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Abstract

In the era of all-sky surveys, wide-area radio surveys like the Very Large Array Sky

Survey (VLASS) place strong emphasis on the identification and classification of

candidate transient events. To aid the transient searches, automatically generated

VLASS Quick-Look (QL) images are designed and produced to deal with high data

volumes and enable rapid followup observations. But, the incomplete and snapshot

sampling of the sky in the uv-plane during VLASS observations combined with imag-

ing choices made when generating QL images often lead to residual linear artifacts,

particularly around brighter sources. While well-established techniques (like clean)

maximizes the information from this partial sampling, such techniques can still be

imperfect. Therefore, the need for automatic image-quality classification and assur-

ance is more important than ever to ensure rapid data quality assessment and for

enabling the best science. In this thesis, I present a new technique to identify these

linear streaks around sources detected in the VLASS Epoch 1 QL images by extending

the results of a line detection technique called the Hough Transform. After robustly

quantifying the identified streaks, their effects on the sources/components that they

are overlapping are removed. The resulting artifacts-subtracted components’ bright-

nesses are then used to distinguish real astrophysical sources from imaging artifacts.

Finally, I discuss the use of this streak detection method as an additional quality

assessment step during interferometric image reconstruction.
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This thesis is an original work by Suhasini Satish Rao. All the data used for in this

thesis is publicly available. The code to predict the angles of the sidelobe streaks and

to scale the Hough Transform 1D background profile was developed by Dr. Gregory

R. Sivakoff.
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“Y’all, astronomy is kind of interesting.”

-Gina Linetti
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Chapter 1

Introduction

1.1 Scientific Motivation

Over the course of history, people have seen and recorded hints about the dynamic

nature of the Universe. For example, ancient astronomical records from China, Japan,

Iraq etc., describe the sightings of the supernova of 1054 as a “guest star” (Brecher,

1978; Ho et al., 1972), the remnant of which is now famously known as the Crab

Nebula. With the advancements in technology and the invention of telescopes, as-

tronomers not only focused on recording rare astrophysical sightings, but also on

studying the objects and processes producing such events. The 1054 “guest star” was

later (independently) re-discovered as a nebula by John Bevis in 1731 (Ashworth,

1981) and was even catalogued by Charles Messier as the first Messier object or M1

(Messier, 1781). The physical nature and origin of the nebula was finally confirmed by

Jan Oort in 1942 as a remnant of a supernova (Mayall & Oort, 1942). Eventually, us-

ing the 300 ft Green Bank radio antenna, David H. Staelin and Edward C. Reifenstein

III reported the observations of the pulsar associated with the Crab Nebula (Howard

et al., 1968), only a year after the first discovery of a pulsar by Jocelyn Bell in 1967.

Since then, nebulae and pulsars have been a study of interest for astronomers not just

out of curiosity but also to understand the origins of such extreme conditions that

give rise to pulsations and energetic particles. Such discoveries of extreme objects

raised many questions about the range of dynamic objects present in the Universe
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and the diverse physical conditions that lead to such scenarios.

Similar to the Crab nebula and pulsar, various other astronomical objects that

show extreme variations in the morphological, photometric, or spectroscopic proper-

ties — termed as transients — have been studied by astronomers for several decades.

Many of these transients trace the dynamic and violent Universe — such as super-

novae, relativistic jets from supermassive black-holes, neutron star mergers, pulsars

and fast radio bursts. Based on the mechanism producing these transients, the spec-

trum of these objects peak (and in some cases, only emit) at specific electromagnetic

frequencies. To discover all types of transients and cover the entire transient phase

space, the sky should be studied at all frequencies and at all times!

Compared to the entire electromagnetic spectrum (especially the optical part of

the spectrum) the emphasis on studying radio transients (which motivates the work

in this thesis) is because some objects like radio galaxies, radio pulsars, and fast radio

bursts, are only visible at radio frequencies, while other objects like quasars stand out

strongly at radio frequencies. Moreover, the discovery of other phenomena in more

familiar objects like low frequency bursts on the surface of the Sun (Reber, 1944)

and Jupiter (Franklin, 1959), were only possible due to radio observations since they

are only emitted at radio frequencies. The range of radio transients mentioned above

(and many more), their peak emission frequencies, and their luminosities are shown

in Figure 1.1 (from Rowlinson et al., 2022). The transient studies at radio frequencies

will thus provide a unique opportunity to study the nature of objects that are elusive

under traditional optical observations.

In many transient detection cases, targeted followup observations are conducted

after first detections of a source. Although this technique is well suited to study the

specific (proposed) targets at higher resolution (and hence in more detail), it often

does not allow for a population study of the different types of dynamic objects present

in the radio sky. Additionally, even for a single type of transient, targeted observations

help in understanding the object itself, but not how frequent the transient behaviours
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Figure 1.1: The range of variable radio sources with the luminosity plotted against
frequency (adapted by Rowlinson et al. (2022) from an original plot in Pietka et al.
(2015)). Here Lν is the specific luminosity, ν is the frequency of radiation and W is
the timescale of the emission.

are. Alternatively, wide (all) sky surveys allow for this required population analysis.

Moreover, the detection of shorter timescale transients (that evolve in the order of

days) — like GRBs and flares — can trigger deeper follow ups at other frequencies

that can help characterize the transient sources.

Usually in the optical and infrared domains, panoramic sky surveys are conducted

to analyze the types of objects populating each spectral regime. For example, the

Sloan Digital Sky Survey (SDSS) is an optical/infrared imaging and spectroscopic

redshift survey of the entire sky at high resolutions (1.43′′ in r-band) and has currently

catalogued the photometry of more than 109 astrophysical sources (as of data release

16; Ahumada et al., 2020). The Two Micron All Sky Survey (2MASS) is an all-

sky infrared survey (with 4′′ spatial resolution in all three bands) that produced a

catalogue of more than 2× 106 astrophysical sources (Skrutskie et al., 2006), with a

greater ability to identify objects behind large extinction columns from Galactic dust.
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The Gaia observatory, tasked with charting the three dimensional map of the Milky

Way, has catalogued over 109 stars including their proper motions and distances (Gaia

Collaboration et al., 2016).

Figure 1.2: The sensitivities of various surveys (at different frequencies indicated by
colour) and their constraints or measurements on the angular density of transient
sources. The dashed lines indicate the expected projected angular density of various
extra-galactic radio transients (from Lacy et al., 2020).

Similarly, with the advent of interferometry, sky surveys at radio frequencies with

resolution comparable to optical observations/surveys are made possible. For exam-

ple, the Faint Images of the Radio Sky at Twenty-centimeters (FIRST) was a radio

survey of the northern sky conducted using the Very Large Array at 5′′ resolution and

has catalogued almost a million radio sources. In the same way, the Very Large Array

Sky Survey (VLASS) was proposed as an all-sky, relatively shallow, survey with tran-

sient searches as one of its key science goals. Compared to the FIRST survey, VLASS

is more sensitive to binary neutron star mergers, Gamma Ray Bursts (GRBs) and

Orphan GRB Afterglows, and Tidal Disruption Events, as shown in the areal density

plot of extra-galactic radio transients in Figure 1.2 (from Lacy et al., 2020)). This
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makes VLASS an ideal survey for studying radio transients.

Here we provide a few examples of transient studies already made possible by

VLASS.

• Law et al. (2018) discovered a decade-long extra-galactic transient, called FIRST

J141918.9+394036, by comparison of archival data from the FIRST survey at

1.4GHz with VLASS Epoch 1 data at 2–4 GHz. Follow up radio observations,

optical spectroscopy, and the absence of a counterpart GRB suggests that the

transient could be an Orphan GRB Afterglow, an off-axis late afterglow of a

GRB seen at lower frequencies. The slow evolution of the radio afterglow in such

an origin would confirm some of the predicted theories (e.g., Sironi & Giannios,

2013) about the non-relativistic bulk motion of shocks in jets.

• A study by Nyland et al. (2020) found a sample of quasars that have transi-

tioned from radio-quiet to radio-loud within a decade (with ∼2–5 times increase

in the flux densities from L-band, 1.4 GHz, to S-band, 2–4 GHz) between the

observations made by the FIRST survey and VLASS Epoch 1. Follow up ra-

dio observations that study their variability and spectral energy distribution

shapes suggested that the emergence of young jets driven by accretion onto

supermassive-black holes led to the highly increased radio loudness. The dis-

covery of strongly changing quasar behaviour on human timescales suggests

there may be more short-term AGN activity than previously believed. Such ac-

tivity could have strong implications for how AGN feedback could drive galaxy

evolution at high redshifts.

• Dong et al. (2021) discovered a transient, VT J121001+495647, with a peak

radio luminosity of 1.5 × 1029 erg s−1 Hz−1 (unusually high for a non-nuclear

transient) that is consistent with a merger-triggered core collapse supernova

using VLASS Epoch 1 data. In this type of system, during the common enve-

lope phase, the core of the companion star is tidally disrupted by the compact
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object, causing the star to undergo a premature merger-driven supernova. The

discovery of VT J121001+495647 provided the first observational evidence of a

merger triggered supernova.

1.2 The Very Large Array and its Sky Survey

The Karl G. Jansky Very Large Array (VLA) is a radio interferometric array located

in New Mexico, United States of America and is operated by the National Radio

Astronomy Observatory (NRAO). The VLA comprises 27 antennas of 25m diameter

each, positioned along 3 equilateral arms of 21 km with 9 antennas per arm. Each of

the 27 antennas can be moved along the arms to different locations to arrange the

telescope in different configurations. The 4 standard configurations: A, B, C and

D (from the largest to the smallest) have maximum baseline lengths of 36, 11, 3.4

and 1 km respectively. The larger configurations provides higher resolution, while the

smaller configurations provide better surface brightness sensitivity. Thus, along with

changes in the frequency bands, the VLA provides a wide range in resolution and

sensitivity. There are other intermediate hybrid configurations, namely BnA, CnB

and DnC, where the northern arm is extended to the larger configuration while the

lower eastern and western arms are kept in one of the more compact configurations.

A depiction of the VLA in the BnA configuration is shown in Figure 1.3.

VLASS is a 3 epoch all-sky radio survey observed using the upgraded VLA known

as the expanded Karl G. Jansky Very Large Array (EVLA; Lacy et al., 2020). The

survey covers the entire sky with Declination (δ) above −40◦ — a 33,885 deg2 area

corresponding to 82% of the entire sky. During VLASS scheduling, the antennas in

VLA are in either the B or BnA configuration. When observing at lower declinations,

the extended northern arm in the BnA configuration produces projected north-south

baselines similar to the east-west baselines of the other two (southern) arms. There-

fore, the BnA configuration is mostly used to map the southern regions to obtain

a uv-space coverage similar to the B configuration observations in northern regions.
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Figure 1.3: A pictorial representation of the VLA antennas in the BnA configuration
taken from https://public.nrao.edu/vla-configurations/.

The survey maps the radio sky in the 2–4GHz bandwidth (S-band) in 2MHz chan-

nels, along with full calibrated polarization parameterization in Stokes I, Q and U.

The survey has an imaging resolution of 2′′.5 with a 1σ sensitivity of 120µJy/bm per

epoch and a projected root mean square (RMS) depth of 70µJy/bm when all three

epochs are combined.

1.2.1 Transient-Focused Design and Implementation

The three epochs of VLASS are separated by approximately 32 months to observe and

measure the variable and transient sources (Lacy et al., 2020). Each single epoch is

divided into two parts, with half the sky (e.g., Epoch 1.1) observed about 16 months

after the other half (e.g., Epoch 1.2) . The first two epochs were completed by 2019

July and 2022 June, respectively, with the first half of the third epoch completed in

June 2023.

As the field of view of VLASS is significantly larger than the primary beam response
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of a single VLA antenna, the observations are done using a mosaicing technique.

VLASS utilizes a type of mosaicing called the On-The-Fly Mosaics (OTFM) mode

where the telescope “scans” the sky with the position of the antennas continuously

moving with respect to the sky. Given the time it takes for the telescopes to slew

and settle at a new position, a more traditional point-stare-repoint (discrete) mosaic

method will have significantly more overhead than OTFM mode observations. This

is because the cumulative VLASS depth in a single epoch for a given part of the sky

is about the same as a 5-second pointed VLA observation.

