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Abstract

This thesis focuses on formulating and analyzing non linear models for

microbial dynamics vis-a-vis human and environmental health. Firstly, we de-

velop and investigate a stoichiometric organic matter decomposition model in

a chemostat culture that incorporates the dynamics of grazers. This mecha-

nistic biodegradation model lead to reliable and suggestive ecological insights

in the preservation and restoration of our fragile ecosystems. Questions we at-

tempt to answer include: (i) What mechanisms allow microbes and resources

to persist uniformly or go extinct? (ii) How do grazing and dead microbial

residues affect decomposition? (iii) How can the rate of decomposition be

maximized or minimized? Secondly, we designed a greenhouse gas biogene-

sis model, which may be used to (i) predict the volume of greenhouse gasses

emitted at any given time in an oil sands tailing pond and an end pit lake, (ii)

calculate the time required to produce a given volume of cumulative green-

house gases from them and (iii) estimate how long it will take for an oil sands

tailing pond and an end pit lake to stop emitting greenhouse gases. Lastly, we

formulate and analyze directly and indirectly transmitted infectious disease

models. The questions aim to answer include: (i) Why are there irregularities

in seasonal patterns of outbreaks amongst different countries? (ii) How can

we estimate the transmission function of an infectious disease from a given

incidence or prevalence data set? (iii) What is the estimated value of the basic

reproduction number in affected regions? (iv) How can we control the period

and intensity of pathogenic disease outbreaks?
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Chapter 1

Introduction

Microorganisms are microscopic or submicroscopic organisms with undifferen-

tiated unicells [14]. They include bacteria, archaea, and fungus [23]. Microor-

ganisms are ubiquitous. Despite their small sizes, they have a huge impact on

environmental and human health. Some have profound beneficial effects and

others are seriously harmful. However, many microorganisms produce mixed

effects.

One of the most significant positive effect of the microorganisms on human

and environmental health is their ability to degrade and detoxify pollutants.

The contamination of the environment with hazardous and toxic chemicals is

one of the main problems faced by today’s world. These chemicals are either

released on purpose or by accident. Microbes, mostly bacteria, degrade the

organic chemicals to innocuous compounds and eventually to methane and

carbon dioxide [2]. This process is known as biodegradation. With inorganic

pollutants like heavy metals, microbes help reduce their spread in the envi-

ronment by changing their oxidation state, which affects their mobility [23].
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The activity of microbes on the pollutants is usually natural and thus does

not require any external energy. Due to a rising level of industrial activities,

the rate at which we pollute our environment with organic substances is far

beyond the rate of biodegradation. There is a need to accelerate biodegrada-

tion in any environment with pollutants. This is the subject of Chapter 3 of

this thesis.

Microbes are also essential in supporting life in the lakes and oceans, and

subsequently in sustaining the fish population. Algae, one of the microbes,

are the primary produces in open water. They grow in open water by taking

up nutrients such as phosphorus and nitrogen from the water and capturing

energy from sunlight. This energy and nutrients are indirectly transferred to

the fish (they provide food for protist which in turn are eaten by zooplankton

that are a source of food for the fish [23].

Albeit biodegradation helps to remove the hazardous and toxic organic

chemicals from our environment, the end-products such as greenhouse gases

(methane and carbon dioxide) have negative effects on our climate.The green-

house effect increases the temperature of the Earth by trapping heat in our

atmosphere. These gases are powerful infrared absorber gases that cause the

earth’s temperature to increase by trapping heat in our atmosphere (green-

house effect) [31]). Because of greenhouse gases, the average temperature of

the earth is 37 °C higher than it would have been without them [23]. Global

warming hypothesis postulates that increasing the concentration of greenhouse

gases leads to more heat being trapped within the atmosphere of the earth

leading to increase in temperature. It is predicted in [2] that a 1 to 2 °C

increase in the average global temperature might among other consequences
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1) cause the ocean level to rise as oceans undergo thermal expansion, 2) alter

the species composition of forest and grasslands and this might lead to the

potential displacement or extinction of some species and 3) cause the disap-

pearance of some wetlands due to flooding. Thus the ongoing warming of the

atmosphere has significant effects and therefore is of particular concern.

Many microorganisms cause diseases in human beings. These diseases are

called infectious diseases and include:

1) (caused by bacteria) salmonella, tetanus, typhoid, cholera, gangrene,

bacterial dysentery, diphtheria, tuberculosis, bubonic plague, meningo-

coccal meningitis, pneumococcal pneumonia,

2) (caused by viruses) rabies, influenza (flu), measles, mumps, polio, rubella

(german measles), chicken pox, colds, warts, cold sores,

3) (caused by protoctists) malaria, amoebic dysentery,

4) (caused by fungi) athlete’s foot, ringworm.

The disease-causing microbes are called pathogens. Most infectious diseases

can be transmitted through the following means:

i) by consuming food or water containing pathogens or their toxic products

(e.g. salmonella, typhoid, cholera),

ii) by inhaling or ingesting droplets of moisture which have been coughed,

sneezed or breathed out by an infected person (e.g. include colds, flu),

iii) by entry through a wound or sore (e.g. tetanus),

iv) by direct contact with an infected person (e.g. athlete’s foot, ringworm),
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v) through vectors (e.g. malaria transmitted by mosquitoes).

1.1 Goal and objectives

Drawing on the research requirements stated above, the goal of this study is

to develop and analyze nonlinear models for microbial dynamics pertaining to

human and environmental health. The objectives of the thesis are fivefold:

Objective 1: To design and analyze a stoichiometric organic matter decomposition

model in a chemostat culture. In particular, we 1) design a stoichiometric

biodegradation model, 2) determine the mechanisms that allow microbes

and resources to persist uniformly or go extinct, 3) study the effects of

bacteria grazers on decomposition, 4) perform the sensitivity analysis

of the degradation rate to model parameters, 5) carry out a bifurcation

analysis of the system, 6) determine the impact of dilution and dead

microbes residues on decomposition etc.

Objective 2: To develop a predictive model for methane emissions from oil sands tail-

ings ponds and end pit lakes. Specifically, we 1) develop a greenhouse

gas emission model 2) estimate the parameter values of the model using

empirical data, and 3) validate the model.

Objective 3: To perform the stability and sensitivity analysis of an indirectly trans-

mitted infectious disease model with an immunological threshold.

Objective 4: To Formulate and analyze a cholera transmission model which explicitly

includes the dynamics of bacteriophage and bacteria and contains an
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indirect infection term which accounts for a minimum infectious dose of

the pathogen V. cholerae.

Objective 5: To Design an algorithm for estimating the transmission function of an

infectious disease from a given incidence or prevalence data set. In par-

ticular, we 1) formulate childhood infectious diseases models with and

without vaccination, 2) determine the positive and bounded set for the

solutions of the systems, 3) perform the stability analysis of both models,

4) perform the sensitivity analysis of the outbreak peak value, time of

outbreak peak, and the steady state value of the infected compartment

to the parameters of the systems, 5) construct inverse algorithms for

extracting the time-dependent transmission rates from prevalence and

incidence pre-and post-vaccination data and 6) test the performance of

the incidence algorithms using pre- and post-vaccination measles data

from Liverpool and London.

1.2 Outline of the thesis

This thesis is organized into eight chapters as follows:

Chapter 2: Chapter 2 provides the literature review of some of the existing models

for microbial growth kinetics.

Chapter 3: In this Chapter, we first design stoichiometric organic matter decom-

position model in a chemostat culture. Secondly, we prove the positiv-

ity and boundedness of the formulated system. Thirdly, we determine

the criteria for the uniform persistence and extinction of the species.
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Fourthly, we determine the optimal value of grazers that maximizes the

per capita decomposition rate of organic carbon. Moreover, we perform

a one and two-parameter bifurcation analyses. Furthermore, we numer-

ically compare the effects of grazers on degradation in a microcosm and

in a chemostat. In addition to these, we determine the switching time

of bacterial growth rate from carbon dependent to nitrogen dependent

for different continuous cultures. We also discuss the sensitivity of the

degradation rate to model parameters. Lastly, we discuss the results.

Chapter 4: Here, we develop a predictive model for methane emissions from oil sands

tailing ponds and end pit lakes. The model is fitted to experimental data

and cross validated. We end the chapter with discussion on the model

and results as well as a conclusion.

Chapter 5: In Chapter 5, we carry out a stability and sensitivity analysis of the

model in [133] and discuss the results.

Chapter 6: In this Chapter, firstly, we propose a cholera transmission model which

explicitly includes the dynamics of bacteriophage and bacteria and also

contains an indirect infection term which accounts for a minimum in-

fectious dose of the pathogen V. cholerae. Next, we provide a forward

invariance domain for the model. Thirdly, we perform the stability and

bifurcation analysis. Fourthly, we provide an explanation to the differ-

ent nature of the outbreaks experienced around the world and end the

chapter with a discussion of the results.

Chapter 7: In this chapter we first formulate SEIRA models for childhood infectious

6



diseases with and without vaccination. Secondly, we study the posi-

tivity, boundedness and equilibria of the SEIRA models. Thirdly, we

calculate, analyze and compare the normalized forward sensitivity in-

dices of the outbreak peak value, time of outbreak peak and steady state

value of the infected compartment to the parameters of the systems.

Fourthly, we construct algorithms using an inverse method for extract-

ing the time-dependent transmission rate from prevalence and incidence

pre- and post-vaccination data. Lastly, we discuss the results.

Chapter 8: Finally, Chapter 8 concludes with an outlook on planned research.
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Chapter 2

Microbial per capita growth

kinetic models

2.1 Introduction

A basic microorganisms growth kinetic model answers the question of how

microbial concentration will change in the future, given its current concentra-

tion and the concentration of substrate in the ecosystem that the microbe is

exposed to. These changes in the concentration of microbes may be changes in

the total number of individuals present; i.e., in the number of microbes mem-

bers, but may also pertain to changes in the composition of the microbes. The

elements in the ecosystem affect microbes growth rate as they are all required

by microbes cells due to the elements’ specific roles in biosynthesis. Following

Justus Von Liebig’s minimum law, the growth rate of bacteria is proportional

to the most limiting elements. The per capita microbial growth rate, gives the

gain in microbial biomass per unit time as a function of the limiting elements.
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Obviously, if there is no element in the environment, then the microbes cannot

eat. One expects intuitively that the more elements that are present, the more

the microbes eat, so that the per capita microbial growth rate is an increasing

function of its limiting elements. However, at a certain point, these limiting

elements may no longer be the limiting elements. Further, huge abundance of

an element may even inhibit microbial growth.

Figure (2.1) displays a common time course of microbial growth in a batch

culture.
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Figure 2.1: Microbial kinetic curve

When microbes are introduced in an unfamiliar ecosystem or growth lim-

iting elements are introduced into an ecosystem with microbes, there is a lag

phase before the microbes growth kinetics are affected by each of the fresh

growth limiting substrate. During this lag phase, individual microbes syn-
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thesize RNA, enzymes, and other molecules they need for growth prior to

resuming their division. This phase could as well be due to the physiological

adjustments of microbes to changes in the concentration of elements or culture

conditions. Increasing the growth limiting nutrient concentration will lead to

an increase in the growth function. This phase is known as the exponential

growth phase (sometimes called the log phase). In the course of this phase,

cells grow and divide as an exponential function of time. Eventually, a con-

centration is reached at which further increases do not lead to an increase in

growth. At this point either some other environmental factors are in a limited

supply or else the microbes cells themselves have reached their own limits for

the present cultural conditions. With time, the growth function will enter a

decline phase or death phase. This phase might be as a result of the decrease

in the concentration of the given limiting element leading to the microbial

death, environmental temperature above or below the tolerance level for mi-

crobes, inhibition of microbial growth by the given limiting element or other

adverse conditions. This behaviour is atypical of microbes and has an obvious

importance in the metabolic activities of microbes in industrial fermentations,

biological waste treatment processes, and in other biodegradation processes.

Many microbial kinetics models assume that only a single element is usually

limiting. The first models for microbial growth rate that tried to capture the

dynamics of a microbial growth function and its limiting unique element were

proposed by Blackman in 1905 [4] and Monod in 1942 [73]. These models

relate the concentration of a given limiting element to the per capita growth

rate of microbes using simple empirical equations. These equations provide a

foundation that accounts for more specialized cases represented by the com-
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monly used empirical models. In this section we review some of the models

mostly used in describing microbial specific growth rate.

2.2 Monod model [73]

The Monod kinetic model was proposed by Jacques Lucien Monod (1910-

1976), based on his empirical findings. It is also one of the earliest microbial

growth models. This model describes the per capita growth of microbes with

a constant yield on a single growth-limiting substrate (S). The Monod model

is given by:

μM(S) = μMmax
S

KSM + S
, (2.1)

where μM is the specific growth rate, μMmax is the maximum specific growth

rate of microbes, S is the concentration of substrate and KSM is the substrate

concentration which supports the half-maximum specific growth rate. At a

low substrate concentration (KSM >> S) the model can be approximated

by a first-order kinetics model. As substrate concentration is increased far

above the half-saturation constant (KSM << S), a gradual change to zero-

order behaviour occurs. Because of the gradual transition to zero-order, this

model may underestimate the per capita growth rate in the neighbourhood of

the point where the transition occurs. Also, this model is unable to capture

the lag phase as well as the death phase. As a consequence, the model is

bound to overestimate microbial growth during the lag phase where there

is no growth as well during the death phase. Monod model is therefore more
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applicable in the following situations: 1) ecosystems with no adverse conditions

(perfect temperature), 2) ecosystems in which at high substrate concentration,

microbial growth and death rates are equal 3) ecosystems with no substrate

inhibition or toxic substrates 4) ecosystems with mature microbes that are

accustomed to them and their substrates.

Next we will look at the Blackman model. This model behaves almost

like the Monod model but unlike the Monod model, it allows a rapid transi-

tion from first-order to zero-order when substrate concentration exceed half-

saturation constant. Thus, the Blackman model may avoid underestimating

the per capita growth rate in the neighbourhood of the point where the tran-

sition occurs.

2.3 Blackman model [4]

This is one of the first per capita microbial growth models. The assumptions

that led to the model are:

• at a low substrate concentration the rate of the uptake is proportional

to the given substrate concentration, and

• at a high substrate concentration both uptake and growth rates are in-

dependent of the given substrate concentration because some other sub-

strates are limiting or microbial growth limiting factors are present.

Just like the Monod model, at a low given substrate concentration, Blackman

modelled the microbial per capita growth using the first-order kinetic model

and at high substrate concentration, he modelled it using the zero-order kinetic
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model. His model is a piecewise function that makes a sharp switch from a first-

order to a zero-order when substrate concentration exceeds the concentration

that supports half-maximum specific growth rate. This piecewise function is

not continuous. The function is given by the following equation:

μB(S) =

⎧⎪⎪⎨
⎪⎪⎩

μBmaxS
KSB

S < KS,

μmax S ≥ KS,

(2.2)

where μB is the specific growth rate, μBmax is the maximum specific growth rate

of microbes, S is concentration of substrate and KSB is a constant. Also like

the Monod model, this model is unable to capture the lag phase as well as the

death phase (in Figure (2.1)). Thus as with the Monod model, the Blackman

model is bound to overestimate microbial growth during the lag and death

phases. Unlike the Monod model, this model saturates rapidly and thus may

avoid underestimating the per capita growth rate around the neighbourhood

of the point where the transition occurs. The condition under which the model

is applicable are similar to those listed under the Monod model and will be

omitted here. Because of the sharp transition, the Blackman model may turn

to overestimate the per capita growth rate. The next model is a compromise

between the Monod model and the Blackman model; it allows a continuous

switch from zero-order to first-order, but this transition is sharper than that

allowed by the Monod model.
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2.4 Exponential model (Tessier model)

The exponential specific microbial growth rate model also known as the Tessier

model is based on the assumption that the dependence of the per capita growth

rate μT on the limiting substrate is proportional to the difference between the

per capita growth rate and the maximum growth rate of microbes. That is

dμT

dS
=

1

KST

(μTmax − μT ),

where KST is the proportional constant. Integrating gives the famous Tessier

model for specific microbial growth rate, Equation (2.3).

μT (S) = μTmax(1− e
− S

KST ), (2.3)

where μT is the specific growth rate, μTmax is the maximum specific growth rate

of microbes, S is the concentration of substrate and KST is a constant. The

Monod model, Blackman model and Tessier model mainly differ in the way

the change from first-order to zero-order behaviour occurs. At low and very

high substrate concentrations, the three models predictions are approximately

the same. At the point where the transition from low substrate concentration

dynamics to high substrate concentration dynamics occurs, the Tessier kinetics

will lie in between those predicted by the Monod and Blackman. Thus the

Tessier growth curve always lies in between the Blackman and Monod curves

[44]. The model in the following section is an extension of the Monod model

to capture the death phase of microbial growth curve (effects of inhibitory

substrates on microbial growth).
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2.5 Haldane model [18]

Empirical studies reveal that at high concentrations, the specific growth rate

of a microbial population may be inhibited by the substrate (death phase)

[48]. In this case, the Haldane model given in Equation (2.4) can be used to

describe the specific microbial growth rate. This equation can be viewed as

an extended version of the Monod equation. It was proposed by Haldane [18]

to model enzymes forming an inactive enzyme-substrate complex involving

two molecules of substrate per enzyme molecule. This is a famous model for

inhibition of microbial growth [19].

μH(S) = μHmax
S

KSH + S +
S2

Ki

, (2.4)

where μH is the specific growth rate, μHmax is the maximum specific growth

rate of microbes, S is concentration of substrate andKSH andKi are constants.

In addition to the exponential phase and stationary phase of microbial kinetics

captured by the models in the previous sections, this model equally captures

the death phase. If the inhibition constant Ki is very large, the model reduces

to the Monod model. In situations where the Monod model is applicable, this

model is likely to give more realistic results and thus it is advisable to use this

as oppose to the Monod model. None of the models covered so far is able to

capture the lag phase of microbial kinetics. The model that follows generalizes

the Monod model such that for a certain range of its parameter values, the lag

phase may be approximately captured.
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2.6 Moser model [29]

Herman Moser’s model [29] is a derivation from the Monod model. Moser

modified the Monod model by adding a third parameter, n > 1, to capture

the effects of adoption of microbes to stationary processes by mutation. The

model is given by

μMo(S,B) = μMomax
Sn

KSMo + Sn
, (2.5)

where μMo is the specific growth rate, μMomax is the maximum specific growth

rate of microbes, S is concentration of substrate, n is an adjustable parameter

and KSMo is a constant. This model provides a degree of flexibility in fitting

data and can simulate interesting dynamics in a continuous stirred tank reactor

[6]. It is similar to the Hill equation in enzymology. Like the Monod model,

this model does not capture the death phase of microbial kinetics. Unlike

the Monod model, for large values of n, the lag phase may be approximately

captured by this model. The Moser model is a better model compared to the

Monod model as n can be fine-tuned to capture some complex dynamics that

may not be perfectly captured with the Monod model. In comparison with

the Haldane model, the best model will be based on the nature of the culture.

If the substrate in the culture is toxic, and the microbes were familiar with the

culture and ready for cell division, the Haldane model will be preferable. On

the other hand, if the death phase were negligible and the lag phase significant,

the Moser model will be preferable.
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2.7 Contois model [11]

Contois microbes growth model [11] is also a derivation from the Monod model.

Contois proposed the model following the results of his work after applying

the Monod model to Aerobacter aerogenes on defined mineral salt media con-

taining ammonium as a nitrogen source and glucose or succinic acid as carbon

sources. His work reveals that the specific growth rate of microbes did not

only depend on the limiting nutrients but also was inversely proportional to

the quantity of microbes, B in the culture. He then proposed the following

model for microbial specific growth rate:

μC(S) =
S

KSCB + S
, (2.6)

where μC is the specific growth rate, S is concentration of substrate and KSC

is a constant. [15] compared the experimental and simulated data of fed-batch

and batch fermentation by various growth kinetic models and the Contois

model gave the best results among all the other models that included the

Monod, Tessier, Moser and Haldane models. Like the Monod, Blackman, and

Tessier models, this model does not capture the lag and death phases.

2.8 Logarithmic model (Westerhoff model)

The Westerhoff model [50] also known as the logarithmic model like some of

the models seen so far, describes the per capita growth rate as a continu-

ous function of the substrate concentration. The model equation is given by
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Equation 2.7:

μW = a+ b ln(S), (2.7)

where μW is the specific growth rate, a and b are constants. The model predicts

a period of rapid increase, followed by a period where the growth slows down,

but the growth continues to increase without bound. Thus the model does

not capture the stationary phase, the death phase as well as lag phase of

microbial growth. This function may overestimate growth in the lag phase,

exponential phase, and death phase. According to the model, if the substrate

concentration is very low, the growth may be negative. This is unrealistic as

the per capita growth rate is always positive. Compared to the model seen so

far, this model is not an appropriate model for microbial growth kinetics.

2.9 Droop’s cell quota model [13]

There is a difference between substrate uptake and substrate-controlled growth.

Substrate-controlled growth depends on substrate inside the cell. Michael

Droop defined the cell quota, Q, as the total cell substrate per unit biomass

[13]. This definition permits the growth rate to depend on an internal sub-

strate pool. While analyzing observations from vitamin B12 limited chemostat

cultures ofMonochrysis lutheri, Droop discovered that the specific growth rate,

μD is related to the cell quota Q, by the relationship given in Equation (2.8).

μD(Q) = μDmax

(
1− q

Q

)
, (2.8)
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where q is the smallest amount of internal nutrient on which the cell can exist

and μDmax is the maximum specific growth rate. This model does not capture

the lag phase as well as the death phase of microbial growth.

The above specific growth rate models are valid for a single limiting ele-

ment. However, when microbes are growing in an environment in which more

than one of its required substrates are present at less than saturating levels,

the limiting element might switch. In this case, we need to employ a threshold

approach and follow Leibig’s law of the minimum. In this situation, stoichiom-

etry plays an important role in the decomposition model. This is addressed in

the next chapter.

19



Chapter 3

A stoichiometric organic matter

decomposition model in a

chemostat culture 1

Abstract

Biodegradation, the disintegration of organic matter by microorganism, is es-

sential for the cycling of environmental organic matter. Understanding and

predicting the dynamics of this biodegradation have increasingly gained at-

tention from the industries and government regulators. Since changes in en-

vironmental organic matter are strenuous to measure, mathematical models

are essential in understanding and predicting the dynamics of organic matters.

1This Chapter has been published. Reference: Jude D. Kong, Paul Salceanu, and Hao
Wang. “A stoichiometric organic matter decomposition model in a chemostat culture.”
Journal of Mathematical Biology (2017): 1-36.
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Empirical evidence suggests that grazers’ preying activity on microorganism

helps to facilitate biodegradation. In this paper, we formulate and investigate

a stoichiometry-based organic matter decomposition model in a chemostat cul-

ture that incorporates the dynamics of grazers. We determine the criteria for

the uniform persistence and extinction of the species and chemicals. Our re-

sults show that 1) if at the unique internal steady state, the per capita growth

rate of bacteria is greater than the sum of the bacteria’s death and dilution

rates, then the bacteria will persist uniformly; 2) If in addition to this, (a) the

grazers’ per capita growth rate is greater than the sum of the dilution rate

and grazers’ death rate, and (b) the death rate of bacteria is less than some

threshold, then the grazers will persist uniformly. These conditions can be

achieved simultaneously if there are sufficient resources in the feed bottle. As

opposed to the microcosm decomposition models’ results, in a chemostat cul-

ture, chemicals always persist. Besides the transcritical bifurcation observed in

microcosm models, our chemostat model exhibits Hopf bifurcation and Rosen-

zweig’s paradox of enrichment phenomenon. Our sensitivity analysis suggests

that the most effective way to facilitate degradation is to decrease the dilution

rate.

3.1 Introduction

Biodegradation is the process by which organic matters are broken down into

smaller compounds by microorganisms [72]. This occurs when microorganisms

use organic matters as a source of energy and nutrients. This is an essential

process that helps keep our planet clean and healthy as well as return nutrients
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into the ecosystem. The pollution of the waste product in our environment

has increasingly gained the attention of industrial and government regulators

who are interested in preventing the potential negative impacts on human or

ecosystem’s health. This goal can be efficiently achieved only by mathematical

modeling because changes in environmental organic matter are difficult to

measure, especially in a long period of time, and the future density of organic

matter can only be predicted via modeling.

The most important organisms that break down organic matter in many

environments are bacteria. Bacteria are minute organisms which occur every-

where [79]. The growth rate of bacteria depends on resource availability. The

population of these vital microorganisms are heavily grazed by their predators

[76]. These grazers include protozoans, saprophagous and nematodes. Grazing

has several effects on the community. It leads to a decrease in bacterial pop-

ulation [65], stimulates mineralization of nutrients [60, 68, 54] and respiration

[68], and speeds up degradation of organic substances [83]. The grazers could

produce bacterial growth-limited substances [68] and release density depen-

dent factors that limit bacterial population growth [61]. Thus biodegradation

is by no doubt greatly affected by bacterial grazers. There is a need to under-

stand the interactions between bacteria and their grazers, in order to optimize

biodegradation.

Organic matter subject to decomposition usually contains a mixture of

different elements such as carbon, nitrogen, sulphur and phosphorus. The

growth rate of bacteria depends on the various elements that they obtain from

decomposing organic matters. These elements are all required by bacterial

cells because they fulfill specific roles in biosynthesis. Based on Justus Von
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Liebig’s minimum law, the growth rate of bacteria is proportional to the most

limiting resource. If in an organic matter all other elements except carbon

and nitrogen are present in abundance, the growth rate of microbes will be

a function of nitrogen and carbon. In this simplified situation, we already

need to incorporate the stoichiometry of microbes in modeling decomposition.

Ecological stoichiometry is the study of the balance of energy and chemical

elements in ecological interactions [82]. It is based on the observation that

there are stoichiometric mismatches between different levels in the food chain

that greatly affect trophic efficiency and nutrient fluxes [67] .

A majority of existing biodegradation models formulate bacterial per capita

growth rate using Monod function [73]. When multiple limiting resources are

considered, we need to apply Liebig’s minimum law with multiple Monod func-

tions. In this case, stoichiometry plays an important role in the decomposition

model. In addition, we include grazing dynamics in our model.

A biodegradation model that incorporates the effect of the grazers on bac-

teria is developed in [84]. The bacteria and grazers are assumed to be in a

batch culture, and nitrogen and carbon are considered to be the only limit-

ing elements. Bacterial growth follows the Liebig’s law of minimum and the

decomposition rate of organic carbon is proportional to the bacterial growth

rate. Their main objective was to provide a quantitative explanation to the

reported studies that indicate that the rate or the extent of organic matter

decomposition often increases in the presence of grazers. For simplicity, the

authors did not include the replenishment of organic matter by dead microbial

residues in their model. In addition, they did not determine the criteria for

the uniform persistence and extinction of the species and chemicals.
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Here, a chemostat version of the model in [84] is constructed and analyzed.

A chemostat is an apparatus used to mimic the continuous culture of microor-

ganisms in a laboratory [75]. One could think of it in terms of having three

bottles: a supply bottle, culture bottle, and collecting bottle. Bacteria and

grazers are considered to be inoculated into the culture bottle which is well

stirred. Fresh medium with resources is continuously added from the supply

bottle to the culture bottle. Culture liquid containing resources, bacteria, and

grazers are continuously removed at the same rate to keep the culture volume

constant. This set-up helps us to provide a good idealization of a natural

aquatic ecosystem. The input and removal of resources mimic the continuous

turnover of resources in a natural environment. The washout of bacteria and

grazers analogs non-age specific death and emigration which always occurs in

nature [81]. These natural processes can not be captured with a microcosm.

The chemostat is employed in the industry for the cost friendly production

of microbes [66]. Moreover, it is used in the industry to simulate biological

waste decomposition and water purification by microbes [86]. It is important

in ecological studies because it helps in generating data that mimic the natural

environment. Its mathematics is easy to handle as well [81]. It is argued in

[81] that having an on site analysis of an ecosystem is pretty much impossible

due to the absence of appropriate controls; hence, we have no choice but to

use chemostat models. Chemostat models thus yield more realistic ecological

models and interesting mathematical problems. In addition to the model in

[84] we allow the replenishment of organic matter from dead microbial residues.

The rest of the chapter is organized as follows. In Section 3.2, we formu-

late the model. In Section 3.3, we prove the positivity and boundedness of
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the formulated system. We determine criteria for the uniform persistence and

extinction of the species. We end the section by determining the optimal value

of grazers that maximizes the per capita decomposition rate of organic car-

bon. In Section 3.4, we perform one and two-parameter bifurcation analyses.

Furthermore, we numerically compare the effect of grazers on degradation in

a microcosm and in a chemostat. Moreover, in this section, we determine the

switching time of bacterial growth rate from carbon dependent to nitrogen de-

pendent for different continuous cultures. We end the section by discussing the

sensitivity of the degradation rate to model parameters. We end the chapter

with a discussion section.

3.2 The model

Our model is made up of four coupled nonlinear differential equations, which

track the rates of change of four state variables, i.e. the concentration of bac-

terial biomass measured in carbon (B), concentration of carbon in media (C),

concentration of nitrogen in media (N) and that of grazers (G) in the culture

bottle. It describes the bacteria-grazers interaction in a carbon or nitrogen

limiting environment. Microbial biomass in the ecosystem is often estimated

by measuring the microbial volume per cell (biovolume) and then converting

it to microbial biomass in terms of carbon content using an appropriate con-

version factor [55]. Thus we assume that microbial biomass is already in terms

of carbon content.

The change in bacterial biomass can result from four processes: growth,
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dilution, grazing, and natural mortality. That is

[change in bacteria biomass] = [growth]− [washout]− [grazing]− [death].

The functions f(N) and g(C) are the specific bacterial growth rates as a func-

tion N or C when that resource is limiting. Using the threshold approach,

the gross bacterial growth rate is given by min{f(N), g(C)}. This approach

follows directly from Leibig’s law of minimum, which states that an organ-

ism’s growth is limited by the most limiting resource [82]. Fresh medium with

constant resource concentrations is continuously added from the feed bottle to

the culture bottle at a constant input rate D. Culture liquid containing re-

sources, bacteria and grazers are continuously removed at the same rate. The

bacterial death rate (per capita) ε is assumed to be density independent. The

per capita grazing efficiency h(B) and the functions f(N) and g(C) are mono-

tonically increasing, saturating functions, which take the value of zero when

their arguments are zero. These assumptions lead to the following equation:

dB

dt
= −DB︸ ︷︷ ︸

washout

+μBBmin{f(N), g(C)}︸ ︷︷ ︸
growth

−μGh(B)G︸ ︷︷ ︸
grazing

− εB︸︷︷︸
death

(3.1)

The change in the grazers’ biomass can be caused by grazing, dilution and

death. That is

[change in grazers biomass] = [grazing]− [dilution]− [death].

The death rate of grazers (per capita), γ is assumed to be density independent.
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Thus we have that

dG

dt
= − DG︸︷︷︸

washout

+αμGh(B)G︸ ︷︷ ︸
grazing

− γG︸︷︷︸
death

(3.2)

The concentration of carbon in the culture bottle could be increased by

carbon supply from the feed bottle which has a fixed concentration of carbon

Cin or carbon recycled from dead bacteria and grazers. I.e.

[change in organic carbon in the environment] = [dilution]− [decomposition]

+ [recycling of death microbes].

The bacterial growth rate is proportional to the rate at which it is decomposing

organic substances i.e,

[bacteria growth rate] ∝ [its decomposition rate].

This implies that

[bacteria growth rate] = r[its decomposition rate]

where r is the proportionality constant. Hence,

[decomposition rate of organic substances] =
1

r
[bacteria growth rate due to its uptake].
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I.e.,

[decomposition of organic substances] =
1

r
min{f(N), g(C)}.

This constant of proportionality reflects the conversion of organic substances

to microbes biomass. Thus we refer to it as the “yield” constant. It can be

determined by measuring

mass of biomass formed

mass of organic substance consumed
.

These decomposed organic substances are converted into gasses and the rest

are taken in by the bacteria for growth. The death microbial are assumed to

immediately contribute to the organic carbon pool. In reality there is always

a delay and the conversion is usually partial. This partial conversion could be

accounted for by the formation of recalcitrant biomass decay product. These

lead to the following dynamics for the organic carbon compartment

dC

dt
= D(Cin − C)︸ ︷︷ ︸

dilution

− 1

r
μBBmin{f(N), g(C)}︸ ︷︷ ︸

decomposition

+ γG+ εB︸ ︷︷ ︸
recycling of death microbes

(3.3)

We further assume that the change in available nitrogen in the culture

bottle could be due to the nitrogen excreted by grazers, nitrogen recycled

from dead grazers and bacteria, uptake by bacteria, washout or as a result of
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supply from feed bottle which has a constant concentration Nin. I.e.

[Change in environmental nitrogen concentration] =

[dilution]+[nitrogen excreted by grazers]+[recycling of death microbes]

− [nitrogen required for bacteria growth].

Empirical evidence indicates that bacteria are nutrient richer than their grazers

(θB > θG) [82, 57]. Thus due to the stoichiometric mismatch, when grazers con-

sumes bacteria, they exude the extra acquired nitrients back into the ecosystem

[56, 53, 64, 82]. Hence if upon grazing, grazers obtained θBμGh(B)GmgN/dm3

from bacteria, and requires just αθGμGh(B)GmgN/dm3) for their growth, then

the remaining (θBμGh(B)G − αθGμGh(B)G)mgN/dm3 concentration will be

exuded back into the environment. Since the growth of bacteria is μBBmin{f(N), g(C)},
the total amount of nitrogen required by bacteria for this growth is

θBμBBmin{f(N), g(C)}.

Hence the dynamics of nitrogen compartment is given as follows:

dN

dt
= D(Nin −N)︸ ︷︷ ︸

dilution

+ θGγG+ θBεB︸ ︷︷ ︸
recycling of death microbes

+(θB − θGα)μGh(B)G︸ ︷︷ ︸
nitrogen excreted by grazers

(3.4)

− θBμBBmin{f(N), g(C)}︸ ︷︷ ︸
uptake by bacteria

Equations (3.1, 3.2, 3.3, 3.4) lead to the following system of equations:
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Parameter Definition Value Unit References
μB Maximum growth rate of bacteria 0.5 h−1 [70]
Kh H.S.C. for grazing 1 mgC/dm3 [70]
Kf Nitrogen-dependent H.S.C. for bacterial growth 1.21 mgN/dm3 -
Kg Carbon-dependent H.S.C. for bacterial growth 8 mgC/dm3 [70]
μG Maximum grazing rate 0.25 h−1 [70]
ε Bacteria death rate 0.025 h−1 [70]
γ Grazers death rate 0.0075 h−1 [70]
r Yield constant 0.31-0.75 - [63, 85]
θB N:C of bacteria 0.11− 0.25 - [82]
θG N:C of grazers < θB - [57]
D Dilution rate - h−1 -
Cin Concentration of carbon in feed bottle - mgC/dm3 -
Nin Concentration of nitrogen in feed bottle - mgN/dm3 -
α Conversion efficiency of bacteria to grazers 0-1 - [84]

Table 3.1: Definition and values of parameters in System (4.1)

dB

dt
= −DB + μBBmin{f(N), g(C)} − μGh(B)G− εB, (3.5)

dG

dt
= −DG+ αμGh(B)G− γG,

dC

dt
= D(Cin − C)− 1

r
μBBmin{f(N), g(C)}+ γG+ εB,

dN

dt
= D(Nin −N) + θGγG+ θBεB + (θB − θGα)μGh(B)G− θBμBBmin{f(N), g(C)}.

In numerical simulations, we use Monod or Michaelis-Menten form for the

functions f, g, h: f(N) = N
N+Kf

, g(C) = C
C+Kg

and h(B) = B
B+Kh

. All pa-

rameters and their definitions, units and values are listed in Table 3.1. H.S.C.

represents half-saturation constant. The value of Kf was estimated from that

of Kg using the Redfield ratio of C106 : N16 [82].

3.3 Model analysis

Here we present mathematical analysis for the model. We begin by verifying

the boundedness and positivity of the solutions, and we then compute the
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equilibrium points and determine criteria for their stability. Next, we deter-

mine conditions for persistence and extinction of bacteria and grazers. We end

the section by determining the optimal grazers concentration that maximizes

the degradation rate.

3.3.1 Positivity and boundedness

Theorem 1. System (4.1) is point dissipative, i.e. there exists a compact set

in R4
+ that attracts all solutions of (4.1), as t → ∞.

Proof. Positivity:

Let x =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

x1

x2

x3

x4

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

B(t)

G(t)

C(t)

N(t)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and

f(t, x) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

f1(t, x)

f2(t, x)

f3(t, x)

f4(t, x)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−DB + μBBmin{f(N), g(C)} − μGh(B)G− εB

−DG+ αμGh(B)G− γG

D(Cin − C)− 1
r
μBBmin{f(N), g(C)}+ εB + γG

D(Nin −N) + (θB − θGα)μGh(B)G− θBμBBmin{f(N), g(C)}+ θGγG+ θBεB

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

Let i=1,2,3,4. It is easy to see that f(t,x) exist and is continuous, and that if

xi = 0 =⇒ fi(t, x) ≥ 0 ∀i, t. Hence nonnegative initial data can only give

rise to nonnegative solutions.
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Eventual boundedness:

Let y(t) =
[(

1
r
+ θB

)
B +

(
θG + 1

αr

)
G+ C +N

]
. Observe that

y′(t) =
[(

1

r
+ θB

)
B +

(
θG +

1

αr

)
G+ C +N

]′

= D

[
Cin +Nin −

((
1

r
+ θB

)
B +

(
θG +

1

αr

)
G+ C +N

)]

+ εB

(
1− 1

r

)
+ γG

(
1− 1

αr

)

≤ D

[
Cin +Nin −

((
1

r
+ θB

)
B +

(
θG +

1

αr

)
G+ C +N

)]

= D[Cin +Nin − y(t)],

which implies that

y(t) ≤ y(0)e−Dt + (Cin +Nin)(1− e−Dt) (3.6)

and hence

lim sup
t→∞

y(t) ≤ Cin +Nin.

Thus the solution is eventually bounded.

The Corollary below follows from Theorem 7

Corollary 1. The set
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Δ =

{
(B,G,C,N) : B,G,C,N,≥ 0,

B

r
+

G

αr
+ C ≤ Cin and θBB + θGG+N ≤ Nin

}

(3.7)

is compact and positively invariant for System (4.1).

3.3.2 Possible equilibrium points

In this section, λC , λN , δ are used to denote the break even concentrations for

carbon, nitrogen and bacteria respectively. They denote the concentrations

of carbon, nitrogen and bacteria for which the following relationship holds:

μBf(λN) = D + ε, μBg(λC) = D + ε, αμGh(δ) = D + γ. Let (B∗, G∗, C∗, N∗)

be a generic equilibrium point. This implies that

−DB∗ + μBB
∗ min{f(N∗), g(C∗)} − μGh(B

∗)G∗ − εB∗ = 0 (3.8)

−DG∗ + αμGh(B
∗)G∗ − γG∗ = 0

D(Cin − C∗)− 1

r
μBB

∗ min{f(N∗), g(C∗)}+ εB∗ + γG∗ = 0

D(Nin −N∗) + θGγG
∗ + θBεB

∗ + (θB − θGα)μGh(B
∗)G∗ − θBμBB

∗ min{f(N∗), g(C∗)} = 0

a) If B∗
1 = 0 and G∗

1 = 0, then we have the equilibrium point

E1 = (0, 0, Cin, Nin). This equilibrium point always exists.

b) Suppose G∗
2 = 0 and C∗

2 = λC , then the third equation of System (4.2)
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implies

D(Cin − λC)− 1

r
B∗

2(D + ε) + εB∗
2 = 0

=⇒ B∗
2 =

rD(Cin − λC)

D + ε(1− r)
. From the last equation of System (4.2)

we have that N∗
2 = Nin − θBB

∗
2 = Nin − θB(

rD(Cin − λC)

D + ε(1− r)
).

Thus we have the equilibrium point

E2 = (
rD(Cin − λC)

D + ε(1− r)
, 0, λC , Nin − θB(

rD(Cin − λC)

D + ε(1− r)
)),

for λC < Cin and T1 :=
Nin

Cin−λC
> DθBr

D+ε(1−r)
:= S.

c) If G∗
3 = 0 and N∗

3 = λN , then we have from the last equation of System

(4.2) that

D(Nin − λN)− θBB
∗
3D = 0.

=⇒ B∗
3 =

Nin − λN

θB
.

From the third equation of System (4.2) we have that

C∗
3 =

1

D

[
DCin − Nin − λN

rθB
(D + ε(1− r))

]
.

Hence we have the equilibrium point

E3 =

(
Nin − λN

θB
, 0,

1

D

[
DCin − Nin − λN

rθB
(D + ε(1− r))

]
, λN

)
,
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for λN < Nin and (Nin−λN )(D+ε(1−r))
DCin

< rθB.

