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Abstract

Many machine learning algorithms learn from the data by wamy certain interesting
characteristics. Decision trees are used in many cladsifictasks. In some circum-
stances, we only want to considixed-depthtrees. Unfortunately, finding the optimal
depthe decision tree can require time exponentialdinin the first part of this disser-
tation, we present ©OINBDT algorithm, which is a fast way to produce a near optimal
fixed-depth decision tree under the Naive Bayes assumpfi@napply this technique to
real-world datasets and find that our model improves the coatipnal costs significantly
while yielding relatively high accuracy.

In the second part of this dissertation, we present two nalgarithms for active
learning. There are scenarios where we have access to miabeled data; however,
obtaining the labels for the data is difficult. An active lgiag process tries to address
this issue by selectively requesting the label of few urkdbénstances, with the goal
of using these newly labeled instances to produce an eféeclassifier. First, we focus
on active learning for image segmentation, which requineglyicing a label for each
pixel in an image. We provide an active learnem{l) that first selects the image whose
expected label will reduce the uncertainty of other unlatheinages the most, and then
after greedily selects the most informative image. Theltesf our experiments, over
real-world datasets show that training on very few infoirgaimages can produce a
segmenter that is as good as training on the entire dataset.

Finally, we present the importance sampling algorith8A() for actively learning
in the standard classification framework, which we demaistits sample and label effi-
ciency. In particular, on each iteratidisALidentifies a distribution that puts large weight
on instances whose labels are uncertain, then requesttieof an instance drawn from
that distribution. We prove thaSAL can be more sample and label efficient than passive
learning with an exponential convergence rate to the Balgssifier on noise-free data.
We also provide empirical studies that shi®ALis more effective than many other active

learning algorithms.
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Chapter 1

Introduction

In this dissertation we focus @upervised learning for the classification taslere each
data instance belongs to one of a small set of pre-definedarés €.g, “Spam” versus
“non-Spam”; or “cancer” versus “healthy”; etc) and the goflearning is to produce a

classifier that can correctly predict the label given theuiess of a new instance.

1.1 Near-Optimal Fixed Depth Decision Trees

Many machine learning tasks involve producing a classitioalabel for an instance.
There is sometimes a fixed cost that the classifier can spemasp@nce, before returning
a value; consider for example, per-patient capitation fediral diagnosis. If the tests
can be performed sequentially, then the classifier may weliollow apolicy [1] — e.g,
first perform a blood test, then if its outcome is positiverf@en a liver test; otherwise
perform an eye exam. This process continues until the furel®xhausted, at which
point the classifier stops running tests and returns an meégeither “healthy” or “sick”.
Such policies correspond naturally to decision trees. @ aee many algorithms for
learning a decision tree from a data sample; most systemf8]2ise some heuristics that
greedily seek the decision tree that best fits the samplerdefinning a post-processor
to reduce overfitting. There is sometimes a fixed budget —hwhire translates to a
hard bound on the depth of the tree. The first part of this ditsen focuses on the
challenge motivated above: of finding the best “fixed-cosicp which corresponds to
finding the fixed-depth decision tree that best matches tteesdanple. There are several
algorithms for this task, which typically use dynamic prgming to find the “optimal”
depthd decision treej.e, the tree that minimizes the 0/1-loss over the training .data

These algorithms are invariably exponential in the depths they spend almost all of



their time determining which features to test at final ledd#]. If one is willing to accept
the “Naive Bayes” assumption [5] — that features are inddpat of each other given
the class — then there is an efficient way to compute the firyak laf depthd features.
In particular, under this assumption, we prove that thenogtdepthd feature essentially
depends only on thposterior probability of the class label given the testsvipasly
performed but not the outcomes of the individual tests. We can theeaiise a fast pre-
processing step to create a so-calbpd-feature list OFL, that identifies which feature to
use as a function of the posterior distribution, then use ltbi to quickly determine the
last level of the tree. This technique results in a speedup(efs/logns), whereny is
the number of features, and effectively means we can contpateptimal deptht tree

in the time typically required to compute the optimal defth- 1) tree.

1.2 Active Learning

Most supervised learning methods require a set of labelathpbes as the training data.
In many applications there are plenty of unlabeled datdaai however obtaining la-
bels for those data is costly. An example here is the taskgheating Magnetic Res-
onance (MR) images of the brain. Given an MR image of the biis important to
segment any tumor region present. Many effective segnientsystems involve a num-
ber of parameters that have to be adjusted; some of thesensy/sherefore include a
learningcomponent that can learn effective parameters from a sabeféd (that is, seg-
mented) images. In general, these systems require a langieamwf such labeled images
to produce an effective segmenter. Fortunately, thereftere a large number of available
images — perhaps on the web, or in clinical databases. Wmattly, most such images
are unlabeled, and worse, it can be expensive to obtain Hedsléas this may require
paying a medical doctor to label each image, which is costligims of both time and
money). This often limits the amount of training data ava#a which can lead to an
inferior segmentation system. Attive learning processies to address this problem by
identifying a small number of unlabeled instances (imagesir example) that should be
labeled, to produce an effective classifier.

Each application of active learning can be categorized unde of the following

three scenarios.

e Pool-based active learning many active learning applications assume that the

learner has access to a large pool of unlabeled data. Thetaskive learning
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Figure 1.1: Pool-based active learning on MRI of human braimere the active learner
selects an unlabeled instance, obtains the label from tpherexadds it to the training
set and a machine learned model is obtained from the tragehgThis process is then
repeated for a certain number of times.

here is to evaluate all the unlabeled data and select theinfostative ones for
the learning task. Figure 1.1 shows a pool-based activailepiscenario. Typi-
cally, the instances are chosen in a greedy way based oniag&anction. After
each query, the scores are updated (based on the returned label faqubgt) and
the next unlabeled instance is selected from the pool. Thelpsed active learn-
ing is the most common scenario, which is studied in appinatsuch as image
classification [6], [7], image segmentation [8], objectagwition [9], text classi-
fication [10]-[13], information extraction [14], [15], speh recognition [16] and

many other domains.

e Membership query based active learning In this scenario, new instances can
be generated based on active learner’s request, rathesé#acted from a pool
of unlabeled instances. This setting is particularly usiflexperimental design
applications where the experimenter collects data to aralye effect of a process
on an object. For example, Kingt al. [17], [18] used membership query based
active learning in biological experiments with the goal edadvering metabolic

pathways in yeast.

e Sequential selective sampling In this scenario, active learner has access to a

Here, a “query” involves identifying a specific unlabeledtance, which is then labeled.



stream of unlabeled instances and it decides whether tinathim label for each
instance. This scenario differs from the membership quase scenario in that
here, samples are drawn from the underlying distributieguential selective sam-
pling has been applied to the real world applications sucépam detection [19],
handwritten digit recognition [20], sensor scheduling][2éarning ranking func-

tions for information retrieval [22], and part-of-speeelgging [23].

Our LMu algorithm is designed for pool-based active learning, arnsl one of the
first algorithms to actively learn the parameters of an imsggmentor. In contradiSAL
is designed for membership query based active learning &nihis setting]SALcan be
more sample efficient than other active learning methods &setion 1.4). In addition,

we have developed a variant &AL for pool-based data too (see Section 5.4.5).

1.3 Objectives and Contributions

This dissertation consists of two parts. In the first partpnesent a fast way to produce
a fixed-depth decision tree that is optimal under the Na@geB assumption. We prove
that the optimal depth-feature essentially depends only on the posterior prababil
the class label given the tests previously performed, buneeither the identity nor
the outcomes of these tests. We can therefore precompuddast pre-processing step,
which features to use at the final layer. This results in adyeefO(n¢/log nys), where
ny is the number of features. We apply this technique to legrfiked-depth decision
trees from standard datasets from the UCI repository [24],fand this model improves
the computational cost significantly. Surprisingly, thigeoach still yields relatively high
classification accuracy, despite the Naive Bayes assompti

In the second part of this dissertation, we present our wotké active learning do-
main. First, we address the task of actively learning a segmtien systemj.e., given
a pool of unsegmented images, and access to an oracle the¢garent a given image,
decide which images to provide, to quickly produce a segeanghat is accurate over this
distribution of images. Most of the existing active leamiagorithms have been used
primarily to learn a classifier that maps each instance tmalsi label; even most of the
imaging works have focused on mapping each image to one df setaf labels. How-
ever, the image segmentation task requires producing a coonplicated label where an
image ofn, x n. pixels is mapped ta, x n. individual (correlated) pixel-labels; if each

pixel-label is binary, this means that the output labek {+1, —1}" %",



We illustrate the capability of active learning on imagersegtation tasks, and show
that our novel algorithm (Mu) produces an effective segmenter using very few seg-
mented images.

Our second contribution in active learning is to make ackaning very sample-
efficient, by drawing instances from some appropriate itistion. Here we consider
that instances are not restricted to be in a prior pool otimsts. There are some cases
where existing active learning algorithms do not work effedy. For example, some
active learning algorithms [25]-[27] only consider cléigsss within the version space
(set of all classifiers consistent with current labeled Hetpughout the learning; this
carries the risk of eliminating the best hypothesis in ¢laspecially if the data is noisy.
In addition, some active learning algorithms [20], [28]9]2ample from the underlying
distribution, then use rejection sampling to accept ontyittstances matching the given
criteria. This rejection sampling approach can force therler to consider a large number
of instances, in order to find an instance that matches trengixiteria. For example, a
medical research task may require learning how much (oftaiog¢pathogenic bacteria
a rat can tolerate before it gets sick. One can find this tlotddby sequentially exposing
various rats to differing amounts of this bacteria and olegrtheir symptoms. Here,
“sampling an instance” requires exposing a rat to certaiowarnof pathogenic bacteria,
which is a costly and time consuming task. The naive approamld just sample the
space of “bacteria quantity” uniformly. But if the data isisefree, we can perform
fewer experiments by cleverly specifying the amount of éaatto thei-th rat, based on
the observed response by the previous 1 rats, to effectively estimate the maximum
amount of bacteria that a rat’s body can tolerate withousicepa disease [30].

We present the importance sampling active learni8AL) algorithm, which ad-
dresses all these issues by (1) not selecting only classifiat are consistent with all
of the labeled instances, and (2) directly sampling frome@mpropriate distributions,
which can allowlSAL to request the label of relatively few instances. As desdriim
Section 5.2, on each iteratiolfAL determines an appropriate sampling distributign
draws an instance; from ¢; and requests;’s label. ISAL uses importance weights to
reduce the error estimation bias caused by this importaaegling, while controlling

the variance of error estimation.



1.4 Thesis Statements

This dissertation proposes machine learning algorithnasaaralysis to support the fol-

lowing theses:

i. In producing a fixed-depth decision tree, the®®IBDT algorithm produces a de-
cision tree that is optimal given the Naive Bayes assumiad is provably much
more efficient than the standard optimal decision tree &ratmat must exhaustively

consider all the features in the last level of the tree.

ii. Inthe image segmentation taskmU active learner is likely to produce an accurate
segmentor using fewer labeled images than random samplingpnsidering the
relevance or representativeness of query images, assuhahghere exist images
in the dataset that are noticeably more informative tharrstiabout the relation

between labels and image features.

iii. In an active learning task where new instances can bergead based on the speci-
fication of the active learner, on data that is perfectly sapla by a linear classifier
the (expected) sample and label complexity of importanogpiag active learning
algorithm (SAL) is provably more efficient than those of passive learning,that of

the state-of-the-art active learners by Beygelzieteal. [20] and Balcaret al.[28].

1.5 Outline

In Chapter 2, we present our near optimal fixed-depth dectse® algorithm, @TNBDT.
Section 2.1 surveys the relevant literature. Section Zithsarizing our @TNBDT algo-
rithm and proves the relevant theories. Section 2.3 presgnpirical results that validates
our approach, by applying it to the standard datasets frenUil repository [24] and
elsewhere. We find that our approach significantly improhescomputational cost of
finding a fixed-depth tree, surprising at little or no loss écwEacy.

In Chapter 3, we study general approaches to active leaaridglescribe the strate-
gies that are commonly used to query new instances.

Chapter 4 then presents our first active learning algorithin, . It describes how the
underlying segmentation system — here Conditional Randiead FCRF) — segments
the images. Section 4.3 shows the results of the experinusitig LMu active learner

on two real-world datasets: Finding the sky in the Geomélontext dataset [31] and



segmenting tumors within MR images of human brains [32]. drtipular, we compare
the segmentation performance (on hold-out images) of asegmtrained on all labeled
images, versus one trained using only the firéinages selected by our active learner,
for various values ok. We also consider segmenters learned florandomly-selected
images. We find that the segmenter based on briy2 well-selected images is as good
as the one based @il 85 images in the pool. But only if the images are well-sekgcte
the segmenter based én= 2 randomimages is typically considerably inferior, as is one
based on a larger number of random images.

Chapter 5 presents importance sampling active learningriiign (SAL). We de-
scribe thelSAL algorithm in Section 5.2 and examine its convergence ratélijoper-
fectly separable one-dimensional data (Section 5.2.]1 pé&ectly separable, uniformly
distributed multi-dimensional data (Section 5.2.2), aBy yniformly distributed non-
realizable data (Section 5.2.4). In Section 5.3, we proeectinsistency ofSAL using
sequential Rademacher complexity [33]. In addition, int®ec5.3, we obtain an upper
bound for variance of error estimation B$AL Experimental results for realizable and
non-realizable settings are reported in Section 5.4. litiaddwe discuss the extension
of ISALto the pool-based active learning whé8AL only queries instances from a pool

of unlabeled data.



Chapter 2

Near Optimal Fixed-Depth Decision
Tree

In this chapter, we introduce theP@NBDT [34] algorithm. 1 Section 2.1 surveys the
relevant literature. Section 2.2 summarizing owTBDT algorithm and proves the
relevant theories. Section 2.3 evaluates the performahttee@lgorithm on some real-

world datasets.

2.1 Literature Review

We study the “standard” learning model [35] where the inputhie learner is a set of
labeled training instances and the output is an accurassifier. Many projects use
decision trees due to their simplicity, and interpret&p{lB6]. There are many algorithms
for learning decision trees. Many algorithms, includa¥y 5 [2] andcART [3], begin with

a greedy method that incrementally identifies an apprapfedture to test at each point
in the tree, based on some heuristic score. These algorijhmasthe tree from the root
down to a set of leaves, then perform a post-processing stegaltice overfitting. In our
context of “shallow” decision trees, overfitting is not ag lai concern, which explains
why many of the algorithms including @NBDT that seek “fixed-depth” decision trees
simply return the tree that best fits the data [4], [37], [3d)ese algorithms can easily be
extended to allow different tests to have different cos8§,[B10], where the total cost of
each path from root to leaf is bounded. OupIBDT algorithm focuses on finding the
best fixed-cost policy, by producing the fixed-depth decigiee that best matches the

data sample.

A version of this chapter has been published in the procesdifithe ISAIM2008 conference.
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Figure 2.1: Decision Tre#}, as it is being built.

There are some algorithms that consider developing a dedigte given a cost con-
straint on each path from the root to the leaf. In one of théestworks, Turney [39]
discusses the general challenge of learning the bestf@assibject to some explicit cost
constraint. Here, our “max depth” requirement correspdods constraint on the cost
that theclassifiermust pay to see the featuresparformance time There are some al-
gorithms [41]-[43] that use greedy approaches to tackke ghbblem. However, these
greedy approaches may not yield a decision tree with thenaptclassification accu-
racy. On the other hand, thee@NBDT algorithm is a fast way to produce the optimal
fixed-depth decision tree given the Naive Bayes assump{®ee our empirical results
in Section 2.3)

Optimal decision tree algorithms in general reqLﬂ}(a(nf)d) time to find the best
depthe decision tree oven ; variables. While this is a polynomial-time complexity for
fixed d, in practice it is not effective except for small and tinyd. The CPTNBDT
algorithm addresses this problem by producing the optireptidd decision tree in time
that is essentially exponential ih— 1, if the Naive Bayes assumption [5] holdsie,,
this Naive Bayes assumption leads to a more efficient psoces

There is, of course, a large body of work on building classifieased on Naive
Bayes systems [44], [45], and on analyzing and charaateritieir classification perfor-
mance [46]. Those results, however, differ significantlynirour task, which explicitly
involves learning alecision tregwe use only the Naive Bayessumptiorin modeling
the underlying distribution over instances. (But see th@idgoal comparisons in Sec-
tion 2.3.)



2.2 OPTNBDT Algorithm

2.2.1 Foundations

Assume there are; featuresF; = {F(), ..., F("} where each featur") ranges over
ther() < rvaluesV,) = {Ujﬁl), . ,U%zﬂ }, and there are two classgs= {+, —}.

A “decision tree™T" is a directed tree structure, where each internal noddabeled
with a featureF'(v) € F;, each leal € £(T') is labeled with one of the classgf) € ),
and each arc descending from a node labéleld labeled with a value; € Vr. We
can evaluate such a trée on a specific instancé = {FU) = v%)}j, to produce a
value VWAL (T,f) € ) as follows: If the tree is a leaf’ = [, return its labely(l) &

Y; that is, \WL (T, f) = y(l). Otherwise, the root of the tree is labeled with a feature
F € F,. We then find the associated value within thésay ' = v;), and follow the
vs-labeled edge from the root to a new subtree; then recur. @hewof VAL (T, f) will

be the value of that subtree. Hence, given the instdnee {A = +, B = —, ...}
and the treél’ in Figure 2.1, the value of M_(T}, f) will be the value of the subtree
rooted in theB-labeled node on this instance (as we followed the- + arc from the
root), which in turn will be the value of the subsubtree rdoie the D-labeled node
(corresponding to the subsequdht= — arc), etc. We say a decision trées “correct”

for a labeled instancéf,y ) if VAL(T,f) = y. A labeled dataset is a set of labeled
instancesS = {(f@),y))},. Our goal is to find the deptti-decision tree with the
maximum expected accuracy, given our posterior beliefschvlare constructed given a
Naive Bayes prior and the dataset To define expected accuracy, we must first define
the notion of a pathr(v) to any node- in the tree, which is the sequence of feature-value
pairs leading from the root to that node; hence, the pathetode in Figure 2.1 is
m(?)) = ((A,+), (B,—), (D,—)). We can use this notion to define the probakflity
of reaching a node, which here&“reaching@’) = P(w()) =P(A=+,B=

— D=-).