The data collected in OTFM mode is then stitched together to allow for the high

time and high angular resolution observations required for shallow surveys and tran-

sient searches. This OTFM mode was tested in the S-band Stripe 82 program of

13B-370, which is a precursor of VLASS (Mooley et al., 2016).

The VLA telescopes in the OTFM mode scan a strip along Right Ascension (R.A.)

at a constant Declination (Dec) at a scan speed of 3.31 arcmin/s (Lacy et al., 2020).

During the scan, the phase center of the array is discretely sampled every 0.9 seconds

to minimize the smearing of the response. With this, VLASS covers 23.83 deg2 per

hour. To facilitate this scanning and mosaicing, the sky is divided into 899 Tiles of

10◦ × 4◦, each observed for approximately 2 hours each. The tiles are ordered into 32

strips of Dec called “tiers”, laid out from South to North. Sets of 2–4 of these tiles

are grouped together to form a scheduling block of 4–8 hours of observations.

1.2.2 Science and Data Products

VLASS was designed with 4 science goals in mind (Lacy et al., 2020):

1. Searching for transients;

2. Tracing the evolution of galaxies;

3. Measuring the magnetic field; and

4. Imaging and surveying the dust obscured regions in the Galactic plane
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To enable these science goals, VLASS produces or will produce seven Basic Data

Products (BDP): Raw Visibility Data; Calibrated Data; Quick Look Images; Single

Epoch Images, Single Epoch Component Catalogues; Cumulative VLASS Images; and

a Cumulative VLASS Component Catalogue. The planned release of these products

ranges from immediately after observations to 12 months after observations.

1.2.3 VLASS Quick Look Images

The Quick-Look (QL) images were mostly designed to aid the search for radio tran-

sients (Lacy et al., 2020) and enable rapid identification of observations that needed

to be retaken within a given epoch. These images are released within 2 weeks of the

observations and are available1 at https://archive-new.nrao.edu/vlass/quicklook/.

Here, we discuss how those images are generated by an automated pipeline.

First bad data is flagged to remove problems caused by issues like recorded data

acquisition errors and known or observed radio frequency interference. Then, the

VLASS data that remained un-flagged are calibrated. Corrections to the raw data’s

amplitude and phase are made based on the intensity of previously known flux and

complex gain calibration sources. These calibrated data are then used to produce

the QL images using the automated Quick-Look Imaging Pipeline, which utilizes

the tclean task in the Common Astronomy Software Applications (CASA) software

package2. The tclean task reconstructs images from the visibility space, i.e., the

sky as seen by the interferometer. For the gridder parameter in tclean, a mosaic

convolution function is used to combine the measure visibilities (from the different

OTFM scans) as the telescopes slew across a single 4◦ × 10◦ region (i.e., a “tile”).

With this, 2◦ × 2◦ mosaic images are generated; from which the central 1◦ × 1◦

segments called “Subtiles” (QL images) are extracted. These QL Subtile images have

1The processed VLASS images are also ingested into the Canadian Astronomy Data Centre
https://www.cadc-ccda.hia-iha.nrc-cnrc.gc.ca/en/vlass/

2CASA is a data processing software primarily developed for radio telescopes, especially the VLA
and the Atacama Large Millimeter/submillimeter Array (ALMA).
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a pixel size of 1′′. The edge trimming ensures the corners of the images are correctly

de-convolved. This whole process is performed in parallel to keep up with the rate of

observation.

Another task called imdev in CASA is used to produce “RMS” images that estimate

the noise level, i.e. the RMS of the QL images as a function of position. These RMS

images are also included as a part of the QL images’ BDPs.

Since these QL images are mainly used for quality assurance and transient searches

they are produced on a short timescale (∼two weeks). Fast production of these images

using relatively simpler algorithms results in residual artifacts around bright sources

(that will likely be better minimized in VLASS Single Epoch images). The cause of

such artifacts is given below.

1.3 Interferometers and the Creation of Artifacts

To understand the origin of the artifacts seen in VLASS QL images, interferometry

and the synthesis imaging technique used to image the sky needs to be understood.

Interferometry was developed to gain better resolution that cannot be obtained

with single antenna telescopes. For example, with an angular resolution θ given by

θ = 1.22
λ

D
(1.1)

where λ is the wavelength (in m) and D is diameter of an antenna (in m), a single dish

antenna should have a diameter of ∼ 25 km to achieve 1′′ resolution at 3GHz. The

difficultly in building and maintaining such large telescope antennas led to synthe-

sizing large apertures by using multiple significantly smaller antennas separated by a

distance D instead of one large antenna (although here θ = λ
D

is the more relevant

equation).

Each pair of antennas in an interferometer observes a source of brightness I(s),

where s is the unit vector in the direction of what the pair of antennas is observing,
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as a complex visibility Vν(b),

Vν(b) =

∫︂
S

Aν(s)Iν(s)e
−2πiν

b·(s−so)
c dΩ (1.2)

where Aν is the primary beam sensitivity, S is the surface area of the source, b is

the baseline length, dΩ is the solid angle and so is the unit vector in the direction of

the phase center of the antennas. As Equation (1.2) is in the form of a 2D Fourier

transform, the brightness of the source can be recovered by taking the inverse Fourier

transform of the complex visibility. Combining the obtained brightness of the source

through each pair of antennas provides a reasonable estimate of the true brightness

of the source.

Since each pair of antennas observes the source as a complex visibility Vν , which is

a function of its baseline b, Vν can be represented in terms of the baseline geometry

as shown in Figure 1.4 (adapted from Thompson et al., 2017). Each baseline vector

b (the separation between each pair of antennas) has 3 components (u, v, w) towards

the East, North and the direction of the source respectively (measured in number of

wavelengths). Similarly the source in the sky plane is represented by (l, m, n). If the

source is sufficiently small, i.e., l and m are small, the nw component of the b ·s term

in Equation (1.2) approaches 0. With this the visibility V can be written in terms of

(u, v) as,

Vν(u, v) =

∫︂
S

Aν(l,m)Iνe
−2πi(ul+vm)dldm (1.3)

Therefore, the sky (in this example, only a single source) is observed as a set

of visibilities V in the (u, v) plane. More antennas leads to more points in the

uv-plane, resulting in a clearer observation of the source. But, due to the finite

number of antennas in any interferometer, the uv-plane is sparsely sampled. If the

uv-plane is thought of as observing a point source with all the pair of antennas,

the Fourier transform of the uv-plane produces the synthesized “dirty” beam of the

interferometer, i.e., how the interferometer sees the point source. An example of

the uv-plane of VLA in B configuration with a phase center at R.A. ∼ 289.50◦ and
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Figure 1.4: This figure (adapted from Thompson et al., 2017) shows the geometric
representation of (u, v) plane and the (l, m) plane.

Dec ∼ −39.50◦ and its resulting dirty beam is shown in Figure 1.5. As seen in

the example, the dirty beam of VLA has a characteristic hexagonal spokes pattern

produced due to the lining of the antennas along the three linear arms. The angles of

the spokes in the dirty beam depend on the projected orientation of each arm relative

(on the uv-plane) to the location of the source in the sky. Unlike in typical synthesis

imaging, where the Earth’s rotation allows an interferometry to better sample the uv-

plane, VLASS data are essentially equivalent to a single snapshot in uv-plane with
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Figure 1.5: An example of a uv-plane and the corresponding dirty beam resulting
from the uv-plane.

up to N(N − 1)/2 baselines, where N is the number of antenna with unflagged data

(N = 27 if no antenna has completely flagged data).

Since the sky is imaged as the sky brightness Iν convolved with the dirty beam,

most of the linear artifacts seen around sources are aligned with the spokes in the dirty

beam. Additional linear artifacts can also arise due to the incomplete sampling of the

interference pattern caused by two sources near each other, or even two components

of a multi component astrophysical source. Well established techniques (like clean;

Högbom, 1974) de-convolve the Fourier transform of the complex visibility Vν i.e.

dirty image, to reconstruct the sky brightness by maximizing the information from the

partially sampled uv-plane. However, these techniques can sometimes over or under

“clean” (de-convolve) the image resulting in linear structures/streaks particularly

around bright sources. Two examples of these linear artifacts around bright sources

are shown in Figure 1.6. When these linear streaks overlap with an astrophysical

source or one of its components, the streak can enhance or suppress the measured flux

leading to incorrect results. Furthermore, automated source identification algorithms

can mistake local maxima on these streaks from noise as real astrophysical sources.
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Figure 1.6: Cutouts of VLASS QL images around bright sources shows linear artifacts
mostly at the angles seen in the dirty beam overlapping the source. Streaks seen at
other angles are from the interference pattern caused by two nearby components/-
sources.

1.4 CIRADA Quick-Look Components Catalogue

The Canadian Initiative for Radio Astronomy Data Analysis (CIRADA)3 produced

a catalogue of radio sources/components4 using the QL images (Gordon et al., 2021).

The authors of Gordon et al. (2021) published an updated Version 2 catalogue to the

CIRADA website, which will be the catalogue that we use throughout this thesis.

The components were extracted by applying a source detection algorithm from the

Python Blob Detector and Source Finder (PyBDSF)5 (Mohan & Rafferty, 2015) called

process image on 35,825 Subtiles to detect and fit ellipses to flux regions of 3σ

above the image average. The identified regions for which an ellipse could not be

fitted were also included in the catalogue for completeness. Since VLASS QL images

have overlapping regions, there are some sources that are identified in more than one

Subtile. To indicate the presence of such duplicates or poor detections, flags were

included in the catalogue. The catalogue comprises of sources that are simple single,

or at most, close-double/triple components. More complex sources were not included

3https://cirada.ca/
4At the time of this catalogue creation, the Epoch 1 QL images were not reprocessed with the

updated QL processing pipeline and the catalogue was generated with an older version of the images.
5See: https://github.com/lofar-astron/PyBDSF
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in the catalogue.

The catalogue consists of 3 tables: Component Table; Host ID Table; and Subtile

Information Table that provide basic information of the parameters fit by PyBDSF.

The three tables are linked to one another via (primary) key columns. The Host ID

Table and the Subtile Information Table are not used for this work; here we only

focus on the Component Table.

Component Table

The component table has a total of 3,381,277 radio components identified in 35,825

Subtiles. Here complex sources with more than one component are listed as different

components rather than a single source. The key columns of this table used for this

thesis work are given in Table 1.1.

For the identified components, parameters like the sky coordinates, image plane

coordinates, component size like the full width at half maximum (FWHM) of the semi

major and minor axis, source flux density, total flux along with their uncertainties are

provided in the table. Other parameters related to components detection like Qual-

ity flag (to indicate spurious or poor detection), Duplicate flag (to indicate whether

the same component is found in any other adjacent QL image) and NN Dist (distance

to the component’s nearest neighbouring identified component) are also included in

the table.

The table also contains a quality assurance metric called Peak to ring. It is the

ratio of the peak flux of the component to the peak flux in an annular region of

radii 5′′ and 10′′ around the component. For isolated components (with no significant

overlapping streaks), the peak flux in an annular region is just the maximum value of

the background noise. But, for components with overlapping streaks, the peak flux in

an annular region is contributed by the flux density of the overlapping streak(s), which

tend to have a higher peak flux density than the background noise level. Therefore,

low peak-to-ring flux density ratios can indicate false positive components that were
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Table 1.1: Key columns from the CIRADA catalogue’s Component Table (reproduced
from Version 2 of Gordon et al. (2021)).

Column Name Column Description Units

RA Right ascension of component [deg]

DEC Declination of component [deg]

Peak flux Peak flux of component [mJy/beam]

E Peak flux Error in component peak flux [mJy/beam]

Maj img plane Component major axis size in the im-
age plane (FWHM)

[arcsec]

Min img plane Component minor axis size in the im-
age plane (FWHM)

[arcsec]

PA img plane Component position angle in the im-
age plane, east of north

[deg]

Tile VLASS tile this component is located
in

Subtile VLASS subtile this component is lo-
cated in

Peak to ring Ratio of the Peak flux to the maxi-
mum flux in annulus of r, R = 5, 10”
centred on component RA, Dec.

