to deal wrth ‘the unresolved

,hterals (or dtff erences) by trytng to ftnd an’ operator whose add list conta' s a literal which "
: o} ,
can be matched to the remammg goal literals. ThlS operator is now added o the stack ‘On top o

B ’ 3
~of the, operator is added its precondttrons e ¥

* " The precondrtrons are now consrdered goals If they are- already true, they are swiftly

removed f rom the top of the stack otherwrse more operators wrth more precondrtrons must
- be found ‘ .)
* When the top rtern of the stack is an operator 1ts precondmons must be, true (smce =
we already solved them above) and so the operator is applted changrng the state of the world
It 1s now removed from the stack, and STRIPS contmues‘workrng on the rest of the stacko /
ntrl the s‘tack 1s empty | .' ‘ |

Usmg these techrﬂques STRIPS Can gsolve the block stackmg problem [ON(C B) &
- _ON(A C)] The easﬂy obtamed solutlon sequence is {unstack(c a). stack(c b) prckup{a)
: stack(a c)}

; o STRIPS does not do so well on the goal (on(b c) & on(a, b)) grven On(c a) Tt gets a
- ’4-:workable but overlong solutron {unstack(c a) putdown(c) ptckup(a) stack(a b) unstack(a b)
. putdown(a) prckup(b) stack(b c) prckup(a) stack(a b)} Extra work is generatcd because

'STRIPS decrded to do on(a b) before achrevrng on(b, c) Goal mteractron forced STRIPS 1o .

-

_ xundo on(a b) before it could achreve on(b, c) i _ - R

vhoo

possible to get the correct goal ordermg wrth as httle reshufflmg as practtcable ‘

. Hackerx(Sussman 1975) was MIT S response to STRIPS. It would try to f ormulate

. plans to solve subgoals mdependently and then try to patch the plans together to solve the

- : htgher level goals. It used a library of bug correction procedures to.patch the plans B
ST’RIPS RSTRIPS, and Hacker are all one level planners. In other words, every step

along the way is assumed & ' as 1mportant as every other step, rbut thlS is.not usually true.

Many, if not most, o the g s ina plan are mere detalls while a few steps are vital to. the

. eventual success to the plan For example when a person is' plannmg to buy a new car,

havmg enough myoney is usually considered more 1mportant t/han actually f mdmg your way to

) the dealershrp A planner should work on the more 1mportant parts first, and only consrder

the detatls later This mtroduces the nouon of hterarchy mto planmng . .
A good earLy approach to hlerarchrcal planning was ABSTRIPS:(Sacerdott 1974). The

essence of thts sxstem was that ummportant detarls were rgnored in order td create plans |

'. Later these detaxls would be consxdered in order to flesh out the plan. {

" In order to do this ABSTRIPS -user. 1dent1f1es a hrerarchy of conditions. The lower
condrtrons are mere details, while the upper ones are the 1mportant factors in determining the |
.plan.‘ Deterrnining. which co;ldlt%ns are important is-of cruclal,importance to the efficiency of -
the planmng system R | | ‘ '.

ABSTRIPS works in a very stralghtf orward manner. Simply solve the problem, in the

manner of STRIPS consrdenng only the hlghest level condltrons Thxs will generate a skeleton

L

plan It then uses this plan, together with the precondmons for the next lower level to
generate a new goal\ stack, and again@ses STRIPS on this goal stack to find a more detarled
plan. This process continues level by level down torthe lowest level of detarl If no solution ‘at
a lower level exrsts, then we must return t_o a higher level\to f md a new hrgher level plan to
- lesh out. | ‘ | | |
Af nnd‘amental drawback of STRIPS like systems is the need to choose an order in
_,_r.w;hich to attack compos,lte goals.' This leads to problemsrvhen the wrong order i;t:h‘o_sen, and
goal intefactions I orce bavckchainl’mg‘, or so‘met'imes even force failure. A superior approach is '.
not to order the subgoals unless goal mteractron problems dlctate the ordermg This is called
nonlinear planhing and is Sacerdotl s (1977) NOAH (Nets Of Actlon Hrerarchres) method. '
The mmal plan gmerated by NOAH does not specrf y the temporal ordering of the -
Oubgoals/ but regards them as conjuncts to be achieved in parallel. As the plan develops, goals
'wxll be ordered only* 11‘ there isa reason to make one f irst (due to some presumed goal !
k‘ mteractron) With this techmque NOAH adds constramts to a partial plan rather than
reJectrng incorrect assumpttons Sacert‘iotr called it the prmcrple of least commrtment
NOAH creates a lattrce structure to develop and represent the plan. Thrgestructure ’
represents the minimum requtred orderings among the operators.it selects. NOAH is
hrerarchlcal in that t constructs first a skeleton of the plan, and at successwe stages rt f 1lls in
. more detail. Let us consider how NOAH would solve the problem of creatmg a stack of 3
blocks: | | | . B | "
FNOAH first divides the oroblem into two ;_subgoals, one for the middle block to be on -
the bottom bloclt .and one.f'or ‘the top blockto be on the middle‘ block It decides that the
STACK operator must be used. ‘The precondrtrons for STACK must now bc consxdered Note

~ that the two goals are consrdered mdependently N . R

./—f.'

~—

2

NOAH employs a set of crmcs to gxamine th: plan and detect lnteraction among

the subplans Each critic is a sub-program that can make observgtlons about a proposed plan,

) Thrs is very much in the ‘tradition of systems such as HACKER

4]
The cntrcs show that the two stack operatrons must be ordered to prevent conl‘ licts.

B (% the bottom two blocks must first be stacked bef ore the top two blocks can be stacked. The

plan in now reordered and redundant precondrtrons are eliminated. Agam we expand the plan
and apply the critics, another reordermg takes place. this _trme to ensure that the bottom block
is clear at t\he start. Finally onoe preconditions are checked we arrive at the required plan. '
constructrvely and without backtracking. | . | .
Tate s (1977) NONLIN planner, is an evolution from NOAH. It can generate plans ‘
f_rorn task d_escnpttoﬂ% given in the ask formalism. The task formalism is a way to describe -
acrions' i,n'a hierarchicalf ashion. NONLIN. generates plans at greater andg greater levels of |

detail, and proclubes aplanasa partially -ordered network of actions.

NONLIN is an improvement over NOAH in that it is able to {éep track’ of previous _

v)

‘chorce points, *and backtrack to them upon f arlure An ordermg decrsron made by NOAH is

L irrevocable, so that the search space’is inc mplete and some srmple block pushing tasks are

,unachrevable

o

{ .
\v The simplified control structure used by NONLIN is similar to NOAH' s, It f irst starts
ith a sirigle node representing the task to be perf ormed. The following cycle then takes

1 place:

.o

1. Expand a node in the network using ertpansion from an appropriate schema.

2. Correct for any interactions introduced. p
3. TRepeat from 1 until there are no further nodes to expand.

If step 2 determines that an ordering decision was a wrong one, it backs up the proeess to the
v ‘ . .

/

te | _ 2

- alternate.ordering. Tate shows that only one alternate ordering is needed for cornpleteness in

search.

)

Another modern system is Stanford's Mol@r (Stefik 1981)' which is ahierarchical

planner to assist molecular geneticists in planmng expenments It uses constramt propagauon '

to allow the deferral of ordering decisions as long as possible, even though the decisions’
 interact with each other o e
| A simple example will rllustrate the concept Suppose we wish to Qurchase both a new
sofa and a new chair for our hvmg room. Using Molgen's process we would break this into
two separate goaIS' Purchase(sofa = x) and P.urchase(chatr =y). Now theopurchases are -
_hot 1edily mdependent after all both will 1mpact our pocket book Furthermore if we buy a

orange sofa then the chair probably should not be green. Thus we add some constraints to the

a global constraint list: Compatible(x, y),and perhaps Below$500(x, Y).
. ’ : N s .

LR

The plannl'ng now proceeds independently, perhaps adding more constraints. At some* .

v

point, it wrll become nec™:.i v 10 subsutute some values for the vanables involved. This

o

mvolves a constraint satisfaction "process which ensures that all of the post@ constrajnts are

- satisfied hel” ore a substnutxon <can be considered viable.

Devrser (Vere 1983) is a general purpose automated planner -scheduler to generate
$ kKl

parallel plans to achreve goals with time constramts It is on a direct evolutionary path from

NOAH and NONLIN. Its maJor achrevement is that it deals dlrectly w1th,ume mformatlon
creatmg plans to achieve goals whrch may have time restrictions on when selected goals should
‘be achieved and f or how long goal conJunctrons should be preserved. '

The plans produced are a partially ordered network of activities. For each actrvrty

"

there is a duration and a start tie "window" attached.

A

'De;viser would chain backwards from unordered subgoals by satisfying goals where
possible by linking_ goal nodes with the same, already achieved, nodes. If subgqalsc'annot‘be

met by linking, nodes are expanded in .parailel step by step, into activities which: achievc the .(

e

—

subgoals. When two parallel expansions produce contrad{ctions. conflicts are resolved by
ering them, Deviser backtracks

ordering-the nodes. If the conflict cannot be resolved by r ,

to the last, choice point and tries dn alternative.

Recognizing that actions and events have deterministic durationg, and scheduled events

)

may occur over which the actor has no control was .a major step forward in planning.
Deviser's mazin motivation for dealing with time was the intended application to unmanned ¥

spacecraft such as Voyager.

3.2 The need for Logic .

All planning systems have to have knowledge about their environment. Furthermore,

it is unlikely that ;," of a planners needed information can be placed into a machine in

o unmedrately accessible form Therefore there isa requlrement for some sort of inference

o mechamsm 50 that information jmplicitly present can be deduced. An?i indeed, _most of the A

\

above planners use a form of logtcal deductfon to deduce mformatxon about their worlds.

It was soon noted, that planning process itself could be cast as a deductive problem

and therefore planning could be done by logical inf erence.
There was a small problem. Traditional logics are monotonic; the number of

. Lt . . " : . -
statements known to be true is strictly increasing as "facts” accumulate, i.e. a statement .

é

‘known to be true can never be made false. This made strarghtforward application of

_ tragttlonal logxcs dif ficult because facts and axioms are inaccurate, and therefore conclustons

must be tentative. o

I | o CT ~m ', | . . ,
25

Rich (1983) says that monotonic systems are not suitable for dealing lwith three kinds
of situations thap ean_of ten arise-in real problem domains: incomblete ‘information, changing.
situations, and the generation of afsumptions in the process of solving complex probl‘ems.
These factors have led to the development of nonmonotonlc systems :

2 " Doyles (1979) Truth Maintenance System (TMS) is an example of a system which
suppo;ts non-monotonic reasomng Its role is to maintain consrstency among a database of
statements generated by some other system When an mconsrstency is found it invokes a
‘mechanism to resolve the conflrct by altering a- minimum set of Y:eltef 5.

) Each statement (or node) in TMS is in onm states: IN or OUT. A node is IN)
if it is pheved to be true. A node is OUT if. there are no valid reasons for it to be belreved
true. In addmon each node has a list of justifications, any one of whrch could establish the
validity of 'the statement. AR L ‘ ‘ S » f~

A slmple examole will illustrate how TMS works. Staten';ent (1) "it is cold” is bQ‘eved |
to be trhe based on the. justification that statemaent Q"itis winter“ is also believed to be -
“true, If at a later ttme (2)is no Ionger belreved to be true, then (1) would automatrcally be -

- placed on the OUT lrst of nodes)

| Monotonic systems however have a great advantage over nonmonotomc systems no
checks are needed to see if there are inconsistencies generatedgbetween old knowledge and new

0

statements. ’ ' e .

r

Dynamlc logic i is a monotonrc system useful for the statement. of robot plgnmng
problems. It was orrgmally deVeloped to prove program correctness (Lrtvmtchouk and Pratt
1977) and program correctness and correct planmng are strongly hnked After all what is a -

| B
program but a plan for a computer" Loy o

o

v,

reachable from I by B. So, [B] p can be read as "after B, p

i’y Y . - .
A . . .
b gy ‘ . C 26
+

uln fact, Rosenschem (1981) has formulated the plannmg prablem in terms of

3

proposmonal dynamic loglc In addition, Rosenschein gives a bidlrectronal algorithm (blgress)

. whrclf’ can plan over a broad set of plans dealing with conjunctlve and dlsjunctlve goals and

nondetermmrstrc actions. In this system, a plan is considered correct only if it can be proven

a

so in 3 formal language. . . ' . - o

Kautz (1982) has extended Rosenschem s work and defmed a first order dynamic /<

logical planmng lanérage which has extended brgi::ss to cover a subset of this language

Dynamic logrc 1s a modal logic: a plan is a reachabxhty relatlonshrp over a set of

"possrble worlds. When B 1s a plan, [B] p is trugsin a world 1 if pis true in every world

_—/

)

The syntax of Kautz's dynamro logrc is srmrlar to function free first-order logrc An

"action symbol” 'applred toa sequence of terms {s\tfblmplest kind of plan which can appear
inside a []. Complereplans are built up by sequencing [4;B] and -alrernatron [P= >A.B].

