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Abstract

Many machine learning algorithms learn from the data by capturing certain interesting

characteristics. Decision trees are used in many classification tasks. In some circum-

stances, we only want to considerfixed-depthtrees. Unfortunately, finding the optimal

depth-d decision tree can require time exponential ind. In the first part of this disser-

tation, we present OPTNBDT algorithm, which is a fast way to produce a near optimal

fixed-depth decision tree under the Naı̈ve Bayes assumption. We apply this technique to

real-world datasets and find that our model improves the computational costs significantly

while yielding relatively high accuracy.

In the second part of this dissertation, we present two novelalgorithms for active

learning. There are scenarios where we have access to many unlabeled data; however,

obtaining the labels for the data is difficult. An active learning process tries to address

this issue by selectively requesting the label of few unlabeled instances, with the goal

of using these newly labeled instances to produce an effective classifier. First, we focus

on active learning for image segmentation, which requires producing a label for each

pixel in an image. We provide an active learner (LMU) that first selects the image whose

expected label will reduce the uncertainty of other unlabeled images the most, and then

after greedily selects the most informative image. The results of our experiments, over

real-world datasets show that training on very few informative images can produce a

segmenter that is as good as training on the entire dataset.

Finally, we present the importance sampling algorithm (ISAL) for actively learning

in the standard classification framework, which we demonstrate its sample and label effi-

ciency. In particular, on each iteration,ISALidentifies a distribution that puts large weight

on instances whose labels are uncertain, then requests the label of an instance drawn from

that distribution. We prove thatISALcan be more sample and label efficient than passive

learning with an exponential convergence rate to the Bayes classifier on noise-free data.

We also provide empirical studies that showISALis more effective than many other active

learning algorithms.
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Chapter 1

Introduction

In this dissertation we focus onsupervised learning for the classification task,where each

data instance belongs to one of a small set of pre-defined categories (e.g., “Spam” versus

“non-Spam”; or “cancer” versus “healthy”; etc) and the goalof learning is to produce a

classifier that can correctly predict the label given the features of a new instance.

1.1 Near-Optimal Fixed Depth Decision Trees

Many machine learning tasks involve producing a classification label for an instance.

There is sometimes a fixed cost that the classifier can spend per instance, before returning

a value; consider for example, per-patient capitation for medical diagnosis. If the tests

can be performed sequentially, then the classifier may want to follow apolicy [1] — e.g.,

first perform a blood test, then if its outcome is positive, perform a liver test; otherwise

perform an eye exam. This process continues until the funds are exhausted, at which

point the classifier stops running tests and returns an outcome; either “healthy” or “sick”.

Such policies correspond naturally to decision trees. There are many algorithms for

learning a decision tree from a data sample; most systems [2], [3] use some heuristics that

greedily seek the decision tree that best fits the sample, before running a post-processor

to reduce overfitting. There is sometimes a fixed budget – which here translates to a

hard bound on the depth of the tree. The first part of this dissertation focuses on the

challenge motivated above: of finding the best “fixed-cost policy”, which corresponds to

finding the fixed-depth decision tree that best matches the data sample. There are several

algorithms for this task, which typically use dynamic programming to find the “optimal”

depth-d decision tree,i.e., the tree that minimizes the 0/1-loss over the training data.

These algorithms are invariably exponential in the depthd, as they spend almost all of
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their time determining which features to test at final level,d [4]. If one is willing to accept

the “Naı̈ve Bayes” assumption [5] — that features are independent of each other given

the class — then there is an efficient way to compute the final layer of depth-d features.

In particular, under this assumption, we prove that the optimal depth-d feature essentially

depends only on theposterior probability of the class label given the tests previously

performed, but not the outcomes of the individual tests. We can therefore use a fast pre-

processing step to create a so-calledopt-feature list, OFL, that identifies which feature to

use as a function of the posterior distribution, then use this list to quickly determine the

last level of the tree. This technique results in a speedup ofO(nf/ log nf ), wherenf is

the number of features, and effectively means we can computethe optimal depth-d tree

in the time typically required to compute the optimal depth-(d − 1) tree.

1.2 Active Learning

Most supervised learning methods require a set of labeled examples as the training data.

In many applications there are plenty of unlabeled data available, however obtaining la-

bels for those data is costly. An example here is the task of segmenting Magnetic Res-

onance (MR) images of the brain. Given an MR image of the brain, it is important to

segment any tumor region present. Many effective segmentation systems involve a num-

ber of parameters that have to be adjusted; some of these systems therefore include a

learningcomponent that can learn effective parameters from a set of labeled (that is, seg-

mented) images. In general, these systems require a large number of such labeled images

to produce an effective segmenter. Fortunately, there are often a large number of available

images — perhaps on the web, or in clinical databases. Unfortunately, most such images

are unlabeled, and worse, it can be expensive to obtain the labels (as this may require

paying a medical doctor to label each image, which is costly in terms of both time and

money). This often limits the amount of training data available, which can lead to an

inferior segmentation system. Anactive learning processtries to address this problem by

identifying a small number of unlabeled instances (images in our example) that should be

labeled, to produce an effective classifier.

Each application of active learning can be categorized under one of the following

three scenarios.

• Pool-based active learning: many active learning applications assume that the

learner has access to a large pool of unlabeled data. The taskof active learning

2



Figure 1.1: Pool-based active learning on MRI of human brain, where the active learner
selects an unlabeled instance, obtains the label from the expert, adds it to the training
set and a machine learned model is obtained from the trainingset. This process is then
repeated for a certain number of times.

here is to evaluate all the unlabeled data and select the mostinformative ones for

the learning task. Figure 1.1 shows a pool-based active learning scenario. Typi-

cally, the instances are chosen in a greedy way based on a scoring function. After

each query1, the scores are updated (based on the returned label for thatquery) and

the next unlabeled instance is selected from the pool. The pool-based active learn-

ing is the most common scenario, which is studied in applications such as image

classification [6], [7], image segmentation [8], object recognition [9], text classi-

fication [10]–[13], information extraction [14], [15], speech recognition [16] and

many other domains.

