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Abstract

This thesis proposes a framework for ground roll removal based on regularized inversion.

Both ground roll and reflections are represented in the frequency-space (f − x) domain as

a linear function of unknown complex amplitudes. An inversion algorithm is developed to

estimate the coefficients that model the ground roll and reflections separately. The latter

allows for an independent synthesis of ground roll and reflections. The synthesized ground

roll is subtracted from the seismic records to yield a seismic record with enhanced reflections.

In the first part of this thesis, a regularized least-squares inversion algorithm is proposed.

I further propose to adopt two types of regularization to guarantee the stability of the

inversion. To be more specific, I compare classical quadratic regulation with sparsity pro-

moting regularization. Numerical experiments show that sparsity promoting regularization

yields better results than quadratically regularized inversion. A robust regularized inversion

algorithm is also proposed to cope with erratic noise often present in onshore data.

Through synthetic and field data examples, we prove the effectiveness and the limitations

of these algorithms.
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CHAPTER 1

Introduction

1.1 Seismic exploration and wave propagation

Reflection seismology is a geophysical method often used to estimate images of the subsur-

face. Reflection seismology adopts the principles of wave propagation phenomena, and it

heavily relies on data processing techniques to preconditioning seismic records before imag-

ing. Reflection seismology is commonly used for commercial purposes, such as exploring and

exploiting hydrocarbons and mineral deposits (Liu et al. (2018); Malehmir et al. (2012)).

The method can be summarized as follows. In an onshore or marine survey, a source gener-

ates waves, propagating through the different subsurface layers. These waves are reflected

by geological interfaces and propagate back to Earth’s surface where they are registered

by arrays of receivers in the form of time series, often called seismic traces. In an onshore

survey, dynamites and vibroseis are the most commonly used sources. Their use depends on

surface topographic complexity and the accessibility of the survey area. In marine reflection

seismology, the source consists of airguns (Dragoset (2000)).

Geophones for land data and hydrophones for marine acquisitions are used to record the

seismic waves. These detectors are deployed as arrays specifically designed for noise at-

tenuation and imaging purposes. Figures (1.1) and (1.2) show a land and marine seismic

surveys.
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CHAPTER 1. INTRODUCTION 2

Figure 1.1: Schematic figure of a land seismic survey. A vibrator truck pro-
duces waves that propagate into the subsurface. Downgoing waves are reflected
by interfaces and propagate upwards. Upward propagating waves are recorded by
geophones (retrieved from http://geologylearn.blogspot.com/2015/06/marine-and-
land-seismic-aquisition.html).
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Figure 1.2: Schematic figure of a marine seismic survey. An air gun produces waves
that propagate into the subsurface and are recorded by hydrophones (retrieved from
https://www.liberaldictionary.com/seismic/).

Seismic waves generated by sources, as described above, propagate into the earth. This

energy is refracted and reflected and propagates to the surface, and then it is recorded by

receivers. The signal recorded by receivers contains the desired information for imaging the

subsurface. However, before imaging, a series of processing steps are applied to eliminate

unwanted noise and enhance interest signals.

1.1.1 Seismic reflection and traveltimes

Waves propagate in two ways: Body and Surface waves (Udias and Buforn (2017); Shearer

(2019)). Body waves propagate in deep structures of the subsurface, forming P, SH, and

SV waves. In contrast, surface waves travel along the surface, and they do not contain

information about the subsurface structure. They form Love and Rayleigh waves, and they

cause noise in seismic records.

Let us see what happens when waves propagate from one medium to another. The interior

of the earth is not homogeneous. In other words, rocks have different elastic properties,

which yields to stratified layers of materials of varying P-wave, S-wave, and density. When

the waves travel propagate through these discontinuities, part of the energy is propagated

into the next medium, and part is reflected back.
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According to Fermat’s principle, the waves follow the path of shortest duration (Udias and

Buforn (2017); Shearer (2019); Bóna and Slawinski (2003)). For both reflection and refrac-

tion, these paths follow Snell’s law, resulting from Fermat’s principle (Udias and Buforn

(2017); Shearer (2019); Bóna and Slawinski (2003); Yajima and Nagahama (2007)). Figure

1.3 shows two media were from an incident P wave, P and S waves are reflected and refracted

from a medium M.

Figure 1.3: Sketch showing a P wave reflection and refraction to P and S waves in
two media .

If e and f are the angles of incident and reflected P and S waves in medium M of velocities,

α, β and e, f are those of refracted waves in medium M with velocities α′ and β′, then

Snell’s law is given by

cose

α
=
cosf

β
=
cose′

α′
=
cosf ′

β′
=

1

c
= p (1.1)

where p is the ray parameter and c is the apparent velocity of propagation.

This thesis is focused on Rayleigh waves, which combine P and SV motions, and their

displacements are in vertical planes (Udias and Buforn (2017); Shearer (2019)). Rayleigh
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waves are idealized for what in exploration seismology is called ground roll and are considered

unwanted signals. They are also called coherent noise, and they are dominant in land seismic

records. They mask the body waves (reflections), making further processing steps difficult.

1.2 Surface waves: Rayleigh waves

The existence of a free surface in a medium leads to surface waves generation (Udias and

Buforn (2017); Shearer (2019)). In a free surface, the boundary conditions are that compo-

nents of stress across it are zero. This has great interest as the second medium is a vacuum

(figure 1.4).

Figure 1.4: Sketch showing a P wave reflected to P and SV waves for a free surface
on an elastic medium .

These waves travel with low velocity, strong amplitude, and the strongest arrivals in a

record. Their velocities depend on the frequency, and they also have decreased amplitudes

with depth. Rayleigh waves in a laterally homogeneous medium exist at any free surface.

These waves are represented through a P/SV pair. In other words, the reflections on the

surface contain both of them. When P and SV waves interact with a free surface, the

horizontal slowness p only depends on S-wave velocity β and P -wave velocity α.
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Figure (1.5) shows for one wavelength the particle motion of Rayleigh waves for the funda-

mental mode (Udias and Buforn (2017); Shearer (2019)).

Figure 1.5: Sketch showing the particle motion for Rayleigh propagating from left
to right .

The Rayleigh wave travels along the surface with phase velocity V p = 1/p at a given

frequency. However, when the phase velocity varies as a function of frequency, then group

velocity Vg is used, with which the amplitude of the wave travels in space. In other words,

for a sum of waves, phase velocity applies to the wave with the higher frequency and group

velocity for the waves with the lowest frequency. This is a condition where the waves become

dispersed, a common characteristic of ground roll.
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Figure (1.6) show the definition of group and phase velocities.

Figure 1.6: Sketch showing group and phase velocities for a sum of waves.

1.3 Ground roll and attenuation methods

Incoherent or random noise exists in almost every seismic record obtained from field mea-

surements, and it can be generated by acquisition trucks, people working, wind, nearby

roadways, etc. On the other hand, noise that appears with a consistent phase in seismic

data is not random. It is called coherent and, in most cases, is source-generated noise, such

as ground roll.

The ground roll attenuation is one of the first steps of seismic data processing of land data.

In general, ground roll removal is a difficult task because it is dispersive and often aliased.
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Alias is caused by insufficient receiver sampling (Duijndam et al. (2001)).

Figure (1.7) shows a synthetic shot gather where the ground roll is dispersive. The events

seem linear, and their velocity change with frequency. This is one of the characteristics that

makes ground roll attenuation difficult. Figure 1.8 shows in frequency-wavenumber (f − k)

domain a non-aliased signal with maximum frequency of 120 Hz. Figure 1.9 shows the same

signal when it is aliased. The signal is in the frequency range of 25Hz and 75Hz shows

alias. When this phenomenon happens to ground roll, it overlaps with the f − k spectrum

of the reflections making frequency-wavenumber filtering a difficult task (Beresford-Smith

and Rango (1989); Hosseini et al. (2015); Liu and Marfurt (2004); Liu (2010)).

Figure 1.7: Synthetic shot gather showing dispersive ground roll masking reflections.



CHAPTER 1. INTRODUCTION 9

Figure 1.8: Not aliased signal in the f−k domain. A filter can remove the frequency
containing the signal we wish to attenuate.
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Figure 1.9: The alias phenomenon is visible when displaying a record in the f −
k domain. For frequencies 25 to 125 HZ, the signal cannot be removed without
affecting any other existing signal (reflections etc.)

Ground roll appears with higher energy than reflections. However, in certain spatial posi-

tions, such as for small offsets, coherent noise detection is difficult. Different methods have

been developed for ground roll attenuation. Since the ’80s, this task is one of the most

important first steps in seismic data processing. The famous FK filtering introduced by

Clement (1973), was one of the first steps for coherent noise attenuation. Later, Simaan

and Love (1984) proposed an optimum filter array to remove linear noise from sections.

However, the dispersive and aliased character of ground rolls demands more powerful tools.

Radon Transform became popular in late ’80s by Hampson (1987) (Discrete RT) and later by

Fyfe and Kelamis (1992) (Linear RT) and Schonewille and Duijndam (1997) (Parabolic RT).

Radon transforms in some occasions can cope with ground role however, their parametriza-

tion to cope with dispersive signals is a difficult task and in general, Radon transform are

most often adopted for multiple reflection removal Hampson (1987).
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The Wavelet Transform is a well-known tool for ground roll suppression (Yu et al., 2002;

de Matos and Osório, 2002; Goudarzi and Ali Riahi, 2012) because it can cope with the local

dispersive character of ground roll. However, separating signals from the ground roll in the

wavelet domain can become a complicated task because the wavelet coefficients that model

these two signals might overlap for some wavelet scales. Other transforms, such as S and

XFK (Askari and Siahkoohi, 2008), SVD (Porsani et al., 2009) have also been applied for

ground removal. However, all previous methods work well if the ground roll is not aliased,

and there is good separation of ground roll and reflections in the transform domain.

