University of Alberta

Intramolecular conjugate displacement for making carbocycles and studies on the total synthesis of MPC1001

by

Lihong Wang

A thesis submitted to the Faculty of Graduate Studies and Research in partial fulfillment of the requirements for the degree of

Doctor of Philosophy

Department of Chemistry

©Lihong Wang
Fall 2011
Edmonton, Alberta

Permission is hereby granted to the University of Alberta Libraries to reproduce single copies of this thesis and to lend or sell such copies for private, scholarly or scientific research purposes only. Where the thesis is converted to, or otherwise made available in digital form, the University of Alberta will advise potential users of the thesis of these terms.

The author reserves all other publication and other rights in association with the copyright in the thesis and, except as herein before provided, neither the thesis nor any substantial portion thereof may be printed or otherwise reproduced in any material form whatsoever without the author's prior written permission.

DEDICATED TO
MY PARENTS AND MY WIFE JIE RU

Abstract

The first chapter of this thesis describes methodology on an all-carbon intramolecular conjugate displacement between a carbon nucleophile and a Morita-Baylis-Hillman adduct for making carbocyclic skeletons. The reaction scope was examined with different electron-withdrawing groups, types of carbon nucleophile and leaving groups. The study demonstrated that this transformation is a convenient and effective way of constructing carbocycles, including some synthetically challenging structures. The mechanism of this transformation was probed by experiments designed to trap a possible anionic species of a nonconcerted pathway.

The second part of my thesis describes studies towards the total synthesis of the natural product MPC1001, which is a potential anti-tumor agent. Effort was focused on inventing a way of installing a disulfur bridge in a stereocontrolled manner. Difficulties were encountered for thiol deprotection, as attempted removal of many known thiol-protecting groups gave either no reaction or loss of the sulfur, possibly expelled by the nitrogen on the same carbon. Therefore, a new protecting group for thiols was designed, which could be deprotected under mild conditions. Although this protecting group allowed smooth deprotection with one specific reagent, additional problems prohibited carrying the research further using this group. A new route for installing the disulfide bridge was conceived and is still under examination.

ACKNOWLEDGEMENTS

I would like to thank my supervisor Dr. D. L. J. Clive for his guidance, encouragement and assistance during the course of my Ph.D. program. His teaching and discussion made it possible for me to learn organic synthesis quickly.

Many thanks to the current and past group members for their friendship and assistance over the years. I would specially thank Che-Chien Chang, Jianbiao Peng and Dazhan Liu for helping me in the laboratory at the beginning of my research.

My thanks are also extended to the support staff of the department (IR, MS, NMR, elemental analysis laboratories, glass blowing, electronic, machine and chemical shops), especially to Mark Miskolzie for his assistance with NMR problems and Dr. Angie Morales-Izquierdo for MS characterization.

I would like to thank the Alberta Heritage Foundation for Medical Research (now known as Alberta Innovates-Health Solutions), Boehringer Ingelheim (Canada) Ltd., Novartis Pharmaceuticals Canada Inc., and the University of Alberta for the scholarships, and the ACS Graduate Symposium organizers.

Finally, I would like to express my thanks to my parents, sisters and my wife Jie Ru for their support and encouragement.

TABLE OF CONTENTS

Chapter 1 1

1. Introduction 2
1.1. Intermolecular conjugate displacements of Morita-Baylis-Hillman adducts 3
1.2. Intramolecular conjugate displacement (ICD) of MBH adducts 15
2. Results and Discussion 27
2.1. Preparation of the ICD Precursors 28
2.2. Ring Closure Using ICD Reactions 39
2.3. Mechanistic studies 49
3. Conclusions 54
4. Experimental Section 55
5. Notes and References 180
Chapter 2 188
6. Introduction 189
1.1. Isolation and properties of MPC1001 189
1.2. Biosynthesis of MPC1001 191
1.3. Synthesis of dihydrooxepins reported in the literature 194
1.4. Synthesis of ETPs reported in the literature 198
7. Results and Discussion 208
2.1. Previous synthetic studies in this laboratory 208
2.2. Synthetic studies towards the epidithiodioxopiperazine core of MPC1001 209
8. Conclusion 235
9. Experimental Section 237
10. References 299

LIST OF TABLES

Table 1. Stability tests .. 228

LIST OF FIGURES

Figure 1. ORTEP diagram of compound 35.2... 219
Figure 2. TROESY measurements for 50.1a,b.. 234

LIST OF SCHEMES

Chapter one

Scheme 1 2
Scheme 2 3
Scheme 3 4
Scheme 4 5
Scheme 5 6
Scheme 6 6
Scheme 7 7
Scheme 8 7
Scheme 9 8
Scheme 10 9
Scheme 11 10
Scheme 12 10
Scheme 13 11
Scheme 14 11
Scheme 15 12
Scheme 16 13
Scheme 17 13
Scheme 18 13
Scheme 19 14
Scheme 20 15
Scheme 21 16
Scheme 22 16
Scheme 23 17
Scheme 24 17
Scheme 25 18
Scheme 26 19
Scheme 27 19
Scheme 28 20
Scheme 29 21
Scheme 30 22
Scheme 31 22
Scheme 32 23
Scheme 33 24
Scheme 34 25
Scheme 35 26
Scheme 36 27
Scheme 37 27
Scheme 38 28
Scheme 39 29
Scheme 40 30
Scheme 41 34
Scheme 42 34
Scheme 43 34
Scheme 44 35
Scheme 45 35
Scheme 46 36
Scheme 47 36
Scheme 48 36
Scheme 49 37
Scheme 50 38
Scheme 51 40
Scheme 52 43
Scheme 53 44
Scheme 54 45
Scheme 55 46
Scheme 56 47
Scheme 57 49
Scheme 58 49
Scheme 59 51
Scheme 60 52
Scheme 61 53
Chapter two
Scheme 1 189
Scheme 2 191
Scheme 3 192
Scheme 4 193
Scheme 5 194
Scheme 6 195
Scheme 7 195
Scheme 8 196
Scheme 9 196
Scheme 10 197
Scheme 11 197
Scheme 12 198
Scheme 13 198
Scheme 14 199
Scheme 15 200
Scheme 16 201
Scheme 17 202
Scheme 18 203
Scheme 19 203
Scheme 20 204
Scheme 21 205
Scheme 22 206
Scheme 23 206
Scheme 24 207
Scheme 25 208
Scheme 26 210
Scheme 27 211
Scheme 28 212
Scheme 29 213
Scheme 30 214
Scheme 31 215
Scheme 32 215
Scheme 33 216
Scheme 34 217
Scheme 35 218
Scheme 36 219
Scheme 37 220
Scheme 38 221
Scheme 39 221
Scheme 40 222
Scheme 41 223
Scheme 42 224
Scheme 43 225
Scheme 44 226
Scheme 45 229
Scheme 46 230
Scheme 47 231
Scheme 48 232
Scheme 49 232
Scheme 50 233
Scheme 51 235

LIST OF ABBREVIATIONS

Ac	Acetyl
acac	Acetylacetonato
AIBN	2,2'-azobisisobutyronitrile
All	Allyl
APT	Attached proton test
Ar	Aromatic ring
BHT	2,6-Di-tert-butyl-4-methylphenol
Bn	Benzyl
Boc	tert-butoxycarbonyl
brsm	Based on recovered starting materials
Bu	n-Butyl
t-Bu (or Bu-t)	tert-Butyl
Bz	Benzoyl
CD	Circular Dichroism
Cinn	Cinnamoyl
Cp	Cyclopentadienyl
DABCO	1,4-Diazabicyclo[2.2.2]octane
dba	Dibenzylidene acetone
DBU	1,8-Diazabicyclo[5.4.0]undec-7-ene
DDQ	2,3-Dichloro-5,6-dicyano-1,4-benzoquinone
$(\mathrm{DHQD})_{2} \mathrm{PHAL}$	Hydroquinidine 1,4-phthalazinediyl diether
DIBAL	Diisobutylaluminum hydride
DKP	Diketopiperazine
DMAP	4-Dimethylaminopyridine
DMF	N, N-Dimethylformamide
DMSO	Dimethyl sulfoxide
EDCI	N-Ethyl- N-(3-dimethylaminopropyl)carbodiimide
dr	Diastereomeric ratio
ee	Enantiomeric excess
Et	Ethyl

ETP	Epidithiodioxopiperazine
EWG	Electron-withdrawing group
Fmoc	9-fluorenylmethyloxycarbonyl
FTIR	Fourier transform infrared spectroscopy
HMPA	4-Hydroxymethyl-3-methoxyphenoxyacetic acid
HSQC	Heteronuclear Single Quantum Coherence
IBX	2-Iodoxybenzoic acid
ICD	Intramolecular conjugate displacement
Im	Imidazo
KHMDS	Potassium bis(trimethylsilyl)amide
LDA	Lithium diisopropylamide
LiHMDS	Lithium bis(trimethylsilyl)amide
LUMO	Lowest unoccupied molecular orbital
MBH	Morita-Baylis-Hillman
m-CPBA	3-Chloroperbenzoic acid
Me	Methyl
MEM	β-Methoxyethoxymethyl
MOM	Methoxymethyl
mp	Melting point
Ms	Methanesulfonyl
MS	Molecular sieves
NaHMDS	Sodium bis(trimethylsilyl)amide
NBS	N-bromosuccinimide
NMO	N-Methyl morpholine- N -oxide
NMR	Nuclear magnetic resonance
PCC	Pyridinium chlorochromate
Ph	Phenyl
PMB	para-Methoxybenzyl
PMP	para-Methoxyphenyl
PPTS	Pyridinium p-toluenesulfonate
$i-\operatorname{Pr}$	Isopropyl

Pro	Proline	
PTSA	p-Toluenesulfonic acid	
pyr	Pyridine	
quant.	Quantitative yield	
rt	Room temperature	
Tf	Trifluoromethanesulfonyl	
TFA	Trifluoroacetic acid	
THF	Tetrahydrofuran	
TLC	Thin layer chromatography	
TMS	Trimethylsilyl	
Tol	Tolyl	
Tr	Trityl	Benzyltrimethylammonium hydroxide
Triton B	Transverse	rotating-frame
TROESY	enhancement spectroscopy	
	Toluenesulfonyl	
Ts		

Chapter 1

Formation of carbocycles by intramolecular conjugate displacement: scope and mechanistic insights

1. Introduction

It has long been known ${ }^{1}$ that the presence of an electron-withdrawing group (EWG) at the C 2 position can greatly enhance the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement reactivity of an allylic system bearing a leaving group at its C 1 position (Scheme 1). In contrast to palladium catalyzed nucleophilic substitution of allylic acetates, known as the Tsuji-Trost reaction, a variety of nucleophiles can directly displace the EWG-activated allylic acetate in an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fashion without the aid of a transition metal catalyst. Although much research has been conducted on $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions using this EWG activated allylic theme, ${ }^{2}$ either exploring new transformations ${ }^{3}$ or applying it in total syntheses, ${ }^{4}$ the intramolecular version ($\mathrm{S}_{\mathrm{N}}{ }^{\prime}$ substitution) is far less explored and its synthetic possibilities were largely unrecognized. In the past few years, work in this laboratory has demonstrated the great usefulness of this intramolecular substitution by applying it in the construction of the core structures of several complex natural products. ${ }^{5}$ Detailed methodology work in this group, using either a carbanion ${ }^{\ddagger}$ or a heteroatom as the nucleophile, was also published, and the reaction was termed "intramolecular conjugate displacement" (ICD). ${ }^{55,6}$ The corresponding intermolecular process is well-known. ${ }^{2, \mathrm{~b}}$

Scheme 1
${ }^{\text {* S Some experiments done by a previous group member, Dr. B. Prabhudas, are }}$ included in this Thesis in order to present a complete study of ICD reactions for carbocycles; those experiments are clearly indicated in the experimental section and have already been published in our paper: Wang, L.; Prabhudas, B.; Clive, D. L. J. J. Am. Chem. Soc. 2009, 131, 6003-6012.

1.1. Intermolecular conjugate displacements of Morita-Baylis-Hillman adducts

Most of the reported reactions using compounds of type $\mathbf{1 . 1}$ involve intermolecular processes and have AcO^{-}as the leaving group; these starting materials can be simply made by acetylation of the Morita-Baylis-Hillman (MBH) alcohols. ${ }^{2 a, b, 7}$ These compounds will be called MBH acetates in the following discussion and the corresponding halides will be called MBH halides. Reviews on the utility of MBH reactions in synthesis have been published; these reviews deal with many examples of intermolecular transformations. ${ }^{2}$

1.1.1. Intermolecular reactions between MBH acetates and carbon nucleophiles

The most common nucleophilic carbanions used in this type of $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction are those stabilized by two electron-withdrawing groups, of which 1,3dicarbonyl compounds are the classic representatives. ${ }^{8}$ For example, Basavaiah and coworkers applied this reaction as the key transformation in making fused [6-7-5], [6-7-6] and [6-7-7] tricyclic structures 2.3. ${ }^{8 j}$ Under mild basic conditions $\left(\mathrm{Et}_{3} \mathrm{~N}\right)$, the cyclic diketone 2.2 displaced the acetate in an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fashion, and

2.1

2.4
(1) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{rt}, 12-14 \mathrm{~h}$;
(2) $(\mathrm{COCl})_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}, \mathrm{rt}, 5 \mathrm{~h}$;
(3) $\mathrm{TiCl}_{4}, \mathrm{CH}_{2} \mathrm{ClCH}_{2} \mathrm{Cl}$ rt or reflux, 4-14 h 50-72\% over 3 steps

2.3
2.5

2.6
R_{R}

Scheme 2
treatment of the resulting products with $(\mathrm{COCl})_{2}$ and TiCl_{4} in sequence gave the tricyclic compounds $\mathbf{2 . 3}$ in 50-72\% yield over 3 steps.

It is possible to retain the regiochemistry of the double bond by an $S_{N} 2^{\prime}-$ $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ sequence if a promoter is used, commonly $\mathrm{R}_{3} \mathrm{P}^{3 \mathrm{a}, 9}$ or a tertiary amine. ${ }^{8,10}$ Mayr and coworkers used DABCO as the promoter for the first $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction so as to generate the ammonium salt 3.2, and this intermediate was converted to 3.3 when treated with a carbanion. ${ }^{8 i}$ The overall transformation resembles an $\mathrm{S}_{\mathrm{N}} 2$ substitution of the halogen by the carbanion. However, the amount of the carbanion has to be controlled (0.9 equiv of salt 3.2) if double bond isomerization to a more stable product is possible. For example, with the same reaction time, the thermodynamically more stable alkene $\mathbf{3 . 4}$ was formed exclusively if 1.2 equivalents of carbanion were used, indicating that another in situ $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement occurred $(\mathbf{3 . 3} \boldsymbol{3} \mathbf{3 . 4})$. The choice of solvent for the reaction also has an influence on this isomerization. For example, use of THF-water (1:1) gave only the kinetic product, whereas DMSO, with other parameters unchanged, gave extensive isomerization to the thermodynamic product. In a kinetic study of the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction, using different isolated ammonium salts (from different amine promoters including DABCO , quinuclidine and pyridine derivatives), no difference in the reaction rates was observed. It was known from a previous study

Scheme 3
that DABCO is a better (10^{6}-fold) nucleofuge than DMAP. ${ }^{11}$ Mayr and coworkers concluded that the independence of the reaction rates to differences in the nature of the ammonium salt indicates an addition-elimination mechanism for this $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction; this conclusion is in line with Bordwell's skepticism of the validity of a bimolecular concerted mechanism involving four or more bonds. ${ }^{12}$

The above-mentioned isomerization phenomenon is common if the nucleophile itself can act as leaving group, ${ }^{10,13}$ and even intramolecular rearrangement to the more stable alkene product is possible when an amine is used as the nucleophile. ${ }^{13-14}$ For example, reaction between t-butylamine and compound 4.1 in pentane gave the crystalline substance 4.2 exclusively (Scheme 4); when the latter was dissolved in CHCl_{3}, slow rearrangement to compound 4.4 occurred at room temperature. ${ }^{13}$

4.1

4.4

4.3

Scheme 4

In addition to stable carbanions as the nucleophile, other nucleophilic carbons can also be used for this $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement with MBH acetates, including enolates, ${ }^{15}$ enol ethers, ${ }^{3 a, 9 b}$ enamines, ${ }^{16}$ aromatic compounds, ${ }^{4 e, 17}$ organocuprates and organozinc compounds, ${ }^{18}$ and even organolithium or Grignard reagents. ${ }^{19}$

Takagi et al. used an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction between the enolate generated from enone 5.1 and MBH acetate $\mathbf{5 . 2}$ to gain access to the intermediate 5.3 (Scheme 5). ${ }^{15 \mathrm{c}}$ Then, base-mediated intramolecular Michael addition afforded the bicyclic
compound $\alpha-5.4$, plus $\gamma-5.4$. The former could be further transformed into a compound resembling the core structure of the natural product plukenetione A .

Scheme 5

By in situ exchange of the alkali counterion of the enolate with a chiral ammonium cation, Ramachandran and coworkers achieved asymmetric induction in an $\mathrm{S}_{\mathrm{N}} 2$ reaction between MBH acetates $\mathbf{6 . 2}$ and the benzophenone imine of glycine t-butyl ester 6.1 (Scheme 6). ${ }^{3 \mathrm{~b}} \mathrm{CsOH}$ was used as the base and ammonium salt 6.3 was used as a phase-transfer catalyst. The reaction afforded 4-substituted glutamic acid derivatives in 63-92\% yield and 82-97\% ee.

Scheme 6

Scheme 7

Using the same glycine ester $\mathbf{6 . 1}$ and similar MBH acetates, Hou et al. also asymmetrically synthesized glutamic acid derivatives using a copper salt combined with the chiral ferrocenyl ligand 7.3 (Scheme 7). ${ }^{20}$ They also found that increasing the steric bulk at the α position of the glycine ester $\mathbf{6 . 1}$ by introducing a substituent lowered both the yield and ee.

Krische's group used 2-(trimethylsiloxy)furan (8.2) as the nucleophile and

8.1
8.2
$\mathrm{R}^{1}=\mathrm{CH}_{3}$ or OCH_{3}
$\mathrm{R}^{2}=n$-Propyl, Ph, cyclopropyl, $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4}$,

Scheme 8
examined the reaction with MBH acetates $\mathbf{8 . 1}$, using $\mathrm{Ph}_{3} \mathrm{P}$ as the promoter, to give the α substitution products 8.3. ${ }^{3 a}$ It was proposed that electrophile-nucleophile ion pair 8.5 is formed after displacement of AcO^{-}by $\mathrm{Ph}_{3} \mathrm{P}$ and attack on the silyl group of furan 8.2 by the released AcO^{-}. Both MBH acetates with a ketone $\left(\mathrm{R}^{1}=\right.$ $\mathrm{Me})$ and a methyl ester $\left(\mathrm{R}^{1}=\mathrm{OMe}\right)$ as the electron-withdrawing group were tested; most of the reactions afforded high yields ($>80 \%$) and excellent regioselectivity (in favor of the α substituted product) and diastereoselectivity (syn/anti $>20: 1$; syn/anti refer to the hydrogens indicated in 8.3). Krische and coworkers invoked the Diels-Alder cycloadduct 8.6 to account for the high diastereoselectivity, although a pathway through an open transition state $\mathbf{8 . 7}$ is also possible. However, they emphasized that the enone geometry of the phosphonium salt 8.4, involving internal chelation, is the key factor responsible for the high dr, regardless of the reaction pathway.

Shi's group investigated an asymmetric version of this organophosphine promoted $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction, using chiral phosphines. ${ }^{9 b}$ After screening several bisnaphthalene type chiral phosphines, they found that phosphine 9.2 gave a satisfactory yield and ee as a starting point for further optimization, and, as expected from Krische's research (vide supra), the product with syn geometry

9.1

Scheme 9

9.3
predominated (Scheme 9). After realizing that the active proton on the amide of 9.2 is crucial for the asymmetric induction, Shi and coworkers deliberately introduced a controlled amount of water into the reaction mixture and were delighted to discover that this indeed boosted both the yield and the ee. A series of MBH acetates were tested, and in most cases both high yields ($>85 \%$) and high ee's $(>90 \%)$ could be obtained. The stereochemistry of the product was rationalized using Krische's endo $[4+2]$ cycloaddition mechanism (9.4) with the proposal that the amide proton and external water are involved in the transition state.

Examples of the use of enamines, indoles and phenols are illustrated in Schemes $10^{16 \mathrm{~d}}, 11^{17 \mathrm{~b}}$ and $12,{ }^{4 \mathrm{e}}$ respectively. In Scheme 10 , the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction pathway (instead of $\mathrm{S}_{\mathrm{N}} 2$) to the products was established by the reaction between aldehyde $\mathbf{1 0 . 5}$ and MBH bromide $\mathbf{1 0 . 6}$, which gave $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ product 10.7. In the indole example (Scheme 11), it is interesting to note that AgOTf also promoted the apparent $S_{N} 2$ reaction, similar to an $S_{N} 2^{\prime}-S_{N} 2^{\prime}$ sequence catalyzed by tertiary amines and phosphines; a control experiment using DABCO, a typical promoter, gave back unchanged starting material. Porco and coworkers used the phenoxide

10.5
10.6

> 10.7
> $\mathrm{dr}=11: 1$ $\mathrm{ee}>98 \%$

Scheme 10

Scheme 11
generated from phenol $\mathbf{1 2 . 1}$ (Scheme 12) as the nucleophile to construct a highly functionalized core structure for the total synthesis of the natural product (\pm)clusianone.

Scheme 12

Reactive Grignard reagents and organolithium compounds can also be used to afford an $\mathrm{S}_{\mathrm{N}} 2$ product by attacking an MBH-acetate. Seebach and coworkers ${ }^{19 a, 19, \mathrm{~d}}$ found that the pivaloate $\mathbf{1 3 . 1}$ reacts with organolithium or Grignard reagents to produce exclusively vinyl compounds 13.2, with no detection of the possible side product arising from Michael addition between $\mathbf{1 3 . 2}$ and the reagents 13.3. These authors reasoned that the presence of the pivaloate at the allylic
position enhanced the acceptor properties of the double bond, thus making the reaction very selective. Seebach et al. also briefly discussed the mechanism of this transformation and excluded the possibility of single electron transfer, as the cis geometry of the double bond is conserved when cis-1-hexenyllithium was used as the reagent. The $S_{\mathrm{N}} 2$ pathway was also excluded by other experiments using starting materials with substituents at the α or γ position. The stop-and-go mechanism did not match with what they observed, as quenching the mixture at low temperature after a short time gave only the final product $\mathbf{1 3 . 2}$ and starting material. The mechanism must be either a concerted or a fast elimination process after the initial addition.

13.1

Scheme 13

Fuchs and coworkers demonstrated that MeLi reacts to vinyl sulfonyl epoxide 14.1 in an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ fashion to afford mainly the syn product 14.2. ${ }^{4 \mathrm{a}}$ However, when a six-membered ring (14.4) was used, the major product was the diene 14.5.

1.1.2. Intermolecular reactions between MBH acetates and heteroatom nucleophiles

Besides carbon nucleophiles, heteroatoms have also been used in this type of reaction, and the good reactivity of MBH acetates and halides also allows weak nucleophiles such as alcohols to react.

Nitrogen nucleophiles such as amines, ${ }^{13 a, 21}$ imidazoles, ${ }^{14,22}$ pyrroles, ${ }^{23}$ indoles, ${ }^{24}$ azides, ${ }^{25}$ sulfonamides ${ }^{3 c, 10 a, 26}$ and phthalimide ${ }^{9 \mathrm{a}, 10 \mathrm{a}, 27}$ have been used in either direct $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ or $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions.

In contrast to the AgOTf-mediated coupling between the indole C 3 position and MBH acetates (Scheme 11), Chen's group found that the tertiary amine catalyzed reaction between indoles and MBH acetates occurs via the nitrogen (Scheme 15). ${ }^{24}$ Use of Boc^{-}as the leaving group instead of AcO^{-}is crucial in this experiment. As the indole nitrogen is not a good nucleophile, it is

Scheme 15

essential to activate it (deprotonate) for the $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement of the (DHQD) ${ }_{2} \mathrm{PHAL}$ promoted MBH substrate; however, using an external strong base to deprotonate the indole at the beginning of the reaction should be avoided as the nitrogen anion of indole will compete with (DHQD) $)_{2} \mathrm{PHAL}$ for the MBH acetate. Thus the BocO group was used to deal with this particular situation, as after its departure the BocO^{-}will decompose in situ to provide the strongly basic t butoxide anion which can deprotonate the indole. This strategy was earlier used in Lu's group ${ }^{10 a}$ and they demonstrated that pronucleophiles such as phthalimide, phenol, sulfonamide and diphenylphosphinous acid all react with MBH t-butyl carbonate to afford the products in satisfactory yields (Scheme 16).

Scheme 16

However, Lu and coauthors did not mention if t-butyl carbonate as the leaving group was essential. Kim and coworkers showed that AcO^{-}as the leaving group also worked, albeit in lower yields and with a much slower reaction rate (Scheme 17). ${ }^{26}$

17.1

NuH:

Scheme 17

The basicity of the reaction medium sometimes not only affects the reactivity of the nucleophile but also alters the pathway of the reaction. Orena's group observed that when MBH carbamate $\mathbf{1 8 . 1}$ was treated with DBU (a strong base) the 3,3-sigmatropic rearrangement pathway is followed, giving the primary sulfonamide 18.2, while the less basic amine DABCO afforded the $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ product $\mathbf{1 8 . 3}$ (Scheme 18). ${ }^{3 c}$

Scheme 18

During an effort towards making asymmetric MBH alcohols by means of deracemization of racemic MBH adducts, Trost's group demonstrated that Pd catalyzed asymmetric allylation, using ArOH as a nucleophile and $\mathbf{1 9 . 2}$ as the ligand, could deliver the desired product in $60-77 \%$ yield and $75-99 \%$ ee. ${ }^{28}$ The ee values were higher when a nitrile group was used in the MBH carbonate starting materials compared to an ester group. Running the reaction at a lower concentration (0.05 M as opposed to 0.1 M) substantially increased the enantioselectivity. The target MBH alcohol could be obtained by removal of the p-methoxyphenyl group of $\mathbf{1 9 . 3}$ using DDQ. This deracemization method was successfully applied during the total synthesis of the natural products furaquinocin A, B, and E. ${ }^{29}$

Scheme 19

1.1.3. Miscellaneous intermolecular reactions with MBH derivatives

Kim's group also demonstrated that sodium borohydride can be used in the $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ process to afford products of overall displacement of AcO^{-}by hydride. ${ }^{30}$
$\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reactions using a radical species generated from epoxides or activated halides by $\mathrm{Cp}_{2} \mathrm{TiCl}$ were reported by Roy and coworkers (Scheme 20). ${ }^{31}$ The initial radical generated from halide $\mathbf{2 0 . 2}$ and $\mathrm{Cp}_{2} \mathrm{TiCl}$ attacks the MBH acetate 20.1 in a Michael addition fashion, and the resulting radical species is reduced by $\mathrm{Cp}_{2} \mathrm{TiCl}$ to form a carbanion, which expels OAc^{-}and produces the final product 20.3. When the epoxide 20.7 was used, after $S_{N} 2^{\prime}$ displacement further lactonization occurred to give lactone 20.8. For the reactions between 20.1 and 20.2, nitrile and ester groups $\left(\mathrm{R}^{2}\right)$ showed dramatically different E / Z ratios of the

Scheme 20
alkene product. The esters gave extensively the E isomer, whereas for the nitriles, an isomeric mixture in favor of the Z geometry was generally observed. This E / Z selectivity difference between nitrile and ester substrates appears to be general ${ }^{32}$ and was rationalized by invoking the chelation and nonchelation models $\mathbf{2 0 . 5}$ and 20.6, respectively.

1.2. Intramolecular conjugate displacement (ICD) of MBH adducts

1.2.1. ICD reaction between MBH acetates and nitrogen nucleophiles

One early example of an ICD process was in the formation of macrocyclic compounds (cyclophanes and cryptophanes), using a molecule having two MBH acetate units. This was reacted with either a primary amine or ammonia. One particular example is shown on Scheme 21. ${ }^{33}$

In the early 1990s, Kaye's group used MBH acetates for making indolizines with pyridine nitrogen as the nucleophile (Scheme 22). ${ }^{34}$ The precursor $\mathbf{2 2 . 1}$ was made by an MBH reaction between the corresponding

Scheme 21
aromatic aldehyde and a vinyl compound. Depending on the activation ability of the EWG, the thermal ring closure occurred as a neat mixture at room temperature $(\mathrm{EWG}=\mathrm{COMe})$ or at an elevated temperature $\left(120^{\circ} \mathrm{C}, \mathrm{EWG}=\mathrm{CN}\right.$ or $\left.\mathrm{CO}_{2} \mathrm{R}\right)$. When a methyl ketone was used as the electron-withdrawing group, the final product $\mathbf{2 2 . 2}$ was formed concomitantly during the esterification step, and a small amount was even formed during the MBH reaction. The authors proposed that the mechanism might be a Michael addition followed by elimination. While the mechanism is uncertain, the great facility of this ring closure, boosted by the electron-withdrawing group, is obvious, as an earlier experiment with a similar substrate without an EWG required a much higher temperature ($450{ }^{\circ} \mathrm{C}$) for ring closure. ${ }^{35}$

22.1 $\mathrm{EWG}=\mathrm{CN}, \mathrm{CO}_{2} \mathrm{R}, \mathrm{COMe}$

22.2

Scheme 22

The mechanism of the above transformation, which seems to violate Baldwin's rules (5-endo-trig) is probably complicated and is likely to involve a

Scheme 23
preliminary migration of the leaving group. For example, when Drewes and Rohwer heated an imidazole-based substrate $\mathbf{2 3 . 1}$ in refluxing THF, only allylic rearrangement product 23.3 was obtained (Scheme 23). ${ }^{36}$ These authors proposed that ring closure did occur but the resulting cationic intermediate was attacked by the fugitive acetate anion, giving the overall rearrangement product.

However, based on the examination of a thiazole-based counterpart, conducted by Lee's group, this is probably not the correct mechanism, because allylic rearrangement was found to occur at a lower temperature than ring closure. ${ }^{37}$ When compound 24.1 was heated in refluxing $\mathrm{Ph}_{2} \mathrm{O}$ (boiling point 259

24.1 $\mathrm{EWG}=\mathrm{CO}_{2} \mathrm{R}, \mathrm{CN}, \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{COMe}$

24.3

24.5

Scheme 24
${ }^{\circ} \mathrm{C}$) for a short time, the cyclized product 24.2 was formed (Scheme 24), while heating the methyl ketone $\mathbf{2 4 . 3}$ in refluxing xylene (boiling point $137-140{ }^{\circ} \mathrm{C}$) for 5 h afforded only the acetate migration product 24.4. A substrate with a thiophene subunit (24.5), lacking the nitrogen nucleophilic site, yielded only the migration product $\mathbf{2 4 . 6}$ on heating in refluxing $\mathrm{Ph}_{2} \mathrm{O}$. Based on these observations it is very possible that the seemingly disfavored 5-endo-trig is in fact a combination of 1,3-acetate migration followed by displacement of the acetate by nitrogen, or via a cationic species formed at high temperature by departure of the allylic acetate, a process resembling the Nazarov reaction.

Lee's group also used the in situ generated iminophosphorane unit as the nucleophile for a 6 -endo-trig ring closure (Scheme 25). ${ }^{38}$ The starting materials 25.1 were prepared by MBH reaction followed by acetylation of the resulting alcohols. Treatment of azide $\mathbf{2 5 . 1}$ with $(\mathrm{EtO})_{3} \mathrm{P}$ in PhMe generated iminophosphorane 25.2, and further refluxing of the mixture afforded the desired dihydroquinoline derivatives $\mathbf{2 5 . 3}$ in moderate to high yields. However, when the electron-withdrawing group is a methyl ester, small amounts of quinoline derivatives 25.4 were also produced, via a combination of aza-Wittig reaction and allylic acetate shift; this process predominated when a methyl ketone was used as the electron-withdrawing group, and quinoline was then the only product, formed easily at room temperature. The ratio of $\mathbf{2 5 . 3}$ to $\mathbf{2 5 . 4}$ also depends on the nature

$25.1 \mathrm{E}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CN}, \mathrm{COMe}$

25.2
25.3 57-91\%

25.4

Scheme 25
of the aromatic substituent R : a higher ratio is observed with a more electrondonating group.

Many examples of nitrogen-based ICD reactions were reported from this laboratory. The idea was developed during the total synthesis of the natural product halichlorine, a marine alkaloid (Scheme 26). ${ }^{\text {5a,6a }}$ As depicted in Scheme 26 , the amide bond of tricyclic compound 26.1 was cleaved by treatment with $\mathrm{Me}_{3} \mathrm{O}^{+} \mathrm{BF}_{4}^{-}$, followed by aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}$. Then a nitrogen-based ICD reaction afforded the tricyclic core structure of the natural product in high yield (83\%). Similar ICD approaches towards the total synthesis of halichlorine were adopted by both Heathcock's and Martin's groups. ${ }^{39}$

Scheme 26

27.1 $\mathrm{EWG}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{SO}_{2} \mathrm{Ph}, \mathrm{CN}$

$m=1,2,3$
$n=1,2,3,4$

27.3

Scheme 27

This nitrogen-based ICD reaction proved to be a general method of making nitrogen-containing heterocycles and a range of monocyclic and bicyclic compounds was prepared in high yields (Scheme 27). ${ }^{6 \mathrm{a}, \mathrm{b}}$ It is worth mentioning that even 8 -membered rings could be generated efficiently $(92 \%, \mathrm{~m}=3)$. However, ICD reactions with precursors having trisubstituted or tetrasubstituted double bonds in the Michael acceptor subunit tend to give lower yields.

Encouraged by the apparent facility of this ring closure, a disfavored 5-endo-trig cyclization using substrate $\mathbf{2 8 . 1}$ was tried. ${ }^{6 b}$ The reaction did not afford the ICD product 28.2; instead it produced lactam 28.3, generated from attack of the deprotected nitrogen on the methyl ester.

28.3

Scheme 28

The inherent inactivity of type 28.1 towards the ICD pathway, however, provided an opportunity to introduce a new element to bridge the gap between the nitrogen and the MBH olefin: the nitrogen, after deprotection, could potentially attack an external neutral electrophile $\mathrm{X}=\mathrm{Y}$, which in turn would then generate an anionic site ${ }^{-} \mathrm{X}-\mathrm{Y}-\mathrm{N}$ that could, in principle, attack the MBH olefin in an ICD fashion (7-endo-trig) without violating Baldwin's rules. After examination of several potential neutral electrophiles ($\mathrm{PhNCO}, \mathrm{PhNCS}, \mathrm{SO}_{2}, \mathrm{BnN}=\mathrm{CH}_{2}$, $\left(\mathrm{Cl}_{3} \mathrm{C}\right)_{2} \mathrm{C}=\mathrm{NBn}, \mathrm{CO}_{2}, \mathrm{CS}_{2}$, and $\left.\mathrm{H}_{2} \mathrm{NCN}\right), \mathrm{CS}_{2}$ was found to satisfy the requirements and produce the desired products. ${ }^{6 \mathrm{~d}}$ A series of cyclic and acyclic substrates (29.1 and 29.3, Scheme 29) was tested, and the desired products were
generally formed in $60-70 \%$ yield. In some cases, a 5 -membered side product 29.5 was also generated. Subjecting the 7 -membered product to the reaction conditions showed no isomerization to the side product; neither did the 5membered product isomerize. This indicates that both products were formed kinetically. The ratio of side product to the desired product was influenced by several factors: the base used, the nature of the electron-withdrawing group on the MBH moiety, the leaving group and the substituents on the nitrogen atom. Generally, 2,6-lutidine helps minimize formation of the side product compared to $i-\mathrm{Pr}_{2} \mathrm{NEt}$; a CN group as the EWG increases the ratio of the side product to the desired product; formation of the side product from acyclic precursors is more extensive than in the case of cyclic counterparts; replacement of the AcO group with a carbonate $\mathrm{OCO}_{2} \mathrm{Et}$ can greatly suppress the generation of the side product. ${ }^{6 d}$

29.1 $\mathrm{EWG}=\mathrm{CO}_{2} \mathrm{Me}, \mathrm{CN}$ $\mathrm{n}=1,2,3$

Scheme 29

1.2.2. ICD reaction between the MBH acetate and an oxygen nucleophile

When Sassa and coworkers isolated and elucidated a new cyathane, erinacine P (Scheme 30), its close skeletal resemblance to the known erinacine B inspired them to propose a biogenesis of erinacine B from erinacine P via a sequence of 1,4 -addition of a hydroxy group to the enal, followed by elimination
of the acetate group. ${ }^{40}$ Indeed, exposure to $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{LiBr}$ in THF at room temperature smoothly converted erinacine P to erinacine B in 72% yield. DABCO-LiBr also caused this transformation, but prolonged treatment converted the erinacine B to other products. Nakada et al. further validated this proposal during their enantioselective total synthesis of (-)-erinacine B , using benzoate as a leaving group. ${ }^{41}$

Scheme 30

During research on achieving deracemization of racemic MBH adducts using asymmetric allylation (vide supra), the Trost group also made an effort to realize a process related to intramolecular conjugate displacement, but mediated by a palladium catalyst. After extensive screening of the reaction conditions it

31.1

31.3

31.3

Scheme 31
was found possible to transform the racemic MBH acetate $\mathbf{3 1 . 1}$ to the desired product $\mathbf{3 1 . 2}$ in a high yield and high ee (Scheme 31). ${ }^{42}$ This method was applied as a key step in the total synthesis of (+)-hippospongic acid A $\mathbf{3 1 . 3}$ and gave a 50% yield and a 91% ee. ${ }^{42}$ It should be noted that this process is mediated by a transition metal, unlike the ICD process described in this Thesis.

1.2.3. ICD reaction between MBH acetates and carbon nucleophiles

Tokoroyama and coworkers investigated the effects of a removable group OR at C 1 of enone $\mathbf{3 2 . 1}$ during a cyclization reaction catalyzed by the Lewis acids TiCl_{4} or $\mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}^{43}$ The reaction outcome was rather complicated, and no simple correlation with the substrate configuration (syn or anti), the oxy leaving group or the Lewis acid emerged. Although in many cases diastereomer 32.2a is the major product, usually 3-4 diastereomers were isolated. A very similar study of this intramolecular Sakurai cyclization for making fused bicyclic skeletons was reported by Majetich et al. ${ }^{44}$

$32.1 \mathrm{R}=\begin{array}{r}t-\mathrm{BuPh}_{2} \mathrm{Si} \\ \\ t-\mathrm{BuMe}_{2} \mathrm{Si} \\ \mathrm{CH}_{3} \mathrm{OCH}_{2} \\ \mathrm{Ac} \\ \mathrm{Me}\end{array}$

32.2a

32.2c

32.2b

32.2d

Scheme 32

The Markó group applied an intramolecular Stetter reaction for making bicycloenediones (Scheme 33). ${ }^{45}$ Using stoichiometric amounts of thiazolium
catalyst 33.2 and $\mathrm{Et}_{3} \mathrm{~N}$ as the base, the desired bicyclic compounds $\mathbf{3 3 . 3}$ were obtained in $50-80 \%$ yield. Apparently, a based-mediated double bond shift occurred after cyclization. It was also noticed that increasing the ring size of the Michael acceptor tended to result in a higher yield.

$33.1 \mathrm{n}=1,2,3$ or 4

33.2

33.3

Scheme 33

When Sassa et al. proposed the biogenesis of erinacine B (see Scheme 10), they also postulated a possible biogenetic pathway to erinacine E : a sequence of a Michael addition-elimination (i.e. an intramolecular conjugate displacement) and an aldol reaction as outlined in Scheme 34 ($\mathbf{3 4 . 1} \boldsymbol{\rightarrow} \mathbf{3 4 . 2}$). Other authors also proposed this idea. ${ }^{46}$ It was again the Nakada group who validated this possibility by a biomimetic total synthesis of (- --erinacine E using this hypothesis. ${ }^{47}$ As shown in Scheme 34, Swern oxidation accomplished both oxidation of the secondary alcohol and a concomitant ICD reaction. A DBU-mediated aldol reaction generated the final 6 -membered ring, accompanied by a benzoyl group migration, in 85% overall yield. This benzoyl group was used as a means of avoiding a retro-aldol reaction. Further functional group manipulations then delivered the final natural product.

34.1

cyclization of double bonds onto certain sulfones. ${ }^{48}$ As depicted in Scheme 35, heating $\mathrm{TolSO}_{2} \mathrm{Na}$ in aqueous acetic acid at $100{ }^{\circ} \mathrm{C}$ generates a sulfone radical, and the resulting electrophilic sulfone radical attacks the electron-rich double bond of substrate 35.1 to give a nucleophilic radical species 35.2, which then performs a radical type ICD reaction to form 35.3. Similarly, $\mathbf{3 5 . 4}$ was converted into 35.5.

Scheme 35

2. Results and Discussion

After the successful application of the nitrogen-based ICD reaction and detailed methodology study on the scope of this transformation for making nitrogen-containing heterocycles, the idea of an all-carbon-based ICD reaction came to mind in the course of studies aimed at the synthesis of CP-225,917 (36.1) and CP-263,114 (36.2). When silyl ether 37.1 was treated with AcOH-buffered

36.1 CP-225,917

36.2 CP-263,114

Scheme 36

$\mathrm{Bu}_{4} \mathrm{NF}$, none of the expected deprotection product 37.2 was observed and only the fragmentation product 37.4 was isolated in a high yield (95\%) (Scheme 37). ${ }^{\text {5b }}$

Scheme 37

Although not the desired product, it was soon realized that aldehyde 37.4 provided an opportunity for testing the ICD reaction in an all-carbon system. To validate this potential, the ICD precursor 38.4 was synthesized from 37.4 using the route depicted in Scheme 38. Treatment of $\mathbf{3 8 . 4}$ with base (DBU) at room

38.5

Scheme 38
temperature for 30 minutes delivered the desired ICD product $\mathbf{3 8 . 5}$ in high yield (96%). Other examples, bearing a substituent at C 8 of $\mathbf{3 7 . 4}$ (as required for the natural products), showed that AcO as the leaving group was also suitable for this ring closure. ${ }^{5 b}$ These preliminary results done by a previous group member made it obvious that a comprehensive study of the scope of the ICD route to carbocycles was appropriate. This facile ring closure also required research on the underlying mechanism.

2.1. Preparation of the ICD Precursors

Most of the ICD precursors (MBH acetates) for my research were prepared using a selenium-based route, as outlined in Scheme 39. This method
had been tested with many examples in the study of nitrogen-based ICD cyclizations and proved to be both efficient and general. ${ }^{6 b}$ In the single case where a comparison was made (preparation of 40.1d), the standard BaylisHillman conditions (DABCO, room temperature, 2 days) produced a complex mixture.

EWG = electron-withdrawing group

Scheme 39

As illustrated in Scheme 39, aldehydes 39.1 were first condensed with the selenium compound $\mathbf{3 9 . 2}$ to form seleno alcohols 39.3, and acetylation, followed by oxidation of the selenium afforded the desired Morita-Baylis-Hillman acetates 39.4. Sometimes the acetylation was done after the selenide oxidation. Most of the aldehydes that we used in our study are listed in Scheme 40, along with the steps for converting them to the corresponding MBH acetates.

The selenium starting materials used in Scheme 40 are listed in Scheme 39 (38.1, ${ }^{49}$ 39.5, ${ }^{50} 39.6,{ }^{51} 39.7,{ }^{52} 39.8^{53}$). They are all known compounds. Compound 38.1 was prepared by nucleophilic displacement of the corresponding ethyl 2bromopropanoate with PhSeNa (generated in situ by reduction of PhSeSePh with NaBH_{4}). The other four selenides were easily prepared by quenching the appropriate carbanion with PhSeCl .

2

3

4

40.1a

40.1a
$40.1 k^{b} \mathrm{X}=\mathrm{SePh}$

40.1 m

6

7

Scheme 40

8

9

10

11

12

Scheme 40 (continued)
13
LDA

DIBAL, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$;
$\mathrm{AcCl}, \mathrm{pyr}, 73 \%$ overall

(3) Amberlyst-15

$$
91 \%{ }^{m}, 95 \%{ }^{n}
$$

Scheme 40 (continued)
18

Scheme 40 (continued)
*Examples done by Dr. B. Prabhudas, ${ }^{5 b}$ a previous group member. ${ }^{\text {a }}$ Less polar isomer. ${ }^{\text {b }}$ Mixture of diastereoisomers. ${ }^{\text {c }}$ Two inseparable isomers contaminated by starting aldehyde. ${ }^{\text {d }}$ Assignment of double bond geometry was tentative. ${ }^{\text {e }}$ This product was separated into three fractions: least polar, a single isomer, 15%; a mixture of two isomers, 35%; and most polar, a single isomer. Only the most polar one was taken forward. ${ }^{\mathrm{f}}$ An equilibrium mixture of keto-enol tautomers. ${ }^{\mathrm{g}} \mathrm{A}$ single isomer of unestablished stereochemistry. ${ }^{\mathrm{h}}$ This product was separated into three fractions: the least polar one, a single isomer, 19\%; a mixture of two isomers, 46%; and the most polar one, a single isomer, 29%. Only the least polar isomer $\mathbf{4 0 . 9 b}-1$ and the most polar isomer $\mathbf{4 0 . 9 b}-4$ were taken further. ${ }^{\mathrm{i}, \mathrm{k}, \mathrm{m}, \mathrm{o}}$ The products were derived from $\mathbf{4 0 . 9} \mathbf{c}-1$. ${ }^{\mathrm{j}, 1, \mathrm{n}, \mathrm{p}}{ }^{\circ}$ The products were derived from 40.9c-4. ${ }^{9}$ Single isomer. 'Inseparable mixture of two isomers that differ in stereochemistry at the hydroxyl-bearing carbon. ${ }^{\text {s }}$ Inseparable mixture of two isomers that differ in stereochemistry at the acetoxy-bearing carbon. ${ }^{\text {t }}$ Mixture of isomers including keto-enol tautomers.

2.1.1. Preparation of the Aldehydes

Aldehyde 40.1a was prepared using a literature procedure by Michael addition of dimethyl malonate to acrolein catalyzed by MeONa. ${ }^{54}$ The aromatic aldehyde 40.2a was prepared (Scheme 41) by diborane reduction of the known corresponding acid $\mathbf{4 1 . 1}{ }^{55}$ followed by immediate PCC oxidation of the crude product (80% overall). It is essential to avoid aqueous workup, as the released free alcohol from the boronate rapidly forms a lactone by attacking one ester group of the malonate subunit.

Scheme 41

Aldehyde 40.3a was made in two steps from sulfonate $\mathbf{4 2 . 1}{ }^{56}$ and commercially available sulfone-ester $\mathbf{4 2 . 2}$ as shown in Scheme 42.

Scheme 42

Scheme 43

4-Bis(phenylthio)butyraldehyde 40.4a was prepared in a straightforward way; the aldehyde group was generated from a nitrile group which, in turn, was incorporated by $\mathrm{S}_{\mathrm{N}} 2$ displacement of chlorine in compound $43 .{ }^{57}$ (Scheme 43).

The same sequence of reactions was applied for making both aldehydes 40.5a and 40.6a, as summarized in Scheme 44. The known acetals 44.2^{58} and 44.4 ${ }^{59}$ were prepared from the corresponding commercially available bromo esters. Replacement of the bromine with the carbanion from bis(phenylthio)methane, followed by hydrolysis of the acetal group, delivered the desired products.

Scheme 44

Our route to aldehyde 40.8a (Scheme 45) is the same as that reported ${ }^{60}$ for the corresponding methyl esters. The intermediate 45.2a, \mathbf{a}^{\prime} was a mixture of cis and trans isomers, but only the major (trans) component was ozonized; consequently, 40.8a was a single isomer (Dr. Prabhudas's work). ${ }^{\text {5b }}$

Aldehyde 40.9a was available as a single isomer in two steps from 46.1^{61} (Scheme 46) by ketalization and ozonolysis, and a similar approach (Scheme 47)

Scheme 46

Scheme 47
was used to make the isomeric aldehyde 40.10a from ketone 47.1 (Dr. Prabhudas's work). ${ }^{5 \mathrm{bb}, 62}$

Both aldehydes 40.11a ${ }^{63}$ and 40.12a are known substances reported in the literature. The former was made by DIBAL reduction of nitrile 48.2.; ${ }^{64}$ itself prepared from commercially available chloride $\mathbf{4 8 . 1}$ by displacement with NaCN . The latter (40.12a) was obtained in one step by ozonolysis of the cyclopentene (Dr. Prabhudas's work). ${ }^{5 b, 65}$

Scheme 48

4-Nitrobutanal (40.7a) was available by Michael addition of MeNO_{2} to acrolein, as described in the literature. ${ }^{66}$ Acrolein also served as the starting point for making aldehyde 40.13a. Treatment of acrolein with $\mathrm{Me}_{3} \mathrm{SiI}$ (generated in situ) in MeCN , followed by addition of anhydrous EtOH yielded iodide 49.2, as
reported in the literature. ${ }^{67}$ Displacement of iodide with lithium trimethylsilyl acetylide and removal of the $\mathrm{Me}_{3} \mathrm{Si}$ group in basic MeOH gave alkyne 49.4. Elongation of 49.4 by deprotonation with BuLi and quenching the resulting carbanion with $\mathrm{Me}_{3} \mathrm{SiCH}_{2} \mathrm{I}$, controlled reduction of the alkyne to a cis double bond, and deprotection of the acetal group in an acidic medium gave the desired aldehyde 40.13a.

Scheme 49

2.1.2. Preparation of the MBH Acetates from the Aldehydes

As mentioned earlier, most of the ICD precursors were prepared using the selenium method involving an aldol reaction between an aldehyde and a selenium-containing substrate (38.1, 39.5-39.8), followed by oxidative elimination of the selenium to install the double bond. The syn elimination of the selenoxide occurs away from the hydroxyl, a fact that is well documented in the literature. ${ }^{68}$ Usually, the aldol reaction was performed using LDA as the base (Scheme 40, entries $1,2,4,5$, and $7-20$), and the products were obtained in yields ranging from 50% to 97%. In several cases, other bases were used: a strong base (BuLi) for entry 3, and DBU for entry 6 as in this case a stronger base such as LDA or BuLi caused loss of PhSe . In all the cases, diastereomeric mixtures were produced. Sometimes they could be separated and then only one pure
diastereomer was carried forward; however, using the mixture for further processing causes no problems, and in most examples, after elimination of the selenoxide, a single diastereomer could be obtained. Acetylation of the hydroxyl group with AcCl and pyridine in the presence of a catalytic amount of DMAP proceeded uneventfully. Oxidation of the selenium could be executed with 30% $\mathrm{H}_{2} \mathrm{O}_{2}$ or m-CPBA to give the double bond with the desired regiochemistry in satisfactory yield (71-94\%). Alternatively, the sequence could be altered by first generating the allylic alcohol, followed by acetylation, as shown in entries 15-17 and 19.

After the sequence of aldol condensation, acetylation and elimination, an extra step was needed for entries 15-19, namely, unmasking an aldehyde group (or ketone) from the acetal (or ketal).

The preparation of the ICD precursors $\mathbf{4 0 . 5 h}$ and $\mathbf{4 0 . 6 h}$ (for the exo-ICD examples, vide infra) (entries 11 and 13) are different from the other routes. The aldehydes were first condensed with $\mathrm{PhSCH}_{2} \mathrm{CO}_{2} \mathrm{Et},{ }^{69}$ and the double bond of the MBH acetate subunit was generated not by selenoxide elimination, but by dehydration via a mesylate. Reduction of the ethyl ester to the alcohol with DIBAL and subsequent acetylation of the OH group installed the AcO unit as the leaving group, and formation of the electron-withdrawing group of the MBH acetate unit via oxidation of the sulfide was delayed until the last step. It should be noted that a more direct way of preparing these two MBH acetates using a Knoevenagel reaction between the aldehyde and sulfone ester $\mathbf{4 2 . 2}$ failed to yield the desired product 50.1, but gave a mixture containing predominantly the double bond migration product $\mathbf{5 0 . 2}$, contaminated by an impurity. The propensity for vinyl sulfones to isomerize to the allylic sulfones has precedent. ${ }^{70}$

Scheme 50

For entries 8-11 and 13 , using PhS as a precursor for PhSO_{2} is convenient and also essential, as earlier introduction of two PhSO_{2} groups on the same carbon would substantially increase the acidity of the adjacent proton to an extent that would likely interfere with subsequent transformations.

Most of the examples were designed to examine the endo cyclization mode of the ICD reactions: entries 1-8, 12, 14, and 18-20 for 6-endo-trig; entries 9, 15 and 16 for 7 -endo-trig; and entries 10 and 17 for 8-endo-trig. Two examples were prepared to test the feasibility of exo ring closure: entry 11 for 5-exo-trig and entry 13 for 6 -exo-trig modes.

2.2. Ring Closure Using ICD Reactions

During the initial study by a previous group member to implement the carbon based ICD reaction on the CP-molecule 38.5, the arbitrary combination of DBU in MeCN , was found to be very effective in terms of the reaction rate (30 min, at room temperature) and yield (96\%). ${ }^{5 b}$ Although no screening of the reaction conditions was conducted, it was observed at that time that a strong base $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NLi}$ gave a complex mixture. The DBU-MeCN system also served well in the first few examples using OAc as the leaving group and an ethyl ester as the electron-withdrawing group on the MBH acetate subunit. ${ }^{5 b} \mathrm{Cs}_{2} \mathrm{CO}_{3}-\mathrm{MeCN}$ was also demonstrated to be a good base-solvent combination when DBU-MeCN failed to perform well on compound 40.9 e (Scheme 51, entry 15). ${ }^{5 b}$ However, both base-solvent combinations gave very low yields with the nitrile substrate 40.1j, and we were forced to conduct an extensive survey that is summarized in Scheme 52. No clear trend for the relationship between the yield and the basesolvent pair could be observed; $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{MeCN}$ gave a satisfactory yield (86%) and addition of $\mathrm{Me}_{3} \mathrm{SiCl}$ or heating both shorten the reaction time but with no improvement in yield. However, $\mathrm{Et}_{3} \mathrm{~N}-\mathrm{MeCN}$ did not perform well for cyclization of $\mathbf{4 0 . 1 m}$, and all efforts to effect the ring closure gave either complete decomposition or a yield less than 5%. In an attempt to run the reaction at $-78^{\circ} \mathrm{C}$ using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF no reaction was observed, however, when warming the

1*

2

3

4

40.1j

6

40.1q

Scheme 51 ${ }^{\text {a }}$

8

9

10

11

40.5h
51.11

12

40.7d

51.12

13

40.6h
51.13

Scheme 51 (continued)

40.9e, e' R = Ac
16* $40.9 \mathrm{~g}, \mathrm{~g}^{\prime} \mathrm{R}=\mathrm{COBu}-t$

20

Scheme 51 (continued)
*Previous group member Dr. Prabhudas's work. ${ }^{5 b}$ a All reactions at room temperature, unless otherwise indicated. ${ }^{\mathrm{b}} \mathrm{A}$ mixture of keto-enol tautomers. ${ }^{\mathrm{c}}$ The stereochemistry assignment of $\mathbf{5 1 . 1 4}$ is tentative. ${ }^{\text {d }} \mathrm{A}$ mixture of isomers including keto-enol tautomers. Both stereochemistries at acetoxy-bearing carbon. ${ }^{e}$ Only a trace amount of $\mathbf{5 1 . 1 7} \mathbf{b}$ was detected with DBU ; with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ the yield of 51.17b is 11%, but $\mathbf{5 1 . 1 7 a}, \mathbf{a}^{\prime}$ was not formed. ${ }^{\text {f }}$ Single isomer of unestablished stereochemistry. ${ }^{9}$ Yield 69% after correction for recovered starting material.

		$\mathrm{MeO}_{2} \mathrm{C} \mathrm{CO}_{2} \mathrm{Me}$ 51.4			
1	DBU	MeCN	rt	10 min	47\%
2	DBU	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	25 min	52\%
3	DBU	DMSO	rt	25 min	40\%
4	DBU	PhMe	rt	15 min	16\%
5	DBU	MeCN	$-10{ }^{\circ} \mathrm{C}$	6 min	33\%
6	DBU	MeCN	reflux	5 min	38\%
7	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	MeCN	reflux	50 min	55\%
8	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	it	several h	CM ${ }^{\text {b }}$
9	$\mathrm{Cs}_{2} \mathrm{CO}_{3}$	THF	rt	12 hc	74\%
10	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	rt	12 h	86\%
11	$\mathrm{Et}_{3} \mathrm{~N}$	MeCN	reflux	4.5 h	78\%
12	$\mathrm{Et}_{3} \mathrm{~N}, \mathrm{Me}_{3} \mathrm{SiCl}$	MeCN	rt	15 min	74\%
13	$i-\mathrm{Pr}_{2} \mathrm{NE}$ t	MeCN	reflux	24 h	40\%
14	DABCO	MeCN	rt	15 min	-d
15	pyridine, $\mathrm{Me}_{3} \mathrm{SiCl}$	MeCN	reflux	12 h	CM

Scheme 52

${ }^{\text {a }}$ Reactions were monitored by TLC and, except for overnight runs, were stopped when all starting material had been consumed. ${ }^{\mathrm{b}} \mathrm{CM}=$ complex mixture. ${ }^{\mathrm{c}}$ Reaction appeared to be half over after 80 min . ${ }^{\mathrm{d}}$ Elimination of acetate from 40.1j occurred (${ }^{1} \mathrm{H}$ NMR).
reaction mixture in ca $10^{\circ} \mathrm{C}$ increments, clean formation of the desired product $\mathbf{5 1 . 5}$ occurred at room temperature in excellent yield (97\%) (Scheme 51, entry 5). Therefore this combination was employed as our first choice and, since
satisfactory yields were obtained in most cases, comparison with other conditions was not made. Another merit of using $\mathrm{Cs}_{2} \mathrm{CO}_{3}-\mathrm{THF}$ is the convenience of the workup; usually, a simple filtration through a short pad of silica gel (or Celite) would suffice and no impurity was detectable by ${ }^{1} \mathrm{H}$ NMR measurement.

In a few of the examples, a diene species, formed via an apparent $S_{N} 2$ elimination of the leaving group, was noticed (DABCO with $\mathbf{4 0 . 1} \mathbf{j}$, and Hünig's base with 40.1m), but this was not observed when $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ was used. A speculative mechanism involves $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement of the AcO^{-}by the amine base, followed by elimination as depicted in Scheme 53. Intermediates 53.1 and 53.2 could lead to further reactions (such as Diels-Alder cycloaddition, intermolecular Michael addition, etc.), which might account for the low yields in some cases where an amine was used as the base.

Scheme 53

In addition to base-mediated ICD reactions with carbanions, entries 18-20 in Scheme 51 represent other ways of generating a nucleophilic carbon.

The formation of 6- and 7-membered rings via 6-endo-trig and 7-endo-trig cyclization, using either $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ or DBU, proceeded smoothly and in high yield ($75-99 \%$), except for the nitro example $\mathbf{4 0 . 1 q}$ (Scheme 51, entry 6) which gave a complicated mixture. The [6,6]-bicyclic compounds $\mathbf{5 1 . 1 4}$ could be constructed without incident (Dr. Prabhudas's work), ${ }^{5 b}$ and the syn geometry was assigned tentatively by analogy with similar cis-fused decalin systems in the literature. ${ }^{71}$ Interesting observations were made in an attempt to implement the 7-endo-trig ring closure for making [6,7]-bicyclic structure $\mathbf{5 1 . 1 5}$ (Dr. Prabhudas's work). ${ }^{5 b}$ Brief exposure ($30-50 \mathrm{~min}$) of either $\mathbf{4 0 . 9} \mathbf{e}, \mathrm{e}^{\prime}$ (acetate as the leaving group) or
$\mathbf{4 0 . 9} \mathbf{g}, \mathbf{g}^{\prime}$ (pivaloate as the leaving group) to DBU in $\mathbf{M e C N}$ led to both $\mathbf{5 1 . 1 5}$ and $\mathbf{5 1 . 1 5}$. The side product $\mathbf{5 1 . 1 5}$ ' was isolated as a pair of epimers in a $7: 3$ ratio, irrespective of the stereochemistry at C 2 in the starting material. The formation of $\mathbf{5 1 . 1 5}$ ' is reversible, as it could be converted to $\mathbf{5 1 . 1 5}$ either by using a longer reaction time in situ (150 min) or by the action of $\mathrm{DBU}-\mathrm{MeCN}$ after isolation. In

$\mathbf{R}=\mathbf{A c}$, less polar		
DBU, MeCN, room temp, 30 min	5%	$79 \%^{\mathrm{a}}$
$\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$, reflux, 60 min	100%	$-\%^{\mathrm{b}}$
$\mathbf{R}=\mathbf{A c}$, more polar		
$\mathrm{DBU}, \mathrm{MeCN}$, room temp, 50 min	53%	$38 \%^{\mathrm{a}}$
$\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$, reflux, 45 min	99%	$-\%^{\mathrm{b}}$
$\mathbf{R}=\boldsymbol{t}$-BuCO, less polar		
$\mathrm{DBU}, \mathrm{MeCN}$, room temp, 30 min	5%	$80 \%^{\mathrm{a}}$
$\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$, reflux, 60 min	100%	$-\%$
$\mathbf{R}=\boldsymbol{t}$-BuCO, more polar		
$\mathrm{DBU}, \mathrm{MeCN}$, room temp, 20 min	23%	$51 \% \mathrm{a}^{\mathrm{a}}$
$\mathrm{DBU}, \mathrm{MeCN}$, room temp, 150 min	73%	$-\%$
$\mathrm{Cs}_{2} \mathrm{CO}_{3}, \mathrm{MeCN}$, reflux, 60 min	99%	$-\%$

Scheme 54
${ }^{\text {a }}$ Diastereoisomeric mixture (7:3). ${ }^{\text {b }}$ Compound 51.15' not isolated.
contrast to this complicated behavior, $\mathbf{5 1 . 1 5}$ was formed as the sole product when 40.9e, \mathbf{e}^{\prime} and $\mathbf{4 0 . 9} \mathbf{g}, \mathbf{g}^{\prime}$ were treated with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in refluxing MeCN ; no 51.15' was observed by TLC during the reaction. The above experiments are summarized in Scheme 54 (Dr. Prabhudas's work). ${ }^{\text {5b }}$

The constant ratio of the $\mathbf{5 1 . 1 5}$ ' isomers (7:3) regardless of the C 2 stereochemistry of the starting materials implicates possible mechanistic pathways leading to a thermodynamic ratio. Three potential mechanisms are outlined in Scheme 55. All three pathways involve elimination of the C2 stereochemistry by changing it from an sp^{3} to an sp^{2} hybridization via species 55.1. This constant ratio could be explained by an equilibration between 51.15 and 55.1, initiated by either an intramolecular displacement (5-exo-tet) of acetate (or pivaloate) by the enolate oxygen (pathway A), followed by an $\mathrm{S}_{\mathrm{N}} 2$ displacement with DBU as the external nucleophile. Alternatively an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ displacement of acetate (or pivaloate) by DBU could also initiate the equilibration (pathway B). Pathway C involves

Scheme 55
equilibration between 55.1 and $\mathbf{5 5 . 2}$ and an oxy-ICD with DBU as the leaving group. It is possible that the desired product $\mathbf{5 1 . 1 5}$ itself arises from either intermediate 55.1 (by a 7 -exo-tet cyclization of the E-isomer) or $\mathbf{5 5 . 2}$ (by 7 -endotrig ICD). When $\mathbf{5 1 . 1 5}$ ' was treated with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in MeCN at room temperature (12 h), no 51.15 was formed but slight decomposition occurred; at higher temperature (refluxing, 2 h) 51.15' simply decomposed and again $\mathbf{5 1 . 1 5}$ was not detected. ${ }^{5 b}$ These observations are consistent with the suggested mechanism for

DBU-mediated reactions, as $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ is apparently unable to participate in the reversible nucleophilic process proposed for DBU.

Formation of an 8 -membered ring is more challenging because of additional strains for rings of medium size. ${ }^{72}$ Cyclization of $\mathbf{4 0 . 6 d}$ using $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF gave the desired product 51.10a' in 29% yield, plus a 6 -membered compound (51.10a) in 49% yield, presumably from direct displacement of the allylic acetate by the carbanion (Dr. Prabhudas's work). ${ }^{\text {5b }}$ Treatment with DBU in MeCN (room temperature, 2.5 h) resulted in a complex mixture with a trace amount of the 6 -membered product and no detectable amount of the 8 -membered compound.

When 40.10e was treated with DBU in MeCN , the 6 -membered product predominated (82% yield), with little formation of the 8 -membered product 51.17b, which was isolated in a slightly impure form in ca 3% yield. ${ }^{5 b}$ Possibly, the formation of $\mathbf{5 1 . 1 7 a}, \mathbf{a}^{\prime}$ with DBU is a result of an $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}}{ }^{\prime}$ sequential process (Scheme 56), similar to the $\mathrm{S}_{\mathrm{N}} 2^{\prime}-\mathrm{S}_{\mathrm{N}} 2^{\prime}$ mechanism mentioned in connection with intermolecular conjugate displacements in the introduction section. Such a pathway accounts for the fact that an epimeric 1:5 mixture was obtained for 51.17a, \mathbf{a}^{\prime} from 40.10e that itself was a $1: 1$ mixture of C 2 epimers. Further observations consistent with the essential role of DBU in the formation of

Scheme 56
51.17a, \mathbf{a}^{\prime} came from the $\mathrm{Cs}_{2} \mathrm{CO}_{3}$-mediated reactions: in refluxing $\mathrm{MeCN}, 11 \%$ pure 51.17b was isolated and only a trace amount ($<1 \%$) of 51.17a, ${ }^{\prime}$ was formed, ${ }^{5 b}$ in THF at room temperature (12 h), a complex mixture resulted and the
presence of a trace amount of $\mathbf{5 1 . 1 7 b}$ was suggested by the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude material.

Exo cyclization modes (5-exo-trig and 6-exo-trig) were examined using substrates $\mathbf{4 0 . 5 h}$ and $\mathbf{4 0 . 6 h}$ (Scheme 51). The 5-exo ICD proceeded smoothly to give $\mathbf{5 1 . 1 1}$ in high yield (85%); formation of the 6 -membered product $\mathbf{5 1 . 1 3}$ via a 6-exo ICD gave only a low yield (47\%).

ICD cyclizations utilizing other nucleophilic carbons were explored briefly (Scheme 51, entries 18-20). Entry 18 represents an intramolecular Stetter reaction using thiazolium salt 51a as the catalyst and $\mathrm{Et}_{3} \mathrm{~N}$ as the base; a similar reaction ${ }^{45}$ was mentioned in the introduction section. The reaction generated two species, $\mathbf{5 1 . 1 8}$ and $\mathbf{5 1 . 1 8}$ ' in a $2: 3$ ratio; the former is the expected ICD product and the latter arises from a simple Michael addition. This is the only example in which the leaving group acetate was retained after cyclization, and the mechanistic implications will be discussed in the following section. Treatment of aldehyde 40.12e with DBU in MeCN did not deliver any ICD product, but caused elimination of AcOH from the substrate to give a diene that underwent further reaction(s).

Attempted ICD reaction via an in situ generated enamine using the organocatalyst proline and its derivative $\mathbf{5 1 b}^{73}$ gave only inferior yields: 29% with proline (53% after correlation for recovered starting material) and 53% with 51b (69\% after correlation for recovered starting material) (Dr. Prabhudas's work). ${ }^{5 b}$ The desired reaction pathway is probably diverted by direct nucleophilic attack of the proline (or 51b) nitrogen onto the MBH acetate subunit, followed by other side reactions. As this in situ enamine-generation method did not seem to be a promising ICD reaction, further exploration was not attempted and the ee of the product 51.19 was not measured.

An allylic silane could be used as the nucleophile, and when substrate 40.13d was treated with TiCl_{4} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at a low temperature $\left(-40^{\circ} \mathrm{C}\right)$, the desired product was obtained in 90% yield. Single experiments with $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ or $\mathrm{Bu}_{4} \mathrm{NF}$ were unsuccessful. Similar ring closures of allylic silanes ${ }^{43-44}$ are mentioned in the introduction section.

2.3. Mechanistic studies

Some substrates and reactions used in the study of the reaction scope are relevant to the exploration of the mechanisms, but more precursors for probing the mechanism were specially prepared and additional experiments were performed to address the mechanistic questions. These new compounds are listed in Scheme 57. Among them, compounds 57.1, 57.2 and $\mathbf{5 7 . 4}$ were made using the same route as for the ICD precursors, viz. silylation or acetylation of alcohols 40.1b and $\mathbf{4 0 . 4 b}$, followed by elimination via selenoxides; compound $\mathbf{5 7 . 3}$ was

57.1

57.2

Scheme 57

LDA, THF, $-78^{\circ} \mathrm{C}$; then $\mathrm{BrCH}_{2} \mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{Br}$, THF, HMPA
$-78{ }^{\circ} \mathrm{C}, 2 \mathrm{~h}, \mathrm{rt}, 2 \mathrm{~h}, 84 \%$

38.1

57.3

57.4

58.1

Scheme 58
prepared by a slightly different route as indicated in Scheme 58, but selenoxide elimination proceeded with poor regioselectivity and generated a mixture of the
desired compound $\mathbf{5 7 . 3}$ and its regioisomer $\mathbf{5 8 . 3}$ in a ratio of $\mathbf{3 : 1}$. As they were inseparable, we used the material as a mixture.

Reexamination of the enhanced reactivity of the MBH adducts due to the presence of a leaving group, as indicated in the literature (see the introduction section), revealed a clear trend in reactivity: the better the nucleofuge, the faster the reaction. With DBU in MeCN at room temperature, 40.1d cyclized in 15 min in a yield of 86%; $\mathbf{5 7 . 1}$ cyclized at a much slower reaction rate and required 90 min to give the same product in a yield of 96%, while $\mathbf{5 7 . 3}$ (together with 58.3) did not undergo any cyclization after a prolonged reaction time (32 h) as indicated by the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture. When treated with DBU in MeOH at room temperature for 41 h , compound 57.3 underwent an intermolecular Michael addition with MeOH , accompanied by ester exchange $\left(\mathrm{CO}_{2} \mathrm{Et}\right.$ to $\left.\mathrm{CO}_{2} \mathrm{Me}\right)$, but again no cyclization was detected.

The enhanced reactivity of the MBH adduct towards a nucleophile conferred by the presence of a leaving group is in line with many $S_{\mathrm{N}} 2^{\prime}$ examples, as discussed in the introduction. It is possible that the departure of the leaving group acts as an irreversible sink, thus trapping the initial anionic Michael addition intermediate. More likely, orbital interactions between the electronegative leaving group and the Michael acceptor lower the LUMO of the terminal double bond and increase its susceptibility towards nucleophiles: for example, in contrast to the persistent resistance of $\mathbf{5 7 . 3}$ to undergo intramolecular Michael addition, the same reaction did occur for substrate 40.11e after umpolung of the aldehyde group, although the reaction conditions are not exactly the same.

It is not clear if the ICD reactions occur via a concerted or stepwise mechanism; nor is this point clear for the inter- and intramolecular cases with MBH adducts reported in the literature - although researchers commonly refer to the reactions as "addition and elimination" sequences and some authors are biased towards the stepwise mechanism, as preliminary kinetic studies showed no relationship between the nature of the leaving group and the rate of the reaction. ${ }^{\text {8i,13a }}$

We probed the mechanism of the reaction by experiments designed to trap any Michael addition species with significant carbanionic character at $\mathrm{C} \beta$ (see Scheme 57) of the MBH adduct subunit. To this end, sulfone ester $\mathbf{4 0 . 4 d}$ was treated with $\mathrm{Cs}_{2} \mathrm{CO}_{3}$ in THF- t - $\mathrm{BuOH}, t-\mathrm{BuOH}$, or MeOH at room temperature and the reactions were quenched before complete consumption of the starting material; in each case, the reaction produced only the ICD product, plus remaining starting material, as indicated by ${ }^{1} \mathrm{H}$ NMR examination of the crude material. It is possible that protonation of the carbanion, being a bimolecular process, is not competitive with expulsion of the leaving group; thus we designed substrate 57.4, with the appended bromo acetate serving as an intramolecular carbanion trap. Subjecting compound 57.4 to the standard ICD conditions $\left(\mathrm{Cs}_{2} \mathrm{CO}_{3}\right.$ in THF at room temperature) and quenching the mixture before disappearance of the starting materials gave only the ICD product 51.8 and starting material (based on the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude material).

As described earlier, the use of OSiEt_{3} as the leaving group will retard the ICD reaction, and so we next examined the behavior of these compounds in trapping experiments. When 57.1, carrying the malonate moiety was treated with DBU in MeOH (room temperature, 34 h), in addition to the normal ICD product, in which some ester exchange occurred, we also isolated the Michael addition product 59.1 in 28% yield as a mixture in which some ester exchange had occurred. The stereochemistry of $\mathbf{5 9 . 1}$ was not established. In contrast to 57.1, which requires an excess of a proton source in order to intercept the putative

59.1 R = Me, Et

59.2 and 59.2'

Scheme 59
carbanion, treatment of $\mathbf{5 7 . 2}$ with DBU in MeCN (room temperature, 40 min) afforded the two diastereomeric Michael adducts 59.2 (44\%, trans) and 59.2'
(4%, cis), plus the normal ICD product (27\%). Subjecting either $\mathbf{5 9 . 2}$ or $\mathbf{5 9 . 2}$ to the reaction conditions (DBU in $\mathrm{CD}_{3} \mathrm{CN}$) showed no change after 45 min , the reaction being periodically monitored by ${ }^{1} \mathrm{H}$ NMR measurements.

Similar observations have been reported in the literature for MBH adductbased intermolecular reactions: switching to a poor leaving group leads to partial or total formation of the Michael addition product. ${ }^{4,74}$ Fuchs et al. speculated that elimination of the leaving group could be completely suppressed if the pKa of such a leaving group is much greater than that of the $\mathrm{C}-\mathrm{H} \alpha$ to the electronwithdrawing group in the MBH adduct subunit. ${ }^{4 a}$ This speculation was supported by the reaction depicted in Scheme 60. Using $\mathrm{Me}_{2} \mathrm{~N}\left(\mathrm{pKa} \mathrm{Me}{ }_{2} \mathrm{NH}=\mathrm{ca} 35\right)$ on the allylic position of sulfone $\mathbf{6 0 . 1}$ (pKa of the α position of sulfone $=\mathrm{ca} 25$), treatment with the vinyllithium reagent $\mathbf{6 0 . 2}$ gave only the Michael addition product in an almost quantitative yield; while replacement of the NMe_{2} group by $\mathrm{OH}(\mathrm{pKa} \mathrm{ROH}=\mathrm{ca} 16)$ and using the corresponding cuprate of $\mathbf{6 0 . 2}$ resulted in an $\mathrm{S}_{\mathrm{N}} 2^{\prime}$ reaction. In other words, the larger the value for $\Delta \mathrm{p} K a[\Delta \mathrm{p} K \mathrm{a}=\mathrm{p} K a(C \alpha-$ H of sulfone) p pa (leaving group)], the easier the formation of the ICD product. However, it should be noted that the two experiments are not strictly comparable because an organolithium and a cuprate are being compared.

This hypothesis may help explain the different behavior of substrates $\mathbf{5 7 . 1}$ and 57.2 under the same reaction conditions: as mentioned earlier, with DBU in MeCN, 57.1 gave only the ICD product, while $\mathbf{5 7 . 2}$ produced mainly the Michael adduct. This discrimination is probably caused by different $\mathrm{p} K$ a values of the α position to the ester group (see Scheme 59); as the geminal diesters groups at C*
on $\mathbf{5 9 . 1}$ are less electronegative than the disulfone on $\mathbf{5 9 . 2}$ (or 59.2') and have a less strong inductive effect on the α position, the α position of $\mathbf{5 9 . 1}$ accordingly has a higher $\mathrm{p} K$ a value, meaning that with the same leaving group $\left(\mathrm{OSiEt}_{3}\right) \Delta \mathrm{p} K \mathrm{a}$ of $\mathbf{5 9 . 1}$ is larger than that of $\mathbf{5 9 . 2}$ and thus the carbanion at the α position of $\mathbf{5 9 . 1}$ (generated after Michael addition in the stepwise pathway) would be more likely to expel the OSiEt_{3}.

To summarize the above discussions, the overall conclusion based on our examination is that the transformations based on MBH acetates could be either concerted - in which the extent of bond formation and the extent of bond breakage may be synchronous or asynchronous - or may occur in a stepwise manner but with the negative charge on the MBH acetate part (after initial ring closure) of sufficiently small magnitude and/or short lifetime that it evades capture by an external or internal electrophile. However, a range of mechanisms may apply, depending on the structure and conformation of the substrates, as well as the reaction conditions.

As stated earlier, when aldehyde 40.11e was subjected to standard Stetter conditions (Scheme 51, entry 18), both ICD product $\mathbf{5 1 . 1 8}$ and Michael adduct 51.18' were obtained. In this case it is likely that after initial ring closure the carbanion on intermediate $\mathbf{6 1 . 1}$ (Scheme 61) is stabilized by Coulombic attraction with the cation on the thiazolium unit; this attraction could also prolong the

61.1

Scheme 61

lifetime of the carbanion and increase the chance of its being trapped by an external or internal proton source. The ICD product $\mathbf{5 1 . 1 8}$ could be formed either
by a concerted pathway or stepwise via the same intermediate 61.1. The normal ICD cyclizations are over within a few hours when DBU is used in MeCN at room temperature, but some 51.18' remained in a complex mixture after treatment with DBU in MeCN at an elevated temperature $\left(50^{\circ} \mathrm{C}\right)$ for 12 h . Clearly, none of the ICD products in Scheme 51 is formed via a simple protonated Michael addition species followed by base mediated elimination of AcOH , in line with the expectation based on the $\mathrm{p} K$ a values.

3. Conclusions

The carbon nucleophile-based ICD reaction is a general method of making 5-, 6-, and 7-membered carbocycles in high yields under very mild conditions. The scope study showed that a variety of functional groups (electron-withdrawing groups) could be incorporated, which provide handles for further functionalization; the product itself is a Michael acceptor, a useful theme in synthesis. Unlike palladium-mediated S_{N} ' reactions involving allylic acetates and a carbanion, the current method requires no transition metal and therefore can tolerate groups that might be affected by palladium.

The precursors are easily accessible using a sequential aldol condensation, elimination of selenoxide and acetylation.

The utility of the all-carbon ICD has been demonstrated in constructions of several complex models related to $\mathrm{CP}-225,917$ and $\mathrm{CP}-263,114$. Its potential for making carbocycles in an asymmetric manner using a chiral auxiliary is now under study in this group.

The mechanism can be stepwise, at least in the cases when a poor leaving group is used; while for examples with AcO^{-}as a leaving group, the pathway could be concerted, although a stepwise pathway involving a very fast elimination can not be excluded.

4. Experimental Section

Unless specified, reactions were carried out under a slight static pressure of Ar or N_{2} that had been purified by passage through a column $(3.5 \times 42 \mathrm{~cm})$ of R-311 catalyst and then through a similar column of Drierite. Solvents for reactions were dried as described below. Glassware was dried in an oven (140 ${ }^{\circ} \mathrm{C}$) overnight before use and either cooled in a desiccator over Drierite, or assembled quickly, sealed with rubber septa, and allowed to cool under a light static pressure of Ar or N_{2}.

Solvents used for chromatography were distilled before use. Commercial thin layer chromatography plates (silica gel, Merck 60F-254 was used. Silica gel for flash chromatography was Merck type 60 (230-400 mesh). Dry solvents were prepared under an inert atmosphere and transferred by syringe or cannula. Dry THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium and benzophenone ketyl. Dry MeCN, $\mathrm{Et}_{3} \mathrm{~N}$ and pyridine were distilled from CaH_{2}.

The symbols s, d, t and q used for ${ }^{13} \mathrm{C}$ NMR spectra indicate zero, one, two, or three attached hydrogens, respectively, the assignments being made by from APT and HSQC spectra.

2-(3-Oxopropyl)malonic Acid Dimethyl Ester (40.1a). ${ }^{\text {+54 }}$

Acrolein ($3.9 \mathrm{~mL}, 59 \mathrm{mmol}$) was added dropwise over 30 min to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of dimethyl malonate $(6.0 \mathrm{~g}, 45 \mathrm{mmol})$ and sodium (10 $\mathrm{mg}, 0.45 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(60 \mathrm{~mL})$. The ice bath was left in place but not recharged and stirring was continued for 16 h . The solvent was evaporated and the residue was dissolved in $\mathrm{Et}_{2} \mathrm{O}(150 \mathrm{~mL})$. The solution was washed with
water (25 mL) and brine $(25 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Distillation of the residue under reduced pressure $\left(100{ }^{\circ} \mathrm{C}, 0.5 \mathrm{~mm} \mathrm{Hg}\right)$ gave 40.1a as a colorless viscous liquid ($4.6 \mathrm{~g}, 54 \%$): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.22(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2$ H), $2.57(\mathrm{td}, J=7.5,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{t}, J=7.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H}), 9.75(\mathrm{t}$, $J=1.0 \mathrm{~Hz}, 1 \mathrm{H})$.