In general, the accuracy of any tréds

Acc(T)= > P(x(l)) x Acc(m(l)) (2.1)

1eL(T)

over the set of leaf node§(7"). Note that this accuracy has been factored into a sum

2All probability values, as well as accuracy scores, aredase posterior generated from a Naive Bayes
prior and the labeled datg. Note also that we will use various forms dfc(-), for trees, paths and features
appended to paths; here, the meaning should be clear fromxton
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of the accuracies associated with each leaf: it is the pibtyal®( 7(I) ) of reaching
each leaf nodé € L(T') times the (conditional) accuracy associated with that node
Acc.)(1) = P(Y = y(l)|=(l)). This factoring tells us immediately that we can de-
cide on the appropriate class label for each leaf ngtig|r (1) ) = argmax, P(y | (1)),

with an associated accuracy of
Acc*(m(l)) =max P(y|w(l)) (2.2)
Y

based only on the single patte,, it is independent of the rest of the tree.

We are searching for the “best” depthtree, arg maxrcpT(q) ACC( T, S), where
DT(d) is the set of decision trees of depth at mdst— i.e, each path from the root
to any leaf involves at mostvariables. An earlier system [47] precomputed the accuracy
associated with each possible sequence tsts (requiringD(("/)r¢) time), and then
constructed the best tree given these values, which rebjGitérn ;)¢) time. Here we
present a different technique that requires less time byopnputing a data structure that
quickly provides the optimal feature given the Naive Baggssumption to use for each
position in the bottom row.

To understand our approach, consider determining thertedt() to use at the
“final internal node” along a path(r) — e.g, determine which feature to test in
Figure 2.1. As an obvious extension of the above argumeistdécision will depend
only on the pathr(v) to this node. Then for the | hode, it will depend onr([?]) =
((A,+),(B,—),(D,—)). Given our Naive Bayes assumption, for any feaftire F;
(except the features in — i.e.,, except forA, B, and D), the component of accuracy
associated with the path that begins withthen performst’ (and then descends to the

leaf nodes immediately under thig), is

Acc(moF) = Y P(m F=uvs)xAcc'(mo F=uvy)

vfGVF

= Z P(m, F=vy) xmax P(Y =y|n, F=vy)
vfGVF v

= ZmaxP(Y:y,ﬂ,F:vf)
vrEVFE

= Z max P(Y =y)P(7n|Y =y)P(F=vs|Y =y) (2.3)
vFEVFE Y

= P P(Y= P(F=vs|Y=
(W)ngmjx (Y=y[m)P(F=vs|Y=y)

11
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Figure 2.2: Computing Acd F') (Equation 2.4).

where Equation 2.3 is based on the Naive Bayes assumptair.that the featuré’ that

optimizes Acg 7 o F') will also optimize

Acc,(F) = P(lﬂ)Acc(woF)

= Z max P(Y=y|m)P(F=vs|Y=y).
vrEVE Y

While our analysis will work for classes that range over dmjt€) number of values,
this section will focus on the binary case. Letting . = P(Y = + |7 ) and abbreviat-

ing “F'=wv;" as “v;”, we have

_ T4 Poy|+)
Acc,(F) = Z max{ (1—xﬂ7+)P(’Uf]—)
’l)fEVF (2 4)
2r i P(up|+) if 2y < i) '
- m+ (U ™+ = Plos [H)+P(vr[—)
Ve (1 —zx4)P(vg|—) otherwise

For fixed values ofP( F' = vy |Y = y), this AcG( F') value does not depend on the
features inm nor their values, but only or, ;; we can therefore express Add” ) as
Acc( F, z, +) to make this dependency explicit. For any valuergf, < [0,1], each
summand in Equation 2.4, corresponding to a single= vy, is the maximum of two
lines. Over the set aof values, this function is therefore a sequence of at moestrr
linear segments; see Figure 2.2.

Before beginning to build the actual decision tree, oemBDT algorithm will first

compute these AddF7), x) functions for eachF). It then uses these functions to
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OPTNBDT( d: int; P(-): distribution ove{Y } U F)
Computeopt-feature list
OoFL= {Ff(z) |z €0,1],i=1,...,d}
Build optimal depthd — 1 tree using Dynamic Programming
At each lengthd — 1 path,
with associated probability, = P(Y = +|7)
LetF = (Fy (w4,n),-- o Fi_y(a10)).
Let:* = min; {F}(z4+ ) & 7} be the firstinF notin
Use feature: (x) at leveld, aftern

Figure 2.3: @TNBDT algorithm.

compute, for each € [0, 1], the optimal feature:
Ff(xz) = argmax{Acc(F, z)}. (2.5)
F

It also computes thénd-bestfeature ' (z) for eachx value, as well ag*(z) for i =
3,4,...,d. We refer to this{F"(x) | z € [0,1], i = 1,...,d} dataset as theFrL (“opt-
feature list”).

The OPTNBDT algorithm then uses a dynamic program to build the tree, hiyt o
to depthd — 1. Whenever it reaches a depth— 1 node, at the end of the path =
(CEr(1)s Vg 05 (Fr(2)s Uty ) o+ ( Fre(d—1)s Vfrasy ) )» With associated conditional
probability z , it then indexes this:. ; into theorL, which returns an ordered list of
d features,F (. ;) = (Fi (x4 ), ..., Fi(x4 ). OPTNBDT then returns the firsk;
that isnotin thef(x+7w) list. This algorithm is shown in Figure 2.3.

To make this more concrete, imagine that in Figure 2.1 thadisociated witlrr() =
({A,+),(B,=),(D,—)) andz, y = 0.29 wasF(0.29) = ( B, A, E, D). While we
would like to use the first valug¢}(0.29) = B as it appears to be the most accurate,
we cannot use it as this feature has already been appearbkid inpath and therefore
Equation 2.4 does not apply. FONBDT would then consider the second feature, which
here isF5(0.29) = A. Unfortunately, as that appearssnas well, CTNBDT have to
consider the third featuréy; (0.29) = E. Since that does not appearP@BDT labels
the| 2 node with this ‘E” feature.

2.2.2 Implementation ofOPTNBDT

This section provides the details of our implementationiciwinequires recursively com-

putingz = z, 4, and computing and using the opt-feature list|..
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Computing =, : Itis easy to obtain:, , as we grow the path in the decision tree.

Here, we maintain two quantitiep;, = P(w,Y = +) andp; = P(7,Y = —), then

for any pathr, setz, , = pﬁ’fp,. Formy = {}, p#, = P(Y =y)fory € {+,—}. Now
consider adding one more feature-value gdit vy ) to 7, to formmy 1 = 70 (F, vy ).

Then thanks to our Naive Bayes assumptigf,, = px, x P(F =vs|Y =y).

Computing and using theoFL: As noted aboveQFL corresponds to a set pfecewise
linear functions(see Figure 2.2), each of which is the union of a finite numlibdinear
functions. Formally, a piecewise linear functign: [0,1] — R (with & pieces) can be
described by a sequence of real number trigles , m1,b1), ..., (ag, mg, bg) ) where
thea;s are endpoints such that=ag < a; < ... < ap =1,andforalli € {1,... k}
we havef(z) = m;xz + b; forall z € [a;—1, a;].

A linear function is a piecewise linear function with one qge The sum of two
piecewise linear functions with; and ks pieces is a piecewise linear function with no
more thank; + k2 — 1 pieces. We can compute this sum@k; + ko) time, as each
component of the surfi = f1 + fs is just the sum of the relevant andb from both f;
and f». Similarly, the maximum of two piecewise linear functiongtwk; andk, pieces
is a piecewise linear function with no more th@n + k2) pieces. This computation is
slightly more involved, but can be done in a similar way.

For each featuré’ and each value, € [0, 1], we need to compute the sum over all
|Vr| values ofF using the Equation 2.4. We compute this total by adding teeaated
[Vr| < r piecewise linear functiongAcc, (' = vy ) }o,ev,- We can do this recursively:
Lettingr = [Vr| andacc; = Acc,( F = f;) be thei'” function, we first definecc » =
acci + accy as the sum ohice; and acca, accs 4 = aces + accq, and so forth until
acc,—1, = accr—1 + acc,; We next letacc; 4 = accip + accz s, accsg = accs g +
accy g, €tc.; continuing until computingcc; , which is the sum over aft functions. By
recursion, one can prove that this resulting piecewisatirfienction has no more than
r + 1 pieces, and that the time complexity(gr log ), due tolog r levels of recursion,
each of which involves a total @ (2! x r/2%) = O(r) time.

Equation 2.5 is the maximum of all of the piecewise lineactions{Acc,( F' )} pcr,
that were constructed in the previous step. We again useidedand conquer tech-
nique to reduce the problem of maximizing ovef piecewise linear functions to se-
quence olog ny problems, each of maximizing over two piecewise linear fioms. An

analysis similar to mergesort shows that the overall coatprtal cost of the process is
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O(rny log (rng)).

When F7(-) (Equation 2.5) involvesD(rny) linear pieces at arbitrary points, we
can computeF;(z) in O(log(rny)) time, using a binary search to find the appropriate
segment and a constant amount of time to compute the valee gins segment. As we
are computing this maximum value, we can also specify wheehiure represents this
segment.

We can computé’*(x) for i = 2,3,...,d in a similar way. Consequently, when we
compute the maximum of two functions, we also storedheghest functions at every
point. Note that the amount of memory storage required mereases linearly id.

Hence, each lookup function can be constructe@{nn s log(r nys)) time, requires
O(r ny) memory to store, and most importantly, can be queried (totfiadptimal value
for a specificr) in O(log(r nys)) time. Note that a naive implementation that merely tests
all the features in the last level of the tree to constructeéhees (called “@TDT” below)
will require a time linear in-ny, whereas our technique has complexity logarithmic in
r "I”Lf.

Collectively, these results show the following theorem:

Theorem 1. Given any labeled datasgtovern ¢ r-ary variables and binary class labels,
the OPTNBDT algorithm of Figure 2.3 will compute the deptidecision tree that has the
highest classification accuracy under theilaBayes assumption. Moreover, it requires

O(ny|S| + (rny)4tdlog(rns)) time andO(d(r ny)?) space.

2.3 Empirical Results

We performed an extensive set of experiments to compareetifiermance of @TNBDT
to various learners, both state-of-the-art decision gaenlers, and Naive Bayes systems.
This section first describes the datasets and experimestigh,sthen the experimental

results and finally our analyses.

Experimental setup: The experiments are performed using nine datasets from Ul M
chine Learning Repository [24] as well as our own Prostatec€adataset obtained from
our colleagues at the Cross Cancer Institute. All the sailedatasets have binary class
labels. Table 2.1 characterizes these datasets.

The experiments are performed using 5-fold cross validaperformed 20 times; we

report the average error rate and standard deviation attress trials. We compare the
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Table 2.1: Datasets used in the fixed-depth decision treeriements.

Number of | Number of| Number of | Abbre-
Dataset features instances feature | viation
values
Tic tac toe 10 985 27 Tic
Flare 10 1066 31 Flr
Hepatite 13 80 26 Hep
Crx 13 653 30 Crx
\ote 16 435 48 \ot
Lymphography 18 145 50 Lym
Chess 36 3196 73 Chs
Connect-4 42 5000 126 Con
Prostate cance 47 81 126 Prs
Promoters 58 106 228 Prm

classification performance and running time c#®IBDT with different depths — here

2,3, and 4 — to the following fixed-depth decision trees:

e 3-ID3 [48] is a decision tree learning algorithm that usesiatnopy based measure

as its splitting criterion, but stops at depth 3.

e 1-OpPTDT [37] is a decision stump that splits the data with only onéuea—i.e.,

it is a depth-one decision tree
e 2-OPTDT is an optimal depth-2 decision tree

e 3-OrPTDT is an optimal depth-3 decision tree.

Experimental results: Figure 2.4 shows the average classification error rate anertbr
bar corresponding 5% confidence interval of each algorithm. We see that no alyorit
is consistently superior over all the datasets. While deeépeision trees sometimes
improve classification performance (classification accyiacreases with the depth of
the tree for theeym Chs, andPr mdatasets), deeper trees can cause overfitting, which
may explain why shallower trees can be better: Decision gsyumhich only split the data
based on one feature, outperform the other trees fdritme cr x, andvot datasets.

Figure 2.4 shows that the classification error of 8f8BDT is often lower than
the errors from 3-1D3, which shows that the optimal Naivey@abased decision trees
can perform better than heuristic, entropy-based treesadtfition, Figure 2.4 shows

that the classification error of 3f@NBDT is often similar to 3-@TDT except forPr m
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Figure 2.4: Average classification error for £2@NBDT, 3-OPTNBDT, 2-OPTNBDT,
1-Op1DT, 2-OPTDT, 3-OPTDT, Naive Bayes, and 3-ID3 algorithms.

dataset, which implies that Naive Bayes assumption doelsurbthe performance of 3-
OpPTNBDT most of the time. In fact, a paired t-test over these ten dittashow that
3-OPTNBDT is statistically better (more accurate) thanD3 (at p < 0.05). How-
ever, the difference betwe@rOPTNBDT and3-OPTDT is not statistically significant (at
p < 0.05). Similarly, the difference betweeOPTNBDT and2-OPTDT is not statisti-
cally significant (ap < 0.05). As expected, we found that (on average) the error improves
for deeper trees, although this improvement is not stediltyi significant (afp < 0.05):
4-OrPTNBDT (0.194) < 3-OpPTDT (0.197) < 3-OPTNBDT (0.200) < 2-OPTDT (0.209)
< 2-OPTNBDT (0.222)< 1-OPTDT (0.235)< 3-ID3 (0.257).

Figure 2.4 also includes the results of the Naive Bayessifieass While it works
fairly well in many of these datasets, note that it is not atender: recall that our goal
is to produce an effective shallow decision tree, which Ive® only a (small) subset of
the features, probed sequentially. However, the NaiveeBalassifier will use all of the

feature values, which must all be available.

Running Time: Now consider the running time of these algorithms, as wel@»TDT,
which implements the dynamic programming algorithm thaidpices the fixed-depth
decision tree that is optimal over the training data, gies Maive Bayes assumption
— i.e, thisd-OpPTDT algorithm explicitly constructs and tests all possiblevésaup to

depthd, whereasl-OpPTNBDT uses a pre-computed opt-feature liot() to efficiently
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Figure 2.5: Comparing 3-@rNBDT versus 3-@TDT: t,(r ny) andt, (r ny) are the time
that 3-CPTNBDT and 3-QPTDT require forn s features, respectively.

construct the final (deptti) level of the decision tree.

The previous section proved thaP@BDT is O(log(rn¢)/r ny) times faster than
OpPTDT, wheren; is the number of features. To explore this claim empiricaklg ex-
tracted eighteen artificial datasets from the Promotersri dataset, using: features,
fori = 1 : 18. Figure 2.5 plotdog(t,(rny¢) x rnys/logrny) versuslog(t,(rnys)),
wheret,(rny) (respectivelyt, (rn¢)) is the run-time that 3-©TNBDT (respectively,
3-OpTDT) requires forn features. This confirms that”NBDT is significantly more
efficient than @TDT, especially when there are many features in the dataset.

Figure 2.6 shows the running time of the various algorithiach line corresponds
to one of the algorithms, formed by joining a set of points sdgalue on the horizontal
axis is the total number of feature valugs r; = O(r ny) of a particular dataset, and the
value on the vertical axis is the (log of the) run time of thgoaithm on that dataset. As
expected, the 3-ID3 points are relatively independent @iilimber of features, although
it depends on the number of instances in the training satgtkplains the higher running
time of ID3 oncon andchs datasets. The other lines, however, appear fairly linear in
this log plot, at least for larger values df, r;; this is consistent with the Theorem 1.
Finally, to understand why the 4FONBDT timing numbers are virtually identical to the
3-OPTDT numbers, recall that 4-.€rNBDT basically runs 3-@TDT to produce a depth-

3 decision tree, then uses tbeL to compute the 4th level. These numbers show that the
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Figure 2.6: Run-time (log of seconds) of £4@\BDT, 3-OPTNBDT, 2-OPTNBDT,
3-OpTDT, 2-OPTDT, 1-OPTDT, and 3-ID3 algorithms.

time required to computeFL, and to use it to produce the final depth, is extremely small.

2.4 Summary

There are many situations where we need to produoeed-depth decision tree- e.g,
the bounded policy associated with per-patient capitatidhis chapter has presented
OpPTNBDT, an algorithm that efficiently produces the optimal suchdigepth decision
tree, given the Naive Bayes assumption.e; assuming that the features are independent
given the class. We proved that this assumption impliesttigabptimal feature at the last
level of the tree essentially depends onlyagn, € [0, 1], the posterior probability of the
class label given the tests previously performed. We thewgritee a way to efficiently
pre-compute which feature is best, as a function of thisgidiy value, and then, when
building the tree itself, to use this information to quicldgsign the final feature on each
path. We show that this results in a speeduggf.s/logns) compared to the naive
method of testing all the features in the last level, thewidmempirical evidence, over
a benchmark of ten datasets, supporting this claim. We alsodfthat @TNBDT is not
just efficient, but (surprisingly, given its Naive Bayes@a®iption) is often more accurate

than entropy based decision tree learner like ID3.
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Chapter 3

Active Learning Strategies

Active learning algorithms use various methods to quergalgled instances. This sec-
tion describes the query strategies and scoring functiogisare commonly used in the

literature.

3.1 Estimated Uncertainty Reduction

In this section we discuss query strategies that attempthioce the overall uncertainty of
the model. In this strategy, the active learner computegxpected uncertainty/error of
the model, resulted from querying the unlabeled instanck then queries the instance
that causes the minimum expected uncertainty in other aelddbinstances. For example,
Roy and McCallum [49] selected instances that reduce theatag error of the Naive
Bayes classifier over unlabeled instances. Guo and Greéf¢uged an algorithm that
selects the instance that provides the maximum conditiolial information about the
labels of unlabeled instances. Oumu algorithm extends the approach by Guo and
Greiner [50] to the structured data (with conditional ramdfields as the classifier) in
order to use it for its initial step of active learning.