The semantrcs of his dynamic logic includes a domam of mdrveduals a set of - -warlds,

and:ran 1nterpretatron ‘for the action symbols. Each world mterprets the terms as members of -

~_ the domain' and‘the predicate stbols as p‘rédicates' o°yer the __do"main. The meaning'of the

plan is a binary relatronslnp over the set’ of worlds

Both Rosenschein and Kautz defme }he@lanmng problem as a triple (V Q.R(u)),

where V is the vocabulary of the problem, Q is the set of domain constramts and Rfu) ita (‘s"' h

\J)'.

- finite set of statements called plan constramts These plan con§trarnts are a f inite set of wffs

of the form p » [u]q A solution te the planning problem is a plan A such that it is provable

from the domarn constramts C ™y - Ma-dfes all of the plan constramts (i.e. Ql— p * [Alq)

" Bigress, a nondetermimisti: algorithm, starts two searches, one starting at the initial

®

state, and the other at the gou sssie. It'worss oy chaining backwards (or regressing) f rom the

{ . i . R

i ‘ N 4

postc_onditions"%f actic_ins. and forward (or progressing) f_rom pfecoiiditions of actions, until _

the two searches intergect. It tHen returns a list of actions needed to_go from the start state to

R

the goal state o v .

g

If a condmon 1 o&urs then bngress starts two forward searches, one assummg that

" the condmonal is true} and the other assuming the condmonal is false.

\ l
‘When Rosenschein talks about progressmg o1 regressmg an action he really wants to

. -) U
discover the strongest provable postcondition or the weakesy provable precondition,

N

respectively. Given dorniéin constraints Q, the strongest-provable postcondition of a nonmodal

wff r and an action'A is defined to be a wff, ¢ T/A, such thét Qi— 1 #[A] 1/A and

QI 1/A * q whenever QI— 1 *[A] 4. Similarly, the fveakest provable precondition of a
, ; l :

* nonmodal wff s and an action A is.a nonmodal formula A\s such that Qi— A\s* [A]s and

Ql— q* A\s whenever Q- q [Als. : o
Thus in essence ptogressmg an action means to derive, from a given world
description and a given action, a new world description that accurately (and completely)

depicts.the state of the world if that actnon were perf ormed and to. regress an action from a

set of goals means to derive a new (mlmmal) set of precondmons (or goals) that must occur -

so that the given acuon, when performed,’ w:ll achieve the given set 'of goals.
. . 14

Note that it would be more desirable to have the strongest postcondition and the

weakest precopdition instead of ‘the strongest' provable postcohdition and weakest provable

¢ precondition. This is impossible to express in a nonmodal f orniula’be_calise of* the monotonic

nature of the Iogic, and because of tpe way that the axioms are used to characterize actions.

°

Axioms can always be added to the domain WWM strengthen ,pos;conditions or weaken -

preconditions and so we must settle for the stroTigest prbvablé postcondition’

£ 4‘ E ;\»'

0 = \

‘ . ~ 8

The weakest provable precondition aVq of an action a over a condition q is found by
taking the disjunction of the set of f ormulas each of which fs a conjuncuon of a set of Pi
drawn from the "left hand snde (Zf the dynamnc axioms of Q (i.e. Pi > [alq) such that
conjunctlon of the correspondmg qi's impMes q. L4

. Let us look at Rosenschein's sample axioms: ‘ ‘ '

1. A."[a]'(Bv'C)l : T
2. G=[a]-B »
3. (F&E)*[a]D |) ‘

In this case, a\(C v D) = (A & G) v (F & E). This is because (BvC) conjoined with -B
implies (C v D), so the co.njunction of the corresponding left-hand sides (A & G) is one
__ disjunct of a\(C v D). Likewise, the formula D alone implies (C v D).gmal_ting the

corresponding left-hand side (F &'E)' the second disjunct. These two cases are the only ways

7

to obtain (C v D) . }
The method for obtaining p/a is the ‘dual of a\q, where we examine the "right- hand
side” of the dynamrc axromf, ')

Rosenschem does not provrde a proof that his method obtains the weakest provable

A~~,

precondrtmn ’ '

Kautz, however, shows that, given t Sre correétness of progress, regress, and

denvabtlrty, the bigress algorithm is correct. He also shows that, given the correctness and

completeness of proghess regress -and derivability, the brgress algonthm is complcte He goes
on to say that in certain pathologrcal cases progress and regress are not complete because the

¥

strongest provable postcondmon (weakest provable procondrtron) cannot be represented by 3

.. finite length'mpnmodal formula.

s z
Kautz p"r’es:en_ts ah example of how bigress solves a variant of the register sygapping
problem. This problem ﬁa’s, proven diff: icult for ST'RIPS/and its descendants. : .
There are several boxes, B, B2, B3, each of which can hold various colouted stones |
S1, .., S10. The dump action, Dump(B1,B2), transfers all the stones from one box to

K

* another. ’ \ o : \,'
* Static axloms such as Box(Bl) and Stone(S3) descrité basic facts, while the dynamxc t
axjoms descnbe (perhaps only parually) the effects of the action Dump.
1. (All X,y,2) ((m(x.y) & box(z)) —> [dump(y.z)] ingx.z))
2. (All x,y.z,w) ((in(x, ¥) & ~(w = 1)) => {[dump(y, 2)] in(x,w))
' 3. (Allxy.z w) (-color(w x) => [dump(y,z)] ~color(w,x))

“The east two axxoms describe conditions which are mvanam under an action, i.e. a
Ir rame axiom, STRIPS avonded explicit frame axioms because it maintained a single world
model with the understandmg that actions not explcl:xtly removed f rom the database remain
Arue after the action. ‘
| For many applications, this 15 quiee efficient; however Waldinger (1977) states that
fot an action such as dump, which can affect an arbitrarilyllarge number of objects, the’
STRIPS approach,can b very wastef ul. A

“

Now that we have a vocabulary and some domain axioms, we can formulate the
register exchange problem as follows: ' : . ” /|

(in(S1,Bl) & m(SZ B2) -> [u](in(S1,B2) & in(S2, Bl))

A solution u = {dump(B1,B3), dump(B2,B1), dump(B3.B2)} is .found with no
» backtracking. This is because the‘backwards search found only dump(B3,B2) and
dump(BS.Bl) as possible,.las;t actions. There is no bther possible last_\action .

A%
B

L 4

. dynamic logic. <~ r , L

30

_ Linear planners such as‘STRLPS fail oﬁ this problem becausg an attempt to"f uifill on¢
part of the conjunction dnrectly causes the other conjunct to fail irrevocably. NOAi-l first
mes to create independent subplans, f mds that its subplans cannot be combmed and is f orced

to replan. RSTRIPS solves the problem m a manner very similar to this apphcauon of o Q

Q

¢ ~ Note that the dynamic logic approach is different from the-STRIPS paradigm. In

STKIPS, actions are not regarded as mappings from st to states but are syntactic
transformations of state descriptions to other state descriptions. This leads to the great

advantage of not having to mention the things that do not change (i.e. the framge conditions).

" This also leads to the disadvantage of having to keep the 'transf ormations fairly ‘simple (eg..

addlists and deletelists).

A simple examplé of this is the toggle action, desckibe_d by the pair of axjgms:
1. On(light) * [toggle(switch)] ~On(light) .
2. -Onlight * [toggle(switch)] On(light)

~ This i almost impossit;le to specify with an addlist/deletelist pair because it cannot be

determined in isolation whether toggle adds or deletes the formula On(light). With the -toggle
actidn, the c‘onsequénces depend conditionally on the antecedents. .

Another examplg of the flexibility of this approach is the three socks problem. How

do we retrieve a matching pair of socks from our dresser in a dark room? Whenever we pick a

~ ° N .
_ sock we either get a black or a white sock. This is, of course, a nondeterministic action. I will

not go into the details of the axiomatization but suffice it to say that bigress grinds out fhe
solution’: ple 3 socks from the dre®er. - o ,

All of the other systems I have dlscussed would fail with this problem. Most of them

cannot handle' "picking up a random sock." The others (such as NOAH and Dewser) would

- 'S

¢ - ‘ - 31

try and deal wnth the problem by making two subplans one to obtain a pair of whne socks,
and the other to obtain a pair of black socks Neither subplan can be reahzed

I The use of a set of axioms to characterize the consequences of actions does allow
great ﬂex:bxlny However, in faimness to STRIPS it Mould also be noted that this flexnbnhty is
chleved by. usmg a large number of frame axioms for each actlon and that these axioms

have a huge computational overhead. ,

" There is other problem. The length of a search is exponenual w.r.t. the number of

steps in the soluthl’_urthermore. it is likely that there will be a la;ge number of possxb!e |

\actions at each step in the sea;c% for a plan; Therefore, the combinatorial explosion of the

search is very rapid indeed. If ,we wish to retain the ﬂexibiljty: and limit the size of the search
we must prune the sea'rcb tree severely at each step, ahd we must reduce the length of the.

search. The first can be done by careful choice of actions, and the second by hie}'archical
methods. |

Piosenschein defines a hierarchical planning'problem as a tree of single level planning
pf’oblems. Higher level domain dynamic axioms are simply taken as low level plan constraints.
In other words, f or each hlgher primitive aotlon there is a lower level problem whose actions’
are more pru;:mve than those of the higher problem For example the duma\operator might

be accomplished through a combination of grab, goto, and drop pnmmves.

.

-

» k)
4

4. A First Order Logical Approach to v'l:t\olio't Planning
There are some problems to a straightf’ orward i'mplementation of Rosehschein's
dynahnc logic approach. The no}me'termnmstic nature of his algorithm makes it difficult to
implement on a determrmsttc serial machine.-The [rame axioms will impose a hugc
computattor;al cost on any theorem prover, and besides, it has proven difYicult to implement a
good theorem prover for dynamic logic. Furthermore, there is no need to resort to the power
of a modal logt\c when normal predtcate calculus will suffice. .

The nondetermtmsttc bt@s algomhm allows Rosenschem to sidestep the issues of A
what states and acuons to consider, and in what order, These have to be mét when the
.algorithm is rmplemented on a serial maoh:ne Irr the present 1mplemematron a number of
heuristic f unctions have been added which allow the search for a solution to'the planning
problem to be conducted tnh-a best-first hanner. Because of the added complexity of adding

" assumptions to this heusistc search, the algorithm will not create conditional plans.

N

.. As noted above, the frame problem has beep a major'impediment to the purely logical
plahners (i.e. those using frame axioms.) My system will avoid many of these problems by
the use of a heuristic default rule of inference when pregressing or regressing actfons. This

/ default rule eéssentially says that unless otherwise noted, everything remains the same.

Of course, there are no guarantees that the rule will bg correct, but then in a frame

4

axiom approach there are no guarantees that the axromatrzatton will be correct.

p)
The brggelt mottvauon fo abandon the dynamic logic approach is that there is no need

o

to resort to a modal logic when it is not requrred. In normal clause form logic it is pgsstble to

5 s .. . ‘ / ™
formulate the precondition, action, goal process as a clause of the form /m o
~precondition, v -action, v goal &,

This translates as either the preconditions are not true, or we do not perferm the action, or
* .) ‘ . . ~
32

fthe goal condm?s must hold If we have another clause ofk the. £orm

'perf orm the plan or the goal wrll becOme true.

formyla:. = - B

. : : *) P
% - . : s :
. . , L

j-vprecondltron, v -actron, v precondrtron, -

we can: burld up a seqtﬂ:nce of actions' (1e a plan) thus

wprecondmon, v -actron, v -actron, v goal

oy

lf we happen to know that preCondrtron, rs true, we Wnclude that either we do not

B

™~

There is a small problem to the above f ormulatlonﬁlt 1s logrcally the same as the
N :

LAY

-‘precondrtron: v_~action, v --aCtIOD, vgoal :*;.