2-(2-Formylphenyl)malonic Acid Dimethyl Ester (40.2a).

41.1

40.2a
$\mathrm{BH}_{3} \cdot \mathrm{SMe}_{2}(10.1 \mathrm{M}, 0.22 \mathrm{~mL}, 2.2 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 2-(2-carboxyphenyl)malonic acid dimethyl ester ${ }^{55}$ ($500 \mathrm{mg}, 1.98 \mathrm{mmol}$) in THF (10 mL). Stirring was continued at $0^{\circ} \mathrm{C}$ for 20 min and then at $50{ }^{\circ} \mathrm{C}$ for 3.5 h . The solvent was evaporated and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5.0 \mathrm{~mL})$. The resulting solution was added to a stirred mixture of PCC ($855 \mathrm{mg}, 3.97 \mathrm{mmol}$) and $4 \AA$ molecular sieves (855 mg) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$, and stirring was continued for 40 min . The solvent was evaporated, and the residue was filtered through a pad of Celite, using $\mathrm{Et}_{2} \mathrm{O}$ as a rinse. Evaporation of the solvent and flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 1:2 EtOAc-hexane, gave 40.2a ($374 \mathrm{mg}, 80 \%$) as an oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) 3003, 2955, 2924, 2851, 2753, 1734, 1695, 1600, $1578,1491,1451,1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.77(\mathrm{~s}, 6 \mathrm{H}), 5.90(\mathrm{~s}$, $1 \mathrm{H}), 7.47(\mathrm{dd}, J=7.7,0.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.56(\mathrm{td}, J=7.5,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.61(\mathrm{td}, J=$ $7.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.82(\mathrm{dd}, J=7.5,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 10.05(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 52.8$ (q), 53.4 (d), 128.7 (d), 130.4 (d), 133.5 (s), 133.7 (s), 133.9 (d), 135.3 (d), 168.5 (s), 193.2 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{NaO}_{5} 259.0577$, found 259.0575.

2-[2-[2-Ethoxycarbonyl-1-hydroxy-2-(phenylseleno)propyl]phenyl]malonic Acid Dimethyl Ester (40.2b,b').

40.2a

40.2b,b'
$\mathrm{n}-\mathrm{BuLi}(1.60 \mathrm{M}$ in hexane, $1.47 \mathrm{~mL}, 2.34 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(237 \mathrm{mg}, 2.34 \mathrm{mmol})$ in THF (25.0 mL). Stirring at $0^{\circ} \mathrm{C}$ was continued for 25 min . The mixture was then cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of $\mathbf{3 8 . 1}$ ($599.0 \mathrm{mg}, 2.34 \mathrm{mmol}$) in THF (5 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 70 min , and a solution of 40.2a $(220.0 \mathrm{mg}, 0.94 \mathrm{mmol})$ in THF (6 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (80 mL . The aqueous phase was extracted with EtOAc (3 x 40 mL) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 9:20 EtOAc-hexane, gave 40.2b (less polar isomer, $135 \mathrm{mg}, 40 \%$) as a viscous oil containing an impurity which could not be removed, and pure $\mathbf{4 0 . 2} \mathbf{b}^{\prime}$ (more polar isomer, $135 \mathrm{mg}, 40 \%$) as a viscous oil.

Compound 40.2b' had: FTIR (CDCl_{3} cast) $3486,2985,2954,1735,1579$, $1476,1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.20(\mathrm{dd}, J=7.2,7.1,3 \mathrm{H}), 1.37$ (s, 3 H), 3.73 ($\mathrm{s}, 3 \mathrm{H}$), $3.75(\mathrm{~s}, 3 \mathrm{H}), 3.84(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dq}, J=10.8$, $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.39(\mathrm{~s}, 1 \mathrm{H}), 5.45(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1$ H), 7.26-7.32 (m, 3 H), 7.34-7.40 (m, 3 H), 7.48-7.50 (m, 2 H), 7.53-7.55 (m, 1 $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.8$ (q), 19.9 (q), 52.8 (q), 52.9 (q), 53.4 (d), 54.8 (s), 61.7 (t), 74.9 (d), 126.5 (s$), 127.8$ (d), 127.9 (d), 128.3 (d), 128.8 (d), 129.5 (d), 130.1 (d), 132.0 (s), 137.6 (s), 138.2 (d), 168.88 (s), 168.91 (s), 173.9
(s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se}$ 517.0736, found 517.0740.

2-[2-[1-Acetoxy-2-ethoxycarbonyl-2-(phenylseleno)propyl)]phenyl]-

 malonic Acid Dimethyl Ester (40.2c).
40.2b ${ }^{\prime}$

40.2c

Pyridine ($99.2 \mathrm{mg}, 1.25 \mathrm{mmol}$) and $\mathrm{AcCl}(49.2 \mathrm{mg}, 0.63 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.2b' ($103 \mathrm{mg}, 0.21 \mathrm{mmol}$) and DMAP ($2.6 \mathrm{mg}, 0.021 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 16 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (5 mL), acidified with hydrochloric acid ($1 \mathrm{M}, 2 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 1:2 EtOAc-hexane, gave the product (89.4 mg , 80%) as an oil: FTIR (CDCl_{3} cast) $2985,2954,1738,1477,1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.23(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.46(\mathrm{~s}, 3 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H})$, $3.74(\mathrm{~s}, 3 \mathrm{H}), 3.80(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.14(\mathrm{dq}, J=10.8,7.1$ $\mathrm{Hz}, 1 \mathrm{H}), 5.74(\mathrm{~s}, 1 \mathrm{H}), 6.73(\mathrm{~s}, 1 \mathrm{H}), 7.14-7.19(\mathrm{~m}, 4 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.37$ (dd, $J=8.0,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.57(\mathrm{dd}, J=7.9,1.3 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9(\mathrm{q}), 18.6(\mathrm{q}), 20.6(\mathrm{q}), 52.7$ and 52.9 (these two signals incorporate two q and one d), 53.0 (s), 54.1 (d), 61.5 (t), 125.8 (s$), 127.6$ (d), 128.6 (d), 128.7 (d), 129.4 (d), 130.4 (d), 132.7 (s), 134.7 (s), 138.1 (d), $168.56(\mathrm{~s}), 168.57(\mathrm{~s}), 167.0(\mathrm{~s}), 171.7(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{28} \mathrm{NaO}_{8}{ }^{80} \mathrm{Se} 559.0842$, found 559.0845.

Ester (40.2d).

40.2c

40.2d
$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.18 \mathrm{~mL}, 1.8 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 2 c}(79 \mathrm{mg}, 0.15 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 90 min and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1.0 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , the ice bath was removed, stirring was continued for 30 min and the mixture was diluted with water $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 1:2 EtOAc-hexane, gave $\mathbf{4 0 . 2 d}(45 \mathrm{mg}, 80 \%)$ as a viscous oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$ cast) $2956,1741,1636,1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.21(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 3.74(\mathrm{~s}, 3 \mathrm{H}), 4.16(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2$ H), $5.24(\mathrm{~s}, 1 \mathrm{H}), 5.69(\mathrm{~d}, J=1.3 \mathrm{~Hz}, 1 \mathrm{H}), 6.41(\mathrm{~s}, 1 \mathrm{H}), 6.86(\mathrm{~s}, 1 \mathrm{H}), 7.30-7.38$ (m, 3 H), 7.47-7.49 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.0(\mathrm{q}), 20.8(\mathrm{q})$, 52.7 (q), 52.9 (d), 53.0 (q), 61.0 (t), 70.6 (d), 126.8 (s), 128.3 (d), 128.8 (d), 128.9 (d), 130.0 (d), 131.6 (s$), 135.8$ (s$), 139.2$ (t), 164.8 (s$), 168.60$ (s$), 168.63$ (s$)$, $169.1(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{22} \mathrm{NaO}_{8} 401.1207$, found 401.1207.

Ester (51.2).

$\mathrm{Cs}_{2} \mathrm{CO}_{3}(45.3 \mathrm{mg}, 0.139 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 0 . 2 d}$ ($26.3 \mathrm{mg}, 0.0695 \mathrm{mmol}$) in THF (1.0 mL), and stirring at room temperature was continued for 40 min . Filtration of the mixture through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using 1:1 EtOAc-hexane, gave 51.2 ($20.5 \mathrm{mg}, 92.8 \%$) as a colorless, viscous oil: FTIR (CDCl_{3} cast) $3000,2955,1735,1707,1636,1570$, $1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 3.35(\mathrm{~d}, J=$ $1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.77(\mathrm{~s}, 6 \mathrm{H}), 4.29(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.25-7.29(\mathrm{~m}, 2 \mathrm{H}), 7.33-$ 7.38 (m, 2 H), $7.50(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.3$ (q), $30.0(\mathrm{t}), 53.1$ (q), 59.2 (s), 60.9 (t), 127.0 (s), 127.9 (d), 128.7 (d), 128.88 (d), 129.89 (d), 131.9 (s), $132.6(\mathrm{~s}), 135.5(\mathrm{~d}), 166.2(\mathrm{~s}), 170.8(\mathrm{~s})$; exact mass m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{O}_{6}$ 318.1104, found 318.1104.

2-[4-Benzenesulfonyl-3-hydroxy-4-(phenylseleno)pentyl]malonic Acid

 Dimethyl Ester (40.1e, e').
$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.33 \mathrm{~mL}, 0.53 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 9 . 5}{ }^{50}(182.0 \mathrm{mg}, 0.53 \mathrm{mmol})$ in THF (2 $\mathrm{mL})$. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 50 min . A solution of $\mathbf{4 0 . 1} \mathbf{a}(70 \mathrm{mg}$,
$0.37 \mathrm{mmol})$ in THF (1 mL) was added dropwise, and stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 h . The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3$ mL), the cold bath was removed, stirring was continued for 15 min and water (5 mL) was added. The aqueous phase was extracted with EtOAc ($3 \times 10 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 2:5 EtOAc-hexane, gave $\mathbf{4 0 . 1}$ (less polar isomer, $40 \mathrm{mg}, 21 \%$) as a viscous oil and 40.1e' (more polar isomer, $50 \mathrm{mg}, 26 \%$) as a viscous oil.

Compound 40.1e had: FTIR (CDCl_{3} cast) 3498, 3061, 2953, 2866, 1750, $1734,1583,1477,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.58$ (ddd, $J=10.0,10.0,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.94-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.22-2.31(\mathrm{~m}, 1 \mathrm{H}), 3.46$ (dd, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.04(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.20$ $(\mathrm{s}, 1 \mathrm{H}), 7.25(\mathrm{t}, J=8.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.37(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.53(\mathrm{dd}, J=8.0$, $1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.59(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{td}, J=7.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.92(\mathrm{dd}, J=$ $8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.2,25.0,29.2,51.1,52.40$, $52.42,72.6,77.5,124.6,128.64,128.9,129.5,130.8,134.1,134.6,138.9,169.6$, 169.7; exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{7} \mathrm{~S}^{80} \mathrm{Se} 537.0457$, found 537.0455.

Compound 40.1e' had: FTIR (CDCl_{3} cast) $3499,3061,2953,1750,1734$, $1583,1477,1446,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.08(\mathrm{~s}, 3 \mathrm{H}), 1.61-$ $1.72(\mathrm{~m}, 1 \mathrm{H}), 1.93-2.03(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.28(\mathrm{~m}, 1 \mathrm{H}), 2.32-2.39(\mathrm{~m}, 1 \mathrm{H}), 3.47(\mathrm{~s}$, 1 H), 3.48 (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75 (s, 3 H), 3.77 ($\mathrm{s}, 3 \mathrm{H}$), 4.08 (ddd, $J=$ $10.4,5.6,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.21(\mathrm{tt}, J=7.6,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.29(\mathrm{dt}, J=6.8,1.2 \mathrm{~Hz}, 2$ H), $7.35(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}) .7 .60(\mathrm{tt}, J=7.6,2.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.72(\mathrm{tt}, J=7.6$, $1.2 \mathrm{~Hz}, 1 \mathrm{H}), 8.04(\mathrm{dt}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 17.6$, $26.2,31.1,51.1,52.5,74.6,75.8,125.1,128.6,128.9,129.8,131.5,134.1,136.0$, 138.1, 169.7, 169.8; exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{7} \mathrm{~S}^{80} \mathrm{Se}$ 537.0457, found 537.0452.

2-[3-Acetoxy-4-benzenesulfonyl-4-(phenylseleno)pentyl]malonic Acid

Dimethyl Ester (40.1f).

Pyridine ($166.3 \mathrm{mg}, 2.12 \mathrm{mmol}$) and $\mathrm{AcCl}(110 \mathrm{mg}, 1.41 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.1e' ($181.2 \mathrm{mg}, 0.353 \mathrm{mmol}$) and DMAP ($6.1 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 $\mathrm{mL})$. The cold bath was left in place but not recharged and stirring was continued for 12 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (10 mL) , acidified with hydrochloric acid ($1 \mathrm{M}, 5$ $\mathrm{mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 2:5 EtOAc-hexane, gave 40.1 f (130 $\mathrm{mg}, 67 \%$) as an oil: FTIR (CDCl_{3} cast) 3062, 2954, 1738, 1583, 1477, 1446, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.14(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.83(\mathrm{~m}, 1 \mathrm{H}), 1.84-$ 1.97 (m, 2 H), 1.99 ($\mathrm{s}, 3 \mathrm{H}$), 2.01-2.11 (m, 1 H$), 3.42$ (dd, $J=7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.69(\mathrm{~s}, 3 \mathrm{H}), 3.72(\mathrm{~s}, 3 \mathrm{H}), 5.42(\mathrm{dd}, J=10.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.31(\mathrm{tt}, J=7.6,1.2$ $\mathrm{Hz}, 2 \mathrm{H}), 7.41(\mathrm{tt}, J=7.6,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.55(\mathrm{tt}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.66(\mathrm{tt}, J=$ $7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.74(\mathrm{dt}, J=8.0,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.96(\mathrm{dt}, J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.65,20.67,24.6,29.2,50.7,52.4,52.5,73.2$, $74.4,124.9,128.7,128.8,129.8,131.1,133.7,135.8,139.1,169.2,169.3,170.2$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NaO}_{8} \mathrm{~S}^{80} \mathrm{Se} 579.0562$, found 579.0561 .

2-[3-Acetoxy-4-(benzenesulfonyl)pent-4-enyl]malonic Acid Dimethyl

Ester (40.1g).

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.24 \mathrm{~mL}, 2.4 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 f}(110 \mathrm{mg}, 0.20 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 1 h and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(0.5 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , the ice bath was removed, stirring was continued for 35 min and the mixture was diluted with water (5 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with saturated aqueous NaHCO_{3} (3 $\mathrm{mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 11 \mathrm{~cm}$), using 1:3 EtOAc-hexane, gave $\mathbf{4 0 . 1 g}(63 \mathrm{mg}, 80 \%)$ as a viscous oil: FTIR (CDCl_{3} cast) 2956, 1746, 1584, 1447, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.80(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.97(\mathrm{~m}, 4 \mathrm{H}), 3.33(\mathrm{dd}, J=7.2,7.2 \mathrm{~Hz}, 1$ H), $3.72(\mathrm{~s}, 3 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 5.35-5.38(\mathrm{~m}, 1 \mathrm{H}), 6.07(\mathrm{dd}, J=1.2,0.8 \mathrm{~Hz}, 1 \mathrm{H})$, $6.54(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}), 7.54(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.64(\mathrm{tt}, J=7.6,1.2 \mathrm{~Hz}, 1$ H), 7.87 (dt, $J=7.2,1.2 \mathrm{~Hz}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.5,24.4$, $31.7,50.9,52.6,69.7,126.5,128.3,129.2,133.7,139.1,149.3,169.2,169.27$, 169.30; exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{8} \mathrm{~S} 421.0928$, found 421.0932 .

3-(Benzenesulfonyl)cyclohex-3-ene-1,1-dicarboxylic Acid Dimethyl

Ester (51.3).

40.1g

51.3
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(13.4 \mathrm{mg}, 0.041 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 0 . 1 g}$ $(8.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$, and stirring at room temperature was continued for 4.5 h . Evaporation of the solvent and filtration of the residue through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using 7:10 EtOAchexane, gave 51.3 ($7.0 \mathrm{mg}, 91 \%$) as a colorless viscous oil: FTIR (CDCl_{3} cast) 2955, 2924, 2852, 1735, 1651, 1447, $1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 2.11 (t, $J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.39-2.44(\mathrm{~m}, 2 \mathrm{H}), 2.74(\mathrm{~d}, J=1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.56(\mathrm{~s}, 6$ H), 7.05-7.06 (m, 1 H$), 7.55(\mathrm{t}, J=7.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 1 \mathrm{H}), 7.87(\mathrm{~d}, J=$ $7.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 23.2(\mathrm{t}), 26.3(\mathrm{t}), 28.3(\mathrm{t}), 52.71(\mathrm{~s})$, 52.72 (q), 152.7 (s), 128.1 (d), 129.0 (d), 133.2 (d), 137.2 (s$), 137.3$ (d), 138.7 (s), 170.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{NaO}_{6} \mathrm{~S} 361.0716$, found 361.0713 .

2-[4-Cyano-3-hydroxy-4-(phenylseleno)pentyl]malonic Acid Dimethyl

Ester (40.1h).

40.1a

40.1h
$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $2.8 \mathrm{~mL}, 4.5 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(484.7 \mathrm{mg}, 4.8 \mathrm{mmol})$ in THF (10
mL). Stirring at $0^{\circ} \mathrm{C}$ was continued for 20 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and a solution of $\mathbf{3 9 . 6}{ }^{51}(1.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ in THF (8 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and a solution of $\mathbf{4 0 . 1 a}(600 \mathrm{mg}, 3.2$ mmol) in THF (8 mL) was added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 80 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water $(50 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \mathrm{x}$ 30 mL) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (1.5 x 15 cm), using 7:20 EtOAc-hexane, gave 40.1h ($0.9 \mathrm{~g}, 71 \%$) as a $1: 1$ mixture of diastereomers: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 3474,3056,2954,2226,1736$, $1578,1477,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.56(\mathrm{~s}, 1.5 \mathrm{H}), 1.59(\mathrm{~s}, 1.5$ H), 1.53-1.68 (m, 1 H$), 1.74-1.83(\mathrm{~m}, 0.5 \mathrm{H}), 1.93-2.05(\mathrm{~m}, 1.5 \mathrm{H})$, 2.15-2.25 (m, $1 \mathrm{H}), 2.59(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.70(\mathrm{dd}, J=4.0,1.6 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.42(\mathrm{dd}, J=$ $7.6,7.6 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.45 (dd, $J=7.6,7.6 \mathrm{~Hz}, 0.5 \mathrm{H}$), 3.55 (ddd, $J=10.4,4.0,2.0$ $\mathrm{Hz}, 0.5 \mathrm{H}$), 3.62 (ddd, $J=10.4,6.0,2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.72(\mathrm{~s}, 1.5 \mathrm{H}), 3.73(\mathrm{~s}, 1.5$ H), $3.75(\mathrm{~s}, 1.5 \mathrm{H}), 3.76(\mathrm{~s}, 1.5 \mathrm{H}), 7.38-7.43(\mathrm{~m}, 2 \mathrm{H}), 7.45-7.51(\mathrm{~m}, 1 \mathrm{H}), 7.74-$ 7.77 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.4$ (q), 21.6 (q), 25.5 (q), 25.7 (t), 29.3 (t), 29.4 (t), 43.0 (s , 43.3 (s$), 50.93$ (d), 50.95 (d), 52.51 (q), 52.54 (q), 52.6 (q), 72.7 (d), 74.8 (d), 120.7 (s), 121.1 (s), 124.8 (s), 125.0 (s$), 129.4$ (d), 129.5 (d), 130.2 (d), 130.4 (d), 137.65 (d), 137.70 (d), 137.9 (d), 169.45 (s), 169.49 (s), $169.54(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{21} \mathrm{NNaO}_{5}{ }^{80} \mathrm{Se} 422.0477$, found 422.0476.

2-[3-Acetoxy-4-cyano-4-(phenylseleno)pentyl]malonic Acid Dimethyl

Ester (40.1i).

40.1h

40.1i

Pyridine ($596.0 \mathrm{mg}, 7.54 \mathrm{mmol}$) and $\mathrm{AcCl}(295.9 \mathrm{mg}, 3.77 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.1h ($500.0 \mathrm{mg}, 1.26 \mathrm{mmol}$) and DMAP ($17.0 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (12 $\mathrm{mL})$. The cold bath was left in place but not recharged and stirring was continued for 9 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (10 mL), acidified with hydrochloric acid ($1 \mathrm{M}, 8$ mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 2:5 EtOAc-hexane, gave 40.1i (497 $\mathrm{mg}, 90 \%)$ as an oil which was a $1: 1$ mixture of diastereomers: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 2955, 2228, 1750, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.56(\mathrm{~s}, 1.5 \mathrm{H})$, $1.58(\mathrm{~s}, 1.5 \mathrm{H}), 1.73-2.08(\mathrm{~m}, 4 \mathrm{H}), 2.127(\mathrm{~s}, 1.5 \mathrm{H}), 2.131(\mathrm{~s}, 1.5 \mathrm{H}), 3.41(\mathrm{dd}, J=$ 7.2, $7.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.74(\mathrm{~s}, 1.5 \mathrm{H}), 3.75(\mathrm{~s}, 1.5 \mathrm{H}), 3.755(\mathrm{~s}, 1.5 \mathrm{H}), 3.756(\mathrm{~s}, 1.5$ H), $5.11(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.16(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 7.41(\mathrm{td}$, $J=8.0,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 1 \mathrm{H}), 7.77(J=8.1,1.2 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.55(\mathrm{q}), 20.57(\mathrm{q}), 22.2$ (q), 22.3 (q), 24.88 (t), 24.92 (t), 28.0 (t), 29.2 (t), 39.6 (s), 50.65 (d), 50.71 (d), 52.5 (q), 52.56 (q), 52.57 (q), 74.1 (d), 74.3 (d), 120.0 (s), 120.3 (s), 124.9 (s), 125.1 ($s), 129.37$ (d), 129.44 (d), 130.3 (d), 130.4 (d), 137.8 (d), 138.1 (d), 169.1 (s), 169.16 (s), 169.17 (s), 169.9 (s), 170.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{23} \mathrm{NNaO}_{6}{ }^{80} \mathrm{Se} 464.0583$, found 464.0583 .

2-(3-Acetoxy-4-cyanopent-4-enyl)malonic Acid Dimethyl Ester (40.1j).

40.1i

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.83 \mathrm{~mL}, 8.2 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 i}(300 \mathrm{mg}, 0.68 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. Stirring
was continued at $0{ }^{\circ} \mathrm{C}$ for 1 h and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1.0 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , the ice bath was removed, stirring was continued for 5 min and the mixture was diluted with water $(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with saturated aqueous NaHCO_{3} (3 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 13 \mathrm{~cm}$), using 1:2 EtOAc-hexane, gave $\mathbf{4 0 . 1 j}$ ($180 \mathrm{mg}, 94 \%$) as a viscous oil: FTIR (neat) 3117, 3004, 2957, 2849, 2228, 1744, 1626, $1437 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.74-2.01(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 3.39(\mathrm{dd}, J=$ $7.2,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 6 \mathrm{H}), 5.28(\mathrm{dd}, J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.01(\mathrm{~d}, J=0.8 \mathrm{~Hz}$, $1 \mathrm{H}), 6.06(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.8(\mathrm{q}), 24.1(\mathrm{t}), 30.4(\mathrm{t}), 50.9$ (d), 52.7 (q), 72.4 (d), 115.9 (s), 122.2 (s), 133.1 (t), 169.1 (s), 169.12 (s$), 169.7$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{17} \mathrm{NNaO}_{6} 306.0948$, found 306.0946.

3-Cyanocyclohex-3-ene-1,1-dicarboxylic Acid Dimethyl Ester (51.4).

$\mathrm{Cs}_{2} \mathrm{CO}_{3}(43.3 \mathrm{mg}, 0.13 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 0 . 1} \mathbf{j}$ ($18.8 \mathrm{mg}, 0.066 \mathrm{mmol}$) in THF (2.5 mL), and stirring at room temperature was continued for 12 h . Evaporation of the solvent and filtration of the residue through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using 7:10 EtOAchexane, gave 51.4 ($11.0 \mathrm{mg}, 74 \%$) as a colorless viscous oil: FTIR (CDCl_{3} cast) 2957, 2845, 2219, 1737, 1642, 1452, $1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $2.15(\mathrm{t}, J=6.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.31(\mathrm{tdt}, J=6.4,4.4,2.4 \mathrm{~Hz}, 2 \mathrm{H}), 2.78(\mathrm{td}, J=2.4,2.0$ $\mathrm{Hz}, 2 \mathrm{H}), 3.76(\mathrm{~s}, 6 \mathrm{H}), 6.59(\mathrm{tt}, J=4.4,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$
 170.3 (s); exact mass m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{13} \mathrm{NO}_{4} 223.0845$, found 223.0846.

2-[3-Hydroxy-3-[2-oxo-3-(phenylseleno)tetrahydrofuran-3-yl]propyl]-

 malonic Acid Dimethyl Ester (40.1k).
$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $1.5 \mathrm{~mL}, 2.37 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-10^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(240 \mathrm{mg}, 2.37$ $\mathrm{mmol})$ in THF (10 mL). Stirring at $-10^{\circ} \mathrm{C}$ was continued for 30 min , the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of $\mathbf{3 9 . 7}{ }^{52}$ ($572.0 \mathrm{mg}, 2.37 \mathrm{mmol}$) in THF (10 mL) was then added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 h , and a solution of 40.1a ($297.0 \mathrm{mg}, 1.58 \mathrm{mmol}$) in THF (4 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 h , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (100 mL). The aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 30 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 15 \mathrm{~cm}$), using 1:1 EtOAchexane, gave 40.1k ($601 \mathrm{mg}, 86 \%$) as an oil which was an inseparable 1:1 mixture of diastereomers: FTIR $\left(\mathrm{CHCl}_{3}\right.$ cast) $3502,2954,1750,1576,1477$, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.32-1.40(\mathrm{~m}, 0.5 \mathrm{H}), 1.41-1.49(\mathrm{~m}, 0.5$ H), 1.82 (dddd, $J=13.6,9.8,9.8,5.2 \mathrm{~Hz}, 0.5 \mathrm{H}$), 1.94-2.06 (m, 1.5 H), 2.11 (ddd, $J=14.3,6.4,0.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 2.16-2.32(\mathrm{~m}, 2 \mathrm{H}), 2.42(\mathrm{ddd}, J=14.2,10.5,9.1 \mathrm{~Hz}$, $0.5 \mathrm{H}), 2.75$ (ddd, $J=13.8,10.8,9.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.46(\mathrm{dd}, J=7.5,7.5 \mathrm{~Hz}, 0.5 \mathrm{H})$, 3.47 (dd, $J=7.2,7.2 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.59(\mathrm{dd}, J=1.9,1.9 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.73(\mathrm{~s}, 1.5 \mathrm{H})$,
3.74 (s, 1.5 H), 3.77 ($\mathrm{s}, 1.5 \mathrm{H}$), 3.78 (s, 1.5 H), 3.85 (ddd, $J=10.9,4.6,1.5 \mathrm{~Hz}$, $0.5 \mathrm{H}), 4.01$ (ddd, $J=10.5,9.0,6.4 \mathrm{~Hz}, 0.5 \mathrm{H}), 4.22$ (ddd, $J=9.0,9.0,1.0 \mathrm{~Hz}, 0.5$ H), 4.26-4.35 (m, 1 H$), 7.31-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 1 \mathrm{H}), 7.62-7.65(\mathrm{~m}, 1$ H), 7.68-7.71 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.4$ (t$), 25.8$ (t), 28.4 (t), 28.8 (t), 29.6 (t), 31.8 (t), 51.5 (d), 52.43 (q), $52.5(\mathrm{~s}), 54.6(\mathrm{~s}), 65.5(\mathrm{t}), 65.6(\mathrm{t})$, 71.1 (d), 73.2 (d), 124.3 (s), 124.9 (s), 129.2 (d), 130.01 (d), 130.04 (d), 137.9 (d), 138.2 (d), 169.57 (s), 169.58 (s), 169.64 (s), 176.1 (s), 176.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{22} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se} 453.0423$, found 453.0422 .

2-[3-Acetoxy-3-[2-oxo-3-(phenylseleno)tetrahydrofuran-3-yl]propyl]malonic Acid Dimethyl Ester (40.11).

Pyridine ($221.0 \mathrm{mg}, 2.80 \mathrm{mmol}$) and $\mathrm{AcCl}(109.8 \mathrm{mg}, 1.40 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.1k ($200.0 \mathrm{mg}, 0.47 \mathrm{mmol}$) and DMAP ($6.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 5 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (5 mL), acidified with hydrochloric acid ($1 \mathrm{M}, 1 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 15 \mathrm{~cm}$), using 19:20 EtOAc-hexane, gave 40.11 ($190 \mathrm{mg}, 87 \%$) as an oil which was a 1.4:1.6 inseparable mixture of diastereomers: FTIR (CDCl_{3} cast) 2955, 1752, $1478,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.59-1.70(\mathrm{~m}$, $1.0 \mathrm{H}), 1.79-1.98(\mathrm{~m}, 3.5 \mathrm{H}), 2.04-2.14(\mathrm{~m}, 2.5 \mathrm{H}), 2.34-2.42(\mathrm{~m}, 0.5 \mathrm{H}), 2.53$ (ddd, $J=14.3,10.2,9.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.68(\mathrm{ddd}, J=13.8,10.7,9.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 3.38$
(dd, $J=8.5,6.0,0.6 \mathrm{H}), 3.47(\mathrm{dd}, J=7.4,7.3 \mathrm{~Hz}, 0.5 \mathrm{H}), 3.69(\mathrm{~s}, 1.6 \mathrm{H}), 3.71$ (s, $1.6 \mathrm{H}), 3.76(\mathrm{~s}, 1.4 \mathrm{H}), 3.77(\mathrm{~s}, 1.4 \mathrm{H}), 4.23-4.34(\mathrm{~m}, 2.2 \mathrm{H}), 5.23(\mathrm{dd}, J=10.1$, $2.2,0.5 \mathrm{H}), 5.35(\mathrm{dd}, J=9.9,2.5 \mathrm{~Hz}, 0.6 \mathrm{H}), 7.32-7.38(\mathrm{~m}, 2 \mathrm{H}), 7.41-7.46(\mathrm{~m}, 1$ H), 7.64-7.68 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.7$ (q), 20.9 (q), 25.1 (t), $25.2(\mathrm{t}), 28.2(\mathrm{t}), 28.5(\mathrm{t}), 30.8(\mathrm{t}), 31.5(\mathrm{t}), 50.8(\mathrm{~d}), 51.0(\mathrm{~d}), 51.6(\mathrm{~s}), 52.5(\mathrm{q})$, 52.6 (q), 65.0 (t), 65.2 (t), 72.3 (d), 72.4 (d), 124.4 (s), 125.4 (s), 129.2 (d), 129.4 (d), 130.1 (d), 130.3 (d), 137.8 (d), 138.1 (d), 169.3 (s), 169.4 (s), 169.5 (s), 170.4 (s), 173.3 (s), 173.9 (s); exact mass m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{24} \mathrm{O}_{8}{ }^{80} \mathrm{Se} 472.0636$, found 472.0636.

2-[3-Acetoxy-3-(2-oxo-2,5-dihydrofuran-3-yl)propyl]malonic

Acid

Dimethyl Ester (40.1m).

40.11

40.1m
$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.41 \mathrm{~mL}, 4.0 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 1}(157 \mathrm{mg}, 0.33 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 1 h and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1.0 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , the ice bath was removed, stirring was continued for 10 min and the mixture was diluted with water (10 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with saturated aqueous NaHCO_{3} (3 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using 17:10 EtOAc-hexane, gave 40.1m (90 mg , 87\%) as a viscous oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$ cast) $2956,1753,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.81-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 3.34-3.38(\mathrm{~m}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 6 \mathrm{H}), 4.79-$ $4.80(\mathrm{~m}, 2 \mathrm{H}), 5.56-5.58(\mathrm{~m}, 1 \mathrm{H}), 7.33(\mathrm{dd}, J=3.1,1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 20.7$ (q), 24.0 (t), 29.7 (t$), 50.8$ (d), 52.5 (q), 68.1 (d), 70.2 (t), 132.5 (s$), 146.9$ (d), 169.2 (s$), 169.3(\mathrm{~s}), 169.7$ (s$), 171.3$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{18} \mathrm{NaO}_{8} 337.0894$, found 337.0895.

1-Oxo-3,3a,5,6-tetrahydro-1H-isobenzofuran-4,4-dicarboxylic Acid

Dimethyl Ester (51.5).

40.1m

51.5
$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($29.1 \mathrm{mg}, 0.089 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{4 0 . 1} \mathbf{m}$ ($14.0 \mathrm{mg}, 0.045 \mathrm{mmol}$) in THF (1 mL), and stirring at room temperature was continued for 3 h . Evaporation of the solvent and filtration of the residue through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using 3:2 EtOAc-hexane, gave 51.5 ($11.0 \mathrm{mg}, 97 \%$) as a colorless viscous oil: FTIR (CDCl_{3} cast) 2957, 2923, $1760,1736,1687 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.94$ (ddd, $J=13.9,10.3$, $7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.41-2.57 (m, 3 H), 3.35-3.41 (m, 1 H), 3.71 ($\mathrm{s}, 3 \mathrm{H}$), 3.79 ($\mathrm{s}, 3 \mathrm{H}$), 4.59-4.61 (m, 2 H$), 6.84(\mathrm{dd}, J=7.0,3.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 24.1 (t), 28.8 (t), 40.9 (d), 52.7 (q), 53.1 (q), 54.1 (s), 68.9 (t), 126.4 ($s), 135.1$ (d), $168.4(\mathrm{~s}), 169.0(\mathrm{~s}), 170.7(\mathrm{~s})$; exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{O}_{6} 254.0790$, found 254.0784 .

2-[3-Hydroxy-4-nitro-4-(phenylseleno)pentyl]malonic Acid Dimethyl

 Ester (40.10).
40.1a

40.10

DBU ($23 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 9 . 8}{ }^{53}$ (345 $\mathrm{mg}, 1.5 \mathrm{mmol}$) and aldehyde 40.1a ($94 \mathrm{mg}, 0.5 \mathrm{mmol}$) in THF (3 mL). Stirring at room temperature was continued for 110 min . The reaction was quenched with hydrochloric acid ($1 \mathrm{M}, 3 \mathrm{~mL}$) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 1 mL). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using $1: 2 \mathrm{EtOAc}$, gave $\mathbf{4 0 . 1 0}$ (124 mg , 59%) as an oil which consisted of two inseparable diastereoisomers contaminated by the starting aldehyde 40.1a.

2-[3-Acetoxy-4-nitro-4-(phenylseleno)pentyl]malonic Acid Dimethyl

Ester (40.1p).

40.10

40.1p

Pyridine ($147.6 \mathrm{mg}, 1.87 \mathrm{mmol}$) and $\mathrm{AcCl}(73 \mathrm{mg}, 0.93 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.10 ($130 \mathrm{mg}, 0.31 \mathrm{mmol}$) and DMAP ($3.7 \mathrm{mg}, 0.03 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 6 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (10 mL), acidified with hydrochloric acid ($1 \mathrm{M}, 3 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using 9:20 EtOAc-hexane, gave 40.1p ($67 \mathrm{mg}, 47 \%$) as an oil which was an 8:5 mixture of diastereoisomers: FTIR (CHCl_{3} cast) 2954, $1752,1545,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.58-1.69(\mathrm{~m}, 1.8 \mathrm{H}), 1.77$ $(\mathrm{s}, 2.5 \mathrm{H}), 1.78-1.97(\mathrm{~m}, 4.6 \mathrm{H}), 2.15-2.25(\mathrm{~m}, 1 \mathrm{H}), 3.39(\mathrm{dd}, J=8.2,6.5 \mathrm{~Hz}$, $0.23 \mathrm{H}), 3.45$ (dd, $J=7.2,7.2 \mathrm{~Hz}, 0.74 \mathrm{H}$), 3.72 (s, 1.3 H), 3.76 (s, 4.6 H), 5.59
(dd, $J=10.2,1.7 \mathrm{~Hz}, 0.74 \mathrm{H}), 5.64(\mathrm{dd}, J=9.9,2.2 \mathrm{~Hz}, 0.23 \mathrm{H}), 7.34-7.41(\mathrm{~m}, 2$ H), 7.44-7.50 (m, 1 H$), 7.55-7.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.0$ (q), 20.5 (q), 20.7 (q), 20.8 (q), 25.1 (t), 25.3 (t), 28.2 (t), 28.9 (t), 50.6 (d), 50.8 (d), 52.55 (q), 52.59 (q), 73.6 (d), 74.0 (d), 92.0 (s$), 92.9$ (s$), 124.8$ (s$), 125.4$ (s$)$, 129.4 (d), 129.6 (d), 130.5 (d), 137.6 (d), 137.7 (d), 169.1 (s), 169.2 (s), 169.3 (s), 169.9 (s); exact mass m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{23} \mathrm{NO}_{8}{ }^{80} \mathrm{Se} 461.0589$, found 461.0590 .

2-(3-Acetoxy-4-nitropent-4-enyl)malonic Acid Dimethyl Ester (20t).

40.1p

40.1q
$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.14 \mathrm{~mL}, 1.37 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 p}(51 \mathrm{mg}, 0.11 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 1.5 h and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1.0 \mathrm{~mL})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 5 min , the ice bath was removed, stirring was continued for 1 h and the mixture was diluted with water $(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 7:20 EtOAc-hexane, gave 40.1q ($13.7 \mathrm{mg}, 41 \%$) as a viscous oil. The material contained minor impurities (${ }^{1} \mathrm{H} N \mathrm{NM}$); the compound is unstable and partial decomposition occurred on chromatography: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right)$ $\delta 1.78-2.03(\mathrm{~m}, 4 \mathrm{H}), 2.11(\mathrm{~s}, 3 \mathrm{H}), 3.40(\mathrm{dd}, J=7.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.74(\mathrm{~s}, 6 \mathrm{H})$, 5.85-5.89 (m, 2 H$), 6.62(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H})$.

Toluene-4-sulfonic Acid But-3-enyl Ester (42.1). ${ }^{56}$

$\mathrm{TolSO}_{2} \mathrm{Cl}(2.91 \mathrm{~g}, 15.3 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(1.54 \mathrm{~g}, 15.3 \mathrm{mmol})$ were added sequentially to a stirred solution of 3-buten-1-ol ($1.0 \mathrm{~g}, 14.0 \mathrm{mmol}$) and DMAP ($17.0 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, and the mixture was stirred at room temperature for 24 h and then poured into water $(40 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{ml})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($4 \times 15 \mathrm{~cm}$), using 3:25 EtOAc-hexane, gave 42.1 ($2.25 \mathrm{~g}, 100 \%$) as an oil.

2-(Phenylsulfonyl)hex-5-enoic Acid Methyl Ester (42.3).

$\mathrm{K}_{2} \mathrm{CO}_{3}(1.29 \mathrm{~g}, 9.35 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NHSO}_{4}(158 \mathrm{mg}, 0.47 \mathrm{mmol})$ were added to a solution of $\mathbf{4 2 . 2}(1.0 \mathrm{~g}, 4.67 \mathrm{mmol})$ and $\mathbf{4 2 . 1}(0.757 \mathrm{~g}, 4.67 \mathrm{mmol})$ in DMF (24 mL). The mixture was stirred at $80{ }^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature and diluted with water (250 mL). The aqueous phase was extracted with EtOAc ($3 \times 40 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3.5 \times 15 \mathrm{~cm}$), using 1:2 EtOAc-hexane, gave 42.3 ($626 \mathrm{mg}, 50 \%$) as an oil: FTIR (CHCl_{3} cast) $3070,2954,1742,1641,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ MHz) $\delta 1.99-2.20(\mathrm{~m}, 4 \mathrm{H}), 3.66(\mathrm{~s}, 3 \mathrm{H}), 3.97(\mathrm{dd}, J=10.2,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.98-$ $5.01(\mathrm{~m}, 1 \mathrm{H}), 5.02-5.03(\mathrm{~m}, 1 \mathrm{H}), 5.63-5.73(\mathrm{~m}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.66-$
$7.71(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.88(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 25.9(\mathrm{t}), 30.8$ (t), 52.9 (q), 70.0 (d), 116.8 (t), 129.0 (d), 129.3 (d), 134.3 (d), 135.6 (d), 137.1 (s), 116.3 (s); exact mass m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{10} \mathrm{O}_{4} \mathrm{~S}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{6}\right)$ 214.0300, found 214.0305.

2-(Benzenesulfonyl)-5-oxopentanoic Acid Methyl Ester (40.3a).

O_{3} was bubbled into a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution $42.3(577.0 \mathrm{mg}$, 2.15 mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$ until the solution became blue and then the excess of O_{3} was removed by bubbling oxygen through the mixture. $\mathrm{Me}_{2} \mathrm{~S}$ ($400 \mathrm{mg}, 6.26$ mmol) was added to the mixture, the cold bath was removed and replaced by a prewarmed water bath at $40^{\circ} \mathrm{C}$. Stirring at $40^{\circ} \mathrm{C}$ was continued for 2 h , and then the solvent was evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 7:10 EtOAc-hexane, gave 40.3a ($400 \mathrm{mg}, 77 \%$) as an colorless oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$ cast) $3067,3008,2955,1741,1585,1479,1448 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.18-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.39$ (dddd, $J=14.3,7.7,6.7$, $5.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.54-2.74(\mathrm{~m}, 2 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.07(\mathrm{dd}, J=9.7,5.0 \mathrm{~Hz}, 1 \mathrm{H})$, 7.55-7.61 (m, 2 H), 7.67-7.73 (m, 1 H), 7.85-7.91 (m, 2 H), $9.71(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1$ H); ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.5$ (t), 40.3 (t), 53.1 (q), 69.2 (d), 129.1 (d), 129.2 (d), 134.4 (d), 137.0 (s), 165.9 (s), 199.5 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{14} \mathrm{NaO}_{5} \mathrm{~S} 293.0454$, found 293.0455 .

6-Benzenesulfonyl-3-hydroxy-2-methyl-2-(phenylseleno)heptanedioic

 Acid 1-Ethyl Ester 7-Methyl Ester (40.3b).
40.3a

40.3b
$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $0.83 \mathrm{~mL}, 1.33 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-10^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(134.0 \mathrm{mg}, 1.33$ mmol) in THF (4 mL). Stirring at $-10^{\circ} \mathrm{C}$ was continued for 25 min , the mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and a solution of $\mathbf{3 8 . 1}(342.0 \mathrm{mg}, 1.33 \mathrm{mmol})$ in THF (1 mL) was then added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 50 min , and a solution of $40.3 \mathbf{a}(240.0 \mathrm{mg}, 0.89 \mathrm{mmol})$ in THF (3 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(3 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (50 mL). The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 4:5 EtOAchexane, gave 40.3b ($290 \mathrm{mg}, 62 \%$) as an inseparable 10:8:6:5 mixture of four diastereoisomers: FTIR (CDCl_{3} cast) $3515,3060,2954,2927,2854,1740,1584$, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.11-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.32-1.58(\mathrm{~m}, 4 \mathrm{H})$, 1.96-2.01 (m, 1.5 H), 2.13-2.37 (m, 1.5 H), 2.82 (t, $J=6.8 \mathrm{~Hz}, 0.6 \mathrm{H}$), $3.06(\mathrm{~s}, 0.2$ H), 3.12 ($\mathrm{s}, 0.2 \mathrm{H}$), $3.63(\mathrm{~s}, 0.6 \mathrm{H}), 3.64(\mathrm{~s}, 0.6 \mathrm{H}), 3.67(\mathrm{~s}, 0.8 \mathrm{H}), 3.70(\mathrm{~s}, 1 \mathrm{H})$, 3.75-3.86 (m, 1 H$), 3.91-4.15(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.44(\mathrm{~m}, 1 \mathrm{H})$, 7.50-7.60(m, 4 H$), 7.66-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.85-7.90(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 13.70$ (q), 13.72 (q), 13.82 (q), 13.84 (q), 16.99 (q), 17.02 (q), 17.5 (q), 17.8 (q), $24.1(\mathrm{t}), 24.3(\mathrm{t}), 24.5(\mathrm{t}), 24.7(\mathrm{t}), 28.1(\mathrm{t}), 28.56(\mathrm{t}), 28.62(\mathrm{t}), 52.8$ (q), $52.85(\mathrm{q}), 52.88(\mathrm{q}), 53.9(\mathrm{~s}), 54.1(\mathrm{~s}), 56.8(\mathrm{~s}), 61.1(\mathrm{t}), 61.2(\mathrm{t}), 61.4(\mathrm{t}), 70.3$ (d), 70.38 (d), 70.42 (d), 71.8 (d), 72.8 (d), 74.2 (d), 74.8 (d), 126.00 (s), 126.03
(s), 126.2 (s), 128.80 (d), 128.84 (d), 128.9 (d), 128.95 (d), 128.96 (d), 129.1 (d), 129.2 (d), 129.3 (d), 129.48 (d), 129.53 (d), 134.11 (s), 134.13 (s), 134.14 (s), 134.2 (s), 137.0 (d), 137.1 (d), 137.9 (d), 138.0 (d), 166.17 (s), 166.22 (s), 166.26 (s), $166.34(\mathrm{~s}), 172.9(\mathrm{~s}), 173.6(\mathrm{~s}), 173.8(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{28} \mathrm{NaO}_{7} \mathrm{~S}^{80} \mathrm{Se} 551.0613$, found 551.0614.

3-Acetoxy-6-benzenesulfonyl-2-methyl-2-(phenylseleno)heptanedioic

Acid 1-Ethyl Ester 7-Methyl Ester (40.3c).

40.3b

40.3c

Pyridine ($86.9 \mathrm{mg}, 1.10 \mathrm{mmol}$) and $\mathrm{AcCl}(43.1 \mathrm{mg}, 0.55 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.3b (mixture of four diastereoisomers) ($96.5 \mathrm{mg}, 0.18 \mathrm{mmol}$) and DMAP (2.2 $\mathrm{mg}, 0.018 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 5 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (5 mL), acidified with hydrochloric acid ($1 \mathrm{M}, 1 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 13:20 EtOAc-hexane, gave $\mathbf{4 0 . 3 c}(84 \mathrm{mg}, 81 \%)$ as an oil which was a 29:29:21:21 mixture of diastereomers (${ }^{1} \mathrm{H}$ NMR): FTIR (CHCl_{3} cast) 3062, 2982, $2954,1743,1584,1477,1448,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.98-$ 1.18 (m, 3 H), 1.42-1.79 (m, 4 H), 1.86 ($\mathrm{s}, 1 \mathrm{H}$), 1.92 ($\mathrm{s}, 1 \mathrm{H}), 1.95-2.28(\mathrm{~m}, 4 \mathrm{H})$, $3.61(\mathrm{~s}, 0.6 \mathrm{H}), 3.63(\mathrm{~s}, 0.5 \mathrm{H}), 3.72(\mathrm{~s}, 1.6 \mathrm{H}), 3.74-4.05(\mathrm{~m}, 2.5 \mathrm{H}), 4.11(\mathrm{dd}, J=$ $10.8,4.4 \mathrm{~Hz}, 0.3 \mathrm{H}), 4.26(\mathrm{dd}, J=10.9,4.3 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.28-5.45(\mathrm{~m}, 1 \mathrm{H}), 7.25-$ $7.31(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.52-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.66-7.72(\mathrm{~m}, 1 \mathrm{H}), 7.82-$ $7.91(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.66(\mathrm{q}), 13.70(\mathrm{q}), 13.8(\mathrm{q}), 17.6$
(q), 17.8 (q), 17.86 (q), 17.90 (q), 20.6 (q), $20.8(q), 20.9(q), 21.1(q), 23.1(t)$, 23.3 (t), 24.1 (t), 24.5 (t), 27.3 (t), 28.0 (t), 28.1 (t), 29.2 (t), $52.5(\mathrm{~s}), 52.6(\mathrm{~s})$, $52.92(\mathrm{q}), 52.93(\mathrm{q}), 53.0(\mathrm{q}), 53.1(\mathrm{q}), 54.1(\mathrm{~s}), 54.3(\mathrm{~s}), 61.2(\mathrm{t}), 61.3(\mathrm{t}), 61.4(\mathrm{t})$, 69.2 (d), 69.4 (d), 70.2 (d), 70.4 (d), 73.0 (d), 73.9 (d), 74.1 (d), 75.0 (d), 125.9 (s), 126.1 (s), 126.57 (s), 126.59 (s$), 128.8$ (d), 128.95 (d), 128.98 (d), 129.02 (d), 129.1 (d), 129.21 (d), 129.24 (d), 129.28 (d), 129.33 (d), 129.4 (d), 129.6 (d), 129.7 (d), 134.2 (d), 134.3 (d), 136.85 (s), 136.93 (s), 137.25 (s), 137.30 (s), 137.96 (d), 138.01 (d), 165.8 (s), 166.0 (s), 166.05 (s), 166.14 (s), 169.6 (s), 170.46 (s), 170.49 (s), 170.98 (s), 171.01 (s), 171.6 (s), 171.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}_{8} \mathrm{~S}^{80} \mathrm{Se} 593.0719$, found 593.0717.

3-Acetoxy-6-benzenesulfonyl-2-methyleneheptanedioic Acid 1-Ethyl Ester 7-Methyl Ester (40.3d).

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.17 \mathrm{~mL}, 1.7 \mathrm{mmol})$ was added dropwise to a stirred and cooled ($0{ }^{\circ} \mathrm{C}$) solution of $\mathbf{4 0 . 3 c}$ (four diastereoisomers) ($81 \mathrm{mg}, 0.14 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (2 mL). Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 90 min and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1.0 \mathrm{~mL})$. The mixture was stirred at 0 ${ }^{\circ} \mathrm{C}$ for 5 min , the ice bath was removed, stirring was continued for 10 min and the mixture was diluted with water $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 1:1 EtOAc-hexane, gave 40.3d ($44 \mathrm{mg}, 76 \%$) as a viscous oil which was a 1:1 mixture of diastereomers: FTIR $\left(\mathrm{CDCl}_{3}\right.$ cast) $2955,2971,2854,1743,1634,1585,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 1.5 \mathrm{H}), 1.69-1.87(\mathrm{~m}$,
$2 \mathrm{H}), 1.98-2.15(\mathrm{~m}, 5 \mathrm{H}), 3.63(\mathrm{~s}, 1.5 \mathrm{H}), 3.65(\mathrm{~s}, 1.5 \mathrm{H}), 3.94(\mathrm{dd}, J=10.5,3.9$ $\mathrm{Hz}, 0.5 \mathrm{H}), 4.00-4.03(\mathrm{~m}, 0.5 \mathrm{H}), 4.16-4.25(\mathrm{~m}, 2 \mathrm{H}), 5.54(\mathrm{dd}, J=7.2,4.7 \mathrm{~Hz}, 0.5$ H), $5.59(\mathrm{dd}, J=7.8,3.8 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.72(\mathrm{t}, J=1.0 \mathrm{~Hz}, 0.5 \mathrm{H}), 5.74(\mathrm{t}, J=0.9$ $\mathrm{Hz}, 0.5 \mathrm{H}), 6.27(\mathrm{~s}, 0.5 \mathrm{H}), 6.29(\mathrm{~s}, 0.5 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.67-7.71(\mathrm{~m}, 1$ H), 7.84-7.87 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.0$ (q), 20.88 (q), 20.93 $(\mathrm{q}), 22.3(\mathrm{t}), 22.5(\mathrm{t}), 30.8(\mathrm{t}), 31.1(\mathrm{t}), 52.90(\mathrm{q}), 52.94(\mathrm{q}), 60.98(\mathrm{t}), 61.01(\mathrm{t})$, 69.8 (d), 70.27 (d), 70.28 (d), 70.7 (d), 125.3 (s), 125.6 (s), 129.055 (d), 129.063 (d), 129.15 (d), 129.17 (d), 134.28 (d), 134.32 (d), 137.0 (s), 137.1 (s), 139.06 (t), 139.13 (t), 164.78 (s$), 164.83(\mathrm{~s}), 165.9(\mathrm{~s}), 166.1(\mathrm{~s}), 169.61$ (s), $169.64(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{24} \mathrm{NaO}_{8} \mathrm{~S} 435.1084$, found 435.1081.

1-(Benzenesulfonyl)cyclohex-3-ene-1,3-dicarboxylic Acid 3-Ethyl

Ester 1-Methyl Ester (51.7).

40.3 d

51.7
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(40.0 \mathrm{mg}, 0.123 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 0 . 3 d}$ $(25.3 \mathrm{mg}, 0.061 \mathrm{mmol})$ in THF (2.4 mL) , and stirring at room temperature was continued for 45 min . Filtration of the mixture through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using 2:1 EtOAc-hexane, gave $51.7(20.0 \mathrm{mg}, 93 \%)$ as a colorless viscous oil: FTIR (CDCl_{3} cast) 3066, 2981, 2953, 1736, 1709, 1655, $1584,1448,1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.03 (ddd, $J=12.9,11.3,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.22-2.31(\mathrm{~m}, 1 \mathrm{H}), 2.41-2.48(\mathrm{~m}, 1 \mathrm{H})$, 2.53 (dddd, $J=12.9,6.3,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.80$ (dddd, $J=17.2,4.3,2.6,2.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.21$ (dddd, $J=17.2,2.4,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.62(\mathrm{~s}, 3 \mathrm{H}), 4.18(\mathrm{q}, J=7.2$ $\mathrm{Hz}, 2 \mathrm{H}), 6.91$ (ddd, $J=5.0,2.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 2 \mathrm{H}), 7.68-7.71(\mathrm{~m}, 1$ $\mathrm{H}), 7.82-7.85(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.2(\mathrm{q}), 23.5(\mathrm{t}), 23.8(\mathrm{t})$, 26.9 (t), 53.2 (q), 60.8 (t$), 72.0(\mathrm{~s}), 127.3$ (s$), 128.9$ (d), 130.2 (d), 134.4 (d), 135.4
(s), 137.6 (d), 165.9 (s), 167.4 (s); exact mass m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{20} \mathrm{O}_{6} \mathrm{~S}$ 352.0981, found 352.0981.

4,4-Bis(phenylthio)butyronitrile (43.2).

A solution of $\mathbf{4 3 . 1}{ }^{57}$ ($200 \mathrm{mg}, 0.68 \mathrm{mmol}$) in DMSO (2.5 mL) was added to a stirred mixture of $\mathrm{NaCN}(166.6 \mathrm{mg}, 3.4 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(26 \mathrm{mg}, 0.07$ $\mathrm{mmol})$ in DMSO (2.5 mL), and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 15 h , cooled to room temperature and diluted with water $(20 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc (3 x 15) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 7:20 EtOAc-hexane, gave 43.2 (193 $\mathrm{mg}, 100 \%$) as a liquid: FTIR (CDCl_{3} cast) $3058,2929,2248,1582,1479,1439$, $1419 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.15(\mathrm{tq}, J=7.2,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 2.68(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.45(\mathrm{t}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.48-7.51(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 15.1$ (t), 31.2 (t), 56.9 (d), 118.7 (s), 128.5 (d), 129.2 (d), 132.7 (s), 133.3 (d); exact mass m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{15} \mathrm{NS}_{2}$ 285.0646, found 285.0647.

4,4-Bis(phenylthio)butyraldehyde (40.4a). ${ }^{75}$

DIBAL (1.0 M in $\mathrm{PhMe}, 2.63 \mathrm{~mL}, 2.63 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $43.2(500 \mathrm{mg}, 1.75 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10$ mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 2 h , and the mixture was quenched with hydrochloric acid ($1 \mathrm{M}, 10 \mathrm{~mL}$). The cold bath was removed, stirring was continued for 30 min and the mixture was diluted with water (10 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 15 \mathrm{~cm}$), using 1:5 EtOAchexane, gave 40.4a ($419 \mathrm{mg}, 83 \%$) as a liquid: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3057,2926 , 2827, 2724, 1723, 1479, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.19(\mathrm{td}, J=$ $7.2,6.7 \mathrm{~Hz}, 2 \mathrm{H}), 2.81(\mathrm{td}, J=7.2,1.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.49(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ $7.35(\mathrm{~m}, 6 \mathrm{H}), 7.46-7.49(\mathrm{~m}, 4 \mathrm{H}), 9.77(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 28.2$ (t), 41.1 (t), 57.4 (d), 127.9 (d), 129.0 (d), 132.8 (d), 133.6 (s), $200.8(\mathrm{~d})$; exact mass m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{16} \mathrm{OS}_{2} 288.0643$, found 288.0640.

3-Hydroxy-2-methyl-2-(phenylseleno)-6,6-bis(phenylthio)hexanoic Acid Ethyl Ester (40.4b,b').

\qquad

40.4a

$\mathrm{n}-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $0.34 \mathrm{~mL}, 0.51 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(51.6 \mathrm{mg}, 0.51 \mathrm{mmol})$ in THF (2 mL). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 15 min , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$, and a solution of $\mathbf{3 8 . 1}$ ($131 \mathrm{mg}, 0.51 \mathrm{mmol}$) in THF (1 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 50 min , and a solution of 40.4a ($105 \mathrm{mg}, 0.36 \mathrm{mmol}$) in THF (1 mL) was added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 90 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min
and the mixture was diluted with water $(10 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 15 \mathrm{~cm}$), using 9:50 EtOAc-hexane and then 13:50 EtOAchexane, gave 40.4b (less polar isomer) ($55 \mathrm{mg}, 28 \%$) as a viscous oil and 40.4b' (more polar isomer) ($120 \mathrm{mg}, 61 \%$) as a viscous oil.

Compound 40.4b had: FTIR (CDCl_{3} cast) 3504, 3072, 3057, 2980, 2933, $2868,1718,1582,1475,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.14(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.79(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.87(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{dddd}, J=$ 14.3, 9.2, 6.3, 6.2 Hz, 1 H), 2.17-2.25 (m, 1 H), 3.00 (s, 1 H), 3.87 (dd, $J=9.7$, $2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H})$, $4.47(\mathrm{dd}, J=6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.41-7.48(\mathrm{~m}, 5 \mathrm{H}), 7.59-7.61$ (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.9(\mathrm{q}), 17.2$ (q), 29.1 (t), 33.2 (t), 57.3 (s$), 58.0$ (d), 61.2 (t), 72.6 (d), 126.3 (s$), 127.6$ (d), 128.8 (d), 129.5 (d), 132.6 (d), 132.7 (d), 134.05 (s), 134.12 (s), 138.1 (d), 173.1 (s); exact mass m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}_{2}{ }^{80} \mathrm{Se} 546.0801$, found 546.0813 .

Compound 40.4b' had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3498, 3072, 3057, 2980, 2957, 2933, 1721, 1706, 1582, 1476, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $1.21(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.63-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.87-1.94(\mathrm{~m}, 1 \mathrm{H})$, 2.17-2.30 (m, 2 H), $2.76(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.79(\mathrm{ddd}, J=10.7,6.9,1.4 \mathrm{~Hz}, 1$ H), $4.11(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.51(\mathrm{dd}, J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 8 \mathrm{H})$, 7.36-7.40(m, 1 H$), 7.48-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.53-7.55(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 14.0(\mathrm{q}), 18.1$ (q), 28.8 (t), 33.2 (t), 54.4 (s$), 58.1$ (d), 61.4 (t), 75.0 (d), 126.5 (s), 127.70 (d), 127.72 (d), 128.8 (d), 128.9 (d), 129.4 (d), 132.7 (d), 132.8 (d), 134.09 (s), 134.14 (s), 138.1 (d), 174.0 (s); exact mass m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{O}_{3} \mathrm{~S}_{2}{ }^{80} \mathrm{Se} 546.0801$, found 546.0793.

3-Acetoxy-2-methyl-2-(phenylseleno)-6,6-bis(phenylthio)hexanoic

 Acid Ethyl Ester (40.4c).

Pyridine ($98.0 \mathrm{mg}, 1.23 \mathrm{mmol}$) and $\mathrm{AcCl}(48.4 \mathrm{mg}, 0.62 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.4b' ($112 \mathrm{mg}, 0.21 \mathrm{mmol}$) and DMAP ($2 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 13 h , by which time the temperature had risen to room temperature. The mixture was diluted with water $(10 \mathrm{~mL})$, acidified with hydrochloric acid ($1 \mathrm{M}, 2 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave 40.4c (90 mg , 74\%) as an oil: FTIR (CDCl_{3} cast) 3057 , 2981, 2932, 1745, 1725, 1582, 1476, $1439 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.06(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.51(\mathrm{~s}, 3 \mathrm{H}), 1.82(\mathrm{~s}, 3$ H), 1.85-1.99 (m, 3 H), 2.51-2.60 (m, 1 H), $3.86(\mathrm{dq}, ~ J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00$ $(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=6.2,6.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=10.1,1.7$ $\mathrm{Hz}, 1 \mathrm{H}), 7.24-7.40(\mathrm{~m}, 9 \mathrm{H}), 7.49-7.52(\mathrm{~m}, 4 \mathrm{H}), 7.56-7.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.8$ (q), 17.7 (q), 20.7 (q), 27.8 (t), 32.2 (t), 52.8 (s$), 57.9$ (d), 61.1 (t), 75.0 (d), 126.2 (s$), 127.8$ (d), 127.9 (d), 128.91 (d), 128.94 (d), 129.6 (d), 132.9 (d), 133.1 (d), 133.87 (s), 133.90 (s), 138.1 (d), 169.5 (s), 171.9 (s); exact mass m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{32} \mathrm{O}_{4} \mathrm{~S}_{2}{ }^{80} \mathrm{Se} 588.0907$, found 588.0916.

2-[1-Acetoxy-4,4-bis(benzenesulfonyl)butyl]acrylic Acid Ethyl Ester

 (40.4d).
m-CPBA $(70-75 \%, 164 \mathrm{mg}, 0.66 \mathrm{mmol})$ was added to a solution of $\mathbf{4 0 . 4 c}$ ($39 \mathrm{mg}, 0.066 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and the mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 23 h , cooled to room temperature and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 15:20 EtOAc-hexane, gave 40.4d (23 $\mathrm{mg}, 81 \%$) as a viscous oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3066,2983,2933,1743,1635$, $1584,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.99-$ $2.05(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 2.16-2.30(\mathrm{~m}, 3 \mathrm{H}), 4.19-4.28(\mathrm{~m}, 2 \mathrm{H}), 4.51-4.53(\mathrm{~m}$, $1 \mathrm{H}), 5.57$ (dd, $J=8.0,2.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{dd}, J=1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.29(\mathrm{dd}, J=$ $0.7,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.55-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.93-7.95(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.1(\mathrm{q}), 21.0(\mathrm{q}), 21.4(\mathrm{t}), 31.8(\mathrm{t}), 61.1$ (t$), 70.4$ (d), 82.6 (d), 125.4 (t), 129.08 (d), 129.11 (d), 129.57 (d), 129.61 (d), 134.56 (d), 134.57 (d), 137.7 (s), 137.8 (s), 139.1 (s), 164.9 (s), 169.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{8} \mathrm{~S}_{2} 517.0961$, found 517.0961.

5,5-Bis(benzenesulfonyl)cyclohex-1-enecarboxylic Acid Ethyl Ester (51.8).

$\mathrm{Cs}_{2} \mathrm{CO}_{3}(20.0 \mathrm{mg}, 0.062 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 0 . 4 d}$ $(15.2 \mathrm{mg}, 0.031 \mathrm{mmol})$ in THF (1 mL), and stirring at room temperature was continued for 2 h . Evaporation of the solvent and filtration of the residue through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using 1:1 EtOAc-hexane, gave 51.8 ($13.2 \mathrm{mg}, 99 \%$) as a colorless viscous oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3066, 2982, $1707,1663,1583,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ H), $2.42(\mathrm{t}, J=6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.56-2.62(\mathrm{~m}, 2 \mathrm{H}), 3.12(\mathrm{ddd}, J=2.1,2.1,2.1 \mathrm{~Hz}, 2$ H), $4.18(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.01(\mathrm{dddd}, J=4.0,4.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.60$ (m, 4 H), 7.69-7.73 (m, 2 H), 8.01-8.03 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 14.2 (q), 23.0 (t), 23.3 (t), 25.4 (t), 60.8 (t), 86.7 (s$), 125.5$ (s$), 128.8$ (d), 131.2 (d), 134.7 (d), 136.3 (s), 138.0 (d), 165.5 (s); exact mass m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{22} \mathrm{O}_{6} \mathrm{~S}_{2}$ 434.0858 , found 434.0859.

4-Bromo-1,1-dimethoxybutane (44.2). ${ }^{58}$

DIBAL (1.0 M in PhMe, 6.2 mL) was added slowly to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $44.1(1.0 \mathrm{~g}, 5.1 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, the internal temperature being kept below $-75{ }^{\circ} \mathrm{C}$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and $\mathrm{MeOH}(2.2 \mathrm{~mL})$ and saturated aqueous Rochelle salt $(97 \mathrm{~mL})$ were added. The cold bath was removed and vigorous stirring was continued for 2 h . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL}$), pyridinium p-toluene sulfonate (64 mg , 0.26 mmol) was added, and stirring at room temperature was continued for 7 h . The mixture was diluted with water (100 mL) and the aqueous phase was extracted with EtOAc ($3 \times 80 \mathrm{~mL}$). The combined organic extracts were washed
with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 17:25 EtOAc-hexane, gave 44.2 (691 mg , 68%) as an oil.

5,5-Bis(phenylthio)pentanal (40.5a).

$\mathrm{n}-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $2.8 \mathrm{~mL}, 4.19 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $(\mathrm{PhS})_{2} \mathrm{CH}_{2}(885.3 \mathrm{mg}, 3.81 \mathrm{mmol})$ in THF $(20 \mathrm{~mL}) .{ }^{57}$ Stirring at $0^{\circ} \mathrm{C}$ was continued for 15 min , and a solution of 44.2 (250 $\mathrm{mg}, 1.27 \mathrm{mmol}$) in THF (2 mL) was added rapidly in one portion. Stirring at $0^{\circ} \mathrm{C}$ was continued for 1.5 h , and hydrochloric acid ($4 \mathrm{M}, 2.5 \mathrm{~mL}$) was added. The cold bath was removed, stirring was continued for 1 h and the mixture was diluted with water (100 mL). The aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 1:3 EtOAc-hexane, gave 40.5a (345 mg , 90%) as a liquid: FTIR $\left(\mathrm{CDCl}_{3}\right.$ cast) $3057,2934,2826,2723,1722,1582,1480,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.85-2.00(\mathrm{~m}, 4 \mathrm{H}), 2.42(\mathrm{td}, J=7.2,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1$ H), 7.26-7.35 (m, 6 H$), 7.46-7.49(\mathrm{~m}, 4 \mathrm{H}), 9.72(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.7$ (t), 35.16 (t), 43.2 (t), 58.2 (d), 127.9 (d), 129.0 (d), 132.8 (d), $134.0(\mathrm{~s}), 201.6(\mathrm{~d})$; exact mass m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{18} \mathrm{OS}_{2} 302.0799$, found 302.0801.

3-Hydroxy-2-methyl-2-(phenylseleno)-7,7-bis(phenylthio)heptanoic

 Acid Ethyl Ester (40.5b,b').
40.5a

40.5b,b'
$\mathrm{n}-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $0.41 \mathrm{~mL}, 0.62 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(62.7 \mathrm{mg}, 0.62 \mathrm{mmol})$ in THF (3 mL). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 15 min , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$, and a solution of $\mathbf{3 8 . 1}$ ($159.3 \mathrm{mg}, 0.62 \mathrm{mmol}$) in THF (2 mL) was then added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 h , and a solution of 40.5a (124 $\mathrm{mg}, 0.41 \mathrm{mmol}$) in THF (1 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water $(40 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 15 \mathrm{~cm}$), using 3:20 EtOAc-hexane and then 1:5 EtOAc-hexane, gave 40.5b (less polar isomer) ($84 \mathrm{mg}, 37 \%$) as a viscous oil and 40.5b' (more polar) ($110 \mathrm{mg}, 48 \%$) as a viscous oil.

Compound 40.5b had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3498 , 3057, 2979, 2937, 2867, $1720,1582,1476,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.12(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ H), 1.28-1.37 (m, 1 H$), 1.38(\mathrm{~s}, 3 \mathrm{H}), 1.49-1.57(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.74(\mathrm{~m}, 1 \mathrm{H})$, $1.83-1.99(\mathrm{~m}, 3 \mathrm{H}), 2.95(\mathrm{dd}, J=2.9,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=9.8,2.3,2.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.98(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J$ $=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.39-7.50(\mathrm{~m}, 5 \mathrm{H}), 7.58-7.60(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.8$ (q), 17.0 (q), 24.5 (t), 31.3 (t$), 35.6$ (t$), 57.4$ (s$), 58.4$ (d), 61.1 (t), 72.6 (d), 126.4 (s$), 127.6$ (d), 128.82 (d), 128.84 (d), 128.86
(d), 128.93 (d), 129.5 (d), 132.7 (d), 132.8 (d), 134.2 (s), 134.3 (s), 138.0 (d), 173.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{80} \mathrm{Se} 583.0850$, found 583.0842.

Compound 40.5b' had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3502, 3072, 3057, 2979, 2937, 2866, 1722, 1582, 1476, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.20(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.31-1.37(\mathrm{~m}, 1 \mathrm{H}), 1.39(\mathrm{~s}, 3 \mathrm{H}), 1.64-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.95$ (m, 4 H), $2.77(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=10.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.42$ (t, $J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.38-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.46-7.50(\mathrm{~m}, 4 \mathrm{H})$, 7.55-7.57 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9$ (q), 18.0 (q), 24.5 (t), 30.8 (t), 35.7 (t), 54.6 (s$), 58.5$ (d), 61.3 (t), 75.0 (d), 126.5 (s$), 127.7$ (d), 128.8 (d), 128.85 (d), 128.86 (d), 129.4 (d), 132.78 (d), 132.80 (d), 134.18 (s), 134.19 (s), 138.0 (d), 173.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{80} \mathrm{Se}$ 583.0850, found 583.0849.

3-Acetoxy-2-methyl-2-(phenylseleno)-7,7-bis(phenylthio)heptanoic

 Acid Ethyl Ester (40.5c).
40.5b'

40.5c

Pyridine ($93.4 \mathrm{mg}, 1.18 \mathrm{mmol}$) and $\mathrm{AcCl}(46.3 \mathrm{mg}, 0.59 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.5b' ($110 \mathrm{mg}, 0.197 \mathrm{mmol}$) and DMAP ($2.5 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 16 h , by which time the temperature had risen to room temperature. The mixture was diluted with water $(10 \mathrm{~mL})$, acidified with hydrochloric acid ($1 \mathrm{M}, 2 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue
over silica gel ($1 \times 15 \mathrm{~cm}$), using 17:100 EtOAc-hexane, gave 40.5c ($84 \mathrm{mg}, 71 \%$) as an oil: FTIR (CHCl_{3} cast) 3057, 2981, 2936, 1745, 1725, 1582, 1476, 1438 cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.48(\mathrm{~s}, 3 \mathrm{H}), 1.51-$ $1.60(\mathrm{~m}, 1 \mathrm{H}), 1.62-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.86$ (dddd, $J=14.3,14.3,6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H})$, $1.91-2.00(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.12(\mathrm{~m}, 1 \mathrm{H}), 3.89(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1$ H), $4.02(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{dd}, J=6.8,6.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.44(\mathrm{dd}, J=$ $10.1,1.8 \mathrm{~Hz}, 1 \mathrm{H})$, 7.28-7.35 (m, 8 H), 7.37-7.42 (m, 1 H$)$, 7.46-7.49 (m, 4 H), 7.56-7.59 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100 \mathrm{MHz}$) $\delta 13.8$ (q), 17.9 (q), 20.9 (q), 24.02 (t), 30.0 (t), 35.7 (t$), 53.0$ (s$), 58.2$ (d), 61.1 (t), 75.4 (d), 126.3 (s$), 127.6$ (d), 127.7 (d), 128.87 (d), 128.90 (d), 129.6 (d), 132.7 (d), 132.9 (d), 134.16 (s), 134.22 (s), $138.0(\mathrm{~d}), 169.5(\mathrm{~s}), 172.0(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{34} \mathrm{NaO}_{4} \mathrm{~S}_{2}{ }^{80} \mathrm{Se} 625.0956$, found 625.09501 .

2-[1-Acetoxy-5,5-bis(benzenesulfonyl)pentyl]acrylic Acid Ethyl Ester

 (40.5d).
40.5c

40.5d
m-CPBA $(70-75 \%, 151.8 \mathrm{mg}$, ca 0.62 mmol$)$ was added to a solution of 40.5 c ($37 \mathrm{mg}, 0.062 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and the mixture was stirred at 40 ${ }^{\circ} \mathrm{C}$ for 23 h , cooled to room temperature and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 3:5 EtOAc-hexane, gave $\mathbf{4 0 . 5 d}$ $(19.8 \mathrm{mg}, 65 \%)$ as a viscous oil: FTIR (CDCl_{3} cast) 3064, 2981, 2928, 1739, $1584,1478,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.59-1.79 (m, 4 H), $2.08(\mathrm{~s}, 3 \mathrm{H}), 2.18(\mathrm{dd}, J=13.4,7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.29(\mathrm{~m}, 2$ H), $4.41(\mathrm{dd}, J=5.7,5.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.55(\mathrm{dd}, J=6.3,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H})$, $6.28(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.69-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.96(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$

NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.1$ (q), $21.0(\mathrm{q}), 23.8(\mathrm{t}), 25.2(\mathrm{t}), 33.3(\mathrm{t}), 61.0(\mathrm{t})$, 71.0 (d), 83.3 (d), 125.2 (t), 129.1 (d), 129.55 (d), 129.58 (d), 134.6 (d), 137.7 (s), $137.8(\mathrm{~s}), 139.6(\mathrm{~s}), 165.0(\mathrm{~s}), 169.8(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{NaO}_{8} \mathrm{~S}_{2}$ 531.1118, found 531.1112.

6,6-Bis(benzenesulfonyl)cyclohept-1-enecarboxylic Acid Ethyl Ester

(51.9).

40.5d

$\mathrm{Cs}_{2} \mathrm{CO}_{3}(25.7 \mathrm{mg}, 0.079 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 0 . 5 d}$ ($20.0 \mathrm{mg}, 0.039 \mathrm{mmol}$) in THF (1 mL), and stirring at room temperature was continued for 2 h . Evaporation of the solvent and filtration of the residue through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using 2:5 EtOAc-hexane, gave 51.9 ($16.6 \mathrm{mg}, 95 \%$) as a colorless viscous oil: FTIR (CDCl_{3} cast) 3067, 2927, $1704,1650,1583,1466,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.28(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.68-1.74 (m, 2 H), 2.43 (dd, $J=11.7,6.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.52-2.54(\mathrm{~m}, 2 \mathrm{H})$, $3.51(\mathrm{~s}, 2 \mathrm{H}), 4.21(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 6.95(\mathrm{dd}, J=5.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.56-7.60$ (m, 4 H), 7.68-7.72 (m, 2 H), 8.05-8.08 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $14.2(\mathrm{q}), 19.1(\mathrm{t}), 25.7(\mathrm{t}), 28.3(\mathrm{t}), 30.3(\mathrm{t}), 61.2(\mathrm{t}), 91.0(\mathrm{~s}), 127.0(\mathrm{~s}), 128.7(\mathrm{~s})$, 131.4 (d), 134.5 (d), 136.7 (s), 140.4 (d), 166.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{24} \mathrm{NaO}_{6} \mathrm{~S}_{2} 471.0907$, found 471.0906 .

5-Bromo-1,1-dimethoxypentane (44.4). ${ }^{59}$

DIBAL (1.0 M in PhMe, 5.7 mL) was added slowly to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $44.3(1.0 \mathrm{~g}, 4.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$, the internal temperature being kept below $-75{ }^{\circ} \mathrm{C}$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min, and $\mathrm{MeOH}(2.5 \mathrm{~mL}$) and saturated aqueous Rochelle salt (100 mL) were added. The cold bath was removed, and vigorous stirring was continued for 2 h . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 50 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residue was dissolved in $\mathrm{MeOH}(20 \mathrm{~mL}$), pyridinium p-toluenesulfonate (60 mg , 0.24 mmol) was added, and stirring at room temperature was continued for 7 h . The mixture was diluted with water (150 mL) and the aqueous phase was extracted with EtOAc ($3 \times 80 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 17:25 EtOAc-hexane, gave 44.4 (681 mg , 68%) as an oil.

6,6-Bis(phenylthio)hexanal (40.6a).

$\mathrm{n}-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $2.1 \mathrm{~mL}, 3.13 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $(\mathrm{PhS})_{2} \mathrm{CH}_{2}(660 \mathrm{mg}, 2.84 \mathrm{mmol})$ in THF (14
$\mathrm{mL}) .{ }^{57}$ Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 15 min , and a solution of $44.4(200 \mathrm{mg}$, 0.95 mmol) in THF (2 mL) was added rapidly in one portion. Stirring at $0^{\circ} \mathrm{C}$ was continued for 3.5 h , and hydrochloric acid ($4 \mathrm{M}, 2.2 \mathrm{~mL}$) was added. The cold bath was removed, stirring was continued for 1 h and the mixture was diluted with water (100 mL). The aqueous phase was extracted with EtOAc ($3 \times 50 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 15 \mathrm{~cm}$), using 1:5 EtOAc-hexane, gave $\mathbf{4 0 . 6 a}(300 \mathrm{mg}, 100 \%)$ as a liquid: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3057,2938,2860,2722,1723,1582,1480,1439,1408 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.54-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.86(\mathrm{dd}, J=14.8,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.41$ (td, $J=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 7.27-7.37(\mathrm{~m}, 6 \mathrm{H}), 7.45-7.49$ (m, 4 H), $9.74(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 21.4(\mathrm{t}), 26.5$ (t), 35.5 (t), 43.6 (t), 58.2 (d), 127.8 (d), 128.9 (d), 132.8 (d), 134.1 (s), 202.2 (d); exact mass m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{20} \mathrm{OS}_{2} 316.0956$, found 316.0954.

3-Hydroxy-2-methyl-2-(phenylseleno)-8,8-bis(phenylthio)octanoic Acid Ethyl Ester (40.6b,b').

$\mathrm{n}-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $0.51 \mathrm{~mL}, 0.76 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(76.9 \mathrm{mg}, 0.76 \mathrm{mmol})$ in THF (3 mL). Stirring at $0^{\circ} \mathrm{C}$ was continued for 15 min , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$, and a solution of $\mathbf{3 8 . 1}$ ($195.3 \mathrm{mg}, 0.76 \mathrm{mmol}$) in THF (2 mL) was then added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 h , and a solution of 40.6a (150 $\mathrm{mg}, 0.48 \mathrm{mmol}$) in THF (1 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min
and the mixture was diluted with water (40 mL). The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (2 x 15 cm), using 4:25 EtOAc-hexane and then 1:5 EtOAc-hexane, gave 40.6b (less polar isomer) ($85 \mathrm{mg}, 31 \%$) as a viscous oil and 40.6b' (more polar isomer) ($130 \mathrm{mg}, 48 \%$) as a viscous oil.

Compound 40.6b had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3498,3057,2979,2937,2858$, $1720,1582,1476,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.14(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ H), 1.27-1.36 (m, 2 H), $1.39(\mathrm{~s}, 3 \mathrm{H}), 1.47-1.68(\mathrm{~m}, 4 \mathrm{H}), 1.80-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.97$ $(\mathrm{s}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=9.8,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dq}$, $J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{t}, J=4.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.33(\mathrm{~m}, 8 \mathrm{H}), 7.39-7.49(\mathrm{~m}$, $5 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9$ (q), 17.0 (q), 26.3 (t), 26.9 (t), 31.6 (t), 35.6 (t), 57.5 (s$), 58.3$ (d), 61.1 (t$), 72.7$ (d), 126.4 (s$), 127.6$ (d), 128.8 (d), 129.5 (d), 132.7 (d), 134.3 (s), 138.0 (d), 173.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{80} \mathrm{Se} 597.1007$, found 597.1011.

Compound 40.6b' had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3504, 3057, 2979, 2939, $2858,1721,1582,1476,1457,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.21(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.27-1.38(\mathrm{~m}, 2 \mathrm{H}), 1.40(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.76(\mathrm{~m}, 3 \mathrm{H}), 1.82-1.91$ (m, 3 H), $2.80(\mathrm{~s}, 1 \mathrm{H}), 3.84(\mathrm{~d}, J=9.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.11(\mathrm{qd}, J=7.1,1.6 \mathrm{~Hz}, 2 \mathrm{H})$, $4.43(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.34(\mathrm{~m}, 8 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.49(\mathrm{~m}, 4$ H), 7.56-7.58 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9$ (q), 18.3 (q), 26.2 (t), 26.9 (t), 31.3 (t), 35.7 (t), 54.7 (s$), 58.3$ (d), 61.3 (t), 75.2 (d), 126.6 (s$), 127.6$ (d), 128.8 (d), 128.9 (d), 129.37 (d), 132.65 (d), 132.68 (d), 134.3 (s), 138.1 (d), 174.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{34} \mathrm{NaO}_{3} \mathrm{~S}_{2}^{80} \mathrm{Se} 597.1007$, found 597.1012 .