Uncertainty reduction strategy has been successfullyexbiu several machine learn-
ing models including Naive Bayes [49], Gaussian randonugi¢bl], logistic regres-
sion [50], and support vector machines [52]. The shortcgnaifithis strategy is its com-
putational cost, since it needs to consider not only evelshated instance in the pool,
but also retrains the model for every possible value of thellaFor some models, like
Gaussian random fields, the incremental training proceidiufegrly simple and practical,
but for many others, the whole training must be repeatedi®entire pool of unlabeled

instances. Another attempt to reduce the computationalofdkse uncertainty reduction
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strategy involves subsampling the pool of unlabeled irtsarj49]. Alternatively, Guo
and Greiner [50] only consider few iterations towards thénopm model parameter in
their optimization process. Because of the high computatioosts of this strategy, we

only use it in the initial step of MU (see Section 4.2).

3.2 Uncertainty Sampling

In uncertainty sampling, an active learner queries thehahal instance that has the high-
est uncertainty. There has been many suggestions in thatlite for ways to measure
the uncertainty of an instance. For example, in binary @laaton tasks using a proba-
bilistic model, the most uncertain instance is the one wipssbability of being positive
is closest td).5 [10].

A more general criteria to determine the uncertainty of alakheled instance: is

conditional entropy, defined as:
H(ylz,0) = =Y P(yi|z,0)log P(yi|x,0), (3.1)

whered is the vector of model parameters, apdre the possible labels for the instance.
Instances with large conditional entropy have high unassta For the binary classifi-
cation task, highest conditional entropy happens W#tly;|z, 6) being at0.5. In multi-
class scenariaol’(y;|x, #) with uniform distribution (e, all P(y;|z,0) are equal) yields
the highest conditional entropy. Oumu algorithm uses the entropy approach by ex-
tending the definition of entropy to structured data (Eque#i.12) and using conditional
random fields to modeP (y;|x, 6).

Another approach, used in information extraction taskg, [[B&3], is to query the
instance whose most likely labg), = arg max, P(y|z,§) has the smallest conditional
probability P(y,|z, 6).

Uncertainty sampling has also been applied to non-praktbimodels. Many re-
searchers, working with support vector machines, seledntance closest to the bound-
ary [12], [54], [55]. Lewis and Gale [10] have modified the puis of a decision tree
classifier to obtain a probabilistic model and use unceastasampling. For example, for
a binary classification task, if the number of™ instances within a branch is 3 and the
“—"Iinstances are 2, theR(Y = +|z) = % Similar approach has been applied to near-

est neighbor classifier, where the probability of each defise proportion of neighbors
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Figure 3.1: Selecting the square green point, which is thet mmocertain data point, does
not improve the classification performance of the lineassiféer.

with similar class. Here for a binary classification tasi dfut of 5 neighbors are-, then
P(Y = +|z) = 2.

The most uncertain approach typically works well if the eatrparameters nicely ap-
proximate the conditional probability distribution of teatire data. Unfortunately, these
parameters are often problematic as they are based on amalytsining set and some-
times they are prone to querying outliers [49]. Figure 3.dvwaha binary classification
task where the data is separated by a linear classifier ttaiméwo data instances, shown
as the filled circle and filled triangle. Here the most ungeriastance located on the
boundary line (shown as the green square) does not prowuittefliinformation about the

labels of unlabeled instances.

3.3 Entropy of Model Parameters

In Section 3.2, the conditional entropy of labels given tredel parameters was used to
query the unlabeled instances. Although this approach swaedl in practice, it highly
depends on the inventory of the training d&aat time i and the training procedure
that results ird;. One may imagine a scenario wheteis not an optimal model
parameter, e.g., as a result of a bad training data or singdhglka local optimum. In this
case the active learning algorithm would be misledpyand we may end up querying
uninformative instances in the next steps (like queryirgduare instance in Figure 3.1).
Therefore, we may consider a query strategy that does nptorelcurrent model
parameters. One query strategy is to compute the uncertaimiodel parameters given

the dataj.e., Uncertainty(6|D). This way we can compute the information content of
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Figure 3.2: Query by committee strategy, here two of theetlatassifiers agree that the
square data point has positive label.

the unlabeled data instances based on how uncertain thd pedeneters would be,
after we train them oD = (z, S;), wherez is the candidate point ans}; is the current
set of labeled instances.

The uncertainty can be measured by computing the conditemteopy of the param-

eters given the data as:
Uncertainty(6|D) = H(6|D) = — / P(6|D)log P(6|D)dS.  (3.2)

This definition of entropy is intended for continuous vakesh whereas the previous def-
inition of conditional entropy in Equation 3.2 is used foscliete data.

H(0|D) is a measure of how uncertain the model parameters are aftey trained
on dataD. Therefore, it can be used to query the instances that ralaascertainty of
model parameters [56]. Based on our observations on sol@oeld datasets, reducing

the uncertainty of model parameters may not result into aeraocurate classifier.

3.4 Query by Committee

In this method, a committee (set) of classifiers are traimethe current labeled set, then
they are used to classify all the unlabeled instances. Hieeeunlabeled instance with
the maximum disagreement among all classifiers is queriedab®ling. One step of
this active learning process is shown in Figure 3.2. Heriel sdashed and dotted lines
represent three linear classifiers and the last two classifisagree with the solid line
classifier on the label of the green square instance. Therdfoe green square instance
is queried by the active learner.

In query by committee strategy (QBC), there is no generasitaimt on the size of

the committee, as even small number of classifiers have bemwmnsto work well [11],
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[15], [57].

In one of the earliest works in active learning with QBC siggt Cohnet al. [25]
introduced selective sampling, which is a sequential ®dteat updates two spaces se-
quentially — the current version spagg (atith iteration) that includes the set of hy-
potheses consistent with current training data, and themegf uncertaintyR;, which is
the subset of the instances where different hypothesis igive different labels. In each
iteration, the algorithm queries a random unlabeled itgtdrom R; to obtain its label.

It then forms#,; ., by eliminating all the hypotheses #, that are inconsistent with this
newly labeled instance. The algorithm then forRys, by removing fromR; any region
if all of the hypotheses ifi{; 1 agree on the label of that region.

Balcanet al. [26] introduced theA? agnostic active learner, which uses thresholds
for the error rate. At iteration, let R; be the region of uncertaintyA? queries a set
of instancesD; from R; and computes the lower bourddB(D;, h) and upper bound
UB(D;, h) on the true error ratd.(h) for all the hypotheses in the version space. It
then eliminates all the hypotheses whose lower bound idegrdean the minimum upper
bound. Iterationt is complete when enough sampl@sare gathered to eliminate at least
half of the current region of uncertainty. Similar to seleetsampling methods, if all
hypotheses in the version space agree on some region ofstamde space, this region
can be eliminated fronk;.

Dasguptaet al. [27] proposed an algorithm that maintains two sets of labate
stancesS and.S’, whereS contains instances that receive different labels from tim m
imum error hypotheses and this difference is less than aglweshold. Therefore, the
instances ir5' are labeled by the oracle. If the difference between the ecaperror of
the minimum error hypotheses is greater than the giventibtésthen the instances are
in setS’ and their labels are inferred. Note th#tcan be viewed as the set of constraints,
i.e., in the next iteration we only consider classifiers that amescstent with the label of
instances ir5’.

Each of the algorithms in [25], [26] and [27] only considelassifiers that are con-
sistent with the current labeled instances (“version spaeéhich is updated as more
instances are labeled. If there is noise in the data, the#igone might not produce the
optimal classifier since there is the risk of eliminating tyimal classifier if it is not
consistent with the current labeled instances.

Another group of algorithms [20], [28], [29] as well #SAL, avoid using a version
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space in their process. Balcanal.[28] showed that for the margin-based classifiers with
linear separators and perfectly separable data, activeitgacan obtain an exponential
convergence rate if it only queries instances that are éntié margin. They used a
rejection sampling strategy to query such instances.

Some active learning algorithms includi§AL use an unbiased estimation of error
in their process. The recent works by Beygelzireeal. [20] and Gantiet al. [29] use
importance weights to cancel the estimation bias of ther.effbose algorithms use re-
jection sampling to query the desired instances by assiganinon-zero weight to them.
They also use an unbiased estimation of error when seleittengext instance to query.
In contrast,ISAL samples directly from some appropriate distributions. iy, ISAL
also uses an unbiased estimation of error when selectingekktesampling distribution
by assigning a weight proportional to the ratio between #meing distribution and the

true distribution.
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Chapter 4

Active Learning With Structured
Data

As noted in the previous section, most of the existing adéaening systems have been
used primarily to learn a classifier that maps each instanasitgle (scalar) labeleven
the imaging work mentioned above has focused on mappingigade to one of small
sets of labeld” (object recognition). As images can often be recognizeddas only a
small set of extracted features, object recognition cpomrds to a typical machine learn-
ing problem. However, many important learning problem®ive predicting labels for
structured data such as images. There have been relaitieattive learning research
related tamage segmentatiorvhich requires producing a more complicated label: such
systems map an image af x n. pixels ton, x n. individual pixel-labels. Moreover,
these pixel-labels are not independent of one another, {f one pixel is a tumor, it is
more likely that its neighbors are, as well; see Figure 4Th)is forces a segmenter to
consider the entire image.{ x n. pixels) as an instance, rather than label one pixel at
a time. Hence, notions like uncertainty and informationteahmust be defined for the
entire image.

To label the structured data, probabilistic methods suatoaditional random fields
(CRF) [58] are commonly used. This section overviews ouichsigstem for actively
learning structured data with the focus on the image segatienttask. We first men-
tion the training process for the underlying segmentatisiesn, based on Conditional
Random Fields (CRFs), that is designed to deal with vargatilat are organized in a
2-dimension grid [59]. We then describe oumlu system, which actively learns the
parameters of the CRF.

We letI represent the set of. x n. image pixelsx = {z;|i € I} be an observed
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Figure 4.1: An unknown pixel that is surrounded by tumorosip.

inputimage, where each) is a vector describing pixel(perhaps its intensity and texture)
andy = {y;|¢ € I} is the corresponding joint set of labels over all pixels @ timage.

We will assume the segmentation bgary over n,. x n. images, where eacl), <
{=1,+1} (e.g, is this pixel tumorous versus healthy), and the overalpoiy isn, x n.
such bits.

At any time, our system has a pool of unsegmented instalices well as a (pos-
sibly empty) pool of segmented instancesLater in section 4.3 where we describe our
experiments, we will also have a set of unlabeled test im&gesNote that these sets,
St, S, U, are disjoint. Throughout this chapter, we will use “lallas a synonym for
“segmented” and “unlabeled” for “unsegmented”.

In this chapter we presentMu active learner [8] for image segmentation tasks.
Our active learner will sequentially select an unsegmeintesbew € U, obtain its
label (recall this label is a set ¢f| bits — one for each pixel im), and then move this

now-labeled image frory to S.

4.1 Conditional Random Field

A conditional random field (CRF) is a model of the conditiopabbability of a set of

labelsy given the observations, here given by

LA version of this chapter has been published in the procgsdifithe ICML2009 conference.

27



P9<y|x>=Qel(X)exp S o0+ Y Wy | @D

iel i€l jeN;
whereN; are the 4 neighbors 6f (north, east, south, west);

1
1+ exp(—y;wTg;(x))

Dy (yi, x) = log(

is theassociation potentiadf pixel i that uses the association parameteisbtained from
training data, and;(x) is the feature vector for pixet? Uy (Y, Y X) = yiy;vE pij(x)
is the interaction potential that captures the spatialetation with neighboring pixels
using the interaction parametersobtained from the training data;;(z) = x; — z; is
the difference between feature vectors in pikelnd j; and§ = [w,v] are the model
parameters.

The normalizing factor

Qp(x) =D exp [ > Pl x) + > D V(v y;, %) (4.2)
y

icl icl jEN;
insures that the CRF produces a probability. Given a setraipeters), we can compute
the labely* for a given imagex: y* = argmaxy, Fy(y|x) (see Section 4.1.2). The
challenge is learning the best values for these paraméter$he rest of this subsection
discusses how to compute these optimal parameters fronoé ladieled images’; then
for this S and a single unlabeled imaggeit then provides a useful approximation to this

computation, to avoid its inherent intractability.

4.1.1 Training

Typical supervised CRF training involves finding the parsere
05 = arg max LLs(0) (4.3)
that maximize the log of the posterior probability overrtiag set of labeled images

LLs(0%) = ) log Py (y™ |x(*)).
sES

2Here, thisg; (x) is just the information inz;. In general, it could also include information from some
adjacent pixels, via some smoothing operator, etc.
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In our active learning framework, we need to consider thectfbf adding one more
image from unlabeled set to the training set. Since the lgi¥élof an unlabeled image
=™ is not known before presenting it to an oracle, we use a condit entropy term to
express the likelihood associated with the unlabeled inaage

LLu(6) = > Py |x™)log Py(y|x™).
y

The overall objective function now consists of two terms finst term deals with all

labeled images in training sStand the second term is for an unlabeled images
LLstu(0) = LLg(8) + vLLL(6), (4.4)

where they € R parameter trades-off the two factors. We then seek the maeasiy_

that maximize Equation 4.4.

4.1.2 Useful Approximation

Given the lattice neighborhood structure of the CRF for imdgta, it is intractable to
compute the normalizing factéty(x) in Equation 4.2 [60]. Following [59], [60], we in-
corporate the pseudo-likelihood approximation, whictuasss that the joint probability
distribution of all pixel labelgy can be approximated by the product of “local probabil-
ities” of each pixel, which is based on only the observatiohs; and the labels of the
neighboring nodesgy;,:
By(yx) ~ [ Powilyn.. %),
iel

. 1
PB(yi|yNi7X) = Q(X) €xp ( yla + Z \II ylvy]7 )7 (45)
v JEN;

where this2;(x) is a “local normalizing term”, which deals only with tii& pixel. Using
the approximation in Equation 4.5, the log likelihood teron frespectively) training set

S and a single unlabeled imagsas:

[Ls(0) = > 5 108y lyy) . 21, (4.6)
SESZGI(S)

[Lu(0) = SN Polwilyy), 2 x log By(yilyly, o). 4.7)
i€l Yi

Following Equation 4.4, we can add the above equations to fsingle objective

that combines the effect of the many labeled imagiesd an unlabeled data
[Lssu(0) = LLs(8) + vLLu(0). (4.8)

29



In our experiments, we set = 1. We also used conjugate gradient to optimize the
objective function in Equation 4.8.

The IIU(G) term from Equation 4.7 requires the label for unlabeled ,dafaich
unfortunately is not yet available,e., ygyj is not known. An inference step is added
to estimate the labels based on current parameters. Thenekeis based on iterative
conditional probability (ICM) [61], which sets the labelrfeach pixel as the maximum
posterior probability:

y;k = argn;axpg(yi ‘ yNL'7x)7

where for each pixel, we assume that the labels of its neighbgks are fixed to their
current estimate. We then ugg to compute the label of its neighbors. We repeat this

process until every; converges to its final value.

4.2 ThelLmu Active Learning Algorithm

At each time, giver/ and S, our LMuU active learner [8] needs to select which unlabeled
imageu € U to give to the oracle for labeling. (Recall that this nowebda . will then

be added to the set of labeled image$ One option is to choose the most uncertain

image:
MU(U,S) = argma[}(H(Y(u)‘x(u)’S)’
ue
where
H(Y|x,8) = =Y P(y|x,8)logP(y|x,5) (4.9)
yey
~ =) Pag(ylx)log Py (y[x) (4.10)
yey

approximates the conditional entropy of the lalélgiven the image observations
based on the current conditional probability, which is blase the training dat®. (To
explain Equation 4.10: As we use the d&tdo produce the parametefg, we identify
P(y|x,8) with Py, (y|x); see Equation 4.3 and relevant approximation.)

The summation in Equation 4.10 is over gil| = 2"*"< possible binary assign-
ments ton, x n. pixels. We approximate this as the simple sum of the entsopi¢he

labelsy; of each pixel of the image, < I:
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H(Y |x,8) = H(Y |x,0s) (4.11)
:_Z Z [PQS y2|xl 10gP95(y2|$z) . (412)

i€l y;e{x1}

We view this most-uncertain instance NI S) as being closest to theoundarybe-
tween positive and negative instances. Having the labesdch boundary points will
help us to define the boundary more precisely and consegueantkase the classifica-
tion accuracy. Of course, our active learner has to statt antemptyS = {}; here the
associatedy, parameters are problematic. Moreover, this approach dateonsider the
distribution overX, which means knowing more about this “boundary” point migbit
help identify that much with respect to th¥6. The time complexity of this algorithm is
O(|U)) as it computes the uncertainty of all the unlabeled institeach iteration.
This suggests an alternative approach: select the instaateould provide the max-
imum information about the labels of remaining unlabelestances —.e., the instance

that most reduces the uncertainty (RU) of the other unlabeltances’ — {u}:

RU(U,S) = argmaxH(Yy|xv,S) —H(Yy |xp, S +x™) (4.13)
ue
= argmin H(Yy|xy, S+x™) (4.14)
= argmin H(Y®W x84 x®)) (4.15)
uet veU;v#u
A~ argmin H(Y® %™ 04, ) ). (4.16)
uet veU;v#u

Equation 4.14 follows from the observation that the firstrtarf Equation 4.13 is
constant for all instances; Equation 4.15 uses the fact that the entropy of the set of
independent images is just their sum; and Equation 4.1 ag&is the approximate con-
ditional entropyH defined in Equation 4.12. (Thég; | () is the solution that maximizes
Equation 4.8.)

Note this RU approach works even f8r= {} and its time complexity i©)(|U|?),
which is computationally more expensive than MU approael|{(|)). Our actual
Lmu system uses both approaches: Given a set of unlabeled irbaged no labeled
instancesS = {}, it first uses RU to find the first instaneg to label, then set§ = {u, }.
Thereatfter, it uses MU to find the second, third, and furthexges. See Figure 4.2.

31



LMu( U: unsegmented images )
1. S={} % S is initially empty

% Compute:; = RU(U, {})
2: for eachunlabeled image € U
3: 0, = argmaxg I:[u( 0) % Equation 4.7
4. s, =0
5: for each other unlabeled image e U, v # u
6: s +=H(Y® |x® 6,) % Equation 4.12
7. wup = argming s,
8 y®) = Oraclgx(*1)) % Get label
9: S5 = ({(xtw), ytu)))
10: g = argmaxy I:ES(H) % Equation 4.6
11: U = U —{w}
12: fori=2,...