The Curvelet Transform has also been widely used for ground roll attenuation (Zhang et al.,

2017; Naghizadeh and Sacchi, 2018, 2011). One advantage of the Curvelet transform is that

it allows separating reflections from ground roll based on their local orientation (dip) and

scale.

In this thesis, rather than adopting a transform-based framework for ground roll suppression,

I propose an inversion approach based on regularized least-squares inversion and regularized

robust inversion. To achieve this goal, I have adopted tools of sparsity promoting inversion

and methodologies for the solution of linear inverse problems such as Iterative Re-weighed

Least-Squares (Burrus et al. (1994); Daubechies et al. (2008); Chartrand and Yin (2008))

and the alternating direction method of multipliers (ADMM) (Boyd et al. (2011); Wang

et al. (2019)).

The proposed method entails simultaneously modelling reflections and ground role via an

operator in frequency-space f − x domain. The technique was inspired in the work of

Perkins and Zwaan (2000), who also proposed modelling ground role and reflections in

the f − x domain. However, the method I have developed has fewer restrictions than the

technique of Perkins and Zwaan (2000) as I adopted a sparse regularization technique to

isolate coefficients that model ground roll and reflections.

1.4 Scope of this thesis

1.4.1 Contributions

The main contributions of this thesis are summarized as follows:

• I propose an algorithm to concurrently model seismic reflections (hyperbolic events)

and ground roll (dispersive linear noise) by estimating the coefficients that model

hyperbolic events and coherent noise.
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• The algorithms takes place in the f − x domain. Two operators are used to estimate

coefficients that model hyperbolas and dispersive noise. The coefficients are calculated

via inversion.

• I firstly apply least-squares inversion with quadratic and sparse regularization showing

the superiority of the sparse inversion methods for this type of problem. Solutions with

sparse regularization are obtained via the Iterative Reweighed Least-Squares (IRLS)

method.

• I then use scaled ADMM to estimate the coefficients via robust inversion. This solver

gives more flexibility than IRLS as it permits to incorporate a robust misfit measure

in the inversion.

• Via synthetic examples, I show that one can separate the ground roll from reflections

when an approximate model of the τ, v pairs is provided. The couple τ, v represents

two-wave travel-time and NMO velocity of seismic reflections parametrized via classical

hyperbolic assumption. These parameters are easy to obtain via velocity analysis.

• Through field data, we compare all previous methods and reach conclusions about

each technique’s effectiveness.
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1.4.2 Overview

Chapter 1 explains the basic Physics one needs to know to understand the content of

this work and provides an introduction to ground roll attenuation methods reported in the

literature.

Chapter 2 explores an algorithm for generating 3D synthetic shot gathers in the f − x
domain under the assumption of a layered Earth with minimal spatial structural variability,

based on the work of Perkins and Zwaan (2000) and Le Meur et al. (2008). Then, I first

investigate applying a l1 regularization constraint to retrieve the sparse coefficients that

model signal and ground roll.

Chapter 3 proposes three inversion algorithms to retrieve the coefficients that model re-

flections and ground roll. Rather than adopting a general mathematical transform inspired

by the fields of harmonic analysis and image processing, we create modelling operators that

resemble seismic reflections and dispersive ground roll. First, we investigate the application

of a l2 regularization constraint. Then, we replace with an l1 regularization term to retrieve

the sparse coefficients that model signal and ground roll by adopting the traditional ap-

proach of Iterative Reweighed Least-squares (IRLS) (Burrus et al., 1994; Daubechies et al.,

2008; Chartrand and Yin, 2008) and FISTA algorithm (Beck and Teboulle (2009)). We

also research the applicability of the proposed inversion algorithm to cases where we do

not have a precise knowledge of the τ, v pairs (intercept-time and RMS velocities) of the

reflections. Besides, we test the efficiency of robust inversion in ground roll detection and

separation from reflections using a robust algorithm using scaled ADMM (Alternating Direc-

tion Method of Multipliers). All the above algorithms are tested for their efficiency through

synthetic and real data examples.

Chapter 4 summarizes the contributions and limitations of the methods of this thesis and

provides some recommendations for future steps.



CHAPTER 2

Forward Problem

2.1 Introduction

In geophysics, it is a common and essential practice to reach conclusions about parameters

from data. We use the laws of Physics and Geophysics to build a model based on parameters

we insert. In this thesis, for example, we use the laws of wave propagation in the Earth’s

interior, we insert parameters such as velocities, densities of the different layers, and compute

a seismic record model. This is called the forward problem.

The opposite is the inverse problem, and I will talk more about this in chapter 3. In that

case, we try to reconstruct the model by using a set of measurements. We try to find the

exact theory that describes how the measurements are combined to give the model that is

almost similar to the data through this process. Figure 2.1 shows a simple definition of

forward and inverse problems.

14
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Figure 2.1: A simple definition for the forward and inverse problems in Geophysics
for a model m and the data d

The scope of chapter 2 is to show how the forward problem can be applied to make synthetic

data, a seismic record which will contain reflections and coherent noise-ground roll.

2.2 Ground roll modelling

Ground roll modelling is a challenging problem. It is challenging to build a realistic model

that will contain coherent noise with dispersion, with higher amplitude and lower velocity

and frequency compared to the P waves.

It is tough to model ground roll and remove it from raw data by preserving the reflections’

amplitudes (Perkins and Zwaan (2000); Le Meur et al. (2008)). The traditional filters where

one suppresses frequencies, such as filtering in FK domain, do not work if there is aliased

coherent noise. It is better to make a model that will be close enough to the original data

and then subtract it from the seismic data.

One has to make a realistic near-surface Earth model using appropriate values for density,

Qp, Qs factors, velocities for P and S waves and thicknesses for different layers. Homogeneity

or heterogeneity should also be taken into account for the basic model (Campbell et al.,

2001).

However, this type of modelling, using finite differences, does not lead to a realistic and

complex ground roll model, as any small change in the values of model parameters gives

different data results.

Another issue is the acquisition geometry. Most of the filters work well in 2D data with a

regular grid. This is because, in these cases, the ground roll is linear. However, when the
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sampling is irregular, and the data set is 3D, the coherent noise loses its linearity. Figure

2.2 shows a 3D irregular data set.

Figure 2.2: An irregular offset 3D data set with very strong ground roll. Note that
in traces 450-650, the coherent noise has lost its linearity.

2.3 Method

To solve the forward problem, we first consider 3D irregular seismic data. We also decided

to work on f −x domain, as it is easier to handle a range of frequencies each time, on which

the dispersive ground roll depends on.

We assume a 3D shot gather composed of two signals, hyperbolic events and coherent noise.

The coherent noise is the dispersive ground roll, and it is denoted by dc(t, h) where h is the

source-receiver distance, and t is time. The signal (superposition of hyperbolic events) is

denoted by ds(t, h). The model in the time domain becomes
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d(t, h) = ds(t, h) + dc(t, h) (2.1)

Equation 2.1 can be transformed to the frequency domain

d(f, h) = ds(f, h) + dc(f, h) (2.2)

where ds(f, h) is the signal and dc(f, h) is the coherent noise in the frequency-space (f −x)

domain. Clearly, we are simplifying notation by adopting d( · , h) for both describing data

in time and frequency domain.

2.3.1 Modeling the signal

We create a model for the signal in the frequency domain. We consider a non-dipping layered

model that consists of hyperbolas as the signal of interest. The following equation provides

the travel time for the reflection hyperbola (Yilmaz (2001))

t(h) =

√
τ2 +

h2

v2
(2.3)

where τ is the zero offset travel time, h is the true shot-receiver distance, and v is the root

mean square velocity. A superposition of hyperbolas can be represented in the f−x domain

via the following expression

ds(f, h) =

Ns∑
k=1

a(k)ws(f) e
−i2π f

√
τ2
k+

h2

v2
k

=

Ns∑
k=1

ms(f, k) e
−i2π f

√
τ2
k+

h2

v2
k (2.4)

where ask is the amplitude of the k-th hyperbolic event, ws(f) is the corresponding seismic

wavelet in the frequency domain. Similarly to what Sacchi and Ulrych (1995) applied to

their work in the frequency domain Radon transform, we can collapse the wavelet and

the amplitude term into coefficients denoted by ms(f, k) = a(k)ws(ω). The coefficients

ms(k, f), k = 1 . . . Ns, f ∈ [fmin, fmax] are the unknowns of our inverse problem.

We remind the reader that for a 3D acquisition, the source-receiver distance h is given by

h =
√

(rx − sx)2 + (ry − sy)2 (2.5)
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where ~r = (rx, ry) and ~s = (sx, sy) are receiver and source coordinates, respectively. Equa-

tion 2.4 is the synthesis in f−x domain of Ns hyperbolas of parameters τk, vk, k = 1, . . . Ns.

We will analyze two cases. First, we assume known pairs τk, vk. Then, we assume a coarse

regular grid of pairs τk, vk that might or might not contain an event.