Remark 1. It is worth mentioning that if λN 	= f−1(g(λC)), the grazer-

extinction equilibria above will never coexist. If λN = f−1(g(λC)), and

Nin 	= θBrD(Cin − λC)

D + ε(1− r)
+f−1(g(λC)) then System (4.1) will have two co-

existing grazer-extinction equilibria given by

[
rD(Cin − λC)

D + ε(1− r)
, 0, λC , λN

]

and

[
(Nin − λN)

θB
, 0, λC , λN

]
.

d) Suppose g(C∗
4) < f(N∗

4 ) and B∗
4 = δ. From the first equation of System

(4.2) we have that

G∗
4 =

δ(−(D + ε) + μBg(C
∗
4))

μGh(δ)
=

δα(−(D + ε) + μBg(C
∗
4))

γ +D
. (3.9)

The third equation gives

D(Cin − C∗
4) =

μBδg(C
∗
4)

r
− εδ − γG∗

4.

=⇒ DC∗
4 = g(C∗

4)

[
γαδμB

γ +D
− μBδ

r

]
+DCin − γδα(D + ε)

γ +D
+ εδ.

(3.10)

Equation (3.10) can have at most one solution for C∗
4 . If

γαδμB

γ +D
−μBδ

r
< 0

and DCin− γδα(D+ε)
γ+D

+εδ > 0 or
γαδμB

γ +D
−μBδ

r
> 0, Equation (3.10) will

have one unique solution for C∗
4 ; else it will have no solution. Suppose

that conditions for Equation (3.10) to have a unique solution hold, then

by solving for C∗ we can substitute its expression into Equation (3.9) to
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obtain a unique value for G∗
4. From the last equation, we have

N∗
4 =

1

D
(DNin + θGγG

∗
4 + θBεδ + (θB − θGα)μGh(δ)G

∗
4 − θBμBδg(C

∗
4)).

i.e.

N∗
4 =

1

D
(DNin + θGγG

∗
4 + θBεδ + (θB − θGα)

γ +D

α
G∗

4 − θBμBδg(C
∗
4)).

To solve this equation for N∗
4 , one has to solve Equations (3.9) and (3.10)

for C∗
4 and G∗

4. In case there exist a unique solution for C∗
4 , then there

will exist a unique solution for G∗
4 and N∗

4 . Hence we will have an internal

equilibrium point E4 = (δ,G∗
4, C

∗
4 , N

∗
4 ) where δ is the unique solution to

αμGh(δ) = γ +D. In summary, this equilibrium point only exists if all

of the following conditions hold:

i)

44
γαδμB

γ +D
− μBδ

r
< 0 and DCin − γδα(D + ε)

γ +D
+ εδ > 0

or
γαδμB

γ +D
− μBδ

r
> 0

ii) μBg(C
∗
4) > D + ε

iii) θBμBδg(C
∗
4) < DNin + θGγG

∗
4 + θBεδ + (θB − θGα)

γ+D
α

G∗
4 := N0

where N0 is the total nitrogen gained.

e) Suppose f(N∗
5 ) < g(C∗

5) and B∗
5 = δ.

From the second equation of System (4.2), we have that

αμGh(B
∗
5) = γ + D. That is, αμGh(δ) = γ + D. The first equation of
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(4.2) gives

G∗
5 =

δ

μGh(δ)
(−(D + ε) + μBf(N

∗
5 )). (3.11)

Substituting Equation (3.11) into the last equation of System (4.2) leads

to

DN∗
5 = DNin − θGγ(D + ε)δ

μGh(δ)
+ θGαδ[D + ε]− θBDδ (3.12)

+

[
θGγμBδ

μGh(δ)
− θGαμBδ

]
f(N∗

5 )

This equation has a solution for N∗
5 only if

DNin − θGγ(D + ε)δ

μGh(δ)
+ θGαδ[D + ε]− θBDδ > 0

and

[
θGγμBδ

μGh(δ)
− θGαμBδ

]
< 0 or

[
θGγμBδ

μGh(δ)
− θGαμBδ

]
> 0.

From the second equation of System (4.2), we have that

C∗
5 =

1

D

(
DCin − μBδf(N

∗
5 )

r
+ εδ + γ

δ

μGh(δ)
(−(D + ε) + μBf(N

∗
5 ))

)
.

(3.13)

Thus, to obtain the values of the internal equilibrium point (assuming

it exists), one needs to first solve Equation (3.12) for N∗
5 , then sub-

stitute the unique value of N∗
5 into Equations (3.11) and (3.13) which
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will give a unique G∗
5 and C∗

5 . Thus we have the equilibrium point

E5 = (δ,G∗
5, C

∗
5 , N

∗
5 ) if the following conditions hold:

i)

DNin − θGγ(D + ε)δ

μGh(δ)
+ θGαδ[D + ε]− θBDδ > 0

and

[
θGγμBδ

μGh(δ)
− θGαμBδ

]
< 0 or

[
θGγμBδ

μGh(δ)
− θGαμBδ

]
> 0.

ii) μBg(N
∗
5 ) > D + ε

ii)
μBδf(N

∗
5 )

r
< DCin + εδ.

Remark 2. If at any of the coexistence equilibria, the concentration of nitro-

gen N∗ and carbon C∗ are such that N∗ = f−1(g(C∗)), then one can find a

parameter set for which two internal equilibria can coexist.

Table (3.2) contains a summary of all possible critical points and Table (3.3)

contains conditions for their existence.
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Symbol Expression

E1 (0, 0, Cin, Nin)

E2 ( rD(Cin−λC)
D+ε(1−r)

, 0, λC , Nin − θB(
rD(Cin−λC)
D+ε(1−r)

))

E3 E3 =
(

Nin−λN

θB
, 0, 1

D

[
DCin − Nin−λN

rθB
(D + ε(1− r))

]
, λN

)
E4 (δ,G∗

4, C
∗
4 , N

∗
4 ). Where δ solves αμGh(δ) = γ +D,

C∗
4 solves DC∗

4 = g(C∗
4)
[
γαδμB

γ+D
− μBδ

r

]
+DCin − γδα(D+ε)

γ+D
+ εδ

G∗
4 =

δ(−(D+ε)+μBg(C∗
4 ))

μGh(δ)
=

δα(−(D+ε)+μBg(C∗
4 ))

γ+D

N∗
4 = 1

D
(DNin + θGγG

∗
4 + θBεδ + (θB − θGα)

γ+D
α

G∗
4 − θBμBδg(C

∗
4))

E5 (δ,G∗
5, C

∗
5 , N

∗
5 ).

Where δ solves αμGh(δ) = γ +D

N∗
5 solves

DN∗
5 = DNin − θGγ(D + ε)δ

μGh(δ)
+ θGαδ[D + ε]− θBDδ +

[
θGγμBδ
μGh(δ)

− θGαμBδ
]
f(N∗

5 )

G∗
5 =

δ
μGh(δ)

(−(D + ε) + μBf(N
∗
5 )) . and

C∗
5 = 1

D

(
DCin − μBδf(N

∗
5 )

r
+ εδ + γ δ

μGh(δ)
(−(D + ε) + μBf(N

∗
5 ))

)
.

Table 3.2: Notations and expressions for the equilibrium points of System (4.1).

Equilibrium point Conditions for existence

E1 no conditions are needed

E2 λC < Cin and Nin >
θBrD(Cin − λC)

D + ε(1− r)
.

E3 λN < Nin and DCin >
(Nin − λ)(D + ε(1− r))

rθB

E4 (i)
γαδμB

γ +D
− μBδ

r
< 0 and DCin − γδα(D+ε)

γ+D
+ εδ > 0 or

γαδμB

γ +D
− μBδ

r
> 0

(ii) μBg(C
∗
4) > D + ε

(iii) θBμBδg(C
∗
4) < DNin + θGγG

∗
4 + θBεδ + (θB − θGα)

γ+D
α

G∗
4

E5 (i) DNin − θGγ(D + ε)δ

μGh(δ)
+ θGαδ[D + ε]− θBDδ > 0 and

[
θGγμBδ

μGh(δ)
− θGαμBδ

]
< 0

or

[
θGγμBδ

μGh(δ)
− θGαμBδ

]
> 0.

(ii) μBg(N
∗
5 ) > D + ε

(iii) DCin + εδ >
γδ

μGh(δ)
(D + ε)−

[
γ

μGh(δ)
− 1

r

]
δμBf(N

∗
5 )

Table 3.3: Criteria for existence of the equilibrium points of System (4.1).
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3.3.3 Stability of the equilibrium points

The objective of this section is to determine the stability of all equilibrium

points derived above. In deriving the equilibria, we assume that

f(N∗) 	= g(C∗).

Stability of E1 :

The Jacobian matrix corresponding to this equilibrium point is

J(E1) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(D + ε) + μB min f(Nin), g(Cin) 0 0 0

0 −D − γ 0 0

−μB min(f(Nin),g(Cin))
r

+ ε γ −D 0

−θBμB min f(Nin, g(Cin)) + θBε θGγ 0 −D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding eigenvalues are λ1 = −D, λ2 = −D λ3 = −D − γ, λ4 =

−(D + ε) + μB min(f(Nin, g(Cin))). Thus extinction equilibrium E1 is locally

asymptotically stable if

μB min(f(Nin), g(Cin)) < D + ε.

Biological meaning: If the resources in the culture bottles are extremely

limiting, bacteria will go extinct, which pushes the grazers to go extinct as

well.
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Stability of E2 :

Corresponding to E2 we have the Jacobian matrix

J(E2) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −μGh(B
∗
2) μBB

∗
2g

′(λC) 0

0 −D + αμGh(B
∗
2)− γ 0 0

−(D+ε)
r

+ ε γ −D − μBB∗
2g

′(λC)

r
0

−θBD θGγ + (θB − θGα)μGh(B
∗
2) −θBμBB

∗
2g

′(λC) −D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding eigenvalues are

λ1 = −D

λ2 =
−(Dr + μBB

∗
2g

′(λC)) +
√
(Dr + μBB∗

2g
′(λC))2 − 4r(DμBB∗

2g
′(λC) + μBg′(λC)ε)

2r

λ3 =
−(Dr + μBB

∗
2g

′(λC))−
√
(Dr + μBB∗

2g
′(λC))2 − 4r(DμBB∗

2g
′(λC) + μBg′(λC)ε)

2r

λ4 = −D + αμGh(B
∗
2)− γ.

Thus E2 is locally asymptotically stable if αμGh(B
∗) < D + γ.

Biological meaning: This grazer-extinction equilibrium point is a sink if the

growth rate of grazers is less than its loss rate at this equilibrium.

Stability of E3 :

The Jacobian matrix for this equilibrium point is
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J(E3) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −μGh(B
∗
3) 0 μBB

∗
3f

′(λN)

0 −D + αμGh(B
∗
3)− γ 0 0

−(D+ε)
r

+ ε γ −D −μBB∗
3f

′(λN )

r

−θBD θGγ + (θB − θGα)μGh(B
∗
3) 0 −D − θBμBB

∗
3f

′(λN)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

The corresponding eigenvalues are λ1 = −D, λ2 = −D, λ3 = −B∗θBμBf
′(λN),

λ4 = −D+αμGh(B
∗)−γ. Thus this alternative grazer-extinction E3 is stable

if αμGh(B
∗) < D + γ.

Biological meaning: This grazer-extinction equilibrium point is a sink if

the growth rate of grazers is less than its loss rate at this equilibrium.

Stability of E4 :

J(E4) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(D + ε) + μBg(C
∗
4)− μGh

′(δ)G∗
4 −μGh(δ) μBδ g

′(C∗
4) 0

αμGG
∗h′(δ) 0 0 0

−μBg(C
∗
4)

r
+ ε γ −D − μBδ g

′(C∗
4)

r
0

θBε+ (θB − θGα)μGh
′(δ)G∗

4 − μBg(C
∗
4)θB θGγ + (θB − θGα)μGh(δ) −θBμBδ g

′(C∗
4) −D

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Characteristic Polynomial: the corresponding characteristic polynomial is
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given by

1

r

[(
x+D

)(
xrD2 +Dxεr + 2Dx2r

+DxμBδg
′(C∗)−DxrμBg(C

∗) +DxrμGh
′(δ)G∗ +Dαμ2

Gh
′(δ)G∗h(δ)r

− x2rμBg(C
∗) + x2rμGh

′(δ)G∗ + x3r + x2μBδg
′(C∗) + xμBδg

′(C∗)μGh
′(δ)G∗

+ xμBδh
′(δ)ε− xμBδg

′(C)εr − γαμGh
′(δ)G′μBδg

′(C)r

+ xαμ2
Gh

′(δ)G∗h(δ)r + αμ2
Gh

′(δ)G∗h(δ)μBδg
′(C∗)

)]
= 0.

This implies that x = −D or

x3r +
(
2Dr + μBδg

′(C∗
4)− μBg(C

∗
4)r + μGh

′(δ)G∗
4r
)
x2

+
(
− μBδg

′(C∗
4)εr + εrD + μBδg

′(C∗
4)ε+D2r −DrμBg +DrμGh

′(δ)G∗
4

+ μBδg
′(C∗

4)D + μBδg
′(C∗

4)μGh
′(δ)G∗

4 + αμ2
Gh

′(δ)G∗
4h(δ)r

)
x

− γαμGh
′(δ)G∗

4μBδg
′r +Dαμ2

Gh
′(δ)G∗

4h(δ)r + αμ2
Gh

′(δ)G∗
4h(δ)μBδg

′(C∗
4) = 0.

Let

A3 = r,

A2 = 2Dr + μBδg
′(C∗

4)− μBg(C
∗
4)r + μGh

′(δ)G∗
4r,

A1 =
(
− μBδg

′(C∗
4)εr + εrD + μBδg

′(C∗
4)ε+D2r −DrμBg +DrμGh

′(δ)G∗
4,

+ μBδg
′(C∗

4)D + μBδg
′(C∗

4)μGh
′(δ)G∗

4 + αμ2
Gh

′(δ)G∗
4h(δ)r,

A0 = −γαμGh
′(δ)G∗

4μBδg
′r +Dαμ2

Gh
′(δ)G∗

4h(δ)r + αμ2
Gh

′(δ)G∗
4h(δ)μBδg

′(C∗
4).
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Applying the Routh-Hurwitz stability criterion, we have that the coexistence

equilibrium point E4 is stable if A2, A1 and A0 are greater than zero and

A2A1 > rA0.

A1A2 = αμ2
Gh

′G∗
4hrμBδg

′ − μBδg
′εr2μGh

′G∗
4 − αμ2

Gh
′G∗

4hr
2μBg

+ 4DrμGh
′G∗

4μBδg
′ − μ2

Bδg
′μGh

′G∗
4gr + 2μBδg

′εrμGh
′G∗

4 + 4μBδg
′εrD

− μ2
Bδg

′εrg − 2μBδg
′εr2D + μ2

Bδg
′εr2g + 2εr2DμGh

′G∗
4 − 2Drμ2

Bgδg
′

+ μ2
Bδ

2(g′)2μGh
′G∗

4 + αμ3
G(h

′)2(G∗
4)

2hr2 − 2εr2DμBg +Dr2μ2
G(h

′)2(G∗
4)

2

− μ2
Bδ

2(g′)2εr − μBδg
′ε2r2 + 3D2rμBδg

′ + 3D2r2μGh
′G∗

4 − 3D2r2μBg

+Dr2μ2
Bg

2 + μ2
Bδ

2(g′)2D + μ2
Bδ

2(g′)2ε+ μBδg
′ε2r + 3D2r2ε+ ε2r2D + 2D3r2

− 2Dr2μBgμGh
′G∗

4 + μBδg
′μ2

G(h
′)2(G∗

4)
2r + 2αμ2

Gh
′G∗

4hr
2D + αμ2

Gh
′G∗

4hr
2ε

= αμ2
Gh

′G∗
4hrμBδg

′ + αμ2
Gh

′G∗
4hr

2D + μBδg
′εrμGh

′G∗
4[2− r]

+ αμ2
Gh

′G∗
4hr

2[D − μBg] + rμGh
′G∗

4μBδg
′[4D − μBg] + μBδg

′εr[4D − μBg]

+DrμBδg
′[3D − 2μBg] +D2r2[2D − 3μBg] +Dr2ε[3D − 2μBg]

+ μ2
Bδ

2(g′)2ε[1− r] +Dr2μGh
′G∗

4[3D − 2μBg]− 2μBδg
′εr2D

+ μ2
Bδg

′εr2g + 2εr2DμGh
′G∗

4 + μ2
Bδ

2(g′)2μGh
′G∗

4 + αμ3
G(h

′)2(G∗
4)

2hr2

+Dr2μ2
G(h

′)2(G∗
4)

2 +Dr2μ2
Bg

2 + μ2
Bδ

2(g′)2D + μBδg
′ε2[1− r]

+ ε2r2D + μBδg
′μ2

G(h
′)2(G∗

4)
2r + αμ2

Gh
′G∗

4hr
2ε

and

rA0 = r[−wαμGh
′(δ)G∗

4μBδg
′r+Dαμ2

Gh
′(δ)G∗

4h(δ)r+αμ2
Gh

′(δ)G∗
4h(δ)μBδg

′(C∗
4)].
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Observe that for very large values of D, C∗
4 → κ ≤ Cin and g′(C∗

4) → 0. If D is

chosen such that 2D >> μBg(C
∗
4), A2 and A1 will be greater than zero and if

wr < μGh(δ) = D + γ, A0 will be greater than zero. That is a) if the dilution

is greater than the per capita bacterial growth rate A1 and A2 will be positive

and b) if the per capita grazing rate of bacteria is greater than the bacterial

per capita death rate, A0 will be positive. We also have that if μGg(C
∗
4) << D

A1A2 will be greater than or equal to rA0. We could choose D very large so

that A1A2 > rA0

Biological meaning: If the dilution rate is very large, E4 will be stable.

Stability of E5 :

J(E5) =⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−(D + ε) + μBf(N
∗
5 )− μGh

′(δ)G∗
5 −μGh(δ) 0 μBδ f

′(N∗
5 )

αμGh
′(δ)G∗

5 0 0 0

−μBf(N∗
5 )

r
+ ε w −D −μBδ f ′(N∗

5 )

r

θBε+ (θB − θGα)μGh
′(δ)G∗

5 − θBμBf(N
∗
5 ) θGw + (θB − θGα)μGh(δ) 0 −D − θBμBδ f

′(N∗
5 )

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
.

Characteristic polynomial: the corresponding characteristic polynomial to
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this Jacobian matrix is given by

(
x+D

)(
Dxε+ x2ε+ xD2 +DxμGh

′(δ)G∗
5 +Dαμ2

Gh
′(δ)G∗

5h(δ)

−DxμBf(N
∗
5 ) + 2 x2D +DxθBμBδ f

′(N∗
5 ) + x3 + x2θBμBδ f

′(N∗
5 )

− αμGh
′(δ)G∗

5μBδ f
′(N∗

5 )θGw − x2μBf(N
∗
5 ) + x2μGh

′(δ)G∗
5

+ xαμ2
Gh

′(δ)G∗
5h(δ) + xμBδ f

′(N∗
5 )μGh

′(δ)G∗
5θGα

+ α2μ2
Gh

′(δ)G∗
5μBδ f

′(N∗
5 )h(δ)θG

)
= 0.

This implies that

α2μ2
Gh

′(δ)G∗
5μBδ f

′(N∗
5 )h(δ)θG +Dαμ2

Gh
′(δ)G∗

5h(δ)

− αμGh
′(δ)G∗

5μBδ f
′(N∗

5 )θGw +
(
DμGh

′(δ)G∗
5 −DμBf(N

∗
5 )

+ θBμBδ f
′(N∗

5 )D + αμ2
Gh

′(δ)G∗
5h(δ)μBδ f

′(N∗
5 )μGh

′(δ)G∗
5θGα +D2

+Dε
)
x+

(
μGh

′(δ)G∗
5 + θBμBδ f

′(N∗
5 ) + 2D − μBf(N

∗
5 ) + ε

)
x2 + x3 = 0.

Let

B3 = 1,

B2 = μGh
′(δ)G∗

5 + θBμBδ f
′(N∗

5 ) + 2D − μBf(N
∗
5 ) + ε,

B1 = DμGh
′(δ)G∗

5 −DμBf(N
∗
5 ) + θBμBδ f

′(N∗
5 )D + αμ2

Gh
′(δ)G∗

5h(δ)

+ μBδ f
′(N∗

5 )μGh
′(δ)G∗

5θGα +D2 +Dε,

B0 = α2μ2
Gh

′(δ)G∗
5μBδ f

′(N∗
5 )h(δ)θG +Dαμ2

Gh
′(δ)G∗

5h(δ)

− αμGh
′(δ)G∗

5μBδ f
′(N∗

5 )θGw.
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By the Routh-Hurwitz stability criterion, the coexistence equilibrium point E5

is stable if B2, B1 and B0 are greater than zero and B2B1 > A0.

B2B1 = 2 θBμBδ f
′DμGh

′G∗
5 + 2DαμG

2h′G∗
5h+ 3 θBμBδ f

′D2 + 2DεμGh
′G∗

5

+Dε2 + 3D2ε− 2 θBμB
2δ f ′Df + 2 θBμBδ f

′Dε− 2DμBfμGh
′G∗

5

+ θB
2μB

2δ2(f ′)2D + αμG
3(h′)2(G∗

5)
2h+ αμG

2h′G∗
5hε+DμB

2f 2

+DμG
2(h′)2(G∗

5)
2 − 2DμBfε+ 3D2μGh

′G∗
5 + 2D3 − 3D2μBf

+ μBδ f
′μG

2(h′)2G2θGα− αμG
2h′G∗

5hμBf + μBδ f
′μGh

′G∗
5θGα ε

+ αμG
2h′G∗

5hθBμBδ f
′ − μB

2δ f ′μGh
′G∗

5θGα f + μB
2δ2(f ′)2μGh

′G∗
5θGα θB

+ 2μBδ f
′μGh

′G∗
5θGαD

= αμG
2h′G∗

5hθBμBδ f
′ + DαμG

2h′G∗
5h+ θBμBδ f

′D[3D − 2μBf ]

+ 3D2μGh
′G∗

5[3D − 2μBf ] + Dε[3D − μBf ] + D2[2D − 3μBf ]

+ αμG
2h′G∗

5h[D − μBf ] + μBδ f
′μGh

′G∗
5θGα [2D − μBf ]

+ 2 θBμBδ f
′DμGh

′G∗
5 + 2DεμGh

′G∗
5 +Dε2 + 2 θBμBδ f

′Dε

+ θB
2μB

2δ2(f ′)2D + αμG
3(h′)2(G∗

5)
2h+ αμG

2h′G∗
5hε+DμB

2f 2

+DμG
2(h′)2(G∗

5)
2 + μBδ f

′μG
2(h′)2G2θGα + μBδ f

′μGh
′G∗

5θGα ε

+ μB
2δ2(f ′)2μGh

′G∗
5θGα θB

It can be shown that if D is very large, N∗
5 → κ1 ≤ Nin + θGαδ − θBδ and

f ′(N∗
5 ) → 0. Thus if D >> μBf(κ1), B2 and B0 will be greater than zero.

Also if w < αμGh(δ) = D + γ, B0 will be greater than zero. Moreover, if

D >> μBf(κ1), B2B1 will be greater than B0.
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Biological meaning: Suppose the following 2 conditions hold. The first

one is that the dilution rate is far greater than the bacterial per capita growth

rate. The second is that the natural per capita mortality rate of grazer is less

than the per capita grazed bacterial biomass converted to grazers biomass.

When these 2 situations hold, the carbon limiting internal equilibrium will be

stable.

Table (3.4) contains a summary of the conditions for the asymptotic stability

of all the possible equilibrium points.

Equilibrium Point Conditions for asymptotic stability

E1 μB min{f(Nin), g(Cin))} < D + ε.

E2 αμGh(B
∗
2) < D + w.

E3 αμGh(B
∗
3) < D + w

E4 An > 0, n = 0, 1, 2, A2A1 > rA0 where An > 0, n = 0, 1, 2 are as defined above

E5 Bn > 0, n = 0, 1, 2, B2B1 > B0 where Bn > 0, n = 0, 1, 2 are as defined above.

Table 3.4: Summary of conditions for asymptotic stability of possible equilibrium
points of System (4.1).

3.3.4 Persistence-extinction criteria

In this section, we obtain sufficient conditions for the uniform persistence as

well as extinction of bacteria and grazers and consequently those of System

(4.1). | · | is used to denote a norm on R
9. The uniform persistence conditions

are important for the food web defined by System (4.1) as they ensure that the

bacteria and grazers never go extinct (this is made more precise in Theorem
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2 (a) and Theorem 3 (a) below). For the remainder of this section we assume

that h is differentiable at zero. Let λ0 = (D, ε, r, α, ω, μB, μG, θB, θG) ∈ R
9
+ be

a fixed parameter vector and

R(ε) = μB min{f(Nin), g(Cin)} − (D + ε). (3.14)

Theorem 2 (Bacterial persistence-extinction criteria). The bacterial persistence-

extinction criteria for System (4.1) are as follows:

(a) If R(ε) > 0 then the bacteria are robustly uniformly persistent: there

exist η > 0, δ > 0 such that

lim inf
t→∞

B(t) ≥ η, (3.15)

for all solutions of (4.1) that satisfy B(0) > 0, corresponding to all λ

satisfying |λ− λ0| < δ.

(b) If R(ε) ≤ 0 then (B(t), G(t), C(t), N(t)) → E1 for all solutions of (4.1).

Proof. (a) Let

XB
0 = {(B,G,C,N) ∈ R

4
+ | B = 0}.

From Theorem 7, we have that there exists a compact set B ⊂ R
4
+ that attracts

all solutions of (4.1). Also, the omega limit set of every solution in B ∩XB
0 is

the equilibrium point E1 = (0, 0, Cin, Nin). Let

h̃(B) =

⎧⎪⎨
⎪⎩

h(B)
B

, ifB 	= 0,

h′(0), ifB = 0
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Then

B′ = B(−D − ε+ μB min{f(N), g(C)} − μGh̃(B)G)

Now the conclusion follows from Corollary 4.7 in [77], applied withM = B∩XB
0

and T = 1 (hence Ω(M) = E1, while P (1, E1) = eR(ε)).

(b) Let (B(t), G(t), C(t), N(t)) be a solution of (4.1) with omega limit set ω.

Let x1
0 = (B1

0 , G
1
0, C

1
0 , N

1
0 ) ∈ ω and (B1(t), G1(t), C1(t), N1(t)) be a solution

with (B1(0), G1(0), C1(0), N1(0)) = x1
0. Using Corollary 1 and that ω is in-

variant, we have that ω 	= ∅ and C1(t) ≤ Cin, N
1(t)) ≤ Nin, for all t ≥ 0.

Thus,

B1′ ≤ B1(−D − ε+ μB min{f(Nin), g(Cin)}), ∀ t ∈ R.

Since R(ε) ≤ 0, we have that B1′(t) ≤ 0 for all t ∈ R. Suppose B1
0 > 0. Then

B1(t) converges to some B̄1 > 0, as t → −∞. Thus ω(x1
0) ⊂ {(B,G,C,N) |

B = B̄1}. Let x2
0 ∈ ω(x1

0) and (B2(t), G2(t), C2(t), N2(t)) be a solution with

(B2(0), G2(0), C2(0), N2(0)) = x2
0. If G2(0) > 0 and D + ω 	= αμGh(B̄

1), it

follows that G2(t) → ∞ when either t → ∞, or t → −∞, which contradicts

the boundedness of ω(x1
0). Hence either G2(0) = 0, which implies G2(t) = 0

for all t ∈ R, or D+ω = αμGh(B̄
1), which implies G2(t) = G2(0) for all t ∈ R.

In either case, using the equations for C and D in (4.1), we obtain that ω(x1
0)

contains an equilibrium point (B∗, G∗, C∗, N∗) with B∗ = B̄1. Since B̄1 > 0,

again, from Corollary 1 we have that N∗ < Nin and C∗ < Cin. Then

B∗(−D − ε+ μB min{f(N∗), g(C∗)})− μGh(B
∗)G∗ < B∗(−D − ε+ μB min{f(Nin), g(Cin)}) < 0,

which contradicts that (B∗, G∗, C∗, N∗) is an equilibrium.

Hence ω ⊂ {(B,G,C,N) | B = 0}. Then, from our discussion above, ω cannot
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contain points with C > 0. Hence ω ⊂ {(B,G,C,N) | B = 0 and C = 0}.
Let x3

0 = (0, 0, C3
0 , N

3
0 ) ∈ ω and (B3(t), G3(t), C3(t), N3(t)) be a solution with

(B3(0), G3(0), C3(0), N3(0)) = x3
0. Suppose C3

0 < Cin. Then

C3(−t) = (C3
0 − Cin)e

Dt + Cin, ∀ t ≥ 0,

which implies that C3(−t) → −∞ as t → ∞. This again contradicts the

boundedness of ω. Similarly, we arrive to a contradiction if we assume that

N3
0 < Nin. This shows that ω = {(0, 0, Cin, Nin)}.

Next we investigate the uniform persistence-extinction scenario for the

grazers. For this, it will be useful to understand the grazer-free dynamics,

which are given by the system

B′ = B[−(D + ε) + μB min{f(N), g(C)}],
C ′ = D(Cin − C)− μB

r
Bmin{f(N), g(C)}+ εB,

N ′ = D(Nin −N) + θBεB − θBμBBmin{f(N), g(C)},
(3.16)

Lemma 1. Assume that R(ε) > 0 and ε(1− r) < D. Then System (3.16) has

a unique interior equilibrium that attracts all solutions with B(0) > 0.

Proof. From the first and third equations in (3.16) we have

(N + θBB)′ = −D(N + θBB) +DNin.

Hence N(t) + θBB(t) → Nin as t → ∞. Thus all solutions of (3.16) are

attracted to the set {(B,C,N) ∈ R
3
+ | N = Nin − θBB}. The dynamics
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restricted to this set are given by

B′ = B[−(D + ε) + μB min{f(Nin − θBB), g(C)}]
C ′ = D(Cin − C)− μB

r
Bmin{f(Nin − θBB), g(C)}+ εB

(3.17)

Let

B̄ =
1

θB
[Nin − f−1(

D + ε

μB

)], C̄ = g−1(
D + ε

μB

). (3.18)

Notice that, since R(ε) > 0, both B̄ and C̄ are well defined and positive. The

set of points in (B,C) ∈ R
2
+ satisfying f(Nin − θBB) = g(C) and B ≤ B̄ can

be regarded as the graph of the decreasing function B �→ g−1(f(Nin − θBB)).

Thus, the vector field corresponding to (3.17) looks like in Figure (3.1). Hence

the set S1 = {(B,C) ∈ R
2
+ | 0 < B ≤ B̄} is positively invariant and attracts

all solutions of (3.17).
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Figure 3.1: Phase portrait of System (3.17)
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Next we study the dynamics of (3.17) on this set. It is straightforward to

show that (3.17) has a unique equilibrium (B∗, C∗), with B∗ > 0. We claim

that (B∗, C∗) attracts all solutions of (3.17) with B(0) > 0. Case 1. B∗ = B̄.

Then it is straightforward to argue that the claim holds.

Case 2. B∗ < B̄. Then

C∗ = C̄ and B∗ =
rD(Cin − C̄)

μBg(C̄)− rε
=

rD(Cin − C̄)

D + ε(1− r)
. (3.19)

Let x0 = (B0, C0) ∈ R
2
+ such that B0 > 0. Let BM

1 = B̄. Then

(
1

r
B+C)′ = −D(

1

r
B+C)+DCin−ε(1− r)

r
B ≥ −D(

1

r
B+C)+DCin−ε(1− r)

r
BM

1 .

(3.20)

Hence, all solutions in S1 are attracted to the positively invariant set

S ′
1 = {(B,C) ∈ R

2
+ | 1

r
B + C ≥ Cin − ε(1− r)

rD
B̄}. (3.21)

From this and the direction of the vector field (as depicted in Figure (3.1)) it

follows that all solutions in S ′
1 are attracted to the positively invariant set

S ′′
1 = {(B,C) ∈ R

2
+ | B ≥ r[Cin − C̄ − ε(1− r)

rD
B̄] =: Bm

1 }. (3.22)

Then, on S ′′
1 we have

(
1

r
B + C)′ ≤ −D(

1

r
B + C) +DCin − ε(1− r)

r
Bm

1 . (3.23)
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Hence, all solutions in S ′′
1 are attracted to the positively invariant set

S ′′′ = {(B,C) ∈ R
2
+ | (1

r
B + C) ≤ Cin − ε(1− r)

rD
Bm

1 }. (3.24)

Now consider the line given by

(
1

r
B + C) = Cin − ε(1− r)

rD
Bm

1 . (3.25)

Using (3.22), we have that the point (B,C) on this line with C = C̄ has

B = BM
2 := r[Cin − C̄ − ε(1−r)

rD
Bm

1 ]

= rCin(1− ε(1−r)
D

)− rC̄(1− ε(1−r)
D

) + B̄ ε2(1−r)2

D2

(3.26)

From this, and using that ε(1−r) < D, we obtain that BM
2 < BM

1 is equivalent

to

Cin − C̄ <
B̄

r
(
ε(1− r)

D
+ 1). (3.27)

On the other hand, using (3.19), we have that

B∗

r
(
ε(1− r)

D
+ 1) = Cin − C̄. (3.28)

Since B̄ > B∗, (3.27) holds, hence BM
2 < BM

1 . Then all solutions in S ′′′
1 are

attracted to the positively invariant set

S2 = {(B,C) ∈ R
2
+ | Bm

1 ≤ B ≤ BM
2 }. (3.29)

By repeating (3.20) - (3.26) successively with BM
1 replaced by BM

i , i ≥ 2, we
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obtain two sequences (Bm
i )i≥1 and (BM

i )i≥1 that are nondecreasing, respec-

tively nonincreasing, such that ω(x0) is in the set

Si = {(B,C) ∈ R
2
+ | Bm

i ≤ B ≤ BM
i+1}, i ≥ 1. (3.30)

Let B̄M = limi→∞ BM
i . It follows then that (3.26) holds with both BM

2 and

B̄ replaced by B̄M . Hence, we obtain (3.28) with B∗ replaced by B̄M , which

implies B∗ = B̄M and, consequently, B̄m = B∗. This shows that (B∗, C∗) ∈
ω(x0). We have

g(C∗) = g(C̄) = f(Nin − θBB̄) < f(Nin − θBB
∗).

Hence, in some neighborhood V on (B∗, C∗) we have that g(C) < f(Nin −
θBB). The derivative of the vector field in (3.17) restricted to V is

J(B,C) =

⎛
⎜⎝ −(D + ε) + μBg(C) μBBg′(C)

ε− μB

r
g(C) −D − μB

r
Bg′(C)

⎞
⎟⎠ .

We have −(D + ε+ μBg(C
∗) = 0. So

ε− μB

r
g(C∗) = ε− μB

r

D + ε

μB

= ε(1− 1

r
)− D

r
< 0.

Thus, tr(J(B∗, C∗)) < 0 and det(J(B∗, C∗)) > 0, which implies that (B∗, C∗)

is asymptotically stable. Hence the claim holds. Now let (B(t), C(t), N(t))

solution of (3.16) with B(0) > 0 and having omega limit set ω3. So ω3 ⊂
{(B,C,N) ∈ R

3
+ | N = Nin − θBB}. Let ω2 := {(B,C) | (B,C,Nin − θBB) ∈
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ω3}. Then ω2 is compact and invariant for (3.17). Let X := {(B,C) ∈
R

2
+ | B > 0}. Then, as shown above, {(B∗, C∗)} is the compact attrac-

tor of points in X, for (3.17). Now, being asymptotically stable, {(B∗, C∗)}
attracts a neighborhood of itself. Thus, {(B∗, C∗)} is the compact attrac-

tor of compact sets in X and it contains all compact, invariant ((3.17)) sets

in X (see Theorem ? in [80]). Hence ω2 = {(B∗, C∗)} and, consequently,

ω3 = {(B∗, C∗, Nin − θBB
∗)}.

Theorem 3 (Grazers persistence-extinction criteria). The grazers persistence-

extinction criteria for System (4.1) are as follows:

(a) If R(ε) > 0, ε(1− r) < D and

h(min{ 1

θB
[Nin−f−1(

D + ε

μB

)], rD[Cin−g−1(
D + ε

μB

)]/[D+ε(1−r)]}) > D + ω

αμG

.

(3.31)
then the grazers are robustly uniformly persistent: there exists η > 0,

δ > 0 such that

lim inf
t→∞

G(t) ≥ η, (3.32)

for all solutions of (4.1) satisfying G(0) > 0, corresponding to all λ

satisfying |λ− λ0| < δ.

(b) If

h(min{ 1

θB
[Nin − f−1(

D + ε

μB

)], r[Cin − g−1(
D + ε

μB

)]}) ≤ D + ω

αμG

(3.33)

then G(t) → 0 as t → ∞.

Proof. (a) First note that the condition R(ε) > 0 implies, according to Theo-

rem 2, that the bacteria persists uniformly. Thus, using Theorem 7, we have
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that there exists a compact set B ⊂ {(B,G,C,N) ∈ R
4
+ | B > 0} that attracts

all solutions of (4.1) with B(0) > 0. Let

XG
0 = {(B,G,C,N) ∈ B | G = 0}.

All solutions of (4.1) that originate in XG
0 satisfy (3.16). From Lemma 1, all

solutions of (3.16) with B(0) > 0 converge to an equilibrium (B∗, C∗, N∗),

where

B∗ = min{ 1

θB
[Nin − f−1(

D + ε

μB

)], rD[Cin − g−1(
D + ε

μB

)]/[D + ε(1− r)]}.

The conclusion follows now from Corollary 4.7 in [77], applied with

M = B ∩XG
0 and T = 1 (hence Ω(M) = E2 = (B∗, 0, C∗, N∗), while

P (1, E2) = e−(D+ω)+αμGh(B∗) > 1).

(b) According to Theorem 2, it suffices to consider only the case R(ε) > 0. Let

(B(t), G(t), C(t), N(t)) be the solution of (4.1)

with (B(0), G(0), C(0), N(0)) = x0 ∈ Δ. From Corollary 1 we have that

B′ ≤ −(D + ε)B + μBBmin{f(Nin − θBB), g(Cin − 1

r
B)}. (3.34)

On the other hand, all solutions of (3.34) with B(0) > 0 and “≤” replaced by

“=” converge to

B̂∗ := min{ 1

θB
[Nin − f−1(

D + ε

μB

)], r[Cin − g−1(
D + ε

μB

)]}.

Hence ω(x0) ⊂ {(B,G,C,N) ∈ R
4
+ | 0 ≤ B ≤ B̂∗}.
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Suppose ω(x0) ⊂ {(B,G,C,N) ∈ R
4
+ | B = B̂∗}.

If ω(x0) ⊂ {(B,G,C,N) ∈ R
4
+ | B = B̂∗ and G = 0} then there is nothing left

to prove. Otherwise, suppose there exists a point x̂ = (B̂∗, Ĝ, Ĉ, N̂) in ω(x0)

with Ĝ > 0. Then, for a solution (B̂(t), Ĝ(t), Ĉ(t), N̂(t)) of (4.1) originating

at x̂, we have

B̂′(0) ≤ −μGh(B̂
∗)Ĝ < 0, (3.35)

hence this solution would leave ω(x0), which represents a contradiction, since

ω(x0) is invariant. Thus, ω(x0) ∩ {(B,G,C,N) ∈ R
4
+ | 0 ≤ B < B̂∗} 	= ∅.

Also, since B(t) = B̂∗ implies B′(t) ≤ 0 (see (3.34)), we have that the solution

(B(t), G(t), C(t), N(t)) ∈ {(B,G,C,N) ∈ R
4
+ | 0 ≤ B < B̂∗} for all t > T ,

for some T ≥ 0. But then G(t) converges to some Ĝ∗ since G′(t) ≤ 0 for all

t > T . Suppose Ĝ∗ > 0. Then, from the equation for G in (4.1), we have that

B(t) converges to some B̃ and B̃ must be in the interval (0, B̂∗). From this it

follows that G(t) → 0 as t → ∞, which is a contradiction. Thus, Ĝ∗ = 0.