%u; = MU(U,S)

13: for eachu € U
14: ty = H(Y®™ | x® gg) % Equation 4.12
15: u; = argmaxy ty
16: y(®) = Oraclgx(®)) % Get label
17: S = S+ ((xw), ylw)y)
18: fs = argmaxy I:Es( 0) % Equation 4.6
19: U =U-—{u}
20: end
21: return fg

Figure 4.2: Pseudo code for theal active learning algorithm.
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Figure 4.3: Sample “sky” images from Geometric context sktta

4.3 Experiments

To investigate the empirical performance of our activerigay algorithm, we conducted
a set of experiments on two challenging real-world probteRisding the sky in the ge-
ometric context dataset and segmenting tumors in medicdés We also ran a scaling
study, to see the influence of the size of each image on the ewofilimages required to

obtain good performance.

4.3.1 Finding The Sky in Color Images

The geometric context dataset [31] is a collection of 105gesa many very cluttered,
that span a variety of natural, urban, and suburban scenéigr goal here is to find the
sky within these images. Figure 4.3 shows three instancisarfes in this dataset. This
task is challenging since the sky could be blue or white,rabeaovercast, and worse,
many scenes contain both sky and ocean, which are not eapidyable based on their
color. The original images were of various sizes; we dowetsigach t®4 x 64 pixels
to make the size uniform, and to make our computations maotatole. We partitioned
these images into the unlabeled-&etvith 85 images and the test-sgtwith 20 images.

Features We associate each pixel with twelve values: its 3 colomisities, its ver-
tical position (as the sky is typically at the top of the impgad 8 texture values: We
apply the MR8 filter banks [62] (which contain edge filters dad filters at 6 different
orientations, at 3 scales) to the region centered on eagh, fuixt record only the max-
imum filter response at each of the 6 orientations; we alsloidiec2 isotropic features:
Gaussian and a Laplacian of Gaussian.

In each iteration of the active learning process, oMuLsystem identifies one specific
imageu from U, which is removed fron/, labeled by an oracle, then added to the labeled

training setS. We then train a segmenter on this augmented training-s&abeled” « to
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Gemometric context dataset (64x64 pixels)
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Figure 4.4: Accuracy of segmentation versus number ofitrgidata chosen from unla-
beled set for geometric context dataset.

producefs .., then test this system on 20 images in the tesiSgatecording the average

F-measure

F-measure — 2 X (precision)(recall)

(precision + recall)
whereprecision = tp/(tp+ fp) andrecall = tp/(tp+ fn), wheretp, fp, fn are true
positive, false positive and false negative respectiviligte this measure is problematic
whentp = 0; see Footnote 3.

In Figure 4.4, the horizontal axis represents the numbeddéd unlabeled images
and vertical axis is the average F-measure. The “all” lireaghthe results of training on
(the oracle-labeled versions @)l 85 unlabeled images. Checking the “LMU” line, we
see that the first carefully-selected image alone producddsaifier whose F-measure
was67%, and this accuracy improved &1% by using the second image. Note this is
only 2% below the accuracy obtained by training on all unlabelea;datoreover, this
is statistically indistinguishable at the < 0.05 level, based on a paired t-test. (The
accuracy of the second iteration was significantly bettantthe first — paired t-test
p < 0.05.) There is no significant change between the second itaratid subsequent
iterations, which means that the first two images chosennny are good enough to train
the classifier. Those two images are the left and middle isi\agewn in Figure 4.3.

Of course, it is possible thany two imagesvould be sufficient. To test this, we
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Figure 4.5: Sample images from brain tumor dataset, tumsggmented in red.

randomlyselected images for the training set; see the “random” liri€igure 4.4. Each
point in this line is the average over 10 random choices. Véetlsat this line is well
below the LMU line. Moreover, the segmenter remains stasilly inferior to the “all”
line until observing (on average) 5 randomly-drawn images.

We also developed lu _logReg, which actively learns the parameters of the lagisti
regression segmentor. Note that in logistic regressioretieno interaction potential
between every pixel and its neighbors. The results of apgliimu_logReg on geometric
context dataset is shown in Figure 4.4. This figure shows ttietogistic regression
on the geometric context dataset has slightly lower acgucampared to CRF, which
implies that the interaction potential in Equation 4.1 fuaedr weight than the association

potential.

4.3.2 Finding Tumors in Brain Scans

Here, we consider the challenge of finding tumors within &epdt brain — that is, label-
ing each pixel in a magnetic resonance (MR) image as eitheorous or non-tumorous.
This task is crucial in surgical planning and radiation &pgr and currently requires a
significant amount of manual work by human medical experts.

Here, we have 80 images (axial slices) from the brains of tiéqts. These are taken
from different regions of the brain; in particular, no twodges are adjacent to each other.
We resized each image froB6 x 256 pixels to64 x 64. Figure 4.5 shows three images
from this dataset, with the tumor segmentation outlineceth \We again partition these
images into an unlabeled g6t containing 71 images from 11 individuals, and a test set
S;, containing 9 images from the other 5 patiehts.

Features Most patient visits yield scans in 3 different MR modalitieT1, T2, and

% The F-measure score is problematic if any test image hasmortas here there can be no true positives
(tp = 0). Hence, to simplify our analysis, o includes only images that contain some tumor. However,
the unlabeled sétf includes some images that have no tumor.
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Tic (that is, T1 after the patient has received a contrasiopent) [63]. We identify

each pixeli with a vector of 4 values, including the T2 value and the ddfee between
Tlc and T1. As each brain is somewhat symmetric around thidadggane, we also

include the symmetry feature by computing the differendgvben intensities of pairs of
symmetrical pixels with respect to the sagittal plane, fithir2 and T1c - T1 modalities.
So we compute four features for each pixel.

Figure 4.6 shows the results of actively selecting the imgiset. Actively training
on one image in this dataset produces an average F-measiif& ofThis segmenter is
as good as the one obtained using all of the data (paired p-tes0.05). (The specific
image selected is the left one in Figure 4.5.) Training orsteond IMu-selected image
increased the average accuracy®, which is higher than thé1% accuracy obtained
using all of the data.

Note that some of the images in the unlabeledl(5eto not contain any tumor. On
the other hand, the test set only contains images that hawe somor (see Footnote 3).
This difference between the test domain and the trainingaitois known as “covariate
shift” [64]. Therefore, the optimal model obtained by tiamp on all the images in the
dataset may not be the optimal for the test set. We conjettatehe active learner can
obtain higher segmentation accuracy by querying imaged#tter represent the images
in the test seti(e., better represent the characteristics of the tumors).

Donmez and Carbonell [65] report a similar situation (&llreiactive sampling for
learning the ranking on the TREC 2004 dataset), noting tatperformance of their
active learning algorithm is sometimes better than the dmna&imed by training on all the
data. Finally, as with the Sky data, on average, the segmsepteduced using the first
several (here threepndomlydrawn images were all significantly inferior to the “all”
segmenter.

The results of applying 4u_logReg on brain tumor dataset is shown in Figure 4.6.
This figure shows that the performance aill_logReg is statistically significantly worse
(atp < 0.05) than Lmu in the brain tumor dataset. The reason could be the factlikat t
labels for each pixel in a brain image is very dependent onathels of its neighboring

pixels.
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Figure 4.6: Accuracy of segmentation versus number ofitrgidata chosen from unla-
beled set for brain tumor dataset.

4.3.3 Scalability Study

This subsection explores how ouMu scales with the size of the images. We therefore
downsized the images in the geometric context dataset bm 64 to 32 x 32, then
repeated the same active learning process described aifoweesults, appearing in Fig-
ure 4.7, show essentially the same trend that appeareduneHg4. Here, however,NU
required 7 images before it first obtained a segmenter wheréermpmance was statistically

“equivalent” to the one based on all of the data (pairedtt-fes. 0.05).

4.3.4 Discussion

It is, at first, very surprising that one can produce an affecsegmenter with so few
images — here, only 2 for the (original) sky data, and 1 fottteen tumor data! Towards
explaining this, note that each of these images is not realygle “point”, but is actually
64 x 64 = 4,000 pixels, and each oracle-label is actually providirguad 4000 bits.

Hence, the 2 sky images is essentially 8000 bits, which ig aflinformation. The

results in the scaling studies are consistent with thisezioje: Here, we required 7
carefully-selected images to obtain the information ndetdedo well; notice that this
7 x (32 x 32) =~ 2 x (64 x 64)4

“We are not claiming that 8000 bits is a magical number — imste@ are just observing that our active
learner requires more small images than large images, vidmbnsistent with the claim that the number of
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Geometric context dataset (32x32 pixels)
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Figure 4.7: Accuracy of segmentation versus number ofitrgidata chosen from unla-
beled set for geometric context dataset with images dowds32 x 32 pixels.

As further support, consider the segmenters based on rapdlvawn images. While
they were, typically, worse than ones based on images sptifi Lmu, we found that
we were still getting good segmenters using only a few suodom images. Again,
this is consistent with the view that the label of each imagsuipplying a great deal of

information — even if the image is drawn randomly.

4.3.5 Other Results

The results shown above strongly suggest that very few image sufficient to train a
CRF-based segmentor, but only if they are well selected. Xgored this claim over
other datasets. Figure 4.8 shows the results of applyimg bn the set of sunflower
objects from Caltech101 dataset [66]. Since the datasetarded for object recognition
task, it is relatively easy to segment the object from bamlgd, which is probably why
LMu gets good accuracy after actively selecting only one image.

We also explored some approaches to reduae’s computational complexity. For
example, IMu can start with a randomly selected imagev(l_randStart). Figure 4.9
shows the result of this algorithm on brain tumor dataset. & that IMu _randStart
may need more queries to obtain an accurate segmentor. IHeverandStart requires 3

queries to have the accuracy obtained by training on allbatdal data.

pixels being labeled seems significant.
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Sunflower dataset from Caltech101
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Figure 4.8: Accuracy of segmentation versus number ofitrgidata on the sunflower
category in Caltech101 dataset.
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Figure 4.9: Accuracy of segmentation versus number ofitrgidata chosen from unla-
beled set on brain tumor dataset fanlu and Lmu with random start.
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4.4 Summary

In this chapter we presented theill active learning algorithm developed for image seg-
mentation tasks. lu is one of the first studies that considers the challenge ofehgt
learning the parameters of a machine learning model (CREésegmenter) for images.
LmMu combines two active learning strategies by first queryingreage that most reduces
the uncertainty of other images and then selecting the imaatiemaximal uncertainty.
Our experiments on real world datasets showed that thigpkmt combination was ef-
fective for this task and it could produce an effective segtmeusing very few segmented
images. Our studies support the claim that it may be becheadaltel for a single image
contains a great deal of informatioine., corresponds to receiving many single-bit labels,
in the standard active learning framework.

If some images in the dataset contain more information atfmutelation between
image features and labels than others, thew Lis likely to produce an accurate segmen-
tor with fewer labeled images than random sampling. On therdband, if all images
in the dataset contain the same amount of information albeutdiation between image

features and labels, themm is likely to have similar performance to random sampling.
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Chapter 5

Importance Sampling Active
Learning

In this section we introduce importance sampling activenieg algorithm (SAL), which
attempts to reduce the number of queried instances by dgatvam from an appropriate
distribution, which can be different from the underlyingtdibution.

One application ofSALis in experimental design where sampling from the under-
lying distribution is difficult. For example, consider tresk of tuning the parameters of
a jet engine where we are interested in knowing the engirregking point. Figure 5.1
shows the probability density function for the cruising epeof an airplane. This fig-
ure shows that the average cruising speed of the plad@Oisnph and700 mph is the

minimum speed at which the engine is likely to fail.

1.4

Probability density
o o =
e &N
L L L |

I
>
i

o
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i i £ ol
400 500 600 ~700° 800 900
Crusing speed of an airplane (mph)

L
?OO 200 300

Figure 5.1: Hypothetical distribution for the cruising sgeof an airplane (solid line).
Dashed lines show the sampling distributions around thet ploat the engine fails.

41



Here we can use an engine simulator, change the parameterscand the outcome.
The naive approach is to randomly choose the values of tremaders from the un-
derlying distribution. Given that the breaking point isatdtely unlikely (in underlying
distribution), it may take a long time to find the breakingmaf the engine. Alterna-
tively, by clever selection of points around the decisiomtmary, ISAL might be able
to find the breaking point using few probes. For example irufgg.1, it would be a
good choice to select two data points with different labetgiad the estimated decision
boundary. Those two points are important because with &grfseparable data, the
decision boundary is located somewhere between them.

In the rest of this chapter we descrit®ALand analyze its performance.

5.1 Preliminaries

Let (X,Y) be jointly sampled from a distributio® over X x Y, wherexX = R? and
Y = {-1,+1}. The specification of the learning problem includes the §bypotheses
H C {h: X — Y}. The performance of a hypothegdis= #, whose goal is to predidt

given X, is measured by
L(h)=E[((h(X),Y)], (5.1)

where{(h(X),Y) = 3|h(X) — Y| and the expectation is over random variahlés
andY. We will typically think of ¢(a,b) = 1 if a # b, and isO otherwise. Then
L(h)=P(h(X)#Y).

LetZy,...,Z, € X x)Y be random variables such that = (X;, Y;), where the dis-
tribution of X; is possibly governed by the learner arids generated from the marginal
Py|x givenX;: Y; ~ Pyx(:|X;). Leth, : X — Y be a hypothesis obtained after train-
ingon(Zy,...,Z,). We will assume that the auxiliary random variab{é§ Y'), which
represent the future test instance, are disjoint ffém . .., Z,,). The value of label” is
predicted byh,, (X).

For simplicity, we assume thd®y, the true marginal of, is absolute continuous
and its density (with respect to the Lebesgue measugs) )isSimilarly, we assume that
the marginal ofX; given the past instanceBy, |z, .. z,_,, has density;;. In fact, during
learning, the learner seleqjs

We assume that all densitiegs € Q have support that includess support,i.e.,
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Algorithm 1 (Importance Sampling Active LearnintSAL) )

Input :
p is the density for true distribution of .
‘H is the class of hypotheses.
n is the total number of iterations.
Q is the set of distributions where everye Q has the support that includgs support.
W[z, y,S;] = argminpep{L(R]S;) : h(z) # y}.
L(n|S;) is defined in Equation 5.3.

S() = @
1 fori=1,...,n
2: if (i==1) thenq; < p
3: elsegenerate; + argmingeo Epng[L{Li—1(h)_; [z, hi_1(2), Si—1]|Si—1) # 0}]
4: x; < Draw(g;(.)) % draw from distribution with density;
5: request the label far; : y;
6: Si = Si—1 U{[qi, xi, yil}
7: h# = argminyey L(h|S;)
8. end
9: returnh},

Figure 5.2: Importance sampling active learnifgAL) algorithm.

{z :p(x) # 0} C {x: ¢(x) # 0}. The set
Si =A{(q1,21,91); s (€, i, yi) } (5.2)

represents the triples of distributiong;, drawsz; € X', and labelsy; € Y for j =

5.2 Importance Sampling Active Learning Algorithm (I SAL)

The ISAL algorithm is shown in Figure 5.2. In iteration= 1,...,n, the algorithm
draws an instance; from the distribution with densityy;, which (fori > 1) had the
lowest expected empirical error of alternative hypothésie 4 of ISAL) in the (i — 1)-th
iteration.

Choosing the Candidate Point ISALwill sequentially request the labels of instances
x1,...,T, from the oracle, using the following approach by Beygelziraeal. [20]:
on thei-th iteration, first find a hypothesis; that has the minimum empirical error on
the current labeled sef;. It then finds an alternative hypothesi$that has minimum
empirical error over all hypotheses that disagree witron the label of the candidate

pointz € X. If the empirical error ofs} and”; are close to each other, then there is
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uncertainty on the label of and we ask an oracle to provide the label. However, instead
of identifying a single candidate, ISAL identifies a distributiony; that puts high weight
on instances that have highly uncertain labels.

The Sampling Distribution ¢;: In the situation where the data is noise-free and the
true model is linear¥ rinear), We can directly compute the optimal sugh(line 3 of
Figure 5.2). Hereg; + N(u;, ;) for some relevany;, ¥;, which depends on the
current margin.

Otherwise, the user provides the set of distributighas an input tdSAL based on
his knowledge of the data. We assume that the cardinalitfigfet of distribution® is
small enough such that we can evaluate each, to find the ks qline 3 of Figure 5.2).

Q may include a set of Gaussian distributioNg, ), where eachu = [, ..., uql, d
is the dimension of the space, abid= diag(o1,...,04), where for eachh = 1,...,d,
itincludesy; = ¢; + m7j, wherem = 1,...,M and¢; € R, 7; € R, 0; € R and
M € N are the parameters set by the user such that it covers tlunsegji interest€.g,
boundary regions), known from heuristics. In additighalways includes the underlying
distributionp(-) too.

Using Weighted Estimation of Error: In learning, a good empirical measure of the
performance of a hypothesis is the number of mistakes tleahypothesis makes over
all instances in a hold-out dataset. Whenis drawn fromg; (line 4 of Figure 5.2),
which is different fromp, this measure would become biased. In order to remove the
bias, we introduce importance weights and estimate themeance of a hypothesis
by Equation 5.3; see Figure 5.2.

L) = g Y EDetha)n) 53)
(q,7,y)€S
Definition 1. Let L(h|S;) be the empirical error ofs € H over a set ofi instances
Si; = {(q1,z1,11),---, (¢, xi,yi)} (Equation 5.3) and{ be a set of linear classifiers.
Let h* = argmin,cyn{L(R|S;)}. For an instancer € X, we define the alternative
hypothesis
hile, b7, 8i) = argmin{L(h|S;) - h(x) # b (@)} (5.4)

Note thath![z, h},S;] is itself a function, which takes an argumentAhand re-
turns a value in). If there are more than one function that satisfies the camdit
arg ming ey {L(h|S;) : hi(x) # h(z)}, just pick one arbitrarily. In the case of threshold

classifiers for one-dimensional data, we consider
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-1 if v < al)
WieD hy,Si)(x) = —hi(z) if x=al) (5.5)
+1 if x> 20,

We will suppress:, S; in k[z), h*, S;](x) when it is clear from context.