• Membership query based active learning: In this scenario, new instances can

be generated based on active learner’s request, rather thanselected from a pool

of unlabeled instances. This setting is particularly useful in experimental design

applications where the experimenter collects data to analyze the effect of a process

on an object. For example, Kinget al. [17], [18] used membership query based

active learning in biological experiments with the goal of discovering metabolic

pathways in yeast.

• Sequential selective sampling: In this scenario, active learner has access to a

1Here, a “query” involves identifying a specific unlabeled instance, which is then labeled.
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stream of unlabeled instances and it decides whether to obtain the label for each

instance. This scenario differs from the membership query based scenario in that

here, samples are drawn from the underlying distribution. Sequential selective sam-

pling has been applied to the real world applications such asspam detection [19],

handwritten digit recognition [20], sensor scheduling [21], learning ranking func-

tions for information retrieval [22], and part-of-speech tagging [23].

Our LMU algorithm is designed for pool-based active learning, and it is one of the

first algorithms to actively learn the parameters of an imagesegmentor. In contrast,ISAL

is designed for membership query based active learning since in this setting,ISALcan be

more sample efficient than other active learning methods (see Section 1.4). In addition,

we have developed a variant ofISAL for pool-based data too (see Section 5.4.5).

1.3 Objectives and Contributions

This dissertation consists of two parts. In the first part, wepresent a fast way to produce

a fixed-depth decision tree that is optimal under the Naı̈ve Bayes assumption. We prove

that the optimal depth-d feature essentially depends only on the posterior probability of

the class label given the tests previously performed, but not on either the identity nor

the outcomes of these tests. We can therefore precompute, ina fast pre-processing step,

which features to use at the final layer. This results in a speedup ofO(nf/ log nf ), where

nf is the number of features. We apply this technique to learning fixed-depth decision

trees from standard datasets from the UCI repository [24], and find this model improves

the computational cost significantly. Surprisingly, this approach still yields relatively high

classification accuracy, despite the Naı̈ve Bayes assumption.

In the second part of this dissertation, we present our work in the active learning do-

main. First, we address the task of actively learning a segmentation system,i.e., given

a pool of unsegmented images, and access to an oracle that cansegment a given image,

decide which images to provide, to quickly produce a segmenter that is accurate over this

distribution of images. Most of the existing active learning algorithms have been used

primarily to learn a classifier that maps each instance to a simple label; even most of the

imaging works have focused on mapping each image to one of small set of labels. How-

ever, the image segmentation task requires producing a morecomplicated label where an

image ofnr ×nc pixels is mapped tonr×nc individual (correlated) pixel-labels; if each

pixel-label is binary, this means that the output labelY = {+1,−1}nr×nc .
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We illustrate the capability of active learning on image segmentation tasks, and show

that our novel algorithm (LMU) produces an effective segmenter using very few seg-

mented images.

Our second contribution in active learning is to make activelearning very sample-

efficient, by drawing instances from some appropriate distribution. Here we consider

that instances are not restricted to be in a prior pool of instances. There are some cases

where existing active learning algorithms do not work effectively. For example, some

active learning algorithms [25]–[27] only consider classifiers within the version space

(set of all classifiers consistent with current labeled set)throughout the learning; this

carries the risk of eliminating the best hypothesis in class, especially if the data is noisy.

In addition, some active learning algorithms [20], [28], [29] sample from the underlying

distribution, then use rejection sampling to accept only the instances matching the given

criteria. This rejection sampling approach can force the learner to consider a large number

of instances, in order to find an instance that matches the given criteria. For example, a

medical research task may require learning how much (of a certain) pathogenic bacteria

a rat can tolerate before it gets sick. One can find this threshold by sequentially exposing

various rats to differing amounts of this bacteria and observing their symptoms. Here,

“sampling an instance” requires exposing a rat to certain amount of pathogenic bacteria,

which is a costly and time consuming task. The naı̈ve approach would just sample the

space of “bacteria quantity” uniformly. But if the data is noise-free, we can perform

fewer experiments by cleverly specifying the amount of bacteria to thei-th rat, based on

the observed response by the previousi − 1 rats, to effectively estimate the maximum

amount of bacteria that a rat’s body can tolerate without causing a disease [30].

We present the importance sampling active learning (ISAL) algorithm, which ad-

dresses all these issues by (1) not selecting only classifiers that are consistent with all

of the labeled instances, and (2) directly sampling from some appropriate distributions,

which can allowISAL to request the label of relatively few instances. As described in

Section 5.2, on each iteration,ISAL determines an appropriate sampling distributionqi,

draws an instancexi from qi and requestsxi’s label. ISAL uses importance weights to

reduce the error estimation bias caused by this importance sampling, while controlling

the variance of error estimation.
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1.4 Thesis Statements

This dissertation proposes machine learning algorithms and analysis to support the fol-

lowing theses:

i. In producing a fixed-depth decision tree, the OPTNBDT algorithm produces a de-

cision tree that is optimal given the Naı̈ve Bayes assumption and is provably much

more efficient than the standard optimal decision tree learner that must exhaustively

consider all the features in the last level of the tree.

ii. In the image segmentation task, LMU active learner is likely to produce an accurate

segmentor using fewer labeled images than random sampling,by considering the

relevance or representativeness of query images, assumingthat there exist images

in the dataset that are noticeably more informative than others about the relation

between labels and image features.

iii. In an active learning task where new instances can be generated based on the speci-

fication of the active learner, on data that is perfectly separable by a linear classifier

the (expected) sample and label complexity of importance sampling active learning

algorithm (ISAL) is provably more efficient than those of passive learning, and that of

the state-of-the-art active learners by Beygelzimeret al. [20] and Balcanet al. [28].

