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Abstract

W e have studied the effects of inhomogeneities like surfaces, interfaces and disorder 

on the properties o f s-wave and d-wave superconductors. The description o f such 

inhomogeneous scenarios is very important, as they have a big influence on experimental 

observations. Tunneling experiments on the surface o f superconductors will have a direct 

look into these peculiar surface states, like the zero bias conductance peak and the Andreev 

bound states.

Using the tight-binding Extended Hubbard Hamiltonian, we num erically solve the 

discretized Bogoliubov-de Gennes equations applied to various inhom ogeneous problems. 

W e use sim plifications due to the symmetries o f surfaces, to solve problems like 

superconductivity near a surface, the giant proximity effect and the form ation o f Andreev 

bound states. Full two-dim ensional calculations are em ployed to describe rough surfaces, 

finite size systems and the localization o f the Andreev bound states in finite size samples.

W e find that the order param eter near surfaces exhibits Friedel-like oscillations on the 

order o f the Fermi wavelength, and that interference effects occur in finite size systems. 

M ajor differences between the properties of d-wave superconductors near the (100) surface 

as compared to the (110) surface are uncovered. Zero energy bound states are present not 

only at the ( 110) surface o f a d-wave superconductor, but also in a normal metal layer 

sitting on top o f a d-wave superconductor. W e dem onstrate that rough surfaces o f d-wave 

superconductors will acquire zero energy bound states at any surface orientation. W e 

observe that Andreev bound states form in a normal m etal when it is in proximity to a 

superconductor, and we show that in the case o f finite size systems these states are 

localized in different locations depending on their energy.
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1

Chapter 1 

Introduction

Our knowledge about the existence o f superconductivity came into being in 1911 when 
Kamerlingh Onnes [1] discovered that the resistance of Hg drops sharply when cooled 
below 4K. Since then, superconductivity was observed in a large variety o f materials 
from simple elements to complex compounds. These materials can be grouped in sev­
eral types depending either on their properties or on the magnitude o f their critical tem­
perature.

One group holds the conventional superconductors, discovered early in the history 
o f the field, which have low critical temperature. We can list here simple elements like 
Hg (Tc = 4.2K), Pb (Tc = 7.2K), A1 (Tc -  1.17K), alloys like Nb3Ge (Tc =  23K) and 
the recently discovered M gB2 (Tc = 39K).

Another group holds the so called high-Tc superconductors (HTS). The first high- 
Tc superconductor developed was the La2- xBar,;Cu0 4 compound discovered in 1986 by 
Bednorz and M uller [2] and had a critical temperature o f around 36K. In a short period 
of time it became clear that ceramics based on the La2C u 0 4 insulating parent com­
pound, La2_.TA.TCu04 with A = Ba, Sr, Ca, exhibit superconductivity [3]. The critical 
temperature was subsequently increased with the development o f a multitude of layered 
pervoskite compounds having as a common building block the C u 0 2 planes. The HTS 
also include YBa2Cu30 7-,y (YBCO) with Tc =  90K [4], Bi2Sr2Ca2C u 0 8 (BSCCO) with 
Tc — 92K [5], Tl2Ba2Ca2Cu3Oio with Tc = 128K [6] and HgBa2Ca3Cu308+4 with the 
highest critical temperature , Tc = 138K, known so far [7],

Other known types of superconductors are the heavy fermion superconductors, like 
CeCu2Si2 [8], U B ei3 [9] and UPt3 [10], all with critical temperatures around IK, and 
the organic superconductors like (BEDT-TTF)2Cu(NCS)2 [11] with Tc =  10.4K.

All these superconductors have a common electronic property, which is the pairing 
o f electrons. The pairing can be between electrons with opposite spin and momenta for 
singlet superconductors (conventional and HTS) and same spin but opposite momenta 
for triplet superconductors (heavy fermion). In the conventional superconductors, the 
pairing is established to be due to interactions between electrons and phonons. Even

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 1. INTRODUCTION 2

though, in the last two decades, an impressive amount of research has been dedicated 
to the understanding o f the microscopic pairing mechanism in HTS, it is still being 
debated.

The superconducting state is a quantum mechanical coherent state, described by off- 
diagonal long range order [12]. From a thermodynamic point of view the transition from 
normal to superconducting state is a continuous phase transition. For superconductivity, 
the order param eter is defined by an anomalous average <  c^c-k i >, describing the 
pairing between electrons. A continuous phase transition is usually accompanied by a 
spontaneous symmetry breaking. For example, for a ferromagnet the order parameter is 
the spontaneous magnetization. Above the critical temperature, the spontaneous mag­
netization is zero, but upon cooling, the ferromagnet becomes m agnetized and loses the 
directional symmetries it had. The symmetry to be broken in a superconductor is the 
gauge symmetry. Below the critical temperature, the order parameter of the supercon­
ductor has the same phase throughout the entire sample. The ordered state is always less 
symmetric than the normal state.

Superconductivity is usually defined in the thermodynamic limit (infinite system), 
but questions regarding properties of real superconductors near interfaces, surfaces and 
impurities m ight arise. In our view inhomogeneities are defined by whatever breaks the 
translational symmetry in any or all directions. Inhomogeneous systems are those that 
contain surfaces, interfaces, impurities and disorder. There is also a growing interest 
in mesoscopic and nanoscale devices, as they promise great technological advances. 
Unfortunately, this field is still mostly limited to experimental manipulations. As the 
size o f the studied systems become smaller and smaller, the influence of the surface 
states is not negligible anymore. In the description o f superconducting nano-wires and 
dots, one is obliged to take in account the inhomogeneous character o f the system.

Inhomogeneities can have a strong effect on the experimental measurements. Some 
experiments might probe directly inhomogeneities, and thus it is im portant to be able to 
describe superconductivity in all these inhomogeneous scenarios and then subsequently 
to be able to explain the experimental results.

Several experimental techniques are well suited for probing surfaces and inhomo­
geneous systems. Among these techniques are transport measurements, and more ex­
actly tunneling experiments. It has been demonstrated [13,14] early in the field, that 
the d l /d V  characteristic will be a direct measure of the density o f states in the super­
conductor. Tunnelling experiments are an important tool mostly because they have a 
high energy resolution limited only by the thermal smearing and because they can de­
tect both occupied an unoccupied states around the Fermi surface. These experiments 
can be classified into different categories: scanning tunneling microscopy/spectroscopy 
(STM), thin-film junctions, grain boundary junctions, point contact junctions and break 
junctions. The most valuable tool is the scanning tunnelling microscope because it has 
atomic-scale resolution and is able to gather both spectroscopic and geometrical data 
from measurements on surfaces.
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CHAPTER 1. INTRODUCTION 3

One important difference between the conventional superconductors and the HTS 
is the symmetry o f the order parameter. The conventional superconductors have an 
isotropic s-wave order parameter, while the order parameter in the HTS is momentum 
dependent and has a d-wave symmetry. The determination o f the d-wave symmetry is 
a difficult task because standard methods, like the angle resolved photo emission spec­
troscopy (ARPES) or the measurement of the penetration depth, specific heat and of 
the thermal conductance, will only shine light on the magnitude o f the order parameter. 
Phase sensitive methods were developed in order to address the question. The d-wave 
symmetry of YBCO was demonstrated with the use o f tri-crystal HTS experiments [15]. 
In these experiments a scanning SQUID-system was used to show that flux quanta are 
half-integer in superconducting rings formed by three differently oriented HTS grains 
separated by grain boundary Josephson junctions. O f utmost importance in these ex­
periments was the phase dependence o f the order parameter and the peculiarities near a 
surface.

Opposite to s-wave superconductors, for which the orientation of the surface does 
not influence significantly the properties at the surface, the d-wave superconductors 
show dramatic changes in the local density o f states near the surface. The most im ­
portant feature is the appearance of a large zero bias conductance peak (ZBCP) at the 
(110) surface of a HTS [16-19]. The existence of the ZBCP was explained by the for­
mation of an Andreev state at the surface [20]. This is due to the change in sign o f the 
order param eter felt by a quasi-particle scattering on the surface. In addition to the ex­
istence of the ZBCP, some experiments also report that the ZBCP becomes split at low 
temperatures [21,22]. This feature is explained by specific surface properties, namely 
the appearance o f an induced extended s-wave component phase shifted by 7r / 2. The 
induced state is one in which time-reversal symmetry is broken [23-25].

Because there is a significant difference between the properties o f quasiparticles at 
the ( 100) and (110) interfaces of a d-wave superconductor, the ability to describe rough 
surfaces is also very important. In practice every surface is rough on a larger scale, 
usually the surface shows facets, sometimes of atomic sizes. A rough (100) surface will 
present regions with (110) orientation, and vice-versa. In addition, different step-like 
structures might appear, like the ones present in (210) or (220) surfaces. The presence 
of the ZBCP even for (100) surfaces [22,26,27] was an indication that rough surfaces 
are inevitable and that they have a significant influence on the surface states. In another 
experiment the roughness of a (110)-interface is varied by ion irradiation [28]. Surpris­
ingly the ZBCP broadens only weakly with increasing roughness, whereas its height is 
clearly reduced.

Josephson junctions in HTS can be obtained either from thin-film junctions or by 
using intrinsic junctions formed in a HTS sample, namely the grain boundary junc­
tions; a comprehensive review of grain boundary junctions has been published [29]. For 
Josephson junctions between unconventional superconductors, interesting effects were 
observed because o f the phase dependent order parameters [30,31]. Different orienta-
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CHAPTER 1. INTRODUCTION 4

tions of the superconductors will give rise to surprising effects. A review o f these effects 
is presented in several review articles [32,33].

Another class of inhomogeneities are the impurities either non-magnetic or mag­
netic. A review o f impurity induced states in superconductors can be found in a recent 
paper [34], The presence of impurities in conventional s-wave superconductors was 
shown not to influence the critical temperature if  their concentration is low. According 
to the Anderson theorem [35] superconductivity is robust in disordered conventional 
superconductors. Although this theorem applied mostly in the thermodynamic limit 
by considering averages over the impurity configurations, local variations o f the order 
parameter around impurities are observed. For superconductors with short coherence 
length, it has been found that Anderson’s theorem is actually violated [36-38].

The influence o f impurities in d-wave superconductors is more drastic, mainly be­
cause o f the scattering o f nodal quasi-particles on the impurities. It was initially pre­
dicted that strong non-magnetic and magnetic scatterers will produce localized bound 
states near the impurities [39-41]. This was observed directly in STM experiments on 
BSCCO surfaces doped with non-magnetic Zn impurities [42-44]. Strong ZBCP located 
near the Zn impurities are observed, giving an indication o f the Andreev scattering on 
the impurities and o f the d-wave nature o f the order parameter. Such ZBCP in the STM 
spectra is not observed for impurities in conventional superconductors [45].

Although STM experiments obtain local information about the superconducting state, 
a method was developed in order to link the real-space measurements with the momentum- 
space quantities. This was done by Fourier transforming the STM data. Around the 
impurities, the LDOS and the order parameter exhibit Friedel-like oscillations, and as 
the impurity concentration rises, these oscillations will interfere and thus create standing 
waves on the surface o f the superconductor. By Fourier transforming the STM spectra 
one can obtain momentum-space information about the scattering o f quasiparticles with 
the impurities. This was first done in STM experiments Be(0001) surfaces [46], and 
then extended to STM data on BSCCO surfaces [47-49].

Another important manifestation of inhomogeneities is the intrinsic disorder of the 
HTS compounds. Disorder is inevitable in HTS because they are complex materials 
with a large number o f atoms per unit lattice, with a high uncertainty in the location 
of the oxygen dopants. Granular superconductivity has been observed in recent STM 
experiments on underdoped BSCCO [50,51]. Regions with small superconducting gaps 
are embedded into regions with large gaps suggesting that the underdoped BSCCO is a 
mixture o f two electronic states. Furthermore, the configuration o f oxygen dopants has 
been observed to be correlated with the gap disorder configuration [52]. It is expected 
that such inhomogeneities are present in all HTS superconductors.

From a theoretical point of view, the methods needed to describe inhomogeneous 
superconductors need to be quantum mechanical and real-space methods. Among these 
methods are the Ginzburg-Landau equations, the Gorkov equations and their quasiclas- 
sical approximation and the Bogoliubov de Gennes equations.
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CHAPTER 1. INTRODUCTION 5

The earliest method used in the treatment of surfaces in superconductors is the 
Ginzburg Landau method [53]. This method arises from the fact that the superconduct­
ing transition is a continuous phase transition and the order param eter varies continu­
ously as a function o f temperature. Ginzburg and Landau introduced the order parameter 
as a macroscopic wave function, p  for the whole superconductor. They expanded the 
free energy around Tc in terms o f tpip*. In order to describe inhomogeneous systems, 
they considered the wave function to be space dependent. The Ginzburg-Landau equa­
tions are obtained by minimizing the free energy with respect to the order parameter. 
The main limitation o f this method is that it is valid only near the critical temperature. 
This method has been used widely to describe superconductivity near surfaces, and the 
superconducting proximity effect [54,55],

Soon after the Bardeen, Cooper, Schrieffer (BCS) solution for the conventional su­
perconductor was presented [56], Gor’kov developed a G reen’s function method which 
recovers not only the BCS solution, but also the Ginzburg Landau equations for temper­
atures near Tc [57,58]. Besides the usual electron G reen’s function he introduced the so 
called anomalous Green’s function which describes superconducting correlations. The 
Gor’kov equations are obtained from the equations of motion, ifnp = [p, H], along with 
a Hartree-Fock mean field factorization o f the interaction terms in the Hamiltonian. The 
G or’kov equations involving the Green’s functions are second order partial differential 
equations.

An important simplification of Gor’kov’s equations can be made if the superconduc­
tor is subjected to weak perturbations and the order parameter varies slowly in space and 
time. This approximation is known as the quasiclassical G reen’s function method and 
was developed for the superconducting state by Eilenberger [59-61]. The Eilenberger 
equations for the quasiclassical Green’s functions are simpler than the G or’kov ones, 
as they are only ordinary differential equations. An even simpler version is obtained 
in the case of dirty superconductors, namely the Usadel equations [62]. Unfortunately, 
the quasi-classical approximation is valid on scales greater than the zero temperature 
coherence length, £o, which must be assumed to be greater than the Fermi wavelength 
Ti/ p f - This is certainly true in conventional superconductors but not for HTS which have 
a very short coherence length, on the order of the lattice constant. In some scenarios, 
like the rough surface one, due to the formation of atomic size facets, the quasi-classical 
method is not available. Another difficulty in using the quasi-classical method is the 
fact that boundary conditions at surfaces and interfaces must be put in by hand, taken 
from microscopic calculations. This method has been widely applied to various inter­
face problems and is able to explain the general features o f surfaces and interfaces in 
superconductors.

The most powerful method, but also the most difficult to solve, is the direct usage of 
the Bogoliubov de Gennes (BdG) equations [63]. These equations are in fact equivalent 
to G or’kov’s equations but they are written for the wave function o f the system. By 
using a tight binding Hamiltonian, the equations are trivially discretized and ready to be
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CHAPTER 1. INTRODUCTION 6

used in numerical calculations. The discretization allows for rapid variations of the order 
parameter, and does not need special boundary conditions.The method used throughout 
this work is the discretized version of the BdG equations applied to finite size system 
and to surfaces with various orientations.

The remainder of the thesis is organized in the following manner:

Chapter 2
•  We start with the description of the extended Hubbard Hamiltonian and present 

the relevance o f this effective Hamiltonian to the high-Tc superconductors. Next 
we give an overview o f the homogeneous s-wave and d-wave superconductiv­
ity starting from the inhomogeneous real-space formulation o f superconductivity. 
We also introduce the self-consistent Bogoliubov de Gennes equations in the dis­
cretized matrix form and show how different physical quantities can be calculated 
in the inhomogeneous scenario.

Chapter 3
•  We describe the numerical methods used in order to solve the BdG equations. 

These include not only the simplifications introduced by various types o f surfaces 
(100, 110 and c-axis), but also a full calculation on two-dimensional systems. We 
also introduce a Recursion Method, which is very useful when large systems are 
considered.

Chapter 4
•  We present numerical results for various inhomogeneous problems. First we con­

sider the effect of surfaces (100 and 110) on both s-wave and d-wave superconduc­
tivity. A fundamental difference exists between these symmetries at the (110) sur­
face, where a Zero Bias Conductance Peak (ZBCP) is observed for d-wave super­
conductors. Rough surfaces and their influence on the formation o f the ZBCP are 
also considered. Next, driven by the experimental discovery of a “giant proximity 
effect”, we model a tri-layer comprised of strong/weak/strong superconductors 
and calculate the temperature dependence of the leaking distance in the middle 
layer and o f the Josephson critical current. Superconducting pockets in the mid­
dle layer are considered and the Josephson current is calculated self-consistently. 
Finally, we discuss the formation o f Andreev Bound States (ABS) in s-wave and 
d-wave superconductors. We consider various surface orientations and describe 
differences in the formation of the ABS at these surfaces. Finite size samples with 
a normal metal region embedded in a superconductor having different shapes are 
used in order to study the localization of the Andreev states.

Chapter 5
•  We conclude with a summary of our results and make suggestions for improve­

ments in future calculations.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



7

Chapter 2 

Theoretical aspects

2.1 The BCS model of superconductivity
M acroscopic quantum  phenomena such as superconductivity and superfuidity occur be­
cause o f the off-diagonal long range order [12]. The correlations are off-diagonal be­
cause of the non-zero anomalous averages like (cc) and (cV7). The fundamental concept 
behind superconductivity was first introduced by Cooper in 1956 [64]. Even before the 
appearance of the BCS solution [56,65], Cooper showed that two interacting electrons in 
the presence o f a filled Fermi sea will form a bound state. In contrast to the case o f two 
free electrons, the Cooper pair will be bound for any finite strength o f an attractive in­
teraction. Bardeen, Cooper and Schrieffer (BCS) showed that in such a state the pairing 
is between electrons o f opposite spin and momentum. The pair can form a singlet with 
total spin S  =  0 (in the conventional electron-phonon and the high-Tc superconductors) 
or a triplet with total spin S' =  1 (in 3He  and the heavy fermion superconductors). The 
order becomes long range when the pair-pair correlation function, (cltci | cj i 9 t ) ’ *s non" 
zero for \Ri — Rj\ —> oo. The pairs are correlated, and the order parameter A  =  (cc) 
has the same phase throughout the system. The system is in a macroscopic quantum 
coherent state.

Because the electrons are paired, the ground state wave function of a superconductor 
must be constructed from pairs of electrons. Considering N e/2  pairs with opposite 
momenta and spin, in the second quantization language the superconducting ground 
state wave-function can be constructed as:

=  I ]  • • • Y l  ^  • • • 2% / A  A :  1 • • • Clv /2 A Ne/J ° > .  (2-1)
kjsr/2

where |0) is the vacuum state and c ^  creates an electron with momentum k and spin 
| .  The term |cL1|cL fci J 0 )  will describe a state with two paired electrons. The wave- 
function (2.1), although easy to understand is difficult to use. The main progress in
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solving the problem  o f superconductivity was achieved when BCS introduced a slightly 
different wave-function:

I^bcs) = ]j[(Wfc + f̂cCfcTC-fcj)l0)- 
k

The normalization condition of the wave function | I’D.bcs)!2 
of uk and vk to obey a normalization relation:

K l 2 +  M 2 =  i .  (2.3)

The normal state wave function describing a filled Fermi sea will be recovered if:

uk =  0,vk = I f o r k  < kF 
uk = l , v k =  Of o r k  > kF

The main difference between these two wave functions is reflected in the number 
of electrons these wave functions describe. Equation (2.1) describes a superconducting 
state with N e/ 2 pairs of electrons, while equation (2.2) describes a state which contains 
all the possible number o f pairs from 0 to N e/2.

To see this, we need to calculate the average number of electrons in the BCS wave 
function which is given by:

N e = ()&bcs|A/1'I'bcs'} (2.4)

where N  is the number operator N  =  ]T)feo. n ka with n k(J =  c\acka which in the case 
of fermions is either 0 or 1. Substituting Eq. (2.2) in Eq. (2.4) the average number of 
electrons becomes:

We = ' £ ,2 \ v k \2. (2.5)
k

Fluctuations in the number of particles for the BCS wave function can be calculated 
using the number operator:

y /var(N e) -  0 V? -  N ?  ~  \ [ K -  (2.6)

Because in a typical material the number o f electrons is large N e ~ 1023, fluctuations
around the average number of electron are negligible. W ithin a grand canonical formu­
lation o f the theory, by imposing the average number of particles through the use of the 
chemical potential, we can use the BCS wave function (2.2) instead o f the fixed number 
of particles wave function (2.1). The absence o f large fluctuations prom oted BCS to the 
use of a mean-field formulation of superconductivity.

(2 .2)

=  1 constrains the values
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CHAPTER 2. THEORETICAL ASPECTS 9

The Hamiltonian used by BCS for describing pairing o f electrons in a solid was 
written in momentum space and has the following form:

where 14fe' is the pairing potential and in general is momentum dependent. This form 
is called the ’’reduced form” because the lowest energy states, corresponding to zero 
center of mass momentum of the pair, are considered. The electrons forming the pair 
have opposite momenta and spins.

The Hamiltonian used by BCS is an effective Hamiltonian describing quasiparti­
cle interactions in the context of a Fermi liquid. All normal state electron-electron 
interactions are incorporated in the fermionic quasiparticles. In conventional super­
conductors the origin o f the attractive interactions between the electrons is to be found 
in the electron-phonon interactions. A theory o f such interactions was first developed 
by Frohlich [66]. The phonon mediated interaction between electrons was shown to be 
attractive for energies smaller than the Debye energy, hup, which is much smaller than 
the Fermi energy. One o f the electrons pertaining to the pair polarizes the lattice while 
the second one feels an effective attraction due to the deformation o f the lattice.