. thus we need some f orm of actron ordermg Dynamm logrc avoxded this problem because [a b]

- “is not the same as [b:a). Green avorded this problem because Do(actron,(Do(actron,(SO)))) is

FEN

- 'bnot the same as Do(actron,(Do(actron,(SO)))) Thrs problem can also be avorded with the

S rnstead telies- on the above srmple syntactrc method

e

ol

: _-use of ordered time arguments Actron,(T,, T,) is defmed to happen before actron,(T,, 3)
_ because T, 1s in the second and frrst argument locatrons respectrvely This clearly isa ’

- syny trc notxon ‘of time orderrng ’ ©

3 ° .
T here is another potentrally huge advantage to the use of time arguments Grven

‘ that we ,have a clear semantrc notron of times and duratrons this format can be used to easily

s,

l represent concurrent or overlappmg actions, or to. represent. scheduled events over which the

planner has no control ’I‘he mechamsm by whrch times and duratrons would be represented in

dynarmc logrc or Green s forrnulatrdn is not at all clear.. Currently, in'an attempt to keep

' ,thmgs srmple the planner does not have the capabrlrty to express overlapprng actions, but ‘

e

4.1 The Planning Language

.,

The planmng language isa restricuon of funcuon free first order logxc with no ' §
existennal quantifiers lying within the scopes .of universal quantifi jers.

v e

Syntax L {

L]

.The syntax of the language is normal functlon free fxrst order logxc in clause form (le thh 4

quamif iers climinated and v«a;iables interp | as_‘umversally quantified variables.) Vanable_s
will usually‘be denoted by lower case letters or Words with or ;'/ithqut numeric subscripts
They may also be preceded by a "?". eg. locationx,y,,7ys, .. Individual constants will usually
‘ be wordé starting wi},h a,caj)ital fetter, with or without humeri_c subscripts (eg. Corner;.)
Skolem constants a£e capital letters with' niime'ric subscripts (eg. D;.) Skoiem constants are ‘

turned into vanables when we form the demal of the goal state. o F

Atomic actlons and atomlc proposmons are def med in the usual syntacuc manner.

w..
"

-Atomic proposmons are in mf ix form, while atom:c acuons are in pref ix form. This greatly “

P

assists the readabxht‘y of the language By convenuon the last argumem of an atomic
'proposmon and the last two argumcnts of an atomxc action are called tlme arguments A
typxcal formula 1s N - '
-(Kato isat Corner, Tl) v (goto Comer1 "locauonx Ti ‘7Ty)

, Th1s translates roughly to "If Kaio is in Corner, at nme Ti then Kato went from Corner, to
- some unspecxfled location- (”locauonx) from time g to.some unspemf 1ed txme (?Ty)." The

"isat ",.hteral is an atomié proposmvon,v while the "goto" literal is an atomic action.

Semantics |
The semantics of the language are those of normal first order predtcate calculus
lnf ormally we talk of thmgs having a time ordermg This is established b3 havmg a
syntacttcally restnctxve defrmtron of a plan) ‘ S o o | . N
Ilf we were to relax the defi mmon of the plan to allow say concurrent acttons we
| would ‘have to replace the normal semantics with- some specral purpose semantics to ensure .
that the time ordermg over. various actrons and proposrtrons remams valrd 1
J Rules of Inference
The rules of inference consrst of resolution, paramodulatton and factoring.
Resolutron means that when you have two clauses P v.R and -'P v S, you can deduce the
clause RvS. Factormg allows you to deduce Qv R f rom QvQvVR,and paramodulauon isa
f orm of generahzed substrtutron of equals In essence if we know a = b then from any clause
Q havmg one or more mstances of a (or b) we can. deduce a clause Qa/b with one or more
» mstalces of a replaced by b. | » ‘

These rules of inference are known to f orm a complete logic, in. the sense that any

‘ valld formula can be shown to be valrd See ersson (1971) for a proof of this® property

4.2 The Planmng Proolem

. ln general .the plannmg problem consrsts ofa vocabulary, a knowledge base, some.
o

mxtra@l condmons and some goal conditions. The vocabulary is a particular mstantratron of the '
wsyntax of the plannirig: language
The goal condrtrons consist of a set of clauses descrrbrng what must be true at some.

goal ttme occurrmg at or later than the initial- txme

: - 3
. T N . N . .
+ . ‘- . . . : R
- .o N 5 . . .

SRR L T R

\«J

36

The mmal condltrons describe the initial confi 1guratton of the world.

*The knowledge base consists of a set of axioms which descnbe the envxronment of the

planner, and of a set of heuristic functions, called by the algortt-hm, whith perform a variety

of functions peculiar to the world being modeled.

A plan is a collection of actions (a 1ee) ‘whose arguments are constantgg
J

rranged sequentially in time. Syntactrcally, thts occurs when the second time argument. ol'

action a,; is the first time argument of actron a, i+1° A solution to the planning problem
oc, KB, Init, Goal) is a pian P = (& o) such that: “ | '

KB I— (Init & P) * Goal _ } ‘ : | ' !\g o
where KB |~ A means that A isa logxcal consequence of the KB This is the same thmg as
derwabrhty since this logic is complete - |

At the start, we know only the initial and goal states. A reasonable way to develop a

plan is to start from the known stdtes and to guess actions likely to lead to a soluthn, These

(and its success'orS) or by regre‘ssing them from the goal state (and its successors).

)

Remember that progressmg an action: is to derive frorn a given world descnptlon and a

initial

&
given-action a world descnptton that accurately deptcts the consequences of that action, and

~ to regress an actton from a sét of goals and a gwen action ;s to derive a set of necessary

4
precondmons S0 that the given action, when perf ormed, wrll achreve the given set of goals..

.

‘This progressmg and regressmg will develop two tree shaped chains of state.

" descriptions, one developmg forward from the initial state and one charnmg backwards f rom

- the goal state" Each state description will be lmked by an actron and an 1mplrcatron to its .

ancestor In other words l‘or each state Si and actxon Ai we can either progress it to obtain.

Sr+1 and Sr & Ai* Si+1, o1 Tegress it to obtain Sl+1 & Al » Si. If two states Sl and Si. Sl

Y

actio'u'iead to the creation of new state descriptions, either by progressing them f rom the

<37
';developed from the mmal state and Sj regressed from the goal state, are ever found such that
Si * ' Sj then the search trees are liked. The postulated actrons assocrated with the states on
the path from the Ma! state to the goal®tate form the successful plan. This is the basis of
brny al"gorithrn“ \ |
Thts algonthm is very similar to Rosenschem 5 brgress algonthm Its major

differences are that my algorithm is deterministic, and does not use modal logrc Furthermore

the algorithm does not allow the statement of conditional plans.

4.3 The Algorithm

v

The algorithm is essentially a ‘best-first bidirectional search, forward in time from the R

mtual state and- backward from the goa! state. Input to the algortthm consrsts of three
parameters: the knowledge base (KB), the initial condmons and the goal condrtrons Output
is either a plan, expressed-as a sequence of actions ordered in time, or a report of failure
when all possrbtlmes are exhausted o "

. As there wrll be a 1arge (possrbly mf inite, dependrng on how progressron and
: ,_regressron are 1mplemented) computattonal overhead mvolved in exhausting the search, the

algortthm should have a hlgher level momtor to stop it when the search-has gone on oo.long

The KB has two companents The first of which consists of a set of axioms hrch

describe the way the world works This mcludes general facts about and properties of t.
world but does not include the initial condmons
The second component of the KB consists of a set of heunsttc functions. These are’
used to determrne how reachable one state is from another, and how difficult certarn
_ actions are to perfo‘rm Therr purpose is to gurde the btdlrecttonal search. In addmon the KB

contains the functions which allow us to proceed from one world state to another

-

38

» : . R @

-

The initial state describes the conf iguration of the world before any actions are
postulated In pamcular it is a set of clauses, all of whose lrterals are dependant ona

partrcular start time (usually time Ti). Furthermore, 1t consrsts of clauses lrkely to be neede

in progressmg actrons and hence in some sense, the "kmd" of clause likely to be found in
“other! followmg states In a sensg, only the changeable clauses will be m the r.nmal

conditions. - -

The exact division between i itial condrtrons and the knowledge base is not always

’

clear. ‘They have only been separated ause a robot planner will solve problems over a wide

. R
variety of initial conditions; but typrcall will only have to face one set of universal laws. A
brief example will 1llustrate A typical trai passenger has no eomrol over what time a tram
icaves the station. Thus he would regarfl the current train schedule as part of the KB A rarl

baron who could easily change the train schedu e (although it mrght cost him sorjne money)

Lt got in the way
The practrcal test between initial conditions and KB is srmple Do you want a clause "

to be considered at every proof attempt? If so, it belon

in the KB. Otherwrse it belongs in

the initial. condrtrons There are no theoretical penaltres to uttrng a clause in the wrong

forum. If a clause is in the KB andr!ally only applies to initial state then that clause will =

never he used apart from reaso_ning' with the initial state because the time arguments will not

match If a clause is in the initial state but should really should be in the KB, it argain makés/
no dtfference because we requrre that our progressron method mov\ all needed mf ormatron

f rom one state to the next Therefore, the information contarned m the ¢ clause wrongf ully
placed in the initial condmons will-be progressed from state to state angd will be present in

all proof attempts. | v

a

s ' - 1

The goal state descnbes what must be true at the completion of the plan It typtcally
consists of a set of clauses dependant on some skolem constant time Tg.

kThe algonthm uses three hsts.. progressgxst, regress-list, and chonce-list. Progress-list
‘con'ta"‘ins the i’.'ﬁitial'st'at‘e and all of ths statés derived by postulating aetions' forward from the

3 o -

initial state. Regress-list contains'the goal node and the podes generated from the goal state.

—

4) / o ' i . ‘
. 2’ Ghoice-list is an ordered list of world descriptiongfrom which we can postulate

' "éfétibns. The first element of choice‘-list is always the believed most likely to lead to a
' s&}utibn. At the start of the algorithm, choice-list fisists of the goal and initial states, in.
; y . _ . ,

that order‘

-

If. chonce]lSt is ever empty then there are no more states f rom which we can postulate

an acttbn Thus the search has been exhausted and the algorlthm fails. Otherw1se we-choose -
the ftrst element of choice-list, and call it "best-bet”, - |

Assume that best-bet is also in regress-list (it must be in either regress-'list or
‘progres.s-list).g We test to see if any node in progress-list implies best-bet. If one does then we.
have connected a node from the progress search tree to a node in regregs search tree. Getplan
assembles the piah by concatenating the series of actions need%d to‘ go from the initial node to
the ndde in progress list to the series of actions required te go from best-bet to-the goal node.
"The: plan is retyrned and the algonthm terminates ;

Only one connectton wﬂl ever be found. The rest of the time we will be dealmg with a

large number of unsuccessful proof attempts; This can be expensive. One_ way to reduce the

computational“'cost is to pattition progress-list by the presence or absence of a numbey of

features inherent in each state A proof attempt is only tried when all features match. A
typncal feature could be the locatnon of the robot. ‘This heunstxc devnce can ensure that large

numbers of obvxously unsuccessful proof attempts are not tried.

. '.\‘ s "_' o
\,_,_/(l ‘ [o i 40

R ; .. S
< i . *

i

We now intensif y our inspection of best-bet. If thi8 is the first time that this node has -

 been selected as best-bet, our heuristics will create an ordered list of what actions are possible

from this state : T .' (_’\/ ‘ .
We remove the f irst actton on best-bet's actto {s to be tried hst If there are no actions

to be removed then best-bet kas exhausted its possible actions, and is removed from
chorce llSt Sy : ' . . ‘ ;
* Otherwise this action is placed on best- bet s actions already tried list and"thg utrhty ol‘

best bet is Te- evaluated
»\ Regress now uses the axioms assocrated with that action to generate a new state

description fra\m best -bet. Thrs process is very similar to Kautz's (1982) weakest proyable .
’ k]

ptecondition method. This new descrrptton details what conditions must have existed prior to

the chosen action achieving the state calledbest-bet.

¢

" This_new state is fed into the theorem proter and "fleshed out" by applying the KB

' fact axioms to it. Thie_is an attempt to bring to the surface any hidden re;lationshlps. which
might be useful for further progression or reéression. If the state contains a tautology- (a
claise containjng two literals which resolve against each other) then tl}e netv state is

‘ discarded" .

Itis also heunstlcally evaluated to see how pr ising node .t is. This is done By

attemptmg’to prove that- the initial state implies the new s"te The unresolvable literals are

welghted and summed to give us our distance measure for the new node. To thlS sum is added

Q.

the cost of gettmg ﬁrom the goal node)to the new node ’I‘lus represents the heuristic cost of a

node. S : . L :
Finally, we re-sort choice-list, now containing the new state and a re-evaluated

i<

~ best-bet, and go to the top of the algorithim's loop.