P sidelobe The probability that the component
is a false-positive detection caused by
a sidelobe. Determined using a SOM
and manual classification

NN dist Angular distance to nearest other
component in the Component Table

[arcsec]
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fit to imaging artifacts. Yet, such low values can also arise from nearby components.

Therefore the Quality flag is increased by 1 only if the Peak to Ring value is < 2 and

the nearest identified component is > 20′′ away. Although this metric captures fairly

isolated false-positives, they misidentified spurious sources caused by linear streaks

around bright sources. Conversely, some components in multi-component sources

are misclassified as false-positives with this metric. The Version 2 of the catalogue

includes 1,291 sources that do not have a validly measured Peak to ring value (-99).

From the entire sample, 291,870 sources have a quality flag that indicate they are likely

artifacts (8.63%). In addition, there are an additional 386,706 isolated components

with a Peak to Ring value of 2–3 (11.44%).

An additional metric, P sidelobe, that indicates the probability of an identified

component being an artifact caused by sidelobes was later added to the catalogue

by Vantyghem et al. (2021). This probability is only calculated for components with

Peak to Ring < 3, and some sources in this range are identified as artifacts in this

metric, but not the Peak to ring method. This is why we report the number of isolated

components (mentioned above) with a Peak to Ring value of 2–3, and will consider

the full Peak to Ring < 3 range as potential artifacts in Section 4.3. Vantyghem et al.

(2021) set the threshold to 3 with the assumption that most components with higher

values are likely to be real astrophysical sources.

To calculate P sidelobe, an unsupervised machine learning technique called the Self-

Organizing Maps (SOM) was used to examine component morphologies. For this, a

10×10 neuron grid SOM was trained using 40,000 images containing 1,080,393 com-

ponents in total (Vantyghem et al., 2021). 100 random components that best matched

with that particular neuron were visually inspected by a group of astronomers. Here

best matches refers to the neuron with the most similar morphology compared to

the component (i.e., the least distant neuron). Based on the fraction of artifacts

that were associated with each neuron during inspection, a probability is assigned to

that neuron. The process yields a P sidelobe for each neuron. All the components
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in the catalogue with Peak to Ring < 3 were mapped to the best matching neuron

and inherited their associated P sidelobe. The Quality flag of components with a P -

sidelobe ≥ 0.10 were incremented by 8 to ensure the catalogue has less false-positive

components.

Adopting the same nearest neighbour difference of > 20′′ as above to indicate a

component’s level of isolation, the SOM method identifies: 134,731 components as

isolated sources likely to be artifacts; 148,822 components as non-isolated sources

likely to be artifacts; 544,222 components as non-isolated sources unlikely to be arti-

facts; 328,613 components as non-isolated sources unlikely to be artifacts; and leaves

2,224,886 components unevaluated. In total, this method finds 8.39% of the total

component list to likely be artifacts.

Figure 1.7: This figure (from Vantyghem et al., 2021) shows the percentage of flagged
components and estimated contamination percentage as a function of the probability
of sidelobe calculated using SOM. Here the probability threshold is set to 0.10 which
flags about 10% (left panel) of the components and leaves around 0.46% of the false-
positive component undetected (right panel).

Figure 1.7 (from Vantyghem et al., 2021) shows the effect of setting the sidelobe

probability threshold to 0.10 on the contamination percentage and number of spurious

components flagged. At the 0.10 threshold only 0.46% of the components in the

catalogue are likely to be false-positive components after flagging (which flags about

10% of the components in the catalogue as false-positives). Increasing this suggested
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threshold to a higher value leads to more tolerance towards likely spurious components

in the catalogue.

1.5 Thesis Goals

In this work, we present a new empirical method of detecting linear artifacts present

in VLASS QL images using the Hough Transform. The applications of the identified

artifacts in characterizing and classifying the already identified sources in the QL

images is also discussed. Furthermore, we review the use of the new method as a

quality assurance step during image reconstruction. Finally, we compare the new

method with two previous techniques of classifying the sources.

19



Chapter 2

Hough Transform

The Hough Transform (HT) is a pattern recognition technique invented to identify

straight lines in images. Since its inception (Hough, 1962), the algorithm has been

advanced to detect other features and shapes that have a 2D analytical form — like

circles and ellipses. This technique is based on a voting mechanism where each set of

parameters that describe a feature in the image space is voted for in the parameter

space. Local maxima in this parameter space represents the features’ presence in the

image space.

In contrast to the above mentioned classical HT, a generalized HT has also been

developed to recognize shapes that do not have a 2D analytical form (Ballard, 1981).

Here we will only focus on the classical HT.

2.1 History

The classical HT was originally developed to detect complex lines in photographs with

applications in tracing the path of subatomic particles in viewing fields and pictures

of bubble chambers (Hough, 1962). In this technique an image is transformed from

an (x, y) space to the feature’s parameter space (in this case, those of straight lines).

For example, a straight line given in the form

y = mx+ b (2.1)

is characterized by the slope m and the intercept b. Therefore the parameter space
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Figure 2.1: Mapping of points on a line in the image space (left panel) to lines in the
classical HT (m, b) parameter space (right panel). The peak in the parameter space
describes the (m, b) of the line in the image.

is an (m, b) space. For every straight line in the image, the classical HT’s voting

procedure votes for a (m, b) pair in the parameter space. Consequently, every straight

line in the image is transformed to a point in the parameter space.

The implementation of this algorithm is designed to account for pixelation of im-

ages. Each non-zero pixel (xi, yi) in the image can be thought to have infinite lines

passing through the pixel. The (m, b) pair of each of these lines are voted in the pa-

rameter space that traces out a line. Therefore each point in the image is represented

as a line in the parameter space as shown in Figure 2.1. Since the voting mechanism

accumulates a count for each pair of parameters that is a potential line candidate,

the local maxima of accumulated counts in the parameter space indicates the slopes

and intercepts (mi, bi) of the most probable lines in the image space.

Although an ingenious method, the original classical HT has a few limitations.

Such limitations predominantly occur because both the slope and intercept in the

21



Figure 2.2: Mapping of points on a line in the image space (left panel) to lines in the
HT (θ, ρ) parameter space (right panel). The peak in the parameter space describes
the (θ, ρ) of the line in the image.

parameter space are unbounded. For example, identifying vertical lines using this

method is not possible as their slopes are undefined.

2.2 Existing Algorithm

Duda & Hart (1972) improved the classical HT by moving from slope-intercept pa-

rameter space to an angle-radius parameter space. In this enhanced classical HT

approach (henceforth referred to without the prefixes enhanced or classical), every

straight line is represented by the normal of the line passing through the origin. Ac-

cordingly, every straight line in the image is characterized by the normal line of the

polar form

ρ = x cos θ + y sin θ (2.2)

where ρ is the length of the normal from the origin and θ is the angle the normal

makes from the X-axis. This characterization of the straight line leads to a (θ, ρ)
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Figure 2.3: Left: An example of the HT of a Boolean image with three clear lines.
Right: HT parameter space of the image with axes corresponding to the position
angle θ and the distance to a given line ρ. The three maxima are the (θ, ρ) of the
three lines in the image.

parameter space. Again, straight lines in this parameterization are represented as

points in a parameter space, here (θ, ρ).

During implementation every non-zero pixel in the image is denoted by a cosine

curve in the parameter space since the infinite possible lines that could pass through a

pixel given by Equation (2.1) trace a sinusoidal curve. Therefore any line, a collection

of co-linear points, produces a set of cosine curves, as shown in Figure 2.2, that

intersect at a specific (θ, ρ) pair. An example of HT of image with three intersecting

lines is shown in Figure 2.3. In this example and in all further references to HT,

we consider θ as position angles (PA). Due to the voting procedure involved, the

resulting local maxima in the parameter space (shown in the second panel of both

Figure 2.2 and Figure 2.3) strongly indicate the presence of straight lines in the

image space at the corresponding θ and ρ. This technique overcomes the previously

mentioned limitations of identifying vertical lines since θ and ρ are both bounded in

this parameterization.
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2.3 Key Characteristics

There are a few properties that are intrinsic to the HT that can affect the detection

of lines:

• The HT is tolerant towards imperfections in the features it is designed to detect.

For example, the HT can detect lines even if there are gaps or missing pixels in

a line. As a result, different line segments are detected as a single line instead

of separate distinct lines.

• The binning of θ and ρ determines whether a straight line is picked by the

algorithm or not. If the HT has high resolution binning, the votes accumulated

by a pair of parameters might be too low to be detected as a peak amidst the

background noise.

• The algorithm can be fooled by apparent lines in a noisy image. For example,

in an binary image with random noise, straight lines at 45◦ and 135◦ can be

detected. This is because longer lines are made up of more pixels and hence

accumulate more counts. Therefore diagonals (the longest lines that can be

drawn on an image) account for the highest peaks even if there are no real lines

in the image at those angles.

2.4 Previous Uses in Astronomy

The HT and its variants have been extensively used in astronomical data analysis.

A variation of the HT was used by Ragazzoni & Barbieri (1994) to determine the

period and period variations of an eclipsing binary star GW Cep by studying their

light curve. Ballester (1994) used the HT for the automated wavelength calibration of

long-slit spectra at the European Southern Observatory (ESO) New Technology Tele-

scope. Fridman (2010) demonstrated the use of the HT to detect dispersed transients

by identifying straight lines in the time-frequency plane of a LOFAR observation to

24



trace the transient’s track before de-dispersion. Hollitt & Johnston-Hollitt (2012)

illustrated the use of the circle HT to detect and characterize arc-like sources such

as supernova remnants, narrow-tailed radio galaxies, and radio relics in radio ob-

servations from Molonglo Galactic Plane Survey (MGPS) and Australia Telescope

Compact Array (ATCA). A variant of the HT, called the rolling HT (RHT), was

used by Clark et al. (2014) to study the atomic hydrogen (HI) maps by identifying

local linear fiber-like structures. They were able to show that the magnetic field

lines and the HI fibers were aligned in the high Galactic latitude inter-stellar medium

(ISM), therefore indicating that the fine magnetic field structure can be traced by

using RHT. Zuo & Chen (2020) also provided a proof of concept for the detection of

radio bursts by detecting straight lines in the time-frequency plane using the HT.
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Chapter 3

New Methods to Detect and
Quantify Linear Artifacts

Our development of new methods to detect and quantify linear artifacts are the center

of this thesis. These methods include both methods that can be generalized to a wide

range of cases both in astronomy and beyond, as those that are more specifically

suited for images generated by the VLA.

3.1 New Detection Methods

3.1.1 The Need to Extend the Hough Transform

Even though VLASS QL images mostly contain linear artifacts, there are a few reasons

why the standard HT cannot be directly used to detect these artifacts:

• The HT does not consider the strengths of pixels; instead it transforms any

non-zero pixel to a cosine curve in the parameter space. With most pixels

in the VLASS QL images being non-zero, applying HT directly on the image

weighs all the pixels equally and produces a uniform parameter space without

any distinct maxima from the streaks. Although this is a standard issue in the

use of the HT on generalized images, basic thresholding on the input image

did not considerably improve results. An example is shown in Figure 3.1. The

absence of distinct peaks results in low global peak detection threshold, which
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Figure 3.1: Left: Cut out of a VLASS QL image around a component with overlapping
artifacts. Center: Hough Transform of a Boolean-converted version of the left image,
where the Boolean image was produced by clipping values below 0. Right: The lines
identified by HT around the component at a detection threshold of 0.6 times the
parameter space maxima.

in turn leads to an increase in the detections of false positive streaks around

bright sources and false negative streaks around relatively dimmer sources.

• The HT can be ineffective in identifying thick lines and does not intrinsically

measure the widths of lines. As illustrated in the rightmost panel of Figure 3.1,

the algorithm detected a thick line (at ∼110◦ position angle) as multiple single-

pixel wide lines at slightly different angles.

• Edge detection algorithms, often used as a pre-processing step prior to HT (to

increase the chances of true positive detection), cannot be used for streak detec-

tion since VLASS QL images are particularly noisy. Additionally, in the process

of finding the edge of any object/feature in the image, edge detection algorithms

significantly reduces the possibility of regaining other statistical information like

the width of the lines.