High-Tc superconductors are complex materials with a large num ber of atoms in the 
unit cell. Although there exists a wide variety o f high-Tc superconductors with tran­
sition temperatures ranging from less than 40K  to above 130K ,  their main feature is 
the presence o f C u 0 2 planes. It is believed that superconductivity resides in the C u 0 2 
planes and that the symmetry of the order parameter should reflect the symmetry of 
the C u 0 2 planes (Figure 2.1). Details of the nature o f the pairing symmetry in high- 
Tc superconductors has been uncovered experimentally [15]. It is widely accepted that 
the superconducting order parameter has d-wave symmetry. Even though the exact mi­
croscopic pairing mechanism is not yet known, for the purpose of this work we are 
only interested in an effective theory, which describes real-space pairing and exhibits 
anisotropic pairing potentials.

In real space, the high-Tc superconductors can be modeled with the use of an effec­
tive Hamiltonian. Since the discovery of high-Tc superconductors, different variations 
of the Hubbard Hamiltonian have been used. In our study we will use the extended Hub­
bard Hamiltonian [67], which captures the main feature of such Hamiltonians, namely 
nearest neighbor interactions between electrons:

^  , k̂̂ kcr̂ kcr +  ^  jC—fcjT—fc'jTfc't (2.7)
kk'

2.2 The extended Hubbard Hamiltonian
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Opv Y 0 p

Figure 2.1: Square lattice formed in the Cu02  plane by the hybridization of Cu dx2 _ y 2 

orbitals and O px or py orbitals

where (i, j ) represent the nearest neighbors, and a, 3, a  represent the spin of the elec­
trons.

The first term in the Hamiltonian describes a free electronic gas on a lattice, tij is 
the hopping integral which defines the kinetic energy, p  is the chemical potential which 
sets the filling o f the system and & represents the energy o f an impurity at site i. Ef­
fective interactions between electrons are introduced in the last two terms. The on-site 
Hubbard (U) term  represents the interaction between two electrons with opposite spin 
sitting on the same site. The extended Hubbard Hamiltonian has an extra interaction 
term (V) which models effective nearest neighbor interactions. This Hamiltonian ef­
fectively describes electrons coupled with a bosonic field. Sim ilar to the conventional 
superconductors where electrons polarize the lattice, the electrons polarize the bosonic 
field, which in turn interacts with the electrons. This way the electrons might experi­
ence short-range attractive correlations which can in some cases overcome the repulsive 
Coulomb correlations.

The extended Hubbard Hamiltonian even though simple in its formulation is hard to 
describe in a full many-body theory. Usually the first approximation done is the Hartree- 
Fock mean-held decomposition. Following the mean-held prescription, a 2-body term, 
which contains 4 electron operators becomes, a 1-body term multiplied with a mean- 
held, which has to be calculated self-consistently. In the m ean-held approximation, 
an operator can be replaced by its average plus fluctuations around this average. For 
example, for superconducting correlations we have:

Q|Qj. (ciTc*i) (ciTc*i))> (2.9)
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where the second term is considered to be a fluctuation term  and second and higher 
orders are neglected.

For the on-site interaction, the mean-field decomposition gives:

ni]na  =  4 t cf l ( 4 icii) +  (ciTcfl)cl icii

+ 4t 4i (cfl ciT) + (cl| 4i )•CH‘cn 
- cnciMici-\) - (chcn)4iĉ  (2-10)

where (..) represents both a quantum average and a thermal average. The magnetic 
interactions are irrelevant in this study, we set (c^c^) =  0. The mean fields obtained 
for the on-site interactions are the superconducting order parameter, A°,

A* =  Ui{ci{ CjT), (2.11)

and a Hartree shift U ^ rtree, which will modify the chemical potential:

jjHartree =  (2.12)

The same procedure can be applied the nearest neighbor interaction:

n ic,njjS =  4 a Ci°‘ (4 & Ci4 )  "b (Cia Ci a ) Cjj3Cjl3

CL Cj/?(Cj/3C*a) d” {4aCl 4 CiPCia

~  CL Cj7?(C]/3Ci«) — (4aCjp)4pCia (2 -13)

For the non-local interaction term, we neglect magnetic interactions, (4 \cil) ~  and 
consider only singlet superconductivity, (Cja c,-a ) =  0.

We define the non-local mean-fields, the superconducting order parameters, Aj-j and 
A Ti,

A ll =  iCjT>, (2.14)

=  Y {Ci' Cii)' (2’15)

the Hartree shift which modifies the chemical potential, U?artree,

^Hartree = £  (2 .16)

where S are the nearest neighbors o f i, and the Fock shift which will modify the nearest 
neighbor hopping, U^°ck:

U?i°ck =  ^ ( c l c ja). (2.17)
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Using the above defined mean-fields the Hamiltonian can be written as a one-body 
Hamiltonian and will describe electrons moving in the potentials defined by the average 
interactions of the electron with the system:

H  = 5 ] [ - ^ - ^ ( / I - ^ ) ] 4 <Tc ^ + ^ ( A ic|TcJi + h .c . ) + J ] [ ( A y c ] i cltT+ A ]Jc ]Tc|i )+h.c.]
(ij)cr i {i j )

(2.18)
where =  t l} +  U?°ck and /j =  /i +  U ^ rtree +  UlVartree. Because our main goal is 
to describe superconductivity, from this point forward we will neglect the Hartree-Fock 
shifts, as they only modify the nearest-neighbor hopping and the chemical potential. 
These shifts will not affect the properties of the superconducting order parameters.

2.3 Homogeneous s-wave and d-wave superconductivity
Before considering an inhomogeneous system we are interested in exploring the proper­
ties of a homogeneous two dimensional electronic system with periodic boundary con­
ditions, modeled by the extended Hubbard Hamiltonian. The parameters in the Hamil­
tonian will now be independent o f position, ty  =  t, £, =  0, Ui =  U and VZJ =  V. By 
Fourier transforming all the spatial operators, the momentum space Hamiltonian can be 
written as (see Appendix A):

H  =  J 2 ( €k ~  + J j  J 2 ( AkCh c-H + h -c•). (2 -19)
her k

where

A*; =  — ^ 2  Vkvic-vicvi).  (2.20)
k'

with N  being the total number of lattice sites. The pairing potential parameter 14w is in 
general a function of momentum:

Viw — U +  V^k-k',  (2.21)

but for 2D lattices and Hamiltonians with nearest-neighbor terms, the pairing potential 
parameter can be separated into orthogonal components:

Vkk> =  U + —7fe7fc' +  —TjkVk' +  2U sin kxa sin k'xa + 2V  sin kya sin k'ya, (2.22)

where 7k = 2(cos kxa + cos kya) and rjk — 2(cos kxa — cos kya).
The Hamiltonian Eq. (2.19) can be diagonalized by using a canonical transformation 

introduced by Bogoliubov [68] and Valatin [69]. The transformation will substitute
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electron operators with fermion operators (7 ) that will describe the excitations of the 
superconductor:

cfct =  ullk]  +  vk'l-ki (2.23)

c-ki = < 7 -* 4  “  vk l \j  (2.24)

where uk and vk are complex numbers. The inverse transformation can be also written:

7fcT =  « fcCfcT -  vkJ_kl (2.25)

7-fcj. =  WfcC-fcj +  v j k] (2.26)

The canonical transformation will preserve the properties of the operators, meaning that 
the 7 -operators are fermionic operators and they obey the following anti-commutation 
relations:

{lq<rnl>a<} =  (2.27)
{lqo,lq'o'} = 0 , (2.28)

{7^ , 7^ }  =  0, (2.29)

A condition for uk and vk can be obtained if  we calculate the anti-commutator 
{7fct> 7fcf} =  1- Inserting Eq. (2.25) into Eq. (2.27) we obtain:

K | 2{cfcTi4t} +  \vk\2{c- k i , c l kl} = 1, (2.30)

and using once-again the fermionic anti-commutation relations the relation between uk 
and vk is:

K l 2 +  \vk\2 =  1. (2.31)

It is interesting to see how the 7 operators act on the BCS wave-function (2.2):

7*TICBC'S1) =  (WfcCfeT -  vkc*_H ) Y[{uk' +  vk'c\,Tc l fc/J_)|0)
k'

=  (ufcCfct -  Vkc l kl){uk +  Vkc \ ^ _ ki) ('Uy +  Ufc/cj^ct^lO )
k' j ik

= 0 (2.32)

and similarly

7-fcJ.I$ B C s )  = ( u k C - k l  + Ufcc[T) JJ(«fe' + ^*'4'TC-fc/j)|0)
k'

=  (ukC-kl +  v*.c|.T)(ufc +  vkc \ ^ _ ki) (uy  +  ^fc'4'Tc-fc/j)|0)
k'^k

=  0. (2.33)
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Because there are no excitations in the BCS ground state of the superconductor, meaning 
that all the electrons are paired, the 7  destruction operators acting on the ground state 
will give zero.

If we calculate the 7* creation operators we get:

7k ^ B C s )  =  K 4 t  -  v k C- k l )  + Vk' CU C- k ' l ) \ ° )
k>

=  K 4 t  “  v t c-k l)(u k  +  Ufc4Tcf_fci) J J  (uk, +  v*k,c l^ c lkll) |0)
k'^k

= 4T H ^ k ' + v k4 n c lkll)\0) (2.34)
k' j tk

and

7 l fcil$ s c s )  =  « 4 fci + v*kcki) J ~[(uk, +  vk,c{n c l kll)\0)
k'

= (utcU i + vk°kd(uk + «*4 A i )  n  + vk,ci ' ic-k>i)\°)
k'j ik

= c~ki Y l ( uk>+ ^fe '4 'rc-fc'f)i°)- (2-35)
k’^k

There will be two types of excitations, one given by 7^  which destroys a pair from the 
condensate and creates an electron with momentum k and spin | .  The second type of ex­
citations, given by 7l fcj, will also destroy a pair and create an electron with momentum 
—k and spin j .  In the superconducting state, the quasiparticles defined by Eq. (2.25)
and Eq. (2.26) will be mixture of electron-like operators (ckp ) and hole-like creation
operators (c_fcl).

Using the Bogoliubov-Valatin transformation (2.23)-(2.24), we can rewrite the Hamil­
tonian (2.19) in terms of quasiparticle operators and find a set of u k’s and v k’s for which 
the Hamiltonian is diagonal,

f t  =  ^ ^ ( ef c - M ) ( M 2 - k | 2)(7fcT7 f c t+ 7 l fcj7-fci) 
k

+  (A  kukvl  +  A*kulvk) ( j l ^ k1 +  7 l^ 7 -fc i)

+  [2(efc -  v)u*kv l -  v f A k +  u f  A£]7fcT7_fei

+  [2(efc -  n)ukvk -  v2kA*k +  «fcAfc]7 i fcl7^T. (2.36)

The Hamiltonian will become diagonal if the coefficients of 7/7 7-/7 and ^_kf i k  ̂ are set 
to zero:

2(efc -  n)ukvk -  v2kA*k +  u \A k =  0. (2.37)
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Dividing Eq. (2.37) by u\  we obtain an equation of order 2 in vk/u k:

A£ +  2(ek — fi) ( — \̂ +  Afe =  0. (2.38)
'U'k J \U*k J

The solution of this quadratic equation is given by:

^k \  Ek (ck /^)
U k )  A

(2.39)
k

where we have defined E k =  y/{ek ~  k )2 +  |Afc|2. Using the previous condition for uk 
and \uk\2 +  \vk\2 — 1, we can write down the solution:

lu‘|2 - K1+£irJ (2'40)
w <2-41)

Using these solutions, we can rewrite the k-space Hamiltonian (2.36):

H  = E° + 7f S  +  7lfci7-fcf). (2 -42)
k

where E q is the ground state energy. The Hamiltonian is now diagonal and describes 
quasiparticle excitations of superconductor. In the superconducting state, for which 
A k ^  0, the energies of the excitations are gapped. For a quasiparticle with momentum 
k, the lowest excitation energy will be | A^|. This will show up directly in the local 
density of states, which for s-wave superconductors has a momentum independent gap 
of size 2 |A 0| and which for d-wave superconductors is gapless.

The order param eter can also be written as a function of the quasiparticle operators. 
The Bogoliubov-Valatin transformations are to be inserted in Eq. (2.20) to give the k- 
dependent order parameter:

Afc =  Tr Vkk'U*k'Vk'( l  ~  (7fcq7fc't) -  (n-k'il-k 'i))  (2.43)
k'

where (..) are quantum mechanical averages at zero temperature or both quantum me­
chanical and thermal averages at finite temperature. The averages ('yk' i7 -k,i) and (^k^ j - k'i) 
vanish because of the fermionic nature of the quasiparticles.

A t T  =  0 the superconductor is in the ground state and there are no excited quasi­
particles. The two averages from Eq. (2.43) are zero, as the quasiparticle destruction
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CHAPTER 2. THEORETICAL ASPECTS 16

operators are acting directly on the ground state. In this case, the order parameter at­
tains the following form:

At finite temperature, quasiparticles will be excited and because they are fermionic par-

where f3 = 1/kT.  From Eq. (2.43), the order parameter at finite temperature has the 
form:

The “gap equation” (2.46), is a complex transcendental equation, as the order parameter 
appears in both sides o f the equality and is also contained in Ek. A solution to the gap 
equation can only be obtained numerically.

For the system considered here, a square lattice with nearest neighbor interactions, 
the order param eter can be decomposed into separable components. Similar to Eq. (2.22), 
the gap equation can be solved by using the following ansatz:

where Ao is the on-site s-wave component, A s is the extended s-wave component and 
Ad is the d-wave component; and rjq are defined below Eq. (2.22). Using the follow­
ing equalities:

k'

(2.44)

tides, the average of the quasiparticle number operator (7^ | 7fcq) will obey the Fermi 
statistics:

(7fcT7fct) =  f ( E k)
1

(2.45)e0Ek + i

^ k = jv  zL/ Vkk'Uk,Vk'{l — 2f(Ek>))
f c '

(2.46)

A q A() A s7g T" A dTjq (2.47)

0,
k

0,
fc
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the gap equation can be decomposed into three parts:

<2-48>

=  < w >A s

Ad

fe' K

,2^ - - <2-50>iV ^  4 2Ek,

Progress can be achieved further if the following relations are considered:

E > "  =  '2.51)

E
k
IkVk = 0. (2.52)

k
The gap equation now becomes:

A » =  - ^ E C ' t A n  +  A ^ ) 1 '2 .53)

a - =  (1 ~22i t!E t,> ' (2-54)k'

^  A  1 (2 551
A d  pf 1 ^  4  AdVv 2Ek/ •

y
The two different symmetries are now decoupled, the s-wave and d-wave components 
o f the order param eter do not mix in the uniform treatment o f the problem.

As shown in Figure 2.2, the momentum dependence of the order parameter differs 
for the s-wave as compared to the d-wave components. The on-site s-wave component 
is isotropic in momentum space while the extended s-wave com ponent alternates sign 
as a function o f the magnitude of the momentum. In contrast to the extended s-wave, 
the d-wave component alternates sign as a function of orientation in k-space. It has two 
node lines at \kx\ = \ky\ with the lobes pointing in the kx direction having negative 
values and the lobes in the ky direction having positive values.

The critical temperature of the superconducting transition, for which the order pa­
rameter vanishes, can be calculated using the gap equation. There will be different 
critical temperatures for the s-wave and the d-wave part of the order parameter. For the 
s-wave components the critical temperature can be found from a system of two equa­
tions:

UC\ — 1 UC2 \ / A o  
- C 2 7 C 3 - 1  \  A av v /~i 1 I I a I (2.56)7^2  4-V23
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Figure 2.2: k-dependence of the on-site s-wave and d-wave components of the order 
parameter

For the d-wave component the equation that gives the critical temperature is the 
following:

The temperature dependence of the order parameter (Figure 2.3) can be obtained 
by solving numerically the gap equation. For the mean-held BCS model the tempera­
ture dependence of the order parameter is universal in the weak coupling limit for each 
component. The ratio 2Ao/k Tc, where A 0 is the order param eter at T  = OK, is a 
constant in the weak coupling limit of the BCS theory. For s-wave superconductivity 
2Ao/kTc =  3.52 while for d-wave superconductivity the ratio is 2A 0/fcTc =  4.27 [70]. 
Experimentally, for most o f the conventional superconductors the ratio 2 Ao/ kTc is clus­
tered between 3.5 and 4.5 while the high-Tc superconductors have a ratio 2A o/kTc 5. 
This may be an indicative that most of the conventional superconductors are close to the 
weak-coupling regime, while the high-Tc superconductors may well be in the interme­
diate or strong-coupling regime.

Depending on the choice of pairing potentials, U and V,  different symmetries can 
be more favorable energetically [67,71]. For example if U <  0 and V  = 0, the dom­
inant component is the on-site s-wave component, while if  U >  0 and V  <  0, the 
d-wave component is dominant. The different symmetries o f the superconducting order 
parameters can be observed directly from the density of states.

Turning back to the momentum dependence o f the order param eter we will calculate 
the density o f states for both s-wave and d-wave type superconductors. The density of

where

with f Tc(x) =  l / {ex/kT'* +  1).

(2.57)
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Figure 2.3: Temperature dependence o f the d-wave order parameter
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Figure 2.4: The density of states for a superconductor with s-wave (right) and d-wave 
(left) symmetry

states is defined as:

N(E)  = ± Y , SI-E ~ E ^ (2.58)

If we consider a large number of k-points, and assume a constant density of states in 
the normal state N(0),  we can transform the summation over k into an integral over the
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energy:

N(E)  =  JV(0) J  ^ ( S ( E  -  ^ l  +  ^ l ) ) Ep (2.59)

where <  .. > e f  is an average over the Fermi sphere. Using the property of the delta- 
Dirac function, = J T  8(x — Xi)/f '(xi),  where Xi are the roots of f i x ) ,  the
density of states becomes:

An on-site s-wave order parameter is isotropic and does not have nodes, A  & =  A. 
This is reflected in the fact that excitations in an s-wave superconductor are gapped. The 
density o f states will exhibit a gap of size 2A around E  = 0. In contrast, the extended 
s-wave and the d-wave order parameters have lines of nodes (±kx =  ± k y). The nodal 
quasiparticles are not gapped, the d-wave density of states has a V-shape. Figure 2.4 
shows the density of states for both d-wave (left) and s-wave (right), obtained from 
Eq. (2.60). One can see that for low energies, only the nodal quasiparticles contribute, 
and the density o f states is linear with energy.

The main differences between physical properties o f s-wave (mainly conventional 
type) and d-wave (mainly high-Tc) superconductors arise from two disparate sets of 
properties. First because of the low temperature quasiparticle behavior; s-wave super­
conductors have gapped excitations while d-wave excitations are gapless. Secondly 
because o f the phase dependence o f the order parameter; s-wave superconductors have 
an isotropic order parameter, while d-wave superconductors have lines of nodes and 
regions in momentum space with both negative and positive amplitudes.

The presence of inhomogeneities, in the form of disorder, impurities, surfaces or inter­
faces, does not allow the use of k-space methods. The absence o f translational symme­
try requires a real-space method, with a real-space Hamiltonian. A  generalization of the 
BCS methods which considers spatial variations of the pairing potentials is needed in or­
der to describe inhomogeneous systems. Two such methods have been developed. First 
we have Gorkov’s method that uses the equation of motion for G reen’s functions [58] 
and secondly we have the self-consistent method developed by RG. de Gennes [63]. 
Throughout this work we will use the second method, as it is well suited for numerical 
calculations on lattices.

Our starting point is the mean-held extended Hubbard Hamiltonian, Eq. (2.18), 
which is a tight binding Hamiltonian, written in the second quantization language. It

(2.60)

2.4 The Bogoliubov de Gennes Equations
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models interacting electrons on a lattice, and it incorporates superconducting correla­
tions between electrons of opposite spins which reside either on the same site of the 
lattice or on nearest neighboring sites.

We are seeking to diagonalize the Hamiltonian by using a generalized Bogoliubov- 
Valatin canonical transformation:

where 7„j and 7„j_ are fermionic operators and uln and vln are complex numbers. Similar 
to the homogeneous case, the 7  operators are quasiparticle excitations o f the system. 
The anti-commutation relations of the electron operators will give normalization the 
orthogonalization conditions for K  and vln.

For example, from {c^.  c,:j } =  0 we get:

Operators on different sites of the lattice will anti-commute, giving rise to the following 
conditions for un and vn:

where E q is the ground state energy and en is the energy of the excitation of the super­
conductor.

Following the procedure presented in Appendix B the Bogoliubov-de Gennes equa- 
tions(BdG) are obtained:

=  - E ^ n + 5 - ^  +  ^ ) ^  +  A ^  +  E ^ - ^ V +X +' ( 2-68)

(2.61)
n

(2.62)
n

(2.63)
n

Similarly from { 0 ^ , 0 ^ }  = 1 we obtain:

(2.64)
n

(2.65)
n

(2 .66)
n

The diagonalized Hamiltonian will now take the form:

(2.67)

5 s

E  +  ^  +  ^ Vn + A l Ul  +  E  -  AK>»+‘ (2-69)
S s
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The previous equations can be written in a more compact way for all the lattice sites by 
using the matrix form of the BdG equations:

V  /
and the matrix components are the N  x N  matrices

- p - t i - t 0 0

01

°  ^
- t - n - 6  - t 0 0 0

0 —t 0 0 - t

0 0 0

0 0 - t - f l - t "i - t  0
—t 0 0 0

0 0 0 —t —M _  ^jv-i - t
0 0 - t 0 0 - t — 6 v 

(2.12

Ar A 12 0 0 A i nx+1 0 0

A 21 A 2 A 23 0 0 0

0 A 3 2 A 3 0 0 A n -N xN
0 0 0

0 0 A jf- 1 Aj A ji+ i 0

Nx~\~ 11 0 0 0

0 0 0 A //_ ijv -2 A Ajv_i N
0 0 AjV N-Nx 0 0 A jvjv-i A n

(2.73

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 2. THEORETICAL ASPECTS 23

The matrix (2.72) has on the diagonal the chemical potential // and the impurity 
potentials The off-diagonal lines correspond to the nearest neighbors o f each lattice 
site. Similarly in Eq. (2.73), on the diagonal we have the on-site component o f the order 
parameter and on the off-diagonals we have the nearest neighbors components of the 
order parameter.