3

-~

"

[,

——
K

- The al'gorithn'l' works in a similar manner when best~bet is in progress-list.

- . Y

4]

The Algorithm
~ The

'Bigress(goél-node. initial-node, KB) . /,-

negate(goal'-node)

progress-list : - (initial-node) ; regregs-li
choice-list :- (goal-node initial-nods

Top-of -Loop

If choice-list is empty ther} RETURN(Failure- no more choiccs)

best-bet : - first element of choice-list

If best-bet is in regress-list then

T f KBl— pre= best-bet for some pre in progress -list then

4,

RETURN(get/-p‘lan(pre best- bel))
else .

chEg’ose a possible last action A that could achieve

J best-bet. R'e‘-evaluare best - bet.
if no acuon A available then
remove best- bet from chonce -list.
else
regress A from best bet to create a new- node
.Qexpand new-node by applying KB fact axioms
If new-ndde could exi‘st then '
_ evaluate new-node & append to choice-list.

append new-node to regress-list.

4

A » - .‘;;.v' 1
' \ :

‘ | else (* best-bet is in progress-list *)
If KBi— best-bet # post for some post on regress-list
RETURN (get-plan(best - bet, post)) |
else N | @

-

choose a "do-able"' actiog\A. from best-bet..

ie. one whose preconditions are entailed by best-bet.

re-evaluate best-bet.
.if no A availabie, remove best-bet from c.hoice-.list.
else '~
prcﬁr‘ess A from best-bet to create a new-node
) expand new-node by appl‘ying.KB‘ fact axioms.
Evaluate new-node and append to choice-list.

append new-node to p'rogress-li'si.
¢

re-sort(choice-list)

_ End-Of-Loop . - o

L

43

N e o '

~

Correctness of the Algorithm
Given the correctness of progress »an_d regress, the algorithm is prov'ably correct. ln

other words, ahy Npla'n P = {AI .. An} generated by the algorithm has the pfopeny:

KBi—(init & P) » Goal. | o

g . . a e
Proof:
The algorithm ter'minates. when KB|I— §j # Sj +1 for some Sj in the progress-list and

some Sj +1 in the fegress-list. Sj was created as a series of progressions, and has a series of

¢ linitial, SO, .., Sj}. In addition, each state Si has an associated action that created Si
gg that action from state Si-1 (Si's immediate ancestor). In other words, the
some action Al was progressed to state S1. S1 was progressed via some action

2,;arid so on. Finally some state Sj-1 via some action Aj was progressed to -

KBi— S1 & A2 % S2

KBi- §i-1'& Aj *Sj PR

This can be rearranged to: . '

KBi— Init & Al & .. & Aj # §j J

Similélrly.j by the corre,étness of regress, we can sﬁow:

KBi— Si+1 & Aj+1 & .. & Anw Goal | |

where the actions fAj+1- Aﬁ} form the se(zghg part of athe.\plan returned by 'tPe algorithm.
. v N

Since Sj * 8 +1 we see that: ‘ _‘ .
KB~ Init & Al & .. & An * Goal
Q E.D.

Completeness of a Breadth-Flrst Version of the Algorithm
Given the correctness and completeness of KBi— (derrvabilit).) and of progress and
regress. and-given tha(there can onlybeaf inite number of possible actions at any one time
then the algorithrn can be made to be complete. In other words, given the above, if there
exists a solution to the planning problem then it will be found. |
Proof': - C .
Assume that the successful plan has n actions. Engineer the planner's heuristics so that it
conducts a breadth fi irst left to nght progressrve only search. At each node the planner will
generate all possible actions, and then progress them into new states. It will then progress |
actions for oall_;of the node's sister states. The planner will thus conduct an exhaustive search
of all plans of length n befpre it looks at plans of length n+ 1 As there are only a finite
number of plans, our desired plan will eventually be tested. This plan will be returned because

SN
the algorithm is correct. . ./ . Lo
- o 2
QED. - . S P

' .'Ihere are very few practical advantages in making the algorithm complete in this

manne_r. Eurthemorern prover might no stop because of cycles (Lewis, 1975) in
the deductive process. ‘Thus, depenéling on how progress and regress are implemented, they
%t be complete in certain pathological cases, because the weakest provable precondmon

(strongest p(ovable postt:ondmon) mrght not be realizable in a finite form.

i

,-." ‘) ,

~ - ’

L

P
>
o ——

A simple example will illustrate. If we have the following axioms in the KB?

L J
- g"

1. ~(7xon?y? x)’v -(?y above 7z 7tx) v (7x above 7z "x)

2. ~(?7%on?y 7txJv (?x above 7y 7tx) . o o+ (E:%;
' .”-!hs ."‘ » Q;

Cne P T

the theorem prover can deduce an arbitrarily long clause\Ql the form: BY ! B

————pr—__ . N *D" P v ,,‘-‘;v,

-.("x, an ”x, "tx) v ("7, 0n 7 Mx}v.v -.("x n-1" on 7x "tx) v.(?x, above 7x _ U “k"yo.""‘*b ‘7 Yy

In thlS pathologxcal case, the theorem prover wnll not stop and hence, progress anq rcéfess \
may not be complete. I can correct this by forking of f a process every time the theorem

prover is invoked. This process would assume tt:at the prover had failed in its proef attempt. .
Thus, if the original proof attempt runs on forever this is equivalent to having a failed broof .

.attempt. o ')

res%rung to an exhaustxve sear::h. o Q | . ~ :
"4 4 Support Functions Required by the Algonthm . - | ‘ o
. A variety of support functions are used by the algorithm. Some are mdepenaEnL of
the indw:dual KB, and some are part of)he KB. The most 1mportam group of functions
independ;m of the KB is ihc set of functions which make up thé theorem prover.

For a description .of how these functions can be irhplememed see chapter 5:

The Theorem Prover ~

o
-

A theorem prover must satisfy two.requirements of the algorithm. It must be able to -

determine wllether one state implies another. Secondly, it must be able to expand a world

o

description adequately to ensure that the levelof detail is sufficient to allow the progress and

~
47

regress actions full _’scOpe."This is done by _apply.ing_'__the aXior‘ns of the KB to the current world
description. . A , |

& N = . e

.Othcr Functions Outside the Knowledge Base S L o T
The other functions f ound wrthm the algorrthm but outsxde of the KB consist of
: _getplan and makenode Getplan is given two nodes, one on progress hst and one on .
N ;egress-llsl and returns the~ plan by concatenaung the list of acnons generated by lookmg at -
rhe anceslors of each of the nodes. Mﬁmode takes a variety of propertles and places them
on the property hst of l.he mame of a partrcular node. ” \

Functions found in the Knowledge Base | - B

. There are. erght functrons to be found inside the KB. These mclude choosmg actrons to , J

be progressed or regressed progresSmg and regressmg those actions, evaluatmg and E

bd

Choosing Actions l’or Progressron and Regressron o @

-‘a--" .

The abxhty to. choose appropnate actrons and then be able @

them f rom grven world states are essermal f unctrons of‘ the planmng process If these thmgs

allow various special purpose or do‘rgam specrfrc mf erenee'techniﬁc']nes:to befpsed; an_d?wrll
increase the usabrhty of the planner m any specxfrc worlddomam Iﬁ‘pamcular it w111 allow \

"

There are however certain unrversal constraints on. these funetrons In the first place.

,thenfunctrons rmplrcrtly assume that the KB and the mrtral state contarn all of the mformatlon o

_ needed to know about what actions are possrble mcludmg complete knowledge about that

collectron of clauses descrrbrng what must be true before that action, rl‘ perf ormed would be ‘

~successf ul. This set of clauses is known as the preconditrons of an actron In other words. any

°

"do able" action can be shown.i._l_)e "do- able because all of its precondrtrons are known to

be true For example the robot needs to know that its hand is empty before it can pick up a

sonar tree; this knowledge mustt be supphed bcf ore the choose-progress- actron f unctron can be

I3

expected to generate a pickup a¢tron as a possible next actron
The functrons further aSSume that the progressron and regression axroms (or whatever

|
method is used in progressing and regressrng actrons) are complete in that any state developed

from the mrtral condrtrons contarns all of the knowledge that the planner needs to know about ‘

- the precondrtrons of any action that mrght be postulated In other words, like the mrtral state,

- any state derrved from rt must also have all of the need to know" &owledge The mmrmum

requrrements for an actron to be progressable from a given world state is that all’

preconditions of that action must be true. | |

/ The situation when seekmg actions to regress is not qurte a mirror image of. the

progress case. There is no requrrement for a eertain rrchness of detail as the goal statement
_ gives us the minimum requirement for success. |
| We must seek an action'from whrch there exrsts a set of clauses which together with

that actron wrll achreve all of the goals Thus ‘we must try to regress the action before we wrll

know 1f it is "regressable”. It is only when we regress the actron and drscover that it leads to

" an ‘inconsistent state that 1t can be ruled out. Still we do not want o postulate every actron as

a possr_ble.one.

.

When deciding whether an acuon is surtable for regression, two questrons should be
answered Does at least one postcondrtron achieve part of the current state" Thls questron
although not IOgrcally requrred ensures that the actron accornplrshes somethmg It also means |
that a lot of rrrelevant actrons will never be consrdered Second, are any of the postcondmons -
_of that action exphcrtly denied by that actron" This ensures that any obvrously mconsrstent

actrons are not ‘postulated.

Progressmg an Actlon ‘ . ' .

-

When the action has been chosen by the approprrate methods and heunstrcs the.
, algorithg wjl_l try to progress it thtough the' cu'rrent state. Any method ‘used must be sound,

ie., it must satisfy the correctness requirements, and it must ensure that the knowledge of ﬁ '

preconditions is passed on.

I descrrbe here a logical method adapted f rom Kautz, whtch will wor
an action are descrrbed by two sets of axioms. The actron axroms detarl t :
. and the f rar’ne axioms cletarl what does not change when an action 1s}pe ‘
1. "lnstanfia‘te all of the action's associated axioms (including the frame ad¥

" parttculalform of the action. | o |
2. Take the current state descrrptron together wrth the rnstantrated axioms and glve it to'the .
vtheorem prover wrth the current trme already unified agarnst t'he start time of the actron
3. Whenever the theorem prover deduces a clause whrch contarns no proposrtrons contammg ;
: the current time, white it out. Note that the clause will always contarn actions contarmng
c the current ttme When the theorem prover stops the new world descrrptron is complete.

Lets look at an example We have chosen the action (prckup Tree, Oorner, Ti "tx)

The associated mstantrated action axiom 1s

' ’0‘ 50

\ o
~(Kato isat Corner, Ti) v ~(Kato hasfreehands Ti) v ~(Tree, lsat Corner, Ti) v
-(Tree, accessible Ti) v --(prckup Tree, Corner‘ Tl Mx)) v (Kato 1sholdmg Tree, "tx)
The associated f rame axioms are: '

‘-(x isat y Ti) v -(pickup Tree, Corner, Ti Nx) v (xisaty Mx) v(x = Treel)
-(x isbehind Tree, Ti) v ~(pickup Tree, Corner, Ti Mx) v (x accessrble Nx)
The world state is: _

(Kato hasfreehands Ti)
(Kato' isat Corner; Ti)
(Tree, isat Corner, Ti) N
('I'ree1 accessible Tr) | /
We now set up the theorem prover wrth these clauses and eventually produce the

. following clauses B A ‘ |
=(pickup Tree, Corner1 Ti 7tx) v (Kato 1shold1ng Tree, 7tx)

-(p1ckup Tree, Corner, Ti Mx) v (Kato isat Cotner, 7tx) v (Kato = Tree,)

Thrs 1s our new world description. The (Kato = Tree,) literal would be strrpped off by our

fact axioms, when we try to expand the state descrrptron , °

Unfortunately, because of frame problems thrs method 1s not useable as is. My
1mplementatron is a modification of this process. lnstead of f rame axioms, I have an action

' demon'whrch describes the effects of the\actton and then assumes that everythmg remains the.

same unless it fails some srmple logtcal tests. This arrangement is more ad hoc, and certa;nly

.' _carnes no guarantees but any method. using axioms would have to guarantee the correcmess

S

of the axioms. : o L ' PO

NE

Regressing an Action |)
Agam I present a general method for regressmg an action, For specifi ic mformatron : h
on my 1mplemenrauon see chapter 5
Regressron‘and progression are very' 'similar procedures We instanuate our chosen
‘actron into the relevant axroms except rhat this trme lwe unify the actron) second time term

s

against the free time .vanable found in _the-current state. We again tirn on the théorem prover

“and stop when all the propositione contain only references to ‘thte new, unbound time variable.
; If: there are no precondmons possrble thag would achieve the current state, then no
. new descnpnon will be found, and we wrll not be able to produce a new world descrlptrgn
This corresponds to choosing an unregrcssable actxon
HAgam let us look at an example I will illustrate the putdown action frdm the robot
world. The current—state is:
~(Kato isat Corner, tz) v -(Tree, isat Corner, {z)
One acnon that could achieve (Tree, isat Corner, tz) is the (putdown Tree, Corner, tx tz)
action, The associated 4xroms are:
q(Katoansat Corner, tx) v w(Kaw 1sholdmg Tree, tx) v -(putdown Tree, Corner1 txtz) v - .
(Treel isat Corner, tz) - o '
-(Kato isat Comer, tx) \ a(Kato 1sholdmg Tree, tx) v ~(putdown Tree, Corner1 tx tz) v
_(Kato hasfrechands tz) ’
Af ter gomg through the theorem prover, we get: '
| -(Kato isat Cornerl tx) v -(Kato 1sholdrng Tree, tx) v -(purdown Treel Cornerl tx rz)

v
- Notice, that we did not need in this case to ref er to numerous frame axioms.

i .
v 3

!