Therefore a statistically-motivated pre-processing procedure and extension of the

results of HT specifically designed to take advantage of intrinsic patterns present in

VLASS QL images is necessary for better artifacts identification. While some of the

techniques discussed in this chapter can be applied to a broad set of noisy images,

other techniques are designed to take advantage of the properties specifically present

in QL images due to the snapshot nature of the observations performed using VLA.
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Figure 3.2: Left : Cutout of a VLASS QL image of a component used throughout this
Chapter to illustrate the extended HT procedures. Right : The Point Spread Function
(PSF, also known as the dirty beam) of image shown in the left panel. The artifacts
seen in the image are at a similar angles to the sidelobe streaks seen in the dirty beam
image. Artifacts like those seen at other angles, which happen to be lighter in this
image, can be from signal interference between nearby components or artifacts from
another source that coincidentally overlap the targeted component.

The large number of parallel lines seen in VLASS QL images are usually at the

same angles as that of the “hex” line pattern seen in the Point Spread Function (PSF;

or dirty beam) of the image (see Figure 3.2). As previously mentioned in Section 1.3,

streaks seen at other angles are usually caused by interference pattern from nearby

sources. The parallel lines seen in the images are mostly due to the effects of phase

errors, the linear arms of the VLA, and the incomplete image reconstruction; and

therefore are inherent to all VLA images. Since a significant fraction of artifacts

are sidelobe streaks resulting from incomplete uv -sampling, these streaks are usually

found at the same angles as that of the parallel lines in images. The new method

developed here takes advantage of the presence of these parallel lines to efficiently

identify and characterize the linear artifacts in the image by increasing the signal-to-

noise ratio of these artifacts during detection.

Since our scientific goals centre around detected sources in VLASS QL images,

some of the techniques are developed such that they need not be blindly applied
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to the whole image. The subset of techniques presented here that focus on streak

detection in a specific portion of an image can still be applied beyond VLASS QL

images, but are currently tuned for use on VLASS QL images.

3.1.2 Identifying Linear Streaks

The new method of linear artifacts identification is applied to VLASS QL images

specifically around components already identified and catalogued by Gordon et al.

(2021). Basic information about the potential radio sources (or components of radio

sources) like sky coordinates, image plane coordinates, total and peak flux of the

component, semi-major and semi-minor axis of the ellipse fitted to the component,

etc., in the catalogue is used in the new artifact identification and analysis.

The steps of the new algorithm are discussed individually in the following sec-

tions. Throughout these steps, the example of a component at R.A. 261.584◦ and

Dec 32.322◦ in the VLASS QL Subtile VLASS1.1.T19t22.J172805+323000 is used to

illustrate and demonstrate the procedures. The source code for our new artifact iden-

tification and component classification (discussed in Chapter 4) algorithm is available

at https://github.com/SiniSRao/VLASS-Artifact-Identification.

Clipping & Masking

As mentioned in Section 3.1.1, the direct HT of VLASS QL images do not identify

prominent linear artifacts without significant false positive detections. Therefore,

as a part of the pre-processing stage, the images are converted to Boolean images

by clipping at the 90th percentile confidence interval that would be consistent with

noise. This is done by converting all pixels with value > than 1.64σ to 1 while the rest

are converted to 0. This threshold was chosen after careful visual inspection of the

remnant noise level in the image after clipping. The estimation of the threshold level

is made robust by calculating the standard deviation equivalent σ from the median

absolute deviation (MAD) of the image (σMAD = 1.4826MAD), which is more resilient

29

https://github.com/SiniSRao/VLASS-Artifact-Identification


Figure 3.3: An example (cutout of a) VLASS QL image clipped to show outliers
(in white) above the 90th percentile positive threshold. The outlier-robust threshold
is calculated before masking out regions associated with catalogue-identified compo-
nents in the image region (orange regions). Since component signal in these masked
regions can affect artifact detection, the masked regions are excluded from future
analysis steps.

to outliers. Since a VLASS QL image that is devoid of signal is expected to have

zero intensity i.e., without noise, the noise measurement is applied against this null

hypothesis, resulting in a threshold (T = 1.6449σMAD) that is applied separately to

both positive and negative outliers.

For an image pixel pi, a clipped image pixel qi given by,

qpos,i =

{︄
1, if pi > T

0, otherwise
and qneg,i =

{︄
1, if pi < −T
0, otherwise

(3.1)

VLASS QL images have both positive and negative linear artifacts. The negative

linear artifacts can arise due to excessive clean-ing of the images during QL image

generation and de-convolution. Therefore, to detect both types of streaks, the image

is clipped for both positive and negative pixels to get a corresponding positive-space

image (qpos) and negative-space image (qneg), respectively. For the rest of the chapter
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the positive-space case is used for illustrations and examples.

Next, all components identified by Gordon et al. (2021) in the image are masked,

even if they are classified as potential artifacts by the Peak to Ring or the SOM

metrics. This ensures that only signal from the streaks and the background (noise) is

considered. Figure 3.3 shows an example of a clipped and masked VLASS QL image

around a component. The masked regions are highlighted in orange. Pixels in the

resulting clipped and masked image, either qpos,msk,i or qneg,msk,i are passed to the next

step; hereafter refer to as qmsk.

Source & Background Region Extraction

Applying a global HT to the entire image can lead to failed artifact detections around

fainter sources. To prevent this, local annular regions around components are consid-

ered. As mentioned in Section 1.4, the Peak to Ring metric used an annular region

of radii 5′′ - 10′′ to catch false positive components. Efficient identification of linear

streaks in the same annular region around components is not achievable in the new

method as the the signal-to-noise ratio (SNR) of the streaks is not enhanced in such

small regions. Therefore an annular region of radii 5–50 times the semi-major axis

(Full Width at Half Maximum, FWHM along the major axis) of the component is

used in the new method.

The annular region around every component extracted from the clipped and masked

image (qmsk) is considered separately as a source region, src. Additionally, a back-

ground region, bkg, is extracted by setting all the pixels in the same region to 1.

For the extraction of these annular regions for each component, a mask, which

we label the annularMask, is generated centered at the component. The source and

background regions, srci and bkgi respectively, are extracted by masking out all the
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Figure 3.4: Annular source (left panel) and background (right panel) regions around
the component under consideration. The orange regions marked inside the annular
regions are the masks applied to the components in the catalogue.

pixels outside the annular region, annularMask.

srci =

{︄
qmsk,i, if srci ∈ annularMask

0, otherwise

bkgi =

{︄
1, if bkgi ∈ annularMask

0, otherwise

(3.2)

The inclusion of the aforementioned background region is to make sure that the

pattern intrinsic to the shape of any given region of interest (as mentioned in Sec-

tion 3.1.1) in the HT does not influence the detection of the linear artifacts. Figure 3.4

shows an example of the source and background regions extracted around a compo-

nent.

HT & its 1D profiles

The SNR of the signal from linear artifacts can be increased by utilizing the signal

from parallel streaks seen in the images. To do so, the HT of the entire clipped and

masked image (HTqmsk
) along with the HT of the source and the background regions

are generated (HTsrc and HTbkg, respectively). Figure 3.5 shows in highlights the
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Figure 3.5: Hough Transform parameter space of the annular source region (in grey)
overlaid on the Hough Transform parameter space of the full clipped & masked image
(in colour).

HT of the source (and background) region against the HT of the clipped and masked

image. Here the resolution of the HT parameter θ is fixed at 0.2◦ for better accuracy.

Next, the average of the clipped image HT weighted by the HT of the source region

along the distance parameter is generated:

Profilesrc =

∑︁
ρHTsrc(θi, ρ) · HTqmsk

(θi, ρ)∑︁
ρHTsrc(θ, ρ)

Profilebkg =

∑︁
ρHTbkg(θi, ρ) · HTqmsk

(θi, ρ)∑︁
ρHTbkg(θ, ρ)

(3.3)

This produces one-dimensional profiles (against position angles) of the source re-

gion HT. The same procedure is repeated for the background region HT. Weighing

the HT of the clipped image with the HT of the source region increases the signal

strength of the annular region and simultaneously suppresses the signal from other

regions.

Figure 3.6 shows the 1D source and background profiles. Here the y-axis repre-

sents the weighted average counts of pixels at every tested position angle; and hence
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increases the signal-to-noise ratio of the streaks. The profiles can be considered anal-

ogous to the signal strength at each angle. But, the peak at 45◦, the peak at 135◦,

and the general trend seen in the 1D profiles are direct results of the HT algorithm

itself, and are not related to linear artifacts in the image.

Background Scaling & Subtraction

Assuming the source region consists of signal from the streaks and random noise,

during 1D profile generation procedure discussed in Section 3.1.2, the source region

emphasizes/enhances both the signal and noise (present in the image) in the 1D

profile. On the contrary, the background region (where all unmasked pixels are set to

1) uniformly weighs the HT of the clipped image (i.e. no weight is added). Although

the general trend is seen in both profiles, the background 1D profile has fewer counts

compared to the source 1D profile, as seen in Figure 3.6, because of the uniform

weights.

To account for the noise in the source region and its weight on the 1D profile,

the background 1D profile is scaled up, appropriately incorporating the size of image

noise in the source profile. A uniform noise throughout the image is assumed and

(thus) applied to the component in question as well. Algorithm 1 shows the iterative

process used for noise extraction and addition to the background profile to generate

a scaled background profile. Figure 3.7 shows the HT profile of the source and the

HT profile of the background profile after scaling.

Peak Detection

To make the streak detection independent of the effects of HT, the scaled background

1D profile is subtracted from the source 1D profile. The highly pixelated image

produces a noisy background-subtracted 1D profile. The profile is smoothed to remove

the effects of this noise. The resulting smoothed background-subtracted profile is

therefore used as a robust statistical basis for streak identification as it is independent
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Figure 3.6: Source and background 1D profile of the weighted HT parameter space
against position angle θ. The background 1D profile is (slightly) lower than the source
1D profile due to the absence of signal and noise of the component. The peaks seen
at 45◦ and 135◦ are not from the signal in the image but from the nature of the HT
itself.

Figure 3.7: Source 1D profile with the scaled background 1D profile of the Hough
Transform against position angle θ. The background profile is scaled up to the source
profile by adding the mean noise from the source 1D profile.
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Algorithm 1 Background 1D Profile Scaling

Given:

Profilesrc = the 1D profile of the HT of the source region

Profilebkg = the 1D profile of the HT of the background region

RMS() = function to calculate the robust root mean square of given values

AVG() = function to calculate the mean of given values

MDN() = function to calculate the median of given values

iter ← 0

noiseLevel← 0

Profilescaledbkg ← Profilebkg
while iter < 3 do

Profilesrc−bkg ← Profilesrc − Profilescaledbkg
noiseRegime← Profilesrc−bkg

condition← True

while condition = True do

thresh← 3× RMS(Profilesrc−bkg)

noiseRegime← Profilesrc−bkg < thresh

newNoiseLevel ← AVG(noiseRegime)

if newNoiseLevel = noiseLevel then

condition← False

else

noiseLevel← newNoiseLevel

end if

end while

Profilescaledbkg ← Profilescaledbkg ×
(︃
1 +

noiseLevel

MDN(Profilescaledbkg)

)︃
iter ← iter + 1

end while
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Figure 3.8: Smoothed background-subtracted source 1D profile against position angle
θ. All peaks detected above the 5σ horizontal black dotted threshold line are shown
as red dots. The position angles at these peaks represent the position angles at which
linear artifacts are present around the component.

of all image noise and intrinsic patterns that arise from the HT.

All peaks in the smoothed profile that are ≥ 5σ threshold are identified as angles of

the linear streaks around the component in question. As mentioned in Section 3.1.2,

the threshold is made robust by using the MAD. This conservative threshold of 5σ is

used to ensure the detection of “apparent” streaks, arising from the pixelated input

image, is avoided. Figure 3.8 shows the peaks detected for the previously selected

example data.

In cases where there are vertical streaks in the image, peaks are usually identified

at both 0◦ and 180◦. To avoid this duplication, the smoothed background-subtracted

1D profile is rolled onto itself during peak detection.
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3.2 New Characterization Methods

The linear artifact identification algorithm only extracts the position angles of the

streaks in the source region. The quantitative and qualitative properties of the iden-

tified linear artifacts are required to classify and characterize the component around

which the streaks are found. To do so, the width and surface brightness of the streaks

are extracted.