1.5 Outline

In Chapter 2, we present our near optimal fixed-depth decision tree algorithm, OPTNBDT.

Section 2.1 surveys the relevant literature. Section 2.2 summarizing our OPTNBDT algo-

rithm and proves the relevant theories. Section 2.3 presents empirical results that validates

our approach, by applying it to the standard datasets from the UCI repository [24] and

elsewhere. We find that our approach significantly improves the computational cost of

finding a fixed-depth tree, surprising at little or no loss in accuracy.

In Chapter 3, we study general approaches to active learningand describe the strate-

gies that are commonly used to query new instances.

Chapter 4 then presents our first active learning algorithm,LMU. It describes how the

underlying segmentation system — here Conditional Random Field (CRF) — segments

the images. Section 4.3 shows the results of the experimentsusing LMU active learner

on two real-world datasets: Finding the sky in the GeometricContext dataset [31] and
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segmenting tumors within MR images of human brains [32]. In particular, we compare

the segmentation performance (on hold-out images) of a segmenter trained on all labeled

images, versus one trained using only the firstk images selected by our active learner,

for various values ofk. We also consider segmenters learned fromk randomly-selected

images. We find that the segmenter based on onlyk = 2 well-selected images is as good

as the one based onall 85 images in the pool. But only if the images are well-selected;

the segmenter based onk = 2 randomimages is typically considerably inferior, as is one

based on a larger number of random images.

Chapter 5 presents importance sampling active learning algorithm (ISAL). We de-

scribe theISAL algorithm in Section 5.2 and examine its convergence rate for (1) per-

fectly separable one-dimensional data (Section 5.2.1), (2) perfectly separable, uniformly

distributed multi-dimensional data (Section 5.2.2), and (3) uniformly distributed non-

realizable data (Section 5.2.4). In Section 5.3, we prove the consistency ofISAL using

sequential Rademacher complexity [33]. In addition, in Section 5.3, we obtain an upper

bound for variance of error estimation byISAL. Experimental results for realizable and

non-realizable settings are reported in Section 5.4. In addition, we discuss the extension

of ISAL to the pool-based active learning whereISALonly queries instances from a pool

of unlabeled data.
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Chapter 2

Near Optimal Fixed-Depth Decision
Tree

In this chapter, we introduce the OPTNBDT [34] algorithm. 1 Section 2.1 surveys the

relevant literature. Section 2.2 summarizing our OPTNBDT algorithm and proves the

relevant theories. Section 2.3 evaluates the performance of the algorithm on some real-

world datasets.

2.1 Literature Review

We study the “standard” learning model [35] where the input to the learner is a set of

labeled training instances and the output is an accurate classifier. Many projects use

decision trees due to their simplicity, and interpretability [36]. There are many algorithms

for learning decision trees. Many algorithms, includingC4.5 [2] andCART [3], begin with

a greedy method that incrementally identifies an appropriate feature to test at each point

in the tree, based on some heuristic score. These algorithmsgrow the tree from the root

down to a set of leaves, then perform a post-processing step to reduce overfitting. In our

context of “shallow” decision trees, overfitting is not as big a concern, which explains

why many of the algorithms including OPTNBDT that seek “fixed-depth” decision trees

simply return the tree that best fits the data [4], [37], [38].These algorithms can easily be

extended to allow different tests to have different costs [39], [40], where the total cost of

each path from root to leaf is bounded. Our OPTNBDT algorithm focuses on finding the

best fixed-cost policy, by producing the fixed-depth decision tree that best matches the

data sample.

1A version of this chapter has been published in the proceedings of the ISAIM2008 conference.
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Figure 2.1: Decision TreeT1, as it is being built.

There are some algorithms that consider developing a decision tree given a cost con-

straint on each path from the root to the leaf. In one of the earliest works, Turney [39]

discusses the general challenge of learning the best classifier subject to some explicit cost

constraint. Here, our “max depth” requirement correspondsto a constraint on the cost

that theclassifiermust pay to see the features atperformance time. There are some al-

gorithms [41]–[43] that use greedy approaches to tackle this problem. However, these

greedy approaches may not yield a decision tree with the optimal classification accu-

racy. On the other hand, the OPTNBDT algorithm is a fast way to produce the optimal

fixed-depth decision tree given the Naı̈ve Bayes assumption. (See our empirical results

in Section 2.3)

Optimal decision tree algorithms in general requireO((nf )
d) time to find the best

depth-d decision tree overnf variables. While this is a polynomial-time complexity for

fixed d, in practice it is not effective except for smallnf and tinyd. The OPTNBDT

algorithm addresses this problem by producing the optimal depthd decision tree in time

that is essentially exponential ind − 1, if the Naı̈ve Bayes assumption [5] holds—i.e.,

this Naı̈ve Bayes assumption leads to a more efficient process.

There is, of course, a large body of work on building classifiers based on Naı̈ve

Bayes systems [44], [45], and on analyzing and characterizing their classification perfor-

mance [46]. Those results, however, differ significantly from our task, which explicitly

involves learning adecision tree; we use only the Naı̈ve Bayesassumptionin modeling

the underlying distribution over instances. (But see the empirical comparisons in Sec-

tion 2.3.)
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2.2 OPTNBDT Algorithm

2.2.1 Foundations

Assume there arenf featuresFs = {F (1), . . . , F (n)}where each featureF (j) ranges over

ther(j) ≤ r valuesVF (j) = {v(j)f1
, . . . , v

(j)
f
r(j)
}, and there are two classesY = {+,−}.