! : - ‘
\

52

Determiiliﬁg Which States can Imply Others

" If we can find a state oa the progress list which implies a state on the regresé list,
then the algorithmwill terminate. Since we can logically test each new state against its
broghers on the other list it is not necessary to put the’ impliéatibn functien into the
knoWledge base. Howeve‘r. only one iinplica’tioix will ever be found, and most of the states will

be obvmysly incompatible, " .

N -
° *»

Determmmg which states are obvnously mcompauble and which states need the full

v i

o

wexght of the theorem prover to dec1de is "obvjously" the task of a heuristic { uncuon It is

» - for this reason that I have put this function in the Knowledge. Base although in the end thls

function will eventually call in the theorem prover.

a .

- Other Functions Inside the Knowledge' Base
v o A
Other functions which evaluate the usefulness of world states and actions are required
to determine the shapé of the search. They obviously are heuristic in nature, and thus belong

3

* in the Knowledge Base. For d’eta_ils‘of one implementation see chapter 5. .

3

0 5. The Kato-Heron Domain

- The only working implementa‘tion of a knoWledge base for my planner is the world of .
the U of A Kato-Heron robot. To date the robot has not. performed any plans generated by
the: planner The robot will be able to perform these plans after the middle. level navigation '
and sonar scan interpretation systems are developed “

" The world consists of a rectangular room logically divided into 5 locations: Cornerl,
' Corner2 Corner3 Middle-of -room, and Doorway Aside from the robot “the only mhabrtants
of this world are several sonar trees", wlich have a large sonar profrle and can be picked up |
and moved by the robot.
Thts is an extremely srmple worlqﬁand the robots capabilities do not amount to more

than the ability to &f fle the trees back and f orth The complexrty will undoubtedly increase

&

when the vtsron system is mstalled.

B $
4

5.1 Choosing, Progressing, and Regressing Actions

Chbosing Actioms— . | | o .
When looking lor action‘s.that may be suitable for progression ‘I'check to see if all -
preconditions are met. For purposes of the Kato- Heron world, these precondltrons are
‘detatled as a list of literals attached to the property list of each actron s predicate symbol.
Thi matchrng is done by conductmg a depth first, left to right search for brndmgs :
unifying each of the precondttrons of an actron to some clause in the current state, in a |

manner very si rlar to the PROLOG mechamsm Every successful binding is put on the

possrble actron list.

53

)

. v

The possible action list is complete when every binding for egch action (pickun.
putdown, and goto) has been found. Next these po xble agtions are evaluated by the

heuristics and then the list is ordered

. * ‘
Seekmg actions to regress is not a mirror image of seckm% actions to progress Since

the goal state describes only what must be true, 1t is unhkely that all of the postconditions
(agam detalled asa hst of literals attached to the action predrcate symbol) will unify against
the goal state In thns case, we look f or one postcondition unif M agamst some literal in the.

goal description. This corresponds to the action achieving one of the goal literals. In other
/

* words, the action does something.

Some of these actions may not be "do-able"; hbwever only when we regress the
action and discover whether it leads to an iriconsistent state- can we determine if an action 1s
"do;able" or "regressable A simple test is used to determine whether there may be an
immediate inconsistency in regressmg this:action. We s1mply check to see if any postcondition
‘explicitly conflicts with one of the /goal literals, by a successful unification of the negation of ¢
a postcondition with one of the goal literals. .This vcor’responds to the consequences of the
action explicitly disallowing one of the goals and thus rlxo set of circurnstances could exist
which would allow us to achxeve all of the goals wrth this partlcular action.

‘Again, we make a list of all of the successful matches of all of the actions. This is our

possible regress ‘action list. It is then ordered by our hduristic routines.
. !

H

: Progressing an Action
. When the action has been chosen by the appr(?priate methods and heuristics we
progress it through the current state by the following lheunstrc procedure

Cowach clause from the current state onto the new world state unless it farls a sxmple

e o 5
. . ,\,

test, which roughly corresponds to something like tli’e "delete lists" of STRIPS and is my
attempt at'ove,rcoming the major obstacle of the { rame problem. Things are carried over
unless they nave been specif ically targeted to be likely to ehange. This is different from a
pure frame axiom\ approach where nothing carries over from one state to another unless a
specific axiom is present to "bridge the gap". In other words, this step acts as a simple
def_ ault rule of infer nce where all of the‘ straightforward axioms (ie things like moving
‘the tree doesn't affegt the colour of the wall)' are condensed 'in_to; one object. Any of the
more elaborate frame axioms are to be flagged by tne test not to carry over, and are be
dealt with later in the process.
2. Add certain clauses to the new description, which correspond to the aetion}s{ioms of an
action. These are th‘e.direct postconditions of the'action. L
3. Finally, turn loose a series of functions of "demons" which perform pattern matches
between the new and tne old states. and add-and take away clauses from the new state
description‘ These demons perfotm the function of the "elaborate” frame axioms, and
compute the indirect consequences of an action. As an example ensure that if the robot
moves a box then everything inside the box must also be moved.

Some of the more elaborate consequences of the action are npt be determined at this
txme as an attempt is made to transport the minimum required inf ormauon from one state to
another. Later, when the:world deseription is expanded using the theorem prover, in |
conjunction with the'axi'oms describing ‘the laws of the universe, some of' the more esoteric

consequences are uncovered For example if we carry over the fact that the robot is holding

some obJect we do not have to carry over the fact that the robot's hands are not free.

Regressing an Action

Regrgssion and progression are somewhat similar procedures. However, as we are
dealing wim‘the rninimum of what must be true, a‘nd because the goals are expressed
mternally in negated form some changes must be made.

Before any clause in the goal can be regressed into a new state, all of the lrterals of
that clause must be regressed. As the .goals_are in negated form, eacgh sepafate clause
corresponds to a conjunction of goal literals. All of the different clauses in thegoal structure
corresponds to an "or" structure (ie., disjunctive goals)

For this reason, 1 will consrder the regression of each clause separately. using the
following procedure:

1. Inspect each literal in the clause. If .it does not fail a given logical test, then it is written
into a possible_clause in the new world state. This step corresponds to the "‘generalized
frame axiom” discussed above. -

2. Remove each literal which satisfies the postconditions of the action. Replace them wnth a
list of lrterals describmF the’jprecondrtrons of the action.

3. On any remaining litelfals loose a series of pattern matching functions which will replace
the literal by a set of literals corresponding to the necessary preconditions which af ter the,
action will result in the presence oi that literal.

If at any time, we cannot carry baclr to the necessary preconditio'ns of a particular literal then

the entire clause is .unregressable. If none of the clauses lS regressable then that action is not a

regressable action. Furthermore. if any clause generates a tautology, either then . or when

expanding the description then the entire state is invalid and is removed from consideration.”

7

57
Actions »
There ate .thre‘e basic actions the robot can perform:
- 1. (putdown treex locationx timex timey)
2. (picktfp treex locationx timex timey)
3. (goto locationx locationy timex timey)
The\'putdo'Wn action causes the robot to place whatever it /is holding ‘i'm'o\'the same

y

- There are two’ precondmons for the putdown action. Fifst, the robot must be holding

loglcal locauon occupied by the Tobot.

something, and sec@i, the robqt must be at the location that whatever 1t\ is holding is being
placed. « | |
The direct postcdnditioné of the putdown action are: that the robot's hand becomes
empty; tnet whatever it was holding vis no§v at the specified location; and that whatever was
just ~putdown is now accessible to. the robot. The secondary postconditions are that anything
that was accessible to the robot is now Behind the object that'was jnst.lputdown. Everything
else remains the same. | . . ' ! ‘ | o .
The pickup acuon may be performed when the robot is not holding anything
| (hasf’ reehands) i¢ m the same locauén as the tree; and‘xf the tree is not behind anything (1e
acceSsible). These are the preconditions of the pxckup action.
" After the action is' performed, the tree will be held by tiie robot. Furthermore,
anything that was behind:/tpe newly picked up object is now accessible.
The robot may perf orm a goto aetion at any time, It does have a i)recondition; in ‘that

the robot must be at sorne location, but since the robot will always be sonfewhere, this

: 1 -
precondition is not much of a hindrance.

O R
: 58
The performance df the goto action causvlb robot to arrive at the specificd

' locauon The robot s middle level nav:gauon routines will ensure that obstacles are avoided.
There are no other postconditions ?f this acm, ;verythmg else remains unchanged.

i
T pere is the possibility of EK{: 10 _marmmg a null goto action In other words the

1obot movmg to the same location as it currently occupnes 1 could easily %uard against this,
but it would make the hierarchical movetree operator mor¢ difficult. B e
TNere is another minor problem with the precondili;)ns and postconditions as given, \
'nan)ely garpage in, garbage“ out. I do not dem‘and phat things be explicitly "pickupable”, or be
, ‘"place_s". Clearly, Kato cannot pick'himselt; up (bootstrap procedures notwithstahding): but
he also cénnbt do anything about it. Thus if you give the planner the goal "
(Kato isholding Kato Tg), you will get the plan (packup Kato Katos-location Ti Tg). Thig

sort of stuff <an be easﬂy dealt with by addmg in a series of consxstency checks before tummg

the problem over to the planner. ‘

» Facts about the World o ; /_\

_ The.Kato-Herén KB contains a variety of f acté} and properties. It, of course, has the

usual idcr{tity facts: - S \
'-,(i(ato = Treel).';-(Tree, = Tree,), etc. | -

It also has some‘ properties, for example: -: ﬂ"-
'-'Ex behind y tx) v ~(x accessible tx) !
g -(Kato isholdjng treex tz) v =(Kato hasfreehands-tz) v

~(x isat locationx tx) v ~(y isat locationy tx) v*(x = y) v (locationx = locationy)
These allow us to, "flesh-out” the various state description“‘s\. and are‘espgcially useful when

checking whether one state implies another.

59

Some of the%nf ormation contained in these facts aré®also contained in the various . e

Ko

demons. . “ . .)

Evalumgg the Cost of States

The cost of a node is given by the function
U(n) = K1°* Cost of -plan(n) + K2 * Dlstanee remammg(n) + K3 * Acuons tried -cost(n)
The function Cost-of -plan(n) gives tl'le cost of progressing or regressm_g- from a root node
(either the initial node or the goal node) to node n. Thls:cost is known exactly by adding up ’
the "cost" of each action*needed 10 arrive at that state from a root node.

Currently, the actual ’o;et of any action is&established to be 5 units. ‘As the planning

Smceeds this cost bul’lds up eventually overruling everything unless a the constant (K1) °

governmg the bunld up of; costs xs set to zero. This ensures that no plan is overlooked entirely.

The f uncnon sttance remammg(n) is a heuristic guess at how close node n is. to‘he

<$~

othier root node calculated\by a we:ghtgd sum of d:f ferences between n and the root node.
p

7\\1_ . The dnstance hetweeng,ha mmal“state and a state q¢ ‘thg”j;gress list is measured by

testing each lnteral m the fegreﬁ? tatg;ﬂ; 11’ ‘thed"hy thg)%al statgy M it is implied
o K § . %5 i dia L%

s.ate %dged Uf"?&i

ween 1 (no lxterars

s1m11ar1y

The nunfbur;ﬁo as. clmsen because the practxtal planmng hmnt to-date has been about

» W 't

a plan of 6 acm%si Thﬁs e‘sme'wnh nothing in eommon w1th its correspondmg root node is

¢ -
N -t v'ﬂ‘)'

) >
placed at the edge of our search.