3.2.1 Width Characterization

In the HT parameter space, any of the identified position angle’s (θpeak,i) columns

show the distribution of the strength of parallel lines at varying distances (along the

ρ axis of HT parameter space) from the origin of the image. This distance column can

have multiple peaks and/or plateaus indicating the presence of ”strong” parallel lines

around the component. Figure 3.9 from Xu et al. (2014) illustrates an example of HT

around a position angle θi. The gradient of the peaks and/or plateaus represents the

spread of the signals at those distances (i.e., the width of the parallel streaks).

Figure 3.10 shows the distance column at an identified position angle θpeak,i = 108◦

around the component considered. The FWHM of peaks in the distance column are

taken as the widths of these parallel streaks. Again, a robust standard deviation i.e.,

MAD is used to identify the peaks 3σ above the median of the column. Here, two

peaks are detected. Annular regions can sometimes have non-central bright streaks

(which do not overlap the component). These streaks can raise the median level of

the signal and affect the estimation of the robust standard deviation. To counter for

such scenarios, a lower threshold of 3σ (compared to the previously chosen 5σ) is

chosen to ensure that the signal from the streaks that are actually overlapping the

streaks are also identified.
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Figure 3.9: This example figure of a Hough Transform parameter space is taken from
Xu et al. (2014). Here d is the distance parameter ρ and α is the position angle
parameter θ. The cell values are the counts at each (α, d). The highlighted blue
gradient shows the values peaking at location of the streak/line and decreasing away
from the peak.
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Figure 3.10: A single column in the Hough Transform parameter space at one of the
position angles of the identified streak at θpeak,i = 108◦ against the distance parameter
ρ. The two peaks identified indicate the distances to the potential streaks from the
image origin.

3.2.2 Component & Streak Matching

Applying the HT on the annular regions around a component causes the signal from

streaks that do not overlap with the component to be included in the parameter space.

The spatial information of the recognized streaks are lost since the new linear artifacts

detection method collapses the HT to a 1D position-angle profile of the input image

to boost the signal strength of the streaks. This implies that the new algorithm

is designed so that it could identify streaks that have no effect on the component

since they are offset from the component. Since a brighter streak can be next to the

component without overlapping with the component, choosing the highest peak for

the width measurement is not an option.

To ensure that only streaks that overlap with the component are identified, a two

step verification is applied when measuring the width of the streaks.

1. For every streak identified around a component, only a section of the distance

column around the component’s ρcomp is considered during the width measure-

ment. ρcomp is calculated using Equation (2.2) with x and y as the image

coordinates of the component and θ as the identified angle under considera-
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Figure 3.11: The Hough Transform parameter space at the position angle of an
identified streak at θpeak,i = 108◦ against the distance parameter ρ. The orange peak
is a potential streak detected at an offset from the component and has no effects
on the component whereas the red peak represents a streak overlapping with the
component. The brown horizontal lines at the peaks shows the width of these peaks.

tion. Through trial and error, the size of subsection of the distance column

considered is chosen as 120 cells/pixels centred around ρcomp. This ensures that

the threshold calculated for peak detection during width calculation is accurate

but at the same time also removes signal from streaks that are offset from the

component yet are in the annular region.

2. Of all the peaks and their respective widths identified in the subsection of the

distance column, the highest peak that has a FWHM (i.e., width) that overlaps

or grazes the component’s ellipse is chosen. This step makes sure that only the

streaks that are affecting the component are considered.

Figure 3.11 illustrates the subsection region centered around ρcomp in the distance

column. The peak shown in red is chosen as the width of the streak as it is seen to be

going over the ρcomp marked with the dotted black line. Other potential peaks that

were detected are marked in orange. Algorithm 2 describes the verification steps in

detail. Streaks that are detected in the linear artifacts detection method but found

to not overlap with the component during the width characterization step are filtered

out.
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Algorithm 2 Streak Filtering

Given:

ρcomp = distance of the component from image origin.

distCol = ρ column of HT at an position angle θi of streak identified

for every streak i identified around a component do

srcCenteredDistCol← distCol[ρcomp − 60 : ρcomp + 60]

identify peaks ρi in srcCenteredDistCol and measure their widths widi

for every peak ρi in srcCenteredDistCol do

if ρi - widi/2 < ellipse of component < ρi + widi/2 then

accept streak at θcomp with width wi

else

reject identified streak at θcomp

end if

end for

end for

3.2.3 Quantifying the Streak Surface Brightness

Assessing the strength of streaks (i.e., the surface brightness of the streaks) is essential

to analyze how much of a component’s flux density is due to overlapping streaks. This

helps in the accurate measurement of the component’s flux density.

The values of the pixels in VLASS QL images are the flux density surface bright-

ness given in Jy/bm (Jansky per beam). To calculate the surface brightness of the

identified streaks, the image is first converted to units of Jy/pix using

Jy/pix =
Jy/bm

Ωb

, (3.4)

where Ωb is the area of a Gaussian synthesized beam (known as the beam volume)

given by

Ωb =
π

4 ln 2
×Θmaj ×Θmin, (3.5)

where Θmaj and Θmin are the major and minor axis of the synthesis beam, respectively.

The conversion is to make sure that the surface brightness of the streaks are calculated

over the area of the streak; and not over the beam per area of the streak.
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Figure 3.12: The four sections of all the identified streaks around a component is
shown in green. For each of the identified streaks, aperture photometry is performed
to extract a robust surface brightness of the streak to determine the strength and the
effects of the artifacts on the component.

The surface brightness of the streak is calculated by performing aperture photome-

try on the Jy/pix values from the VLASS QL image. The width of the streak is taken

as the width calculated during the streak width characterization and the length of the

streak is taken as twice the radius of the annular region. Sometimes, linear artifacts

are not uniformly bright around the component. To measure a more accurate surface

brightness of the streak, the streak region is divided into 4 sections. An example of

a streak divided into 4 sections is shown in Figure 3.12. Aperture photometry is per-

formed separately on each of the 4 sections to measure their surface brightnesses. The

median of the surface brightnesses of the sections is taken as the surface brightness

of the streak.

A part of the signal from the streak region can be due to background noise that

is not associated with the streak. Therefore the RMS of the annular region that is
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not affected by streaks is measured to quantify this noise. The measured background

RMS is used to calculate the signal-to-noise ratio of the streak and therefore the

extent of effects the streak has on the flux density of the component.
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Chapter 4

Application of New Methods to
VLASS Epoch 1

A random subset of VLASS QL images from Epoch 1 was used to develop the new

artifact detection technique and tune the selection of parameters (like the size of the

annular region considered), However, this subset only consisted of ≈ 1000 VLASS QL

images and their components i.e., about 1.5% of the Epoch 1 data. In this chapter

we apply the new technique to the entire VLASS Epoch 1 data-set1. We first discuss

the steps taken to confirm the streak detection. Then we detail how the confirmed

streaks were used to re-evaluate the properties of components in VLASS QL 1 images.

Finally, we compare our method of identifying artifacts to the two methods already

in the component catalogue.

4.1 Streak Confirmation

The new artifacts detection algorithm identifies ∼1.4 streaks around each component

on an average. While 17% (574,193) of components have no linear artifacts overlap-

ping them, multiple streaks including the sidelobe streaks are detected around 83%

(2,807,084) of components (including a majority of the brightest components). The

new method is also very sensitive to relatively low surface brightness. Therefore, the

absence of above-detection-threshold streaks around some sources could be due to

1The component catalogue for VLASS QL images in Epoch 2, which contains critical input data
for that epoch, has not undergone peer review at the time of this thesis
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accurate de-convolution resulting in almost no residuals.

Gordon et al. (2021) initially identified about 8% of components potentially having

artifacts based on Peak to Ring < 2 and nearest neighbour > 20′′ criterion. Therefore,

we selected a subset of the detected streaks (≈ 1%) to perform visual inspection,

verify the presence of streaks, and manually check the impact on the components

they overlap. With these inspections, we developed and performed additional analysis

(for the full sample of streaks) to quantify the candidate streaks’ properties and verify

that the detected streaks are valid and statistically well understood for future analysis

that removes their effect on the overlapping component.

As previously mentioned in Section 3.2.3, each identified streak is divided into four

sections, and the total flux density and angular extent of each quadrant is measured.

If a quadrant has N beams, the total flux density of each quadrant, fqi , is:

fqi ± δfqi = fbeam,i ·N ±
√
N · δfbeam,i, (4.1)

where fqi is the total flux density of the i-th quadrant and fbeam,i is the flux density

of the beams in the i-th quadrant.

The uncertainty in the flux density for a single beam (δfbeam,i) can be approximated

as the RMS of the background local annular region since the noise level in the local

region is assumed to be uniform:

δfbeam,i = RMSlocal (4.2)

Therefore, the surface brightness of each quadrant is,

µqi ± δµqi =
fqi
Aqi

±
√
N · RMSlocal

Aqi

=
fqi
Aqi

± RMSlocal√
N · Ωbeam

,

(4.3)

where Aqi is the area of each quadrant in square pixels and Ωbeam is the synthesized

beam size in square pixels. With the surface brightness of the sections already calcu-

lated in the streak detection algorithm, the uncertainty of the surface brightness of

the sections are calculated using Equation (4.3).
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The streaks are split into sections to verify whether the streaks have uniform surface

brightness in the considered local annular region. Furthermore, splitting of a streak

makes sure that the strength of the streak is not biased by the surface brightness

of any particular quadrant(s). Here, we have chosen to divide each streak into four

sections to have the minimum number of sections needed for unbiased estimation of

the surface brightness, while maintaining symmetry around the component. Next,

the inverse-variance weighting of the surface brightness of the sections is taken as the

surface brightness of the whole streak, µstreak.

µstreak ± δµstreak =

∑︂ µqi

δµqi
2∑︂ 1

δµqi
2

±

⎡⎢⎢⎣ 1∑︂ 1

δµqi
2

⎤⎥⎥⎦
1
2

. (4.4)

Masking the components from the Gordon et al. (2021) catalogue can reduce the

considered area of the any of the four sections, thus changing the error in surface

brightness of each section. The inverse-variance weighting rectifies the effect these

different uncertainties have on the surface brightness of the streak.

Here the surface brightness of the sections are calculated as flux density per unit

pixel. Then the surface brightness is converted to flux density per beam

µstreak[Jy/bm] = µstreak[Jy/pix]× Ωbeam[pix/beam] (4.5)

to match the units with the units of intensity given for each pixel in the QL images.

Here µstreak is taken as the uniform surface brightness of the entire streak, at least in

the considered local annular region.

A histogram of the SNR of the surface brightness of all the streaks identified in

VLASS Epoch 1 QL images is shown in Figure 4.1. The peak of the histogram

(shown as a solid back line) represents the approximate completeness limit of the new

algorithm (i.e., not all streaks below an SNR of 30 have been detected by the new

algorithm). This could be due to high or non-uniform noise levels around compo-

nents, which can lead to peaks in 1D profile (discussed in Section 3.1.2) to be below
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Figure 4.1: Histogram of the SNR level of the all the identified streaks in VLASS
Epoch 1 QL images. The histogram peaks at SNR of ∼30, which indicates the likely
completeness limit of our new artifact-identification method (i.e. some streaks below
SNR of 30 are not identified by the new method). However, streaks with SNR below
30 are less likely to strongly affect component characterization.

the set threshold. In addition, we note that since a typical quadrant size is ≈ 25

beams, the uncertainty in the average streak surface brightness is usually known at

the RMSlocal/(4 · 25)1/2 level. Thus, missing streaks with SNR below 30 will have

little effect on the peak flux density of components, especially for components above

1 mJy/beam (recall a typical RMS is ∼ 0.15mJy/beam). Therefore, although the

components’ peak flux density might be slightly (almost negligibly) overestimated,

the absence of these missing streaks will not lead to mis-classification of components

as imaging artifacts.

4.1.1 Streak Selection Based on Application

The identified streaks can be used: as an additional quality assurance step while the

QL images are generated and; for component brightness estimation and classification.

Based on the use case, a subset of the identified streaks is considered for further

analysis.
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Quality Assurance

The detection of the streaks indicates inadequate clean-ing on an image as a whole.