3-Acetoxy-2-methyl-2-(phenylseleno)-8,8-bis(phenylthio)octanoic Acid

Ethyl Ester (40.6c).

40.6b'

40.6 c

Pyridine ($107.6 \mathrm{mg}, 1.36 \mathrm{mmol}$) and $\mathrm{AcCl}(53.4 \mathrm{mg}, 0.68 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.6b' ($130 \mathrm{mg}, 0.227 \mathrm{mmol}$) and DMAP ($2.8 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 16 h , by which time the temperature had risen to room temperature. The mixture was diluted with water $(10 \mathrm{~mL})$, acidified with hydrochloric acid ($1 \mathrm{M}, 2 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 9:50 EtOAc-hexane, gave 40.6c (104 mg, 75%) as an oil: FTIR (CDCl_{3} cast) 3057, 2981, 2937, 2859, 1744, 1725, 1582, $1477,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.291.36 (m, 2 H), 1.49 ($\mathrm{s}, 3 \mathrm{H}$), 1.52-1.77 (m, 3 H), 1.87 (dd, $J=14.8,7.4 \mathrm{~Hz}, 2 \mathrm{H}$), $1.94(\mathrm{~s}, 3 \mathrm{H}), 2.03-2.12(\mathrm{~m}, 1 \mathrm{H}), 3.88(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dq}, J=$ $10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.42(\mathrm{dd}, J=6.6,6.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.43(\mathrm{dd}, J=10.5,1.7 \mathrm{~Hz}, 1$ H), 7.27-7.34 (m, 8 H), 7.37-7.42 (m, 1 H$), 7.46-7.49(\mathrm{~m}, 4 \mathrm{H})$, 7.57-7.60 (m, 2 $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.8$ (q), 17.9 (q), 20.9 (q), 25.9 (t), 27.0 (t), 30.3 (t), 35.6 (t), 53.0 (s$), 58.3$ (d), 61.1 (t), 75.6 (d), 126.3 (s$), 127.6$ (d), 127.7 (d), 28.9 (d), 129.6 (d), 132.70 (d), 132.73 (d), 134.2 (s), 138.0 (d), 169.6 (s), 172.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{NaO}_{4} \mathrm{~S}_{2}{ }^{80} \mathrm{Se}$ 639.1113, found 639.1108.

2-[1-Acetoxy-6,6-bis(benzenesulfonyl)hexyl]acrylic Acid Ethyl Ester

 (40.6d).
m-CPBA($70-75 \%, 204 \mathrm{mg}, 0.83 \mathrm{mmol})$ was added to a stirred solution of 40.6c ($51 \mathrm{mg}, 0.083 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$, and the mixture was stirred at 40 ${ }^{\circ} \mathrm{C}$ for 23 h , cooled to room temperature and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 3:5 EtOAc-hexane, gave 40.6d $(35.4 \mathrm{mg}, 82 \%)$ as a viscous oil: FTIR (CDCl_{3} cast) $3067,2933,2869,1738$, $1632,1584,1478,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.31(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ H), 1.24-1.33 (m, 2 H$), 1.56-1.65(\mathrm{~m}, 3 \mathrm{H}), 1.66-1.76(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, 2.13-2.18 (m, 2 H), 4.23 (qd), $J=7.1,1.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.37(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.57$ (dd, $J=7.7,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.73(\mathrm{~s}, 1 \mathrm{H}), 6.28(\mathrm{~s}, 1 \mathrm{H}), 7.56-7.60(\mathrm{~m}, 4 \mathrm{H}), 7.68-$ 7.72 (m, 2 H$), 7.94-7.96(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.1$ (q), 21.1 (q), 24.8 (t), 25.4 (t), 27.8 (t), 33.6 (t), 60.9 (t), 71.4 (d), 83.6 (d), 124.9 (t), 129.1 (d), 129.6 (d), 134.5 (d), 137.82 (d), 137.85 (s), 140.1 (s), 165.2 (s), 169.9 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{NaO}_{8} \mathrm{~S}_{2} 545.1274$, found 545.1277.

7,7-Bis(benzenesulfonyl)cyclooct-1-enecarboxylic Acid Ethyl Ester (51.10') and 2-[3,3-Bis(benzenesulfonyl)cyclohexyl]acrylic Acid Ethyl Ester (51.10).

$\mathrm{Cs}_{2} \mathrm{CO}_{3}(43.7 \mathrm{mg}, 0.134 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{2 5 d}$ ($35.0 \mathrm{mg}, 0.067 \mathrm{mmol}$) in THF (2 mL). Stirring at room temperature was continued for 1.5 h , and the solvent was evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 60:1 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-EtOAc, gave 51.10 (10.9 $\mathbf{m g}, 49 \%)$ as a white solid and $\mathbf{5 1 . 1 0}(6.5 \mathrm{mg}, 29.4 \%)$ as a viscous oil.

Compound 51.10' had: FTIR (CDCl_{3} cast) $3067,2925,2854,1711,1648$, $1583,1467,1447 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.23(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 1.71-1.76 (m, 2 H), 2.01-2.05 (m, 2 H), 2.22-2.26 (m, 2 H), 2.37-2.39 (m, 2 H), $3.56(\mathrm{~s}, 2 \mathrm{H}), 4.19(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 7.05(\mathrm{t}, J=8.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.57-7.60(\mathrm{~m}, 4$ H), 7.68-7.72 (m, 2 H$), 8.05-8.07(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.1$ (q), 26.7 (t$), 27.0(\mathrm{t}), 27.7$ (t$), 27.9$ (t$), 29.7$ (t$), 61.0(\mathrm{t}), 92.3(\mathrm{~s}), 128.5(\mathrm{~s}), 129.4$ (d), 131.4 (d), 134.4 (d), 137.1 (s), 142.0 (d), 167.1 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{6} \mathrm{~S}_{2} 485.1063$, found 485.1062.

Compound 51.10 had: mp 213-215 ${ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3} cast) 3094, 3056, 2966, 2930, 2871, 2856, 1710, 1620, 1581, 1479, 1449, $1419 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.10(\mathrm{dddd}, J=13.3,13.0,3.8,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 1.39(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}$), 1.52-1.60 (m, 2 H), 1.74-1.84 (m, 2 H), 2.05-2.19 (m, 2 H), 2.57 (dddd, $J=13.4,13.4,13.1,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{dd}, J=12.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.29-4.40(\mathrm{~m}, 2$ H), $6.61(\mathrm{~s}, 1 \mathrm{H}), 6.64(\mathrm{~s}, 1 \mathrm{H}), 7.51-7.57(\mathrm{~m}, 4 \mathrm{H}), 7.63-7.69(\mathrm{~m}, 2 \mathrm{H}), 8.03-8.06$ (m, 2 H), 8.16-8.19 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.3$ (q), $21.0(\mathrm{t})$, 25.2 (t), 32.0 (t$), 32.1$ (t$), 40.2$ (d), 61.3 (t$), 91.6$ (s$), 128.2$ (d), 128.9 (d), 129.9 (t), 131.41 (d), 131.44 (d), 134.0 (d), 134.3 (d), 137.0 (s), 139.8 (s), 140.1 (s), 168.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{26} \mathrm{NaO}_{6} \mathrm{~S}_{2} 485.1063$, found 485.1066.

3-Hydroxy-2,7,7-tris(phenylthio)heptanoic Acid Ethyl Ester (40.5e,e').

$\mathrm{n}-\mathrm{BuLi}(1.3 \mathrm{M}$ in hexane, $0.68 \mathrm{~mL}, 0.88 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(89.0 \mathrm{mg}, 0.88 \mathrm{mmol})$ in THF (4 mL). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 15 min , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$, and a solution of (phenylthio)acetic acid ethyl ester ${ }^{69}$ ($172.5 \mathrm{mg}, 0.88 \mathrm{mmol}$) in THF (2.5 mL) was then added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and a solution of $\mathbf{4 0 . 5 a}(190 \mathrm{mg}, 0.63 \mathrm{mmol})$ in THF (2 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 70 min and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (50 mL). The aqueous phase was extracted with EtOAc (3 x 20 mL) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 1:3 $\mathrm{Et}_{2} \mathrm{O}$-hexane, 9:20 $\mathrm{Et}_{2} \mathrm{O}$-hexane and then 7:10 $\mathrm{Et}_{2} \mathrm{O}$-hexane, gave 40.5e (less polar isomer) ($91 \mathrm{mg}, 29 \%$) as a viscous oil, which appeared to contain an impurity (NMR), and 40.5e' (more polar isomer) ($130 \mathrm{mg}, 41 \%$) as a viscous oil.

Compound 40.5e had: FTIR (CDCl_{3} cast) $3514,3058,2933,1727,1583$, $1480,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.90(\mathrm{t}, J=7.4 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.20$ $(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2.3 \mathrm{H}), 1.27-1.38(\mathrm{~m}, 0.5 \mathrm{H}), 1.51-1.77(\mathrm{~m}, 2.5 \mathrm{H}), 1.81-1.91(\mathrm{~m}, 3$ H), $2.71(\mathrm{~d}, J=6.6 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.12(\mathrm{dd}, J=2.9,0.8 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.59(\mathrm{~d}, J=5.7$ $\mathrm{Hz}, 0.8 \mathrm{H}$), 3.63 (d, $J=7.1 \mathrm{~Hz}, 0.2 \mathrm{H}$), 3.86-3.91 (m, 0.2 H), 3.91-3.98 (m, 0.8 H), 4.09-4.22 (m, 2 H), 4.40 (dd, $J=6.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 9 \mathrm{H}), 7.44-$ $7.52(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.6$ (q), 134.0 (q), 19.0 (t), 23.19 $(\mathrm{t}), 23.23(\mathrm{t}), 30.4(\mathrm{t}), 33.2(\mathrm{t}), 33.6(\mathrm{t}), 35.50(\mathrm{t}), 35.53(\mathrm{t}), 59.0(\mathrm{~d}), 57.7(\mathrm{~d}), 58.2$ (d), 58.3 (d), 61.4 (t), 65.3 (t), 70.2 (t$), 71.4$ (t), 127.66 (d), 127.68 (d), 128.1 (d), 128.2 (d), 128.8 (d), 128.85 (d), 128.86 (d), 129.06 (d), 129.07 (d), 132.72 (d), 132.74 (d), 132.76 (d), 132.9 (d), 133.0 (d), 133.3 (s), 134.11 (s), 134.14 (s), $171.66(\mathrm{~s}), 171.72(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{~S}_{3}$ 521.1249, found 521.1252.

Compound 40.5e' had: FTIR (CDCl_{3} cast) 3497, 3058, 2980, 2917, 2849, $1729,1583,1480,1474,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.21(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 1.44-1.59(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.75(\mathrm{~m}, 1 \mathrm{H}), 1.78-1.89(\mathrm{~m}, 4 \mathrm{H}), 2.70(\mathrm{~d}, J=$
$6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.61(\mathrm{~d}, J=7.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.89(\mathrm{dddd}, J=8.5,6.8,6.8,2.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.10-4.21 (m, 2 H), 4.39 (dd, $J=6.4,6.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27-7.33 (m, 9 H), 7.45-7.48 (m, 6 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.0(\mathrm{q}), 23.2$ (t), 33.6 (t), 35.5 (t$), 56.0$ (d), 58.3 (d), 61.4 (t), 71.4 (d), 127.7 (d), 128.2 (d), 128.9 (d), 129.1 (d), 132.8 (d), 133.1 (d), 134.1 (d), 171.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{30} \mathrm{NaO}_{3} \mathrm{~S}_{3}$ 521.1249, found 521.1248.

(Z)-2,7,7-Tris(phenylthio)hept-2-enoic Acid Ethyl Ester (40.5f).

\qquad

$\mathrm{MsCl}(24.8 \mathrm{mg}, 0.216 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(43.7 \mathrm{mg}, 0.432 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 5 e}$ ($36 \mathrm{mg}, 0.072 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Stirring at $0^{\circ} \mathrm{C}$ was continued for 3 h and DBU (65.8 mg , 0.432 mmol) was added. The cold bath was removed, stirring was continued for 3 h and the mixture was diluted with water (3 mL) and acidified with hydrochloric acid ($1 \mathrm{M}, 3 \mathrm{~mL}$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using 2:25 EtOAc-hexane, gave $\mathbf{4 0 . 5 f}(24 \mathrm{mg}, 69 \%)$ as an oil: FTIR (CDCl_{3} cast) 3073, 3058, 2980, 2935, 2859, 1712, 1608, 1583, 1479, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.79-1.92(\mathrm{~m}, 4 \mathrm{H}), 2.51(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 2 \mathrm{H}), 4.11(\mathrm{q}, 7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.13-7.35(\mathrm{~m}, 12 \mathrm{H})$, 7.44-7.47 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9$ (q), 25.8 (t$), 30.1$ (t), 35.3 (t), 58.2 (d), 61.5 (t), 126.1 (d), 127.5 (s$), 127.8$ (d), 128.2 (d), 128.9 (d), 132.9 (d), 133.9 (s), 135.8 (s), 151.7 (d), 165.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{~S}_{3} 503.1144$, found 503.1143 . We assign the Z geometry by analogy with the assignment to $\mathbf{4 0 . 6 g}$.

Acetic Acid (Z)-2,7,7-tris(phenylthio)hept-2-enyl Ester (40.5g).

DIBAL (1.0 M in PhMe, $0.1 \mathrm{~mL}, 0.1 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 5 f}(14.1 \mathrm{mg}, 0.029 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ mL), and stirring at $-78^{\circ} \mathrm{C}$ was continued for 15 min . The cold bath was removed and stirring was continued for 15 min . $\mathrm{MeOH}(0.4 \mathrm{~mL})$ and saturated aqueous Rochelle salt (1 mL) were added sequentially, and stirring was continued for 30 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residual crude alcohol ($9.4 \mathrm{mg}, 86 \%$) was used directly for the next step.

Pyridine ($12 \mathrm{mg}, 0.15 \mathrm{mmol}$) and $\mathrm{AcCl}(5.9 \mathrm{mg}, 0.075 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of the above crude alcohol ($9.4 \mathrm{mg}, 0.025 \mathrm{mmol}$) and DMAP ($0.4 \mathrm{mg}, 0.003 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 16 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (2 mL), acidified with hydrochloric acid ($1 \mathrm{M}, 0.1 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 2 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7.5 \mathrm{~cm}$), using 1:10 EtOAc-hexane, gave $\mathbf{4 0 . 5 g}(7 \mathrm{mg}, 58 \%$ from $\mathbf{4 0 . 5 f})$ as an oil: FTIR (CDCl_{3} cast) 3058 , 3019, 2934, 2856, 1741, 1583, 1478, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.74-1.80(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.90(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.39$ $(\mathrm{q}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.41(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{~d}, J=0.6 \mathrm{~Hz}, 2 \mathrm{H}), 6.17(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.18-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 10 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.8(\mathrm{q}), 26.3$ (t$), 29.0(\mathrm{t}), 35.2$ (t), 58.3 (d), 66.9 (t), 126.5 (d), 127.8 (d), 128.6 (s), 128.9 (d), 129.0 (d), 129.5 (d), 132.9 (d), 134.1 (s),
134.2 (s), 139.6 (d), 170.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{2} \mathrm{~S}_{3} 503.1144$, found 503.1145 . We assign the Z geometry by analogy with the assignment to $\mathbf{2 5 h}$.

Acetic Acid (Z)-2,7,7-Tris(benzenesulfonyl)hept-2-enyl Ester (40.5h).

m-CPBA ($70-75 \%, 39 \mathrm{mg}, 0.16 \mathrm{mmol}$) was added to a solution of $\mathbf{4 0 . 5 g}$ ($6.3 \mathrm{mg}, 0.013 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 4:5 EtOAc-hexane, gave 40.5h (5.5 mg , 73%) as a viscous oil: FTIR (CDCl_{3} cast) 3060, 2934, 1742, 1640, 1580, 1447 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.83-1.89(\mathrm{tt}, J=15.0,15.0 \mathrm{~Hz}, 2 \mathrm{H}), 1.92(\mathrm{~s}$, $3 \mathrm{H}), 2.21-2.25(\mathrm{~m}, 2 \mathrm{H}), 2.70(\mathrm{q}, J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 4.59(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.79$ (s, 2 H), 6.39 (t, $J=8.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55-7.59 (m, 6 H), 7.63-7.66 (m, 1 H$), 7.69-$ $7.72(\mathrm{~m}, 2 \mathrm{H}), 7.92-7.96(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.7$ (q), 24.9 (t), 26.8 (t), 27.6 (t), 63.8 (t), 82.5 (d), 127.6 (d), 129.1 (d), 129.3 (d), 129.6 (d), 133.7 (d), 134.6 (d), 137.6 (s), 137.8 (s), 141.1 (s), 147.4 (d), 170.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{28} \mathrm{NaO}_{8} \mathrm{~S}_{3} 599.0839$, found 599.0842.

[[1-[2,2-Bis(phenylsulfonyl)cyclopent-1-yl]ethenyl]sulfonyl]benzene

(51.11).

40.5h

51.11
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(6.0 \mathrm{mg}, 0.018 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 0 . 5 h}$ $(5.10 \mathrm{mg}, 0.0089 \mathrm{mmol})$ in THF (0.5 mL). Stirring at room temperature was continued for 1 h , and the solvent was evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 3:5 EtOAc-hexane, gave 51.11 (3.9 mg , 85%) as a viscous oil: FTIR (CDCl_{3} cast) 3066, 2962, 2925, 1583, 1478, 1447 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.44-1.52(\mathrm{~m}, 1 \mathrm{H}), 1.83-1.92(\mathrm{~m}, 2 \mathrm{H}), 2.20-$ $2.08(\mathrm{~m}, 1 \mathrm{H}), 2.19-2.25(\mathrm{~m}, 1 \mathrm{H}), 2.60(\mathrm{ddd}, J=15.2,9.5,6.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.13$ (ddd, $J=10.5,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.38(\mathrm{~d}, J=2.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.77(\mathrm{dd}, J=2.5,1.2 \mathrm{~Hz}, 1$ H), 7.53-7.59 (m, 6 H$), 7.61-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.68-7.71(\mathrm{~m}, 2 \mathrm{H}), 7.91-7.93(\mathrm{~m}, 2$ $\mathrm{H}), 8.09-8.11(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 22.1(\mathrm{t}), 33.8(\mathrm{t}), 34.5(\mathrm{t})$, 47.5 (d), 96.0 (s), 128.1 (d), 128.6 (d), 128.9 (d), 129.1 (d), 130.8 (t), 131.0 (d), 131.9 (d), 133.4 (d), 134.6 (d), 134.8 (d), 136.5 (s), 138.4 (s), 140.1 (s$), 147.0$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{24} \mathrm{NaO}_{6} \mathrm{~S}_{3} 539.0627$, found 539.0622.

3-Hydroxy-2,8,8-tris(phenylthio)octanoic Acid Ethyl Ester (40.6e,e').

$\mathrm{n}-\mathrm{BuLi}(1.3 \mathrm{M}$ in hexane, $0.95 \mathrm{~mL}, 1.23 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(124.4 \mathrm{mg}, 1.23 \mathrm{mmol})$ in THF (6 mL). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 15 min , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$, and a solution of (phenylthio) acetic acid ethyl ester ${ }^{69}$ ($241.1 \mathrm{mg}, 1.23 \mathrm{mmol}$) in THF (1 mL) was then added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and a solution of $\mathbf{4 0 . 6 a}(277.5 \mathrm{mg}, 0.88 \mathrm{mmol})$ in THF $(1.5 \mathrm{~mL})$ was added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (50 mL). The
aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 20 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 1:3 $\mathrm{Et}_{2} \mathrm{O}-$ hexane and then 2:5 $\mathrm{Et}_{2} \mathrm{O}$-hexane, gave $\mathbf{4 0 . 6 e}$ (less polar isomer) ($166 \mathrm{mg}, 37 \%$) as a viscous oil and 40.6e' (more polar isomer) ($200 \mathrm{mg}, 44 \%$) as a viscous oil.

Compound 40.6e had: FTIR (CDCl_{3} cast) $3512,3073,3058,3018,2979$, 2938, 2859, 1728, 1583, 1480, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.22(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.32-1.39(\mathrm{~m}, 1 \mathrm{H}), 1.48-1.71(\mathrm{~m}, 5 \mathrm{H}), 1.86(\mathrm{dd}, J=14.9,7.3 \mathrm{~Hz}$, $2 \mathrm{H}), 3.11(\mathrm{dd}, J=2.9,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.59(\mathrm{~d}, J=5.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.96(\mathrm{ddd}, J=8.8$, $6.4,3.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.11-4.22(\mathrm{~m}, 2 \mathrm{H}), 4.41(\mathrm{dd}, J=6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.34$ (m, 9 H), 7.45-7.48 (m, 4 H), 7.50-7.52 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 14.0 (q), 25.1 (t), 26.8 (t), 33.7 (t), 35.6 (t), 57.8 (d), 58.3 (d), 61.4 (t), 70.3 (d), 127.6 (d), 128.0 (d), 128.8 (d), 129.0 (d), 132.7 (d), 132.9 (d), 133.4 (s), 134.2 (s), 171.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{~S}_{3} 535.1406$, found 535.1403.

Compound 40.6e' had: FTIR (CDCl_{3} cast) $3497,3058,2981,2938,2859$, $1729,1583,1480,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.15(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ H), 1.27-1.36 (m, 1 H$), 1.41-1.50(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.66(\mathrm{~m}, 2 \mathrm{H}), 1.72-1.77(\mathrm{~m}, 1$ H), $1.82(\mathrm{dd}, J=14.8,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.71(\mathrm{~d}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.56(\mathrm{~d}, J=7.0 \mathrm{~Hz}$, 1 H), 3.85 (dddd, $J=8.7,6.9,6.9,3.4 \mathrm{~Hz}, 1 \mathrm{H}$), 4.06-4.15 (m, 2 H), 4.36 (dd, $J=$ $6.7,6.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.21-7.28(\mathrm{~m}, 9 \mathrm{H}), 7.40-7.44(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ MHz) $\delta 14.0(q), 25.9(t), 26.7(t), 34.0(t), 35.6(t), 56.1(d), 58.3(d), 61.4(t)$, 71.4 (d), 127.6 (d), 128.1 (d), 128.8 (d), 129.0 (d), 132.6 (d), 132.7 (d), 132.9 (s$)$, 133.0 (d), 134.2 (s), 171.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{32} \mathrm{NaO}_{3} \mathrm{~S}_{3}$ 535.1406, found 535.1407.

(Z)-2,8,8-Tris(phenylthio)octanoic Acid Ethyl Ester (40.6f).

$\mathrm{MsCl}(143.3 \mathrm{mg}, 1.25 \mathrm{mmol})$ and $\mathrm{Et}_{3} \mathrm{~N}(254 \mathrm{mg}, 2.51 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 6 e}$ ($214 \mathrm{mg}, 0.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for $2.5 \mathrm{~h}, \mathrm{DBU}$ ($382 \mathrm{mg}, 2.51$ mmol) was added and stirring at $0^{\circ} \mathrm{C}$ was continued for 3 h . The mixture was diluted with water (5 mL) and acidified with hydrochloric acid ($1 \mathrm{M}, 3 \mathrm{~mL}$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 1:10 EtOAchexane, gave $\mathbf{4 0 . 6 f}(110 \mathrm{mg}, 53 \%)$ as an oil: FTIR (CHCl_{3} cast) 3057, 2980, 2935, 2857, 1710, 1608, 1583, 1478, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $1.09(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.48$ (dddd, $J=7.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 2 \mathrm{H}), 1.85-$ $1.90(\mathrm{~m}, 2 \mathrm{H}), 2.51(\mathrm{dd}, J=15.0,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.12(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.39(\mathrm{t}, J$ $=13.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.14-7.18(\mathrm{~m}, 1 \mathrm{H}), 7.22-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.34-7.37(\mathrm{t}, J=7.5 \mathrm{~Hz}$, $1 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.9(\mathrm{q}), 26.7(\mathrm{t}), 27.8$ (t), 30.5 (t), 35.5 (t), 58.3 (d), 61.5 (t), 126.0 (d), 127.1 (s$), 127.7$ (d), 128.2 (d), 128.9 (d), 132.8 (d), 134.2 (s), 135.9 (s), 152.3 (d), 165.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NaO}_{2} \mathrm{~S}_{3}$ 517.1300, found 517.1301. We assign a Z geometry based on the assignment made to the derived acetate $\mathbf{2 5 h}$.

Acetic Acid (Z)-2,8,8-Tris(phenylthio)oct-2-enyl Ester (40.6g).

DIBAL (1.0 M in $\mathrm{PhMe}, 0.44 \mathrm{~mL}, 0.44 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 6 f}(73.0 \mathrm{mg}, 0.148 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ mL), and stirring at $-78^{\circ} \mathrm{C}$ was continued for 15 min . The cold bath was removed and stirring was continued for 15 min . $\mathrm{MeOH}(2 \mathrm{~mL})$ and saturated aqueous Rochelle salt (4 mL) were added sequentially, and stirring was continued for 30 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \times 1 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. The residual crude alcohol was used directly for the next step.

Pyridine ($70.4 \mathrm{mg}, 0.89 \mathrm{mmol}$) and $\mathrm{AcCl}(34.5 \mathrm{mg}, 0.44 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of the above crude alcohol and DMAP ($1.8 \mathrm{mg}, 0.015 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 16 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (10 mL), acidified with hydrochloric acid ($1 \mathrm{M}, 5 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.0 \times 7.5 \mathrm{~cm}$), using 3:25 EtOAc-hexane, gave $\mathbf{4 0 . 6 g}(53.4 \mathrm{mg}$, 73% from 40.6f) as an oil: FTIR (CDCl_{3} cast) 3057, 2932, 2855, 1740, 1582, $1478,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.42(\mathrm{tt}, J=15.2,15.2 \mathrm{~Hz}, 2 \mathrm{H})$, $1.63-1.69(\mathrm{~m}, 2 \mathrm{H}), 1.85-1.89(\mathrm{~m}, 2 \mathrm{H}), 2.00(\mathrm{~s}, 3 \mathrm{H}), 2.38(\mathrm{dd}, J=14.9,7.4 \mathrm{~Hz}, 2$ H), $4.40(\mathrm{t}, J=6.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.57(\mathrm{~d}, J=0.9 \mathrm{~Hz}, 2 \mathrm{H}), 6.21(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1$ H), 7.18-7.21 (m, 1 H$), 7.26-7.33(\mathrm{~m}, 10 \mathrm{H}), 7.45-7.47(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.8(\mathrm{q}), 26.7(\mathrm{t}), 28.3(\mathrm{t}), 29.4(\mathrm{t}), 35.6(\mathrm{t}), 58.4(\mathrm{~d}), 67.0(\mathrm{t})$,
126.4 (d), 127.7 (d), 128.2 (s), 128.9 (d), 129.0 (d), 129.5 (d), 132.7 (d), 134.2 (s), 134.3 (s), 140.3 (d), 170.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NaO}_{2} \mathrm{~S}_{3} 517.1300$, found 517.1305. TROESY measurements [$n \mathrm{nOe}$ between vinyl hydrogen and $\mathrm{CH}_{2} \mathrm{O}$] suggested that the double bond has Z geometry.

Acetic Acid (Z)-2,8,8-Tris(benzenesulfonyl)oct-2-enyl Ester (40.6h).

m-CPBA $(70-75 \%, 146 \mathrm{mg}, 0.59 \mathrm{mmol})$ was added to a solution of $\mathbf{4 0 . 6 g}$ ($24.4 \mathrm{mg}, 0.049 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred at $40^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 9:10 EtOAc-hexane, gave 40.6h (22 $\mathrm{mg}, 76 \%$) as a viscous oil: FTIR (CDCl_{3} cast) 3066, 2928, 1743, 1639, 1584, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.39$ (quintet, $\left.J=15.3 \mathrm{~Hz}, 2 \mathrm{H}\right), 1.60-$ 1.67 (m, 2 H), 1.92 ($\mathrm{s}, 3 \mathrm{H}), 2.15-2.19$ (m, 2 H$), 2.62(\mathrm{dd}, J=15.3,7.7 \mathrm{~Hz}, 2 \mathrm{H})$, $4.41(\mathrm{t}, J=5.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.82(\mathrm{~s}, 2 \mathrm{H}), 6.40(\mathrm{t}, J=7.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.64(\mathrm{~m}, 7$ H), 7.68-7.71 (m, 2 H$), 7.91-7.96(\mathrm{~m}, 6 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.7$
 129.3 (d), 133.5 (d), 134.6 (d), 136.9 (s), 137.8 (s), 141.4 (s), 148.7 (d), 170.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{30} \mathrm{NaO}_{8} \mathrm{~S}_{3} 613.0995$, found 613.0996.
(51.13).

$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($13.9 \mathrm{mg}, 0.043 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{4 0 . 6 h}$ $(12.6 \mathrm{mg}, 0.021 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$. Stirring at room temperature was continued for 2 h and the solvent was evaporated. Flash chromatography of the residue over silica gel (0.7 x 7 cm), using 3:2 $\mathrm{Et}_{2} \mathrm{O}$-hexane, gave $\mathbf{5 1 . 1 3}$ (5.3 mg , 47%) as a viscous oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3066,2932,2858,1583,1478,1447$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.22-1.26(\mathrm{~m}, 1 \mathrm{H}), 1.54-1.60(\mathrm{~m}, 1 \mathrm{H}), 1.72-$ 1.76 (m, 1 H), 1.86-1.98 (m, 3 H), 2.03-2.06 (m, 1 H$), 2.40$ (ddd, $J=15.7,12.8$, $3.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{dd}, J=11.6,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.01(\mathrm{~d}, J$ $=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.52-7.59(\mathrm{~m}, 6 \mathrm{H}), 7.61-7.64(\mathrm{~m}, 1 \mathrm{H}), 7.66-7.71(\mathrm{~m}, 2 \mathrm{H}), 8.02$ (dd, $J=8.4,1.3 \mathrm{~Hz}, 2 \mathrm{H}), 8.09(\mathrm{dd}, J=8.5,1.1 \mathrm{~Hz}, 2 \mathrm{H}), 8.21(\mathrm{dd}, J=8.4,1.0$ $\mathrm{Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 20.8(\mathrm{t}), 24.6$ (t), $32.0(\mathrm{t}), 32.4$ (t), 41.5 (d), 92.0 (s), 128.5 (d), 128.6 (d), 128.9 (d), 129.1 (d), 129.8 (t), 131.0 (d), 132.0 (d), 133.4 (d), 134.3 (d), 134.5 (d), 137.2 (s), 139.5 (s), 140.3 (s), 150.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{26} \mathrm{NaO}_{6} \mathrm{~S}_{3} 553.0784$, found 553.0782.

2-Allyl-6-oxocyclohexanecarboxylic Acid Ethyl Ester (45.1). ${ }^{\dagger}$

$\mathrm{TiCl}_{4}(21 \mathrm{~mL}, 20.62 \mathrm{mmol})$ and allyltrimethylsilane $(4.4 \mathrm{~mL}, 27.5 \mathrm{mmol})$ were added dropwise (over ca 10 min) to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of ethyl 6-oxocyclohex-1-enecarboxylate ${ }^{76}$ ($2.6 \mathrm{~g}, 19.6 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. Stirring was continued for 20 min and aqueous $\mathrm{Na}_{2} \mathrm{CO}_{3}(20 \%, 50 \mathrm{~mL})$ was added. The cold bath was removed and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 50 mL$)$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 16 \mathrm{~cm}$), using 20% EtOAc-hexane, gave 45.1 ($3.81 \mathrm{~g}, 92 \%$) as a colorless oil which was an inseparable equilibrium mixture of keto-enol tautomers (${ }^{13} \mathrm{C}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3076,2979,2940,2870,1743,1714,1642,1614,1216,915 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.31-1.39(\mathrm{~m}, 3 \mathrm{H}), 1.42-1.83(\mathrm{~m}, 3 \mathrm{H}), 1.96-2.45$ $(5 \mathrm{H}), 2.50-2.57(\mathrm{~m}, 0.7 \mathrm{H}), 2.63-2.68(\mathrm{~m}, 0.4 \mathrm{H}), 3.20(\mathrm{dd}, J=11.1,1.2 \mathrm{~Hz}, 0.5$ H), 4.19-4.37 (m, 2 H), 5.02-5.15 (m, 2 H), 5.74-5.91 (m, 1 H), 12.47 (s, 0.4 H); exact mass (electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{3} 233.1148$, found 233.1147.

Trans-6-Allyl-2,2-dimethoxycyclohexanecarboxylic Acid Ethyl Ester (45.2a) and Cis-6-Allyl-2,2-dimethoxycyclohexanecarboxylic Acid Ethyl Ester (45.2a'). ${ }^{\dagger}$

$p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(171 \mathrm{mg}, 0.9 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 5 . 1}$ $(3.75 \mathrm{~g}, 17.83 \mathrm{mmol})$ and $\mathrm{HC}(\mathrm{OMe})_{3}(2.54 \mathrm{~mL}, 23.18 \mathrm{mmol})$ in dry $\mathrm{MeOH}(35$ mL). Stirring was continued for 24 h and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(20 \mathrm{~mL})$, diluted with water (30 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (4 x 20 cm), using 15% EtOAc-hexanes gave 45.2a' (less polar isomer) ($1.75 \mathrm{~g}, 38 \%$, cis-
isomer) as a viscous oil and 45.2a (more polar isomer) (2.55 g , 56%, major, transisomer) as a viscous oil.

Compound 45.2a had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2942, 2832, 1734, 1641, 1447, $1182,916 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.48$ (m, 2 H), 1.56-1.70 (m, 2 H), 1.74-1.83 (m, 2 H), 1.87-2.03 (m, 3 H), 3.01 (dd, J $=4.4,1.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.14(\mathrm{~s}, 3 \mathrm{H}), 3.2(\mathrm{~s}, 3 \mathrm{H}), 4.14(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.98-5.02$ $(\mathrm{m}, 2 \mathrm{H}), 5.73-5.83(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.2(\mathrm{q}), 21.6(\mathrm{t})$, $26.0(\mathrm{t}), 27.6$ (t), 37.1 (d), 38.5 (t), 47.3 (q), $47.8(\mathrm{q}), 50.3(\mathrm{~d}), 59.9(\mathrm{t}), 100.8(\mathrm{~s})$, 116.3 (t), 136.6 (d), 171.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{4}$ 279.1567, found 179.1565.

Compound 45.2a' had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2943, 2833, 1736, 1640, $1448,1177,1050,913 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.10-1.18(\mathrm{~m}, 1 \mathrm{H})$, $1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.60(\mathrm{~m}, 3 \mathrm{H}), 1.80-1.88(\mathrm{~m}, 1 \mathrm{H}), 1.95-2.06(\mathrm{~m}, 3$ H), 2.14-2.20 (m, 1 H), $2.59(\mathrm{~d}, ~ J=6.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H}), 4.14$ $(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.98-5.02(\mathrm{~m}, 2 \mathrm{H}), 5.67-5.78(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, 125 MHz) $\delta 14.1$ (q), 19.7 (t), 27.5 (t), 30.2 (t), 36.7 (d), 38.0 (t), 48.2 (q), 48.6 (q), 53.2 (d), 60.1 (t), 100.8 (s), 116.4 (t), 136.9 (d), 172.4 (s); exact mass (electrospray) calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{4} 279.15668$, found 279.15672 .

Trans-2,2-Dimethoxy-6-(2-oxoethyl)cyclohexanecarboxylic Acid Ethyl Ester (40.8a). ${ }^{\dagger}$

45.2a

40.8a
O_{3} was bubbled into a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $45.2 \mathrm{a}(2.1 \mathrm{~g}$, $8.2 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ for 30 min , by which time a blue color persisted. O_{2} was passed through the solution for 30 min and $\mathrm{Ph}_{3} \mathrm{P}(3 \mathrm{~g}, 11.4 \mathrm{mmol})$ was then added. The cold bath was removed after 30 min and stirring was continued
for 10 h . Evaporation of the solvent and flash chromatography of the residue over silica gel (4 x 18 cm), using 20\% EtOAc-hexane, gave 40.8a ($2.02 \mathrm{~g}, 96 \%$) as a colorless viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $2946,1734,1181,1049 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.16-1.22(\mathrm{~m}, 1 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.49-1.54(\mathrm{~m}, 2$ H), 1.62-1.67 (m, 1 H$), 1.92-2.02(\mathrm{~m}, 2 \mathrm{H}), 2.45(\mathrm{ddd}, J=18.0,9.5,2.0 \mathrm{~Hz}, 1 \mathrm{H})$, 2.54-2.60 (m, 2 H), 2.65-2.66 (m, 1 H), $3.18(\mathrm{~s}, 3 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H}), 4.10-4.17$ (m, $2 \mathrm{H})$, 9.69-9.70 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.1$ (q), 19.1 (t), 27.6 (t), 29.3 (t$), 31.1$ (d), 48.0 (t), 48.2 (q), 48.3 (q), 52.1 (d), 60.4 (t), 100.5 (s$), 171.9$ (s), 201.9 (d). The aldehyde is sensitive and attempts to obtain its mass spectrum invariably led to the mass spectrum of the derived carboxylic acid.

6-[3-Ethoxycarbonyl-2-hydroxy-3-(phenylseleno)butyl]-2,2-

 dimethoxycyclohexanecarboxylic Acid Ethyl Ester (40.8b-1, 40.8b-2, 40.8b-3, 40.8b-4).
40.8a

40.8b
$\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $3.29 \mathrm{~mL}, 8.23 \mathrm{mmol}$) was added over ca 5 min to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(1.25 \mathrm{~mL}, 8.88 \mathrm{mmol})$ in THF $(15 \mathrm{~mL})$. Stirring was continued for 40 min and a solution of $38.1(2.368 \mathrm{~g}, 9.21$ mmol) in THF (10 mL plus 2 mL as a rinse) was added over ca 5 min . Stirring was continued for 1 h and a solution of $\mathbf{4 0 . 8 a}(1.7 \mathrm{~g}, 6.58 \mathrm{mmol})$ in THF (10 mL plus 2 mL as a rinse) was added over ca 5 min . Stirring at $-78^{\circ} \mathrm{C}$ was continued for 3 h and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 10 min and the mixture was diluted with water (50 mL) and extracted with EtOAc ($3 \times 20 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. ${ }^{1} \mathrm{H}$ NMR analysis of the crude residue indicated a 30:25:24:21 mixture of 4 diastereomers.

Flash chromatography of the residue over silica gel ($4 \times 22 \mathrm{~cm}$), using 15% EtOAc-hexane, gave 40.8b as four fractions: 40.8b-1 (least polar) ($520 \mathrm{mg}, 15 \%$, single isomer) as a viscous oil, $\mathbf{4 0 . 8 b} \mathbf{- 2}$ and $\mathbf{4 0 . 8 b}-\mathbf{3}$ ($1.2 \mathrm{~g}, 35 \%$, mixture of two diastereoisomers) as a viscous oil and 40.8b-4 (most polar) ($610 \mathrm{mg}, 18 \%$, single isomer) as a viscous oil.

Compound 40.8b-1 had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3507,2938,1722,1246$, $1050,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.26(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.37(\mathrm{~s}, 3 \mathrm{H}), 1.50-1.55(\mathrm{~m}, 4 \mathrm{H}), 1.64-1.72(\mathrm{~m}, 2 \mathrm{H}), 1.96-2.05$ (m, 2 H), 2.15-2.20 (m, 1 H$), 2.71(\mathrm{~d}, J=5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.20(\mathrm{~s}, 3$ H), 3.99-4.20 (m, 5 H), 7.29-7.34 (m, 2 H), 7.38-7.42 (m, 1 H), 7.58-7.63 (m, 2 $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.8(\mathrm{q}), 14.1(\mathrm{q}), 17.5(\mathrm{q}), 19.2(\mathrm{t}), 28.5(\mathrm{t})$, 29.3 (t), 34.6 (d), 36.0 (t), 48.07 (q), 48.12 (q), 51.5 (d), 57.6 (s), 60.1 (t), 61.1 (t), 72.3 (d), 100.7 (s), 126.6 (s), 128.8 (d), 129.3 (d), 138.0 (d), 172.4 (s), 173.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se} 539.1519$, found 539.1512.

The middle fraction containing compounds $\mathbf{4 0 . 8 b}-2$ and $\mathbf{4 0 . 8 b}-3$ had: (data on a fraction containing a 76:24 mixture of diastereomers) FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3507,2939,1727,1439,1247,1051,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right)$ $\delta 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 0.7 \mathrm{H}), 1.18(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2.3 \mathrm{H}), 1.24-1.29(\mathrm{~m}, 4 \mathrm{H}), 1.39$ $(\mathrm{s}, 2.3 \mathrm{H}), 1.42(\mathrm{~s}, 0.7 \mathrm{H}), 1.44-1.57(\mathrm{~m}, 2 \mathrm{H}), 1.62-1.72(\mathrm{~m}, 1 \mathrm{H}), 1.89-2.26(\mathrm{~m}, 4$ H), 2.77 (br d, $J=4.8 \mathrm{~Hz}, 0.3 \mathrm{H}$), $2.83(\mathrm{br} \mathrm{d}, J=3.6 \mathrm{~Hz}, 0.7 \mathrm{H}), 2.92(\mathrm{br} \mathrm{d}, J=$ $7.6 \mathrm{~Hz}, 0.7 \mathrm{H}$), 3.08 (br d, $J=2.8 \mathrm{~Hz}, 0.3 \mathrm{H}$), 3.16 (s, 0.7 H), 3.18 (s, 2.3 H), 3.20 (s, 0.7 H), 3.24 (s, 2.3 H), 3.94-4.22 (m, 5 H), 7.28-7.32 (m, 2 H), 7.36-7.41 (m, 1 H), 7.58-7.63 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.8(\mathrm{q}), 13.9(\mathrm{q}), 14.2(\mathrm{q})$, 16.9 (q), 18.7 (t$), 18.8$ (q), 19.2 (t$), 25.7$ (t$), 28.7$ (t$), 29.2$ (t$), 29.3$ (t$), 34.0$ (d), 34.3 (d), 35.5 (t), 35.9 (t), 48.0 (q), 48.05 (q), 48.1 (q), 50.8 (d), 52.3 (d), 55.2 (s), $57.4(\mathrm{~s}), 60.3(\mathrm{t}), 61.0(\mathrm{t}), 61.2(\mathrm{t}), 70.9(\mathrm{~d}), 74.5(\mathrm{~d}), 100.7(\mathrm{~s}), 100.8(\mathrm{~s}), 126.6$ (s), 126.9 (s), 128.7 (d), 128.8 (d), 129.3 (d), 129.4 (d), 138.0 (d), 138.2 (d), 172.4 (s$), 172.5(\mathrm{~s}), 172.8(\mathrm{~s}), 174.0(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se} 539.1519$, found 539.1520 .

Compound 40.8b-4 had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3502, 2941, 2833, 1728, 1439, 1246, 1051, $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ H), 1.24-1.30 (m, 1 H$), 1.25(\mathrm{t}, \mathrm{J}=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.46(\mathrm{~m}, 1 \mathrm{H}), 1.38(\mathrm{~s}, 3 \mathrm{H})$, $1.50-1.58(\mathrm{~m}, 2 \mathrm{H}), 1.65-1.71(\mathrm{~m}, 1 \mathrm{H}), 1.94-2.07(\mathrm{~m}, 3 \mathrm{H}), 2.24$ (dddd, $J=9.6$, $9.6,5.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.77(\mathrm{dd}, J=5.2,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.01-3.02(\mathrm{~m}, 1 \mathrm{H}), 3.201$ $(\mathrm{s}, 3 \mathrm{H}), 3.204(\mathrm{~s}, 3 \mathrm{H}), 3.99-4.03(\mathrm{~m}, 1 \mathrm{H}), 4.04-4.20(\mathrm{~m}, 4 \mathrm{H}), 7.27-7.31(\mathrm{~m}, 2$ H), 7.35-7.40 (m, 1 H$), 7.55-7.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9$ (q), 14.1 (q), 18.3 (q), 19.0 (t), 26.1 (t), 29.5 (t), 33.8 (d), 35.4 (t), 48.13 (q), 48.20 (q), 52.8 (d), 54.9 (s$), 60.3$ (t), 61.2 (t), 73.4 (d), 100.8 (s), 126.7 (s), 128.7 (d), 129.3 (d), 138.0 (d), 172.4 (s), 173.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se} 539.1519$, found 539.1513.

Trans-6-[2-Acetoxy-3-ethoxycarbonyl-3-(phenylseleno)butyl]-2,2dimethoxycyclohexanecarboxylic Acid Ethyl Ester (40.8c). ${ }^{\dagger}$

40.8b-4

40.8c

Pyridine ($0.55 \mathrm{~mL}, 6.75 \mathrm{mmol}$) and $\mathrm{AcCl}(0.25 \mathrm{~mL}, 3.38 \mathrm{mmol})$ were added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{2 6 b}-4(580 \mathrm{mg}, 1.125$ $\mathrm{mmol})$ and DMAP ($15 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The ice bath was left in place but not recharged and stirring was continued for 12 h . The mixture was quenched with water $(15 \mathrm{~mL})$, acidified with hydrochloric acid $(10 \%, 1 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 10 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (2 x 20 cm), using 15\% EtOAc-hexane, gave 40.8c (435 mg , 69\%) as a viscous oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2942, 2833, 1744, 1723, 1370, 1237, $744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.07(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29-1.38$ $(\mathrm{m}, 1 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.46-1.69(\mathrm{~m}, 4 \mathrm{H}), 1.78-1.91(\mathrm{~m}, 1 \mathrm{H}), 1.94(\mathrm{~s}, 3 \mathrm{H})$,
1.95-2.13 (m, 2 H), 2.18-2.28 (m, 1 H$), 2.58(\mathrm{~d}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{~s}, 3 \mathrm{H})$, $3.22(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.94-4.02(\mathrm{~m}, 1 \mathrm{H}), 4.08-4.16(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{~d}$, $J=10.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.57-7.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.8$ (q), 14.2 (q), 18.0 (q), 19.2 (t$), 20.9$ (q), 26.2 (t$)$, 29.9 (t), 33.2 (d), 34.6 (t), 48.1 (q), 48.4 (q), 53.3 (s$), 54.1$ (d), 60.2 (t$), 61.2$ (t$)$, 73.6 (d), 100.6 (s), 126.4 (s), 128.9 (d), 129.5 (d), 137.9 (d), 169.7 (s), 172.0 (s), 172.11 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{38} \mathrm{NaO}_{8}{ }^{80} \mathrm{Se} 581.1624$, found 581.1625.

2-(2-Acetoxy-3-ethoxycarbonylbut-3-enyl)-6-oxocyclohexanecarbox-

 ylic Acid Ethyl Ester (40.8d). ${ }^{\dagger}$
40.8c

40.8d
$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 1.0 \mathrm{~mL}, 9.8 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-5^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of $\mathbf{4 0 . 8 c}(400 \mathrm{mg}, 0.72 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$ and water (1 mL). The cold bath was left in place but not recharged and stirring was continued for 3 h , by which time the temperature had risen to $0^{\circ} \mathrm{C}$. The mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$ and stirred at $0^{\circ} \mathrm{C}$ for 5 min . The cold bath was removed, stirring was continued for 5 min , and the mixture was diluted with water (15 mL) and extracted with EtOAc (3 x 10 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 18 \mathrm{~cm}$), using $25 \% \mathrm{EtOAc}-$ hexane, gave $40.8 \mathrm{~d}(150 \mathrm{mg}, 59 \%)$ as a viscous oil which was an equilibrium mixture of tautomers (${ }^{13} \mathrm{C}$ NMR): FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2982, 2941, 1744, 1715, $1644,1369,1233, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.26-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.42-$ $1.53(\mathrm{~m}, 1 \mathrm{H}), 1.60-1.81(\mathrm{~m}, 4 \mathrm{H}), 1.86-1.92(\mathrm{~m}, 1 \mathrm{H})$, 2.10-2.11 (two s, 3 H), 2.19-2.36 (m, 2 H), 2.46-2.51 (m, 0.2 H), 2.64-2.69 (m, 0.7 H), 3.07 (dd, $J=10.8$,
$0.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.14-4.29(\mathrm{~m}, 4 \mathrm{H}), 5.69-5.77$ (m, 2 H), 6.24-6.27 (m, 1 H$), 12.40$ $(\mathrm{s}, 0.7 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ (enol form) $\delta 14.1$ (q), 14.2 (q), 16.9 (t),
 123.9 (s), 140.2 (t), 165.1 (s$), 170.0$ (s$), 172.3$ (s$), 173.1$ (s$) ;$ (keto form) $\delta 24.5$ (t), 28.4 (t$), 37.8(\mathrm{~d}), 40.0(\mathrm{t}), 41.1$ (t), $61.0(\mathrm{t}), 63.4$ (d), 68.7 (d), 124.5 (s$), 140.2$ (t), 205.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{7} 377.1571$, found 377.1573.

In this oxidation the acetal was hydrolyzed, presumably by $\mathrm{PhSe}(\mathrm{O}) \mathrm{OH}$.

Cis-8-Oxo-4,4a,5,6,7,8-hexahydro-1H-naphthalene-2,8a-dicarboxylic

 Acid Diethyl Ester (51.14). ${ }^{\dagger}$

DBU ($0.04 \mathrm{~mL}, 0.3 \mathrm{mmol}$) was added dropwise to a stirred solution of 40.8d ($52 \mathrm{mg}, 0.146 \mathrm{mmol}$) in $\mathrm{MeCN}(1.5 \mathrm{~mL})$. Stirring was continued for 30 min and the mixture was filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 50% EtOAc-hexane (60 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 51.14 (36 $\mathrm{mg}, 84 \%)$ as a colorless oil. The stereochemical assignment is tentative and is based on analogy: ${ }^{71}$ FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast $) 2939,1713,1660,1427,1245,1096$, $723, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.25(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 1.60-1.70(\mathrm{~m}, 1 \mathrm{H}), 1.80-1.91(\mathrm{~m}, 2 \mathrm{H}), 1.99-2.15(\mathrm{~m}, 2 \mathrm{H}), 2.27-2.36$ (m, 1 H), 2.40-2.47 (m, 1 H), 2.51-2.58 (m, 1 H), 2.70-2.76 (m, 3 H), 4.15-4.27 (m, 4 H$), 6.90$ (dddd, $J=4.0,4.0,2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right)$ $\delta 14.1$ (q), 14.2 (q), 23.9 (t), 26.5 (t), 26.6 (t), 28.2 (t), 36.2 (d), 38.0 (t), 6.56 (t),
60.61 (s), 61.4 (t), 126.8 (s$), 136.4$ (d), 166.2 (s$), 171.6$ (s$), 207.3$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{5} 317.1359$, found 317.1357.

3-Allyl-2,2-dimethoxycyclohexanecarboxylic Acid Ethyl Ester (46.2). ${ }^{\dagger}$

$p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(285 \mathrm{mg}, 1.49 \mathrm{mmol})$ was added to a stirred solution of $46.1^{61}(6.0 \mathrm{~g}, 28.53 \mathrm{mmol})$ and $\mathrm{HC}(\mathrm{OMe})_{3}(4.4 \mathrm{~mL}, 40.5 \mathrm{mmol})$ in $\mathrm{MeOH}(80$ mL). Stirring was continued for 24 h and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(15 \mathrm{~mL})$, diluted with water (100 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 50 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($4 \times 20 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 46.1 ($4.13 \mathrm{~g}, 57 \%$) as a colorless liquid which was very largely a single isomer, but contained impurities (${ }^{13} \mathrm{C}$ NMR): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 2941, 2866, 1734, 1640, 1445, 1201, 1053, $910 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.96(\mathrm{~m}, 7 \mathrm{H}), 2.09-2.15(\mathrm{~m}, 1$ H), 2.49-2.54 (m, 1 H), 2.73 (dd, $J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 3.25(\mathrm{~s}, 3 \mathrm{H})$, 4.09-4.21 (m, 2 H$), 4.95-5.07(\mathrm{~m}, 2 \mathrm{H}), 5.66-5.80(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 14.1$ (q), $20.0(\mathrm{t}), 25.3$ (t$), 26.7$ (t$), 32.5$ (t), 40.7 (d), 46.9 (d), 49.0 (q), 49.1 (q), 60.3 (t), 101.8 (s$), 115.6$ (t), 137.9 (d), 173.4 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{4}$ 279.1567, found 279.1565.

2,2-Dimethoxy-3-(2-oxoethyl)cyclohexanecarboxylic Acid Ethyl Ester (40.9a). ${ }^{\dagger}$

O_{3} was bubbled into a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $46.2(2.45 \mathrm{~g}$, $9.55 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(120 \mathrm{~mL})$ for 30 min , by which time a blue color persisted. O_{2} was passed through the solution for 30 min and $\mathrm{Ph}_{3} \mathrm{P}(3.26 \mathrm{~g}, 12.42 \mathrm{mmol})$ was then added. The cold bath was removed and stirring was continued for 8 h . Evaporation of the solvent and flash chromatography of the residue over silica gel ($4 \times 20 \mathrm{~cm}$), using 15% EtOAc-hexane, gave 40.9a ($1.51 \mathrm{~g}, 61 \%$) as colorless oil which was a single isomer: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 2945,2868,1735,1132,901 \mathrm{~cm}^{-}$ ${ }^{1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.23(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.48(\mathrm{~m}, 2 \mathrm{H})$, $1.58-1.86(\mathrm{~m}, 4 \mathrm{H}), 2.23(\mathrm{ddd}, J=16.5,8.7,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.74-2.82(\mathrm{~m}, 2 \mathrm{H})$, 2.86-2.98 (m, 1 H), 3.20 (s, 3 H), 3.22 ($\mathrm{s}, 3 \mathrm{H}$), 4.06-4.16 (m, 2 H), $9.64(\mathrm{t}, J=2.4$ $\mathrm{Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 14.1\right.$ (q), 20.4 (t$), 26.6(\mathrm{t}), 28.1(\mathrm{t}), 35.9(\mathrm{~d}), 44.4(\mathrm{t})$, 46.8 (d), 48.9 (q), 49.7 (q), 60.3 (t), 100.8 (s), 172.7 (s), 201.9 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}_{6} 297.1309$, found 297.1308 (the aldehyde is sensitive, and attempts to obtain its mass spectrum invariably led to the mass spectrum of the derived carboxylic acid).

3-[3-Ethoxycarbonyl-2-hydroxy-3-(phenylseleno)butyl]-2,2-

 dimethoxycyclohexanecarboxylic Acid Ethyl Ester (40.9b-1, 40.9b-2, 40.9b-3, 40.9b-4).
40.9a

40.9b-1,b-2,b-3,b-4
$\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $3.4 \mathrm{~mL}, 8.43 \mathrm{mmol}$) was added dropwise over ca 5 min to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(1.26 \mathrm{~mL}, 8.95$ mmol) in THF (10 mL). Stirring was continued for 40 min and a solution of $\mathbf{3 8 . 1}$ ($2.3 \mathrm{~g}, 8.95 \mathrm{mmol}$) in THF (10 mL plus 1 mL as a rinse) was added over 5 min . Stirring was continued for 1 h and a solution of 40.9 a ($1.36 \mathrm{~g}, 5.26 \mathrm{mmol}$) in THF (10 mL plus 1 mL as a rinse) was added over 5 min . Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 4 h and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(10 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 10 min and the mixture was diluted with water (50 mL) and extracted with EtOAc (3 x 15 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($4 \times 28 \mathrm{~cm}$), using $15 \% \mathrm{EtOAc}-$ hexane, gave a less polar isomer 40.9b-1 ($510 \mathrm{mg}, 19 \%$), a $72: 28$ mixture of diastereoisomers $\mathbf{4 0 . 9 b - 2}$ and $\mathbf{4 0 . 9 b - 3}(1.25 \mathrm{~g}, 46 \%)$ and a more polar isomer 40.9b-4 ($780 \mathrm{mg}, 29 \%$) as viscous oils. The stereochemical configuration at the carbinol carbon is the same in $\mathbf{4 0 . 9 b} \mathbf{- 1}$ and $\mathbf{4 0 . 9 b} \mathbf{- 2}$, while the opposite configuration applies to $\mathbf{4 0 . 9 b - 3}$ and $\mathbf{4 0 . 9 b}-4$ at the carbinol center.

Compound 40.9b-1 had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3510, 2940, 2867, 1723, $1247,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.13(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.24(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.44(\mathrm{~s}, 3 \mathrm{H}), 1.57-1.87(\mathrm{~m}, 6 \mathrm{H}), 2.26-2.32$ (m, 1 H), 2.70 (dd, $J=8.44 .4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.16 (s, 3 H), 3.22 ($\mathrm{s}, 3 \mathrm{H}$), 3.95-4.15 (m, $5 \mathrm{H}), 7.29-7.33(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.42(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR
$\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.7$ (q), 14.1 (q), 16.9 (q), 20.3 (t), 26.8 (t$), 27.8$ (t$), 31.4$ (t), 39.9 (d), 46.9 (q), 48.7 (q), 49.2 (d), 57.9 (s), 60.2 (t), 61.0 (t), 73.6 (d), 102.1 (s), 126.7 (s), 128.7 (d), 129.3 (d), 138.0 (d), 173.1 (s$), 173.2$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se} 539.1519$, found 539.1519.

The mixture of compounds $\mathbf{4 0 . 9 b} \mathbf{- 2}$ and $\mathbf{4 0 . 9 b - 3}$ had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $)$ 3514, 2939, 2866, 1724, 1247, $1053744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.10$ (t, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 1.24-1.34(\mathrm{~m}, 4 \mathrm{H}), 1.38-1.48(\mathrm{~m}, 1$ H), $1.43(\mathrm{~s}, 2 \mathrm{H}), 1.46(\mathrm{~s}, 1 \mathrm{H}), 1.51-1.88(\mathrm{~m}, 5 \mathrm{H}), 2.29-2.40(\mathrm{~m}, 2 \mathrm{H}), 2.60(\mathrm{dd}, J$ $=10.0,4.0 \mathrm{~Hz}, 0.28 \mathrm{H}), 2.75(\mathrm{dd}, J=8.4,4.4 \mathrm{~Hz}, 0.72 \mathrm{H}), 2.80-2.98(\mathrm{br} \mathrm{s}, 1 \mathrm{H})$, 3.24 ($\mathrm{s}, 1 \mathrm{H}$), 3.25-3.26 (two s, 3 H), 3.28 (s, 3 H), 3.94-4.18 (m, 5 H), 7.27-7.33 (m, 2 H), 7.36-7.42 (m, 1 H), 7.59-7.63 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 13.7 (q), 13.9 (q), 14.0 (q), 16.7 (q), 18.2 (q), 19.7 (t), 20.2 (t), 25.8 (t), 26.6 (t), 67.9 (t), 28.1 (t), 30.4 (t), 30.8 (t , 38.1 (d), 40.1 (d), 46.90 (q), 46.96 (q), 48.6 (q), $48.86(\mathrm{~d}), 48.89(\mathrm{q}), 49.3(\mathrm{~d}), 55.1(\mathrm{~s}), 57.5(\mathrm{~s}), 60.2(\mathrm{t}), 60.3(\mathrm{t}), 60.9(\mathrm{t}), 61.1(\mathrm{t})$, 71.1 (d), 76.9 (d), 101.9 (s), 102.1 (s), 126.6 (s), 126.7 (s), 128.6 (d), 128.7 (d), 129.2 (d), 129.3 (d), 137.9 (d), 138.1 (d), 172.6 (s), 173.2 (s), 173.2 (s), 173.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se} 539.1519$, found 539.1518.

Compound 40.9b-4 had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3507, 2941, 2866, 1725, $1439,1246,1158,743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ H), $1.27(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 2 \mathrm{H}), 1.45(\mathrm{~s}, 3 \mathrm{H}), 1.60-1.89(\mathrm{~m}, 6 \mathrm{H})$, 2.39-2.42 (m, 1 H), 2.68 (dd, $J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.06$ (br s, 1 H$), 3.24(\mathrm{~s}, 3 \mathrm{H})$, $3.26(\mathrm{~s}, 3 \mathrm{H}), 3.99(\mathrm{dd}, J=9.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.16(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 2 \mathrm{H}), 7.26-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.8$ (q), 14.0 (q), 17.9 (q), 19.9 (t), 25.7 (t), 26.6 (t), 29.6 (t), 37.6 (d), 47.0 (d), 48.8 (q), 48.9 (q), 54.8 (s$), 60.3$ (t), 61.1 (t$), 73.4$ (d), 102.0 (s), 126.6 (s), 128.7 (d), 129.2 (d), 137.8 (d), 173.3 (s), 173.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{36} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se} 539.1519$, found 539.1518.

3-(3-Ethoxycarbonyl-2-hydroxybut-3-enyl)-2,2-dimethoxycyclohex-

 anecarboxylic Acid Ethyl Ester (40.9c-1). ${ }^{\dagger}$
$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.2 \mathrm{~mL}, 1.96 \mathrm{mmol})$ was added dropwise to a stirred and cooled ($-10{ }^{\circ} \mathrm{C}$, ice-acetone bath) solution of $\mathbf{4 0 . 9 b}-1$ ($100 \mathrm{mg}, 0.193 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. The mixture was stirred vigorously for 1 h and quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(1 \mathrm{~mL})$. The cold bath was removed after 5 min , stirring was continued for 10 min and the mixture was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using $20 \% \mathrm{EtOAc}-$ hexane, gave 40.9c-1 ($63 \mathrm{mg}, 91 \%$) as a colorless liquid: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3510, 2942, 2868, 2837, 1718, 1628, 1177, $1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}) \delta 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.38-1.48(\mathrm{~m}, 2 \mathrm{H})$, 1.55-1.63 (m, 3 H), 1.70-1.76 (m, 1 H), 1.79-1.86 (m, 1 H), 2.19-2.25 (m, 2 H), 2.78 (dd, $J=7.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.251(\mathrm{~s}, 3 \mathrm{H}), 3.252(\mathrm{~s}, 3 \mathrm{H}), 3.38(\mathrm{br} \mathrm{s}, 1 \mathrm{H}), 4.13$ $(\mathrm{q}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.26(\mathrm{~m}, 2 \mathrm{H}), 4.56(\mathrm{~m}, 1 \mathrm{H}), 5.91(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $6.28(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.1$ (q), 14.2 (q), $20.5(\mathrm{t}), 26.9(\mathrm{t})$, 28.8 (t), 35.1 (t), 36.9 (d), 47.1 (q), 48.6 (q), 49.7 (d), 60.3 (t), 60.6 (t), 70.6 (d), $101.8(\mathrm{~s}), 125.3(\mathrm{~s}), 142.2(\mathrm{t}), 166.5(\mathrm{~s}), 173.0(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{7}$ 381.1884, found 381.1893.

3-(3-Ethoxycarbonyl-2-hydroxybut-3-enyl)-2,2-dimethoxycyclohex-

 anecarboxylic Acid Ethyl Ester (40.9c-4). ${ }^{\dagger}$
40.9b-4

40.9c-1
$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 1.5 \mathrm{~mL}, 14.7 \mathrm{mmol})$ was added dropwise to a stirred and cooled ($-10{ }^{\circ} \mathrm{C}$, ice-acetone bath) solution of $\mathbf{4 0 . 9 \mathrm { b }} \mathbf{- 4}$ ($730 \mathrm{mg}, 1.42 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. Stirring was continued for 1 h and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and saturated aqueous in $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5$ $\mathrm{mL})$. The cold bath was removed after 10 min , stirring was continued for 10 min and the mixture was diluted with water $(10 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x}$ $10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using 25% EtOAc-hexane, gave 40.9c-4 (494 mg, 97\%) as a viscous oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3501, 2941, 2867, 1714, 1629, 1374, $1061 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{mg}\right) \delta 1.24$ $(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.65(\mathrm{~m}, 4 \mathrm{H}), 1.66-1.76(\mathrm{~m}, 2$ H), 1.79-1.89 (m, 2 H), 2.41-2.47 (m, 1 H), 2.69 (dd, $J=8.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.03$ (br d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.23(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 4.13(\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.17-$ $4.25(\mathrm{~m}, 2 \mathrm{H}), 4.42(\mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.90(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.23(\mathrm{dd}, J=$ $1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.08$ (q), 14.14 (q), 20.1 (t),
 69.8 (d), 101.9 (s$), 124.2$ (s$), 143.6$ (t), 166.4 (s$), 173.2$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{7} 381.1884$, found 381.1882.

3-(2-Acetoxy-3-ethoxycarbonylbut-3-enyl)-2,2-dimethoxycyclohexane-

 carboxylic Acid Ethyl Ester (40.9d). ${ }^{\dagger}$

Pyridine ($0.05 \mathrm{~mL}, 0.56 \mathrm{mmol}$) and $\mathrm{AcCl}(0.02 \mathrm{~mL}, 0.28 \mathrm{mmol})$ were added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 9 c - 1}(50 \mathrm{mg}, 0.139$ mmol) and DMAP ($3 \mathrm{mg}, 0.02 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. Stirring was continued for 2 h and the mixture was quenched with water (5 mL), acidified with hydrochloric acid ($10 \%, 0.5 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using $20 \% \mathrm{EtOAc}-$ hexane, gave 40.9d ($52 \mathrm{mg}, 94 \%$) as a viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 2944, $2868,1739,1635,1371,1236,1049 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{mg}\right) \delta 1.22(\mathrm{t}, J=$ $7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.51(\mathrm{~m}, 2 \mathrm{H}), 1.55-1.86(\mathrm{~m}, 5 \mathrm{H})$, 2.03 (s, 3 H), 2.11-2.24 (m, 2 H), 2.67 (dd, $J=8.4,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.20(\mathrm{~s}, 3 \mathrm{H})$ $3.21(\mathrm{~s}, 3 \mathrm{H}), 4.04-4.16(\mathrm{~m}, 2 \mathrm{H}), 4.18-4.27(\mathrm{~m}, 2 \mathrm{H}), 5.65(\mathrm{t}, J=6.4 \mathrm{~Hz}, 1 \mathrm{H})$, $5.82(\mathrm{~m}, 1 \mathrm{H}), 6.29(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.0(\mathrm{q}), 20.1$ (t), 21.0 (q), 26.4 (t), 27.1 (t), 32.7 (t), 38.0 (d), 46.9 (q), 48.7 (q), 49.1 (d), 60.1 (t), 60.7 (t), 71.8 (d), 101.6 (s$), 125.6$ (s$), 140.2$ (t), 165.2 (s$), 169.7$ (s$), 173.0$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{8} 423.1989$, found 423.1986 .

3-(2-Acetoxy-3-ethoxycarbonylbut-3-enyl)-2,2-dimethoxycyclohexane-

 carboxylic Acid Ethyl Ester (40.9d'). ${ }^{\dagger}$

Pyridine ($0.090 \mathrm{~mL}, 1.2 \mathrm{mmol}$) and $\mathrm{AcCl}(0.04 \mathrm{~mL}, 0.59 \mathrm{mmol})$ were added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 9} \mathbf{c}-4(105 \mathrm{mg}, 0.293$ mmol) and DMAP ($6.0 \mathrm{mg}, 0.045 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Stirring was continued for 2 h and the mixture was quenched with water (5 mL), acidified with hydrochloric acid $(10 \%, 0.5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 10 \mathrm{~cm}$), using 20\% EtOAchexane, gave 40.9d' ($105 \mathrm{mg}, 90 \%$) as a viscous oil which was used without full characterization: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 2981,2942,2869,1745,1634,1371,1232$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.24(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ H), 1.42-1.87 (m, 9 H$), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.62(\mathrm{dd}, J=9.6,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 3 \mathrm{H})$, $3.24(\mathrm{~s}, 3 \mathrm{H}), 4.06-4.28(\mathrm{~m}, 4 \mathrm{H}), 5.61-5.64(\mathrm{~m}, 1 \mathrm{H}), 5.74(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 6.25 (br s, 1 H); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{8}$ 423.1989, found 423.1991.

3-(2-Acetoxy-3-ethoxycarbonylbut-3-enyl)-2-oxocyclohexanecarbox-

 ylic Acid Ethyl Ester (40.9e). ${ }^{\dagger}$
40.9d

40.9e

A mixture of $\mathbf{4 0 . 9 d}(84 \mathrm{mg}, 0.21 \mathrm{mmol})$ and Amberlyst-15 (150 mg) in acetone (4 mL) was stirred for 1 h and filtered through a pad of silica gel (2 x 2 cm), using 70% EtOAc-hexane (50 mL). The filtrate was evaporated to give 40.9e ($67 \mathrm{mg}, 91 \%$ as a viscous oil which was an inseparable mixture of keto-enol tautomers: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 2982,2938,2865,1744,1716,1648,1371,1235$, $1026,818 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.28-1.38(\mathrm{~m}, 6 \mathrm{H}), 1.45-2.07(\mathrm{~m}$, $5 \mathrm{H}), 2.09(\mathrm{~s}, 3 \mathrm{H}), 2.11-2.34(\mathrm{~m}, 1.7 \mathrm{H}), 2.41-2.49(\mathrm{~m}, 1.8 \mathrm{H}), 2.69-2.75(\mathrm{~m}, 0.3$ H), 3.39-3.53 (m, 0.8 H), 4.20-4.32 (m, 4 H$), ~ 5.67-5.72(\mathrm{~m}, 0.8 \mathrm{H}), ~ 5.82-5.88(\mathrm{~m}$, $1.2 \mathrm{H})$, 6.33-6.36(m, 1 H$), 12.42(\mathrm{~s}, 0.2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.06$ (q), 14.10 (q), 14.13 (q), 14.24 (q), $20.0(\mathrm{t}), 20.98(\mathrm{q}), 21.02(\mathrm{q}), 21.1(\mathrm{q}), 21.7(\mathrm{t})$, 22.6 (t , 24.2 (t$), 27.9$ (t$), 30.4$ (t$), 30.8$ (t$), 33.5$ (t$), 33.9$ (t$), 34.4$ (t$), 35.0$ (t$), 35.7$ (d), 37.0 (t) , 45.8 (d), 47.6 (d), 56.0 (d), 57.7 (d), 60.2 (t), 60.81 (t), 60.86 (t), 60.90 (t$), 60.92$ (t$), 60.96$ (t$), 61.2$ (t$), 70.5$ (d), 70.6 (d), 70.8 (d), 97.9 (s$), 125.6$ (s$), 125.7$ (s$), 140.0$ (t), 140.27 (t), 140.29 (t$), 165.1$ (s$), 165.3$ (s$), 169.65$ (s$)$, 169.77 (s), 169.79 (s), 169.87 (s), 172.8 (s), 173.5 (s), 205.9 (s), 206.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{7} 377.1571$, found 377.1571.

3-(2-Acetoxy-3-ethoxycarbonylbut-3-enyl)-2-oxocyclohexanecarbox-

 ylic Acid Ethyl Ester (40.9e'). ${ }^{\dagger}$
40.9d'

$40.9 e^{\prime}$

A mixture of 40.9d' ($95 \mathrm{mg}, 0.24 \mathrm{mmol}$) and Amberlyst-15 (200 mg) in acetone (4 mL) was stirred for 1 h and filtered through a pad of silica gel (2 x 2 cm), using 70% EtOAc-hexane (50 mL). The filtrate was evaporated to give 40.9e' ($80 \mathrm{mg}, 95 \%$) as a viscous oil which was an inseparable mixture of ketoenol tautomers: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 2982$, 2939, 2864, 1744, 1715, 1649, 1371,
$1230,1025 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.29-1.36(\mathrm{~m}, 6 \mathrm{H}), 1.41-2.09(\mathrm{~m}$, 5 H), 2.11-2.15 (three s, 3 H), 2.21-2.48 (m, 3.7 H), 2.67-2.73 (m, 0.3 H), 3.4$3.52(\mathrm{~m}, 0.7 \mathrm{H}), 4.19-4.31(\mathrm{~m}, 4 \mathrm{H}), 5.70(\mathrm{br} \mathrm{d}, J=10.0 \mathrm{~Hz}, 0.65 \mathrm{H}), 5.77-5.83$ $(\mathrm{m}, 1.35 \mathrm{H}), 6.30-6.32(\mathrm{~m}, 1 \mathrm{H}), 12.43(\mathrm{~s}, 0.3 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ $14.0(\mathrm{q}), 14.1(\mathrm{q}), 14.2(\mathrm{q}), 19.5(\mathrm{t}), 20.8(\mathrm{q}), 20.9(\mathrm{q}), 21.0(\mathrm{q}), 21.3(\mathrm{t}), 22.6(\mathrm{t})$, 23.9 (t), 26.4 (t), 30.3 (t), 30.6 (t), 33.0 (t), 33.8 (t), 34.2 (t), 35.1 (d), 36.9 (t), 46.1 (d), 47.4 (d), 55.8 (d), 57.7 (d), 60.2 (t), 60.82 (t), 60.86 (t), 61.1 (t), 69.1 (d), 69.2 (d), 69.5 (d), 98.1 (s$), 124.5$ (s$), 124.66$ (s$), 124.69$ (s$), 140.1$ (t), 140.3 (t$), 140.4$ (t), 164.9 (s), $165.0(\mathrm{~s}), 169.67$ (s$), 169.74$ (s$), 169.81$ (s$), 169.86$ (s$), 169.92$ (s$)$, 172.8 (s), 173.2 (s), 206.4 (s), 207.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{26} \mathrm{NaO}_{7} 377.1571$, found 377.1572.

3-[2-(2,2-Dimethylpropionyloxy)-3-ethoxycarbonylbut-3-enyl]-2,2-

 dimethoxycyclohexanecarboxylic Acid Ethyl Ester (40.9f). ${ }^{\dagger}$
40.9c-1

40.9f
$i-\operatorname{Pr}_{2} \mathrm{NEt}(0.20 \mathrm{~mL}, 1.0 \mathrm{mmol})$ and $t-\mathrm{BuCOCl}(0.060 \mathrm{~mL}, 0.51 \mathrm{mmol})$ were added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 9} \mathbf{c}-1(92 \mathrm{mg}, 0.26$ mmol) and DMAP ($5 \mathrm{mg}, 0.04 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The cold bath was removed after 15 min and stirring was continued for 16 h . The mixture was quenched with water (5 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 x 5 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 16 \mathrm{~cm}$), using 20% EtOAc-hexane, gave $\mathbf{4 0 . 9 f}(79 \mathrm{mg}, 70 \%)$ and unreacted $\mathbf{4 0 . 9 \mathrm { c } - 1 (5 \mathrm { mg } , 5 \%) \text { as }}$ viscous oils. Compound $\mathbf{4 0 . 9 f}$ had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast); ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{mg}) \delta 1.2(\mathrm{~s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.39-1.55$
(m, 2 H), 1.58-1.84 (m, 5H), 2.14-2.24 (m, 2 H), $2.70(\mathrm{dd}, J=9.0,4.0 \mathrm{~Hz}, 1 \mathrm{H})$, $3.21(\mathrm{~s}, 3 \mathrm{H}), 3.23(\mathrm{~s}, 3 \mathrm{H}), 4.08-4.17$ (m, 2 H), 4.18-4.28 (m, 2 H), 5.63 (ddd, $J=$ $7.0,6.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.80(\mathrm{t}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.28(\mathrm{~d}, J=1.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.10$ (q), 14.13 (q), 20.2 (t), 26.6 (t), 27.1 (q), 27.3 (t), 32.9 (t), 38.1 (d), 38.7 (s$), 47.0$ (d), 48.8 (q), 49.2 (q), 60.3 (t), 60.9 ($), 71.8$ (d), 101.7 (s$), 125.1$ (s$), 140.9$ (t$), 165.4$ (s), 173.2 (s$), 177.2$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NaO}_{8} 465.2459$, found 465.2455 .

3-[2-(2,2-Dimethylpropionyloxy)-3-ethoxycarbonylbut-3-enyl]-2,2-

 dimethoxycyclohexanecarboxylic Acid Ethyl Ester (40.9f'). ${ }^{\dagger}$
40.9c-4

40.9f ${ }^{\prime}$
$i-\mathrm{Pr}_{2} \mathrm{NEt}(0.38 \mathrm{~mL}, 2.2 \mathrm{mmol})$ and $t-\mathrm{BuCOCl}(0.14 \mathrm{~mL}, 1.1 \mathrm{mmol})$ were added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 9 \mathrm { c } - 4}$ (198 mg, 0.55 $\mathrm{mmol})$ and DMAP ($7 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$. The ice bath was removed after 1 h , stirring was continued for 24 h and the mixture was diluted with water $(8 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 18 \mathrm{~cm}$), using 15\% EtOAc-hexane, gave 40.9f' (236 $\mathrm{mg}, 97 \%)$ as a viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $2958,2871,1733,1632,1148$, $946 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.21(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H})$, $1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.41-1.64(\mathrm{~m}, 3 \mathrm{H}), 1.67-1.74(\mathrm{~m}, 3 \mathrm{H}), 1.78-1.85(\mathrm{~m}, 1$ H), 1.91-1.98 (m, 1 H), 2.14-2.17 (m, 1 H$), 2.62(\mathrm{dd}, J=10.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.21$ $(\mathrm{s}, 3 \mathrm{H}), 3.22(\mathrm{~s}, 3 \mathrm{H}), 4.06-4.26(\mathrm{~m}, 4 \mathrm{H}), 5.58(\mathrm{br} \mathrm{d}, J=9.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.70(\mathrm{t}, J=$ $1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.1(\mathrm{q}), 19.8(\mathrm{t}), 25.0$ (t), 26.6 (t$), 27.1(\mathrm{q}), 32.9(\mathrm{t}), 37.2(\mathrm{~d}), 38.8(\mathrm{~s}), 46.9(\mathrm{q}), 48.7(\mathrm{~d}), 49.0(\mathrm{q}), 60.3$
(t), 60.9 (t), 69.5 (d), 101.8 (s), 123.7 (s$), 141.3$ (t), 165.1 (s$), 173.3$ (s$), 177.3$ (s$) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{38} \mathrm{NaO}_{8} 465.2459$, found 465.2457 .

3-[2-(2,2-Dimethylpropionyloxy)-3-ethoxycarbonylbut-3-enyl]-2-oxo-

 cyclohexanecarboxylic Acid Ethyl Ester (40.9g).

A mixture of $\mathbf{4 0 . 9 f}$ ($35 \mathrm{mg}, 0.08 \mathrm{mmol}$) and Amberlyst-15 (70 mg) in acetone (3 mL , reagent grade) was stirred for 1 h and filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 70% EtOAc-hexane (30 mL). The filtrate was evaporated and the residual viscous oil [$30 \mathrm{mg}, 95 \%$, a keto-enol mixture of tautomers (${ }^{1} \mathrm{H} N \mathrm{NR}$)], was used without further purification in the next step. The material (40.9g) had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2979, 2872, 1732, 1650, 1283, 1148, $1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.246-1.252(\mathrm{~m}, 9 \mathrm{H}), 1.28-1.40(\mathrm{~m}, 6$ H), 1.44-1.92 (m, 5H), 1.94-2.51 (m, 3.7 H), 2.66-2.76 (m, 0.5 H), 3.38-3.50 (m, $0.7 \mathrm{H}), 4.16-4.35$ (m, 4 H), 5.62-5.66 (m, 0.7 H), 5.79-5.85 (m, 1.2 H), 6.32-6.35 (m, 1 H), $12.42(\mathrm{~s}, 0.26 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.10$ (q), 14.12 (q), $14.15(\mathrm{q}), 14.3(\mathrm{q}), 19.9(\mathrm{t}), 21.7(\mathrm{t}), 22.7(\mathrm{t}), 24.2(\mathrm{t}), 27.0(\mathrm{q}), 27.1(\mathrm{q}), 28.0(\mathrm{t})$, 30.3 (t), 30.8 (t), 33.7 (t), 34.0 (t), 34.3 (t), 35.0 (t), 35.7 (d), 37.1 ($t), 38.7$ (s$)$, 46.0 (d), 47.9 (d), 56.1 (d), 57.7 (d), 60.2 (t), 60.9 (t), 60.95 (t), 60.99 (t), 61.3 (t), 70.3 (d), 70.4 (d), 70.7 (d), 97.8 (s), 125.1 (s$), 125.3$ (s), 140.6 (t), 140.8 (t), 165.27 (s), 165.31 (s$), 169.8$ (s$), 172.9$ (s$), 173.5$ (s$), 177.0$ (s$), 177.1$ (s$), 205.8$ $(\mathrm{s}), 206.6$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NaO}_{7}$ 419.2040, found 419.2043.