The BdG equations, in the matrix form presented here, can be viewed as an eigen­
value problem. The eigenvalues of the matrix formed by Ho and A  will be the ener­
gies of the quasiparticle excitations of the system, em while the eigenvectors will be

the coherence coefficients ^  ^  ^ . Together, the eigenvalues en and the eigenvectors 

' will fully describe the system. Any physical observable can be calculated in
n

terms of the eigenvalues and eigenvectors o f the BdG matrix, as they are averages of the 
electron operators which can be written in terms of quasiparticle operators.

One important simplification is due to the existence of a particular symmetry of the 
BdG equations. If we multiply with —1 both Eq. (2.68) and Eq. (2.69), take the complex 
conjugate of them  and switch their order we obtain a new set o f equations:

?  ) ( " £  )  =  < - * • > (  " £  ) '  <Z74)

The symmetry will allow us to calculate only half of the energy spectrum, because we
un \  . . .  (  - v :  '

can interchange en with — en and ^  y  J  with ^  J  for the other half of the 

spectrum.
In addition to the completness conditions Eq. (2.63)-(2.66), other relations for the

coherence factors can be obtained from the BdG equations. If the result of the following
operation [(2.68 for < ) <  -  (2.68 for < , ) * < ]  +  [(2.69 for < ) <  -  (2.69 for vlm)*vln] 
is summed over all the lattice sites, we obtain:

(en - e m) J 2 « <  + « ) = ^  (2-75)
i

The energies en and em are eigenvalues of the BdG matrix, if they are non-degenerate , 
the previous equation becomes the orthogonalization condition:

J 2 ( «  + < V in)=Smn-  (2.76)
i

A different condition can be obtained if we sum the result of [(2.68 for uln)vlm —
(2.69 for vln)ulrJ  — [(2.68 for ulm)vln — (2.69 for v%m)ulr] over all lattice sites. The new 
orthogonalization condition is:

E « < - « )  = 0- (-2 J v
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For a superconductor at finite temperature, the quasiparticle operators 7  being fermionic 
operators will obey the Fermi statistics:

(TraaTm/t) =  ^nrn fn ; (2.78)
{ i n a l n f i )  =  0, (2.79)

where f n = 1/(1 +  exp (en/kT)) .
Once the eigenvalues and eigenvectors of the system are known we can calculate the 

self-consistent order parameters in terms of quasiparticle averages:

Â  Ui

= UiC^Wnlnl + <*7lT)(<7nT ~ 4*7^))
n n'

=  - ( / , ^ « ( l - 2 / „ ) .  (2.80)
n

The nearest-neighbor superconducting order parameter can be rewritten as:

A =  A iT -  A TiO ^ i] ^ 1 3

= A# + AjJ (2.81)

Substituting Eq. (2.61) and Eq. (2.62) into Eq. (2.81) the order param eter becomes:

Ay = _2_((ci|cjt) (ciicd))

= (2.82)
n

It is also possible to calculate the electron density for each site i, (m) =

W  = 2£ [ |< |V n  + |k |2( l -/„ )], (2.83)
n

the factor of 2 comes from the summation over the electron spins. The average electron 
density for the system will be:

<n > =  I E  E  i < i  + k p c 1 -  / « ) .  ( 2 -8 4 )
i n

Any solution of the BdG equation has to be obtained self-consistently by repeatedly 
finding the order parameter from the BdG matrix, which itself is to be formed from the 
calculated order parameters. M ajor simplifications are achieved if  we reintroduce trans­
lational symmetry along various directions. This will allow the description of surfaces 
while solving effective one-dimensional inhomogeneous problems.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



25

Chapter 3 

Numerical Methods

In the presence o f inhomogeneities, the absence o f translational symmetry requires the 
theory to be a real-space one. The solutions of the BdG equations are usually self- 
consistent solutions, leading to the impossibility of finding an analytical solution. In this 
chapter we will present three methods of solving the BdG equations. First we present the 
direct diagonalization method which is suitable for finite size systems, then we consider 
the easier case o f planar surfaces and in the end describe a powerful recursion method.

3.1 Direct diagonalization of finite size systems
The most general case, for which there are no translational symmetries is the most dif­
ficult to solve. We need to consider the whole system when solving the BdG equations. 
The BdG matrix containing Eq. (2.72) and Eq. (2.73) is a hermitian matrix but the hop­
ping amplitudes and the order parameters depend on position. Depending on the bound­
ary conditions and on the shape o f the system, the location o f the non-zero elements 
changes.

We choose to number the sites following the x  direction. For a square lattice of size 
Nx x Ny, the total size of the system is Ar =  NxNy. The index of a site i in the lattice 
will be i — ix + iyN x. For a square lattice (Figure 3.1) with the nearest neighbors of site 
i being at 8j = i — 1, 8f = i + 1 , 5f = i -  Nx and 5f = i +  Nx, where Nx is the dimension 
of the lattice in the x  direction, the non-zero elements are on the off-diagonals, 1 and 
N x elements away from the diagonal (see Eq. (2.72) and Eq. (2.73)). Open boundary 
conditions will require some of the sites to have less than four nearest neighbors. The 
sites on the corners will have two while the sites on the sides of the square will have 
three nearest neighbors.

Using the same notation we can also model a square lattice with 110-oriented open 
surfaces. This can be achieved if for even sites i the nearest neighbors are 5} — i —N x—1, 

— i — Nx, Sf = i +  N x — 1 and 5f =  i + N x and for odd sites i' the nearest neighbors
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are 6j, = i! — Nx, 5f, — i' -  N x + 1, Sf — i' + Nx + 1 and Sf — i' + N x. If  we add the 
boundary conditions we can construct a square with 110-oriented sides.

Nx+1

i-N x
i-1

i-f-l

i+Nx

N x-1 Nx

2Nx

Figure 3.1: Numbering and nearest neighbors for a square lattice

Similar to any mean-field theory, the solutions of the BdG equations are to be found 
self-consistently. The self-consistent procedure is the following:

(1) choose an initial configuration of order parameters in the lattice

(2) diagonalize the BdG matrix (which is a matrix of size 2NxN y x 2N xNy), and find 
its eigenvalues and eigenvectors

(3) calculate the order parameters A  j using Eq. (2.80) and A iy using Eq. (2.82)

(4) input the new order parameters in the BdG matrix

(5) repeat steps (2)-(4) until the relative difference between order parameters obtained 
for consecutive iterations is less than a desired convergence criterion:

|A "| - 1 a :71—1 I
<  e (3.1)

where n  is the iteration number and e is a small number; typically e — 10~5. A 
separate convergence check is to be calculated also for the phase o f the order pa­
rameters.

The numerical diagonalization is done using the LAPACK [72] expert driver ZHPEVX. 
The ZHPEVX subroutine diagonalizes complex hermitian matrices which are input in 
a packed format (only the upper or lower triangles are needed) and returns selected 
eigenvectors and eigenvalues. Because of a symmetric spectrum we find only half of the 
spectrum (negative eigenvalues).

Once we have the on-site, A u and the link , A,y , order parameters we can calculate 
the s-wave, d-wave and extended s-wave components. For the homogeneous case A f  = 
2A,j(cos kxa — cos kya) and A ey l~s =  2As(cos kxa + cos kya). Fourier transforming to
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real-space we observe that for the d-wave case, the link order parameters have opposite 
sign on the x  and y directions, A ±x =  —A±y. The link order parameters in the extended 
s-wave scenario are the same in all directions, A ±x =  A±y. Using these conditions we 
can define the d-wave order parameter for the real-space superconductor as:

Ad = ^ (A x +  A_a: - A y — A ^ y) (3.2)

and the extended s-wave order parameter as:

A s =  ^ (A x +  A _x +  A y +  A _y). (3.3)

In the present formulation one can define surfaces and interfaces by modifying the 
hopping amplitudes ttj and the pairing potentials Ui and V^. The behavior o f the order 
parameter at corners and near impurities can be easily investigated with a finite-size 2D 
lattice. Rough surfaces can be also modeled if we randomly place strong impurities near 
the surface. The presence of strong repulsive impurities is equivalent to vanishing hop­
ping amplitudes to the sites where the impurities are located. In Figure 3.2 a particular 
configuration o f impurities defines a rough surface which has a mixture of ( 110) and 
(210) surfaces. The presence of (110) surfaces in d-wave superconductors has a drastic 
effect on the properties o f the surface states. The so called “zero energy states" will 
appear for surfaces with such orientation.

M M M M M M M —i M M M M H I

Figure 3.2: Rough surface defined by strong impurities

The direct diagonalization, although useful when we consider finite size samples and 
rough surfaces without any translational symmetry, is limited by the huge memory and 
CPU requirements. The diagonalization becomes very intense computationally because 
we are seeking half of the spectrum. The number o f eigenvectors needed is equal to the 
size of the system (N  = N x x Ny ), half the size of the BdG matrix. Typical system sizes 
are on the order o f 60 x 60 lattice sites. The information about the system is obtained 
by brute force, all at once. We will see later that the way around this problem is the 
use o f a method which considers only the environment of a site, and which allows for 
independent calculations for each site.
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3.2 Planar Surfaces
The presence o f surfaces in the system recovers the translational symmetries in direc­
tions parallel to the surfaces. We can Fourier transform the Hamiltonian in the directions 
parallel to the surface and the inhomogeneous problem becomes a 1-dimensional one.

3.2.1 The (100) surface
The (100) surface is formed when one of the symmetry axes o f the square lattice is per­
pendicular to the surface and the other is parallel. Translational symmetry is recovered 
for the direction parallel to the surface. As shown in Figure 3.3 the order parameters 
and the hopping amplitude will depend only on the distance from the surface. We will 
have now two types of link order parameters, A-' for nearest neighbors in the direction 
parallel to the surface and A4i±1 in the direction perpendicular to the surface; the same 
can be said about the hopping amplitudes if and tjj.

a
3
3w3

y

1u
i-i

4

i

t'l

i+1 X

Figure 3.3: The (100) surface, effective ID  problem

Because o f the recovered translational symmetry, we can Fourier transform operators 
in the parallel spatial direction to k-space:

iy<r ~  N  °ixCr (A kv (3.4)

Plugging the transformation (3.4) into the mean-held Hamiltonian (2.18) we obtain:

H l °  =  -  ~  6i i l f 1 +  & +  2 t i c o s ( k y a ) ) } c L ( k y ) c j A k y )
ky < ij>0

+  +  2 A l i C 0 S ( k y a ) } c n ( k y ) 4 i ( - k y )  +  h -c•
ky i

+  Y 1 Y 1  lA i l ± c r t ( k y ) c l i ( ~ k y )  +  A Jj'1 s V _ ^ ) 4 r ( ^ ) ]  +  h -c -> (3-5)
ky <ij>

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. NUM ERICAL METHODS 29

where i and j  are now in the direction perpendicular to the surface.
The mean-field order parameters are to be calculated self-consistently, by using the 

Fourier transform in the parallel direction:

— AT ^  ] Uj <' C*i( ky)Ctf(ky) > ,
V hK y

=  T T  V i l <  cn ( - ky)cn ( ky) >  cos(kya),

A i U  =  cn ( - ky)cM ky) >>
iVy l. zK y

V+
<  C i f ( k y ) C j l (  —  k y )  > ,A t uy — yTV.. k ^K y

(3.6)

(3.7)

(3.8)

(3.9)

where A; is the s-wave order parameter, A | is the d-wave order param eter o f a link in 
the direction parallel to the surface and A “- is the d-wave order param eter of a link in 
the direction perpendicular to the surface.

Using the procedure presented in Chapter 2 the Hamiltonian is diagonalized by the 
canonical Bogoliubov-Valatin transformation:

cn ( ky) =  - ^ ( k y ^ i - k y ) }
n

Cii(-K) = Y l ^ ( ky ) ^ i ( - k y ) + v i*(ky)jl](ky)}.

(3.10)

(3.11)

where ^ ( k y )  and 7,4 (—/c,y) are quasiparticle operators corresponding to the quantum 
number n  in the direction perpendicular to the surface and momentum ky in the direction 
parallel to the surface. These operators obey the fermionic anti-commutation rules and 
the Fermi statistics. The BdG equations can be rewritten in the following form:

H«(k,)  A  {*,)
A ' ( k v) - H°{ky) J  V Vn(kt

where the BdG matrix is composed of

H ^ky)

!  Mi 

0

) -

<*b (  Un(ky) \
V Vn(ky) J  ’

n  =  1 ,.NX

—t 0 ...............  0 \
~Mi - t 0 0

- t -M i - t  0 :'

(3.12)

(3.13)
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with fii — n  +  & +  2t- cos kya, and

A  ( ky )  =

( A ' A o- 0 ••• 0 \
A 1-y A ' A,i 0 . . .  0

0

—1<1 A ' A 1-IJ 0 :

K ••• i )

(3.14)

with A^ =  A , +  2A | c o s  kya. The eigenvectors U(ky) and V(ky) have in this case Nx 
elements:

(  uln(kv) ^
* n ( k y

\ ,NX

and Vn(ky)

(ky) /

(  vi ( ki,) \  
vl(ky)

\  vn x(ky) J
(3.15)

The eigenvalue problem is decoupled for every momentum kv. The BdG inhomoge- 
neous problem is now a one-dimensional one, but which has to be solved N y times.

The order parameters contained in the BdG matrix components (3.13) and (3.14), 
can now be written in terms of the coherence factors. They are obtained from Eqs. (3.6) 
- (3.9) with the use o f the transformations (3.10) - (3.11):

A,; =
iV,U- E  E  U K ( k y)v»(ky)( 1 -  2f n{ky)),

I1 = — - 2 f n ( k y ) ) \ ,
1 y kv n

(3.16)

(3.17)

t  E  E  + <(M<(fcy))](1 -  2/„(<y ).(3.i8)
N y /k ? ^ J 2

Once again the BdG equations have to be solved self-consistently. The algorithm 
followed for obtaining the self-consistent order parameters for a planar ( 100) surface is 
similar to the direct diagonalization case:

(1) propose initial values for Aj, Ajj  and A.|'

(2) for every point ky in the momentum space, diagonalize the BdG matrix (3.12) and
f  U  ( k  ) \

obtain the eigenvalues en(ky) and eigenvalues ( y  ^ !  -̂ J

(3) recalculate the order parameters using Eqs. (3.16) - (3.18)

(4) input the new order parameters in the BdG matrix
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(5) repeat steps (2) - (4) until the relative difference between the order parameters (A*, 
a ! 1, Ajj) obtained for consecutive iterations is less than a desired convergence cri­
terion, typically 10-5 .

It is interesting to see for the non-interacting case (t/* =  Vtj — 0), how the local 
density of states differs for sites located near the surface as opposed to sites that are in 
the bulk. Figure 3.4 shows the local density of states for five locations in the lattice. 
Close to the surface, the Van Hove singularities disappear from  the local density of 
states. We can also observe an oscillatory behavior. This will show up in Friedel-like 
oscillations in the electron density. In the bulk the local density o f states recovers the 
homogeneous form for a square lattice.

0.4

0.2

Bulk

Site 7

/  Site 3 

Site 2 

Site 1 (surface)to/t

Figure 3.4: Local density of states in the non-interacting case, calculated at different 
distances from a 100 surface

The memory requirements of this method compared to the direct diagonalization are 
much smaller. We have to diagonalize only matrices o f size 2N x x  2NX, but we have to 
diagonalize them  Ny times. This is still less computationally intense than diagonalizing 
once a matrix of size 2NxN y x 2N xNy. Using this method we can model not only the 
( 100) surface but also (100) interfaces between a normal metal and a superconductor, or 
between a s-wave superconductor and a d-wave superconductor. For these scenarios, as 
shown in the next chapter, we can look at the Andreev bound states, the proximity effect 
and the Josephson effect.
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3.2.2 The (110) surface
The (110) oriented surface is of particular interest for d-wave superconductors. A dis­
tinct signature o f d-wave superconductivity is the Zero Bias Conductance Peak (ZBCP) 
observed at (110) interfaces. The mixture of d-wave and s-wave order parameters near 
the surface leads to interesting effect observed directly in STM experiments.

As shown in Figure 3.5, the (110) surface can be obtained from a regular square 
lattice rotated by 7r / 4. We need to consider cells which contain 2 type of sites. Type 
A  has only two nearest neighbors at the surface while site B  has four. The position of 
these sites can be written in terms of the lattice constant, R£  =  xa \p ix  +  ya\/2y  and 
R%y = (x +  l /2)a\ /2x + (y +  l / 2) a \ / 2y, where x  and y are the cell coordinates, i.e. 
integers.

x+lX—1
y-i

X

Figure 3.5: The 110 surface, effective ID  problem

If the boundary conditions in the y direction are periodic, the setup will describe 
a planar (110) surface. Translational symmetry is recovered along the surface. This 
will allow the use of the Fourier transform in the direction parallel to the surface. The 
transformation to k-space is presented in Appendix C. The Hamiltonian is written in 
terms o f two types of electron operators, corresponding to sites A and B, c£y and cfy. The 
planar problem is one dimensional in the perpendicular direction. For each momentum 
vector in the y direction, we have to solve a one dimensional inhomogeneous problem 
with the use o f the BdG equations. Using from Appendix C the transformed Hamiltonian 
(Eqs. (C.4), (C.6), (C.7) and (C.13) added together), we follow the procedure presented
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in Appendix B and obtain the BdG equations for planar (110) surfaces:

(  Hl{k) Hl{k)  A \ k )  A \ k )  \
nl (k)  Hi(k)  A \ k )  A \ k )
A t(k)  A 5 ( f c )  - n i ( k )  - n l ( k )

v  A t(k)  A t(k) - n i ( k )  - n t ( k )  )

(  UA(k) \  
V*(k)  
VnA(k )

V  VnB(k) J
en(k)

(  U*{k) \  
u*(k)
VnA(k)

\  VnB(k) /
(3.19)

where the component matrices are

(  - f t - £ o

n 10(k) = nt(k)  =
0

V o

o_/2rtn —

(  —2f cos (fca\/2/2) 

—21 cos [ka^ /2/2) 

0

0

-m - 6
o

0

0 \

0

o \

nj3 _ri0 —

V

-2tcos(kay/2/2) 

-2tco s (kay/2/2) 

0

-2tcos(ka\/2/2) —2tcos{ka\/2/2)
0 —2 tc o s{kay/2/2)

: 0

-2fcos(fca\/2/2) 0

0

and the off-diagonal matrices that hold the order parameters are

0 \

K ( k )  =

o /2no =

\

/  Af 0

0 Af
0

V o
Â a; 0

Ara—1 Axx
0 Axa:—1

0

0

0
0/45 rtQ

/  A 0B 

0

V  o

0

A f

0

0 \

o \

/

0 /3  _/To —

V  o

0 /

A^+ix 0
A 'X X Ax+lx

0

0 /

where A xx =  e ^ ^ A - ^ + A ^ ^ ) ,  A ra_! =  e - ika^ / 2A+B] Al+eika^ 2A ~ B_1̂ ,  A,xx =  e-iW 5/a(A+BT>U +  /^UBT) and A * .lx =
(see Appendix C).
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Following the procedure introduced for the (100) surface, we have to solve self- 
consistently the BdG equations for each momentum vector k:

( 1) guess an initial configuration for the order parameters, alternating signs for nearest 
neighbor order parameters will insure a d-wave solution to the BdG equation

(2) for each k diagonalize the BdG matrix (3.19) to find its eigenvalues and its eigen­
vectors

(3) recalculate the order parameters (see Appendix C) using the previously found eigen­
values and eigenvectors

(4) input the order parameters in the BdG matrix

(5) repeat steps (2) - (4) until the relative difference between the order parameters cal­
culated at consecutive iteration steps is less than a desired accuracy

Once the converged values for the nearest neighbor link order parameters are obtained, 
we are able to calculate the d-wave and extended s-wave components o f the order pa­
rameter. Rotating by 7t /4  the square lattice, the order parameters can be written as:

A d = i ( A f+i) +  A _4H, -  A - z + y -  A&-y) (3.20)

A s =  -(A ^+ g +  +  A_£+j) +  An-y)  (3.21)

For sites at the surface that do not have four nearest neighbors, for example site A  at the 
surface which has two nearest neighbors, the order parameter takes in account only the 
existing nearest neighbors; A d =  l /2 ( A i+ § — A i._.y).