A “decision tree”T is a directed tree structure, where each internal nodeν is labeled

with a featureF (ν) ∈ Fs, each leafl ∈ L(T ) is labeled with one of the classesy(l) ∈ Y,

and each arc descending from a node labeledF is labeled with a valuevf ∈ VF . We

can evaluate such a treeT on a specific instancef = {F (j) = v
(j)
fi
}j , to produce a

value VAL(T, f) ∈ Y as follows: If the tree is a leafT = l, return its labely(l) ∈
Y; that is, VAL (T, f) = y(l). Otherwise, the root of the tree is labeled with a feature

F ∈ Fs. We then find the associated value within thef (sayF = vf ), and follow the

vf -labeled edge from the root to a new subtree; then recur. The value of VAL(T, f) will

be the value of that subtree. Hence, given the instancef = {A = +, B = −, . . . }
and the treeT1 in Figure 2.1, the value of VAL(T1, f) will be the value of the subtree

rooted in theB-labeled node on this instance (as we followed theA = + arc from the

root), which in turn will be the value of the subsubtree rooted in theD-labeled node

(corresponding to the subsequentB = − arc), etc. We say a decision treeT is “correct”

for a labeled instance〈 f , y 〉 if VAL(T, f) = y. A labeled dataset is a set of labeled

instancesS = {〈 f (j), y(j) 〉}j . Our goal is to find the depth-d decision tree with the

maximum expected accuracy, given our posterior beliefs, which are constructed given a

Naı̈ve Bayes prior and the datasetS. To define expected accuracy, we must first define

the notion of a pathπ(ν) to any nodeν in the tree, which is the sequence of feature-value

pairs leading from the root to that node; hence, the path to the ? node in Figure 2.1 is

π( ? ) = 〈 〈A,+ 〉, 〈B,−〉, 〈D,−〉 〉. We can use this notion to define the probability2

of reaching a node, which here isP ( “reaching ?” ) = P (π( ? ) ) = P (A = +, B =

−, D = − ).

In general, the accuracy of any treeT is

Acc(T ) =
∑

l∈L(T )

P (π(l) ) × Acc(π(l) ) (2.1)

over the set of leaf nodesL(T ). Note that this accuracy has been factored into a sum

2All probability values, as well as accuracy scores, are based on a posterior generated from a Naı̈ve Bayes
prior and the labeled dataS. Note also that we will use various forms ofAcc(·), for trees, paths and features
appended to paths; here, the meaning should be clear from context.
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of the accuracies associated with each leaf: it is the probability P (π(l) ) of reaching

each leaf nodel ∈ L(T ) times the (conditional) accuracy associated with that node

Accπ(l)( l ) = P (Y = y(l) |π(l) ). This factoring tells us immediately that we can de-

cide on the appropriate class label for each leaf node,y∗(l|π(l) ) = argmaxy P ( y |π(l) ),
with an associated accuracy of

Acc∗(π(l) ) = max
y

P ( y |π(l) ) (2.2)

based only on the single path;i.e., it is independent of the rest of the tree.

We are searching for the “best” depth-d tree, argmaxT∈DT(d) Acc(T, S), where

DT(d) is the set of decision trees of depth at mostd — i.e., each path from the root

to any leaf involves at mostd variables. An earlier system [47] precomputed the accuracy

associated with each possible sequence ofd tests (requiringO(
(nf

d

)
rd) time), and then

constructed the best tree given these values, which required O((rnf )
d) time. Here we

present a different technique that requires less time by precomputing a data structure that

quickly provides the optimal feature given the Naı̈ve Bayesassumption to use for each

position in the bottom row.

To understand our approach, consider determining the feature F (ν) to use at the

“final internal node” along a pathπ(ν) — e.g., determine which feature to test at ?in

Figure 2.1. As an obvious extension of the above argument, this decision will depend

only on the pathπ(ν) to this node. Then for the ?node, it will depend onπ( ? ) =

〈 〈A,+ 〉, 〈B,−〉, 〈D,−〉 〉. Given our Naı̈ve Bayes assumption, for any featureF ∈ Fs

(except the features inπ — i.e., except forA, B, andD), the component of accuracy

associated with the path that begins withπ then performsF (and then descends to the

leaf nodes immediately under thisF ), is

Acc(π ◦ F ) =
∑

vf∈VF

P (π, F = vf )× Acc∗(π ◦ F =vf )

=
∑

vf∈VF

P (π, F =vf )×max
y

P (Y =y |π, F =vf )

=
∑

vf∈VF

max
y

P (Y = y, π, F = vf )

=
∑

vf∈VF

max
y

P (Y = y )P (π |Y = y )P (F = vf |Y = y ) (2.3)

= P (π )
∑

vf∈VF

max
y

P (Y =y |π )P (F =vf |Y =y )
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Figure 2.2: Computing Accπ(F ) (Equation 2.4).

where Equation 2.3 is based on the Naı̈ve Bayes assumption. Note that the featureF that

optimizes Acc(π ◦ F ) will also optimize

Accπ(F ) =
1

P (π )
Acc(π ◦ F )

=
∑

vf∈VF

max
y

P (Y =y |π )P (F =vf |Y =y ).