2.3.2 Modeling the coherent noise

For simplicity, we assume ground roll modelled via the superposition of linear events via the

following expression

dc(f, h) =

Nc∑
k=1

ac(k)wc(f) e−i2πfpkh

=

Nc∑
k=1

mc(f, k) e−i2πfpkh (2.6)

where ac(k) is the amplitude of the k-th linear event, wc(f) is the corresponding wavelet,

p is the ray parameter. The coefficients mc(f, k), k = 1 . . . Nc, f ∈ [fmin, fmax] are also

unknown.

2.4 Synthetic modeling

To produce a synthetic model, we need to run the forward operator using inserted physical

values. In the end, we will be able to estimate the amplitude and the wavelet of the signals

and build a model similar to a real one. For this step, we use the simple least-squares

inversion.

For a single frequency f , we first define the observed data in vector form

d(f) =



d(f, h1)

d(f, h2)

d(f, h3)
...

d(f, hN )


(2.7)

where N is the number of receivers. Similarly, we define vectors of complex amplitude

coefficients for the signal and coherent noise
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ms(f) =



ms(f, 1)

ms(f, 2)

ms(f, 3)
...

ms(f,Ns)


,mc(f) =



mc(f, 1)

mc(f, 2)

mc(f, 3)
...

mc(f,Nc)


. (2.8)

Equation 2.2 can be expressed as follows

d(f) = As(f)ms(f) + Ac(f)mc(f) + e(f) , (2.9)

where to make our model more realistic, we have included an additive noise term e(f). We

can simplify notation by omitting the dependency on f and understand that the inversion

and the synthesis of signals must be carried out for a predefined frequency range f ∈
[fmin, fmax],

d = Asms + Acmc + e . (2.10)

We now define the following augmented matrix and vector

A =
(
As Ac

)
,m =

(
ms

mc

)
(2.11)

which can be combined into a single expression

d = Am + e . (2.12)

The form of equation 2.12 is to solve linear problems. Our goal is to adopt regularized

inversion to estimate m. We then split the augmented vector of coefficients into ms and

ms. The coefficients are used to synthesize ds and dc. Finally, the process entails mapping

the separated data from f − x to t− x.

2.5 Synthetic Data in FX domain

We model our data via a superposition of hyperbolic events and two dispersive modes with

phase velocity given by

v(f) = vmin +
(vmax − vmin)√

1 + ( ff0 )4
. (2.13)
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The following parameters have been adopted:

• 1st dispersive mode: vmin = 400m/s, vmax = 900m/s, f0 = 10Hz

• 2nd dispersive mode: vmin = 600m/s, vmax = 900m/s, f0 = 20Hz

• Central frequency of ground roll wavelet is 10Hz

The central frequency of the signal (hyperbolic events) is 20Hz. We have used six hyperbolic

events with intercept-velocity pairs τ = [0.3, 0.39, 0.5, 0.6, 0.83, 1.2]s and v = [2.0, 2.4, 3.0, 3.4, 3.4, 4.0]km/s.

In our first numerical experiment we will assume that the τ, v pairs (intercept time-velocity

pairs) are known.

Figure 2.3 shows the distribution of receivers for the 3D synthetic shot gather used to test

our algorithms. Data consist of Nx = 50 receivers per line and Ny = 5 receivers lines, the

length of each record in 400 samples and the sampling interval is ∆t = 4ms. The additive

noise in equation (2.10) is Gaussian, uncorrelated in space and band-limited in time. The

variance of the noise is σ2 = 0.07 which corresponds to an SNR = 1. 1

Figure 2.3: Source and receivers for the 3D synthetic example adopted to test our
signal and ground roll separation method.

1SNR = Power of the clean data
Power of the noise
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Figure 2.4: a) 3D synthetic shot gather. b) 3D synthetic shot gather contaminated
with random noise (SNR = 1).



CHAPTER 2. THE FORWARD PROBLEM 22

2.6 Summary

In general, generating a realistic synthetic coherent noise model is very difficult. The near-

surface (top 10-30 m) has very slow velocities, substantial heterogeneity, and increased

velocity with depth, causing strong near-surface guided waves and strong attenuation.

We have developed a simple, realistic algorithm for simultaneously modelling reflections and

linear dispersive ground roll. We built two operators for hyperbolas and dispersive noise,

and we modelled a synthetic 3D shot gather in the f −x domain. This is a simple approach

inspired by Perkins and Zwaan (2000) and Le Meur et al. (2008) that allows us to develop

a simple, practical model to be used in the least-squares inversion.



CHAPTER 3

Inversion Algorithms

3.1 Introduction

In the previous chapter, we discussed the forward and the inverse problem in Geophysics.

There are many algorithms to solve linear problems through inversion.

In this thesis, we apply algorithms with simple mathematical procedures that we believe

can give satisfying results.

In this chapter, we introduce the reader to Least-Squares and Robust inversion.

3.2 Least-Squares inversion algorithms

Least-squares inversion is a simple mathematical procedure that gives solutions to linear

problems. The cost function we minimize for the least-squares inversion only contains a

misfit function

J = min‖Am− d‖22 . (3.1)

We must add a quadratic regularization term for the stability of the solution (Tikhonov and

Arsenin, 1977; Menke, 1989). Hence, the cost function we have to minimize given by

J = min‖Am− d‖22 + µ‖m‖2 . (3.2)

The minimum of the latter is often called the damped least-squares solution

m̂ = (A∗A + µI)−1 A∗d , (3.3)

23
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where µ is the trade-off parameter (more details in chapter 4).

The Least-squares solution is straightforward. It turns out to be statistically correct if data

errors are normally distributed. However, this solution is negatively affected by outliers

because they distort the distribution of errors (Russell (1988); Schuster (2017); Kijko (1994)).

When we use least-squares fitting, the outliers are considered correct observations and the

resulting regression is affected. To solve this problem, we can adopt a robust regression

algorithm. Figure 3.1 shows a simple graph showing the behaviour of robust and non-robust

algorithms in the presence of outliers.

Figure 3.1: Comparison of non robust and robust regression when outliers are
present. Non robust algorithms consider them as good observations (left image).
Robust algorithms are not affected by them (right image). (Adapted by Sacchi,
2015.)

The solution of the least-squares fitting problem with an l1 regularization leads to sparse

solutions. This technique has been applied for the computation of the so-called Sparse (High-

Resolution) Radon Transform (Sacchi and Ulrych, 1995; Wang and Nimsaila, 2014), Fourier

reconstruction methods with sparsity constraints (Sacchi and Ulrych, 1996; Zwartjes and

Gisolf, 2007) and regional-residual separation of potential field data (Guspi and Introcaso,

2000).
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In this case, an alternative solution is the `1 norm solution. That means, in our least-squares

misfit, we add a sparse regularization norm which entails adding to the misfit the `1 penalty

term

J = min‖Am− d‖22 + µ‖m‖1 . (3.4)

The solution of the latter is compute via iterative algorithms (Berman and Plemmons (1974);

Shen et al. (2011); Bing et al. (1992)) such as IRLS

m = (A∗A + µQ)−1A∗d . (3.5)

where Q is also diagonal and given by

Qii =
1

|mi|+ ε
. (3.6)

All the above research has been done with the assumption that additive incoherent noise is

Gaussian. However, it is highly probable that incoherent noise will be non-Gaussian erratic

noise (Anstey (1986)). This leads to the requirement of a robust measure of misfit, which

results in formulating a robust cost function in the next section.

3.3 Robust inversion algorithms

To completely ignore the influence of outliers in the solution of the linear regression problem,

we propose to minimize the following cost function

J = min‖Am− d‖11, (3.7)

which is also called the robust misfit.

The minimum of J leads to a solution that is more resistant to outliers because it does not

square each of the terms in the misfit measure. On the other hand, the solution, which

minimizes the robust misfit, is more complicated to be computed. The functional f of the

residuals r is given by

f(m) = ‖r‖1 =
∑
|ri|. (3.8)

Hence the the gradient of f is

∇f(m) = ATRr = ATR(d−Am), (3.9)
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where R is a diagonal matrix with elements that are the absolute values of the residuals.

To find the `1 solution, we solve ∇f(m) = 0 and we have

ATR(d−Am) = 0 (3.10)

or

ATR(d−Am) = ATRd (3.11)

Since R depends on m, 3.11 is a nonlinear system of equations and we need an iterative

method to find the appropriate weights in R.

Then for more stability, we add an l1 regularization term and we have

J = min‖Am− d‖11 + µ‖m‖1 . (3.12)

For our sparse inversion experiment, the cost function we have to minimize is

J = argmin(‖e‖11 + µ‖m‖1) , (3.13)

where e = Am− d and it contains erratic noise.

To solve equation 3.13, we need to use an iterative method. The steps are not so easy, as

in the case of the least-squares inversion with a L − 1 norm. In chapter 4, we adopt the

algorithm ADMM to solve the problem above.
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3.4 Summary

To solve linear problems in Geophysics, we use inversion algorithms.

Least squares inversion is a simple mathematical procedure which can give satisfying results.

To make the solution stable, one must add a penalty term.

However, we need to consider the behaviour of the algorithms in case the observations

contain outliers. In this case, quadratic regression will consider them as useful observations

and fitting the data will be wrong. Considering a robust regression will avoid fitting outliers.



CHAPTER 4

Inverse Problem

4.1 Introduction

In this chapter, we describe different algorithms to separate ground roll from reflections.

A comparison between least-squares inversion with penalty terms (L2 and L1) and robust

inversion through synthetic and field data shows when a coherent noise attenuation is pos-

sible.