Lemma 1. For anyh € H and set ofn instancesS,, = {(¢1,21,%1),- -, (Gn, TnsYn) },

E [ﬁ(msn)] = L(h).

Proof. By linearity of expectation,

[ (hS, } ZE[ hX:),Yi)] .
Sinceg; is computed based o, ..., Z;_; and eachX; is generated frong;, a simple
calculation gives thaft [Z(())%i))é(h(Xi),n)] = E[((h(X),Y)] = L(h). Therefore,
E [ﬁ(h]Sn)] = L(h). O

Definition 2. (Weighted loss function) L& be the set of permissible densitiés,c X
have the label” € Y, andH C {h: X — Y} be the class of hypotheses. lebe
the true probability density function of random variab¥e Supposer is drawn from
a distribution with densityy € Q whereq has support that includeg, and % <
Tmaz, VT € X, Wherer,,.. is a finite positive number. Define the class of weighted loss

functionsF to be
F=A{f:9xXXxYXxHXxR=R: f(¢q,z,y,h,p) = yﬁ(h(w),y)}, (5.6)
where((h(z),y) = &|h(z) — yl.

5.2.1 Analysis ofl SAL on Realizable One-Dimensional Data

In this section, we investigate the performancéS#Lon a one-dimensional datasetC
R that can be perfectly separated by some simple threshotdidms H = {A. : ¢ € R},

he(2) :{ o ;}{ffj (5.7)

(used by [25], [30], [67]). Figure 5.3 shows a few instancithe input spacet’.
According to VC theory, in order to achieve an error rate gGléhane, a passive
learner requireQ(%) random draws fronp [68] (ignoring the confidence ter@). Das-

gupta [30] showed that a binary search wi#ilog %) draws can achieve an error rate
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Boundary region Boundary region

(a) et s pz) (b) h*<™ error “y/[z(2)]

Figure 5.3: Two scenarios faSAL algorithm on one-dimensional data, when the new
instance is (a)(") inside boundary region or (k)2 outside of boundary region.

of less thare on this one-dimensional case. As a special case, we also thladvBAL
can achieve this accuracy with expectefog %) draws, although its application is not

restricted to one-dimensional data.

Definition 3. At iteration of ISAL, let x§‘> be the maximum valued instanceSp of

Equation 5.2 with-1 label, x(+) be the minimum valued instanceﬁnwith +1 label, and
(=) () )

x-l—:c
z’z

(z; ) be the boundary region with midpoimfb) == ; see Figure 5.3(a).

We consider two scenarios for any drawn instance. In thesiiestario, instance(®)
is located inside the boundary regiang, the green point in Figure 5.3(a) and the alter-
native classifief, [x(l)] corresponding to it has the boundary point shown in greere No
that in Figure 5.3(a)L(h!|S;) = L(h}[z \S = 0. In the second scenario, the new in-
stancer(? is located outside the boundary region (blue point in Flg'w%b)) Similarly,
hy andh}[z] are shown as red and blue lines respectively. Hefe [z*)]]S;) > 0
because the decision boundary correspondinig | to(2 | is outside the boundary region.
In summary, instances inside the boundary region Ifa(\hf;wl-) = 0 and points outside
the boundary region have(h/|S;) > 0.

Lemma 2 extends this analysis to a group of instances. It aoespgwo distributions
with densities;(!) andg(®, whereg(®) has more weights inside the boundary region than

¢?. Lemma 2 shows thaBAL selects;() rather than;(2).

Lemma 2. LetX C R, Y = {-1,+1} andxz € X be perfectly separable by some
hypothesis ir{. DefineS;, =\, =\, and 2"’ using definition 3- andH L(R]S)),
b, Bi[zD] using definition 1. At iteration of ISAL, letq®) be A'(z\” 2) pe
N @ +1,0%), whereo,, < oorn # 0. Letz() € X have distributiong()) and

Z 7 mzn)
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) e X have distributiorg®. Then
(1) q(1) [L{L(hi[zM][S;) # 0}] < B, @ [L{L(hj[z¥]|S;) # 0}]. (5.8)
Proof. We have that

Emeqm[n{i(h;[x<1>]|s,-)#0}]:/_ T{L(R}[z]|S;) # 0}¢WV (z)dz.  (5.9)

As we discussed earliek,(}[x] |S;) is zero in the boundary regione (:nf._),a:f)),
so we have

2!
B, g [I{L(R}[zV]]S;) # 0}] = / 1 x ¢ (z)dx

—00

+ /OO 1 x ¢ (z)da. (5.10)

2

From Equation 5.10, we note tht,),_ ) [L{L(k}[z1)]]S;) # 0}] is equivalent to the
area under the curve of density functigh) outside the boundary region. Therefore, we

can write it as

e

E, ) g [L{L(Ri[zD]]S) # 0} = 1 - / |

- ¢V (z)da. (5.11)

Similarly,

e

B, 2) g [L{L (R[] S) # 0}] = 1= / 1P (@)da. (5.12)

Z;

Therefore, to show tha,, ) ., [L{L(Fj[z (V]| S;) # 0}] < By, e [L{L(Riz?)]]S;)
# 0}], we have to show that the area under the curve in the boundgiyrr forq() is
greater than the one fqgf?.

The area under the curve in the boundary region is the priityathiat a random
variableX € X isinside the boundary regione., P ( )« x < x(_)>.
; ), o2,.) with all the dlstrlbutlons/\f( 0?), whereo >
omin (€€ Figure 5.4). Then we compatv’e(;n o?) with all the dlstrlbutions/\/( ®) 4

First we compareV(z\"

n,a?), wheren # 0. FlnaIIy we extend the comparison betwe/liafr@acZ ,o2. ) and all
the dlstrlbutlons/\/( ) + n,0%), wheren # 0 ando > .
Random variablesc () and X®) have dlstrlbutlons/\f( ®) 52 ) andN (2", o?)

respectively. We show that the instancé) ~ N(x ®) ) has higher probablllty of

Z ? mzn
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Figure 5.4: Normal distributions/ (z\", o2 . ) and A (2", 02).

being inside the boundary region than the instané ~ A (=", 52). Probability of

(D) ~ N(x(b) ) being inside the boundary region is

) mzn

IP( )« x < )) (5.13)

=) _ .0
:L' -z,
\/ mzn Z\/ mznZ )7
where®(.) is the standard normal cumulative probability function.
Similarly, probability ofz® ~ A’(2\?), ) being inside the boundary region is
) _ .0 25 (b)

=) ®3) )Y _ gL Ty N
IP(wZ < X® < gl ) () — (), (5.14)
2 g ®) () _ 0 . , .
Sinceo,,;, < o we have that> L\/; < = 2/} . ®(.) is monotonically in-
ing, which implies thap(%" =) < o272 Similarly, o(22 =5
creasing, which implies =) < —=—=). Similarly, ) <
:E( ) x(b) . man man
d( = ). From Equations 5.13 and 5.14, we conclude that
P (27 < x® <al?) > P (2l < X <27}, (5.15)

We now show thatSAL selects/\f(xl( o?) overN( ) 4+ n,02), wheren # 0.
Figure 5.5 shows two Gaussian distributions with the samiavee but different means.
The figure shows that when we shift the distributionmyhe area under the curve that is
outside(x; (= ), (+)) grows faster than the area ms@é )) due to the exponential

nature of Gaussian density function. This implies that Mamder the curve in the
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boundary region for/\/(acgb),az) is higher than the one foN(be) + n,0?), i.e, for
) ~ N(ajgb) +1n,0%) andz®) ~ ./\/'(:El(-b), o2), we conclude that

P (27 < x® <af?) > P (2l < x@ <27}, (5.16)

By combining Equations 5.15 and 5.16, we conclude that:for ~ N(:nf.b), o)

andz® ~ N + n,0?), P (x§—> <x® < x§+)) > P (xl(_) <X®@ < x§+)>.

Consequently,
B 1) g (e M]]S0) # 0}] < By g [L{L(RG[=)]] S}) #£ 0} (5.17)

O

This implies thatSAL algorithm will selecty™) over ¢(?). Consequentlyz; will be
drawn fromg(V) rather thary(?). If the label of drawn instance;, y;, is+1 then we update
2\ = 2, anda!}) = 27, Otherwises ] = 2; andz!t) = 2{*). We continue this
process until the size of the boundary region is less thavote thato,,;, = 0 implies
thatq(z) is a delta function, thus the importance weiggg% is always zero. To avoid this

situationISALassumes that,,;,, > 0.

5.2.1.1 Convergence Rate dfSAL on One-Dimensional Data

We are interested in bounding the number of iteratiorrequired to shrink the size of

+)

the boundary region from its initial sizg = xg - x§—> to less thare > 0. At iteration

i + 1, the size of the boundary region is a function®f= (X;,Y;), i.e,
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(i) (i) (iii)

Figure 5.6: Change in the size of the boundary region fromatini to ¢ + 1. (i) when
x; is outside of the boundary region, (i) when is inside the boundary region and is
positive, (iii) whenz; is inside the boundary region and is negative.

wl(-ﬂ — xl(_) if X; < w(_) or X; > wl(-ﬂ
B(Z)={ X;-27 if 27 <xi<aP vi=+1 (5.18)
:EZ(JF)—XZ- if 3:5 )<X <a:§+), Y, = -1
Figure 5.6 shows three different draws at iteratipmhich are related to three cases of
Equation 5.18. For example, in Figure 5.6¢) is outside of the mtervadx , E”)
so the boundary region does not change for the next iteatien ;nfﬁ = xg ) and
xEH = xE”- However, in Figure 5.6(ii)g; is inside the boundary region and is positive,
therefore,xﬁﬂ will be updated to;efﬂ = z;. In addition, in Figure 5.6(iiiy; is inside
the boundary region and is negative, thtlZ%r, will be updated to;;z(jr{ = x;.
The boundary region at iteratian 1, (x Eﬁ, ER) is a function ofZ; and depends
on the previous boundary regiqa ™, z{™). Similarly, (2", 2{") is a function of

Z;_1. Therefore,Z; and Z;_, are dependent. In the same way, ; depends or¥; o

and so on. Therefore]y, ..., Z; are dependent random variables.

Lemma 3. LetX¥ C R, Y = {-1,+1}, Z = X x ). Assume alk € X can be
perfectly classified by some hypothesi¢finAt iteration: of ISAL, Iet(acz(._) ) xz(.”) be the
boundary region, where! ™ andz{") are defined in definition 3 ant = z{* — (7).
Letg; = N'(2\?), 02) be the density of the distribution fdf; € X' Let B(Z;) be the size
of the boundary region at iteration+ 1, as defined in Equation 5.18.

Then the expected reduction in size of the boundary regidteration i + 1, given

the previous boundary regions, is

2
where® is the normal cumulative probability function ang = %
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Proof. Letr(X;,Y7) = B(Xbill’yl). By definition,

E r(Xl,Yl)]ajg_),ngr)] :/ ql(x]ajg_),xgﬂ) Z P(y\x)r(x,y]ajg_),xgﬂ)dx.
‘°° ye{—1,+1}
(5.20)

We know thatP(Y; = +1[X1 > #1")) = Landr(X,, Yilay ), 7. X0 > 2f7)) =

1 In addiion P(¥) = —11X1 < #{7) = 1andr(X0, vl ol X0 < 0f7) = 1

Therefore,

(-)
_ Ty _ B
= [T(Xl’yl)ug )vi’«"g)} :/ r(a,ylaet ) g (@), 2D de

o

+ / r(x, y|$g_),$§+))Q1($|$g_),ﬂjg+))dﬂj

(+)
1

(+)
IEl ~ )
+/ o> Pyl e aaley ) 2p)da
Z1

ye{-1,+1}
(5.21)
(=) _ (0
—op(TL_ "1

01
o)
+/(> o Pl ylal 2 g (@2l 2 )de
Zy

ye{-1,+1}
(5.22)
(=) (b)
x -
=2 (1 1
( - )

g () )

! BJI, X , T _

+/<> Z P(ylz) G2 )ql(ileg ) 2 dw
1 yef{-1,+1}

" () ()
1 Blaylzi »217) a2
+/x§b) > Pyle) g (2]l 2 da

by
ye{—-1,+1}
(5.23)
(=) _ .(b)
<op(L T
o1
1
+ b (ﬂjgﬂ _ $)q1($|x§—)7$g+))d$
1 Jg{)
1o
NAC (v = 2 ar (2l2i”, 21 da. (5.24)
£

Note that the last inequality is obtained by knowing “@(tXl,Yﬂ:Ug_),:ng”) <
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x§+) — X4, for 24 < X< ang) and,B(Xl,Y1|a:§_),a:§+)) < X; — x§—> for ang) <

X1 < xgﬂ
Throughout this proof, we assume thét_) andx§+) are given and suppress them
when it is clear from the context. We also usg= (X1, Y1).

Now we compute the integrals in the right side of Equatiod®&&

Zng) "Egb) 1 _(z,ng))Q
(xgﬂ —z)q1(x)dx = / (xgﬂ — ) e i du. (5.25)
/mp 27 V2roy
®)
Using a change of variable = —55=—, 0, = —"= = #* (knowing that
Ty T Ty T
by = 27 — 2{7), we have
-'Egb) ( ) b 0 u2
+ 1 5.2
' —x)q(x)dr = 0.5 —u)e 2eudu 5.26
[ @t =2t [ 050 (526
2noy, 1 -1 —
= L (YEOCa() ol 4 o]
2moy, 2 2 20,
(5.27)
-1
1 1. —1. oyl —esd)
= - — —®(— — . 5.28
b (4 2 (2%) L= ) (5:28)

Similarly,

(++)

;1
RS P R Yt Gl i)
/xf’) (x —xy q1(z)dx = by (4 2(13(20%) + Wr . (5.29)

Therefore, Equation 5.24 can be written as

L g tly 2 = (5.30)

whereo, = #- andb; = 2 2,

In other words,

E[B(Zl):| S%+q,(—_1)+ﬁ 1= e5e?). (5.31)
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-1

Figure 5.7 shows the value §f+ ®(5-1) + %au(l — €% ) versuso,. As o, gets
smaller, the upper bound gets closerjto For example, ifr, < 3, i.e, the standard
deviation ofg; is less than half the boundary size, tHBrEB(Zl)} < 0.82.

We also have

1 -1 V2 =L
li ) “ o, (l—e®2) | =1 5.32
L <2+ o) T e >> | 5.32)
1 -1 V2 =L 1
li ) “ o, (1 —et?) | ==, 5.33
a0 (2 F oG+ ol —e )> 2 (®-33)

—1

As ( + (522 =)+ %au(l - eS%)) is a monotonically increasing function ef,,

from Equations 5.31 and 5.32 we get, for any> 0, |E [ (Zy )] < 1.
In general, at iteratiom of ISAL, z, ..., z;_1 were drawn in the previous iterations
andz!") andz{" are now known.

The upper bound foE [B(Z;)|Z1, ..., Z;—1] is computed as

)0
E[B(Z)|21.. ... Zi1] <b @(%ZH/() (@) = Dl . ., 51)d

%
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() (0)

(+)
i T —x

+ /(b) (x — acl(-_))q,-(x]zl, ooy zic1)dr + bi(1 — <I>(¥))

(5.34)

After computing the integrals in the right side of Equatio84 we get

1 -1, V2 =1
— - — e 80y
5 5o T ﬁau(l esoi), (5.35)

whereo, = 7*. O

E [Bgfi)

To have the same upper bound Er{%

VAT ,Zi_g] andE[%

Zn,. ..,

Zi_l] ,fori =1,...,n, we make the following assumption:

Assumption 1. At thei-th iteration of ISAL, we assume thgt < o.,,, whereo,;, € RY,
o; Is the standard deviation of the sampling distribution &nts the size of the boundary

region.

Theorem 2. Let Z = X x Y whereX C R, Y = {—1,+1} and assume that Assump-
tion 1 holds, and that alk: € X can be perfectly classified by some hypothesi{in
Let (Z1(p1),-.-,Zn(pn)) be a parametric class of random variables with the property
that Z; ~ p;. Atiteration: of ISAL, Iet(xl(_),xlm) be the boundary region, Whemé_)
and 2\ are defined in Definition 3. Fix an € R+ and assume:™) and {" are
given. Then the expected number of iterations required By k8 reduce the size of the

boundary region to less thanis O(log 1).

Proof. B(Z,_1) is the size of boundary region at iteratiaras defined in Equation 5.18.