While our analysis will work for classes that range over any (finite) number of values,

this section will focus on the binary case. Lettingxπ,+ = P (Y = + |π ) and abbreviat-

ing “F =vf ” as “vf ”, we have

Accπ(F ) =
∑

vf∈VF

max

{
xπ,+ P ( vf |+)

(1− xπ,+)P ( vf | − )

}

=
∑

vf∈VF

{
xπ,+P ( vf |+) if xπ,+ ≤ P ( vf | − )

P ( vf |+ )+P ( vf | − )

(1− xπ,+)P ( vf | − ) otherwise.

(2.4)

For fixed values ofP (F = vf |Y = y ), this Accπ(F ) value does not depend on the

features inπ nor their values, but only onxπ,+; we can therefore express Accπ(F ) as

Acc(F, xπ,+) to make this dependency explicit. For any value ofxπ,+ ∈ [0, 1], each

summand in Equation 2.4, corresponding to a singleF = vf , is the maximum of two

lines. Over the set ofrF values, this function is therefore a sequence of at most1 + rF

linear segments; see Figure 2.2.

Before beginning to build the actual decision tree, our OPTNBDT algorithm will first

compute these Acc(F (j), x) functions for eachF (j). It then uses these functions to
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OPTNBDT( d: int; P ( · ): distribution over{Y } ∪ Fs)
Computeopt-feature list

OFL= {F ∗
i (x) | x ∈ [0, 1], i = 1, . . . , d}

Build optimal depth-d− 1 tree using Dynamic Programming
At each length-d− 1 pathπ,

with associated probabilityxπ,+ = P (Y = + |π )

Let ~F = 〈F ∗
1 (x+,π), . . . , F

∗
d−1(x+,π) 〉.

Let i∗ = mini{F ∗
i (x+,π) 6∈ π} be the first in~F not in π

Use featureF ∗
i∗(x) at leveld, afterπ

Figure 2.3: OPTNBDT algorithm.

compute, for eachx ∈ [0, 1], the optimal feature:

F ∗
1 (x) = argmax

F
{Acc(F, x)}. (2.5)

It also computes the2nd-bestfeatureF ∗
2 (x) for eachx value, as well asF ∗

i (x) for i =

3, 4, . . . , d. We refer to this{F ∗
i (x) | x ∈ [0, 1], i = 1, . . . , d} dataset as theOFL (“opt-

feature list”).

The OPTNBDT algorithm then uses a dynamic program to build the tree, but only

to depthd − 1. Whenever it reaches a depthd − 1 node, at the end of the pathπ =

〈 〈Fπ(1), vfπ(1)
〉, 〈Fπ(2), vfπ(2)

〉 , . . . , 〈Fπ(d−1), vfπ(d−1)
〉 〉, with associated conditional

probabilityxπ,+, it then indexes thisxπ,+ into theOFL, which returns an ordered list of

d features,~F(x+,π) = 〈F ∗
1 (x+,π), . . . , F

∗
d (x+,π) 〉. OPTNBDT then returns the firstFi

that isnot in the ~F(x+,π) list. This algorithm is shown in Figure 2.3.

To make this more concrete, imagine that in Figure 2.1 the list associated withπ( ? ) =

〈 〈A,+ 〉, 〈B,−〉, 〈D,−〉 〉 andxπ,+ = 0.29 was ~F(0.29) = 〈B,A,E,D 〉. While we

would like to use the first valueF ∗
1 (0.29) = B as it appears to be the most accurate,

we cannot use it as this feature has already been appeared in this π path and therefore

Equation 2.4 does not apply. OPTNBDT would then consider the second feature, which

here isF ∗
2 (0.29) = A. Unfortunately, as that appears inπ as well, OPTNBDT have to

consider the third feature,F ∗
3 (0.29) = E. Since that does not appear, OPTNBDT labels

the ? node with this “E” feature.

2.2.2 Implementation ofOPTNBDT

This section provides the details of our implementation, which requires recursively com-

putingx = xπ,+, and computing and using the opt-feature list,OFL.
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Computing xπ,+: It is easy to obtainxπ,+ as we grow the pathπ in the decision tree.

Here, we maintain two quantities,p+π = P (π, Y = +) andp−π = P (π, Y = − ), then

for any pathπ, setxπ,+ = p+π
p+π+p−π

. Forπ0 = {}, pyπ0 = P (Y = y ) for y ∈ {+,−}. Now

consider adding one more feature-value pair〈F, vf 〉 to πt, to formπt+1 = πt ◦ 〈F, vf 〉.
Then thanks to our Naı̈ve Bayes assumption,pyπt+1 = pyπt × P (F = vf |Y = y ).

Computing and using theOFL: As noted above,OFL corresponds to a set ofpiecewise

linear functions(see Figure 2.2), each of which is the union of a finite number of linear

functions. Formally, a piecewise linear functionf : [0, 1] → R (with k pieces) can be

described by a sequence of real number triples〈 (a1,m1, b1), . . . , (ak,mk, bk) 〉 where

theais are endpoints such that0 = a0 < a1 < . . . < ak = 1, and for alli ∈ {1, . . . , k}
we havef(x) = mix+ bi for all x ∈ [ai−1, ai].

A linear function is a piecewise linear function with one piece. The sum of two

piecewise linear functions withk1 andk2 pieces is a piecewise linear function with no

more thank1 + k2 − 1 pieces. We can compute this sum inO(k1 + k2) time, as each

component of the sumf = f1 + f2 is just the sum of the relevantm andb from bothf1

andf2. Similarly, the maximum of two piecewise linear functions with k1 andk2 pieces

is a piecewise linear function with no more than(k1 + k2) pieces. This computation is

slightly more involved, but can be done in a similar way.