4.2 Least-Squares inversion with quadratic regulariza-

tion

Having read the work of Perkins and Zwaan (2000) and Le Meur et al. (2008) who used least-

squares inversion for ground roll attenuation and seeing that their results were promising,

I decided to expand their research by exploring regularization methods for the solution of

inverse problems.

Our first algorithm is the simple least-squares inversion which now utilizes an l2 norm to

measure the modeled and observed data’s fidelity. The stability of the solution is guaranteed

by adding the l2 model norm as a penalty constraint (Tikhonov and Arsenin, 1977; Menke,

1989)

J = ‖d−Am‖22 + µ ‖m‖22 . (4.1)

28
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To compute the coefficients that minimize J , we take the derivative of the cost function

with respect to m and then equate the result to zero. After some simple algebra, we arrive

at the damped least-squares solution

m̂ = (A∗A + µI)−1 A∗d . (4.2)

The solution m̂ can be separated into two parts m̂ = (m̂s, m̂c)
T . The recovered ampli-

tudes are finally used to synthesize signal and coherent noise

d̂s = As m̂s (4.3)

d̂c = Ac m̂c . (4.4)

In general, we will subtract the modeled coherent noise d̂c from the original data. The latter

is a common practice for multiple suppression.

The size of the matrix A is N × (Ns + Nc). According to equation (4.2), the inversion of

a matrix of size (Ns + Nc) × (Ns + Nc) is required for each frequency f ∈ [fmin, fmax]. If

the number of traces N < (Ns + Nc) (underdetermined system of equations) we prefer to

replace equation (4.2) by

m̂ = A∗(AA∗ + µI)−1 d . (4.5)

It is easy to show that equations (4.2) and (4.5) are equivalent (Sacchi and Ulrych, 1995).

For the underdetermined problem, we prefer equation (4.5) because it requires the inversion

of a matrix of size N ×N .

4.2.1 Parameters’ selection

The trade-off parameter µ in expressions (4.1) and later in (4.6), is required to avoid over-

fitting or under-fitting the data.

A small value of µ leads to a solution that fits the additive noise and, consequently, the

solution becomes unstable. On the other hand, a large trade-off parameter µ will lead to

under-fitting. In this case, the separated signals ds and dc will not be adequately repre-

sented. In our synthetic examples, we have adopted the χ2 criterion to find an optimum

trade-off parameter µ.

We try different values of trial trade-off parameters and evaluate the global misfit function

in the t, h domain. For instance, if the original signal is denoted by d(t, h) and the predicted

signal containing both reflections and ground roll is d̂(t, h), we compute χ2 as follow
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χ2 =

∑
t,h |d(t, h)− d̂(h, t)|2

σ2

we choose µ such that χ2 ≈ No where No is the total number of observations No =

Nt ×Ntraces.

Figure 4.1 show an example of how we use the model norm and misfit to select the best µ

among a a given range.

Figure 4.1: An example of how to estimate the µ parameter using the L-curve
method

We must mention that a more formal treatment of the parameter selection problem will

require us to run the χ2 test for each frequency f where the inversion is carried out. In

essence, the parameter µ should be frequency dependent. We have found that adopting a

single parameter µ for all frequencies is a reasonable and practical solution for our synthetic

tests. The latter should not prevent defining a strategy to select µ(f) to selectively damp
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frequency components according to their SNR.

4.3 Least-Squares inversion with sparse regularization

In our second algorithm, we use least squares inversion, but we now use a sparse (L1) penalty

constraint to avoid deal with outliers.

We then propose to minimize the following cost function

J = ‖d−Am‖22 + µ ‖m‖1. (4.6)

Different methods were proposed to minimize J . We will firstly adopt the traditional

approach of Iterative Reweighed Least-squares (IRLS) (Burrus et al., 1994; Daubechies

et al., 2008; Chartrand and Yin, 2008) and then we will try the Fast Iterative Shrinkage-

Thresholding Algorithm for Linear Inverse problems (FISTA) (Beck and Teboulle, 2009) but

bear in mind that other methods exist to minimize J (Tropp and Gilbert, 2007; Van den

Berg and Friedlander, 2011).

4.3.1 Inversion through IRLS and FISTA algorithms

IRLS

The derivative of the cost function (equation 4.6) can be approximated by

∇mJ = A∗(Am− d) + D = 0 (4.7)

where D is a diagonal matrix with elements given by Di i = sign(mi). The sign function

and, consequently, D, can be approximated by the following expression

Dii =
mi

|mi|+ ε
(4.8)

where ε is small number. In matrix form

D = Qm (4.9)
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where Q is also diagonal

Qii =
1

|mi|+ ε
. (4.10)

In essence, the condition for the minimum of J is given by

∇mJ = A∗(Am− d) + Qm = 0 , (4.11)

from where one can write the following solution

m = (A∗A + µQ)−1A∗d . (4.12)

Now, an important comment is in order. The diagonal matrix Q is a function of the solution

m. Therefore, one must adopt an iterative algorithm to solve for m

mk = (A∗A + µQk−1)−1A∗d

where k denotes iteration number. The IRLS algorithm often converges in about 10 iter-

ations. IRLS is not restrictive to inversions with an l1 regularization term; it can also be

adopted for least-squares inversion with the Cauchy, Huber and Geman-McClure sparsity

criteria (Sacchi, 1997). Last, we mention that for the underdetermined problem (Sacchi and

Ulrych, 1995) (N < (Ns ×Nc) we prefer to solve

m̂ = PA∗(APA∗ + µI)−1 d , (4.13)

where P = Q−1. We also mention that equation (4.13) is also adopted by the re-weighted

minimum norm signal reconstruction algorithm called FOCUSS (Gorodnitsky and Rao,

1997).

FISTA

From the cost function (equation 4.6), if f(x) = ‖Am − d‖2 and g(x) = λ‖m‖1, then

according to the basic iterative shrinkage method

mk+1 = τλt(mk − 2tAT (Amk − d)) (4.14)
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where t is the appropriate stepsize and τ is the shrinkage operator. Then, the stepsize can

defined by

t =
1

L(f)
(4.15)

where L(f) is a Lipschitz constant of ∇f .

For y1 = mo and t1 = 1 and for k iterations,

mk = pL(yk) (4.16)

where pL is the iterative shrinkage operator. Also,

tk+1 =
1 +

√
1 + 4t2k
2

(4.17)

and

yk+1 = mk +
tk−1
tk+1

(mk −mk1) (4.18)

are needed for the FISTA algorithm. A more detailed description is provided by Beck and

Teboulle (2009). The new aspect of the FISTA method is that the shrinkage operator in

the solution showed in (4.16) is not based on the previous mk−1, but on yk.

4.3.2 Parameters’ selection

To compute least-squares solutions with l1 penalty constraints using the iterative algorithms

described before, a number of iterations should be provided in case it is difficult to define a

number.

For the l2 norm regularization there is a closed-form solution. However, for IRLS and

FISTA, we need iterative methods. IRLS is a simple algorithm that needs 10-20 iterations

to convege depending on the data set to be inverted. In most cases, less than 20 iterations

are enough. On the other hand, FISTA is more complex and needs more iterations. Stoping

after a few iterations does not leave to solutions that are sparse and fit the data.

There are many definitions for a stopping criterion (Ascher and Roosta-Khorasani, 2016).

Given a tolerance, a small number of 10−2 − 10−5, we force the algorithm to stop at such a

point where the difference between two points of the cost function will be close to zero or, in

other words, smaller than the given tolerance. Given a large tolerance, the iterative method

will stop before convergence. For a small tolerance, the algorithm will reach a maximum

iterations or stop at numerical convergence. If the cost function is J and for k iterations we

have J(k), then we propose following stopping criterion
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‖Jk − Jk+1‖
‖Jk+1‖

< tol (4.19)

where, for iteration k = 1, m = 0 and J(1) = ‖Am− d‖22 = ‖d‖22.

In addition, the trade-off parameter is still computed using the L-curve method, as previ-

ously described.

4.4 Robust inversion

Until now, we were assuming that the data noise is Gaussian. To further expand our research,

we accept that land data are contaminated with erratic noise due to field operations, wind,

debris produce by explosive sources, and in general, small near-surface heterogeneities. In

this case, it is more logical to use robust inversion and rather than making the Gaussian

assumption. For our sparse inversion experiment, the cost function we have to minimize is

given by

J = argmin(‖e‖11 + µ‖m‖1) s.t. e = d−Am (4.20)

To solve this problem, we decided to use the Alternating Direction Method of Multipliers

(ADMM), an Augmented Lagrangian method for solving constrained optimization prob-

lems. It is an iterative algorithm where the problem to be solved is distributed into smaller

subproblems and at the same time is simple and powerful. Boyd et al. (2011) described the

ADMM algorithm and its benefits as “an algorithm that is intended to blend the decompos-

ability of dual ascent with the superior convergence properties of the method of multiplier.”

4.4.1 The ADMM algorithm

Much research has been done for algorithms that could handle large problems while they

offer excellent optimization. It acts like a decomposition procedure, in which the solutions

for the large problem is given by solving small subproblems.

ADMM combines the benefits of dual decomposition and augmented Lagrangian methods

for constrained optimization. It has similar characteristics as many other algorithms, such as

Douglas-Rachford splitting from numerical analysis (Eckstein and Bertsekas, 1992), (Boyd

et al., 2011), Spingarn’s method of partial inverses (Spingarn, 1985), Dykstra’s alternating

projections method (Boyle and Dykstra, 1986), and Bregman iterative algorithms for l1
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problems in signal processing (Goldstein and Osher, 2009), (Yin et al., 2008). This algorithm

is not new, and it has been used over the decades in different fields.