3-[2-(2,2-Dimethylpropionyloxy)-3-ethoxycarbonylbut-3-enyl]-2-oxo-

 cyclohexanecarboxylic Acid Ethyl Ester (40.9g'). ${ }^{\dagger}$

A mixture of $\mathbf{4 0 . 9 f ^ { \prime }}$ ($235 \mathrm{mg}, 0.53 \mathrm{mmol}$) and Amberlyst-15 (500 mg) in acetone (6 mL) was stirred for 1 h and filtered through a pad of silica gel (2 x 2 cm), using 70% EtOAc-hexane (50 mL). The filtrate was evaporated and the residual viscous oil [208 mg, 99\%, a keto-enol mixture of tautomers (${ }^{1} \mathrm{H}$ NMR)], was used without further purification in the next step. The material (40.9g') had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2978, 2873, 1733, 1716, 1652, 1293, $1147 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19-1.22(\mathrm{~m}, 9 \mathrm{H}), 1.23-1.30(\mathrm{~m}, 6 \mathrm{H}), 1.32-1.86(\mathrm{~m}, 5 \mathrm{H})$, 1.92-2.05 (m, 0.6 H), 2.15-2.43 (m, 4 H), 2.61-2.69 (m, 0.4 H), 3.32-3.40 (m, 0.6 H), 4.08-4.26 (m, 4 H), 5.59-5.65 (m, 0.6 H), 5.68-5.75 (m, 1.4 H), 6.23-6.24 (m,
 $19.6(\mathrm{t}), 21.6(\mathrm{t}), 22.7(\mathrm{t}), 24.1(\mathrm{t}), 26.4(\mathrm{t}), 27.0(\mathrm{q}), 27.1(\mathrm{q}), 29.2(\mathrm{q}), 30.3(\mathrm{t})$, 30.7 (t), 32.7 (t), 33.7 (t$), 33.8$ (t$), 34.0$ (t$), 35.3$ (d), 37.1 (t$), 38.76$ (s$), 38.82$ (s$)$, 45.6 (d), 47.5 (d), 56.1 (d), 57.8 (d), 60.2 (t), 60.86 (t), 60.91 (t), 61.2 (t$), 68.7$ (d), 68.84 (d), 68.88 (d), 98.1 (s$), 124.2$ (s$), 124.34$ (s$), 124.37$ (s$), 140.5$ (t), 140.8 (t), 164.98 (s), 165.04 (s), 169.7 (s), 169.8 (s), 172.9 (s), 173.4 (s), 177.1 (s), 177.2 (s), 177.3 (s), 206.3 (s$), 207.0(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{NaO}_{7} 419.2040$, found 419.2044.

10-Oxobicyclo[4.3.1]dec-3-ene-1,3-dicarboxylic Acid Diethyl Ester (51.15) and 2-(1-Ethoxycarbonylvinyl)-2,3,3a,4,5,6-hexahydrobenzofuran-7carboxylic Acid Ethyl Ester (51.15'). ${ }^{\dagger}$

(a)

DBU ($0.02 \mathrm{~mL}, 0.14 \mathrm{mmol}$) was added dropwise to a stirred solution of 40.9e $(\mathrm{R}=\mathrm{Ac}$, less polar isomer) $(26 \mathrm{mg}, 0.073 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$. Stirring was continued for 30 min and the mixture was filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 60% EtOAc-hexane (30 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 51.15' ($17 \mathrm{mg}, 79 \%$) and $\mathbf{5 1 . 1 5 ~ (1 ~ m g , ~ c a ~ 5 \%) ~ a s ~ v i s c o u s ~}$ oils. Compound $\mathbf{5 1 . 1 5}$ ' is a mixture of diastereoisomers (ca 7:3) with the ethoxycarbonylvinyl substituent cis and trans to the ring fusion hydrogen.

Compound 51.15' had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2982, 2938, 1714, 1660, $1448,1269,1146,1036 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ (inseparable 72:28 mixture of diastereoisomers) $\delta 1.17-1.36(\mathrm{~m}, 8 \mathrm{H}), 1.43-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.90-1.96$ $(\mathrm{m}, 1.35 \mathrm{H}), 2.0-2.1(\mathrm{~m}, 1 \mathrm{H}), 2.15(\mathrm{dd}, J=12.5,7.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 2.22-2.32(\mathrm{~m}, 1$ H), 2.38-2.44 (m, 1 H), 2.54-2.57 (m, 0.3 H), 2.69-2.81 (m, 1.4 H), 4.12-4.31 (m, $4 \mathrm{H}), 5.14-5.18(\mathrm{~m}, 0.7 \mathrm{H}), 5.41(\mathrm{br} \mathrm{d}, J=8.5 \mathrm{~Hz}, 0.3 \mathrm{H}), 5.80-5.81(\mathrm{~m}, 0.28 \mathrm{H})$, 6.16-6.17 (m, 0.72 H), 6.30-6.31 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.06$ (q), 14.38 (q), 22.1 (t$), 22.2$ (t$), 23.9$ (t$), 27.1$ (t$), 27.4$ (t$), 34.8$ (t$), 37.4$ (d), 38.2 (t), 41.7 (d), 59.41 (t), 59.47 (t), 60.72 (t), 60.76 (t$), 79.6$ (d), 80.5 (d), 97.5 (s$)$, 97.6 (s), 124.3 (s), 124.5 (s$), 139.1$ (t), 139.5 (t), 165.12 (s$), 165.14$ (s$), 166.6$ (s$)$, $166.7(\mathrm{~s}), 167.0(\mathrm{~s}), 167.4(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{5}$ 317.1359 , found 317.1357.

Compound 51.15 had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2981, 2934, 1737, 1710, 1633, $1447,1281,1072,1037 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.24(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3$ H), $1.29(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.59-1.65(\mathrm{~m}, 1 \mathrm{H}), 1.91-2.10(\mathrm{~m}, 3 \mathrm{H}), 2.18(\mathrm{dtt}, J=$ $14.5,12.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.41-2.51(\mathrm{~m}, 2 \mathrm{H}), 2.64(\mathrm{dt}, J=15.5,6.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.82-$ $2.87(\mathrm{~m}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=15.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.07(\mathrm{dd}, J=15.5,0.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.14-4.24 (m, 4 H$), 7.13(\mathrm{t}, J=6.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.9$
 61.2 (t$), 134.3$ (s$), 140.2$ (t$), 166.7$ (s$), 172.6$ (s$), 211.1$ (s$) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{22} \mathrm{NaO}_{5} 317.1359$, found 317.1354.

(b)

DBU ($0.027 \mathrm{~mL}, 0.18 \mathrm{mmol}$) was added dropwise to a stirred solution of 40.9e' ($\mathrm{R}=\mathrm{Ac}$, more polar isomer) ($32 \mathrm{mg}, 0.09 \mathrm{mmol}$) in $\mathrm{MeCN}(2 \mathrm{~mL}$). Stirring was continued for 50 min and the mixture was filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 60% EtOAc-hexane (30 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 51.15' ($10 \mathrm{mg}, 38 \%$) and 51.15 ($14 \mathrm{mg}, 53 \%$) as viscous oils. Compound $\mathbf{5 1 . 1 5}$ ' is a mixture of diastereoisomers (ca 7:3) with the ethoxycarbonylvinyl substituent cis and trans to the ring fusion hydrogen.

(c) 40.9 g

DBU ($0.027 \mathrm{~mL}, 0.18 \mathrm{mmol}$) was added dropwise to a stirred solution of 40.9g ($\mathrm{R}=\mathrm{Piv}$, less polar isomer) ($25 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{MeCN}(2 \mathrm{~mL})$. Stirring was continued for 30 min and the mixture was filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 60% EtOAc-hexane (30 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 51.15' ($14 \mathrm{mg}, 80 \%$) and $\mathbf{5 1 . 1 5 ~ (~} 1 \mathrm{mg}, \mathbf{5 \%}$) as viscous oils. Compound 51.15' is a mixture of diastereoisomers (ca 7:3) with the ethoxycarbonylvinyl substituent cis and trans to the ring fusion hydrogen.

(d)

DBU ($18 \mathrm{mg}, 0.12 \mathrm{mmol}$) was added dropwise to a stirred solution of 40.9g' $(\mathrm{R}=\mathrm{Piv}$, more polar isomer) ($25 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{MeCN}(1.5 \mathrm{~mL})$. Stirring was continued for 20 min and the mixture was filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 60% EtOAc-hexane (30 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using
 oils. Compound $\mathbf{5 1 . 1 5}^{\prime}$ is a mixture of diastereoisomers (ca 7:3) with the ethoxycarbonylvinyl substituent cis and trans to the ring fusion hydrogen.
(e)

DBU ($0.024 \mathrm{~mL}, 0.16 \mathrm{mmol}$) was added dropwise to a stirred solution of 40.9g' $(\mathrm{R}=\mathrm{Piv}$, more polar isomer) $(30 \mathrm{mg}, 0.075 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$. Stirring was continued for 2.5 h and the mixture was filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 60\% EtOAc-hexane (30 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 10% EtOAc-hexane, gave $\mathbf{5 1 . 1 5}$ ($16 \mathrm{mg}, \mathbf{7 3 \%}$) (and no 51.15') as a viscous oil.

Conversion of $\mathbf{5 1 . 1 5}$ ' into 51.15. ${ }^{\dagger}$

DBU ($0.02 \mathrm{~mL}, 0.14 \mathrm{mmol}$) was added dropwise to a stirred solution of 51.15' (20 mg, 0.068 mmol) in $\mathrm{MeCN}(2 \mathrm{~mL})$. Stirring was continued for 12 h and the mixture was filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 60% EtOAc-hexane (30 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 10\% EtOAc-hexane, gave 51.15 (15 $\mathrm{mg}, 75 \%$) as a viscous oil.
(51.15).

Specific examples of the $\mathbf{C s}_{2} \mathbf{C O}_{3}$ reactions

(a)

A mixture of 40.9c $(\mathrm{R}=\mathrm{OAc}$, less polar isomer) ($31 \mathrm{mg}, 0.087 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(57 \mathrm{mg}, 0.174 \mathrm{mmol})$ in $\mathrm{MeCN}(1.5 \mathrm{~mL})$ was refluxed for 1 h , cooled to room temperature and filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using EtOAc $(20 \mathrm{~mL})$. Evaporation of the filtrate gave $\mathbf{5 1 . 1 5}(26 \mathrm{mg}, 100 \%)$ as a colorless liquid, which was pure by ${ }^{1} \mathrm{H}$ NMR.
(b)

A mixture of 40.9c' $(\mathrm{R}=\mathrm{OAc}$, more polar isomer) ($61 \mathrm{mg}, 0.172 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(112 \mathrm{mg}, 0.344 \mathrm{mmol})$ in $\mathrm{MeCN}(2 \mathrm{~mL})$ was refluxed for 45 min , cooled to room temperature and filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using EtOAc (20 mL). Evaporation of the filtrate gave 51.15 ($50 \mathrm{mg}, 99 \%$) as a colorless liquid, which was pure by ${ }^{1} \mathrm{H}$ NMR.
(c)

A mixture of $\mathbf{4 0 . 9 g}(\mathrm{R}=\mathrm{OPiv}$, less polar isomer) $(6 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(10 \mathrm{mg}, 0.03 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$ was refluxed for 1 h , cooled to room temperature and filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using EtOAc $(20 \mathrm{~mL})$. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 20\% EtOAc-hexane, gave $51.15(5 \mathrm{mg}, 100 \%)$ as a colorless liquid.
(d)

A mixture of $\mathbf{4 0 . 9} \mathbf{g}$ ($130 \mathrm{mg}, 0.327 \mathrm{mmol}$) and $\mathrm{Cs}_{2} \mathrm{CO}_{3}(214 \mathrm{mg}, 0.656$ mmol) in $\mathrm{MeCN}(5 \mathrm{~mL})$ was refluxed for 1 h , cooled to room temperature and filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using EtOAc (20 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 20\% EtOAc-hexane, gave $\mathbf{5 1 . 1 5}$ (95 mg , 99\%) as a colorless liquid.

3-Allylcyclohexanone (47.1). ${ }^{\text {62 }}$

$\mathrm{TiCl}_{4}(7.9 \mathrm{~mL}, 72 \mathrm{mmol})$ was added dropwise over ca 20 min by syringe pump to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of 2-cyclohexenone $(6.0 \mathrm{~g}, 62.415$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$. After 5 min , a solution of allyltrimethylsilane (11.0 $\mathrm{mL}, 68.7 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL}$) was added dropwise over ca 15 min (syringe pump). Stirring was continued at $-78{ }^{\circ} \mathrm{C}$ for 1.5 h and then the cold bath was replaced by one at $-30^{\circ} \mathrm{C}$, and stirring was continued for 15 min . Water (100 mL) was added and the cold bath was removed. The mixture was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($4 \times 18 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 47.1 ($6.82 \mathrm{~g}, 79 \%$) as a viscous oil.

4-Allyl-2-oxocyclohexanecarboxylic Acid Ethyl Ester. ${ }^{\dagger}$

47.1

-

A solution of $\mathbf{4 7 . 1}(1.0 \mathrm{~g}, 7.2 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added dropwise over 1 h by syringe pump to a refluxing suspension of $\mathrm{NaH}(732 \mathrm{mg}, 28.9 \mathrm{mmol}$) and $(\mathrm{MeO})_{2} \mathrm{CO}(1.83 \mathrm{~mL}, 21.7 \mathrm{mmol})$ in THF $(30 \mathrm{~mL})$. The mixture was refluxed for 2 h , cooled to room temperature and then to $0^{\circ} \mathrm{C}$ (ice bath), and quenched by slow addition of water (5 mL) and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20$ $\mathrm{mL})$. The cold bath was removed, stirring was continued for 10 min and the mixture was diluted with water (50 mL) and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 25 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (3 x 18 cm), using 15% EtOAchexane, gave 4-Allyl-2-oxocyclohexanecarboxylic Acid Ethyl Ester (1.26 g, 89\%) as a viscous oil which was an inseparable mixture of keto-enol tautomers: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3358,2923,2852,1734,1463,1031 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.25(\mathrm{dtd}, J=13.0,10.5,5.5 \mathrm{~Hz}, 0.8 \mathrm{H}$, enol form), 1.61-1.86 (m, 2 H), 1.99-2.05 (m, 1.2 H), 2.10-2.22 (m, 3.2 H), 2.36-2.42 (m, 2 H), 3.79 (s, 3 H), 5.06-5.11 (m, 2 H$), 5.78-5.86(\mathrm{~m}, 1 \mathrm{H}), 12.14\left(\mathrm{~s}, 0.8 \mathrm{H}\right.$, enol form); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right)$ (enolic form) $\delta 21.9$ (t), 28.1 (t$), 33.1$ (d), 35.0 (t), 40.1 (t), 51.3 (q), 97.3 (s), 116.4 (t), 136.2 (d), 171.5 (s), 172.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{3} 219.0992$, found 219.0992 .

4-Allyl-2,2-dimethoxycyclohexanecarboxylic Acid Ethyl Ester (47.2). ${ }^{\dagger}$

$\mathrm{HC}(\mathrm{OMe})_{3}(1.38 \mathrm{~mL}, 12.6 \mathrm{mmol})$ and $p-\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(61 \mathrm{mg}, 0.32 \mathrm{mmol})$ were added to a stirred solution of 4-Allyl-2-oxocyclohexanecarboxylic Acid Ethyl Ester ($1.24 \mathrm{~g}, 6.32 \mathrm{mmol})$ in dry $\mathrm{MeOH}(25 \mathrm{~mL})$. The mixture was stirred for 4 days and then refluxed for 12 h . The solvent was evaporated and the residue
was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(50 \mathrm{~mL})$. The mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$, diluted with water (50 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ $(3 \times 15 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (2 x 25 cm), using 15\% EtOAc-hexane, gave 47.2 ($1.08 \mathrm{~g}, 71 \%$) as a viscous oil which was a single isomer: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $2950,2832,1741,1641,1436,1171,1051 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.34-1.43(\mathrm{~m}, 1 \mathrm{H}), 1.47-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.66-1.80(\mathrm{~m}$, $3 \mathrm{H}), 1.85-1.89(\mathrm{~m}, 1 \mathrm{H}), 1.96-2.05(\mathrm{~m}, 2 \mathrm{H}), 2.96-2.98(\mathrm{~m}, 1 \mathrm{H}), 3.12(\mathrm{~s}, 3 \mathrm{H})$, $3.18(\mathrm{~s}, 3 \mathrm{H}), 3.65(\mathrm{~s}, 3 \mathrm{H}), 4.96-5.01(\mathrm{~m}, 2 \mathrm{H}), 5.76(\mathrm{ddt}, J=17.5,10.0,7.0 \mathrm{~Hz}, 1$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 25.6(\mathrm{t}), 26.9(\mathrm{t}), 33.6(\mathrm{~d}), 34.3(\mathrm{t}), 41.0(\mathrm{t})$, 44.8 (d), 47.2 (q), 47.8 (q), 51.4 (q), 100.6 (s), 115.9 (t), 136.8 (d), 172.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}_{4}$ 265.1410, found 265.1411.

2,2-Dimethoxy-4-(2-oxoethyl)cyclohexanecarboxylic Acid Ethyl Ester

 (40.10a). ${ }^{\dagger}$
O_{3} was bubbled into a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $47.3(1.4 \mathrm{~g}$, $5.8 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (100 mL) until a blue color persisted (ca 30 min). O_{2} was passed through the solution for 30 min and $\mathrm{Ph}_{3} \mathrm{P}(1.97 \mathrm{~g}, 7.51 \mathrm{mmol})$ was then added. The cold bath was removed and stirring was continued for 6 h . Evaporation of the solvent and flash chromatography of the residue over silica gel ($3 \times 25 \mathrm{~cm}$), using 15\% EtOAc-hexane, gave 40.10a ($1.36 \mathrm{~g}, 96 \%$) as a viscous oil which was a single isomer: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast $) 2952,2834,1737,1436,1196$, $1049 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.46-1.55(\mathrm{~m}, 2 \mathrm{H}), 1.74-1.82(\mathrm{~m}, 3 \mathrm{H})$, 1.88-1.92 (m, 1 H$), 2.07-2.16(\mathrm{~m}, 1 \mathrm{H}), 2.39(\mathrm{dd}, J=7.0,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 3.0-3.02$
(m, 1 H), $3.188(\mathrm{~s}, 3 \mathrm{H}), 3.194(\mathrm{~s}, 3 \mathrm{H}), 3.67(\mathrm{~s}, 3 \mathrm{H}), 9.78(\mathrm{t}, J=2.0 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 25.4$ (t), 26.9 (t), 28.5 (d), 34.4 (t), 44.5 (d), 47.3 (q), 47.8 (q), 50.5 (t), 51.5 (q), 100.0 (s), 172.8 (s), 201.8 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{20} \mathrm{NaO}_{5}$ 267.1203, found 267.1207.

4-[3-Ethoxycarbonyl-2-hydroxy-3-(phenylseleno)butyl]-2,2-

 dimethoxycyclohexanecarboxylic Acid Ethyl Ester (40.10b). ${ }^{\dagger}$

40.10a

40.10b
n -BuLi (2.5 M in hexane, $3.3 \mathrm{~mL}, 8.2 \mathrm{mmol}$) was added dropwise over 3 min to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(1.27 \mathrm{~mL}, 8.98 \mathrm{mmol})$ in THF (20 mL). Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min and a solution of $\mathbf{3 8 . 1}$ ($2.38 \mathrm{~g}, 9.26 \mathrm{mmol}$) in THF (8 mL plus 2 mL as a rinse) was added dropwise over 5 min . Stirring was continued for 1.5 h at $-78^{\circ} \mathrm{C}$ and a solution of $\mathbf{4 0 . 1 0 a}(1.33 \mathrm{~g}$, 5.44 mmol) in THF (8 mL plus 2 mL as a rinse) was added over 5 min . Stirring was continued for 2 h and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (25 mL) and extracted with EtOAc (3 x 15 $\mathrm{mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 22 \mathrm{~cm}$), using 20\% EtOAchexane, gave 40.10b ($2.57 \mathrm{~g}, 94 \%$) as a viscous oil which was an inseparable mixture of diastereoisomers: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3508 , 2945, 2831, 1725, 1438, $1051,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.11-1.22(\mathrm{~m}, 3 \mathrm{H}), 1.37-1.38(\mathrm{~m}$, $3 \mathrm{H}), 1.42-2.03(\mathrm{~m}, 8 \mathrm{H}), 2.89-3.08(\mathrm{~m}, 2 \mathrm{H}), 3.15-3.21(\mathrm{~m}, 6 \mathrm{H}), 3.65-3.68(\mathrm{~m}, 3$ H), 3.96-4.15 (m, 3 H), 7.28-7.33 (m, 2 H), 7.37-7.42 (m, 1 H), 7.56-7.61 (m, 2
H); exact mass (electrospray) m / z calcd for $\mathrm{C}_{23} \mathrm{H}_{34} \mathrm{NaO}_{7}{ }^{80} \mathrm{Se}$ 525.1362, found 525.1363.

4-(3-Ethoxycarbonyl-2-hydroxy-but-3-enyl)-2,2-dimethoxycyclohex-

 anecarboxylic Acid Ethyl Ester (40.10c). ${ }^{\dagger}$
$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.55 \mathrm{~mL}, 5.38 \mathrm{mmol})$ was added dropwise over 2 min to a stirred and cooled $\left(-10^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 0 b}(250 \mathrm{mg}, 0.498 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ mL). Stirring was continued at $-10^{\circ} \mathrm{C}$ for 1 h and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(1 \mathrm{~mL})$ followed by saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The cold bath was removed after 10 min , stirring was continued for 5 min and the mixture was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 16 \mathrm{~cm}$), using 15\% EtOAchexane, gave 40.10c ($168 \mathrm{mg}, 98 \%$) as a viscous oil which was a $1: 1$ inseparable mixture of diastereoisomers which must differ in stereochemistry only at the hydroxyl-bearing carbon: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3476,2949,2833,1738,1715$, $1628,1436,1171,1053 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.32(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ H), 1.34-2.04 (m, 9 H), 2.59 (dd, $J=18.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.99-3.01 (m, 1 H), 3.15 ($\mathrm{s}, 1.4 \mathrm{H}$), 3.17 ($\mathrm{s}, 1.6 \mathrm{H}$), $3.20(\mathrm{~s}, 1.4 \mathrm{H}$), 3.21 ($\mathrm{s}, 1.6 \mathrm{H}$), 3.67 ($\mathrm{s}, 3 \mathrm{H}$), 4.21-4.27 $(\mathrm{m}, 2 \mathrm{H}), 4.48-4.55(\mathrm{~m}, 1 \mathrm{H}), 5.77-5.78(\mathrm{~m}, 1 \mathrm{H}), 6.207-6.21(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.1$ (q), 25.6 (t), 25.7 (t), 26.4 (t), 27.9 (t), 30.3 (d), 30.4 (d), 33.9 (t), 35.4 (t$), 43.0$ (t), 43.4 (t$), 44.85$ (d), 44.94 (d), 47.27 (q), 47.29 (q), 47.8 (q), 47.82 (q), 51.4 (q), 60.8 (t), 69.2 (d), 69.5 (d), 100.365 (s), 100.373 (s),
124.4 (s), 124.5 (s), 143.1 (t), 143.2 (t), 166.55 (s$), 166.58$ (s$), 172.9$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{28} \mathrm{NaO}_{7} 367.1727$, found 367.1730.

4-(2-Acetoxy-3-ethoxycarbonylbut-3-enyl)-2,2-dimethoxycyclohexane-

 carboxylic Acid Ethyl Ester (40.10d). ${ }^{\dagger}$

Pyridine ($0.70 \mathrm{~mL}, 8.6 \mathrm{mmol}$) and $\mathrm{AcCl}(0.31 \mathrm{~mL}, 4.296 \mathrm{mmol})$ were added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 0 c}(740 \mathrm{mg}, 2.15$ mmol) and DMAP ($39 \mathrm{mg}, 0.32 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 2 h and the mixture was quenched with water (35 mL), followed by hydrochloric acid ($10 \%, 2 \mathrm{~mL}$). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 15$ $\mathrm{mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using 20% EtOAc-hexane, gave 40.10d ($736 \mathrm{mg}, 89 \%$) as a viscous oil which was an inseparable (1:1) mixture of diastereoisomers which must differ in stereochemistry only at the acetoxy-bearing carbon: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2951,1742$, 1633, 1369, 1235, $957 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.27-1.31(\mathrm{~m}, 3 \mathrm{H})$, 1.34-1.48 (m, 1.5 H), 1.52-1.83 (m, 7 H$), 1.95-1.99(\mathrm{~m}, 0.5 \mathrm{H}), 2.06(\mathrm{~s}, 1.5 \mathrm{H})$, 2.07 ($\mathrm{s}, 1.5 \mathrm{H}$), 2.94-2.9 (m, 1 H$), 3.09(\mathrm{~s}, 1.5 \mathrm{H}), 3.12(\mathrm{~s}, 1.5 \mathrm{H}), 3.17(\mathrm{~s}, 1.5 \mathrm{H})$, $3.18(\mathrm{~s}, 1.5 \mathrm{H}), 3.648(\mathrm{~s}, 1.5 \mathrm{H}), 3.65(\mathrm{~s}, 1.5 \mathrm{H}), 4.15-4.27(\mathrm{~m}, 2 \mathrm{H}), 5.68-5.72(\mathrm{~m}$, $2 \mathrm{H})$, 6.23-6.25 (m, 1 H$) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.1$ (q), 14.13 (q), 21.1 (q), $25.5(\mathrm{t}), 25.6(\mathrm{t}), 26.3(\mathrm{t}), 27.5(\mathrm{t}), 30.5(\mathrm{~d}), 30.7(\mathrm{~d}), 33.9(\mathrm{t}), 35.2(\mathrm{t}), 41.5(\mathrm{t})$, 41.7 (t), 44.6 (d), 44.9 (d), 47.1 (q), 47.2 (q), 47.77 (q), 47.80 (q), 51.4 (q), 60.9 (t), 69.9 (d), 69.95 (d), 100.2 (s$), 100.3$ (s$), 124.3$ (s$), 124.5$ (s), 140.95 (t), 140.99
(t), $165.1(\mathrm{~s}), 169.83(\mathrm{~s}), 169.89(\mathrm{~s}), 172.8(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{NaO}_{8} 409.1833$, found 409.1835.

4-(2-Acetoxy-3-ethoxycarbonylbut-3-enyl)-2-oxocyclohexanecarbox-

 ylic Acid Ethyl Ester (40.10e). ${ }^{\dagger}$

A mixture of $\mathbf{4 0 . 1 0 d}(700 \mathrm{mg}, 1.81 \mathrm{mmol})$ and Amberlyst-15 (1.5 g) in acetone (reagent grade, 10 mL) was stirred at room temperature for 1.5 h and then filtered through a pad of silica gel ($2 \times 4 \mathrm{~cm}$), using EtOAc (30 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using 20% EtOAc-hexane, gave 40.10e (605 mg , 98%) as an equilibrium mixture of keto-enol tautomers: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2983,2938,1745,1716,1659,1621$, $1443,1222,1027, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.26-1.34(\mathrm{~m}, 3 \mathrm{H}), 1.64-$ $2.66(\mathrm{~m}, 11 \mathrm{H}), 3.33-3.38(\mathrm{~m}, 0.4 \mathrm{H}), 3.70-3.77(\mathrm{~m}, 3 \mathrm{H}), 4.11-4.30(\mathrm{~m}, 2 \mathrm{H})$, 5.61-5.81 (m, 2 H), 6.26-6.33 (m, 1 H$), 12.08(\mathrm{~s}, 0.25 \mathrm{H}), 12.09(\mathrm{~s}, 0.25 \mathrm{H})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{NaO}_{7} 363.1414$, found 363.1412.

2-(1-Ethoxycarbonylvinyl)-6-oxobicyclo[2.2.2]octane-1-carboxylic

Acid Methyl Ester (51.17a,a'). ${ }^{\dagger}$

40.10e

51.17a, \mathbf{a}^{\prime}

DBU ($0.10 \mathrm{~mL}, 0.68 \mathrm{mmol}$) was added dropwise to a stirred solution of 40.10e ($116 \mathrm{mg}, 0.34 \mathrm{mmol}$) in $\mathrm{MeCN}(5 \mathrm{~mL})$. Stirring was continued for 1 h and the mixture was then filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 60% EtOAc-hexane (60 mL). Evaporation of the filtrate and flash chromatography of the residue over silica gel ($2 \times 20 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 51.17a ($12 \mathrm{mg}, 13 \%$) and 51.17a' ($66 \mathrm{mg}, 69 \%$) as viscous oils. Compound 51.17a' had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2951,2876,1721,1626,1262, \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right)$ $\delta 1.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.66(\mathrm{ddt}, J=13.5,8.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.74-1.80(\mathrm{~m}, 2$ H), 2.11-2.25 (m, 4 H), $2.38(\mathrm{dt}, J=19.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.48(\mathrm{dt}, J=18.5,3.0 \mathrm{~Hz}$, 1 H), 3.31 (dd, $J=11.0,7.5 \mathrm{~Hz}, 1 \mathrm{H}$), 3.63 ($\mathrm{s}, 3 \mathrm{H}$), 4.14-4.25 (m, 2 H), 5.38 ($\mathrm{s}, 1$ $\mathrm{H}), 6.10(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.2$ (q), 23.8 (t), 27.6 (d), 29.1 (t), $34.6(\mathrm{t}), 41.8(\mathrm{~d}), 44.6(\mathrm{t}), 51.7(\mathrm{q}), 57.9(\mathrm{~s}), 60.7(\mathrm{t}), 123.9(\mathrm{~s}), 143.7(\mathrm{t}), 166.6$ (s), 170.9 (s), 208.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{20} \mathrm{NaO}_{5}$ 303.1203, found 303.1203.

The minor isomer (51.17a) was not obtained pure.

4,4-Diethoxybutyronitrile. ${ }^{64}$

A solution of $48.1(2.00 \mathrm{~g}, 12.0 \mathrm{mmol})$ in dry DMSO (3 mL) was added to a stirred mixture of $\mathrm{NaCN}(2.94 \mathrm{mg}, 60.0 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(443.0 \mathrm{mg}, 1.20$ $\mathrm{mmol})$ in DMSO $(30 \mathrm{~mL})$, and the resulting mixture was stirred at $50^{\circ} \mathrm{C}$ for 15 h , cooled to room temperature, diluted with water (120 mL) and extracted with EtOAc (3 x 50 mL). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($4 \times 15 \mathrm{~cm}$), using 8:25 EtOAc-hexane, gave 4,4-diethoxybutyronitrile (1.76 $\mathrm{g}, 94 \%)$ as a liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.95$ $(\operatorname{td}, J=7.2,4.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.44(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 3.53(\mathrm{dq}, J=9.6,7.2 \mathrm{~Hz}, 2 \mathrm{H})$, 3.69 (dq, $J=9.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.59\left(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H} ;{ }^{13} \mathrm{C}\right.$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 12.5(\mathrm{t}), 15.2(\mathrm{q}), 29.6(\mathrm{t}), 62.4(\mathrm{t}), 100.8(\mathrm{~d}), 119.5(\mathrm{~s})$.

4,4-Diethoxybutyraldehyde (40.11a). ${ }^{63}$

DIBAL (1.0 M in $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 1.93 \mathrm{~mL}, 1.93 \mathrm{mmol}$) was added dropwise to stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right.$, dry ice, acetone) solution of 4,4-diethoxybutyronitrile ($202.0 \mathrm{mg}, 1.29 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The dry-ice (but not the acetone) was removed from the cold bath, and stirring was continued for 1 h , by which time the mixture had reached room temperature. Acetone (0.3 mL), EtOAc (0.3 mL) and pH 7.0 buffer (0.3 mL) were added sequentially, and the mixture was stirred vigorously for 20 min . $\mathrm{Na}_{2} \mathrm{SO}_{4}$ was added and stirring was continued for 3 h . The solid was filtered off, and the solvent was evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave 40.11a (140 mg , 68%) as a liquid: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.16(\mathrm{t}, J=7.2 \mathrm{~Hz}, 6 \mathrm{H}), 1.93$ $(\mathrm{td}, J=7.2,5.6 \mathrm{~Hz}, 2 \mathrm{H}), 2.49(\mathrm{td}, J=7.2,1.6 \mathrm{~Hz}, 2 \mathrm{H}), 3.45(\mathrm{dq}, J=9.6,7.2 \mathrm{~Hz}$,
$2 \mathrm{H}), 3.62(\mathrm{dq}, J=9.6,7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.47(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 9.74(\mathrm{t}, J=1.6 \mathrm{~Hz}$, $1 \mathrm{H})$.

6,6-Diethoxy-3-hydroxy-2-methyl-2-(phenylseleno)hexanoic
Acid Ethyl Ester (40.11b,b').

40.11a

40.11b,b'
$\mathrm{n}-\mathrm{BuLi}(1.5 \mathrm{M}$ in hexane, $0.65 \mathrm{~mL}, 0.98 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(98.7 \mathrm{mg}, 0.98 \mathrm{mmol})$ in THF (5 mL). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 15 min , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$, and a solution of $\mathbf{3 8 . 1}$ ($252 \mathrm{mg}, 0.98 \mathrm{mmol}$) in THF (3 mL) was added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , and a solution of 40.11a (120 $\mathrm{mg}, 0.75 \mathrm{mmol}$) in THF (2 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 40 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (40 mL). The aqueous phase was extracted with EtOAc ($3 \times 20 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 15 \mathrm{~cm}$), using 13:50 EtOAc-hexane, gave 40.11b (less polar isomer) ($64 \mathrm{mg}, 21 \%$) as a viscous oil and 40.11b' (more polar isomer) (132 $\mathrm{mg}, 42 \%$) as a viscous oil.

Compound 40.11b had: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3505, 3058, 2976, 2931, $2877,1720,1476,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.13(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ $\mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.18(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.42-1.50(\mathrm{~m}$, $1 \mathrm{H}), 1.53-1.63(\mathrm{~m}, 1 \mathrm{H}), 1.65-1.73(\mathrm{~m}, 1 \mathrm{H}), 1.91$ (dddd, $J=14.3,9.0,5.4,5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 3.21(\mathrm{~s}, 1 \mathrm{H}), 3.47(\mathrm{dq}, J=9.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.62(\mathrm{dqd}, J=10.1,7.1$, $3.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.91(\mathrm{dd}, J=9.9,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.94-4.10(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J=5.5$,
$5.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.62(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.8$ (q), 15.3 (q), 17.1 (q), 27.0 (t), 31.0 (t), 57.3 (s$)$, 61.0 (t), 61.1 (t), 61.2 (t), 73.1 (d), 102.6 (d), 126.6 (s$), 128.8$ (d), 129.4 (d), 138.1 (d), 173.1 (s); exact mass m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5}{ }^{80} \mathrm{Se} 418.1259$, found 418.1246 .

Compound 40.11b' had: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 3492, 3058, 2976, 2932, $2878,1724,1579,1477,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.18-1.23(\mathrm{~m}$, $9 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.50(\mathrm{~m}, 1 \mathrm{H}), 1.66-1.74(\mathrm{~m}, 1 \mathrm{H}), 1.93$ (dddd, $J=9.7$, 9.7, 5.2, 5.2 Hz, 1 H), 1.96-2.05 (m, 1 H), 2.99 ($\mathrm{s}, 1 \mathrm{H}$), $3.51(\mathrm{dq}, J=9.4,7.1 \mathrm{~Hz}$, $2 \mathrm{H}), 3.66(\mathrm{dq}, J=9.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{dd}, J=10.7,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{q}, J=$ $7.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.54 (dd, $J=5.4,5.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.28-7.32 (m, 2 H), 7.37-7.41 (m, 1 H), 7.57-7.59 (m, 2 H$){ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9$ (q), 15.3 (q), 18.2 (q), $26.6(\mathrm{t}), 30.9$ (t), 54.7 (s$), 61.0(\mathrm{t}), 61.2$ (t$), 61.3$ (t), 73.3 (d), 102.7 (d), 126.7 (s$)$, 128.8 (d), 129.4 (d), 138.1 (d), 174.0 (s); exact mass m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{30} \mathrm{O}_{5}{ }^{80} \mathrm{Se}$ 418.1259 , found 418.1255.

3-Acetoxy-6,6-diethoxy-2-methyl-2-(phenylseleno)hexanoic Acid Ethyl

Ester (40.11c).

40.11c

Pyridine ($500 \mathrm{mg}, 6.33 \mathrm{mmol}$) and $\mathrm{AcCl}(249 \mathrm{mg}, 3.17 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.11b ${ }^{\prime}$ $(440 \mathrm{mg}, 1.06 \mathrm{mmol})$ and DMAP ($13 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 6 h , by which time the temperature had risen to room temperature. The mixture was diluted with water (10 mL), acidified with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue
over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 11:50 EtOAc-hexane, gave 40.11c (400 mg , 82%) as an oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $3058,2977,2933,2877,1747,1727,1578$, $1477,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.08(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.221(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.222(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.50(\mathrm{~s}, 3 \mathrm{H}), 1.59-1.71(\mathrm{~m}, 3 \mathrm{H}), 1.93$ (s, 3 H), 2.18-2.28 (m, 1 H$), 3.51(\mathrm{dqd}, J=9.4,7.0,4.8 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{dq}, J=$ $9.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.88(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.01(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1$ H), 4.53 (dd, $J=5.3,5.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.43-5.45(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.32(\mathrm{~m}, 2 \mathrm{H}), 7.37-$ $7.41(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.8(\mathrm{q}), 15.3$ (q), $17.8(\mathrm{q}), 20.9(\mathrm{q}), 25.5(\mathrm{t}), 30.5(\mathrm{t}), 53.0(\mathrm{~s}), 61.1(\mathrm{t}), 61.2(\mathrm{t}), 61.3(\mathrm{t}), 75.6$ (d), 102.4 (d), 126.3 (s), 128.9 (d), 129.5 (d), 138.0 (d), 169.6 (s), 172.1 (s); exact mass m / z calcd for $\mathrm{C}_{21} \mathrm{H}_{32} \mathrm{O}_{6}{ }^{00} \mathrm{Se} 460.1364$, found 460.1361 .

2-(1-Acetoxy-4,4-diethoxybutyl)acrylic Acid Ethyl Ester (40.11d).

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.95 \mathrm{~mL}, 9.3 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 1 c}(421 \mathrm{mg}, 0.92 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 40 min and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(4 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , the ice bath was removed, stirring was continued for 5 min and the mixture was diluted with water (10 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 23:100 EtOAc-hexane, gave 40.11d (260 mg , 94%) as a oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$ cast) 2977, 2933, 2878, 1747, 1719, 1633, $1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 400$ $\mathrm{MHz}) \delta 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 6 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.58-1.77(\mathrm{~m}, 3 \mathrm{H})$, $1.82-1.90(\mathrm{~m}, 1 \mathrm{H}), 2.06(\mathrm{~s}, 3 \mathrm{H}), 3.47(\mathrm{dq}, J=9.4,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.61(\mathrm{dqd}, J=$
9.3, 7.0, $0.6 \mathrm{~Hz}, 2 \mathrm{H}$), 4.16-4.27 (m, 2 H), $4.47(\mathrm{dd}, J=5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.63$ (ddd, $J=7.7,4.5,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=1.1,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.1(\mathrm{q}), 15.3(\mathrm{q}), 21.0(\mathrm{q}), 29.2(\mathrm{t}), 29.3(\mathrm{t}), 60.9(\mathrm{t})$, 61.11 (t), 61.14 (t), 71.4 (d), 102.4 (d), 125.0 (t), 140.1 (s), 165.2 (s), 169.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{26} \mathrm{NaO}_{6} 325.1622$, found 325.1620 .

2-(1-Acetoxy-4-oxobutyl)acrylic Acid Ethyl Ester (40.11e).

Hydrochloric acid ($4 \mathrm{M}, 0.11 \mathrm{~mL}, 0.42 \mathrm{mmol}$) was added to a stirred solution of 40.11d ($128 \mathrm{mg}, 0.42 \mathrm{mmol}$) in acetone (4 mL), and stirring was continued at room temperature for 1.5 h . The mixture was diluted with water (20 $\mathrm{mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using 2:5 EtOAchexane, gave 40.11e ($90 \mathrm{mg}, 94 \%$) as a liquid: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 2983, 2939, 2830, 2728, 1745, 1723, 1634, $1446 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.31(\mathrm{t}, J$ $=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.04(\mathrm{dddd}, J=14.7,14.7,7.5,7.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.17$ (dddd, $J=11.7,7.4,7.3,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{td}, J=7.5,1.4 \mathrm{~Hz}, 2 \mathrm{H}), 4.18-4.29$ (m, 2 H), 5.65 (ddd, $J=7.6,4.4,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 5.76(\mathrm{t}, J=1.0,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 6.32$ $(\mathrm{s}, 1 \mathrm{H}), 7.53(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.1(\mathrm{q}), 21.0$ (q), 26.5 (t$), 39.6$ (t$), 61.1$ (t), 70.8 (d), 125.4 (t), 139.5 (s$), 164.9$ (s$), 169.6$ (s$)$, 201.0 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{5} 251.0890$, found 251.0888. Acetoxy-5-oxocyclohexanecarboxylic Acid Ethyl Ester (51.18').

$\mathrm{Et}_{3} \mathrm{~N}(26.6 \mathrm{mg}, 0.263 \mathrm{mmol})$ was added to a solution of $\mathbf{4 0 . 1 1} \mathbf{e}(40 \mathrm{mg}$, 0.18 mmol) and 3-benzyl-5-(2-hydroxyethyl)-4-methylthiazolium chloride (51a) $(4.7 \mathrm{mg}, 0.018 \mathrm{mmol})$ in 1,4-dioxane $(0.4 \mathrm{~mL})$ contained in a thick-walled vial. The vial was closed with a Teflon-lined screw-on cap and the mixture was stirred at $70{ }^{\circ} \mathrm{C}$ for 10 h , cooled to room temperature, diluted with water (5 mL) and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave a $2: 3$ mixture of 51.18 and 51.18' ($25 \mathrm{mg}, 86 \%$) as an oil.

DBU ($61.1 \mathrm{mg}, 0.4 \mathrm{mmol}$) was added to a solution of the above $2: 3$ mixture in $\mathrm{MeCN}(0.5 \mathrm{ml})$. The mixture was stirred at $50^{\circ} \mathrm{C}$ overnight, cooled to room temperature, diluted with water (5 mL) and acidified with hydrochloric acid ($1 \mathrm{M}, 1 \mathrm{~mL}$). The aqueous phase was extracted with $\mathrm{EtOAc}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 1:4 EtOAc-hexane, gave the acetate 51.18' (ca $1 \mathrm{mg}, 3.5 \%$) as an oil (and no 51.18): FTIR (CHCl_{3} cast) 2985, 2942, 1739, 1720, 1655, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.24-1.28(\mathrm{~m}, 5 \mathrm{H}), 1.93-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H}), 2.36-$ $2.51(\mathrm{~m}, 4 \mathrm{H}), 4.11-4.27(\mathrm{~m}, 2 \mathrm{H}), 5.65-5.69(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 13.49$ (q), 13.99 (q), 20.71 (d), 26.06 (t), 35.30 (t), 60.05 (t), 61.87 (t), 76.54 (d), 170.01 (s), 170.14 (s), 211.60 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{NaO}_{5} 251.0890$, found 251.0891.

The above experiment was done in an attempt to establish if $\mathbf{5 1 . 1 8}$ is derived from 51.18'; it appears, however, that $\mathbf{5 1 . 1 8}$ is not stable for a prolonged time under these conditions, and all we accomplished by this experiment was the isolation of pure 51.18'.

By subtracting the signals of $\mathbf{5 1 . 1 8}$ ' from the NMR spectrum of the mixture of $\mathbf{5 1 . 1 8}$ and $\mathbf{5 1 . 1 8}$ ', it was possible to identify the NMR signals of 51.18: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.29(\mathrm{td}, J=7.1,0.5 \mathrm{~Hz}, 3 \mathrm{H}), 2.37-2.50(\mathrm{~m}, 2 \mathrm{H})$, 2.61-2.66 (m, 2 H), 3.14 (dd, $J=2.1,2.1 \mathrm{~Hz}, 2 \mathrm{H}$), 4.08-4.24 (m, 2 H), 7.16 (dddd, $J=4.0,4.0,1.9,1.9 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.2$ (q), 25.1 (t$), 37.3$ (t$), 39.0$ (t$), 60.8$ (t$), 128.7$ (s$), 137.9$ (d), 165.7 (s$), 208.2$ (s$).$

3-Hydroxy-7,7-dimethoxy-2-methyl-2-(phenylseleno)heptanoic Acid

 Ethyl Ester (41.12b). ${ }^{\dagger}$
n -BuLi (2.5 M in hexane, $9.03 \mathrm{~mL}, 22.6 \mathrm{mmol}$) was added dropwise over 5 min to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(3.47 \mathrm{~mL}, 24.6 \mathrm{mmol})$ in THF (50 mL). Stirring was continued for 45 min and a solution of $\mathbf{3 8 . 1}$ (6.07 $\mathrm{g}, 23.6 \mathrm{mmol}$) in THF (15 mL plus 2 mL as a rinse) was added over 10 min . Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 3 h and a solution of $41.12 \mathrm{a}^{65}(3.0 \mathrm{~g}, 21$ mmol) in THF (15 mL plus 2 mL as a rinse) was added dropwise over 10 min . The mixture was stirred for 1.5 h , and quenched with water (10 mL) and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(15 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 10 min and the mixture was diluted with water (100 mL) and extracted with EtOAc ($3 \times 25 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 20 \mathrm{~cm}$),
using 20% EtOAc-hexane, gave $\mathbf{4 1 . 1 2 b}(8.02 \mathrm{~g}, 97 \%)$ as a viscous oil which was a 60:40 mixture of diastereoisomers: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3477,2980,2947,2830$, $1721,1250,1129,744 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.14(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1.2$ H), $1.21(\mathrm{t}, J=7.0 \mathrm{~Hz}, 1.8 \mathrm{H}), 1.32-1.44(\mathrm{~m}, 5.4 \mathrm{H}), 1.52-1.71(\mathrm{~m}, 4 \mathrm{H}), 1.87-1.92$ $(\mathrm{m}, 0.6 \mathrm{H}), 2.82(\mathrm{~d}, J=7.0 \mathrm{~Hz}, 0.6 \mathrm{H}), 2.97(\mathrm{dd}, J=3.0,1.5 \mathrm{~Hz}, 0.4 \mathrm{H}), 3.30-3.33$ (m, 6 H$), 3.85-3.90(\mathrm{~m}, 1 \mathrm{H}), 3.96-4.14(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.40(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.33$ (m, 2 H), 7.38-7.42 (m, 1 H$), 7.56-7.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $13.8(\mathrm{q}), 14.0(\mathrm{q}), 17.0(\mathrm{q}), 18.2(\mathrm{q}), 21.99(\mathrm{t}), 22.01(\mathrm{t}), 31.2(\mathrm{t}), 31.6(\mathrm{t}), 32.27$ (t), $32.34(\mathrm{t}), 52.64(\mathrm{q}), 52.69(\mathrm{q}), 52.74(\mathrm{q}), 52.81(\mathrm{q}), 54.8(\mathrm{~s}), 57.5(\mathrm{~s}), 61.0(\mathrm{t})$, 61.2 (t), 72.8 (d), 75.2 (d), 104.48 (d), 104.53 (d), 126.5 (s), 126.6 (s), 128.77 (d), 128.83 (d), 129.36 (d), 129.44 (d), 138.04 (d), 138.07 (d), 173.1 (s), 174.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{28} \mathrm{NaO}_{5}{ }^{80} \mathrm{Se}$ 427.0994, found 427.0997.

2-(1-Hydroxy-5,5-dimethoxypentyl)acrylic Acid Ethyl Ester (41.12c). ${ }^{\dagger}$

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 5 \mathrm{~mL}, 49 \mathrm{mmol})$ was added dropwise over 2 min to a stirred and cooled $\left(-10^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 1 . 1 2 b}(2.0 \mathrm{~g}, 4.958 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Stirring at $-10{ }^{\circ} \mathrm{C}$ was continued for 1 h and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$, followed by dropwise addition of saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(8 \mathrm{~mL})$. The cold bath was removed after 10 min , stirring was continued for 5 min and the mixture was diluted with water $(30 \mathrm{~mL})$ and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 18 \mathrm{~cm}$), using 15% EtOAc-hexane, gave 41.12c (1.2 g, 98\%) as a viscous oil: FTIR
$\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $3454,2983,2948,2832,1714,1629,1128,954 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.36-1.73(\mathrm{~m}, 6 \mathrm{H}), 2.68(\mathrm{~d}, J=6.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.304(\mathrm{~s}, 3 \mathrm{H}), 3.307(\mathrm{~s}, 3 \mathrm{H}), 4.23(\mathrm{q}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 4.36(\mathrm{t}, J=5.6$ $\mathrm{Hz}, 1 \mathrm{H}), 4.36-4.41(\mathrm{~m}, 1 \mathrm{H}), 4.778-4.783(\mathrm{~m}, 1 \mathrm{H}), 6.22(\mathrm{~d}, J=0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.0(\mathrm{q}), 20.9$ (t$), 32.1$ (t$), 35.8$ (t), 52.6 (q), 52.7 (q), 60.7 (t), 71.5 (d), 104.4 (d), 124.6 (s$), 142.5$ (t), 166.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{22} \mathrm{NaO}_{5}$ 269.1359, found 269.1356.

2-(1-Acetoxy-5,5-dimethoxypentyl)acrylic Acid Ethyl Ester (40.12d). ${ }^{\dagger}$

Pyridine ($1.56 \mathrm{~mL}, 19.3 \mathrm{mmol}$) and $\mathrm{AcCl}(0.51 \mathrm{~mL}, 7.2 \mathrm{mmol})$ were added dropwise over ca 5 min to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 2 c}$ $(1.19 \mathrm{~g}, 4.83 \mathrm{mmol})$ and DMAP ($90 \mathrm{mg}, 0.73 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{~mL})$. Stirring at $0^{\circ} \mathrm{C}$ was continued for 1 h and the mixture was quenched with water (5 mL). The cold bath was removed, stirring was continued for 10 min and the mixture was diluted with water (15 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 16 \mathrm{~cm}$), using $20 \% \mathrm{EtOAc}-$ hexane, gave $40.12 d(1.292 \mathrm{~g}, 93 \%)$ as a viscous oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2983, 2947, 2831, 1746, 1719, 1633, 1240, $956 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.31(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.34-1.47(\mathrm{~m}, 2 \mathrm{H}), 1.54-1.84(\mathrm{~m}, 4 \mathrm{H}), 2.08(\mathrm{~s}, 3 \mathrm{H})$, 3.309 (s, 3 H), 3.311 ($\mathrm{s}, 3 \mathrm{H}$), 4.18-4.29 (m, 2 H), $4.34(\mathrm{t}, J=5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.62$ (dd, $J=8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74-5.75(\mathrm{~m}, 1 \mathrm{H}), 6.281-6.283(\mathrm{~m}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.1$ (q), 20.4 (t), 21.1 (q), 32.1 (t), 34.0 (t), 52.7 (q), 52.8
(q), 60.9 (t), 71.7 (d), 104.3 (s), 124.8 (s), 140.2 (t), 165.2 (s), 169.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{24} \mathrm{NaO}_{6} 311.1465$, found 311.1460.

2-(1-Acetoxy-5-oxopentyl)acrylic Acid Ethyl Ester (40.12e). ${ }^{\dagger}$

Hydrochloric acid ($10 \%, 4 \mathrm{~mL}$) was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 2 d}(650 \mathrm{mg}, 2.25 \mathrm{mmol})$ in THF (12 mL). The ice bath was removed after 2 h , stirring was continued for 3 h and the mixture was diluted with water (30 mL) and extracted with EtOAc ($3 \times 10 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 2 \mathrm{~cm}$), using 50\% EtOAc-hexane (80 mL), gave 40.12e ($525 \mathrm{mg}, 96 \%$) as a colorless liquid: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $2941,1743,1372,1235$, $1029 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.29(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.56-1.83(\mathrm{~m}$, $4 \mathrm{H}), 2.07(\mathrm{~s}, 3 \mathrm{H}), 2.40-2.53(\mathrm{~m}, 2 \mathrm{H}), 4.15-4.27(\mathrm{~m}, 2 \mathrm{H}), 5.59-5.62(\mathrm{~m}, 1 \mathrm{H})$, $5.75(\mathrm{t}, J=1.2 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{t}, J=0.4 \mathrm{~Hz}, 1 \mathrm{H}), 9.74(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.1$ (q), 17.8 (t$), 21.0(\mathrm{q}), 33.5$ (t$), 43.2$ (t$), 60.9$ (t$)$, 71.2 (d), 125.0 (s), 139.9 (t), 165.1 (s), 169.8 (s), 201.7 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{18} \mathrm{NaO}_{5} 265.1047$, found 265.1045.

5-Formylcyclohex-1-enecarboxylic Acid Ethyl Ester (51.19). ${ }^{\dagger}$

(a) Use of pyrrolidine

40.12e

51.19

A solution of pyrrolidine ($4 \mathrm{mg}, 0.06 \mathrm{mmol}$) in $\mathrm{PhH}(2 \mathrm{~mL})$ was added over 1 min to a stirred solution of $\mathbf{4 0 . 1 2 e}(150 \mathrm{mg}, 0.619 \mathrm{mmol})$ in $\mathrm{PhH}(1 \mathrm{~mL})$. The reaction flask was lowered into a preheated oil bath and the mixture was refluxed for 18 h . Evaporation of the solvent and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 20\% EtOAc-hexane, gave 51.19 (36 $\mathrm{mg}, 32 \%)$ as a viscous liquid: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) $2982,2933,2714,1711,1651$, $1251,1089,720 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.29(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, 1.63-1.7 (m, 1 H$), 1.95-2.01(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.37(\mathrm{~m}, 2 \mathrm{H}), 2.42-2.61(\mathrm{~m}, 3 \mathrm{H})$, $4.20(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 6.98-7.0(\mathrm{~m}, 1 \mathrm{H}), 9.72(\mathrm{br} \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 14.2$ (q), 21.0 (t), 23.4 (t), 24.2 (t$), 45.6$ (d), 60.4 (t), 128.5 (s$), 138.9$ (d), 166.7 (s), 203.2 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{14} \mathrm{NaO}_{3}$ 205.0835 , found 205.0836.

(b) Use of proline-derived catalyst 51b.

A solution of the proline-derived catalyst $\mathbf{5 1 b}^{73}(15 \mathrm{mg}, 0.046 \mathrm{mmol})$ in dry $\mathrm{MeCN}(3 \mathrm{~mL})$ was added to a stirred solution of $\mathbf{4 0 . 1 2 e}(68 \mathrm{mg}, 0.28 \mathrm{mmol})$ in $\mathrm{MeCN}(1 \mathrm{~mL})$. The reaction flask was lowered into a preheated oil bath and the mixture was refluxed for 15 h , cooled to room temperature and filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 60% EtOAc-hexane (60 mL). Evaporation of the solvent and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 10% EtOAc-hexane, gave 51.19 ($27 \mathrm{mg}, 53 \%$, 69% after correction for recovered $\mathbf{4 0 . 1 2 e}$) as a viscous liquid and $\mathbf{4 0 . 1 2 e}(16 \mathrm{mg}, 24 \%)$ as
pure (${ }^{1} \mathrm{H}$ NMR) viscous oils. Compound $\mathbf{5 1 . 1 9}$ had: $[\alpha]_{\mathrm{D}}-0.64\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, c 0.5 $\mathrm{g} / 100$).

3-Hydroxy-2-methyl-6-nitro-2-(phenylseleno)hexanoic Acid Ethyl

 Ester (40.7b,b').
40.7a

40.7b,b'
$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $1.04 \mathrm{~mL}, 1.67 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(168.7 \mathrm{mg}, 1.67 \mathrm{mmol})$ in THF (8 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , and a solution of 38.1 (429.0 mg , 1.67 mmol) in THF (1 mL) was then added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 85 min , and a solution of $\mathbf{4 0 . 7 a} \mathbf{a}^{66}(150 \mathrm{mg}, 1.28 \mathrm{mmol})$ in THF (1 mL) was added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 40 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(10 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min , the mixture was diluted with water $(30 \mathrm{~mL})$ and the aqueous phase was extracted with EtOAc (3 x 20 mL). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using 1:2 EtOAc-hexane, gave 40.7b (less polar isomer) ($91 \mathrm{mg}, 19 \%$) as a viscous oil and 40.7b' (more polar isomer) ($160 \mathrm{mg}, 33 \%$) as a viscous oil.

Compound 40.7b had: FTIR (CDCl_{3} cast) $3508,3059,2980,2935,1717$, $1552,1476,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.15(\mathrm{dd}, J=7.1,7.1 \mathrm{~Hz}, 3$ H), 1.37 (s, 3 H), 1.46-1.52 (m, 1 H$), 1.64$ (dddd, $J=14.2,10.2,8.5,5.8 \mathrm{~Hz}, 1 \mathrm{H}$), 2.08-2.16 (m, 1 H), 2.24-2.32 (m, 1 H), 3.19 (dd, $J=2.3,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{td}, J$ $=10.2,2.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1$ H), 4.37-4.48 (m, 2 H), 7.31-7.35 (m, 2 H), 7.40-7.44 (m, 1 H), 7.57-7.59 (m, 2 $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.8$ (q), 17.1 (q), 24.8 (t), 28.1 (t$), 56.9$ (s$)$,
61.3 (t), 72.2 (d), 75.3 (t), 126.0 (s), 129.0 (d), 129.7 (d), 138.0 (d), 173.1 (s); exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{5}{ }^{80} \mathrm{Se} 375.0580$, found 375.0584.

Compound 40.7b' had: FTIR (CDCl_{3} cast) 3509, 2980, 2938, 1717, 1551, $1476,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.22(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}$, $3 \mathrm{H}), 1.44-1.52(\mathrm{~m}, 1 \mathrm{H}), 2.01-2.15$ (m, 2 H), 2.23-2.32 (m, 1 H$), 2.93$ (dd, $J=$ $6.6,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{ddd}, J=10.7,6.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.13 (q, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}$), 4.40-4.51 (m, 2 H), 7.31-7.34 (m, 2 H), 7.39-7.43 (m, 1
 27.9 (t), 54.0 (s), 61.5 (t), 74.6 (d), 75.4 (t), 126.2 (s$), 128.9$ (d), 129.6 (d), 138.0 (d), $174.0(\mathrm{~s})$; exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{21} \mathrm{NO}_{5}{ }^{80} \mathrm{Se} 375.0580$, found 375.0580 .

3-Acetoxy-2-methyl-6-nitro-2-(phenylseleno)hexanoic Acid Ethyl

 Ester (40.7c).
40.7b'

40.7c

Pyridine ($187.9 \mathrm{mg}, 2.38 \mathrm{mmol}$) and $\mathrm{AcCl}(93.3 \mathrm{mg}, 1.19 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.7b' $(148 \mathrm{mg}, 0.40 \mathrm{mmol})$ and DMAP ($4.8 \mathrm{mg}, 0.040 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. The cold bath was left in place but not recharged and stirring was continued for 13 h , by which time the temperature had risen to room temperature. The mixture was diluted with water $(5 \mathrm{~mL})$, acidified with hydrochloric acid ($1 \mathrm{M}, 2 \mathrm{~mL}$) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 19:50 EtOAc-hexane, gave 40.7c (127 mg , 77%) as an oil: FTIR (CDCl_{3} cast) $3058,2982,2936,1743,1725,1669,1552$, $1477,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.09(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.49(\mathrm{~s}$, $3 \mathrm{H}), 1.68$ (dddd, $J=14.1,10.5,9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 1.96(\mathrm{~s}, 3 \mathrm{H}), 1.96-2.11(\mathrm{~m}, 2$
H), 2.23-2.30 (m, 1 H$), 3.90(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dq}, J=10.8,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 4.43$ (dd, $J=6.7,6.6 \mathrm{~Hz}, 2 \mathrm{H}), 5.41(\mathrm{dd}, J=10.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.31-$ $7.34(\mathrm{~m}, 2 \mathrm{H}), 7.39-7.43(\mathrm{~m}, 1 \mathrm{H}), 7.56-7.59(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 13.8$ (q), 17.6 (q), 20.8 (q), 24.1 (t), 27.3 (t), 52.4 (s), 61.3 (s), 74.5 (d), 74.9 (t), 126.0 (s), 129.0 (d), 129.8 (d), 137.9 (d), 169.9 (s), 171.8 (s); exact mass m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{23} \mathrm{NO}_{6}{ }^{80} \mathrm{Se} 417.0691$, found 417.0692.

2-(1-Acetoxy-4-nitrobutyl)acrylic Acid Ethyl Ester (40.7d).

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.36 \mathrm{~mL}, 3.52 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 7 c}(123 \mathrm{mg}, 0.30 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Stirring was continued at $0^{\circ} \mathrm{C}$ for 70 min and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2.0 \mathrm{~mL})$. The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 5 min , the ice bath was removed, stirring was continued for 30 min , and water (10 mL) was added. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using 7:20 EtOAc-hexane, gave 40.7d (60 mg , 78\%) as a viscous oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$ cast) 2983, 2940, 1743, 1633, 1553, $1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500\right.$ $\mathrm{MHz}) \delta 1.30(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.75-1.82(\mathrm{~m}, 1 \mathrm{H}), 1.88(\mathrm{dddd}, J=14.0,10.0$, 6.1, 4.2 Hz, 1 H), 1.99-2.09 (m, 2 H), 2.09 ($\mathrm{s}, 3 \mathrm{H}$), 4.18-4.27 (m, 2 H), 4.40 (dd, $J=7.0,6.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.64(\mathrm{dd}, J=7.7,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.77(\mathrm{~s}, 1 \mathrm{H}), 6.31(\mathrm{~s}, 1 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.1$ (q), 20.9 (q), 23.2 (t), 30.7 (t), 61.1 (t$), 70.6$ (d), 74.9 (t$), 125.4$ (t$), 139.4$ (s), 164.9 (s$), 169.7$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{17} \mathrm{NNaO}_{6}$ 282.0948, found 282.0947.

5-Nitrocyclohex-1-enecarboxylic Acid Ethyl Ester (51.12).

$\mathrm{Cs}_{2} \mathrm{CO}_{3}$ ($66.2 \mathrm{mg}, 0.203 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{4 0 . 7 d}$ ($26.3 \mathrm{mg}, 0.102 \mathrm{mmol}$) in THF (1 mL), and stirring at room temperature was continued for 4.5 h . Evaporation of the solvent and flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 1:2 EtOAc-hexane, gave $\mathbf{5 1 . 1 2}$ (15 mg , 75%) as a colorless viscous oil: FTIR (CDCl_{3} cast) 2982, 2938, 2907, 1712, $1655,1548,1462,1445,1430 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.30(\mathrm{t}, J=7.2$ Hz, 3 H), 2.14-2.49 (m, 4 H), 2.84-2.98 (m, 2 H), 4.21 ($\mathrm{q}, ~ J=7.2 \mathrm{~Hz}, 2 \mathrm{H}$), 4.67 (dddd, $J=9.6,8.0,6.0,4.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.00 (dddd, $J=3.6,3.6,1.8,1.8 \mathrm{~Hz}, 1 \mathrm{H}$); ${ }^{13} \mathrm{C}_{\mathrm{NMR}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.2(\mathrm{q}), 23.6$ (t), 25.8 (t), 28.2 (t$), 60.1$ (t$), 80.4$ (d), 126.9 (s), 137.8 (d), $165.9(\mathrm{~s})$; exact mass m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{13} \mathrm{NO}_{4}$ 199.0845, found 199.0846.
(5,5-Diethoxypent-1-ynyl)trimethylsilane (49.3). ${ }^{77}$

49.2
49.3
$\mathrm{n}-\mathrm{BuLi}(1.3 \mathrm{M}, 5.8 \mathrm{~mL}, 7.57 \mathrm{mmol})$ was added to a stirred and cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of trimethylsilylacetylene $(0.744 \mathrm{~g}, 7.57 \mathrm{mmol})$ in THF (35 mL). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 10 min and then recooled to $-78{ }^{\circ} \mathrm{C}$. A solution of HMPA ($7.4 \mathrm{~g}, 41.3 \mathrm{mmol}$) in THF (7 mL) was added, stirring was continued for 10 min , and a solution of $49.2(1.78 \mathrm{~g}, 6.9 \mathrm{mmol})$ in THF (10 mL)
was added dropwise. The cold bath was left in place but not recharged and stirring was continued overnight. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(30 \mathrm{~mL})$ and diluted with water $(200 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($4 \times 15 \mathrm{~cm}$), using 0.9:25 EtOAc-hexane, gave 49.3 (1.104 $\mathrm{mg}, 70 \%$) as a colorless liquid.

4-Pentynyl Diethyl Acetal (49.4). ${ }^{77}$

$\mathrm{K}_{2} \mathrm{CO}_{3}(2.67 \mathrm{~g}, 19.4 \mathrm{mmol})$ was added to a stirred solution of 49.3 (1.104 $\mathrm{g}, 4.84 \mathrm{mmol})$ in anhydrous $\mathrm{MeOH}(100 \mathrm{~mL})\left(\mathrm{N}_{2}\right.$ atmosphere). Stirring at room temperature was continued for 2.5 h . The mixture was concentrated to 50 mL and diluted with water $(250 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 60$ $\mathrm{mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give $\mathbf{4 9 . 4}$ as a liquid ($669 \mathrm{mg}, 89 \%$).

(6,6-Diethoxyhex-2-ynyl)trimethylsilane (49.5). ${ }^{78}$

49.4

49.5
$\mathrm{n}-\mathrm{BuLi}(1.3 \mathrm{M}, 4.5 \mathrm{~mL}, 5.85 \mathrm{mmol})$ was added to a stirred and cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of 49.4 ($760 \mathrm{mg}, 4.87 \mathrm{mmol}$) in THF (20 mL). The mixture was stirred at $0{ }^{\circ} \mathrm{C}$ for 15 min and HMPA (5.1 mL) was added. The mixture was cooled to $-78{ }^{\circ} \mathrm{C}$ and iodomethyltrimethylsilane ($1.25 \mathrm{~g}, 5.85 \mathrm{mmol}$) was added dropwise. The cold bath was left in place but not recharged and stirring was continued overnight. The mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$ $(20 \mathrm{~mL})$ and diluted with water $(150 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 30 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (2 x 15 cm), using 1:20 EtOAc-hexane, gave 49.5 ($852 \mathrm{mg}, 72 \%$) as a colorless liquid: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) $2975,2960,2933,2901,2881,2222,2177$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-0.09(\mathrm{~s}, 9 \mathrm{H}), 1.21(\mathrm{t}, J=5.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.41$ $(\mathrm{t}, J=2.7 \mathrm{~Hz}, 2 \mathrm{H}), 1.77(\mathrm{td}, J=7.2,5.8 \mathrm{~Hz}, 2 \mathrm{H}), 2.22(\mathrm{tt}, J=7.2,2.7 \mathrm{~Hz}, 2 \mathrm{H})$, $3.51(\mathrm{dq}, J=9.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.66(\mathrm{dq}, J=9.5,7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.61(\mathrm{t}, J=5.8 \mathrm{~Hz}$, $1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-2.1(\mathrm{q}), 6.9(\mathrm{t}), 14.6(\mathrm{t}), 15.4(\mathrm{q}), 33.5(\mathrm{t})$, 61.5 (t), 77.7 (s , 77.8 (s), 102.0 (d); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{26} \mathrm{NaO}_{2} \mathrm{Si} 265.1594$, found 265.1594.

(Z)-6-(Trimethylsilyl)hex-4-enal (40.13a). ${ }^{79}$

40.13a

49.5

N_{2} was bubbled through a solution of $\mathbf{4 9 . 5}(256 \mathrm{mg}, 1.06 \mathrm{mmol})$ in MeOH $(1 \mathrm{~mL})$ for 10 min , and then $10 \% \mathrm{Pd} / \mathrm{BaSO}_{4}(5.8 \mathrm{mg})$ and quinoline $(5.8 \mathrm{mg}, 0.48$ mmol) were added. Stirring at room temperature was continued for 5 min , and the mixture was purged with a stream of H_{2} for 10 sec . The flask was connected
to a sloping manifold apparatus filled with H_{2}. The flask was removed when rapid absorption of H_{2} stopped (a little more than the calculated amount), and the solid was filtered off through a pad of Celite, using $\mathrm{Et}_{2} \mathrm{O}$ as a rinse. Evaporation of the filtrate gave the crude product ($251 \mathrm{mg}, 97 \%$).

The above crude product was dissolved in acetone (2 mL), and hydrochloric acid ($1 \mathrm{M}, 1.1 \mathrm{~mL}$) was added. The solution was stirred at room temperature for 2 h , diluted with water (20 mL), and extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 15$ mL). The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, to give crude 40.13 a (157 mg , 87% over two steps), which was used directly in the next step: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $300 \mathrm{MHz}) \delta$-0.01 (s, 9 H), 1.47-1.51 (m, 2 H), 2.31-2.37 (m, 2 H), 2.45-2.51 (m, $2 \mathrm{H}), 5.23(\mathrm{dtt}, J=10.5,6.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{dtt}, J=10.5,8.7,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, $9.78(\mathrm{t}, J=1.5 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-1.9(\mathrm{q}), 18.5(\mathrm{t}), 19.8(\mathrm{t})$, 43.8 (t), 124.7 (d), 127.3 (d), 202.3 (d).

(Z)-3-Hydroxy-2-methyl-2-(phenylseleno)-8-(trimethylsilyl)oct-6-enoic

 Acid Ethyl Ester (40.13b,b').
40.13a

40.13b,b'
$\mathrm{n}-\mathrm{BuLi}(1.3 \mathrm{M}$ in hexane, $1.07 \mathrm{~mL}, 1.39 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(141 \mathrm{mg}, 1.39 \mathrm{mmol})$ in THF (6 mL). Stirring at $0^{\circ} \mathrm{C}$ was continued for 10 min , the mixture was cooled to -78 ${ }^{\circ} \mathrm{C}$, and a solution of $\mathbf{3 8 . 1}$ ($357.2 \mathrm{mg}, 1.39 \mathrm{mmol}$) in THF (1 mL) was then added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 30 min , and a solution of 40.13a $(157 \mathrm{mg}, 0.92 \mathrm{mmol})$ in THF (1.5 mL) was added dropwise. Stirring at $-78^{\circ} \mathrm{C}$
was continued for 50 min , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min , the mixture was diluted with water $(25 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{Et}_{2} \mathrm{O}(3 \times 20 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 15 \mathrm{~cm}$), using successively 1:20 EtOAc-hexane, 8% EtOAc-hexane, and 10% EtOAc-hexane, gave 40.13b (less polar isomer) ($80 \mathrm{mg}, 20 \%$) as a viscous oil and 40.13b' (more polar isomer) ($133 \mathrm{mg}, 34 \%$) as a viscous oil.

Compound 40.13b had: FTIR (CDCl_{3} cast) $3515,3058,2953,1721,1476$, $1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-0.01(\mathrm{~s}, 9 \mathrm{H}), 1.12(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H})$, $1.33-1.41(\mathrm{~m}, 4 \mathrm{H}), 1.47$ (dddd, $J=13.7,13.7,13.6,8.5 \mathrm{~Hz}, 2 \mathrm{H}), 1.59$ (dddd, $J=$ $23.4,19.9,17.1,10.7 \mathrm{~Hz}, 1 \mathrm{H}$), 2.06-2.14 (m, 1 H), 2.20-2.27 (m, 1 H), 2.96 (dd, $J=2.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{ddd}, J=9.8,2.8,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 3.95-4.09(\mathrm{~m}, 2 \mathrm{H})$, 5.20-5.25 (m, 1 H), 5.40 (ddddd, $J=10.1,8.7,8.7,1.4,1.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.29-7.32 $(\mathrm{m}, 2 \mathrm{H}), 7.37-7.41(\mathrm{~m}, 1 \mathrm{H}), 7.59-7.61(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-$ 1.8 (q), 13.8 (q), 17.1 (q), 18.4 (t), 24.2 (t), 31.9 (t), 57.5 (s$), 61.0$ (t$), 72.6$ (d), 126.3 (d), 126.48 (d), 126.54 (s), 128.8 (d), 129.4 (d), 138.0 (d), 173.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{3}{ }^{80} \mathrm{SeSi} 451.1178$, found 451.1176.

Compound 40.13b' had: FTIR (CDCl_{3} cast) 3507, 3059, 3002, 2953, $1704,1476,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.01(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{t}, J=$ $7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.41(\mathrm{~s}, 3 \mathrm{H}), 1.44-1.55(\mathrm{~m}, 3 \mathrm{H}), 1.90$ (dddd, $J=13.6,8.9,7.3,1.5$ $\mathrm{Hz}, 1 \mathrm{H}), 2.11$ (ddddd, $J=14.6,8.7,7.3,7.2,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.24-2.31(\mathrm{~m}, 1 \mathrm{H})$, $2.82(\mathrm{~d}, J=6.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, J=10.4,6.8,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.13(\mathrm{~m}, 2$ H), $5.26-5.31(\mathrm{~m}, 1 \mathrm{H}), 5.45$ (ddddd, $J=10.2,8.6,8.6,1.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-$ 7.32 (m, 2 H), 7.37-7.40 (m, 1 H$), 7.56-7.59 \mathrm{~m}, 2 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125$ $\mathrm{MHz}) \delta-1.8(\mathrm{q}), 13.9(\mathrm{q}), 18.3(\mathrm{q}), 18.5(\mathrm{t}), 24.2(\mathrm{t}), 31.6(\mathrm{t}), 54.7(\mathrm{~s}), 61.2(\mathrm{t})$, 75.0 (d), 126.4 (d), 126.5 (d), 126.7 (s), 128.7 (d), 129.3 (d), 138.1 (d), 174.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{20} \mathrm{H}_{32} \mathrm{NaO}_{3}{ }^{80} \mathrm{SeSi} 451.1178$, found 451.1181 .

(Z)-3-Acetoxy-2-methyl-2-(phenylseleno)-8-(trimethylsilyl)oct-6-enoic

Acid Ethyl Ester (40.13c).

40.13b

40.13c

Pyridine ($88.6 \mathrm{mg}, 1.12 \mathrm{mmol}$) and $\mathrm{AcCl}(44.1 \mathrm{mg}, 0.56 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of 40.13b ($80 \mathrm{mg}, 0.19 \mathrm{mmol}$) and DMAP ($2.3 \mathrm{mg}, 0.018 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5$ mL). Stirring at $-10^{\circ} \mathrm{C}$ was continued for 30 min , the cold bath was removed and stirring was continued for 2.5 h . The mixture was quenched with hydrochloric acid ($1 \mathrm{M}, 3 \mathrm{~mL}$) and diluted with water (10 mL). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using 1.3:20 EtOAc-hexane, gave 40.13c (74 $\mathrm{mg}, 84 \%)$ as an oil: FTIR (CDCl_{3} cast) $2954,1745,1727,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-0.02(\mathrm{~s}, 9 \mathrm{H}), 1.07(\mathrm{t}, J=7.5 \mathrm{~Hz}, 3 \mathrm{H}), 1.37-1.50(\mathrm{~m}, 3 \mathrm{H})$, $1.52(\mathrm{~s}, 3 \mathrm{H}), 1.65(\mathrm{dddd}, J=15.0,9.9,7.4,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.99(\mathrm{ddd}, J=7.4,7.3$, $7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.16(\mathrm{~s}, 3 \mathrm{H}), 3.83(\mathrm{dq}, J=10.8,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.97(\mathrm{dq}, J=10.8,7.2$ $\mathrm{Hz}, 1 \mathrm{H}), 5.18-5.23(\mathrm{~m}, 1 \mathrm{H}), 5.37-7.43(\mathrm{~m}, 1 \mathrm{H}), 5.58(\mathrm{dd}, J=10.0,1.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.29-7.32 (m, 2 H$), 7.37-7.40(\mathrm{~m}, 1 \mathrm{H}), 7.61-7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 125 MHz) δ-1.8 (q), 13.7 (q), 17.9 (q), 18.4 (t), 21.1 (q), $24.0(\mathrm{t}), 31.9$ (t$), 54.8$ (s), 61.0 (t), 74.7 (d), 125.8 (d), 126.4 (d), 126.9 (s), 128.7 (d), 129.4 (d), 138.0 (d), 170.5 (s), 171.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{34} \mathrm{NaO}_{4}{ }^{80} \mathrm{SeSi}$ 493.1284, found 493.1289.

Ester (40.13d).

40.13c

40.13d
$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 127.6 \mathrm{mg}, 1.13 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 3 c}(44 \mathrm{mg}, 0.094 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Stirring was continued at $0{ }^{\circ} \mathrm{C}$ for 1.3 h and the mixture was quenched with saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(2 \mathrm{~mL})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 20 min , the ice bath was removed, stirring was continued for 5 min and the mixture was diluted with water (10 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 7:100 EtOAc-hexane, gave 40.13d ($25.2 \mathrm{mg}, 86 \%$) as an oil: FTIR (CDCl_{3} cast) 2955, 1749, 1721, $1632 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta-0.02(\mathrm{~s}, 9 \mathrm{H})$, $1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.43(\mathrm{~d}, J=8.4 \mathrm{~Hz}, 2 \mathrm{H}), 1.72(\mathrm{ddd}, J=14.2,14.0,6.9$ $\mathrm{Hz}, 1 \mathrm{H}), 1.77-1.85(\mathrm{~m}, 1 \mathrm{H}), 2.03$ (ddd, $J=7.7,7.7,7.3 \mathrm{~Hz}, 2 \mathrm{H}), 3.08(\mathrm{~s}, 3 \mathrm{H})$, $4.17(\mathrm{~m}, 2 \mathrm{H}), 5.19-5.26(\mathrm{~m}, 1 \mathrm{H}), 5.41$ (ddddd, $J=10.2,8.7,8.7,1.5,1.5 \mathrm{~Hz}, 1$ H), $5.62(\mathrm{dd}, J=8.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.74(\mathrm{dd}, J=0.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=$ $0.8,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-1.8(\mathrm{q}), 14.1$ (q), 18.4 (t), 21.1 (q), $23.0(\mathrm{t}), 34.3$ (t), $60.8(\mathrm{t}), 71.6(\mathrm{~d}), 124.7(\mathrm{~s}), 125.8(\mathrm{~d}), 126.5(\mathrm{~d}), 140.4(\mathrm{t})$, 165.2 (s), 169.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{28} \mathrm{NaO}_{4} \mathrm{Si}$ 335.1649 , found 335.1645.

5-Vinylcyclohex-1-enecarboxylic Acid Ethyl Ester (51.20).

$\mathrm{TiCl}_{4}(14.5 \mathrm{mg}, 0.076 \mathrm{mmol})$ that had been frozen $\left(-78^{\circ} \mathrm{C}\right)$, placed under vacuum, allowed to melt under N_{2}, and subjected to this freeze-thaw cycle three times, was added to a stirred and cooled $\left(-40^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1 3 d}(19.8 \mathrm{mg}$, $0.063 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.6 \mathrm{~mL})$. Stirring at $-40^{\circ} \mathrm{C}$ was continued for 5 min . The mixture was quenched with water (5 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO} 4\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 3:100 EtOAchexane, gave 51.20 ($10.3 \mathrm{mg}, 90 \%$) as a colorless liquid: FTIR (CDCl_{3} cast) 3081, 2980, 2930, 1711, 1651, $1434 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.29$ (t, J $=7.6 \mathrm{~Hz}, 3 \mathrm{H}), 1.33-1.41(\mathrm{~m}, 1 \mathrm{H}), 1.77-1.84(\mathrm{~m}, 1 \mathrm{H}), 1.98-2.06(\mathrm{~m}, 1 \mathrm{H})$, 2.182.35 (m, 3 H), (ddddd, $J=17.5,5.1,2.7,2.6,1.3 \mathrm{~Hz}, 1 \mathrm{H}), 1.19$ (q, $J=7.6 \mathrm{~Hz}, 2$ H), 5.03 (dddd, $J=23.4,10.4,1.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 5.85(\mathrm{ddd}, J=17.1,0.4,6.4 \mathrm{~Hz}$, $1 \mathrm{H})$, 6.96-7.00 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.3(\mathrm{q}), 25.4(\mathrm{t}), 27.3$ (t), 29.7 (t), 37.1 (d), 60.2 (t), 113.1 (t), 129.7 (s), 139.0 (d), 142.7 (d), 167.4 (s); exact mass m / z calcd for $\mathrm{C}_{11} \mathrm{H}_{16} \mathrm{O}_{2} 180.1150$, found 180.1151 .