Action-tried-cost is a heuristic which reflects the loss of utility of a node when many

of its most promising actions have been already tried. My implementation merely adds an’

, amount (6) to the nodes cost each time an action is expanded. The number 6 was chosen

because it'is just a little bit more than the cost 9f an action; Thus our heuristics will prefer

the sons of a node over the continued expansion of that node. This makes our search a little

more adveﬁturou‘s'. | |
The constants Kl. K2, K3 reflect how the search is to be conducted. For example 1

can make a breadth first scarch if I set K1 to 1 and K2, K3 = 0.

-

’

Currentl)", K1 is set at 1, K2 is set at 30 (the event horizon), and K3 is set at 1.

’Ordering -Actions

The priority orderi;g between possible actions wcn‘teria. The first criterion is

-
what action was last performed. For example, if the la n was a pickup action then the

next action*should rfot be a putdo%n action. The second criterion is a form of means-ends

analysis. If we are progressing actions then an action is preferred if the postcongifions of that

action will achieve some part of the goal. If we are regressing actions then an action is

prefefred if the preconditions match some of the initial conditions. ,

- v

The actual calculation of the ordering of the actions is straightforward. A
non-preferred action is given a penalty of 1000.
-A pickup action has a cost of 10 unless the last action peff ormed-was a putdown -

action, in which case it has a cost of 100. A putdown action has-a cost of 20 unless the last

[
-

action performed was a pickup action, in which case it has a cost of lm.i‘%inally, a goto

1

action has a cost of 30 unless the last action performed was a goto action, in w}lich case it
’ L]

<

4

also has a cost of 100. These costs are added to the non- preferred penalty to obtam the

Ve

_ ovcra]l cost of an actlon R § ‘ .

The list of acnons to be tned 1s then ordered on this basrs There are no. dlfferences in

_cost between diff erent/bmdmgs of . the same actxon (eg two pickup actlons) unless one 1is a

=(Tree, isat Corner, tg) AR - §

‘preferred acnon.'and the other is not. _

,'negatesthxsto o ' R R e

- k
) .
. .
B

- "

» .

SS. 2 A Slmple Example

' A typxcal problem f aced by the robot is to get a certam tree into a grven corner.

The goal is (Tree, isat Cornerz Tg), where Tg is some unspec1f1ed nme The algonthm }.’f

=

Note that the goal time has become an unbound variable.

: The mmal condm.({\s are: ~ « U e

’ (Kato isat Corner; Ti)

< (Kato hasfreehandsr Ti) . ’

V(Tree,'isét Corner, Ti) o N o - ,, 1

(Tree, aceessrble Tl) : -

B

" The dnstance measure between the M nd the mmal state’is 1 (no hterals in .

Acommon) ‘The unhty of both nodes is then 30 The algorrthm autornfait{all/y\places goal node |

in f Tont. of',the mmal node thus makmg the gqal node our "best bet". ‘ Xy

N

The only possrble Iast acuon that would achreve the goal is:
(putdown Tree, Comer, ti tg) - ' E
After Tegressing from the goal state I get RN : ' L

'_ -(Kato |sat Corner2 t,) v -(Kato xsholdrng Tree1 199 B : .

N o _ | » | ‘ .J:.

Y

¢ Toa

lCorner, t,) v (Kato hasfreehands t,)’ . '

This state (call it node,) has g distance measure of 1. There are still no literals in common °
(the ha;.sfreehands literal is not negated). It thus has the sarne measure of distance remaining
as the initial'state. This cost is added to the cost of already having perf ‘orm.ed an action to
arrive atacost of3. . ﬂ

The goal state having expanded an actron is then penahzed grvmg it a value of 36
The chorcehst now consrsts of the mmal state, node,, and the goal state in that order. node, .
is preferred over the goal state because I feel ag adventurous search usually succeeds faster

./

than a breadth first search. Therefore ¢ the goal node was penalized qurte heavrly to favour its

« 4 - 4
—

offsprmg. | ‘ _ | ‘ / ' - -
The initial state now becomes our "bést-bet".v Cl'eariy; it does rmt 'iinply either nogde,

or the goal state. The sear'ch for a'ction;s finds"tw.o possibie actions; a goto action and a pickup |

actron Smce the pickup actron is considerably harder to arrange unless the last. actron

perf ormed was a putdown action, and ‘because nerther action, can make part of the goal come

_true, the pickup action is preferred by our heurrsucs , ‘ ’ |

, _ The action (prckup Tree, Corger, T1 t,) is progressed from. the mmal state to

(Kato isat Corner, t,) '

(Kato isholding Tree; t) ‘ | .
g - -(Kato hasfreehands t2) \ ' . - : g B o : * |
Call this state node,. It also has no literals. In common with the goal node and thus haséﬂ(

dlstance measure of 1. After evaluanon chorce <list now consrsts of node,. node,. mmal and

goal states Node, is now "best bet"’

PO

- //‘ . I i ’ " “ i ’ . . . '. 63]

Node, does not lmk up. thh any state on progress list. Our routmes find two possﬂale

actions: a pickup ac;uqn. and a goto action. Smce the last action perfqrmed was a ‘putdown
action, the goto action is favoured. This giVes us: | |
(K‘ate.isat‘x ts) o
(Kato isholding Tree, t,)

~(Kato hagfreehands t,) N

.This state (node;) is then evaluated. There are no matches with the goalstate thus giving it a
dlstance meaSure of 1: In this case, this heuristic has not been partlcularly useful, because
there is on J one goal hteral Chmcehst is now node;, node,, initial, node, andm Best-bet

| l nqw becomes node;.
Since node, implies node,, we have discovered a solution to the planning problem. The

plan 1s ,. | ,) .

i . ‘ v 84‘

(pxckup Tree, Corner, Tx T,) ’ :

ta -

(goto .Corne,ra.T, T

(putdown Tree, Corner; T; Tg) ’ .
* = S

Note that wheh the action sthtements ‘,flozming the plan are negated the time variables become
. o :: B - . ') ’ % . oy
skolem constants. N q

-w.

5 3 Arvar Y of the Reglster Exchange Problem

 Twill 1llustrate the power of the planner by doing a variant, of the reglster exchange
Y

problem To do. thxs I wﬂl create a higher order vanant of*Kato's world whxch msludes only

- one acuon the movetree actxon This wm(greatly expand Kato s abxhty to shuttle trees, whxle

ﬁ
at the same time reducmg the- complexltyﬂef the seargh

- e,

“

$ <

_ rs 1n Comer, The goal is to reverse the posmon of the trees

of search in any detail.

64
The Movetree Action . o . \ ' o
Movetree isa concatenanon of the goto, pnckup. goto and putdown actions. THe &

_form of‘ the acnon is + o ' ‘ I S ‘:\
(moveh'ee treem locanonx locanony tx ty). o ' o

‘ Lt

' The precondmons for the action are: S o o I “3\
(Kato hasfreehands tx) . " e | |
(treex isat locationx tx) | o ' '. - -
(treex accessible tx) L , o e

The postconditions of the action are:

(Kato isat locationy- ty)

2
*

"(Treex isat-locationy ty) . e B

(Treex accessible’ty)’

(Kato hasfreehands ty)

The mdlrect consequences of these actions ate the same as those that would occur if Kato

performed ‘the sequence of acnons that make up. the movetree actnon 3 - ' L,

In this example, 1 wﬂl not drscuss either the heurxsucs ‘or the varnous other branches

o . g T .

. v‘ : Lt o . . . \ . . o) ‘
Theproblem - ' \ T ., . o

Ao el

The mmal condiuons gor the problem are strarght f orward Tree, is in corner. Tree,

A

g

el

More elaborately, the 1mt1al condmons are

% 1 (Kato 1sat Oorner, Ti)

§

PR
Y

T (Kato hasfreehands Ti) .

3. (Tree, isat Corn.er, Ti)
4. (Tree, accessible T))
5. (Tree, isat Corner, Ti)
6. (Tree, accessible Ti)
The Goal when negated.iéz ‘
1\.’ ~(Tree, isat Corner, tg) v ~(Tree, isat Cornue'rl tg')

- The f irst action taken will be a }égress action;

~ (movetree Tree, locationy Corner, ty Hg).

.When the regression is performed we getb the 'sﬁate:

—-(Trée, isét "Iocationy f’fy) v n(Kato hasfreehands ny) v L
~(Tree, accessible "ty) v (Tree, isat Corner, 1ty) . m
Clearly this state (nodel) does not match agamst the initial state. Let us say that the
heunsucs predxct a progresswn next, and that the chosen action is:

(movetree Tree, Cornerl Nocationx Ti 7tx)

The new world state (node,) is: .. ‘
v(Katc i',sat. Nocationx 7tx) ' M’ .

(Tfée, isat 7locationx 7tx))
(Tree, accessiiale'_?tx) - 4 T ?
(Katd hasfreehands 7tx) .‘

(Tree'; isat Cc;rner2 "’t'x)

(Tree, accessnble Nx) v ("locatlonx = Corner,)

Clearly this state does not match agamst the goal state, or the state ansmg from the

- regression ajcuon (node,).
s V3 : . €

M . \ el

66.

Finally let us next look at the regression of node, from me acuon
(movetree Tree, 7locationz Corner, M '7ty) S A :"1;
. . .) N ‘ > .
This gives us node, ‘ ; : % L

—-(Treel isat "locatnony Nz) v «(Kato hasfreehands Mz) v ~(Tres; ‘yiat "locmonzjlz) v

~{Tree, accesmble Nz) v ~(Tree, access1ble "tz) v (Tree, 1sat Corner, "tz)

This state is 1mpl1ed by the progressxo}: state (node,) given the bindings to replace 7locationx

" by Corner;, "locatxony by Corner, and "locatxonz by Cornér,, and the knowledge comamed in ‘ '

S

di‘sjunctl.ve goals)

the KB that ~(Corner, = Corner,), etc.. This 1llustrates the requxrement to have a set of fact

and*property axioms.

5.4 Disjunctive Goals

I will present a final, ,trivial example, illustrating the ability of the planner to handle .

* The initial conditions are absurdly simple:
(Kato isat Corner, Ti) , 8
The goal is almost as simple: o \ 3 C R
(Kato isat Corner, Tg) v (Kato isat Corner, Tg)'
This is negated 10:
~(Kato isat Corner, tg) |

»

-~(Kato 1sat~Corner2 tg)

‘'When the algonthm starts, it almost immediately determines that, the goal state is lmplle&(b

the initial state and that no plan is requlred This example, however tnvxal is beyond the

- ability of most of the STRIPS- like planners because of their inability to cxprcss dxs;uncnve

goals. T .' . m

A}

. goals,

L

With this logical approach, no special procedures are required to deal with .disjuni:tive

i . %) 67

. ‘ | .
6. Implementation Issues not Concerniig the Knowledge Base

Tthf robot planning system is written in Oommo:\g Lisp. It currently runs on an IBM
PC AT and a Sun 3 workstation. All of the system's development was done on the AT, but

because of the AT's limited memory, it has been moved to the Sun.

©

The program is about 800 lines of lisﬁ"code. and {:onsu’mes about 1 meg of memory

when running on a small problem. ‘ E
5 * N \

[] P .

Data Structures :

The central data struc-ulxre'of the algorithm is the nl)dedesériptior_x. It is implemented ,'
as a series of pro’perties attached to the property list of the 4 nique symbol assiéned to ¢ach
_world descriptio@. The primary prloperty is a list of clauses which de’scribé the current world
state. No action;kliterals are part of these clauses. The next pr*eperty is the instantiated action
which geneféted the current world state. O"n the parent property isithe name of the node
which together wittz the action caused the nod.ev to come into‘ex stence. On the initial node and
the goal nodes the action property fémd the parent property are Alvank. Getplan uses these two ‘A
properties to assemble the plan. ' \ | N L

" The néxt property is the he\uristic, value of the nqde.‘This\gi\fes the (hoi)ef ully)

likelihood of determining a solution from this node, and ig what determines a nodes location

2
\

in éhoice-list_. Finally there are an ordered list of actions to be tried and a, list of actions -
already tfied. These are used by the heuristics to determine what action should next be used

when progressing or regressing from that node. ‘ ‘ , S

i) : :) .