Although all streaks cannot be perfectly removed from the images, a few additional

checks can be added to ensure that images are clean-ed as much as possible. While

QL-image generation will not be changed for the final epoch of VLASS, most of

VLASS Single Epoch continuum images are still being generated. The quality assur-

ance modes and steps we discuss below could be integrated into that process, or used

more generally for snapshot VLA observations.

There are two modes one can envision for quality assurance: in one mode, source

detection is run and the full extended HT analysis described in this thesis is per-

formed; this mode is considered below. In the second mode, the extended HT analysis

described in this thesis is adjusted for component-blind analysis. This could include

treating the entire image as the “src” region and forgoing the component and streak

matching step. The second mode will be more computationally expensive, but may

provide superior artifact detection.

During image generation, the following quantities can be checked after a suitable

round of clean-ing .

• The total number of streaks identified in each QL image. Based on a set thresh-

old of acceptable number of streaks in an image, to drive decisions on the need

for more iterations of de-convolution.

• The change in the total number of streaks identified in each QL image. If this

difference is negligible even after 3 consecutive iterations, the de-convolution

step can be stopped.

• The median surface brightness of the identified streaks in an image. Again,

based on a set acceptable threshold for the surface brightness of the streaks,

more iterations of clean-ing can be performed.
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• The change in the total surface brightness of all streaks between each iteration

of clean. If this difference is negligible even after 3 consecutive iterations, the

de-convolution step can be stopped.

When considering the numbers of streaks, one would also have to set a surface

brightness density threshold (based on the RMS of the image) above which to “count”

a streak. This criterion could be optional when considering the surface brightness of

streaks. It is to be noted that above steps should only be considered as suggestions.

Fine tuning of these steps is beyond the scope of this thesis.

Component Brightness Estimation and Classification

To check whether the component is a real source or not, and to correctly estimate

the flux densities of those real sources, a more stringent streak selection criterion is

needed.This is because streaks with larger surface brightness uncertainties can nega-

tively affect the estimation (with good accuracy) of the peak flux density of just the

component. Furthermore, this selection ensures that only streaks that are significantly

affecting the components are considered during components’ brightness estimation.

Therefore only streaks with SNR ≥ 5 are considered (i.e. not all the identified streaks

will be considered for this analysis) for the calculation of the collective effect of the

streaks on a component. We consider streaks that fail this criteria as both too poorly

quantified and to likely have little effect on components. With this threshold, of the

total of 4,733,249 streaks identified around 3,381,277 components, only 1,548 streaks

are below the 5σ limit. These low-SNR streaks are found in only 1,500 Subtiles.

Figure 4.2 shows an example of identified streaks that are below the threshold.

4.2 Component Re-evaluation

Once the streaks are identified and quantified, the effect of the overlapping streaks on

the components is removed. Based on the corrected flux density of the component,
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Figure 4.2: Examples of streaks identified around sources/components that have a
signal-to-noise ratio of ≤ 5σ. These detections are either results of a nearby streak in
the local annular region that does not overlap the component (left panel), or around
very bright sources that produce lots of streaks (right panel). Streaks below 5σ limit
are not considered in re-evaluating component properties under the new method.

the components are then classified as either likely being a real astrophysical source

or an imaging artifact.

4.2.1 Removing Effects of Streaks’ Surface Brightnesses

To remove the effects of the streaks on any component, the components’ peak flux

densities already available in the Gordon et al. (2021) component catalogue are con-

sidered. The reasons for considering the peak flux density instead of the total flux

density of the components are threefold:

• Transient sources, the major scientific motivation for this thesis, must be unre-

solved point sources (due to light-travel time considerations) and are statistically

unlikely to be embedded in an extended source. In (noise-free) point sources, if

the peak flux density is X mJy/beam, then the total flux density is X mJy.

• The streaks are assumed to have uniform surface brightness, which in these cases

are the calculated surface brightness flux densities. Therefore the calculated

surface brightness flux density of a streak is also its peak flux density.
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• The Gordon et al. (2021) catalogue does not have the total flux calculated for

all the identified components. This is mainly because PyBDSF was not able to

fit Gaussians to the components and hence the dimensional parameters like the

semi-major and minor axes were not estimated.

For a component with at least one overlapping streak, the peak flux density can be

visualized as shown in Figure 4.3. The flux density Gaussian curve of an unresolved

component is increased based on the (average) flux density of each streak that is

overlapping the component. This increases the observed peak flux density of the

component. Conversely, the peak flux density of components that have no identified

overlapping streaks or have streaks that are not overlapping the brightness region of

the component are unaffected.

To determine the unaffected peak flux density of a component, the flux density of

the overlapping streak(s) is removed from the previous estimations. The algorithm

describing the subtraction is shown in Algorithm 3. As previously mentioned in

Section 4.1, only streaks that have a SNR ≥ 5 are considered for component peak

brightness correction. Of these valid streaks, only streaks that are overlapping more

than half of the component (i.e., the center of the component + 1 pixel) are considered

as streaks that are affecting the component. Here the additional pixel is added as

a safety measure to make sure that the centre of the component (i.e., the peak flux

density pixel of the component), is in fact fully covered by the streak. As seen in

Figure 4.3, these are the streaks that increase the previously estimated peak flux

density of a component.

In Algorithm 3, this selection is implemented by only considering the streaks that

are less than their width + 1 pixel distance away from the center of the component.

The centres of the streak obtained during the artifact’s detection (xstreak, ystreak), and

the component (xcomp, ycomp) are converted to distance from the origin of the image
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Figure 4.3: Graphical 1D representations of the flux density around a source/compo-
nent. PyBDSF fits a Gaussian to the component shown by the blue curve. Upper:
shows the enhancement of the detected peak flux density of the component by n
streaks. Lower: shows the enhancement of the peak flux density of the component
by the 1st and nth streak, whereas the the 2nd streak is not affecting the peak flux
density of the component.
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Algorithm 3 Total Peak Flux Density of Valid Streaks

Given:

Sstreak,i, wstreak,i = Surface brightness and width of each overlapping streak.

ρstreak,i, ρcomp = HT distance equivalent of the center of the streak and component

from origin of the image at the streak angle θstreak.

SallStreaks = Sum of surface brightness of all selected streaks.

for all components in catalogue do

SallStreaks ← 0

δSallStreaks ← 0

if
Sstreak,i

δSstreak,i
≥ 5 then

if |ρstreak,i − ρcomp| < wstreak,i+1 then

SallStreaks ← SallStreaks + Sstreak,i

δSallStreaks ←
√︂

S2
allStreaks + S2

streak,i

end if

end if

end for

ρstreak and ρcomp respectively, at the considered streak angle θstreak.

ρstreak = xstreak · cos θstreak + ystreak · cos θstreak

ρcomp = xcomp · cos θstreak + ycomp · cos θstreak
(4.6)

This distance-equivalent value is considered instead of the Euclidean distance to main-

tain consistency with the HT’s distance parameter ρ. Finally, the flux densities of

all these selected streaks are summed to obtain the total effect of the streaks on the

component µallStreaks. The detected peak flux density of the component, fcomp, is then

corrected by:
fcorr,comp = fcomp − µallStreaks[Jy/bm] and

δfcorr,comp =
√︂

δfcomp
2 + δµallStreaks

2,
(4.7)

subtracting the streak surface brightness (in Jy/bm). The corrected value fcorr,comp

is the estimated peak flux density from only the component.
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4.2.2 Component Classification

Through visual inspection, we noted that many potential imaging artifacts are local

maxima on individual streaks (likely sidelobe streaks from nearby a component/-

source) or at the intersection of two or more streaks, most of which are originating

from nearby components. Such examples of potential imaging artifacts are shown in

Figure 4.4. Additionally, if the component is a real source in the uv-plane, incomplete

cleaning of a point source convolved with the dirty beam would result in hexagonal

pattern residuals (three streaks) around the component. Unless the images are per-

fectly de-convolved leaving no residuals, which is usually unlikely for QL images, most

real astrophysical sources will have traces of sidelobe streaks around them. The ab-

sence of overlapping sidelobe streaks or the comparable flux densities of these streaks

to the peak flux density of the component can both suggest that a component is prob-

ably an imaging artifact. Inferring from this, the classification of the components is

based on the signal-to-noise ratio of the peak flux density of component before and

after streak subtraction, the number of streaks overlapping the component, the num-

ber of sidelobe-predicted streaks overlapping the component, and the strength of the

peak flux density of the component compared to the brightness of all the overlapping

streaks combined.

The classification follows the flowchart/decision tree shown in Figure 4.5. The

components are given a binary flag based on the results at each decision node (shown

as rounded rectangles). The set of binary flags collected at all the decision nodes

determines the classification category (shown as oval leaf nodes) of the component.

The procedure for classification is as follows:

1. The components for which the peak flux density SNR ≤ 3 are not classified (flag

= 0; no classification). This is because such components do not have enough

signal strength to know whether they are valid components and hence we cannot

further classify them accurately. The remaining components with SNR > 3 are
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Figure 4.4: Cutout of the VLASS QL image highlighting false-positive imaging arti-
facts detected as components/sources by PyBDSF. Many of these false-positives are
local maxima on a prominent streak originating from a nearby bright source.

analyzed for classification (flag = 1).

In the Gordon et al. (2021) catalogue, some components do not have an estimate

of the error in peak flux density, δfcomp. To rectify this, we assume that the

error is the target RMS noise level per VLASS epoch (i.e., 120µJy/bm). The

same 3σ threshold is considered for these components (flag = 1), with low SNR

components being given no classification (flag = 0; again with the classification

label as no classification).

2. For components that do not have any streaks (after the streak selection de-

scribed in Section 4.2.1), the previous estimation of peak flux density remains

the same. Since our classification is based on the identified streaks, such com-

ponents are omitted from our classification process (flag = 0) and are classified

as unknown. Components with streaks as further analyzed (flag = 1).

3. After the peak flux density correction of the components, if the SNR of the

corrected peak flux density < 3, it implies that the previously estimated peak
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Figure 4.5: Component classification flowchart. At each decision node the components
are given a binary flag. Based on the flags, the components are given a classification
tag of either no classification and unknown, or one of the three probability ratings
that a component arises from a linear streak artifact: low, mid and high.
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flux density mostly arose from the overlapping streak. The low signal strength

from only the component (i.e., after subtraction), suggests that the component

is likely to be an artifact (flag = 0). Such components are given the artifact

probability rating of high. If the SNR ≥ 3, the strength of the signal is mostly

from the component itself and therefore such components are considered for

further analysis (flag = 1).

4. As previously mentioned in Section 4.2.2, the presence of sidelobe streaks around

components suggests that it is a real astrophysical source. Therefore compo-

nents are separated into two classes based on the number of overlapping streaks

that are at the angles of the predicted sidelobe streaks.

Around the components, the angles of the detected sidelobe streaks might be at

slightly different angles from that of the predicted sidelobes because of various

reasons like interference of signal from nearby component(s), overlapping of

streaks from other sources at different angles, etc.. Therefore, while counting

the number of sidelobe streaks, streaks that are within 5◦ of any of the three

predicted sidelobe streaks are considered as being “predicted”.

If the number of predicted sidelobe streaks ≤ 1, the threshold for further SNR

comparison and analysis is set to 5 (flag = 0) otherwise the threshold is set to

3 (flag = 1). The change in threshold for these two classes is to make sure that

the components with no sidelobe streaks are in fact real astrophysical sources

instead of a local maxima on a single bright streak.

5. Finally the peak flux density of the component is compared with the total flux

density of all affecting streaks (SNR). If the SNR is ≥ the threshold, then the

probability of such components being imaging artifacts is low and hence are

given a artifact probability rating of low (flag = 1).

For components that have a threshold of 5 i.e., 1 or less overlapping sidelobe

58



streaks, if the SNR is below the threshold, the components are given an artifact

probability rating of high (flag = 0) indicating that the components are likely

imaging artifacts. Whereas for components with a threshold of 3 i.e. more

than 1 overlapping sidelobe streaks, if the SNR is below the threshold, the

components are given an artifact probability rating of mid (flag = 0) implying

that even though the SNR is low, the component might be a real astrophysical

source. Such components can be omitted or included in the selection based on

the user’s requirements.