6-Methoxycarbonyl-2-methyl-2-(phenylseleno)-3-[(triethylsilyl)oxy]heptanedioic Acid 1-Ethyl Ester 7-Methyl Ester. ${ }^{\dagger}$

40.1b'

-
$\mathrm{Et}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(0.5 \mathrm{~mL}, 2.14 \mathrm{mmol})$ was added dropwise over ca 2 min to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 1} \mathbf{b}^{\prime}(530 \mathrm{mg}, 1.19 \mathrm{mmol})$ and $2,6-$ lutidine ($0.42 \mathrm{~mL}, 3.57 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 2 h and the mixture was quenched with water (5 mL) and saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 10 min and the mixture was diluted with water (5 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 16 \mathrm{~cm}$), using 15% EtOAc-hexane, gave 6-methoxycarbonyl-2-methyl-2-(phenylseleno)-3-[(triethylsilyl)oxy]heptanedioic acid 1-ethyl ester 7-methyl ester ($658 \mathrm{mg}, 99 \%$) as a colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2954, 2916, 2876, 1754, 1737, 1437, 1242, 741 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.54(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=8.0 \mathrm{~Hz}$, $9 \mathrm{H}), 1.12(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.42-1.51(\mathrm{~m}, 1 \mathrm{H}), 1.49$ (s, 3 H), 1.84-1.92 (m, 1 H), 2.06-2.20 (m, 2 H), $3.40(\mathrm{t}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.77$ ($\mathrm{s}, 3 \mathrm{H}), 3.79$ (s, 3 H), 3.874.03 (m, 2 H), 4.21 (br d, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}$), 7.27-7.32 (m, 2 H), 7.37-7.40 (m, 1 H), 7.56-7.59 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 5.3$ (t), 6.8 (q), 13.6 (q), 16.3 (q), 26.6 (t), 30.8 (t), 51.7 (d), 52.4 (q), 52.43 (q), 55.7 (s), $60.8(\mathrm{t}), 75.0(\mathrm{~d})$, 126.6 (s), 128.6 (d), 129.2 (d), 137.8 (d), 169.5 (s$), 169.6$ (s$), 172.6$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{40} \mathrm{NaO}_{7}{ }^{80} \mathrm{SeSi} 583.1601$, found 583.1590.

6-Methoxycarbonyl-2-methylene-3-[(triethylsilyl)oxy]heptanedioic

Acid 1-Ethyl Ester 7-Methyl Ester (57.1). ${ }^{\dagger}$

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 1.25 \mathrm{~mL}, 12.2 \mathrm{mmol})$ was added dropwise over 2 min to a stirred and cooled ($-10^{\circ} \mathrm{C}$, ice-acetone cold bath) solution of 6-methoxycarbonyl-2-methyl-2-(phenylseleno)-3-[(triethylsilyl)oxy]heptanedioic acid 1-ethyl ester 7methyl ester ($655 \mathrm{mg}, 1.17 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(10 \mathrm{~mL})$. Stirring was continued for 1 h and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$, followed by dropwise addition of saturated $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \mathrm{~mL})$. The cold bath was removed after 10 min , stirring was continued for 10 min and the mixture was diluted with water (25 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{x} 10 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 18 \mathrm{~cm}$), using 5\% EtOAchexane, gave 57.1 ($453 \mathrm{mg}, 96 \%$) as a colorless oil: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$ cast) 2956, 2878, 1756, 1739, 1714, 1631, 1095, $743 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.59(\mathrm{q}, J=7.6 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=7.6 \mathrm{~Hz}, 9 \mathrm{H}), 1.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.50-$ 1.59 (m, 1 H), 1.63-1.71 (m, 1 H$), 1.89-1.99$ (m, 2 H), 3.37 (t, $J=7.6 \mathrm{~Hz}, 1 \mathrm{H}$), 3.719 ($\mathrm{s}, 3 \mathrm{H}$), 3.722 ($\mathrm{s}, 3 \mathrm{H}$), 4.15-4.26 (m, 2 H), 4.66 (dd, $J=5.6,4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $5.93(\mathrm{t}, J=1.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.27(\mathrm{dd}, J=1.6,0.8 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ $\mathrm{MHz}) \delta 4.6$ (t), 6.7 (q), 14.0 (q), 24.0 (t), 34.6 (t), 51.4 (d), 52.26 (q), 52.28 (q), 60.5 (t), 69.4 (d), 124.8 (s$), 143.2$ (t), 165.9 (s$), 169.62$ (s$), 169.7$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NaO}_{7} \mathrm{Si} 425.1966$, found 425.1969.

Cyclohex-3-ene-1,1,3-tricarboxylic Acid 3-Ethyl Ester 1,1-Dimethyl

Ester (51.1) from 57.1.

DBU ($0.040 \mathrm{~mL}, 0.25 \mathrm{mmol}$) was added dropwise to a stirred solution of 57.1 ($50 \mathrm{mg}, 0.12 \mathrm{mmol}$) in $\mathrm{MeCN}(2 \mathrm{~mL})$. The mixture was stirred for 1.5 h and then filtered through a pad of silica gel ($2 \times 2 \mathrm{~cm}$), using 50\% EtOAc-hexane (25 $\mathrm{mL})$. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 20% EtOAc-hexane, gave 51.1 ($32 \mathrm{mg}, 96 \%$) as a viscous oil.

2-Methyl-2-(phenylseleno)-6,6-bis(phenylthio)-3-[(triethylsilyl)oxy]-

 hexanoic Acid Ethyl Ester.
$\mathrm{Me}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}$ ($291 \mathrm{mg}, 1.1 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right.$) solution of $\mathbf{4 0 . 4 b}$ (326 mg , o. 6 mmol) and 2,6-lutidine (192.9 $\mathrm{mg}, 1.8 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1.5 h and the mixture was quenched with water $(5 \mathrm{~mL})$ and saturated aqueous NaHCO_{3} (3 mL). The cold bath was removed and stirring was continued for 15 min . The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.4 \times 15 \mathrm{~cm}$), using 1:20 EtOAc-hexane, gave 2-methyl-2-
(phenylseleno)-6,6-bis(phenylthio)-3-[(triethylsilyl)oxy]hexanoic acid ethyl ester ($338 \mathrm{mg}, 85 \%$) as an oil: FTIR (CDCl_{3} cast) $3073,3058,2955,2911,2875,1720$, $1583,1475,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.61-0.75(\mathrm{~m}, 6 \mathrm{H}), 0.99(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.02(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.57(\mathrm{~s}, 3 \mathrm{H}), 1.73-1.81(\mathrm{~m}, 3 \mathrm{H}), 1.97-$ $2.05(\mathrm{~m}, 1 \mathrm{H}), 3.72-3.84(\mathrm{~m}, 2 \mathrm{H}), 4.33-4.37$ (m, 2 H), 7.27-7.33 (m, 8 H$), 7.35-$ $7.38(\mathrm{~m}, 1 \mathrm{H}), 7.45-7.48(\mathrm{~m}, 4 \mathrm{H}), 7.58-7.60(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 5.6$ (t), 7.1 (q), 13.8 (q), 18.2 (q), 32.9 (t), 33.5 (t), 58.4 (s$), 58.5$ (d), 60.7 (t), 76.1 (d), 127.6 (s), 127.76 (d), 127.78 (d), 128.6 (d), 128.89 (d), 128.90 (d), 129.0 (d), 132.8 (d), 132.9 (d), 133.9 (s), 134.1 (s), 138.0 (d), 171.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{44} \mathrm{NaO}_{3} \mathrm{~S}_{2}{ }^{80} \mathrm{SeSi} 683.1559$, found 683.1558 .

2-[4,4-Bis(benzenesulfonyl)-1-[(triethylsilyl)oxy]butyl]acrylic Acid

Ethyl Ester (57.2).

-
\qquad

57.2
$\mathrm{NaHCO}_{3}(706 \mathrm{mg}, 8.4 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 2-methyl-2-(phenylseleno)-6,6-bis(phenylthio)-3-[(triethylsilyl)oxy]hexanoic acid ethyl ester ($231 \mathrm{mg}, 0.35 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$, followed by m CPBA ($70 \%, 1.04 \mathrm{~g}, 4.2 \mathrm{mmol}$). Stirring at $0^{\circ} \mathrm{C}$ was continued for 5 min and the cold bath was removed. Stirring was continued for 30 min and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(5 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ (5 mL). The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 10 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1 \times 15 \mathrm{~cm}$), using 1:5 EtOAc-hexane and then 1:3 EtOAc-hexane, gave 57.2 ($175 \mathrm{mg}, 88 \%$) as an oil: FTIR (CDCl_{3} cast) 3066, 2957, 2912, 2877, 1712, 1631, 1585, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $0.55(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.91(\mathrm{t}, J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.31(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.87$
(ddt, $J=13.5,11.0,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 1.99-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.09-2.32(\mathrm{~m}, 2 \mathrm{H})$, 4.17$4.26(\mathrm{~m}, 2 \mathrm{H}), 4.49(\mathrm{dd}, J=6.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{t}, J=10.0 \mathrm{~Hz}, 1 \mathrm{H}), 5.84(\mathrm{t}, J$ $=1.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.25(\mathrm{dd}, J=1.5,1.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.54-7.59(\mathrm{~m}, 4 \mathrm{H}), 7.67-7.71(\mathrm{~m}$, $2 \mathrm{H}), 7.94-7.97(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 4.7$ (t), 6.8 (q), 14.1 (q), 21.0 (t), 34.8 (t), 60.7 (t), 69.3 (d), 83.7 (d), 125.3 (s$), 128.96$ (d), 128.99 (d), 129.7 (d), 134.39 (d), 134.41 (d), 137.9 (s$), 142.6$ (t), 165.7 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NaO}_{7} \mathrm{~S}_{2} \mathrm{Si} 589.1721$, found 589.1723.

5,5-Bis(benzenesulfonyl)-2-[(triethylsilyl)oxy]cyclohexanecarboxylic Acid Ethyl Ester (59.2 and 59.2').

DBU ($38.7 \mathrm{mg}, 0.25 \mathrm{mmol}$) was added dropwise to a stirred solution of 57.2 ($72 \mathrm{mg}, 0.13 \mathrm{mmol}$) in dry $\mathrm{MeCN}(2.5 \mathrm{~mL})$. Stirring at room temperature was continued for 40 min and the mixture was filtered through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using 4:5 EtOAc-hexane. The filtrate was evaporated and preparative TLC of the residue, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, gave $\mathbf{5 1 . 8}$ (15 mg , $\mathbf{2 7 \%}$), $\mathbf{5 9 . 2}$ (the less polar isomer, trans) ($32 \mathrm{mg}, 44 \%$) as an oil and 59.2' (the more polar isomer, cis) ($4 \mathrm{mg}, 5.6 \%$) as an oil.

Compound 59.2 had: FTIR (CDCl_{3} cast) 3067, 2955, 2876, 1734, 1584, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.58(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.94(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.94(\mathrm{dddd}, J=12.5,5.0,5.0,3.5 \mathrm{~Hz}, 1 \mathrm{H})$, 2.23 (dddd, $J=13.5,13.5,9.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.32-2.38(\mathrm{~m}, 2 \mathrm{H}), 2.47$ (ddd, $J=$ $15.5,13.5,5.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.63 (dd, $J=15.5,13.0 \mathrm{~Hz}, 1 \mathrm{H}$), 3.30 (ddd, $J=13.0$, $9.5,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, J=10.5,10.5,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.09-4.18(\mathrm{~m}, 2 \mathrm{H})$, 7.59-7.64 (m, 4 H$), ~ 7.70-7.75(\mathrm{~m}, 2 \mathrm{H}), 8.01-8.03(\mathrm{~m}, 2 \mathrm{H}), 8.12-8.14(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 4.9(\mathrm{t}), 6.7(\mathrm{q}), 14.1$ (q), $25.4(\mathrm{t}), 28.6(\mathrm{t}), 30.0(\mathrm{t})$,
47.0 (d), 60.8 (t), 70.4 (d), 86.2 (s), 128.58 (d), 128.63 (d), 131.2 (d), 131.6 (d), 134.6 (d), 134.7 (d), 136.0 (s), 136.1 (s), 173.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NaO}_{7} \mathrm{~S}_{2} \mathrm{Si} 589.1721$, found 589.1721.

Compound 59.2' had: FTIR (CDCl_{3} cast) 3066, 2956, 2911, 2877, 1735, $1584,1448 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.40(\mathrm{q}, J=8.0 \mathrm{~Hz}, 6 \mathrm{H}), 0.81(\mathrm{t}$, $J=8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.77(\mathrm{dddd}, J=13.5,4.0,4.0,2.5 \mathrm{~Hz}, 1$ H), 2.28 (dddd, $J=14.5,4.0,2.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 2.36 (dddd, $J=13.5,13.5,4.0,1.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.48 (ddd, $J=14.0,14.0,4.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.57$ (ddd, $J=15.0,4.5,2.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.71(\mathrm{dd}, J=15.0,12.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.42(\mathrm{ddd}, J=12.5,4.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ $(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.49(\mathrm{ddd}, J=4.0$, $2.0,2.0 \mathrm{~Hz}, 1 \mathrm{H}$), 7.55-7.64 (m, 4 H), 7.67-7.70 (m, 1 H), 7.72-7.75 (m, 1 H), 7.96-7.98 (m, 2 H), 8.09-8.12 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 4.7(\mathrm{t}), 6.7$ (q), 14.1 (q), 20.2 (t), 22.7 (t), 29.4 (t), 44.1 (d), 60.8 (t), 65.7 (d), 87.2 (s$), 128.6$ (d), 128.7 (d), 131.2 (d), 131.4 (d), 134.4 (d), 134.6 (d), 135.9 (s), 137.0 (s$), 172.0$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{38} \mathrm{NaO}_{7} \mathrm{~S}_{2} \mathrm{Si} 589.1721$, found 589.1723.

Stability of 59.2 and 59.2' to DBU.
DBU ($4.0 \mathrm{mg}, 0.026 \mathrm{mmol}$) was added to a solution of $\mathbf{5 9 . 2}(7.5 \mathrm{mg}, 0.013$ $\mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}(0.7 \mathrm{~mL})$ in an NMR tube. No change was observed after 45 $\min \left({ }^{1} \mathrm{H}\right.$ NMR, 400 MHz$)$.

DBU ($2.15 \mathrm{mg}, 0.014 \mathrm{mmol}$) was added to a solution of 59.2' ($4 \mathrm{mg}, 0.007$ $\mathrm{mmol})$ in $\mathrm{CD}_{3} \mathrm{CN}(0.7 \mathrm{~mL})$ in an NMR tube. No change was observed after 45 $\min \left({ }^{1} \mathrm{H}\right.$ NMR, 500 MHz$)$.

4-[(Triethylsilyl)oxy]cyclohexane-1,1,3-tricarboxylic Acid 3-Ethyl

Ester 1,1-Dimethyl Ester (59.1, R = Et) and 4-[(Triethylsilyl)oxy]cyclohexane-1,1,3-tricarboxylic Acid Trimethyl Ester (59.1, R = Me).

57.1

$\mathrm{R}=\mathrm{Et}, \mathrm{Me}$
59.1

DBU ($10.8 \mathrm{mg}, 0.071 \mathrm{mmol}$) was added into a stirred solution of $\mathbf{5 7 . 1}$ $(14.3 \mathrm{mg}, 0.036 \mathrm{mmol})$ in $\mathrm{MeOH}(0.1 \mathrm{~mL})$. Stirring at room temperature was continued for 34.5 h and the mixture was filtered through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using EtOAc. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 1:6 EtOAchexane and then 1:3 EtOAc-hexane, gave $\mathbf{5 9 . 1}$ as an inseparable 7.6:2.4 mixture of 3-ethyl 1,1-dimethyl and trimethyl esters, respectively ($4 \mathrm{mg}, 28 \%$) as an oil: FTIR (CDCl_{3} cast) $2955,2914,2878,1736,1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500$ $\mathrm{MHz}) \delta$ 0.85-0.93 (m, 6 H), 1.25-1.29 (m, 9 H), 1.61 (t, $J=7.0 \mathrm{~Hz}, 2.6 \mathrm{H}), 1.88$ (dddd, $J=14.0,14.0,4.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.09$ (dddd, $J=14.5,3.5,3.5,3.5 \mathrm{~Hz}, 1$ H), 2.43 (dddd, $J=13.5,4.5,3.0,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.50(\mathrm{ddd}, J=14.0,13.5,4.0 \mathrm{~Hz}$, $1 \mathrm{H}), 2.61$ (ddd, $J=13.5,13.5,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (dddd, $J=14.0,3.5,3.5,3.5$ $\mathrm{Hz}, 1 \mathrm{H}$), 2.94 (dddd, $J=13.0,13.0,4.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{~s}, 1 \mathrm{H}), 4.06(\mathrm{~s}, 3 \mathrm{H})$, $4.07(\mathrm{~s}, 3 \mathrm{H}), 4.40(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.52(\mathrm{dq}, J=11.0,7.0 \mathrm{~Hz}, 1 \mathrm{H})$, 4.73-4.77 (m, 1 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 4.85$ (t), 4.89 (t), 6.75 (q), 6.78 (q), 14.1 (q), 24.27 (t), 24.29 (t), 26.2 (t$), 30.40$ (t$), 30.43$ (t$), 45.1$ (d), 45.2 (d), 51.5 (q), 52.5 (q), 52.7 (q), 54.3 (s), 60.5 (t), 66.6 (d), 66.7 (d), 171.5 (s), 172.17 $(\mathrm{s}), 172.23(\mathrm{~s}), 172.6(\mathrm{~s}), 173.0(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{34} \mathrm{NaO}_{7} \mathrm{Si}$ (59.1, $\left.\mathrm{R}=\mathrm{Et}\right) 425.1966$, found $425.1966 ; \mathrm{m} / \mathrm{z}$ calcd for $\mathrm{C}_{18} \mathrm{H}_{32} \mathrm{NaO}_{7} \mathrm{Si}(\mathbf{5 9 . 1}, \mathrm{R}=\mathrm{Me}) 411.1810$, found 411. 1810.

5-Bromo-2-methyl-2-(phenylseleno)pentanoic Acid Ethyl Ester (58.1). ${ }^{\dagger}$

38.1

58.1
$\mathrm{n}-\mathrm{BuLi}(2.5 \mathrm{M}$ in hexane, $1.76 \mathrm{~mL}, 4.4 \mathrm{mmol}$) was added dropwise over ca 2 min to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(0.68 \mathrm{~mL}, 4.8 \mathrm{mmol})$ in THF (8 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 45 min and a solution of 38.1 ($1.028 \mathrm{~g}, 4.0 \mathrm{mmol}$) in THF (3 mL plus 1 mL as a rinse) was added over 5 min. Stirring was continued for 1.5 h at $-78{ }^{\circ} \mathrm{C}$ and a solution of $1,3-$ dibromopropane ($1.615 \mathrm{~g}, 8.0 \mathrm{mmol}$) in a mixture of THF (3 mL) and HMPA (1 mL) was added over 5 min . The mixture was stirred at $-78^{\circ} \mathrm{C}$ for 2 h , the cold bath was removed and stirring was continued for 2 h . The mixture was recooled to $0{ }^{\circ} \mathrm{C}$ and quenched with water (1 mL) and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 10 min and the mixture was diluted with water (50 mL) and extracted with EtOAc (3 x 20 mL). The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 20 \mathrm{~cm}$), using 4\% EtOAchexane, gave $58.1(1.27 \mathrm{~g}, 84 \%)$ as a viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 2978, 2932, $1720,1244,1155,742 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.19(\mathrm{t}, J=7.2 \mathrm{~Hz}, 3$ H), $1.51(\mathrm{~s}, 3 \mathrm{H}), 1.79-1.93(\mathrm{~m}, 2 \mathrm{H}), 1.97-2.09(\mathrm{~m}, 2 \mathrm{H}), 3.34-3.39(\mathrm{~m}, 2 \mathrm{H})$, 4.03-4.15 (m, 2 H), 7.29-7.34 (m, 2 H), 7.37-7.42 (m, 1 H), 7.57-7.60 (m, 2 H); ${ }^{13} \mathrm{CNMR}^{\mathrm{NM}}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 13.9(\mathrm{q}), 22.8(\mathrm{q}), 29.0(\mathrm{t}), 33.0(\mathrm{t}), 37.2(\mathrm{t}), 49.1$ (s), 61.0 (t), 127.0 (s), 128.7 (d), 129.2 (d), 137.9 (d), 173.5 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{19}{ }^{79} \mathrm{BrNaO}_{2}{ }^{80} \mathrm{Se} 400.9626$, found 400.9624 .

6-Methoxycarbonyl-2-methyl-2-(phenylseleno)heptanedioic Acid 1-

 Ethyl Ester 7-Methyl Ester (58.2). ${ }^{\dagger}$

A solution of dimethyl malonate ($0.5 \mathrm{ml}, 4.23 \mathrm{mmol}$) in THF (8 mL) was added dropwise over ca 10 min to a stirred suspension of $\mathrm{NaH}(95 \% \mathrm{w} / \mathrm{w}, 100 \mathrm{mg}$, 3.966 mmol) in THF (10 mL). Stirring at room temperature was continued for 1.5 h and a solution of $\mathbf{5 8 . 1}(1.0 \mathrm{~g}, 2.644 \mathrm{mmol})$ in THF (10 mL plus 2 mL as a rinse) was added dropwise over ca 5 min . The mixture was refluxed for 16 h , cooled to room temperature and then to $0{ }^{\circ} \mathrm{C}$, and quenched with water (5 mL) and saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The mixture was stirred at room temperature for 10 min and diluted with water (25 mL). The aqueous phase was extracted with $\operatorname{EtOAc}(3 \times 15 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2 \times 18 \mathrm{~cm}$), using 15\% EtOAc-hexane, gave 58.2 ($955 \mathrm{mg}, 84 \%$) as a viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right) 2954,1753,1736,1721,1438,1157 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ 1.17 (t, $J=7.2 \mathrm{~Hz}, 3 \mathrm{H}) 1.2-1.31(\mathrm{~m}, 1 \mathrm{H}), 1.43-1.53(\mathrm{~m}, 1 \mathrm{H}), 1.47(\mathrm{~s}, 3 \mathrm{H}), 1.75$ (ddd, $J=13.6,12.0,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 1.84-1.97(\mathrm{~m}, 3 \mathrm{H}), 3.34(\mathrm{t}, J=7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 3.71 ($\mathrm{s}, 3 \mathrm{H}$), 3.72 ($\mathrm{s}, 3 \mathrm{H}$), 4.0-4.13 (m, 2 H), 7.27-7.32 (m, 2 H), 7.36-7.40 (m, 1 H), 7.55-7.57 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 14.0$ (q), 22.7 (q), 23.5 (t), 28.8 (t), 38.0 (t), 49.6 (s$), 51.4$ (d), 52.5 (q), 61.0 (t), 127.2 (s), 128.7 (d), 129.2 (d), 137.9 (d), 169.6 (s), 173.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{26} \mathrm{NaO}_{6}{ }^{80} \mathrm{Se} 453.0787$, found 453.0794.

2-Methoxycarbonyl-6-methyleneheptanedioic Acid 7-Ethyl Ester 1Methyl Ester (57.3) and 6-Methoxycarbonyl-2-methylhept-2-enedioic Acid 1Ethyl Ester 7-Methyl Ester (58.3). ${ }^{\dagger}$

$\mathrm{H}_{2} \mathrm{O}_{2}(30 \%, 0.25 \mathrm{~mL}, 2.45 \mathrm{mmol})$ was added dropwise over 2 min to a stirred and cooled $\left(-10{ }^{\circ} \mathrm{C}\right.$, ice-acetone bath) solution of $\mathbf{5 8 . 2}$ ($100 \mathrm{mg}, 0.23$ mmol) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. Stirring at $-10{ }^{\circ} \mathrm{C}$ was continued for 1 h and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(2 \mathrm{~mL})$, followed by dropwise addition of $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The cold bath was removed after 10 min , stirring was continued for 10 min and the mixture was diluted with water (10 mL) and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$. The combined organic extracts were dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.5 \times 8 \mathrm{~cm}$), using 15% EtOAc-hexane, gave an inseparable 1:3 mixture of $\mathbf{5 8 . 3}$ (minor isomer) and $\mathbf{5 7 . 3}$ ($59 \mathrm{mg}, 94 \%$ in total): FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 2956, 1754, $1737,1715,1632,1437,1156 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.26-1.30(\mathrm{~m}$, $3 \mathrm{H}), 1.46-1.53(\mathrm{~m}, 1.5 \mathrm{H}), 1.795-1.80(\mathrm{~m}, 0.75 \mathrm{H}), 1.88-1.94(\mathrm{~m}, 1.5 \mathrm{H}), 2.02-$ 2.07 (m, 0.5 H), 2.19-2.25 (m, 0.5 H), 2.30-2.33 (m, 1.5 H), 3.36 (t, J = 7.4 Hz, 1 $\mathrm{H}), 3.72(\mathrm{~s}, 4.5 \mathrm{H}), 3.73(\mathrm{~s}, 1.5 \mathrm{H}), 4.14-4.21(\mathrm{~m}, 2 \mathrm{H}), 5.51-5.52(\mathrm{~m}, 0.75 \mathrm{H})$, 6.135-6.138 (m, 0.75 H), 6.65-6.69 (m, 0.25 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 12.3 (q), 14.15 (q), 14.23 (q), $26.0(\mathrm{t}), 26.2$ (t), 27.6 (t), 28.3 (t), 31.4 (t), 50.9 (d), 51.4 (q), 52.4 (q), 52.5 (d), 60.5 (t), 60.6 (t), 124.9 (s), 129.3 (s), 139.5 (d), 140.0 $(\mathrm{t}), 167.0(\mathrm{~s}), 167.8(\mathrm{~s}), 169.4(\mathrm{~s}), 169.7(\mathrm{~s}) ;$ exact mass (electrospray) m / z calcd for ($\mathbf{5 7 . 3}$ and 58.3) $\mathrm{C}_{13} \mathrm{H}_{20} \mathrm{NaO}_{6}$ 295.1152, found 295.1153.

Compound $\mathbf{5 8 . 3}$ probably has E geometry, based on the chemical shift of the vinyl H ($\delta 6.7$).

6-Methoxycarbonyl-2-(methoxymethyl)heptanedioic Acid Dimethyl Ester and 6-Methoxycarbonyl-2-methylhept-2-enedioic Acid Dimethyl Ester.

57.3
58.3
-

DBU ($22.6 \mathrm{mg}, 0.15 \mathrm{mmol}$) was added into a stirred solution of $\mathbf{5 7 . 3}$ and 58.3 ($3: 1,20.2 \mathrm{mg}, 0.074 \mathrm{mmol}$) in $\mathrm{MeOH}(0.2 \mathrm{~mL})$. Stirring at room temperature was continued for 41 h and the mixture was filtered through a pad (ca 5 cm) of silica gel in a Pasteur pipette, using EtOAc. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using $1: 5$ EtOAc-hexane and then 4:5 EtOAc-hexane, gave 6-methoxycarbonyl-2-(methoxymethyl)-heptanedioic acid dimethyl ester (ca $2.4 \mathrm{mg}, 11 \%$) and what we assume [${ }^{1} \mathrm{H}$ NMR on the ester exchanged (OMe in place of OEt) starting materials] to be 6-methoxycarbonyl-2-methylhept-2-enedioic acid dimethyl ester ($8 \mathrm{mg}, 42 \%$) as an oil:

6-Methoxycarbonyl-2-(methoxymethyl)heptanedioic acid dimethyl ester had: FTIR (CDCl_{3} cast) 2955, 2870, 1737, $1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 1.33$ (quintet $J=8.0 \mathrm{~Hz}, 2 \mathrm{H}$), 1.49-1.67 (m, 2 H), $1.87-1.94(\mathrm{~m}, 2 \mathrm{H})$, 2.66 (dddd, $J=5.4,5.42 .6,2.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.32(\mathrm{~s}, 3 \mathrm{H}), 3.35(\mathrm{t}, J=7.6 \mathrm{~Hz}, 1 \mathrm{H})$, 3.43 (dd, $J=9.2,5.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.57(\mathrm{dd}, J=9.2,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.70(\mathrm{~s}, 3 \mathrm{H}), 3.74$ ($\mathrm{s}, 6 \mathrm{H}$); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 25.0(\mathrm{t}), 28.4$ (t), 28.6 (t), 45.7 (d), 51.4 (q), 51.7 (d), 52.5 (q), 59.0 (q), 73.3 (t), 169.7 (s), 174.7 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{13} \mathrm{H}_{22} \mathrm{NaO}_{7} 313.1258$, found 313.1258.

3-Bromoacetoxy-2-methyl-2-(phenylseleno)-6,6-bis(phenylthio)hexan-

 oic Acid Ethyl Ester.
40.4b'

-

Pyridine ($20.6 \mathrm{mg}, 0.26 \mathrm{mmol}$) and $\mathrm{BrCH}_{2} \mathrm{COBr}(44.4 \mathrm{mg}, 0.22 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 0 . 4 b}(40 \mathrm{mg}$, $0.073 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 10 min , the cold bath was removed and stirring was continued for 3 h . The mixture was diluted with water (5 mL) and acidified with hydrochloric acid ($1 \mathrm{M}, 1 \mathrm{~mL}$). The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 15 \mathrm{~cm}$), using 1:6 EtOAchexane, gave 3-bromoacetoxy-2-methyl-2-(phenylseleno)-6,6-bis(phenylthio)hexanoic acid ethyl ester ($28.3 \mathrm{mg}, 58 \%$) as an oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$ cast) 3057, 2981, 2934, 1726, 1582, 1476, $1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.05(\mathrm{t}, J$ $=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 1.54(\mathrm{~s}, 3 \mathrm{H}), 1.82-1.98(\mathrm{~m}, 3 \mathrm{H}), 2.62-2.68(\mathrm{~m}, 1 \mathrm{H}), 3.56(\mathrm{AB} \mathrm{q}$, $\left.J=12.5 \mathrm{~Hz}, \Delta v_{\mathrm{AB}}=12.1 \mathrm{~Hz}, 2 \mathrm{H}\right), 3.86(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.00(\mathrm{dq}, J=$ $10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{dd}, J=6.1,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.40(\mathrm{dd}, J=10.0,2.0 \mathrm{~Hz}, 1$ H), 7.25-7.41 (m, 10 H$), 7.50-7.57(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.7$ (q), 17.4 (q), 25.4 (d), 27.6 (d), 32.2 (d), 52.4 (s), 57.7 (d), 61.4 (t), 77.1 (d), 126.0 (s), 127.87 (d), 127.93 (d), 129.0 (d), 129.8 (d), 132.9 (d), 133.0 (d), 133.8 (s), 138.0 (d), $165.8(\mathrm{~s}), 171.5(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{31}{ }^{79} \mathrm{BrNaO}_{4} \mathrm{~S}_{2}{ }^{80} \mathrm{Se} 688.9905$, found 688.9908.

2-[4,4-Bis(benzenesulfonyl)-1-(bromoacetoxy)butyl]acrylic Acid Ethyl

Ester (49).

m-CPBA $(70-75 \%, 60.3 \mathrm{mg}, 0.25 \mathrm{mmol})$ was added to a stirred solution of 3-bromoacetoxy-2-methyl-2-(phenylseleno)-6,6-bis(phenylthio)hexanoic acid ethyl ester ($16.3 \mathrm{mg}, 0.025 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was stirred at $40{ }^{\circ} \mathrm{C}$ for 24 h , cooled to room temperature and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 1:2 EtOAchexane, gave 57.4 ($5.3 \mathrm{mg}, 52 \%$) as a viscous oil: FTIR (CDCl_{3} cast) 3066, 2982, $2928,1721,1634,1584,1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.32(\mathrm{t}, J=7.2$ $\mathrm{Hz}, 3 \mathrm{H}), 2.04-2.15(\mathrm{~m}, 1 \mathrm{H}), 2.22-2.32(\mathrm{~m}, 3 \mathrm{H}), 3.83\left(\mathrm{AB} \mathrm{q}, J=12.2 \mathrm{~Hz}, \Delta \mathrm{v}_{\mathrm{AB}}=\right.$ $14.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.248(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.253(\mathrm{q}, J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.53(\mathrm{dd}, J=$ $5.6,5.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.64(\mathrm{dd}, J=8.0,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.83(\mathrm{~s}, 1 \mathrm{H}), 6.34(\mathrm{~s}, 1 \mathrm{H}), 7.56-$ $7.60(\mathrm{~m}, 4 \mathrm{H}), 7.68-7.72(\mathrm{~m}, 2 \mathrm{H}), 7.94-7.96(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 14.1$ (q), 21.4 (t), 25.5 (t), 31.7 (t), 61.3 (t), 76.5 (d), 82.5 (d), 125.9 (s$)$, 129.1 (d), 129.6 (d), 134.6 (d), 137.6 (s), 137.7 (s), 138.3 (t), 164.6 (s), 166.0 (s); exact mass (electrospray) m/z calcd for $\mathrm{C}_{23} \mathrm{H}_{25}{ }^{79} \mathrm{BrNaO}_{8} \mathrm{~S}_{2}$ 595.0066, found 595.0064 .

5,5-Bis(benzenesulfonyl)cyclohex-1-enecarboxylic Acid Ethyl Ester

 (51.8) from 57.4.
57.4

51.8
$\mathrm{Cs}_{2} \mathrm{CO}_{3}(3.3 \mathrm{mg}, 0.01 \mathrm{mmol})$ was added to a stirred solution of 57.4 (2.9 $\mathrm{mg}, 0.005 \mathrm{mmol}$) in THF (0.5 mL). Stirring at room temperature was continued for 1 h , the solid was filtered off through a pad of Celite, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ as a rinse, and the filtrate was evaporated. The ${ }^{1} \mathrm{H}$ NMR spectrum of the residue showed only unreacted $\mathbf{5 7 . 4}$ and the ICD product $\mathbf{5 1 . 8}$ in a 1:2 ratio.

[1 -(Phenylseleno)ethyl]sulfonyl]benzene (39.5). ${ }^{50}$

$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $9.3 \mathrm{~mL}, 14.89 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of (ethanesulfonyl)benzene ($2.53 \mathrm{~g}, 14.89$ $\mathrm{mmol})$ in THF (150 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , and a solution of $\mathrm{PhSeCl}(1.34 \mathrm{~g}, 7.00 \mathrm{mmol})$ in THF $(20 \mathrm{~mL})$ was added rapidly in one portion. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 3 h and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(40 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (100 mL) and extracted with EtOAc ($3 \times 40 \mathrm{~mL}$). The combined organic extracts were washed with brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 15 \mathrm{~cm}$), using 3:20 EtOAc-hexane, gave 39.5 (1.91 g ,
$85 \%)$ as an oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.67(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 4.26(\mathrm{q}$, $J=7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.22-7.27(\mathrm{~m}, 2 \mathrm{H}), 7.30-7.34(\mathrm{~m}, 1 \mathrm{H}), 7.51-7.55(\mathrm{~m}, 4 \mathrm{H})$, 7.62-7.66 (m, 1 H), 7.91-7.93 (m, 2 H).

2-(Phenylseleno)propionitrile (39.6). ${ }^{51}$

$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $8.9 \mathrm{~mL}, 14.3 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(1.52 \mathrm{~g}, 15.0 \mathrm{mmol})$ in THF (150). Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 45 min , and EtCN ($826.0 \mathrm{mg}, 15.0 \mathrm{mmol}$) was added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , and a solution of $\mathrm{PhSeCl}(1.27 \mathrm{~g}, 6.6 \mathrm{mmol})$ in THF (10 mL) was added rapidly in one portion. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1.5 h , and the mixture was quenched with hydrochloric acid ($1 \mathrm{M}, 10 \mathrm{~mL}$). The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (250 mL) and extracted with EtOAc ($3 \times 100 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 12 \mathrm{~cm}$), using 7:100 EtOAc-hexane, gave 39.6 (830 mg , 60%) as a oil: FTIR (CHCl_{3} cast) 3058, 2927, 2931, 2870, 2233, 1578, 1477, $1448 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.66(\mathrm{~d}, J=7.2 \mathrm{~Hz}, 3 \mathrm{H}), 3.71(\mathrm{q}, J=$ $7.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.40(\mathrm{~m}, 2 \mathrm{H}), 7.44(\mathrm{tt}, J=7.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.71-7.75(\mathrm{~m}, 2$ $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.2$ (q), 19.4 (d), 120.7 (s), 125.8 (s), 129.4 (d), 129.6 (d), 136.4 (d); exact mass m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{9} \mathrm{~N}^{80} \mathrm{Se} 210.9900$, found 210.9896.

3-(Phenylseleno)dihydrofuran-2-one (39.7). ${ }^{52}$

$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $3.9 \mathrm{~mL}, 6.27 \mathrm{mmol}$) was added dropwise to a stirred and cooled ($0^{\circ} \mathrm{C}$) solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(634.0 \mathrm{mg}, 6.27 \mathrm{mmol})$ in THF (60). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 15 min , the mixture was cooled to $-78^{\circ} \mathrm{C}$ and γ butyrolactone ($540.0 \mathrm{mg}, 6.27 \mathrm{mmol}$) was added dropwise. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , a solution of $\mathrm{PhSeCl}(600 \mathrm{mg}, 3.13 \mathrm{mmol})$ in THF (5 mL) was added rapidly in one portion. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 1 h , and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (200 mL) and extracted with EtOAc ($3 \times 60 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.5 \times 12 \mathrm{~cm}$), using 1:5 EtOAchexane, gave 39.7 ($580 \mathrm{mg}, 77 \%$) as a oil: FTIR (CHCl_{3} cast) 3056, 2989, 2912, $1765,1578,1478,1438 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.28($ dddd, $J=13.9$, $7.2,4.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.71$ (dddd, $J=13.8,8.5,8.3,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.93(\mathrm{dd}, J=$ $8.5,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12(\mathrm{ddd}, J=9.2,8.3,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.26$ (ddd, $J=9.2,8.4,4.0$ $\mathrm{Hz}, 1 \mathrm{H})$, 7.31-7.41 (m, 3 H), 7.67-7.70 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta$ 30.5 (t), 35.8 (d), 66.8 (t), 126.5 (s), 129.1 (d), 129.3 (d), 135.8 (d), 176.0 (s$)$; exact mass m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{10} \mathrm{O}_{2}{ }^{80} \mathrm{Se} 241.9846$, found 241.9843 .

2-Iodobenzoic Acid Benzyl Ester. ${ }^{80}$

-

$\mathrm{K}_{2} \mathrm{CO}_{3}(8.90 \mathrm{~g}, 64.5 \mathrm{mmol})$ was added to a stirred solution of $\mathrm{BnCl}(4.90$ $\mathrm{g}, 38.7 \mathrm{mmol}$), 2-iodobenzoic acid ($8.0 \mathrm{~g}, 32.3 \mathrm{mmol}$) and $\mathrm{Bu}_{4} \mathrm{NI}(1.19 \mathrm{~g}, 3.23$ $\mathrm{mmol})$ in THF (180 mL), and the mixture was refluxed for 6 h . The mixture was cooled to room temperature and the solid was filtered off. The filtrate was diluted with water (200 mL) and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 30$ $\mathrm{mL})$. The combined organic extracts were washed with aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(5 \%, 30$ $\mathrm{mL})$ and brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($5 \times 15 \mathrm{~cm}$), using 1:20 EtOAc-hexane, gave 2-iodobenzoic acid benzyl ester ($10.81 \mathrm{~g}, 99 \%$) as a liquid: FTIR (CDCl_{3} cast) 3064, 3033, 2953, 2890, 1727, 1583, 1562, 1498, 1455, $1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400\right.$ $\mathrm{MHz}) \delta 5.83(\mathrm{~s}, 2 \mathrm{H}), 7.15(\mathrm{td}, J=7.7,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 4 \mathrm{H}), 7.46-$ $7.49(\mathrm{~m}, 2 \mathrm{H}), 7.82(\mathrm{dd}, J=7.8,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.99(\mathrm{dd}, J=7.9,1.1 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 67.4$ (t), 94.2 (s), 127.9 (d), 128.4 (d), 128.5 (d), 128.6 (d), 131.0 (d), 132.7 (d), 135.0 (s), 135.5 (s), 141.3 (d), 166.3 (s); exact mass m / z calcd for $\mathrm{C}_{14} \mathrm{H}_{11} \mathrm{IO}_{2} 337.9804$, found 337.9802.

2-[(2-Benzyloxycarbonyl)phenyl])malonic Acid Dimethyl Ester.

Dimethyl malonate ($2.34 \mathrm{~g}, 17.8 \mathrm{mmol}$) was added slowly to a stirred suspension of $\mathrm{NaH}(0.71 \mathrm{~g}, 17.8 \mathrm{mmol})$ in 1,4-dioxane (80 mL) (N_{2} atmosphere). Stirring at room temperature was continued for 15 min , and $\mathrm{CuBr}(4.24 \mathrm{~g}, 29.6$ mmol) was added. Stirring at room temperature was continued for 15 min , and a solution of 2-iodobenzoic acid benzyl ester ($5.0 \mathrm{~g}, 14.8 \mathrm{mmol}$) in 1,4-dioxane (20 mL) was added dropwise. The mixture was refluxed for 48 h , cooled to room temperature, acidified with hydrochloric acid ($1 \mathrm{M}, 20 \mathrm{~mL}$) and diluted with water $(200 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 80 \mathrm{~mL}$) and the
combined organic extracts were washed brine, dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3 \times 15 \mathrm{~cm}$), using 1:3 EtOAchexane, gave 2-[(2-benzyloxycarbonyl)phenyl])malonic acid dimethyl ester (1.18 g, 73%) as a white solid: $\mathrm{mp} 71-72{ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3} cast) $3034,3004,2954$, $2844,1758,1738,1716,1602,1680,1498,1455,1436 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 3.76(\mathrm{~s}, 6 \mathrm{H}), 5.35(\mathrm{~s}, 2 \mathrm{H}), 5.84(\mathrm{~s}, 1 \mathrm{H}), 7.33-7.47(\mathrm{~m}, 7 \mathrm{H}), 7.55$ $(\operatorname{td}, J=7.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.08(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 52.7$ (q), 54.5 (d), 66.8 (t), 128.0 (d), 128.1 (d), 128.2 (d), 128.4 (d), 129.2 (s), 129.9 (d), 130.9 (d), 132.5 (d), 134.2 (s$), 135.5$ (s$), 166.4$ (s$), 168.7$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{18} \mathrm{NaO}_{6} 365.0996$, found 365.0998 .

2-(2-Carboxyphenyl)malonic Acid Dimethyl Ester. ${ }^{55}$

$\mathrm{Pd} / \mathrm{C}(10 \%, \quad 0.32 \mathrm{~g})$ was added to a solution of 2-[(2benzyloxycarbonyl)phenyl])malonic acid dimethyl ester ($3.23 \mathrm{~g}, 9.44 \mathrm{mmol}$) in THF (35 mL) (N_{2} atmosphere). The flask was capped with a septum and the solution was degassed by being placed under house vacuum, and the flask was then filled with H_{2}. This process was repeated three times, and the mixture was stirred under H_{2} (balloon) at room temperature for 24 h , and then filtered through a pad of Celite, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}(100 \mathrm{~mL})$ as a rinse. Evaporation of the filtrate gave pure (${ }^{1} \mathrm{H}$ NMR) 2-(2-carboxyphenyl)malonic acid dimethyl ester ($2.38 \mathrm{~g}, 100 \%$) as a white solid: $\mathrm{mp} 115-118{ }^{\circ} \mathrm{C}$; FTIR (CDCl_{3} cast) 3400-2500, 3007, 2956, 1737, 1602, 1780, 1493, 1437,1411 cm ${ }^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.79$ (s, 6 H), $5.85(\mathrm{~s}, 1 \mathrm{H}), 7.44-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.61(\mathrm{td}, J=7.9,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 8.16(\mathrm{dd} J=$ $8.1,1.5 \mathrm{~Hz}, 1 \mathrm{H}),{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 52.9$ (q), 54.6 (d), 128.1 (s),
128.3 (d), 130.3 (d), 132.0 (d), 133.5 (d), 135.0 (s), 168.9 (s), 171.6 (s); exact mass m / z calcd for $\mathrm{C}_{12} \mathrm{H}_{12} \mathrm{O}_{6} 252.0634$, found 252.0631.

[(1-Nitroethyl)seleno]benzene (39.8). ${ }^{53}$

$\mathrm{n}-\mathrm{BuLi}(1.6 \mathrm{M}$ in hexane, $8.3 \mathrm{~mL}, 13.2 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{EtNO}_{2}(1.02 \mathrm{~g}, 13.6 \mathrm{mmol})$ in THF (120 $\mathrm{mL})$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 h , and a solution of $\mathrm{PhSeCl}(1.2 \mathrm{~g}$, 6.3 mmol) in THF (20 mL) was added rapidly in one portion. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 2 h and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(20 \mathrm{~mL})$. The cold bath was removed, stirring was continued for 15 min and the mixture was diluted with water (100 mL) and extracted with EtOAc (3 x 40 mL). The combined organic extracts were washed with brine (50 mL), dried $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel (4 x 15 cm), using 1:20 EtOAc-hexane, gave $39.8(1.17 \mathrm{~g}, 81 \%)$ as a liquid: FTIR $\left(\mathrm{CDCl}_{3}\right.$ cast) $3059,2959,2932,2885,1548,1477,1439 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $400 \mathrm{MHz}) \delta 1.82(\mathrm{~d}, J=6.9 \mathrm{~Hz}, 3 \mathrm{H}), 5.69(\mathrm{q}, J=6.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.38(\mathrm{~m}, 2$ H), 7.41-7.46 (m, 1 H$), 760-7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.6$ (q), 78.7 (d), 125.8 (s), 129.4 (d), 129.8 (d), 136.2 (d); exact mass m / z calcd for $\mathrm{C}_{8} \mathrm{H}_{9} \mathrm{NO}_{2}{ }^{78} \mathrm{Se} 228.9806$, found 228.9813 .

5. Notes and References

$\dagger \quad$ The experiments were done by a previous group member Dr. Prabhudas B. (see our coauthored paper: Wang, L.; Prabhudas, B.; Clive, D. L. J. J. Am. Chem. Soc. 2009, 131, 6003-6012; and also his communication paper: Prabhudas, B.; Clive, D. L. J. Angew. Chem., Int. Ed. 2007, 46, 9295.). For completeness of the study of ICD reactions for carbocycles, I included those experiments in this thesis.
(1) Brocchini, S. J.; Eberle, M.; Lawton, R. G. J. Am. Chem. Soc. 1988, 110, 5211-5212, and references cited therein.
(2) (a) Basavaiah, D.; Reddy, B. S.; Badsara, S. S. Chem. Rev. 2010, 110, 5447-5674. (b) Basavaiah, D.; Rao, A. J.; Satyanarayana, T. Chem. Rev. 2003, 103, 811-891. (c) Singh, V.; Batra, S. Tetrahedron 2008, 64, 45114574.
(3) (a) Cho, C.-W.; Krische, M. J. Angew. Chem. Int. Ed. 2004, 43, 66896691. (b) Ramachandran, P. V.; Madhi, S.; Bland-Berry, L.; Reddy, M. V. R.; O'Donnell, M. J. J. Am. Chem. Soc. 2005, 127, 13450-13451. (c) Ciclosi, M.; Fava, C.; Galeazzi, R.; Orena, M.; Sepulveda-Arques, J. Tetrahedron Lett. 2002, 43, 2199-2202.
(4) (a) Donaldson, R. E.; Saddler, J. C.; Byrn, S.; McKenzie, A. T.; Fuchs, P. L. J. Org. Chem. 1983, 48, 2167-2188. (b) Galeazzi, R.; Martelli, G.; Orena, M.; Rinaldi, S.; Sabatino, P. Tetrahedron 2005, 61, 5465-5473. (c) Silveira, G. P. d. C. e.; Coelho, F. Tetrahedron Lett. 2005, 46, 6477-6481. (d) Doddi, V. R.; Vankar, Y. D. Eur. J. Org. Chem. 2007, 5583-5589. (e) Qi, J.; Porco, J. A. J. Am. Chem. Soc. 2007, 129, 12682-12683.
(5) (a) Liu, D. Z.; Acharya, H. P.; Yu, M. L.; Wang, J.; Yeh, V. S. C.; Kang, S. Z.; Chiruta, C.; Jachak, S. M.; Clive, D. L. J. J. Org. Chem. 2009, 74, 7417-7428. (b) Prabhudas, B.; Clive, D. L. J. Angew. Chem. Int. Ed. 2007, 46, 9295-9297.
(6) (a) Clive, D. L. J.; Yu, M. L.; Li, Z. Y. Chem. Commun. 2005, 906-908.
(b) Clive, D. L. J.; Li, Z. Y.; Yu, M. L. J. Org. Chem. 2007, 72, 5608-
5617. (c) Wang, L.; Prabhudas, B.; Clive, D. L. J. J. Am. Chem. Soc. 2009, 131, 6003-6012. (d) Chen, Z. H.; Clive, D. L. J. J. Org. Chem. 2010, 75, 7014-7017.
(a) Chamakh, A.; M'hirisi, M.; Villiéras, J.; Lebreton, J.; Amri, H. Synthesis 2000, 295-299. (b) Chen, C.-Y.; Chang, M.-Y.; Hsu, R.-T.; Chen, S.-T.; Chang, N.-C. Tetrahedron Lett. 2003, 44, 8627-8630. (c) Roy, A. K.; Batra, S. Synthesis 2003, 1347-1356. (d) Basavaiah, D.; Aravindu, K. Org. Lett. 2007, 9, 2453-2456. (e) Singh, V.; Batra, S. Eur. J. Org. Chem. 2007, 2970-2976. (f) Nayak, M.; Batra, S. Eur. J. Org. Chem. 2009, 3505-3507. (g) Ravinder, M.; Sadhu, P. S.; Rao, V. J. Tetrahedron Lett. 2009, 50, 4229-4232. (h) Reddy, C. R.; Kiranmai, N.; Johny, K.; Pendke, M.; Naresh, P. Synthesis 2009, 399-402. (i) Baidya, M.; Remennikov, G. Y.; Mayer, P.; Mayr, H. Chem. Eur. J. 2010, 16, 1365-1371. (j) Basavaiah, D.; Aravindu, K.; Kumar, K. S.; Reddy, K. R. Eur. J. Org. Chem. 2010, 1843-1848. (k) Huang, C.-C.; Chang, N.-C. Org. Lett. 2008, 10, 673-676.
(9) (a) Zhang, T.-Z.; Dai, L.-X.; Hou, X.-L. Tetrahedron: Asymmetry 2007, 18, 1990-1994. (b) Jiang, Y.-Q.; Shi, Y.-L.; Shi, M. J. Am. Chem. Soc. 2008, 130, 7202-7203.
(a) Du, Y.; Han, X.; Lu, X. Tetrahedron Lett. 2004, 45, 4967-4971. (b) van Steenis, D. J. V. C.; Marcelli, T.; Lutz, M.; Spek, A. L.; van Maarseveen, J. H.; Hiemstra, H. Adv. Synth. Catal. 2007, 349, 281-286. (c) Singh, V.; Yadav, G. P.; Maulik, P. R.; Batra, S. Tetrahedron 2008, 64, 2979-2991. (d) Yadav, L. D. S.; Rai, V. K. Tetrahedron Lett. 2009, 50, 2414-2419.
(11)
(a) Baylis, A. B.; Hillman, M. E. D. Ger. Patent 2155113, 1972. (b) Basavaiah, D.; Rao, P. D.; Hyma, R. S. Tetrahedron 1996, 52, 8001-8062. (c) Basavaiah, D.; Rao, K. V.; Reddy, R. J. Chem. Soc. Rev. 2007, 36, 1581-1588.
(a) Brotzel, F.; Kempf, B.; Singer, T.; Zipse, H.; Mayr, H. Chem. Eur. J. 2007, 13, 336-345. (b) Baidya, M.; Kobayashi, S.; Brotzel, F.;

Schmidhammer, U.; Riedle, E.; Mayr, H. Angew. Chem. 2007, 119, 62886292. (c) Baidya, M.; Kobayashi, S.; Brotzel, F.; Schmidhammer, U.; Riedle, E.; Mayr, H. Angew. Chem. Int. Ed. 2007, 46, 6176-6179.
(12) Bordwell, F. G. Acc. Chem. Res. 1970, 3, 281-290.
(a) Eagen, M. C.; Cromwell, N. H. J. Org. Chem. 1974, 39, 911-914. (b) Rebman, R. P.; Cromwell, N. H. Tetrahedron Lett. 1965, 6, 4833-4836. (c) Cromwell, N. H.; Matsumoto, K.; George, A. D. J. Org. Chem. 1971, 36, 272-274.
(14) Zhong, W.; Zhao, Y.; Guo, B.; Wu, P.; Su, W. Synth. Commun. 2008, 38, 3291-3302.
(15) (a) Takahashi, T.; Hori, K.; Tsuji, J. Tetrahedron Lett. 1981, 22, 119-122.
(b) Takagi, R.; Miwa, Y.; Nerio, T.; Inoue, Y.; Matsumura, S.; Ohkata, K. Org. Biomol. Chem. 2007, 5, 286-300. (c) Takagi, R.; Inoue, Y.; Ohkata, K. J. Org. Chem. 2008, 73, 9320-9325.
(16) (a) Lawton, R. G.; Dunham, D. J. J. Am. Chem. Soc. 1971, 93, 2074-2075. (b) Peters, J. A.; van der Toorn, J. M.; van Bekkum, H. Tetrahedron 1974, 30, 633-640. (c) Stetter, H.; Rämsch, K.-D.; Elfert, K. Liebigs Ann. Chem. 1974, 1322-1327. (d) Gómez-Bengoa, E.; Landa, A.; Lizarraga, A.; Mielgo, A.; Oiarbide, M.; Palomo, C. Chem. Sci. 2011, 2, 353-357.
(a) Kabalka, G. W.; Dong, G.; Venkataiah, B.; Chen, C. J. Org. Chem. 2005, 70, 9207-9210. (b) Shafiq, Z.; Liu, L.; Liu, Z.; Wang, D.; Chen, Y .J. Org. Lett. 2007, 9, 2525-2528. (c) Zemtsov, A. A.; Levin, V. V.; Dilman, A. D.; Struchkova, M. I.; Belyakov, P. A.; Tartakovsky, V. A.; Hu, J. Eur. J. Org. Chem. 2010, 6779-6785.
(a) Smith, A. B.; Wexler, B. A.; Slade, J. S. Tetrahedron Lett. 1980, 21, 3237-3240. (b) Amri, H.; Rambaud, M.; Villieras, J. Tetrahedron 1990, 46, 3535-3546. (c) Xu, L.-H.; Kündig, E. P. Helv. Chim. Acta 1994, 77, 1480-1484. (d) Börner, C.; Gimeno, J.; Gladiali, S.; Goldsmith, P. J.; Ramazzotti, D.; Woodward, S. Chem. Commun. 2000, 2433-2434. (e) Davies, S. G.; Garner, A. C.; Long, M. J. C.; Morrison, R. M.; Roberts, P. M.; Savory, E. D.; Smith, A. D.; Sweet, M. J.; Withey, J. M. Org. Biomol.

Chem. 2005, 3, 2762-2775. (f) Davies, S. G.; Durbin, M. J.; Hartman, S. J. S.; Matsuno, A.; Roberts, P. M.; Russell, A. J.; Smith, A. D.; Thomson, J. E.; Toms, S. M. Tetrahedron: Asymmetry 2008, 19, 2870-2881.
(19) (a) Knochel, P.; Seebach, D. Tetrahedron Lett. 1981, 22, 3223-3226. (b) Saddler, J. C.; Fuchs, P. L. J. Am. Chem. Soc. 1981, 103, 2112-2114. (c) Seebach, D.; Konchel, P. Helv. Chim. Acta 1984, 67, 261-283. (d) Seebach, D.; Calderari, G.; Knochel, P. Tetrahedron 1985, 41, 4861-4872.
(20) Chen, C.-G.; Hou, X.-L.; Pu, L. Org. Lett. 2009, 11, 2073-2075.
(21) Eagen, M. C.; Cromwell, N. H. J. Org. Chem. 1974, 39, 3863-3866.
(22) Li, J.; Wang, X.; Zhang, Y. Tetrahedron Lett. 2005, 46, 5233-5237.
(23) Kwon, S. H.; Cho, C. W. Bull. Korean Chem. Soc. 2008, 29, 1835-1838.
(24) Cui, H.-L.; Feng, X.; Peng, J.; Lei, J.; Jiang, K.; Chen, Y.-C. Angew. Chem. Int.Ed. 2009, 48, 5737-5740.
(25) (a) Patra, A.; Roy, A. K.; Batra, S.; Bhaduri, A. P. Synlett 2002, 18191822. (b) Kotti, S. R. S. S.; Xu, X.; Li, G.; Headley, A. D. Tetrahedron Lett. 2004, 45, 1427-1431.
(26) Kim, J. N.; Lee, H. J.; Gong, J. H. Tetrahedron Lett. 2002, 43, 9141-9146.
(a) Cho, C.-W.; Kong, J.-R.; Krische, M. J. Org. Lett. 2004, 6, 1337-1339.
(b) Park, H.; Cho, C.-W.; Krische, M. J. J. Org. Chem. 2006, 71, 78927894.
(28) Trost, B. M.; Tsui, H.-C.; Toste, F. D. J. Am. Chem. Soc. 2000, 122, 35343535.
(29) Trost, B. M.; Thiel, O. R.; Tsui, H.-C. J. Am. Chem. Soc. 2003, 125, 13155-13164.
(30) Im, Y. J.; Kim, J. M.; Mun, J. H.; Kim, J. N. Bull. Korean Chem. Soc. 2001, 22, 349-350.
(31) Mandal, S. K.; Paira, M.; Roy, S. C. J. Org. Chem. 2008, 73, 3823-3827.
(32) Das, B.; Banerjee, J.; Mahender, G.; Majhi, A. Org. Lett. 2004, 6, 33493352.
(33) (a) Bauchat, P.; Foucaud, A. Tetrahedron Lett. 1989, 30, 6337-6338. (b) Bauchat, P.; Le Bras, N.; Rigal, L.; Foucaud, A. Tetrahedron 1994, 50, 7815-7826.
(34) (a) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1990, 26122613. (b) Bode, M. L.; Kaye, P. T. J. Chem. Soc., Perkin Trans. 1 1993, 1809-1813.
(35) Boekelheide, V.; Windgassen Jr., R. J. J. Am. Chem. Soc. 1959, 81, 14561459.
(36) Drewes, S. E.; Rohwer, M. B. Synth. Commun. 1997, 27, 415-424.
(37) Song, Y. S.; Lee, K.-J. Synthesis 2007, 3037-3043.
(38) Yi, H.-W.; Park, H. W.; Song, Y. S.; Lee, K.-J. Synthesis 2006, 19531960.
(39) (a) Andrade, R. B.; Martin, S. F. Org. Lett. 2005, 7, 5733-5735. (b) Christie, H. S.; Heathcock, C. H. Proc. Natl. Acad. Sci. U.S.A. 2004, 101, 12079-12084.
(40) Kenmoku, H.; Sassa, T.; Kato, N. Tetrahedron Lett. 2000, 41, 4389-4393.
(41) Watanabe, H.; Takano, M.; Umino, A.; Ito, T.; Ishikawa, H.; Nakada, M. Org. Lett. 2007, 9, 359-362.
(42) Trost, B. M.; Machacek, M. R.; Tsui, H. C. J. Am. Chem. Soc. 2005, 127, 7014-7024.
(43) Tokorayama, T.; Kato, M.; Aoto, T.; Hattori, T.; Iio, H.; Odagaki, Y. Tetrahedron Lett. 1994, 35, 8247-8250.
(44) Majetich, G.; Zhang, Y.; Nishide, H.; Hull, K. Bull. Soc. Chim. Fr. 1995, 132, 575-584.
(45) Wasnaire, P.; de Merode, T.; Markó, I. E. Chem. Commun. 2007, 47554757.
(46) Hecht, H.-J.; Höfle, G.; Steglich, W.; Anke, T.; Oberwinkler, F. J. Chem. Soc., Chem. Commun. 1978, 665-666.
(47) Watanabe, H.; Nakada, M. J. Am. Chem. Soc. 2008, 130, 1150-1151.
(48) Harvey, I. W.; Whitham, G. H. J. Chem. Soc., Perkin Trans. 1 1993, 191196.
(49) (a) Rao, A. V. R.; Yadav, J. S.; Rao, C. S. Tetrahedron Lett. 1986, 27, 3297-3298. (b) Lebarillier, L.; Outurquin, F.; Paulmier, C. Tetrahedron 2000, 56, 7483-7493.
(50) Simpkins, N. S. Tetrahedron 1991, 47, 323-332.
(51) (a) Masuyama, Y.; Ueno, Y.; Okawara, M. Chem. Lett. 1977, 6, 835-838.
(b) Arrica, M. A.; Wirth, T. Eur. J. Org. Chem. 2005, 395-403.
(52) Tiecco, M.; Testaferri, L.; Temperini, A.; Bagnoli, L.; Marini, F.; Santi, C. Synlett 2003, 655-658.
(53) Sakakibara, T.; Ikuta, S.-i.; Sudoh, R. Synthesis 1982, 261-263.
(54) (a) Stevens, R. V.; Lee, A. W. M. J. Am. Chem. Soc. 1979, 101, 70327035. (b) Fournet, G.; Balmea, G.; Barieux, J. J.; Gore, J. Tetrahedron 1988, 44, 5821-5832.
(55) Malamas, M. S.; Hohman, T. C.; Millen, J. J. Med. Chem. 1994, 37, 20432058.
(56) (a) Gillard, J.; Abraham; Anderson, P. C.; Beaulieu, P. L.; Bogri, T.; Bousquet, Y.; Grenier, L.; Guse, I.; Lavallée, P. J. Org. Chem. 1996, 61, 2226-2231. (b) Scheideman, M.; Shapland, P.; Vedejs, E. J. Am. Chem. Soc. 2003, 125, 10502-10503.
(57) Benedetti, F.; Stirling, C. J. M. J. Chem. Soc., Perkin Trans. 2 1986, 605611.
(58) (a) Ihara, M.; Takahashi, T.; Shimizu, N.; Ishida, Y.; Sudow, I.; Fukumoto, K.; Kametani, T. J. Chem. Soc., Perkin Trans. 1 1989, 529535. (b) Trost, B. M.; Grese, T. A. J. Org. Chem. 1992, 57, 686-697.
(59) Brodfuehrer, P. R.; Chen, B.-C.; Sattelberg, T. R., Sr.; Smith, P. R.; Reddy, J. P.; Stark, D. R.; Quinlan, S. L.; Reid, J. G.; Thottathil, J. K.; Wang, S. J. Org. Chem. 1997, 62, 9192-9202.
(60) Ruel, R.; Deslongchamps, P. Can. J. Chem. 1990, 68, 1917-1922.
(61) Xue, F.; Seto, C. T. J. Org. Chem. 2005, 70, 8309-8321. Hosomi, A.; Sakurai, H. J. Am. Chem. Soc. 1977, 99, 1673-1675.
(63) Börner, C.; Dennis, Michael R.; Sinn, E.; Woodward, S. Eur. J. Org. Chem. 2001, 2435-2446.
(64) Anderson, E.; Capon, B. J. Chem. Soc., Perkin Trans. 2 1972, 515-522.

Aggarwal, V. K.; Roseblade, S. J.; Barrell, J. K.; Alexander, R. Org. Lett. 2002, 4, 1227-1229.
(66) El Blidi, L.; Crestia, D.; Gallienne, E.; Demuynck, C.; Bolte, J.; Lemaire, M. Tetrahedron: Asymmetry 2004, 15, 2951-2954.
(67) Abad, A.; Agulló, C.; Arnó, M.; Cantín, A.; Cuñat, A. C.; Meseguer, B.; Zaragozá , R. J. J. Chem. Soc., Perkin Trans. 1 1997, 1837-1844.
(68) (a) Sharpless, K. B.; Lauer, R. F. J. Am. Chem. Soc. 1973, 95, 2697-2699. (b) Clive, D. L. J. Tetrahedron 1978, 34, 1049-1132.
(69) Yoon, N. M.; Choi, J.; Ahn, J. H. J. Org. Chem. 1994, 59, 3490-3493.
(a) Kobayashi, T.; Tanaka, Y.; Ohtani, T.; Kinoshita, H.; Inomata, K.; Kotake, H. Chem. Lett. 1987, 16, 1209-1212. (b) Inomata, K.; Sasaoka, S.-i.; Kobayashi, T.; Tanaka, Y.; Igarashi, S.; Ohtani, T.; Kinoshita, H.; Kotake, H. Bull. Chem. Soc. Jpn. 1987, 60, 1767-1779. (c) Otera, J.; Misawa, H.; Sugimoto, K. J. Org. Chem. 1986, 51, 3830-3833.
(71) (a) Berthiaume, G.; Lavallée, J.-F.; Deslongchamps, P. Tetrahedron Lett. 1986, 27, 5451-5454. (b) Liu, H.-J.; Ngooi, T. K. Can. J. Chem. 1984, 62, 2676-2681.
(72) Smith, M. B.; March, J. March's Advanced Organic Chemistry: Reactions, Mechanisms, and Structure, 6th ed.; John Wiley \& Sons, Inc.: Hoboken, NJ., 2007; p. 223-225.
(73) (a) Hayashi, Y.; Gotoh, H.; Tamura, T.; Yamaguchi, H.; Masui, R.; Shoji, M. J. Am. Chem. Soc. 2005, 127, 16028-16029. (b) Palomo, C.; Mielgo, A. Angew. Chem. Int. Ed. 2006, 45, 7876-7880. (c) Hayashi, Y.; Gotoh, H.; Hayashi, T.; Shoji, M. Angew. Chem. Int. Ed. 2005, 44, 4212-4215.
(74) Manchanayakage, R.; Omune, D.; Hayes, C.; Handy, S. T. Tetrahedron 2007, 63, 9691-9698.
(75) Adriaenssens, L. V.; Austin, C. A.; Gibson, M.; Smith, D.; Hartley, R. C. Eur. J. Org. Chem. 2006, 4998-5001.
(76) Wang, C.; Gu, X.; Yu, M. S.; Curran, D. P. Tetrahedron 1998, 54, 83558370.
(77) Johnson, W. S.; Yarnell, T. M.; Myers, R. F.; Morton, D. R.; Boots, S. G. J. Org. Chem. 1980, 45, 1254-1259.
(78) Schmid, R.; Huesmann, P. L.; Johnson, W. S. J. Am. Chem. Soc. 1980, 102, 5122-5123.
(79) Johnson, W. S.; Chen, Y. Q.; Kellogg, M. S. J. Am. Chem. Soc. 1983, 105, 6653-6656.
(80) Moss, R. A.; Scrimin, P.; Bhattacharya, S.; Chatterjee, S. Tetrahedron Lett. 1987, 28, 5005-5008.

Chapter 2

Studies towards the total synthesis of MPC1001

1. Introduction

1.1. Isolation and properties of MPC1001

MPC1001 (1.2) is an epidithiodioxopiperazine (ETP), a member of a small class of mycotoxins. There are at least 14 ETPs isolated and characterized much more if derivatives, epipolythio and epimonothiodioxopiperazines, and desulfurized ETPs are counted - all of them produced by ascomycetes. ${ }^{1}$ The conspicuous characteristic of the main compounds is the disulfur bridge on a cyclic dipeptide, and among such compounds gliotoxin was the first to be characterized and it has been studied extensively. MPC1001 is an O-methyl derivative of emestrin (1.1) and was first isolated from a microorganism Cladorrhinum sp. KY4922, which was obtained from a soil sample collected in Indonesia; ${ }^{2}$ the compound was also extracted from a fungus isolated from Musk Ox dung collected in Alaska. ${ }^{3}$

emestrin (1.1)

gliotoxin (1.3)
Scheme 1

The structure of MPC1001 was elucidated by multiple NMR experiments, and the stereochemistry was determined based on NMR data and comparisons of
the CD spectra of MPC1001 and emestrin, ${ }^{2 b}$ whose structure had been established by X-ray crystallography. ${ }^{4}$

Preliminary examination showed that MPC1001 exhibited antimicrobial activity against Gram-positive bacteria and weak activity against Gram-negative bacteria. ${ }^{2 c}$ It also suppressed proliferation of a human prostate cancer cell line (DU145) with an IC_{50} value of 9.3 nM , about 2- to 40 -fold more potent than adriamycin, mitomycin C or etoposide.

Scientists in the Merck Research Laboratories Rahway also found that MPC1001 and several other ETPs inhibit the binding of monocyte chemoattractant protein MCP-1 to chemokine receptor CCR2. ${ }^{3}$ This observation was made during screening for small molecule non-peptide antagonists to suppress the MCP-1-CCR2 complex, as this complex is associated with some autoimmune disorders such as rheumatoid arthritis, atherosclerosis and infectious diseases, and it is known that neutralization of CCR2 can effectively suppress or prevent the joint swelling in rodent models of rheumatoid arthritis. ${ }^{5}$ The group at Merck has found that both the disulfur bridge and the macrocycle of the emestrins are essential for their agonist role; increasing the sulfur number to four results in a slightly lower activity and breaking the macrocycle renders the compound ten times less active.

Other ETPs also display important biological characteristics including activity against viruses, ${ }^{6}$ fungi, ${ }^{4}$ bacteria, ${ }^{7}$ and inhibition of both epidermal growth factor ${ }^{8}$ and histamine release. ${ }^{9}$

All ETPs are toxic secondary metabolites, and the disulfur bridge is essential for many of their biological properties; desulfurization of gliotoxin or sporidesmin abrogates their antibacterial activity ${ }^{10}$ and removal or conversion of the disulfide to two methylthio groups completely shuts down the antiviral activity. ${ }^{11}$

Two possible mechanisms are involved in ETP toxicity. The first mechanism is formation of mixed disulfide bonds between the ETP moiety and a thiol group on a protein. ${ }^{10-12}$ ETPs have no specific protein targets. For some proteins the cysteine residues participate in the mixed disulfide bond formation;
for example, in a 1:1 covalent complex of gliotoxin with alcohol dehydrogenase, gliotoxin was found linked to cysteine residue 281 or $282 .{ }^{13}$ Complete abolition of gliotoxin's ability to inhibit viral RNA synthesis was observed in the presence of a large excess of dithiothreitol (10^{3} fold excess over gliotoxin), which reduces the disulfur bridge of gliotoxin to a dithiol. ${ }^{14}$ The second mechanism is generation of deleterious reactive oxygen species such as superoxide $\left(\mathrm{O}_{2}^{--}\right)$or hydrogen peroxide during the redox cycle when an ETP-derived dithiol autoxidizes to the disulfide bridge. ${ }^{15}$

Besides the ETP core, MPC1001 also possess a dihydrooxepin ring, a feature shared by several other metabolites such as aranotin and emethallicin (Scheme 2). However, this theme is not confined to the realm of ETP natural products, as it is also found in some simple terpenoids such as occedinol, ${ }^{16}$ dictyoxepin, ${ }^{17}$ miscandenin ${ }^{18}$ and compound $\mathbf{2 . 6}{ }^{19}$ (Scheme 2).

aranotin (2.1)

emethallicin (2.2)

miscandenin (2.5)

occedinol (2.3)

Scheme 2

1.2. Biosynthesis of MPC1001

No research has been done on the biosynthesis of emestrins (of course, including MPC1001), despite a comment by the authors who isolated the first

3.1

3.3

3.5

gliotoxin (1.3)

sirodesmin PL (3.6)

Scheme $3^{\text {a }}$
${ }^{a}$ Intermediates in brackets are putative and have not been isolated.
emestrin, to the effect that it "is biogenetically derived from the combination of one molecule of benzoic acid with the epidithiodioxopiperazine structure formed from two molecules of phenylalanine. ${ }^{44}$ Other speculations also predicted the origin of the ETP core from one molecule of phenylalanine and one of tyrosine. ${ }^{\text {1a }}$ The biosynthesis of some earlier isolated ETPs has been investigated. Feeding and labeling experiments showed that gliotoxin is derived from the condensation of serine and phenylalanine; ${ }^{20}$ and sirodesmin PL (3.6) from serine and tyrosine. ${ }^{21}$

More recently, genes that encode enzymes involved in the biosynthesis of sirodesmin PL^{22} and gliotoxin ${ }^{1,23}$ were identified and a possible route to gliotoxin is summarized in Scheme 3; earlier labeling experiments also showed that cystine is the sulfur source. ${ }^{24}$

The biosynthesis of the dihydrooxepin ring in aranotins (4.5, Scheme 4) and the diydroarene ring in gliotoxin was proposed to stem from an arene oxide intermediate 4.2. ${ }^{20 a, 25}$ Epoxide opening by nucleophilic attack of the amide nitrogen in 4.2 can afford the dihydroarene subunit in gliotoxin; rearrangement of 4.2 to 4.3 , followed by a second oxidation, provides the oxepin oxide 4.4, and epoxide opening will then lead to the dihydrooxepin subunit in aranotins (and other ETPs including MPC1001). However, this proposal has never been

Scheme 4

validated by experiment. Rastetter et al. tried to mimic the biosynthetic pathway to dihydroarene and dihydrooxepin subunits, using benzene oxide 5.1 and oxepin oxide 5.3, respectively (Scheme 5), but only intermolecular reaction with a nitrogen nucleophile could be realized, while attempts to perform the intramolecular version using 5.7 afforded only phenol via rearrangement. ${ }^{26}$

Scheme 5

1.3. Synthesis of dihydrooxepins reported in the literature

As described below, a few methods have been reported for the preparation of dihydrooxepins via rearrangement of acetates of allylic hydroperoxides, ${ }^{19,27}$ Cope rearrangement of 2,3-divinyl epoxides, ${ }^{28}$ retro [2+2] cycloaddition of strained cyclobutene epoxides, ${ }^{29}$ ring-closing metathesis, ${ }^{30}$ benzene oxide rearrangement, followed by epoxidation and epoxide opening with a nucleophile, ${ }^{26}$ and a selenoxide elimination strategy reported from this laboratory. ${ }^{31}$ No ETP containing a dihydrooxepin has been synthesized.

Goodman et al. ${ }^{27}$ observed that exposure of peroxide $\mathbf{6 . 1}$ to a base afforded three products, elimination product 6.2 , cyclic ether 6.3 , possibly via transition state 6.5 (Criegee rearrangement), and dihydrooxepin 6.4 from further elimination of 6.3 (Scheme 6). The ratio of 6.2 to rearrangement products $(6.3+6.4)$ is
influenced by the nature of the base used in the reaction; however, without a base, the rearrangement still occurs and gives only $\mathbf{6 . 3}$, while under the action of a Lewis acid $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right)$, both $\mathbf{6 . 3}$ and $\mathbf{6 . 4}$ were formed but no enone 6.2

Scheme 6

The rearrangement (cf $\mathbf{6 . 1} \rightarrow \mathbf{6 . 4}$) was also observed by Lu et al. ${ }^{19}$ and helped in their identification of the hydroperoxide group in sesquiterpene 7.1. Thus treatment of 7.1 with $\mathrm{Ac}_{2} \mathrm{O}$ and pyridine at room temperature produced dihydrooxepin 7.2 (Scheme 7). ${ }^{19}$

Scheme 7

Cope rearrangement seems to have been regarded as a very attractive way of constructing the dihydrooxepin ring. ${ }^{28}$ One representative example was reported by White's group, as shown in Scheme $8 .{ }^{28 e}$ The Cope rearrangement
precursor 8.5 was prepared by the route outlined in Scheme 8 from the simple starting materials vinyl bromide 8.1 and propargyl alcohol 8.2. Heating the epoxides 8.5 at $95-135{ }^{\circ} \mathrm{C}$ (depending on the substrate) in CCl_{4} gave the desired syn product 8.6 stereospecifically and in good yields; the anti diastereomers could also be formed using precursors with the appropriate double bond geometry.

$8.2 R^{1}=\mathrm{H}$ or Me
Horner-Wadsworth-Emmons olefination

Scheme 8

Fustero et al. reported isolation of the benzo-fused dihydrooxepin 9.2 from diene 9.1 via a sequence of ring closing-metathesis and double bond migration (Scheme 9). ${ }^{30}$ The yield was low as isomer 9.3 was also formed.

Scheme 9

Snapper's group reported generation of tetrahydrofuran-fused dihydrooxepin bicyclic compounds $\mathbf{1 0 . 3}$ and $\mathbf{1 0 . 4}$ from cyclobutene oxide $\mathbf{1 0 . 2}$ (Scheme 10), which itself was obtained by m-CPBA oxidation of cyclobutene

Scheme 10
10.1. ${ }^{29}$ Using the same method, a series of similar bicyclic dihydrooxepins were synthesized in $55-81 \%$ yield, but efforts to improve the diastereoselectivity of the reaction were unfruitful. ${ }^{29}$

Last, but not the least, a selenoxide elimination strategy was developed in this group, aiming at the total synthesis of MPC1001. ${ }^{31}$ The route is depicted in Scheme 11. Treatment of ketone $\mathbf{1 1 . 1}$ with $t-\mathrm{BuOCH}\left(\mathrm{NMe}_{2}\right)_{2}$ gave vinylogous amide $\mathbf{1 1 . 2}$ which, under acidic conditions (TFA in toluene), cyclized to give

Scheme 11
cyclic ethers $11.3 \mathbf{a}, \mathbf{b}$, and, in the last step, oxidation of the phenylselenium group using NaIO_{4} in aqueous THF afforded the desired bicyclic dihydrooxepin compound 11.4. ${ }^{31 \mathrm{~b}}$

1.4. Synthesis of ETPs reported in the literature

Generally, there are two strategies for installing sulfurs onto a diketopiperazine (DKP) ring: using a nucleophilic carbon on the DKP and an electrophilic sulfur source, or vice versa. Two reviews have been published on the synthesis of ETPs. ${ }^{32}$

Schmidt et al. ${ }^{33}$ were the first to make the ETP structure. They used carbanions generated from $\mathbf{1 2 . 1}$ with a strong base $\left(\mathrm{NaNH}_{2}\right)$ and an electrophilic sulfur reagent $\left(\mathrm{S}_{8}\right)$ to give $\mathbf{1 2 . 2}$ which, after reduction with NaBH_{4} and oxidation with KI_{3}, gave symmetric ETP 12.3.

Scheme 12

Using the same starting material 12.1, Hino et al. ${ }^{34}$ found that NaH in benzene or toluene is not a strong enough base to deprotonate the substrate, as quenching the reaction mixture with $\mathrm{S}_{2} \mathrm{Cl}_{2}$ only resulted in recovery of compound

Scheme 13
12.1. They then turned to substrate 13.1, but treatment with NaH and $\mathrm{S}_{2} \mathrm{Cl}_{2}$ gave only a 17% yield of the desired disulfide $\mathbf{1 3 . 2 b}$, plus tetrasulfide $\mathbf{1 3 . 2 d}$ and monoand trisulfides (Scheme 13). ${ }^{34}$ The authors also found that the action of $\mathrm{NaBH}_{4}-$ MeOH on 13.2b-c delivered desthio compound 13.1 instead of the expected bisthiol compound. It seems that the ester groups at C3 and C6 (see compound 13.1) are responsible for this special reactivity, as epidithio or epipolythiodioxopiperazines can generally be reduced to the corresponding bisthiol compounds without incident. ${ }^{33,35}$ However, it is reported that treatment of epidithio- (or polythio-) dioxopiperazines with excess $\mathrm{Ph}_{3} \mathrm{P}$ results in gradual desulfurization to epimonothiodioxopiperazine, ${ }^{34,36}$ but there is some debate about the mechanism and the stereochemistry of the products (retention or inversion at C 3 and C6). ${ }^{37}$ Besides NaBH_{4}, an excess of MeSH has also been used to quickly reduce ETPs to dithiols. ${ }^{37 \mathrm{~b}, 38}$

Recently, Nicolaou's group adopted a similar approach to that of Schmidt et al. in order to synthesize ETP $14.3,{ }^{39}$ a key structure towards the total synthesis of epicoccin 14.4 (Scheme 14).

Scheme 14

The second strategy for introducing sulfurs onto a DKP ring is to render the C3 and C6 positions electrophilic and use a nucleophilic sulfur reagent. One
common method is nucleophilic displacement of a bromine at C3 and C6 by RSH (or RS^{-}). This approach was first developed by Trown et al. for making the very simple ETP 15.4, as outlined in Scheme $15 .{ }^{40}$

Kishi et al. ${ }^{27,41}$ also used this bromination- $\mathrm{S}_{\mathrm{N}} 2$ displacement sequence for installing sulfurs onto DKP rings, and moreover, they developed an ingenious way of protecting the thiol groups on simple DKPs such as $\mathbf{1 5 . 3}$, which is not only robust enough to withstand further transformations at C3 and C6 but also allows deprotection and oxidation to the desired ETP structure at a late stage.

Scheme 15

One example using this method for the total synthesis of gliotoxin is illustrated in Scheme $16 .{ }^{41 \mathrm{f}}$ After protection of the nitrogen on the starting material 16.1 with an MeOCH_{2} group, a four-step sequence with only one purification converted $\mathbf{1 6 . 2}$ to dithiol acetal 16.3a,b as an inseparable mixture in 29.6% overall yield [with the para-methoxyphenyl (PMP) group pointing either up (16.3a) or down (16.3b)]. Separation of 16.3a and 16.3b was then achieved by selectively converting 16.3a to its imide by exposure to a mixture of BzCl and $\mathrm{Et}_{3} \mathrm{~N}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ for 1 h . The reason for this kinetically different behavior of the two compounds is obscure.