The different properties of site types A  and B  come about because o f the different 
number o f nearest neighbors at the surface. This can be seen in the local density o f states, 
calculated for the non-interacting case. In Figure 3.6 and Figure 3.7 we plot the local 
density of states sites of type A and B, for different distances away from the surface 
for all submatrices A  in (3.19) set to zero (non-interacting case). At the surface, the
local density o f states is very different for the two types, while for sites away from the
surface, we recovers the local density of states for the homogeneous square lattice. This 
difference is observed also for the superconducting state. At half-filling, the appearance 
o f the zero energy states is observed only for sites o f type A. The planar (110) surface 
setup, allows us to calculate the order parameters and the LDOS at the surface, observe 
the formation o f the zero energy states and of the zero bias conductance peak. We can 
also define interfaces between normal-metal and d-wave superconductors or s-wave and 
d-wave superconductors by setting the pairing potentials to different values throughout 
the lattice. This will allow us to calculate self-consistently the proximity effect.
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\  /  Site 7 type A

Site 3 type A 

Site 2 type A 

Site 1 type A (surface)

Figure 3.6: Local density o f states in the non-interacting case for sites of type A, calcu­
lated at different distances from a (110) surface

\  /  Site 7 type B

yS  Site 3 type B 

/  Site 2 type B 

Site 1 type B (surface)

Figure 3.7: Local density o f states in the non-interacting case for sites o f type B, calcu­
lated at different distances from a ( 110) surface

3.2.3 C-axis surface
The c-axis geometry is o f interest in the case of high-Tc superconductors, as they are 
highly anisotropic in the direction perpendicular to the CuO  planes. It is widely ac­
cepted that superconductivity resides in the CuO, and that tunneling between planes
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occurs. If we consider coherent tunneling of electrons between planes, this will show 
up as a hopping term in the Hamiltonian. A mean field 3D Hamiltonian describing 
coupling between planes will have the same form as the previously defined mean-field 
Hamiltonian in Eq. (2.18) but the nearest neighbor order parameters are:

^  _  i A jf, if  i and j  are in the same CuO  plane
lJ 0, if i and j  are in different CuO  planes

(3.22)

tM A 11
'! A i

Figure 3.8: The c-axis surface, effective ID  problem

The c-axis planar surface allows us to Fourier transform along the x  and y directions 
(see Figure 3.8). The magnitude of the d-wave order parameter will depend on the 
distance from the surface, but the symmetry is the same throughout the lattice. The 
Fourier transformed Hamiltonian is:

^  =  N  N  ^   ̂ ^  1 ~ t i j c l a ( k x ,  k y ) c j a ( k x , k y )
X V K k y  < i j> °

v V E E f c *  “h cl t i (cos kxa +  cos ky)
kxky

JV.JV,
V E E i a  i +  2A j1 [cos{kxa] -  cos(kya)]}c\^{kx, k y ) ^ ^ ,  ky) +  h.c.,

where i and j  are now in the i  direction. We assume the d-wave symmetry in the CuO 
planes. This is achieved by considering the initial order parameters to have alternating 
sign in the x  direction compared to the y direction. The self-consistency in the order
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parameters is now given by the following equations:

A ;  TV ^   ̂ Ui (CjJ (kx j ^7/)QT ky) )  j

N *NV k k

A 1 J f J f  ^ 2  Vh ci[ikx , ky)c^(kx , kv))[cos(kxa) -  cos(kya)\,

(3.23)

(3.24)
* y & bn-x I'vy

where i is now taken to be the site index in the z  direction. A* is the on-site s-wave order 
parameter while A |' is the d-wave order parameter which has components only in the x 
and y directions.

Following the methodology introduced for the (100) surface, we introduce the Bo- 
goliubov - Valatin canonical transformation (Eq. (2.61) and Eq. (2.62)) of the electron 
operators for each point (kx,ky) in the momentum space. This transformation will diag­
onalize the Hamiltonian and one obtains the BdG equations for each pair of momentum 
vectors kx, k y:

Ho ( kx , ky) A  (kx , ky )

A  *(kx,ky) - H 0{kx,ky)
where

/Ho{kxiky)

U(kx,ky) \  _  , ,  U \ (  U(kx ,ky)
V(kx,k y ) V(kx,k y )

/  - M i  
- t

0

—t
-M 2
—t

0
- t

- M 3

V
with fa — y, +  +  2£; (cos kxa +  cos kya), and

( K  o
0 A:

A  (kx. ky

V  o

2 0 
0 Ag 

•• 0

-t  0

0 \

0 

1

o \

(3.25)

(3.26)

(3.27)

we
with A ' =  Aj +  2A^ (cos kxa — cos kya).

After we diagonalize the BdG matrix, and find the eigenvalues and eigenvectors r*  ̂
can calculate the self-consistent order parameters. At finite temperature, the quasipar­
ticle averages are given by the Fermi distribution. This leads to the following form for 
the order parameters:

A i =

a !1 =

- aT aT  £  £  kyX 1 - 2^  ky))>
x y kx,ky n

(3.28)
.y

1
w E E  V}'(cos kxa -  coskya)uln(kx,kv)v%*(kx,ky)( l -  2 fn(kx,ky)),

x y kx.ky n
(3.29)
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The numerical procedure is identical to the one used for the other surface types. 
We guess an initial configuration for the order parameters (A* and A *), with which we 
form the BdG matrix. The diagonalization of this matrix is perform ed for each pair of 
momentum vectors (kx,ky). With the use of the self-consistent relations (3.28) - (3.29) 
we calculate the new order parameters with which a new BdG matrix is constructed. 
This iteration is repeated until the relative difference o f the order parameters calculated 
for two consecutive iterations is less than a desired accuracy. The converged solution 
consists in a configuration of order parameters, given the pairing potentials and the c- 
axis surface.

0.15
Bulk0.1

Site 70.05

Site 3

Site 2

Site 1 (surface)
co/t

Figure 3.9: Local density o f states in the non-interacting case, calculated at different 
distances from the c-axis surface

For the non-interacting case, (7* =  0 and Vi =  0, the surface will represent the 
100 surface of a 3D cubic lattice. Only one numerical diagonalization is required for 
obtaining the eigenvalues and eigenvectors. Figure 3.9 shows the local density of states 
for sites at different distances from the surface. The oscillatory behavior is observed 
again, leading to Friedel like oscillations in the electron density. The known bulk density 
of states for cubic lattices is recovered for sites away from the surface.

3.3 The Recursive Method
Although easy to setup and implement, the direct diagonalization of the BdG matrix 
is very computationally intense. The memory requirements needed to store a complex 
matrix of size 2M  x 2M,  where M is the number o f sites in the lattice, increases dras­
tically with size of the system. The main difficulty in the diagonalization process is that
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we need half o f the eigenvalue spectrum and half of the eigenvector space. The number 
o f operations for such a diagonalization is on the order of M 3. The time required to 
diagonalize the BdG matrix will increase dramatically as we increase the systems size.

An alternative powerful method, well suited for real-space calculations was devel­
oped by R. Haydock [73-77]. The recursion method leads to the computation of the 
Green’s functions for each site in the lattice independently. The general definition of the 
Green function [78] is given by:

t > t' 
t ’ > t

(3.30)

where i and j  represent the spatial coordinates. From the equation o f motion for the 
Green function it follows that in frequency space it satisfies the following equation:

(E — H)Gij(E) — Sij (3.31)

there H  is the Hamiltonian of the system. W ritten in a matrix form Eq. (3.31) becomes:

( E l  -  H)G(E) = I,  (3.32)

where I  is the unit matrix. Eq. (3.32) shows that the matrix G(E)  can be viewed as the 
inverse of ( E l  — H).  Any components of the Green function can be calculated as:

Gij(E) — (i\(EI  — ,H)~1\j) (3.33)

where |i) represents an electron located at site i.
The Green function matrix contains a huge amount of information. It contains not 

only information about all the locations in the system but also information about how 
the system will behave at any energy. Our goal is to extract only information about a 
specific location in the lattice. This is done within the recursion method by using the fact 
that any matrix can be transformed into a tridiagonal matrix. The procedure is known as 
the Lanczos method [79].

The Lanczos tridiagonalization method consists in finding an orthonormal basis 
( |u „ )}  in which the matrix is tridiagonal. The recursive formula that gives this basis 
is the following:

'E\V"n) — un |,un) bn+i|,un4-i) -f- bn\un—i ), (3.34)

where the coefficients an and bn are the elements of the tridiagonal matrix H:

\

(3.35)

/  «0 b\ 0 0 0 0 0
bi ax bi 0 0 0 0

0 bi 0 0 0

0 0 0 0
0 0 0 bn bn+1 0

• •  /
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The coefficients an and bn can be obtained from the orthogonality and orthonormal­
ity conditions o f the basis vectors ( |u n)}. Applying [un | on the left o f Eq. (3.34), an 
can be directly obtained:

an -  (un\H\un) (3.36)

M ultiplying Eq. (3.34) on the left with 6*+1(un+1|, the following relation is true:

|6„ + i |2 =  b*n+1(un+1\H\un)
= (fu,n\'bO'bi\un) u.n (,un |?Y|un) bn (un—i |7"(|wn)
=  \'H\un)\2 -  \an\2 -  \b„ (3.37)

The new vector in the iteration is now obtained if we consider the orthonormality of the 
basis:

|r^n+l) T (^ l^ n )  — ^n|^n) ^nj^ro—l)) (3.38)
Un+1

The starting vector in the iteration |u0) will be the location where we want to calculate 
the Green function:

©e1 bi 0 0 0 0 0 •
"  ^bi E  — a\ b2 0 0 0 0 •

0 b2 0 0 0 •

0 0 0 0 •
0 0 0 bn E  -  an bn+1 0 •

\  : • •• /

- l

Goo (E) — (u0\ ' |u0).

(3.39)
Calculating the inverse of the tridiagonal matrix is very computationally intense, but 
because we want only the (0,0) component of the inverse, this can be done analytically. 
If  D  is the determinant of the full matrix and Dn is the determinant o f the matrix with 
the first n  lines and columns deleted, the element G 00 can be calculated by using the 
cofactor formulation of the inverse:

DoGoo(E) =
D

(3.40)

We can write an iterative relation for calculating Dn:

E  CLn  ^ro+1 0  0
bn+1 E  Un-fi bn .̂ 2 0

0 bn+2 • • ■. 0
D

E  Q>n+1 r̂a+2 0 bn+i bn+2 0 • • •
(E  -  an) bn+2 0 bn+1 0 E  — a„_|_2 bn+3 0
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E  — an+i bn+2 0 E  CLn+2 ^n+3 D

(E  -  an) bn+2 0 ~ b l +1 bn+3 0

which can be written in a more compact way,

Dn = (E — an)Dn+1 — b„+1Dn + 2 (3.41)

If we use Eq. (3.41) repeatedly in Eq. (3.40), the Green function can be written as a 
continued fraction:

Goo(E) = ----------------------------------- ------ ------------  (3.42)

E - a o -  b\--------------------------- -----------
E - a x - b \ ------------------ -

E  — (22 — b\ —

Once the Green function is known, physical properties can be calculated. For ex­
ample, the local density of states can be extracted from the imaginary part of the Green 
function calculated at E  + iS, where <5 is a small number:

Ni(E) = ——ImGa(E + iS) (3.43)
7T

The eigenvalues of the system could be extracted from the zeros o f the Green function, 
but this procedure might not be as stable as calculating physical properties, which are 
averages over all the eigenvalues. The local density of states is the sum o f delta functions
located at the eigenvalues o f the system, but modulated by the eigenvectors relevant to
that location. The recursion procedure extracts only information pertaining to a desired 
location.

The Lanczos iteration generates a chain o f vectors \un), and can be seen as the 
diffusion o f the initial vector |uo) through the lattice. Hopping from one vector to the 
nearest neighbor is given by the recursion relation. In Figure 3.10 we show the evolution 
of the |un) vectors as a function of iteration, for a starting vector near the intersection of 
two surfaces. The presence of the surfaces is contained within the Hamiltonian, sites at 
the surface have only three nearest neighbors. As the iteration progresses, the Lanczos 
vectors reflect at the interface, giving rise to a specific chain of parameters an and bn. In 
Figure 3.11, the starting vector is in the bulk of the system, and does not interact with 
any surfaces. The color distribution in the previous two graphs represents the amplitude 
of the wave function \un(i)\2 at that site. The sequence of parameters an and bn will be 
different from the previous case. It is also important to note that \un) at any iteration is 
orthogonal with all the previous vectors.
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1 st iteration 6th iteration 11th iteration

■. ..

16th iteration 21st iteration 26th iteration

Figure 3.10: \un(i)\2 as a function of iteration for a 2D lattice, near a com er

1st iteration 6th iteration 11th iteration

16th iteration 21st iteration 26th iteration

t o
J  5 »  5 5 a wJS t’-V  -*JVSV* y W -V lw • * -*5 A •

' *  K - '

Figure 3.11: |un (i) |2 as a function of iteration for a 2D lattice, in the bulk
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2

0.2
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_i

co/t
0
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Iteration

Figure 3.12: bn coefficients for a site at the surface o f a 2D lattice, and the corresponding 
LDOS

2

0.4

0.3

0.21
_i

0
0 10 20 30 40 50

Iteration

Figure 3.13: bn coefficients for a site in the bulk of a 2D lattice, and the corresponding 
LDOS
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The sequence o f parameters bn will determine the form of the Green function. Fig­
ure 3.12 shows the coefficients bn as a function of iteration for a site located at the 100 
surface of a 2D lattice, and the corresponding local density of states. For a semi-infinite 
system, the coefficients stabilize to a constant value. A  different sequence bn is obtained 
if the starting vector in the iteration is located in the bulk of a 2D lattice. We recover 
the homogeneous density of states for an infinite system. Again the coefficients are ob­
served to stabilize after a number of iterations. This will allow us to model semi-infinite 
and infinite system only by looking at a few number o f iterations at the beginning o f the 
sequence and then extrapolating the rest o f the sequence.

100
Iteration

200

Figure 3.14: bn coefficients for a site at the surface of a 40a x 400a 2D lattice, and the 
corresponding LDOS

W hen calculating the Green function for a finite size system, one needs to consider 
a much larger number of iterations. The interaction with the surfaces will show up in 
the local density o f states as interference effects from surfaces. This can be observed 
in Figure 3.14. Deviations from the infinite system appear for iterations larger than the 
size o f the system in a particular direction. The peaks in the local density of states will 
appear for energies related to the quantized energies obtained for a ID  chain of size 40a.

The recursion method was extended to the description o f the superconducting state 
[80-83]. In the presence of superconducting correlations, a new Green function has to 
be considered. In addition to the regular Green function, the anomalous Green function 
is introduced [58]:

t > t '
l ( c; i ( O cq(0)>  ? > t

(3.44)
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At this point it is useful to consider the Nambu formalism [84]. In this formulation the 
wave function has two components, the electron with spin up and the hole part with spin 
down:

< ?,=  ( ! ) ,  c )  =  (cj, <*). (3.45)
-ii

The Gorkov Green function will be a 2 x  2 matrix:

i
= - -(TCiCj)  

=  (  - s ( T c n 4 )  - U T cn cji)

The energy dependent Green function will be:

.  /  Gj}(E) Gjf(E)
ij[ } V

Gij(E) Fij(E) 
F*j(E) - G ^ E ) (3.46)

The Hamiltonian o f the system can also be written in the Nambu formalism as a 
2 x 2  matrix [85]:

^  Aj i I ' ^ ^ ‘I i \  '** (  ^ij Ai j

" ) n><ji (3-47)

where ( |i )}  represent the site basis. A relation similar to Eq. (3.32) can be written in the 
superconducting state. The resulting equations are known as the Gorkov’s equations:

( E l  -  H)G(E)  =  / ,  (3.48)

where the Green function matrix is N  x N  matrix but each element is a block 2 x 2  
matrix. The solution of Eq. (3.48) can be written formally:

G(E) = (EI  - H ) - \  (3.49)

The same tridiagonalization procedure can be applied, but in this case the matrix E I —H  
will be block tridiagonal. The basis in which the Hamiltonian is tridiagonal, {({/,„)}, is 
itself a basis o f 2 x 2 vectors, which in terms of the basis |i) is:

(  un- u12 \
K )  =  v 2 2  H>- (3.50)\  ni n i /

The Lanczos iterative procedure of finding the basis { |u„)} is the following:

F \ V ’n ) — \'^ 'n + \}^ n + l ”1” l)^n (3.51)
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where the coefficients an and bn are 2 x 2  matrices, and they are the elements of the 
tridiagonal form of the Hamiltonian

/ fio bi 0 0 0 0 0
ax i>2 0 0 0 0

0 % 0 0 0

0 0 0 0 0
0 0 0 bl bn+ 1 0

\

V

(3.52)

/

At any iteration step, an can be found directly by applying (un \ to the left o f Eq. (3.51) 
and using the orthonormality between the vectors in the basis ((un\um) = 6 mn):

an =  {un\H\un)- (3.53)

The coefficients bn+\ are found by applying En+l (un+i | to the left o f Eq. (3.51):

=  (Unffi'H\un) -  al{un\H\un) -  b^Un^ilHlUn)
=  {un\'H^'H\\un) ~  ojjdn -  blfin. (3.54)

As shown by Eq. (3.54), only the absolute value squared of bn has a definite value. The
sign o f bn is not well defined, it can be chosen so that b̂ 1 = —b^.  Because the initial
vector corresponding to a site | i )  is

|«o) =
1 0 
0 1 l*)> (3.55)

the coefficient bn will remain diagonal. Once the coefficients of the Lanczos iteration 
are calculated, we can write down the local Green function at \u0):

Goo(E) = (uo\(EI -  H)tD\uq) (3.56)

where the subscript T D  refers to the tridiagonal form. The local Green function can 
now be written in a continued fraction form:

Goo(E) = ( E - a o -  b\{E - a , -  t>l(E bl(■ ■ ■ )b,31 1^2) (3.57)

As an example Figure 3.15 shows the real and imaginary parts of the regular Green 
function Gu(E + i 8 ) for a site 3 lattice spacings away from a surface. Figure 3.16 shows 
the real and imaginary parts of the anomalous Green function for the same location. The
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size of the whole system considered in these plots is 200a x 200a and the location where 
we seek the Green functions is (ix =  3, iy — 100).

The Green function in the superconducting state contains not only information about 
the local density of states, but also information about the order parameter. Until now, we 
were able to calculate only diagonal elements of the Green function, namely Gqq(E). 
Off-diagonal elements are needed when the nearest neighbor order parameter is desired. 
These elements can be calculated by doing four Lanczos iterations. If we define the 
following vectors:

| + r ) =  | i )  +  | j ) ,

I ~ r )  =  |*) -  |j),
| + i) = \ i )+i \ j ) ,
| - i )  = |i) - i \ j ) ,

the real and imaginary parts of the off-diagonal Green function Gij (E)  will be

R e 0 y ( £ )  _  ( + r | G ( £ ) |  +  r ) - ( - r | 0 ( £ ) | - r > j  0 J g )

lmGij(E)  =  ( + i |g ( E ) |  +  i > -  (~ » | g ( g ) [  ~  a> ( 3 . 5 9 )

The local density o f states and the on-site s-wave order parameters will be calculated 
from the diagonal components of the Green function:

Ni(E) = — Im G\}{E +  iS), (3.60)
7r

=  (3.61)
n

while the nearest neighbor order parameters are calculated from the off-diagonal Green 
function:

A »j =  - | E  e ^ G V j ^ ) .  (3.62)
n

where ujn = ir(2n +  1 )/(3 are the Matsubara frequencies. Because the correct order 
parameter configuration throughout the lattice is usually not known, one has to solve 
the problem self-consistently. If we input in the Hamiltonian an initial configuration of 
order parameters, we* can start a recursion chain for each site and calculate the new order 
parameters. W ith the new order parameters one can form the new Hamiltonian and start 
new recursion chains. This loop continues until the order parameters are converged, the 
relative difference of order parameters between two steps is less than a desired accuracy.

The recursion method has several important benefits. First, because the Hamiltonian 
is a sparse matrix, we only need to store the non-zero elements. The sparse format will
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also decrease substantially time required to perform matrix-vector products like H\un). 
Secondly, because each Lanczos recursion is independent, the process is trivially paral- 
lelizable. We can start in parallel a Lanczos iteration for each site. At the end we gather 
the results in the Hamiltonian and new parallel iterations are spawned. In principle only 
three vectors are stored at any time ( |u n+i), \un) and |m„_i)), reducing drastically the 
memory requirements o f the numerical computations. The numerics are done using the 
PETSc [86] package which can be easily incorporated into a C++ code. With the use of 
PETSc it is straightforward to setup sparse matrices on multiple processors to compute 
matrix-vector multiplications in parallel through the use of MPI.

One o f the drawbacks of the recursion method is that it is somewhat unstable. In 
exact arithmetics, the tridiagonalization procedure is exact, meaning that all the vectors 
|un) are orthogonal to each other. W hen calculations are done on a computer, due to 
roundoff errors, after a number of iterations basis vectors start to lose orthogonality. 
This instability can be resolved either with full re-orthogonalization of all vectors in the 
basis [87], selective orthogonalization [88] or partial orthogonalization [89].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. NUM ERICAL METHODS 49

4
lm(G )

2

0

•2

■4

2 4■4 ■2 0

Figure 3.15: Real and imaginary parts of Gjl(E  +  iS), here 6 — 0.005 and A  — —0.4

u

R e(G ^)
lm(G ) ...............

J

-4 -2 0 2 4

Figure 3.16: Real and imaginary parts of G\f(E  +  id), here 6 = 0.005 and A  =  —0.4

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



50

Chapter 4 

Applications

4.1 Superconductivity near surfaces and corners
The characterization of superconductivity near surfaces and com ers is considered by 
using the numerical methods presented in the previous chapter. Surface states can have 
a significant influence on measurements probing the surface in a direct manner. We first 
consider planar surfaces in the (100) and (110) orientations, and then a two-dimensional 
finite system is used for calculating the behavior o f the order param eter near comers.

4.1.1 Planar (100) and (110) surfaces
Superconductivity near the (100) surface

In the (100) geometry translational symmetry is broken in the direction perpendicular 
to the surface. In Chapter 3.2.1 we presented a way of retaining the inhomogeneous 
problem  perpendicular to the surface, by Fourier transforming the electron operators 
only in the direction parallel to the surface. This will reduce the initial problem to a 
one dimensional inhomogeneous one, for each momentum vector k^. Huge benefits are 
seen in numerical calculations because we are able to describe large enough systems and 
obtain a very good energy resolution for the local density of states (LDOS).

Superconductivity near the (100) surface in considered for both s-wave and d-wave 
symmetries o f the order parameter. Boundary conditions are set by assuming that at the 
interface with vacuum, electrons cannot leave the system and thus the corresponding 
hopping term is set to zero. Self-consistent calculations involve numerical diagonal- 
izations for the effective one-dimensional problem, but their number is equal to the 
momentum states considered in the parallel direction.