In total, the components are classified into 5 categories (with binary decision flags

given in brackets):

• no classification [0]: Components that have a SNR < 3. These components

are not given a probability rating.

• unknown [10]: Components for which no overlapping streaks were detected.

No probability rating is given since the classification is based on the identified

streaks.

• high [110] or [11100]: Components that are most likely to be imaging

artifacts.

• low [11111] or [11101]: Components that are most likely to be real astro-

physical sources.

• mid [11110]: Components that have the probability of being an artifact be-

tween the low and high categories.

Out of the 3,381,277 components from Gordon et al. (2021), we only identify 988

components with no classification flag (0.029% of all components). We find that only

616,497 components contain no overlapping streaks (18.23% of all components); this

strongly suggests that the incomplete identification of streaks with surface brightness
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SNR of 5–30 is not a strong concern. We identify 850,718 components (25.16% of

all components) as having a “high” likelihood of arising from linear streak artifacts.

Of these highly likely imaging artifact components, 73,133 have [110] flag (2.16% of

all components) and 777,585 have [11100] flag (23.00% of all components). Since

we only identify 47,025 components (1.39% of all components) as having a “mid”

probability of arising from linear streak artifacts, it makes relatively little difference

whether users include or exclude such components in their analysis. Finally, we find

that 1,866,049 components (55.19% of all components) have a “low” probability of

arising from linear streak artifacts. 646,559 of these components have the [11111] flag

(19.12% of all components) while 1,219,490 of them have the [11101] flag (36.07%).

The five categories of the components in a fcomp – fcorr,comp plane are shown in

Figure 4.6. The diagonal black line represents the ideal scenario where no streaks

are found in the images and therefore the peak flux density of the components before

and after streak subtraction stays the same. In the not ideal scenario, (i.e., in QL

images), the diagonal line also traces the components around which no above-the-

threshold streaks were identified (i.e., components for which the new method fails to

identifies components due to the reasons discussed in Section 4.1). The horizontal and

vertical black lines represents an SNR of 3 (threshold above which the components

are considered for the 3 artifact probability rating). As the components deviate from

the diagonal line (i.e., as the overlapping streaks’ strength increases with respect to

the measure peak flux density of the components), components are more likely to

be classified as “high” or “mid”. The few outliers of “unknown” (shown in blue)

(i.e., the components for which overlapping streaks are not detected) lie below the

diagonal line due to their missing peak flux density uncertainty. For such components,

the local RMS level RMSlocal is substituted as their peak flux density uncertainty,

which changes their SNR. The outliers seen in the “low” components population are

mostly components that have been heavily effected by a streaks or streaks; but some

components for which the overlapping streaks’ combined strength is under-estimated
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Figure 4.6: Comparison of the SNR of the 5 categories of components before and
after streak subtraction. top left panel shows all 5 categories; top right panel shows
all “unknown” and “no classification” categories; bottom left panel shows all “low”
and “mid” categories; and bottom right panel shows the “high” category components.
The vertical and horizontal black lines represents an SNR level of 3; and the diagonal
black line represents the region where the SNR did not change after streak subtraction.
The two population seen in the components rated “high” and “mid” (around fcomp

SNR of 101 and 102) is due to the two sets of population (based on their peak flux
density) present in catalogue.
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Figure 4.7: Histogram of the SNR level of all identified components in VLASS Epoch 1
QL images. The two highlighted regions represent the two population groups present
in the catalogue.

can also be found in these outliers. All these outliers have a [11101] flag, while

the rest of the “low” population have both [11101] and [11111] flags. Finally, two

population seen in the “high” and “mid” categories are due to the presence of two

sets of components with their peak flux density’s SNR peaking at ∼5 and ∼40 (even

at SNR ∼ 100 there are approximately 1000 components).

This second population is seen in Figure 4.7, showing the histogram of the SNR of

all components identified in VLASS Epoch 1 QL images. The histogram of the SNR of

“low”, “mid” and “high” components before and after correcting for the overlapping

streaks is shown in Figure 4.8. The change in the peak of the “high” and “mid”

components’ SNR seen at ∼40 before correction (to ∼23 after correction) indicates

that large corrections are done for this population. Therefore, we believe that the

population of VLASS components at SNR ∼40 includes a large population of artifact

components that lie on sidelobe streaks from unrelated, very bright components. Yet,

the presence of the bump/peak after correction (at SNR of ∼23) indicates that more

accurate streak subtraction needed.

On the other hand, the population of VLASS components at SNR ∼5 include both

the expected higher number of astrophysical components at low flux densities and the
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Figure 4.8: Histogram of the SNR level of the components classified as “low”, “mid”
and “high” before and after subtracting the effects of the overlapping streaks. This
shows that there is no clear secondary peak in the components with a “low” proba-
bility of arising from a streak artifact. Moreover, components with a “mid” or “high”
probability of arising from a streak artifact show adecrease in the secondary peak
SNR (to ∼23 from ∼40) of the “mid” and “high” component population after correc-
tion. While this indicates an improvement, there is still an unexpected population of
components (and thus potential artifact components) at moderate SNR.

greater ease for low surface brightness streaks to cause artifacts. The two population

groups seen in the “high” components are not caused separately by the two flags,

[11100] and [110], given to this category. Both the “high” populations groups seen

above fcorr,comp of 3 have the [11100] flag, while the population below fcorr,comp of 3

have the [110] flag.

4.3 Comparison of New Methods with VLASS QL

Catalogue

Our two-fold “high” likelihood classification of a component arising from artifact

streaks brackets past estimates of artifacts contamination in the Gordon et al. (2021)

catalogue. We only identify ∼ 2% of all components with our most strict [110]

flag identifying artifacts, compared to the ∼ 8% of the most strict flags of Gordon

et al. (2021). Excluding only this flag, a larger fraction of the components Gordon

et al. (2021) may be astrophysical sources with recoverable peak flux densities than
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previously believed.

However, our “looser” [11100] flag identified 23% components that are likely to

be artifacts. This flag largely arises from components where the streaks make up a

sizeable fraction (at least 20%) of the original peak flux density estimated for that

component. While these components may include real sources, our ability to interpret

their peak flux density will depend critically on how well our streak subtraction

techniques work. This is a topic for future consideration beyond this thesis. For now,

we conservatively label these sources as having a high likelihood of arising from a

linear artifact.

As discussed in Section 1.4, the first version of the Gordon et al. (2021) catalogue

flags potential spurious detections originating from sidelobe streaks using the Peak -

to ring metric. The left panel of Figure 4.9 shows the comparison of these Peak to ring

with the new method’s classification with respect to the measured flux density of the

components. As mentioned in (Gordon et al., 2021), most of the potential artifacts

are below Peak to ring of 3 as seen in the left panel. Only 597 components that are

flagged as highly likely to be artifacts are seen above Peak to ring of 3.

Figure 4.9: Left: The spread of each classification category in the log fcomp vs Peak -
to ring plane. A major fraction of the components classified as high or mid are
seen below Peak to ring of 3 (shown as dash-dotted line). Right: The spread of
each classification category in the log fcomp vs Psidelobe plane. A large fraction of the
components classified as high or mid are seen above Psidelobe of 0.1 (shown as dash-
dotted line).
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Figure 4.10: New classification component fraction comparison with Peak to ring and
SOM Psidelobe. Each of the 4 Peak to ring and Psidelobe bins above the threshold (3
and 0.1 respectively) contains equal number of components. All components below
the Peak to ring and Psidelobe thresholds are binned together. The negligible number
of “high” and “mid” components seen above Peak to ring of 3 and increase in the
number of “high” and “low” components with the increase in Psidelobe suggests a good
agreement between the new classification and the two metrics.

The updated version of the catalogue has the SOM’s Psidelobe metric that is based

on Peak to ring. As discussed in Vantyghem et al. (2021), only components that

have Peak to ring < 3 are considered for the SOM sidelobe probability prediction.

Of these components some (especially components that have a peak flux density of

≤ 1 mJy/bm) are classified as “high” or “mid” in our classification method as seen

in the right panel of Figure 4.9. The vertical spread of the “high” and “mid” at

different Psidelobe is currently not yet understood and therefore further investigation is

necessary. In general, the decrease in number of components classified as “low” with

the increase in Psidelobe indicates an agreement between the two methods.

The agreement between our classification and the two metrics is highlighted in

Figure 4.10 showing the fraction of components in each category found in bins with

each number of components. A negligible fraction of “high” and “mid” category

components have Peak to ring > 3, which Gordon et al. (2021) associate with sources
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that are unlikely to be artifacts. Here we note that both the “high” and “mid”

fractions are similar in all the bins and they overlap each other in the left panel

of Figure 4.10. Moreover, since they both have similarly very low fractions at high

Peak to ring, and the figure was made by evenly binning the Peak to ring > 3 into 4

populations, the fraction of “low” components in each bin above the Peak to ring of

3 are all approximately the same (by design). In the right panel of Figure 4.10, we

evenly bin the P sidelobe > 0.1 into 4 populations. Here, the fraction of components

categorized as “high” and “mid” increase with the increase in Psidelobe, while the

fraction of “low” components in each bin decreases with the increase in Psidelobe.

Although there is a general agreement between our new classification and the two

older metrics, there are components where the newer and older methods disagree

on artifact identification. The number of components in each category from our

method is cross referenced with Peak to ring and Psidelobe values in Tables 4.1–4.2. In

both tables, for components below the threshold (3 for Peak to ring for and 0.1 for

Psidelobe), an additional comparison of whether the components are isolated (> 20′′) or

not is added. This is added to understand the conditions where our new classification

succeeds and fails in correctly identifying the components.

In Table 4.1, the components that are classified as “low” but have a Peak to ring

< 3 and the components that are classified as “high” but have a Peak to ring ≥ 3

are the regions of disagreement. Similarly, in Table 4.2, the components that are

classified as “low” but have a Psidelobe ≥ 0.1 and the components that are classified

as “high” but have a Psidelobe < 3 are the regions of disagreement. Here we must note

that components that are given a Peak to ring of -99 and Psidelobe of -1 are ignored

in their respective tables. A random sample of components in the above mentioned

four disagreement regions are shown in Figures 4.11–4.14. These examples show that

while many components are accurately classified in our new method, some components

are misclassified as well; this also appears true for the older Peak to ring and SOM

methods. Further visual inspection and analysis is required to quantify the fraction
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Table 4.1: Numbers of components by classification, cross referenced with Peak to -
ring (PTR) and nearest neighbour properties

PTR < 3,
not isolateda

PTR < 3,
isolateda,b

PTR ≥ 3 Total
(PTR ≥ 0)

No Classification 590 381 8 979

Unknown 122,300 146,672 338,961 607,933

Low 493,921 416,154 932,830 1,843,905

Mid 40,672 5,725 43 46,440

High 738,105 101,604 597 840,306

Total 1,447,661 618,463 1,272,439 3,338,563

NOTE.—The Peak to ring (PTR) and nearest neighbour properties are from Gor-
don et al. (2021). This table excludes components with poorly measured Peak -
to ring values (PTR=-99).
a Gordon et al. (2021) consider these components to likely be artifacts.
b Following Gordon et al. (2021), we label components with NN dist ≥ 20′′ as
isolated.

of misidentified components and identify the origin behind the wrong classification in

our new method.