The expected size of boundary region at iteratioran be written as

E[B(Zy_1)] = bE [Bgfl) g&; ggz:;ﬂ (5.36)
— b / p1(z1)E [B(zfl) gg?; gg::;; ‘Zl - zl] dz (5.37)

:bl/ p1(2’1)---/ Pn—2(Zn—2|21, ..., 2n—3) X
21 Zn—2

B(Z)B(Z) B(Zu)|, i
B { by B(Z1)  B(Zn-2) ‘Zl =21 dnn = Zn—2} dzn—2 . .(.5d;3,)

B(Z1) B(Z2) B(Z
B(Z1) " B(Z

Z:jg can be pulled out of the conditional expectation as
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B(Zl) B(Zn_g)
E[B(Z,-1)] =b /p z / Prn—2(Zn—2|21,. -+ Zn— X
[B(Zn-1)] =b1 : 1(21) - 2(Zn—2|21 3) b Blons)
B(Z,-1) B B
E[m‘Zl—Zl,...,Zn_g—Zn_g dZn_Q...dZ:[. (539)

From lemma 3 and assumption 1, we have (note Bat,_2) = b,—1)

B(Zn—l) 1 -1 \/§O-up 721
E|pir 2= 21 Zns = 2aa| < 5+ @ 1— e%n),
—1
Letay, = 5+ P(g50) + %(1 — e ), which meang < a,, < 1. Therefore,

E[B(Zn_l)] Sbl/ pl(zl).../ pn_g(zn_2|zl,...,zn_3)><

n—2

B(z1) B(22)  B(zn—2)
by B(zl)"'B(zn_g)a“pdzn—2~-d21- (5.40)

B(z1) B(z2) - Blzn-3) can pe pulled out of the last integral over_» as:

Zn—3
Note that by B(z1) " B(zn_a)

B(Zl) B(Zn_g)

E[B(Zy-1)] Saupbl/ p1(21)---/ Pn—3(2n—3|21,- - Zn—a)

z1 Zn—3 bl B(Zn_4)
B(zn—
X /Zn2 Pn—2(Zn—2|21, .-, Zn—3) Bgzn_ig dzp_s...dz.
(5.41)
By definition,
B(Zn—2)
B |22 = 21, Zng = 2nms| =
[B(Zn—3) e R 3}
B(Zn—2)
Pn—2(Zn—2|21y..ey Zn— dZn_ )
an 2( 2‘ ! 3)B(ZTL—3) 2

Therefore, the above equation can be written as:

B(Zl) B(Zn_g)

E[B(Zy-1)] S%pbl/ pl(zl)---/ Pn—3(2n—3|21,- -, Zn—a)

z1 2n—3 by - B(Zn_4)
B(Z,—
x I [ﬁ‘21 = 21y, Zn—3 = Zn—3 dzn—3 e le-
(5.42)

Again from lemma 3 and assumption 1, we have

B(Z,—2)
Ei‘Z: T = 2| < Qs
[B(zn_g) 1= 21y, 3=2 3] < Qup
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whereB(z,_2) = b,—1. Therefore,

E[B(Zn_l)] Saip bl/ pl(zl).../ pn_g(zn_3|z1,...,zn_4)x

Z1 Zn—3
B(zl) B(Zn_g)
dzp_3...dz7. 5.43
b Blon) 3...d21 (5.43)

This process continues until we get to
E[B(Zn-1)] < ay, b1 (5.44)

To guaranted [B(Z,,—1)] < ¢, we use its upper bound as

ol by < e (5.45)
n €
QU = b (5.46)
1
n > log,,, ™ + log,,, € (5.47)

Therefore, for a given} < oy < 1, the expected number of iterations required to
obtain a boundary size afis log,,, ¢+ log,, 3, which is equivalent tdog 1 1 +

ayp

log 1 by, so can be written a9(log 1).

ayp
O
Equation 5.47 shows that the convergence ratéSai is log,,, € assuming that
by = 1. To have convergence rate faster than passive learningeedag,,, € < % In
other wordsg,,;, should be less thatt. For example, whea = 0.01 thenc,,, should be

less thar0.955, which requiresr,,, < 2 (see Figure 5.7).

5.2.1.2 Analysis ol SAL When the Sampling Distribution Partially Overlaps With
Decision Boundary

In the scenario that the sampling distribution is not cesttén the middle of the boundary

region (e.g, dashed curve in Figure 5.9),[r(Z;)|Z1, . .., Z;—1] is computed as

E[r(Z)|Z1, ..., Zi_1] =P (Xi < x§‘>) X1+ P (X,- > x§+)> x 1
+P (a:g_) < X; < a:Z(H) X o, (5.48)
wherer(Z;) = % and3} < a; < 1. Recall that the size of the boundary region does

not change wheX; < x§—> orX; > ) Ifthe sampling distribution; has the property

%
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thatg;(x) # 0 for all z € X (e.g, Gaussian distribution), thdh (xl(_) < X; < xE”) >

¢ for some constant > 0. Consequently,
E [T(ZZ)‘Z:[, .. 7Zi—1] < 1. (549)

The above equation means if the sampling distributics not centered in the middle
of the boundary region, the expected size of the boundaigney iteration; + 1 is less
than its size at iteration This characteristic of the algorithm implies that it comges to
the optimal classifier even if the exact location of the bamdegion is not known.

From Equation 5.34F [r(Z;)|Z1, . .., Z;_1] giveng; = N (u;, 02), is

- o0
X — Wi @
E[r(Z)|Z1,... Zot] <O(H——F1) 4 / @ — D)gilale, .., zi1)de

—

=

g; f*)
2 (+)
k3 _ €T: — .
+ [ o=l el )de 1 - a2
:vgb) )
(5.50)
NG e N A R e
:1 + 1 (26 20'1.E —e 20'2. —e 201' >
V2T
2" — )
+ ()i —z; ' — 1)
7
) — (+)
+ B i — () 4 1)
7
2" — (), ()
+ @(ZT)(—QM +a, 4x ). (5.51)
(2

Note that the right side of Equation 5.51 dependsﬁ;ﬂ’?, xf.—), Wi, 0;; Moreover,
unlike Equation 5.34, it can not be simplified further. Towmesa convergence rate faster
than passive learning, the right side of Equation 5.51 hd tess thar©. Given:::l(.“,

xl(_), i, 03, 0ne has to compute the valuemfand verify that it is less thaef.
(+)

If we normalize the data such thai_) = —0.5,z;"’ = 0.5, andy, ando, are the

normalized versions qf; ando; respectively, then Equation 5.51 can be written as
o2 —L’z‘g— _(0‘5—;571)2 _(7045*2#471)2
E|r(Z; Zl,...,Z‘_l Sl—'— u (26 20, — e 207, —e 202 )
[r(Z:)] i1 Nor

+ (L2 4, — 05)

Ou

+ () (~2n). (5.52)
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Figure 5.8: Upper bound fdE [r(Z;)|Z1, ..., Z;—1] when the sampling distribution is
N (pu, 02) and the data is normalized such that the middle of boundagipmes the
origin.

Figure 5.8 shows the upper bound 1fr(Z;)|Z1, ..., Z;—1] versusyu,, for three values

of o,,. For exampley,, = 0 is the case where the distribution is centered in the mididle o
the boundary region. Ag, moves further away from the middle of the boundary region,
Er(Z)|Zy,...,Z;i—1] gets closer td. Similar to the previous section, to obtain a faster
convergence rate fdSALwheree = 0.01, E [#(Z;)|Z1,. .., Z;—1] should be less than
0.955 in each iteration. For example,, = 0.1 and0 < p, < 0.5 satisfy this condition;

see Figure 5.8.

5.2.2 Analysis ofl SAL on Realizable Multi-Dimensional Data

In this section, we consider a commonly studied setting & dhtive learning litera-
ture [30] [28] [69], as described in Assumption 2.

Assumption 2. Instances are located uniformly on a unit ball Rf’. Here the Bayes
classifier is a linear separatol g,y With parameten g, that goes through the origin

(e.g, dashed line in Figure 5.9).

In this analysis we consider the margin-based classifietis hiviear separators. In

margin-based classification, the optimization problem is

maximize b
subjectto  w? - xjy; > b, j=1,...,1,
HwH =1,
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S~ =
(boundaryregion)

Figure 5.9: Two dimensional data with a margin-based diassiSAL samples from a
distribution that has more weight inside the margin.

wherew is the parameter of the linear separator aiglthe margin parameter [36].

Definition 4. Let H be the class of real measurable functions &n For « > 0, a
sequencéxy, ..., x,,) € X" is said to bex-shattered by if there is an(ry, ..., ) €
R™ such that for eacly, . . .,ym) € {—1,1}™, there is a functiorh € H satisfying for

ali=1,...,m,

h(zi) >ri+a if y =1,

hz;) <ri—a if y,=-1.

Thefat shattering dimension of H at scale«, denoted byfat, (), is the size of a

largesta-shattered set [70].

Intuitively, the fat shattering dimension is the size of theyest set that can be shat-
tered with a functionh € #, while leaving a margin of errot, i.e, in all cases, all
points are outside the margin. Figure 5.10 shows 3 pointsatiea-shattered by a linear
classifier.

The sample complexity of PAC learning has a general lowentaaf Q(m +

€

1log 1), whereV C(H) is the VC dimension of{ [71]. The VC dimension of class of
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Figure 5.10: 3 points that are shattered by linear classifiers

hypothese${ over instance spac¥ is the cardinality of largest set of points that can be
shattered by (corresponding tax = 0 in definition 4). Under Assumption 2, the sample
complexity of PAC learning has a lower bound of

= Q(%(d+log%)) (5.53)

since the VC dimension of homogeneous half spaces on a uhind&? is d [68]. We
consider a realizable case whégwp,yes - vy < 0) = 0, wherewpgy., is the param-
eter of the Bayes classifier, which is linear under assump?io At iterationz, A} is

the linear classifier that is consistent with the labeled%etBy standard VC bounds
(Equation 5.53), a sample size 6f2'd) is required to ensuré(h}) < 2i (with high
probability); this implies that(2d) new labeled instances should be added to ensure
that L(h}) is halved [28]. The goal is to show that we can set the margiarpaterb;
such that only a fraction ab(2'd) instances require a label from the oracle.

Balcanet al. [28] showed that, for the above settings and margin-baseskitlers,
active learning can obtain an exponential convergencdfriaitstances are queried inside
! the margin. They proved that there exists a constasuich that, for any, § > 0, and the
margin parameter; = 577 at iteration, if the active learner sampl(é%d% (dlnd+In g)
instances inside the margin, then with probability of astéa-d, after [log, 1] iterations,

it can find a classifier with error of at mostin other words, they showed that at iteration

For z inside the margin we haje} - z| < b;.
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i, with the margin parameters of = O(27%), active learning obtains a convergence
rate of@(d% log %). Consequently, they used a rejection sampling strateggjéctrthe

instances outside the margin, and only request the labétdtances inside the margin.

Theorem 3. Letq; = N (u4, X;), wherey; is on the linear separator anl; is such that
more than half the;’s weight is inside the margin. There exists a constant C that for
anye, 6 > 0, if rmaxCd% (dlnd+1In %) instances are drawn from at i-th iteration, with
margin parameteb; = 5", then with probability of at least — 4, aftern = [log, 1|

iterations, we obtain a classifiért = arg minj,cy L(h|S,) with error of at mosk.

Proof. We actively sample the instances from the distributignwhose weight inside
the margin is more than half. Therefore, the instances dexemore likely (with prob-
ability of ¢ > %) to be inside the margin. Asymptotically, if we samplenstances,
thenn( of them will be inside the margin. Based on the results by &akt al. [28]
(Theorem 1), we know that, for margin-based classifierst if-th iteration for some
constantC’ > 0, C’d%(dlnd +In %) instances are drawn inside the margin, then with
probability at leastl — ¢, we find a classifier with the (expected) error of at mast
By using the weighted loss function of definition 2 with theximaum weight ofr,,, ...,
rmoaC 43 (dIn d+1n ) < 2rpap C'dZ (dIn d+1n £) = rpnae Cd (dIn d+1n ) instances

are required in-th iteration, where® = 2C". O

Corollary 1. There exits a constant C such that, for any > 0, using ISAL algorithm
with margin parameteb; = 57— at iteration i, where = log,(1 + ﬁ), after

ogy 1] . . o
n = T'mazC([logy ﬂ )d% (dlnd +1n ﬂg%ff}) iterations, ISAL returns a classifier whose

error is at moste, with probability at leastl — §.

Proof. Given that the data is uniformly distributed over a unit ialR¢, the error rate of

) = Uhhbeyes) - ywhere

any linear classifieh, which passes through the origin, igh
O(h, hBayes) is the angle betweeh and hpgyes. Therefore,L(R]) < 2™ implies
||w} — wBayes||l2 < 27™x, wherem > 0 andw; and wpgyes are the parameter of
h; andhpayes respectively. Consequently, botfi andh pqy.es predict the same label for
instances wheneveéw; - x| > 2~™7. As we mentioned before, the probability of an arbi-
trary 2 € X such thafw; - x| < 2=™x is O(2-™/d), because fod > 1, the projection
of uniform random variables in the unit ball onto one-dimensan be approximated by
a Gaussian distribution with variange[28]. If in the i-th iteration, we seb; = O(2™™)

and drawé(%) instances, then onlg(1) of the new instances haye; - z| < 27",
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i.e., require the label from an oracle. Then the errokQf, is L(h;, ) < Wll) Let
vz
B = 10g2(1+d_\1/3)’ thenL(h}, ;) < 2=+ je, the error ofu}, , is reduced by a factor
of 278 = 1+1% from the error ofh¥. Similarly, L(h},,) < 2~(m+2%)_ Similar to Theo-
dv/d

/ N . .
rem 3, for some constait’ > 0, aﬂer%d% (dlnd+In %) iterations,L (R} ) is
1 ,
at least halved. This implies that a totahof= % ZZEOIgQ d TmaaC'd2 (dInd+In ) iter-
ations ofISAL s sufficient to find a classifier with the error of at mestvith probability

of at leastl — §. We can bound: as

[logs ¢

. , o
S ; PnaeC'db(@AInd +1n ) < rmagc ([ogs él)d%(dlnd +ln @)

(5.54)

1 1 1
< 21pan (o )t (@ 1n 222 ]
(5.55)

1 1
= FunarC([logy ~1)d? (dlnd + In {Og; l)
€

(5.56)
O

Ford > 4, a faster convergence rate &AL can be achieved as:

Theorem 4. Letq; = N (ui, 2;), wherey; is on the linear separator ankl; is such that
more than half they;’s weight is inside the margin. There exists a constant C $hiat)
foranyd > 4 and anys > 0,0 < € < 1/4, if 70oC/In(1 + 7)(dIn(1 + In i) +In(%))
instances are drawn frory; at i-th iteration, with margin parametel; = 2!~ ixd—1/2
/5 + In(1 + 4), then with probability of at least — ¢, aftern = [log, 1| — 2 iterations,

we obtain a classifieh* = arg min,cy L(h|S,,) with error of at most.

Proof. We actively sample the instances from the distributigrwhose weight inside the
margin is more than half. Therefore, the drawn instancemare likely (with probability
of ¢ > %) to be inside the margin. Asymptotically, if we samplénstances, then¢ of
them will be inside the margin. Based on the results by Baétaal. [28] (Theorem 2),
we know that for margin-based classifiers, ifidh iteration for some constadt’ > 0,
C'\/In(1+14) (dIn(1 + Ini) +In(%)) instances are drawn inside the margin, then with
probability at least — §, we find a classifier with the error of at mast

By using the weighted loss function of definition 2 with theximaum weight of
Pmazs 2% /(1 +10) (dIn(1 + Ind) +1n(3)) < 2rmaeC’/In(1+4)(dIn(1 + Ini)

62



+1n(%)) = maeCy/In(1 +4)(dIn(1 + Ini) +In(%)) instances are required irth iter-
ation, whereC' = 2C". O

Corollary 2. There exits a constant C such that {@r> 4 and anye,§ > 0, ¢ <
1/4, using ISAL algorithm with margin parametéy = 2'~'rd~1/2,/5 + In(1 + i) at

iteration i, after

n = FoaaC qlo& ﬂ - 2> \/m <ﬂog2 %1 - 1>
< [dln <1 +1n <nog2 %1 - 2)) +ln (%)]

(5.57)

iterations, ISAL returns a classifier whose error is at maswith probability at least
1-94.

5.2.3 General Version of the Algorithm ( SALQ)

ISAL algorithm of Figure 5.2 can be generalized by replacinge(8harg mingcg Ezq
[{Lir (B[, by (@)]|Si1) # 0}] with arg mingeg Epng[Li1 (h]_; [z, b} ()]
S;_1)] as it might be impossible to have,_ (h}_, [z, hi_i(2)]|Si—1) = 0in the pres-
ence of label noise. This leads to the generalized versigheoflgorithm,ISALg see
Figure 5.11.

In this section, we analyze the performancel®ALgon perfectly separable one-
dimensional data of Section 5.2.1 and in Section 5.2.4 waudssthe non-realizable case.

For a distributiony € 9, we have that

E[L(ilal|s)] = [ Lekiia|sa(ode (5.58)

(+H)

SinceL(h}[z] |S;) is zero inside the boundary regi():ﬂg_),xi ), we have that

)

E[Ltifal]s)] = [ Ltilal|Satets

— 00

+ [ Bal|S o). (5.59)

(+)

Let ¢ € Q be (2", 52) (solid blue curve in Figure 5.13) and? € Q be
N(acz(-b) +1,0?), where € R (dashed red curve in Figure 5.13). Note tigb/ [%]]5:)
is a non-decreasing function (mgﬂ, oo) and is also non-increasing {p-oo, :cf._)) (Fig-

ure 5.13).
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Algorithm 2 (General version of Importance Sampling Active Learnitf8AL9
algorithm)

Input:
p is the density for true distribution of.
‘H is the class of hypotheses.
n is the total number of iterations.
W[z, y] = argminpep{L(R]S;) : h(z) # y}.
L(h|S;) is defined in Equation 5.3.
SO = @

1 fori=1,...,n

2 if (i==1) theng; < p

3 elsegeneratey; < argmin, I, -, [ﬁi_l (R _4 [z, h;*,l(x)]]si_l)}
4: x; < Draw(g;(.)) % draw from distribution with density;

5: request the label far; : y;

6: Sy = Si—1U{lg, i, yi]}

7 hi = arg minyey L(h|S;)

8 end

9 returnh},

Figure 5.11: General version of importance sampling adtégening (SALQ algorithm.
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Figure 5.12: Normal distributions/(z”, 52) and A (z\”) + n, o2) when L (%, [#]|5;) in
(_)) region.

%

(2™, 50) region is similar to the one if-oo, z
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Figure 5.13: Normal d|str|but|on3/(

greater in(x 5 ),

o2) and N (z”) + n,02) whenL(h)[x]|S;) is

) region compared t(koo,a:l( )) region.

Z 7 Z

Figure 5.12 shows an example for a scenario wlﬁtﬁé |S ) in the interval(z, (+)
o) is similar toL (R [z [2]|5;) in the interval(—oco Z(_)). Then the (solid) blue distribution
will have IE | I, [ 2] S:) } smaller than the (dashed) red distribution, since its aneu
the curve outside the boundary region is smaller.

Now imagine a scenario where there are more positive ingtaincthe training set
than negative instances. For example, in Figure 5.13, we hav 6 instances in the
training set where four are positive, each correspondingni® step otL R[] \S in
(x§+), o0) region, and two negative instances corresponding to tV\pssléL(h; T \Si
in (—oo, x(_)) region. Figure 5.13 shows that(h/| [2]| ;) in the interval(x§+),oo) is
much bigger tharL hl[x \S ) in the mterval( Z(._)). As a result, the (dashed) red
distribution will have smalleit { |54 ] than the (solid) blue distribution because
its area under the curve in the hlgh error reglomxﬁ ) is smaller.