For an s-wave superconductor at the (100) surface, the order parameter is observed 
to oscillate near the surface Figure 4.1. The oscillations remind one o f Friedel oscilla­
tions observed when the electron wave function is perturbed near an impurity [90]. In
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a normal metal the impurity is screened and the long-range oscillations in the screen­
ing charge arise from the sharp Fermi surface, because it is not possible to construct a 
smooth function (the electron density) out of a restricted set o f wave vectors k >  kp.  It 
was shown that around a non-magnetic impurity in a conventional superconductor os­
cillations in the order parameter and electron density are present [91]. The long-range 
behavior o f these oscillations has the form x~3cos(2kpx)exp(—k F x A/ E p ) .  W hen the 
coherence length is large, the x - 3 behavior is dominant, while if  the coherence length 
is small the long-range behavior is dominated by the exponential decay. The supercon­
ducting coherence length can be seen here as a “healing” distance, the distance within 
which the order parameter recovers its bulk value. The coherence length is observed 
to increase with decreasing pairing potential, and also with the decrease of the chemi­
cal potential. The electron density also oscillated in the same manner near the surface 
Figure 4.2. Low chemical potential values will provide larger coherence lengths.

A superconducting gap develops in the LDOS for all locations in the superconductor. 
Figure 4.3 shows the LDOS for sites situated at various distances from the surface, for 
U = — 3t and ji = 0. Oscillations in the LDOS are observed as we move away from the 
surface, hinting to the Friedel-like oscillations in the electron density. Figure 4.4 shows 
the LDOS for U = —31 and p — —t. Similar behavior is obtained, the superconducting 
gap is super-imposed on the normal state LDOS. The coherence peaks at E  — ± A  are 
seen throughout the system. In the bulk, the LDOS is also developing the Van Hove 
singularity near the band edge, specific to a 2D nearest-neighbor tight binding system.

For d-wave superconductivity near the (100) surface, the same methodology is ap­
plied. The link order parameter A y in the direction parallel to the surface will now 
behave like an on-site order parameter, but multiplied with cos k^a, while the order pa­
rameter in the direction perpendicular to the surface remains a nearest-neighbor type 
order parameter.

Following the procedure presented in the previous chapter, we perform  self-consistent 
calculations o f the order parameter near a (100) surface for various values of the pairing 
potential V  and o f the chemical potential p . The results are summarized in Figure 4.5. 
We plot both the d-wave and the extended s-wave components o f the order parameter. 
Again, oscillations are observed, both in the order parameter profile and in the electron 
density. The d-wave order parameter is observed to be suppressed at the surface, thus 
inducing an extended s-wave component only near the surface. The rapid oscillations of 
the order parameter show that quasi-classical methods applied to this problem will fail 
to give a correct answer.

In Figure 4.6 and Figure 4.7 we plot the LDOS for different locations near the surface 
for two values of the chemical potential, p = —t and p  =  0. The V-shape of the LDOS 
near the Fermi surface is observed only for sites far away from the surface, situated in 
the bulk. Near the surface the shape o f the LDOS oscillates, and the number of peaks is 
directly related to the distance from the surface. The site located directly at the surface 
i = 1 does not show any oscillation, and the coherence peaks located at 2A  disappear. It
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is interesting to observe that for the second site located at i =  2 the LDOS has a U shape 
and does not resemble a d-wave LDOS. Away from half-filling {/i =  0), we observe that 
the LDOS becomes asymmetric, showing the breakdown of the particle-hole symmetry. 
States with the lowest LDOS are observed at the Fermi surface, thus in the (100) surface 
no zero bias conductance peak is observed.
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Superconductivity near the 110 surface

Interesting behavior near the (110) surface has been reported experimentally in tunnel­
ing experiments [2 1 ,2 8 ,9 2 ,9 3 ] and has been predicted theoretically [18 ,20 ,94-98]. 
Although the same principle used for the (100) surface can be also applied here, the 
geometry o f the (110) surface, complicates the calculation. The smallest unit needed to 
create a (110) surface is now formed by two adjacent sites, which will have different 
properties. We call them the A  and B  type. The methodology of Fourier transforming 
the (110) surface was presented in a previous chapter (3.2.2),and allows us to describe 
the surface in terms o f a one dimensional problem.

For the d-wave superconductor near the (110) surface we calculate self-consistently 
the order parameter. In Figure 4.8, we present the d-wave and extended s-wave compo­
nents of the order parameter for various choices of pairing potentials V  and chemical po­
tentials f t . In contrast to the (100) surface, the order parameter varies smoothly near the 
surface, in concordance with the quasi-classical results. The “healing*1 distance defines 
once again the coherence length in the superconductor and has an inverse proportional 
relation with the pairing potential, and thus with the order parameter. Also, for a fixed 
pairing potential, the coherence length increases with decreasing chemical potential. In 
these calculations, the coherence length is observed to be greater that 5 lattice spacings.

A peculiarity observed only for d-wave superconductors near the (110) surface, is the 
appearance of an extended s-wave component near the surface phase shifted from the d- 
wave component by 7t/2. It is important to note that this s-wave component is induced 
only at the surface, and that the magnitude of the s-wave com ponent is dependent on 
both V  and /j . The order parameter near the surface is in the form, d +  is. Previous 
considerations o f this scenario [24,25] came to the conclusion that the existence of the 
imaginary s-wave components is equivalent to a state in which time-reversal symmetry 
is broken, thus spontaneous current form near the surface.

As in the (100) case, we set out to calculate the LDOS for various sites near the 
surface. The LDOS for sites near the surface, for a choice of parameters V  =  —2.5f and 
ji = —t is presented in Figure 4.9. W hen compared to the (100) case, we can imme­
diately observe the differences. A strong peak for zero energy develops at the surface. 
In tunneling experiments this is seen for zero bias, hence the name Zero Bias Conduc­
tance Peak (ZBCP). The height of the peak vanishes rapidly in the superconductor, and 
is completely absent for the B-type sites. The existence of the ZBCP has been predicted 
theoretically [20,97], and is in direct relation to the formation o f a bound state at the 
surface. The bound state forms when electrons specularly reflected at the (110) surface 
encounter an alternating sign order parameter upon two consecutive Andreev reflections. 
We will investigate further the formation of Andreev bound states in normal metal thin 
layers in contact with a superconductor in a subsequent section. It is important to note 
that the Andreev bound state is localized near the surface, thus any experimental probe 
of the surface will see completely different behavior for the (110) surface as compared
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to the (100) one.
An even more interesting phenomenon happens when the system is not at half-filling. 

In Figure 4.10, we plot the LDOS for sites near the (110) surface, for V  = —2.51 and 
fi — —t. The previously observed ZBCP is now split and it is observed both for sites 
of the A and B. Again, the height of the peaks goes down rapidly for sites inside the 
superconductor. In order to investigate further the splitting o f the ZBCP, we plot in Fig­
ure 4.11, the LDOS at the surface site for various choices of order parameters and chem­
ical potentials. In the upper graph, as the pairing potential increases, from V  =  — 1.5f 
to V  = —2.51, the splitting of the ZBCP appears and increases with increasing V.  In 
the lower graph, the splitting is observed to decrease as the chemical potential increases 
from |U =  — t to /ii = 0. There is a direct correlation between the magnitude of the imag­
inary extended s-wave component and the amount o f splitting. The Andreev bound state 
is doubly degenerate because states with momenta parallel to the surface but pointing in 
the opposite direction, have the same energy. The existence of a broken time-reversal 
symmetry state, which induces spontaneous currents at the surface, will break the de­
generacy of the Andreev bound states, and thus the ZBCP is split. A  similar scenario is 
obtained in magnetic field. Increasing the magnetic field will generate surface currents 
and thus lift the degeneracy of the Andreev bound states.
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4.1.2 Rough surfaces
The existence o f rough surfaces in experimental setups is inevitable. Usually the rough­
ness is present at surfaces as faceting; small regions with differently oriented surfaces 
appear. Having in mind the huge difference between the surface properties of (100) 
and (110) for d-wave superconductors, one expects rough surfaces to show interest­
ing behavior. This is seen in fact experimentally where (100) oriented surfaces show 
ZBCP [22,26,27] and (110) ion irradiated surfaces show a depression in the ZBCP [28]. 
This suggests that a mixture of (100) and (110) oriented regions is the correct way to 
think about a rough surface.

Using the two-dimensional method of fully diagonalizing the BdG matrix, we set 
out to investigate the influence of roughness on the LDOS near the surface, for a d-wave 
superconductors.

First we consider the (100) surface. We form a system of size 50a x 30a, and consider 
a rough surface on the x  direction by randomly inserting strong impurities (£, =  lOOt) at 
the surface. Since the impurity potentials are high compared to the hopping amplitude, 
quasiparticles will not reside on those impurities, and thus a rough surface is formed. 
There is randomness not only in the location o f the impurities but also in the depth 
at which the impurities penetrate. Facets will form, some of them  resembling the (110) 
geometry. For these locations we expect to see ZBCP forming. The equivalence between 
strong impurities and a surface has been previously considered [38].

The problem  is solved self-consistently for a d-wave scenario. In Figure 4.12 we 
show the LDOS for a fixed impurity configuration, with V  =  — 3t and /j =  0. Fig­
ure 4.12a shows the electron density; sites where impurities are present have zero elec­
tron density (shown in white), and define the rough surface. In Figure 4.12b we show the 
map of the LDOS for E  =  0; the ZBCPs are observed where the LDOS is peaked, near 
the rough surface. We observe that facets on the order of one lattice spacing generates 
the strongest ZBCP. This can be seen in Figure 4 .12c, where we plot the LDOS for three 
different locations on the surface of the superconductor at x = 15 ,25,34. Near site 15, 
the formation o f a ZBCP is not favorable, while near sites 25 and 34, multiple facets are 
present, thus Andreev bound states form when quasiparticles specularly reflect on the 
boundary in the respective region.

An even rougher surface is considered in Figure 4.13. As shown in Figure 4.13a, 
up to three impurities can randomly appear at the surface, creating diverse facets with 
different shapes. The LDOS map for E  = 0 is shown in Figure 4.13b. The density of 
the ZBCP is much higher than in the previous case, as there are step-like regions where 
the orientation is almost (110). This can be seen in the region next to x = 25 where 
strong ZBCPs form. In Figure 4.13c we show the LDOS for few sites, and observe that 
there is a wide range of LDOS shapes, from (100)-like to (1 10)-like.

A similar procedure can be applied to the (110) surface, if  we consider a square 
40a x  40a lattice and put strong impurities on the diagonal in order to form a (110)
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surface. Randomness in this surface is obtained by randomly inserting impurities on the 
off diagonals. Regions with facets o f size 2 x 2  will form along the diagonal.

Again this is solved self-consistently using the full diagonalization method for the 
40a x  40a lattice. In Figure 4 .14a we show the electron density for a random configura­
tion with V  =  —31 and // =  —t. Figure 4.14b shows the LDOS map for E  — 0. Regions 
where the (110) geometry is retained show strong ZBCP, while the regions where impu­
rities are located, and 2 x 2  facets appear, are devoid of any ZBCP. LDOS for selected 
locations on the lattice are shown in Figure 4.14c. The region around x = 24, y = 25 
shows a LDOS with strong ZBCP, while the region around x — 34, y — 35 has a LDOS 
looking more like the one obtained in the (100) geometry.

In some tunneling experiments (like planar tunneling junctions), we can only mea­
sure spatial averaged LDOS. In order to see how a rough surface will manifest in such 
experiments we average over a number of configurations, and over the surface o f the su­
perconductor. The results are shown in Figure 4.15, where we plot the averaged LDOS 
for various amounts of roughness at the (100) surface (top graph) and at the (110) sur­
face (bottom graph). The amount of roughness is given by p, the probability to put 
an impurity at the surface. The main results is that, as we increase the roughness, a 
ZBCP appears at the (100) surface and increases in height with increased roughness. At 
the same time at the (110) surface, increased roughness will decrease the height of the 
ZBCP peak. This is the exact behavior observed in various tunneling experiments.
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Figure 4.12: The 100 rough surface - a) electron density, b) LDOS map for E  = 0, c) 
LDOS for selected locations; V  =  —2.51, /i =  0
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Figure 4.13: The 100 rough surface - a) electron density, b) LDOS map for E  = 0, c) 
LDOS for selected locations; V  =  —2.51, /x — 0
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Figure 4.14: The 110 rough surface - a) electron density, b) LDOS map for E  =  0, c) 
LDOS for selected locations; V = — 2.5t, fi — 0
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Figure 4.15: Averaged LDOS at the (100) surface for different roughness degrees
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Figure 4.16: Averaged LDOS at the (110) surface for different roughness degrees
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4.1.3 Finite systems
So far we have considered infinite surfaces for both s-wave and d-wave symmetries of 
the order parameter. The most general 2D inhomogeneous case is the one for which the 
translational symmetry is broken in any direction. This is certainly the case for a square 
system. Similar work has been previously done [90,99].

We solve the self-consistent BdG equations for square samples for s-wave and d- 
wave superconductors. We focus our attention first on the s-wave system. In Figure 4.17, 
we show the on-site s-wave order parameter for U = —1.51, V  =  0, fi =  — t and 
T  =  O.OOlt. First o f all it is important to note that the order param eter oscillates near 
the surface. M uch like the infinite surface case, Friedel-like oscillations appear near 
the surfaces. For this low value of the pairing potential, the coherence length in the 
superconductor is large. Interference effects from the 4 surfaces with the vacuum are 
observed, making the oscillations near the comers more pronounced. For this choice of 
parameters, the order parameter is enhanced at the surface. For the same configuration, 
we plot in Figure 4.18 the electron density. Again, the same Friedel oscillations are 
observed, along with interesting interference effects near the corners. Right at the com er 
the electron density is suppressed. If we change the chemical potential to n  =  0, the 
order param eter is shown in Figure 4.19. The overall oscillations are gone, but strong 
interference effects modify the order parameter along the diagonals. Right at the surface 
the order param eter is now suppressed. Furthermore, if  we increase the pairing potential 
to U — —41 (strong coupling), all the oscillations and interference patterns are gone. 
The coherence length in this case is very short, comparable to the lattice spacing, and 
the order parameter increases sharply at the surface (Figure 4.20).

The d-wave square lattice is solved in a similar manner, by using the direct diago- 
nalization o f the BdG matrix. In Figure 4.21, we plot the d-wave order parameter for 
U — 0, V  =  —1.51, fi = — t and T  = O.OOlf. Similar behavior to the s-wave case 
is observed; Friedel-like oscillations in the electron density and in the order parameter 
appear at the surface. The d-wave order parameter is always suppressed at the surface, 
because one o f the link order parameters is always zero. Interference patterns are also 
observed on the diagonal. In Figure 4.22 we plot the extended s-wave order parameter 
for the same choice of parameters. Deep inside the superconductor, the extended s-wave 
order param eter cannot coexist with the d-wave one, it is only next to the surface that 
the suppression of the d-wave order parameter will induce an extended s-wave compo­
nent. This is similar to the infinite surface case. Differences appear near the corners, 
where the extended s-wave component oscillates and changes sign. Next, if  we plot the 
electron density for this configuration (Figure 4.23), oscillations near the surfaces and 
comers are present. Interference effects, similar to those observed for the s-wave case 
are also seen here. An increase in the chemical potential (Figure 4.24), washes away 
most of the oscillations.
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Figure 4.17: On-site s-wave Order parameter for a 40 x 40 lattice with U — — 1.5t, 
V  =  0, //, =  — t and T  =  O.OOlt
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Figure 4.18: Electron density for a 40 x  40 lattice with U = —1.51, V  = 0, // — —t and 
T  = O.OOlt
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Figure 4.19: On-site s-wave order parameter for a 40 x  40 lattice with U = 
V  =  0, n  =  0 and T  =  0.001*

Figure 4.20: On-site s-wave order parameter for a 40 x  40 lattice with U =  —At, 
H — —t and T  =  0.001*
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Figure 4.21: D-wave order parameter for a 40 x 40 lattice with U = 0, V  
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Figure 4.22: Extended s-wave order parameter for a 40 x 40 lattice with U 
— 1.5f, fi — —t and T  — O.OOlf
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Figure 4.23: Electron density for a 40 x  40 lattice with U — 0, V  — — 1.5t, /j =  —f and 
T  =  O.OOlf

Figure 4.24: D-wave order parameter for a 40 x 40 lattice with U = 0, V  — —1.51, 
li = 0 and T  = O.OOlf
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4.2 The giant proximity effect
The proximity effect between a superconductor and a normal metal has been thoroughly 
investigated using various techniques: Ginzburg-Landau theory [53-55], quasi-classical 
Green function methods [100], Gorkov equation methods [101-105], and tight-binding 
BdG methods [106-108]. We will focus our attention towards a scenario that didn’t 
get much attention. Driven by recent experiments in high Tc superconductors we will 
investigate the proximity effect between two superconductors with different transition 
temperatures. W hen the temperature is higher than the critical temperature of the weak 
superconductor, it becomes a normal metal. The question we wish to ask is whether 
this scenario can be treated using the conventional proximity effect, or modifications are 
needed in order to account for superconducting correlations in the weak superconductor.

In a recent experiment [109] an unusually large proximity effect is reported, and 
the authors argue that it cannot be explained by the conventional proximity effect. The 
system used in the experiment is a c-axis oriented one. The c-axis Josephson critical 
current is measured through a thin film system made o f doped LCO with Tc =  25K, 
sandwiched between optimally doped LSCO with Tc = 45K. The thin film is considered 
to be in the clean limit and because of the epitaxial growth of the films the transmission 
at the interfaces is close to unity and interface roughness is on the order of the lattice 
constant. In a particular setup, the LCO thin film used had a thickness of lOOA. Fitting 
the critical current around T'c the authors extract a coherence length in the LCO film 
which is two orders o f magnitude larger than expected. Because o f this discrepancy and 
the observation of non-zero critical current for T  < 30K the authors reported this effect 
to be a “giant proximity effect” .

The giant proximity effect is observed in underdoped cuprates, for temperatures 
T  > T'c for which the middle layer is considered to be in the pseudo-gap state. Previous 
theoretical investigations of the giant proximity effect [110,111] considered the N ' layer 
to be comprised of pockets of superconductivity. In a recent theoretical study [112], in­
terstitial oxygen dopants are considered to modify locally the pairing interactions. The 
disordered dopants are enhancing the pairing interactions, thus increasing the size of 
the local gap. This was observed in recent STM experiments [52] in BSCCO, which 
showed that the regions o f enhanced superconductivity are correlated with the positions 
of the interstitial oxygen atoms. Because of the proximity effect, the superconducting 
pockets will be coupled and current will flow through percolating paths. The presence 
of these pockets will effectively shorten the length o f the weak link and the strong exter­
nal superconductors will be coupled for values of the effective length comparable with 
the leaking distance. The modification of the leaking distance due to the finite value 
of T'c will have an important influence on the effective length. Considering randomly 
distributed areas of strong superconductivity with critical temperature Tc embedded in 
the weak superconductor with T'c we will calculate the critical Josephson current and 
find its dependence on the length of the weak link and on the volume of the embedded
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superconducting pockets.
Although the Josephson junction has been thoroughly investigated in the past for 

both s-wave [113] and d-wave symmetries [114-119], we feel that the calculation of the 
Cooper pair leaking distance in the case of clean limit and superconducting weak links 
needs further investigation. We are interested in observing if the leaking distance will 
be influenced by the finite critical temperature o f the weak superconductor. From an 
experimental point o f view, one of the better suited experiments is the measurement of 
the Josephson critical current in weak links [120].

For coherent transport in the c-axis direction, the properties o f the Josephson cur­
rent for d-wave superconductors will be similar to the properties of the current for s- 
wave superconductors. For planar interfaces, with z  the direction perpendicular to the 
interfaces, the d-wave order parameter will have no kz dependence, A (kx,k y,k z) ~  
Ao(cos(kxa) — cos(kva)) and therefore will have properties similar to a superconductor 
with s-wave symmetry. W hen Fourier transforming the x  and y directions, and consid­
ering an effective ID  problem in the z  direction, the d-wave order parameter will be due 
to an effective on-site interaction within each ab-plane. We will calculate the Josephson 
current in the c-axis direction for a 3D d-wave superconductor. We will also show cal­
culations of the Josephson critical current and the Cooper pair leaking distance for a 2D 
s-wave superconductor and for the 100 interface of a 2D d-wave superconductor.

The calculations are done using the self-consistent solution o f the BdG equations 
applied to (100) surfaces both for s-wave and d-wave superconductors [121]. When 
disorder is considered a full 2D calculation without translational symmetry is required. 
The self-consistent calculation of the order parameter ensures that the order parameter 
in the “normal m etal” region has knowledge about the pair potential in this layer. If  the 
initial guess is a step function, i.e. the order parameter in the middle region is zero, after 
one iteration the pair amplitude will become non-zero because of the proximity effect. 
In the case U' =  0, the order parameter will remain zero: A  ~  U[ < c,;1 > , while for
the case U' <  0 the new order parameter has a finite value throughout the layer. If we 
were to fix the order parameter in the superconducting regions (we do not), the U' =  0 
solution would need only one iteration to converge.

The BdG formalism allows us to calculate the dc current in the absence o f applied 
voltages. In the tight-binding formulation the current operator is:

The expectation value o f the current will be non-zero only if the order parameters in the 
two superconducting layers have different phases. For the mean-field Hamiltonian with 
s-wave order parameters one gets for the continuity equation:

(4.1)
<7
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Ci a Cj& ^ ^ c j e Ci<J >) + c*iciT ^ <' Ci|Ci| ^

(4.2)

If the order parameter is calculated self-consistently A* ~ <  c^Cjj > , then we re­
cover the continuity equation, <  > = <  J.y > . Otherwise, if the order parameters
are not calculated self-consistently but set to a desired value (the case of hard boundary) 
then the last two terms in Eq. (4.2) can be seen as current source terms.

In our calculation the coherence factors, uk and vk, are complex numbers and they 
will give the magnitude and the phase of the order parameters. The magnitude of the 
order parameters is calculated self-consistently and after each iteration the phase of the 
external layers is set to a desired value. For the calculation o f the dc Josephson current 
we restrict the phase of the two superconductors to a desired phase difference, while for 
the weak link, the phase is calculated self-consistently.