Remark 3. Notice that, in the case when ε = 0 (no natural death rate for bac-

teria), Theorem 3 gives a sharp threshold that differentiate between persitence

and elimination of grazers. We have not been able to prove (either analiti-

cally, or through a numerical counterexample) that the condition ε(1− r) < D

is necessary in Lemma 1, or that Theorem 3 (b) holds with the left hand side

in (3.33) replaced by the left hand side in (3.31) (in which case we would have

a sharp threshold).
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3.3.5 Maximizing decomposition rate

Mindful of the decomposition-facilitation paradox in [84], we establish the con-

centration of grazers that optimizes the decomposition rate. We also determine

conditions based on parameter values for which this grazer concentration max-

imizes decomposition when either nitrogen or carbon is limiting. Let

R : =
μB

r
Bmin{f(N), g(C)}.

dR

dG
=

dR

dt
× dt

dG

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(−DB + μBBg(C)− μGh(B)G− εB)g(C)μB

r(−DG+ αμGh(B)G− γG)
+

Bg′(C)μB

(
D(Cin − C)− μBBg(C)

r
+ wG+ εB

)
r(−DG+ αμGh(B)G− γG)

if g(C) < f(N);

(−DB + μBBf(N)− μGh(B)G− εB)f(N)μB

r(−DG+ αμGh(B)G− γG)
+

Bf ′(N)μB(D(Nin−N)+θGγG+θBεB+(θB−θGα)μGh(B)G−θBμBBf(N))
r(−DG+αμGh(B)G−γG)

if f(N) < g(C).

Solving dR
dG

= 0 for G, we get

G =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

B
(
g(C)rD − [g(C)]2rμB + g(C)rε− g′(C)DrCin

)
r
(− g(C)μGh(B) + Bg′γ

) +

B
(
g′(C)DrC +Bg′(C)μBg(C)− Bg′(C)εr

)
r
(− g(C)μGh(B) + Bg′(C)γ

) if g(C) < f(N);

B
(
f(N)D − [g(C)]2μB + f(N)ε− f ′(N)DNin

)
−f(N)μGh(B) + Bf ′(N)θGγ +Bf ′(N)μGh(B)θB − Bf ′(N)μGh(B)θGα

+

B(f ′(N)DN−Bf ′(N)θBε+Bf ′(N)θBμBf(N))
−f(N)μGh(B)+Bf ′(N)θGγ+Bf ′(N)μGh(B)θB−Bf ′(N)μGh(B)θGα

if g(N) < g(C).
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Next we compute d2R
dG2 , evaluate it at the value of G calculated above, and

determine the conditions based on the concentration of other variables and

model parameters for which d2R
dG2 is less than zero.

d2R

dG2
=⎧⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎩

− rμB

(
−g(C)μGh(B)+Bg′γ

)2(
D−αμGh(B)+γ

)−1

B
(
g(C)rD−[g(C)]2rμB+g(C)rε−g′(C)DrCin+g′(C)DrC+Bg′(C)μBg(C)−Bg′(C)εr

) if g(C) < f(N);

−
(
−f(N)μGh(B)+Bf ′(N)θGγ+Bf ′(N)μGh(B)θB−Bf ′(N)μGh(B)θGα

)2
μB

(
D−αμGh(B)+γ

)−1

B
(
f(N)D−[g(C)]2μB+f(N)ε−f ′(N)DNin+f ′(N)DN−Bf ′(N)θBε+Bf ′(N)θBμBf(N)

) if f(N) < g(C).

Thus in a carbon limiting environment, given

G =
B
(
g(C)rD − [g(C)]2rμB + g(C)rε− g′(C)DrCin + g′(C)DrC +Bg′(C)μBg(C)−Bg′(C)εr

)
r
(− g(C)μGh(B) + Bg′(C)γ

) ,

if

i)

(
g(C)rD − [g(C)]2rμB + g(C)rε− g′(C)DrCin + g′(C)DrC

+Bg′(C)μBg(C)− Bg′(C)εr
)
> 0

and

ii) αμGh(B) < γ +D

or

i)

(
g(C)rD − [g(C)]2rμB + g(C)rε− g′(C)DrCin + g′(C)DrC

+Bg′(C)μBg(C)− Bg′(C)εr
)
< 0
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and

ii) αμGh(B) > γ +D,

then grazers will maximize bacterial degradation.

Similarly, in a nitrogen limiting environment, given

G =
B
(
f(N)D − [g(C)]2μB + f(N)ε− f ′(N)DNin + (f ′(N)DN − Bf ′(N)θBε+Bf ′(N)θBμBf(N))

−f(N)μGh(B) + Bf ′(N)θGγ +Bf ′(N)μGh(B)θB −Bf ′(N)μGh(B)θGα
,

if

i) f(N)D − [g(C)]2μB + f(N)ε− f ′(N)DNin + f ′(N)DN −Bf ′(N)θBε+

Bf ′(N)θBμBf(N) > 0 and

ii) αμGh(B) < γ +D,

or

i) f(N)D − [g(C)]2μB + f(N)ε− f ′(N)DNin + f ′(N)DN −Bf ′(N)θBε+

Bf ′(N)θBμBf(N) < 0 and

ii) αμGh(B) > γ +D,

then grazers will maximize bacterial degradation.

3.4 Numerical experiments

All simulations in this section are performed using Monod or Michaelis-Menten

form for the functions h, f, and g. We begin the section with one- and

two-parameters bifurcation diagrams for System (4.1) with dilution rate (per
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capita) and concentration of resources in feed bottle as free parameters. The

results are obtained using the numerical continuation package MATCONT

[59]. Next, we perform numerical simulations using varying values of Cin to

illustrate the transfer of stability as the value of this parameter changes. Fur-

thermore, we numerically compare the effect of grazers on degradation in a

microcosm and in a chemostat. Moreover, we determine the switching time of

bacteria growth rate from carbon dependent to nitrogen dependent for differ-

ent continuous cultures. We end the section by discussing the sensitivity of

the degradation rate to model parameters.Figure (3.2) shows a one-parameter

bifurcation diagram obtained by perturbing the concentration of carbon in the

supply bottle while holding other parameters fixed. MATCONT detects three

important threshold values: TC1 (labelled BP in Matcont) corresponding to

the transcritical bifurcation point that occurs at Cin = 0.79 mgC/dm3, TC2

(labelled BP in Matcont) corresponding to the transcritical bifurcation point

that occurs at Cin = 2.98 mgC/dm3, H corresponding to the Hopf bifurcation

point that occurs at Cin = 12.08 mgC/dm3.
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Figure 3.2: One-parameter bifurcation diagram for the system (fixed Nin and D).
The parameters are: Nin = 7mgN/dm3, D = 0.02, μG = 0.5, Kg = 8, Kf =
1.21, μG = 0.25, Kh = 1, α = 0.36, γ = 0.01, r = 0.4, θG = 0.1, θB = 0.25, ε =
0.025.

For Cin < TC1, the bacteria and grazers will both go extinct and only

the resources will be remaining. For this value of Cin, the insufficient food

in the system drives the bacteria population to start going down, when this

happens, the grazers population is forced to go extinct. After a while, because

of continuous lack of sufficient food for the bacteria, they follow the grazers and

go to extinction, see Figures (3.3a, 3.3b). R(ε) := μB min{f(Nin), g(Cin)} −
(D + ε), is less than zero below this threshold value and greater than zero

above this threshold value.
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(b) Bacteria-grazers dynamics.

Figure 3.3: Bacteria-grazers dynamics. Cin = 0.3mgC/dm3. Other parameters
are same as those in Figure 3.2.

As Cin increases above TC1 but still less than TC2, the food content be-

comes sufficient to keep the bacteria population from extinction but not the

grazers, see Figures(3.4a, 3.4b). Above TC2, R(ε) is greater than zero.
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(b) Bacteria-grazers dynamics.

Figure 3.4: Bacteria-grazers dynamics. The parameters are: Cin = 1.5 mgC/dm3.
Other parameters are same as those in Figure 3.2.

For TC2 < Cin < H, both grazers and bacteria coexist with the resources

in the culture bottle as shown in Figures (3.5a, 3.5b).
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(b) Bacteria-grazers dynamics.

Figure 3.5: Bacteria-grazers dynamics. The parameters are: Cin = 5.5 mgC/dm3.
Other parameters are same as those in Figure 3.2.

When Cin = 12.08 mgCdm−3, MATCONT detects a Hopf bifurcation.

Figures (3.6a) and (3.6b) respectively illustrate bacteria-grazers phase por-

trait and the dynamics of bacteria and grazers at this point. Increasing Cin

beyond this value causes the internal equilibrium to be unstable and limit

cycles appear.

0 0.5 1 1.5 2 2.5
0

0.2

0.4

0.6

0.8

1

1.2

1.4

B

G

(a) bacteria-grazers phase portrait.

0 200 400 600 800 1000
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

hr

C
o
n
ce

rn
tr

a
tio

n

 

 

B
G

(b) Bacteria-Grazers dynamics.

Figure 3.6: Bacteria-grazers dynamics. The parameters are:Cin =
12.08 mgC/dm3. Other parameters are same as those in Figure 3.2.

A similar result is obtained by increasing the concentration of nitrogen in
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the influx while leaving other parameters fixed. It is noteworthy that only

transcritical bifurcation exists for a microcosm system whereas the chemostat

system shows Hopf bifurcations. In Figure (3.7), we show a two-parameter

bifurcation diagram. It indicates the values of D and Cin for which limit

cycles occur, for a fixed value of Nin.
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Figure 3.7: Two-parameter bifurcation diagram for the system (Nin fixed). The
parameters are same as those in Figure 3.2.

3.4.1 Impact of grazing on decomposition

Here we numerically compare the impact of grazers on degradation in a micro-

cosm and in a chemostat by comparing the density of the organic matter left

in the system for an ecosystem with and without grazers. Figures (4.8a) and

(4.9d) show the dynamics of organic matter in a microcosm and chemostat

respectively. Figure (4.8a) confirmed the results in literature that in a micro-

cosm, grazers facilitate the degradation of organic matter. In chemostats, this

seems to be the case only if the dilution rate is very small. This is because a
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high dilution rate will wash out most of the resources recycled from the mi-

crobes. In the microcosm case, these recycled resources end up being used by

bacteria for growth. When the environment is initially carbon limiting, grazers

have no effect on degradation as the organic carbon will always be completely

decomposed. For given parameter values, one can determine a threshold value

for the initial ratio of carbon to nitrogen in the environment. Below this value,

the organic carbon will always be completely decomposed. In case this ratio is

above it, the organic carbon can only be decomposed if at least one of the fol-

lowing conditions is satisfied: a) grazers are present in the environment b) the

grazers go extinct only after the organic carbon has been decomposed, and c)

the bacteria natural mortality is high (see next subsection for details on this).

In Figure (3.9) we use the given parameter values to numerically determine the

critical value of the initial carbon to nitrogen concentration ratio for an envi-

ronment without grazers, above which organic carbon in the environment will

never be degraded and below which it would always be completely degraded.

Figure (4.9d) predicts that there is a threshold value of the dilution rate for

which the grazers will have a positive effect on the organic carbon at steady

state. The figure also suggests that there is an optimal value for dilution rate

for which the concentration of organic matter in the system at steady state is

minimal.
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(a) Organic carbon density for the
model with or without grazers, and
D = 0.
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(b) Organic carbon density at steady
for the model with or without grazers.

Figure 3.8: Organic carbon dynamics. The other parameter values are Cin =
3 mgC/dm3. Other parameters are same as those in Figure 3.2.
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Figure 3.9: The parameters are: Cin = 7 mgCdm−3. Other parameters are same
as those in Figure 3.2.
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3.4.2 Impact of recycled death bacteria on decomposi-

tion
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Figure 3.10: Impact of recycled death bacteria on decomposition. The parameters
are same as those in Figure 3.9.

It is shown in [84] that in the present of grazers, the effect of recycled nutrients

from death bacteria is negligible. This is true in a chemostat case as well. In

ecosystem with no input and no grazers, the recycled nutrients turn to play

a very important rule in degradation as this happen to be the only source of

nutrients. Figure 3.10 shows that with no input into a system in the absence of

grazers, if there is no natural mortality of bacteria, the organic carbon will not

be completely decomposed. For a very small mortality rate, the degradation

rate will be a bit low compare to when there is no mortality. This is because,

the population of bacteria decreases with mortality and there is no sufficient

nutrients to energized the remaining bacteria to increase degradation. With

an increase bacteria natural mortality, the degradation rate increases. This

70



suggest that there is a threshold value of natural mortality, beyond which it

has a very positive effect on degradation and below which it has a negative

effect. If the time delay that it takes for death bacteria to be converted into

nutrients is introduce in the model, the effect will only be noticeable after a

long time period.

3.4.3 Switching time

Here we determine the switching time of bacteria growth from carbon depen-

dent to nitrogen dependent for different continuous cultures. The objective is

to illustrate that bacterial growth could switch from being limited by carbon

to being limited by nitrogen and vice versa at different time. We differentiate

the continuous cultures by varying the parameters. We do this only for two

extreme cases: bacteria and grazers both going extinct and the case where

we have limit cycles. The switching time of bacteria growth for a continuous

culture in which bacteria and grazers will go extinct (in such an ecosystem, (a)

R(ε) ≤ 0) and one with limit cycles (in such an ecosystem, (b) (i) R(ε) > 0,

(ii) ε(1 − r) < D, (iii) h(min{ 1
θB
[Nin − f−1(D+ε

μB
)], rD[Cin − g−1(D+ε

μB
)]/[D +

ε(1− r)]}) > D+γ
αμG

and resources are sufficient) are respectively shown in Fig-

ures (3.11a) and (3.12a). Figures (3.11b) and (3.12b) show the nitrogen and

carbon dependent bacterial growth rates for the given continuous cultures.

71



0 50 100 150 200
time (hour)

0

2

4

6

8

10

12

14

16

co
n

ce
rn

tr
a

tio
n

C limited
N limited

First switcing time=14.2455 hrs

Second switcing time=36.2198 hrs

Bacteria

Grazers

(a) Bacteria-grazer dynamics show-
ing switching time.

0 50 100 150 200
0

0.1

0.2

0.3

0.4

0.5

time (hour)

g
ro

w
th

 r
a
te

 

 
C−dependent per capita growth rate
N−dependent per capita growth rate

(b) Bacterial per capita growth rate.

Figure 3.11: Parameter values are Nin = 15 mgN/dm3, Cin = 3 mgC/dm3, Kg =
53, Kf = 8, θG = 1.25, θB = 2.5. Other parameters are same as those in Figure 3.2.
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Figure 3.12: Switching time: 2.5092 hr, 61.9026 hr,110.0538 hr, 259.7272 hr,
307.0865 hr, 462.4208 hr, 518.0037 hr, 673.3283 hr, 728.8563 hr, 884.1833 hr,
939.5180 hr. Parameter values are: Nin = 8 mgN/dm3, Cin = 25 mgC/dm3.
Other parameters are same as those in Figure 3.11.

3.4.4 Sensitivity analysis

The objective of this subsection is to discuss the sensitivity of the degradation

rate to model parameters. To do this, we use the normalized forward sensitivity
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index [58]:

sensitivity index(S.I.) =

(
∂(degradation rate)

∂(parameter)

)(
parameter

degradation rate

)
(3.36)

where the degradation rate is given by
1

r
μBBmin {f(N), g(C)} := R. Since the

variables B, C and N are functions of some parameters that are not explicitly

included in the degradation rate formula, we use numerical methods to evaluate

the derivatives. Using central difference approximation we have that

∂R

∂parameter
=

R(parameter+h)− R(parameter-h)

2h
+O(h2).

Letting h = 1% of the parameter value (P), Equation (5.6) becomes

S.I. =
R(1.01P )−R(0.99P )

0.02(R(P ))
.

To evaluate this, we start with a high initial value of resources and ensure that

the chosen ecosystem is such that the organic carbon density is decreasing, and

then compute the rate of degradation after a day. The sign of the S.I indicates

the nature of the relationship between the degradation rate and the parame-

ter in question whereas its magnitude ranks the strength of the relationship

in comparison to the other parameters. Table (3.5) shows the computed sen-

sitivity index of the degradation rate with respect to model parameters. The

degradation rate is more sensitive to the maximum bacteria growth rate. The

positive value of the sensitivity index of the maximum bacteria growth rate

indicates that an increase in bacteria growth rate will lead to an increase in the

degradation rate. This is as expected, since we assumed that the growth rate
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is proportion to the degradation rate. Unfortunately, an experimenter can not

make good use of this to regulate the degradation rate as this parameter is not

under his/her control. Among the parameters that can be controlled by the

experimenter, the dilution rate has the greatest effect on the degradation rate

whereas the density of carbon in the feed bottle has the least effect. Thus, an

experimenter could increase the degradation of organic carbon in a system by

simply decreasing the dilution rate.

Parameter Sensitivity index

μB 57.1471

Kh 0.0294

Kf −0.0518

Kg −0.0471

μG −0.0778

ε −0.6940

γ 0.0021

r −1.3677

θB −0.1113

θG −6.9408× 10−5

D −0.4992

Cin 3.1612× 10−5

Nin 0.0024

α −0.0112

Table 3.5: The sensitivity of degradation rate to the parameters.
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3.5 Discussion

In this chapter, a stoichiometry-based model for bacteria-grazer interaction

in a continuous culture is proposed and analyzed. Nitrogen and carbon are

considered to be the only growth limiting elements in the culture. We use a

general class of monotonically increasing, saturating functions, which take the

value zero when their arguments are zero to represent the per capita grazing

efficiency and per capita bacterial growth rate. Criteria for the uniform per-

sistence and extinction of bacteria and grazers are obtained. Moreover, we

determine the optimal value of grazers that maximizes degradation of organic

matter. Based on the parameters under the control of the experimenter (el-

ements in feed bottle and dilution rate), we perform one- and two-parameter

bifurcation analyses. Furthermore, we determine the switching time of bacte-

rial growth rate from carbon dependent to nitrogen dependent and vice versa

for different continuous cultures. The sensitivity of the degradation rate with

respect to the model parameters is also shown. We also discuss numerically

how the dilution rate affects the decomposition percentage as well as decom-

position speed.

In general, we can summarize the uniform persistence and extinction results

as follows:

(a) The resource in the chemostat will never go extinct so long as the supply

bottle has positive resource concentrations.

(b) If at the unique internal steady state, the per capita growth rate of bacte-

ria is greater than the sum of the bacteria’s death rate and dilution rates,

then the bacteria will persist uniformly otherwise, it will go extinct. It is
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thus possible for the experimenter to have the bacteria persist uniformly

by either using (i) a high concentration of resources in the supply bot-

tles, (ii) by decreasing the dilution rate, or (iii) carrying out both. Our

results equally show that if the bacteria ever go extinct, the grazers will

go extinct as well.

(c) If at the unique internal steady state, (i) the per capita growth rate of

bacteria and grazers are respectively greater than the sum of their cor-

responding dilution and death rates, and (ii) the death rate of bacteria

is less than a certain threshold value,
D

1− r
:= ε2, then the grazers will

persist uniformly along side bacteria. Should the per capita growth rate

of grazers happen to be less than the sum of its dilution rate and death

rate at the unique internal steady state, the grazers will go to extinc-

tion independent of the concentration of bacteria. An experimenter can

prevent grazers from extinction by using high resource concentrations in

the supply bottle.

It has been widely reported in microbiology papers that the rate of organic

matter degradation often increases in the presence of bacterivorous protists

that substantially reduce bacterial abundance [62, 74, 78, 69]. We established

conditions based on parameter values for this paradox to hold in a continuous

culture. Since some of these parameters like the dilution rate and the resources

in the supply bottle could be controlled by the experimenter, one could hold

the other parameters fixed and control these to maximize the degradation rate

of organic carbon.

It is noteworthy that if there is no dilution and the total nitrogen in the
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entire system is high enough, the dynamics of the system will be the same as

that of the classical predator-prey models for bacteria-grazer interactions.

It is also worth mentioning that the model in this paper have been modified

to one that models the decomposition of tailing hydrocarbons in a manuscript

under preparation by Kong et al.[71]. The modified model has been fitted to

tailing hydrocarbons’ data to determine the optimal parameter values. Using

these estimated parameter values, the modified model has been extended to a

methane generation model.

Bifurcation analysis shows the rich dynamics of the system. In addition

to the transcritical bifurcation observed in microcosm models, our chemostat

model exhibits Hopf bifurcation and Rosenzweig’s paradox of enrichment phe-

nomenon. Even though the threshold value for which periodic orbits exist is

numerically established, we fell short of coming up with a mathematical con-

dition for it in terms of parameter values. This is due to the fact that there

are limited tools to establish the existence of limit cycles for non-differentiable

but Lipschitz continuous dynamical systems as our model.

In deriving the model, we assume that dead bacteria and grazers are im-

mediately recycled back into the ecosystem. In reality, they are recycled back

with a delay. It may be interesting to study the dynamics of the system in-

corporating a delay in recycling dead bacteria and grazers.

In the process of degrading organic substances different groups of bacte-

ria breaks down different organic substances. Hydrolytic bacteria decomposes

complex organic substances, whereas homoacethogens and fermentative bac-

teria break down simple organic substances. The model in this paper groups

all the bacteria into one class and the organic substances into another class.
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In a future work, we intend to extend our current model to one that incorpo-

rates the dynamics of hydrolytic bacteria, homoacetogens, fermentative bac-

teria, grazers, nutrients, and complex and simple organic substances. We will

study among other things the effect of grazers on the competition between ho-

moacethogens and fermentative bacteria and the effect of grazers on bacterial

diversity.
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Chapter 4

Predictive model for methane

emissions from oil sands tailings

ponds and end pit lakes

Abstract

Microbial metabolism of unrecovered hydrocarbons leads to methane (CH4)

generation in oil sands tailings ponds and End Pit Lakes (EPL). Predicting

greenhouse gas emissions is important for both industry and government for

mitigation. We developed a biodegradation model which takes into account

inflow of carbon (petroleum hydrocarbons), microbial growth and death rates,

and kinetics of hydrocarbon biodegradation to predict CH4 production. Math-

ematical analysis reveals that if carbon is the limiting nutrient, the bacteria in

the pond will go to extinction in the absence of any inflow of carbon. Model
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simulations were performed to determine optimal model parameter values us-

ing laboratory experimental data revealing methanogenic biodegradation of

hydrocarbons in oil sands tailings. We also extended the biodegradation model

to a CH4 biogenesis model. Using the estimated parameter values, the validity

of the CH4 biogenesis model was determined by comparing the model’s output

to the measured CH4 obtained in hydrocarbon biodegradation experiments.

Goodness of fit analysis shows that our model’s predictions are comparable to

testing data.

4.1 Graphical abstract
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4.2 Introduction

Alberta’s oil sands industry is a major economic driver in Canada and is cur-

rently producing ∼ 2.3 million barrels oil day−1 which is expected to reach 4

million barrels day−1 in 2024 (http://www.energy.alberta.ca/oilsands/

oilsands.asp). However, the oil sands sector has come under international

scrutiny concerning industry standards on greenhouse gas (GHG) emissions

and other environmental issues. Oil sands operations (mining and upgra-

dation) are responsible for ∼ 23% of Alberta’s overall GHG emissions, with

methane (CH4) accounting for ∼ 6% of the oil sands emissions, which does not

include emissions from oil sands tailings ponds (OSTP) (http://environment.

gov.ab.ca/info/library/8849.pdf). CH4 and carbon dioxide (CO2) emis-

sions from tailings ponds are currently measured using floating flux chambers.

The total fugitive GHG emissions measured in 2011 from OSTP of major oil

sands operators (Suncor, Syncrude and Shell Albian) were 2.8 million tonnes

CO2 equivalent, calculated using 25 as global warming factor (GWP) for CH4

[5]. The GHG emissions from OSTP result primarily from the biodegradation

of residual hydrocarbons which are components of extraction solvent (diluent)

entrained in tailings [37, 38, 41, 40, 34]. During bitumen extractions from oil

sands ore, naphtha or paraffinic solvent is added as a diluent to assist both

in separating the bitumen from solid inorganic matrix and water, as well as

in diluting the bitumen so that it may be easily transported to processing

and upgrading facilities. Resulting tailings (slurries of alkaline water, sand,

silt, clays, unrecovered bitumen and organic diluent) from the extraction pro-

cess are deposited in OSTP. Indigenous microorganisms in OSTP biodegrade
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diluent hydrocarbons syntrophically to produce CH4 and CO2 [37, 1, 47, 34].

Tailings in OSTP settle slowly to form mature fine tailings (MFT; > 30%

solids) and release pore water for recycling. End Pit Lakes (EPLs) are being

developed as a new reclamation approach to reintegrate the accumulated tail-

ings into the natural environment. Once the tailings have settled in OSTP,

MFT and small amounts of other by-products (e.g. tailings sands, petroleum

coke and composite tailings) are transported to mine-out pits and capped

with fresh water and/or process-affected water to create a sustainable aquatic

system (EPL) over time capable of supporting other economical, ecological

and societal uses [22]. Methane biogenesis differs in OSTP and EPLs in that

OSTP have a continuous input of diluent containing fresh tailings providing

a constant influx of labile hydrocarbons for microbial metabolism, whereas

EPLs receive no fresh input of hydrocarbons, rather MFT transferred from

OSTP to EPL are generally depleted in labile hydrocarbons due to microbial

biodegradation but still contain hydrocarbons that are biodegradable. In real-

ity, the first full-scale demonstration EPL (BML; Base Mine Lake) at Syncrude

Canada Ltd. (SCL) produces biogenic gases (CH4 and CO2) that not only con-

tribute to greenhouse gas emissions but also perturb the mudline (MFT-cap

water interface) causing turbidity in EPL. Therefore, it is important for both

industry and government to accurately predict the CH4 emissions from OSTP

and EPL for effective tailings management and GHG mitigation. This can be

efficiently achieved by mathematical modelling.

Microbial metabolism requires other elements such as nitrogen (N), phos-

phorus (P) and sulphur (S) as nutrients for growth while biodegrading hy-

drocarbons; therefore, the growth rate of bacteria and kinetics of hydrocarbon
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biodegradation depend on the availability of such nutrients to sustain methano-

genesis in OSTP/EPL. Though the tailings microbes have the ability to fix

N2 to meet N requirement for CH4 production [9], the sustenance of methano-

genesis in MFT covered under a body of water that precludes diffusion of

atmospheric N2 still needs to be investigated.

In the first attempt to predict methane biogenesis and flux from MLSB,

zero- and first-order kinetic models were developed [39] using the rate constants

derived from metabolism of labile hydrocarbon to CH4 in MFT collected from

MSLB [37, 38]. A couple of factors were assumed while designing those models

such as (1) certain hydrocarbons such as n-alkane and some monoaromatics are

biodegradable under methanogenic conditions, (2) constant bacterial biomass

during hydrocarbon metabolism assuming stable microbial population size in

tailings pond that receive continuous and consistent input of hydrocarbons,

(3) stoichiometric conversion of hydrocarbons to CH4 using 80% conversion

efficiency, and (4) organic carbon concentration (C) being very large compared

to half the maximum substrate utilization rate (Cm) (zero-order; (Cm �C)

or first order under conditions of very low concentrations (C� Cm). These

approaches assume that the constant microbial biomass is implicitly included

in the rate coefficient. In this case, the estimated biodegradation rate for each

hydrocarbon depends on the concentration of the hydrocarbon in OSTP/EPL

in addition to a combination of at least three independent factors:

a) chemical structure and biodegradability of the hydrocarbon [27],

b) amount of active microbial biomass associated with and degrading the

given OSTP/EPL ([16, 51]), and
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c) the physical probability that the microbes will interact with the given

hydrocarbon [43, 26].

In reality, all these factors are not constant in time, and this makes it difficult

to find a unique parameter value applicable for various OSTP/EPL and to link

a fitted parameter with measured chemical and physical OSTP/EPL proper-

ties or with biological features of microbes associated with biodegradation of

hydrocarbons.

The present study is designed to: 1) modify our previous model to in-

corporate microbial dynamics, 2) estimate the parameters of the OSTP/EPL

hydrocarbon biodegradation model/methane biogenesis model, 3) validate the

model using data that was not used in estimating the parameters of the model

(ensuring that the estimated parameters are valid for any given OSTP/EPL).

4.3 Material and method

4.3.1 Model development

Biodegradation model

The model describes the dynamics of bacteria competing for resources in a re-

source limited environment. The change in bacterial biomass can result from

two processes (growth and death). The per capita bacterial growth rate is

assumed to follow the Liebig’s law of minimum [45]. According to this law,

the growth rate of bacteria is proportional to the most limiting resource in the

tailing. We assume that all elements except nitrogen and carbon are present

in abundance. Thus, the growth rate of bacteria is a function of only nitrogen
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and the hydrocarbons. The total nitrogen in the system (T) is considered to

be constant. With this assumption, the total nitrogen available for bacterial

growth is given by TN = T−θB, where θ is the nitrogen to carbon ratio of bac-

teria which is assumed to be constant. The Monod functions f(TN) =
TN

TN+Kf

and g(Ci) =
Ci

Ci+Kgi
(where i = 1 . . . , n, n, being the total number of hydrocar-

bons in the medium, Ci the i−th hydrocarbon), are used to model the nitrogen

and ith- hydrocarbon dependent per capita bacterial growth rates respectively,

where Kf = N dependent half saturation constant and Kgi = Ci dependent

half saturation constant. Thus, the per capita bacterial growth rate is given by

μi min{f(TN), g(Ci)}, where μi is the maximum growth rate of bacteria when

only the hydrocarbon Ci is present in the environment. μi min{f(TN), g(Ci)}
and μj min{f(TN), g(Cj)} for i 	= j, are assumed to be independent processes.

Thus the total per capita growth rate of bacteria is
n∑

i=1

μi min{f(TN), g(Ci)}

The biodegradation rate of each hydrocarbon is assumed to be proportional

to the bacterial growth rate due to its uptake, this means that a fixed amount

of growth results from the metabolism of a unit quantity of a hydrocarbon i.e.,

[bacterial growth rate due to each hydrocarbon] ∝ [biodegradation rate of hydrocarbon].

This implies that

[per capita bacterial growth rate due to Ci] = ri[per capita biodegradation rate of Ci]

where ri is the proportionality constant which we refer to as the yield constant.

It measures the efficiency of conversion of Ci into bacteria biomass. Hence,
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[per capita biodegradation rate of Ci] =
1

ri
[per capita bacterial growth rate due to Ci],

i.e., [per capita biodegradation rate of Ci] =
1

ri
μi min{f(TN), g(Ci)}

Under an active tailings pond scenario, a constant inflow (concentration) of

Ci, C
in
i per unit time is expected while no hydrocarbon impacted tailings are

released to end pit lake after its establishment. The per capita death rate of

bacteria (ε) is assume to be constant. Upon death, bacteria are assumed to

be recycled back into useable hydrocarbons immediately. The fraction of Ci

recycled from dead bacteria is assume to be a constant βi, Where 0 < βi < 1.

In line with the observations in[37, 38, 34, 35, 36]c, we assume that each hydro-

carbon observed a constant lag period, τi before the onset of biodegradation.

The above assumptions lead to the following systems of equations:

g(Ci) =

⎧⎪⎨
⎪⎩

0 t < τi
Ci

Kgi + Ci

t ≥ τi

Ḃ = B

n∑
i=1

μi min

{
TN

Kf + TN

, g(Ci)

}
− εB (4.1)

Ċi =
−1

ri
μiBmin

{
TN

Kf + TN

, g(Ci)

}
+ βiεB + C in

i

TN = T − θB

B(0) > 0, Ci(0) ≥ 0.

For simplicity, we assume that μi, ri, and βi are the same for all Ci,
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i.e. μi = μ, ri = r, and βi = β. With this assumption, System (4.1) becomes

g(Ci) =

⎧⎪⎨
⎪⎩

0 t < τi
Ci

Kgi + Ci

t ≥ τi

Ḃ = B

n∑
i=1

μmin

{
TN

Kf + TN

, g(Ci)

}
− εB (4.2)

Ċi =
−1

ri
μBmin

{
TN

Kf + TN

, g(Ci)

}
+ βεB + C in

i

TN = T − θB

B(0) > 0, Ci(0) ≥ 0.

Methane biogenesis model

Immediate conversion of biodegraded hydrocarbons to bacteria biomass, CH4

and CO2 by indigenous microbes is a key underlying assumption in the CH4

generation model. Thus, in converting the hydrocarbon biodegradation model

(System (4.2)) to a CH4 generation model, we simply add n + 1 equations to

System (4.2); n of them are ordinary differential equations that dynamically

track the increase in the gaseous output (CH4 and CO2) of each of the n−
biodegraded hydrocarbons, denoted by Gi, i = 1, 2, . . . , n. The last additional

equation is an algebraic equation that computes the total generated CH4. Our
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CH4 generation model is thus given by the following systems of equations:

g(Ci) =

⎧⎪⎨
⎪⎩

0 t < τi
Ci

Kgi + Ci

t ≥ τi

Ḃ = B

n∑
i=1

μmin

{
TN

Kf + TN

, g(Ci)

}
− εB (4.3)

Ċi =
−1

ri
μBmin

{
TN

Kf + TN

, g(Ci)

}
+ βεB + C in

i , i = 1 . . . , n

Ġi =
1

ri
μBmin

{
TN

Kf + TN

, g(Ci)

}
, i = 1 . . . , n,

CH4 =
n∑

i=1

ηiΓiGi

TN = T − θB

B(0) > 0, Ci(0) ≥ 0, Gi(0) = 0,

where Γi is the expected CH4 yield when one mole of Ci biodegrades. ηi is the

maximum theoretical yield of CH4 and CO2 from Ci. The product, ηiΓi, gives

the maixmum potential CH4 yield when Ci biodegrades. We assume that ηi is

the same for all Ci, i.e. ηi = η. [37, 38, 34, 35, 36]

4.3.2 Source of data for parameter estimation and model

validation

Fugitive diluent in tailings is the main source of methanogenesis in tailings

ponds [38]. The most commonly used diluents are naphtha and paraffinic

solvent. Syncrude Canada Ltd. (Syncrude), Suncor Energy (Suncor), and

Canadian Natural Resources Ltd. (CNRL) use naphtha as a solvent. Naphtha
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comprises aliphatic and aromatic hydrocarbons (n-, iso- and cycloalkanes and

BTEX (benzene, toluene, ethylbenzene and xylenes)) primarily in C6−C10

range. Shell Albian Sands (Albian) and Imperial Oil use paraffinic solvent

(primarily C5−C6; n- and iso-alkanes) in converting crude oil to bitumen.

The data used to fit the parameters and test the model are obtained from

[37, 38, 42, 33, 34, 35, 36]. All these experiments were carried out with tail-

ings containing one of the solvents above. The results from these studies reveal

that incubating tailings with either naphtha or paraffinic solvents by-products,

under methanogenic conditions, for up to ∼ 1700 days, only pentane, hex-

ane, heptane, octane, nonane, decane, toluene, o-Xylene, m-plus-p-Xyelene,

2-methylpentane, 3-methylhexane, 2-methylheptane, 4-methylheptane, and 2-

methyloctane will undergo significant biodegradation. Thus with the goal of

predicting methane biogenesis, we estimate only the parameters of the model

related to these hydrocarbons. In estimating parameters pertaining to certain

hydrocarbons, only the dynamics of those hydrocarbons in the experiment are

considered.

The biodegradation of naphtha components in Syncrude MLSB has been

studied in in [37, 38]. In [37], MFT from Syncrude MLSB was amended with

some n-alkanes (namely: hexane, heptane, octane, and decane) (∼ 0.2%) in a

microcosm and incubated under methanogenic conditions for 322 days. The

concentration of each of the n-alkanes left in the microcosm at certain time

within the incubation period was quantified. A complete biodegradation of

all the n-alkanes was observed during the incubation. Fitting our model to

this data, we estimate the initial concentration of microbes in tailings, the

nitrogen-dependent H.S.C. for bacterial growth, the total concentration of ni-
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trogen in the tailings, C6-dependent H.S.C. for bacterial growth, C7-dependent

H.S.C. for bacterial growth, C8-dependent H.S.C. for bacterial growth and C10-

dependent H.S.C. for bacterial growth as well as as the lag period (the time

it takes before biodegradation of the compound starts) of these n-alkanes. In

[38] MFT from Syncrude MLSB was amended with ∼ 0.05% in a micorcosm

and incubated for 252 days. Same as the above study, the degraded hydro-

carbons were quantified. Within the course of the experiment, Toluene was

rapidly biodegraded followed by o-Xylene and then m- plus p-xylene. Ethyl-

benzene was only slightly degraded within the incubation period. Using this

data, we estimate Toluene, o-Xylene and m- plus p-xylene -dependent H.S.Cs.

for bacterial growth.

[42] contains two set of investigations: one on the metabolism of 5 major

iso-alkanes (3-methylhexane, 3-ethylhexane, 2-methylheptane, 4-methylheptane

and 2-methylheptane) and 3 major cyclo-alkanes (ethylcycloalkanes, methyl-

cyclohexane and ethylclohexane) in MFT collected from MLSB at a depth

of 3 meters and the other at a depth of 6 meters. In each set, the MFT

was amended with iso- and cyclo-alkanes and incubated for 1700 days. Apart

from 3-ethyl hexane, all the iso-alkanes were completely biodegraded within

this time period. The cylo-alkanes were only slightly degraded. The data

recorded from the biodegradation of hydrocarbons in the MFT collected from a

depth of 31 meters was used to estimate 3-methylhexane-, 2-methylheptane-, 4-

methylheptane- and 2-methylheptane-dependent H.S.Cs. for bacteria growth

and their lag periods.

To estimate C5 dependent H.S.C. for bacterial growth and its lag period, we

use the data in [34]. In this paper, MFT from Albian and CNR are amended
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in separate microcosms with either a mixture of two (C5 and C6 ) or four (C5,

C6, C8 and C10) alkanes and incubated under methanogenic conditions for 600

days. In the course of incubation, the concentration of the alkanes present in

the microcosms at certain time were recorded. We use C5 dynamics data from

the microcosm with Albian MFT.

For 2-methylpetane-dependent H.S.C. for bacteria growth we use

2-methylpentane dynamics data in [35]. This paper contains data on the

metabolism of paraffinic solvent hydrocarbons to methane in CNR and Albian

MFT. To generate the data, MFT from Albian and CNRL were spiked with

0.1% Paraffinic solvent and incubated under methanogenic conditions for 1600

days. Among the iso alkanes in parafinic solvent, only 2-methyl pentane was

completely degraded. The authors also recorded the generated methane values.

Lastly to estimate C9 related parameters, we use the data from the study

in [33], performed to examine the rate of disappearance and methane produc-

tion by individual compounds in naphtha added to Syncrude Tailings under

methanogenic conditions. MFT collected from Syncrude Tailings was spiked

with Syncrude naptha and incubated under methanogenic conditions for 1040

days. C9 (initially 15 ppm) was completed depleted after 271 days.

We validate the model using methane biogenesis data from Albian MFT

amended with paraffinic solvent reported in [35] (briefly summarized above)

and methane biogenesis data from naphtha-amended CNRL MFT reported in

[36]. Briefly, In [36], Shahimin et al., investigated the biotransformation of

naphtha hydrocarbons to methane. To this end, the authors collected MFT

from Albian and CNRL, spiked them in two separate microcosms with 0.2%

CNRL naphtha and incubated them for 1600 days. The percentage disappear-
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ance of individual naphtha compounds and methane production by different

batches of tailings was recorded.

4.3.3 Mathematical analysis

We provide a basic analysis of System (4.1). First, we group all of the hy-

drocarbons together and represent them by one variable C. By doing so, we

eliminated the effects of individual hydrocarbons. Also, we assume that the

functions f(TN) and g(C) are linear. For simplicity, we consider the total car-

bon biomass in the system, A =
B

r
+ C, instead of the total carbon and that

death bacteria are not recycled back to usable hydrocarbons. We also assume

that τi = 0, ∀i. Thus System (4.1) becomes:

Ȧ =
r − 1

r
εB + C in = F (B) (4.4)

Ḃ = μBmin

{
f(T − θB), g

(
A− B

r

)}
− εB = BG(A,B).

For a basic mathematical analysis of the System (4.2), we construct the phase

plane, i.e. a picture of the solution trajectories mapped out by points (A(t), B(t))

as t varies over (−∞,+∞). In particular we identify the steady state solutions

i.e. solutions of Ȧ = 0 = Ḃ (F (B) = 0 and G(A,B) = 0). We call F (B) = 0

and G(A,B) = 0 (the lines on which trajectories are horizontal or vertical)

the nullclines of System (4.4). The steady state solutions are the points where

the nullclines (but not different branches of the same nullcline) cross. For the

stability of the steady states, we compute the Jacobian matrix corresponding

to each equilibrium point J(A∗, B∗), where (A∗, B∗) is a given equilibrium

point. We use the sign of the Trace and determinant of J(A∗, B∗) to deter-
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mine the nature of the given equilibrium point. Let D = detJ(A∗, B∗) and

Tr = TraceJ(A∗, B∗).

1) If D < 0, the eigenvalues of J(A∗, B∗) are real and of opposite signs, and

the phase portrait is a saddle (which is always unstable).

2) If 0 < D <
T 2
r

4
, the eigenvalues of J(A∗, B∗) are real, distinct, and of

the same sign, and the phase portrait is a node, stable if Tr < 0 and

unstable if T > 0.

3) If 0 <
T 2
r

4
< D, the eigenvalues of J(A∗, B∗) are neither real nor purely

imaginary, and the phase portrait is a spiral, stable if T < 0 and unstable

if T > 0.