Following isolation of $\mathbf{1 6 . 3 b}$, it was then coupled with benzene oxide $\mathbf{1 6 . 4}$ in the presence of Triton B in DMSO, affording $\mathbf{1 6 . 5}$ in 66.4%. Functional group manipulation then led to 16.6. Both inter- and intramolecular alkylations occurred in one step when a mixture of $\mathbf{1 6 . 6}$ and $\mathrm{BnOCH}_{2} \mathrm{Cl}$ were treated with PhLi. Debenzylation using BCl_{3} then yielded the dithioacetal of gliotoxin (16.7). One equivalent of m-CPBA oxidized one of the two sulfurs to a sulfoxide, and

16.1
16.2
(1) NBS, $(\mathrm{BzO})_{2}$ CCl_{4}, reflux, 1 h
(2) $\mathrm{AcSK}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$\xrightarrow[\text { (3) } \mathrm{HCl}, \mathrm{MeOH}]{\text { rt, overnight }}$ $50^{\circ} \mathrm{C}, 40 \mathrm{~min}$
(4) $p-\mathrm{MeOC}_{6} \mathrm{H}_{4} \mathrm{CHO}$

$\underset{\mathrm{rt}, 1 \mathrm{~h}}{\mathrm{BzCl}, \mathrm{Et}_{3} \mathrm{~N}, \mathrm{CH}_{2} \mathrm{Cl}_{2}} \downarrow$

(1) $\mathrm{PhLi}, \mathrm{BnOCH}_{2} \mathrm{Cl}$ THF, $-78^{\circ} \mathrm{C}, 52.3 \%$

m-CPBA, $\mathrm{CH}_{2} \mathrm{Cl}_{2}, 0^{\circ} \mathrm{C}, 10 \mathrm{~min}$;
$70 \% \mathrm{HClO}_{4}$ in MeOH, rt, $9 \mathrm{~h}, 58.1 \%$

(\pm)-gliotoxin

Scheme 16

treatment of the crude mixture with aqueous HClO_{4} in MeOH gave the final product, (\pm)-gliotoxin in 58.1% over two steps. The authors mentioned that the

PMP group on the thioacetal was essential for successful deprotection; presumably, it stabilizes the carbocation developed during deprotection. ${ }^{41 \mathrm{a}, 4 \mathrm{lf}}$

Using the same protection-alkylation-deprotection strategy, Kishi's group synthesized other ETP compounds including (\pm)-sporidesmin ${ }^{41 \mathrm{c}, \mathrm{d}}$ and (\pm)dehydrogliotoxin. ${ }^{4 \mathrm{bb}}$

Besides AcS^{-}as the nucleophile, a number of bidentate sulfur reagents have been used for installing two sulfurs in a cis stereocontrolled manner, such as $\mathrm{Na}_{2} \mathrm{CS}_{3},{ }^{35 \mathrm{~d}} \quad \mathrm{Na}_{2} \mathrm{~S}_{4},{ }^{35 \mathrm{~d}} \quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{C}=\mathrm{O},{ }^{35 \mathrm{~d}, 42}$ etc, ${ }^{42}$ (deprotection difficulties were encountered for some of them) ${ }^{42}$; although for simple DKPs bearing an SR group on each carbon (C3 and C6) the cis geometry seems to be more stable than the trans and is normally formed preferably or exclusively. ${ }^{35 d, 43}$

Bromination on DKPs with substituents on C3 and C6 seems to be not as smooth as on simple DKPs such as 16.2. Matsunari's group reported that bromination not only occurred at the desired C3 and C6 positions but also readily

17.1 $R^{1}, R^{2}=H$ or alkyl

17.2

Scheme 17

at positions 3α and 6α, as shown in Scheme 17. ${ }^{44}$ A similar problem was observed recently by Iwasa et al. during bromination of the model substrate $\mathbf{1 8 . 1}$ for the total synthesis of $(+)$-chaetocin (Scheme 18). ${ }^{45}$ Tribromination was the major pathway even when the amount of NBS was reduced. However, when substrate $\mathbf{1 8 . 3}$ was treated under similar conditions, no bromination of $\mathrm{C} 3 \alpha$ was detected. The authors reasoned that the bulky bromine atom at the benzylic position might help prevent over-bromination. ${ }^{45}$

Instead of bromide precursors, DKPs with OH or OR groups at C3 and C6 can be converted into ETPs by treatment with an acid and $\mathrm{H}_{2} \mathrm{~S}$ (or RSH), followed by oxidation (or deprotection and oxidation). Movassaghi's group synthesized

Scheme 18
(+)-11,11'-dideoxyverticillin A by treatment of the advanced intermediate $\mathbf{1 9 . 1}$ with TFA and $\mathrm{K}_{2} \mathrm{CS}_{3}$ to install the sulfurs with the required cis geometry, followed by deprotection with ethanolamine and oxidation of the resulting dithiol (Scheme 19). ${ }^{46}$ The oxygen groups at C3, C3', C11a and C11a' of $\mathbf{1 9 . 1}$ were introduced by oxidation of $\mathrm{C}-\mathrm{H}$ bonds with $\mathrm{pyr}_{2} \mathrm{AgMnO}_{4}$. ${ }^{46}$

19.1 $\mathrm{R}=\mathrm{SiMe}_{2} \mathrm{Bu}-t$

(+)-11,11'-dideoxyverticillin A 19.2

Scheme 19

Using intramolecular sulfur delivery, Movassaghi's group also developed a method for making epidithiodioxopiperazines and epipolythiodioxopiperazines. ${ }^{47}$ As shown in Scheme 20, tetrahydroxy compound $\mathbf{2 0 . 1}$ was converted to bissulfide 20.2 by treatment with $\mathrm{H}_{2} \mathrm{~S}$ and TFA in MeNO_{2}, followed by a universal
protection of both SH and OH groups and removal of sulfonamide groups by UV irradiation. Selective deprotection of the thioesters and sulfenylation with $\mathrm{Ph}_{3} \mathrm{CSCl}$ and NaH provided the precursor $\mathbf{2 0 . 3}$ for intramolecular sulfur delivery. The key transformation was performed using the Lewis acid $\mathrm{BF}_{3} \cdot \mathrm{OEt}, \mathrm{Et}_{3} \mathrm{SiH}$ and a substituted pyridine as the base to give ETP 20.4 in 82% yield. ${ }^{47}$ By using $\mathrm{Ph}_{3} \mathrm{CSSCl}$ and $\mathrm{Ph}_{3} \mathrm{CSSSCl}$ polythio ETPs could be constructed. This method enabled the authors to make (+)-chaetocin A (an epidithiodioxopiperazine), (+)chaetocin C (an epitrithiodioxopiperazine) and (+)-12,12'-dideoxychetracin A (an epitetrathiodioxopiperazine). ${ }^{47}$

(1) $\mathrm{H}_{2} \mathrm{~S}, \mathrm{TFA}, \mathrm{MeNO}_{2}$ 53 \% (2 steps)
(3) $h v(350 \mathrm{~nm})$ L-ascorbic acid 1,4-dimethoxynaphthalene $85^{\circ} \mathrm{C}, 92 \%$
20.2 $\mathrm{R}=i-\mathrm{PrCO}$
$\mathrm{N}_{2} \mathrm{H}_{4}, \mathrm{THF}, 0^{\circ} \mathrm{C}$;
TrSCl, NaH, 80-90\%

Scheme 20

Overman's group synthesized (+)-gliocladine C (21.5) by substitution of OR groups in 21.3 with $\mathrm{H}_{2} \mathrm{~S}$ in the presence of a Lewis acid $\left(\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}\right)$, followed by oxidation with oxygen and hydrolysis of the remaining acetate group (Scheme 21). ${ }^{48}$ Compound 21.2, a precursor to 21.3, was synthesized by dihydroxylation of 21.1 .

$\mathrm{H}_{2} \mathrm{~S}, \mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$
$-78^{\circ} \mathrm{C}$ to rt; O_{2}
$\mathrm{MeOH} / E t O A c$, rt, 62%

(+)-gliocladine C 21.5

21.4

Scheme 21

Previous to the above total synthesis, Overman's group used a similar approach for making the simpler ETP 22.2, as outlined in Scheme 22. ${ }^{49}$ The authors adopted Woerpel's model for reactions between a five-membered oxocarbenium ion and a nucleophile to explain the observed 1,2-cis relationship between the hydroxyl group and the adjacent sulfur in $\mathbf{2 2 . 2},{ }^{49}$ which seems to be contradictory to the observation on 21.4, although the latter is more complex. The authors did not explain why the two thio groups prefer to adopt the syn geometry

22.1
$\mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{H}_{2} \mathrm{~S}, \mathrm{MeCN}, \mathrm{rt}$; $\mathrm{O}_{2}, \mathrm{MeOH}, \mathrm{rt}, 37 \%$ (2 steps)
$\mathrm{Sc}(\mathrm{OTf})_{3}, \mathrm{MeCN}-\mathrm{MeOH}, \mathrm{rt}, 100 \%$

22.2

Scheme 22
on the DKP ring during the substitution reaction while in principle 4 isomers could be generated in both cases.

Ottenheijm et al. ${ }^{36 \mathrm{a}}$ provided a tentative explanation for the syn preference of the thiol groups on a DKP ring installed under Lewis acid conditions. When mono-thiol 23.1 was treated with $\mathrm{H}_{2} \mathrm{~S}$ and ZnCl_{2}, cis dithiol 23.2 was formed in 50% yield (Scheme 23). The authors rationalized the stereoselectivity by invoking the ligated intermediate $\mathbf{2 3 . 3}$ that allows delivery of the second sulfur in a syn manner. ${ }^{36 a}$

23.2
23.3

Scheme 23

Williams et al. ${ }^{50}$ disclosed the possibility of equilibration between syn and anti isomers during the synthesis of the fungal metabolites (\pm)-gliovictin and (\pm)hyalodendrin. The evidence for equilibration is that reductive methylation of the starting material 24.1 (Scheme 24) with trans stereochemistry, using a mixture of

MeI, pyridine and NaBH_{4} in cold MeOH , afforded both trans and cis products in a ratio of $10: 1$; this ratio was lowered to $4: 3$ when the reduction was done at an elevated temperature (reflux and then room temperature) before the methylation under the same conditions. Based on these results, Williams et al. proposed an equilibration via the open form $\mathbf{2 4 . 4}$ or $\mathbf{2 4 . 5}$ to account for their observations. ${ }^{50}$

Scheme 24

2. Results and Discussion

2.1. Previous synthetic studies in this laboratory

The tricyclic core structure $\mathbf{2 5 . 1 4}$ of MPC1001 without the disulfur bridge

25.2
25.3

was made by Dr. Jianbiao Peng, and the route is summarized in Scheme 25. ${ }^{31 \mathrm{a} a, 51}$ The synthesis started with epimerization at C2 of optically pure trans-4-hydroxy-L-proline (25.1), using a three-step literature sequence. ${ }^{52}$ Coupling of the amine salt 25.3 and the carboxyl chloride 25.6 gave amide 25.7 smoothly, and further manipulations led to ketone 25.8. A Dieckmann type condensation, mediated by NaH in refluxing THF, afforded 25.9. Sulfenylation and a short series of further transformations on the left part of the substrate provided 25.12, a precursor to the tricyclic structure. At this point, an oxy-Michael addition and concomitant elimination of HNMe_{2} afforded $\mathbf{2 5 . 1 3}$, and subsequent selenoxide elimination delivered the tricyclic core structure 25.14.

During the above synthesis Dr. Peng found that the protecting group $\left(\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}\right)$ on sulfur could not be removed ${ }^{51}$ by treatment with $\mathrm{Bu}_{4} \mathrm{NF}$ or by a reported method using 2-nitrobenzenesulfenyl chloride. ${ }^{53}$ Consequently, finding a suitable protecting group for the sulfur became an urgent priority in order to continue the synthesis.

2.2. Synthetic studies towards the epidithiodioxopiperazine core of MPC1001

2.2.1. A practical preparation of large quantities of optically pure cis-4-hydroxy-D-proline

After I took over the project, it was soon realized that the cis-4-hydroxy-Dproline hydrochloride $\mathbf{2 5 . 2}$ prepared by epimerization of optically pure trans-4-hydroxy-L-proline, using the literature method (see Scheme 25), ${ }^{52}$ was not optically pure, as two sets of peaks could be clearly seen in the ${ }^{13} \mathrm{C}$ NMR spectrum for both the acid $\mathbf{2 5 . 2}$ and the ester 25.3. Later, after optically pure ester $\mathbf{2 5 . 3}$ had been prepared, a comparison of the optical rotation values of $\mathbf{2 5 . 8}$ made from the two sources revealed that the ee of $\mathbf{2 5 . 8}$ made from the optically impure $\mathbf{2 5 . 3}$ was only ca 70%.

The mechanism of epimerization is sketched in Scheme 26. ${ }^{54}$ Working up the reaction after treatment with $\mathrm{Ac}_{2} \mathrm{O}$ allowed isolation of pure crystalline solid 26.5, albeit in a low yield (ca 50%). After exposure to refluxing aqueous HCl , the
bicyclic solid 26.5 was converted to optically pure 25.2 , which has a much higher $[\alpha]_{\mathrm{D}}$ value (10.64 vs $6.5^{52 \mathrm{a}}, \mathrm{MeOH}, c=1.0$) than that obtained by directly subjecting crude (as opposed to recrystallized) $\mathbf{2 6 . 5}$ to aqueous $\mathrm{HCl} .{ }^{54}$ It is highly possible that during the first step some of the starting material undergoes esterification of the hydroxyl group to give 26.6, which then could not be converted into the bicyclic lactone $\mathbf{2 6 . 5}$ (or very slowly as cleavage of the C 4 acetate to regenerate the hydroxyl group is required).

26.6

25.2
26.2
26.3

26.4

Scheme 26

However, isolation of $\mathbf{2 6 . 5}$ on a big scale ($>10 \mathrm{~g}$) was difficult, not only because a large amount of base is needed to neutralize the residual $\mathrm{Ac}_{2} \mathrm{O}$ and AcOH in the crude material before recrystallization, but also because of the fact that 26.5, as a strained lactone, is quite unstable in either acidic or basic aqueous solution (it also decomposed on silica gel). Moreover, $\mathbf{2 6 . 5}$ is very soluble in the aqueous layer and complete extraction is difficult (although continuous extraction was not tried). Later, it was gratifying to find that a single recrystallization of crude $\mathbf{2 5 . 2}$ [produced by direct treatment of crude $\mathbf{2 6 . 5}$ with refluxing aqueous $\mathrm{HCl}(2 \mathrm{~N})$ after evaporation of $\mathrm{Ac}_{2} \mathrm{O}$ and AcOH$]$ from a hot mixture of ethanol and hexanes provided optically pure 25.2 in a very good yield (87%, ca 35 g scale) with the same $[\alpha]_{D}$ as that produced from pure 26.5.

2.2.2. Attempts to form the disulfur bridge directly

We envisaged that, following Dieckmann cyclization, treatment of the enolate 27.1 with more NaH would probably generate dianion 27.2, and quenching the dianion with $\mathrm{S}_{2} \mathrm{Cl}_{2}$ would lead to the epidithiodioxopiperazine 27.3 (Scheme 27). However, a single experiment along these lines gave only a complex mixture.

27.3

Scheme 27

Based on an early report by Hino et al., ${ }^{34}$ we considered that NaH is not a strong enough base to deprotonate 27.1 at C3. They also found that treatment of a DKP dianion generally leads to a poor yield of the desired disulfide bridge. We then turned to sulfenylation of dienol ether $\mathbf{2 8 . 2}$ which would be generated in situ by formylation of $\mathbf{2 8 . 1}$ (Scheme 28), followed by quenching the resulting enolate with $\mathrm{Me}_{3} \mathrm{SiCl}$. Subsequent treatment with $\mathrm{S}_{2} \mathrm{Cl}_{2}$, again, gave only a complex mixture.

Further experimentation showed that enol ether $\mathbf{2 8 . 1}$ is probably unstable when treated with a strong base, as the action of KHMDS at $-78^{\circ} \mathrm{C}$ on a similar compound, 28.4 (compound 28.1 itself was unstable and could not be isolated), led to severe decomposition within a short time (ca 20 min).

As attempts at simultaneous disulfenylation to install the disulfur bridge were not promising we turned our attention back to the original strategy, which was to attach the sulfur at C9 (see $\mathbf{2 8 . 3}$ in Scheme 28) stereoselectively first and to then use this sulfur to direct the facial selectivity of the sulfenylation during introduction of the second sulfur at C3.

$25.8 \mathrm{R}=\mathrm{SiPh}_{2} \mathrm{Bu}-t$
$\mathrm{NaH}, \mathrm{THF}$, reflux; $t-\mathrm{BuPh}_{2} \mathrm{SiCl}, 31 \%$

28.4
28.1
28.2

28.3

Scheme 28

2.2.3. Problems in removing the sulfur protecting group

As mentioned earlier, Dr. Peng ${ }^{51}$ found that the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ could not be removed from the sulfur with 2-nitrobenzenesulfenyl chloride (a deprotection method reported by Gerland et al. ${ }^{53}$). To reexamine the reaction, compound $\mathbf{2 9 . 5}$ was prepared. In this series, Dr. Peng's route to 29.4 was used with small modifications ${ }^{31 a, 51}$ (Scheme 29). Treatment of 29.5 with purified 2-nitrobenzenesulfenyl chloride resulted in a complex mixture. Among the components, disulfide $\mathbf{2 9 . 6}$ was isolated in 92% yield, plus two impure side products $\mathbf{3 0 . 3}$ and

29.1
29.2
$\mathrm{CaCl}_{2}, \mathrm{NaBH}_{4}, \mathrm{THF}, \mathrm{EtOH} ;$
aq. $1 \mathrm{M} \mathrm{HCl}, 59 \%$

25.8
29.3
(1) NaH, THF, reflux
(2) $25.10, \mathrm{Et}_{3} \mathrm{~N}$
$\mathrm{CH}_{2} \mathrm{Cl}_{2}, 30 \%$ (2 steps)

Scheme 29

$29.5 \mathrm{R}=\mathrm{SiPh}_{2} \mathrm{Bu}-t$
$\mathrm{R}^{\prime}=\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$

30.5

30.4
30.1

30.3

Scheme 30
30.6 (characterized only by high resolution mass spectrometry) as shown in Scheme 30. A plausible mechanism is proposed in Scheme 30 to account for the formation of these products: after sulfenylation with 2-nitrobenzenesulfenyl chloride, the sulfur group is expelled by the lone pair electrons of the nitrogen to give iminium cation 30.2, which is trapped by water during workup. Attack of chloride on the $\mathrm{Et}_{3} \mathrm{Si}$ group of $\mathbf{3 0 . 2}$ will result in the deprotection product $\mathbf{3 0 . 4}$. Both $\mathbf{3 0 . 4}$ and epoxide $\mathbf{3 0 . 5}$ are converted to the dihydroxy compound $\mathbf{3 0 . 6}$ after workup.

The next protecting group we tested was a benzyl group. The required substrates were prepared as shown in Scheme 31. It is worth noting that $\mathbf{3 1 . 1}$ was prepared by a sequence of 3 steps in one pot, thus avoiding handling the sensitive ketone 25.9, which decomposes partially at room temperature overnight or on silica gel. However, this method of sulfenylation limits the range of protecting groups on sulfur as some reagents of the type RSCl could not be made, including $\mathrm{MeOCH}_{2} \mathrm{SCl}$ and PmbSCl . Treatment of either 31.2 or $\mathbf{3 1 . 3}$ with $\mathrm{Li} / \mathrm{NH}_{3}$ gave only a complex mixture, as did treatment with the Lewis acid BBr_{3}. It is known

Scheme 31

that a benzyl group on sulfur is much more difficult to remove than a benzyl group on oxygen. ${ }^{55}$

We next turned to a MeOCH_{2} group for sulfur protection, as deprotection had been demonstrated in Kishi's work using BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2} .{ }^{41 \mathrm{f}}$ In contrast to the

32.1a: $\quad . \quad{ }^{-} \mathrm{SCH}_{2} \mathrm{OMe}$
32.1b: $-\mathrm{SCH}_{2} \mathrm{OMe}$
32.1a: 22\%
32.1b: 25\%
32.1a: 12\%
32.1b: 24\%

Scheme 32
reasonable facial selectivity in the preparation of $\mathbf{2 5 . 1 1}$ (ca 4:1 in favor of the desired product) (Scheme 25), ${ }^{31 a, 51}$ very poor selectivity (ca 1:1) was observed when $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}^{56}$ was used as the sulfenylation agent (Scheme 32). Increasing the bulkiness of the sulfone leaving group (using camphor derivatives 32.3a,b, which were prepared from camphor thiosulfonate sodium salt ${ }^{57}$ and $\mathrm{MeOCH}_{2} \mathrm{Cl}$, by the same method as for the preparation of $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}$) gave no obvious improvement in selectivity. As in this case the stereochemistry at C6 (Scheme 32) has no influence on the C9 stereochemistry, we decided to use compound 33.7b (Scheme 33) which has the desired stereochemistry at both C6

PCC 4 Å MS $\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O},(\mathrm{MeO})_{3} \mathrm{CH}$ $\mathrm{MeOH}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$ reflux, 97%

33.5
(1) NaH , THF, reflux;
(2) $\mathrm{Et}_{3} \mathrm{~N}, \mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}, \mathrm{CH}_{2} \mathrm{Cl}_{2}$

33.7a: $-\mathrm{SCH}_{2} \mathrm{OMe}, 24 \%$
33.7b: $\quad . \cdot{ }^{-} \mathrm{SCH}_{2} \mathrm{OMe}, 27 \%$

Scheme 33
and C9, thus avoiding epimerization steps. The preparation of $\mathbf{3 3 . 7 a}, \mathbf{b}$ was carried out as outlined in Scheme 33, using the same methods as for $\mathbf{3 2 . 1 a}, \mathbf{b}$.

It is interesting to note that after the Dieckmann cyclization using NaH in refluxing THF, if the resulting enolate $\mathbf{2 7 . 1}$ (see Scheme 27) was directly treated with $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}$ or $\mathrm{MeSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}$ at $0{ }^{\circ} \mathrm{C}$, no desired products $(\mathbf{3 3 . 7 a}, \mathbf{b})$ were observed, and instead over-sulfenylation products $\mathbf{3 2 . 4}$ and $\mathbf{3 2 . 5}$ were obtained (Scheme 32). Compound 32.5 was also isolated when 2 equivalents of DBU (or fast addition of 1 equivalent of DBU) was used for sulfenylation of crude 25.9. It is possible that the presence of three electronwithdrawing groups at C9 renders the proton at C7 very acidic. Pyridine tends to give a slow and incomplete reaction in the sulfenylation, and later we found that $\mathrm{Et}_{3} \mathrm{~N}$ is better in terms of a reasonable reaction rate and minimization of over sulfenylation (33.6 $\boldsymbol{\rightarrow 3 3 . 7 a , b}$, Scheme 33).

Ketone 33.7b was carried forwards to $\mathbf{3 4 . 2}$ by NaBH_{4} reduction and protection of the resulting hydroxyl with $\mathrm{Et}_{3} \mathrm{SiOTf}$ (Scheme 34). Attempts to introduce the second sulfur group at C3 of $\mathbf{3 4 . 2}$ using a strong base (LDA or KHMDS) followed by addition of $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}$ were fruitless, as compound

$\mathrm{CICO}_{2} \mathrm{Et}, \mathrm{KHMDS}$
THF, $-78{ }^{\circ} \mathrm{C}, 73 \%$

Scheme 34
34.2 decomposed quickly after addition of the base, (which resulted in formation of a deep blue solution). Addition of the base to a mixture of $\mathbf{3 4 . 2}$ and $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}$ resulted in disulfenylation at C 3 . However, ethoxycarbonylation was successfully performed by addition of KHMDS to a mixture of $\mathbf{3 4 . 2}$ and $\mathrm{ClCO}_{2} \mathrm{Et}$ in THF at $-78{ }^{\circ} \mathrm{C}$ (Scheme 34), and sulfenylation of the resulting 1,3-dicarbonyl compound 34.3 was carried out using DBU and $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}$. At this stage the C 3 stereochemistry was unknown, but was later shown to be as indicated in Scheme 34.

As the stereochemistry at C 3 in $\mathbf{3 4 . 4}$ could not be defined by NMR experiments and crystals suitable for X-ray crystallographic analysis could not be obtained by recrystallization of $\mathbf{3 4 . 4}$, the para-nitrobenzoyl derivative $\mathbf{3 5 . 2}$ was made in two steps from 34.4 by desilylation with HF•pyr, followed by esterification using para-nitrobenzoyl chloride, $\mathrm{Et}_{3} \mathrm{~N}$ and DMAP in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Unfortunately, the X-ray crystallographic analysis of $\mathbf{3 5 . 2}$ (Figure 1) showed that the stereochemistry at C 3 was opposite to the desired stereochemistry (the sulfur group at C3 in $\mathbf{3 5 . 2}$ is anti to that at C9). The X-ray measurements were made on the enantiomer of the structure shown in Figure 1. As we had compounds from both the $6 R$ and $6 S$ series (see Scheme 34 for numbering), we sometimes did exploratory experiments with compounds of the $6 R$ series. For the actual MPC1001 synthesis we would need to use compounds with 6 S stereochemistry.

At this point we wanted to find out the factors that determine the stereochemical outcome during sulfenylation at C 3 and we wondered if the C 6 or

Scheme 35

Figure 1. ORTEP diagram of compound 35.2.

C9 centers, or both, were deciding factors. In order to establish which one is the dominating factor, compound $\mathbf{3 6 . 2}$ was prepared in two steps from $\mathbf{2 5 . 8}$ which has C6 as the only stereogenic center (Scheme 36). Ethoxyarbonylation using $\mathrm{ClCO}_{2} \mathrm{Et}$ and KHMDS provided the two diastereomers 36.3a and 36.3b.

36.4a: less polar 35\%
36.3a: less polar 40\%
36.4b: more polar 31\%
36.3b: more polar 32\%

Scheme 36

Treatment of the less polar isomer 36.3a under the same sulfenylation conditions as that for 34.3 (DBU and $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$) produced two diastereomers in almost the same yields, indicating that C 6 exerts no effect on the stereochemical outcome at C 3 during sulfenylation - at least when C 9 is sp^{2} hybridized.

Meanwhile another problem emerged when deprotection of the $\mathrm{CH}_{2} \mathrm{OMe}$ on sulfur was attempted. In contrast to smooth deprotection reported by Kishi's group, ${ }^{4 \mathrm{lf}}$ treatment of ent- $\mathbf{3 4 . 3}$ (enantiomer of $\mathbf{3 4 . 3}$ prepared from $\mathbf{3 2 . 1 b}$ using the same method as outlined in Scheme 34) with BCl_{3} in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at $0^{\circ} \mathrm{C}$ yielded only chloride 37.1 in 67% yield, and switching to a stronger Lewis acid led to formation of the desulfurization and desilylation product $\mathbf{3 7 . 2}$ in 30% yield. Brønsted acidic conditions [conc. HCl in $\mathrm{EtOH}(3.6 \mathrm{M})$ at room temperature] only removed the SiEt_{3} group, and a combination of $\mathrm{Me}_{3} \mathrm{SiCl} / \mathrm{EtOH}$ in refluxing EtOH generated a complex mixture.

Scheme 37

It seems that a protecting group that requires strong acidic conditions (either Lewis acid or Brønsted acid) for deprotection is unsuitable in our case. In addition, setting up the right stereochemistry at C3 in compound 34.4 (Scheme
34), seems to require an intramolecular sulfur delivery, as illustrated in Scheme 38 (for the $6 S$ series).

Scheme 38

We than envisioned that a para-methoxybenzyl group might be a proper choice as mild conditions could then be used for its deprotection such as TFA, ${ }^{58}$ $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2},{ }^{59}$ or DDQ. ${ }^{60}$ Compounds 39.1a,b, $\mathbf{3 9 . 2}$ and 39.3 (Scheme 39) were prepared for testing the Pmb group. The facial selectivity of sulfenylation using $\mathrm{TolSO}_{2} \mathrm{SPmb}^{2}$ was a little better than $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}$.

Scheme 39

However, the Pmb protecting group could not be removed using a variety of conditions: treatment of 39.1a with TFA and anisole at room temperature removed only the $t-\mathrm{BuPh}_{2} \mathrm{Si}$ group, and refluxing the solution gave a complex mixture. Use of TFA, anisole, dithiothreitol and $\mathrm{Hg}\left(\mathrm{O}_{2} \mathrm{CCF}_{3}\right)_{2}$ together at room temperature also generated a complex mixtures. Oxidative conditions applied to

39.3
40.3

40.4

$39.2 \mathrm{R}=\mathrm{SiPh}_{2} \mathrm{Bu}-t$

$\mathrm{CH}_{2} \mathrm{Cl}_{2}$, rt

40.5a,b

Scheme 40
39.2 (DDQ in a mixture of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and water) led to formation of the tricyclic compound 40.1, or desulfurization if excess DDQ was used (Scheme 40; note that all the structures shown represent the enantiomers of the compounds actually used. For consistency with Scheme 39, the C6 stereochemistry has been depicted as $6 R$ throughout Scheme 40). Treatment of ester 39.3 with DDQ also produced only the desulfurization product 40.3. Obviously, the expected nucleophilic attack of water on $\mathrm{C} \alpha$ (see 40.4) did not occur after generation of the cationic species 40.4; an intramolecular nucleophilic attack of the hydroxy group led to formation of the oxathiolane 40.1 and, when an excess of DDQ was used, further oxidation and generation of a cationic species similar to $\mathbf{4 0 . 4}$ resulted in expulsion of the sulfur by $N 5$ (see compound 40.4). The same mechanism accounts for the desulfurization when ester $\mathbf{3 9 . 3}$ was treated with DDQ. Treatment of $\mathbf{3 9 . 2}$ with 2$\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SCl}$ also gave only separable desulfurization products $\mathbf{4 0 . 5 a}, \mathbf{b}$.

2.2.4. Designing a new thiol protecting Group $\left(\mathrm{CH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t\right)$

As all the above protecting groups could not be removed with retention of the sulfur atom on the substrate, we were forced to design a new thiol protecting group. After a literature survey, we were led to consider $\mathrm{CH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$ as a potential candidate, which could probably be removed by $\mathrm{Bu}_{4} \mathrm{NF}$ or mild Lewis acid. Surprisingly, our literature search showed that this group has never been used for thiol protection, while its applications to hydroxyl groups is not uncommon. ${ }^{61}$ One reason could be that, unlike hemiacetals, $\mathrm{RSCH}_{2} \mathrm{OH}$ is a stable

Scheme 41

and isolable compound; however, under proper conditions, this type of compound does undergo fragmentation to release the thiol. ${ }^{60,62}$ We envisioned that the anionic species 41.2 (Scheme 41), generated by treatment of compound 41.1 with $\mathrm{Bu}_{4} \mathrm{NF}$, would fragment in situ to give 41.3; alternatively, collapse of $\mathbf{4 1 . 2}$ might be achieved by conversion to disulfide 41.5, which could easily be reduced to thiol 41.4.

To validate the above ideas, we first had to gain access to compounds 41.1 (Scheme 41). As the chloride 42.4 could easily be prepared in three steps according to the literature method (Scheme 42), ${ }^{63}$ displacement of the chloride with a thiol should allow easy acquisition of compounds of type 41.1.

Scheme 42

A number of simple thiols were protected in this way, as summarized in Scheme 43. However, this seemingly straightforward conversion was not trivial at all, and the conditions used in Scheme 43 were found only after careful screening. Among common amine bases, 2,6-lutidine and proton sponge perform better than others, including DBU, Hünig's base, $\mathrm{Et}_{3} \mathrm{~N}$, and DMAP, while for entry $6, t$-BuOK gives a better yield than both 2,6 -lutidine and proton sponge. DMF as the solvent offers fast reactions and better yields than less polar solvents. The most common side product is the disulfide formed by oxidation of the starting thiol by adventitious oxygen.

1

$$
\mathrm{Ph}_{3} \mathrm{CSH}
$$

43.1

DMF, $\mathrm{CICH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$ $\xrightarrow{\text { proton sponge, } \mathrm{rt}, 5.5 \mathrm{~h}, 77 \%}$

DMF, $\mathrm{CICH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$ proton sponge, rt, 2 h, 78\% $\xrightarrow{\longrightarrow}$

DMF, $\mathrm{CICH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$
2,6-lutidine, $55^{\circ} \mathrm{C}, 3.5 \mathrm{~h}, 61 \%$
$\xrightarrow{ } \mathrm{Ph}_{3} \mathrm{CS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$
43.3a

43.4
43.2
$\longrightarrow P$

$\mathrm{CH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$
43.1a
43.2a

3

$$
\begin{array}{r}
\mathrm{Ph}_{3} \mathrm{CS}\left(\mathrm{CH}_{2}\right)_{3} \mathrm{SH} \\
43.3
\end{array}
$$

DMF, t-BuOK, rt, 30 min ; rt
6
$\mathrm{HOCH}_{2} \mathrm{CH}_{2} \mathrm{SH}$

$\xrightarrow{\mathrm{ClCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t, 15 \mathrm{~min}, 80 \%}$
3.5-dimethoxybenzoic acid

Scheme 43

With some S-protected compounds in hand, we next examined the deprotection using $\mathrm{Bu}_{4} \mathrm{NF}$ and found that usually a mixture of thiol (41.4) and alcohol (41.2) was generated, with the ratio depending on the nature of the substrate; HF•pyr gave alcohol almost exclusively. However, treatment of the
crude product in situ with I_{2} resulted in formation of the corresponding disulfide. Thus for entries 2-6 (Scheme 44) the $\mathrm{F}^{-} / \mathrm{I}_{2}$ combination was used to form the symmetrical disulfides.

Scheme 44

It is sometimes more convenient to generate unsymmetrical disulfides from which the original thiol can be regenerated by reduction, ${ }^{55,61}$ and we were pleased to find that conversion of the S-protected compounds to the corresponding unsymmetrical disulfides could be performed smoothly using a sulfenyl chloride RSCl (entries 7 and 9); a trisulfide could also be produced by using $\mathrm{Ph}_{3} \mathrm{CSSCl}^{64}$ (entry 8).

The stability of the protecting group was tested briefly by exposure of 43.5a to a variety of conditions that are summarized in Table 1. This protecting group is quite labile to acid catalyzed solvolysis (entries 12 and 13), strong acidic conditions (entries 11 and 15) and common oxidizing reagents (entries 17-20); it is robust enough to withstand reduction conditions such as NaBH_{4} (entry 4), LiAlH_{4} (entry 5), $\mathrm{H}_{2}-\mathrm{Pd} / \mathrm{C}$ (or $\mathrm{H}_{2}-\mathrm{Rh}_{2} \mathrm{Al}_{2} \mathrm{O}_{3}$, entries 1 and 2, respectively) and DIBAL (entry 6). It is also reasonably stable when treated with a Grignard reagent (entry 8), BuLi (entry 9), or LDA (entry 7). This protecting group is also compatible with the conditions for removal of a Troc group using $\mathrm{Zn} / \mathrm{AcOH}$ (entry 3), Fmoc group deprotection using piperidine (entry 10) and conversion of a hydroxyl group to a bromide with $\mathrm{CBr}_{4} / \mathrm{Ph}_{3} \mathrm{P}$.

Table 1. Stability tests

Reagent	Solvent	Temp	Time	Decomposition of 43.5 a
$1 \mathrm{H}_{2}, \mathrm{Pd} / \mathrm{C}$	$\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}{ }^{\text {a }}$	rt	5.5 h	0\%
$2 \mathrm{H}_{2}, \mathrm{Rh} / \mathrm{Al}_{2} \mathrm{O}_{3}$	EtOAc	rt	4 h	0\%
3 Zn dust	$\mathrm{AcOH}-\mathrm{Et}_{2} \mathrm{O}(1: 2)^{\text {b }}$	rt	1 h	3\%
$4 \mathrm{NaBH}_{4}$	THF- $\mathrm{H}_{2} \mathrm{O}$ (8:1)	$0^{\circ} \mathrm{C}$	1 h	0\%
$5 \mathrm{LiAlH}_{4}$	THF	rt	1 h	7\%
6 DIBAL	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$	1 h	3\%
7 LDA	THF	$-78{ }^{\circ} \mathrm{C}$	45 min	10\%
8 EtMgBr	THF	$0^{\circ} \mathrm{C}$	1 h	7\%
9 BuLi ${ }^{\text {c }}$	THF	$-78{ }^{\circ} \mathrm{C}$	15 min	4\%
10 piperidine ${ }^{\text {d }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	20 min	0\%
$11 \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}^{\mathrm{e}}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$	30 min	100\%
$12 \mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	4.5 h	94\%
13 PPTS ${ }^{\text {f }}$	MeOH	rt	4.7 h	47\%
14 PPTS	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	4.5 h	2\%
$15 \mathrm{BF}_{3} \cdot \mathrm{Et}_{2} \mathrm{O}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$	1 h	100\%
$16 \mathrm{CBr}_{4} / \mathrm{Ph}_{3} \mathrm{P}^{\text {g }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$0^{\circ} \mathrm{C}$	30 min	7\%
$17 \mathrm{PCC}{ }^{\text {h }}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	40 min	100\%
18 Dess-Martin	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	rt	2 h	100\%
19 IBXI	DMSO	rt	2 h	10\%
20 Swern	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	j		100\%
$21 \mathrm{Et}_{3} \mathrm{SiOTf}^{\mathrm{k}}$	$\mathrm{CH}_{2} \mathrm{Cl}_{2}$	$-78{ }^{\circ} \mathrm{C}$	25 min	5\%

${ }^{\text {a }}$ Minimal amount of $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was used to dissolve 43.5a; using 2:3 $\mathrm{MeOH}-\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature for 40 min in the presence of [2-(2-bromophenyl)ethoxy]triethylsilane the $\mathrm{Et}_{3} \mathrm{Si}$ group was removed. ${ }^{65}{ }^{\text {b}}$ Conditions for Troc removal. ${ }^{66}{ }^{\text {c }}$ In the presence of $(\mathrm{PhS})_{2} \mathrm{CH}_{2}$; after quenching the mixture with $\mathrm{D}_{2} \mathrm{O}$ all the dithioketal was converted into (PhS) ${ }_{2} \mathrm{CHD}$. ${ }^{\text {d Piperidine: }} \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 4$ by vol. In the presence of Fmoc-Pro-OMe the Fmoc group was removed. ${ }^{67}$ ${ }^{\mathrm{e}} \mathrm{CF}_{3} \mathrm{CO}_{2} \mathrm{H}: \mathrm{CH}_{2} \mathrm{Cl}_{2}=1: 2$ by vol.; conditions for Boc removal. ${ }^{68}{ }^{\mathrm{f}} O-\mathrm{SiMe}_{2} \mathrm{Bu}-t$ groups are desilylated. ${ }^{69}$ s In the presence of 2-(2-bromophenyl)ethanol; all of the alcohol was converted into the corresponding bromide. ${ }^{\text {h }}$ Oxidation of a secondary alcohol in the presence of a methylthiomethyl ether is known. ${ }^{70}{ }^{\text {i }} \mathrm{A}$ hydroxyl can be oxidized in the presence of a sulfide. ${ }^{71}{ }^{\text {j}}$ Standard Swern procedure. ${ }^{k}$ In the presence of 2-(2-bromophenyl)ethanol and 2,6-lutidine; after $25 \mathrm{~min} 50 \%$ of the alcohol had been silylated.

2.2.5. Application of the new protecting group to studies on MPC1001

To apply the new protecting group in our MPC1001 work, compound 45.2 was prepared as the sulfenylating agent, and the sulfenylation was conducted using the previous method, as shown in Scheme 45. Reduction of 45.3a with NaBH_{4} in THF-water as the cosolvent, followed by silylation of the resulting

25.8
45.3a: $. \cdot . \mathrm{SCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$ (31\%)
45.3b: $-\mathrm{SCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t(12 \%)$
NaBH_{4}, THF- $\mathrm{H}_{2} \mathrm{O}$ $0^{\circ} \mathrm{C}, 45.3 \mathrm{a}, 94 \%$

45.7

45.8

Scheme 45
hydroxyl group with $\mathrm{Et}_{3} \mathrm{SiOTf}$ and 2,6-lutidine in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ afforded compound 45.5 smoothly (Scheme 45). Further manipulation at C3 of $\mathbf{4 5 . 5}$ requires deprotonation with a strong base. Ethoxycarbonylation could be carried out by addition of LDA to a mixture of $\mathbf{4 5 . 5}$ and $\mathrm{ClCO}_{2} \mathrm{Et}$ in THF at $-78{ }^{\circ} \mathrm{C}$, generating two isomers. The relative stereochemistry at C3 was tentatively assigned based on observations in the next step (vide infra); in contrast, KHMDS gave a much lower yield (20%) and the products were impure. The different behavior of the two bases was also observed for sulfenylation at C3 (45.5 $\boldsymbol{4 5 . 8}$): addition of $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$ shortly after treatment of $\mathbf{4 5 . 5}$ with LDA (LDA was quickly added and then stirred for 1 min , longer times result in significant decomposition) gave the desired product in good yield (73\%, after epimerization by treatment with LDA and quenching with aqueous HCl-THF), while the same procedure using KHMDS led to decomposition of the starting material and a small amount of $\mathbf{4 6 . 2}$ was isolated, which was possibly formed via the mechanism depicted in Scheme 46.

Scheme 46

With 45.6a and 45.6b in hand (Scheme 45), we next examined the deprotection step using $\mathrm{Ph}_{3} \mathrm{CSSCl}$, which would also serve as the sulfur source for a second sulfenylation via internal delivery, as shown in Scheme 47, viz. the carbanion can attack the middle sulfur of $\mathbf{4 5 . 7}$ to give either $\mathbf{4 7 . 1}$ or $\mathbf{4 7 . 2}$, and the latter could be converted to the former by reduction and oxidation. Although 45.6a reacted smoothly with $\mathrm{Ph}_{3} \mathrm{CSSCl}$, the other diastereomer 45.6b remained unchanged even at an elevated temperature $\left(\mathrm{ClCH}_{2} \mathrm{CH}_{2} \mathrm{Cl}, 80^{\circ} \mathrm{C}\right)$ for 44 h . As the only difference between the two isomers is the stereochemistry at C 3 , it is
reasonable to assign the relative stereochemistries of the two as shown in Scheme 45, and the suppressed reactivity of $\mathbf{4 5 . 6 b}$ was attributed to the increased steric hindrance at sulfur imposed by the ester group at C3.

Scheme 47

It was disappointing that treatment of $\mathbf{4 5 . 7}$ with a base (DBU in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ at room temperature or t - BuOK in THF at room temperature) only resulted in a complex mixture. We reasoned that it is probable that the bulky CPh_{3} group inhibits the desired nucleophilic attack on the middle sulfur by the C 3 carbanion. Presumably, a smaller group would not impose such hindrance, and would allow formation of $\mathbf{4 7 . 1}$ if the group could also stabilize a sulfur anion. With these considerations in mind, we chose the two sulfenylating agents 48.2 and 48.4 shown in Scheme 48. Both reagents could be prepared by treatment of the corresponding thiols with freshly distilled SCl_{2} in $\mathrm{Et}_{2} \mathrm{O}$, using a modified literature procedure. ${ }^{72}$

It was surprising that $\mathbf{4 8 . 2}$ did not react with $\mathbf{4 5 . 6 b}$ at all. The reason could be that 48.2 is not reactive enough, due to the fact that the partial positive charge on the sulfur is stabilized by the oxygen of the nitro group (Scheme 48). ${ }^{73}$ However, 48.4 also did not behave the way we expected as its reaction with 45.6a gave a complex mixture containing $p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SSSCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$.

Scheme 48

The tendency of the sulfur at C9 (see Scheme 45) to be removed by an electrophile led us to suspect that this problem was probably caused by steric congestion between the C 9 sulfur group and the adjacent C 8 protected oxygen. We tried to invert the C8 stereochemistry of 45.4; however, all our efforts failed, using either a Mitsunobu reaction or an $\mathrm{S}_{\mathrm{N}} 2$ displacement strategy. The Mitsunobu reaction, with either benzoic acid ${ }^{74}$ or p-nitrobenzoic acid, ${ }^{75}$ gave only unchanged starting material; converting the hydroxy group of 45.4 into a leaving group such as a mesylate or triflate, followed by treatment with an oxygen nucleophile including $\mathrm{AcO}^{-}, \mathrm{PhCO}_{2}^{-}, \mathrm{CHO}_{2}^{-}, \mathrm{NO}_{2}^{-}$, and the sodium salt of allyl alcohol in DMSO (or DMF) at room temperature or at $80^{\circ} \mathrm{C}$ gave either starting material or decomposition. In some cases, I was able to isolate from the resulting complex mixtures the elimination compound 36.2 (See Scheme 36 for the structure) in ca 17% yield. Such an elimination process is reported in the literature. ${ }^{76}$

We also tried to introduce a carbonyl group at C3 of $\mathbf{4 5 . 8}$ (Scheme 49), but this apparently simple process did not proceed at all and the reaction (LDA, THF

Scheme 49
and $\mathrm{ClCO}_{2} \mathrm{Et}$) gave a complex mixture after 25 min at $-78{ }^{\circ} \mathrm{C}$. The difficulty of introducing the carbonyl group at C3 in a similar compound was encountered in the previous study. ${ }^{51}$

2.2.6. A second approach to the disulfide bridge

As we could not install the disulfide bridge using the methods discussed above, we started to think of other routes. We envisioned that treatment of $\mathbf{5 0 . 4}$ with a strong Lewis acid in the presence of $\mathrm{Li}_{2} \mathrm{~S}_{2}$ might enable us to install the disulfide bridge (Scheme 50), in a manner in which the stereochemistry might be controlled by the C 8 oxygen group.

Scheme 50

The preparation of $\mathbf{5 0 . 4}$ started by dihydroxylation of compound $\mathbf{3 6 . 2}$ (Scheme 50). Attempts to introduce the hydroxy groups in a stereocontrolled manner by the standard Sharpless asymmetric dihydroxylation procedure (using
commercial AB-mix- α or AB-mix- β) failed, as the starting material was recovered after 1 day. However, the dihydroxylation was successfully performed with a catalytic amount of OsO_{4} in the presence of NMO in acetone-water, yielding a pair of inseparable diastereomers. The two diastereomers were then protected as acetonides, which were separable and the stereochemistry of each diastereomer was established based on TROESY measurement (Figure 2). Isomer $\mathbf{5 0 . 1 b}$ was carried forward to $\mathbf{5 0 . 2 a}, \mathbf{b}$ using an aldol reaction. After acetylation and elimination, both $\mathbf{5 0 . 2}$ a and $\mathbf{5 0 . 2 b}$ gave the same product $\mathbf{5 0 . 3}$, whose double bond geometry was established by NMR measurements. The double bond of $\mathbf{5 0 . 3}$ was inert to dihydroxylation conditions using OsO_{4} and NMO , but could be epoxidized with dimethyldioxirane in acetone, giving a mixture of two diastereomers in a ca $1: 1$ ratio. However, the anticipated substitution of the angular oxygen groups in $\mathbf{5 0 . 4}$ with in situ generated $\mathrm{Li}_{2} \mathrm{~S}_{2}$, mediated by $\mathrm{BF}_{3} \cdot \mathrm{OEt}_{2}$ gave only a complex mixture.

50.1a

50.1b

Figure 2. TROESY measurements for 50.1a,b.

The failure of the reaction between $\mathbf{5 0 . 4}$ and $\mathrm{Li}_{2} \mathrm{~S}_{2}$ could be due to the high stability of the acetonide unit of $\mathbf{5 0 . 4}$, as common deprotection conditions (such as PPTS in THF-water, TFA, or PTSA in THF-water) did not remove the acetonide group - sometimes the $\mathrm{SiPh}_{2} \mathrm{Bu}-t$ was lost.
2.2.7. Further plans for the second approach to the disulfur bridge

As the acetonide protecting group seems to be too stable to undergo the desired substitution by sulfur reagents or to be deprotected, it is probably more
appropriate to use ester groups instead of an acetonide. A plausible route is depicted in Scheme 51, using 36.2 as the starting material. The plan starts with an aldol reaction, followed by dihydroxylation of the double bond to give compound 51.1. Esterification, followed by elimination, using a similar process to that for the conversion of $\mathbf{5 0 . 2} \mathbf{a}, \mathrm{b}$ to $\mathbf{5 0 . 3}$ (Scheme 50), will, in principle, afford substrate
51.3. Another dihydroxylation and esterification would then furnish tetraacetate 51.4, setting the stage for installing the sulfurs. We hope that the literature method of displacement, mediated by a Lewis acid (see the introduction section, Schemes 19-22), followed by oxidation, will allow us to get access to the disulfur bridge core structure $\mathbf{5 1 . 5}$.

Scheme 51

3. Conclusion

Different protecting groups for a thiol were tried during studies on the total synthesis of MPC1001, and difficulties were encountered for the deprotection.

A new thiol protecting group $\left(\mathrm{CH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t\right)$ was designed which could be deprotected by either treatment with $\mathrm{F}^{-} / \mathrm{I}_{2}$ or a sulfenylating agent (RSCl). In synthetic studies on MPC1001, this protecting could be removed by the action of $\mathrm{Ph}_{3} \mathrm{SSCl}$ (but not $2-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SSCl}$ or $4-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{SSCl}$), but subsequent attempts at internal sulfur delivery gave complex mixtures.

We also started a new route for making the disulfide bridge, and the feasibility was tested very briefly.

4. Experimental Section

Unless specified, reactions were carried out under a slight static pressure of Ar or N_{2} that had been purified by passage through a column $(3.5 \times 42 \mathrm{~cm})$ of R-311 catalyst and then through a similar column of Drierite. Solvents for reactions were dried as described below. Glassware was dried in an oven (140 ${ }^{\circ} \mathrm{C}$) overnight before use and either cooled in a desiccator over Drierite, or assembled quickly, sealed with rubber septa, and allowed to cool under a light static pressure of Ar or N_{2}.

Solvents used for chromatography were distilled before use. Commercial thin layer chromatography plates (silica gel, Merck 60F-254 was used. Silica gel for flash chromatography was Merck type 60 (230-400 mesh). Dry solvents were prepared under an inert atmosphere and transferred by syringe or cannula. Dry THF and $\mathrm{Et}_{2} \mathrm{O}$ were distilled from sodium and benzophenone ketyl. Dry MeCN, $\mathrm{Et}_{3} \mathrm{~N}$ and pyridine were distilled from CaH_{2}.

The symbols s, d, t and q used for ${ }^{13} \mathrm{C}$ NMR spectra indicate zero, one, two, or three attached hydrogens, respectively, the assignments being made by from APT and HSQC spectra.
(4R)-4-Hydroxy-D-proline hydrochloride (25.2).

25.1

A mixture of $25.1(30.0 \mathrm{~g}, 228.8 \mathrm{mmol})$ in $\mathrm{Ac}_{2} \mathrm{O}(220 \mathrm{~mL})$ was heated at $95{ }^{\circ} \mathrm{C}$ (oil bath temperature) for 16 h , cooled to room temperature, and evaporated. The residue was dissolved in hydrochloric acid ($2 \mathrm{~N}, 450 \mathrm{~mL}$) and the mixture was refluxed for 16 hand cooled to room temperature. The solvent was evaporated and the resulting solid was dried under oil pump vacuum
overnight. The solid was dissolved in EtOH (ca 140 mL) under reflux, the bath temperature was lowered to $90^{\circ} \mathrm{C}$ and hexane was added slowly so as to maintain refluxing until the mixture started to become cloudy. The mixture was cooled to room temperature and then in ice water. The resulting product was filtered and dried under oil pump vacuum to give $25.2(33.48 \mathrm{~g}, 87 \%)$ as a white solid: mp $138-143{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=10.64(c 1.00, \mathrm{MeOH}) ;$ FTIR (MeOH, cast) 2100-3400 (br), $1715,1587,1376 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d $\left.{ }_{6}, 400 \mathrm{MHz}\right) \delta 2.13$ (ddt, $J=13.6,3.7$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=13.7,9.6,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.13(\mathrm{dt}, J=11.8,1.5 \mathrm{~Hz}, 1$ H), $3.19(\mathrm{dd}, J=11.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3 \mathrm{H}), 4.33-4.37(\mathrm{~m}, 1 \mathrm{H}), 4.47(\mathrm{dd}, J$ $=9.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 9.79(\mathrm{br}, \mathrm{s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (DMSO$\left.\mathrm{d}_{6}, 100 \mathrm{MHz}\right) \delta 37.0$ (t), 52.9 (t), 53.0 (d), 57.3 (d), 68.1 (d), 169.6; exact mass (electrospray) m / z calcd for $\mathrm{C}_{5} \mathrm{H}_{10} \mathrm{NO}_{3} 132.0655$, found 132.0655 .

(4R)-4-Hydroxy-D-proline hydrochloride methyl ester (25.3).

$\mathrm{SOCl}_{2}(12.8 \mathrm{~g}, 0.107 \mathrm{~mol})$ was added dropwise to a stirred and cooled (0 $\left.{ }^{\circ} \mathrm{C}\right)$ solution of $25.2(15.0 \mathrm{~g}, 0.090 \mathrm{~mol})$ in dry $\mathrm{MeOH}(180 \mathrm{~mL})$. Stirring at $0^{\circ} \mathrm{C}$ was continued for 30 min , the cooling bath was removed, and stirring was continued for 16 h . The mixture was evaporated and the resulting solid was dissolved in a minimal amount of MeOH with heating. The solution was slowly poured into stirred and cooled $\left(0^{\circ} \mathrm{C}\right) \mathrm{Et}_{2} \mathrm{O}(\mathrm{ca} 350 \mathrm{~mL})$. The product was filtered and dried under oil pump vacuum to give $25.3(13.25 \mathrm{~g}, 81 \%)$ as a white solid: $\mathrm{mp} 165-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=10.16$ (c 1.75, MeOH); FTIR (MeOH, cast) 3291, 3005, 2976, 2936, 2200-3500 (br), 1737, 1568, 1448, $1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR (DMSO-d ${ }_{6}$, $400 \mathrm{MHz}) \delta 2.13(\mathrm{ddt}, J=13.6,3.7,1.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.29(\mathrm{ddd}, J=13.7,9.6,4.3 \mathrm{~Hz}$, $1 \mathrm{H}), 3.13(\mathrm{dt}, J=11.8,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.19(\mathrm{dd}, J=11.8,4.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.73(\mathrm{~s}, 3$
H), 4.33-4.37 (m, 1 H), 4.47 (dd, $J=9.7,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 5.47(\mathrm{~d}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H})$, 9.79 (br, s, 1 H); ${ }^{13} \mathrm{C}$ NMR (DMSO_{6}, 100 MHz) $\delta 37.0$ (t), 52.9 (t), 53.0 (d), 57.3 (d), 68.1 (d), 169.6 (s); exact mass m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{11} \mathrm{NO}_{3}$ (M-HCl) 145.0739, found 145.0737.

2-[Methyl(phenoxycarbonyl)amino]acetic acid (25.5).

$\mathrm{K}_{2} \mathrm{CO}_{3}(19.4 \mathrm{~g}, 140.3 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $25.4(10 \mathrm{~g}, 112.2 \mathrm{mmol})$ in water $(120 \mathrm{~mL})$ and $\mathrm{PhCO}_{2} \mathrm{Cl}(20.2 \mathrm{~g}$, $128.9 \mathrm{mmol})$ was added over 15 min . The ice bath was left in place but not recharged and stirring was continued for 24 h . The mixture was washed with $\mathrm{Et}_{2} \mathrm{O}$ (3 times) and the aqueous layer was acidified with concentrated hydrochloric acid to pH 1.0 and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 times). The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave 25.5 ($20.0 \mathrm{~g}, 85 \%$) as a viscous oil: FTIR $\left(\mathrm{CDCl}_{3}\right.$, cast) 2500-3500 (br), 1723, 1477, 1456, $1398 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 3.07(\mathrm{~s}, 1.5 \mathrm{H}), 3.17$ $(\mathrm{s}, 1.5 \mathrm{H}), 4.14(\mathrm{~s}, 1 \mathrm{H}), 4.19(\mathrm{~s}, 1 \mathrm{H}), 7.07-7.10(\mathrm{~m}, 1 \mathrm{H}), 7.13-7.16(\mathrm{~m}, 1 \mathrm{H})$, 7.17-7.22 (m, 1 H), 7.32-7.39 (m, 2 H), $11.29(\mathrm{~s}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 35.9$ (q), 36.2 (q), 50.7 (t), 121.6 (d), 121.7 (d), 125.55 (d), 125.58 (d), 129.3 (d), 151.1 (s), 151.2 (s , 154.8 (s), 155.6 (s$), 174.5$ (s$), 174.6$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{10} \mathrm{H}_{11} \mathrm{NNaO}_{4}$ 232.0580, found 232.0581.

Methyl (2R,4R)-4-hydroxy-1-\{2-[methyl(phenoxycarbonyl)amino]-acetyl\}pyrrolidine-2-carboxylate (25.7).

25.3

25.7
$(\mathrm{COCl})_{2}(12.8 \mathrm{~g}, 100.6 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $25.5(18.3 \mathrm{~g}, 87.5 \mathrm{mmol})$ and DMF ($511.6 \mathrm{mg}, 7.0 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(145 \mathrm{~mL})$. The cooling bath was left in place but not recharged and stirring was continued for 4 h . A small aliquot of the mixture was evaporated and the ${ }^{1} \mathrm{H}$ NMR spectrum showed that the reaction was complete. The mixture was evaporated (protection from moisture), and the residue was diluted with dry THF (10 mL) and evaporated again. The resulting residue wad diluted with dry THF $(15 \mathrm{~mL})$ and added over 1 h to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ mixture of $25.3(13.25$ $\mathrm{g}, 72.95 \mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(27.6 \mathrm{~g}, 328.3 \mathrm{mmol})$ in a mixture of dioxane (160 mL) and water (160 mL). The cooling bath was left in place but not recharged and stirring was continued for 20 h . The dioxane was evaporated, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ was added to the residue and some precipitate was filtered off. The organic phase was separated and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic extracts were washed and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($5.9 \times 15 \mathrm{~cm}$), using 3:1 EtOAc-hexane (500 mL), 6:1 EtOAc-hexane (500 mL), 10:1 EtOAchexane (500 mL), EtOAc (1500 mL), 1:20 MeOH-EtOAc (1000 mL) and 1:10 MeOH-EtOAc (800 mL), gave $25.7(21.26 \mathrm{~g}, 87 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=49.46(c$ $0.45, \mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3443, 2952, 1726, 1657, 1594, 1455, 1398 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.02-2.08(\mathrm{~m}, 0.78 \mathrm{H}), 2.21-2.29(\mathrm{~m}, 1 \mathrm{H})$, 2.36-2.42 (m, 0.22 H), 3.03 (s, 1.2 H), 3.17 (s, 1.4 H), $3.20(\mathrm{~s}, 0.4 \mathrm{H}), 3.56-4.22$ (m, 7 H), 4.32-4.42 (m, 1 H$), 4.54-4.58(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.15-7.18$ $(\mathrm{m}, 1 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 36.1$ (q), 36.37 (q),
$36.41(\mathrm{q}), 36.6(\mathrm{t}), 39.4(\mathrm{t}), 39.5(\mathrm{t}), 51.18(\mathrm{t}), 51.21(\mathrm{t}), 51.3(\mathrm{t}), 51.4(\mathrm{t}), 52.77$ (q), 52.84 (q), 54.9 (t), 55.0 (t), 55.6 (t), 55.7 (t), 57.5 (d), 57.7 (d), 57.9 (d), 58.0 (d), 68.2 (d), 68.4 (d), 71.10 (d), 71.15 (d), 121.65 (d), 121.71 (d), 121.8 (d), 125.3 (d), 125.4 (d), 129.17 (d), 129.20 (d), 151.29 (s$), 151.32$ (s), 154.9 (s), 155.0 (s), 155.4 (s), 155.5 (s$), 167.3$ (s$), 167.5$ (s$), 167.6$ (s$), 168.0$ (s$), 172.4$ (s), 172.8 (s), 174.2 (s), 174.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{6} 359.1214$, found 359.1213.

Methyl (2R)-1-\{2-[methyl(phenoxycarbonyl)amino]acetyl\}-4-oxo-pyrrolidine-2-carboxylate (29.1).

Molecular sieves ($3 \AA, 31.6 \mathrm{~g}$) and $\mathrm{NaOAc}(7.8 \mathrm{~g}, 94.8 \mathrm{mmol})$ were added to a stirred solution of $25.7(21.26 \mathrm{~g}, 63.2 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(210 \mathrm{~mL})$. The mixture was stirred at room temperature for 5 min and then cooled to $0^{\circ} \mathrm{C}$. Pulverized PCC ($40.87 \mathrm{~g}, 189.6 \mathrm{mmol}$) was added over ca 10 sec , stirring at $0^{\circ} \mathrm{C}$ was continued for 15 min , the cooling bath was removed and stirring was continued for 30 min . Florisil was added and the mixture was filtered through a column of Florisil ($5 \times 15 \mathrm{~cm}$), using EtOAc and then 1:20 MeOH-EtOAc. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($5 \times 15 \mathrm{~cm}$), using 1:1 EtOAc-hexane, 2:1 EtOAc-hexane, 3:1 EtOAc-hexane and 5:1 EtOAc-hexane, gave $29.1(16.91 \mathrm{~g}, 80 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=23.78(c$ $1.00, \mathrm{CHCl}_{3}$); FTIR (CHCl_{3}, cast) 2956, 1767, 1726, 1673, 1594, 1477, 1455, $1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.51(\mathrm{ddd}, 0.8 \mathrm{H}, J=18.9,9.0,2.8 \mathrm{~Hz})$, $2.64(\mathrm{~m}, 0.2 \mathrm{H}), 2.81-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1.1 \mathrm{H}), 3.13-3.14(\mathrm{~m}, 1.9 \mathrm{H}), 3.65-$ $4.31(\mathrm{~m}, 7 \mathrm{H}), 4.79-4.83(\mathrm{~m}, 0.1 \mathrm{H}), 4.96-4.99(\mathrm{~m}, 0.9 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 35.9$
(q), $36.0(\mathrm{q}), 36.2(\mathrm{q}), 39.4(\mathrm{t}), 41.1(\mathrm{t}), 41.2(\mathrm{t}), 50.3(\mathrm{t}), 50.5(\mathrm{t}), 51.3(\mathrm{t}), 51.5(\mathrm{t})$, 51.6 (t), 51.7 (t), 52.6 (q), 53.0 (q), 55.3 (d), 55.4 (d), 55.9 (d), 56.1 (d), 121.5 (d), 121.6 (d), 125.25 (d), 125.30 (d), 129.1 (d), 151.1 (s), 151.2 (s), 154.6 (s), 155.2 (s), 167.4 (s), 167.59 (s), 167.64 (s), 170.4 (s), 170.7 (s), 171.3 (s), 171.4 (s), 206.2 (s), 206.4 (s), 206.6 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{6} 357.1057$, found 357.1052.

Methyl (2R)-4,4-dimethoxy-1-\{2-[methyl(phenoxycarbonyl)amino]acetyl $\}$ pyrrolidine-2-carboxylate (29.2).

$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(0.96 \mathrm{~g}, 5.06 \mathrm{mmol})$ was added to a stirred solution of 29.1 $(16.91 \mathrm{~g}, 50.58 \mathrm{mmol})$ and $(\mathrm{MeO})_{3} \mathrm{CH}(26.8 \mathrm{~g}, 252.9 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(29 \mathrm{~mL})$ and anhydrous $\mathrm{MeOH}(145 \mathrm{~mL})$. The mixture was refluxed for 24 h , cooled to room temperature and evaporated. The residue was diluted with saturated aqueous NaHCO_{3} and extracted with EtOAc (3 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The resulting 29.2 (19.33 g, 100\%), which was obtained as a foam was used for next step.

In another experiment (27.65 g scale) the crude product was subjected to flash chromatography over silica gel ($5.9 \times 15 \mathrm{~cm}$), using 2:1 EtOAc-hexane and then 3:1 EtOAc-hexane, to obtain $29.2(28.34 \mathrm{~g}, 90 \%)$ as a white foam: $[\alpha]_{\mathrm{D}}=$ 78.96 (c 1.00, CHCl_{3}); FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 2951, 2837, 1728, 1668, 1954, 1455, $1436,1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.19-2.24(\mathrm{~m}, 0.7 \mathrm{H}), 2.30-2.40$ $(\mathrm{m}, 1 \mathrm{H}), 2.55-2.60(\mathrm{~m}, 0.3 \mathrm{H}), 3.17-3.26(\mathrm{~m}, 9 \mathrm{H}), 3.60-3.78(\mathrm{~m}, 5 \mathrm{H}), 3.92-3.97$ (m, 0.6), 4.14-4.31 (m, 1.4 H), 4.46-4.48 (m, 0.1 H), 4.60-4.66 (m, 0.9 H), 7.087.13 (m, 2 H), 7.15-7.19 (m, 1 H), 7.31-7.36 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100\right.$ MHz) $\delta 35.69,35.71,35.9,36.18,36.22,36.3,37.8,38.0,49.0,49.2,49.7,49.8$,
$49.9,50.0,50.4,50.49,50.51,50.6,51.0,51.2,51.8,51.98,52.05,52.1,52.3$, 52.7, 57.3, 57.4, 57.5, 57.8, 105.3, 105.4, 107.07, 107.15, 121.59, 121.62, 121.67, $121.70,125.2,129.08,129.12,151.3,154.7,154.8,155.3,155.4,166.8,167.0$, $167.5,167.8,171.0,171.16,171.23,171.3$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{7} 403.1476$, found 403.1470.

Phenyl $\quad N$-\{2-[(2R)-2-(hydroxymethyl)-4-oxopyrrolidin-1-yl]-2-oxo-ethyl\}- N -methylcarbamate (29.3).

29.2

29.3
$\mathrm{CaCl}_{2}(9.92 \mathrm{~g}, 89.4 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 29.2 ($28.34 \mathrm{~g}, 74.50 \mathrm{mmol}$) in a mixture of $\mathrm{EtOH}(80 \mathrm{~mL})$ and dry THF (93 mL). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for ca 15 min (most of the CaCl_{2} dissolved) and $\mathrm{NaBH}_{4}(6.77 \mathrm{~g}, 178.8 \mathrm{mmol})$ was added in portions over ca 1 min . Stirring at $0^{\circ} \mathrm{C}$ was continued for 10 h (the reaction had to be monitored by TLC) and the mixture was carefully quenched and acidified to pH 1 with hydrochloric acid (2 M , ca 250 mL). Stirring was continued overnight and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3-4 times, the extraction being monitored by TLC). The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel ($5.4 \times 15 \mathrm{~cm}$), using EtOAc and then $1: 20 \mathrm{MeOH}-E t O A c$, gave 29.3 (22.82 g , $59 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=-22.02\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3432, 2925, $1763,1722,1656,1594,1456,1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.33-$ $2.51(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.81(\mathrm{~m}, 1 \mathrm{H}), 3.04-3.24(\mathrm{~m}, 3 \mathrm{H}), 3.50-4.18(\mathrm{~m}, 5.8 \mathrm{H}), 4.30-$ $4.37(\mathrm{~m}, 0.28 \mathrm{H}), 4.42-4.47(\mathrm{~m}, 0.17 \mathrm{H}), 4.67-4.77(\mathrm{~m}, 0.73 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 2$ H), 7.17-7.22 (m, 1 H$)$, 7.32-7.38 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 36.6$, $36.8,39.3,39.4,40.8,50.6,51.8,52.2,52.8,53.1,55.9,56.1,56.4,64.2,64.6$,
65.1, 121.7, 121.8, 125.5, 125.6, 129.31, 129.32, 151.26, 151.29, 155.0, 155.8, 167.48, 167.51, 167.8, 208.5, 208.6, 208.7; exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{5}$ 329.1108, found 329.1109.

Phenyl $\quad N-\{2-[(2 R)-2-\{[($ tert-butyldiphenylsilyl $)$ oxy $] m e t h y l\}-4-$ oxo-pyrrolidin-1-yl]-2-oxoethyl\}- N-methylcarbamate (25.8).

$t-\mathrm{BuPh}_{2} \mathrm{SiCl}(13.3 \mathrm{~g}, 48.3 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{2 9 . 3}$ $(13.44 \mathrm{~g}, 43.88 \mathrm{mmol})$, imidazole $(4.48 \mathrm{~g}, 65.8 \mathrm{mmol})$ and DMAP $(0.536 \mathrm{~g}, 4.4$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(145 \mathrm{~mL})$ and stirring at room temperature was continued for 7 h . The mixture was washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 100 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel ($5.9 \times 15 \mathrm{~cm}$), using 1:2 EtOAc-hexane and then 4:5 EtOAchexane, gave $25.8(20.47 \mathrm{~g}, 86 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=-6.48\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3072, 3048, 2956, 2931, 2859, 1766, 1726, 1667, 1593, 1473, $1449,1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.48-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, 0.7$ $\mathrm{H}, J=18.0,9.7 \mathrm{~Hz}), 2.77-2.84(\mathrm{~m}, 0.3 \mathrm{H}), 2.99(\mathrm{~s}, 0.2 \mathrm{H}), 3.07(\mathrm{~s}, 0.7 \mathrm{H}), 3.16$ $(\mathrm{s}, 0.6 \mathrm{H}), 3.21(\mathrm{~s}, 1.3 \mathrm{H}), 3.57-3.62(\mathrm{~m}, 1.2 \mathrm{H}), 3.74-4.01(\mathrm{~m}, 2.8 \mathrm{H}), 4.14-4.38$ $(\mathrm{m}, 2.1 \mathrm{H}), 4.52-4.54(\mathrm{~m}, 0.2 \mathrm{H}), 4.76-4.80(\mathrm{~m}, 0.7 \mathrm{H}), 7.00-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ $7.22(\mathrm{~m}, 2 \mathrm{H}), 7.29-7.46(\mathrm{~m}, 8 \mathrm{H}), 7.50-7.63(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125$ $\mathrm{MHz}) \delta 19.07,19.12,26.69,26.72,26.8,36.2,36.4,36.5,36.6,39.5,41.0,41.1$, $50.1,50.2,51.6,51.7,52.8,53.1,53.3,55.2,55.3,55.8,56.1,65.7,65.8,66.6$, $66.9,121.67,121.72,121.78,121.82,125.38,125.41,125.43,127.8,127.987$
$127.89,128.03,128.05,129.2,129.3,129.9,130.96,130.03,130.06,130.13$, $130.2,130.3,132.0,132.1,132.16,132.17,132.4,132.5,132.59,132.64,135.3$, $135.4,135.56,135.61,135.62,151.27,151.31,151.33,151.4,154.8,154.9$, $155.39,155.44,166.4,166.7,167.3,208.2,208.4,208.56,208.62$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{37} \mathrm{~N}_{2} \mathrm{O}_{5} \mathrm{Si}(\mathrm{M}+\mathrm{H}), 545.2466$, found 545.2466.

4-Methylbenzenesulfonothioic acid S-(methoxymethyl) ester.

$\mathrm{MeOCH}_{2} \mathrm{Cl}(421.7 \mathrm{mg}, 5.23 \mathrm{mmol})$ was added to a mixture of dry $\mathrm{K}_{2} \mathrm{CO}_{3}$ (ca $45 \mathrm{mg}, 0.33 \mathrm{mmol}$) in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$, and the mixture was swirled for 1 min . The resulting supernatant was taken up into a syringe, using dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ as a rinse, and the total supernatant was added to a stirred suspension of $\mathrm{TolSO}_{2} \mathrm{SNa}$ $(1.0 \mathrm{~g}, 4.76 \mathrm{mmol})$ in dry $\mathrm{MeCN}(8 \mathrm{~mL})$. Stirring at room temperature was continued for 7 h , and the mixture was diluted with $1: 1 \mathrm{Et}_{2} \mathrm{O}$-hexane $(50 \mathrm{~mL})$ and filtered through a pad of Celite, using 1:1 $\mathrm{Et}_{2} \mathrm{O}$-hexane as a rinse. Evaporation of the filtrate gave 4-Methylbenzenesulfonothioic acid S-(methoxymethyl) ester $(0.988 \mathrm{~g}, 90 \%)$ as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3064, 2998, 2930, 2827, 1594, 1492, 1450, $1421 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 2.44(\mathrm{~s}, 3 \mathrm{H}), 3.19$ (s, $3 \mathrm{H}), 5.25(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.36(\mathrm{~m}, 2 \mathrm{H}), 7.77-7.93(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, 100 MHz) $\delta 21.9$ (q), 57.1 (q), 80.0 (t), 127.2 (d), 129.9 (d), 143.6 (s), 144.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{12} \mathrm{NaO}_{3} \mathrm{~S}_{2}$ 255.0120, found 255.0117.

(4R)-4-Hydroxy-L-proline hydrochloride (33.1).

25.1

33.1
$\mathrm{SOCl}_{2}(10.6 \mathrm{~g}, 89.1 \mathrm{mmol})$ was added dropwise to a stirred and cooled (0 ${ }^{\circ} \mathrm{C}$) mixture of $\mathbf{2 5 . 1}(10.0 \mathrm{~g}, 76.3 \mathrm{mmol})$ in dry $\mathrm{MeOH}(76 \mathrm{~mL})$. The cooling bath was removed and stirring was continued for 30 min . The mixture was then refluxed for 30 h , cooled to room temperature and evaporated to give 33.1 (13.89 $\mathrm{g}, 100 \%)$ as a white solid: $\mathrm{mp} 165-168{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-23.50(c 1.00, \mathrm{MeOH})$; FTIR (MeOH, cast film) 3327 (br), 2200-3500 (br), 2956, 2884, 2706, 2604, 2569, 1745, 1635, 1593, $1443 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\mathrm{CD}_{3} \mathrm{OD}, 500 \mathrm{MHz}$) $\delta 2.21$ (ddd, $J=13.6$, $10.8,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.41(\mathrm{ddt}, J=13.6,7.6,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.30-3.33(\mathrm{~m}, 1 \mathrm{H}), 3.46$ (dd, $J=12.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.85(\mathrm{~s}, 3 \mathrm{H}), 4.58-4.62(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CD}_{3} \mathrm{OD}\right.$, $125 \mathrm{MHz}) \delta 38.5$ (t), $54.0(\mathrm{~d}), 55.0$ (t), 59.4 (d), 70.6 (q), 170.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{NO}_{3}(\mathrm{M}+\mathrm{H})$ 146.0812, found 146.0812.

Methyl (2S,4R)-4-hydroxy-1-\{2-[methyl(phenoxycarbonyl)amino]-

 acetyl\}pyrrolidine-2-carboxylate (33.2).
33.1

33.2
$(\mathrm{COCl})_{2}(13.98 \mathrm{~g}, 110.16 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $25.5(19.2 \mathrm{~g}, 91.8 \mathrm{mmol})$ and DMF ($\left.0.54 \mathrm{~g}, 7.34 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(150 \mathrm{~mL})$. The cooling bath was left in place but not recharged and stirring was continued for 5.5 h . A small aliquot of the mixture was evaporated and the ${ }^{1} \mathrm{H}$ NMR spectrum showed that the reaction was complete. The mixture was evaporated (protected from moisture) and the residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporated again. The residue was dissolved in dry THF (25 mL) and added over 1 h to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 33.1 (13.89 g, 76.5 $\mathrm{mmol})$ and $\mathrm{NaHCO}_{3}(28.92 \mathrm{~g}, 344.25 \mathrm{mmol})$ in a mixture of dioxane $(150 \mathrm{~mL})$ and water (150 mL). The cooling bath was left in place but not recharged and stirring was continued for 21 h . Most of dioxane was evaporated, the residue was
diluted with water and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($5.9 \times 15 \mathrm{~cm}$), using EtOAc and then 1:20 MeOH-EtOAc, gave $33.2(24.88 \mathrm{~g}, 97 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=-14.72(c$ $0.83, \mathrm{CHCl}_{3}$); FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3435 (br), 2952, 1727, 1653, 1595, 1456, 1437, $1398 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.02-2.08(\mathrm{~m}, 0.78 \mathrm{H}), 2.21-2.29(\mathrm{~m}, 1$ H), 2.36-2.42 (m, 0.22 H), $3.03(\mathrm{~s}, 1.2 \mathrm{H}), 3.17(\mathrm{~s}, 1.4 \mathrm{H}), 3.20(\mathrm{~s}, 0.4 \mathrm{H}), 3.56-$ $4.22(\mathrm{~m}, 7 \mathrm{H}), 4.32-4.42(\mathrm{~m}, 1 \mathrm{H}), 4.54-4.58(\mathrm{~m}, 1 \mathrm{H}), 7.06-7.11(\mathrm{~m}, 2 \mathrm{H}), 7.15-$ $7.18(\mathrm{~m}, 1 \mathrm{H}), 7.29-7.35(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 36.1(\mathrm{q}), 36.37$ (q), 36.41 (q), 36.6 (t), 39.4 (t), 39.5 (t$), 51.18$ (t$), 51.21$ (t), 51.3 (t), 51.4 (t), 52.77 (q), $52.84(\mathrm{q}), 54.9$ (t), $55.0(\mathrm{t}), 55.6$ (t), 55.7 (t), 57.5 (d), 57.7 (d), 57.9 (d), 58.0 (d), 68.2 (d), 68.4 (d), 71.10 (d), 71.15 (d), 121.65 (d), 121.71 (d), 121.8 (d), 125.3 (d), 125.4 (d), 129.17 (d), 129.20 (d), 151.29 (s$), 151.32$ (s), 154.9 (s), 155.0 (s), 155.4 (s$), 155.5$ (s$), 167.3$ (s$), 167.5$ (s$), 167.6$ (s$), 168.0$ (s$), 172.4$ (s), 172.8 (s), 174.2 (s), 174.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{20} \mathrm{~N}_{2} \mathrm{NaO}_{6}$ 359.1214, 359.1211.

Methyl (2S)-1-\{2-[methyl(phenoxycarbonyl)amino]acetyl\}-4-oxo-

 pyrrolidine-2-carboxylate (33.3).
33.2

33.3

Molecular sieves $(4 \AA, 33.9 \mathrm{~g})$ and $\mathrm{NaOAc}(7.8 \mathrm{~g}, 94.8 \mathrm{mmol})$ were added to a stirred solution of $\mathbf{3 3 . 2}(22.8 \mathrm{~g}, 67.8 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(220 \mathrm{~mL})$. The mixture was stirred at room temperature for 5 min and then cooled to $0{ }^{\circ} \mathrm{C}$. Pulverized PCC ($36.5 \mathrm{~g}, 169.5 \mathrm{mmol}$) was added portionwise, stirring at $0^{\circ} \mathrm{C}$ was continued for 15 min , the cooling bath was removed and stirring was continued for 30 min . Florisil (ca 30 g) was added and the mixture was filtered through a
column of Florisil ($5 \times 10 \mathrm{~cm}$), using EtOAc and then 1:20 MeOH-EtOAc. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($5.9 \times 15 \mathrm{~cm}$), using 1:1 EtOAc-hexane, 2:1 EtOAc-hexane, 3:1 EtOAc-hexane and 5:1 EtOAc-hexane, gave $33.3(19.4 \mathrm{~g}, 79 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=-39.75(c$ $\left.1.40, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 2956, 1767, 1726, 1673, 1594, 1477, 1455, $1435 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.51(\mathrm{ddd}, 0.8 \mathrm{H}, J=18.9,9.0,2.8 \mathrm{~Hz})$, $2.64(\mathrm{~m}, 0.2 \mathrm{H}), 2.81-2.96(\mathrm{~m}, 1 \mathrm{H}), 2.99(\mathrm{~s}, 1.1 \mathrm{H}), 3.13-3.14(\mathrm{~m}, 1.9 \mathrm{H}), 3.65-$ $4.31(\mathrm{~m}, 7 \mathrm{H}), 4.79-4.83(\mathrm{~m}, 0.1 \mathrm{H}), 4.96-4.99(\mathrm{~m}, 0.9 \mathrm{H}), 7.03-7.10(\mathrm{~m}, 2 \mathrm{H})$, $7.14(\mathrm{q}, J=7.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.28-7.32(\mathrm{~m}, 2 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 35.9$ (q), 36.0 (q), 36.2 (q), 39.4 (t), 41.1 (t$), 41.2$ (t$), 50.3(\mathrm{t}), 50.5(\mathrm{t}), 51.3(\mathrm{t}), 51.5(\mathrm{t})$, 51.6 (t), 51.7 (t), 52.6 (q), 53.0 (q), 55.3 (d), 55.4 (d), 55.9 (d), 56.1 (d), 121.5 (d), 121.6 (d), 125.25 (d), 125.30 (d), 129.1 (d), 151.1 (s$), 151.2$ (s$), 154.6$ (s$), 155.2$ (s), 167.4 (s), 167.59 (s), 167.64 (s), 170.4 (s), 170.7 (s), 171.3 (s), 171.4 (s), 206.2 (s), 206.4 (s), 206.6 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{6} 357.1057$, found 357.1059.

Methyl (2S)-4,4-dimethoxy-1-\{2-[methyl(phenoxycarbonyl)amino]-acetyl\}pyrrolidine-2-carboxylate (33.4).