Results for SN'S

For the S N 'S  tri-layers the interactions are only on-site attractive interactions. The 
value o f the parameter (7* will set the magnitude of the order param eter throughout 
the sample. We consider the following setup (Figure 4.25), Ut = U for 0 < i <  A 
and B  < i < N , while £7* =  U' for A < i < B. In this particular case Vt,j is 
vanishing, because we ignore the d-wave symmetry. The value o f U' is chosen so that 
\U'\ < \U\, allowing us to describe the N ' material with a lower critical temperature 
T'c. For temperatures greater than T'c the A  — B  region cannot sustain superconductivity 
by itself. The order parameter will leak from the stronger superconductors, and the 
characteristic length is called the “leaking” distance.

Figure 4.25 shows the order parameter profile for U = —3 t,U ' = —27 and T  = 
0.217. Note that T'c — 0.2057 for the weak superconductor, while Tc =  0.4597 for 
the strong one. Similar to the T'c — 0 case the order parameter has an exponential 
dependence on distance away from the interface, A  ~  A 0exp(—x/£). This is true only 
for temperatures much larger than T'c and for distances from the interface greater than 
the coherence length of the stronger superconductors. The coefficient o f the exponential 
decay is given by the leaking distance, £. In the normal metal case (T'c =  0 K) the clean 
limit leaking distance is inverse proportional to the temperature:

(43>kBT

For the case o f a weak superconductor, the relevant temperature scale is T  — T'c. 
Plotting the order parameter versus distance from the interface on a semi-log scale (Fig­
ure 4.26) for different temperatures, we can extract the leaking distance. As expected 
from the T'c =  0 K case, the leaking distance is decreasing with increasing temperature.
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If we plot the order parameter as a function of temperature for different lengths (L) 
o f the weak link (Figure 4.27), we can observe two main effects. First, at T  — 0 K, 
the proximity effect will modify the order parameter at L /2 . For lengths smaller than 
10 lattice constants this effect is important. Because the N ' layer is superconducting 
at T  = OK, the main length scale in this layer is the superconducting coherence length 
£ =  hvFj A. The second effect is observed at temperatures close to T'c. If the N ' 
layer was not connected to the superconducting layers, then, according to the mean- 
field behavior, the order parameter would vanish at T'c. For temperatures higher than 
T'c the N ' layer cannot sustain superconductivity by itself. It is only in the presence 
of the S  layers, that the order parameter at L /2  has non-zero values. Note that the 
length L for which we obtain non-zero values o f the order parameter above T{. is much 
larger than the value o f the length beyond which effects are unobservable at T  — OK. 
In Figure 4.28, we compare the order parameters at L /2  for two cases: U' — 0 and 
U' — — 2t. We observe that the order parameter for the case U' — — 2t is larger and that 
close to T'c the discrepancy is enhanced. This is a clear indication that the Cooper pair 
leaking distance is larger in the case of a non-zero T'c.

In order to investigate further the dependence o f the leaking distance on the mag­
nitude of the superconducting correlations in the N ' layer, in Figure 4.29, we summa­
rize the extracted leaking distance obtained for different parameters. The T'c = OK 
line(dashed) is inversely proportional to the temperature, as expected. For T'c > OK the 
leaking distance is diverging at Tc'; this, o f course leads to a giant proximity effect near 
these temperatures, as the figure visually demonstrates. Another feature of the calcula­
tion is that for any given temperature, a higher T'c will result in a larger leaking distance. 
For repulsive on-site interactions, U' =  + 2 t , the leaking distance is even smaller than in 
the normal metal case. This is a clear demonstration o f the fact that interactions in the 
N ' layer will influence the way Cooper pairs leak from the superconducting side. Such 
“feedback” will not be captured in calculations that are not self-consistent.

The proximity effect can be observed either by growing superconducting thin films 
on top o f normal metals and measuring the critical temperature of the system, or by 
forming a Josephson junction and measuring the Josephson current through the weak 
link. If the two superconducting sides are not coupled then there is no Josephson current. 
As we bring the superconducting sides closer to one another, the proximity effect will 
influence the value of the order parameter in the N ' layer. A non-zero value of the order 
parameter throughout the whole system will result in a non-zero value of the Josephson 
current.

The BdG equations are well suited for calculating the dc Josephson current. In order 
to have current between the two superconducting sides, the order parameters in the two 
sides have to have different phases. In our calculation we fix the phases of the order 
parameter on the S  layers, and our self-consistent calculation will give the magnitude 
and the phase o f the order parameter in the N ' side. The results o f such a calculation 
are shown in Figure 4.30a and Figure 4.30b. The phase o f the order parameter in N '
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will vary continuously from to bright and the dc Josephson current will be constant 
throughout the layer. An interesting case is the one where A <j> — ir, for which there is a 
phase-slip point at L /2 . Right at the phase-slip the order parameter vanishes. In order to 
extract only the proximity effect from the current calculation, we need to find the phase 
difference for which the current is maximal. For a point contact Josephson junction the 
current has the following behavior [122]:

J  = Jmsin(A4>), (4.4)

while for a long junction it deviates from the sinusoidal behavior [123].
We calculate the dc Josephson current for different lengths of the weak link and for 

different temperatures for U' = — 1.5/ and U =  —3/. The results are summarized in 
Figure 4.31. W hen the two superconducting layers (S) are close together the proximity 
effect modifies the magnitude o f the order parameter at L/2 in the N ' layer. A large value 
of the order parameter will give a large value for the current. As L increases the order 
parameter decreases exponentially. This results in a decay o f the current as a function 
of L. The main result is that the behavior of the Josephson current as a function of L and 
T reflects the existence o f a leaking distance larger than the one expected from a normal 
metal. For U' =  —1.5/ and T  =  0.125/, the normal metal gives a leaking distance of 
£0 ~  2a while the self-consistently calculated one gives a value of £ ~  7a. This is seen 
in Figure 4.31 where for L — 16a the current is non-zero for temperatures close to but 
greater than T'c, and it has a linear dependence on temperature near T'c.

As shown in previous attempts to explain the “giant proximity effect”, the presence 
of pockets of superconductivity in the N ' layer will greatly enhance the current through 
the system, even for long weak links. Coupled with the enhancement o f the leaking dis­
tance around T'c the presence of the superconducting pockets will effectively decrease 
the length o f the weak link. We consider randomly distributed superconducting areas 
with on-site interactions of strength U =  —At embedded in the weak link with interac­
tion strength U — —2/. In Figure 4.32 we show the Josephson current averaged over 50 
configurations, for different lengths o f the weak link and with superconducting pockets 
occupying a volume percentage p = 0.1 of the weak link. The size of the considered 
pockets is one lattice site. The effect on the Josephson current is drastic —  the current 
has non-zero values well above T'c. We also notice that for this volume of embedded 
superconductivity, the current has a weak dependence on the length of the junction.

The strength o f the coupling between the exterior superconductors will be given by 
the volume of the embedded pockets. This is seen in Figure 4.33, where we plot the 
Josephson current for a weak link of length L = 32a as a function of temperature for 
different percent volumes of strong superconducting pockets embedded in the weak su­
perconductor. For p = 0.0 the junction is too long to couple the strong superconductors 
and the current vanishes above but very close to T'c. Increasing p, the junction will 
effectively shorten and the two exterior superconductors will be coupled well above T'c.
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For a fixed temperature and a random configuration of strong superconducting pock­
ets in the middle layer (p =  0.1), we perform self-consistent calculations of the order 
parameter and o f the Josephson current. During the self-consistent calculation, phases 
for the strong superconductors are kept constant, while in the m iddle layer a full self- 
consistent phase gradient is obtained. The dc Josephson effect tells us that supercur­
rents will flow not only because of the existence of the phase gradient but also because 
of non-zero anomalous pair amplitudes in the middle layer. In Figure 4.34 we present 
the Josephson current for such a configuration. The full circles represent the sites where 
U =  —4t while the rest of the sites have a lower on-site interaction U' =  —21. As shown 
before, for a temperature higher than T,' the order parameter on the sites with V  =  — 2t 
should be zero if  those sites are isolated.

Because o f the vicinity with the stronger superconductor, the proximity effect pro­
vides a way o f obtaining non-zero pair amplitude. Due to the phase gradient, the current 
will flow through percolating paths. The current is higher for sites where the order 
parameter is higher. M aximum current is obtained for clustered pockets o f supercon­
ductivity (lower part of Figure 4.34). The order parameter as a function of location in 
the middle layer is presented in Figure 4.35. The proximity effect is observed from both 
the outside layers and from the embedded pockets of strong superconductivity. The ab­
solute value o f the current for the same configuration is presented in Figure 4.36 and it 
is seen to be correlated with the magnitude of the order parameter in the middle layer.
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Figure 4.25: The pair amplitude profile through a Josephson junction. The pair ampli­
tude is shown for U = —31 and U' = 0. The regions 0 — A  and B  — N  are supercon­
ducting, while the region A — B  is a superconductor above its critical temperature. The 
interfaces are considered to have perfect transmission and the whole system is in the 
clean limit.
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Figure 4.26: The pair amplitude at L/2 as a function o f L for different temperatures 
above T'c for the SN'S system with U' = —21 and U = —At.
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Figure 4.27: The pair amplitude at L/2 as a function of temperature for different L for 
the SN'S system with U' = —2t and U — —it.
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Figure 4.28: The pair amplitude at L/2 as a function of relative temperature for different 
L for the SN'S system for U =  —it, U' = 0 and U = —it, U' =  —21.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. APPLICATIONS 85

8 U'=0
-1.5t

-2t
-3t

+2t
6

4

2
/ *

0
2 4 6 128 10

1/T (units of 1/t)

Figure 4.29: The leaking distance as a function o f 1/T for different interaction pa­
rameters U/ for the SN'S system with U = —41. The vertical dashed lines rep­
resent the inverse o f the critical temperatures for the corresponding Ul parameters:
Tc(Uf = ~1 M)  =  0.104*, TC(U* =  - 2 1) =  0.205t, Tc(Uf -  - 3 1) = 0A 6 t
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Figure 4.30: (a) Phase profile and (b) dc Josephson current as a function of position. The 
phase is calculated self-consistently only in the middle layer and the continuity equation 
is satisfied only in this layer.
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Figure 4.31: The dc Josephson current in the middle layer as a function o f temper­
ature for different lengths L of the weak link for the SN'S system with U = —'it 
and U' =  —1.5/. The arrow represents the critical temperature of the middle layer, 
TC(U' — —1.5/) =  0.104/.
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Figure 4.32: The dc Josephson current in the middle layer as a function of temperature 
for different lengths L o f the weak link for the SN'S system with U = —41 and U' = 
—21. Randomly distributed areas of superconductivity in the N ' layer are considered. 
The percent volume o f the pockets of superconductivity with U =  —At is p  =  0.1.
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Figure 4.33: The dc Josephson current in the middle layer as a function of temperature 
for different percent volumes of embedded superconductivity in N ' for the SN'S system 
with U — —At and U' =  —21. The length L of the weak link is L = 32a.
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Figure 4.34: Josephson current through a disordered junction. Here T  
At the location of the dots U = —At, elsewhere U — —21.

0.251 > T'

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. APPLICATIONS

Order Parameter

20 

10 

0

Figure 4.35: Magnitude o f the order parameter for a disordered junction
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Figure 4.36: M agnitude o f the Josephson current through a disordered junction
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Results for DN'D

The d-wave symmetry of the order parameter is attained if we consider nearest-neighbor 
interactions Vii+$ — Vi and vanishing or repulsive on-site interactions. In a similar 
manner, as detailed in the SN'S case, we set up Vi so that Vt = V  fov {) < i  < A  and 
B  < i < N , while Vi = V ' for A < i < B. This will allow us to describe a weak link 
with a non-zero critical temperature.

For the (100) interface (between the a — b planes o f a high-Tc superconductor), the 
dependence o f the order parameter is very similar to the s-wave case. Figure 4.37 shows 
the semi-log plot o f the order parameter as a function of distance from the interface 
for different temperatures. Again, we can observe the exponential decay and define the 
leaking distance £. The dependence of the order parameter on temperature for different 
lengths of the weak link is shown in Figure 4.38 and the two manifestations of the 
proximity effect are seen. First at T  = OK the order parameter is modified if L /2  is 
o f the order o f the superconducting coherence length in the N ' layer. Secondly, above 
T ' the order param eter decays with increasing temperature but has non-zero value even 
if L /2  is greater than the conventional leaking distance defined by the T'c = OK case. 
The self-consistently calculated leaking distance is shown in Figure 4.39. Similar to the 
s-wave case it diverges at T'c and, for the same temperature, larger interactions in the 
weak superconductor will increase the leaking distance.

The coherent transport in the c-axis direction will be described by the hopping am­
plitude in the z  direction, t x =  O.SL. Figure 4.40 shows the Josephson critical current 
as a function of temperature for different lengths of the weak superconducting layer. 
The general behavior is similar to the one of the s-wave junction. The d-wave order pa­
rameter has no kz dependence, and thus in the z  direction it is an effective on-site order 
parameter.

For short weak links the current does not vanish abruptly above T'c but rather has a 
smooth dependence on temperature. This dependence on temperature above T'c shows 
that the length o f the weak link is comparable to the leaking distance in this layer.

The increase o f the leaking distance due to the finite T'c cannot explain by itself 
the observed “giant proximity effect” . It is only the conjunction with the presence of 
disordered pockets of superconductivity in the weak link that makes this effect possible. 
The calculation o f the Josephson current in the presence of the disordered pockets from 
the previous section stands also for the c-axis geometry. The extra dimension will only 
affect the necessary volume of superconductivity needed to observe a “giant proximity 
effect” . The presence o f pockets of strong superconductivity in the middle layer will 
further decrease the effective size of the Josephson junction. The dependence on the 
length o f the junction is not exponential any more. The Josephson critical current will 
be non-zero above T'c for much longer junctions. These results form the basis for a 
qualitative understanding of the giant proximity effect observed by Bozovic et al [109].
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Figure 4.37: D-wave order parameter at L/2 as a function L for different temperatures - 
100 d-wave case with V  = —At and V  =  —21.
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Figure 4.38: D-wave order parameter at L/2 as a function of T for different lengths -1 0 0  
d-wave case with V  — —At and V' =  —21.
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Figure 4.39: Leaking distance as a function of inverse temperature for different in­
teraction strengths - 100 d-wave case with V  = —At. The vertical dashed lines rep­
resent the inverse of the critical temperatures for the corresponding V' parameters: 
TC(V' = - 2 1) = O.At, TC(V' = - 3 1) =  0.671.
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Figure 4.40: The c-axis dc Josephson current in the middle layer as a function o f tem­
perature for different lengths L of the weak link for which V  = —At and V' — —21. The 
c-axis hopping amplitude is t1 =  0.5fJL
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4.3 Andreev States
Andreev reflection occurs at the interface between a normal metal and a superconduc­
tor [124]. W hen an electron moving in a normal metal encounters an interface with a 
superconductor (Figure 4.41), it will be retro-reflected as a hole if  its energy is less than 
the superconducting gap as there are no single particle states below the gap in the su­
perconducting state. The net current will be in the direction o f the initial electron. Two 
electrons will enter the superconductor as a Cooper pair.

Figure 4.41: Andreev reflection at the N/S interface

It is known that the existence of an inhomogeneous distribution of order parameters 
will lead to the formation o f bound states. This phenomenon is similar to the bound 
states formed by a potential well, but in this case with boundary conditions that de­
pend on the energy and momentum of the incoming electrons. These bound states have 
been found theoretically first in normal metal thin films deposited on superconducting 
slabs [125], then in vortex cores [126] and superconductor-normal metal-superconductor 
(SNS) thin film structures [127]. M ore recently the formation of bound states involving 
d-wave superconductors, either in vortex cores, thin film structures or even as surface 
states, was investigated [20,96,114-116,118].

Experimentally the existence o f the Andreev bound states (ABS) can be observed 
mainly through transport methods. Directly, these states can be observed with Scan­
ning Tunneling M icroscopy (STM), or Josephson junction experiments. In some special 
cases the energy of the ABS is zero, and they are called Zero Energy States (ZES). The 
ZES are observed either localized near surfaces, such as the (110) interface of d-wave 
superconductors [92,93,128], near impurities [44] or inside vortex cores [129].

The main effect o f the Andreev reflection is the one on transport properties. For con­
ventional s-wave superconductors, Blonder, Tinkham and Klapwijk (BTK) [130] have 
shown that the conductance spectrum below the gap depends on the transparency o f the
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N/S interface. For high transparency interfaces, the main process for electrons with en­
ergy less than the superconducting gap is the Andreev reflection. As BTK demonstrate, 
the conductance in this scenario is greatly increased. As the transparency decreases, the 
reflection at the N/S interface is more and more specular, and the conductance for en­
ergies below the gap decreases. For very low transparency interfaces, considered as the 
tunneling limit, the derivative o f the I/V curves will give the superconducting density of 
states.

For d-wave superconductors, because of the momentum dependent order parameter, 
the BTK formalism should be slightly modified. Interfaces with various orientations 
will have different properties mainly because electrons with various momenta impinging 
on the interface will interact with pairing potentials that have different phases. For the 
dx2 _ y 2 symmetry and a (110) interface, electrons travelling in the x  direction will interact 
with a positive pair potential, while the electrons travelling in the y direction will interact 
with a negative pair potential.

For a ID  N/(s-wave) SC system, we present in Appendix D the analytical solution 
o f the continuous version of the BdG equations [125,131]. The main result is the quan­
tization of the electron energy and the localization of these states in the normal metal. 
The quantization condition is given by:

2 L E  E
—  —  =  t v k  +  arccos — (4.5)
6  A  A

where E  is the energy of the electron, L is the length of the normal metal region, A
is the order parameter in the superconductor and £o =  7 iu //A  is the superconducting
coherence length. For lengths of the normal metal region on the order of the coherence 
length, there will be only one Andreev level. The energy of this level is pushed towards 
the gap value for very small lengths. As L  increases, Figure D.2 shows that the number 
of level increases proportionally with L and A:

9 T
r p i-  (4-6)?07T

Using both the planar interface methods and the recursion method, presented in 
Chapter 3, we will investigate the formation of the Andreev levels for different ori­
entations o f the interfaces and symmetries of the order parameter. Finite size systems 
will be also considered.

4.3.1 Planar normal metal/s-wave and normal metal/d-wave sys­
tems

Planar interfaces between normal metals and superconductors are usually investigated in 
experimental setups like the Josephson junctions and the planar tunneling spectroscopy
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experiments. As previously shown, due to the Andreev reflection at the normal-metal 
/ superconductor (N/S) interface and to the localization of states with energies lower 
than the superconducting gap, the subgap structure of the density o f states is expected 
to have interesting properties. We will investigate N/S bilayers and S/N/S trilayers with 
different lattice orientations, for both d-wave and s-wave superconductors.

The (100) surface

r < r s i i t T
c r i >c

T

A e ^ i A=0 Ae1(p2

Figure 4.42: The S/N/S trilayer in the (100) orientation

The simplest surface geometry is the (100) surface, which has the a axis normal to 
the surface. The numerical method applied for this geometry is presented in Chapter 
3.2.1. For an s-wave/normal metal/s-wave trilayer, we consider the setup presented in 
Figure 4.42 by setting the pairing potentials Ui =  — \U\, V)j = 0 if i and j  are on the 
superconducting side and (7* =  0, Vr] =  0 if / and j  are on the normal metal side. 
Self-consistent calculations will give the order parameter profile for the trilayer system.

Usually the analytical solution to the Andreev bound states problem is based on 
hard boundary conditions (the order parameter is considered to be a step function). This 
is a very good approximation in a situation in which the superconducting coherence 
length is small, and the suppression of the order parameter at the interface is over a 
small distance. Figure 4.43 shows the self-consistent order param eter profile for an s- 
wave/normal metal/s-wave trilayer. As expected, at the N/S interface, the order parame­
ter is suppressed and vanishes in the normal metal. For the considered pairing potential 
U =  - 2 1, soft boundary conditions differ from the hard boundary conditions over the 
coherence length (approximately 10 lattice sites), due to the proximity effect. Electrons 
with energies near the gap value will see a longer normal metal layer in the case o f the 
soft boundary conditions. It is only for energies near the gap, the local density of states 
will be modified. This is shown in Figure 4.44, where we plot the local density of states 
calculated both for a self-consistent order parameter profile and for a step-like profile.

For the ID  case (Appendix D), the energies are quantized. Adding an extra dimen­
sion, parallel to the surface, there will be a continuum of available states. For each 
incident angle on the surface, there will be a set of quantized energies. The local density 
of states for the planar junction will have peaks at energies related to the ID  quantized
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energies. The number of peaks can be obtained from the quantization condition for an 
incident angle 6 — 0. Eq. (4.5) and Eq. (4.6) will give the number o f Andreev states as a 
function of the superconducting coherence length and o f the length of the normal metal 
layer. Figure 4.45 shows the subgap LDOS in the normal metal layer as a function of 
the middle layer length. For lengths L  comparable to the coherence length there is a 
small num ber of Andreev states, while as L  increases there is a large number of states 
and eventually the LDOS will recover its normal state shape, the tight-binding LDOS in 
2D. Plotting the LDOS for the same L  but for different values of the order parameter A 
in Figure 4.46, the same behavior is observed. Due to the low number o f states in the di­
rection perpendicular to the surface (L is on the order of 40 lattice spacings), the LDOS 
will show peaks hinting to the finite size nature of the calculation. Some of these peaks 
can be smoothed out by using a large number of A:" points; typically we use up to 1000 
points in the direction parallel to the surface. Another solution would be to increase L 
and decrease U so that the number of Andreev states is constant. This is usually not 
realizable because the BdG is getting exponentially harder to converge as U —> 0.