4.3.4 Fitting the model to data

We use the non linear regression function nlinfit(.) in MATLAB to estimate

the values of the initial bacteria in the system, the nitrogen half saturation

constant, the total nitrogen available in the system, the half saturation con-

stants of the biodegradable hydrocarbons and their lag periods. nlinfit(.) uses

the Levenberg-Marquardt algorithm [28] to fit data. We provide the function

with our empirical data, the time points at which the data was collected, X,

our simulated results at X, and a random initial guess of parameter values.

The system is integrated by calling a function that takes as input the initial

parameter values, the time at which the empirical data was collected, and for

a given time uses the MATLAB function ode15s(.) to perform the integration.

The solution of the system obtained from the function is then evaluated at
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X, using the MATALB function deval(.). We also estimate the 95% confi-

dence intervals of the predicted values. This was done using the MATLAB

function nlparci(.). To achieve this, we provided this function with the coeffi-

cient estimates, residuals and the estimated coefficient covariance matrix from

nlinfit(.). Some of the bacteria related model parameters use in simulation,

namely: μ, r, and θ were taken from literature. The units, values and source

of these parameters are provided in the Table 4.1

Parameter Definition Value Unit References

μ Maximum growth rate of bacteria 1-4 day−1 [7, 10]

r Yield constant 0.31-0.75 - [63, 85]

θ N:C of bacteria 1
9
-1
4

- [82]

Table 4.1: Definition and values of some of the bacteria related parameters of
System (4.2)

We assume that no bacteria died in the course of the experiments described

above and thus in fitting the data to our model, we take d to be zero.

4.3.5 Maximum theoretical methane yield

In the experiments summarized above, after quantifying the methane and hy-

drocarbons in the microcosms at given time in the course of the experiment,

theoretical calculations were made to compare the actual measured values in

the microcosm and theoretical production from the hydrocarbons (ηi). Γi−
the expected CH4 yield when one mole of Ci biodegrades is calculated using

the stoichiometric equation (Equation 4.5 derived from Symons and Buswel
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[46]) which describes the complete oxidation of hydrocarbons to CO2 and CH4

under methanogenic conditions.

CcHh +

(
c− h

4

)
H2O →

(
c

2
− h

8

)
CO2 +

(
c

2
+

h

8

)
CH4 (4.5)

A slight difference was observed between the theoretical and measured yield

by the authors in [35, 36]. The naphtha-amended CNRL MFT methane pro-

duction was 55 − 70% of the predicted theoretical maximum methane yield;

whereas paraffinic solvent amended Albian MFT methane production was be-

tween 68 and 84% of the predicted theoretical maximum methane yield. In

comparing our simulated values to measured values, we put into account these

percentages. Hence in comparing our simulated methane values to measured

values from paraffinic solvent amended Albian MFT methane production we

choose η between 68% and 84%. In particular, we choose η to be 0.80. Similarly

when comparing the output from our model to the methane produced from

the decomposed hydrocarbon in naphtha-amended CNRL MFT, we choose η

to lie between 55% and 70%. In particular, we choose η to be 0.65 in this case.

4.3.6 Model validation

We evaluate the validity of our model in predicting CH4 biogenesis from any

given oil sand tailings by putting the estimated parameters in System (4.3) to

generate methane data and then compare this generated methane data with

measured methane data. The comparison is done using the goodnessOfFit(.)

function in MATLAB. As inputs, we provided this function with our test data,

the simulated data from our model and a cost function. The cost function
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determines the goodness of fit. We use the Normalized Mean Square Error

(NMSE) for this statistic. It is computed as

NMSE = 1− ‖[actual]− [predicted]‖2
‖[actual]− [mean of actual]‖2 ,

where ‖.‖ indicates the 2-norm of a vector, Y the simulated data by our model,

Y is the mean of the simulated data, and X is the test data. NMSE ∈ [−∞, 1]

where −∞ indicates a bad fit and 1 a perfect fit.

4.4 Results and discussion

4.4.1 Mathematical Analysis (f(T − θB) and g(A − B
r )

linear)

Theorem (4) follows from the analysis that follows the theorem.

Theorem 4. System (4.4) may have 0,1 or an infinite number of equilibrium

points depending on the concentration of the fresh hydrocarbon input C in.

a) At OSTP, if C in is greater than a certain threshold value given by C0 =(
T − εKf

μ

)
ε(1−r)

θr
, System (4.4) will have no equilibrium point. If C in =

C0, it will have one unique equilibrium point E1 =
(

μCin+ε2Kg(1−r)

ε(1−r)μ
, rCin

ε(1−r)

)
which is unstable. If C in < C0, it will have an infinite number of equi-

librium points given by

E2 =

{(
A,

(
T − εkf

μ

)
1

θ

)
: A >

1

r

[(
T − εkf

μ

)
1

θ
+

εkgr

μ

]}

which are locally asymptotically stable.
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b) At EPLs, System (4.4) have an infinite number of equilibrium points

E3 = (A, 0) : A ≥ 0.

If A < εKg

μ
(i.e. if carbon is limiting), these equilibrium points will be

locally asymptotically stable and if If A ≥ εKg

μ
, they will be unstable.

Dynamics at OSTP (Cin 	= 0):

Steady states:

A-Nullclines:

Ȧ = 0 =⇒ B =
rC in

ε(1− r)
.

B-Nullclines:

Ḃ = 0 =⇒ B = 0 or G(A,B) = 0.

G(A,B) = 0 =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B = Ar − εkgr

μ
if
T − θB

kf
>

A− B
r

kg

B = (T − εkf
μ

)
1

θ
if
T − θB

kf
<

A− B
r

kg

Case 1: Suppose θ − kf
kgr

> 0, then
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G(A,B) = 0 =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B = Ar − εkgr

μ
if B <

(
T − Akf

kg

)(
kgr

θkgr − kf

)

B = (T − εkf
μ
)
1

θ
if B >

(
T − Akf

kg

)(
kgr

θkgr − kf

)

Case 1.1: If
rC in

ε(1− r)
>

(
T − εkf

μ

)
1

θ
i.e θ >

ε(1− r)

rC in

(
T − εkf

μ

)
, then

there will be no intersection between the A and B-nullclines as shown in Fig-

ure 4.1. Hence the system will have no equilibrium point.

Carbon Biomass (A)

B
ac

te
ria

l B
io

m
as

s 
(B

)

A-Nullcline
B-Nullcline

Figure 4.1: The nullclines for θ − kf
kgr

> 0 and θ >
ε(1− r)

rC in

(
T − εkf

μ

)
.
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Case 1.2: If
rC in

ε(1− r)
<

(
T − εkf

μ

)
1

θ
i.e θ <

ε(1− r)

rC in

(
T − εkf

μ

)
, then

the two nullclines will intersect at one unique point

E1 =

(
μC in + ε2kg(1− r)

ε(1− r)μ
,

rC in

ε(1− r)

)
as shown in Figure 4.2. Hence the sys-

tem will have one equilibrium point E1, which is internal.

Carbon Biomass (A)

B
ac

te
ria

l B
io

m
as

s 
(B

)

A-Nullcline
B-Nullcline

E
1

Figure 4.2: The nullclines for θ − kf
kgr

> 0 and θ <
ε(1− r)

rC in

(
T − εkf

μ

)
.

Case 1.3: If
rC in

ε(1− r)
=

(
T − εkf

μ

)
1

θ
i.e θ =

ε(1− r)

rC in

(
T − εkf

μ

)
, then

the two nullclines will intersect on the line

{(
A,

(
T − εkf

μ

)
1

θ

)
: A >

1

r

[(
T − εkf

μ

)
1

θ
+

εkgr

μ

]}

99



as shown in Figure 4.3. Thus the System (4.4) will have an infinite number of

equilibrium points

E2 =

{(
A,

(
T − εkf

μ

)
1

θ

)
: A >

1

r

[(
T − εkf

μ

)
1

θ
+

εkgr

μ

]}

Carbon Biomass (A)

B
ac

te
ria

l B
io

m
as

s 
(B

)

A-Nullcline
B-Nullcline

Figure 4.3: ]

The nullclines for θ − kf
kgr

> 0 and θ =
ε(1− r)

rC in

(
T − εkf

μ

)
.

Case 2: Suppose θ − kf
kgr

< 0, then

G(A,B) = 0 =⇒

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

B = Ar − εkgr

μ
if B >

(
T − Akf

kg

)(
kgr

θkgr − kf

)

B =

(
T − εkf

μ

)
1

θ
if B <

(
T − Akf

kg

)(
kgr

θkgr − kf

)
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Note that the slope of the line B = Ar − εkgr

μ
is less than that of the line

B =

(
T − Akf

kg

)(
kgr

θkgr − kf

)
, since

kf
kf − θkgr

> 1. Therefore, the point

where the line B = Ar − εkgr

μ
intersects the A-axis,

εkg
μ

most be less than

that of the line B =

(
T − Akf

kg

)(
kgr

θkgr − kf

)
,
Tkg
kf

, for the two lines to in-

tersect on the first quadrant.

Case 2.1: If
rC in

d(1− r)
>

(
T − εkf

μ

)
1

θ
i.e θ >

d(1− r)

rC in

(
T − εkf

μ

)
then as

before, there will be no intersection between the A and B-nullclines as shown

in Figure 4.4. Hence the system will have no equilibrium point.

Carbon Biomass (A)

B
ac

te
ria

l B
io

m
as

s 
(B

)

A-Nullcline
B-Nullcline

Figure 4.4: The nullclines for θ − kf
kgr

< 0 and θ >
ε(1− r)

rC in

(
T − εkf

μ

)
.
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Case 2.2: If
rC in

d(1− r)
<
(
T − εkf

μ

) 1

θ
i.e θ <

ε(1− r)

rC in

(
T − εkf

μ

)
, then

two nullclines will intersect at one unique point

E1 =

(
μC in + ε2kg(1− r)

ε(1− r)μ
,

rC in

ε(1− r)

)

as show in Figure 4.5. Hence the system will have one equilibrium point E1,

which is internal.

Carbon Biomass (A)

B
ac

te
ria

l B
io

m
as

s 
(B

)

A-Nullcline
B-Nullcline

E
1

Figure 4.5: The nullclines and Equilibrium for θ − kf
kgr

< 0 and θ <

ε(1− r)

rC in

(
T − εkf

μ

)
.
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Case 2.3: If
rC in

ε(1− r)
=

(
T − εkf

μ

)
1

θ
i.e θ =

ε(1− r)

rC in

(
T − εkf

μ

)
, then

the two nullclines will intersect on the line

{(
A,

(
T − εkf

μ

)
1

θ

)
: A >

1

r

[(
T − εkf

μ

)
1

θ
+

εkgr

μ

]}

as shown in Figure 4.6. Thus the System (4.4) will have an infinite number of

equilibrium points

E2 =

{(
A,

(
T − εkf

μ

)
1

θ

)
: A >

1

r

[(
T − εkf

μ

)
1

θ
+

εkgr

μ

]}

Carbon Biomass (A)

B
ac

te
ria

l B
io

m
as

s 
(B

)

A-Nullcline
B-Nullcline

E
2

Figure 4.6: The nullclines and Equilibria for θ − kf
kgr

< 0 and θ =

ε(1− r)

rC in

(
T − εkf

μ

)
.
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Stability analysis:

To determine the local stability of the equilibria above, we consider the Jaco-

bian matrix of System (4.4),

J(A,B) =

⎛
⎜⎝ 0 (r−1)d

r

BGA(A,B) G(A,B) + BGB(A,B)

⎞
⎟⎠ (4.6)

Where

G(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

μ

(
A− B

r

)

kg
− ε if

T − θB

kf
>

A− B
r

kg

μ(T − θB)

kf
− ε if

T − θB

kf
<

A− B
r

kg

GA(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

μ

kg
if

T − θB

kf
>

A− B
r

kg

0 if
T − θB

kf
<

A− B
r

kg

GB(A,B) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎩

−μ

kgr
if

T − θB

kf
>

A− B
r

kg

−θμ

kf
if
T − θB

kf
<

A− B
r

kg
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Stability of E1 :

J(E1) =

⎛
⎜⎝ 0 (r−1)d

r

μrCin

kgε(1−r)
− rCinμ

ε(1−r)rkg

⎞
⎟⎠ (4.7)

det(J(E1)) =

(
μrC in

kgε(1− r)

)(
(r − 1)ε

r

)
< 0

Since det(J(E1)) is negative, the eigen values have different signs. Thus E1 is

a saddle and hence unstable.

Stability of E2 :

J(E2) =

⎛
⎜⎝0 (r−1)ε

r

0 − rCinμθ
ε(1−r)kf

⎞
⎟⎠ (4.8)

det(J(E2)) = 0 and Tr(J(E2)) = − rC inμθ

ε(1− r)kf
< 0.

Since the Tr(J(E2)) is negative and det(J(E2)) is zero, one eigenvalue is zero

and the other is negative. Thus E2 is a line of locally asymptotically stable

equilibrium points. Hence the internal equilibrium point E1 is a unstable and

the line of Equilibrium points E2 is locally asymptotically stable.

Dynamics at EPLs (Cin = 0)

Steady states:

A-Nullclines:

Ȧ = 0 =⇒ B =
rC in

ε(1− r)
.
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B-Nullclines:

Ḃ = 0 =⇒ B = 0 or G(A,B) = 0.

These nullclines have an infinite number of infinite number of intersections

given by

E3 = (A, 0) : A ≥ 0

Hence at EPLs , System (4.4) have an infinite number of equilibrium points

given by E3.

Stability of E3:

J(E5) =

⎛
⎜⎝0 (r−1)d

r

0 μA
Kg

− ε

⎞
⎟⎠ (4.9)

detJ(E3) = 0 and TrJ(E3) =
μA
Kg

− ε.

If A < εKg

μ
, TrJ(E3) will be less than zero. Hence E3 will be asymptotically

stable. On the other hand, if A ≥ εKg

μ
, then TrJ(E3) will be greater than zero

and in this case, E3 will be a line of unstable equilibrium points.

4.4.2 Fitting the model to data

Table (4.2) contains the 95 % confidence interval of the parameters obtained

from the procedure in Section (4.3.4) to fit the model formulated in Section

4.3.1 to the data discussed in Section (4.3.2). The Table column values contain

the values of the parameter used to simulate data in the figures below. Figures

(4.7, 4.11b, 4.9) show the simulated concentration of C5, C6, C7, C8, C9,
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C10, toluene, o-Xylene, m-plus-p-Xyelene, 2-methylpentane, 3-methylhexane,

2-methylheptane, 4-methylheptane, and 2-methyloctane along with measured

concentration of these hydrocarbons within the given time period. In Table

(4.2), Kf represents the nitrogen-dependent H.S.Cs. for bacterial growth, TN

the total nitrogen available in the system, KgC5
, KgC6

,KgC7
,KgC8

,KgC9
, KgC10

,

Kg3-MC6
, Kg2-MC7

, Kg4-MC7
, Kg2-MC8

, Kg2-MC5
respectively represents C5-, C6-, C7-

, C8-, C9-, C10-, 3-MC6-, 2-MC7-, 4-MC7-, 2-MC8-, 2-MC5- dependent H.S.C.

for bacterial growth, and Z-lag denote the lag period of Z, where Z is either

C5, C6, C7, C8, C9, C10, 3-MC6, 2-MC7, 4-MC7, 2-MC8 or 2-MC5
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Parameter value 95 % confidence interval Unit

B(0) 0.0004 0.0001-0.0138 mmoleC

Kf 0.2622 0.2622 mmole

TN 327.6158 327.6158-327.6158 mmole

KgC5
56.2954 16.1585-96.4324 mmole

KgC6
430.2916 366.0636-494.5195 mmole

KgC7
270.7338 238.9429-302.5247 mmole

KgC8
90.1344 69.3197-110.9490 mmole

KgC9
0.8187 0.6751-0.9623 mmole

KgC10
12.0212 10.1740-13.8685 mmole

Kgtoluene 4.4802 4.1355-4.8248 mmole

Kgmp-xylenes
85.0703 76.9272-93.2133 mmole

Kgo-xylene 17.4971 14.1566-20.8375 mmole

Kg3−MC6
144.6140 102.7117-186.5163 mmole

Kg2−MC7
320.4133 183.77548-457.05123 mmole

Kg4−MC7
170.3471 121.01706-219.6771 mmole

Kg2−MC8
335.8911 179.09790-492.6843 mmole

Kg2−MC5
165.94 130.2141-201.6662 mmole

C5-lag 200 200 days

C6-lag 26 26 days

C7-lag 60 40-80 days

C8-lag 60 60 days

C9-lag 70 70 days

C10-lag 5 5 days

Touene-lag 30 30 days

m,p-Xylenes-lag 70 70 days

o-Xyelene-lag 60 60 days

3-MC6-lag 25 24.9820-25.0180 days

2-MC7-lag 25 25 days

4-MC7-lag 25 25 days

2-MC8-lag 25 25 days

2-MC5-lag 23 23 days

Table 4.2: Parameter values of the biodegradation model
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Figure 4.7: System(4.2) fit to measured alkane biodegradation values. Solid lines
represent model predictions and diamonds denote measured values.
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Figure 4.8: System(4.2) fit to measured biodegradable BTEX compounds data.
Solid lines represent model predictions and diamonds denote measured values.
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Figure 4.9: System(4.2) fit to measured biodegradable isoalkenes’ data. Solid lines
represent fitted values and diamonds denote measured values.
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(a) Methane generation from
biodegradable naphtha-amended
CNRL MFT hydrocarbons: compari-
son between simulated and measured
data. μ = 2, θ = 0.2, d = 0, r =
0.35 and B(0) = 0.00057. The other
parameter values are the same as
those on the value column of Table
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biodegradable paraffinic solvent
amended Albian MFT hydrocarbons:
comparison between simulated and
measured data. μ = 2, θ = 0.2, d =
0, r = 0.35 and B(0) = 0.00329. The
other parameter values are the same
as those on the value column of able
(4.2)

Figure 4.10: Comparison between simulated methane data and measured methane
data. Solid lines represent model predictions and diamonds denote measured values

4.4.3 Model validation

Using the parameter values in Table (4.2) with the procedure and methane

data described in Sections 4.3.6 and (4.3.2) respectively, we assess the va-

lidity of our model in predicting methane biogenesis from any given tailing

ponds. Figure (4.10) shows a comparison between our simulated and mea-

sured methane data. The goodness-of-fit statistics suggests that System (4.3)

with the given parameter values, is a good fit for methane data (NMSE = 0.98

for the comparison with naphtha amended CNRL MFT methane data (Figure

(4.11d)) and 0.97 for the comparison with paraffinic solvent amended Albian

MFT methane data (Figure (4.10b))). By direct implication, System (4.2)

with the given parameter values is a good fit for biodegradation data.
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4.4.4 Discussion

We have developed a generic stoichiometry-based microbial metabolism model.

This model integrates a key aspect of microbial community (having more than

one limiting elements), rarely considered in biodegradation models. This is in

agreement with the experimental studies in [32, 3, 49, 52, 17, 30] that show that

the degradation rates of hydrocarbons depend also on microbial community

among other factors. Though we considered that only two elements are limiting

(namely: nitrogen and carbon), the idea can easily be extended to a situation

in which more than one element is limiting. Having assumed that the total

nitrogen in the tailing pond is constant, to keep track of that available for

microbial metabolism, we employed ecological stoichiometry. It postulates a

crucial relationship between the balance of elements, typically but not limited

to carbon (C), nitrogen (N) and phosphorus (P) in an environment, and their

role in determining growth and reproduction of microbes as well as in ecological

interactions [45, 20].

While the model provides reasonable goodness of fits to both test data,

there are rather obvious areas for model improvement. In deriving the biodegra-

dation model, we assume that only nitrogen and carbon are limiting in the

ponds/EPLs. This model also groups all the bacteria into a single group

(assumes bacteria population is homogenous). These assumptions seem eco-

logically plausible, but need not hold in all ponds/EPLs. Different groups of

bacteria specializes in biodegrading defined hydrocarbons, based on the com-

plexity of the hydrocarbon. A logical development of the model would be to

incorporate other limiting elements and separate the dynamics of the differ-
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ent groups of bacteria. This is a topic of our further investigations. A case

can also be established against our lag phase. In [24] it is reported that the

lag period is a function of the prior exposure of the microbial community to

hydrocarbons. This implies that the lag period vary from OSTP to EPL for

each hydrocarbon, with the highest values at the OSTP and that of the hy-

drocarbons at EPL ∼ 0. Since the bacteria in our experiments did not have

much prior exposure to the hydrocarbons added to it, our empirical data rep-

resent what happens at OSTP. To use our model in EPL, it will be reasonable

to take all the lag period to be 0. Our model equally have some room for

improvement when it comes to the interaction of bacteria and the hydrocar-

bons. The population of bacteria in the tailing ponds are heavily grazed by

grazers such as protozoans, saprophagous and nematodes [76]. Empirical evi-

dence suggests that the rate or the extent of hydrocarbon decomposition often

increases in the presence of grazers that substantially reduce the abundance

of bacteria [62, 74, 78, 69]. This could be explained using nutrients recycling

hypothesis. Nutrients recycling hypothesis suggests that excretion of mineral

nutrients by protists results in stimulated physiological status of bacteria and

thus enhanced usage of carbon by bacteria [8]. Thus, incorporating grazers

dynamics in the model might lead to a more efficient results.

In [39] we use the hydrocarbon degradation and methane generation data

in [37] to estimate C6, C7, C8 and C10 zero- and first-order methane biogenesis

models’ related parameters. We equally use the hydrocarbon degradation and

methane generation data in [38] to estimate Toluene, o-Xylene and m- plus p-

xylene zero- and first-order methane biogenesis models’ related parameters. As

mentioned above, the same data set is used in this paper to estimate C6, C7, C8
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C10, Toluene, o-Xylene and m- plus p-xylene related parameters of our model.

Here, we use these parameter values in their respective models to simulate

the cumulative methane expected to be released from the decomposition of

these hydrocarbons in the course of the various experiments and compare the

results with measured methane values. We equally estimate the zero- and

first- order models related parameters for pentane, nonane, 2-methylpentane,

3-methylhexane, 2-methylheptane, 4-methylheptane, and 2-methyloctane (see

Table 4.3).

Hydrocarbon (mmole) Lag phase 0th-order parameter (mmole/day) 1st-order parameter (/day)

C5 294 0.0008576 0.01117

3-MC6 455 0.0001816 0.003849

2-MC7 845 0.00023 0.005258

4-MC7 665 0.0001936 0.005663

2-MC8 665 0.00017726 0.0006584

2-MC5 600 0.00022816 0.0003501

C9 77 2.664e-05 0.01276

Table 4.3: Zero-and first-order model related parameters values for some of the
biodegradable hydrocarbons

Using the NMSE as a measure of goodness of fit, we compare the per-

formance of the three models using as test data the measured methane val-

ues from alkane amended Syncrude MFT, BTEX amended Syncrude MFT,

Naptha amended CNRL MFT and Paraffinic solvent amended Albian MFT

reported in [37], [38], [36], [35] respectively. Table (4.4) contains the NMSE

obtained from comparing the performance of each of the models against the

measured methane values in the experiments.
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Zero-order First-order Stoichiometric

Alkanes amended methane 0.95 0.99 0.99

Methane data from BTEX 0.96 0.95 0.98

Methane data from paraffinic solvent -1.10 0.61 0.97

Methane data from naphtha -1.00 0.82 0.98

Table 4.4: Comparing the performance of our three models using measured
methane data from alkanes, BTEX, paraffinic solvents and naphtha hydrocarbons

The stoichiometric model has the highest NMSE for all the data. This

shows that the simulated results from the stoichiometric model match the

training data perfectly well compared to the other models. Figures (4.11a),

(4.11b), (4.11c) and (4.11d), respectively contains a plot of the measured and

simulated values (by all the three models) for alkane amended Syncrude MFT,

BTEX amended Syncrude MFT, Paraffinic solvent amended Albian MFT, and

Naptha amended CNRL MFT within the duration of the given experiments.
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(c) Methane generation from paraf-
finic solvent amended Albian MFT.
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Figure 4.11: Comparison between simulated (by all our three models) and mea-
sured methane data. Solid lines represent model predictions and diamonds denote
measured values.

4.5 Conclusions

A number of goals have been successfully achieved in this chapter. The con-

sideration of the interactions between microbial biomass, limited resources

in the OSTP/EPLs and the biodegradation of OSTP/EPLs hydrocarbons in

this model allows for the estimation of biodegradation model parameter val-

ues (methane biogenesis model parameter values) that are valid for any given
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OSTP/EPL. These interactions includes the regulation of OSTP/EPLs hydro-

carbons biodegradation by the quantity of microbial biomass and the regula-

tion of microbial growth by the concentration of hydrocarbons and available

nitrogen in OSTP/EPLs. After fitting the model to data, we investigated the

capabilities of the model in predictions and compared it performance to that of

other existing models in the literature. In particular our findings suggest that

the present model can be used in 1) predicting the quantity of CH4 produced

at a certain time in any given OSTP/EPLs, 2) calculating the time required to

produce a certain quantity of cumulative CH4 from any given OSTP/EPLs, 4)

estimating how long it will take before a given OSTP/EPLs will stop emitting

GHGs. This can help oil sands operators manage their tailings repositories

and evaluate the quality of their EPL system.
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Chapter 5

Stability and sensitivity analysis

of the iSIR model for indirectly

transmitted infectious diseases

with immunological threshold 2

Abstract

Most pathogenic diseases remain epidemic and endemic in the world, causing

thousands of deaths annually in less developed countries. Yet, their dynamics

are still not fully understood. In this paper, we carry out a thorough stability

and sensitivity analysis of an iSIR which incorporates an infection term that

2This Chapter has been published. Reference: Kong, Jude D., William Davis, Xiong
Li, and Hao Wang. “Stability and Sensitivity Analysis of the iSIR Model for Indirectly
Transmitted Infectious Diseases with Immunological Threshold.” SIAM Journal on Applied
Mathematics 74, no. 5 (2014): 1418-1441.
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explicitly includes a Minimum Infection Dose (MID), and determine an invari-

ant domain. We discover that if the MID (denoted c) is less than bacterial

carrying capacity K, we may have two steady states: the endemic or epidemic

steady state and the disease free and bacteria free steady state. The latter is

unstable and the previous is globally stable under a certain condition. On the

other hand, if c ≥ K, then up to four steady states may exist: an unstable

endemic steady state, a locally stable endemic steady state, a conditionally

globally stable disease free steady state and an unstable disease free and bac-

teria free steady state. We find that to control the period and intensity of

the outbreaks, it might be better to focus on the bacterial carrying capacity

rather than on the shedding rates.

Keywords: indirect transmission, immunological threshold, infectious dis-

eases, shedding, global stability analysis, sensitivity analysis.

5.1 Introduction

Infectious diseases are diseases caused by pathogenic microorganisms such as

bacteria, viruses, parasites and fungi. They can be spread either directly or

indirectly. Direct transmission occurs when there is a physical contact be-

tween an infected and a susceptible person. Examples of infectious diseases

transmitted directly include common cold, scabies and sexually transmitted

diseases. Indirect transmission on other hand, occurs when a susceptible in-

dividual comes into contact with a contaminated reservoir. Such diseases can

be viral in nature, like rotavirus disease or hantavirus pulmonary syndrome
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[101, 117]; bacterial, such as cholera or legionellosis [87]; or parasitic, such

as schistosomiasis, cryptosporidiosis or giardiasis [104, 99, 92]. The study of

diseases spreading through human populations has received attention from

mathematicians since the seminal papers of Kermack and McKendrick in the

1920s [119]. However, such attention has mostly been confined to diseases

which spread directly. Among the few existing models for indirectly transmit-

ted pathogenic diseases, the main ones that make use of ordinary differential

equations are those built upon the Cappasso and Paveri-Fontana model [123]

and the Codeço model [125]. While the Capasso and Paveri-Fontana model

[123] consisted of two equations, with one for the infected compartment and

the other for the aquatic pathogen community, Codeço included the suscepti-

ble population and recovered population in the model as well. Denote S, I and

R as the susceptible, infected and recovered compartments from standard SIR

models. The recovered compartment is not stated explicitly, as the population

is assumed to be of constant size and so the dynamics of the recovered com-

partment follow directly from the rest of the system noting that H = S+I+R,

where H is the total population. The model is written

Ṡ = n(H − S)− aλ(B)S,

İ = aλ(B)S − rI,

Ḃ = B(nb −mb) + eI.

The birth and death rate are the same and denoted n. The parameter r rep-

resents recovery rate, and include natural recovery and death. The pathogen

have a net growth rate of proliferation nb minus mortality mb, and human
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contamination increases pathogen levels at a rate e proportional to the size of

the infected class. The infective term consists of the maximum rate of expo-

sure to contaminated water, a, multiplied by λ(B) = B
K+B

which is a Holling

II response curve. The use of such a term would overestimate the infectivity

of low levels of pathogens, contrary to the idea of a minimum infectious dose,

which we think is important.

Key features of the model are that the aquatic reservoir is represented very

simply with a linear growth term and linear shedding contribution. This was

because the ecological dynamics of the pathogen were not well understood at

the time (they are still not completely understood), so Codeço started with

the simplest way to model the pathogen population. Unless net growth is

naturally zero (nb = mb), the bacterial population will die out exponentially

in the absence of human shedding if nb < mB, or tend to infinity if nb > mb.

Hartley et al.[130] incorporated a hyperinfectious route of transmission to

the Codeço model and Joh et al. [133], Tian et al. [140], Jensen et al. [132]

and Mukanvire et al. [135] have further built on and branched off from these

models.

Joh et al.’s [133] model differs from the other models in that it takes into

account the fact that pathogens have to enter the human body in higher con-

centrations to overwhelm the natural immune response [136] by incorporating

a Minimum Infection Dose (MID) into the incidence term. This MID is the

rescaled value of the number of pathogens required to override the body’s im-

mune response. The infection term is a piecewise continuous function which

is zero below the minimum infectious dose and a Holling II response curve

above this threshold. Joh et al. analyzed the stability of this model, but
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could not carry out all the essential stability and sensitivity analysis. In this

paper we carry out a thorough stability and sensitivity analysis on the Joh

et al’s model. We show that if the bacterial population (B) is less than or

equal to the ratio of the MID (denoted c) to the bacterial carrying capacity

K, then we can only have an unstable disease free and bacteria free steady

state. Whereas if B > c/K and c < K we could have an unstable disease free

and bacteria free equilibrium and a conditionally globally stable endemic or

epidemic steady state. Else if B > c/K and c ≥ K then we may have up to

four steady state: an unstable endemic steady state, a locally stable endemic

steady state, a conditionally globally stable disease free steady state and an

unstable disease free and bacteria free steady state. Further more, we will

show using sensitivity analysis that to control the frequency of the outbreaks

and the number of person that might be infected, it will be nice to focus on

bacterial carrying capacity rather than on the shedding rate.

5.2 iSIR model formulation

One of the key differences of the iSIR model, proposed in Joh et al. [133],

compared to standard SIR models is the incidence term. The rough idea is

that humans consume bacteria constantly but do not always get sick. Unlike

with viruses where only a small amount of exposure is required, for certain

types of bacteria a significant amount of bacterial cells need to be ingested

in order to override the body’s immune response [136]. This threshold has

been measured by the likes of Cash et al. [124] and others [93, 102, 111] to

be at least 104 cells. Simply using Holling I (or mass action) infection terms
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or Holling II terms overestimates the infectivity of low levels of bacteria, since

the standard Holling I and Holling II functions assume people will be infected

with infinitesimally small densities of aquatic pathogens.

The incidence term used in this paper is α(B)S where α(B) is the pathogen

density dependent component, and the S term is present for the same reasons

as with standard SIR models. The indirect part of the incidence term is defined

as

α(B) =

⎧⎪⎨
⎪⎩

0, B < c;

a(B−c)
(B−c)+H

, B ≥ c.

When the pathogen density is below a rescaled level corresponding to the

MID, there will be no infections even with a nonzero amount of susceptibles,

and after the bacterial density is above that threshold, infections will occur

via a Holling II response, as shown in Figure 5.1.

0
B value

α

Bacteria Density component of Infection term α (B) S

C

Figure 5.1: If bacterial levels are beneath the threshold c, α(B) is zero (no infec-
tions). If bacterial levels are above c, then α(B) is a Holling II curve.

As pathogens exist naturally in the aquatic environment, the iSIR model

uses logistic bacterial growth in the absence of any infected people, in contrast

to most other models which have linear terms for the pathogen growth and

death [125, 130, 94]. The latter leads to exponential decay in the absence of
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infectives, which is consistent as many of those models assume that the aquatic

reservoir of pathogen is not relevant to the cause of outbreaks, and so only the

short term dynamics of freshly shedded pathogens are considered. In nonen-

demic areas, where the pathogen does not naturally exist in the environment,

the linear form of the pathogen growth makes more sense than logistic growth,

as used by Mukandavire et al. [135] in a study on recent outbreaks of Cholera

in Zimbabwe. However, most models are intended for endemic areas.

The iSIR model has a positive contribution to the bacterial level when

there are sick people shedding pathogens back to the reservoir. This occurs

biologically with infected individuals contaminating the water supply through

their pathogen laden feces. The dynamics are summarized in Figure 5.2.

Figure 5.2: A flow diagram demonstrating the relationship between Susceptibles
(S), Infectives (I), Recovered (R) and pathogen (B). Humans have death rate μ,
contribute to the pathogen reservoir at rate ξ, recover at rate δ and are infected at
rate α(B).

The variables S, I and R in Figure 5.2, are defined in the usual way as

susceptible, infected and recovered categories of the human population. The

variable B represents the density of the pathogens in the aquatic reservoir. The

first three equations sum to zero, thus the human population is of constant
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size. The equations for the model are as follows:

dS

dt
=− α(B)S − μS + μN, (5.1a)

dI

dt
=α(B)S − μI − δI, (5.1b)

dR

dt
=δI − μR, (5.1c)

dB

dt
=rB

(
1− B

K

)
+ ξI, (5.1d)

N =S + I +R. (5.1e)

This model was first proposed in Joh et al. [133], though the analysis was

preliminary and here we will present a thorough examination of its dynamics.

For numerical simulations, the values of the parameters described in Table 7.1

are taken from the literature. The large variations of the key parameter values

for certain waterborne diseases are given in Table 5.2. Note that the ranges

given in the second column of Table 2 are different from the pathogen shed

rate ξ in Table 7.1. The pathogen shed rate is the number of pathogens shed

by an infected per day divided by the total water volume of the reservoir (in

the unit of litre).
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Parameter Description Dimension

r Maximum per capita pathogen growth efficiency day -1

K Pathogen carrying capacity cell litre -1

H Half-saturation pathogen density cell litre -1

a Maximum rate of infection day -1

δ Recovery rate day -1

ξ Pathogen shed rate cell litre -1 day -1

μ Per capita human birth/death rate day -1

N Total Population persons

c MID cell litre -1

Table 5.1: Model parameters.

Disease Number of

pathogens

shed by an

infected/day

(pathogen/day)

MID Typical con-

centration

(pathogen/liter)

Cholera 1011 − 1012 [93] 103 − 106 [102,

126]

10− 103 [109]

Cryptosporidiosis 108 [133] 100− 300 [90] 1− 5 [105]

Giardiasis 108 − 109 [112] 10− 100 [112] 1− 5 [105]

Rotavirus dis-

ease

1012 − 1013 [108] 100 [133] 10− 1000 [114]

Table 5.2: Key parameter values for certain waterborne diseases.
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5.3 Mathematical results

We can nondimensionalize the system as follows:

S =
S

N
, I =

I

N
,B =

B

K
,

τ = μt,A =
a

μ
,C =

c

K
,p =

μ+ δ

μ
,q =

ξN

μK
,R =

r

μ
,λ =

H

K
.

We redefine the per capita infection rate α accordingly as

α(B) =

⎧⎪⎨
⎪⎩

0, B < C,

A(B−C)
(B−C)+λ

, B ≥ C.

The boldface is now dropped and we arrive at the following nondimensionalized

iSIR system:

dS

dτ
= −α(B)S − S + 1, (5.2a)

dI

dτ
= α(B)S − pI, (5.2b)

dB

dτ
= RB(1− B) + qI. (5.2c)

5.3.1 Forward invariance

First note that in dimensional terms, if S = 0, then Ṡ = N > 0 and so S(t) > 0

for t > 0. If I = 0, then İ = α(B)S and because α(B) ≥ 0 by definition, then

I ≥ 0 as well. The third equation of (5.1) gives us that Ṙ = δI when R = 0,

thus R(t) ≥ 0. As S + I + R = N , we get that S, I, R ≤ N in the usual way.
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This transfers over to the nondimensional quantities of S, I and R, the last of

which we typically exclude. We have that 0 ≤ S + I ≤ 1 in particular.

Figure 5.3: The derivative of the Bacteria vs. Bacterial Population. When above
Bmax, the derivative becomes negative. When B is zero, the derivative is positive.

Once again we drop the boldface for convenience. Looking at the third

equation of the nondimensional system we can make note that RB(1− B) +

qI ≤ RB(1−B)+ q as I ≤ 1. Define F (B) := RB(1−B)+ q which has roots

B1,2 =
R±

√
R2+4Rq

2R and note the smaller root B1 =
R−

√
R2+4Rq

2R < 0 because

of the positivity of the parameters. The other root B2 is clearly positive and

is denoted as Bmax =
R+

√
R2+4Rq

2R > 1. The graph of F (B) is pictured in

Figure 5.3. When B = 0, we see that Ḃ = qI and thus B(τ) ≥ 0 for τ > 0. If

B(0) ∈ [0, Bmax) then B(τ) ∈ [0, Bmax) for any τ > 0. The invariant region is

pictured in Figure 5.4 and we summarize with a proposition.

Proposition 1 (Feasible Region). The set

Ω = {(S, I, B) : 0 < S + I ≤ 1, 0 ≤ B ≤ Bmax, S > 0 and I ≥ 0}

defines a forward invariant region of system (5.2).
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Figure 5.4: The forward invariant region of system (5.2).

5.3.2 Equilibria of the system

Clearly E0 = (1, 0, 0) is a steady state of (5.2) and biologically it corresponds

to a disease-free and bacteria-free population. When C ≥ 1 i.e when the in-

reservior pathogen density is less than or equal to the rescaled MID, this means

ᾱ(1) = 0 and E1 = (1, 0, 1) is an equilibrium corresponding to a disease-free

state with bacteria at carrying capacity. When C < 1 i.e when the in-reservior

pathogen density is greater than the rescaled MID, we get that α(1) 	= 0 and

so E1 = (1, 0, 1) is not an equilibrium and (5.2) has no equilibrium (S∗, I∗, B∗)

with B∗ ≤ C except E0. The more complicated steady state E∗ = (S∗, I∗, B∗)

arises when B∗ > C which causes α(B∗) 	= 0. Thus, system (5.2) implies that

S∗ =
B∗ − C + λ

(A+ 1)(B∗ − C) + λ
,

I∗ =
1

p

(
A(B∗ − C)

(A+ 1)(B∗ − C) + λ

)
=

R
q
B∗(B∗ − 1).

The expressions for I∗ can be combined to form the equation

B∗(B∗ − 1)

(
B∗ −

(
C − λ

A+ 1

))
=

q

pR
A

A+ 1
(B∗ − C). (5.3)
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Define F1(B) = f(B) − g(B) where f(B) = B(B − 1)
(
B − C + λ

A+1

)
and

g(B) = q
pR

A
A+1

(B − C). Denote B3 = C − λ
A+1

so that if C < 1 we see that

F1(B3) =
q

pR
A

A+ 1

λ

A+ 1
> 0,

F1(C) = C(C − 1)

(
λ

A+ 1

)
− 0 < 0.

Therefore there exists a root B1 ∈ (B3, C). However, as B1 < C then ᾱ(B1) =

0 and equation (5.3) does not apply.

We have that f(0) = 0 and g(0) < 0

=⇒ f(0) > g(0)

=⇒ F1(0) = f(0)− g(0) > 0

For B = b � 0 we have that f(b) < 0, g(b) < 0 and f(b) < g(b)

=⇒ F1(b) = f(b)− g(b) < 0

Since F1(0) > 0 and F1(b) < 0 for b << 0 and F1 is continuos on (0, b), using

the IVT we can find a B̄2 ∈ (0, b) such that F1(B̄2) = 0. Since B̄2 < 0, it is

not in the feasible region for Ω, Lastly,

F1(1) =− q

pR
A

A+ 1
(1− C) < 0,

F1(Bmax) =(Bmax − C)

[
q

R − q

R
1

p

A

A+ 1

]
+

q

R
λ

A+ 1
> 0.

The latter is true as p > 1, Bmax > 1, and thus we conclude that there

exists B∗ ∈ (1, Bmax) when C < 1 and it is the unique positive solution to

(5.3), giving us a unique interior equilibrium E∗ = (S∗, I∗, B∗).