This means that i@ only containsg® and ¢, the next instance will be drawn
from the (dashed) red distributiong., z; ~ ¢(®. Consequently, it is more likely that
the new instance be drawn fro(noroo,gc( )) which means thak( [z \S ) will increase
in the (—oo, ;n(._)) region (one step will be added tb hjx |S ) in that region). For
example, the new instanag in Figure 5.14 has added one stele;ql H—l ‘Sz-i-l
the (—oo, §+)1) region. It also has upd<';1t<-31tﬁJrl to z; given thaty; = —1.

In summary,ISALgis balancing the empirical error @f in both sides of boundary

region. Once the empirical error &f in the left side of the boundary region is similar
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Figure 5.14: The instance has added one stepiq+1(h§+1 |SZ+1 in the (—oo, E?l)

region in an attempt to balan(iaﬂ(h;“[xﬂsiﬂ) in both sides of boundary region.

to the one on the right (at iteratign> 7), then the dlstrlbutlorj\f( T which is

02,00,
centered in the middle of the boundary region, will havi,co E [ i j |Sj)} and
will be chosen bySALg

Note that the empirical errak (h}[z |S ) is a random variable with unknown den-
sity function. In addition, L [z \S ) is a piecewise linear function (one example is
shown in Figure 5.14). Therefore, it is difficult to obtain lsed form formula for
E [ﬁ(h; [zHSZ-)]. However, the convergence rate ISSALgon perfectly separable data

is expected to bé(log 1) similar toISAL

5.2.4 Analysis ofl SAL for Non-Realizable Case

Some of the recent works on active learning [20], [28], [1ZB] have considered the
Tsybakov noise condition [74] along the decision boundailyis condition, describes a
noise distribution using a detailed parameterization. sspe learning algorithm under
this condition can obtain a convergence rate of betw2gf) andO(Z;) [28]. We assume
that the data instances are drawn uniformly from the unitibdk?, the Bayes classifier
hBayes is linear and the Bayes error is non-zero. Similar to the viiyrBalcanet al.[28],
we assume the following noise condition, where there eddtsown parametef > 0

such that

x (|[P(Y =+1|X) — P(Y = -1|X)| > 48) = 1. (5.60)
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This assumption implies [28] that far' = 0
40(h, hayes) ) M)

s

L(h) — L(hBayes) > [ min <1, (5.61)

wheref(h, hpayes) is the angle between linear classifiégrs&ind hpqye,. We analyze a
more general case of € [0,1) whereo’ in Equation 5.61 characterizes the amount
of label noise in the datd,e., how fastP (Y = +1|X = x) changes near the decision
boundary [75], thus the user has no control over it. &n= 0 may happen when there
are few instances near the decision boundary, since inigeabiese instances are more
prone to label noise [72].

Figure 5.15 shows the importance sampling active learrguyighm for non-separable
case [SALN. In each iteration ofSALn m; instances are queried from. The set
of labeled instances$; are updated to only include the, new instances. Note that
h; is within the radiusp; of h}_,, i.e, hf = argmingegiam(ns_,pi){L(h[Si)}, where
diam(h,p) = {g € H,z € X|P (h(x) # g(x)) < p} is the set of all hypothesese H

whose probability of disagreement withis less than some > 0.

Theorem 5. Letd > 4. Assume there exists a hypothesis,,.; such that Equa-
tion 5.61 holds. In each iteration of ISALn of Figure 5.18,de = N (1, Z;), Where
1 is on the linear separator andl; is such that more than half thg’s weight is in-
side the margin. There exists a constahtsuch that for any,§ > 0, ande < 3/8, if
m; = C’rmamei‘z(d + In g) instances are drawn frony; at iteration ¢ of ISALn, where
maz 1S defined in Definition 2¢; = 2-'(=D=4 g/, /5 1 o/iln2 — In § + In(1 + 1),
by = 2= (1=)igg=1/2 \ /5 4 o/iln2 —In B+ In(2 + i), p; = 2-0=)=27 for i > 1,
o' >0, pp = m, then, with probability of at least — ¢, aftern = [log,(3/€)] iterations,

ISALN returns a classifier with error of at mast

Proof. The proof is similar to Theorem 3 in [28]. HowevéALnuses the weighted loss
function of Definition 2, thus, ai-th iteration for some constaidt’ > 0 and¢ > 1/2,

it needsm; = Crpgpe;? (d+ 1) < 207 a6, 2(d + In 3) = Crynage; 2(d +1n d)

¢
instances to obtaitl, (h}|U) — L(hpayes|U) < f/} with probability 1 — ﬁ where
U={zeX:|w_,- x| <bi_1},w;_ isthe parameter df’_, andC = 2C". O

Note thatlSALnhas to quen 7, m; = O(rmaze 2 In(1/€)(d + In(n/d))) in-
stances inside the margin to achieve an error rate ofherefore, fora’ = 0, active
learning can achieve exponential convergence rate, hoyfeve’’ € (0,1), only a poly-

nomial improvement can be achieved over passive learning.
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Algorithm 3 (Importance Sampling Active Learning algorithm, non-gepée case
(ISALN)
Input :

p is the density for true distribution of .

H is the class of hypotheses.

n is the total number of iterations.

m; > 0 is the number of queries in iteration

Forh € #H andp > 0, diam(h,p) = {g € H|P (h(z) # g(x)) < p}, wherex € X

andp is the radius around hypothedis

W(x,y] = argminpen {L(h|Si) : h(z) # y}.

L(h|S;) is defined in Equation 5.3.

SO = @

h§ is drawn randomly fronid.

1 fori=1,...,n

2 if (i==1) thenq; < p

3 elsegeneratey; < argmin, I, -, [ﬁi_l (R _4 [z, h;-‘,l(x)]]Si_l)}
4: for j < 1,2,...,m; % drawm,; instances frong;
5: xi; < Draw(q;(.))

6: request label for;; : y;,

7. end

8: Si = i Tiys Yirls -+ -5 (@i Ti, s Yinn, |}

9: h¥ = arg mingegiamns_, p A L(h[S)}

10:  end

11: returnh;,

Figure 5.15: Importance sampling active learniiigALn) algorithm for non-separable
case.
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5.3 Bound for the Importance Weighted Error

As previously mentionedSAL uses importance weighted loss function to identify the
sampling distribution. Theorem 6 shows the upper bounehfpf,.;, |L(h) — L(h|S.,,)|.
It also proves that the errdr(h} ) of the hypothesis returned B8AL, is close to the best

possible erroinf,cy L(h).

Theorem 6. Letz € X andy € ). Fix a class of hypothese® and let L(h) be the
expected error of hypothesis € H. Letn be the number of instances queried and
h¥ = argmingey{L(h|S,)}, whereL(h|S,) is the weighted empirical error df on the
queried sefs,,. Letr,,., be the maximum weight of the loss, defined in Definition 2. Then
with probability of at least — §, we have

L(h:) — inf L(h) < sup |L(k) — L(h|Sy)
heH heH

ta(H)log(32 81n
< 27mag 12% {40(—1-12(1 —a)\/fa ( ) Og( 5 )} + Tmaz né'
« n

This section describes the steps to prove Theorem 6.
Given thatl (h%|S,,) — infep L(h) = suppeq (L(h%|Sn) — L(h)) and L(h%|S,,) <
L(h|Sy) for all h € 4, we see

L(h7,1Sn) — jnf L(h) < sup |L(R|Sn) — L(h)] (5.64)
= sup |L(h) — L(h|S,)). (5.65)
heH

Similarly,

L(h%) — L(h%)S,) < sup(L(h) — L(h]S,))
heH

< sup [L(h) — L(h[S,)|. (5.66)
heH

Summing up the two inequalities (5.65) and (5.66), we get:

L(h) = jnf L(h) < 25up |L(h) — L(h|Sy) (5.67)
_2 N [P NN RS 10.9 N
o he?l-)l ;E [Qi(Xi)é(h(Xl)’Yl)} ; Qi(Xi)E(h(XZ)’YZ) '

(5.68)

A

In the rest of this section we will obtain the bound $aip;, .4, ‘L(h) — L(h|Sy)
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Lemma 4. (Hoeffding-Azuma inequality [76]). Let : 4™ — R be a function ofn

random variables such that, for some nonnegative constdot all u; € ¢/ andu) € U,

|g(u1>"'>un)_g(ulv"wui—lvu;»ui-l-la"'>un)| <Ca 1<i<n. (569)

If V=g(U,...,U,), whereU;s are Martingale sequence, then the Hoeffding-Azuma

inequality holds:

2

P([V-E[V]|> k) <2 . (5.70)

Our main example of such a function is the term in the rightdhaide of Equa-

tion 5.68, which is

B [P ok vl — 5 2ED ixo
S| Fy . Yo - 3 B, v

i=1 i1 1

(5.71)

1
V =—sup
T heH

Note thatV" in Equation 5.71 satisfies the condition of Lemma 4 with 27,4, /n,

because for every Z(())%)) is at mostry,,, and¢(h(X;),Y;) is at mostl.

Therefore, by applying Lemma 4 16 in Equation 5.71 we get:
for anyé € (0, 1), with probability at least — ¢,

1 & p(Xz) ‘ N n p(XZ) ' ‘
n hen ;E {qi(Xi)ﬁ(h(Xz),Yz)] ; 205 (XD, Y0 <
lsu n p(X5) NN n p(X;) N . SID%
E N per Z;E [qi(Xi)ﬁ(h(Xz),Yz)} ;qi(X,-)g(h(Xl)’Y’) + Timaz || ——
(5.72)

The above equation can also be written as

81n 2
}Jrrmax\/ ;15. (5.73)

Equation 5.73 allows us to focus on the expected valueof 4, ‘L(h) — L(h|S,)

sup |L(h) — L(h|Sy)
heH

< [sup L(h) — L(h]S,)
heH

which can be bounded by a symmetrization device. In the febissection we obtain
the bound for the expectation term in the right hand side afdiqn 5.73.

Since the active learning model is a repeated process, weepegsent it in the form
of atree [77]. LetT (Z,n) be the set of alZ-valued binary trees of depth A sequence
of (z1,...,2,) of n mappingsz; : {£1}*~! — Z defines aZ-valued tree of depth
for a given setZ [77]. For a functionf : Z — R, define f(z) to be the mapping
(fozi,...,foz,). Foratreez € T(Z,n) and a class of function®, F(z) = {f(z) :
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f € F}is the projection ofF on z. A path of lengthn in the tree is the sequence
¢ = (&,...,&) € {£1}™ and throughout this section we refer4d¢;,...,&—1) as

zi(§).

Definition 5. The sequential Rademacher complexity [33] of a function classF is

defined as
Rn(F)= sup I supZ{if(zi(g))] , (5.74)
z€T(Z,n) feFr; 4
where¢ = (&1, ..., &,) is the sequence of i.i.d. Rademacher random variables.

During the proof of Theorem 2 in [77], the following inequglis proved:

Theorem 7. (from [77]) Let

Dn(F) =

n

sup Ez,p, SUp Exypy - sup Be, o, [sup > / FEdpi(2) =3 f(z)}
pnEP feF 4

p1EP p2EP i1
(5.75)

whereP is an arbitrary collection of distributions. TheR,,(F) < 2R, (F), assuming

that(z1,...,2,) = supser iy f(2i)i8(p1, ..., py)-integrable, foranyp:, ..., p,) €
P".

Note that in the proof of Theorem 2 in [77], Fubini’s theoresmimplicitly used mul-
tiple times. Thus the condition of Theorem 7 ensures thatctimaitions of Fubini’'s
theorem is satisfied.

Let F be the class of weighted loss functions of Definition 2. Thet&{sup;,c, |L(h)
—L(h|S,)|} in Equation 5.73 can be written as

|-e

whereQ; is (Q1, X1,Y1,...,Qi—1, X;_1,Yi_1)-measurableX; ~ Q;,Y; ~ Py x(-|X),

andQ,...,Q, € Q are (randomly generated) densities. We asssme. 1;% <
qeQ

Tmaz, thusE [f(Q4, X;,Yi)] = [ f(q,z,y)dSi(q, z,y), whereS; is the joint distribution

of (Q;, X;,Y;). Note thatS; is random and in particulai@1, X1, Y1, ..., Qi—1, X;—1,

n

D EF(Qi X Y] =) f(Qi X, Yi)

i=1 i=1

1
— sup
N fer

9

E [Sup L(h) — L(h|Sy)
heH

(5.76)
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Y;_1)-measurable. Therefore, by lettilgl = {R ® P|R € V(Q)}, whereV(Q) is the

space of probability measures ovgrwe have

E [Sup L(h) — L(h|Sy)
heH

] = SUP E@Q, x1,v1)~% SSUP E(Qy.x5,2)~85 - - -

Si€
Z/f g, %, y)dSi(q, z,y) Zf Qi, Xi, V)

(5.77)

sup I, X, ¥n)~Sn [— sup
SneEM feF

By Theorem 7, the last term in Equation 5.77 is bounde®Ry,(F), since the
integrability condition holds, becausep ;e = > i, f(qi, i, ¥i) < n7mae is bounded.

Definition 6. (from [77]) Let K be the class of functions : X — R. Letx =
{z1,...,2,}, Wwherex; € X fori = 1,...,n, be a set of n points. A set of vectors
V C R" is ana-cover, with respect to the-norm of C onx if for all k£ € K there exists

av € Vsuch that: N
(% 3" s - k(m)\p) < (5.78)
=1
We defing-norm covering number AV, (a, K, x) as the size of minimal such cowéri.e,,
Ny(a, K,x) = min{|V| : V is ana-cover, under the p-norm, &f onx}.

Also defineN,(a, IC,n) = sup, Np(a, K, x). In other words N, (a, K, n) is the maxi-

mum covering number ove.
We use the following two lemmas from [77] in our proofs.

Lemma 5. Supposé is a class of[—1, 1]-valued functions ort’. Then for anyx > 0,

anyn > 0, and any sek = {x1,...,z,} wherez; € X,
2en, fata (H)
Nia,H. %) < (o Hx) < Nl x) < ( ‘ ) (5.79)

Lemma 6. Fix a class{ C RZ and a functions : R x Z — R. Assume, for alk € Z,

#(-, z) is a Lipschitz function with a constat. Then
Rn(p(H)) < C-Rn(H)

wherep(H) = {z — ¢(h(z),2),h € H,z € Z}.

72



Corollary 3. Supposé- is a class of[—1, 1]-valued functions o®’. Then for anyx > 0,

and anyn > 0

9 fata (H)
No(a, H,n) < (%) (5.80)
Proof. Lemma 5 is true for any set = {x1,...,z,} wherexz; € X. This includes the
set whose covering numberA;(a, I, n) = sup, Na(a, K, x). O

5.3.1 Bounding Sequential Rademacher Complexity
Sequential Rademacher complexRy,(#) can be bounded using Lemma 7.

Lemma 7. LetH C [-1,1]*. We have

Rp(H) < inf {4a F12(1 - a)\/fat“mllog(%n) } .

Proof. From Theorem 9 and Definition 11 of [77], we hdve

1
Ro(H) < inf{4a + 12/ \/Wdt}. (5.81)

By replacingV:(t, H,n) in (5.81) with its bound from (5.80), we get

n

Rn(H) < inf {4a 112 /1 \/fattm) 1og(2§n)dt} . (5.82)

The term inside the integral of Equation (5.82) is monotaltycdecreasing with re-
spect tot, as bothfat,(H) andlog(2) decrease asincreases. Therefore the integrand
in (5.82) can be bounded by its maximum value, which happehs-ax for 0 < o < 1,

ie.,

(5.83)

n

Rn(H) < inf {4a 1201 - a)\/fata(ﬂ) log (%5 } .

O

Lemma 8. Pick anyn > 1 and leta > 0. Letz € X andy € ). Fix a set of permissible

densitiesQ and a class of hypothesé@s. Let F be the class of weighted loss functions

2Note that our definition of sequential Rademacher complémitiefinition 5 has a normalizing factor of

S|=
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defined in Definition 2. Then the sequential Rademacher @xityplof class of weighted

loss functionsF is bounded by

Rn(F) < Tmaz X igf {4a +12(1 - a)\/fata(%) log (5) } (5.84)

n

wherefat,(#) denotes the fat shattering dimensiorfoft scalea.

Proof. Using Lemma 6 withZz = X x Y and ¢(t, (z,y)) = %ﬁ — y|, we have

Rn(F) < rmaaRn(H). Thisis becaus%%]t — 9| iS Tmae Lipschitz in t for anyz and

y, wherer,,q, = max,cxy %.

2en
Then Lemma 7 shows thaitf, < 4o + 12(1 — «) %

for R, (), which implies that its product with,,,, is the bound fofR,,(F) too. O

is the bound

Proof of Theorem 6From Equation 5.67 we have

L(h:) — inf L(h) < sup |L(k) — L(h|Sy)
heH heH

. (5.85)

Also from Equation 5.73, with probability of at leakt- §, we have that

81n 2
}Hm\/ 15 (5.86)
n

By combining the above two equations, with probability ofeststl — ¢, we have
81n 2
] + Timaz || —2. (5.87)
n

} < 2R, (F). (5.88)

sup |L(h) — L(h|Sy)
heM

<E [Sup L(h) — L(h|Sy)
heH

L(h%) — inf L(h) <E |sup |L(h) — L(h|S,)
heH heH

From Equation 5.77 we have that

E [sup L(h) — L(h|Sy)
heH

Inserting the bound of Equation 5.88 into right hand side qui&ion 5.87 yields:
with probability of at least — §

L(h;kz) - }:g}f;L(h) < 2Rn(]:) + Tmaz

(5.89)

2en
Using Lemma 8, we can bouridl,, (F) by 7,4, inf,, {4a+12(1—a) %}

which results in
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L(h%) — inf L(h) < sup |L(h) — L(h|S,) (5.90)
heH heH
to(H) log(%en 81n 2
§2rmaminf{4a+12(1—a)\/fa (H)log(2 )}+Tmam n 2
[e% n n
(5.91)
O

5.4 Experiments

This section describes our empirical evaluatiofS#Lgon noise-free data as well as data
with various amounts of label noise. These experimentssfacubinary classification
tasks withy = {—1,+1}.