The algorithm for robust inversion is organized as follows (Wang et al., 2019):

(ek+1) = argmin(‖e‖1 +
ρ

2
‖e−Amk + d− y

k‖22) (4.21)

(mk+1) = argmin(µ‖m‖1 +
ρ

2
‖ek −Am + d− y

k‖22) (4.22)

yk+1 = yk+1 − [ek+1 − (d−Amk+1)] (4.23)

where k is the number of iterations and ρ is a positive number.

4.4.2 Parameters’ selection

To compute the solution with robust inversion using the iterative algorithms described

before, maximum number of iterations should be provided. However it is hard to define this

number to which the inversion will give the most accurate solution.

There are many definitions for a stopping criterion (Ascher and Roosta-Khorasani, 2016).

Given a tolerance, a small number 10−2 − 10−5, we force the algorithm to stop in such a

point where the difference between two points of the cost function will be close to zero or

in other words smaller than the given tolerance. Similar to previous sections we define the

following stopping criterion

‖Jk − Jk+1‖
‖Jk+1‖

< tol (4.24)

where for iteration k = 1, m = 0 and J(1) = ‖Am− d‖22 = ‖d‖22

It is important to mention here that the trade-off parameter µ is not computed with the

method of L-curve. We found that allowing the user to insert a constant value works very

well for the inversion.

However, the algorithm is not too sensitive to the parameter µ. Instead, one needs to be

careful with the selection of the penalty parameter ρ.

One can say that the convergence can be improved by selecting a different parameter for

each iteration, but this is hard to prove. Theory can still support the choice of a fixed value

after a number of iterations. Boyd et al. (2011) propose a method to compute the value
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of the penalty parameter. In our work, we insert a fixed ρ, which does not change while

the algorithm iterates and the results we estimate are optimal enough for processing noise

seismic data.

4.5 Comparison of convergence for IRLS, FISTA, and

ADMM

In previous sections, we talked about the number of iterations through which the algorithm

provides the best optimum solution. It is difficult to define a number of iterations for

large problems because we are not sure if the solution will be optimal. As mentioned in

previous sections, we use the stopping criterion, where we define a range of error by giving

a tolerance. However, we need to be very careful when choosing the value as in an opposite

case, the algorithm will stop earlier than the best result or later, where the solution does

not dramatically change, and the computational cost is increased.

IRLS is a simple algorithm, and usually, about 10-20 iterations are needed to converge.

However, FISTA and ADMM are more complex, and it is hard to define the maximum

number of iterations.

According to Chambolle and Dossal (2015), FISTA algorithm is based on a simple step

with a varying parameter, and many choices of parameters roughly lead to the same grade

of convergence. It is not easy to experimentally define the convergence of the algorithm,

and more research needs to be done to prove the convergence of the FISTA algorithm. The

step α seems to play a small role there, but it does not offer any dramatic changes to the

process and a value greater than two works. In our work, we calculate the step alpha to be

>= max(eigenvalue(AHA) to guarantee the convergence of our algorithm. We then apply

a stopping criterion to ensure that our result will be close to the optimal solution without

increasing the computational cost.

Research has shown that convergence can be very slow when trying to reach high accuracy.

In our work, we adopt the convergence criterion where when the difference of 2 points of

the cost function reaches a value close to zero, the algorithm stops. We have also designed

our algorithm based on FISTA, where we need to provide the step α. Convergence is highly

influenced by the value of the parameter ρ, as described earlier.
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4.6 Numerical examples

4.6.1 Synthetic examples

Intercept time-velocity pairs are known

We have first assumed that the τ, v pairs that model the reflections are known. In real

datasets, this information can be obtained via velocity analysis. We have discretized the

p axis by defining 240 parameters in the interval p ∈ [0.001, 0.0033]s/m. We first apply

our least-squared inversion algorithm with quadratic regularization. Figure 4.2a portrays

the noise-free data, Figure 4.2b shows the data contaminated by noise. Figures 4.2c and d

portray the synthesis of reflections and ground roll obtained after inversion with l2 penalty.

Finally, Figure 4.2e shows the observed data minus the modeled ground roll.
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Figure 4.2: Separation of reflections and ground roll using least-squares inversion
with quadratic regularization. The τ, v pairs describing hyperbolic events are as-
sumed known for the inversion algorithm. a) 3D synthetic shot gather. b) 3D
synthetic shot gather contaminated with random noise (SNR = 1). c) Estimated
signal. d) Estimate coherent noise (ground roll). e) Observations (b) minus esti-
mated coherent noise (d).

We repeat the example but now via least-squares inversion with the sparse (l1) regularization

term. The results for this experiments solved by IRLS are shown in Figures 4.3a-e and by

FISTA in 4.4a-e. We apply our robust inversion algorithm and figure 4.5a portrays the noise-

free data, figure 4.5b shows the data contaminated by noise. Figures 4.5c and d portray the

synthesis of reflections and ground roll obtained after inversion. Finally, figure 4.5e shows

the observed data minus the modeled ground roll.
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Figure 4.3: Separation of reflections and ground roll using least-squares inversion
with sparse (l1) regularization (IRLS). The τ, v pairs describing hyperbolic events
are assumed known for the inversion. a) 3D synthetic shot gather. b) 3D synthetic
shot gather contaminated with random noise (SNR = 1). c) Estimated signal.
d) Estimates coherent noise (ground roll). e) Observations (b) minus estimated
coherent noise (d).
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Figure 4.4: Separation of reflections and ground roll using least-squares inversion
with sparse (l1) regularization (FISTA). The τ, v pairs describing hyperbolic events
are assumed known for the inversion. a) 3D synthetic shot gather. b) 3D synthetic
shot gather contaminated with random noise (SNR = 1). c) Estimated signal.
d) Estimates coherent noise (ground roll). e) Observations (b) minus estimated
coherent noise (d).
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Figure 4.5: Separation of reflections and ground roll using robust inversion
(ADMM). a) 3D synthetic shot gather. b) 3D synthetic shot gather contaminated
with random noise (SNR = 1). c) Estimated signal. d) Estimate coherent noise
(ground roll). e) Observations (b) minus estimated coherent noise (d).

Figures 4.6a-d compare the f −p spectra for the least-squares inversion with l2 and l1 norm

regularization, respectively. Superimposed to these images, we have added the theoretical

expressions for the reciprocal of the phase velocity for the two dispersive modes that were

used to generate the ground roll. The l1 regularization provides more resolution of the

dispersive modes that the l2 regularization. The enhanced resolution can be corroborated

by Figures 4.7a-d where we compared the spectra of dispersive events at f = 20Hz. It is

important to point out that Figures 4.6a-d portray the absolute value of coefficients of the

coherent noise |mc(f, p)|.



CHAPTER 4. THE INVERSE PROBLEM 40

(a)

0 50

Frequency (Hz)

1

1.2

1.4

1.6

1.8

2

2.2

R
a
y
 p

a
ra

m
e
te

r 
(s

/k
m

)

(b)

0 50

Frequency (Hz)

1

1.2

1.4

1.6

1.8

2

2.2

R
a
y
 p

a
ra

m
e
te

r 
(s

/k
m

)

(c)

0 50

Frequency (Hz)

1

1.2

1.4

1.6

1.8

2

2.2

R
a
y
 p

a
ra

m
e
te

r 
(s

/k
m

)

(d)

0 50

Frequency (Hz)

1

1.2

1.4

1.6

1.8

2

2.2

R
a
y
 p

a
ra

m
e
te

r 
(s

/k
m

)

Figure 4.6: Spectra of the ground roll |mc(f, p)|. a) Estimation via least-squares
inversion with quadratic (l2) regularization. b) Least-squares inversion with sparse
(l1) regularization (IRLS). c) Least-squares inversion with sparse (l1) regularization
(FISTA). d) Sparse inversion (ADMM).
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Figure 4.7: Spectra of the ground roll |mc(f, p)| for f = 20Hz. a) Estimation via
least-squares inversion with quadratic (l2) regularization. b) Least-squares inversion
with sparse (l1) regularization (IRLS). c) Least-squares inversion with sparse (l1)
regularization (FISTA). d) Sparse inversion (ADMM). Dashed lines indicate the
theoretical dispersion modes used to generate the synthetic data.
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It is important to mention that one could have used a slat-stack (linear Radon transform)

to map data from t, h to τ, p. However, given the dispersive nature of the ground roll, it is

more convenient to compute coefficient in f, p rather than in τ, p.

This example shows that both l1 (sparse) and the l2 (damped least-squares) regularization

terms and robust inversion show identical results as per the separability of hyperbolas from

dispersive coherent noise. We believe that this is because we know the τ, v pairs that model

the hyperbolas.

By examining the ground roll’s spectra as presented in previous figures, one can notice

a higher quality’s separation for sparsity promotion of least squares and robust inversion.

The estimated coefficients of coherent noise after inversion seem to match very well with

the theoretical dispersive nodes. More detailed, spectra for a chosen frequency confirm

the previous explanation. Sparsity and robust inversion clearly show the concentration of

estimated coefficients around the theoretical nodes as two peaks. Quadratic least-squares

contain noise, which makes the separation lower quality. Note that the appearance of FISTA,

which solves the same problem as IRLS, has similar separability as damped least squares.