Note that limC→1− B∗(C) = 1, as the x-intercept of g(B) is 1 when C → 1−
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and f(1) = 0. As C increases over the value 1, E∗ becomes E1 or vice versa if

C is decreased.

We conclude that when C ≥ 1, f(B) and g(B) are as in Figure 5.5 and

there are 0, 1 or 2 roots of Equation (5.3) with bacterial values greater than

the minimum infectious dose (C). For these values B+
1,2, we find S+

i and I+i in

the same way as with E∗, leading us to two distinct equilibria E+
1,2.

0 1 C 2 3
−2

0

2

4

B (bacteria)

 

 

f(B)
g(B)

Figure 5.5: The left and right hand sides of Equation 5.3 when C ≥ 1. There can
be 0, 1 or 2 intersections with bacterial values above the MID.

As C is greater than 1, it is larger than all of the roots of f(B). Thus,

f(B) is concave up on [C,∞) and f ′(B) ≥ f ′(C) > 0 for B ∈ [C,∞). If the

slope of g(B) is less than f ′(C), there will be no endemic equilibria, as g(B)

will always be below f(B) and there will be no intersections. Defining ζ = q
pR

and working backwards, we see that

ζ < f ′(C),

=⇒ ζ
A

A+ 1
< f ′(C),

=⇒ g′(B) < f ′(C),
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meaning that

ζ < f ′(C) (5.4)

is a sufficient condition for there being no internal equilibria when C ≥ 1.

In dimensional parameters, ζ =
(

ξN
μ+δ

) (
μ
rK

)
, and so ζ is proportional to the

shedding rate ξ. This motivates the definition of the condition for no internal

steady states, as we shall see later. We summarize with a proposition.

Remark 4 (Biological Interpretation of ζ). ζ =

ξN
μ+δ

1
μ
(rK)

is the ratio of the

average number of pathogens shed over the time course of infection if all in-

dividuals were infected , to the average number of pathogens reproduced in the

reservoir over the time course of an uninfected individual.

Proposition 2 (Existence of equilibria). The equilibrium E0 = (1, 0, 0) always

exists in Ω.

• When C < 1 (equivalently c < K) i.e when the in-reservior pathogen

density is greater than the rescaled MID, there exist two equilibria, E0

on ∂Ω and a unique endemic equilibrium E∗ in Ω̊.

• When C ≥ 1 (equivalently c ≥ K) i.e when the in-reservior pathogen

density is less than or equal to the rescaled MID, then E1 = (1, 0, 1) is

also an equilibrium and there can be up to two internal equilibria E+
1,2.

– If ζ < f ′(C), there are no internal equilibria, and only E1 and E0

exist.
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5.3.3 Local stability of E0, E1 and E∗

We calculate the jacobian to analyze the local stability of each of the equilibria.

For the simpler case of B ≤ C,

J1(S, I, B) =

⎛
⎜⎜⎜⎜⎝

−1 0 0

0 −p 0

0 q R− 2RB

⎞
⎟⎟⎟⎟⎠ ,

and for B > C,

J2(S, I, B) =

⎛
⎜⎜⎜⎜⎝

−A(B−C)
(B−C)+λ

− 1 0 −Aλ
[(B−C)+λ]2

S

A(B−C)
(B−C)+λ

−p Aλ
[(B−C)+λ]2

S

0 q R− 2RB

⎞
⎟⎟⎟⎟⎠ .

When C ≥ 1, the equilibria are E0 = (1, 0, 0), E1 = (1, 0, 1) and up to two

E+
i = (S+

i , I
+
i , B

+
i ). For C ≥ 1, we use J1 and find that E0 has eigenvalues

−1,−p and R, which indicates that E0 is a saddle point equilibrium, as all

parameter values are assumed positive. E1 in this case has eigenvalues −1,−p

and −R and thus we can conclude that when C ≥ 1, the equilibrium (1, 0, 1)

is locally asymptotically stable: that is, the disease-free equilibrium is locally

asymptotically stable. Also, for C < 1, E0 is a saddle point equilibrium for

the same reasons.

Now considering E∗ and using the nondimensionalized system (5.2), we
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obtain

S∗ =
B∗ − C + λ

(A+ 1)
(
B∗ − C + λ

A+1

) =
B∗ − C + λ

(A+ 1)
(

q
pR

A
A+1

(B∗ − C) 1
B∗(B∗−1)

)

S∗ =
pR
Aq

B∗

B∗ − C
(B∗ − 1)(B∗ − C + λ).

We will use γ for eigenvalues as the traditional λ is already used elsewhere.

We can compute

det(γI − JE∗) = det

⎛
⎜⎜⎜⎜⎝
γ + A(B∗−C)

(B∗−C)+λ
+ 1 0 Aλ

[(B∗−C)+λ]2
S∗

−A(B∗−C)
(B∗−C)+λ

γ + p −Aλ
[(B∗−C)+λ]2

S∗

0 −q γ +R(2B∗ − 1)

⎞
⎟⎟⎟⎟⎠

=

(
γ +

A(B∗ − C)

B∗ − C + λ
+ 1

)[
(γ + p)(γ +R(2B∗ − 1))− Aλq

(B∗ − C + λ)2
S∗
]

+
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗.

Define F2(γ) := det(γI − JE∗), h := A B∗−C
B∗−C+λ

+ 1 and m := Aλq
(B∗−C+λ)2

S∗.

Later we will make use of the following alternate forms of these definitions:

h = A

(
B∗ − C

B∗ − C + λ
+

1

A

)
=

(A+ 1)(B∗ − C) + λ

B ∗ −C + λ
> 1

and

m =
Aλq

(B∗ − C + λ)2
pR
Aq

B∗

B∗ − C
(B∗−1)(B∗−C+λ) = pR λ

B∗ − C + λ

B∗ − 1

B∗ − C
B∗.
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We can rewrite the characteristic equation with these new expressions taken

into account as follows

F2(γ) =(γ + h)[(γ + p)(γ +R(2B∗ − 1))−m] +
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗

=(γ + h)[γ2 + (R(2B∗ − 1) + p)γ + pR(2B∗ − 1)−m] +
A2λq

(B∗ − C + λ)3
(B∗ − C)S∗

={γ3 +R(2B∗ − 1 + p)γ2 + [pR(2B∗ − 1)−m]γ + hγ2 + h(R(2B∗ − 1) + p)γ

+ [pR(2B∗ − 1)−m]h}+ A2λq

(B∗ − C + λ)3
(B∗ − C)S∗.

The Routh-Hurwitz coefficients of the above expression are

b3 = 1,

b2 = R(2B∗ − 1) + p+ h,

b1 = pR(2B∗ − 1)− b+ h(R(2B∗ − 1) + p),

b0 = [pR(2B∗ − 1)− b]h+ A2λq
(B∗−C+λ)3

(B∗ − C)S∗,

and note that the Routh-Hurwitz stability criterion requires

b1, b2, b3 > 0 and b2b1 > b3b0

as a sufficient condition for stability of the equilibrium. Clearly b2 and b3 are

positive, and if pR(2B∗−1)−m > 0 then b1, b0 > 0. As C < 1 for the internal

equilibrium E∗ to exist, B∗ − 1 < B∗ − C so that B∗−1
B∗−C

< 1.

Thus

m = pR λ

B∗ − C + λ

B∗ − 1

B∗ − C
B∗ < pRB∗

and so

pR(2B∗ − 1)−m > pR(2B∗ − 1)− pRB∗ = pR(B∗ − 1) > 0,
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which means b1, b0 > 0.

As for the second condition b2b1 > b3b0, we have the following expression

b1b2 =[(h+ p)R(2B∗ − 1) + hp−m][R(2B∗ − 1) + (p+ h)]

=(h+ p)R2(2B∗ − 1)2 + (h+ p)2R(2B∗ − 1) + (hp−m)R(2B∗ − 1)

+ (h+ p)(hp−m).

We can define

B1 = 2hpR(2B∗ − 1)− hm,

B2 = pR2(2B∗ − 1)2 −mR(2B∗ − 1),

B3 = p2R(2B∗ − 1)− pm,

B4 = hR2(2B∗ − 1)2 + h2R(2B∗ − 1) + h2p+ hp2 + hpR(2B∗ − 1).

Using the definition of S∗, we can express

b3b0 = b0

= [pR(2B∗ − 1)−m]h+
A2λq

(B∗ − C + λ)3
(B∗ − C)

pR
Aq

B∗

B∗ − C
(B∗ − 1)(B∗ − C + λ)

= [pR(2B∗ − 1)−m]h+ AλpR B∗

(B∗ − C + λ)2
(B∗ − 1).

Now we check to see if the inequality b1b2 > b0 is satisfied by noting that
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(B∗ − C)(2B∗ − 1) > (B∗ − 1)B∗

⇒ B∗ − C

B∗ − C + λ
(2B∗ − 1) +

1

A
(2B∗ − 1) > (B∗ − 1)

B∗

B∗ − C + λ

⇒ ApR
(

B∗ − C

B∗ − C + λ
+

1

A

)
(2B∗ − 1) > ApR(B∗ − 1)

B∗

B∗ − C + λ

⇒ hpR(2B∗ − 1) > ApRλ(B∗ − 1)
B∗

(B∗ − C + λ)2

⇒ 2hpR(2B∗ − 1)− hm > hpR(2B∗ − 1) + ApRλ
B∗

(B∗ − C + λ)2
(B∗ − 1)− hm.

The left-hand side of the above inequality is precisely B1 and the right-hand

side is b0. Recall that m < pRB∗, and so

pR2(2B∗ − 1)2 −mR(2B∗ − C) > pR2(2B∗ − 1)2 − pR2B∗(2B∗ − 1) > 0

and

p2R(2B∗ − 1)− pm > p2R(2B∗ − 1)− p2RB∗ = p2R(B∗ − 1) > 0.

Thus B2, B3 > 0 and clearly B4 > 0. Lastly,

b1b2 =
4∑
1

Bi > B1 > b0.

Thus the Routh-Hurwitz conditions are satisfied and E∗ is locally asymptoti-

cally stable.

138



5.3.4 Local stability of E+
1,2

When E+
i exist things are more complicated as we lack exact expressions for

the equilibrium quantities, and so the local stability is difficult to find ana-

lytically. Numerically it can be demonstrated that E+
1 (with B+

1 < B+
2 ) is a

saddle, and E+
2 is attracting. For example, this can be seen with parameters

A = 1e3, C = 2, p = 10, q = 1e3,R = 30 and λ = 1,. With these parameters

E+
1 and E+

2 both exist and are given as E+
1 = (0.3986, 0.0601, 2.0015) and

E+
2 = (0.0036, 0.0996, 2.3898). The eigenvalues corresponding to these steady

states are γ1 = (−0.9969, 580.8379,−682.4401),

γ2 = (−292.1109,−10.6368,−102.1349). The equilibria E1 and E+
2 are both lo-

cally stable and a situation of bistability occurs, as observed in Figure 5.6a. Al-

most every solution approaches either the endemic equilibrium or the disease-

free equilibrium, depending on initial conditions. Numerically we observe that

the basin of attraction is much larger for the endemic equilibrium E+
2 , mean-

ing that a greater range of initial conditions will lead to an endemic steady

state rather than a disease free one. So, E0 is locally unstable, E1 and E∗ are

locally stable when they exist, and numerically we see that E+
1 is unstable and

E+
2 is attracting. We summarize the preceding local stability results with a

theorem.

Theorem 5 (Local Stability). System (5.2) has between two and four equilib-

ria.

• When C < 1 (equivalently c < K), E0 = (1, 0, 0) is unstable and a unique

endemic equilibrium E∗ exists and is locally asymptotically stable.

• When C ≥ 1 (equivalently c ≥ K), then E0 = (1, 0, 0) is unstable and
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Figure 5.6: Trajectories in the phase space for C > 1 and B∗ ≥ C . Stable
equilibria are marked as • while unstable equilibria are marked as ◦. a) ζ < f ′(C)
(ζ = 0.5 , f ′(C) = 2.0297). Only two equillibrium points exist: a saddle E0 and an
attracting equilibrium E1, the number of infected persons goes to zero as t → ∞ .
The values used for the parameters are as follows: A = 100, C = 2, p = 10, q = 100,
R = 20, λ = 1 (original parameter values are δ = 9× 10−4, K = 1× 106, a = 0.01,
H = 1× 106, c = 2× 106, N = 1× 106, r = 0.002, μ = 1× 10−4, ξ = 0.01). b) ζ is
sufficiently larger than f ′(C) (ζ = 3.3333, f ′(C) = 2.0030). Four equilibrium points
exist: two saddle equilibrium points E+

1 and E0 and two attracting equilibrium
points E1 and E+

2 . The values used for the parameters are as follows: A = 103,
C = 2, p = 10, q = 103, R = 30, λ = 1 (original parameter values are δ = 9× 10−4,
K = 1×106, a = 0.1, H = 1×106, c = 2×106, N = 1×106, r = 0.003, μ = 1×10−4,
ξ = 0.1).
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E1 = (1, 0, 1) is an equilibrium and is locally asymptotically stable. Up

to two internal equilibria, E+
1,2, can also exist.

5.3.5 Global stability of E1 and E∗

We wish to invoke a theorem of Hal Smith in regards to monotone dynamical

systems and global stability. Because of the threshold parameter, the Jacobian

of (5.2) will have two different forms with α(B) = 0 or not. Either way, the

Jacobian is of the form

J(S, I, B) =

⎛
⎜⎜⎜⎜⎝

∗ + −
+ ∗ +

− + ∗

⎞
⎟⎟⎟⎟⎠ ,

which is sign stable and sign symmetric in the off-diagonal entries. As demon-

strated in Figure 5.7, every closed loop has an even number of edges with +

signs and so the system is monotone as defined on page 49 in [91] in Ω with

respect to the partial ordering

Km = {(S, I, B) : S ≥ 0, I ≤ 0, B ≥ 0}. (5.5)

Figure 5.7: The relationship between the three main compartments in the model.
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Our argument is as follows: an application of monotone dynamical system

theory states that if system (5.2) has a positive periodic orbit in domain Ω,

then there exists an unstable equilibrium in Ω (Proposition 4.3 , p. 44, in

[91]). When C ≥ 1 and condition (5.4) is satisfied (ζ < f ′(C)), then there

are only E0 and E1, neither of which is an interior equilibrium. Hence system

(5.2) will not have any periodic orbits in Ω. As (5.2) is competitive, it reduces

to a two-dimensional system [91]. Because of the absence of limit cycles and

by the Poincaré-Bendixson theory, the local stability of E1 implies that E1 is

globally asymptotically stable.

Define

H1 = {(S, I, B) : B ≤ C, 0 < S + I ≤ 1},

H2 = {(S, I, B) : C < B < Bmax, 0 < S + I ≤ 1},

and note that H1 ⊂ Ω, H2 ⊂ Ω with Ω = H1

⋃
H2. We will show that when

C ≥ 1 and ζ < f ′(C), after some τ0 all solutions will stay entirely in H1 and

we can apply our argument about the global asymptotic stability of E1.

First we require a result from Hal Smith [91] about competitive systems

noting first that �m and ≤m are order relations with respect to Km defined

in (5.5).

Lemma 2 (Proposition 4.3, p. 44, in [91]). Let γ be a non-trivial periodic

orbit of a competitive system in D ⊂ R
3 and suppose there exists p, q ∈ D

such that p �m q and [p, q] = {y ∈ D : p ≤m y ≤m q} ⊂ D. Then W is an

open subset of R3 consisting of two connected components, one bounded and

one unbounded. The bounded component, W (γ), is homeomorphic to the open
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ball in R
3. W (γ) ⊂ [p, q], is positively invariant and its closure contains an

equilibrium.

Now we require some results about the behaviour of solutions of (5.2) with

respect to H1 and H2.

Lemma 3. If C ≥ 1 and ζ < f ′(C), then for all solutions x(τ) = (S(τ), I(τ), B(τ))

of (5.2), if there exists some τ0 such that x(τ0) ∈ H2, then there exists some

τ1 > τ0 such that x(τ1) ∈ H1.

Proof. Assume x(τ) ∈ H2 for some τ = τ1. Assume for contradiction that

x(τ) ∈ H2 for all τ > τ1. Then by Monotone Dynamical Systems (MDS)

Theory we can reduce this 3d system to a 2d system, as it is competitive, and

by the Poincaré-Bendixson Theorem we can conclude all omega limit sets are

limit cycles or equilibria.

As there is not an interior equilibria in H2, we can conclude by Lemma 2

that there are not any limit cycles in H2. As there are also no equilibria of any

type in H2, we conclude that x(τ) exits H2 at some τ2 > τ1. This contradicts

our assumption that x(τ) ∈ H2 for all τ > τ1 and our Lemma is proven.

Lemma 4. If C ≥ 1 and ζ < f ′(C), then for all solutions x(τ) of (5.2), if

there exists s0, s1 such that s1 > s0 where x(s0) ∈ H2 and x(s1) ∈ H1, then

x(τ) ∈ H1 for τ > s1.

Proof. Suppose there exists s0 and s1, 0 < s0 < s1 such that x(s0) ∈ H2 and

x(s1) ∈ H1. There exists τ0 ∈ (s0, s1) such that B(τ0) = C and Ḃ(τ0) < 0.

Suppose there exists τ1 > τ0 where B(τ1) = C, Ḃ(τ1) > 0, meaning that x(t)
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is re-entering H2. Choose the first such time τ1 and note

Ḃ(τ1) = RC(1− C) + qI(τ1) > 0,

Ḃ(τ0) = RC(1− C) + qI(τ0) < 0.

This means that I(τ1) > I(τ0) but B(τ) ≤ C on τ0 < τ < τ1 and so İ =

−pI < 0. This is a contradiction, so there can be no such τ1 as supposed and

the Lemma is proven.

Thus no solutions can stay in H2 as τ → ∞ and once H1 is entered from

H2, H1 is forward invariant. This captures the behaviour of all solutions x(τ).

We can now conclude that E1 is globally asymptotically stable.

Proposition 3 (Global Stability of E1). When C ≥ 1 and ζ < f ′(C), E1 =

(1, 0, 1) is an equilibrium of (5.2) and it is globally asymptotically stable.

Proof. When C ≥ 1 and ζ < f ′(C), by Lemmas 3 and 4, all solutions even-

tually exist entirely in H1 and as there are no interior equilibria (because

ζ < f ′(C)), by Lemma 2 there are no limit cycles in H1. Monotone Dynami-

cal Systems theory says that (5.2) reduces to a two-dimensional system, and

so by the Poincaré-Bendixson theorem all omega-limit sets are limit cycles or

equilibria. As there are no limit cycles in H1 and no interior equilibria, by the

local stability of E1, we conclude that it is globally asymptotically stable.

Now we consider the global stability of E∗. As (5.2) is monotone, it veri-

fies the Poincaré-Bendixson property: every compact omega-limit set without

equilibria is a closed orbit. For systems with this property, a criterion on
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global stability has been developed by Li, Wang and Muldowney [106, 107].

Note that the second additive compound of a 3×3 matrix, A = [aij], is denoted

A[2] and defined

A[2] =

⎡
⎢⎢⎢⎢⎣
a11 + a22 a23 −a13

a32 a11 + a33 a12

−a31 a21 a22 + a33

⎤
⎥⎥⎥⎥⎦ .

Lemma 5 (Theorem 2.5 in [107]). Let ẋ = F (x)(F ∈ C1) be a system defined

on an open convex subset G ⊂ R
3 having a compact global attractor in G.

Assume that

1) The Poincaré-Bendixson property holds.

2) There is a unique equilibrium in G which is locally asymptotically stable.

3) For each periodic orbit p(t) in G, the linear system

Ẏ =
∂F [2]

∂x
(p(t))Y

is asymptotically stable.

Then the equilibrium is globally asymptotically stable in G.

In order to apply this result, we have to study the asymptotic stability of

the linear equation

Ẏ = J [2](p(t))Y (2.4)

where p(t) is any periodic solution of (5.2) in Ω. Given our definition of JE∗ ,

the second additive compound of JE∗ is
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J [2] =

⎛
⎜⎜⎜⎜⎝

−f0(B)− 1− p f ′
0(B)S f ′

0(B)S

q −f0(B)− f ′
1(B)− 1 0

0 f0(B) −p− f ′
1(B)

⎞
⎟⎟⎟⎟⎠ ,

where f0(B) = A(B−C)
B−C+λ

and f ′
1(B) = 2RB −R.

Typically verifying the stability of such a system is nontrivial, but for (2.4)

we have a linear, periodic, cooperative, irreducible system with respect to the

cone

K1 = {(S, I, B) : S ≥ 0, I ≥ 0, B ≥ 0}

which suggests we use a comparison result.

Lemma 6. (Proposition 3 in [98]) Let Ẏ = Ai(t)Y for i = 1, 2 be two linear,

periodic, cooperative and irreducible systems (with the same period) such that

A2(t) − A1(t) has nonnegative coefficients. If Ẏ = A2(t)Y is asymptotically

stable, then Ẏ = A1(t)Y is too.

For our case, obviouslyA1 = J [2](p(t)) and for A2 we choose a constant

matrix whose entries bound those of A1 independently of the periodic orbit

and denote the matrix J̄ where

J̄ =

⎛
⎜⎜⎜⎜⎝

−1− p− f0(1) f ′
0(1) f ′

0(1)

q −f0(1)− f ′
1(1)− 1 0

0 f0(Bmax) −p− f ′
1(1)

⎞
⎟⎟⎟⎟⎠ .

The characteristic equation, P (γ), of J̄ is
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P (γ) = [γ+1+p+f0(1)][γ+1+f0(1)+f ′
1(1)][γ+p+f ′

1(1)]−qf ′
0(1)[γ+p+f ′

1(1)+f0(Bmax)].

Expanding this out we can write

P (γ) = a3γ
2 + a2γ

2 + a1γ + a0,

with coefficients

a3 = 1,

a2 = 2(1 + p+ f0(1) + f ′
1(1)),

a1 = [2 + 2f0(1) + p+ f ′
1(1)](p+ f ′

1(1)) + [1 + p+ f0(1)](1 + f0(1) + f ′
1(1))− qf ′

0(1),

a0 = [1 + p+ f0(1)](1 + f0(1) + f ′
1(1))[p+ f ′

1(1)]− qf ′
0(1)[p+ f ′

1 + f0(Bmax)].

To use the Routh-Hurwitz conditions, we require that ai > 0 and that

a1a2 > a3a0. First, we consider the positivity of the coefficients. Only the

positivity of a1 and a0 require checking.

a0 >p+ pf ′
1(1) + p2f ′

1(1) + pf ′
1(1) + pf ′

1(1)f
′
1(1) + f ′

1(1)f
′
1(1)

− qAλ−1(p+ f ′
1(1) + A))

=(p+ 1)2f ′
1(1) + p2 + p+ pR2 +R2 − qAλ−1(p+ f ′

1(1) + A)).

Noting that f ′
1(1) = R = r

μ
it is reasonable to assume that R > 1 as μ is the

human birth/date rate and will be very small. Also r, the maximum bacterial
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growth rate, is often greater than 1. Finally, by definition p > 1 thus

a0 >(p+ 1)2R+ p2 + p+ pR2 +R2 − qAλ−1(p+R+ A))

>(p+ 1)2R+ (p+ 1)2 − qAλ−1(p+ A)− qAλ−1R

Suppose the parameters p, q, A, and λ are such that

(p+ 1)2 > qAλ−1(p+ A). (2.5)

Then a0 > 0. The positivity of a1 follows similarly,

a1 > (2 + p)p+ (1 + p)− qAλ−1 > (1 + p)2 − qAλ−1,

and if parameters satisfy (2.5), then a1 > 0 too. Now we can consider

� = a1a2 − a3a0,

� =2(1 + p+ f0(1) + f ′
1(1)){(1 + f0(1) + p)(p+ f ′

1(1))

+ [1 + p+ f0(1)][1 + f0(1) + f ′
1(1)]}+ [1 + p+ f0(1)](1 + f0(1) + f ′

1(1))[p+ f ′
1(1)]

+ 2f ′
1(1)[1 + f0(1) + f ′

1(1)](p+ f ′
1(1)) + qf ′

0(1)[−2− p− 2f0(1)− f ′
1(1) + f0(Bmax)],

� >2(1 + p+ f0(1) + f ′
1(1))(1 + p)p+ (1 + p)− qf ′

0(1)[2 + 2p+ f0(1) + 2f ′
1(1)]

= 2(1 + p+ f0(1) + f ′
1(1))

[
(1 + p)2 − qf ′

0(1)
]
.

Note that (1 + p)2 − qf ′
0(1) > (1 + p)2 − qAλ−1 and if parameters satisfy

(2.5), we have that a2a1 > a3a0. Lastly considering H1 and H2 as before,

note that if C < 1 then Ḃ(B = C) = RC(1 − C) + qI > 0, so eventually all

trajectories exist entirely in H2. In particular, any attracting limit cycles are
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contained in H2. We restate the previous results in a proposition.

Proposition 4 (Behaviour of limit cycles and Global Stability of E∗). When

C < 1, E∗ is an equilibrium of (5.2). Any limit cycle, if it exists, should be

entirely in H2, and if (p+1)2 > qAλ−1(p+A), then E∗ is globally asymptotically

stable.

Recalling that C = c/K, we can summarize our results about the equilibria

in this section with the following theorem.

Theorem 6 (Global Stability). System (5.2) always has at least two equilibria.

• If C < 1 (equivalently c < K), the equilibria are E0 = (1, 0, 0) which

is unstable and E∗ = (S∗, I∗, B∗) which is locally asymptotically stable.

Furthermore, if (p+ 1)2 > qAλ−1(p+A), then E∗ is globally asymptoti-

cally stable.

• If C ≥ 1 (equivalently c ≥ K), the equilibria are E0 = (1, 0, 0) which is

unstable, E1 = (1, 0, 1) which is locally asymptotically stable and up to

two internal equilibria E+
1,2.

Further, if ζ < f ′(C) only E0 and E1 exist, and E1 is globally asymptot-

ically stable.

Note that if the MID is greater than K and ζ is low enough to satisfy

condition (5.4), the disease-free equilibrium E1 is globally asymptotically sta-

ble. As nondimensional ζ and the shedding parameter ξ are proportional, this

means that with a nonzero but sufficiently small shedding rate, the disease-

free equilibrium is inevitable. This is in contrast to the case where the MID

is less than the carrying capacity of bacteria, and the bacteria exist at levels
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which naturally cause new infections. In this case, if other parameters agree,

the endemic steady state E∗ is globally asymptotically stable for any nonzero

shedding rate ξ. Thus if efforts are taken to decrease K and ξ in conjunction,

a disease-free globally stable steady state can be attained with a shedding rate

that could otherwise lead to an endemic steady state.

Remark 5. Biological interpretation of the sufficient condition for

globally asymptotic stability of E∗: In terms of the original parameters,

(p + 1)2 > qAλ−1(p + A) could be written as N <
μH(δ + 2μ)2

ξa(μ+ δ + a)
:= Nc.

Nc is a critical population level below which the endemic equilibrium E∗ is

globally attracting. If we consider towns with similar population densities and

sanitation infrastructures, and with their pathogen carrying capacity in the

reservoir over their rescaled MID, a small population size is associated with

a small town, which results in a strong connection between individuals and

pathogens. Hence, a small population size leads to the robust and persistent

disease prevalence in the case that the pathogen carrying capacity is greater

than the MID. Note that the given inequality is a sufficient but not necessary

condition, thus a large city (N ≥ Nc) with some restrictions may also lead

to the globally attracting E∗. With the limitation of existing mathematical

techniques, the sufficient condition is the best condition we can obtain for the

global stability of the internal equilibrium. Using the reasonable parameter

values, Nc can reach up to 2.5439× 106.
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5.4 Numerical simulations

Stability was discussed nondimensionally previously but numerical examples

are presented in the following diagrams in dimensional parameters. In Fig-

ure 5.8, we see that if c ≥ K (C > 1) with a small ξ value, meaning the

minimum infectious dose is larger than the carrying capacity, then there is no

endemic equilibrium. Thus the system moves towards the disease free steady

state. Intuitively, this means that it takes more than the ‘natural level’ of

bacterial density in the water supply to make anyone sick and shedding is low,

so no one becomes sick.
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Figure 5.8: Phase portrait for c > K, showing trajectories with different initial
conditions converging to the disease free steady state E1. Parameter values used are
δ = 0.1, K = 1× 106, a = 0.1, H = 1× 108, c = 2× 106, N = 1× 106, r = 0.3704,
μ = 5× 10−5, ξ = 10.
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Figure 5.9: Phase portrait for c < K, showing many different trajectories ap-
proaching the endemic steady state, marked with a solid circle. Parameter values
used are δ = 9× 10−4, K = 1× 106, a = 0.1, H = 1× 108, c = 8× 105, N = 1× 106,
r = 0.003, μ = 5× 10−4, ξ = 0.1.

Figure 5.9 demonstrates that when the minimum infectious dose is less

than the carrying capacity, c < K, then the internal endemic steady state

is attracting. In it, a wide range of initial conditions all follow a similar

path towards the endemic steady state after each trajectory first experiences

an outbreak. This means that if the MID is small enough that a normal

bacterial density can make any individual sick, then the disease will persist in

the community if only at a low level. As mentioned, a strong epidemic always

occurs with a high outbreak peak.
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5.5 Local sensitivity analysis

In this section, we compute and analyze the normalized forward sensitivity

indices of different quantities to the parameters of the system by computing

S.I. =
∂x∗

∂p

p

x∗ (5.6)

where x∗ is the quantity being considered, and p is some parameter which x∗

depends upon. Sensitivity indices can be positive or negative which indicates

the nature of the relationship, and it is the magnitude that ranks the strength

of the relationship as compared to the other parameters. Since we don’t have

an explicit formula for the quantities we are interested in (outbreak peak,

outbreak peak time and the endemic steady state), we estimate ∂x∗
∂p

using the

central difference approximation:

∂x∗

∂p
=

x∗(p+Δp)− x∗(p−Δp)

2Δp
+O(Δp2).

We choose Δp = 1% of p.

plugging all these in (5.6) we get

S.I =
x∗(1.01p)− x∗(0.99p)

0.02x∗

5.5.1 Sensitivity of the outbreak peak

The sensitivity indices of the amplitude of the outbreak peak show how the

first epidemic depends on the parameters as seen in Table 7.2. This table has

three columns because there is a noticeable difference in the sensitivity indices,
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when the bacteria started out above or below the carrying capacity.

Parameter Sensitivity B(0)< K Sensitivity B(0)>K

δ -1.2024 -0.5296 Recovery rate

K 1.8773 1.1334 Bacterial carrying capacity

a 1.1980 0.9822 Contact rate

H -1.1905 -0.9623 Half Saturation constant

c -0.9324 -0.4196 Minimum Infectious Dose

r -0.2305 -0.5267 Logistic bacterial growth

μ -5.5e-004 -2.5830 e-004 Human birth/death

ξ 0.2352 0.0636 Shedding rate

Table 5.3: The sensitivity of the magnitude of the peak outbreak to the parameters.
Two columns for the initial density of bacteria below or above its carrying capacity
K.

The carrying capacity K has the strongest relationship to the magnitude of

the outbreak peak. The positive value tells us that a higher carrying capacity

would lead to a more severe epidemic. In contrast to the shedding rate ξ which

has among the lowest of sensitivity indices, K would thus be an important

parameter to control in order to reduce the harm of an outbreak.

A negative relationship between r and the peak magnitude might seem

counter intuitive, but the per capita growth rate of bacteria at any given time

is r
(
1− B

K

)
and during the peak the bacteria exist over their natural carrying

capacity, so the growth rate would be negative and thus there is a negative

relationship between r and the peak amplitude.

The sensitivity index with respect to the human birth/death rate μ is very

low in comparison to all the others. This makes sense, because the initial
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peak of an epidemic occurs relatively quickly after the introduction of sick

people or introduction of high levels of bacteria and the birth and death of

new susceptibles would not be on the same time scale.

A negative relationship between the minimum infectious dose (MID) c and

peak amplitude is consistent with our understanding of the disease dynamics,

because a larger MID means it would take a higher bacterial density to cause

any infections at all. Thus a higher MID would mean less infections and a

smaller outbreak peak.

The recovery rate δ has a strong negative relationship to the peak outbreak

level as a higher δ leads to few infectives by definition.

5.5.2 Sensitivity of the outbreak peak time

Parameter Sensitivity B(0)< K Sensitivity B(0)>K

δ 0.0772 -6.7542 Recovery Rate

K 0.4392 4.8433 Bacterial carrying capacity

a -0.2177 -0.3361 Contact Rate

H 0.2159 0.3264 Half Saturation constant

c 0.9319 0.0928 Minimum Infectious Dose

r -0.6327 3.9216 Logistic Bacterial growth

μ 3.5491e-005 4.3194e-005 Human birth/death

ξ -0.2269 -0.1425 Shedding rate

Table 5.4: The sensitivity of the time of the outbreak maximum to the parameters.

Once again we see from Table 7.3 that the carrying capacity K has a large

influence on the dynamics of the system. It has one of the largest sensitivity
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indices, being many times greater than that of the shedding rate ξ. This

suggests that K is a more important quantity to control to prevent outbreaks.

The positive relationship means a smaller carrying capacity would lead to

a quicker outbreak as well as a smaller one as we saw in the last section.

Noticeable is the lack of effect of μ, as with the amplitude of the peak. It has

such a negligible effect for the same reasons as outlined previously.

The relationship between contact rate a and the time of the maximum

outbreak is a negative relationship, because a higher contact rate causes more

new infections and so the timing of the maximum would be attained earlier

than otherwise.

The recovery rate δ is interesting because its effect changes sign as well as

magnitude considerably with different values of B(0) in relation to carrying

capacity. When B(0) > K the effect of δ is greatest and negative. A higher

value of δ would mean individuals would be infected, and thus infectious, for

less time, so the outbreak should not be as severe and would occur earlier than

otherwise. As the magnitude of δ is so small when it is positive, the positive

relationship does not yield insight into the relationship of outbreak time and

recovery rate.

The per capita growth rate is r
(
1− B

K

)
and so when B > K this growth

rate is negative. If B(0) < K then the growth rate will be positive in the

beginning of the outbreak, so a larger r would mean a higher growth rate,

and thus the epidemic would peak earlier. This is supported by the negative

relationship with r and peak time when B(0) < K. If however B(0) > K, the

per capita growth rate will be negative from the start, and as B will remain

above K for all time, the growth rate will always be negative. So a larger r
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value would mean slower growth, and the epidemic wave would take longer to

reach a maximum. This is supported by the strong positive relationship of r

and peak time when B(0) > K as can be seen in Table 7.3.

5.5.3 Sensitivity of the endemic steady state

Parameter Sensitivity of S∗ Sensitivity of I∗ Sensitivity of B∗

δ 0.0321 -0.9453 -0.0780 Recovery

Rate

K -1.9877 -0.1036 1.0666 Bacterial car-

rying capac-

ity

a -1.0314 -0.0611 0.0402 Contact Rate

H 1.0260 0.0606 -0.0399 Half Satura-

tion constant

c 0.9932 0.0225 0.0014 Minimum In-

fectious Dose

r 0.0323 -0.0329 0.0474 Logistic Bac-

terial growth

μ 0.8472 0.8177 0.0811 Human

birth/death

ξ -0.0323 0.0123 -0.0179 Shedding rate

Table 5.5: The sensitivity of the components of the endemic equilibrium.

We can look at the sensitivity of one of the interior equilibria E∗ with respect

to the parameters when E∗ exists. Here we only look at B(0) < K as the other
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case has similar sensitivity results, and we assume the other endemic steady

states would yield similar results.

The final size of the susceptible population is most sensitive to the carrying

capacity K and contact rate a, with a negative relationship in both cases. This

is because a higher contact rate causes more infections and a higher carrying

capacity causes more bacteria which indirectly leads to more infections. A

higher shedding rate would cause more infections which is confirmed with the

negative relationship between S∗ and ξ. But S∗ is many times less sensitive

to ξ than to K which again points to K as the more important parameter to

focus on in disease control. The minimal infectious dose (MID) c is nearly as

sensitive as the contact rate, but has a positive relationship as a higher MID

would lead to fewer infections and a higher S∗. There is a weak relationship

with δ but as our model does not allow for reinfection, this accounts for the

small magnitude of the sensitivity.

The endemic level of infective individuals is most sensitive to the recovery

rate δ and the birth/death rate μ. The strong negative relationship with δ is

because recovery is the main way that infectives leave the infected component

of our model. The relationship with μ is complicated in that the birth rate

and death rate are the same in our model. So a larger μ means more deaths

and thus more infectives leaving the infected component, but also more newly

born susceptibles to possibly enter the infected class. The positive relationship

means that the positive effect of births is more important to I∗ than the

negative effect of deaths. The shedding rate ξ has a weak relationship with I∗

but the positive relationship is as expected because a larger ξ leads to more

infectives and a higher I∗ value.

158



The endemic level of the bacterial population is most sensitive to the bac-

terial carrying capacity K and has a positive relationship to it as expected.

A higher K means more bacteria and as B∗ > K (equivalent to B∗ > 1 in

nondimensional form) the relationship is positive. The shedding rate has a

small sensitivity which suggests that the logistic part of dB
dt

is more important

to the endemic level of B∗. As such the relationship with the MID is also

minimal. The strong relationship with K and weak one with ξ also again sug-

gests the important of K instead of ξ as a control measure. This could mean,

for example, that monitoring the bacterial levels in water reservoirs is more

important than simply controlling or restricting access to the water supply to

avoid contamination.

5.6 Discussion

Cholera has the potential to quickly spread over large areas and can cause

many deaths. Thus a full understanding of the dynamics is essential to ef-

fectively respond to outbreaks. With the continuing outbreaks there is the

opportunity for mathematical modeling to help decipher these dynamics and

provide suggestions for governments and health care bodies in effective inter-

vention. An estimate for the basic reproductive number in regions affected

by cholera would give important information for controlling future outbreaks

and for creating surveillance programs. The potential for amplification in en-

vironmental reservoirs and the indirect transmission of the disease make this

a nontrivial task. Here we have shown that with C = c/K ≥ 1, the disease

free equilibrium can be globally asymptotically stable. However as bacteria
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are existing at a nonzero level, if environmental factors change and alter the

carrying capacity enough to make C < 1, then there can be outbreaks. If

other parameters are in agreement, an endemic equilibrium is globally asymp-

totically stable. This change to carrying capacity could be seasonally caused

as with different amounts of rain in areas like Bangladesh, or it could be a

more permanent change due to natural disasters as in Haiti.

An important thing to note about the relationship between c and K is that

if c < K, i.e. the minimum infectious dose is less than the carrying capacity,

then the unique endemic equilibrium can be globally stable. It is globally

stable for any nonzero value of the shedding parameter ξ. If however, the

minimum infectious dose is greater than the natural carrying capacity, if ξ is

low enough, causing the nondimensional ζ to be sufficiently small, then the

disease free equilibria becomes globally stable. This highlights the importance

of being aware of the value of the natural carrying capacity, because decreasing

the shedding rate can eliminate the possibility of an endemic steady state, if the

MID is larger than the carrying capacity. If the MID was less than the carrying

capacity, the unique endemic steady state could be globally asymptotically

stable for the same shedding rate. So ideally, efforts need to be taken to

reduce both shedding, and in conjunction with this, the bacterial levels in the

reservoir.

Our sensitivity analysis suggests that control measures influencing the car-

rying capacity K will be more effective in minimizing the epidemic than those

concentrating on influencing the shedding rate. While improving the sanita-

tion infrastructure of an area is the obvious step to take to control outbreaks,

monitoring and controlling the bacterial levels in the water itself is more im-

160



portant. Improving the infrastructure would surely help control the bacterial

levels in the water by decreasing the amount of human contamination, but

V.cholerae exist independently of humans and so other factors that influence

the natural levels of bacteria in the water need to be considered as well in

intervention strategies. As mentioned above, controlling both parameters is

important and likely to be the most effective, but the carrying capacity K is

the more influential of the two on its own.

Our analysis accounts for all the situations experienced all over the world.

Should the average health and immune system capabilities of the population be

sufficient to tolerate bacterially contaminated water, and the shedding rate be

sufficiently small, the human and bacteria populations will exist independently

of each other. This case reflects both interepidemic periods where cholera out-

breaks are common, and also the situation in regions where cholera outbreaks

are not experienced. Should however the carrying capacity be sufficiently high

(enough to overwhelm the average immune response of the human population),

an endemic steady state will exist that can be globally stable. If this situation

is only temporary, the iSIR model can thus account for isolated outbreaks of

cholera, and if it persists, the model is suitable for regions where cholera cases

are constant occurrences.

The original paper of the iSIR model [133] provided some preliminary math-

ematical results. This analysis adds on to that work, and demonstrates the

local stability for most equilibria analytically. In addition, we present the

results of dissipativity and determine conditions for global stability.