$\mathrm{TsOH} \cdot \mathrm{H}_{2} \mathrm{O}(1.1 \mathrm{~g}, 5.8 \mathrm{mmol})$ was added to a stirred solution of 33.3 $(19.38 \mathrm{~g}, 57.97 \mathrm{mmol})$ and $(\mathrm{MeO})_{3} \mathrm{CH}(30.76 \mathrm{~g}, 289.85 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(32 \mathrm{~mL})$ and anhydrous $\mathrm{MeOH}(160 \mathrm{~mL})$. The mixture was refluxed for 24 h , cooled to room temperature and evaporated. The residue was diluted with saturated aqueous NaHCO_{3} and extracted with EtOAc (3 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The resulting 33.4 ($21.37 \mathrm{~g}, 97 \%$), which was obtained as a foam, was used for the next step:
$[\alpha]_{\mathrm{D}}=-42.76\left(c 1.85, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) $3000,2953,2837,1729,1669$, 1955, 1455, 1436, $1396 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.19-2.24(\mathrm{~m}, 0.7 \mathrm{H})$, 2.30-2.40 (m, 1 H$), 2.55-2.60(\mathrm{~m}, 0.3 \mathrm{H}), 3.17-3.26(\mathrm{~m}, 9 \mathrm{H}), 3.60-3.78(\mathrm{~m}, 5 \mathrm{H})$, 3.92-3.97 (m, 0.6), 4.14-4.31 (m, 1.4 H), 4.46-4.48 (m, 0.1 H), 4.60-4.66 (m, 0.9 H), 7.08-7.13 (m, 2 H), 7.15-7.19 (m, 1 H$)$, 7.31-7.36 (m, 2 H$) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $100 \mathrm{MHz}) \delta 35.69,35.71,35.9,36.18,36.22,36.3,37.8,38.0,49.0,49.2,49.7$, $49.8,49.9,50.0,50.4,50.49,50.51,50.6,51.0,51.2,51.8,51.98,52.05,52.1$, 52.3, 52.7, 57.3, 57.4, 57.5, 57.8, 105.3, 105.4, 107.07, 107.15, 121.59, 121.62, $121.67,121.70,125.2,129.08,129.12,151.3,154.7,154.8,155.3,155.4,166.8$, $167.0,167.5,167.8,171.0,171.16,171.23,171.3$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{24} \mathrm{~N}_{2} \mathrm{NaO}_{7}$ 403.1476, found 403.1476.

Phenyl $\quad N$-\{2-[(2S)-2-(hydroxymethyl)-4-oxopyrrolidin-1-yl]-2-oxo-

 ethyl\}- N-methylcarbamate (33.5).
33.4

33.5
$\mathrm{CaCl}_{2}(6.86 \mathrm{~g}, 61.8 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $33.4(21.37 \mathrm{~g}, 56.2 \mathrm{mmol})$ in a mixture of absolute EtOH (70 mL) and dry THF (70 mL). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for ca 15 min (most of the CaCl_{2} dissolved) and $\mathrm{NaBH}_{4}(4.68 \mathrm{~g}, 123.64 \mathrm{mmol})$ was added in portions over ca 1 min . Stirring at $0^{\circ} \mathrm{C}$ was continued for 10 h (the reaction was monitored by TLC until the composition seemed constant) and the mixture was carefully quenched and acidified to pH 1 with hydrochloric acid (2 M, ca 130 mL). Stirring was continued overnight and the mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3-4 times, the progress of extraction being monitored by TLC). The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel ($5.4 \times 15 \mathrm{~cm}$), using

EtOAc and then 1:20 MeOH-EtOAc, gave $33.5(11.18 \mathrm{~g}, 65 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=$ 7.94 (c 1.11, MeOH); FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3430, 2937, 1763, 1722, 1656, 1594, $1456,1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 2.33-2.51(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.81(\mathrm{~m}$, $1 \mathrm{H}), 3.04-3.24(\mathrm{~m}, 3 \mathrm{H}), 3.50-4.18(\mathrm{~m}, 5.8 \mathrm{H}), 4.30-4.37(\mathrm{~m}, 0.28 \mathrm{H}), 4.42-4.47$ $(\mathrm{m}, 0.17 \mathrm{H}), 4.67-4.77(\mathrm{~m}, 0.73 \mathrm{H}), 7.07-7.13(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.22(\mathrm{~m}, 1 \mathrm{H}), 7.32-$ $7.38(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 36.6,36.8,39.3,39.4,40.8,50.6$, $51.8,52.2,52.8,53.1,55.9,56.1,56.4,64.2,64.6,65.1,121.7,121.8,125.5$, $125.6,129.31,129.32,151.26,151.29,155.0,155.8,167.48,167.51,167.8,208.5$, 208.6, 208.7; exact mass (electrospray) m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{18} \mathrm{~N}_{2} \mathrm{NaO}_{5} 329.1108$, found 329.1109.

Phenyl $\quad N$ - $\{2-[(2 S)-2-\{[(t e r t-B u t y l d i p h e n y l s i l y l) o x y] m e t h y l\}-4-o x o-~$

 pyrrolidin-1-yl]-2-oxoethyl\}- N -methylcarbamate (33.6).
33.5

33.6
$t-\mathrm{BuPh}_{2} \mathrm{SiCl}(564.0 \mathrm{mg}, 2.05 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 3 . 5}$ ($523.8 \mathrm{mg}, 2.05 \mathrm{mmol}$), imidazole ($174.6 \mathrm{mg}, 65.8 \mathrm{mmol}$) and DMAP (20.9 mg , $0.17 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(6 \mathrm{~mL})$ and stirring at room temperature was continued for 25 h . The mixture was washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 20 \mathrm{~mL})$ and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with saturated aqueous NaHCO_{3} and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent and flash chromatography of the residue over silica gel ($1.8 \times 15 \mathrm{~cm}$), using 1:2 EtOAc-hexane and then 4:5 EtOAchexane, gave 33.6 ($696 \mathrm{mg}, 75 \%$) as a foam: $[\alpha]_{\mathrm{D}}=10.51\left(c 1.13, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3072,3048,2956,2931,2859,1766,1726,1667,1593,1473$, $1449,1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 2.48-2.56(\mathrm{~m}, 1 \mathrm{H}), 2.68(\mathrm{dd}, 0.7$
$\mathrm{H}, J=18.0,9.7 \mathrm{~Hz}), 2.77-2.84(\mathrm{~m}, 0.3 \mathrm{H}), 2.99(\mathrm{~s}, 0.2 \mathrm{H}), 3.07(\mathrm{~s}, 0.7 \mathrm{H}), 3.16$ (s, 0.6 H), 3.21 ($\mathrm{s}, 1.3 \mathrm{H}$), 3.57-3.62 (m, 1.2 H), 3.74-4.01 (m, 2.8 H), 4.14-4.38 $(\mathrm{m}, 2.1 \mathrm{H}), 4.52-4.54(\mathrm{~m}, 0.2 \mathrm{H}), 4.76-4.80(\mathrm{~m}, 0.7 \mathrm{H}), 7.00-7.09(\mathrm{~m}, 1 \mathrm{H}), 7.13-$ 7.22 (m, 2 H), 7.29-7.46 (m, 8 H), 7.50-7.63 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125$ $\mathrm{MHz})$ § 19.07, 19.12, 26.69, 26.72, 26.8, 36.2, 36.4, 36.5, 36.6, 39.5, 41.0, 41.1, $50.1,50.2,51.6,51.7,52.8,53.1,53.3,55.2,55.3,55.8,56.1,65.7,65.8,66.6$, $66.9,121.67,121.72,121.78,121.82$, 125.38, 125.41, 125.43, 127.8, 127.987 $127.89,128.03,128.05,129.2,129.3,129.9,130.96,130.03,130.06,130.13$, $130.2,130.3,132.0,132.1,132.16,132.17,132.4,132.5,132.59,132.64,135.3$, $135.4,135.56,135.61,135.62,151.27,151.31,151.33,151.4,154.8,154.9$, 155.39, 155.44, 166.4, 166.7, 167.3, 208.2, 208.4, 208.56, 208.62; exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si}, 567.2286$, found 567.2294.
(6S)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8a-[(methoxymethyl)-sulfanyl]-2-methyloctahydropyrrolo[1,2-a]piperazine-1,4,8-trione (33.7a,b).

33.6

33.7a,b
$\mathrm{NaH}(792.0 \mathrm{mg}, 19.8 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{3 3 . 6}(4.9 \mathrm{~g}$, 9.0 mmol) in THF (90 mL). The mixture was refluxed for 1 h , cooled to $0^{\circ} \mathrm{C}$ and quenched with pH 7.0 buffer ($0.2 \mathrm{M}, 90 \mathrm{~mL}$) and aqueous $\mathrm{HCl}(1 \mathrm{M}, 20 \mathrm{~mL})$. The mixture was extracted with EtOAc (4 times), and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$ and a solution of $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}(1.67 \mathrm{~g}, 7.2$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ was added in one portion, followed by $\mathrm{Et}_{3} \mathrm{~N}(1.09 \mathrm{~g}$, $10.8 \mathrm{mmol})$ which was added at a fast dropwise rate. The mixture was swirled occasionally for 10 min and filtered through a pad silica gel ($3 \times 7 \mathrm{~cm}$), using EtOAc. Evaporation of the filtrate and flash chromatography of the residue over
silica gel ($3.8 \times 15 \mathrm{~cm}$), using 4:5 EtOAc-hexane, 6:5 EtOAc-hexane, 3:2 EtOAc-hexane, 2:1 EtOAc-hexane and 5:2 EtOAc-hexane, gave 33.7a (1.11 g, 24%) as a foam and $\mathbf{3 3 . 7 b}(1.30 \mathrm{~g}, 27 \%)$ as a foam.
33.7a: $[\alpha]_{D}=-11.71\left(c 1.40, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3072, 3047, 2932, 2889, 2859, 1779, 1767, 1689, 1589, 1472, 1449, $1406 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.97(\mathrm{~s}, 9 \mathrm{H}), 2.64(\mathrm{dd}, J=18.1,3.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H})$, $3.21(\mathrm{dd}, J=18.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 3.31(\mathrm{~s}, 3 \mathrm{H}), 3.53-3.57(\mathrm{~m}, 1 \mathrm{H}), 3.78(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.40(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.73(\mathrm{~d}, J=12.0$ $\mathrm{Hz}, 1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.51-7.54(\mathrm{~m}, 2 \mathrm{H}), 7.54-$ $7.58(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.1$ (s$), 26.6$ (q), 33.9 (q), 36.6 (t), 53.2 (q), 53.4 (t), 57.0 (d), 62.1 (t), 63.1 (s$), 74.1$ (t$), 127.7$ (d), 127.8 (d), 129.9 (d), 130.0 (d), 132.6 (s$), 135.5$ (d), 135.6 (d), 161.1 (s$), 165.7$ (s$), 196.7$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi} 549.1850$, found 549.1844.
33.7b: $[\alpha]_{D}=-3.63\left(c 1.50, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3071, 3013, 2957, 2931, 2891, 2858, 1776, 1687, 1589, 1463, 1468, 1427, $1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 2.73-2.81(\mathrm{~m}, 1 \mathrm{H}), 2.92(\mathrm{dd}, J=19.1$, $2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 3.26(\mathrm{~s}, 3 \mathrm{H}), 3.74-3.80(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{dd}, J=10.0$, $4.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.40(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.56-4.62(\mathrm{~m}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=12.2 \mathrm{~Hz}$, $1 \mathrm{H}), 5.08(\mathrm{~d}, J=12.2 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.61-7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.3(\mathrm{~s}), 26.9(\mathrm{q}), 34.4$ (q), 37.5 (t), 52.8 (t), 52.9 (q), 56.8 (d), 63.7 (s), 63.8 (t), 74.2 (t), 127.8 (d), 127.9 (d), 129.9 (d), 130.0 (d), 132.88 (s), 132.91 (s$), 135.62$ (d), 135.63 (d), 161.1 (s), 164.7 (s), 199.6 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi} 549.1850$, found 549.1845 .
(6S,8S,8aR)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8-hydroxy-8a-[(methoxymethyl)sulfanyl]-2-methyloctahydropyrrolo[1,2-a]piperazine-1,4dione (34.1).

33.7b

34.1
$\mathrm{NaBH}_{4}(35.9 \mathrm{mg}, 0.95 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{3 3 . 7 b}(500.0 \mathrm{mg}, 0.95 \mathrm{mmol})$ in a mixture of THF $(6.5 \mathrm{~mL})$ and water $(0.8 \mathrm{~mL})$. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 20 min and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with water and extracted with EtOAc (3 times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 3:1 EtOAc-hexane and then 5:1 EtOAc-hexane, gave 34.1 ($366 \mathrm{mg}, 73 \%$) as a foam: $[\alpha]_{\mathrm{D}}=-114.01\left(c 4.21, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3453 (br), 3071, 3050, 2932, 2888, 2858, 1672, 1589, 1472, 1462, $1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 2.22-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.51(\mathrm{dt}, J=12.8,7.4 \mathrm{~Hz}, 1 \mathrm{H})$, 2.92 (s, 3 H), 3.24 (s, 3 H), 3.61 (d, $J=1.7 \mathrm{~Hz}, 1 \mathrm{H}$), 3.65 (d, $J=16.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.75-3.78 (m, 1 H$), 4.16-4.23(\mathrm{~m}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.35-4.41(\mathrm{~m}$, $2 \mathrm{H}), 4.73(\mathrm{~d}, J=12.5 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.64-7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.3$ (s), 26.9 (q), 31.9 (t), 33.6 (q), 52.9 (t), 56.0 (q), 56.1 (d), 64.6 (t), 72.2 (t), 73.2 (s$), 75.8$ (d), 127.7 (d), 127.8 (d), 129.7 (d), 129.8 (d), 133.27 (s), 133.31 (s), 135.60 (d), 135.64 (d), 164.0 (s), 167.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{27} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi} 551.2006$, found 551.2006.
(6S,8S,8aR)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8a-[(methoxy-methyl)sulfanyl]-2-methyl-8-[(triethylsilyl)oxy]octahydropyrrolo[1,2-a]-piperazine-1,4-dione (34.2).

34.1

34.2
$\mathrm{Et}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(202.0 \mathrm{mg}, 0.76 \mathrm{mmol})$ was added to a stirred and cooled ($78{ }^{\circ} \mathrm{C}$) solution of $\mathbf{3 4 . 1}$ ($336.0 \mathrm{mg}, 0.64 \mathrm{mmol}$) and 2,6-lutidine ($157.7 \mathrm{mg}, 1.47$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 30 min and the mixture was quenched with water (5 mL). The cooling bath was removed and the mixture was allowed to warm to room temperature (ca 5 min). Aqueous NaHSO_{4} $(1 \mathrm{M}, 1 \mathrm{~mL})$ and saturated aqueous $\mathrm{CuSO}_{4}(10 \mathrm{~mL})$ were added and the mixture was extracted twice with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 2:5 EtOAc-hexane and then 3:5 EtOAc-hexane, gave 34.2 $(328.0 \mathrm{mg}, 80 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=-33.42\left(c 2.07, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast $)$ $3071,2954,2934,2877,2859,1679,1488,1463,1448,1427,1419,1400 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.64-0.76(\mathrm{~m}, 6 \mathrm{H}), 1.02(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.08$ ($\mathrm{s}, 9 \mathrm{H}$), 2.19 (dt, $J=12.8,9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.35(\mathrm{dt}, J=12.9,7.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3$ H), $3.22(\mathrm{~s}, 3 \mathrm{H}), 3.62(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.77(\mathrm{t}, J=8.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{qd}, J$ $=8.2,3.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.16(\mathrm{dd}, J=9.4,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.37(\mathrm{~d}, J=16.5 \mathrm{~Hz}, 1 \mathrm{H})$, 4.50-4.56 (m, 2 H), $4.81(\mathrm{~d}, J=12.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.36-7.43(\mathrm{~m}, 6 \mathrm{H})$, 7.65-7.68 (m, $4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 5.0,6.9,19.4,26.9,34.0,34.6,53.1,55.9$, $56.1,64.5,72.6,73.1,75.3,127.70,127.71,129.72,129.74,133.47,133.51$, 135.6, 135.7, 164.7, 165.8; exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{50} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}_{2}$ 665.2871, found 665.2866.

Ethyl

(6S,8S,8aR)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8a-[(methoxymethyl)sulfanyl]-2-methyl-1,4-dioxo-8-[(triethylsilyl)oxy]octa-hydropyrrolo[1,2-a]piperazine-3-carboxylate (34.3).

34.2

34.3
$\mathrm{EtOCOCl}(83.0 \mathrm{mg}, 0.77)$ was added dropwise to a stirred and cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of 34.2 ($328.0 \mathrm{mg}, 0.51 \mathrm{mmol}$) in THF (9 mL), followed by $\left(\mathrm{Me}_{3} \mathrm{Si}_{2}\right)_{2} \mathrm{NK}(1.0 \mathrm{M}$ in THF, $1.2 \mathrm{~mL}, 1.2 \mathrm{mmol})$, which was added at a fast dropwise rate. Stirring at $-78^{\circ} \mathrm{C}$ was continued for 15 min and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$. The cooling bath was removed and the mixture was allowed to warm to room temperature (ca 5 min). The mixture was diluted with water and extracted with EtOAc (3 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 1:5 EtOAchexane and 2:5 EtOAc-hexane, gave $34.3(265 \mathrm{mg}, 73 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=5.36$ (c 2.23, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3072, 3050, 2955, 2935, 2877, 2859, 1749, 1682, 1590, 1463, 1447, 1428, $1416 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.67-$ $0.72(\mathrm{~m}, 6 \mathrm{H}), 1.02(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.08(\mathrm{~s}, 9 \mathrm{H}), 1.19(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H})$, 2.19-2.31 (m, 2 H$), 3.15(\mathrm{~s}, 3 \mathrm{H}), 3.24$ (s, 3 H), 3.74 (dd, $J=9.4,7.8 \mathrm{~Hz}, 1 \mathrm{H}$), $3.94-4.00(\mathrm{~m}, 1 \mathrm{H}), 4.12-4.19(\mathrm{~m}, 2 \mathrm{H}), 4.26(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~s}, 1$ H), $4.47(\mathrm{dd}, J=10.4,7.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.67(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=11.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.36-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ $4.9,6.8,13.8,19.4,26.9,33.8,35.0,55.7,56.7,62.5,64.1,66.4,70.4,74.6,75.4$, $127.69,127.72,129.71,129.74,133.4,133.5,135.6,135.7,161.2,165.4,165.9$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{54} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSi}_{2}$ 737.3082, found 737.3072 .

Ethyl (3R,6S,8S,8aR)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-3,8a-bis[(methoxymethyl)sulfanyl]-2-methyl-1,4-dioxo-8-[(triethylsilyl)oxy]octa-hydropyrrolo[1,2-a]piperazine-3-carboxylate (34.4).

34.3

34.4

DBU ($42.5 \mathrm{mg}, 0.28 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 4 . 3}$ (133.0 $\mathrm{mg}, 0.19 \mathrm{mmol}$) and $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}(51.0 \mathrm{mg}, 0.22 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$. The mixture was occasionally stirred at room temperature for 1 h . Evaporation and flash chromatography of the residue over silica gel ($0.8 \times 15 \mathrm{~cm}$), using 1:10 EtOAc-hexane, 1:5 EtOAc-hexane and 3:10 EtOAc-hexane, gave 34.4 (124.9 $\mathrm{mg}, 85 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=10.00\left(c 1.59, \mathrm{CHCl}_{3}\right) ;$ FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3072 , $3050,2954,2933,2877,2858,1750,1680,1590,1463,1447,1428,1410 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.63-0.74(\mathrm{~m}, 6 \mathrm{H}), 1.01(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.06$ $(\mathrm{s}, 9 \mathrm{H}), 1.25(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.09(\mathrm{ddd}, J=12.8,9.2,8.7 \mathrm{~Hz}, 1 \mathrm{H}), 2.39-2.46$ (m, 1 H), $2.96(\mathrm{~s}, 3 \mathrm{H}), 3.11(\mathrm{~s}, 3 \mathrm{H}), 3.27(\mathrm{~s}, 3 \mathrm{H}), 3.75(\mathrm{t}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 4.08$ (qd, $J=8.9,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.22-4.33(\mathrm{~m}, 3 \mathrm{H}), 4.37(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.54(\mathrm{dd}$, $J=9.4,8.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.63(\mathrm{~d}, J=12.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{q}, J=12.0 \mathrm{~Hz}, 2 \mathrm{H}), 7.35-$ $7.42(\mathrm{~m}, 6 \mathrm{H}), 7.65-7.68(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 4.9(\mathrm{t}), 6.8(\mathrm{q})$, 13.8 (q), 19.4 (s), 26.9 (q), 32.3 (q), 35.2 ($), 56.0(\mathrm{q}), 56.6$ (q), 57.7 (d), 64.0 (t), 65.9 (t), 72.5 (t), 73.2 (t), 73.3 (s), 75.2 (d), 78.7 (s), 127.69 (d), 127.73 (d), 129.6 (d), 129.7 (d), 133.6 (s$), 133.7$ (s$), 135.6$ (d), 135.7 (d), 161.5 (s$), 165.1$ (s$), 165.9$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{58} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{2} \mathrm{Si}_{2} 813.3065$, found 813.3054.

Ethyl (3R,6S,8S,8aR)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8-hydroxy-3,8a-bis[(methoxymethyl)sulfanyl]-2-methyl-1,4-dioxooctahydro-pyrrolo[1,2-a]piperazine-3-carboxylate (35.1).

HF-pyr/pyr/THF stock solution (1:2:5, HF•pyr/pyr/THF, 0.3 mL) was added to 34.4 ($27.6 \mathrm{mg}, 0.035 \mathrm{mmol}$) in a sample vial. The mixture was kept at room temperature for 19 h and quenched with $\mathrm{Me}_{3} \mathrm{SiOMe}(0.1 \mathrm{~mL})$. Evaporation of the solvent and flash chromatography of the residue over silica gel (0.5×7 cm), using 1:1 EtOAc-hexane and then 5:1 EtOAc-hexane, gave 35.1 (10.7 mg , 70%) as a foam: $[\alpha]_{\mathrm{D}}=-27.69\left(c 0.93, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3444 (br), 2984, 2931, 2824, 1748, 1664, 1446, $1420 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $1.35(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 1.89(\mathrm{dt}, J=12.4,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{dt}, J=12.7,7.8$ $\mathrm{Hz}, 1 \mathrm{H}), 3.02(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.48(\mathrm{~d}, \mathrm{~J}=2.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.74$ (ddd, $J=11.6,8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.90(\mathrm{ddd}, J=11.6,8.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{qd}, J$ $=8.9,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=8.2,2.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.34(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H})$, $4.37(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.44(\mathrm{ddd}, J=10.4,7.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.66(\mathrm{~d}, J=12.9$ $\mathrm{Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}, J=12.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.17(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 13.8(\mathrm{q}), 31.0(\mathrm{t}), 32.0(\mathrm{q}), 56.5(\mathrm{q}), 56.9(\mathrm{q}), 61.8(\mathrm{~d}), 64.5(\mathrm{t}), 66.6$ (t), $72.0(\mathrm{t}), 73.1$ (t), 73.2 (s$), 74.4$ (d), $78.4(\mathrm{~s}), 163.8(\mathrm{~s}), 164.4$ (s), 166.9 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{16} \mathrm{H}_{26} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{2}$ 461.1023, found 461.1017.

Ethyl (3R,6S,8S,8aR)-3,8a-Bis[(methoxymethyl)sulfanyl]-2-methyl-8-[(4-nitrophenyl)carbonyloxy]-6-\{[(4-nitrophenyl)carbonyloxy]methyl\}-1,4-dioxooctahydropyrrolo[1,2-a]piperazine-3-carboxylate (35.2).

$p-\mathrm{NO}_{2} \mathrm{C}_{6} \mathrm{H}_{4} \mathrm{COCl}(31.5 \mathrm{mg}, 0.17 \mathrm{mmol})$ was added to a stirred solution of $35.1(9.3 \mathrm{mg}, 0.021 \mathrm{mmol}), \mathrm{Et}_{3} \mathrm{~N}(21.2 \mathrm{mg}, 0.21 \mathrm{mmol})$ and DMAP (0.24 mg , $0.002 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Stirring at room temperature was continued for 15 min and the mixture was quenched with water $(10 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 8 \mathrm{~mL})$ and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.5 \times 7 \mathrm{~cm}$), using 3:10 EtOAc-hexane, 2:5 EtOAc-hexane, 1:2 EtOAchexane and 4:5 EtOAc-hexane, gave 35.2 (14.1 mg, 91\%) as a foam: $[\alpha]_{D}=$ $54.19\left(c 0.88, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3111,3080,2988,2930,1733,1681$, $1608,1529,1490,1448,1409 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.29(\mathrm{t}, J=7.1$ $\mathrm{Hz}, 3 \mathrm{H}), 2.19(\mathrm{ddd}, J=12.9,9.6,7.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{dt}, J=12.9,8.5 \mathrm{~Hz}, 1 \mathrm{H})$, $2.94(\mathrm{~s}, 3 \mathrm{H}), 3.33(\mathrm{~s}, 3 \mathrm{H}), 3.36(\mathrm{~s}, 3 \mathrm{H}), 4.26-4.36(\mathrm{~m}, 2 \mathrm{H}), 4.39(\mathrm{~d}, J=12.9 \mathrm{~Hz}$, $1 \mathrm{H}), 4.59-4.68(\mathrm{~m}, 2 \mathrm{H}), 4.74(\mathrm{~d}, J=13.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=12.9 \mathrm{~Hz}, 1 \mathrm{H})$, $4.87(\mathrm{dd}, J=10.8,7.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 5.97(\mathrm{t}, J=9.0 \mathrm{~Hz}, 1$ H), 8.20-8.23 (m, 2 H$), 8.26-8.29(\mathrm{~m}, 2 \mathrm{H}), 8.31-8.35(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 13.8(\mathrm{q}), 30.4$ (t), 32.2 (q), 55.7 (d), 56.8 (q), 56.9 (q), $64.5(\mathrm{t}), 67.0$ (t), 72.0 (t), 72.5 (s$), 73.0$ (t), 74.3 (d), 78.7 (s$), 123.5$ (d), 123.7 (d), 131.0 (d), 131.3 (d), 134.9 (s), 135.3 (s), 150.7 (s), 150.9 (s), 162.4 (s), 163.6 (s), 164.5 (s), 164.6 (s), 165.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{32} \mathrm{~N}_{4} \mathrm{NaO}_{14} \mathrm{~S}_{2}$ 759.1249, found 759.1239.
(6R)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8-hydroxy-2-methyl-octahydropyrrolo[1,2-a]piperazine-1,4-dione (36.1).

$\mathrm{NaH}(60 \%$ in mineral oil, $467.8 \mathrm{mg}, 11.7 \mathrm{mmol})$ was added to a solution of $\mathbf{2 5 . 8}(2.90 \mathrm{~g}, 5.3 \mathrm{mmol})$ in dry THF $(50 \mathrm{~mL})$. The flask was lowed into a preheated oil bath $\left(70^{\circ} \mathrm{C}\right)$ and the mixture was heated for 25 min (i.e. 5 more min after vigorous bubbling ceased and the solution became clear, although some particles of NaH were still present). The mixture was cooled to $0^{\circ} \mathrm{C}$ and poured into a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ aqueous pH buffer $(0.2 \mathrm{M}, 100 \mathrm{~mL})$, using dry THF (10 mL) as a rinse, followed by immediate addition of aqueous $\mathrm{HCl}(1 \mathrm{M}$, 11.7 mL to the mixture. While maintaining the temperature at $0^{\circ} \mathrm{C}, \mathrm{NaBH}_{4}$ ($301.9 \mathrm{mg}, 8.0 \mathrm{mmol}$) was added portionwise (over ca 1 min , bubbling!). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 20 min , and the mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (4 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($30 \times 15 \mathrm{~cm}$), using 2:1 EtOAc-hexane, EtOAc and then 1:50 $\mathrm{MeOH}-\mathrm{EtOAc}$, gave 36.1 (1.40 g , 58 \%) as a foam: $[\alpha]_{\mathrm{D}}=83.44$ (c 0.55, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3442 (br), 3071, 3049, 3013, 2955, 2931, 2858, $1663,1459,1428,1399 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H}), 2.26$ (ddd, $J=12.6,9.7,8.3 \mathrm{~Hz}, 1 \mathrm{H}), 2.38(\mathrm{dt}, J=12.6,7.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H})$, $3.60(\mathrm{~s}, 1 \mathrm{H}), 3.68(\mathrm{~d}, J=16.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{dd}, J=10.5,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.87(\mathrm{~d}$, $J=8.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.95(\mathrm{dd}, J=16.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.14-4.23(\mathrm{~m}, 3 \mathrm{H}), 7.36-7.44$ (m, 6 H), $7.62(\mathrm{dd}, J=7.9,1.4 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.3(\mathrm{~s})$, 27.0 (q), 31.7 (t), 33.0 (q), 53.0 (t), 55.8 (d), 62.9 (d), 63.3 (t), 72.9 (d), 127.7 (d), 127.8 (d), 129.8 (d), 129.9 (d), 133.0 (s), 133.2 (s), 135.56 (d), 135.60 (d), 161.6
(s), 167.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{4} \mathrm{Si} 475.2024$, found 475.2022.
(6R)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-2-methyl-1,2,3,4,6,7-hexahydropyrrolo[1,2-a]piperazine-1,4-dione (36.2).

36.1

36.2
$\mathrm{Et}_{3} \mathrm{~N}(2.27 \mathrm{~g}, 22.4 \mathrm{mmol})$ and $\mathrm{MsCl}(1.25 \mathrm{~g}, 10.9 \mathrm{mmol})$ were added to a stirred solution of $\mathbf{3 6 . 1}(2.89 \mathrm{~g}, 6.40 \mathrm{mmol})$ and $\mathrm{Bu}_{4} \mathrm{NI}(236.4 \mathrm{mg}, 0.64 \mathrm{mmol})$ in DMF (12 mL). The mixture was heated at $70{ }^{\circ} \mathrm{C}$ for 19 h , cooled to room temperature, diluted with water and extracted with EtOAc (3 times). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($3.8 \times 15 \mathrm{~cm}$), using 3:1 EtOAc-hexane and 5:1 EtOAc-hexane, gave 36.2 (1.61 g, 58\%) as a foam: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3071, 3050, 2931, 2858, 1679, 1648, 1500, 1444, $1428,1404 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}, 9 \mathrm{H}), 2.87(\mathrm{dt}, J=6.1$, $3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.78(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.86(\mathrm{dd}, J=10.5,3.0 \mathrm{~Hz}$, $1 \mathrm{H}), 3.92(\mathrm{~d}, J=18.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.5,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.58-4.63(\mathrm{~m}, 1$ $\mathrm{H}), 6.11(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 19.3(\mathrm{~s}), 26.8(\mathrm{q}), 31.5(\mathrm{t}), 32.8$ (q), 53.3 (t$), 59.7$ (d), 63.0 (t), 118.0 (d), 127.6 (d), 127.7 (d), 129.7 (d), 129.8 (d), 133.1 (s), 133.2 (s$), 133.4$ (s), 135.5 (d), 135.6 (d), 155.9 (s), 159.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{30} \mathrm{~N}_{2} \mathrm{NaO}_{3} \mathrm{Si} 457.1918$, found 457.1919.

Ethyl (6R)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-2-methyl-1,4-dioxo-1,2,3,4,6,7-hexahydropyrrolo[1,2-a]piperazine-3-carboxylate (36.3a,b).

36.2

$\mathrm{ClCO}_{2} \mathrm{Et}(13.0 \mathrm{mg}, 0.12 \mathrm{mmol})$ was added to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $36.2(48.5 \mathrm{mg}, 0.11 \mathrm{mmol})$ in THF $(0.7 \mathrm{~mL})$, followed by $\left(\mathrm{Me}_{3} \mathrm{Si}\right)_{2} \mathrm{NK}$ (0.5 M in THF, $0.45 \mathrm{~mL}, 0.22 \mathrm{mmol}$), which was added at a fast dropwise rate. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 30 min and the mixture was quenched with saturated aqueous NaHCO_{3}. The cooling bath was removed and the mixture was allowed to warm to room temperature (ca 5 min). The mixture was extracted with EtOAc (3 times) and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.8 \times 15 \mathrm{~cm}$), using 3:10 EtOAc-hexane, 1:2 EtOAc-hexane, 4:5 EtOAc-hexane and 1:1 EtOAc-hexane, gave 36.3a ($22.0 \mathrm{mg}, 40 \%$) as a foam and 36.3b (17.8 $\mathrm{mg}, 32 \%$) as a foam.
36.3a: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3071, 2957, 2932, 2893, 2858, 1746, 1683, $1653,1589,1472,1463,1429,1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}$, $9 \mathrm{H}), 1.29(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.82-2.95(\mathrm{~m}, 5 \mathrm{H}), 3.84(\mathrm{dd}, J=10.5,3.0 \mathrm{~Hz}, 1$ H), $4.05(\mathrm{dd}, J=10.5,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.25(\mathrm{q}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.40(\mathrm{~s}, 1 \mathrm{H}), 4.58-$ $4.63(\mathrm{~m}, 1 \mathrm{H}), 6.19(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.36(\mathrm{q}, J=7.1 \mathrm{~Hz}, 4 \mathrm{H}), 7.40-7.43(\mathrm{~m}, 2$ H), 7.57-7.61 (m, 4 H$) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 4.1$ (q), 19.3 (s), 26.8 (q), 31.6 (t), 32.3 (q), 60.1 (d), 63.00 (t), 63.03 (t), 67.5 (d), 119.4 (d), 127.71 (d), 127.73 (d), 129.76 (d), 129.81 (d), 132.5 (s), 133.21 (s$), 133.25$ (s), 135.5 (d), 135.6 (d), 156.2 (s), 156.8 (s), 166.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si}$ 529.2129, found 529.2124.
36.3b: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3072, 2958, 2932, 2893, 2858, 1748, 1682, $1652,1589,1472,1463,1429,1401 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}$,
$9 \mathrm{H}), 1.18(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.83(\mathrm{dd}, J=7.8,3.0 \mathrm{~Hz}, 2 \mathrm{H}), 2.95(\mathrm{~s}, 3 \mathrm{H}), 3.81$ (dd, $J=10.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{dd}, J=10.3,5.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.12-4.26(\mathrm{~m}, 2 \mathrm{H})$, 4.60-4.63 (m, 2 H), 4.60-4.63 (m, 2 H), $6.18(\mathrm{t}, J=2.9 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.42(\mathrm{~m}, 6$ $\mathrm{H}), 7.57-7.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.0(\mathrm{q}), 19.3(\mathrm{~s}), 26.8(\mathrm{q})$, 31.8 (t), 32.2 (q), 60.6 (d), 62.1 (t), 62.9 (t), 67.9 (d), 119.2 (d), 127.77 (d), 127.82 (d), 129.8 (d), 129.9 (d), 132.6 (s), 133.13 ($s), 133.14$ (s), 135.5 (d), 135.6 (d), 156.0 (s), 156.3 (s), 165.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{34} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si}$ 529.2129, found 529.2133.

Ethyl (6R)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-3-[(methoxy-methyl)sulfanyl]-2-methyl-1,4-dioxo-1,2,3,4,6,7-hexahydropyrrolo[1,2-a]pip-erazine-3-carboxylate (36.4a,b).

DBU ($3.81 \mathrm{mg}, 0.025 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{3 6 . 3 a}$ (11.5 $\mathrm{mg}, 0.023 \mathrm{mmol})$ and $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OMe}(5.3 \mathrm{mg}, 0.023 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ mL). Stirring at room temperature was continued for 10 min and the mixture was evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 5 \times 7 \mathrm{~cm}$), using 7:10 EtOAc-hexane, gave 36.4a ($4.6 \mathrm{mg}, 35 \%$) as an oil and 36.4b ($4.1 \mathrm{mg}, 31 \%$) as an oil.
36.4a: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3071, 2957, 2932, 2894, 2858, 1753, 1682, $1653,1589,1472,1463,1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.04(\mathrm{~s}, 9 \mathrm{H})$, $1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.85-2.88(\mathrm{~m}, 2 \mathrm{H}), 2.928(\mathrm{~s}, 3 \mathrm{H}), 2.932(\mathrm{~s}, 3 \mathrm{H}), 3.82$ $(\mathrm{dd}, J=10.1,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.03(\mathrm{dd}, J=10.1,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.23-4.33(\mathrm{~m}, 2 \mathrm{H})$, $4.37(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.58(\mathrm{~d}, J=12.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.68-4.73(\mathrm{~m}, 1 \mathrm{H}), 6.21(\mathrm{t}$, $J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.33-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.57-7.62(\mathrm{~m}, 4 \mathrm{H}),{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta 14.0(\mathrm{q}), 19.4(\mathrm{~s}), 27.0(\mathrm{q}), 30.3(\mathrm{q}), 31.9(\mathrm{t}), 56.3(\mathrm{q}), 60.8(\mathrm{~d}), 62.0(\mathrm{t})$,
64.0 (t), 73.1 (t), 80.1 (s), 119.9 (d), 127.86 (d), 127.91 (d), 129.88 (d), 129.94 (d), 131.8 (s), 133.0 (s), 133.3 (s$), 135.5$ (d), 135.6 (d), 155.9 (s$), 158.0$ (s$), 165.2$ (s).; exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{SSi} 605.2112$, found 605.2106.
36.4b: FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3071, 2956, 2931, 2857, 1752, 1682, 1654, 1589, 1472, 1437, $1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.14(\mathrm{t}$, $J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.76-2.82(\mathrm{~m}, 1 \mathrm{H}), 2.86-2.93(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 3.28(\mathrm{~s}, 3$ H), $3.82(\mathrm{dd}, J=10.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.3,5.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.15(\mathrm{dq}, J=$ $10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.29(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=12.6 \mathrm{~Hz}, 1 \mathrm{H})$, 4.52-4.57 (m, 1 H), $4.64(\mathrm{~d}, ~ J=12.6 \mathrm{~Hz}, 1 \mathrm{H}), 6.22(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.44$ (m, 6 H$), 7.59-7.63(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 13.9$ (q), 19.4 (s), 26.8 (q), 30.1 (q), 32.0 (t), 56.5 (q), 61.1 (d), 63.1 (t$), 63.9$ (t), 72.6 (t), 79.8 (s$)$, 119.7 (d), 127.77 (d), 127.83 (d), 129.8 (d), 129.9 (d), 132.0 (s), 133.23 (s), 133.24 (s), 135.6 (d), 156.5 (s), 158.3 (s), 165.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{30} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{SSi} 605.2112$, found 605.2102 .
(6R)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8a-\{[(4-methoxyphenyl)-methyl]sulfanyl\}-2-methyloctahydropyrrolo[1,2-a]piperazine-1,4,8-trione (39.1a,b).

$\mathrm{NaH}(60 \% \mathrm{w} / \mathrm{w}$ in mineral oil, $323.2 \mathrm{mg}, 8.08 \mathrm{mmol})$ was added to a stirred solution of 25.8 ($2.0 \mathrm{~g}, 3.67 \mathrm{mmol}$) in THF (37 ml). The mixture was lowered into a pre-heated oil bath $\left(70^{\circ} \mathrm{C}\right)$ and heated for 30 min . The mixture was cooled to $0{ }^{\circ} \mathrm{C}$ and quenched with pH 7.0 buffer ($0.2 \mathrm{M}, 35 \mathrm{~mL}$) and hydrochloric acid ($1 \mathrm{M}, 8.1 \mathrm{mmol}$). The mixture was extracted with EtOAc (3
times) and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The resulting residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(30 \mathrm{~mL})$ and a solution of $\mathrm{TolSO}_{2} \mathrm{SPmb}(1.13 \mathrm{~g}, 3.67 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(4 \mathrm{~mL})$ was added, followed by $\mathrm{Et}_{3} \mathrm{~N}$ ($371.4 \mathrm{mg}, 3.67 \mathrm{mmol}$). The mixture was swirled occasionally for 30 min and filtered through a pad of silica gel ($2.2 \times 7 \mathrm{~cm}$), using 5:1 EtOAchexane. Evaporation of the solvent and flash chromatography of the residue over silica gel ($2.7 \times 15 \mathrm{~cm}$), using 2:5 EtOAc-hexane, 1:2 EtOAc-hexane, 1:1 EtOAc-hexane and then 3:2 EtOAc-hexane, gave 39.1a ($865 \mathrm{mg}, 39 \%$) as a foam and 39.1b ($398 \mathrm{mg}, 18 \%$) as a foam.
39.1a: $[\alpha]_{\mathrm{D}}=-28.57\left(c 1.00, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3071, 3049, 2999, 2955, 2890, 2858, 1765, 1689, 1609, 1588, 1512, 1486, 1472 1427, 1409 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.98(\mathrm{~s}, 9 \mathrm{H}), 2.62(\mathrm{dd}, J=18.0,2.8 \mathrm{~Hz}, 1 \mathrm{H})$, 2.91 (s, 3 H), 3.37 (dd, $J=18.0,9.8 \mathrm{~Hz}, 1 \mathrm{H}$), 3.53 (dd, $J=10.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}$), $3.71(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~s}, 3 \mathrm{H}), 4.00\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}=18.4 \mathrm{~Hz}, J_{\mathrm{AB}}=12.8\right.$ $\mathrm{Hz}, 2 \mathrm{H}), 4.25(\mathrm{dd}, J=10.6,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.31-4.36(\mathrm{~m}, 2 \mathrm{H}), 6.79-6.82(\mathrm{~m}, 2 \mathrm{H})$, 7.14-7.17 (m, 2 H$), 7.34-7.44$ (m, 6 H$), 7.49-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.55-7.57(\mathrm{~m}, 2 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.1$ (s), 26.6 (q), 33.7 (q), 35.0 (t), 36.2 (t), 52.7 (d), 53.2 (t), 55.3 (q), 62.3 (s$), 62.5$ (t), 114.1 (d), 127.2 (s$), 127.76$ (s$), 127.85$ (d), 129.9 (d), 130.0 (d), 130.4 (d), 132.6 (s), 135.5 (d), 135.7 (d), 159.0 (s), 160.7 (s), $165.4(\mathrm{~s}), 195.0(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}$ 625.2163, found 625.2154.
39.1b: $[\alpha]_{\mathrm{D}}=-18.23\left(c 1.29, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3071, 3050, 2999, 2957, 2932, 2892, 2848, 1771, 1726, 1687, 1610, 1588, 1512, 1487, 1464, $1427,1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 2.79(\mathrm{dd}, J=19.3$, $9.6 \mathrm{~Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.05(\mathrm{dd}, J=19.3,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.71(\mathrm{~d}, J=16.6 \mathrm{~Hz}$, $1 \mathrm{H}), 3.76-3.80(\mathrm{~m}, 4 \mathrm{H}), 4.01(\mathrm{dd}, J=10.5,4.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.07\left(\mathrm{ABq}, \Delta \mathrm{v}_{\mathrm{AB}}\right.$ $=21.7 \mathrm{~Hz}, J=12.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.30(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.48-4.55(\mathrm{~m}, 1 \mathrm{H}), 6.79-$ $6.83(\mathrm{~m}, 2 \mathrm{H}), 7.11-7.14(\mathrm{~m}, 2 \mathrm{H}), 7.35-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.62-7.67(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.2$ (s), 26.9 (q), 34.1 (q), 34.9 (t), 37.2 (t), 52.59 (d), 52.62 (t), 55.3 (q), 62.2 (s$), 63.6$ (t$), 114.0$ (d), 127.1 (s$), 127.8$ (d), 127.8 (s$)$, 129.8 (d), 129.9 (d), 130.4 (d), 132.90 (s), 132.93 (s), 135.56 (d), 135.58 (d),
$159.0(\mathrm{~s}), 160.5(\mathrm{~s}), 164.1(\mathrm{~s}), 198.6$ (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}$ 603.2343, found 603.2332.
($6 R, 8 S, 8 \mathrm{aR}$)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8-hydroxy-8a-
\{[(4-methoxyphenyl)methyl]sulfanyl\}-2-methyloctahydropyrrolo[1,2-a]piperazine-1,4-dione (39.2).

$\mathrm{NaBH}_{4}(54.4 \mathrm{mg}, 1.44 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 39.1a ($865 \mathrm{mg}, 1.44 \mathrm{mmol}$) in a mixture of THF $(15 \mathrm{~mL})$ and water (2 mL). Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 10 min and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, diluted with water and extracted with EtOAc (3 times). The combined organic extracts were washed with brine and dried $\left(\mathrm{MgSO}_{4}\right)$. Evaporation of the solvent gave $39.2(829 \mathrm{mg}, 95 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=$ 1.00 (с 1.16, CHCl_{3}); FTIR (CHCl_{3}, cast) 3451 (br), 3000, 2955, 2932, 2890, 2858, 1676, 1610, 1512, 1427, $1400 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.02$ (s, $9 \mathrm{H}), 2.28(\mathrm{dd}, J=12.3,7.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.44(\mathrm{q}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 2.78(\mathrm{~s}, 3 \mathrm{H})$, 3.18 (d, $J=4.4 \mathrm{~Hz}, 1 \mathrm{H}$), $3.57-3.63$ (m, 2 H), 3.78 (s, 3 H), 3.86 (d, $J=13.4 \mathrm{~Hz}, 1$ H), $4.02(\mathrm{~d}, ~ J=13.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.06(\mathrm{~d}, J=10.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.4,3.8$ $\mathrm{Hz}, 1 \mathrm{H}), 4.18(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.00(\mathrm{ddd}, J=11.2,6.8,4.4 \mathrm{~Hz}, 1 \mathrm{H}), 6.83$ $(\mathrm{d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.21(\mathrm{~d}, J=8.6 \mathrm{~Hz}, 2 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 4$ $\mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.2$ (s), 26.8 (q), 31.9 (t), 33.0 (q), 34.5 (t), 53.4 (t), 55.28 (q), 55.35 (d), 62.6 (t), 72.3 (s), 74.2 (d), 113.9 (d), 127.7 (d), 127.8 (d), 129.1 (s), 129.8 (d), 130.0 (d), 132.8 (s), 133.1 (s), 135.47 (d), 135.55 (d), 158.8 (s), 164.9 (s), 165.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{40} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}$ 627.2319, found 627.2313.
(1S,5R,7S)-7-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-3-(4-methoxy-
phenyl)-11-methyl-4-oxa-2-thia-8,11-diazatricyclo[6.4.0.0 ${ }^{1,5}$]dodecane-9,12dione (ent-40.1).

DDQ ($8.2 \mathrm{mg}, 0.036 \mathrm{mmol}$) was added to a stirred mixture of ent-39.2 (prepared from 33.6 by the same methods as were used for making 39.2, 19.9 mg , $0.033 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{mmol})$ and water ($28 \mu \mathrm{~L}$). Stirring at room temperature was continued for 12 h and the mixture was filtered through a pad of silica gel, using 7:10 EtOAc-hexane. Evaporation of the solvent and flash chromatography of the residue over silica gel ($0.5 \times 7 \mathrm{~cm}$), using 1:5 EtOAchexane, 1:3 EtOAc-hexane and 2:5 EtOAc-hexane, gave ent-40.1 (10.4 mg , $52 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=55.38\left(c 0.46, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3071, 3050, 2999, 2956, 2931, 2895, 2857, 1686, 1612, 1588, 1515, 1488, 1472, 1463, 1427, $1401 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 1.03(\mathrm{~s}, 9 \mathrm{H}), 2.31-2.46(\mathrm{~m}, 2 \mathrm{H}), 3.05$ $(\mathrm{s}, 3 \mathrm{H}), 3.75(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.79-3.83(\mathrm{~m}, 4 \mathrm{H}), 4.19(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 1 \mathrm{H})$, $4.31-4.38(\mathrm{~m}, 1 \mathrm{H}), 4.43(\mathrm{dd}, J=10.5,4.3 \mathrm{~Hz}, 1 \mathrm{H}), 5.36(\mathrm{dd}, J=5.8,3.5 \mathrm{~Hz}, 1$ H), $6.43(\mathrm{~s}, 1 \mathrm{H}), 6.87-6.92(\mathrm{~m}, 2 \mathrm{H}), 7.36-7.47(\mathrm{~m}, 8 \mathrm{H}), 7.60-7.64(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta 19.3$ (s), 26.8 (q), 34.0 (q), 34.4 (t$), 53.9$ (t), 55.4 (q), 60.2 (d), 61.4 (t), 84.3 (s), 86.0 (d), 90.3 (d), 114.1 (d), 127.2 (s), 127.77 (d), 127.83 (d), 128.7 (d), 129.8 (d), 129.9 (d), 132.9 (s), 133.2 (s), 135.6 (d), 135.7 (d), 160.7 (s), 164.9 (s), 166.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}$ 625.2163, found 625.2159.
($6 S, 8 R, 8 a S)-6-\{[($ tert-Butyldiphenylsilyl)oxy]methyl\}-8a-\{[(4-methoxy-phenyl)methyl]sulfanyl\}-2-methyl-1,4-dioxooctahydropyrrolo[1,2-a]piper-azin-8-yl benzoate (ent-39.3).

$\mathrm{Et}_{3} \mathrm{~N}(30.4 \mathrm{mg}, 0.3 \mathrm{mmol})$ and $\mathrm{PhCOCl}(31.4 \mathrm{mg}, 0.22 \mathrm{mmol})$ were added to a stirred solution of ent-39.2 ($30.0 \mathrm{mg}, 0.05 \mathrm{mmol}$) and DMAP $(0.61 \mathrm{mg}, 0.005$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. The mixture was refluxed for 18 h , cooled to room temperature and diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(15 \mathrm{~mL})$. The solution was washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 10 \mathrm{~mL})$ and saturated aqueous $\mathrm{NaHCO}_{3}(10 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.5 \times 7 \mathrm{~cm}$), using 1:5 EtOAc-hexane, 3:10 EtOAc-hexane and 2:5 EtOAchexane, gave ent-39.3 ($33.6 \mathrm{mg}, 95 \%$) as a white solid: $\mathrm{mp} 151-153{ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=-$ 41.53 (c 0.87, $\mathrm{CH}_{2} \mathrm{Cl}_{2}$); FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3071, 2998, 2955, 2932, 2858, 1726, 1682, 1607, 1585, 1512, 1471, 1451, $1411 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ 1.06 (s, 9 H), 2.48-2.54 (m, 1 H), 2.65-2.68 (m, 4 H), 3.56 (dd, $J=10.6,2.0 \mathrm{~Hz}, 1$ H), $3.59(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{~s}, 3 \mathrm{H}), 3.94(\mathrm{~d}, J=13.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04(\mathrm{~d}, J$ $=13.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.10(\mathrm{dd}, J=10.5,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.17-4.19(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{~d}, J=$ $17.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.31(\mathrm{dd}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 6.81-6.84(\mathrm{~m}, 2 \mathrm{H}), 7.17-7.21(\mathrm{~m}$, 2 H), 7.35-7.48 (m, 8 H), 7.56-7.60 (m, 3 H), 7.69-7.71 (m, 2 H), 8.15-8.17 (m, 2 $\mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.1$ (s$), 26.7$ (q), 30.9 (t), 33.2 (q), 34.8 (t), 53.5 (t), 55.4 (d), 55.8 (q), 62.6 (t), 71.1 (s$), 74.6$ (d), 113.9 (d), 127.77 (d), 127.84 (d), 128.5 (d), 129.3 (s), 129.83 (d), 129.86 (d), 129.91 (d), 130.0 (d), 130.2 (s), 132.8 (s), 132.9 (s , 133.1 (d), 135.7 (d), 135.8 (d), 158.9 (s$), 164.1$ (s), 165.2 (s), 165.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{40} \mathrm{H}_{44} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{SSi}$ 731.2582 , found 731.2575 .
(6S,8R)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8a-hydroxy-2-methyl-
1,4-dioxooctahydropyrrolo[1,2-a]piperazin-8-yl 4-methoxybenzoate (ent40.2).

ent-39.2

DDQ ($46.5 \mathrm{mg}, 0.21 \mathrm{mmol}$) was added to a stirred mixture of ent-39.2 ($27.5 \mathrm{mg}, 0.046 \mathrm{mmol}$), $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$. Stirring at room temperature was continued for 19 h and the mixture was filtered through a pad of Celite, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation and preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 8 \mathrm{~cm} \times 10 \mathrm{~cm}$), using 2:1 EtOAc-hexane, gave ent-40.2 ($17.6 \mathrm{mg}, 62 \%$) as a thick oil: FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3331, 3072, 2999, 2957, 2931, 2894, 2858, $1719,1684,1607,1513,1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.07(\mathrm{~s}, 7.6 \mathrm{H})$, $1.08(\mathrm{~s}, 1.4 \mathrm{H}), 2.25-2.32(\mathrm{~m}, 1 \mathrm{H}), 2.62-2.72(\mathrm{~m}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 2.5 \mathrm{H}), 3.02(\mathrm{~s}$, $0.5 \mathrm{H}), 3.56(\mathrm{dd}, J=10.6,1.8 \mathrm{~Hz}, 0.2 \mathrm{H}), 3.61(\mathrm{dd}, J=10.6,2.0 \mathrm{~Hz}, 0.8 \mathrm{H}), 3.69-$ $3.74(\mathrm{~m}, 1.8 \mathrm{H}), 3.84(\mathrm{~s}, 0.5 \mathrm{H}), 3.85(\mathrm{~s}, 2.5 \mathrm{H}), 3.97(\mathrm{~d}, J=17.3 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.10$ $(\mathrm{dd}, J=10.6,3.4 \mathrm{~Hz}, 0.8 \mathrm{H}), 4.23(\mathrm{dd}, J=10.7,3.0 \mathrm{~Hz}, 0.2 \mathrm{H}), 4.29-4.36(\mathrm{~m}, 1.8$ H), 4.55-4.59 (m, 0.2 H), $5.68(\mathrm{~d}, J=4.4 \mathrm{~Hz}, 0.2 \mathrm{H}), 6.01(\mathrm{dd}, J=10.6,7.6 \mathrm{~Hz}$, $0.8 \mathrm{H}), 6.85-6.87(\mathrm{~m}, 0.3 \mathrm{H}), 6.89-6.92(\mathrm{~m}, 1.7 \mathrm{H}), 7.36-7.46(\mathrm{~m}, 6 \mathrm{H}), 7.58-7.61$ (m, 2 H), 7.63-7.65 (m, 0.3 H), 7.67-7.69 (m, 1.7 H), 7.76-7.78 (m, 0.3 H), 7.998.02 (m, 1.7 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.1,19.3,26.8,26.9,29.7,30.8$, $33.3,33.6,52.9,53.16,53.20,55.49,55.53,55.9,58.0,62.4,63.0,72.78,72.81$, $78.1,84.8,88.0,113.7,113.8,121.9,122.0,127.77,127.84,128.0,128.1,129.8$, $129.9,130.2,130.4,131.7,131.9,132.9,133.0,135.5,135.67,135.73,163.08$, $163.12,163.67,163.69,164.4,164.5,165.4,165.7$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{33} \mathrm{H}_{38} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{Si}$ 625.2340, found 625.2336.
(6S,8R)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8a-hydroxy-2-methyl-1,4-dioxooctahydropyrrolo[1,2-a]piperazin-8-yl benzoate (ent-40.3).

ent-39.3

DDQ ($9.6 \mathrm{mg}, 0.042 \mathrm{mmol}$) was added to a stirred mixture of ent-39.3 (30 $\mathrm{mg}, 0.042 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$ and water $(0.1 \mathrm{~mL})$. Stirring at room temperature was continued for 3 h , more $\mathrm{DDQ}(9.6 \mathrm{mg}, 0.042 \mathrm{mmol})$ was added and stirring was continued for 6 h . The mixture was filtered through a pad of Celite, using $\mathrm{CH}_{2} \mathrm{Cl}_{2}$. Evaporation of the solvent and flash chromatography of the residue over silica gel ($0.5 \times 7 \mathrm{~cm}$), using 3:5 EtOAc-hexane, 1:1 EtOAc-hexane and 3:2 EtOAc-hexane, gave ent-40.3 $(14.1 \mathrm{mg}, 57 \%)$ as a foam: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3324 (br), 3072, 2956, 2930, 2893, 2857, 1727, 1684, 1602, 1589, 1472, $1451,1428,1408 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.07(\mathrm{~s}, 8 \mathrm{H}), 1.09(\mathrm{~s}, 1 \mathrm{H})$, 2.25-2.34 (m, 1 H), $2.71(\mathrm{ddd}, J=12.5,7.6,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 2.7 \mathrm{H}), 3.03(\mathrm{~s}$, $0.3 \mathrm{H}), 3.54(\mathrm{~s}, 1 \mathrm{H}), 3.61(\mathrm{dd}, J=10.7,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.72(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, $3.98(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 0.1 \mathrm{H}), 4.12(\mathrm{dd}, J=10.7,3.4 \mathrm{~Hz}, 0.9 \mathrm{H}), 4.25(\mathrm{dd}, J=10.6$, $3.1 \mathrm{~Hz}, 0.1 \mathrm{H}), 4.30-4.36(\mathrm{~m}, 1.9 \mathrm{H}), 5.71(\mathrm{~d}, J=4.5 \mathrm{~Hz}, 0.1 \mathrm{H}), 6.05(\mathrm{dd}, J=$ $10.7,7.6 \mathrm{~Hz}, 0.9 \mathrm{H}), 7.36-7.48(\mathrm{~m}, 8 \mathrm{H}), 7.55-7.61(\mathrm{~m}, 3 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 0.2 \mathrm{H})$, 7.66-7.70 (m, 1.8 H), 7.81-7.84 (m, 0.2 H), 8.04-8.08 (m, 1.8 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.2$ (s), 26.8 (q), 27.0 (q), 28.6 (t), 30.7 (t), 33.3 (q), 33.6 (q), 52.9 (t), 53.1 (t), $56.0(\mathrm{~d}), 58.0(\mathrm{~d}), 62.3$ (t), $63.0(\mathrm{t}), 73.1$ (d), 78.4 (d), 84.7 (s), 87.9 (s), 127.78 (d), 127.85 (d), 128.0 (d), 128.1 (d), 128.4 (d), 128.5 (d), 129.6 (s), 129.8 (d), 129.85 (d), 129.88 (d), 132.9 (s), 133.0 (s), 133.4 (d), 135.5 (d), 135.69 (d), 135.74 (d), 164.7 (s), 165.4 (s), 165.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{Si} 595.2235$, found 595.2227.
(6S,8R)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-8,8a-dihydroxy-2-methyloctahydropyrrolo[1,2-a]piperazine-1,4-dione (ent-40.5a,b).

ent-39.2

ent-40.5a,b

2-Nitrobenzenesulfenyl chloride ($9.5 \mathrm{mg}, 0.05 \mathrm{mmol}$) was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\boldsymbol{e n t}$ - $\mathbf{3 9 . 2}(25.3 \mathrm{mg}, 0.042 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1$ mL). Stirring at $0^{\circ} \mathrm{C}$ was continued for 70 min . The mixture was evaporated and the residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporated again. The residue was left at room temperature for 3 h and flash chromatography of the mixture over silica gel ($0.5 \times 7 \mathrm{~cm}$), using 1:2 EtOAc-hexane, 1:1 EtOAc-hexane, 2:1 EtOAchexane, 3:1 EtOAc-hexane, 6:1 EtOAc-hexane, 10:1 EtOAc-hexane and pure EtOAc, gave ent-40.5a ($10.3 \mathrm{mg}, 51 \%$) as a foam and $\boldsymbol{e n t} \mathbf{- 4 0 . 5 b}(3.9 \mathrm{mg}, \mathbf{2 0 \%}$) as a foam.
ent-40.5a: $[\alpha]_{D}=19.92\left(c 0.98, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3372 (br), 3072, 3049, 3014, 2957, 2931, 2858, 1667, 1589, 1471, 1428, $1404 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.02$ (s, 9 H), 2.15 (ddd, $J=12.6,10.9,9.7 \mathrm{~Hz}, 1 \mathrm{H}$), $2.30(\mathrm{ddd}, J=12.6,7.6,1.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H}), 3.30(\mathrm{~d}, J=2.3 \mathrm{~Hz}, 1 \mathrm{H}), 3.64$ (dd, $J=10.6,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), $3.68(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.08(\mathrm{dd}, J=10.6,3.7 \mathrm{~Hz}$, $1 \mathrm{H}), 4.15-4.18(\mathrm{~m}, 1 \mathrm{H}), 4.22(\mathrm{~s}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{ddd}, J=$ $10.4,7.8,2.2 \mathrm{~Hz}, 1 \mathrm{H}$), 7.34-7.39 (m, 4 H), 7.41-7.45 (m, 2 H), 7.54-7.56 (m, 2 H), 7.57-7.60 (m, 2 H$) ;{ }^{13} \mathrm{C} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.2$ (s$), 26.8(\mathrm{q}), 31.2(\mathrm{t})$, 33.1 (q), 53.2 (t), 55.3 (d), 63.0 (t), 71.5 (d), 83.6 ($s), 127.79$ (d), 127.83 (d), 129.9 (d), 132.9 (s), 133.1 (s), 135.5 (d), 135.6 (d), 165.4 (s), 167.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si} 491.1973$, found 491.1971 .
ent-40.5b: $[\alpha]_{D}=-86.44\left(c 0.39, \mathrm{CHCl}_{3}\right)$; FTIR $\left(\mathrm{CHCl}_{3}\right.$, cast) 3338 (br), 3072, 3050, 2958, 2932, 2888, 2858, 1654, 1590, 1472, 1463, 1442, 1429, 1407 $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 2.07(\mathrm{dd}, J=14.3,8.7 \mathrm{~Hz}, 1 \mathrm{H})$,
2.44 (dddd, $J=14.4,7.5,5.3,2.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.85(\mathrm{t}, J=2.2 \mathrm{~Hz}, 1 \mathrm{H}), 3.05(\mathrm{~s}, 3 \mathrm{H})$, $3.44(\mathrm{dd}, J=10.6,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.82(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.32(\mathrm{~d}, J=17.1 \mathrm{~Hz}, 1$ H), $4.36(\mathrm{dd}, J=10.6,2.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.52-4.56(\mathrm{~m}, 2 \mathrm{H}), 4.57(\mathrm{~s}, 1 \mathrm{H}), 7.38-7.42$ (m, 4 H$), 7.43-7.48(\mathrm{~m}, 2 \mathrm{H}), 7.56-7.58(\mathrm{~m}, 2 \mathrm{H}), 7.61-7.63(\mathrm{~m}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.3$ (s), 27.0 (q), 29.2 (t), 33.5 (q), 53.0 (t), 58.4 (d), 61.9 (t), 76.7 (d), 89.6 (s), 128.0 (d), 128.1 (d), 130.3 (d), 130.4 (d), 131.8 (s), 131.9 (s), 135.5 (d), 135.7 (d), $163.6(\mathrm{~s}), 164.8(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{25} \mathrm{H}_{32} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si} 491.1973$, found 491.1969.

(Ethylthio)methanol (42.2). ${ }^{63}$

EtSH

$\mathbf{4 2 . 1}$$\quad$	$\mathrm{EtSCH}_{2} \mathrm{OH}$
$\mathbf{4 2 . 2}$	

A solution of MeONa in $\mathrm{MeOH}(4.6 \mathrm{M}, 0.03 \mathrm{~mL})$ was added to a stirred mixture of EtSH ($5.89 \mathrm{~g}, 94.5 \mathrm{mmol}$) and paraformaldehyde ($2.83 \mathrm{~g}, 94.5 \mathrm{mmol}$). The reaction flask was lowered into a preheated oil bath $\left(40^{\circ} \mathrm{C}\right)$ and the mixture was refluxed for 30 min . During this time all the solid dissolved. The mixture was cooled to room temperature and the resulting crude material (42.2) was used for the next step: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.31(\mathrm{t}, J=7.3 \mathrm{~Hz}, 3 \mathrm{H}), 1.79$ (br $\mathrm{s}, 1 \mathrm{H}), 2.72(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 4.73(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 15.1 (q), 24.6 (t$), 65.7$ (t).

(1,1-Dimethylethyl)[(ethylthio)methoxy]dimethylsilane (42.3). ${ }^{63}$

$\mathrm{Et}_{3} \mathrm{~N}(5.37 \mathrm{~g}, 53.0 \mathrm{mmol})$ and $t-\mathrm{BuMe}_{2} \mathrm{SiCl}(7.3 \mathrm{~g}, 48.6 \mathrm{mmol})$ were added sequentially to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of 42.2 (4.065 g, 44.2 mmol$)$ and DMAP ($216 \mathrm{mg}, 1.77 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(45 \mathrm{~mL})$. The mixture was stirred at $0^{\circ} \mathrm{C}$ for 10 min , the cooling bath was removed, and stirring was continued for

4 h . The mixture was diluted was $\mathrm{CH}_{2} \mathrm{Cl}_{2}$, and the organic phase was washed twice with water and twice with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give crude 42.3 ($8.5 \mathrm{~g}, 93 \%$), which could be used for the next step or distilled before use (bp $53-55{ }^{\circ} \mathrm{C}$, 4.3 Torr): ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $0.12(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.30(\mathrm{t}, J=7.4 \mathrm{~Hz}, 3 \mathrm{H}), 2.67(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H})$, $4.81(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-5.0(\mathrm{q}), 15.0(\mathrm{q}), 18.2(\mathrm{~s}), 24.6(\mathrm{t})$, 25.8 (q), 66.0 (t).

Ethanethiol (42.1) from 42.3.

42.3

EtSH
42.1
$\mathrm{Bu}_{4} \mathrm{NF}(1.0 \mathrm{M}$ in THF, $0.13 \mathrm{~mL}, 0.13 \mathrm{mmol})$ was added to a solution of 42.3 ($23.5 \mathrm{mg}, 0.11 \mathrm{mmol}$) in $\mathrm{CD}_{2} \mathrm{Cl}_{2}(0.7 \mathrm{~mL})$ in an NMR tube. The ${ }^{1} \mathrm{H}$ NMR spectrum showed that ca 76% of $\mathbf{4 2 . 3}$ was converted into $\mathbf{4 2 . 1}$ within 5 min , based on changes to the $\mathrm{SCH}_{2} \mathrm{O}$ signal.

(Chloromethoxy)(1,1-dimethylethyl)dimethylsilane (42.4). ${ }^{63}$

A solution of $\mathrm{SO}_{2} \mathrm{Cl}_{2}(2.81 \mathrm{~g}, 20.83 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$ was added dropwise to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 2 . 3}$ ($\left.4.29 \mathrm{~g}, 20.83 \mathrm{mmol}\right)$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(21 \mathrm{~mL})$. Stirring at $0^{\circ} \mathrm{C}$ was continued for 30 min , the cooling bath was removed, and stirring was continued for 10 min . The mixture was evaporated on a water bath at $22-25^{\circ} \mathrm{C}$ (ca 100 Torr). The residue was diluted with dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporated in the same way, and the process of dilution with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and evaporation was repeated for $3-4$ times until the ${ }^{1} \mathrm{H}$ NMR showed that the residue was pure and no $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ remained. Compound $\mathbf{4 2 . 4}$ was a slightly yellow liquid ($3.23 \mathrm{~g}, 86 \%$). This compound is not stable, but it could be kept in a
freezer ($-20^{\circ} \mathrm{C}$) for $1-2$ days; the decomposition was evident as fine solid particles formed on the bottom of the flask (probably paraformaldehyde): ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.20(\mathrm{~s}, 6 \mathrm{H}), 0.91$ (s, 9 H$), 5.60(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.2(\mathrm{q}), 17.8(\mathrm{~s}), 25.5(\mathrm{q}), 76.5(\mathrm{t})$.

(1,1-Dimethylethyl)dimethyl[[(triphenylmethyl)thio]methoxy]silane

(43.1a).

$$
\underset{\text { 43.1 }}{\mathrm{Ph}_{3} \mathrm{CSH}} \quad \longrightarrow \quad \mathrm{Ph}_{3} \mathrm{CSCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t
$$

Proton sponge ($20.4 \mathrm{mg}, 0.095 \mathrm{mmol}$) was added to a stirred solution of $43.1(10.5 \mathrm{mg}, 0.038 \mathrm{mmol})$ and $t-\mathrm{BuMe}_{2} \mathrm{SiOCH}_{2} \mathrm{Cl}(8.2 \mathrm{mg}, 0.046 \mathrm{mmol})$ in dry DMF (degassed using three freeze-pump-thaw cycles, 0.5 mL). Stirring at room temperature was continued for 5.5 h . The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$ and washed with water (5 mL), aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 5 \mathrm{~mL})$ and water (5 mL). The organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 10 \mathrm{~cm} \times 10 \mathrm{~cm}$), using $2.2 \% \mathrm{EtOAc}$ in hexanes, gave 43.1a ($12.3 \mathrm{mg}, 77 \%$): mp $61-64{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3058,3031,2954$, 2929, 2885, 2856, 1492, 1471, 1463, $1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta-$ $0.03(\mathrm{~s}, 6 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 4.48(\mathrm{~s}, 2 \mathrm{H}), 7.21-7.26(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.32(\mathrm{~m}, 6 \mathrm{H})$, 7.38-7.44 (m, 6 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.4$ (q), 18.1 (s), 25.8 (q), 66.7 (t), 68.6 (s), 126.7 (d), 127.7 (d), 130.3 (d), 145.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{26} \mathrm{H}_{32} \mathrm{NaOSSi} 443.1835$, found 443.1843.
(1,1-Dimethylethyl)dimethyl[(2-naphthylthio)methoxy]silane (43.2a).

Proton sponge ($26.8 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added to a solution of 43.2 (8.0 $\mathrm{mg}, 0.05 \mathrm{mmol})$ and $t-\mathrm{BuMe}_{2} \mathrm{SiOCH}_{2} \mathrm{Cl}(10.8 \mathrm{mg}, 0.060 \mathrm{mmol})$ in dry DMF (degassed using three freeze-pump-thaw cycles, 0.6 mL). Stirring at room temperature was continued for 2 h and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ (10 $\mathrm{mL})$. The mixture was washed with water (6 mL), aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 6 \mathrm{~mL})$ and water $(6 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 7 \mathrm{~cm} \times 5 \mathrm{~cm}$), using $2.2 \% \mathrm{EtOAc}$ in hexane, gave 43.2a ($11.9 \mathrm{mg}, 78 \%$) as a viscous oil: FTIR (CDCl_{3}, cast) 3055, 2954, 2929, 2895, 2857, 1626, 1591, 1502, 1471, 1463, $1442 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta$ $0.12(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 5.22(\mathrm{~s}, 2 \mathrm{H}), 7.40-7.52(\mathrm{~m}, 2 \mathrm{H}), 7.56(\mathrm{dd}, J=8.5$, $1.9 \mathrm{~Hz}, 1 \mathrm{H}$), 7.71-7.85 (m, 3 H), 7.94-8.03 (m, 1 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 100$ $\mathrm{MHz})$ § $-5.0(\mathrm{q}), 18.2$ (s), 25.8 (q), 69.0 (t), 125.8 (d), 126.5 (d), 127.4 (d), 127.7 (d), 128.1 (d), 128.3 (d), 128.4 (d), 132.1 (s , 133.8 (s$), 133.8$ (s$)$; exact mass m / z calcd for $\mathrm{C}_{17} \mathrm{H}_{24} \mathrm{OSSi} 304.1317$, found 304.1316.

3-[(Triphenylmethyl)thio]propane-1-thiol (43.3).

Pyridine ($226.2 \mathrm{mg}, 2.86 \mathrm{mmol}$) was added to a stirred solution of propane-1,3-dithiol ($1.55 \mathrm{~g}, 14.3 \mathrm{mmol})$ and $\mathrm{Ph}_{3} \mathrm{CCl}(400 \mathrm{mg}, 1.43 \mathrm{mmol})$ in dry DMF (20 mL). Stirring at room temperature was continued for 1.5 days. The mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(60 \mathrm{~mL})$ and washed with water $(3 \times 50 \mathrm{~mL})$, and the organic phase was dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. The excess of propane-1,3dithiol was evaporated under high vacuum at room temperature. Dry flash chromatography ${ }^{77}$ (which was arbitrarily tried instead of flash chromatography) of the residue over silica gel ($4 \times 5 \mathrm{~cm}$), by gradient elution, ${ }^{77}$ using hexane to 1:20 EtOAc-hexane, gave 43.3 ($400 \mathrm{mg}, 80 \%$) containing some impurities: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.18(\mathrm{t}, J=8.1 \mathrm{~Hz}, 1 \mathrm{H}), 1.64$ (quintet, $J=7.1 \mathrm{~Hz}, 2 \mathrm{H}$),
$2.27(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 2.45(\mathrm{q}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.17-7.24(\mathrm{~m}, 3 \mathrm{H}), 7.25-7.32$ (m, 6 H), 7.35-7.49 (m, 6H).

(1,1-Dimethylethyl)dimethyl[[[3-[(triphenylmethyl)thio]propyl]thio]-

 methoxy]silane (43.3a).
$t-\mathrm{BuMe}_{2} \mathrm{SiOCH}_{2} \mathrm{Cl}(6.42 \mathrm{mg}, 0.036 \mathrm{mmol})$ was added to a stirred solution of $43.3(7.2 \mathrm{mg}, 0.021 \mathrm{mmol})$ and 2,6 -lutidine ($7.73 \mathrm{mg}, 0.072 \mathrm{mmol}$) in dry DMF (degassed using three freeze-pump-thaw cycles, 0.6 mL). The mixture was heated at $55^{\circ} \mathrm{C}$ for 3.5 h , cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(10$ $\mathrm{mL})$. The mixture was washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 5 \mathrm{~mL})$ and water (4 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 7 \mathrm{~cm} \times 5 \mathrm{~cm}$), using 2.5\% EtOAc in hexane, gave 43.3a ($6.2 \mathrm{mg}, 61 \%$) as a viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3083,3057,2954,2928,2856,1595,1489$, $1471,1463,1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H})$, 1.72 (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}$), $2.30(\mathrm{t}, J=7.2 \mathrm{~Hz}, 2 \mathrm{H}), 2.62(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H})$, 4.73 (s, 2 H), $7.20-7.27(\mathrm{~m}, 3 \mathrm{H}), 7.27-7.35(\mathrm{~m}, 6 \mathrm{H}), 7.40-7.48(\mathrm{~m}, 6 \mathrm{H}){ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.0(\mathrm{q}), 18.2$ (s$), 25.8(\mathrm{q}), 28.9(\mathrm{t}), 29.8(\mathrm{t}), 31.1(\mathrm{t})$, 66.3 (t), 66.6 (s$), 126.6$ (d), 127.9 (d), 129.6 (d), 145.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{29} \mathrm{H}_{38} \mathrm{NaOS}_{2} \mathrm{Si} 517.2026$, found 517.2022.
S-[[[(1,1-Dimethylethyl)dimethylsilyl]oxy]methyl]- N-[(phenyl-methoxy)carbonyl]-L-cysteine methyl ester (43.4a).

$t-\mathrm{BuMe}_{2} \mathrm{SiOCH}_{2} \mathrm{Cl}(9.9 \mathrm{mg}, 0.055 \mathrm{mmol})$ was added to a stirred solution of N-[(phenylmethoxy)carbonyl]-L-cysteine methyl ester (43.4) ${ }^{78}(8.2 \mathrm{mg}, 0.030$ mmol) and 2,6-lutidine ($11.3 \mathrm{mg}, 0.11 \mathrm{mmol}$) in dry DMF (degassed using three freeze-pump-thaw cycles, 0.5 mL). The mixture was heated at $55^{\circ} \mathrm{C}$ for 3 h , cooled to room temperature and diluted with $\mathrm{Et}_{2} \mathrm{O}(10 \mathrm{~mL})$. The mixture was washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 5 \mathrm{~mL})$ and water $(4 \mathrm{~mL})$, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 10 \mathrm{~cm} \times 10 \mathrm{~cm}$), using 1:2 EtOAc-hexane, gave 43.4 ($10.7 \mathrm{mg}, 86 \%$) as a viscous oil: $[\alpha]_{\mathrm{D}}=$ $5.85\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}, c 0.55\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3318, 3066, 2954, 2930, 2896, 2857, $1727,1529,1472,1464,1456,1437 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right) \delta 0.09(\mathrm{~s}, 3$ H), 0.11 (s, 3 H), $0.87(\mathrm{~s}, 9 \mathrm{H}), 3.00(\mathrm{dd}, J=14.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.26(\mathrm{dd}, J=$ $14.5,5.1 \mathrm{~Hz}, 1 \mathrm{H}), 3.75(\mathrm{~s}, 3 \mathrm{H}), 4.69(\mathrm{dd}, J=9.3,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.72(\mathrm{dd}, J=$ $11.2,0.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.7-4.85(\mathrm{~m}, 1 \mathrm{H}), 5.12(\mathrm{~s}, 2 \mathrm{H}), 6.33(\mathrm{~d}, J=8.2 \mathrm{~Hz}, 1 \mathrm{H})$, 7.27-7.44 (m, 5 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 100 \mathrm{MHz}\right) \delta-5.4$ (q), -5.1 (q), 18.3 (s), 25.7 (q), 35.2 (t), 52.5 (q), 53.9 (d), 67.0 (t), 67.7 (t), 128.1 (d), 128.2 (d), 128.5 (d), $136.3(\mathrm{~s}), 156.1(\mathrm{~s}), 171.1(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{31} \mathrm{NNaO}_{5} \mathrm{SSi} 436.1584$, found 436.1577.

(1,1-Dimethylethyl)dimethyl[(dodecylthio)methoxy]silane (43.5a).

$t-\mathrm{BuMe}_{2} \mathrm{SiOCH}_{2} \mathrm{Cl}(12.5 \mathrm{mg}, 0.069 \mathrm{mmol})$ was added to a stirred solution of $43.5(10 \mathrm{mg}, 0.049 \mathrm{mmol})$ and 2,6 -lutidine $(18.5 \mathrm{mg}, 0.17 \mathrm{mmol})$ in dry DMF (degassed using three freeze-pump-thaw cycles, 0.5 mL). Stirring at room temperature was continued for 21 h and the mixture was diluted with hexane (10 $\mathrm{mL})$. The mixture was washed with water (5 mL), aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M} .5 \mathrm{~mL}$) and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 1:20 $\mathrm{CH}_{2} \mathrm{Cl}_{2}$-hexane and then $1: 10 \mathrm{CH}_{2} \mathrm{Cl}_{2}-$ hexane, gave 43.5a ($13.6 \mathrm{mg}, 80 \%$) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 2955,

2926, 2855, $1464 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.12(\mathrm{~s}, 6 \mathrm{H}), 0.88(\mathrm{t}, J=$ $7.0 \mathrm{~Hz}, 3 \mathrm{H}), 0.91(\mathrm{~s}, 9 \mathrm{H}), 1.17-1.44(\mathrm{~m}, 18 \mathrm{H}), 1.62$ (quintet, $J=7.5 \mathrm{~Hz}, 2 \mathrm{H}$), $2.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.79(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.0(\mathrm{q})$, $14.2(\mathrm{q}), 18.2(\mathrm{~s}), 22.7(\mathrm{t}), 25.9(\mathrm{q}), 29.0(\mathrm{t}), 29.3(\mathrm{t}), 29.4(\mathrm{t}), 29.6(\mathrm{t}), 29.67(\mathrm{t})$, $29.69(\mathrm{t}), 29.71(\mathrm{t}), 29.9(\mathrm{t}), 30.8(\mathrm{t}), 32.0(\mathrm{t}), 66.5(\mathrm{t})$; exact mass m / z calcd for $\mathrm{C}_{15} \mathrm{H}_{33} \mathrm{OSSi}\left(\mathrm{M}-\mathrm{C}_{4} \mathrm{H}_{9}\right)$ 289.2022, found 289.2023.

The reaction was also carried out using 0.600 g of the thiol and we obtained a yield of 84%.

2-[[[[(1,1-Dimethyl)ethyl)dimethylsilyl]oxy]methyl]thio]ethanol

(43.6a).

Thiol $43.6(56.3 \mathrm{mg}, 0.72 \mathrm{mmol})$ was added to a stirred solution of t BuOK ($62.2 \mathrm{mg}, 0.55 \mathrm{mmol}$) in dry DMF (degassed using three freeze-pumpthaw cycles, 5 mL). Stirring at room temperature was continued for 13 min and t $\mathrm{BuMe}_{2} \mathrm{SiOCH}_{2} \mathrm{Cl}(100 \mathrm{mg}, 0.55 \mathrm{mmol})$ was added dropwise. Stirring at room temperature was continued for 15 min and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}(30$ mL), washed with water (3 x 10 mL), dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.5 \times 15 \mathrm{~cm}$), using 1:10 EtOAchexane and 1:5 EtOAc-hexane, gave 43.6a ($77.5 \mathrm{mg}, 63 \%$) as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3382,2955,2930,2886,2858,1472,1464,1443,1410 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.15(\mathrm{~s}, 6 \mathrm{H}), 0.92(\mathrm{~s}, 9 \mathrm{H}), 2.86(\mathrm{t}, J=5.3 \mathrm{~Hz}, 2$ H), $3.42(\mathrm{t}, J=6.6 \mathrm{~Hz}, 1 \mathrm{H}), 3.78(\mathrm{dt}, J=6.4,5.3 \mathrm{~Hz}, 2 \mathrm{H}), 4.80(\mathrm{~s}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.2(\mathrm{q}), 18.2$ (s$), 25.7(\mathrm{q}), 37.1(\mathrm{t}), 62.5(\mathrm{t}), 67.6(\mathrm{t})$; exact mass m / z calcd for $\mathrm{C}_{7} \mathrm{H}_{17} \mathrm{OSSi}\left(\mathrm{M}-\mathrm{C}_{2} \mathrm{H}_{4} \mathrm{OH}\right)$ 177.0769, found 177.0769; exact mass (electrospray) m / z calcd for $\mathrm{C}_{9} \mathrm{H}_{22} \mathrm{NaO}_{2} \mathrm{SSi}$ 245.1002, found 245.1003.