For each featureF and each valuexπ ∈ [0, 1], we need to compute the sum over all

|VF | values ofF using the Equation 2.4. We compute this total by adding the associated

|VF | ≤ r piecewise linear functions,{Accπ(F = vf )}vf∈VF
. We can do this recursively:

Letting r = |VF | andacci = Accπ(F = fi ) be theith function, we first defineacc1,2 =

acc1 + acc2 as the sum ofacc1 and acc2, acc3,4 = acc3 + acc4, and so forth until

accr−1,r = accr−1 + accr; we next letacc1,4 = acc1,2 + acc3,4, acc5,8 = acc5,6 +

acc7,8, etc.; continuing until computingacc1,r which is the sum over allr functions. By

recursion, one can prove that this resulting piecewise linear function has no more than

r + 1 pieces, and that the time complexity isO(r log r), due tolog r levels of recursion,

each of which involves a total ofO(2i × r/2i) = O(r) time.

Equation 2.5 is the maximum of all of the piecewise linear functions{Accπ(F )}F∈Fs

that were constructed in the previous step. We again use a divide and conquer tech-

nique to reduce the problem of maximizing overnf piecewise linear functions to se-

quence oflog nf problems, each of maximizing over two piecewise linear functions. An

analysis similar to mergesort shows that the overall computational cost of the process is
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O(r nf log (r nf ) ).

WhenF ∗
1 (·) (Equation 2.5) involvesO(r nf ) linear pieces at arbitrary points, we

can computeF ∗
1 (x) in O(log(r nf )) time, using a binary search to find the appropriate

segment and a constant amount of time to compute the value given this segment. As we

are computing this maximum value, we can also specify which feature represents this

segment.

We can computeF ∗
i (x) for i = 2, 3, . . . , d in a similar way. Consequently, when we

compute the maximum of two functions, we also store thed highest functions at every

point. Note that the amount of memory storage required here increases linearly ind.

Hence, each lookup function can be constructed inO(r nf log(r nf )) time, requires

O(r nf ) memory to store, and most importantly, can be queried (to findthe optimal value

for a specificx) in O(log(r nf )) time. Note that a naı̈ve implementation that merely tests

all the features in the last level of the tree to construct theleaves (called “OPTDT” below)

will require a time linear inr nf , whereas our technique has complexity logarithmic in

r nf .

Collectively, these results show the following theorem:

Theorem 1. Given any labeled datasetS overnf r-ary variables and binary class labels,

theOPTNBDT algorithm of Figure 2.3 will compute the depth-d decision tree that has the

highest classification accuracy under the Naı̈ve Bayes assumption. Moreover, it requires

O(nf |S|+ (r nf )
d−1d log(r nf ) ) time andO(d(r nf )

d) space.

2.3 Empirical Results

We performed an extensive set of experiments to compare the performance of OPTNBDT

to various learners, both state-of-the-art decision tree learners, and Naı̈ve Bayes systems.

This section first describes the datasets and experimental setup, then the experimental

results and finally our analyses.

Experimental setup: The experiments are performed using nine datasets from UCI Ma-

chine Learning Repository [24] as well as our own Prostate Cancer dataset obtained from

our colleagues at the Cross Cancer Institute. All the selected datasets have binary class

labels. Table 2.1 characterizes these datasets.

The experiments are performed using 5-fold cross validation, performed 20 times; we

report the average error rate and standard deviation acrossthese trials. We compare the
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Table 2.1: Datasets used in the fixed-depth decision tree experiments.

Number of Number of Number of Abbre-
Dataset features instances feature viation

values

Tic tac toe 10 985 27 Tic
Flare 10 1066 31 Flr

Hepatite 13 80 26 Hep
Crx 13 653 30 Crx
Vote 16 435 48 Vot

Lymphography 18 145 50 Lym
Chess 36 3196 73 Chs

Connect-4 42 5000 126 Con
Prostate cancer 47 81 126 Prs

Promoters 58 106 228 Prm

classification performance and running time of OPTNBDT with different depths — here

2,3, and 4 — to the following fixed-depth decision trees:

• 3-ID3 [48] is a decision tree learning algorithm that uses anentropy based measure

as its splitting criterion, but stops at depth 3.

• 1-OPTDT [37] is a decision stump that splits the data with only one feature — i.e.,

it is a depth-one decision tree

• 2-OPTDT is an optimal depth-2 decision tree

• 3-OPTDT is an optimal depth-3 decision tree.

Experimental results: Figure 2.4 shows the average classification error rate and the error

bar corresponding to95% confidence interval of each algorithm. We see that no algorithm

is consistently superior over all the datasets. While deeper decision trees sometimes

improve classification performance (classification accuracy increases with the depth of

the tree for theLym, Chs, andPrm datasets), deeper trees can cause overfitting, which

may explain why shallower trees can be better: Decision stumps, which only split the data

based on one feature, outperform the other trees for theflr, crx, andvot datasets.

Figure 2.4 shows that the classification error of 3-OPTNBDT is often lower than

the errors from 3-ID3, which shows that the optimal Naı̈ve Bayes-based decision trees

can perform better than heuristic, entropy-based trees. Inaddition, Figure 2.4 shows

that the classification error of 3-OPTNBDT is often similar to 3-OPTDT except forPrm
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Figure 2.4: Average classification error for 4-OPTNBDT, 3-OPTNBDT, 2-OPTNBDT,
1-OPTDT, 2-OPTDT, 3-OPTDT, Naı̈ve Bayes, and 3-ID3 algorithms.

dataset, which implies that Naı̈ve Bayes assumption does not hurt the performance of 3-

OPTNBDT most of the time. In fact, a paired t-test over these ten datasets show that

3-OPTNBDT is statistically better (more accurate) than3-ID3 (at p < 0.05). How-

ever, the difference between3-OPTNBDT and3-OPTDT is not statistically significant (at

p < 0.05). Similarly, the difference between2-OPTNBDT and2-OPTDT is not statisti-

cally significant (atp < 0.05). As expected, we found that (on average) the error improves

for deeper trees, although this improvement is not statistically significant (atp < 0.05):

4-OPTNBDT (0.194)< 3-OPTDT (0.197)< 3-OPTNBDT (0.200)< 2-OPTDT (0.209)

< 2-OPTNBDT (0.222)< 1-OPTDT (0.235)< 3-ID3 (0.257).