68

l , S 69
| | 1
r o

The Théorem f’rovér) A

| A major component of tﬁe bigress algorithm is the theorem ﬁrover. The basic méthod .
of operation was taken frohl John De Haan's (1986) theorem prow)er; It does not use
paramodulation as a rule of inference, because the Ka'to world is simple enoﬁngh nof~,‘16 need a
substitution rule, and Wﬁuld tﬁus add.unnec,essarily to the complexity of the s_ystemf“Any of
the needed identity: -rela.tionships are stored as facts within t};e KB. _ \ |

The theorem prover tries to f; ind:};in empt); tlaﬁse. Input consists of a list of clauses

and possi}:ly some prgdigested clauses (see the next Section). For every input clause, the
kprov‘er renames the variables, lexically orders thé clauses, and gives it é name. In other words,’ i

'8

the prover puts the clause into a canonical form, ’fhen for every literal ‘in the clause it pufs
the name of ;he Sause; and the number of the literal onto one of two lists. If the literal isy
positive, it goes onto a list of positivé occurrences of that predicate. -Othgrwisc'it iSApi‘?.Ced on
the a list of negative occurrences of t‘}.fe‘ predicat:.' These lists are found on the property list of
the predicate. - ' ‘ . : N .

' Inv_this manher we assemble lists of positive and negative occurrences of each
pfedicate. Cleaxly,'a resolution is possil?le only when we try to resolve a positive occurrence of
a predicate against a negative dccurrence'of tfxat prgdicate.JFor every distgnct pair of positive
and negative occurrences we éreate an agenda item which séys to try resolving these -.t:wo _ ‘7
literals. _The agenda is then\sort'eq by l&%ﬁg@t the length of the resulting crause, and plgdhg
the shértef ones first. o -

The theorem prover npv}_ takes each agendaﬁta\ni in turn, and tries each resolution. If
the resolution fgils. \;l% proceed to the next >agenda item. If the resolution succeeds, and we
have not generated é?xpty'ﬂclause. we factor, and turn the resulting claiise into canonical

¥

i v .
4] 'e%!ames of the parents, and the resulting binding onto the propetty list

\

70

of the new clause Next, we add its literals to the positive, and negative occurrence lists.

Finally, we make agenda items for each new possible resolution of some literal of this clause
against some previous literal, and re-sort the agenda.
If we ever. run out of agenda items, the proof _aitempt fails, If we ever generate the

\

empty clause, we backtrack -along the successful chain of resolutions and return the binding.

ol

Expamiiﬁg World Descriptions .
The matter is a little different when the theorem prover is used to expaﬁﬁ the world

~ description. This is very important as a variety of implicit relationships must be brought 10
I - . .
X .

'. jthe surface if our heuristic pfogress and reércss functions aré to work properly.
In this case, we take the current world description/and add it to the axioms governing
: i ,
the functioning of ‘the world. As these axioms have already be i)rocessed. t,heir_individual,
interactions a:e,,')rxot placed onto the agenda. Only the possible resolutior{s between axioms qnd
7 . o o
world clauses, or between clauses are placéd on the agenda.
When there are no more resolutions, or aftér a certain amount of time, the expansion
process stops. All new clausés generated are thén'added to the world descripﬁon.
If the expansion proces'é 'ev'er generateé the empty clause, it terminates with an error

message. ‘ ' 1 : -

. | : 7..Conclusions e

As discussed earlier, rhariy implemented‘ﬁanning systems have had f undamentél logic
problems when attempts were madé to expand their domain. Logic planning systems, on the
other hand, ha\{e always foundered on the combinatorial' explosion of complicated problems.
This thesis has tried to develop a middie approach Producmg a workmg planner for the
Kato-Heron robot, and yet desxgmng the algomhm with enough flexlbxlxty/to allow for easy
extension into more complex domains. l
| Af ter a brief introduction, this thesxs discussed some robots and gave some.
background to the U of A robot. It became clear that the planning 1ssues confrontmg the
Kato-Hcron robot were central to the development of mobile robot system.. ,

The thi;d chapter. discussed some plarming systems, and expanded on some of the
central features of the planning problem. |

Tﬁe fourth chaptet. detaiied the first order logical groundwork which allows the |
- statement of plans. It further dnscussed the deterministic bigress algorithm, and gave proofs of
its correctness, and completeness of a breadth-first ve‘sxon of the algorithm. It also dxscussed
some of the invariant requuements of the algonthm A

| The fifth chapter discussed how this planning algorithm apphes to the Kato-Heron

rdb’ot. In garticular, it detailed the various heuristic functions used by the system, and gave a
few exaoZ:es of how the system works. . -

The sixth chapter dlscussed some of the implementation issues n0t related to the
Know_ledge base. It concentrated [pn discussing the theorem prover.

¢

This last chapter will discuss the strengths and weaknesses of the present planning |

§ystem.‘followed by sbm'e remarks on how to expand the system. Finally, some concluding

remarks will be made.

-7,

VN

7

7.1 Strengths and Weaknesses

The Kato-Heron world is very straightforward. A planner to allow the U of A robot
: . R 7 *
to function in its environment need not have been sofelaborate. There are a number of

disadvantages with the oresent system. .
Fiisfly, the planner can currently only plan to a depth of about 5 or 6 actions. More

than this afhount \rsually causes a stack overflow erro'r.‘ his explosion of the search space can

be made worse if my simplistic heuristic orgéring'functi s choose the wrong ordering.

| Secondly, the planner cannot create condrtional pians. This"ﬁvmakes the utilizgtion of

~ sensory feedback difficult. This is an important extension if _the plannor is to mako the’

Kato-Heron robot at all useful. |

Another problem is that the search pr0c_e_dures will eventually try out evéryordering

of conjunctive goals, even if there is little or no goal interaction. For example, if we want to

place Tree, in Corner,, and Tree, in Corner,, etc. the algorithm will consider the emblacem?:it’\

of any one of the trees as a possible last action: The emplacement of any remaining tree is

Q
then a further possrble action. This can give Tise Lo a very large search tree.

One possible way to avoid these problems is via an adventurous search. As long as we

are in some sense "succeeding” we try to maintain a depth first search Iti is only when things
. look equally bad that we resort to a breadth f irst searcn This of course, relies heavily on the
clevemoss of our heuristics. |

In-fact, a straightf orward programming tour de force would probably have produced a
soireravhat flashieg, if more ad hoc (and hence, disposabfe) planner. .

I bolieve. howevor, that the advantages grearly outweigh the disadvantages. Thef‘
grearest kcontrib.ution of the planner is thalt it is 1;0ssib1e, if ermewhat urrwieldy. to create a
(useable planner based o first ordor»predicate oalculus. 'I;he power of modal logic is rrot

N

’

/z

s

,

E

o
Lt

. TR o] ;-
ﬂ B A ; -+ ¢ o \3’4
3 . &mr‘ o PRI .3
'y N %’ ,’ o, 52 AP M‘ X '

requrred gr - i ﬁ . |
Furthermore, the planner avoxds\t\e f ull for of the frame problem by the use of a

default rule of inference, whrle at the same tlme it performs much better than other heurrstlc

systems when considering’ dlsjunctwe goals, or goals wrth heavy mteractnon such as the variant

‘.

of the register exchange problem. ,) .

7.2 Exp[anding Bigress ‘
! :

Another. advantage of the present system lies in its expandability. This section will ~

explore some obvious extensions to the algorithm, and will conclude with some possible

applications.
/ ‘ ' !
Parallel Bigress . _ & o
" The Bigress algorithm is almost a natural for parallel nnplementatron Thrs 1s R

bl

rmportant as any serious problem solvmg will probably be beyond the reach of most serral
machines. ' A
The algorithm essentraily burlds a double tree shaped search graph. Thus searchmg
ajong drf ferent branches of these trees cgn be done almost entirely in parallel Progressmg,
and regressing actions ate quite mdependent but the choice-list structure would have to be
o._verhauled to take advantage of the parallelrsm. ~ : . 1; :
In addition, as mtercommumcatron between trees is only req{nred when determrmng

whether one state can imply another, the unphcanons could be performed in parallel as long

as we had arranged a semaphore on the progress and regress- -list data structures to tell us 8 K
Ed

" what states have been checked ’ _ — = :

N

*

.. , 74

Hierarchical Planning , E

With its logic based approach td planning, this algorithm is partncularly vulnerable to
trying to search 100’ large a seai‘ch spdce and hence f alling'mnserably A necessary
1mprovement would be to reducg the _search spacc. and-as Kautz says the greatest eff iciencins.
in search can.be gained in the :se of higher order planning.

As long as it is possxble to accurately describe the effects of a hlgher order action, it -
does not matter to bngress whether the action axioms are pnmmve in some sense. We can
just use bigress u; derwe a high order plan. This plan would be a series of high order actions.
Then, for every ngtion in this series, we would call bigress to f orm a »loner order plan using
the results of the higher order actions/ as goals for the jower order planning. Of course these
~ 'ne\:/ calls to bigress would be with a fower level knowledge bane detailing the ’et: fects of the .

more primitive action. These lower order plans would be strung together to form a new plan.
This new plan might even be used as a bnsis for further, even lower order, planning.

Ih sc;mé gnstannes,,these lower lgvel’ actions can easily be prep}anned. This is clearly
the case' with the Movetree action descrihed earlier, ”I;here we hnd a stricbéoncalenation of 4 |
primitine actions. In other. cases, a higher le:/ei action wauld have to be planned out in lower

" level detail every time the higher lev’eljaétioqll; ;ﬂ;stulate_d. A simple exampleiof this is the'
"cook dinner” operator. Sodxnanyrdif ferent things can be done to make so many different
dinners that it would be foolish to try to precompute the_‘ low level actions needed to conk a

meal. All the s’ainé, we can make some pretty clear logical statements about the higher level -

- 'cook dinner' operator. - .

L d

¢

Conditional Planning - LT e

k The current planner 1mplrcrtly assumes that all precondrtrons requlred for progressmg

an actron w:ll be known to be true or not befq;e executro‘ begms Thrs is clearly not always

the case ' T R |
;

Thrs means that we rrust change our requrrements of what actrons can be progressed

You wrll recall\}hat we had msrsted on all precondmons bemg true before allowmg that an -

acuobe progressable Now we mn assume that one or’ more precondmons will be true. of

[l

. course we must enSure that our assumptron strll mamtams a consrstent world state. We can

now carry on and derrve a plan that wrll work rf all of our assumptrons turn out to be true.

. “ o If -we f eel that the assumptrons are as likeely fiot to be true then we. can assume ‘that -
7 ’ ﬁ . -

the opposrte is true and derrve a plan with the. opposrte assumptron Thrs other plan may

¢

mvolve taking steps to achieve the. vahdrty of our assumptron. Smce one or the other must be

true we can now Jom these plans with a test perf ormed at executron time, If the test shows

-

~ the assumptron ‘correct we chose one branch of- the plan otherwrse we perform the other o

- \

RN

<
‘brinch. S

PR

know that a tree is erther in Cornerl or m CornerZ ‘Testing Cornerl to determme the presence

-

Ql' absence of the trée wrll tell us What actlons to perform : L - R I T

-\ of course,. rf our heunstrcs told us that a precondrtron was lrkely to be true ‘we coultl

just deVelop the lrkely branch We would Just assume that the precondmon was true The

other branch would be merely expressed as a call t&oﬁ planmng algorrthm, 1o be: executed rf
AR W : . .
the executron of our plan farled LR e e _.,./ :

S »- B o

Thrs abrlrty to assume is a very powerful feature If somethmg rsn "t 1mmedrately

avarlable Just assume rt Thrs could lead to a swarm of condruonal plans A rnore reasonable

’ g o -

. S [-.J . ; ‘ .:. ‘ r, . ’ .;‘ | . : : | 75

Thrs testrng procedure is a perfect place tQplace sensory mput\I‘or\exarnple,\we may

]

] \

approach would probably be place restrrcnons on. what could be safely assumed. One posslble

K]

‘ optron would allow us to only assume certam precondrtrons such as the locatrons 6l' trees

4,

and perhaps certam mtemal states of the robot Other‘ precondmons such as’ whetha certam AN

Sy

: doors are locked are not would have t'o be known before the plarmer started

Iteratrve Planmng S 3 Y

Wrth‘xhe concepts of hgrrclm%l. planmng an' condrtronal planmng. rt is posslble to

Al

produce iterative planmng Srwgcregte*ahrerarchrcal pfan be composed of a condrttonal
plan in whrch part of the condition contams a reference to the hrerarc@ucal plan itself. OFf - -

- course, certam precautrons agamst mfmrte recursron must be taken. - = \\w _

ﬁ

The eﬁact mechamsms. and requtrements for this sort of plannmg are not well

f‘ explored - 7 v . N / B ' ’ k ‘. N 9 “.b'.v :
. | Concurrent Plahmng :

s TR As mentroned .earll& thrs frrst ordsr format for expressmg plans with trme argwnents

S

" r§ almost ?natural for plannmg concurrent actions. We would have to extend ‘the semantrcs q‘ g

the language as well as provide. some specral purpose trme mference mechamsms but the

' basrc structure of tlre algorrthm would remain the same \ |
4 ’ :\ ‘7,' . 1 !) ' A_: ’ . : "- f"-r :
Planmng Planmng L S B SRR -

We typrcally thmk of hrerarchrcal pla-nmng bemg composed of hrgher order actrons, ln B

A order to save trme and effort we usually try to precompute the ‘Tower order actrons as the¥

DAY
PERA S L2l

tendtofallmtodist!lnctpatterns | 1’ SRR : ?;,

@» g 3.