Table 4.1 shows the parameters and the results for each of the inversion algorithm used

above:

Method ρ µ µ1 µ2 Tolerance Iterations SNRoutdB runtime(s)

L2 - - 0.1 0.1 - 1 9.69 6.39

IRLS - - 0.1 0.01 - 5 9.78 17.28

FISTA - 16 - - 10−2 5 9.63 10.68

ADMM 1 50 - - 10−3 15 7.67 6.4

Table 4.1: Parameters used for inversion when τ, v pairs of the model are known-
synthetic data

where SNRout for the signal only is calculated by

10 ∗ log ‖dobserved‖22
‖dobserved − ds‖22

(4.25)

Intercept time-velocity pairs are unknown

We now run a synthetic experiment to test the proposed inversion algorithm in the realistic

situation where one does not know the τ, v pairs that model the hyperbolas. Trying a large

number of intercept times (τ) and velocities (v), as one does in different applications of the
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Radon transform, will lead to a large operator As and, consequently to a computationally

expensive algorithm. For this reason, we have adopted a coarse discretization of τ and v. For

instance, the intercept axis τ varies from 0.2s to 1.4s in 40 intervals sampled every 0.0308s

which is about seven times the sampling interval of the data ∆t. Similarly, the velocity

axis varies from 1500m/s to 5000m/s in 20 intervals. Therefore, for each parameter τ we

associate 20 trial velocities. The total number of coefficients for each frequency becomes

Ns = 20× 40 = 800.

Figures 4.8a-e illustrate the least-squares solution with damping. Similarly, Figures 4.9a-e

shows the least-squares solution with sparse (l1) regularization, using the IRLS algorithm

while Figures 4.10 a-e shows the sparse solution using the FISTA algorithm and Figures ??

a-e shows the sparse solution using the ADMM algorithm.
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Figure 4.8: Separation of reflections and ground roll using least-squares inversion
with quadratic regularization. The τ, v pairs describing hyperbolic events are un-
known. Therefore, we assume a coarse discretization of τ, v. a) 3D synthetic shot
gather. b) 3D synthetic shot gather contaminated with random noise (SNR = 1).
c) Estimated signal. d) Estimate coherent noise (ground roll). e) Synthetic obser-
vations (b) minus estimated coherent noise (d).



CHAPTER 4. THE INVERSE PROBLEM 43

(a)

50 150 250
Receiver number

0

0.5

1

1.5

2

T
im

e
 (

s
)

(b)

50 150 250
Receiver number

0

0.5

1

1.5

2

(c)

50 150 250
Receiver number

0

0.5

1

1.5

2

(d)

50 150 250
Receiver number

0

0.5

1

1.5

2

(e)

50 150 250
Receiver number

0

0.5

1

1.5

2

Figure 4.9: Separation of reflections and ground roll using least-squares inversion
with sparse (l1) inversion using IRLS. The τ, v pairs describing hyperbolic events
are unknown for the inversion process. Coarse discretization of the pairs τ, v is
adopted. a) 3D synthetic shot gather. b) 3D synthetic shot gather contaminated
with random noise (SNR = 1). c) Estimated signal. d) Estimate coherent noise
(ground roll). e) Synthetic observations (b) minus estimated coherent noise (d).
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Figure 4.10: Separation of reflections and ground roll using least-squares inversion
with sparse (l1) inversion using FISTA. The τ, v pairs describing hyperbolic events
are unknown for the inversion process. Coarse discretization of the pairs τ, v is
adopted. a) 3D synthetic shot gather. b) 3D synthetic shot gather contaminated
with random noise (SNR = 1). c) Estimated signal. d) Estimate coherent noise
(ground roll). e) Synthetic observations (b) minus estimated coherent noise (d).
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Figure 4.11: Separation of reflections and ground roll using robust inversion with
ADMM. The τ, v pairs describing hyperbolic events are unknown for the inversion
process. Coarse discretization of the pairs τ, v is adopted. a) 3D synthetic shot
gather. b) 3D synthetic shot gather contaminated with random noise (SNR =
1). c) Estimated signal. d) Estimate coherent noise (ground roll). e) Synthetic
observations (b) minus estimated coherent noise (d).

Figures 4.12a-d illustrate the f, p spectra of the dispersive coherent noise for the least-

squares solution with damping and sparsity constraints, respectively. Figures 4.13a-d show

the spectra of the dispersive noise at f = 20Hz. Again, one can observed in important

gain in resolution when the sparse prior is used to estimate the coefficients that model the

ground roll.



CHAPTER 4. THE INVERSE PROBLEM 45

(a)

0 50

Frequency (Hz)

1

1.2

1.4

1.6

1.8

2

2.2

R
a
y
 p

a
ra

m
e
te

r 
(s

/k
m

)

(b)

0 50

Frequency (Hz)

1

1.2

1.4

1.6

1.8

2

2.2

R
a
y
 p

a
ra

m
e
te

r 
(s

/k
m

)

(c)

0 50

Frequency (Hz)

1

1.2

1.4

1.6

1.8

2

2.2

R
a
y
 p

a
ra

m
e
te

r 
(s

/k
m

)

(d)

0 50

Frequency (Hz)

1

1.2

1.4

1.6

1.8

2

2.2

R
a
y
 p

a
ra

m
e
te

r 
(s

/k
m

)

Figure 4.12: Spectra of the ground roll |mc(f, p)|. a) Estimation via least-squares
inversion with quadratic (l2) regularization. b) Least-squares inversion with sparse
(l1) regularization (IRLS). c) Least-squares inversion with sparse (l1) regularization
(FISTA). d) Sparse inversion (ADMM).
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Figure 4.13: Spectra of the ground roll |mc(f, p)| for f = 20Hz. a) Estimation via
least-squares inversion with quadratic (l2) regularization. b) Least-squares inversion
with sparse (l1) regularization (IRLS). c) Least-squares inversion with sparse (l1)
regularization (FISTA). d) Robust inversion (ADMM). Dashed lines indicate the
theoretical dispersion modes used to generate the synthetic data.
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Table 4.2 shows the parameters and the results for each of the inversion algorithms used

above:

Method ρ µ µ1 µ2 tolerance Iterations runtime(s)

L2 - - 0.1 0.01 - 1 40.4

IRLS - 0.1 0.01 - 5 148

FISTA - 0.125 - - 10−2 2 30.4

ADMM 1 50 - - 10−3 1 34.2

Table 4.2: Parameters used for inversion when τ, v pairs of the model are unknown-
synthetic data.

This example shows similar results as in the case where we know the intercept time-velocity

pairs of reflections. In synthetic examples, all methods seem to provide similar results in the

separation of two types of signals. However, as spectra of ground roll show, the accuracy of a

robust inversion instead of a least-squares inversion with sparse or quadratic regularization

is much higher.

This example is more challenging because we expect algorithms to detect the correct time-

velocity pairs. By examining the ground roll’s spectra, one can notice a higher quality’s

separation for sparsity promotion of least squares and robust inversion. The estimated

coefficients of coherent noise after inversion seem to match very well with the theoreti-

cal dispersive nodes. More detailed, spectra for a chosen frequency confirm the previous

explanation. Sparsity and robust inversion clearly show the concentration of estimated co-

efficients around the theoretical nodes as two peaks. Quadratic least-squares contain noise,

which makes the separation lower quality. In the previous case, where we assumed known

time-velocity pairs, FISTA had a poor separation result. However, in the current demanding

case, both solvers of least-squares inversion with sparse penalty give results similar to the

robust inversion.

Last, for completeness, we have also computed an image Figure 4.14 that represents the

energy of the coefficients that model the hyperbolic events in the low-resolution τ, v grid. The

estimated coefficients ms(f, k) were mapped to the cube ms(f, τ, p) and then the following

velocity spectra was computed for plotting purposes
∑
f Re[ms(f, τ, p)] which it can be

shown to be similar to the display one computes for the Hyperbolic Radon Transform.

This experiment shows that one does not need to have precise knowledge of velocities and

intercept times to separate ground roll from reflections properly. The analysis also indicates

an improvement in the separability of coherent noise from reflections when the inverse

problem is regularized via the l1 (sparse) penalty term.
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Figure 4.14: Spectra of hyperbolic events coarsely discretized
∑
f Re [ms(f, τ, v)].

a) Estimation via least-squares inversion with quadratic (l2) regularization. b)
Least-squares inversion with sparse (l1) regularization.
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4.6.2 Field data examples

We apply our algorithms to test their effectiveness in two irregular field data sets: a 3D

and a 2D. As in synthetic examples, we examine two cases. In the first one, we estimate

the intercept time-velocity pairs through a semblance map, and in the second case, we use

a dense grid of intercept times and velocities and we expect through inversion to estimate

the correct pairs.

Example 1: 3D data set

Figure 4.15 shows the distribution of receivers for the first real 3D shot gather data set used

to test the effectiveness of our algorithms. Data consist of Ny = 9 receivers lines, the length

of each record is 2000 samples; the sampling interval is ∆t = 2ms and the time duration is

4s.

We have discretized the p axis by defining 2000 parameters in the interval p ∈ [0.1, 0.002]s/m.

For velocity analysis we have applied Automatic Gain Control (AGC) to strengthen the

reflections (figure 4.16). We then tried the velocity analysis (figure 4.17) and we estimated

τ = [1.84, 1.862.22, 3.33]s and v = [2242, 2420, 3126, 4030]m/s.