Further steps to take with this model would be to refine the condition on the

global stability of the endemic equilibrium. The condition imposed might not
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be required, and a biological explanation is in order. Also, a seasonal carrying

capacity could be included to simulate the cycles of cholera which occur in

regions like Bangladesh. Further altering the model to include bacteriophage

is another possibility, with the idea being that the cycles observed in the

human population are caused by cycles in the micro scale of bacteria and

bacteriophage as has been suggested by Faruque et al. [129] and others.
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Chapter 6

Dynamics of a cholera

transmission model with

immunological threshold and

natural phage control in

reservoir 3

Abstract

Cholera remains epidemic and endemic in the world, causing thousands of

deaths annually in locations lacking adequate sanitation and water infrastruc-

3This Chapter has been published. Reference: Jude D. Kong, William Davis, and Hao
Wang. “Dynamics of a cholera transmission model with immunological threshold and nat-
ural phage control in reservoir.” Bulletin of Mathematical Biology, Vol. 76: 2025-2051
(2014).
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ture. Yet, its dynamics are still not fully understood. In this paper, we simplify

and improve Jensen et al.’s model (PNAS, 2006) by incorporating a Minimum

Infection Dose (MID) into the incidence term. We perform local stability anal-

ysis and provide bifurcation diagrams of the bacterial carrying capacity with

or without shedding. Choosing parameters such that the endemic or epidemic

equilibrium is unstable (as it is the case in reality), we observe numerically

that for the bacterial carrying capacity (K) less than the MID (c), oscillating

trajectories exist only in the microbial scale whereas for K > c, they exist in

both the microbial and population scales. In both cases, increasing pathogen

shed rate ξ increases the amplitude of the trajectories and the period of the

trajectories for those that are periodic. Our findings highlight the importance

of the relationship among the shedding rates, K , MID, the maximum bacte-

rial growth rate (r), and the features of the disease outbreak. In addition, we

identified a region in the parameter space of our model that leads to chaotic be-

haviour. This could be used to explain the irregularity in the seasonal patterns

of outbreaks amongst different countries, especially if the positive relationship

between bacterial proliferation and temperature is considered. Keywords:

cholera; indirect transmission; immunological threshold; phage; stability anal-

ysis.

6.1 Introduction

Cholera is a disease of the intestinal tract that causes severe diarrhoea, leading

to dehydration which if left untreated can cause death. It is caused by the

bacteria Vibrio cholerae and is treatable if caught within 1-2 days of symptoms
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first appearing. In places with adequate health care and access to antibiotics,

cholera is not much of a problem. However, in countries where such health

services are lacking in a permanent sense or because of natural disasters reduc-

ing their availability, cholera outbreaks are still a concern. Dhaka, the capital

of Bangladesh, for example has two outbreaks of cholera per year [131] that

occur with the changes in seasons and the amount of rainfall, both of which

affect the quality of the water supply.

Despite being studied for more than 100 years by the likes of English physi-

cian John Snow in the mid 1800’s [139] and many others, the transmission

dynamics of the disease are not fully understood. The role of blue-green algae,

which is present in the water supplies of countries like Bangladesh, has been

suggested by some [131] as a reservoir that the bacteria can exist in during

inter-epidemic times. However this does not explain its natural cycles com-

pletely. One problem in understanding the dynamics is that V. cholerae is

always found in lower levels than predicted, leading to possible explanations

that V. cholerae can revert from a culturable form to a viable but not cultur-

able form within the human body [126]. Experiments show that V. cholerae

becomes many times more infectious for a short period of time once it has

passed through the human digestive tract [130]. A more complete under-

standing of how exactly V. cholerae is transmitted through populations will

certainly help to improve the control of outbreaks in the future for regions

where it is an issue.

The contributions from mathematical modelling indicate that mathemat-

ical modelling is a promising way to look into the nature of the cholera dy-

namics. Many mathematical differential equation models have been proposed.
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Among these, the main ones that make use of ordinary differential equations

are those built upon the Cappasso-Fontona model [123] and the Codeço model

[125]. Codeço model [125] is considered to be the first modern cholera model.

The author divided the human population into three compartments; Suscepti-

ble, Infected and Recovered compartments. The recovered compartment was

not started explicitly, as the population was assumed to be constant. The

author equally assumed that there is no disease induced mortality. He rep-

resented the acquatic reservoir very simply with a linear growth term and

linear shedding contribution. This was because the ecological dynamics of

V.cholerae were not well understood at the time (they are still not completely

understood). The oscillations in this system die out over time, so in order

to simulate the periodic behaviour of outbreaks observed in some endemic

areas, periodic contact rates, shedding rates and net growth rates of bacte-

ria were also included. Hartley et al. [130] incorporated a hyperinfectious

route of transmission to the Codeço model and Joh et al. [133], Tian et al.

[140], Jensen et al. [132] and Mukanvire et al. [135] have further built on and

branched off from these models.

Aimed at taking into account the role of bacteriophage which has been

suggested by experimentalists as important, Jensen et al. [132] modified the

Codeço model to include a phage compartment P, and dividing infectives into

bacteria and phage infected and phage infected individuals. Bacteria are as-

sumed to experience logistic growth with carrying capacity, and predation by

phage occurs via a Holling I response. The infection term is a Holling III

functional response. The sigmoidal shape is intended to capture the low in-

fectivity of low levels of bacteria, but there are still infections at very small
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levels which could overestimate the number of infections in the long run. The

focus of this model was to determine the ability of phage to end outbreaks or

indirectly cause outbreaks by being reduced in number. Both of these abilities

were demonstrated in the analysis. However, they did not examine the role, or

existence, of limit cycles caused by the predator-prey like relationship of phage

and bacteria, which is something we will pay attention to in the present and

absence of human shedding. In particular, we will show that cycles observed

in the human population (macro scale) are caused by cycles in the micro scale

of bacteria and bacteriophage as has been suggested by Faruque et al. [129]

and others. Jensen et al. [132] also failed to take into account the fact that

bacteria have to enter the human body in higher concentrations to overwhelm

the natural immune response [136] (existence of a Minimum Infection Dose for

bacteria), something that was first considered in modelling by Joh et al. [133].

We improve this model by incorporating a Minimum Infection Dose (MID)

into the incidence term. This infection term is a piecewise continuous func-

tion which is zero below the minimum infectious dose (MID) threshold and a

Holling II response curve above the threshold. Similar to Jensen et al. [132]

we also allow bacteria to exist naturally under logistic growth. With these

adjustments and a few others made to the model, we determine the invariant

domain, carry out local stability analysis and locate limit cycles, with or with-

out human shedding, and show numerically that by choosing parameters such

that the endemic or epidemic equilibrium is unstable (as it is the case in real-

ity), for the bacteria carrying capacity (K) less than the MID (c), oscillating

trajectories exist only in the microbial scale whereas for K > c , they exist in

both the microbial and population scales, and that in both cases, increasing
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pathogen shed rate ξ increases the amplitude of the trajectories and the pe-

riod of the trajectories for those that are periodic. Further, in this paper, we

demonstrate the existence of a chaotic region in the parameter space, which

could account for the different nature of outbreaks observed around the world.

6.2 Model formulation

Bacteria and bacteriophage exist in a predator-prey relationship. We capture

this interaction by using a Holling II predation term γ B
K1+B

P , where γ is the

maximum predation rate, B and P represent bacteria and phage densities

respectively, and K1 is the half saturation constant of predation (the bacterial

level at which predation occurs at half of the maximum rate). We assume that

the bacterial population experiences logistic growth in the absence of predation

and human influence, with carrying capacity K and maximum growth rate

r. As in Jensen et al.’s model [132] and Codeço’s model [125], the human

population is assumed to be constant and there is assumed to be no disease-

induced mortality. The lack of death due to infection as was the case in

Dhaka during the 2004 outbreak , where all severe cases were treated (see

[132] and reference therein), almost all endemic/epidemic regions nowadays

have hospitals that provide the right treatment. No death is inevitable with

cholera if the right treatment is provided. This motivates the following model,
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which assumes no infection derived immunity for simplicity:

dS

dt
=− α(B)S + μI,

dI

dt
=α(B)S − μI, (1.1)

dB

dt
=rB

(
1− B

K

)
− γ

B

K1 +B
P + ξI,

dP

dt
=βγ

B

K1 +B
P − δP + φξI.

The incidence term we use is α(B)S where α(B) is the bacterial density de-

pendent component. The ‘indirect’ part of the incidence term α(B) is defined

by

α(B) =

⎧⎪⎨
⎪⎩

0, B < c;

a(B−c)
(B−c)+H

, B ≥ c.
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Parameter Values Description Units

r 0.3-14.3 Maximum per capita

pathogen growth efficiency

day -1

K 105 − 107 Pathogen carrying capacity cell liter -1

H 106 − 108 Half-saturation pathogen

density

cell liter -1

a 0.1 Maximum rate of infection day -1

ξ 0- 100 Pathogen shed rate cell liter -1 day -1

μ 0.1 Human recovery rate day -1

N 106 Total Population persons

c 105 − 107 MID cell liter -1

β 80-100 Phage burst size virions day -1

γ 0− 0.025 Maximum per capita phage

absorption rate

cell virion -1 day -1

δ 0.5-7.9 Phage death rate virions day -1

φ 10−6 − 1 Mean phage shed rate virions cell -1

K1 < K Half saturation bacteria

predation density

cell liter -1

Table 6.1: Parameter values expanded from Jensen et al. [132] and Cash et al.
[124].

Unlike in larger scale predator prey dynamics, where β would be a measure

of the conversion rate of prey into predators, often less than unity, β here

represents a ‘burst size’, as each infected bacterial cell will give rise to many

new phage cells. Human contamination of the water supply through infected
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feces contributes to both bacteria and phage levels and is called ‘shedding’.

Bacteria and phage shedding rates need not be the same so the rate for bacteria

is ξ and for phage it is φξ where φ is some constant. In the absence of predators

and humans, bacteria will exist at their carrying capacity K. We assume

that phage and bacteria can live naturally without human interference, as in

interepidemic times, and so it is assumed that βγ > δ. If this is not so, phage

would die out in the absence of human shedding. This maximum predation rate

γ is difficult to measure, and for numerical solutions is chosen to satisfy this

inequality. The half saturation constant for the predation term, K1, was also

estimated, and was assumed to be less than the natural carrying capacity K

so that predation does not always occur near the maximal rate. For numerical

simulations, parameters are taken from the literature and the ranges are given

in Table 6.1.

6.3 Forward invariance

We would like to define a forwardly invariant set in which solutions of (1.1) will

be bounded. From the first two equations of (1.1) we see that Ṡ(S = 0) = μI

but as S + I = N , we can write Ṡ(S = 0) = μN > 0. Thus S(t) > 0 for t > 0.

Even though there is no birth or death in this system, if the entire population

were to be infected then there would be people recovering and moving back

into the susceptible category.

Similarly, İ(I = 0) = α(B)S ≥ 0 as we just saw that S(t) > 0 for t > 0

and α(B) ≥ 0 by definition. As S > 0 and I ≥ 0 then as there are only two

compartments for humans, S ≤ N and I < N .
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The BP system is more complicated as for upper bounds, but note that Ḃ(B =

0) = ξI thus B(t) ≥ 0. We have that Ḃ < rB
(
1− B

K

)
+ ξN and so we can

define

Bmax =
rK +K

√
r2 + 4r

K
ξN

2r
,

where if B(0) ∈ [0, Bmax) then B(t) ∈ [0, Bmax) for t ≥ 0. Lastly, consider

Ṗ (P = 0) = φξI ≥ 0 and so P (t) ≥ 0 for all t > 0. The upper bound of P (t)

requires the following lemma.

Lemma 7. Define positive constants u and v such that ((r+u)β)2K
4rβ

< v. Then

for all values of B the following is true

0 <
r

K
βB2 − ((r + u)β)B + v.

We can now show that B and P are bounded above, although it was already

demonstrated that B is bounded. Consider

d

dt
(βB + P ) < rβB − r

K
B2β − δP + (β + φ)ξN.

By invoking Lemma 7 we see that

d

dt
(βB + P ) < −U(βB + P ) + (β + φ)ξN + v,

where U := min{u, δ}, which implies that βB + P is bounded. Defining
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V := (β + φ)ξN + v we can write

lim sup
t→∞

βB(t) + P (t) ≤ U

V
or βB(t) + P (t) ≤ max

{
βB(0) + P (0),

U

V

}
.

We summarize the above results with a proposition

Proposition 5 (Feasible Region). The set

Γ = {S, I, B, P ≥ 0 : S + I = N, βB(t) + P (t) ≤ U

V
,B < Bmax}

defines a forwardly invariant region of system (1.1), where V := (β+φ)ξN+v

and U := min{u, δ}, with u, v > 0 satisfying ((r+u)β)2K
4rβ

< v .

6.4 Existence and stability of equilibria with

no shedding

6.4.1 Existence of equilibria

In countries with modern sanitational infrastructure human contamination of

the water supply (shedding) is very low; in the ideal case shedding is completely

absent. We can determine the number and stability of steady states of (1.1)

without shedding by substituting ξ = 0 and further noting that as S = N − I
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the first equation is not necessary, leaving us with the following:

dI

dt
=α(B)(N − I)− μI,

dB

dt
=rB

(
1− B

K

)
− γ

B

K1 +B
P, (1.2)

dP

dt
=βγ

B

K1 +B
P − δP.

If the bacteria level is below the minimum infectious dose, then α(B) = 0.

The first equation of (1.2) implies that I∗ = 0 in this case, and so S∗ = N as

well. The second and third equations of (1.2) at steady state become

0 = rB

(
1− B

K

)
− γ

B

K1 +B
P and 0 =

(
βγ

B

K1 +B
− δ

)
P.

The second equation of (1.2) at steady state can be solved for P ; P = r
γK

(K−
B)(K1 + B) =: F1(B), having roots B = K and B = −K1. The solution

B = −K1 is not biologically relevant and also is not within our invariant

region Γ, as defined in the previous section. The other root, B = K, of F1(B)

satisfies α(K) = 0 only if K ≤ c. The third equation at steady state can be

solved as well; either P = 0 or B = B1 :=
δK1

βγ−δ
; with the latter being relevant

only if B1 ≤ c, i.e. α(B1) = 0. To satisfy both equations at once, either

(B,P ) = (0, 0), (K, 0) or (B1, P1), where P1 = F1(B1). Thus when α(B) = 0

there are three possible steady states, all of which are disease free. The simplest

equilibrium point occurs when S = N , I = 0, B = 0 and P = 0. The disease

free, bacteria free and phage free equilibrium E0 = (N, 0, 0, 0) is always an

equilibrium of (1.2) for all parameter values. The disease free, phage free

equilibrium denoted EK = (N, 0, K, 0) is an equilibrium if K ≤ c. Similarly,
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if B1 ≤ c then α(B1) = 0 and the disease free equilibrium E1 = (N, 0, B1, P1)

exists. However, for the positivity of P1, we require that B1 < K. Note that

if B1 = K, then P1 = 0 and E1 is simply EK . The case of equilibria when

α(B) 	= 0 is more complicated, but it can be shown that there are up to two

additional endemic equilibria denoted E∗
1,K = (S∗

1,K , I
∗
1,K , B

∗
1,K , P

∗
1,K) where all

of the entries are strictly positive, making E∗
1,K the only interior equilibria if

they exist. If α(B∗) 	= 0, first note that B∗ > c by definition. Dropping the

asterisk on B, the first equation of (1.2) at equilibrium implies

I∗ = G1(B) := Na
(B − c)

(a+ μ)(B − c) + μH
.

So for each equilibrium value B∗ such that α(B∗) 	= 0, there exists a unique

value I∗ = G1(B
∗). To find B∗ and P ∗, it is of no consequence that I∗ 	= 0

because with ξ = 0, the second and third equations of (1.2) do not contain

terms including I. Thus the nontrivial values of (B,P ) that satisfy the second

and third equations at steady state are the same as before: (B,P ) = (K, 0)

and (B1, P1), but now K > c is required so that α(K) 	= 0 and B1 > c so

that α(B1) 	= 0. For the positivity of P1 it is still necessary that B1 < K.

Summarizing, there are up to two endemic equilibria of (1.2), denoted E∗
K =

(S∗
K , I

∗
K , K, 0) and E∗

1 = (S∗
1 , I

∗
1 , B1, P1), where I

∗
K = G1(K), I∗1 = G1(B1) and

S∗
i = N − I∗i , i = 1, k, with the condition that K > c and c < B1 < K for

E∗
K and E∗

1 to exist respectively. As seen above, if B1 = K this would mean

P1 = 0 and E∗
K = E∗

1 , leaving only one endemic equilibrium.
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6.4.2 Linearization

Due to the threshold in the infection term, linearization yields two cases, one

for B∗ ≤ c, denoted Jac1, and one for B∗ > c, denoted Jac2.

Jac1(I, B, P ) =

⎛
⎜⎜⎜⎜⎝
−μ 0 0

0 r − 2 r
K
B − γK1

(K1+B)2
P −γ B

K1+B

0 βγ aH
(B−c+H)2

P βγ B
K1+B

− δ

⎞
⎟⎟⎟⎟⎠ ,

and

Jac2(I, B, P ) =

⎛
⎜⎜⎜⎜⎝
−α(B)− μ (N − I) aH

(B−c+H)2
0

0 r − 2 r
K
B − γK1

(K1+B)2
P −γ B

K1+B

0 βγ aH
(B−c+H)2

P βγ B
K1+B

− δ

⎞
⎟⎟⎟⎟⎠ .

6.4.3 Stability of the disease free, bacteria free, phage

free equilibrium E0

Corresponding to E0, we have the following eigenvalues λ = −μ,−δ < 0

and r > 0. This means that the disease free, bacteria free and phage free

equilibrium E0, is a saddle node equilibrium with a one dimensional unstable

manifold.

6.4.4 Stability of the disease free, phage free equilib-

rium EK

Corresponding to EK we have the following eigenvalues, λ = −μ,−r, βγ K
K1+K

−
δ. If K < δK1

βγ−δ
= B1 then all eigenvalues are negative and EK is a stable
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equilibrium, but if K > δK1

βγ−δ
= B1 then EK is a saddle node equilibrium with

a one dimensional unstable manifold. Note that B1 < K is required for E1 to

exist, so the existence of E1 and the stability of EK are contrary notions.

6.4.5 Stability of the disease free equilibrium E1

For the Equilibrium point E1 we have the following Jacobian matrix

Jac1(0, B1, P1) =

⎛
⎜⎜⎜⎜⎝
−μ 0 0

0 r − 2 r
K
B1 − γK1

(K1+B1)2
P1 −γ B1

B1+K1

0 βγ K1

(K1+B1)2
P1 0

⎞
⎟⎟⎟⎟⎠ .

The matrix is slightly more complicated, so we will use a lemma from Mc-

Cluskey and van den Driessche [134] with regard to three dimensional matri-

ces.

Lemma 8 (Lemma 3, McCluskey and van den Driessche (2003)). Let A by

an 3 × 3 matrix with real entries. If tr(A), detA and the determinant of the

second additive compound matrix of A, detA[2] are all negative, then all of the

eigenvalues of A have negative real part.

The converse of Lemma 8 is also true, which is apparent if you note that

the eigenvalues of the second additive compound matrix A[2], for a 3×3 matrix

A, are just
∑

λi + λj for i < j with λi being the eigenvalues of A.

Defining J(2, 2) = r − 2 r
K
B1 − γ K1

(K1+B1)2
P1, the second additive compound of
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Jac1 at E1 is

Jac
[2]
1 (0, B1, P1) =

⎛
⎜⎜⎜⎜⎝

−μ+ J(2, 2) −γ B1

B1+K1
0

βγ K1

(K1+B1)2
P1 −μ 0

0 0 J(2, 2)

⎞
⎟⎟⎟⎟⎠ .

The determinant of Jac1(E1) is

det Jac1(E1) = −μγ
B1

B1 +K1

βγ
K1

(K1 +B1)2
P1 < 0,

so it will always satisfy its role in the antecedent of Lemma 8. The trace is

given by

tr(Jac1(0, B1, P1)) = −μ+ J(2, 2).

If

J(2, 2) < 0 ⇒ tr(Jac1) < 0,

J(2, 2) > 0,−μ+ J(2, 2) < 0 ⇒ tr(Jac1) < 0,

J(2, 2) > 0,−μ+ J(2, 2) > 0 ⇒ tr(Jac1) > 0.

Lastly we need to consider the sign of detJac
[2]
1 (E1).

det Jac
[2]
1 (E1) = J(2, 2)

{
[−μ+ J(2, 2)][−μ] +

(
βγ

K1

(K1 +B1)2
P1

)(
γ

B1

B1 +K1

)}
.

We can see that if J(2, 2) < 0, then det Jac
[2]
1 < 0 and if J(2, 2) > 0 but

J(2, 2)−μ < 0 then det Jac
[2]
1 > 0. If J(2, 2) > 0 and J(2, 2)−μ > 0 then the
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antecedent of Lemma 8 will not be satisfied as tr(Jac1(0, B1, P1)) > 0.Thus,

because det Jac1(0, B1, P1) < 0 all the time, by Lemma 8 we have that

E1 is stable ⇐⇒ J(2, 2) < 0

⇐⇒ K <
βγ + δ

βγ − δ
K1 = B1 + βγ

K1

βγ − δ

Define B3 = B1 + βγ K1

βγ−δ
and note that as we assume βγ > δ it follows that

B3 > 2B1.

6.4.6 Stability of the phage free endemic equilibrium

E∗
K

Considering the equilibrium point E∗
K , we have that

Jac
[2]
2 (E∗

K) =

⎛
⎜⎜⎜⎜⎝
−α(K)− μ− r −γ K

K1+K
0

0 −α(K)− μ+
(
βγ K

K+K1
− δ

)
(N − I∗) aH

(K−c+H)2

0 0 −r +
(
βγ K

K+K1
− δ

)

⎞
⎟⎟⎟⎟⎠ .

tr(Jac2(E
∗
K)) = −α(K)− μ+

(
βγ

K

K +K1

− δ

)

with

det Jac2(E
∗
K) =[−α(K)− μ][−r]

[
βγ

K

K1 +K
− δ

]

and

det Jac
[2]
2 (E∗

K) =[−α(K)− μ− r]

[
−α(K)− μ+ βγ

K

K +K1

− δ

] [
−r + βγ

K

K1 +K
− δ

]
.
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Common to all three expressions is that ifK < B1, then they are each negative.

And if K > B1 then det Jac2 at E∗
K is positive. Hence E∗

K is stable ⇐⇒
K < B1. Note that the stability condition of E∗

K is contrary to the existence

condition for E∗
1 and so there can only ever be at most one locally stable

endemic equilibrium point at a time.

6.4.7 Stability of the interior endemic equilibrium E∗
1

Lastly considering the local stability of interior endemic equilibrium E∗
1 , we

have that

Jac
[2]
2 (I∗1 , B1, P1) =

⎛
⎜⎜⎜⎜⎝
−α(B1)− μ+ J(2, 2) −γ B1

K1+B1
0

βγ K1

(K1+B1)2
P1 −α(B1)− μ (N − I∗) aH

(B1−c+H)2

0 0 J(2, 2)

⎞
⎟⎟⎟⎟⎠ .

tr(Jac2(I
∗
1 , B1, P1)) = −α(B1)− μ+ J(2, 2)

and

det Jac2(I
∗
1 , B1, P1) =[−α(B1)− μ]γ

B1

B1 +K1

βγ
K1

(K1 +B1)2
P1 < 0.

So the determinant is always negative, and the trace can be negative if J(2, 2) <

0. We now consider the sign of the determinant of Jac
[2]
2 evaluate at (I∗1 , B1, P1).

det Jac
[2]
2 (I∗1 , B1, P1) = J(2, 2)

{
[−α(B1)−μ+J(2, 2)][−α(B1)−μ]+βγ

K1

(K1 +B1)2
P1γ

B1

B1 +K1

}

which appears complicated but the important part is that if J(2, 2) < 0, then
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it will be negative. If 0 < J(2, 2) < α(B1) + μ implies that det Jac
[2]
2 (E∗

1) > 0,

and if J(2, 2) > α(B1)+μ implies that both det Jac
[2]
2 (E∗

1) > 0 and tr(E1) > 0.

As seen previously, J(2, 2) < 0 is equivalent to B1 < B3, thus

E∗
1 is stable ⇐⇒ B1 < B3 = B1 +

βγ

βγ − δ
.

6.4.8 Local stability summary, bifurcation diagrams and

numerical simulations

Noting that there are at most 2 equilibria that exist at any one time other

than E0, and writing ‘un’ for locally unstable and ‘s’ for locally asymptot-

ically stable, we can summarize the preceding local stability results with a

proposition.

Proposition 6 (Local stability of the non-shedding case). E0 always exists

and is locally stable for all parameter values.
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If c < K and c ≥ B1

B3 ≤ K implies E1(un) and E∗
K(un) exist,

K < B3 implies E1(s) and E∗
K(un) exist

and c < B1

K < B1 implies E∗
K(s) exists

B1 < K < B3 implies E∗
K(un) and E∗

1(s) exist

B3 ≤ K implies E∗
K(un) and E∗

1(un) exist.

If c ≥ K and c ≥ B1

K < B1 implies EK(s) exists

B1 < K < B3 implies EK(un) and E1(s) exist

B3 ≤ K implies EK(un) and E1(un) exist

and c < B1

as B1 < B3 then EK(s) exists.
The results of Proposition 6 are perhaps better understood as a bifurcation

diagram. Figure 6.1 demonstrates the changes in stability as the carrying

capacity K is varied. The first diagram is for the case when the minimum

infectious dose c is greater than B1, which means that only E1 can exist, and

not E∗
1 . The lower figure has c < B1, which reverses the situation.
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Figure 6.1: Bifurcation diagrams when ξ = 0 and there is no shedding. Limit
cycles exist when E1 and E∗

1 undergo Hopf bifurcations, and are denoted L.C.

.

If K = B3, implying J(2, 2) = 0, then computing det[λI − Jac1(E1)] we

find that,

det(λI − Jac1(E1)) = (λ+ α(B1) + μ)

{
λ2 + βγ

K1

(B1 +K1)2
P1

γB1

B1 +K1

}

which has one real negative and two purely imaginary roots. We conclude

that E1 undergoes a Hopf bifurcation as K passes B1, and E1 changes from

locally stable to unstable. In Figure 6.2 we demonstrate the existence of limit

cycles occurring as a result of the unstable E1. The stability conditions for

the endemic equilibrium E∗
1 are the same as for E1 and it also undergoes a

Hopf bifurcation when it exists and K increases past B3. The only difference

in the calculation of the eigenvalues of Jac2(E
∗
1) is that the second entry

in Jac2 is nonzero, but as ξ = 0 the zeros in the first column reduce the

calculation of the eigenvalues of Jac2(E
∗
1) to that shown above. When E1 or

E∗
1 was unstable and the carrying capacity K was less than the MID ( denoted
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c), cycles were observed numerically in the bacteria-phage system (BP) but

not the susceptible-infected (SI) system. If K was sufficiently larger than c,

implying that the MID was at a level such that bacteria at carrying capacity

would cause infections, the cycles existed in both the SI and BP systems

with the infected population peaking 4 days after and the phage population

8 days after in Figure 6.2. While these cycles are far too short to match

real world situations, as the infected class peaks occurred after the bacteria

class, and because with shedding at zero the BP system influences the SI

system unidirectionally, their existence does support the idea that cycles that

naturally occur are bottom-up and not top-down in cause. When shedding

is included, the cycles lengthen to relevant levels as we shall see in the next

section.
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Figure 6.2: Cycles in Phage, Bacteria and Infected populations. The Bacteria
peak ends first, followed by the Infected 4 days later and Phage 8 days later. The
parameters are r = 3,K = 7.3e6, γ = 0.02,K1 = 1.6e6, β = 80, δ = 1, ξ = 0, a =
0.1, c = 7.1e6, μ = 0.1 and H = 1e6.

6.5 Existence and stability of equilibria with

shedding

6.5.1 Existence of equilibria

The complete absence of human contamination of the water supply is the ideal,

but it is certainly not the reality anywhere and particularly not in places where

the disease is endemic. Noting that the first equation of (1.1) is not necessary
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as S + I = N , we can rewrite it as follows:

dI

dt
=α(B)(N − I)− μI,

dB

dt
=rB

(
1− B

K

)
− γ

B

K1 +B
P + ξI, (1.3)

dP

dt
=βγ

B

K1 +B
P − δP + φξI.

If α(B) = 0, we will have the same endemic equilibria E0 = (N, 0, 0, 0), EK =

(N, 0, K, 0) and E1 = (N, 0, B1, P1) as before, with the same conditions.

If α(B) 	= 0 at steady state, then from the first equation of (1.3), we have

that I∗ = G1(B
∗) = Na(B∗−c)

(a+μ)(B∗−c)+μH
, and from the third equation we have

that P ∗ = −φξI∗

βγ B∗
K1+B∗−δ

= −φξG1(B∗)(K1+B∗)
βγB∗−δ(K1+B∗) . This expression for P ∗ provides a

condition for B∗ as the denominator must be strictly negative in order to have

a well defined and positive value for P ∗. That is B∗ < K1δ
βγ−δ

= B1. Solving the

second equation of (1.3) at equilibrium for B∗ assuming that α(B) 	= 0, will

then possibly lead to endemic equilibria E∗ . Dropping the asterisks on B∗ for

convenience, the second equation at steady state becomes

0 = rB

(
1− B

K

)
+ ξI∗ − γ

B

K1 +B
P ∗ = F (B) +G(B) (1.4)

where

F (B) :=rB

(
1− B

K

)
[(a+ μ)(B − c) + μH][(βγ − δ)B − δK1)]

G(B) :=Naξ[γ(φ+ β)B − δK1 − δB](B − c).
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Note that F (B) is a quartic with roots 0, K, B2 := c− μH
a+μ

and B1 which was

defined previously as B1 = δK1

βγ−δ
, that opens downwards. The three roots of

0, B1 and K are nonnegative, but B2 could be negative or zero with realistic

parameters. To solve 0 = F (B) + G(B) it suffices to find the intersections of

F (B) and −G(B). As such note that −G(B) is a downward opening parabola,

with roots c and b1 :=
δK1

γ(φ+β)−δ
.

The roots of the two functions have some obvious relationships which limit

the number of possibilities we need to consider when looking for points where

the two functions intersect. Consider b1 and B1 which are clearly related. We

assume βγ−δ > 0 and as φ > 0, being part of the shedding term for the phage

population φξ, it is clear that 0 < b1 < B1. Also B2 < c as all parameter values

are positive. Previously we found that c < B∗ < B1 to ensure P ∗ > 0 and

α(B∗) > 0, so this implies c < B1 is a condition for any B∗ to exist.

Between the third and fourth roots of F , we see that F (B) > 0, whatever

those roots may be. If the largest root is B1, then we find a problem if c is the

next largest of {b1, c,K,B1, B2}. As −G(c) = 0 with −G(B) < 0 for B ≥ c,

and F (c) > 0, then clearly no intersections can occur until B > B1 when

F (B) is no longer nonnegative. Any such intersection would be inadmissible

as B∗ > B1 for that B
∗. Also, any intersections between F and −G with B < c

are also inadmissible as we require B∗ > c. Hence, if c < B1 and {c, B1} are

the largest of {b1, c,K,B1, B2} then there will be no endemic equilibria.
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Case Subcase Ordering

Ia)

0 < B2 < B1 < K i)B2 < b1 < B1 B2 < b1 < c < B1

B2 < c < b1 < B1

ii)0 < b1 < B2 b1 < B2 < c < B1

Ib)

0 < B2 < K < B1 i) b1 > K K < c < b1 < B1

c < K < b1 < B1

ii) B2 < b1 < K B2 < b1 < c < K

B2 < c < b1 < K

iii) b1 < B2 b1 < B2 < c < K < B1

I c)

K < B2 < B1 i) B2 < b1 < B1 B2 < c < b1 < B1

II a)

B2 < 0 < B1 < K i) b1 < B1 b1 < c < B1 < K

c < b1 < B1 < K

II b)

B2 < 0 < K < B1 i)K < b1 K < c < b1 < B1

c < K < b1 < B1

ii) b1 < K b1 < c < K < B1

c < b1 < K < B1

Table 6.2: Possible ordering of {B2, B1,K, b1, c}. The first column determines the
order of {B2, B1,K}, the second places b1 in that ordering, and the third column
places c within the ordering.

The possible orderings of {B2, B1, K, b1, c} are outline in Table 6.2. There

are only 9 combinations of {B2, B1, K, b1} and 15 orderings of all of the roots
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of F and G when all of the restrictions are considered. There can be up to 4

equilibria at one time depending on the relationships among the parameters.

We can summarize these results with a proposition.

Proposition 7 (Existence of Equilibria). The equilibrium E0 = (N, 0, 0, 0)

always exists.

If c ≥ K and B1 ≤ c,

if also B1 > K, then only EK exists.

if B1 ≤ K then EK and E1 exist.

and B1 > c,

if c < b1 then there are up to B∗
1,2 ∈ (c, b1) and EK.

if c > b1 then there are no internal equilibria but EK exists.

If c < K and B1 > c

then B∗ exists between the second and third in the ordering of {c,K, b1, B1}.

and B1 ≤ c

there are no internal equilibria and E1 is an equilibrium.

6.5.2 Linearization

Due to the threshold in α(B), we will have two linearizations of (1.3) with the

first having α(B) = 0, denoted J1:

J1(I, B, P ) =

⎛
⎜⎜⎜⎜⎝
−μ 0 0

ξ r − 2 r
K
B − γK1

(K1+B)2
P −γ B

K1+B

φξ βγ aH
(B−c+H)2

P βγ B
K1+B

− δ

⎞
⎟⎟⎟⎟⎠ ,
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and the second linearization applies when α(B) 	= 0, denoted J2

J2(I, B, P ) =

⎛
⎜⎜⎜⎜⎝
−α(B)− μ (N − I) aH

(B−c+H)2
0

ξ r − 2 r
K
B − γK1

(K1+B)2
P −γ B

K1+B

φξ βγ aH
(B−c+H)2

P βγ B
K1+B

− δ

⎞
⎟⎟⎟⎟⎠ .

6.5.3 Stability of disease free, bacteria free, phage free

equilibrium E0

Corresponding to E0, we have the following eigenvalues −μ,−δ < 0 and r > 0.

This means that the equilibrium E0 is a saddle node equilibrium with a one

dimensional unstable manifold.

6.5.4 Stability of the boundary equilibrium EK

Considering the equilibrium point EK , we have that

J
[2]
1 (0, K, 0) =

⎛
⎜⎜⎜⎜⎝
−μ− r

(
−γ K

K1+K

)
0

0 −μ+ βγ K
K1+K

− δ 0

−φξ ξ −r +
(
βγ K

K1+K
− δ

)

⎞
⎟⎟⎟⎟⎠

tr(J1(0, K, 0)) = −μ− r+
(
βγ K

K1+K
− δ

)
, det J1(0, K, 0) = μr

(
βγ K

K1+K
− δ

)
and

det J
[2]
1 = (−μ − r)

(
−μ+ βγ K

K1+K
− δ

)(
−r + βγ K

K1+K
− δ

)
. If βγ K

K1+K
−

δ < 0 this implies that tr(J1), det J1 and det J
[2]
1 are all negative, but if

βγ K
K1+K

− δ > 0 then det J1 > 0. By Lemma 8 this means that EK is stable

if, and only if K < δK1

βγ−δ
= B1. Note that B1 < K is required for E1 to exist,
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so the existence of E1 and the stability of EK are contrary notions.

6.5.5 Stability of the disease free equilibrium E1

Defining J(2, 2) = r − 2 r
K
B1 − γ K1

(K1+B1)2
P1 again as in the previous non-

shedding case, the second additive compound matrix of J1 is

J
[2]
1 (0, B1, P1) =

⎛
⎜⎜⎜⎜⎝

−μ+ J(2, 2) −γ B1

B1+K1
0

βγ K1

(K1+B1)2
P1 −μ 0

−φξ ξ J(2, 2)

⎞
⎟⎟⎟⎟⎠ .

The determinant of J1, det J1(0, B1, P1) < 0, so it will always satisfy the

antecedent of Lemma 8. The trace is given by tr(J1(0, B1, P1)) = −μ+J(2, 2).

As before J(2, 2) < 0 if, and only if, K < B3 = B1 +
βγK1

βγ−δ
. If

J(2, 2) < 0 ⇒ tr(J1) < 0

J(2, 2) > 0,−μ+ J(2, 2) < 0 ⇒ tr(J1) < 0

J(2, 2) > 0,−μ+ J(2, 2) > 0 ⇒ tr(J1) > 0.

Lastly consider the sign of det J
[2]
1

det J
[2]
1 (0, B1, P1) = J(2, 2)

{
[−μ+ J(2, 2)][−μ] +

(
βγ

K1

(K1 +B1)2
P1

)(
γ

B1

B1 +K1

)}
,

where it is clear that if J(2, 2) < 0 then det J
[2]
1 < 0 and if J(2, 2) > 0 but

J(2, 2) − μ < 0 then det J
[2]
1 > 0. If J(2, 2) > 0 and J(2, 2) − μ > 0 then the

antecedent of Lemma 8 will not be satisfied as tr(J1(0, B1, P1)) > 0Thus since

det J1(0, B1, P1) < 0 all the time, by Lemma 8 we have that E1 is stable ⇐⇒
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J(2, 2) < 0 i.e E1 is stable if and only if K < βγ+δ
βγ−δ

K1 = B1 + βγ K1

βγ−δ
= B3

6.5.6 Stability of endemic equilibria E∗ and E∗
1,2

The stability of the endemic steady states was found numerically. If c > b1 and

c < B1, there is a unique endemic equilibrium, E∗. Using parameter values

r = 1, γ = 0.02, K1 = 3.6e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, c =

5.9e5 and μ = 0.1, will achieve such a relationship. If K = 7e5 > c or larger,

EK does not exist and E0 and E∗ are the only equilibria. Limit cycles are

observed and if B∗ and its eigenvalues are computed numerically, we see that

E∗ is a saddle-node equilibrium with a two-dimensional unstable manifold.

IfK = 4e5 < c = 5e5, with all other parameters the same, thenK < c < b1

and two endemic equilibria exist, along with E0 and EK . In this case they are

both saddle-node equilibria, where E∗
1 (with the smaller B∗ value) has a one-

dimensional unstable manifold, and the other has a two-dimensional unstable

manifold. If K = 5.9e5 > c or greater, there is a unique endemic equilibria

and EK no longer exists. As before, it is a saddle-node with two dimensional

unstable manifold.

Lastly, if K1 is decreased to K1 = 1.6e5, with all other parameters as

before, if c > b1 and the endemic equilibrium is unique, it is again a saddle-

node with two-dimensional unstable manifold. If instead c < b1, then when the

two internal equilibria exist, E∗
1 (with the smaller B∗) is a saddle-node with

one dimensional unstable manifold as before. The larger however, is stable

as its eigenvalues all have negative real part. Finally, if K > c, for example

K = 2.2e6 or higher, there is a unique endemic equilibrium E∗ which is locally
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stable as all eigenvalues have negative real part.

6.5.7 Local stability summary, bifurcation diagrams and

numerical simulations

We can summarize the local stability results of the previous sections with

a proposition, writing ‘un’ for locally unstable, and ‘s’ for local asymptotic

stability. The goal of the bifurcation diagrams below is to exhibit all possible

cases of the model, thus their associated parameter ranges are wider than the

variation of parameter values in simulations.

Proposition 8 (Local Stability). E0 is always locally unstable.

193



If c ≥ K and B1 ≤ c,

if K > B3, then E1(un) and EK(un).

if B1 < K < B3 then E1(s) and EK(un).

if K < B1 then EK(s).

and B1 > c,

if c < b1 then there are up to E∗
1,2 and EK(s),

with B∗
i ∈ (c, b1).

if c > b1 then there are no internal equilibria but EK(s).

If c < K and B1 > c,

then E∗ exists,

with B∗ between the second and third in the ordering of {c,K, b1, B1}.

and B1 ≤ c,

if K > B3, then E1(un).

if K < B3, then E1(s).

In addition to the infection free, bacteria free and phage free equilibrium

E0, which always exists and is always locally unstable, there are at most three

other equilibria for any given set of parameters. Note that E1 and EK are

never both stable at the same time, as the condition for the local stability of

EK implies that E1 does not exist. Of the two, E1 is more realistic as it has the

phage population existing at nonzero levels, which is certainly the case during

inter-epidemic times. The existence of a stable endemic equilibrium, either

when E∗ is unique, or when it exists with another, which is unstable, does not

match the usual pattern of explosive outbreaks of cholera, but if the B∗ level
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is low enough, perhaps it could be biologically relevant for certain areas. Our

main interest is on the existence of limit cycles, as will be discussed below.