77
e Another approach would be to regard hrerarchrcal planmng asa prrmrtxve form of
planmng the plannmg Instead of stackmg blocks and movmg trees, we could visualrze 1t as

movmg precondmons and consrdenng mteractrons Thrs view may be able to reduce the seﬂ:h
--,spaceevenmore S o o L .‘ ar 'v “ P

' " Quite often, humans can 1dent1fy the hurdlesaof the planmng process quite easﬂy We

| then devrse heuristics for the planner that guide our search accordmgly After all, glven a set

of goals we can usually say wnth some precrsron what certam low level actlons must be

_ perf ormed The order may not be«known and other actrons may be mterspersed but’ certam -

o 'acuons wrll be performed

»
\ © ~

In conJunctlon wrth plannmg speech acts James Allen (1987) has wrxtten on

r

'%taplannmg andhas proposed. some specific meta-level actions for mampulatmg and :

modlfymg plans,

»

- Clearly, planmng planmng is an rmportant fleld needmg much mete research

1_'FutureApp]|cations o - B o / | B L /
v. ~The planner as 1t stands is- unsur&able for 1mmed1ate apphcatron to real world N

problems Iﬁwould have to be a'part of a higher level system whxch would invoke the planner v

'. when requlred Othcr parts of thrs system would mclude sensory perceptron abllmes As such .
, \e\glanner could easrly be used in serm autonomous fo s

¥

s s'paeeCraft,’ ,deep sea

robots or other hostrle envxronment robots where human supe 1s1on is mtermrttent e

X Other applrcatxons mclude robots whrch ave nghly vanable tasks wrthm a regular

i

Pl .
¥ world An example of t'hrs is a couner robot nside of an off ice block A final apphcatron is. a] L

self dir&ted robot whrch chooses its. own go grven the srtuanon it is: currently e acmg, and

- £ then must ha_ve so/method of achrevrng those goals

7 3 Concludrng Remarks

The planmng system as 1mplemented creates only simple plans Issues such as the
frame problem are dealt wrth ina heunsnc ma.%ner while. maintaining the l'lexibtllty of the |
-A-logrcal apprqach Because of thts f le)ublllty, the system is able to outperform some of the,_,,-

STRIPS like systems on a number of very simple problems

" The maJor achtevement of thlS planner is to demonstrate that a plannei{/:ased on fi 1rst :

‘vorder loglc can be, f easnble whrle mamtammg tts generahty*tmd expandabthty « This allows the

*

system ‘t0.be mcrementally, and elegantly expanded to cover larger and larger problems as

L

tlme. and computing resources allow. - B oL ' : ey
. i > _ ; k‘f ' - T : .) - e . .,,‘ ;

Bibliography
&

Aleksander I.; Bumett P. 1983 Reinventing Man Kogan Page

Allen, J.: Litman, D. 1987 "Plans, Goals and Natural Language Special Issue on Natural
Language Processmg of't the Proceedmgs o f the I EEE Forthcommg ‘

Brauzil, B.; Briot, M.; Ribes, P. 1983 "A Navigatlon Sub-System Using Ultrasonic Sensors
‘ for the Mobile Robot Hilare." -Proceedings of the 1st Intggnational Con; ference on Robol :
Vislon and Sensory Controls. Stratford -upom- Ayon uU. K

tﬂa Raja. 1982 "Path Planning and: Environment Leammg m a Mobile Robot System
European Con ference on Arti ﬂc:al Intelkgeue Orsay, France ‘

[ﬁoles L.; Robb, A.; Sinclair, P.; Smith, M.; Sobek, R. 1975 "Decision Analys:s for-an
Expemnental Robot with Unreliable Sensors." Proceedings of tbe Fourth Intermzuondl
Joint Con ference on Am fi # Inlellgence MIT, Cambndge MA. L . .

; De Haan John. 1986 Theorem Prawing ina Toplcally Ordered Semanttc Net Masters Thesxs
' Umversnty of Alberta Edmonton ‘ _

~ ~

: D le J 19'19 "A Truth Mamtenance System ™ Arti fétal Intellzgence 12(3)

B, ¥, 1987. % ‘Based Real-World Mapping and Nt‘v:gatxon IEEE Journdl o f
Rabotzcs and Aul¥mation ¥gl. RA-3, NG 3, Foa, & &
: UK

Erman L.D., Hayes-Roth F., LesserV R., EddysE R. 1980 "The Hearsay -
Speech- Understanding System Integrating Knowledge to ResolveUncermxnty

- Computing Surveys, Vol. 12 No. 2 o _&» .
. Fikes, R. E.; Nilsson, N:1971. "STRIPS: A Nevr* A ch tQ the Appl_itation of Theorem "
Provmg to Problem Solving" Amf ctal Intellzge (3/4) pp 189-206. :W

%"

- Giralt, G Sobek Ry Chaula R 1979 "A Mulu Level Planmng and Navigation System for
A Moblle Robot; A first Approach to HILARE" Proceedmgs of the Szxth Internauonal
Joinx Coﬁ ference on Artifi czal Inzelltgence Tokyo Japan X

C 'Green C. 1969 "Apphca‘)n of 'I’heorem l‘rovmg to Problem Solvmg Internatlonal Jomt .
- Conference on Arufcml Intelligence Washmgton b. C. pp 219-239- SR % .

: Gruver W A.; Soroka, B.1.; Cralg, L J Turner, T. L. 1983 *Evaluation of Commemally

 Available Robot Programmmg Languages 13th Internatzanal Symposzum on Indusmal -
Robots Cmcago : ., B . .

v e ..
- - ES
. ’ . . :
. . . >
\\\ - oo ¥
: - ' L) . ' °
.

*

A 'McCorduek P 1979 Machmes Who Think San Franc1sco W H. Freeman and Company

.

Inoue, eroch’:ka 1985. "Buildifig a Bri ge Between Al and Robotics Proceedlngs of the
- Ninth Intemauonal Joint Conference on Artz ficial Intelligence Los Angeles, California. .

Kanade, T Thorpe; C. 1985. "CMU Strategrc ‘Corhputing Vision Pioject Report: 1984 to
Lo 1985 Carnegxe -Mellon University, Prtt.ﬂ)urgjx PA. CMU RI- TR 86-2, Nov.

Kautz, Henry 1982 ”Planmng Withi Frrst Order Dynamrc Logic Proceedings of the CSCSI -

Conference U of Saskatchewan

¥
Lewis, R.; Bejczy, A. 1973 "Plannmg Consnderatnons for a Rovmg Robot wn‘.h Anm Thlrd
(! bt Con ference on Arti ficial Intelligence Stanford, CA. .- = ~ A

N ; 15!'

\f Uni fiability and Decidabtlity by Resolutlo &ch Report Aiken -
yTatory, Harvard Umversrty, Cambndge MA

'\ v,

V. 1977 "A Proof Checker for Dynamxc Loglc Proceedlngs of the

.\

McDermott Drew 1976 “Planmng and Acung Cogntuve -Sciehce 2.

& Moravec H. 1984 "Locomot:on Vision, and Intelligence” Robotics Research The First
" Infernational Symposzum Edited by M. Brady, and R. Paul MIT Press, Cambr:dge MA

e

80

3

Newell A Sl‘iaw I Slmon H 1960. "Report ona General Problem-Solving Progum for a .

Oompruter In formatton Processing: Proceedings o f the Internattonal Con ference On ‘
In formauon Processmg, UNESCO Pans .

ilsson, Nils. 1971 Problem Solvmg Methods in Arti f cial Intelltgence New York
-McGraw- Hill, ,

lelsson Nlls 1980 Prmctples of Artifi ezaI Imellzgence SRI Internauonal CooLon

Nitzan, D. 1979. "Flexlble Automation Program at SRI " Proceedings 1979 Joint Automatic
Contro#Conﬁ:rence New York IEEE. \»

Podnar, G.; Blackwell, M.; Dowlmg, K. 1984. 4 Functzonal Vehicle for Autonomous Ayobtle
Roboz Research CMU Robotics Inst Apr. .-

v

Podnar G. 1986 "The Uranus }dobrle Robat,” Autonomous Moblle Robots: Ancua["Report
1985 Moblle Robot Lab., Plttsburgh PA Tech. Rep. CMU-RI-TR-86-4, Feb. ;

I{.aphael ‘Bertram. 1970 "The Relevance of Robot Research to Artificial lntelhgence

-Thearetical Approaches to Non-Numerical Problem So[vmg, Banem R. and Mesarovie, TR

M Ed Berlin and New York Spnnger Verlag.

J

ot . ! . < . . o . -
. .) . - .
. o . @ L AR T .
f .) . e e s
P ’ hd 3 . : . " Py I S AR S
L - o 7. . .
St : . : . o

.L
-
R

81
,.\ S - ' l‘ ’ T . C - ;

-Raphael, Bertram, 1976 The Thinking Computer Mind inside Matter. San Fl'al’lClSCO W H
Freeman and Comﬁhny .

. Rich, E: 1983 Artlﬂclal Intelligence McGraw Hill. . o P o s
’ Rosenschem Stanley. 1981 "Plan SMhesxs a ?g;cal Approach Proceedmgs of the 8th
International Joint Con ﬂtrence on Arttf clq‘ nt;lllgence,zpnn‘ers.ty ‘Bnush Columbja,
Vancouver, B. C, : 4
/:‘v vy v .
Sacerdoti, ‘E D, 1974 "Plannmg in"a- Hlerarchy,gg __ragtion .‘_Spa'f
. 5(2), pp 115-135. L il

,«",*.idrﬁﬁciag ‘zptg;,\,&n e, o

‘1‘.1 '.’\ P

Sacerdott E D. 1977 A Structure for Plans and Behawar New York Elsevier

~ Smith, M.; ‘Coles, L. 1973 "Design of a Low Cost Generai Purpose Robbf h@ﬁi
'-International Joint Con ference on Artifi cial”]ntellzgence Stanf ord CA.-

. -9‘ "\.
. oka B. 1. 1983. "What Can't Robot Languages Do?" 1 3th Internatzonal Sympostum on J;‘\
, « Industrial Robots Chlcago _ _) . \

é
Stacey, ‘R9s. 1986., Algortlhmzc Generation of Synthetzc Speech Masters Thes1s Umversuy of
Alberta, Edmonton. ¥

#» Stefik, M. 1981. "PLannmg with Constramts MOLGEN part 1” Artzf cial InteIItgence 16(2)
Stef ik, M. 1981 ing wnth Constramts MOLGEN part 2" Artificial Intelligence 16(2)
Sussman G J 1975 A Computer Model of Skill Acquisition, MIT Press, Cambndge Mass

R Tate Allen. 1977 "Generatmg Project Networks." Proceedings of the Fifth Internattonal :
-Joint Conference on Arti ﬁczal Intelllgence MIT, Cambndge MA

Vere, Steven. 1983 "Pla;;

ng-In Time: Wmdows and Dur. f or nd Goals
IEEE Transaction.

Pattern Analysts and Machine

' Thompsoh Alan. 1977 "The Navxganon System of the JPL Robot-". Pnceedmgs ofthe Fi j‘th.v
: International Joint Conference on Artificial Intelligence MIT Cambrgge

' ,Waldmger R.J. 1977. "Achieving Several Goals Sxmultaneously Whme Intellzgence 8 Elhs '
> Rprwood, Chlchester _ . a .

» . TR o R)