3,5-Dimethoxybenzoic acid 2-[[[[(1,1-Dimethyl)ethyl)dimethylsilyl]oxy]methyl]thio]ethyl ester (21b).

EDCI $\cdot \mathrm{HCl}(16.0 \mathrm{mg}, 0.082 \mathrm{mmol})$ was added to a stirred and cooled (0 ${ }^{\circ} \mathrm{C}$) solution of $\mathbf{4 3 . 6 a}(15.3 \mathrm{mg}, 0.082 \mathrm{mmol}), 3,5$-dimethoxybenzoic acid (15 mg , $0.068 \mathrm{mmol})$ and DMAP $(0.9 \mathrm{mg}, 0.007 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1.5 \mathrm{~mL})$. Stirring at $0{ }^{\circ} \mathrm{C}$ was continued for 10 min , the cooling bath was removed and stirring was continued for 24 h . The mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 5 \mathrm{~mL})$, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$. The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.8 \times 15 \mathrm{~cm}$), using 1:20 EtOAc-hexane and 1:10 EtOAc-hexane, gave 43.6b ($19.0 \mathrm{mg}, 60 \%$) as a viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3002,2955,2931,2857$, $1722,1598,1463,1429 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.13(\mathrm{~s}, 6 \mathrm{H}), 0.91(\mathrm{~s}$, $9 \mathrm{H}), 3.01(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 3.83(\mathrm{~s}, 6 \mathrm{H}), 4.52(\mathrm{t}, J=7.1 \mathrm{~Hz}, 2 \mathrm{H}), 4.85(\mathrm{~s}, 2$ H), $6.65(\mathrm{t}, J=2.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.19(\mathrm{~d}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$ $\mathrm{MHz}) \delta-5.0(\mathrm{q}), 18.2(\mathrm{~s}), 25.8(\mathrm{q}), 29.4(\mathrm{t}), 55.6(\mathrm{q}), 64.4(\mathrm{t}), 66.7(\mathrm{t}), 105.8(\mathrm{~d})$, $107.3(\mathrm{~d}), 132.0(\mathrm{~s}), 160.7(\mathrm{~s}), 166.1(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{30} \mathrm{NaO}_{5} \mathrm{SSi} 409.1475$, found 409.1477.

α, α-Diphenylbenzenemethanethiol (16) from 16a.

$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $55 \mu \mathrm{~L}, 0.055 \mathrm{mmol}$) was added to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 3 . 1} \mathbf{a}(19.4 \mathrm{mg}, 0.046 \mathrm{mmol})$ in dry THF $(2.2 \mathrm{~mL})$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 15 min , the cooling bath was removed and the cold mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ as soon as the mixture became a clear solution (at ca $-10^{\circ} \mathrm{C}$). The mixture was warmed to room temperature and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$), and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 10 \mathrm{~cm} \times 11 \mathrm{~cm}$), using 2.2% EtOAc in hexane, gave 43.1 ($8.6 \mathrm{mg}, 68 \%$): ${ }^{1} \mathrm{H} \mathrm{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.11$ (s, 1 H), 7.26-7.34 (m, 15 H).

1,2-Di-2-naphthalenyl disulfide (44.1 ${ }^{79}$) from 43.2a.

43.2a

$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $69.6 \mu \mathrm{~L}, 0.070 \mathrm{mmol}$) was added to a stirred solution of $\mathbf{4 3 . 2} \mathbf{2 a}(17.6 \mathrm{mg}, 0.058 \mathrm{mmol})$ in dry THF (1.9 mL). Stirring at room temperature was continued for 20 min and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(5 \mathrm{~mL})$ and extracted with EtOAc ($3 \times 5 \mathrm{~mL}$). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using $2.5 \% \mathrm{EtOAc}$ in hexane, gave 2-naphthalenethiol and its disulfide (8.3 mg , 89%) as a mixture in a molar ratio of 20:3.
I_{2} (ca $16 \mathrm{mg}, 0.06 \mathrm{mmol}$) was added to a solution of the above mixture in $\mathrm{CDCl}_{3}(0.7 \mathrm{~mL})$, which was then briefly swirled. After 30 min at room temperature the mixture was quenched with a mixture of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The mixture was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated to give $\mathbf{4 4 . 1}$ quantitatively: mp 138-
$140{ }^{\circ} \mathrm{C} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta 7.41-7.51(\mathrm{~m}, 4 \mathrm{H}), 7.63(\mathrm{dd}, J=8.6,1.9$ Hz, 2 H), 7.70-7.84 (m, 6 H), 7.95-8.03 (m, 2 H).

Bis[3-[(triphenylmethyl)thio]propyl] Disulfide (44.2) from 43.3a.

43.3a

44.2
$\mathrm{Bu}_{4} \mathrm{NF}$ (1.0 M in THF, $17.5 \mu \mathrm{~L}, 0.0175 \mathrm{mmol}$) was added to a stirred solution of $43.3 \mathrm{a}(7.2 \mathrm{mg}, 0.015 \mathrm{mmol})$ and $\mathrm{AcOH}(1.06 \mathrm{mg}, 0.018 \mathrm{mmol})$ in THF (0.3 mL). Stirring at room temperature was continued for 40 min and $\mathrm{Et}_{3} \mathrm{~N}$ $(6.65 \mathrm{mg}, 0.066 \mathrm{mmol})$ was added, followed by a solution of $\mathrm{I}_{2}(1.86 \mathrm{mg}, 0.073$ $\mathrm{mmol})$ in THF $(0.17 \mathrm{~mL})$. Stirring at room temperature was continued for 3 min and the mixture was quenched with a mixture of saturated aqueous NaHCO_{3} (3 mL) and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The mixture was extracted with $\operatorname{EtOAc}(3 \mathrm{x} 5 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, 0.25 $\mathrm{mm}, 7 \mathrm{~cm} \times 5 \mathrm{~cm}$), using $3.0 \% \mathrm{EtOAc}$ in hexane, gave $44.2(2.7 \mathrm{mg}, 53 \%)$ as a viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3082, 3056, 3030, 2952, 2926, 2853, 1595, $1488,1444 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.71$ (quintet, $J=7.2 \mathrm{~Hz}, 4 \mathrm{H}$), $2.26(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 2.56(\mathrm{t}, J=7.2 \mathrm{~Hz}, 4 \mathrm{H}), 7.19-7.26(\mathrm{~m}, 6 \mathrm{H}), 7.26-7.36$ $(\mathrm{m}, 12 \mathrm{H}), 7.37-7.50(\mathrm{~m}, 12 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 28.0(\mathrm{t}), 30.6(\mathrm{t})$, 37.8 (t), 66.7 (s), 126.7 (d), 127.9 (d), 129.6 (d), 144.9 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{44} \mathrm{H}_{42} \mathrm{NaS}_{4} 721.2062$, found 721.2058 .

N, N^{\prime}-Bis[(phenylmethoxy)carbonyl]-L-cystine 1,1'-dimethyl ester

 (44.3 ${ }^{78}$) from 43.4a.

A stock solution of HF•pyr (1:2:5 HF•pyr/pyr/THF by volume, 0.2 mL) was added to a solution of $\mathbf{4 3 . 4 a}(9.7 \mathrm{mg}, 0.023 \mathrm{mmol})$ in dry THF $(0.1 \mathrm{~mL})$. The solution was briefly swirled and kept at room temperature for 60 min . A solution of $\mathrm{I}_{2}(20 \mathrm{mg}, 0.079 \mathrm{mmol})$ in THF (1 mL) was added dropwise with swirling until a light brown color persisted. After 60 min the mixture was quenched with a mixture of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3$ $\mathrm{mL})$. The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 2:5 EtOAchexane, 3:5 EtOAc-hexane and 4:5 EtOAc-hexane, gave 44.3 ($5.4 \mathrm{mg}, 87 \%$) a viscous oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 3.16(\mathrm{~d}, J=4.9 \mathrm{~Hz}, 4 \mathrm{H}), 3.75(\mathrm{~s}, 6$ H), $4.67(\mathrm{dd}, J=12.6,4.9 \mathrm{~Hz}, 2 \mathrm{H}), 5.12(\mathrm{~s}, 4 \mathrm{H}), 5.68(\mathrm{~d}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.28-$ 7.40 (m, 10 H); ${ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 41.2$ (t), 52.8 (q), 53.3 (d), 67.3 (t), 128.2 (d), 128.3 (d), 128.6 (d), 136.1 (s), 155.7 (s$), 170.8$ (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{28} \mathrm{~N}_{2} \mathrm{NaO}_{8} \mathrm{~S}_{2} 559.1179$, found 559.1175 .

Dododecyl disulfide (44.4 ${ }^{80}$) from 43.5a.

A stock solution of HF-pyr (1:2:5 HF•pyr/pyr/THF by volume, 0.2 mL) was added to a solution of $\mathbf{4 3 . 5 a}(13 \mathrm{mg}, 0.038 \mathrm{mmol})$ in dry THF $(0.2 \mathrm{~mL})$. The mixture was briefly swirled and kept at room temperature for 50 min . A solution of $\mathrm{I}_{2}(20 \mathrm{mg}, 0.079 \mathrm{mmol})$ in THF (1 mL) was added dropwise with swirling until a light brown color persisted. The mixture was left at room temperature overnight and quenched with a mixture of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc (3 x 5 mL) and the combined organic extracts were washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}$, 3 mL) and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 10 \mathrm{~cm} \times 10 \mathrm{~cm}$), using hexane, gave 44.4 ($6.7 \mathrm{mg}, 89 \%$): mp
$31-32{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 2954, 2920, 2871, 2850, $1470 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.88(\mathrm{t}, J=6.8 \mathrm{~Hz}, 6 \mathrm{H}), 1.05-1.33(\mathrm{~m}, 32 \mathrm{H}), 1.34-1.43(\mathrm{~m}$, 4 H), 1.67 (quintet, $J=7.4 \mathrm{~Hz}, 4 \mathrm{H}), 2.68(\mathrm{t}, J=7.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta 14.2(\mathrm{q}), 22.7(\mathrm{t}), 28.6(\mathrm{t}), 29.3(\mathrm{t}), 29.4(\mathrm{t}), 29.6(\mathrm{t}), 29.66(\mathrm{t}), 29.69$ (t), 29.71(t), $32.0(\mathrm{t}), 39.3(\mathrm{t})$; exact mass m / z calcd for $\mathrm{C}_{24} \mathrm{H}_{50} \mathrm{~S}_{2} 402.3354$, found 402.3352 .

3,4-Dimethoxybenzoic acid, 1,1'-(dithiodi-2,1-ethanediyl) ester (44.5)

from 43.6b.

A stock solution of HF•pyr (1:2:5 HF•pyr/pyr/THF by volume, 0.1 mL) was added to a solution of $\mathbf{4 3 . 6 b}(4.3 \mathrm{mg}, 0.011 \mathrm{mmol})$ in dry THF $(0.1 \mathrm{~mL})$. The mixture was briefly swirled and kept at room temperature for 6 h and a solution of $\mathrm{I}_{2}(0.083 \mathrm{M}$ in THF, $67 \mu \mathrm{~L}, 0.0056 \mathrm{mmol})$ was added. The mixture was swirled for 1 min and quenched with a mixture of saturated aqueous $\mathrm{NaHCO}_{3}(3 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(3 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 5 \mathrm{~mL}$) and the combined organic extracts were washed with aqueous NaHSO_{4} ($1 \mathrm{M}, 3 \mathrm{~mL}$) and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 7 \mathrm{~cm} \times 5 \mathrm{~cm}$), using 3:10 EtOAc-hexane, gave 44.5 $(2.4 \mathrm{mg}, 91 \%)$ as a colorless oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3002,2942,2840,1720$, $1597,1460,1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 498 \mathrm{MHz}\right) \delta 3.08(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H})$, $3.82(\mathrm{~s}, 12 \mathrm{H}), 4.58(\mathrm{t}, J=6.6 \mathrm{~Hz}, 4 \mathrm{H}), 6.64(\mathrm{t}, J=2.4 \mathrm{~Hz}, 2 \mathrm{H}), 7.18(\mathrm{~d}, J=2.4$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 37.4$ (t), 55.6 (q), 63.0 (t), 105.9 (d), 107.3 (d), 131.8 (s), 160.7 (s), 166.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{22} \mathrm{H}_{26} \mathrm{NaO}_{8} \mathrm{~S}_{2} 505.0961$, found 505.0961.

Dodecyl 2-nitrophenyl disulfide (44.6) from 43.5a.

$\mathrm{Me}\left(\mathrm{CH}_{2}\right)_{11} \mathrm{SCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t$
43.5a

44.6

2-Nitrobenzenesulfenyl chloride $(16.2 \mathrm{mg}, 0.083 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 3 . 5 a}(12.4 \mathrm{mg}, 0.036 \mathrm{mmol})$ and 2,6 -lutidine $(15.3 \mathrm{mg}, 0.14$ $\mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.8 \mathrm{~mL})$. Stirring at room temperature was continued for 20 min and the mixture was quenched with water $(5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 3 \mathrm{~mL})$ and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using 2\% EtOAc in hexane and 3% EtOAc in hexane, gave 44.6 ($12.2 \mathrm{mg}, 96 \%$): $\mathrm{mp} 41-44{ }^{\circ} \mathrm{C}$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3058,2924,2853,1491,1465,1443 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $500 \mathrm{MHz}) \delta 0.88(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.11-1.33(\mathrm{~m}, 16 \mathrm{H}), 1.34-1.43(\mathrm{~m}, 2 \mathrm{H})$, $1.67(\mathrm{dt}, J=14.9,7.5 \mathrm{~Hz}, 2 \mathrm{H}), 2.73(\mathrm{t}, J=7.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.34(\mathrm{ddd}, J=8.3,7.1$, $1.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.67(\mathrm{ddd}, J=8.3,7.1,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.26(\mathrm{dd}, J=8.3,1.5 \mathrm{~Hz}, 1 \mathrm{H})$, 8.29 (dd, $J=8.2,1.2 \mathrm{~Hz}, 1 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.2(\mathrm{q}), 22.7(\mathrm{t})$, $28.6(t), 29.1(t), 29.2(t), 29.4(t), 29.5(t), 29.6(t), 29.7(t), 32.0(t), 38.6(t)$, 126.0 (d), 126.2 (d), 127.4 (d), 133.9 (d), 138.1 (s), 145.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{18} \mathrm{H}_{29} \mathrm{NNaO}_{2} \mathrm{~S}_{2} 378.1532$, found 378.1531.

Dodecyl triphenylmethyl trisulfide (44.7) from 43.5a.

$\mathrm{Ph}_{3} \mathrm{CSSCl}^{64}(7.7 \mathrm{mg}, 0.025 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 3 . 5 a}$ $(7.8 \mathrm{mg}, 0.023 \mathrm{mmol})$ and 2,6-lutidine ($2.4 \mathrm{mg}, 0.023 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ mL). Stirring at room temperature was continued for 1 h and the mixture was
quenched with water (5 mL) and aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 2 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \times 5 \mathrm{~mL})$ and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.7 \times 7 \mathrm{~cm}$), using $1 \% \mathrm{EtOAc}$ in hexane and 1.5% EtOAc in hexane, gave 44.7 ($10.6 \mathrm{mg}, 93 \%$) as a colorless, viscous oil: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3092,2925,2853,1591,1567,1517,1466,1450 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.91(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.20-1.37(\mathrm{~m}, 18 \mathrm{H}), 1.61$ (quintet, $J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 2.64(\mathrm{t}, J=7.3 \mathrm{~Hz}, 2 \mathrm{H}), 7.20-7.43(\mathrm{~m}, 15 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 14.2(\mathrm{q}), 22.7(\mathrm{t}), 28.4(\mathrm{t}), 29.0(\mathrm{t}), 29.2(\mathrm{t}), 29.4(\mathrm{t}), 29.5(\mathrm{t})$, 29.6 (t), 29.68 (t), 29.69 (t$), 32.0$ (t), 39.7 (t , , 73.3 (s$), 127.2$ (d), 127.9 (d), 130.5 (d), 143.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{31} \mathrm{H}_{40} \mathrm{NaS}_{3} 531.2184$, found 531.2186.

Dodecyl phenylmethyl disulfide (44.8 ${ }^{81}$) from 43.5a.

$\mathrm{SO}_{2} \mathrm{Cl}_{2}(41.6 \mathrm{mg}, 0.31 \mathrm{mmol})$ was added to a stirred solution of BnSSBn ($94.8 \mathrm{mg}, 0.39 \mathrm{mmol}$) in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(3 \mathrm{~mL})$ and stirring at room temperature was continued for $7 \mathrm{~h} .{ }^{12}$

A solution of the resulting $\mathrm{BnSCl}(0.21 \mathrm{M}, 0.21 \mathrm{~mL}, 0.44 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 3 . 5 a}(14 \mathrm{mg}, 0.040 \mathrm{mmol})$ and 2,6-lutidine $(8.6 \mathrm{mg}$, $0.080 \mathrm{mmol})$ in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5 \mathrm{~mL})$. Stirring at room temperature was continued for 10 min , and mixture was diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5 \mathrm{~mL})$ and washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 5 \mathrm{~mL})$. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}(5$ $\mathrm{mL})$, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 10 \mathrm{~cm} \times 10 \mathrm{~cm}$), using hexane, gave 44.8 ($8.5 \mathrm{mg}, 66 \%$) as a colorless oil: FTIR (CDCl_{3}, cast) 3063, 2954, 2924, 2853, 1495, 1465, 1454, $1414 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta$ $0.89(\mathrm{t}, J=7.0 \mathrm{~Hz}, 3 \mathrm{H}), 1.26-1.32(\mathrm{~m}, 18 \mathrm{H}), 1.54$ (quintet, $J=7.0 \mathrm{~Hz}, 2 \mathrm{H}$),
$2.40(\mathrm{t}, J=7.0 \mathrm{~Hz}, 2 \mathrm{H}), 3.89(\mathrm{~s}, 2 \mathrm{H}), 7.25-7.34(\mathrm{~m}, 5 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125\right.$
 29.69 (t), 29.70 (t), 32.0 (t), 38.8 (t), 43.8 (t), 127.4 (d), 128.5 (d), 129.3 (d), 137.7 (s); exact mass m / z calcd for $\mathrm{C}_{19} \mathrm{H}_{32} \mathrm{~S}_{2}$ 324.1946, found 324.1951.

Method of analysis of amount of test substrate remaining (Table 1).
The ${ }^{1} \mathrm{H}$ NMR spectrum of the test substrate $\mathbf{4 3 . 5 a}$ shows a sharp signal at 4.8 ppm $\left(\mathrm{SCH}_{2} \mathrm{O}\right)$ and a methylene envelope at $1.2-1.44 \mathrm{pp}(18 \mathrm{H})$. To determine the extent of decomposition of $\mathbf{4 3 . 5 a}$, the ${ }^{1} \mathrm{H}$ NMR spectrum of the crude reaction mixture was run; the 4.8 ppm signal was taken as corresponding to 2 H and the intensity of the high-field methylene envelope was measured and found to correspond on the same scale to $x \mathrm{H}$. Division of 18 (the value for no decomposition) by x gives the percent of 43.5a remaining. Dodecanethiol and its derivatives have a very high boiling point and there should be no losses on workup (we use only a water pump vacuum at room temperature). We confirmed this assumption with dodecanethiol itself and found 0.8% loss even after brief oilpump exposure of the crude material (we used a water pump for the tests).

S-[[[(1,1-Dimethyl)ethyl)dimethylsilyl]oxy]methyl] 4-methylbenzene-

 sulfonothioic acid ester (45.2).
$\mathrm{TolSO}_{2} \mathrm{SNa}(385.3 \mathrm{mg}, 2.46 \mathrm{mmol})$ was added to a stirred solution of t $\mathrm{BuMe}_{2} \mathrm{SiOCH}_{2} \mathrm{Cl}$ (42.4) ($\left.121.7 \mathrm{mg}, 2.46 \mathrm{mmol}\right)$ in dry $\mathrm{MeCN}(3 \mathrm{~mL})$. Stirring at room temperature was continued for 16 h , and the mixture was diluted with $\mathrm{Et}_{2} \mathrm{O}$ $(10 \mathrm{~mL})$ and filtered through a pad of Celite, using $\mathrm{Et}_{2} \mathrm{O}$ as a rinse. Evaporation of the filtrate and flash chromatography of the residue over silica gel (2.2×15 cm), using 1:50 EtOAc-hexane and then 1:20 EtOAc-hexane, gave 45.2 (483 mg ,
59%) as a colorless oil: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 300 \mathrm{MHz}\right) \delta-0.04(\mathrm{~s}, 6 \mathrm{H}) ; 0.75(\mathrm{~s}, 9$ H), $2.42(2,3 \mathrm{H}), 5.40(\mathrm{~s}, 2 \mathrm{H}), 7.28-7.31(\mathrm{~m}, 2 \mathrm{H}), 7.81-7.86(\mathrm{~m}, 2 \mathrm{H})$. The compound is unstable at room temperature, decomposes slowly on attempted flash chromatography (silica or alumina), but can be kept in a freezer for at least 2 months.
(6R)-8a-(\{[(tert-Butyldimethylsilyl)oxy]methyl\}sulfanyl)-6-\{[(tert-

butyldiphenylsilyl)oxy]methyl\}-2-methyloctahydropyrrolo[1,2-a]piperazine-

1,4,8-trione (45.3a,b).

NaH (60% in mineral oil, $309.7 \mathrm{mg}, 7.7 \mathrm{mmol}$) was added to a solution of 25.8 ($1.92 \mathrm{~g}, 3.5 \mathrm{mmol}$) in dry THF (35 mL). The reaction flask was lowered into a preheated oil bath $\left(70^{\circ} \mathrm{C}\right)$, and the mixture was heated for 20 min , cooled to 0 ${ }^{\circ} \mathrm{C}$, quenched with pH 7.0 buffer $(0.2 \mathrm{M}, 35 \mathrm{~mL})$ and then with aqueous $\mathrm{HCl}(1.0$ $\mathrm{M}, 7.7 \mathrm{~mL}$). The aqueous phase was extracted with EtOAc (3 x 20 mL) and the combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated.

The resulting residue was dissolved in dry $\mathrm{CH}_{2} \mathrm{Cl}_{2}(35 \mathrm{~mL})$ and a solution of t - $\mathrm{BuMe}_{2} \mathrm{SiOCH}_{2} \mathrm{SSO}_{2} \mathrm{Tol}(1.16 \mathrm{~g}, 3.5 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(2 \mathrm{~mL})$ was added, followed by slow addition (3 min) of $\mathrm{Et}_{3} \mathrm{~N}(531.2 \mathrm{mg}, 5.25 \mathrm{mmol}$). The homogeneous mixture was swirled occasionally for 10 min and filtered through a pad of silica gel ($1.8 \times 10 \mathrm{~cm}$), using 3:2 EtOAc-hexane. Evaporation of the filtrate and flash chromatography of the residue over silica gel ($3 \times 15 \mathrm{~cm}$), using 1:5 EtOAc-hexane, 3:10 EtOAc-hexane, 2:5 EtOAc-hexane and 3:5 EtOAchexane, gave $\mathbf{4 5 . 3 a}(672.8 \mathrm{mg}, 31 \%)$ as a foam and $\mathbf{4 5 . 3 b}(257.0 \mathrm{mg} \mathrm{12} \mathrm{\%}$) as a foam.
45.3a: mp 123-126 ${ }^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=13.16\left(c\right.$ 1.12, $\left.\mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3072,3051,2954,2931,2886,2858,1780,1690,1590,1472,1428,1407$ cm^{-1}; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.97$ (s, 9 H), 2.63 (dd, $J=18.1,3.2 \mathrm{~Hz}, 1 \mathrm{H}$), 2.98 (s, 3 H), 3.25 (dd, $J=18.0,9.7 \mathrm{~Hz}$, $1 \mathrm{H}), 3.56(\mathrm{dd}, J=10.6,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.76(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{dd}, J=$ $10.6,3.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.35$ (dquintet, $J=9.5,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1$ H), 4.96 (d, $J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 5.18(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.39(\mathrm{~m}, 4 \mathrm{H})$, 7.41-7.44 (m, 2 H), 7.51-7.53 (m, 2 H), 7.56-7.58 (m, 2 H); ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta-5.3(\mathrm{q}),-5.1$ (q), 18.2 (s), 19.1 (s), 25.7 (q), 26.6 (q), 33.9 (q), 36.6 (t), $53.0(\mathrm{~d}), 53.3(\mathrm{t}), 62.3(\mathrm{t}), 62.8(\mathrm{~s}), 65.8(\mathrm{t}), 127.8(\mathrm{~d}), 127.9(\mathrm{~d}), 129.9(\mathrm{~d})$, 130.0 (d), 132.67 (s), 132.69 (s), 135.6 (d), 135.7 (d), 161.1 (s), 165.8 (s), 196.1 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}_{2}$ 649.2558, found 649.2554.
45.3b: $[\alpha]_{\mathrm{D}}=1.79\left(c 1.04, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast $) 3071,3050$, 2998, 2955, 2930, 2886, 2857, 1776, 1728, 1689, 1589, 1472, 1463, $1427 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H}$ NMR ($\left.\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.067(\mathrm{~s}, 3 \mathrm{H}), 0.069(\mathrm{~s}, 3 \mathrm{H}), 0.86(\mathrm{~s}, 9 \mathrm{H}), 1.06$ (s, $9 \mathrm{H}), 2.76(\mathrm{dd}, J=19.1,9.5 \mathrm{~Hz}, 1 \mathrm{H}), 2.94(\mathrm{dd}, J=19.1,2.8 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3$ H), $3.72-3.77(\mathrm{~m}, 2 \mathrm{H}), 3.98(\mathrm{dd}, J=10.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.44(\mathrm{~d}, J=16.6 \mathrm{~Hz}, 1$ H), 4.56 (dddd, $J=9.6,8.1,4.9,3.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.93(\mathrm{~d}, J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.20(\mathrm{~d}$, $J=11.7 \mathrm{~Hz}, 1 \mathrm{H}), 7.37-7.45(\mathrm{~m}, 6 \mathrm{H}), 7.63-7.66(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR (125 MHz , $\left.\mathrm{CDCl}_{3}\right) \delta-5.2(\mathrm{q}), 18.2(\mathrm{~s}), 19.3(\mathrm{~s}), 25.7(\mathrm{q}), 26.9(\mathrm{q}), 34.4(\mathrm{q}), 37.4(\mathrm{t}), 52.7(\mathrm{t})$, 52.8 (d), 63.4 (s$), 63.8$ (t), 65.7 (t$), 127.8$ (d), 127.9 (d), 129.9 (d), 130.0 (d), 132.93 (s), 132.95 (s), 135.59 (d), 135.60 (d), 160.9 (s), 164.7 (s), 199.3 (s$)$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{46} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}_{2} 649.2558$, found 649.2554 .
($6 R, 8 S, 8 a R$)-8a-(\{[(tert-Butyldimethylsilyl)oxy]methyl\}sulfanyl)-6-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-8-hydroxy-2-methyloctahydro-pyrrolo[1,2-a]piperazine-1,4-dione (45.4).

$\mathrm{NaBH}_{4}(40.7 \mathrm{mg}, 1.07 \mathrm{mmol})$ was added to a stirred and cooled $\left(0^{\circ} \mathrm{C}\right)$ solution of $\mathbf{4 5 . 3} \mathbf{a}(672.8 \mathrm{mg}, 1.07 \mathrm{mmol})$ in a mixture of THF $(5 \mathrm{~mL})$ and water $(0.63 \mathrm{~mL})$. Stirring at $0^{\circ} \mathrm{C}$ was continued for 18 min and the mixture was diluted with water and extracted with EtOAc (3 times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 15 \mathrm{~cm}$), using 1:5 EtOAc-hexane and 2:5 EtOAc-hexane, gave 45.4 (633 mg, 94\%) as a foam: $[\alpha]_{\mathrm{D}}=-71.54\left(c 0.40, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3436 (br), 3072, 3050, 2954, 2930, 2886, 2857, 1679, 1590, 1472, 1463, $1428,1414 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.117(\mathrm{~s}, 3 \mathrm{H}), 0.121(\mathrm{~s}, 3 \mathrm{H})$, 0.89 (s, 9 H), 1.02 ($\mathrm{s}, 9 \mathrm{H}$), 2.28-2.38 (m, 2 H), 2.98 ($\mathrm{s}, 3 \mathrm{H}$), 3.44 (d, $J=4.8 \mathrm{~Hz}$, $1 \mathrm{H}), 3.63(\mathrm{dd}, J=10.5,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 3.69(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.06$ (dquintet, J $=9.0,1.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.21(\mathrm{dd}, J=10.5,3.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.41(\mathrm{~d}, J=17.2 \mathrm{~Hz}, 1 \mathrm{H})$, 4.86-4.92 (m, 3 H$), 7.35-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.56-7.61(\mathrm{~m}, 4 \mathrm{H})$; ${ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}\right.$, $125 \mathrm{MHz}) \delta-5.2(\mathrm{q}),-5.0(\mathrm{q}), 18.2(\mathrm{~s}), 19.2(\mathrm{~s}), 25.7(\mathrm{q}), 26.8(\mathrm{q}), 32.5(\mathrm{t}), 33.4$ (q$), 53.4$ (t), 55.7 (d), 62.4 (t), 64.5 (t), $73.70(\mathrm{~s}), 73.71$ (d), 127.7 (d), 127.8 (d), 129.8 (d), 132.8 (s), 133.1 (s), 135.5 (d), 135.6 (d), 165.0 (s), 166.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{32} \mathrm{H}_{48} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}_{2} 651.2715$, found 651.2710 .
($6 R, 8 S, 8 \mathrm{aR}$)-8a-(\{[(tert-Butyldimethylsilyl)oxy]methyl\}sulfanyl)-6-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-2-methyl-8-[(triethylsilyl)oxy]octahydropyrrolo $[1,2-a]$ piperazine-1,4-dione (45.5).

$\mathrm{Et}_{3} \mathrm{SiOSO}_{2} \mathrm{CF}_{3}(23.3 \mathrm{mg}, 0.088 \mathrm{mmol})$ was added to a stirred and cooled ($78{ }^{\circ} \mathrm{C}$) solution of $45.4(46.1 \mathrm{mg}, 0.073 \mathrm{mmol})$ and 2,6 -lutidine ($18.1 \mathrm{mg}, 0.17$ $\mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(1 \mathrm{~mL})$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 30 min and the mixture was quenched with water $(2 \mathrm{~mL})$. The cooling bath was removed and the mixture was allowed to warm to room temperature (ca 3 min). Aqueous NaHSO_{4} ($1 \mathrm{M}, 0.5 \mathrm{~mL}$) and saturated aqueous $\mathrm{CuSO}_{4}(5 \mathrm{~mL})$ were added and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.8 \times 18 \mathrm{~cm}$), using 1:10 EtOAc-hexane and 1:5 EtOAc-hexane, gave 45.5 $(54.4 \mathrm{mg}, 100 \%)$ as a white solid: $\mathrm{mp} 95-97^{\circ} \mathrm{C} ;[\alpha]_{\mathrm{D}}=18.12\left(c 0.32, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR ($\mathrm{CH}_{2} \mathrm{Cl}_{2}$, cast) 3072, 3050, 2954, 2932, 2858, 1683, 1590, 1487, 1472, $1463,1428,1412 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.07(\mathrm{~s}, 3 \mathrm{H}), 0.08(\mathrm{~s}, 3 \mathrm{H})$, $0.62-0.75(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.03$ (s, 9 H$), 2.17$ (ddd, $J=12.4,7.1,0.9 \mathrm{~Hz}, 1 \mathrm{H}), 2.28(\mathrm{dt}, J=12.3,10.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.98(\mathrm{~s}, 3 \mathrm{H})$, $3.56(\mathrm{dd}, J=10.3,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 3.67(\mathrm{~d}, J=16.9 \mathrm{~Hz}, 1 \mathrm{H}), 4.04-4.06(\mathrm{~m}, 1 \mathrm{H})$, $4.09(\mathrm{dd}, J=10.3,3.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.50(\mathrm{~d}, J=17.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.85(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1$ H), 4.95 (dd, $J=10.4,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.11(\mathrm{~d}, J=11.4 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 6$ H), $7.56(\mathrm{dt}, J=6.5,1.5 \mathrm{~Hz}, 2 \mathrm{H}), 7.60(\mathrm{dt}, J=6.4,1.6 \mathrm{~Hz}, 2 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.1(\mathrm{q}),-4.9(\mathrm{q}), 4.9(\mathrm{t}), 6.9(\mathrm{q}), 18.2$ (s), 19.2 (s), 25.8 (q), 26.8 (q), 33.8 (t), 34.5 (q), 53.6 (t), 55.3 (d), 62.9 (t), 65.2 (t), 72.5 (s$), 73.6$ (d), 127.7 (d), 129.8 (d), 129.9 (d), 132.8 (s), 133.3 (s), 135.5 (d), 135.6 (d), 165.5 (s ,
166.0 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{38} \mathrm{H}_{62} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{SSi}_{3} 765.3579$, found 765.3576.

Ethyl (6R,8S,8aR)-8a-(\{[(tert-Butyldimethylsilyl)oxy]methyl\}-sulfanyl)-6-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-2-methyl-1,4-dioxo-8-[(triethylsilyl)oxy]octahydropyrrolo[1,2-a]piperazine-3-carboxylate (45.6a,b).

$\mathrm{ClCO}_{2} \mathrm{Et}(120.6 \mathrm{mg}, 1.11 \mathrm{mmol})$ was added to a stirred and cooled (-78 ${ }^{\circ} \mathrm{C}$) solution of $\mathbf{4 5 . 5}(41.2 \mathrm{mg}, 0.056 \mathrm{mmol})$ in THF (2 mL), followed by LDA $(0.079 \mathrm{M}, 1.8 \mathrm{~mL}, 0.14 \mathrm{mmol})$ which was added at a fast dropwise rate. Stirring at $-79{ }^{\circ} \mathrm{C}$ was continued for 5 min and the mixture was quenched with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 5 \mathrm{~mL})$. The cooling bath was removed and the mixture was allowed to warm to room temperature (ca 5 min). The mixture was diluted with water and the aqueous phase was extracted with EtOAc (3 x 7 mL). The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.8 \times 15 \mathrm{~cm}$), using 1:20 EtOAc-hexane, 1:10 EtOAc-hexane, 3:20 EtOAc-hexane and 2:5 EtOAc-hexane, gave $\mathbf{4 5 . 6 a}(13.7 \mathrm{mg}, 30 \%)$ as a foam and 45.6b $(26.0 \mathrm{mg}, 57 \%)$ as a foam.
45.6a: $[\alpha]_{\mathrm{D}}=33.16\left(c 0.41, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast $) 3072,3050$, 2955, 2932, 2877, 2858, 1757, 1686, 1590, 1472, 1464, 1444, 1428, $1414 \mathrm{~cm}^{-1}$; ${ }^{1} \mathrm{H} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.59-0.72(\mathrm{~m}, 6 \mathrm{H})$, $0.88(\mathrm{~s}, 9 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.04(\mathrm{~s}, 9 \mathrm{H}), 1.28(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.14$ (dd, $J=12.4,7.2 \mathrm{~Hz}, 1 \mathrm{H}), 2.23-2.29(\mathrm{~m}, 1 \mathrm{H}), 2.96(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=10.4$, $1.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.06-4.08(\mathrm{~m}, 1 \mathrm{H}), 4.11-4.14(\mathrm{~m}, 1 \mathrm{H}), 4.25(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1$
H), $4.38(\mathrm{dq}, J=10.8,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.83(\mathrm{~d}, J=11.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.95(\mathrm{dd}, J=10.2$, $7.1 \mathrm{~Hz}, 1 \mathrm{H}), 5.13(\mathrm{~s}, 1 \mathrm{H}), 7.34-7.43(\mathrm{~m}, 6 \mathrm{H}), 7.58-7.62(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.1(\mathrm{q}),-4.8(\mathrm{q}), 4.9(\mathrm{t}), 6.8(\mathrm{q}), 14.1(\mathrm{q}), 18.3(\mathrm{~s}), 19.2(\mathrm{~s})$, 25.9 (q), $26.9(\mathrm{q}), 32.7(\mathrm{q}), 34.4(\mathrm{t}), 55.9(\mathrm{~d}), 62.3(\mathrm{t}), 62.6(\mathrm{t}), 65.2(\mathrm{t}), 66.7(\mathrm{~d})$, 72.2 (s), 73.6 (d), 127.8 (d), 129.7 (d), 129.8 (d), 132.7 (s), 133.4 (s), 135.5 (d), 135.7 (d), 163.1 (s), $165.5(\mathrm{~s}), 165.6(\mathrm{~s})$; exact mass (electrospray) m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSi}_{3} 837.3791$, found 837.3786.
45.6b: $[\alpha]_{\mathrm{D}}=17.87\left(c \quad 0.62, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast $) 3072$, 2955, 2932, 2878, 2858, 1749, 1687 1472, 1464, 1445, 1427, $1414 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.08(\mathrm{~s}, 3 \mathrm{H}), 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.60-0.74(\mathrm{~m}, 6 \mathrm{H}), 0.98(\mathrm{t}, J=$ $8.0 \mathrm{~Hz}, 9 \mathrm{H}), 1.01(\mathrm{~s}, 9 \mathrm{H}), 1.32(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3 \mathrm{H}), 2.12(\mathrm{dd}, J=12.3,7.0 \mathrm{~Hz}, 1$ H), 2.37-2.44 (m, 1 H), $3.16(\mathrm{~s}, 3 \mathrm{H}), 3.52(\mathrm{dd}, J=10.5,1.7 \mathrm{~Hz}, 1 \mathrm{H}), 4.09(\mathrm{~d}, J=$ $8.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.19-4.25(\mathrm{~m}, J=5.8 \mathrm{~Hz}, 2 \mathrm{H}), 4.32(\mathrm{dq}, J=10.7,7.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.43$ (s, 1 H), 4.91-4.95 (m, 2 H$), 4.99(\mathrm{~d}, J=9.3 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.50-$ $7.60(\mathrm{~m}, J=1.3 \mathrm{~Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C} \operatorname{NMR}\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.33(\mathrm{q}),-5.26(\mathrm{q}), 4.9$ (t), 6.9 (q), 14.0 (q), 18.2 (s), 19.2 (s$), 25.8$ (q), 26.7 (q), 34.4 (t), 35.0 (q), 56.0 (d), 62.57 (t), 62.61 (t), 65.6 (t), 66.9 (d), 71.6 (s$), 74.1$ (d), 127.78 (d), 127.80 (d), 129.8 (d), 129.9 (d), 132.6 (s), 133.3 (s), 135.5 (d), 135.7 (d), 161.9 (s), 165.5 (s), 165.8 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{41} \mathrm{H}_{66} \mathrm{~N}_{2} \mathrm{NaO}_{7} \mathrm{SSi}_{3}$ 837.3791, found 837.3786.
(3R,6R,8S,8aR)-3,8a-Bis(\{[(tert-butyldimethylsilyl)oxy]methyl\}-sulfanyl)-6-\{[(tert-butyldiphenylsilyl)oxy]methyl\}-2-methyl-8-[(triethyl-silyl)oxy]octahydropyrrolo[1,2-a]piperazine-1,4-dione (45.8).

$\mathrm{n}-\mathrm{BuLi}(2.4 \mathrm{M}, 0.3 \mathrm{~mL}, 0.72 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(80.1 \mathrm{mg}, 0.79 \mathrm{mmol})$ in THF (8.7 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 30 min .

The above fresh LDA solution ($0.079 \mathrm{M}, 0.64 \mathrm{~mL}, 0.051 \mathrm{mmol}$) was added dropwise over a few seconds to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of 45.5 ($34 \mathrm{mg}, 0.046 \mathrm{mmol}$) in THF (1 mL). Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 1 min and a solution of $\mathrm{TolSO}_{2} \mathrm{SCH}_{2} \mathrm{OSiMe}_{2} \mathrm{Bu}-t(15.3 \mathrm{mg}, 0.046 \mathrm{mmol})$ in THF $(0.5 \mathrm{~mL})$ was added dropwise over a few seconds. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 5 min and the mixture was quenched with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 2$ mL). The cooling bath was removed, and the mixture was diluted with water (8 mL) and allowed to warm to room temperature. The mixture was extracted with $\operatorname{EtOAc}(3 \times 6 \mathrm{~mL})$, and the combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($0.8 \times 10 \mathrm{~cm}$), using 1:20 $\mathrm{Et}_{2} \mathrm{O}$-pentane, 2:25 $\mathrm{Et}_{2} \mathrm{O}-$ pentane, and then $3: 25 \mathrm{Et}_{2} \mathrm{O}$-pentane, gave crude product ($33.8 \mathrm{mg}, 80 \%$) as a foam.

LDA in THF ($0.079 \mathrm{M}, 1.9 \mathrm{~mL}, 0.15 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right.$) solution of the above compound ($33.8 \mathrm{mg}, 0.037$ $\mathrm{mmol})$ in THF (2.8 mL). Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 2 min , and the mixture was quenched with a mixture of aqueous $\mathrm{HCl}(1 \mathrm{M}, 0.3 \mathrm{~mL})$ and THF (1 mL) in one shot. The cooling bath was removed and the mixture was allowed to warm to room temperature. The mixture was diluted with water (10 mL) and extracted with EtOAc ($2 \times 10 \mathrm{~mL}$). The combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel $(0.8 \times 10 \mathrm{~cm})$, using 3:25 $\mathrm{Et}_{2} \mathrm{O}-$ pentane, gave $45.8(31 \mathrm{mg}, 92 \%)$ as a foam: $[\alpha]_{\mathrm{D}}=-28.57\left(c 0.66, \mathrm{CH}_{2} \mathrm{Cl}_{2}\right)$; FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) $3072,2955,2931,2880,2858,1680,1590,1472,1463,1428,1418$ $\mathrm{cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 0.09(\mathrm{~s}, 3 \mathrm{H}), 0.10(\mathrm{~s}, 3 \mathrm{H}), 0.16(\mathrm{~s}, 6 \mathrm{H})$, $0.60-0.73(\mathrm{~m}, 6 \mathrm{H}), 0.88(\mathrm{~s}, 9 \mathrm{H}), 0.95(\mathrm{~s}, 9 \mathrm{H}), 0.98(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.02(\mathrm{~s}, 9$ H), 2.11-2.14 (m, 1 H), 2.39 (dt, $J=12.3,10.3 \mathrm{~Hz}, 1 \mathrm{H}$), $3.05(\mathrm{~s}, 3 \mathrm{H}), 3.56(\mathrm{dd}, J$ $=10.4,1.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.07-4.09(\mathrm{~m}, 1 \mathrm{H}), 4.18(\mathrm{dd}, J=10.4,3.6 \mathrm{~Hz}, 1 \mathrm{H}), 4.74(\mathrm{~d}$, $J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.84(\mathrm{~s}, 1 \mathrm{H}), 4.88-4.93(\mathrm{~m}, 2 \mathrm{H}), 5.14(\mathrm{~d}, J=10.8 \mathrm{~Hz}, 1 \mathrm{H})$,
$5.22(\mathrm{~d}, J=11.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.34-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.55-7.60(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta-5.4(\mathrm{q}),-5.3(\mathrm{q}),-5.0(\mathrm{q}),-4.9(\mathrm{q}), 4.9(\mathrm{t}), 6.9(\mathrm{q}), 18.3(\mathrm{~s})$, 18.4 (s), 19.2 (s), 25.8 (q), 25.9 (q), $26.8(\mathrm{q}), 31.5(\mathrm{q}), 34.2(\mathrm{t}), 55.9(\mathrm{~d}), 62.8(\mathrm{t})$, 64.5 (d), 65.8 (t), 67.3 (t), 71.1 (s$), 73.9$ (d), 127.8 (d), 129.8 (d), 129.9 (d), 132.8 (s), 133.4 (s$), 135.5$ (d), 135.7 (d), 165.9 (s), 166.6 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{45} \mathrm{H}_{78} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}_{2} \mathrm{Si}_{4} 941.4271$, found 941.4271.

Ethyl (3R,6R,8S,8aR)-6-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-2-methyl-1,4-dioxo-8-[(triethylsilyl)oxy]-8a-\{[(triphenylmethyl)sulfanyl]-disulfanyl\}octahydropyrrolo[1,2-a]piperazine-3-carboxylate (45.7).

$\mathrm{Ph}_{3} \mathrm{CSSCl}^{64}(9.3 \mathrm{mg}, 0.049 \mathrm{mmol})$ was added to a stirred solution of $\mathbf{4 5 . 6 a}$ $(8.0 \mathrm{mg}, 0.0098 \mathrm{mmol})$ and $2,6-l u t i d i n e(6.3 \mathrm{mg}, 0.059 \mathrm{mmol})$ in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(0.5$ $\mathrm{mL})$. Stirring at room temperature was continued for 30 min , and more $\mathrm{Ph}_{3} \mathrm{CSSCl}$ $(12.0 \mathrm{mg}, 0.063 \mathrm{mmol})$ and $2,6-\mathrm{lutidine}(9.3 \mathrm{mg}, 0.087 \mathrm{mmol})$ were added. Stirring was continued for another 30 min and mixture was quenched with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M}, 4 \mathrm{~mL})$ and water $(5 \mathrm{~mL})$. The aqueous phase was extracted with EtOAc ($3 \times 6 \mathrm{~mL}$) and the combined organic extracts were washed with saturated aqueous NaHCO_{3} and brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Preparative TLC of the residue (silica gel, $0.25 \mathrm{~mm}, 10 \times 10 \mathrm{~cm}$), using $1: 10$ EtOAc-hexane, gave 45.7 (8.4 mg , 88%) as an oil: ${ }^{1} \mathrm{H}$ NMR ($\mathrm{CDCl}_{3}, 500 \mathrm{MHz}$) $\delta 0.55-0.71(\mathrm{~m}, 6 \mathrm{H}), 0.96(\mathrm{t}, J=7.9 \mathrm{~Hz}, 9 \mathrm{H}), 1.06(\mathrm{~s}, 9 \mathrm{H}), 1.24(\mathrm{t}, J=7.1 \mathrm{~Hz}, 3$ H), 2.11-2.14 (m, 2 H), $2.92(\mathrm{~s}, 3 \mathrm{H}), 3.57(\mathrm{dd}, J=10.6,2.0 \mathrm{~Hz}, 1 \mathrm{H}), 4.10-4.19$ (m, 2 H), 4.27-4.35 (m, 2 H), $4.85(\mathrm{t}, J=8.5 \mathrm{~Hz}, 1 \mathrm{H}), 5.15(\mathrm{~s}, 1 \mathrm{H}), 7.25-7.43(\mathrm{~m}$,
$21 \mathrm{H})$, 7.60-7.63 (m, 4 H); exact mass (electrospray) m / z calcd for $\mathrm{C}_{53} \mathrm{H}_{64} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{~S}_{3} \mathrm{Si}_{2}$ 999.3357, found 999.3361.

1-(Chlorodisulfanyl)-2-nitrobenzene (48.2). ${ }^{72}$

Distillation of $\mathrm{SCl}_{2}: \mathrm{PCl}_{3}$ (5 drops from a pipette) was added to SCl_{2} (10 mL), and SCl_{2} was distilled at 1 atm pressure with protection from moisture (drying tube packed with Drierite). The bp was $58-60^{\circ} \mathrm{C}$ and the freshly distilled SCl_{2} was used immediately for the reaction.

A solution of $48.1(0.74 \mathrm{~g}, 4.8 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(17 \mathrm{~mL})$ was added to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathrm{SCl}_{2}(2.46 \mathrm{~g}, 23.9 \mathrm{mmol})$ in dry $\mathrm{Et}_{2} \mathrm{O}(17$ mL) over 1 h . The cooling bath was removed and the mixture was allowed to warm to room temperature (over ca 30 min). The solvent and excess of SCl_{2} was evaporated (protection from moisture). The resulting yellow solid was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(8 \mathrm{~mL})$ and the solution was evaporated again; this process (addition of $\mathrm{Et}_{2} \mathrm{O}$ and evaporation with protection from moisture) was repeated 3 times. The residual solid was further dried under oil pump for ca 3 min , and the flask was filled with N_{2}; this process of evacuation and filling with N_{2} was repeated 3 times. The resulting solid was dissolved in dry $\mathrm{Et}_{2} \mathrm{O}(\mathrm{ca} 8 \mathrm{~mL})$ and the mixture was filtered through a pad of cotton wool in a pipette to remove some particulate matter. The round bottom flask containing the filtrate was sealed with a septum (Parafilm being used to wrap around the septum), put into a Drierite bottle containing some Drierite and stored in the freezer (ca $-20^{\circ} \mathrm{C}$) overnight. Yellow crystals precipitated out during this time. The flask was placed in a cold bath at $20^{\circ} \mathrm{C}$ and slowly cooled (over ca 30 min) from $-20^{\circ} \mathrm{C}$ to $-78^{\circ} \mathrm{C}$ by slowly adding more dry ice into the dry ice-acetone cooling bath. The supernatant was removed, using a needle and syringe. The residual solid was washed with dry $\mathrm{Et}_{2} \mathrm{O}(2 \mathrm{~mL})$
at $-78{ }^{\circ} \mathrm{C}\left[\mathrm{Et}_{2} \mathrm{O}\right.$ at room temperature was added to the flask which was in the cold bath $\left.\left(-78{ }^{\circ} \mathrm{C}\right)\right]$, and the supernatant solution was again removed. The solid was quickly dried under oil pump vacuum, the flask was sealed with a septum (Parafilm), filled with N_{2} and stored in the freezer in a Drierite bottle: mp 61-64 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 7.53$ (ddd, $J=8.2,7.3,1.3 \mathrm{~Hz}, 1 \mathrm{H}$), 7.85 (ddd, $J=8.2,7.3,1.4 \mathrm{~Hz}, 1 \mathrm{H}), 8.30-8.32(\mathrm{~m}, 1 \mathrm{H}), 8.33(\mathrm{ddd}, J=8.2,1.3,0.3 \mathrm{~Hz}, 1$ H).

(7R)-7-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-3,3,11-trimethyl-2,4-

 dioxa-8,11-diazatricyclo[6.4.0.0 ${ }^{1,5}$]dodecane-9,12-dione (50.1a,b).
$\mathrm{NMO}(204.1 \mathrm{mg}, 1.74 \mathrm{mmol})$ and OsO_{4} (4% aqueous solution, $85 \mu \mathrm{~L}$, 0.013 mmol) were added to a stirred solution of $\mathbf{3 6 . 2}$ ($580 \mathrm{mg}, 1.34 \mathrm{mmol}$) in a mixture of acetone (8 mL) and water (2.7 mL). Stirring at room temperature was continued for 18.5 h and the mixture was quenched with saturated aqueous $\mathrm{NaHCO}_{3}(8 \mathrm{~mL})$ and saturated aqueous $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(4 \mathrm{~mL})$, which were added sequentially. The mixture was diluted with water and extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (3 times). The combined organic extracts were washed with aqueous NaHSO_{4}, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (twice). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated.

The resulting crude product was dissolved in 2,2-dimethoxypropane (12 mL) and PPTS ($33.7 \mathrm{mg}, 0.13 \mathrm{mmol}$) was added. The mixture was refluxed for 18 h , cooled to room temperature, diluted with water and extracted with EtOAc (3 times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($2.7 \times 15 \mathrm{~cm}$), using 1:5

EtOAc-hexane, 2:5 EtOAc-hexane and 4:5 EtOAc-hexane, gave 50.1a (264 mg , 38.8%) as a solid and $\mathbf{5 0 . 1 b}$ ($297 \mathrm{mg}, 43.6 \%$) as an oil.
50.1a: mp 145-148 ${ }^{\circ} \mathrm{C}$; ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.00(\mathrm{~s}, 9 \mathrm{H}), 1.42$ (s, 3 H), 1.46 ($\mathrm{s}, 3 \mathrm{H}$), 2.14-2.16 (m, 2 H), 3.00 ($\mathrm{s}, 3 \mathrm{H}$), 3.67 (d, $J=17.1 \mathrm{~Hz}, 1$ H), $3.85(\mathrm{dd}, J=10.5,2.2 \mathrm{~Hz}, 1 \mathrm{H}), 4.17(\mathrm{tdd}, J=7.7,5.0,2.5 \mathrm{~Hz}, 1 \mathrm{H}), 4.30(\mathrm{~d}, J$ $=17.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.39(\mathrm{dd}, J=10.4,4.7 \mathrm{~Hz}, 1 \mathrm{H}), 5.29(\mathrm{t}, J=3.0 \mathrm{~Hz}, 1 \mathrm{H}), 7.35-$ 7.39 (m, 4 H), 7.40-7.44 (m, 2 H), 7.58-7.62 (m, 4 H); ${ }^{13} \mathrm{C}$ NMR ($\mathrm{CDCl}_{3}, 125$ MHz) $\delta 19.3$ (s), 25.8 (q), 26.8 (q), 27.2 (q), 33.2 (t), 33.6 (q), 53.4 (t), 59.6 (d), 61.0 (t), 80.2 (d), 96.8 (s$), 113.4$ (s$), 127.7$ (d), 127.8 (d), 129.79 (d), 129.82 (d), 133.1 (s), 133.3 (s), 135.6 (d), 135.7 (d), 164.1 (s), 166.3 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si} 531.2286$, found 531.2288.
50.1b: ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.07(\mathrm{~s}, 9 \mathrm{H}), 1.23(\mathrm{~s}, 3 \mathrm{H}), 1.40(\mathrm{~s}$, $3 \mathrm{H}), 2.00-2.06(\mathrm{~m}, 1 \mathrm{H}), 2.53(\mathrm{~d}, J=14.7 \mathrm{~Hz}, 1 \mathrm{H}), 3.01$ ($\mathrm{s}, 3 \mathrm{H}$), $3.65(\mathrm{~d}, J=$ $16.4 \mathrm{~Hz}, 1 \mathrm{H}), 3.81(\mathrm{dd}, J=10.5,9.1 \mathrm{~Hz}, 1 \mathrm{H}), 4.02(\mathrm{dd}, J=9.1,4.8 \mathrm{~Hz}, 1 \mathrm{H})$, $4.28(\mathrm{~d}, J=16.4 \mathrm{~Hz}, 1 \mathrm{H}), 4.46(\mathrm{ddd}, J=10.5,8.3,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.35(\mathrm{~d}, J=5.4$ $\mathrm{Hz}, 1 \mathrm{H}), 7.35-7.44(\mathrm{~m}, 6 \mathrm{H}), 7.67-7.69(\mathrm{~m}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR ($\left.\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta$ 19.3 (s), 25.2 (q), $26.8(\mathrm{q}), 26.9(\mathrm{q}), 30.4(\mathrm{t}), 34.1(\mathrm{q}), 53.0(\mathrm{t}), 60.6(\mathrm{~d}), 63.1(\mathrm{t})$, 83.2 (d), 96.4 (s), 114.0 (s), 127.7 (d), 127.8 (d), 129.68 (d), 129.73 (d), 133.36 (s), 133.42 (s), 135.6 (d), 135.7 (d), 164.1 (s), 165.2 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{28} \mathrm{H}_{36} \mathrm{~N}_{2} \mathrm{NaO}_{5} \mathrm{Si} 531.2286$, found 531.2288.
(7R,10Z)-7-\{[(tert-Butyldiphenylsilyl)oxy]methyl\}-10-[(4-methoxy-phenyl)methylidene]-3,3,11-trimethyl-2,4-dioxa-8,11-diazatricyclo[6.4.0.0 ${ }^{1,5}$]-dodecane-9,12-dione (50.3).

50.1b

50.3
$\mathrm{n}-\mathrm{BuLi}(2.4 \mathrm{M}, 0.5 \mathrm{~mL}, 1.2 \mathrm{mmol})$ was added dropwise to a stirred and cooled $\left(-78^{\circ} \mathrm{C}\right)$ solution of $i-\mathrm{Pr}_{2} \mathrm{NH}(133.6 \mathrm{mg}, 1.32 \mathrm{mmol})$ in dry THF (10 mL). Stirring at $-78^{\circ} \mathrm{C}$ was continued for 30 min to generate a stock solution of LDA.

Fresh LDA ($0.114 \mathrm{M}, 3.4 \mathrm{~mL}, 0.38 \mathrm{mmol}$) was added dropwise to a stirred and cooled $\left(-78{ }^{\circ} \mathrm{C}\right)$ solution of $\mathbf{5 0 . 1 b}(177.0 \mathrm{mg}, 0.35 \mathrm{mmol})$ in THF $(10 \mathrm{~mL})$. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 20 min and a solution of anisaldehyde (52.1 $\mathrm{mg}, 0.38 \mathrm{mmol})$ in THF (1 mL) was added dropwise. Stirring at $-78{ }^{\circ} \mathrm{C}$ was continued for 25 min and the mixture was quenched with saturated aqueous $\mathrm{NH}_{4} \mathrm{Cl}(4 \mathrm{~mL})$. The cooling bath was removed and the mixture was allowed to warm to room temperature over ca 10 min . The mixture was diluted with water and extracted with EtOAc (3 times). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated, and the residue was dried under oil pump for ca 2 h .

The above residue was dissolved in $\mathrm{CH}_{2} \mathrm{Cl}_{2}(8 \mathrm{~mL})$ and $\mathrm{Et}_{3} \mathrm{~N}(211.3 \mathrm{mg}$, $2.09 \mathrm{mmol})$, DMAP ($4.3 \mathrm{mg}, 0.035 \mathrm{mmol}$) and $\mathrm{Ac}_{2} \mathrm{O}(106.6 \mathrm{mg}, 1.04 \mathrm{mmol})$ were added sequentially. The mixture was stirred at room temperature for 4 h , diluted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ and washed with saturated aqueous NaHCO_{3}. The aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (twice). The combined organic extracts were washed with aqueous $\mathrm{NaHSO}_{4}(1 \mathrm{M})$, and the aqueous phase was extracted with $\mathrm{CH}_{2} \mathrm{Cl}_{2}$ (twice). The combined organic extracts were dried $\left(\mathrm{MgSO}_{4}\right.$ and one scoop of $\mathrm{K}_{2} \mathrm{CO}_{3}$) and evaporated. The residue was dissolved in dry THF (10 mL), and DBU ($106.0 \mathrm{mg}, 0.70 \mathrm{mmol}$) was added. The mixture was refluxed for 18 h and cooled to room temperature. The mixture was poured into aqueous NaHSO_{4} (1 $\mathrm{M}, 15 \mathrm{~mL}$) and the aqueous phase was extracted with EtOAc (3 times). The combined organic extracts were washed with saturated aqueous NaHCO_{3}, and the aqueous phase was extracted with EtOAc (twice). The combined organic extracts were washed with brine, dried $\left(\mathrm{MgSO}_{4}\right)$ and evaporated. Flash chromatography of the residue over silica gel ($1.8 \times 15 \mathrm{~cm}$), using 1:5 EtOAc-hexane and 3:10 EtOAc-hexane, gave $\mathbf{5 0 . 3}$ ($158.6 \mathrm{mg}, 73 \%$ over 3 steps) as a foam: FTIR $\left(\mathrm{CH}_{2} \mathrm{Cl}_{2}\right.$, cast) 3072, 2997, 2957, 2933, 2892, 2858, 1689, 1632, 1607, 1574, $1511,1472,1463,1407,1428 \mathrm{~cm}^{-1} ;{ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 500 \mathrm{MHz}\right) \delta 1.08(\mathrm{~s}, 9 \mathrm{H})$, $1.23(\mathrm{~s}, 3 \mathrm{H}), 1.42(\mathrm{~s}, 3 \mathrm{H}), 2.08(\mathrm{ddd}, J=14.4,8.0,6.1 \mathrm{~Hz}, 1 \mathrm{H}), 2.58(\mathrm{~d}, J=14.7$
$\mathrm{Hz}, 1 \mathrm{H}), 2.92(\mathrm{~s}, 3 \mathrm{H}), 3.82-3.86(\mathrm{~m}, 4 \mathrm{H}), 4.14(\mathrm{dd}, J=9.0,4.8 \mathrm{~Hz}, 1 \mathrm{H}), 4.51$ (ddd, $J=10.7,8.2,4.9 \mathrm{~Hz}, 1 \mathrm{H}), 5.42(\mathrm{~d}, J=5.5 \mathrm{~Hz}, 1 \mathrm{H}), 6.88-6.91(\mathrm{~m}, 2 \mathrm{H})$, $7.00(\mathrm{~s}, 1 \mathrm{H}), 7.25(\mathrm{~d}, J=8.5 \mathrm{~Hz}, 3 \mathrm{H}), 7.35-7.42(\mathrm{~m}, 6 \mathrm{H}), 7.70(\mathrm{dt}, J=7.5,1.4$ $\mathrm{Hz}, 4 \mathrm{H}) ;{ }^{13} \mathrm{C}$ NMR $\left(\mathrm{CDCl}_{3}, 125 \mathrm{MHz}\right) \delta 19.3$ (s), 25.2 (q), 26.7 (q), 26.9 (q), 30.6 (t), 34.6 (q), 55.4 (q), 60.8 (d), 63.0 (t), 83.0 (d), 96.3 (s), 113.9 (s), 114.0 (d), 123.1 (d), 125.6 (s), 127.7 (d), 127.8 (d), 129.66 (d), 129.71 (d), 131.1 (s), 131.3 (d), 133.45 (s$), 133.52$ (d), 135.6 (d), 135.7 (d), 160.0 (s), 162.8 (s), 164.4 (s); exact mass (electrospray) m / z calcd for $\mathrm{C}_{36} \mathrm{H}_{42} \mathrm{~N}_{2} \mathrm{NaO}_{6} \mathrm{Si}$ 649.2704, found 649.2703 .

5. References

(1) (a) Gardiner, D. M.; Waring, P.; Howlett, B. J. Microbiology 2005, 151, 1021-1032. (b) Fox, E. M.; Howlett, B. J. Mycol. Res. 2008, 112, 162169.
(2) (a) Rahayu, E. S.; Yamashita, Y.; Tsumagari, K.; Nakai, R.; Kanda, Y.; Ogawa, T.; Onodera, H.; Hasegawa, A.; Ando, K. WO Patent 2002026744, 2002. (b) Onodera, H.; Hasegawa, A.; Tsumagari, N.; Nakai, R.; Ogawa, T.; Kanda, Y. Org. Lett. 2004, 6, 4101-4104. (c)

Tsumagari, N.; Nakai, R.; Onodera, H.; Hasegawa, A.; Rahayu, E. S.; Ando, K.; Yamashita, Y. J. Antibiot. 2004, 57, 532-534.
(3) Herath, K. B.; Jayasuriya, H.; Ondeyka, J. G.; Polishook, J. D.; Bills, G. F.; Dombrowski, A. W.; Cabello, A.; Vicario, P. P.; Zweerink, H.; Guan, Z.; Singh, S. B. J. Antibiot. 2005, 58, 686-694.
(4) Seya, H.; Nozawa, K.; Nakajima, S.; Kawai, K.-i.; Udagawa, S.-i. J. Chem. Soc., Perkin Trans. 1 1986, 109-116.
(5) Gong, J.-H.; Ratkay, L. G.; Waterfield, J. D.; Clark-Lewis, I. J. Exp. Med. 1997, 186, 131-137.
(6) (a) Murdock, K. C. J. Med. Chem. 1974, 17, 827-835. (b) Cosulich, D. B.; Nelson, N. R.; Van den Hende, J. H. J. Am. Chem. Soc. 1968, 90, 65196521.
(7) Seya, H.; Nozawa, K.; Udagawa, S.; Nakajima, S.; Kawai, K. Chem. Pharm. Bull. 1986, 34, 2411-2416.
(8) Hegde, V. R.; Dai, P.; Patel, M.; Das, P. R.; Puar, M. S. Tetrahedron Lett. 1997, 38, 911-914.
(9) (a) Kawahara, N.; Nakajima, S.; Yamazaki, M.; Kawai, K. Chem. Pharm. Bull. 1989, 37, 2592-2595. (b) Kawahara, N.; Nozawa, K.; Yamazaki, M.;

Nakajima, S.; Kawai, K. Heterocycles 1990, 30, 507-515.
(10) Mason, J. W.; Kidd, J. G. J. Immunol. 1951, 66, 99-106.
(11) Middleto, M. C. Biochem. Pharmacol. 1974, 23, 811-820.
(12) Jordan, T. W.; Cordiner, S. J. Trends Pharmacol. Sci. 1987, 8, 144-149.
(13) Waring, P.; Sjaarda, A.; Lin, Q. H. Biochem. Pharmacol. 1995, 49, 11951201.
(14) Trown, P. W.; Bilello, J. A. Antimicrob. Agents Chemother. 1972, 2, 261266.
(15) (a) Munday, R. J. Appl. Toxicol. 1985, 5, 69-73. (b) Munday, R. J. Appl. Toxicol. 1984, 4, 176-181. (c) Munday, R. J. Appl. Toxicol. 1984, 4, 182186. (d) Munday, R. Chem. Biol. Interact. 1982, 41, 361-374. (e) Bernardo, P. H.; Brasch, N.; Chai, C. L. L.; Waring, P. J. Biol. Chem. 2003, 278, 46549-46555.
(16) Tomita, B.; Hirose, Y. Tetrahedron Lett. 1970, 11, 235-238.
(17) Sun, H. H.; Waraszkiewicz, S. M.; Erickson, K. L.; Finer, J.; Clardy, J. J. Am. Chem. Soc. 1977, 99, 3516-3517.
(a) Herz, W.; Subramaniam, P. S.; Santhanam, P. S.; Aota, K.; Hall, A. L. J. Org. Chem. 1970, 35, 1453-1464. (b) Cox, P. J.; Sim, G. A.; Roberts, J. S.; Herz, W. J. Chem. Soc., Chem. Commun. 1973, 428-429.
(19) Tiansheng, L.; Vargas, D.; Fischer, N. H. Phytochem. 1993, 34, 737-742.
(a) Neuss, N.; Nagarajan, R.; Molloy, B. B.; Huckstep, L. L. Tetrahedron Lett. 1968, 9, 4467-4471. (b) Bu'Lock, J. D.; Leigh, C. J. Chem. Soc., Chem. Commun. 1975, 628-629. (c) Kirby, G. W.; Patrick, G. L.; Robins, D. J. J. Chem. Soc., Perkin Trans. 1 1978, 1336-1338.
(21) Ferezou, J.-P.; Quesneau-Thierry, A.; Servy, C.; Zissmann, E.; Barbier, M. J. Chem. Soc., Perkin Trans. 1 1980, 1739-1746.
(22) Gardiner, D. M.; Cozijnsen, A. J.; Wilson, L. M.; Pedras, M. S. C.; Howlett, B. J. Mol. Microbiol. 2004, 53, 1307-1318.
(23) (a) Cramer, R. A.; Gamcsik, M. P.; Brooking, R. M.; Najvar, L. K.; Kirkpatrick, W. R.; Patterson, T. F.; Balibar, C. J.; Graybill, J. R.; Perfect, J. R.; Abraham, S. N.; Steinbach, W. J. Eukaryot. Cell 2006, 5, 972-980. (b) Kupfahl, C.; Heinekamp, T.; Geginat, G.; Ruppert, T.; Hartl, A.; Hof, H.; Brakhage, A. A. Mol. Microbiol. 2006, 62, 292-302. (c) Bok, J. W.; Chung, D.; Balajee, S. A.; Marr, K. A.; Andes, D.; Nielsen, K. F.; Frisvad, J. C.; Kirby, K. A.; Keller, N. P. Infect. Immun. 2006, 74, 6761-6768. (d)

Balibar, C. J.; Walsh, C. T. Biochem. 2006, 45, 15029-15038. (e) Scharf, D. H.; Remme, N.; Habel, A.; Chankhamjon, P.; Scherlach, K.; Heinekamp, T.; Hortschansky, P.; Brakhage, A. A.; Hertweck, C. J. Am. Chem. Soc. 2011, 133, 12322-12325.
(24) Neuss, N.; Boeck, L. D.; Brannon, D. R.; Cline, J. C.; DeLong, D. C.; Gorman, M.; Huckstep, L. L.; Lively, D. H.; Mabe, J.; Marsh, M. M.; Molloy, B. B.; Nagarajan, R.; Nelson, J. D.; Stark, W. M. Antimicrob. Agents Chemother. 1968, 8, 213-219.
(25) Molloy, B. B.; Gorman, M.; Neuss, N.; Kastner, R. E.; Lively, D. H.; Boeck, L. D.; Huckstep, L. L.; Higgens, C. E.; Gale, R. M. J. Antibiot. 1972, 25, 137-140.
(26) Rastetter, W. H.; Chancellor, T.; Richard, T. J. J. Org. Chem. 1982, 47, 1509-1512.
(27) Goodman, R. M.; Kishi, Y. J. Org. Chem. 1994, 59, 5125-5127.
(a) Sütbeyaz, Y.; Seçen, H.; Balci, M. J. Org. Chem. 1988, 53, 2312-2317.
(b) Sengül, M. E.; Balci, M. J. Chem. Soc., Perkin Trans. 1 1997, 20712078. (c) Balci, M.; Sütbeyaz, Y. Tetrahedron Lett. 1983, 24, 4135-4138. (d) Aitken, R. A.; Cadogan, J. I. G.; Gosney, I.; Hamill, B. J.; McLaughlin, L. M. J. Chem. Soc., Chem. Commun. 1982, 1164-1165. (e) Chou, W. N.; White, J. B.; Smith, W. B. J. Am. Chem. Soc. 1992, 114, 4658-4667. (f) Clark, D. L.; Chou, W. N.; White, J. B. J. Org. Chem. 1990, 55, 3975-3977.
(29) Leyhane, A. J.; Snapper, M. L. Org. Lett. 2006, 8, 5183-5186.
(30) Fustero, S.; Sánchez-Roselló, M.; Jiménez, D.; Sanz-Cervera, J. F.; del Pozo, C.; Aceña, J. L. J. Org. Chem. 2006, 71, 2706-2714.
(31) (a) Peng, J.; Clive, D. L. J. J. Org. Chem. 2009, 74, 513-519. (b) Peng, J.; Clive, D. L. J. Org. Lett. 2007, 9, 2939-2941.
(a) Waring, P.; Eichner, R. D.; Müllbacher, A. Med. Res. Rev. 1988, 8, 499-524. (b) Iwasa, E.; Hamashima, Y.; Sodeoka, M. Isr. J. Chem. 2011, 51, 420-433.
(33) Öhler, E.; Poisel, H.; Tataruch, F.; Schmidt, U. Chem. Ber. 1972, 105, 635-641.
(34) Hino, T.; Sato, T. Chem. Pharm. Bull. 1974, 22, 2866-2874.
(35) (a) Saito, T.; Suzuki, Y.; Koyama, K.; Natori, S.; Iitaka, Y.; Kinoshita, T. Chem. Pharm. Bull. 1988, 36, 1942-1956. (b) Funabashi, Y.; Horiguchi, T.; Innuma, S.; Tanida, S.; Harada, S. J. Antibiot. 1994, 47, 1202-1218. (c) Sato, T.; Hino, T. Chem. Pharm. Bull. 1976, 24, 285-293. (d) Poisel, H.; Schmidt, U. Angew. Chem. Int. Ed. 1971, 10, 130-131.
(36) (a) Ottenheijm, H. C. J.; Herscheid, J. D. M.; Kerkhoff, G. P. C.; Spande, T. F. J. Org. Chem. 1976, 41, 3433-3438. (b) Safe, S.; Taylor, A. J. Chem. Soc. C 1971, 1189-1192.
(37) (a) Herscheid, J. D. M.; Tijhuis, M. W.; Noordik, J. H.; Ottenheijm, H. C. J. J. Am. Chem. Soc. 1979, 101, 1159-1162. (b) Férézou, J. P.; QuesneauThierry, A.; Césario, M.; Pascard, C.; Barbier, M. J. Am. Chem. Soc. 1983, 105, 5402-5406.
(38) Murdock, K. C.; Angier, R. B. J. Chem. Soc. D, Chem. Commun. 1970, 55-55.
(39) Nicolaou, K. C.; Totokotsopoulos, S.; Giguère, D.; Sun, Y.-P.; Sarlah, D. J. Am. Chem. Soc. 2011, 133, 8150-8153.
(40) (a) Trown, P. W. Biochem. Biophys. Res. Commun. 1968, 33, 402-407. (b) Trown, P. W. U.S. Patent 3562253, 1971.
(41) (a) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc. 1973, 95, 6490-6492. (b) Kishi, Y.; Fukuyama, T.; Nakatsuka, S. J. Am. Chem. Soc. 1973, 95, 6492-6493. (c) Kishi, Y.; Nakatsuka, S.; Fukuyama, T.; Havel, M. J. Am. Chem. Soc. 1973, 95, 6493-6495. (d) Nakatsuka, S.; Fukuyama, T.; Kishi, Y. Tetrahedron Lett. 1974, 15, 1549-1552. (e) Fukuyama, T.; Kishi, Y. J. Am. Chem. Soc. 1976, 98, 6723-6724. (f) Fukuyama, T.; Nakatsuka, S.-I.; Kishi, Y. Tetrahedron 1981, 37, 2045-2078.
(42) Srinivasan, A.; Kolar, A. J.; Olsen, R. K. J. Heterocycl. Chem. 1981, 18, 1545-1548.
(43) Aliev, A. E.; Hilton, S. T.; Motherwell, W. B.; Selwood, D. L. Tetrahedron Lett. 2006, 47, 2387-2390.
(44) (a) Yoshimura, J.; Nakamura, H.; Matsunari, K. Bull. Chem. Soc. Jpn. 1975, 48, 605-609. (b) Yoshimur, J.; Sugiyama, Y.; Nakamura, H. Bull. Chem. Soc. Jpn. 1973, 46, 2850-2853.
(45) Iwasa, E.; Hamashima, Y.; Fujishiro, S.; Higuchi, E.; Ito, A.; Yoshida, M.; Sodeoka, M. J. Am. Chem. Soc. 2010, 132, 4078-4079, and Supporting Information.
(46) Kim, J.; Ashenhurst, J. A.; Movassaghi, M. Science 2009, 324, 238-241.
(47) Kim, J.; Movassaghi, M. J. Am. Chem. Soc. 2010, 132, 14376-14378.
(48) DeLorbe, J. E.; Jabri, S. Y.; Mennen, S. M.; Overman, L. E.; Zhang, F.-L. J. Am. Chem. Soc. 2011, 133, 6549-6552.
(49) Overman, L. E.; Sato, T. Org. Lett. 2007, 9, 5267-5270.
(50) Williams, R. M.; Rastetter William, H. J. Org. Chem. 1980, 45, 26252631.
(51) Peng, J. Ph.D. Thesis, University of Alberta, 2009.

removal of the $\mathrm{CH}_{2} \mathrm{CH}_{2} \mathrm{SiMe}_{3}$ was tried on this compound by Dr. Peng

attempted functionalization of C 3 using a base, followed by RCOCl or RCHO failed in Dr. Peng's previous research
(52) (a) Heindl, C.; Hübner, H.; Gmeiner, P. Tetrahedron: Asymmetry 2003, 14, 3141-3152. (b) Baker, G. L.; Fritschel, S. J.; Stille, J. R.; Stille, J. K. J. Org. Chem. 1981, 46, 2954-2960.
(53) Gerland, B.; Désiré, J.; Lepoivre, M.; Décout, J.-L. Org. Lett. 2007, 9, 3021-3023.
(54) Dalla Croce, P.; La Rosa, C. Tetrahedron: Asymmetry 2002, 13, 197-201.
(55) Kocieński, P. J. Protecting Groups, 3rd ed.; Thieme: Stuttgart, 2004; p. 380.
(56) Wang, L.; Clive, D. L. J. Org. Lett. 2011, 13, 1734-1737.
(57) (a) Lacour, J.; Monchaud, D.; Mareda, J.; Favarger, F.; Bernardinelli, G. Helv. Chim. Acta 2003, 86, 65-81. (b) Lacour, J.; Monchaud, D.; Bernardinelli, G.; Favarger, F. Org. Lett. 2001, 3, 1407-1410.
(58) Wiles, J. A.; Hashimoto, A.; Thanassi, J. A.; Cheng, J.; Incarvito, C. D.; Deshpande, M.; Pucci, M. J.; Bradbury, B. J. J. Med. Chem. 2005, 49, 3942.
(59) Sun, J.; Fu, G. C. J. Am. Chem. Soc. 2010, 132, 4568-4569.
(60) Classon, B.; Garegg, P. J.; Liu, Z.; Samuelsson, B. Carbohydr. Res. 1988, 174, 369-374.
(61) Wuts, P. G. M.; Greene, T. W. Greene's Protective Groups in Organic Synthesis, 4th ed.; Wiley-Interscience: Hoboken, NJ, 2007; p. 687.
(62) (a) Schwartz, B.; Vogel, K. W.; Drueckhammer, D. G. J. Org. Chem. 1996, 61, 9356-9361. (b) N. Harpp, D.; Kobayashi, M. Tetrahedron Lett. 1986, 27, 3975-3978. (c) Gong, Y.; Ma, M.; Luo, Y.; Bong, D. J. Am. Chem. Soc. 2008, 130, 6196-6205. (d) Horner, L.; Jürgens, E. Liebigs Ann. Chem. 1957, 602, 135-153.
(63) Benneche, T.; Gundersen, L.-L.; Undheim, K. Acta Chem. Scand. B 1988, 42, 384-389.
(64) Williams, C. R.; Britten, J. F.; Harpp, D. N. J. Org. Chem. 1994, 59, 806812.
(65) Rotulo-Sims, D.; Prunet, J. Org. Lett. 2002, 4, 4701-4704.
(66) Chen, J.; Chen, X.; Bois-Choussy, M.; Zhu, J. J. Am. Chem. Soc. 2006, 128, 87-89.
(67) Wang, H.; Ganesan, A. J. Org. Chem. 2000, 65, 1022-1030.
(68) Owens, N. W.; Braun, C.; Schweizer, F. J. Org. Chem. 2007, 72, 46354643.
(69) Marshall, J. A.; Schaaf, G. M. J. Org. Chem. 2003, 68, 7428-7432.
(70) Ducray, P.; Rousseau, B.; Mioskowski, C. J. Org. Chem. 1999, 64, 38003801.
(71) Frigerio, M.; Santagostino, M.; Sputore, S.; Palmisano, G. J. Org. Chem. 1995, 60, 7272-7276.
(72) (a) Lecher, H.; Simon, K. Chem. Ber. 1921, 54, 2249-2251. (b) Harris, J. F., Jr. Ph.D. Dissertation, University of Pennsylvania, 1953.
(73) Fujisawa, T.; Kobori, T.; Tsuchihashi, G.-i. Tetrahedron Lett. 1969, 10, 4291-4294.
(74) (a) Mitsunob.O; Yamada, M. Bull. Chem. Soc. Jpn. 1967, 40, 2380-2382.
(b) Mitsunobu, O. Synthesis 1981, 1-28.
(75) Martin, S. F.; Dodge, J. A. Tetrahedron Lett. 1991, 32, 3017-3020.
(76) (a) Mukaiyama, T. Chem. Lett. 1978, 413-416. (b) Hoye, T. R.; Kurth, M. J. J. Org. Chem. 1980, 45, 3549-3554. (c) Lipták, A.; Lázár, L.; Borbás, A.; Antus, S. Carbohydr. Res. 2009, 344, 2461-2467. (d) Shimagaki, M.; Shiokawa, M.; Sugai, K.; Teranaka, T.; Nakata, T.; Oishi, T. Tetrahedron Lett. 1988, 29, 659-662.
(77) Pedersen, D. S.; Rosenbohm, C. Synthesis 2001, 2431-2434.
(78) Wolfe, S.; Bowers, R. J.; Hasan, S. K.; Kazmaier, P. M. Can. J. Chem. 1981, 59, 406-421.
(79) Ouchi, A.; Hyugano, T.; Liu, C. Org. Lett. 2009, 11, 4870-4873.
(80) Saito, G.; Yoshida, Y.; Murofushi, H.; Iwasawa, N.; Hiramatsu, T.; Otsuka, A.; Yamochi, H.; Isa, K.; Mineo-Ota, E.; Konno, M.; Mori, T.; Imaeda, K.; Inokuchi, H. Bull. Chem. Soc. Jpn. 2010, 83, 335-344.
(81) Chem. Abstr. 1979, 90, 25714 [Aliev, F. Yu.; Kuliev, A. B.; Zeinalova, G. A. Neftepererabotka i Neftekhimiya (Moscow, Russian Federation) 1978, (9), 47-48].