The results of Proposition 8 are perhaps better understood with bifurcation

diagrams. Figure 6.3 shows the case when B1 < c, and only nonendemic

equilibria are possible. In the figure B3 < c, which means that both E1 and

EK can be unstable at the same time. If this was reversed and B3 > c, the

difference would be that E1 would be unstable only when EK does not exist,

and the two could not be unstable for the same set of parameters.
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Figure 6.3: Bifurcation diagrams with all parameters positive and B1 < c, which
implies only nonendemic equilibria exist. Equilibrium E1 undergoes a Hopf bifur-
cation when carrying capacity K increases past B3, leading to limit cycles denoted
L.C.

.

Equilibrium E1 is only present in the first diagram, and when the carrying

capacity K = B3, we can calculate det[λI − J1(E1)], noting that J(2, 2) = 0

to see that

det[λI − J1(E1)] = (λ+ μ)

{
λ2 + βγ

K1

(K1 +B1)2
P1γ

B1

B1 +K1

}
,

and observe that J1(E1) would have one negative eigenvalue and two purely
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imaginary eigenvalues. Thus E1 undergoes a Hopf bifurcation as K increases

past B3 and E1 switches from locally stable to unstable. With parameters in

the region where E1 is unstable, we found limit cycles to exist. If K < c, then

these cycles existed only in the BP community and did not cause any infections.

Figure 6.4 demonstrates such limit cycles, with period of only 14 days, and

phage peaking 5 days after the bacteria class does. If K > c by a large enough

amount, meaning that the minimum infectious dose is less than the normal

carrying capacity of bacteria, the cycles entered the human population as well

and increase greatly in period. Unlike the case with ξ = 0, the period of these

cycles could even be approximately 180 days, which could correspond to the

biannual outbreaks observed in some endemic areas. Figure 6.5 is an example

of of such cycles with period of 150 days. The bacteria are the first to peak,

followed by the human infected population 3 days later, and the phage 1 day

after the infected class. As these cycles can exist at low levels and only enter

the human population when the bacteria levels increase passed the MID, and

because the bacteria peak before the infected human population, we conclude

that the BP system is ‘driving’ these limit cycles.
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Figure 6.4: Dynamics of I, S, B and P when E1 is unstable and K < c. When
the bacteria levels pass the minimum infectious dose (MID), the cycles spread to
the human population as well. The period is approximately 15 days and the Phage
peak 4 days the Bacteria. The parameters are r = 1,K = 1.3e6, γ = 0.02,K1 =
2.5e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, c = 1.5e6 and μ = 0.1.
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Figure 6.5: Dynamics of I, S, B and P when E1 is unstable and K > c. When
the bacteria levels pass the minimum infectious dose (MID), the cycles spread to
the human population as well. The Infected class peaks 3 days after the Bacteria,
and the Phage 4 days after. The parameters are r = 1,K = 1.8e6, γ = 0.02,K1 =
2.5e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, c = 1.5e6 and μ = 0.1.
The period is approximately 150 days which corresponds to biannual outbreaks in
endemic areas.
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was unstable, but were absent when it was stable. If there were two equilibria E∗
1,2,

they were either both unstable, or the one with the smaller B∗
i was unstable and

the larger was stable. Limit cycles were not observed with parameters in this range.

Figure 6.6 contains bifurcation diagrams for the cases of endemic equilibria.

The first diagram of Figure 6.6 is for when E∗ is unique, and numerically it

was found to always be unstable and causing limit cycles. The second diagram

is very similar, except up to two E∗
1,2 can exist. These are either both unstable,

or the equilibrium with the smaller B∗
i value was unstable and the larger was

stable. The unique E∗ in the second diagram could be either stable or unsta-

ble for realistic parameter values, and when it was unstable limit cycles were

found to exist. These cycles ranged in period, but could be found with periods

of approximately 360 days, as in Figure 6.7, which correspond to the annual

outbreaks observed in some endemic areas. The period of outbreaks and max-

imum number of people infected in an outbreak, differs from one endemic re-
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gion to another depending largely on sanitational infrastructures. Figure 6.8a,

shows that whenever an outbreak occurs in an endemic/epidemic region with

poor sanitational infrastructures, many people are infected compared to when

it occurs in an endemic region with better sanitational infrastructures. The

number of infected persons increases monotonically as ξ increases from 0 to

300. Thus improving the sanitational infrastructure of an endemic region could

lead to a reduction in the number of infected persons whenever an outbreak

occurs. This alone, is unable to eradicate cholera. Figure 6.8b, shows the

effect of poor sanitational infrastructure on the period of the outbreaks. By

increasing ξ from 0 to 300, the period of the outbreaks decreases monotonically

as ξ moves from 0 to 15 and attends a minimum value of approximately 346

days and there after, increases monotonically as ξ goes above 15. The fact

that the period of the outbreaks decreases as the shedding rate increases from

0 to 15, is counterintuitive.
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Figure 6.7: Dynamics of I, S, B and P when when E∗ is unique and unstable with
K > c. When the bacteria levels pass the minimum infectious dose (MID), the cyles
spread to the human population as well. The Infected class peaks 3 days after the
Bacteria, and the Phage 6 days after. The parameters are r = 1,K = 4.12e5, γ =
0.02,K1 = 2.5e5, β = 80, δ = 1, ξ = 50, φ = 1, a = 0.1, H = 1e6, c = 4.1e5 and μ =
0.1. The period is approximately 351 days, which corresponds to annual outbreaks
in endemic areas.
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Figure 6.8: The parameters are r = 1,K = 4.12e5, γ = 0.02,K1 = 2.5e5, β =
80, δ = 1, φ = 1, a = 0.1, H = 1e6, c = 4.1e5 and μ = 0.1. For these parameter
values, each ξ value leads to an oscillating trajectory with a unique period.

6.6 Chaos

In this section we will attempt an explanation to the different nature of the out-

break experience around the world. We will attempt to explain why you might

have countries with the same sanitational infrastructure but the outbreak in

one might be sporadic whereas those in the other are periodic. For instance,

Malaysia and Zambia have approximately the same sanitational infrastructure

but the outbreaks in Malaysia are sporadic whereas those in Zambia are peri-

odic.

In many countries that experience endemic cholera, there are annual cholera

outbreaks which appear to be periodic. However, in countries with similar

sanitation infrastructure the outbreaks are much more frequent and lack an

overwhelmingly periodic structure. The general trend is that countries closer

202



to the equator have higher levels of outbreaks with greater frequency, while

countries that are further from the equator typically have seasonal outbreaks

[128]. An explanation for this trend may lie in the existence of chaotic be-

haviour in (1.1) for certain values of the shedding parameters ξ and φ. This

window of chaos depends on other parameters in (1.1) as well, and not just ξ

and φ. The maximal growth rate of bacteria r is proportional to the values

ξc and φc where chaos first occurs. If this value of r is itself proportionate to

average temperatures, and thus inversely proportional to the distance from the

equator, then warmer countries with a higher r value could have chaotic be-

haviour of bacterial levels, and thus outbreaks with the same values of ξ and

φ. A positive relationship between bacteria proliferation and average tem-

perature is known to exist, so this explanation is plausible [138]. Figure 6.9

demonstrates different trends in cholera outbreaks for countries at different

latitudes. Malaysia for example is the closest to the equator of the four coun-

tries shown, at a latitude of 4o, and has a somewhat uniform distribution of

monthly outbreaks when summed over 32 years. The other three countries of

Romania, Iran and Zambia which are at a distance of at least ±13o from the

equator, have much stronger trends in what month cholera outbreaks typically

occur. For Romania and Iran, which are both in the Northern Hemisphere,

outbreaks typically occur between August and November. In Zambia, which

is in the Southern Hemisphere, outbreaks occur most often between February

and May. A larger value of the maximal bacterial growth rate r for coun-

tries closer to the equator, which also corresponds to a lower value of ξc and

φc, could explain why the outbreaks in warmer countries occur less seasonally

than in countries further away from the equator.
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Figure 6.9: Sums of monthly cholera outbreaks over the last 32 years in countries
at different latitudes, adapted from Emch et al. [128].
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(a) shedding rate vs period with r=1.
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(b) trajectory for r=1 and ξ = 11.
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(c) single-sided amplitude spectrum of fil-
tered I with r=1, ξ = 11. (d) shedding rate vs period with r=5.
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(e) tracjectory for r=5 and ξ = 53.
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(f) single-sided amplitude spectrum of fil-
tered I with r=5, and ξ = 53.

Figure 6.10: Chaotic behaviour with two different r (maximum bacterial growth)
values. The remaining parameters areK = 1e6, γ = 0.021,K1 = 1/4K,β = 100, δ =
1, φ = 0, a = 0.1, c = 5e5, μ = 0.1, H = 1e6.
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In the panels (a) and (d) of Figure 6.10, the shedding rate ξ is increased by

0.01 after each time step, and for each value, the peak values of the trajectory

produced are numerically determined and used to estimate the length of each

cycle in it. For the maximal growth rate r comparatively low, we have tra-

jectories oscillating with varying peak values and periods occurring for lower

values of ξ. In Figure 6.10a, r is comparatively low and for most values of ξ

approximately less than 30, the corresponding trajectory has varying periods

(See Figure 6.10b for the behaviour of the trajectories for a typical ξ in this

interval). On the contrary, for r comparatively high, oscillating trajectories

with varying peak values and periods occur for higher values of ξ as can be

seen in Figure 6.10d where r=5 and for ξ approximately greater than 20, the

trajectory for each ξ has varying peak values and length of cycles (see Figure

6.10e for the behaviour of the trajectories for a ξ taken from this interval).

Thus the same values of ξ and φ could cause different trajectories for different

values of r. In Figure 6.10, it is the unstable E1 that causes the cycles, but

an unstable E∗ could also be used. Figure 6.10c and Figure 6.10f present the

Fast Fourier Transform (FFT) of the filtered infected population trajectories in

Figure 6.10b and Figure 6.10e respectively. These FFT show continuous spec-

trum of frequencies. This behaviour is typical of chaotic motions. However,

it is not enough to determine if the behaviour is chaotic: we should consider

the Lyapunov Exponents. In Figure 6.11 we see that due to the positivity of

the largest Lyapunov exponent, that the behaviour is in fact chaotic. Further-

more the largest two exponents are both positive and almost the same value.

They correspond to the bacteria and phage categories from the model, which

suggests that it is the bacteria-phage system which drives the cyclic behaviour
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of the entire system and that they are the most sensitive to perturbations.

Figure 6.11: Lyapunov Exponents for (1.1). The parameters used are the same
as those in Figure 10(a) with ξ = 11. The largest is positive which is enough to
determine the trajectory is chaotic.

6.7 Discussion

We have presented a model, which is an extension of the one in Jensen et

al. [132]. This model explicitly includes the dynamics of bacteriophage and

bacteria and also contains a new indirect infection term which accounts for

a minimum infectious dose of the pathogen V.cholerae. Unlike Jensen et al.

[132], we focused on the existence of stable limit cycles, in order to account

for the periodicity observed in outbreaks of cholera in endemic areas. As these

cycles exist in the absence of human contribution to the bacteria and phage

levels, and because the bacteria cycles peak before the human cycles when

they exist in both systems, we conclude that it is the bacteria and phage

which are driving the cycles, and not the reverse situation. If the minimum

infectious dose is less than the carrying capacity of the bacteria, we observe

that the bacteria cycles usually fail to surpass the minimum infectious dose,
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so there are no new infections and the system is disease free. However, if the

natural carrying capacity is sufficiently larger than the minimum infectious

dose, these cycles are able to enter the human population, which highlights the

importance of understanding the relationship between the two. Additionally,

as a control measure if the phage levels could be enhanced in some way to

keep the bacteria below this minimum infectious dose, then the cycles would

remain in the bacteria and phage system alone. This idea links back to the

1930s when the use of injections of bacteriophage was explored as a treatment

of cholera by limiting V.cholerae levels within the human host [121, 137].

Additionally, a chaotic region in the parameter space was identified. The

existence of chaotic behaviour could explain the lack of clear periodicity in

some endemic areas, with seasonal or other factors increasing the height of

these chaotic peaks annually or biannually and creating a pseudo-periodic

pattern. The exact role of these external factors would be difficult to deter-

mine, given the sensitivity of such a system. As the existence of this chaotic

parameter region can be positively correlated with the proliferation rate of

V.cholerae and overall climate, it could also explain the unpredictable nature

of outbreaks in countries nearer the equator.

Future work on the model could be to explicitly include the role of in-

fection derived immunity through the use of a recovered class, even though

immunity is somewhat accounted for in the value of the minimum infectious

dose. Exact conditions for the existence of limit cycles would be valuable as

well as a definitive relationship between the amplitude and period of the cy-

cles to other parameters in the system. This would be useful in establishing

useful connections between simulations and the data. Furthermore, including
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a second disease causing serogroup of V.cholerae would increase the realism

of the model for use in regions where outbreaks caused by serogroups O1 and

O139 occur simultaneously.
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Chapter 7

The inverse method for a

childhood infectious disease

model with its application to

pre-vaccination and

post-vaccination measles data 4

Abstract

In this paper, we improve the classic SEIR model by separating the juve-

nile group and the adult group to better describe the dynamics of childhood

4This Chapter has been published. Reference: Jude D. Kong, Chaochao Jin, and Hao
Wang. “ The inverse method for a childhood infectious disease model with its application
to pre-vaccination and post-vaccination measles data.” Bulletin of Mathematical Biology,
Vol. 77: 2231-2263 (2015)
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infectious diseases. We perform stability analysis to study the asymptotic

dynamics of the new model, and perform sensitivity analysis to uncover the

relative importance of the parameters on infection.

The transmission rate is a key parameter in controlling the spread of an

infectious disease as it directly determines the disease incidence. However,

it is essentially impossible to measure the transmission rate for certain infec-

tious diseases. We introduce an inverse method for our new model, which can

extract the time-dependent transmission rate from either prevalence data or

incidence data in existing open databases. Pre- and post-vaccination measles

data sets from Liverpool and London are applied to estimate the time-varying

transmission rate.

From the Fourier transform of the transmission rate of Liverpool and Lon-

don, we observe two spectral peaks with frequencies 1/year and 3/year. These

dominant frequencies are robust with respect to different initial values. The

dominant 1/year frequency is consistent with common belief that measles is

driven by seasonal factors such as environmental changes and immune system

changes and the 3/year frequency indicates the superiority of school contacts

in driving measles transmission over other seasonal factors. Our results show

that in coastal cities the main modulator of the transmission of measles virus,

paramyxovirus is school seasons. On the other hand, in landlocked cities, both

weather and school seasons have almost the same influence on paramyxovirus

transmission.

Keywords: childhood infectious disease, time-dependent transmission rate,

incidence algorithm, prevalence algorithm, inverse problem, measles, Fourier
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transform, sensitivity analysis, vaccination.

7.1 Introduction

Many infectious diseases such measles, whooping cough, chickenpox, polio,

mumps and rubella take special interest in children. The major reason for this

is that they have not yet developed immunity to them. Although vaccination

has reduced the infection from these diseases and eradicated some of them like

small pox, they continue to kill thousands of children around the world every

year. Thus understanding childhood disease transmission and control remains

essential. Because there are enough infection data, mathematical models are

increasingly useful for these purposes. Most of these models are compartmental

models which classify the population with respect to various stages of disease

infection.

The classical compartmental model for childhood infectious diseases is the

McKendrick-Kermack SIR model with vital dynamics. This model has three

compartments:

• Susceptible S(t): individuals who are currently susceptible to the dis-

ease;

• Infectious I(t): individuals who are currently infected with the disease;

• Removed R(t): individuals who have recovered from the disease and

therefore possess immunity.

It is assumed that the birth rate and the natural death rate are both μ. This

assumption keeps the population size constant at a normalized value one.
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Infected children recover at a constant rate ν and then become immune to

the disease. Finally, it is assumed that the incidence is proportional to the

product of the number of susceptible and infected individuals. These lead to

the following system of equations:

dS(t)

dt
= μ− β(t)S(t)I(t)− μS(t),

dI(t)

dt
= β(t)S(t)I(t)− νI(t)− μI(t),

dR(t)

dt
= νI(t)− μR(t),

where S(t)+I(t)+R(t) = 1. Many authors have extended this model to include

individuals who are exposed (E) to infection, but are not yet infectious. They

assumed that children leave the exposed compartment and enter the infectious

(I) compartment at some constant rate a, the reciprocal of which equals the

mean latent period. This model, called the SEIR model, is described by the

following system of equations:

dS(t)

dt
= μ− β(t)S(t)I(t)− μS(t),

dE(t)

dt
= β(t)S(t)I(t)− aE(t)− μE(t),

dI(t)

dt
= aE(t)− νI(t)− μI(t),

dR(t)

dt
= νI(t)− μR(t).

The rate at which susceptibles become infected is called the transmission

rate β. This transmission rate depends on factors such as the the frequency

213



and closeness of contacts, the infectivity of the infectious individuals, and the

susceptibility of susceptible individuals. Thus the transmission rate will be

higher when children are packed together and lower when they are not. Since

children turn to be crowded together in school seasons and separated during

holidays, the transmission rate will therefore be extremely high when children

are in school and extremely low when they are on holidays. This means that

the transmission rate for a childhood disease varies dramatically in time.

According to Section 3.4.9 of Anderson and May [141], ‘. . . the direct mea-

surement of the transmission rate is essentially impossible for most infections.

But if we wish to predict the changes wrought by public health programmes,

we need to know the transmission rate . . . ’. Thus unlike other parameters of

infectious disease models such as recovery rate, birth rate and death rate, that

can be easily measured directly via public health databases, it is essentially

impossible to measure the transmission rate directly for certain infectious dis-

eases. Moreover, other parameters are relatively stable, while the transmission

rate varies dramatically. Given that the important events of disease transmis-

sion are incorporated in the transmission rate, there is urgent need to have

an estimate for this parameter. Some researchers model the transmission rate

using a step function based on school calendars [144]. Other authors use the si-

nusoidal function β(t) = β0(1+α cos(2πt)), where β0 is the mean transmission

rate and α is the amplitude of the seasonal variation [147].

These models do not take into account all the seasonal factors that drive

the transmission rate of childhood infectious diseases. Even though the ne-

glected factors are of little importance, including them in the model will paint

a complete picture of the nature of the transmission rate of these diseases.
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One additional drawback of these models is the lack of transmission data to

validate them with. There is therefore a need to extract the time dependent

transmission rate through a solution of an inverse problem so as to have a

complete picture of the transmission rate of these diseases and and equally

validate the assumed transmission rate functions in literature.

Some researchers [143, 145] used the discrete time SI or SIR model to

extract the time dependent transmission rate. [145] used the model:

I(t+ 1) = I(t)S(t)β(t)

S(t+ 1) = S(t)− I(t+ 1) + B(t)− V (t)

Where I(t) and I(t+ 1) denote the infected population at time periods t and

t+1,

S(t+ 1) and S(t) the susceptible population at time periods t and t+1,

β(t) the time dependent transmission parameter,

B(t) the number of susceptible introduced or born into the population,

V (t) the vaccinated population. From this model the authors obtained the

recursive formula:

β(t) =
I(t+ 1)

β(t)S(t)
.

This formula requires S(t), which is often difficult to estimate especially for

outbreaks in which a reasonable percentage of the population is immune to

infection. Also the formula is not explicit. For other drawbacks of this for-

mula, see [152, 153, 148]. In 2010 and 2012, Pollicott, Wang, and Weiss

[152, 153] originally introduced the inverse method for estimating a contin-
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uous time transmission rate from prevalence data. In 2011, Hadeler [148]

extended the inverse method for incidence data and other possibilities. This

inverse method does not require the knowledge of S(t) and leads to an ex-

plicit formula for β(t). The inverse method for deriving these algorithms is

applicable to a majority of infectious diseases, but the algorithms have only

been constructed and applied to pre-vaccination data so far. One can reduce

the number of susceptible children with vaccines. Vaccination is the admin-

istration of antigenic material to stimulate an individual’s immune system to

develop adaptive immunity to a pathogen. Vaccines can ameliorate both mor-

tality and morbidity. The effectiveness of vaccination has been widely studied

and verified since the first work of Edward Jenner on smallpox [151]. In this

paper, we first derive the algorithms with vaccination which is dominantly

important in the control of infectious diseases nowadays Assuming that all

children grow to adults at some point in the future, in this paper, we extend

the SEIR model for childhood diseases to an SEIRA model by adding the adult

compartment (A). The SEIRA model is extended to include a compartment

for children that have been vaccinated and the effect of vaccination on the

dynamics of I(t) is studied. We carry out stability and sensitivity analysis

of these two models and extend both the prevalence and incidence algorithms

respectively.

Our sensitivity analysis emphasizes the importance of the transmission rate

in controlling outbreaks and thus the need to estimate this key parameter.

The applicability of our derived incidence algorithm is illustrated with pre-

and post-vaccination measles data from Liverpool and London. The trans-

mission rate estimated using our algorithm has two dominant spectral peaks
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of frequencies 1 and 3 times per year. These dominant frequencies are the

same for pre- and post-vaccination situations for both cities. The dominant

frequency of 1 per year is consistent with common belief that measles is driven

by seasonal factors and the 3 times per year frequency indicates the superiority

of school contacts in driving measles transmission over other seasonal factors.

The peak values of 1 per year and the 3 per year frequencies are compara-

ble for both pre- and post-vaccination data from Liverpool, while the 1 per

year peak value is larger than the 3 per year peak value for both pre- and

post-vaccination data from London. This is because London is a landlocked

city and thus has relatively high temperature variations which strongly affect

the seasonality of the measles virus with subsequent influence on its trans-

mission. Liverpool, on the other hand, is a coastal city with relatively stable

temperature and thus the main modulator of the transmission of measles virus

for this city was school dates. We find that the dominant frequencies of the

Fourier transform of the transmission rate in London have less noise than that

of the Fourier transform of the transmission rate in Liverpool. This could be

attributed to the city size as London is a much larger city than Liverpool.

7.2 The SEIRA model

Recall that in the derivation of the SEIR model, the total population is

divided into four compartments: susceptible, exposed, infective and recovered.

This model can be applied to all infectious diseases satisfying its assumptions.

However, it is not suitable for childhood infectious diseases since, in the SEIR

model, adults who have never been infected nor vaccinated are also considered
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as susceptibles.

When studying childhood infectious diseases, we first classify the popu-

lation into the adult (A) and the juvenile groups. Then, divide the juvenile

group into susceptibles (S), exposed (E), infective (I), and recovered (R).

With SEIR model we consider natural death rate for every group. But

children usually do not die naturally. They die only because of some specific

reasons like accidents or diseases and their death rate is much lower than

the natural death rate. Therefore, here, we ignore natural death rate for the

juvenile group. Instead, we consider growth rate as children will grow up and

no longer be susceptible. We assume that children grow to become adults

at a rate g, i.e. people under 1/g years old will be considered as juvenile.

Transition terms between S, E, I and R are the same as in SEIR model.

Our model, called the SEIRA model, is described by the following system

of equations:

dS(t)

dt
=δA(t)− β(t)S(t)I(t)− gS(t), (7.1)

dE(t)

dt
=β(t)S(t)I(t)− aE(t)− gE(t),

dI(t)

dt
=aE(t)− νI(t)− gI(t),

dR(t)

dt
=νI(t)− gR(t),

dA(t)

dt
=g(S(t) + E(t) + I(t) +R(t))− δA(t).

The parameters are described in Table 7.1, which also contains the default

values of these parameters for measles.
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Parameter Value Description Units

p 0-100% Vaccinated fraction no unit

δ 1/64 Natural death rate year -1

β ≈ 1000 Average transmission rate year -1

g 1/16 Growth rate year -1

ν 52 Recovery rate year -1

a 52 Rate at which exposed indi-

viduals become infective

year -1

Table 7.1: Parameter descriptions and values for measles.

Values of the parameters a and ν for measles are taken from [141, 155]:

a = 52/year and ν = 52/year. Thus the infectious period is the same as the

exposed period which is 1 year/52 = 1 week. We assume that the average life

span is 80 years and only kids under 16 are susceptible to measles. Therefore,

g = 1/16 · year−1 and natural death rate δ = 1/64 · year−1. Values of p and q

are mainly determined by a vaccination policy, which can be as low as 0% if

there is no vaccination or as high as 100% if every individual is vaccinated. p

will be used in Section 7.7.

In sections 7.3 and 7.4 we assume that β is a constant and in Sections 7.5

and 7.6, it is considered to be a function of time.
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7.3 Qualitative analysis

In this section, we list qualitative results such as positivity, boundedness, equi-

libria and their stability of the SEIRA model. The proofs of the theorems in

this section are presented in Appendix.

Theorem 7. The compact set Ω = {(S,E, I, R,A): S ≥ 0, E ≥ 0, I ≥ 0, R ≥
0, A ≥ 0, S + E + I + R + A = 1} is positively invariant for the semiflow

generated by system (7.1).

Proof. Positivity describes the property that for any positive initial values,

the solution of a system will stay positive. The solution of an ODE dyi
dt

=

fi(y1, y2, ..., yn) (n ∈ N) is said to be positive for any positive initial values if

∀ 1 ≤ i ≤ n, fi ≥ 0 when yi = 0 and yj ≥ 0, j 	= i. Denoting S, E, I, R, A

as fi and the functions on the right hand side of (7.1) as yi, for 1 ≤ i ≤ 5,

respectively we have that f1 = δy5 ≥ 0, f2 = βy1y3 ≥ 0, f3 = ay2 ≥ 0, f4 =

νy3 ≥ 0, f5 = g(y1+y2+y3+y4) ≥ 0. Hence the solution of (7.1) is positive for

any positive initial values. Also, we notice that S, E, I, R, and A sum to 1 and

their derivatives sum to 0. Hence we can conclude that the solution of (7.1) will

stay in {(S,E, I, R,A): S ≥ 0, E ≥ 0, I ≥ 0, R ≥ 0, A ≥ 0, S+E+I+R+A =

1} for any positive initial values.

Theorem 8. System (7.1) has two equilibria: the disease-free equilibrium point

(S∗
1 , E∗

1 , I∗1 , R∗
1, A∗

1) =
(

δ
g+δ

, 0, 0, 0, g
g+δ

)
and the endemic equilibrium

point

(S∗
2 , E∗

2 , I∗2 , R∗
2, A∗

2) =(
(a+ g)(ν + g)

aβ
,

gδ

(a+ g)(g + δ)
− g(ν + g)

aβ
,

agδ

(a+ g)(g + δ)(ν + g)
− g

β
,

aνδ

(a+ g)(g + δ)(ν + g)
− ν

β
,

g

g + δ

)
.
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If aδβ < (a + g)(g + δ)(ν + g), the disease-free equilibrium will be locally

asymptotically stable and the endemic equilibrium will not be feasible. On the

other hand, if aδβ > (a + g)(g + δ)(ν + g), the endemic equilibrium will be

locally asymptotically stable and the disease-free equilibrium will be unstable.

Proof. Suppose (S∗, E∗, I∗, R∗, A∗) is an equilibrium point, then it should sat-

isfy

0 = δA∗ − βS∗I∗ − gS∗, (7.2)

0 = βS∗I∗ − (a+ g)E∗, (7.3)

0 = aE∗ − (ν + g)I∗, (7.4)

0 = νI∗ − gR∗, (7.5)

0 = g − (g + δ)A∗. (7.6)

From (7.6), we know that A∗ = g
g+δ

. From (7.4), we have E∗ = ν+g
a
I∗.

Plugging it into (7.3) we get

βS∗I∗ − (a+ g)
ν + g

a
I∗ = 0

⇒ (βS∗ − (a+ g)(ν + g)

a
)I∗ = 0

⇒ S∗ =
(a+ g)(ν + g)

aβ
or I∗ = 0

If I∗ = 0, then E∗ = ν+g
a
I∗ = 0, R∗ = ν

g
I∗ = 0, S∗ = δ

g
A∗ = δ

g+δ
.
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If S∗ = (a+g)(ν+g)
aβ

, then

I∗ =
δA∗ − gS∗

βS∗ =
agδ

(a+ g)(g + δ)(ν + g)
− g

β
,

E∗ =
ν + g

a
I∗ =

gδ

(a+ g)(g + δ)
− g(ν + g)

aβ
,

R∗ =
ν

g
I∗ =

aνδ

(a+ g)(g + δ)(ν + g)
− ν

β
.

Hence, there are two equilibria: the disease-free equilibrium point

(S∗
1 , E∗

1 , I∗1 , R∗
1, A∗

1) =
(

δ
g+δ

, 0, 0, 0, g
g+δ

)
and the endemic equilibrium

point

(S∗
2 , E∗

2 , I∗2 , R∗
2, A∗

2) =(
(a+ g)(ν + g)

aβ
,

gδ

(a+ g)(g + δ)
− g(ν + g)

aβ
,

agδ

(a+ g)(g + δ)(ν + g)
− g

β
,

aνδ

(a+ g)(g + δ)(ν + g)
− ν

β
,

g

g + δ

)
.

To determine the stability of the Equilibria, we first calculate the Jacobian

matrix of the SEIRA model. Since S, E, I, R, A sum up to 1, there are

only four free variables. To calculate the Jacobian matrix, we only need to

consider any four of them. We ignore the fourth equation of system (7.1) and

obtain the Jacobian matrix as

J(S,E, I, A) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−βI − g 0 −βS δ

βI −(a+ g) βS 0

0 a −(ν + g) 0

0 0 0 −(g + δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

• Notice that I∗2 can be rewritten as I∗2 = g
β(a+g)(g+δ)(ν+g)

(aδβ− (a+g)(g+

δ)(ν + g)), thus for aδβ < (a + g)(g + δ)(ν + g),I∗2 < 0, R∗
2 = ν

g
I∗2 < 0,
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and E∗
2 = ν+g

a
I∗2 < 0. Thus the endemic equilibrium is not feasible for

aδβ < (a+ g)(g + δ)(ν + g).

For the disease-free equilibrium, the Jacobian matrix is

J(S∗
1 , E

∗
1 , I

∗
1 , A

∗
1) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−g 0 − δ
g+δ

β δ

0 −(a+ g) δ
g+δ

β 0

0 a −(ν + g) 0

0 0 0 −(g + δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

and the characteristic equation is (λ+ g)(λ+ ν+ g)(λ2+(a+2g+ ν)λ+

(a + g)(ν + g) − aδ
g+δ

β) = 0. Solving this, we obtain the following eigen

values λ1 = −g < 0, λ2 = −(g + δ) < 0 and

λ3,4 =
−(a+2g+ν)±

√
(a+2g+ν)2−4((a+g)(ν+g)− aδ

g+δ
β)

2
=

−(a+2g+ν)±
√

(a−ν)2+4 aδ
g+δ

β

2

If (a+ g)(ν + g)− aδ
g+δ

β > 0, λ3 and λ4 will both be less than zero.

Hence the disease-free equilibrium point is asymptotically stable ⇐⇒
(a+ g)(ν + g)− aδ

g+δ
β > 0 ⇐⇒ aδβ < (a+ g)(g + δ)(ν + g).

• When aδβ > (a + g)(g + δ)(ν + g), we have that S∗
2 = (a+g)(ν+g)

aβ
> 0,

A∗
2 =

g
g+δ

> 0.

Also, I∗2 = g
β(a+g)(g+δ)(ν+g)

(aδβ − (a + g)(g + δ)(ν + g)) > 0, and R∗
2 =

ν
g
I∗2 > 0, E∗

2 = ν+g
a
I∗2 > 0. Thus the endemic equilibrium is feasible when

all the parameters are positive and aδβ > (a + g)(g + δ)(ν + g). Also,

when aδβ > (a+g)(g+ δ)(ν+g), from the previous proof, we know that

the disease-free equilibrium is unstable.
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For the endemic equilibrium, once again, we calculate the Jacobian ma-

trix:

J(S∗
2 , E

∗
2 , I

∗
2 , A

∗
2) =

⎛
⎜⎜⎜⎜⎜⎜⎜⎝

−βI∗2 − g 0 −βS∗
2 δ

βI∗2 −(a+ g) βS∗
2 0

0 a −(ν + g) 0

0 0 0 −(g + δ)

⎞
⎟⎟⎟⎟⎟⎟⎟⎠

.

From the above matrix, we can see that one eigenvalue of the charac-

teristic equation is λ1 = −(g + δ), and the other three satisfy λ3 +

(−tr(M))λ2 + (α(M))λ+ (−Det(M)) = 0,

where tr(M) = −(βI∗2+a+3g+ν), α(M) = (βI∗2+g)(a+g)+(βI∗2+g)(ν+

g)+ (a+ g)(ν+ g)− aβS∗
2 , Det(M) = −(βI∗2 + g)(a+ g)(ν+ g)+agβS∗

2 .

To study stability, we apply the third order Routh-Hurwitz stability cri-

terion. We first review the third order Routh-Hurwitz stability criterion.

Third-order Routh-Hurwitz stability criterion: Real parts of all

solutions of a third-order polynomial P (s) = a3s
3 + a2s

2 + a1s+ a0 = 0

are negative if the coefficients satisfy a3 > 0, a3 > 0, a1 > 0, a0 > 0 and

a2a1 > a3a0.

Thus for our characteristic equation we have that

a3 = 1 > 0,

a2 = −tr(M) = βI∗2 + 3g + a+ ν > 0,
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a1 = α(M) = (βI∗2 + g)(a+ g)+ (βI∗2 + g)(ν+ g)+ (a+ g)(ν+ g)− aβS∗
2

= (βI∗2 + g)(a+ g) + (βI∗2 + g)(ν + g) + (a+ g)(ν + g)− aβ (a+g)(ν+g)
aβ

= (βI∗2 + g)(a+ 2g + ν) > 0,

a0 = −Det(M) = (βI∗2 + g)(a+ g)(ν + g)− agβS∗
2

= βI∗2 (a+ g)(ν + g) + g(a+ g)(ν + g)− agβS∗
2

= βI∗2 (a+ g)(ν + g) + g(a+ g)(ν + g)− agβ (a+g)(ν+g)
aβ

= βI∗2 (a+ g)(ν + g) > 0,

a2a1 = α(M) ∗ (−tr(M))

= (βI∗2 + g)(a+ 2g + ν)(βI∗2 + 3g + a+ ν)

> βI∗2 (a+ g)(ν + g) = −Det(M) = a3a0.

Hence the conditions of Routh-Hurwitz stability criterion are satisfied.

The endemic equilibrium is thus asymptotically stable if all the param-

eters are positive and aδβ > (a+ g)(g + δ)(ν + g).

Conjecture 1. When

R0 < 1, lim
t→+∞

(S(t), E(t), I(t), R(t), A(t)) −→ Disease-free equilibrium (DFE)

and when

R0 > 1, lim
t→+∞

(S(t), E(t), I(t), R(t), A(t)) −→ Endemic equilibrium (EE)

, where R0 =
aδβ

(a+g)(g+δ)(ν+g)
is the basic reproduction number.

Recall that when R0 > 1, the disease can spread and when R0 < 1, the
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disease will finally disappear. We can rewrite R0 as

R0 =
β

ν + g
· a

a+ g
· δ

δ + g
.

We know that βSI is the number of new cases over a unit time. Hence the

average number of new cases caused by one infective individual is βSI
I

= βS.

Therefore, the number of susceptibles an infective individual can infect is the

average number over a unit time multiply by the average length of duration

an infective individual stay infectious which is βS · 1
ν+g

. The fraction of the

infected individuals who can finally become infective is the probability that an

exposed individual will become infective in a unit time multiply by the time

duration of an exposed individual stay exposed which is a · 1
a+g

. The expected

fraction of susceptibles is δ
δ+g

which is the value of susceptibles at the disease-

free steady state. Therefore, βS · 1
ν+g

· a
a+g

= β · δ
δ+g

· 1
ν+g

· a
a+g

is the average

number of susceptibles that one infective individual can infect.

7.4 Sensitivity analysis

In this section, we calculate, analyze and compare the normalized forward

sensitivity indices of the outbreak peak value, time of outbreak peak, and

steady state value of I(t), to the parameters of the system by computing

S.I. =
p

X∗
∂X∗

∂p
, (7.7)

where X∗ is the quantity being considered, and p is the parameter which

X∗depends upon. Sensitivity indices can be positive or negative which indicate
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Parameter Sensitivity of peak Description

δ 0.0099 Death/Birth Rate
β 1.7200 Average transmission rate
g -0.0195 Growth Rate
ν -2.8204 Removal Rate
a 1.1102 Rate at which exposed indi-

viduals become infective

Table 7.2: The sensitivity indices of the value of the outbreak peak respect to the
parameters values δ = 1/64/12/month, β = 55/month, g = 1/16/12/month, ν =
52/12/month, a = 52/12/month and initial values S(0) = 0.2, E(0) =
0.002, I(0) = 0.002, R(0) = 0.006, A(0) = 0.79.

the nature of the relationship. The magnitude of S.I. indicates the strength of

the relationship.

When studying quantities like the peak value or the peak time which do

not have explicit formulas, we compute an approximate value of their S.I. as

follows

S.I. =
p

X∗(p)
X∗(p+Δp)−X∗(p−Δp)

2Δp
. (7.8)

We calculate S.I. with respect to one specific parameter by perturbing this

parameter only and keeping the others unchanged. Here, we take Δp = 1%p.

7.4.1 Sensitivity analysis of the outbreak peak value

The sensitivity indices of the amplitude of the outbreak peak show how the

first epidemic depends on the parameters as seen in Table 7.2.

The removal rate ν has the strongest relationship to the magnitude of the

outbreak peak. The negative value tells us that a lower removal rate would
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lead to a more severe epidemic. In contrast to the birth/death rate δ which

has among the lowest of sensitivity indices, ν would thus be an important

parameter to control in order to reduce the harm of an outbreak.

Both the average transmission rate β and a have strong positivity relation-

ship to the peak outbreak as a higher β value would lead to a higher number of

people in the exposed compartment and a higher a would move more exposed

to the infectives compartment.

The sensitivity index with respect to the human birth/death rate μ is very

low in comparison to all the others. This makes sense, because the initial peak

of an epidemic occurs relatively quickly after the introduction of sick people,

and the birth and death of new susceptibles would take much longer time.

The sensitivity of the growth rate g to the outbreak peak is negative be-

cause a larger growth rate will move people from the invectives compartment

to the adult compartment faster, thus reducing the outbreak peak. Similar to

birth/death rate δ, growth rate g has a small influence on the peak value.

In fact, parameters related to demography, such as birth/death rate and

growth rate, would have small influence on the outbreak level as the initial peak

appears relatively quickly. Parameters which are directly related to infection

would have important influence on the initial peak. For instance the following

parameters: a which determines how fast exposed individuals will become

infectious, ν which determines how quickly infectives will move to the recovered

compartment and β which determines how many susceptibles will be infected

all have a strong relationship with the outbreak as expected because they are

directly related to infection.

228



7.4.2 Sensitivity analysis of the outbreak peak time

Sensitivity indices of the outbreak peak time measure how the first epidemics

outbreak time depends on different parameters as seen in the Table 7.3.

Parameter Sensitivity of peak time Description

δ -0.0011 Death/Birth Rate

β -0.7403 Average transmission rate

g 0.0027 Growth Rate

ν 0.3075 Removal Rate

a -0.2908 Rate at which exposed indi-

viduals become infective

Table 7.3: The sensitivity of the outbreak peak time respect to the parame-
ters with values δ = 1/64/12/month, β = 55/month, g = 1/16/12/month, ν =
52/12/month, a = 52/12/month. and initial values S(0) = 0.2, E(0) =
0.002, I(0) = 0.002, R(0) = 0.006, A(0) = 0.79.

As outlined previously, we have the same reason that birth/death rate δ

and growth rate g have less influence on the outbreak time than the other

three parameters.

We can see from Table 7.3 that the average transmission rate β has the

strongest influence on the dynamics of the system. This suggests that β is

a more important parameter to control to prevent outbreaks. The negative

relationship tells us that a larger average transmission rate would lead to a

quicker outbreak.

The relationship between rate a and the time of the maximum outbreak is

negative, because a higher contact rate (shorter latent period) will cause more
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new infections and the timing of the maximum would be attained earlier.

The removal rate still has an important effect on the outbreak time. The

positive relationship between ν and the outbreak time is because patients will

recover faster with a larger ν value thereby postponing the outbreak time.

7.4.3 Sensitivity analysis of the endemic steady state

Endemic steady state determines the levels of the different groups of an en-

demic infectious disease. It represents the expectation of the final size of all

the groups. In Table 7.4, we list sensitivity indices of I∗2 with respects to all

the parameters.

Parameter Sensitivity of I∗2 Description

δ 1.3221 Death/Birth Rate

β 0.6526 Average transmission rate

g -0.3260 Growth Rate

ν -1.6508 Removal Rate

a 0.0020 Rate at which exposed indi-

viduals become infective

Table 7.4: Sensitivity of the endemic steady state with respect to the param-
eters with values δ = 1/64/12/month, β = 55/month, g = 1/16/12/month, ν =
52/12/month, a = 52/12/month.