CHAPTER 4. THE INVERSE PROBLEM 49

1.956 1.958 1.96 1.962 1.964 1.966

x(m) 10
6

1.48

1.5

1.52

1.54

1.56

1.58

1.6

1.62

1.64

1.66

1.68

y
(m

)
10

5

Receiver

Source

Figure 4.15: Source and receivers for the irregular field data example adopted to
test the effectiveness of our signal and ground roll separation methods.
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Figure 4.16: Automatic Gain Control with window size 501. Reflections are stronger
for the next processing steps.
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Figure 4.17: Velocity Analysis applied on a shot section to estimate the intercept
time-velocity pairs. The areas with higher energy show the possible pairs.

We are now ready to examine all the previously proposed methods.

Figures 4.18a-c illustrate the least-squares solution with damping. Similarly, Figures 4.19a-c

show the least-squares solution with sparse (l1) regularization using IRLS and Figures 4.20a-

c shows the l1 regularization with FISTA algorithm. Finally, Figures 4.21 show denoising

with robust inversion.
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Figure 4.18: Separation of reflections and ground roll using least-squares inversion
with quadratic regularization. a) 3D real shot gather. b) Estimated coherent noise
(ground roll). c) Real observations (a) minus estimated coherent noise (b).

Figure 4.19: Separation of reflections and ground roll using least-squares inversion
with sparse (l1) regularization using IRLS. a) 3D real shot gather. b) Estimated
coherent noise (ground roll). c) Real observations (a) minus estimated coherent
noise (b).
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Figure 4.20: Separation of reflections and ground roll with least-squares inversion
with sparse (l1) regularization using FISTA. a) 3D real shot gather. b) Estimated
coherent noise (ground roll). c) Real observations (a) minus estimated coherent
noise (b).

Figure 4.21: Separation of reflections and ground roll with robust inversion using
ADMM. a) 3D real shot gather. b) Estimated coherent noise (ground roll). c) Real
observations (a) minus estimated coherent noise (b).

Figure 4.22 shows a comparison for the 4 algorithms on the same zoomed part for the data,

L2, IRLS, FISTA and ADMM and table 4.3 shows the parameters used for the above results.

Both x and y axis show which part from main data is selected.
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Figure 4.22: a)Separation of reflections and ground roll using least-squares inversion
with (l2) regularization, b) with (l1) regularization using IRLS, c) using FISTA and
d) using ADMM

Table 4.3 shows the parameters and the results for each of the inversion algorithms used

above:

Method ρ µ µ1 µ2 tolerance Iterations runtime(s)

L2 - - 0.1 0.1 - 1 92.3

IRLS - - 0.1 100 - 2 144.43

FISTA - 0.125 - - 10−2 30 164.8

ADMM 0.0001 50 - - 10−3 311 268.9

Table 4.3: Parameters used for inversion when τ, v pairs of the model are known-3D
real data.

Denoising results appear similar after using all separation methods. Let’s focus on the de-

tails. Separation with quadratic regularization is faster, but stronger artifacts are visible

in the section which may cause problems fir further processing steps (visible in 2.6-2.8 s).

Separation with IRLS and FISTA need almost the same processing time, with IRLS giving

a section with less noise (traces close to 60 and 80). Finally, ADMM algorithm needs the

longest processing time, and the results seem to be better than FISTA and similar to IRLS.

A comparison of all four methods show that with IRLS we can have a high quality denoising

result with less processing time and a few iterations, which leads to a reduced computational

cost.
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We now try to apply the separation methods in case ground roll is very strong and it masks

most of the seismic record and it is hard to estimate the time-velocity pairs.

The intercept axis τ varies from 1.5s to 3.5s in 20 intervals. Similarly, the velocity axis varies

from 2000m/s to 4000m/s in 10 intervals. Therefore, for each parameter τ we associate 10

trial velocities. The total number of coefficients for each frequency becomes Ns = 20×10 =

200.

Figures 4.23a-c illustrate the least-squares solution with damping. Similarly, Figures 4.24a-c

show the least-squares solution with sparse (l1) regularization using IRLS and Figures 4.25a-

c shows the l1 regularization with FISTA algorithm. Finally, Figures 4.26 show denoising

with robust inversion.

Figure 4.23: Separation of reflections and ground roll using least-squares inversion
with quadratic regularization. a) 3D real shot gather. b) Estimated coherent noise
(ground roll). c) Real observations (a) minus estimated coherent noise (b).
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Figure 4.24: Separation of reflections and ground roll using least-squares inversion
with sparse (l1) regularization using IRLS. a) 3D real shot gather. b) Estimated
coherent noise (ground roll). c) Real observations (a) minus estimated coherent
noise (b).

Figure 4.25: Separation of reflections and ground roll with least-squares inversion
with sparse (l1) regularization using FISTA. a) 3D real shot gather. b) Estimated
coherent noise (ground roll). c) Real observations (a) minus estimated coherent
noise (b).
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Figure 4.26: Separation of reflections and ground roll with robust inversion using
ADMM. a) 3D real shot gather. b) Estimated coherent noise (ground roll). c) Real
observations (a) minus estimated coherent noise (b).

Figure 4.27 shows a comparison for the 4 algorithms on the same zoomed part for the data,

L2, IRLS, FISTA and ADMM and table 4.4 shows the parameters used for the above results.

Both x and y axis show which part from main data is selected.

Figure 4.27: a)Separation of reflections and ground roll using least-squares inversion
with (l2) regularization, b) with (l1) regularization using IRLS, c) using FISTA and
d) using ADMM

Table 4.4 shows the parameters and the results for each of the inversion algorithms used

above:
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Method ρ µ µ1 µ2 tolerance Iterations runtime(s)

L2 - - 0.01 10 - 1 44.5

IRLS - - 0.01 10 - 2 70.3

FISTA - 0.125 - - 10−2 30 122.6

ADMM 0.00001 250 - - 10−3 39 89.7

Table 4.4: Parameters used for inversion when τ, v pairs of the model are unknown-
3D real data

.

In this case, when we cannot use a semblance map to estimate the τ − v pairs, the results

are very interesting. Compared to the case of known pairs, processing times are much

shorter. Although we study a different area of the same data set than the previous case,

one can have conclusions for the separation methods. As previously, least squares inversion

with quadratic regularization norm gives poor quality results. The section contains many

artifacts that we cannot surely say which of the reflections are real.

However, among IRLS, FISTA and ADMM, removal of ground roll is in the same level. But,

IRLS and FISTA methods may create less artifacts.
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Example 2: 2D data set (CYNTHIA-TGS)

Our algorithms are designed for denoising for 3D data sets. However, we applied them

in 2D field (figure 4.28) set with irregular distribution, because the reflections are masked

with a very dispersive and aliased ground roll and we would like to test our methods in a

demanding environment.

Figure 4.28: 2D field data set with very dispersive ground roll

Figure 4.29 shows the distribution of receivers for the first real 3D shot gather data set used

to test the effectiveness of our algorithms. The sampling interval is ∆t = 1ms and the time

duration is 4s.

We have discretized the p axis by defining 2000 parameters in the interval p ∈ [0.04, 0.002]s/m.

For velocity analysis we have applied Automatic Gain Control (AGC) to strengthen the re-

flections(figure 4.30). We then tried the velocity analysis (figure 4.31) and we estimated

τ = [1.33, 1.48, 1.6, 1.74, 1.92]s and v = [3490, 3816, 4020, 4143, 4340]m/s.
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Figure 4.29: Source and receivers for the irregular 2D field data example adopted
to test the effectiveness of our signal and ground roll separation methods.
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Figure 4.30: Automatic Gain Control with window size 501. Reflections are stronger
for next processing steps.
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Figure 4.31: Velocity Analysis applied on a shot section to estimate the intercept
time-velocity pairs. The areas with higher energy show the possible pairs.

We now examine all the previously proposed methods to test their effectiveness in a seismic

record were ground roll is highly dispersive and aliased.

Figures 4.32a-c illustrate the least-squares solution with damping. Similarly, Figures 4.33a-c

show the least-squares solution with sparse (l1) regularization using IRLS and Figures 4.34a-

c shows the l1 regularization with FISTA algorithm. Finally, Figures 4.35 show denoising

with robust inversion.
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Figure 4.32: Separation of reflections and ground roll using least-squares inversion
with quadratic regularization. a) 3D real shot gather. b) Estimated coherent noise
(ground roll). c) Real observations (a) minus estimated coherent noise (b).

Figure 4.33: Separation of reflections and ground roll using least-squares inversion
with sparse (l1) regularization using IRLS. a) 3D real shot gather. b) Estimated
coherent noise (ground roll). c) Real observations (a) minus estimated coherent
noise (b).
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Figure 4.34: Separation of reflections and ground roll with least-squares inversion
with sparse (l1) regularization using FISTA. a) 3D real shot gather. b) Estimated
coherent noise (ground roll). c) Real observations (a) minus estimated coherent
noise (b).

Figure 4.35: Separation of reflections and ground roll with robust inversion using
ADMM. a) 3D real shot gather. b) Estimated coherent noise (ground roll). c) Real
observations (a) minus estimated coherent noise (b).

Figure 4.36 shows a comparison for the 4 algorithms on the same zoomed part for the data,

L2, IRLS, FISTA and ADMM and table 4.5 shows the parameters used for the above results.