Figure 2.4 also includes the results of the Naı̈ve Bayes classifier. While it works

fairly well in many of these datasets, note that it is not a contender: recall that our goal

is to produce an effective shallow decision tree, which involves only a (small) subset of

the features, probed sequentially. However, the Naı̈ve Bayes classifier will use all of the

feature values, which must all be available.

Running Time: Now consider the running time of these algorithms, as well as3-OPTDT,

which implements the dynamic programming algorithm that produces the fixed-depth

decision tree that is optimal over the training data, given the Naı̈ve Bayes assumption

— i.e., this d-OPTDT algorithm explicitly constructs and tests all possible leaves up to

depthd, whereasd-OPTNBDT uses a pre-computed opt-feature list (OFL) to efficiently
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Figure 2.5: Comparing 3-OPTNBDT versus 3-OPTDT: to(r nf ) andtn(r nf) are the time
that 3-OPTNBDT and 3-OPTDT require fornf features, respectively.

construct the final (depthd) level of the decision tree.

The previous section proved that OPTNBDT is O(log(r nf )/r nf ) times faster than

OPTDT, wherenf is the number of features. To explore this claim empirically, we ex-

tracted eighteen artificial datasets from the Promoters (Prm) dataset, using3i features,

for i = 1 : 18. Figure 2.5 plotslog(to(r nf ) × r nf/ log r nf ) versuslog(tn(r nf )),

whereto(r nf ) (respectively,tn(r nf )) is the run-time that 3-OPTNBDT (respectively,

3-OPTDT) requires fornf features. This confirms that OPTNBDT is significantly more

efficient than OPTDT, especially when there are many features in the dataset.

Figure 2.6 shows the running time of the various algorithms:Each line corresponds

to one of the algorithms, formed by joining a set of points whose value on the horizontal

axis is the total number of feature values
∑

i ri = O(r nf ) of a particular dataset, and the

value on the vertical axis is the (log of the) run time of the algorithm on that dataset. As

expected, the 3-ID3 points are relatively independent of the number of features, although

it depends on the number of instances in the training set; this explains the higher running

time of ID3 oncon andchs datasets. The other lines, however, appear fairly linear in

this log plot, at least for larger values of
∑

i ri; this is consistent with the Theorem 1.

Finally, to understand why the 4-OPTNBDT timing numbers are virtually identical to the

3-OPTDT numbers, recall that 4-OPTNBDT basically runs 3-OPTDT to produce a depth-

3 decision tree, then uses theOFL to compute the 4th level. These numbers show that the
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Figure 2.6: Run-time (log of seconds) of 4-OPTNBDT, 3-OPTNBDT, 2-OPTNBDT,
3-OPTDT, 2-OPTDT, 1-OPTDT, and 3-ID3 algorithms.

time required to computeOFL, and to use it to produce the final depth, is extremely small.

2.4 Summary

There are many situations where we need to produce afixed-depth decision tree— e.g.,

the bounded policy associated with per-patient capitation. This chapter has presented

OPTNBDT, an algorithm that efficiently produces the optimal such fixed-depth decision

tree, given the Naı̈ve Bayes assumption —i.e., assuming that the features are independent

given the class. We proved that this assumption implies thatthe optimal feature at the last

level of the tree essentially depends only onxπ,+ ∈ [0, 1], the posterior probability of the

class label given the tests previously performed. We then describe a way to efficiently

pre-compute which feature is best, as a function of this probability value, and then, when

building the tree itself, to use this information to quicklyassign the final feature on each

path. We show that this results in a speedup ofO(nf/ log nf ) compared to the naı̈ve

method of testing all the features in the last level, then provide empirical evidence, over

a benchmark of ten datasets, supporting this claim. We also found that OPTNBDT is not

just efficient, but (surprisingly, given its Naı̈ve Bayes assumption) is often more accurate

than entropy based decision tree learner like ID3.
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Chapter 3

Active Learning Strategies

Active learning algorithms use various methods to query unlabeled instances. This sec-

tion describes the query strategies and scoring functions that are commonly used in the

literature.

3.1 Estimated Uncertainty Reduction

In this section we discuss query strategies that attempt to reduce the overall uncertainty of

the model. In this strategy, the active learner computes theexpected uncertainty/error of

the model, resulted from querying the unlabeled instancex. It then queries the instance

that causes the minimum expected uncertainty in other unlabeled instances. For example,

Roy and McCallum [49] selected instances that reduce the expected error of the Naı̈ve

Bayes classifier over unlabeled instances. Guo and Greiner [50] used an algorithm that

selects the instance that provides the maximum conditionalmutual information about the

labels of unlabeled instances. Our LMU algorithm extends the approach by Guo and

Greiner [50] to the structured data (with conditional random fields as the classifier) in

order to use it for its initial step of active learning.

Uncertainty reduction strategy has been successfully applied to several machine learn-

ing models including Naı̈ve Bayes [49], Gaussian random fields [51], logistic regres-

sion [50], and support vector machines [52]. The shortcoming of this strategy is its com-

putational cost, since it needs to consider not only every unlabeled instance in the pool,

but also retrains the model for every possible value of the label. For some models, like

Gaussian random fields, the incremental training procedureis fairly simple and practical,

but for many others, the whole training must be repeated for the entire pool of unlabeled

instances. Another attempt to reduce the computational cost of the uncertainty reduction
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strategy involves subsampling the pool of unlabeled instances [49]. Alternatively, Guo

and Greiner [50] only consider few iterations towards the optimum model parameter in

their optimization process. Because of the high computational costs of this strategy, we

only use it in the initial step of LMU (see Section 4.2).