Finally, since the goal of this thesis is to aid transient searches by correctly estimat-

ing the brightness of the identified components and thus distinguish real astrophysical

sources from spurious detections, here we give two examples of how our new method

correctly estimates and classifies such components. Figure 4.15 shows a real astro-

physical source (R.A. 293.933◦ and Dec -6.981◦) with overlapping streaks seen in both

Epoch 1 and Epoch 2. This source is correctly given a probability rating of “low”,

but has a Peak to ring of 2.53 and Psidelobe of 0.7. Figure 4.16 shows a example of an

artifact (at R.A. 94.525◦ and Dec 62.453◦) correctly flagged as a spurious detection

(“high”) but has a Psidelobe of 0.02 and Peak to ring of 1.38.
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Table 4.2: Numbers of components by classification, cross referenced with Psidelobe

and nearest neighbour properties

Psidelobe < 0.1,
not isolateda

Psidelobe < 0.1,
isolateda,b

Psidelobe ≥ 0.1 Total
(Psidelobe ≥ 0)

No Classification 104 33 814 951

Unknown 51,448 136,853 28,543 216,844

Low 237,602 376,441 130,598 744,641

Mid 1,031 1,687 7,103 9,821

High 10,344 14,728 145,201 170,273

Total 1,546,230 1,480,174 312,159 3,338,563

NOTE.—The Psidelobe and nearest neighbour properties are from Vantyghem et al.
(2021) and Gordon et al. (2021) respectively. This table excludes components with
poorly measured Psidelobe values (Psidelobe=-1).
a Vantyghem et al. (2021) consider these components to likely be artifacts.
b Following Gordon et al. (2021), we label components with NN dist ≥ 20′′ as
isolated.
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Figure 4.11: Sample of components that we classify as having a “low” probability of
arising from a streak artifact, but that the older Peak to ring method classifies as an
artifact. Panels a and d are likely artifacts and thus our method appears to have
failed to accurately classify them. We believe that we correctly classified the rest
of the components as potential real astrophysical sources/ components, whereas the
older method misclassified these sources as likely artifacts.
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Figure 4.12: Sample of components that we classify as having a “high” probability of
arising from a streak artifact and that the older Peak to ring method classifies as an
artifact. Panels a, b, g and, h appear to be wrongly classified as likely artifacts in the
new method, while the rest of the panels appear appropriately classified as artifacts.
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Figure 4.13: Sample of components that we classify as having a “low” probability of
arising from a streak artifact and that the older SOM method classifies as an artifact.
Panels a, d g and, i appear to be appropriately classified as likely astrophysical
sources in the new method, but incorrectly classified in the Psidelobe method. Panels
b, e, and h are misclassified in the new classification method, but correctly classified
in the Psidelobe method. The remaining two panels c and f are slightly ambiguous and
require further visual inspection to verify the classification.
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Figure 4.14: Sample of components that we classify as having a “high” probability of
arising from a streak artifact, but that that the older SOM method classifies as likely
being astrophysical. Panels a, c, g and, i appear correctly classified as artifacts in the
new method, but incorrectly in the SOM method. Panels b, d and, e are potential
mis-classifications by the new method that the SOM method identified as likely real
sources. Our method definitely fails to correctly classify components in panels f and
h.
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Figure 4.15: Epoch 1 and 2 QL image cutouts of a real source correctly estimated as
having a “low” probability in Epoch 1 of being an artifact by our method. However,
since the Peak to ring was 2.53, the SOM method found a Psidelobe of 0.7.

Figure 4.16: Epoch 1–3 QL image cutouts of a spurious detection that our new
method correctly classifies as having a “high” likelihood of being an artifact. While
the older Peak to ring method also found it likely to be an artifact, the SOM method
found a Psidelobe of 0.02.
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Chapter 5

Conclusion

5.1 Summary

In this thesis we developed a new artifact identification method that identifies lin-

ear streaks overlapping previously identified components across all VLASS Epoch 1

Quick-Look images with no user input. A visual inspection of over 500 images was

performed as one of the verification steps for this method.

In this technique that follows component detection, the input VLASS QL images

are pre-processed before passing through a line detection technique called the Hough

Transform; the images are clipped and detected sources are masked to obtain Boolean

images. A local region-based analysis is performed for each component to decrease

the false-positive identification of overlapping linear streaks. To identify linear streaks

the results of the Hough Transform are extended to adapt for the high noise level

relative to signals present in the QL images as compared to typical images outside of

astronomy.

The identified streaks around the components are quantified by measuring the

width and average surface brightness of the detected streaks. During the quantifi-

cation process, only streaks that are at least partially overlapping the ellipse of a

component are considered.

Next, the effect of overlapping streaks are removed by subtracting the total surface

brightness of all overlapping streaks above a SNR of 5σ. The components are then
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classified into three major categories: high, mid, and low based on the probability

of them being imaging artifacts. Components that have a SNR of less than 3 are

not classified and flagged as no classification. Since this classification is based on

overlapping linear streaks, components for which no linear streaks were found are also

not classified in this method and are flagged as unknown. Finally, the new artifact

detection and classification methods are compared with the previously developed

Peak to ring and SOM metrics.

This new technique has applications in any photometric techniques that will test if

detected components are local maxima in linear streaks, real astrophysical sources on

top of related or unrelated streaks, or astrophysical sources that are uncontaminated

by streaks. This technique is especially well suited to be extended to other VLA

projects, particularly those where time constraints or large data volumes prevent

optimal image reconstruction.

5.2 Key Results

Our new artifact detection algorithm was applied on all 3,381,277 components in the

Gordon et al. (2021) catalogue. Of these, a total of 4,733,249 overlapping streaks were

identified around 2,807,084 components. No overlapping streaks were identified for the

remaining 574,193 components. Of the remaining components, 988 components did

not have a peak flux density SNR ≥ 3 and hence were removed from the classification.

The rest of the components were given a “low”, “mid” or “high” probability of being

potential imaging artifacts. A total of 850,718 components were classified as “high”;

47,025 components were classified as “mid”; and 1,866,049 components were classified

as “low”. Two different flags lead to a “high” classification. In particular, the most

strict flag ([110]) identifies 73,133 components (2.16% of all components) as likely

being artifacts with streak-corrected peak flux densities that do not reach above the

3-σ level. The “looser” flag ([111100]) identifies 777,585 components (23.00% of all

components) as likely being an artifact that lead to a streak-corrected peak flux

75



densities that have streak surface brightnesses that are at least 20% of the original

peak flux density. In particular, the fact that our strict flag identifies fewer artifacts

than past methods suggests that our new method may lead to a greater recovery of

astrophysical components compared to past methods, if future tests prove that our

streak removal process is robust.

5.3 Limitations of New Methods

Although the new method is capable of identifying artifacts that are missed by stan-

dard approaches, there are a few limitations in the new method.

• The new method is based on the already identified components in the CIRADA

QL catalogue. Although the new detection algorithm is capable of identifying

streaks around any arbitrary component or coordinate, the pre-processing step

of masking surrounding components is dependent on the the catalogue. For

example, some components in catalogue are not identified or their dimensions

are not estimated accurately. The lack of, or incorrect, masking of such com-

ponents affects the measured signal strength in the local region; this sometimes

leads to false-positive streak detections.

• In the new technique, apart from the streaks and the sources/components, a

uniform noise level is assumed in all QL images. Non-uniform noise level around

some components can result in improper background profile subtraction of the

1D HT profile. This issue can lead to an overestimation or underestimation of

the noise level of the streaks. This either leads to false-positive streak detections

or missing obvious streaks around components.

• PyBDSF was unable to fit a Gaussian to few real components/sources in the

(Gordon et al., 2021) catalogue. For a few such components, the peak flux den-

sities are severely underestimated. The streak subtraction of such components
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leads to inaccurate corrected peak flux densities and consequently, to being

wrongly classified as artifacts by the new method.

5.4 Future Works

In this method, the components are preliminarily classified into three categories based

on the probability of them being imaging artifacts. In the future, we intend to add

a more statistically based probabilistic classification. This will include an extensive

review of a large number of classified components. Next, we plan on adding the host

information present in the CIRADA catalogue as a factor that affects the classifica-

tion.

Many of the mis-classifications in our method is due to the lack of an accurate

Gaussian fit to the identified components. To counter this and for the completeness

of the new methods, we consider adding a source detection step prior to the artifact

detection. Finally, as of now, the artifacts detection and classification is only per-

formed on VLASS Epoch 1 images. We plan on expanding this to Epoch 2 and 3

images as well.
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and Star Clusters), Connoissance des Temps ou des Mouvements Célestes, for 1784,

p. 227-267

Mohan, N., & Rafferty, D. 2015, PyBDSF: Python Blob Detection and Source Finder,

Astrophysics Source Code Library, record ascl:1502.007. http://ascl.net/1502.007

Mooley, K. P., Hallinan, G., Bourke, S., et al. 2016, ApJ, 818, 105, doi: 10.3847/0004-

637X/818/2/105

79

https://cirada.ca/catalogues
https://cirada.ca/catalogues
http://doi.org/10.3847/1538-4365/ac05c0
http://doi.org/10.3847/1538-4365/ac05c0
http://doi.org/10.1016/0083-6656(72)90002-5
http://doi.org/10.1016/0083-6656(72)90002-5
http://doi.org/10.1071/AS11051
http://doi.org/10.1088/1538-3873/ab63eb
http://doi.org/10.1088/1538-3873/ab63eb
http://doi.org/10.3847/2041-8213/aae5f3
http://doi.org/10.1086/125410
http://ascl.net/1502.007
http://doi.org/10.3847/0004-637X/818/2/105
http://doi.org/10.3847/0004-637X/818/2/105


Nyland, K., Dong, D. Z., Patil, P., et al. 2020, ApJ, 905, 74, doi: 10.3847/1538-

4357/abc341

Pietka, M., Fender, R. P., & Keane, E. F. 2015, MNRAS, 446, 3687, doi: 10.1093/

mnras/stu2335

Ragazzoni, R., & Barbieri, C. 1994, PASP, 106, 683, doi: 10.1086/133429

Reber, G. 1944, ApJ, 100, 279, doi: 10.1086/144668

Rowlinson, A., Meijn, J., Bright, J., et al. 2022, MNRAS, 517, 2894, doi: 10.1093/

mnras/stac2460

Sironi, L., & Giannios, D. 2013, ApJ, 778, 107, doi: 10.1088/0004-637X/778/2/107

Skrutskie, M. F., Cutri, R. M., Stiening, R., et al. 2006, aj, 131, 1163, doi: 10.1086/

498708

Thompson, A. R., Moran, J. M., & Swenson, George W., J. 2017, Interferometry and

Synthesis in Radio Astronomy, 3rd Edition (Springer), doi: 10.1007/978-3-319-

44431-4

Vantyghem, A., O’Dea, C., Rudnick, L., et al. 2021, CIRADA website, 16

Xu, Z., Shin, B.-S., & Klette, R. 2014, in Advanced Information Systems Engineering,

ed. C. Salinesi, M. C. Norrie, & O. Pastor, Vol. 7908 (Springer Berlin Heidelberg),

190–201, doi: 10.1007/978-3-319-09955-2 16

Zuo, S., & Chen, X. 2020, MNRAS, 494, 1994, doi: 10.1093/mnras/staa891

80

http://doi.org/10.3847/1538-4357/abc341
http://doi.org/10.3847/1538-4357/abc341
http://doi.org/10.1093/mnras/stu2335
http://doi.org/10.1093/mnras/stu2335
http://doi.org/10.1086/133429
http://doi.org/10.1086/144668
http://doi.org/10.1093/mnras/stac2460
http://doi.org/10.1093/mnras/stac2460
http://doi.org/10.1088/0004-637X/778/2/107
http://doi.org/10.1086/498708
http://doi.org/10.1086/498708
http://doi.org/10.1007/978-3-319-44431-4
http://doi.org/10.1007/978-3-319-44431-4
http://doi.org/10.1007/978-3-319-09955-2_16
http://doi.org/10.1093/mnras/staa891

	Introduction
	Scientific Motivation
	The Very Large Array and its Sky Survey
	Transient-Focused Design and Implementation
	Science and Data Products
	VLASS Quick Look Images

	Interferometers and the Creation of Artifacts
	CIRADA Quick-Look Components Catalogue
	Thesis Goals

	Hough Transform
	History
	Existing Algorithm
	Key Characteristics
	Previous Uses in Astronomy

	New Methods to Detect and Quantify Linear Artifacts 
	New Detection Methods
	The Need to Extend the Hough Transform
	Identifying Linear Streaks

	New Characterization Methods
	Width Characterization
	Component & Streak Matching
	Quantifying the Streak Surface Brightness


	Application of New Methods to VLASS Epoch 1
	Streak Confirmation
	Streak Selection Based on Application

	Component Re-evaluation
	Removing Effects of Streaks' Surface Brightnesses
	Component Classification

	Comparison of New Methods with VLASS QL Catalogue

	Conclusion
	Summary
	Key Results
	Limitations of New Methods
	Future Works

	Bibliography