Both x and y axis show which part from main data is selected.
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Figure 4.36: a) Zoomed area from raw data containing dispersive ground roll,
b)Separation of reflections and ground roll using least-squares inversion with (l2)
regularization, c) with (l1) regularization using IRLS, d) using FISTA and e) using
ADMM

Table 4.5 shows the parameters and the results for each of the inversion algorithms used

above:
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Method ρ µ µ1 µ2 tolerance Iterations runtime(s)

L2 - - 0.01 1 - 1 24.5

IRLS - - 0.01 1 - 2 38.7

FISTA - 1024 - - 10−4 50 149.6

ADMM 1 50 - - 10−4 236 42.8

Table 4.5: Parameters used for inversion when τ, v pairs of the model are known-2D
real data

.

In a highly dispersive and aliased ground roll section, surprisingly all methods can success-

fully attenuate the coherent noise. However, if we consider the processing time, FISTA is

more expensive. All other methods need similar time to give the same quality of results.

We now apply our algorithms in the case we cannot estimate the time-velocity pairs.

The intercept axis τ varies from 1.0s to 2.5s in 20 intervals. Similarly, the velocity axis varies

from 3000m/s to 5000m/s in 10 intervals. Therefore, for each parameter τ we associate 10

trial velocities. The total number of coefficients for each frequency becomes Ns = 20×10 =

200.

Figures 4.37a-c illustrate the least-squares solution with damping. Similarly, Figures 4.38a-c

show the least-squares solution with sparse (l1) regularization using IRLS and Figures 4.39a-

c shows the l1 regularization with FISTA algorithm. Finally, Figures 4.40 show denoising

with robust inversion.



CHAPTER 4. THE INVERSE PROBLEM 67

Figure 4.37: Separation of reflections and ground roll using least-squares inversion
with quadratic regularization. a) 3D real shot gather. b) Estimated coherent noise
(ground roll). c) Real observations (a) minus estimated coherent noise (b).

Figure 4.38: Separation of reflections and ground roll using least-squares inversion
with sparse (l1) regularization using IRLS. a) 3D real shot gather. b) Estimated
coherent noise (ground roll). c) Real observations (a) minus estimated coherent
noise (b).
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Figure 4.39: Separation of reflections and ground roll with least-squares inversion
with sparse (l1) regularization using FISTA. a) 3D real shot gather. b) Estimated
coherent noise (ground roll). c) Real observations (a) minus estimated coherent
noise (b).

Figure 4.40: Separation of reflections and ground roll with robust inversion using
ADMM. a) 3D real shot gather. b) Estimated coherent noise (ground roll). c) Real
observations (a) minus estimated coherent noise (b).

Figure 4.41 shows a comparison for the 4 algorithms on the same zoomed part for the data,

L2, IRLS, FISTA and ADMM and table 4.6 shows the parameters used for the above results.

Both x and y axis show which part from main data is selected.
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Figure 4.41: a) Zoomed area from raw data containing dispersive ground roll. b)
Separation of reflections and ground roll using least-squares inversion with (l2)
regularization, c) with (l1) regularization using IRLS, d) using FISTA and e) using
ADMM

Table 4.6 shows the parameters and the results for each of the inversion algorithms used

above:
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Method ρ µ µ1 µ2 tolerance Iterations runtime(s)

L2 - - 0.01 01 - 1 24.3

IRLS - - 0.01 1 - 10 144.43

FISTA - 1024 - - 10−3 50 154.9

ADMM 1 0.001 - - 10−4 244 70.55

Table 4.6: Parameters used for inversion when τ, v pairs of the model are unknown-
2D real data

.

In the case where estimation of intercept time-velocity pairs is impossible, we expect our

algorithms, or some of them to be able to find the correct answer. This is more challenging

when ground roll has a complex character: strong dispersion and alias.

The above results (figures and table of parameters), wherever robust algorithms (penalty

term or inversion) is used, the separation is successful. The ADMM algorithm needs the

shortest processing time and no artifacts are visible.

FISTA has an increased computational time and some ground roll is left behind.

Finally, in the case of the quadratic penalty term, too many artifacts are present in the

solution which show a false number of reflections.
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4.7 Summary

Coherent linear noise exists in land data in the form of dispersive Rayleigh waves, known

as ground roll. In this chapter, we explored several methods to attenuate it while preserv-

ing the signal’s characteristics. We introduced the reader to least-squares inversion with

penalty constraints as well as to robust inversion. We solved the L2 −L1 problem with the

well-know IRLS and FISTA methods. We then used the ADMM algorithm for robust in-

version which seems to be a more logical approach for land data corrupted with erratic noise.

We applied these algorithms to both synthetic and real data and we explored two cases; one

case where we know the intercept time and velocity pairs for our reflections and another

case where we assume that it is difficult to define the pairs because ground roll is very strong

and it masks most of seismic record’s area. We use a dense grid in which we believe the

pairs are located.

For synthetic examples, in the separation of reflections and ground roll, all algorithms lead

to similar results. When examining the spectra of estimated coherent noise, it seems that

least-squares inversion with sparse penalty norm and robust inversion have better outcomes,

where the robust inversion has the best quality.

When coming to field data, we estimate the intercept time-velocity pairs through velocity

analysis after Automatic Gain Control, because the reflections are too weak. Applying all

our algorithms, the separation seems to be better when robust inversion or least squares

inversion with robust regularization norm are used. These algorithms also seem to need the

shortest processing time. That means the computational cost decreases.

We also explore the case when a semblance map is hard to be used for velocity estimation.

Results show again that robust inversion or LS inversion with L1 term lead to a successful

coherent noise attenuation within a short period of time. On the other hard, LS inversion

with quadratic norm produces many artifacts in the final section which confuses us about

the position of the actual reflections.

All the above algorithms show that separation of a highly dispersive and aliased ground roll

is possible, while the amplitude of the signal is preserved.
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Conclusions

5.1 Contributions

Ground roll can be aliased and dispersive, and these make its attenuation difficult. Many

traditional methods, such as frequency filters, fail when the noise is aliased. This hap-

pens because coherent noise masks the reflections. If we try to remove it altogether, the

signal will also be removed. In the opposite case, we try to preserve the signal of interest,

a significant amount of surface waves will remain, and further processing will be complicated.

Based on this, we firstly explored an algorithm for simultaneously modelling reflections and

dispersive ground roll in the f −x domain. Through two operators, coefficients are modeled

into hyperbolas and dispersive noise. We compute synthetic 3D shot gathers with irregular

distribution of source and receivers. In general, one should consider that modelling the

ground roll is difficult due to the complexity of the real surface. So rather than using an

operator that entails solving the wave equation for given subsurface parameters, we adopted

simple operators that require only NMO velocities and a dense axis of dips (ray parameters)

to capture complex ground roll.

I then tried to separate the ground roll from reflections based on a methodology inspired on

the work of (Perkins and Zwaan, 2000 and Le Meur et al., 2008, who used the least-squares

inversion method. This is a simple approach which preserves the signal amplitudes, and it

can work well even when there is dispersion and alias.

For our solutions’ stability, we added quadratic and sparse regularization norms to estimate

the coefficients of linear noise in the FX domain, where we can easily handle one inverse

72



CHAPTER 5. CONCLUSIONS 73

problem per temporal frequency.

In synthetic and real data, we conducted experiments with two cases. We use a semblance

map to estimate the intercept time-velocity pairs and assume that ground roll is strong

and masks most of the seismic section We proved that ground roll could be separated from

reflections when an approximate model of intercept times-velocities is provided.

Separation of dispersive and aliased ground roll from reflections using damped LS inversion

leads to poor results as it creates many artifacts. We then tested the IRLS and the FISTA

algorithm for the l2− l1 problem in synthetic and real data. The results were satisfying un-

der the assumption that the data were contaminated by additive Gaussian noise. However,

the FISTA algorithm needs more processing time, and this increases the computational cost.

Continuing from the previous step, I then applied robust inversion. I solve the robust

and sparse inversion via ADMM. We assumed that additive noise can be modelled as a

non-gaussian erratic noise. Such an assumption stems from considering typical land data

surveys where we often observe anomalous erratic traces. These traces arise as a product

of field operations, wind, debris produce by explosive sources, and in general, small near-

surface heterogeneities non-modelable by our experiment.

The ground roll can have strong amplitudes in specific areas, such as for geophones close

to the source. After separation reflections from ground roll, some noise leakage might still

exists, which results in low quality near offset traces. This may cause problems for further

seismic processing required for Amplitude versus Offset inversion (AVO).
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5.2 Future developments

To further expand our work, one should consider including to the algorithms a term to

handle dipping layers. The latter involves using a hyperbolic traveltime that considers an

apex term (Schleicher et al. (1993); Larner et al. (1981)).

A physical transform for representing seismic data should be built with operators like As

and Ac, which define data with simple kinematics. Additionally, localization via the win-

dowing in t-x will limit the number of dips (coefficients) to be inverted and help the sparsity

assumption. In other words, expanding the current operator to a Curvelet-like transform

(Ma and Plonka (2010); Starck et al. (2002); Candes et al. (2006); Ying et al. (2005); Nee-

lamani et al. (2008)) might be a challenging yet exciting problem for future research. The

benefit is to add localization and scale to the proposed algorithms for making them more

reliable for processing data with complex ground role signatures.

To remove the leakage where the ground roll was strong, an additional filter that would

capture these traces could improve the denoising after inversion steps. For this purpous,

one might require to use a combination of methods applied in a cascade manner rather

than a single method that attempts to correctly separate ground roll from reflections at all

offsets.
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