Two extra questions could be envisioned when solving the Andreev states problem. 
First, what is the energy and the number of the Andreev bound states formed in the 
normal metal layer, when the two external superconductors acquire different phases? 
This scenario can be modeled with the use of the BdG equations. To the self-consistent 
calculation of the order parameter we add one more step in which the phases of the 
outside superconductors are fixed to desired values. It is only in the middle layer where 
the phase is allowed to converge self-consistently. The method is similar to the one 
used for calculating the Josephson current through a weak link. Figure 4.47 shows the 
subgap LDOS for different phase differences between the two outside superconductors. 
An interesting situation appears when Ad> =  it. As shown before [20,96], for a d- 
wave superconductor at the (110) surface, consecutive Andreev reflections with order 
parameters having a phase shift of 7r will give rise to zero energy Andreev bound states. 
This is also true for two s-wave superconductors phase shifted by it. As the phase shift 
decreases, the location of the first Andreev level increases monotonically towards the 
value obtained for A 4> =  0. The second Andreev level splits and as A</> decreases it 
moves towards the first level and eventually join for A 4> =  0.

The second problem, which is also addressed by the BTK formalism, is the influ­
ence o f interface transparency on the conductance and on the formation of the Andreev 
bound states. A variable transparency o f the interface is easily modeled with the use 
of the BdG equations. The hopping at the interface f  can be made a parameter in the 
problem. Self-consistent calculations of the order parameter and of the LDOS are per­
formed for various values of the transparency. The results are shown in Figure 4.48. 
In addition to Andreev reflection, the probability of specular reflection increases as the 
interface transparency decreases. For a transparent barrier t' = t, the electrons with 
energy less than the order parameter will be confined in the normal metal region. As the 
transparency decreases we observe a disappearance o f the Andreev peaks in the LDOS.
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For very low interface transparency t' =  0.2i, the LDOS in the normal metal region 
is similar to that o f an isolated metal of size L. As the probability of Andreev reflec­
tion decreases, the amplitude o f the quasiparticle interference in the normal metal also 
decreases.

The d-wave/normal metal/d-wave trilayer in the (100) interface has the same general 
properties. As shown in Figure 4.49 for a choice of parameters L  =  10a and A d =  QAt, 
there will be two Andreev levels. The top figure shows the LDOS for a site in the 
normal metal layer, while the bottom figure shows the LDOS for a site in the super­
conductor, close to the interface. In the (100) geometry the d-wave scenario is similar 
to the s-wave one. An electron impinging on the N/d-wave interface will feel an order 
parameter with the same sign, even if the incident angle changes sign. This will lead to 
a similar Andreev level formation as the s-wave case. Subtler differences will appear 
because electrons moving in the nodal directions will not be Andreev reflected, due to 
the fact that the order parameter is zero in the nodal direction. Electrons moving in other 
directions will feel different strengths of the order parameter.
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Figure 4.43: Order parameter profile for an s-wave/N/s-wave trilayer, L — 40a, U 
- 2 1

0.80
soft boundary 

hard boundary

0.60

2  0.40

0.20

0.00 ■—  
0.00 0.25 0.50 0.75 1.00

E/A

Figure 4.44: LDOS for soft and hard boundary conditions, L  =  40a, U = —21
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Figure 4.45: Andreev bound states for the s-wave/N/s-wave (100) geometry with A s 
0.31, for different lengths L
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Figure 4.46: Andreev bound states for the s-wave/N/s-wave (100) geometry for L 
40a, for different order parameter values A s
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Figure 4.47: Andreev bound states for the (100) geometry and s-wave superconductors, 
as a function o f phase difference A cj>, for L  =  20a and U = — 2t.
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Figure 4.48: Andreev bound states for the (100) geometry and s-wave superconductors, 
as a function of interface transparency, for L — 40a and U = —21.
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The (110) surface

Different behavior of the LDOS for the (110) interface as compared to the (100) interface 
arises only for d-wave superconductors. The order parameter, having a dxi_yi symmetry, 
will have the nodes perpendicular to the surface. An incoming electron with an incident 
angle 9 will scatter on an order parameter A  (9) while an electron with incident angle 
—9 will scatter on an order parameter — A  (9).

N (110) d-wave (110) d-wave (110) d-wave

Figure 4.50: Andreev reflection at the (110) for the N/d-wave interface and the d- 
wave/N/d-wave trilayer

Figure 4.50a shows the Andreev reflection in the vacuum/normal metal/d-wave su­
perconductor (N/D) configuration. An electron incident on the superconducting inter­
face will be reflected back as a hole while a Cooper pair enters the superconductor. The 
hole has then a specular reflection on the interface with the vacuum. This will switch 
the sign o f the momentum perpendicular to the surface and the new incident angle is 
opposite in sign as compared to the initial one. The hole will feel a reverse sign order 
parameter at the normal metal/d-wave interface. Again at the superconducting interface 
an Andreev reflection occurs, an electron will be reflected back and a Cooper pair exits 
the superconductor. A net current parallel to the surface is generated in this manner. Be­
cause the two consecutive Andreev reflections occur at surfaces with order parameters 
having opposite sign (or a phase shift of ir), similar to the result for two s-wave phase 
shifted order parameters, a midgap Andreev level with zero energy will appear in the 
normal metal region. If  the length of the normal metal is increased, additional levels 
with energies lower than the superconducting gap will form. The limit o f L —> 0 will 
allow only one Andreev level, the zero energy state. This is in concordance with the 
observed zero energy state at the (110) surface o f a d-wave superconductor.

We solve the BdG equations for the (110) surface using the infinite surface method 
presented in Chapter 3. The inhomogeneous N/D interface configuration can be easily 
setup by setting =  0 in the normal metal region and Vl3 = — V  in the superconductor. 
The order parameter is obtained self-consistently and with the use of the eigenvectors 
and of the eigenvalues we calculate the local density o f states for any location in the
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system.
The first problem  we wish to address is whether the zero bias conductance peak 

still survives as we increase the length of the normal metal from 0 to a large value 
L. Figure 4.52 shows the LDOS at the surface of the normal m etal layer for different 
lengths o f this layer. The zero energy state is robust for a wide range of thicknesses of 
the normal region. In addition to the zero energy Andreev state, additional states appear 
at finite energies. The number of bound states is related to the thickness of the normal 
region in a similar manner as shown by Eq. (4.5). Paths incident at a finite angle 0 will 
have different lengths, thus the energy of the Andreev state is shifted. As seen before, 
if the angular dependence is integrated out, the spectrum becomes continuous, but has 
peaks around the energies obtained for 6 =  0. In the (110) geometry, all incident angles 
will generate zero energy states, thus the height of the ZBCP is maximal. If the node 
lines of the order parameter are tilted with respect to the surface, only a finite range of 
incident angles will generate zero energy states. This scenario is not possible for tight 
binding methods because only a discrete choice of tilted angles is available. For example 
one could model the (nmO) surfaces, where n  and m  are integers, and obtain different 
angles between the node line and the surface [132].

Figure 4.53 show the LDOS at the surface of the normal metal for /i — —t. Different 
lengths of the normal metal layer are also considered. For L  =  0 the induced imaginary 
s-wave component will split the ZBCP. As L  increases to a finite value, we observe that 
although the ZBCP remains, the splitting drops very rapidly. This happens already for 
L =  ay/2 /2 , for which in addition to the formation of two new peaks at the gap edge, we 
observe that the splitting of the ZBCP disappears. For L = 3ay/2/2 the splitting is gone 
altogether and the second Andreev level moves towards sm aller energies as expected 
from the length dependence of the Andreev states. This result shows that induction of 
an imaginary s-wave component at the surface is very weak when adding a normal layer 
on top o f the d-wave superconductor.

The dependence o f the LDOS on the distance from the surface is presented in Fig­
ure 4.54 for a site o f type A and in Figure 4.55 for a site of type B. The difference in the 
LDOS for the two types comes from the different local environments and the number 
of nearest neighbors at the surface. At half filling a ZBCP is observed throughout the 
normal metal layer. For sites of type A, the ZBCP penetrates in the superconductor, but 
decays exponentially on the order of the coherence length (see Appendix D). For the 
B-type sites, the ZBCP is not observed inside the superconductor. The Andreev levels 
with finite energy observed for both A and B type sites are decaying exponentially in 
the superconductor. The LDOS as a function o f distance from the interface for fi = —t 
is shown in Figure 4.56 for A-type sites and in Figure 4.57 for B-type sites. The subgap 
structure is now similar for both types, and we observe that the splitting o f the ZBCP is 
recovered near the N/D interface. There is a dependence of the splitting with respect to 
the distance from the interface, mainly because of the proximity effect on the imaginary 
s-wave component.
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For the d-wave/normal metal/d-wave (D/N/D) trilayer (Figure 4.50b), the Andreev 
reflection provides a way for the supercurrent to travel across the norm al metal layer. 
As the order parameters felt by the electron at the two interfaces have the same phase, 
there will be no zero energy states forming. A  quasiclassical electron will travel only on 
a straight line between two points on the two interfaces as shown in Figure 4.41b. The 
reasoning used for the S/N/S interfaces can be applied here; paths with various angles 
have different lengths and thus the Andreev levels will be continuous. Integrating out 
all the possible paths will give the peaks at energies close to the ID  quantized ones. The 
first Andreev level will have finite energy and the number of levels is given by the ratio 
L/£o. This behavior is seen in Figure 4.58, where we plot the LDOS at the half-way 
between the two interfaces for L = 5a and L =  13a, where L is the distance between 
the two interfaces.

Figure 4.51: Andreev reflection at the (100) N / (110) d-wave SC interface

One might ask if  the orientation of the normal metal lattice is important in the for­
mation of the zero energy state. In order to answer this question we form an interface of 
a (100) oriented normal metal layer with a (110) oriented d-wave superconductor. The 
numerical calculation can be easily done with the use of the recursion method. The def­
inition of the lattices is contained in the definition of the nearest-neighbors o f each site 
(Figure 4.51). We present the result for two lengths o f the normal metal in Figure 4.59. 
LDOS for a site at the surface o f the normal metal is plotted for L =  10a and L =  16a. 
For both cases we observe zero energy states forming. Also additional Andreev states 
with finite energies can be observed, with the known length dependence. The presence 
of the ZBCP even in this geometry, shows that the underlying symmetry of the normal 
metal lattice is not important in the formation of the zero energy states. As long as we 
have specular reflection at the vacuum/normal metal interface, zero energy states will 
always form if  the node line of the superconductor is perpendicular to the surface. The 
details o f the lattice might only contribute to the width and height o f the ZBCP.
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Figure 4.52: LDOS for the N/D (110) geometry for different lengths o f the normal metal 
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Figure 4.54: LDOS for the N/D (110) geometry at different locations for sites of type 
A; L = a ,V  = —2.51 and fi =  0
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Figure 4.55: LDOS for the N/D (110) geometry at different locations for sites of type 
B; L  =  a ,V  = —2.51 and /x =  0
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4.3.2 Bound states in finite size systems
M esoscopic and nanoscale devices gain more and more interest nowadays. Small nanoscale 
structures can be easily built by electron beam lithography. Such structures can be 
made to contain normal metal/superconductor interfaces, or embedded regions o f nor­
mal metal into a superconductor. In a recent experiment [133], the authors fabricate 
mesoscopic Au structures embedded in Nb. Upon cooling the Nb regions become su­
perconducting, while the Au ones remain of normal metal type. STM measurements 
of the d l /d V  spectrum shows sub -gap structure near the normal metal/superconductor 
interface. These features in the local density of states observed at energies less than the 
superconducting gap, are the energies of the Andreev states. The authors also observe 
that the energies of these Andreev levels depend on the location where the STM spectra 
is measured. As the formation of the Andreev states is an interference phenomenon, 
we are interested in calculating the local density of states for a finite size normal metal 
region embedded in a superconductor. The presence o f different types o f interfaces in­
tersecting at various angles is expected to give non-trivial results for the LDOS. In the 
quasiclassical approximation, these types of problems are usually called Andreev bil­
liards; besides the usual specular reflection, the Andreev reflection also plays a role in 
the motion o f the particle [134-140],

2
4 1 --------

b)
T  -1-------1— S * -

s
N S N

Figure 4.60: Finite size normal metal samples, embedded in a s-wave superconductor. 
Considered configurations are (a) a square with 4 N/S interfaces,(b) a square with 3 N/S 
and 1 N/vacuum interfaces, (c) a square with 2 N/S and 2 N/vacuum interfaces and (d) 
a triangle with 3 N/S interfaces

Using the recursion method presented earlier, we investigate the formation of the 
Andreev states in a finite size sample. The geometries considered are presented in Fig­
ure 4.60. We first model a normal metal square with different numbers of normal-
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metal/superconductor interfaces. For example, Figure 4.60a has four N/S interfaces, 
Figure 4.60b has three N/S interfaces and one vacuum/N (I/N) interface and Figure 4.60c 
has two N/S interfaces and two I/N interfaces. We also consider the formation of An­
dreev levels in a triangularly shaped sample as the one presended in Figure 4.60d which 
has the sides comprised of N/S interfaces. The systems considered in this calculation are 
clean systems described by ballistic paths. Because the formation o f the Andreev levels 
is an interference phenomenon, the presence of impurities will broaden the energy of 
the Andreev states [131], thus making the experimental observation difficult.

A  simplistic reasoning o f how the Andreev states will form in such finite size sys­
tem  can be developed by considering the paths an electron can travel on inside the 
normal metal region. As shown in Figure 4.61, all the paths bounded by two nor­
mal metal/superconductor interfaces are in fact line segments because the electrons are 
retro-reflected at each interface. Using the ID  formulation o f the Andreev levels, we can 
calculate the allowed energies, which are quantized. If  we consider all the paths going 
through a specified location in the system, and integrate out the angle, 9, these paths 
make with an arbitrary axis, we can obtain in principle the LDOS for this location. The 
details of the LDOS will depend on where it is calculated, because the distribution of 
lengths L(9) depends on the location of their intersection point. Thus, the LDOS near 
the com er will be different from the LDOS calculated in the center o f the square. The 
shape of the system and the properties of the interfaces will define a unique LDOS map.

Figure 4.61: Paths in the normal metal defined by the Andreev reflection; all 4 sides are 
normal metal/superconductor interfaces

The energy and the number o f the Andreev bound states will also depend on the 
size o f the normal metal region and on the magnitude of the superconducting order 
parameter. The size of the investigated system is 80a x 80a, and has a normal metal 
region o f size 60a x 60a embedded in the center. Regions with different types are 
obtained by setting the values of the parameters and VtJ, Ui < 0 or 14, <  0 for the 
superconducting regions and Ui — Vij — 0 for the normal metal regions.

First we consider the square system with 4 N/S interfaces with L  =  60a and an 
s-wave order parameter A  =  0.3/. In Figure 4.62 we show the LDOS along the arrow
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defined in Figure 4.60a. The shape o f the LDOS changes when moving along the defined 
arrow. Right at the com er the Andreev level seems to be located near the gap edge. The 
shape of the LDOS is dramatically changed from the planar interfaces case and the 
location o f the peaks in the LDOS does not follow the same rule. Half-way between the 
two comers, the highest subgap density o f states is obtained at low energies. In order to 
see the spatial map of the density of states as a function o f energy, we plot in Figure 4.63 
the LDOS map for two energies. At E  = 0.26A the maximum LDOS is located near 
the sides of the square, while for E  = 0.5A the localized states are near the comers. In 
both cases we observe a 4-fold symmetry o f the LDOS map, in concordance with the 
symmetry o f the system. The physical interpretation of these modes relies on the fact 
that the quasipartieles with energy less than the superconducting gap are confined in 
the normal metal region. Similar to an electron in a 2D box, the wavefunction of these 
modes depend on the energy. This spatial dependence of the LDOS could be directly 
seen in an STM experiment.

We investigate next the same square system but with 3 N/S interfaces and one I/N 
interface. The interface with the vacuum can be easily obtained if  we redefine the nearest 
neighbors for the sites located at this interface. Figure 4.64 shows the LDOS for sites 
along the arrow defined in Figure 4.60b. Surprisingly, the LDOS near the com er is 
very similar to the one obtained previously for 4 N/S interfaces. In fact the previous 
LDOS could be obtained by superimposing the actual LDOS with a m irror image of it. 
At the location ”2“, near the opposite comer, the LDOS is similar to the planar case, 
with equally spaced peaks. The LDOS map for E  = 0.16A, shown in Figure 4.65, 
is somewhat homogeneous around the center of the sample and suppressed at the two 
comers defined by the intersection of the N/S interfaces. For E  = 0.5A, the LDOS 
map is similar to the one obtained for the 4 N/S case. The existence of these states 
at the comers, is not affected by the geometry o f the entire system. For this case too, 
the symmetry o f the wave function reflects the symmetry o f the N/S surfaces. This 
symmetry is two fold with the symmetry axis perpendicular to the y  direction.

The 2 N/S interfaces and 2 I/N interfaces case shows similar behavior. The LDOS 
along the defined line (Figure 4.60c) is almost identical to the one obtained in the 3 N/S 
+ I/N case. This result is presented in Figure 4.66, and shows that the LDOS next to 
the interfaces is mostly influenced by the proximity to these interfaces. The LDOS map 
for this configuration is shown in Figure 4.67. The wave function of the Andreev states 
is now symmetric with respect to the diagonal intersecting the two N/S interfaces. The 
wave function of the state with energy E  =  0.16A is somewhat spread throughout the 
metal, while E  = 0.5A  once again is attached to a state localized near the com er of the 
N/S interfaces.

We model different angles between the interfaces by using a triangular geometry of 
the normal metal region (Figure 4.60d). W hen calculating the LDOS along the x  axis, 
near the N/S interface (Figure 4.68), we observe that near the corners the spectrum is 
changed. Near the corner with an angle of 90°, the LDOS is almost identical to the one
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seen for all the square geometries. The spatial dependence o f the LDOS could be once 
again obtained by superimposing the LDOS o f the isolated corners. The LDOS map for 
this configuration (Figure 4.69) shows that states with lower energy are localized in the 
center, while states with higher energy are localized near the com ers o f the system.

Another interesting problem is the formation o f Andreev levels in finite normal re­
gions embedded in d-wave superconductors. In the case o f a square with 4 N/d-wave 
interfaces, the order parameter on the x  sides will have an reversed sign when compared 
to the order param eter on the y sides. This scenario is expected to show zero energy 
states for those paths that intersect both the x  and the y sides o f the square. We investi­
gate such a system, with the use of the recursion method. We consider a normal metal 
region o f size 40a x 40a embedded in a d-wave superconductor by setting =  0 in 
the normal metal and =  V  in the superconductor.

In Figure 4.70 we plot the LDOS as a function o f energy for different locations 
in the system. The top graph shows the LDOS along the line defined previously and 
shown in Figure 4.60a, while the bottom one is taken along a diagonal line. Both graphs 
show a dependence of the Andreev peaks on the location in the normal metal, depending 
whether the spectra are taken near the corner or inside the square. There is a striking dif­
ference between the LDOS taken along the two lines. W hen moving along the diagonal 
one observes that a small peak forms at zero energy, while this it is not observed along 
the other line. This is a strong indication that some paths produce zero energy states and 
that they are somewhat localized in specific locations in the sample.

The localization of the Andreev states can be seen in Figure 4.71, where we plot the 
LDOS map for 4 different energies 0.0, 0.2A, 0.26A and 0.5A. The zero energy states 
are located along the diagonals but the density of those states is quite low. Increasing 
the energy to 0.2A  we obtain a four-fold symmetric mode, localized near the center of 
the square. A drastic change in the spatial distribution of the Andreev levels is observed 
when increasing the energy to 0.26A. The Andreev states are now pushed towards the 
sides o f the square. A t higher energies, E  = 0.5A, the Andreev states are localized near 
the comers o f the normal region.

We also consider the 3 N/d-wave + 1 I/N geometry, shown in Figure 4.60b. A two­
fold symmetric LDOS map is obtained (Figure 4.72). The location of the zero energy 
states is mostly unchanged, although the LDOS for sites closer to the I/N is modified 
and slightly increases. The same behavior is observed for E = 0.2A , the LDOS near the 
I/N interfaces becomes more homogeneous and is also increased. For higher energies, 
E  =  0.26A and E  = 0.5A, some o f the states observed in the 4 N/d-wave geometry 
disappear, namely the ones next to the I/N interface.

It is interesting to note that if we were to measure the LDOS at the I/N interface, we 
can still gather information about the whole system and infer about the magnitude of 
the superconducting order parameter and about the size of the embedded normal metal 
region. It is only in the energy range smaller than the superconducting gap that the 
normal state LDOS is modified when in proximity with a superconductor.
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Figure 4.62: LDOS for a square with 4 N/S interfaces (taken along the arrow shown in 
Figure 4.60a), A  =  0.31, L = 60a
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Figure 4.63: LDOS map for a square with 4 N/S interfaces, A =  0.3t and L = 60a
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Figure 4.64: LDOS for a square with 3 N/S interfaces (taken along the arrow shown in 
Figure 4.60b), A  =  0.3f, L = 60a
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Figure 4.65: LDOS map for a square with 3 N/S interfaces, A  =  0.31 and L = 60a
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LDOS as a function of position
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Figure 4.66: LDOS for a square with 2 N/S interfaces (taken along the arrow shown in 
Figure 4.60c), A  =  0.3t, L = 60a
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Figure 4.67: LDOS map for a square with 2 N/S interfaces, A  =  0.3f and L = 60a
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LDOS as a function of position
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Figure 4.68: LDOS for a triangle with 3 N/S interfaces (taken along the arrow shown in 
Figure 4.60d), A  — 0.31, L = 60a
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Figure 4.69: LDOS map for a triangle with 3 N/S interfaces, A  =  0.3£ and L = 60a
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Figure 4.70: LDOS for a square with 4 N/d-wave interfaces (taken along the arrow 
shown in Figure 4.60a), A  =  0.3t, L  =  40a
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Figure 4.71: LDOS map for a square with 4 N/d-wave interfaces, A  =  0.31 and L =  40a
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Figure 4.72: LDOS map for a square with 3 N/d-wave interfaces, A  =  0.31 and L = 40a
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Chapter 5 

Conclusion

We have used quantum mechanical techniques to describe inhomogeneous problems 
in superconductors. We employed the Bogoliubov-de Gennes equations to describe 
important effects of s-wave and d-wave superconductors at surfaces and interfaces, and 
in the presence of disorder.