The endemic level of infective individuals is most sensitive to the recovery

rate ν and birth/death rate δ. It has a strong negative relationship with ν

because recovering is the main way that infectives leave the infected compart-

ment. The relationship with δ is positive as a larger δ means more susceptible
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newborns will possibly become infectives. Rate a has a weak but positive re-

lationship with I∗2 as expected because a larger a causes more people in the

exposed compartment to become infectives. The average transmission rate β

is also of great importance in controlling the endemic level of the infectives.

The positive relationship is obvious since larger β means more susceptibles

will get infected.

7.5 Extracting the time-dependent transmis-

sion rate β(t) from prevalence pre vaccina-

tion data

In this section, we assume that β(t) is a function of time, compute the formula

for β(t) based on prevalence pre-vaccination data and then use it to construct

an algorithm.

Theorem 9. Suppose the epidemic is observed over the time interval [0, T ],

where t = 0 and t = T are respectively the start and end of observations,

then the time dependent transmission function β(t) for System (7.1) satisfy

Mβ′′β2 + N(β′)2β + Pβ′β2 − Lβ4 − Qβ3 = 0 where f(t) is a smooth positive

function which matches the infection data in the interval [0, T],
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H(t) � f ′′(t) + (ν + 2g + a)f ′(t) + (a+ g)(ν + g)f(t)

M = D = −Hf 3,

N = C = 2Hf 3,

P = B − (2g + δ)Hf 3 = 2Hf ′f 2 − 2H ′f 3 − (2g + δ)Hf 3,

Q = −(A+ (2g + δ)H ′f 3 − (2g + δ)Hf ′f 2 + g(g + δ)Hf 3)

= −(H ′′f 3 −Hf ′′f 2 − 2H ′f ′f 2 + 2H(f ′)2f + (2g + δ)H ′f 3 − (2g + δ)Hf ′f 2 + g(g + δ)Hf 3),

L = −(H ′f 4 + (g + δ)Hf 4 − agδf 4).

Proof of Theorem 9. Rewritting the third equation of System (7.1) as f ′(t) +

(ν+g)f(t) = aE(t) and differentiating both sides we get: f ′′(t)+(ν+g)f ′(t) =

aE ′(t). Plugging the second and third equations of (7.1) into the above equa-

tion, we have

f ′′(t) + (ν + g)f ′(t) = aE ′(t)

= aβ(t)S(t)f(t)− (a+ g)(aE(t))

= aβ(t)S(t)f(t)− (a+ g)(f ′(t) + (ν + g)f(t).)

Rewriting the above equation as

aS(t) =
f ′′(t) + (ν + 2g + a)f ′(t) + (a+ g)(ν + g)f(t)

β(t)f(t)
.

i.e aS(t) = H(t)
β(t)f(t)

.

Taking the first and second derivatives of the above equation, we get
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aS ′(t) =(
H(t)

β(t)f(t)
)′ =

H ′(t)β(t)f(t)−H(t)(β′(t)f(t) + β(t)f ′(t)
β(t)2f(t)2

,

aS ′′(t) =(
H ′(t)β(t)f(t)−H(t)(β′(t)f(t) + β(t)f ′(t)

β(t)2f(t)2
)′

=
[H ′βf −H(β′f + βf ′)]′β2f 2 − [H ′βf −H(β′f + βf ′)](β2f 2)′

(β2f 2)2

=
H ′′f 3β3 +H ′f 3β′β2 +H ′f ′f 2β3 −H ′f 3β′β2 −H ′f ′f 2β3 −Hf 3β′′β2 − 2Hf ′f 2β′β2 −Hf ′′f 2β3

β4f 4

− 2(H ′f 3β′β2 +H ′f ′f 2β3 −Hf 3(β′)2β −Hf ′f 2β′β2 −Hf ′f 2β′β2 −H(f ′)2fβ3)

β4f 4

=
[H ′′f 3 −Hf ′′f 2 − 2H ′f ′f 2 + 2H(f ′)2f ]β3 + [2Hf ′f 2 − 2H ′f 3]β′β2 + 2Hf 3(β′)2β −Hf 3β′′β2

β4f 4

=
Aβ3 +Bβ′β2 + C(β′)2β +Dβ′′β2

β4f 4
,

where A = H ′′f 3 − Hf ′′f 2 − 2H ′f ′f 2 + 2H(f ′)2f , B = 2Hf ′f 2 − 2H ′f 3,

C = 2Hf 3, D = −Hf 3.

Since S+E+ I+R+A = 1, i.e. S+E+ I+R = 1−A, the fifth equation

of (7.1) becomes A′ = g(S+E+ I +R)− δA = g(1−A)− δA = g− (g+ δ)A.

Taking the derivative of the first equation of (7.1) with respect to t we

have: S ′′+(βSI)′+ gS ′ = δA′, plugging in the first and fifth equation of (7.1)

we get

S ′′ + (βSI)′ + gS ′ = δA′ = δ(g − (g + δ)A) = gδ − (g + δ)(δA) = gδ − (g +

δ)(S ′ + βSI + gS).

Multiplying both sides of the above equation by a and simplifying gives

aS ′′ + (2g + δ)(aS ′) + g(g + δ)(aS) + (aβSI)′ + (g + δ)(aβSI) = agδ.
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Substituting for aS, aS ′ and aS ′′ we have

(
Aβ3 +Bβ′β2 + C(β′)2β +Dβ′′β2

β4f 4

)

+ (2g + δ)

(
H ′(t)β(t)f(t)−H(t)(β′(t)f(t) + β(t)f ′(t)

β(t)2f(t)2

)

+g(g + δ)

(
H(t)

β(t)f(t)

)
+H ′ + (g + δ)H = agδ.

Multiplying both sides of the equation by by β4f 4 and expanding we get

Aβ3 +Bβ′β2 + C(β′)2β +Dβ′′β2 + (2g + δ)H ′f 3β3 − (2g + δ)Hf 3β′β2

(2g + δ)Hf ′f 2β3 + g(g + δ)Hf 3β3 +H ′f 4β4 + (g + δ)Hf 4β4 = agδβ4.

This implies

(H ′f 4 + (g + δ)Hf 4 − agδf 4)β4 + (A+ (2g + δ)H ′f 3 − (2g + δ)Hf ′f 2

+ g(g + δ)Hf 3)β3 + (B − (2g + δ)Hf 3)β′β2 + C(β′)2β +Dβ′′β2 = 0.

i.e.

−Lβ4 −Qβ3 + Pβ′β2 +N(β′)2β +Mβ′′β2 = 0, (7.9)

where
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M = D = −Hf 3,

N = C = 2Hf 3,

P = B − (2g + δ)Hf 3 = 2Hf ′f 2 − 2H ′f 3 − (2g + δ)Hf 3,

Q = −(A+ (2g + δ)H ′f 3 − (2g + δ)Hf ′f 2 + g(g + δ)Hf 3)

= −(H ′′f 3 −Hf ′′f 2 − 2H ′f ′f 2 + 2H(f ′)2f + (2g + δ)H ′f 3 − (2g + δ)Hf ′f 2 + g(g + δ)Hf 3),

L = −(H ′f 4 + (g + δ)Hf 4 − agδf 4).

Notice that N = −2M , equation(7.9) becomes

Mβ′′β2 − 2M(β′)2β + Pβ′β2 −Qβ3 − Lβ4 = 0.

Dividing by β4 we get

M
β′′β2 − 2(β′)2β

β4
+ P

β′β2

β4
−Q

β3

β4
− L

β4

β4

=−M(2β−3(β′)2 − β−2β′′)− P (−β−2β′)−Q(β−1)− L

=0.

Let y = β−1, y′ = −β−2β′, y′′ = 2β−3(β′)2 − β−2β′′.

(7.9) can be rewritten as My′′ + Py′ +Qy + L = 0 with y = β−1.

Based on the formula for β(t) derived above, we now construct a prevalence

algorithm for extracting the transmission rate from the SEIRA model.

Step 1 Smoothly interpolate the infection data with a spline or trigono-

metric function to generate a smooth function, f(t).

Step 2 Calculate the function H(t) = f ′′(t) + (ν + 2g + a)f ′(t) + (a +

g)(ν + g)f(t). Compute M, N, P, Q, and L by plugging H(t) into (7.5).
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Step 3 Choose β(0), β′(0), and interval T , use an ODE solver to solve

equation Mβ′′β2 +N(β′)2β + Pβ′β2 −Lβ4 −Qβ3 = 0 for β(t) on interval the

[0, T ].

In the absence of real prevalence data, we use simulated data to test this

algorithm. To this end, consider the following function f(t) = 10−3[1.4 +

cos(2πt/12)], that approximates fractions of infectives from a typical infectious

disease with periodic outbreaks. Figure 7.1 contains the dynamics of β(t) for

this data set, using the algorithm above.
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Figure 7.1: β(t) extracted from fake prevalence data f(t) = 10−3[1.4+cos(2πt/12)]
with initial value β(0) = 56, β′(0) = −1, and parameters ν = 52/12, a = 52/12, g =
1/16/12, δ = 1/64/12.
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7.6 Extracting the time dependent transmis-

sion rate from pre-vaccination incidence

data

In this section, we compute the formula for β(t) that depends on incidence data

and use it to construct the incidence algorithm. As in the previous section,

we assume that the transmission rate depends on time.

7.6.1 Solution of the inverse problem for the SEIRA

model

To construct the algorithm, we first rewrite β(t) in terms of ω(t). With ω(t) =

βSI and S + E + I +R + A = 1, the SEIRA model can be re-written as

dS(t)

dt
=(δA(t)− ω(t))− gS(t) (7.10)

dE(t)

dt
=ω(t)− (a+ g)E(t), (7.11)

dI(t)

dt
=aE(t)− (ν + g)I(t), (7.12)

dR(t)

dt
=νI(t)− gR(t), (7.13)

dA(t)

dt
=g − (g + δ)A(t). (7.14)

We have the following theorem:

Theorem 10. For the SEIRA, given a continuous function w(t) generated

from the incidence data, β(t) can be estimated by ω(t)
S(t)I(t)

with S(t) and I(t)
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given by (7.15) and (7.16) respectively.

S(t) =S(0)e−gt +

∫ t

0

(δ(A(0)e−(g+δ)s +

∫ s

0

ge(g+δ)(σ−s)dσ)− ω(s))eg(s−t)ds

(7.15)

I(t) =I(0)e−(ν+g)t +

∫ t

0

a(E(0)e−(a+g)s +

∫ s

0

ω(σ)e(a+g)(σ−s)dσ)e(ν+g)(s−t)ds

(7.16)

Proof. Solving the equations in the system using the method of variation of

parameters, we obtain

A(t) = C(t)e−(g+δ)t =(A(0) +

∫ t

0

ge(g+δ)sds)e−(g+δ)t

⇒ A(t) = A(0)e−(g+δ)t +

∫ t

0

ge(g+δ)(s−t)ds (7.17)

S(t) =S(0)e−gt +

∫ t

0

(δA(s)− ω(s))eg(s−t)ds (7.18)

I(t) =I(0)e−(ν+g)t +

∫ t

0

aE(s)e(ν+g)(s−t)ds (7.19)

E(t) =E(0)e−(a+g)t +

∫ t

0

ω(s)e(a+g)(s−t)ds (7.20)
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Plug (7.20) into (7.19) and plug (7.17) into (7.18):

S(t) =S(0)e−gt +

∫ t

0

(δ(A(0)e−(g+δ)s +

∫ s

0

ge(g+δ)(σ−s)dσ)− ω(s))eg(s−t)ds

(7.21)

I(t) =I(0)e−(ν+g)t +

∫ t

0

a(E(0)e−(a+g)s +

∫ s

0

ω(σ)e(a+g)(σ−s)dσ)e(ν+g)(s−t)ds

(7.22)

Thus β(t) = ω(t)
S(t)I(t)

with S(t) and I(t) given in (7.15) and (7.16).

We now turn the above theorem into an algorithm to extract time-dependent

transmission rate β(t) numerically, using incidence data:

Step 1 Smoothly interpolate incidence data with a spline or trigonometric

function to generate a smooth ω(t) ( In fact, we only need ω(t) to be contin-

uous, not necessarily smooth).

Step 2 Let T be the whole period of data. Compute β(t) = ω(t)
S(t)I(t)

, for

t ∈ [0,T].

Because we have real incidence data, we test the latter algorithm using both

fake and real data. Firstly, we test the performance of the incidence algorithm

using fake data. As before, we use the function f(t) = 10−3[1.4+ cos(2πt/12)]

to generate the data. Figure 7.2 shows β(t) plotted against time using simu-

lated data. Our algorithm estimates the transmission rate perfectly well, using

this data.
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Figure 7.2: β(t) extracted from fake incidence data f(t) = 10−4[2.7 +
1.5sin(2πt/12)] with initial value S(0) = 0.25, E(0) = 0.0009, I(0) = 0.0001, A(0) =
0.7, and parameters ν = 52/12, a = 52/12, g = 1/16/12, δ = 1/64/12. (a) β(t) from
time 0 to 40.(b) β(t) from time 0 to 144.

Secondly, we use real incidence data from Liverpool and London given in

Figure 7.3 to test the efficiency of our prevalence algorithm.

Figure 7.4a shows β(t) extracted from pre-vaccination measles weekly no-

tification data of Liverpool from 1944 to 1966 using the prevalence algorithm.

There are more noises with the weekly data. This is because Liverpool is a

relatively smaller city compare to London. The population of Liverpool is less

then 1/10 that of London. Figure 7.4b plots modulus of Fourier transform of

β(t) in Liverpool. We observe two dominant peaks with frequencies 1/year

and 3/year.

Figure 7.5a illustrates β(t) extracted from post-vaccination measles weekly

notification data of London from 1944 to 1966 by the prevalence algorithm.

Figure 7.5b plots modulus of Fourier transform of β(t) in this city. As with
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Figure 7.3: Measles weekly notification data in Liverpool and London from 1944-
86.
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that in Liverpool, two dominant peaks with frequencies 1/year and 3/year are

observed.
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Figure 7.4: Time-dependent transmission rate β(t) of Liverpool from year 1944
to 1966 and the modulus of its Fourier transform. The parameters are δ =
1/64/52/week, a = 52/52/week, ν = 52/52/week, g = 1/16/52/week and initial
values S(0) = 0.2, E(0) = 0.001, I(0) = 0.001, A(0) = 0.78.
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(a) β(t) of London from 1944 to 1966
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Figure 7.5: Time-dependent transmission rate β(t) of London from year 1944
to 1966 and the modulus of its Fourier transform. The parameters used are δ =
1/64/52/week, a = 52/52/week, ν = 52/52/week, g = 1/16/52/week and initial
values S(0) = 0.2, E(0) = 0.001, I(0) = 0.001, A(0) = 0.78.

The 1/year peak is consistent with common belief that measles is driven by

seasonal factors such as environmental changes and immune system changes
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and the 3/year peak indicates the superiority of school contacts in driving

measles transmission over other seasonal factors and thus support authors in

[146, 149] that ignore other seasonal factors in determining the transmission

rate of measles. The 1/year frequency peak value is about twice the value

of the 3/year frequency for the Fourier transform of the transmission rate in

London, whereas there is no great difference in the peak values of the dominant

frequencies for that in Liverpool. This might be linked to the geographical

location of the two cities. Also, the dominant frequencies are robust with

respect to initial values. Moreover, the dominant frequencies in London have

less noise than those in Liverpool because the population of London is greater

than that of Liverpool and it is less sensitive to unexpected factors.

7.7 The SEIRA model with vaccination

In this section, we investigate the effect of vaccination on the SEIRA epidemic

model. Vaccination is the process by which a vaccine stimulates the immune

system of an individual to build immunity against a pathogen. Vaccination

can ameliorate both mortality and morbidity. The effectiveness of vaccination

has been widely studied and verified since the first work of Edward Jenner on

smallpox [151].

Different vaccination strategies are used to deal with different situations.

Pediatric vaccination is an efficient way in preventing dangerous human infec-

tious diseases. Much work has focused on the vaccination of newborn babies or

infants to reduce the prevalence of diseases like measles, mumps, and rubella.

Mathematical treatment of vaccination is straight forward and only needs a

243



single addition to the SEIRA model. Using p to denote the fraction of the

newborns that are successfully vaccinated, we obtain the following model:

dS(t)

dt
=δ(1− p)A(t)− β(t)S(t)I(t)− gS(t), (7.23)

dE(t)

dt
=β(t)S(t)I(t)− aE(t)− gE(t),

dI(t)

dt
=aE(t)− νI(t)− gI(t),

dR(t)

dt
=νI(t)− gR(t) + δpA(t),

dA(t)

dt
=g(S(t) + E(t) + I(t) +R(t))− δA(t).

However, it is not cost-effective to control rare infectious diseases by pedi-

atric vaccination. To this end, another vaccination policy, random vaccination

are conducted for rare infectious diseases or any potential outbreak. With this

policy, all unvaccinated susceptibles and not just newborns are vaccinated.

It is difficult for a disease to spread as long as the fraction of susceptibles

is kept low. Therefore, it is more reasonable that we should vaccinate less if

the fraction of susceptibles is lower, and vice-versa.

In sections 7.8 and 7.9 we assume that β is a constant and in Sections 7.10

and 7.11, it is considered to be a function of time.

7.8 Qualitative analysis

In this section, we list qualitative results such as positivity, boundedness, equi-

libria and their stability of system (7.23). The proofs of the theorems in this
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section are presented in Appendix.

Theorem 11. The compact set Γ = {(S,E, I, R,A): S ≥ 0, E ≥ 0, I ≥
0, R ≥ 0, A ≥ 0, S+E+I+R+A = 1} is positively invariant for the semiflow

generated by system (7.23).

Proof of Theorem 11. Using the same symbols as in the qualitative analysis

section before, we have that f1 = δ(1− p)y5 ≥ 0, f2 = βy1y3 ≥ 0, f3 = ay2 ≥
0, f4 = νy3 + δpy5 ≥ 0, f5 = g(y1 + y2 + y3 + y4) ≥ 0. Therefore the solution

to system (7.23) is positive for any positive initial values. Also, boundedness

property is the same as with the SEIRA model without vaccination analyze

above. Combining positivity and boundedness, we conclude that the solution

of (7.23) will stay in {(S,E, I, R,A): S ≥ 0, E ≥ 0, I ≥ 0, R ≥ 0, A ≥
0, S + E + I +R + A = 1} for any positive initial values.

Theorem 12. System (7.23) has two equilibria: the disease-free equilibrium

(S∗
1 , E∗

1 , I∗1 , R∗
1, A∗

1) = ( δ(1−p)
g+δ

, 0, 0, δp
g+δ

, g
g+δ

) and the endemic equilibrium

(S∗
2 , E∗

2 , I∗2 , R∗
2, A∗

2) =

(
(a+ g)(ν + g)

aβ
,

gδ(1− p)

(a+ g)(g + δ)
− g(ν + g)

aβ
,

agδ(1− p)

(a+ g)(g + δ)(ν + g)
− g

β
,

aνδ(1− p)

(a+ g)(g + δ)(ν + g)
− ν

β
+

δp

g + δ
,

g

g + δ
)

When aδ(1− p)β < (a+ g)(g + δ)(ν + g), the disease-free equilibrium is

locally asymptotically stable and the endemic equilibrium is not feasible ,and

when aδ(1 − p)β > (a + g)(g + δ)(ν + g), the endemic equilibrium is locally

asymptotically stable and the disease-free equilibrium is unstable.

Proof. Same as the proof of Theorem 8.
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The basic reproduction number is

R0 =
aβδ(1− p)

(a+ g)(g + δ)(ν + g)
.

It can be rewritten as

R0 =
β

ν + g
· a

a+ g
· δ

δ + g
· (1− p).

The first three terms have the same meanings as before. When considering

vaccination, the level of susceptibles will be ‘discounted’ by p× 100% because

vaccinated newborns are not susceptible.

7.9 Sensitivity analysis

In this section, we focus only on the sensitivity of the outbreak peak value, time

of outbreak peak, and steady state value of I(t), to the Vaccinated fraction p,

since we have discussed the sensitive indices of these quantities to the other

parameters of the model in one of the previous sections.

7.9.1 Sensitivity analysis of the outbreak peak value

Table 7.5 shows the sensitivity of the outbreak peak value to all the param-

eters of our model. Comparing sensitivity analysis of this model with that

of the previous model, we can see that the absolute value of sensitivity in-

dices respect to all parameters are smaller, but vaccination does not change

ranks of their importance. This is because, it is applied only to newborn ba-
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Parameter Sensitivity of peak
p -0.0137 Vaccinated fraction
δ 0.0137 Human birth Rate
β 0.8629 Transmission Rate
g -0.0152 Growth Rate
ν -1.3635 Removal Rate
a 0.5124 Rate at which exposed indi-

viduals become infective

Table 7.5: Sensitivity of the value of the outbreak peak to the parameters
with the parameter values p = 0.5, δ = 1/64/12/month, β = 150/month, g =
1/16/12/month, ν = 52/12/month, a = 52/12/month and initial values S(0) =
0.0998, E(0) = 0.0001, I(0) = 0.0001, R(0) = 0.11, A(0) = 0.79.

Parameter Sensitivity of the peak time
p 0.0056 Vaccinated fraction
δ -0.0056 Human birth Rate
β -1.1359 Transmission Rate
g 0.0071 Growth Rate
ν 0.5821 Removal Rate
a -0.4484 Rate at which exposed indi-

viduals become infective

Table 7.6: Sensitivity of the outbreak peak time to the parameters with parameter
values p = 0.5, δ = 1/64/12/month, β = 150/month, g = 1/16/12/month, ν =
52/12/month, a = 52/12/month and initial values S(0) = 0.0998, E(0) =
0.0001, I(0) = 0.0001, R(0) = 0.11, A(0) = 0.79.

bies, and newborns constitute only a very small proportion of the total child

population. The Vaccinated fraction p has a negative relationship with the

outbreak peak since more pediatric vaccination will result in less infectives.

subsectionSensitivity analysis of the outbreak peak time

From Table 7.6, we can see that the Vaccinated fraction p is the least

important to control in preventing outbreaks. This is because, the vaccination

here is pediatric vaccination and there are fewer newborns compare to all
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Parameter Sensitivity of I∗2 Description

p -1.4076 Vaccinated fraction
δ 1.1261 Death/Birth Rate
β 0.4077 Transmission Rate
g -0.1295 Growth Rate
ν -1.4061 Removal Rate
a 0.0017 Rate at which exposed indi-

viduals become infective

Table 7.7: Sensitivity of the endemic steady state to the parameters with parameter
values p = 0.5, δ = 1/64/12/month, β = 150/month, g = 1/16/12/month, ν =
52/12/month, a = 52/12/month.

children.

7.9.2 Sensitivity analysis of the endemic steady state

Table 7.7 shows that the Vaccinated fraction p has the greatest importance in

determining the endemic level of infectives. Long-term vaccination to newborn

babies will give immunity to most kids after many years, thus the Vaccinated

fraction p is critical in endemics. The negative relationship is because more

vaccination will reduce the fraction of susceptibles. Infectives will be less with

less susceptibles.
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7.10 Extracting the time dependent transmis-

sion rate β(t) from prevalence post vacci-

nation data

In this section, we derive the formula for β(t) from the SEIRA model with

vaccination based on prevalence data that can be used to construct an algo-

rithm for extracting transmission rate from post-vaccination prevalence data

as with β(t) that we constructed for pre-vaccination data. We will omit the

algorithm here as the steps of the algorithm are the same as when extracting

β(t) from prevalence pre-vaccination data.

Theorem 13. Suppose the epidemic is observed over the time interval [0, T ],

where t = 0 and t = T are respectively the start and end of observations, then

the time dependent transmission function β(t) for System (7.23) satisfying

(7.24),

My′′ + Py′′Qy + L = 0 (7.24)

where f(t) is a smooth positive function which matches the infection data

in the interval [0, T],
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y = β−1

H = f ′′(t) + (a+ 2g + ν)f ′(t) + (a+ g)(ν + g)f(t),

M = −(1− p)Hf 3,

N = 2(1− p)Hf 3,

P = (1− p)(2Hf ′f 2 − 2H ′f 3 − (2g + δ)Hf 3)− p′Hf 3,

Q = −(1− p)(H ′′f 3 −Hf ′′f 2 − 2H ′f ′f 2 + 2H(f ′)2f + (2g + δ)H ′f 3 − (2g + δ)Hf ′f 2

+ g(g + δ)Hf 3)− p′H ′f 3 + p′Hf ′f 2 − gp′Hf 3,

L = −(1− p)(H ′f 4 + (g + δ)Hf 4 − agδ(1− p)f 4)− p′Hf 4.

The formula for the coefficients seem quiet different from the previous ones.

In fact, the formula presented above combines the situation when 0 ≤ p < 1

and when p = 1. From the first equation of (7.23) we can see that when p = 1,

dS
dt

is independent of A(t). Thus we have the same behaviour as with an SEIR

model. We present formulae for both cases: p = 1 and 0 ≤ p < 1.

• when p(t)=1, we have

Pβ′ − Lβ2 −Qβ = 0

This is a Bernoulli equation. By letting y(t) = 1
β(t)

, the Bernoulli

equation can be rewritten as a first order linear differential equation
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Py′(t) +Qy(t) + L = 0 with

P = −Hf,

Q = −(H ′f −Hf ′ + gHf),

L = −Hf 2.

• when 0 ≤ p(t) < 1, we have Mβ′′β2+N(β′)2β+Pβ′β2−Lβ4−Qβ3 = 0

with

M = −Hf 3,

N = 2Hf 3,

P = 2Hf ′f 2 − 2H ′f 3 − (
p′

1− p
+ 2g + δ)Hf 3,

Q = −(H ′′f 3 −Hf ′′f 2 − 2H ′f ′f 2 + 2H(f ′)2f + (
p′

1− p
+ 2g + δ)H ′f 3

− (
p′

1− p
+ 2g + δ)Hf ′f 2 + g(

p′

1− p
+ g + δ)Hf 3),

L = −(H ′f 4 + (
p′

1− p
+ g + δ)Hf 4 − agδ(1− p)f 4).

We omit the proof of this theorem since it is similar to that of Theorem 3.

Same as before, the lack of post-vaccination prevalence data prevented us from

testing the algorithm with real data. But as can be seen from the experiment

with fake data demonstrated before, the prevalence algorithm works well.
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7.11 Extracting the time dependent transmis-

sion rate β(t) from incidence post vacci-

nation data

Here, we derive the formula for β(t) from the SEIRA model with vaccination

based on incidence data that can be used to construct an algorithm for extract-

ing transmission rate from post-vaccination incidence data as with β(t) that

we constructed for pre-vaccination data. As above, we will omit the algorithm

for extracting β(t) from post-vaccination incidence data as the steps of the al-

gorithm are the same as when extracting β(t) from incidence pre-vaccination

data.

Theorem 14. For the vaccinated SEIRA model with time-dependent vacci-

nated fraction p, the time-dependent transmission rate is β(t) = ω(t)
S(t)I(t)

where

S(t) and I(t) are

S(t) =S(0)e−gt +

∫ t

0

(δ(1− p(s))(A(0)e−(g+δ)s +

∫ s

0

ge(g+δ)(σ−s)dσ)− ω(s))eg(s−t)ds′

I(t) =I(0)e−(ν+g)t +

∫ t

0

a(E(0)e−(a+g)s +

∫ s

0

ω(σ)e(a+g)(σ−s)dσ)e(ν+g)(s−t)ds.

The only difference between this Theorem and Theorem 4, is the present

of 1− p(t) in the equation for I(t) above. We omit the proof of this theorem,

as it is almost identical to the proof of Theorem 4.

Since we have post-vaccination measles weekly notification data of Liver-

pool and London from 1974 to 1986 (see Figure 7.3), we use it to illustrate the

efficiency of this algorithm.
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Figure 7.6a presents β(t) extracted from post-vaccination measles weekly

notification data of Liverpool from year 1974 to 1986. Figure 7.6b plots

the modulus of Fourier transform of β(t) in Liverpool. Same as with pre-

vaccination incidence algorithm, we observe dominant peaks of 1/year and

3/year periods. Figure 7.7a illustrates β(t) extracted from post-vaccination

measles weekly notification data of London from year 1974 to 1986 by the

incidence algorithm. Figure 7.7b shows the modulus of Fourier transform of

β(t) in London. The modulus of the Fourier transform of β(t) in this city has

the same number of dominant spectral peaks all having the same periods like

that in the city of Liverpool before and after vaccination and in it prior to

vaccination.

1974 1976 1978 1980 1982 1984 1986
0

200

400

600

800

1000

1200

1400

β
(t)

Time(year)

(a) β(t) of Liverpool from 1974 to 1986

0 1 2 3 4 5 6
0

50

100

150

200

250

Frequency (per year)

S
pe

ct
ru

m

(b) Modulus of the Fourier transform of
β(t) in Liverpool from 1974 to 1986

Figure 7.6: Time-dependent transmission rate β(t) of Liverpool from year 1974
to 1986 and the modulus of its Fourier transform. The parameters are δ =
1/64/52/week, a = 52/52/week, ν = 52/52/week, g = 1/16/52/week and initial
values are S(0) = 0.25, E(0) = 0.001, I(0) = 0.001, A(0) = 0.7.
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Figure 7.7: Time-dependent transmission rate β(t) of London from year 1974
to 1985 and the modulus of its Fourier transform. The parameters are δ =
1/64/52/week, a = 52/52/week, ν = 52/52/week, g = 1/16/52/week and initial
values are S(0)=0.15, E(0)=1 e-05, I(0)=1 e-04, A(0)=0.7.

Although the dominant frequencies for pre-vaccination and post vaccina-

tion data from both cities are the same, the peak values are greater in the

pre-vaccination case.

For the same reason as with the pre-vaccination data, the dominant fre-

quencies in London have less noise than those in Liverpool. Also, as with

pre-vaccination data, there is no significant difference in the values of the

dominant frequencies in Liverpool as opposed to London where there is a no-

ticeable difference in the values. The fact that vaccination does not change the

dominant frequencies in both cities strengthens our belief that transmission of

measles is driven by school seasons as well as other seasonal factors. We find

the transmission cycles to be synchronized in different cities.
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7.12 Discussion

We present an efficient model with and without vaccination for childhood infec-

tious diseases. Our mathematical and numerical investigations have revealed

a number of biologically and mathematically significant results that provides

theoretical framework for public health interventions.

We conjecture that when R0 ≥ 1, the solutions of the SEIRA system

goes to the endemic equilibrium and when R0 < 1, they go to the disease-free

equilibrium. R0 =
aβδ(1−p)

(a+g)(g+δ)(ν+g)
is the basic reproduction number.

Sensitivity analysis proves the importance of quarantining patients to pre-

vent an epidemic outbreak. It reveals that birth and removal rate are the

most important factors in controlling the endemic level of patients which in-

dicts the importance of medication treatment. We equally find out from from

our sensitivity analysis that the transmission rate is one of the most important

parameter in controlling the endemic level of infectives, When an outbreak oc-

curs and the number of people that are infected in an outbreak.

We equally present algorithms to compute the time-dependent transmis-

sion rate from pre and post vaccination prevalence and incidence data. We

illustrate the efficiency of these algorithms using London and Liverpool measles

data. The extracted transmission rate functions have two dominant spectral

peaks with frequencies 1/year and 3/year. These dominant frequencies are

neither affected by vaccination nor the city in question. The 1/year dom-

inant frequency is consistent with common belief that measles is driven by

seasonal factors such as environmental changes and immune system changes

and the 3/year frequency indicates the superiority of school seasons in driving
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measles transmission over other seasonal factors. The 1 per year and the 3

per year peaks are comparable for both pre and post-vaccination data from

Liverpool, whereas the 1 per year peak is larger than the 3 per year peak for

both pre and post-vaccination data from London. This is because London is

a landlocked city and thus has large temperature variations which strongly

affect Paramyxovirus (measles virus) seasonality with subsequent influence on

its transmission. Weather variation thus is as important as school seasons in

modulating the transmission of Paramyxovirus when it comes to landlocked

cities. Liverpool on the other hand is a coastal city with stable temperature

and thus the main modulator of the transmission of Paramyxovirus for this

city was school seasons. The dominant frequencies in London have less noise

than those in Liverpool because the population of London is greater than that

of Liverpool and it is less sensitive to unexpected factors. The Matlab in built

function fft was used to compute the Fast Fourier Transforms (FFT) of the

data. The frequencies resolve by fft are 1
T
, 2

T
, 3

T
, . . . N

2T
, T = NΔt where N =

Sampled points, Δt sampling time interval. The first frequency is called the

dominant frequency and the last one is the Nyquist critical frequency. By tak-

ing the absolute value of the FFT we obtained the amplitude spectrum shown

in Figures (7.4b), (7.5b), (7.6b), and (7.7b).

Fine P.E. and Clarkson J.A. [145], estimated the transmission parameter

using the notification data from England and Wales from 1950-1979. To com-

pare our results to those of these authors, we equally apply our algorithm to

these data shown in Figure (7.8) The figure shows that the outbreaks within

this period were biennial in nature, with the magnitude of those in even num-

bered years higher than those in the odd numbered years.
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Figure 7.8: 1950-1966 weekly notification data for England and Wales.

Figure (7.9) shows the results obtained by applying our algorithm to these

data. As as in [145], the form of the transmission rate for odd and even num-

bered years’ outbreaks differ only in magnitude. This difference in magnitude

can be credited to the difference in the number of susceptibles available. Since

the trend is similar, to analyze our extracted transmission parameter, we con-

sider just the data for few outbreaks. The figure shows that the trend of the

transmission rate is similar to that of the notified measles cases in Figure (7.8).

English schools have three terms; Autumn, Spring and Summer. These terms

respectively runs from September to mid December (followed by two weeks

Christmas holidays), January to late March (followed by two weeks Easter

holidays) and March to mid July (followed by six weeks of Summer holidays).

Each term is divided into half by a half term break. The transmission param-

eter drops down whenever students were either on major holidays or midterm

breaks and begin rising immediately as soon as school resumes, reaching a

peak value sometime within the term. There are three main lengthy decline

and steep rise. The lengthy decline could be attributed to major school hol-
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idays and the steep rise to school openings after major school holidays. The

lowest incidence were reported during period when students were on summer

holidays. These support the assertion in [146, 149] that measles transmission

is mostly driven by school contacts.
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Figure 7.9: England and Wales time-dependent transmission rate β(t) from 1950
to 1952. The parameters are δ = 1/64/52/week, a = 52/52/week, ν = 52/52/week,
g = 1/16/52/week and initial values are S(0) = 0.2, E(0) = 0.003, I(0) = 0.003,
A(0) = 0.79.

We believe that our algorithms could be used to estimate the transmission

rate of another infectious childhood disease. The choice of the algorithm to

use depends on the available data and on weather or not vaccination has been

applied to a percentage of children in the region. For almost any type of

infectious diseases, the derivations of our prevalence and incidence formulas

can be applied with necessary modifications in disease transmission models.
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Chapter 8

Future directions

In designing our predictive model for methane emissions from oil sands tailings

ponds (Chapter 4) we assumed that tailings’ hydrocarbons are immediately

converted to greenhouse gasses by indigenous microbes after a lag period. The

population of the microbes was assumed to be homogenous. The lag period for

each organic compound in Chapter 4 accounts for the time it takes to complete

all the intermediate processes leading to methane generation. Biodegradation

in that sense is only the process that immediately leads to the generation of

methane. In general, biodegradation occurs through three main stages (see

Figure (8.1)). At the first stage, complex organic matter (CC) are hydrolyzed

by extracellular enzymes released from hydrolytic bacteria (B1) to relatively

simple, soluble organic matter (CS) that can be transported through the cell

membrane of a bacterium. Secondly, simple organic compounds are then fer-

mentedor oxidized to acetate CA with carbon dioxide and hydrogen (CH) as

by-products by either fermentative bacteria (B2) or homoacetogens (B3). At

this point, H2 and acetate can be utilized and/or produced by several homoace-
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Figure 8.1: General schematic biodegradation pathway of organic matter

togens. Finally for a complete biodegradation process, acetates are consumed

by acetoclastic methanogens B4 and H2 by hydrogenotrophic methanogens

producing methane and carbon dioxide as by-products. Thus with other as-

sumptions that lead to the predictive model unchanged, the general model

for the methane biogenesis from a single tailing hydrocarbon is given by the
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system of equations below:

dB1

dt
= μ1B1 min{f1(TN), g1(CC)} − d1B1

dCC

dt
=

−1

r1
μ1B1 min{f1(TN), g1(CC)}+ β1d1B1 + β2d2B2 + β3d3B3

+ β4d4B4 + β5d5B5 + C in
C

dCS

dt
=

1

r1
μ1B1 min{f1(TN), g1(CC)} − 1

r2
μ2B2 min{f2(TN), g2(Cs)}

− 1

r3
μ3B3 min{f3(TN), g3(Cs)}

dB2

dt
= μ2B2 min{f2(TN), g2(CS)} − d2B2 (8.1)

dB3

dt
= μ3B3 min{f3(TN), g3(CS)} − d3B3

dCA

dt
=

λ1

r2
μ2B2 min{f2(TN), g2(Cs)}+ 1

r3
μ3B3 min{f3(TN), g3(Cs)}

− 1

r4
μ4B4 min{f4(TN), g4(CA)}+ h1(CH , B3)− h2(CA, B3)

dB4

dt
= μ4B4 min{f4(TN), g4(CA)} − d4B4

dCH

dt
=

λ2

r2
μ2B2 min{f2(TN), g2(Cs)} − 1

r5
μ5B5 min{f5(TN), g5(CH)}

− h1(CH , B3) + h2(CA, B3)

dB5

dt
= μ5B5 min{f5(TN), g5(CH)} − d3B3

dG

dt
=

1

r4
μ4B4 min{f4(TN), g4(CA)}+ 1

r5
μ5B5 min{f5(TN), g5(CH)

CH4 = ηΓG

TN = T − θ1B1 − θ2B2 − θ3B3 − θ4B4 − θ5B5,

where the parameters and functions are defined in Table 8.1 and
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Parameter/function Definition

C in
C Constant inflow of CC μx Maximum growth rate of Bx

dx Per capita death rate of Bx

βx Fraction of Cx recycled from dead Bx

θx Nitrogen to carbon ratio of Bx

rx Scaling constant for Bx

TN total nitrogen available for bacteria

fx(TN) Nitrogen dependent Bx per capita growth rate

gx(Cy) Cy dependent Bx per capita growth rate function

h1(CH , B3) Model for the conversion of of CH to CA

h2(CA, B3) Model for the conversion of CA to CH

λx Interspecific interference coefficient for Bx

Γ expected CH4 yield of CC

η maximum theoretical yield of CH4

Table 8.1: Definition of the parameters of System (8.1)

0 < λi < 1, i = 1, 2, x = 1, . . . , 5, y = 1, . . . , 5, This can be generalized

to any number of biodegradable tailing pond’s hydrocarbons as in Chapter

4. We will analyze this model in the future and when data that quantify Bx,

become available, we will fit it to the model and compare the results to those

obtained in this thesis. Also, biodegradation is influenced by many factors such

as the temperature, pH and moisture content of the microbes. In Chapter 4,

assumptions were made to accommodate these factors. In the future, we will

study the sensitivity of the emitted greenhouse gasses to all these factors.
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The interaction between bacteria and algae in pelagic ecosystems is com-

plex [12]. Bacteria are nutrient-rich organisms whose growth can be easily

limited by nutrient supply and organic carbon produced by plants and algae,

which have highly flexible stoichiometry [25]. Suspended algae, also called

phytoplankton, grow in open water by taking up nutrients such as phosphorus

and nitrogen from the water and capturing energy from light. While algae are

an important source of dissolved organic carbon to bacteria, algae and bacteria

compete with each other for nutrient elements [21]. These complicated inter-

actions can be effectively modeled and explored by some simple yet powerful

stoichiometric constraints.

We are in the process of formulating a model that incorporates nutrient

cycling, energy flow, and the growth dependence on light and cellular nutrient

contents. The main objectives here are twofold: Firstly, to examine how

the key features of a stratified lake, such as the depths of epilimnion and

hypolimnion, nutrient and light availability, affect the persistence, extinction

and biodiversity of algae and bacteria in a stratified lake; Secondly, to discuss

how human activities, such as nearby agriculture or industrial pollution, cause

harmful algal blooms (HAB) in a stratified lake.

In a temperate deep lake, the water column is seasonally stratified by a

thermocline into two zones, epilimnion and hypolimnion. The epilimnion is the

upper zone which is warm with sufficient light and well mixed overnight. The

hypolimnion is the bottom colder zone, which is relatively dark, quiescent and

normally not mixed. As a consequence, the algal and bacterial densities are

homogeneous along the water column in the epilimnion but nonhomogeneous

in the hypolimnion. Species movements via turbulent mixing and gravitational
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sinking will be explicitly modeled with stoichiometric constraints. This novel

model is the hybrid of highly interconnected nonlinear partial and ordinary

differential equations.
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