5.4.1 Neurophysiology Data

An efficient data collection procedure is essential in eixpental designs. For example,
in neurophysiology experiments where the goal is to charget a neural system, we are
interested in the response of a cell to different stimulilldvaing the work of Lewiet
al. [56] to design a neurophysiology experiment, we simulagerédteptive field of a vi-
sually sensitive neuron. Generalized linear models amnaftsed in the neurophysiology
experiments to model the space. The number of spikes, whittei likelihood of the

response, is related to the firing rat&, where

A=E, V] = exp(6” - z). (5.92)

The relationship between the stimulusnd the response of the neuron is given by a

Poisson distribution where

e_AAt()\At)”

log P(v|z,0) = log ” ,

(5.93)

whereAt is the length of the time frame for measuring the firing rate,

A Gabor function is considered for the receptive field of tkenon, which is a proxy
model of aV’1 simple cell. Simulated responses are generated by sanfphimgEqua-
tion 5.93. We assume that the stimuluss in the form of a vector obtained by rasterizing

am x m image and is a vector obtained by rasterizingra x m Gabor function. For
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Figure 5.161SALggenerates the sampling distribution (green oval) for a tinwedsional
dataset.

these experiments, we consider the casmcet 3 (d = 9 features) andn = 4 (d = 16
features).

We assign the response of zero (no response)ltalass and other responses are in
+1 class. Similar to [56], we draw the intensity of each pixethe stimulusz from a
Gaussian distribution, her& (128, 10) wherez < 0 are set td andx > 256 are set to
256.

5.4.2 Experimental Setup

Throughout the experiments, we use support vector maclédl) as the classifier. To
consider the weighted loss function of Definition 2 in our letpentation, we modified
the code of LIBSVM software [78].

The sampling distributiom; in each iteration isV'(y;, 3;), wherey; is obtained by
selecting a point randomly from the underlying distribatiand projecting it onto the
current linear separator. Note that before applMiBgLg we first normalize the data
such that all the features have the same empirical marger@gnce. The covariance
matrix >:; depends on the margin at iteratib(see the experiments below).

Figure 5.16 shows a two dimensional dataset that are sedargta linear separator.
In this figure, ISALgdraws a point randomly from the underlying distributiona@k
dot), then projects it onto the separator to gefblue dot). It then centers a Gaussian

distribution atu, NV'(i, X). A contour for this Gaussian is shown by green oval.
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Figure 5.17: An example scenario of a Gaussian, parallgigdihear separator, to be
rotated with anglé.

5.4.3 Remarks on the Sampling Distribution ofl SALg

In this section we investigate the difference between usiegsaussian distribution par-
allel to the linear separator and a non-parallel GaussiatSisLg Figure 5.17 shows a
scenario for 2-dimensional data where the linear sepaistdrown as dashed line.

We could let the red Gaussian with covariance parallel toséparator, be the sam-
pling distribution forlISALg We estimate the covariance matrix by sampling some in-
stances around the separator. Then, the covariance matrigecnumerically estimated
by randomly selecting a point (red point in Figure 5.18) om skparator as the center of
the Gaussianuy;).

We select an arbitrary direction uniformly on the separatod pick a point (blue
point in Figure 5.18) with a distance dfst; ~ N(0,b7) from p;, whereb; is half of the
size of margin at iteration Next we select a direction perpendicular to the separaior a
pick a point (green point in Figure 5.18) with a distancelbfts ~ N(0,b?) from the
separator. We repeat this process for 1000 times to obtdi@ il@tances, then estimate

their covariance matrix.

dll: StQ ~ ’ “
LN &7

Fd
s

& ..
o dist;
L
.

W

I

Figure 5.18: The process of estimating the covariance xfatriSALgparallel.
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However, this approach increases the sample complexI§Adfgand hence may not
be suitable for applications where sample efficiency is intgmt. Therefore, because of
sample inefficiency of the above-mentioned approach, we apayoximate the covari-

ance matrix by only considering the diagonal elements ofrta&ix.

5.4.4 [SALg for Experimental Design

In this section we study the applicationI&ALgin the experimental design setting where
the active learner can generate any data point it wantsg tissnneurophysiology data of
Section 5.4.1.

5.4.4.1 1SALgon Data Without Label-Noise

In the first active learning algorithm as a baseline, insanare sequentially sampled
from the underlying distribution to train the classifierdmm sampling). The average
test error over 50 trials on noise-free data is shown as dakhe in Figure 5.19 for

d =9 (3 x 3image) and Figure 5.20 fof = 16 (4 x 4 image); see Section 5.4.1. The
performance ofSALgthat uses a Gaussian distribution with a diagonal covasiamatrix

is shown as solid blue line in the figurdSALgdiagonal). In addition, the performance
of ISALgwith a Gaussian distribution whose mahalanobis ellipsaigsparallel to the
separator is also shown in the figuréSALgparallel). HerelSALgrandomly samples
the first four instances from the underlying distributid®8ALgdiagonal samples the rest
of instances fromV' (1, ;), wherey; is randomly selected on the current separator, and
Y; is the a diagonal matrix whose diagonal elements are haliesof current margin
squared,.e, b?. ForISALgparallel, we estimate the covariance matrix that is pdralle
to the separator as described in Section 5.4.3 whérg and dist, are drawn from
N(0,02).

Figures 5.19 and 5.20 also show the active learning algorah[20], referred to as
IWAL2 here. IWAL2 draws instance from the underlying dibtriion, and only accepts
those instances whose label uncertainty is above a givesttald. We use the parameters
used in [20].

We also propose the Bl (boundary instance) active leardgayighm, that in each it-
eration, randomly draws an instance on the current decixionmdary (obtained by train-
ing on current labeled sé&;). Note that the current decision boundary changes as more

instances are added to the labeled set. In addition, Blighgouses a biased estimation
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Figure 5.19: Average test error versus number of querie@dniees folSALgand four
other active learning algorithms on neurophysiology dath & x 3 image as stimulus,
using SVM.
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Figure 5.20: Average test error versus number of querie@rices fonSALgand four
other active learning algorithms on neurophysiology dath w x 4 image as stimulus,
using SVM.
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Figure 5.21: Average test error versus number of querie@rnices fonSALgand four
other active learning algorithms on neurophysiology dh#d hasl5% label noise with
3 x 3 image as stimulus, using SVM.

of the error. The fifth active learning algorithm in Figured®and 5.20 is MI (margin
instance algorithm, similar to the approach in [28]), whaifaws instances inside the
current margin. Similar to B, the estimation of error by Mikiased.

Figures 5.19 and 5.20 show thi@ALg Bl and MI have similar performances by
converging quickly to the minimal test error. However, tlegfprmance of each of them

is statistically better than the random sampling and IWAQ&iled t-testp < 0.05).

5.4.4.2 1SALgon Data With Label Noise

Figures 5.21 and 5.22 show the performance of the activaiteamlgorithms on the
neurophysiology data that contain§% label noise fe. the label of each instance is
flipped 15% of the time), ford = 9 andd = 16 respectively (see Section 5.4.1).

Figures 5.21 and 5.22 show tH&ALgconverges faster than the other active learning
algorithms to the optimal classifier. Furthermore, its parfance is statistically bet-
ter then the other four algorithms (paired t-tgst< 0.05). The reason is thaSALg
draws the instances from a distributign which has more weight inside the margin,
however, random sampling and IWAL2 draw instances outdigentargin too. Recall
that in margin-based classifiers, having an instance on tbegwside of the margin is
not desirable for the learning (this can happen becausesdatiel noise). On the other

hand, having label noise inside the margin, is more toleraBbased on our observation
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Figure 5.22: Average test error versus number of querie@rnices fonSALgand four
other active learning algorithms on neurophysiology dh#d hasl5% label noise with
4 x 4 image as stimulus, using SVM.

of the data, the average distahte the optimal separator for instances drawri®#Lgis
approximately half of the ones for the instances drawn bgesansampling and IWAL2.

Figures 5.21 and 5.22 show that as the current decision laoyh&comes more ac-
curate,i.e., gets closer to the optimal classifier, the performancksailgimproves sig-
nificantly.

To evaluate the performance I&ALgalgorithm in the non-realizable case, we added
various amounts of label noise to the neurophysiology datdestion 5.4.1. Figures
5.23 and 5.24 show the average test error d@etrials onn = 200 queried instances
versus different amounts of label noise BALgalgorithm, BI, IWAL2, Ml and sampling
from underlying distribution. As Figures 5.23 and 5.24 shtSAL goutperforms other

algorithms on data with large amounts of label noise.

5.4.5 [SALg for Pool-based Data

In this section, we discud$ALp which is the extension diSALgto pool-based data.
Note thatISALgalgorithm of Figure 5.11 has to be modified such that it onlgrogs
instances from the pool of data. We also implemented thdyhigferenced algorithm by
Tong and Koller [12] designed for SVM, called MU here, thaggas the instance closest

to the current linear separator. The distance of a pointdditiear separator is obtained

3We measure the distance for a pdint ) to the optimal separator (with parametey using|w? - z|.

81



Average test error (%) over 50 trials

-*-Random

35 BI )
-v-MI s 4

30" IWAL2 A
—=—|SAL diagonal et

P el ISAL parallel o o i

| | | |
00 5 25

10 15
Amount of label noise (%)
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by projecting that point onto the separator.

In early steps of active learning, the number of queriedcaimsts is limited. Thus, it
is likely that the current separator is not a good approxinato the optimal separator.
As such,ISALpinitially assigns a probability to each instance. This @duibty is pro-
portional to the distance of an instance to the current sémar.e., for an instance;, it

equals

(5.94)

whereA; denotes the distance of the instangéo the separator, ang, is the bandwidth
parameter. A small value fer, assigns a higher probability to instances near the decision
boundary.

After querying a certain number of instances, the currepdisgor is a good approx-
imation of the margin, thuslSALp switches to the MU algorithm. For example, the
switching point can be obtained using the 5-fold cross adilich error on the training
data. In these experiments, we use a cross validation drgd’6as the switching point.
We also user, = 1.

In addition, we compare the above algorithms withl_logReg, which is a variant of
Lmu algorithm of Chapter 4 that actively learns the parametetleologistic regression
classifier for non-structured data. We also report the tesilrandomly selecting the
instances to train the logistic regression classifier (RemtbgReg).

In this section, we investigate the performance of the alatyarithms on the follow-

ing datasets:

e neurophysiology data: we generated two poold @f000 instances from neuro-

physiology data with! = 9, one without label noise and one with% label noise.

e wine dataset [24] where we classified the data into high tuébr ratings more

than 6) versus low quality wine. This dataset has 11 featames3661 instances.

¢ vehicle dataset [24] with 18 features and 846 instancesewherclassified bus and

van as+1 and the rest as 1.

For each dataseR0% of the data is set aside as the test set. We also normalize each

feature by subtracting its mean and dividing by its standi@sdaion.
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Figures 5.25 to 5.28 show the performancéSALp MU, Lmu_logReg and random
sampling on these four datasets. Note that in all the dataaetive learning converges
faster to the optimal classifier than the random samplingdutition, the performance of
ISALpis initially better than MU in the two datasets that are nafeetly separable by
a linear classifieri(e., neurophysiology data with5% label noise and the wine dataset).
We conjecture that the probabilistic approach usetS#y_pin the initial steps contributes
to its improvement over the MU. For example, on the noisy oghysiology datalSALp
achieves test error that is abait better than MU for 00 queried instances. On the other
hand, on perfectly separable dat@.( neurophysiology data with no label noise and the
vehicle dataset)SALpperforms as well as the MU algorithm. This is because thesatirr
separator quickly converges to optimal classiféeg, on the noise-free neurophysiology
data, both algorithms rea@d% test error after querying0 instances.

By comparing the performance of Random and Randiogneg in Figures 5.26 to
5.28, we observe that the classification error obtained f&8fivl is lower than logistic
regression. The only exception is in realizable neuromitygy data where logistic re-
gression performs slightly better. We conjecture that thiefidence that SVM has in
its predictions (by considering a margin around the degidioundary) results in the
lower classification error. Therefore, the difference tmtwthe error rate dSALpand
LmMu_logReg is due to their underlying learning model. In the scenthat the under-
lying learning models have similar error ratesd, realizable neurophysiology data in

Figures 5.25), the active learnd@ALpand LMu_logReg also have similar error rates.

5.5 Summary

We presented an importance sampling active learning atgoriSAL, where instances
are queried from an appropriate distribution. We showedt IBAL can be effective in
reducing the cost of labeling, in scenarios where new iggtsrican be generated upon
active learner’s requestSAL provides an active learning framework to learn classifiers
in many situations. It uses importance weights to reducebihg of error estimation,
while controlling the variance of the estimation. It has plessibility of converging to the
best of the available classifiers, unlike some active |legraipproaches that maintain a
version space. In addition, it can be more sample-efficiecest directly samples from
an appropriate distribution. Our empirical results shoat thachieves fast convergence

rate to the optimal error with SVM classifier on both noiseefand noisy data.
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Chapter 6

Conclusion

Supervised machine learning approaches are used extgrsivaolve real-world chal-
lenges. Sometimes these methods are given a limited buzlgpéend per instance before
returning a label. Such scenario corresponds naturallgdcsibn trees. The near optimal
fixed-depth decision tree presented here improves the datigmal cost of obtaining
such tree while yielding relatively high accuracy.

In addition, the use of supervised machine learning methogléimited by requiring
labeled training data, which are often hard to obtain. Hauethere are often plenty of
unlabeled instances available; this motivates the usetivedearning to request the label
of a small set of (sequentially) specified unlabeled datatpoi

The active learning methods proposed here aim to reducevéralbcost of acquiring
labeled data by allowing the learner to effectively chodseihformative instances that

help to produce an accurate classifier.

6.1 Future Directions
Here, we discuss several future directions inspired by thek wf this thesis.

e In Chapter 2 we discussed how to use tp-feature listto fill in the features
at thelast levelof the tree, However, our techniques are not specific to tha fi
row. These ideas can be extended to pre-compute an optedidt with the final
depthd’ subtree at the end of a path given the label posterior, rétiaer just the
final internal nodej.e., so far, we have dealt only witlf = 1. While this will
significantly increase the cost of the precomputationajestét should provide a

significant computational gain when growing the actual.tree
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e A second extension to @NBDT is to develop further tricks that allow us to effi-
ciently build and compare setof related decision trees — perhaps trees that are
based on slightly different distributions, obtained frolighgly different training
samples. This might be relevant in the context of some ensembthods [79],
such as boosting or bagging, or in the context of budgeteuhilen of bounded

classifiers [47].

e Our approach in ®TNBDT uses a simple cost model, where every feature has unit
cost. An extension would allow different features to hafeedent costs, where the

goal is to produce a decision tree whose “cost depth” is bedhd

¢ In Chapter 4 we found thatMu can be effective for the image segmentation task
by producing a segmenter using very few segmented imagemylte possible to
apply these ideas (and perhapaWw) to other structured data, such as text, where
the label of each word in a sentence is dependent on the Iathed other words in

the sentence.

e The current version of MU assumes that all the images have the same labeling
cost. There could be scenarios where the labeling costadm different sources.
For example, the cost of segmenting tumors in human brainragiation oncol-
ogist can be more than that of a medical student. Here, tlnedetrner could
request the label of some images from the medical studethipthiers, from the ra-
diation oncologist, with the understanding that it is intpat for the active learner

to be cost-efficient while producing an accurate classifier.

e ThelSAL algorithm of Chapter 5 uses a linear separator as its classifife an-
ticipate further improvements by extendi§AL to other class of separators on
non-linear data. This involves finding an appropriate samgpdistribution for the
given class of separators such tHaAL maintains its sample efficiency. One solu-
tion is to transform the data into a new space such that ttelgtomes linearly
separable in this new space. This involves learning theogpiaite transform func-

tion from the current space to the latent space.

e One application ofSAL can be in situations where instances from one class are

1The “cost depth” of a leaf of a decision tree is the sum of thescof the tests of the nodes connecting
the root to this leaf; and the “cost depth” of a tree is the meticost depth over the leaves. Note “cost
depth” equals “depth” if all features have unit cost.
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less frequent than other classes. In these scenarios, regeasich as F-measure are
typically used to evaluate the performance of a classifiereHone may consider
modifying ISALto use the F-measure instead of the current weighted losidan
Consequently, the convergence rate analysis fol$i#d should be modified to

reflect these changes.

6.2 Summary of Contributions

The first part of this dissertation presents:

e OPTNBDT, a novel algorithm to produce the near optimal fixed-deptthisiten tree
under Naive Bayes assumption. We prove that under theeNBlyes assumption
the optimal feature at the last level of the tree depends onli?(Y = +|x), the
posterior probability of the class label given the testyipiesly performed. There-
fore, in a pre-processing step we precompute a list of featto use in the final
layer. QPTNBDT uses this list to quickly assign a final feature based on angive
path in the tree. We prove thatr@NBDT is computationally more efficient than
the naive method of testing all the features in the last land provide empirical
evidence to support this claim. Our empirical results thae that @TNBDT is

often more accurate than ID3 entropy-based decision tree.
We also extend the research on active learning in the fatigwiays:

e Active learning for image segmentation taskhapter 4 focuses on developing an
effective active learner luu for image segmentation. While there are now many
results in active learning, this is one of the first studieg tonsiders the challenge
of actively learning the parameters of a machine learningeh(CRF-based seg-
menter) for images. While lau system is based on standard “parts” — selecting
the image with maximal uncertainty, and the one that mostaeslthe uncertainty
of other images — we found that this particular combinatiaseffective for this

task and it could produce an effective segmenter using @vyseégmented images.

e Importance sampling active learning algorithrim chapter 5 we introduce a new
active learning algorithmSAL, based on importance sampling technique, where
instances are queried from an appropriate distributid®AL provides an active

learning framework that can be applied to many classifiere st\ow thai SAL
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can effectively reduce the cost of labeling, a useful feafar scenarios with high
label costs. In additionlSAL does not maintain a version space, which means
it always has the possibility of converging to the best irsslalassifier. It uses
importance weights to reduce the bias of error estimatidmlewcontrolling the
variance of the estimation. It also is more sample-efficndirectly sampling

from an appropriate distribution.
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