First we introduced a numerical method of solving the Bogoliubov-de Gennes equa­
tions in real-space. Secondly we considered different simplifications o f numerical calcu­
lations near surfaces. These simplifications were made possible because of the restored 
translational symmetry along the surfaces. We have considered different surface ge­
ometries, like the (100), (110) and the c-axis ones. We have shown that in these cases 
the problem  becomes an effective one-dimensional problem, making possible the usage 
of larger systems. We also introduced a recursive method, very well suited for solving 
quantum mechanical problems in real-space.

All these methods were applied to various applications. First we considered the 
simple scenario of s-wave and d-wave superconductivity near surfaces. We have shown 
that the order parameter oscillates near the surface on the order o f the coherence length. 
Significant differences between s-wave and d-wave superconductivity near (100) and 
(110) surfaces have been uncovered. The appearance of the Zero Bias Conductance 
peak (ZBCP) due to the Zero Energy Andreev bound states, is observed only at the
(110) surface o f d-wave superconductors. We have also considered rough surfaces, and 
shown that due to the faceting on the atomic scale o f the surface, ZBCP might appear 
also for a rough (100) surface, and that the degree of roughness will define the height of 
the ZBCP. Rough (110) surfaces see a depression of the height o f the ZBCP.

We have also described superconductivity in finite size square samples. In addition 
to the behavior observed near surfaces, we also observe interference effects which are 
more pronounced when the coherence length of the superconductor is of the same order 
of magnitude as the size of the system.

Prompted by recent experiments on Josephson junctions made of high-Tc super­
conductors, we have investigated the giant proximity effect by considering a tri-layer
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system made out of strong and weak superconductors. The leaking distance in the mid­
dle layer was calculated as a function of temperature and of the nature of the layer. We 
have shown that the above mentioned Josephson junction should carry supercurrents 
for temperatures higher than the critical temperature o f the m iddle layer. This effect 
is not addressed in the conventional treatment of the proximity effect. In addition we 
have introduced embedded pockets of strong superconductivity and shown that this will 
increase even further the Josephson current. These results form a qualitative basis of 
understanding the giant proximity effect.

The formation of the Andreev bound states in a normal metal which is in contact 
with a superconductor, is also investigated. We describe the Andreev bound states form­
ing in between s-wave and d-wave superconductors, either in the (100) or in the (110) 
geometry. We show that for the (110) geometry, the Zero Energy States (ZES) always 
form when a normal metal is in proximity with a d-wave superconductor.

The problem o f Andreev bound states, localized in finite size normal metal samples, 
is solved using the recursive method. We show that the electron wave-function is local­
ized in the normal metal and that the modes corresponding to various sub-gap energies, 
are localized in different parts of the system.

To summarize, we applied the tight-binding Hubbard Hamiltonian in the context of 
the Bogoliubov de Gennes equations in order to describe a multitude o f inhomogeneous 
scenarios related to s-wave and d-wave superconductivity.
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Appendix A

Homogeneous superconductivity - 
k-space

In the presence o f homogeneity and periodic boundary conditions, we can Fourier trans­
form all the spatial operators to momentum-space operators:

^  (A .l)
k

where N is the total number of points in the lattice.
Applying this transformation to the kinetic part of the mean-held Hamiltonian Eq. (2.18) 

we have:

K = w X ' {~ t ~  ^  ̂ V e~i(q~k)'R ie~iq'5 (A.2)
<i j>cr  kq

where S = R j — R ;. For nearest-neighbors on a 2D square lattice 5 is ± a x  or ± a y ,
where a  is the lattice constant. Because we consider an uniform system with periodic
boundary conditions, the following relation is true:

^ ^ e-«(q-k)-Rj = ( J ( 9 _ fc)) (A.3)
i

where 8(q — k) is the Dirac delta function. Using Eq. (A.3), the Fourier transform of the 
kinetic energy becomes:

^  ~  ^  — AOciLcfc0-> (A.4)
kcr

where,
gfe =  —2 tcos(kxa) — 2 tcos(kya) (A.5)

is the kinetic energy of an electron with momentum k.
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The potential energy term from the Hamiltonian has two parts, V =  VG +  Vnn, 
describing the on-site and the nearest neighbor interactions. The same procedure as 
presented above can be applied for obtaining the momentum-space potential energy. 
The on-site potential energy can be written as:

Vo =  U'%2(cilcii ) 4 i 4 l +  h.c.
i

=  j\f3 5 3  (C- fc2 + fc3+fc4iCfc2t)CL tCLil V ^’C- (A .6)
k2,k3,k4

the summation over i resulted in a Dirac delta function, according to Eq. (A.l). This 
allows the elimination of one momentum variable (ki). Changing the momentum vari­
ables: k2 =  k, k3 =  k’ and k4 +  k4 =  q, equation (A.6) becomes:

=  AU 5 3  (c- fc+9lcu ) c!'Tcij—fc'l V h-C- (A.7)
k,q—k; ,k;

We now choose the reduced Hamiltonian form, for which the momentum q is set 
to zero. This state corresponds to the lowest energy state with zero center of mass 
momentum, paired electrons will have opposite momenta. Eq. (A.7) will now have the 
reduced form:

V° =  J p  +  h.c. (A.8)
k,k’

For a typical term in the nearest-neighbor part of the potential energy, we obtain:

Hm =  ~2 E < c^ h V L
(hj) 

fcl,fc2,fc3,fc4 i,5

=  2N 3 5 3  E ( ^ + fc3+fc4 ^ ) c L c L e  ̂ 4 2\  (A.9)
ki,k2,k3 S

where 8 =  R j — R j is the distance between nearest neighbors. The spin indices a  and 
/? will be or | , |  depending on which term in the Hamiltonian we are referring to. 
Using the previously introduced momentum change of variables and considering only 
the zero center of mass situation {q — 0), Eq. (A.9) becomes:

Vnn =  W at7) 5 3 ( C-fc/«Cfc'/̂ )ClgC-fcct 5 3  e  ̂  ̂  ̂ (A. 10)
k,k> 5
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Gathering the information contained in Eq. (A.4), Eq. (A. 8) and Eq. (A. 10) the 
momentum-space counterpart of the extended Hubbard Hamiltonian has the following 
form:

n = N  ] O efc "  ^ ) cL cto +  AkCk Tc-fc; +  h-c■ (A -n )
ky<7 k

The superconducting order parameter is defined as:

Afc =  — '^2  Vkk'(c- k'ick'\), (A.12)
y

where Vkk' =  U +  V jk -k1 with 7*. =  2 (cos kxa +  cos kya).
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Appendix B

The Bogoliubov-de Gennes Equations

Using the real-space Hamiltonian Eq. (2.18) and the Bogoliubov-Valatin transforma­
tions Eq. (2.61),Eq. (2.62), we can write the following commutators:

[W)7n<r] = ^  ' gra' [ i n ' a ' l n ' a '  i 1 n a \
n'a'

—  y  ' ^ n ' i l l l i ' a ' l n ' a ' l n o  ~  I n a l n ' ^ ' l n ' c r ' )

n' a'

— ~  y  ' en' { i n ' a '  ’ 1 n t j \ l n ' o '
n'cr'

^   ̂ ,0,rinlGl
n'a'

— tn'Yncr', (®*1)

and

n 'a '

=  y  1 er i  ( i n 'a ' l n ' c r ' l n a  ~  I n a l l ' a ' l n ' v ' )  
n 'a '

=  ^ en’l l a, { l t ^ 1 n ’a’}
n 'a '

~  ^   ̂^n'^n,n'^a,a',ynf(jf
n 'a '

= ( n i l -  (B.2)

In order to obtain the Bogoliubov-de Gennes equations, we must calculate the com­
mutator o f the m ean-held Hamiltonian with the electron operators and cq in two 
separate ways, either by using directly the electron operators, or by using the quasipar­
ticle operators.
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First we use the form of the Hamiltonian dependent on the electron operators:

[H, ci]\ = y ]( tij fiijift £i))ciacjcr + ̂  1(A4t4l h.C.)
(ij)v

+ ]C t(Ai ' 4 4  + 4 / 4 4 )  + h-c- ic^ 
<0>

Calculating each term separately we obtain:

[4,9*7, QT] =  claCjcrCl1 ~  cl'tclaCjtr 
~ ~{clcncl'\}cjv

44’K = 44c't -  Qt44
= — { 4 t ’ cu>ca

4>

(B.3)

- S u 4 1

[44, qt] = 4 4 q t -  cn 4 4
.t

■ { 4 ’q t> 4

44-K =
u

4 4 q t -  cd 4 4

= 4 k , 4>
<J«4-

[G |Q |,Q T] 0)
[cj|Cj|, cj-j-] =  0.

The terms in the commutator [H,, QjJ can be obtained in a similar manner:

[CitCi | ,Cd] =  $ilCip

[ci t 4 ,c d] =  ^ 4 ,

4 4  cu] =  K l T,
[QfQijQj.] 0,

[c*Tcj i , cu] =  0-

Putting everything together in Eq. (B.3) and summing over <  i j  > and er the commuta­
tors simplify to:
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[H, Qf] =  X  tll+sci+si +  in +  6 )q t  +  X ( ~ ^ « + «  +  ^ii+<s)CH il -  AjC^B.4)
<5 8

[H, Qil =  X  tu+M+n +  (m +  6 ) q j  +  X ( A «+5 “  A |/+(5) q +5T +  A iCih  (B.5) 
8 8

where ' s a summation over the nearest neighbors of I.
If we use the diagonal form of the Hamiltonian coupled with the Bogoliubov-Valatin 

transformations and compute the same commutators we get:

= X ^ E ^ ’^ t ]  -  Vn[K nll\]
n

= X E - e ”u «7nt (B.6)
n

[ K c n] = X t U» [ ^ ’^ ]  + Vn [ ^ . 7 l T]]
n

=  X [ _eren«7ni +  e X * 7 i|] -  (B.7)
n

Using once again the Bogoliubov-Valatin transformations in Eq. (B.4) and Eq. (B.5) and 
identifying the coefficients of 7 „|, 7nj.,7̂ T and 7 ^  we obtain:

enUln = -  (v + ti)uln + \ v ln + ^ 2 ( A $ +s- A l l+S)vl+S (B.8)
a s

£nVln =  X W ^ + ( ^  +  6 K  +  ^  +  X ( C - A w ) < + <  ( B -9 )

8 8

Eq. (B.8) and Eq. (B.9) are known as the Bogoliubov-de Gennes equations [63].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



142

Appendix C

Fourier transform in the 110 direction

The description of 110 surfaces is shown in Figure 3.5. Consider two type of sites 
A  and B  forming a unit cell with index coordinates x  and y. The presence o f a 110
surface implies that the system in homogeneous in the y direction. We can Fourier
transform the y  coordinate to momentum space k. The spatial coordinates of type A  
sites are R Ay =  xay/(2)x + ya\ply  while the coordinates o f type B  sites are R%y = 
{x-\-\/2)a\/2x  +  (y +  l /2 )a \ /2 y ,  where a  is the lattice constant. The Fourier transform 
of the electron operators is:

C  =  ^ Y , c xa(k)e-iyka^  (C .l)
k

-  (c -2 )CBxycr
N  k

In the presence o f periodic boundary conditions in the y direction, the following relation 
is true:

_L ^  e i y ( k - k ' ) a  =  § ( k  _  k , y  (C3)
k

Considering the mean-held Hamiltonian (2.18), it can be rewritten in terms o f the unit 
cells defined previously. If we write explicitly the nearest neighbors, for the kinetic 
energy part we get:

r = V' - t a rAt r B -  t A rAt r B -  t A r B -  t A r B/v /  y ° x x L'xy<jL-'xycr bx x —l^xy(r  x — \ycr bx x —l x y o x —l y —lcr uxx^xycrL' x y —l<j
xycr

— t B  r B  ̂ r A — t B cA — t B  r B1 r A — t B  r B1 c A ( C 41°xx x y a ^ x y a  xx +1  xycr^x+lycr  °xx^xy(T^xy-\-lcr x x + 1  x y &  x + l y + l a  V '

where tAx = tBx, i* and tBx+1 =  tA+lx are the hopping amplitudes dependent
only on the x  coordinate. A surface at x = i is achieved if we set tA_Y =  0 and tB_u = 0.
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Using the Fourier transform (C .l) - (C .l) and the relation (C.3) into Eq. (C.4), the kinetic 
part o f the Hamiltonian becomes:

£  =  ^  ~ 2 C° S [^x Cl t (fc)Cf<r(fc) +  t L - l Cxl(k )Cx-lo(k )
xka

+  t x x Cx l { k ) CL { k ) + t x x + l Cx K k ) Cx + l v ( k ) \  ■ (C-5)

For the chemical potential term we obtain:

=  -  ix)\Cf A k Y L { k ) + Cxa(k )CxAk )} (C.6)
kcr

The on-site interaction term can be calculated in a similar way:

n ° = j f Y l  A * c?  (fc)c5  (- /c ) +  A * (k )cx l ( - k ) + h -°•> (C-7)
xk

where we assumed that {cxyr cxy.) is not dependent on y. We can define Bogoliubov - 
Valatin transformations for type A  electron operator:

C* # )  =  ^ uXnAik )ln]{k ) - V XnA*{k)^ni{ -k ) ,  (C.8)
n

< ( - k ) = X  < A(k h » i ( ~ k ) + < A*(k h U k ) ^
n

and identical for type B, cB (fc) and cB̂ (—k). M aking use o f these transformations and 
o f the quasiparticle averages (tLt™ /?) =  SrnnSa6f n and (jnalmy) =  0 we can write the 
on-site order parameters:

A * =  - ^ Y , T , UnX^ VnX\ m - V n { k )) (C.10)
k n

A * =  (C 11)
k n

The nearest neighbor interaction term, similar to the kinetic energy, can be written as 
the sum over the cells containing both A and B type sites:

y  =  rB rA  ̂ + V B (rA cB ) r B t cA^• ^nn /  j \.v xxv- 'xy+l ' !  x y j i  xv\. a?t/+lT x x + l v ' x + l y + l ^ x y l f ^ x y l . x + l y + l ]
xy

, V A  ( r B  „A v A f  B f  t V A ( r B  „A  v A f  Bf
' y x —l x \ L'x—ly'fL' x y l / (- ' x y l x —ly^ ’ y x x \ uxy'fL' x y l / L' xy l L'xy't

4- V B(cA cB \rB* rA  ̂ + V B (rA cB \rm  rM' v x x x ^ x y + l l  xy^i  xy^ x y + l l  ' *££+1 j xy'l /  x y \  z+ly+lj.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



APPENDIX C. FOURIER TRANSFORM IN THE 110 DIRECTION 144

+ VxA- l x ( c L l  y lCx y l)Cx h Cx - l Vl + (Ĉ iC4 t)CSt C2 j  + k 'C' (CJ2)

The Fourier transform applied to Eq. (C.12) will lead to:

H nn =
xk

+  e - ifcâ /2A ̂ 4 l ( - k ) C ^ k )  

+ e - iW 5 / 2A t xBUlc % ( - k ) 4 \ k )  
+  e - ^ ^ / 2A +A|BTcBt {k)c*l(-k)

+  e ^ ^ $ { k ) < * n {-k )
+ e^V5/2 A-BMTc4t (fc)cBt (_ fc) (Q13)

where the order parameters, after we use the Bogoliubov - Valatin transformations, can 
be written as

A - TB1 =
n k

A- « 1 = jf X X e~““̂ /v .» . i< ‘(fcKi+1,m AW  -  » f +1» f  *u -  /»(*))]
n k

^  X  X  e “ o B 5 / X f > f  - ‘ - M A W  -  » f ' A r a  -  A M ) ]
n fc 

n k

a + ^ st -
n k

A , t i f f  =  - 4  X  X  e ‘W ! / 2 l 2 + i [ < “' W - f  *■'• M A M  -  + 1 » f ‘ ( 1  -  A W ) ]
n fc

A t f f  = -4 X X w » f - 1* m a m  -  » f  ~ v * u  -  urn
N n k

K BlA' =  - j X E e" ‘* ® ' ' i K * « ' . " " ( k) A ( k) - « f » f ( l - A ( t ) ) l
n fc

For each momentum & in the y direction the Hamiltonian describes an inhomoge- 
neous chain of size 2Nx, where Nx is the number of cells in the x  direction.
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Appendix D

Andreev levels, ID N/S system

Andreev reflection occurs at the interface between a normal metal and a superconductor 
[124,127]. Incoming electrons with energy lower than the superconducting gap cannot 
enter the superconductor as there are no allowed states below the gap. The only allowed 
process is the transmission of a Cooper pair. This implies that a hole will be reflected 
back.

The electronic excitation spectra can be calculated analytically for a one-dimensional 
system [125,131], as the one shown in Figure D .l.

Normal Metal 

E

Superconductor

- a  0 x

Figure D .l: NS interface near a normal metal-vacuum surface

This system is described by the Bogoliubov-de Gennes equations, H<b(x) = E$(x).  
The wave function has two components u(x) and v(x), while the Hamiltonian is a 2 x 2
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matrix.

=  E
u{x)
v(x) (D .l)

^ V 2 - E F A(x) \ ( u ( x )
+ E F ) \  v(x)

We are interested in finding the wave functions for energies smaller than the super­
conducting order parameter. An incoming electron from the superconducting side with 
E  < A  cannot enter the superconductor, as the density of states below the gap is zero. 
This electron will be confined in the normal-metal region. We can split the problem in 
two cases: — a < x < 0 and x  >  0. For x  <  0, A(x) = 0 and the equations become 
decoupled, describing an electron and a hole.

- - ^ - V 2 -  E f ) u(x) = Eu(x)  
2m 1
h

2m
V 2 + E f ) v (x ) = Ev{x)

(D.2)

(D.3)

Using the fact that the wave function has to be zero at the interface with the vacuum, 
one can write the solution of these equations:

u(x) = Asin[ke(x +  a)] 
v(x) = Bsin[kh(x +  a) — rwr]

(D.4)

(D.5)

where ke =  y  2m( ^ +g) ~  kF + k and kh — \J  2m( ^  E) k , kF — k are the electron and 
hole momenta.

For x  >  0 the order parameter is considered to be constant A(x)  =  A , and the BdG 
equations take the form:

E f I u(x) + Av(x) = E u (x )- 1 V 2 
2m

- — V 2 +  E F ) v(x) +  A *u(x) — E v (x ) 
2m

(D.6)

(D.7)

Substituting v(x) from Eq. (D.6) into Eq. (D.7) we obtain the following equation for
u(x)\

+ 2E f ^ V 2 +  jAj2 +  E 2f -  E 2 
2m J 2m

We substitute in Eq. (D.8) a solution of form u{x) =  aekx:

u{x) =  0 (D.8)

kA + 2EFk2 +  A 2 +  E 2f -  E 2 = 0 (D.9)
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The solutions o f this 4-th order equation are:

,_________
h,2 = — y 2m ^ ~ ^ F ^  (D.10)

/ t t  ,_________
^3,4 =  +  y — y /— ( D. l l )

where ft =  \ /A 2 — E 2.
For the required boundary conditions to be satisfied, only fcii2 is a valid solution. We

want only evanescent waves for energies less than the superconducting gap. Writting
explicitly as a complex number and keeping only the lowest order in f t /  E ’2F we get:

klt2 = - ~ ± i k F(l + tt2/ E 2F), (D.12)

where £o =  hvp/A , vp = y/2Ep/m .  The general form o f the u{x) solution can be 
written as:

u{x) = V M i + n 2/££) (D . i 3)

Substituting this form into Eq. (D.6), one can obtain the hole part o f the wave func­
tion:

v(x) =  f3xe~r0^ xeik^ l+n2lE^  + f32a xe ~ ^ xeikF{ 1+q2/ef), (d .14)

where (3i/ai =  E / A  +  i f t /A  and /?2/«2 =  E / A  — i f t /A . One can show that E / A  ±  
i f t /A  is a complex number with unit magnitude and will only contribute as a phase 
difference between the electron and hole wave functions ( $ 4):

ft
$,4 =  — a rc ta n — (D .l 5)

E
E

=  — arccos — (D.16)
A

ft
=  arcsin— , (D.17)

—7T/2 <  $A < 0.
We can now write a general form of the solution for x > 0 and E  < A:

s i n  *£> 4̂

u(x) = asin[kpx  +  (f>e]e~ “ (D.18)
s i n  0 ^ 4

v(x) = otsin[kpx + (f)e — <bj/\e~ «o x (D.19)
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The continuity o f the wave function and of it’s first derivative at x  = 0 will give the final 
solution:

u(x) = Asin[ke{x + a)] —a < x  < 0
v(x) = Asin[kh(x +  a) — n7r] —a < x < 0

sin 3> a
u(x) = Asin (k fX  +  kea)e~ «o x x  > 0

s in $ 4  ( D . 2 1 )

v(x) = Asin(kpx  +  kha — nir)e «o x x  > 0

0.8

0.6

0 .4

0.2

4 8 12 16 20
2a/̂

Figure D.2: Position o f the Andreev levels as a function of the size o f the normal-metal 
layer

The phase difference between the electron and the hole wave function obeys the 
following condition:

2 ka +  $41 =  n 7r (D.22)

If one substitutes the definitions for $41 and k as functions of excitation energy E, one 
obtains a quantization condition:

2a E  E
—  — =  rwr +  arccos — (D.23)
£0 A A

In Figure D.2 we plot the energies of the Andreev levels as a function of the length o f the 
normal-metal layer. The number o f Andreev levels is proportional to the length of the 
normal-metal layer a and inverse to the superconducting coherence length. For a 
there is always one Andreev state which as a decreases, is shifted towards the gap edge.
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