3.2 Uncertainty Sampling

In uncertainty sampling, an active learner queries the unlabeled instance that has the high-

est uncertainty. There has been many suggestions in the literature for ways to measure

the uncertainty of an instance. For example, in binary classification tasks using a proba-

bilistic model, the most uncertain instance is the one whoseprobability of being positive

is closest to0.5 [10].

A more general criteria to determine the uncertainty of an unlabeled instancex is

conditional entropy, defined as:

H(y|x, θ) = −
∑

i

P (yi|x, θ) log P (yi|x, θ), (3.1)

whereθ is the vector of model parameters, andyi are the possible labels for the instance.

Instances with large conditional entropy have high uncertainty. For the binary classifi-

cation task, highest conditional entropy happens withP (yi|x, θ) being at0.5. In multi-

class scenario,P (yi|x, θ) with uniform distribution (i.e., all P (yi|x, θ) are equal) yields

the highest conditional entropy. Our LMU algorithm uses the entropy approach by ex-

tending the definition of entropy to structured data (Equation 4.12) and using conditional

random fields to modelP (yi|x, θ).
Another approach, used in information extraction tasks [15], [53], is to query the

instance whose most likely labelym = argmaxy P (y|x, θ) has the smallest conditional

probabilityP (ym|x, θ).
Uncertainty sampling has also been applied to non-probabilistic models. Many re-

searchers, working with support vector machines, select the instance closest to the bound-

ary [12], [54], [55]. Lewis and Gale [10] have modified the outputs of a decision tree

classifier to obtain a probabilistic model and use uncertainty sampling. For example, for

a binary classification task, if the number of “+” instances within a branch is 3 and the

“−” instances are 2, thenP (Y = +|x) = 3
5 . Similar approach has been applied to near-

est neighbor classifier, where the probability of each classis the proportion of neighbors
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Figure 3.1: Selecting the square green point, which is the most uncertain data point, does
not improve the classification performance of the linear classifier.

with similar class. Here for a binary classification task, if3 out of5 neighbors are+, then

P (Y = +|x) = 3
5 .

The most uncertain approach typically works well if the current parameters nicely ap-

proximate the conditional probability distribution of theentire data. Unfortunately, these

parameters are often problematic as they are based on a very small training set and some-

times they are prone to querying outliers [49]. Figure 3.1 shows a binary classification

task where the data is separated by a linear classifier trained on two data instances, shown

as the filled circle and filled triangle. Here the most uncertain instance located on the

boundary line (shown as the green square) does not provide further information about the

labels of unlabeled instances.

3.3 Entropy of Model Parameters

In Section 3.2, the conditional entropy of labels given the model parameters was used to

query the unlabeled instances. Although this approach works well in practice, it highly

depends on the inventory of the training dataSi at time i and the training procedure

that results inθ∗i . One may imagine a scenario whereθ∗i is not an optimal model

parameter, e.g., as a result of a bad training data or simply being a local optimum. In this

case the active learning algorithm would be misled byθ∗i and we may end up querying

uninformative instances in the next steps (like querying the square instance in Figure 3.1).

Therefore, we may consider a query strategy that does not rely on current model

parameters. One query strategy is to compute the uncertainty of model parameters given

the data,i.e., Uncertainty(θ|D). This way we can compute the information content of
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Figure 3.2: Query by committee strategy, here two of the three classifiers agree that the
square data point has positive label.

the unlabeled data instances based on how uncertain the model parametersθ would be,

after we train them onD = (x, Si), wherex is the candidate point andSi is the current

set of labeled instances.

The uncertainty can be measured by computing the conditional entropy of the param-

eters given the data as:

Uncertainty(θ|D) = H(θ|D) = −
∫ ∞

−∞
P (θ|D) log P (θ|D)dθ. (3.2)

This definition of entropy is intended for continuous variables, whereas the previous def-

inition of conditional entropy in Equation 3.2 is used for discrete data.

H(θ|D) is a measure of how uncertain the model parameters are after being trained

on dataD. Therefore, it can be used to query the instances that reducethe uncertainty of

model parameters [56]. Based on our observations on some real-world datasets, reducing

the uncertainty of model parameters may not result into a more accurate classifier.

3.4 Query by Committee

In this method, a committee (set) of classifiers are trained on the current labeled set, then

they are used to classify all the unlabeled instances. Here,the unlabeled instance with

the maximum disagreement among all classifiers is queried for labeling. One step of

this active learning process is shown in Figure 3.2. Here solid, dashed and dotted lines

represent three linear classifiers and the last two classifiers disagree with the solid line

classifier on the label of the green square instance. Therefore, the green square instance

is queried by the active learner.

In query by committee strategy (QBC), there is no general constraint on the size of

the committee, as even small number of classifiers have been shown to work well [11],
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[15], [57].

In one of the earliest works in active learning with QBC strategy, Cohnet al. [25]

introduced selective sampling, which is a sequential process that updates two spaces se-

quentially – the current version spaceHi (at ith iteration) that includes the set of hy-

potheses consistent with current training data, and the region of uncertaintyRi, which is

the subset of the instances where different hypothesis inHi give different labels. In each

iteration, the algorithm queries a random unlabeled instance fromRi to obtain its label.

It then formsHi+1 by eliminating all the hypotheses inHi that are inconsistent with this

newly labeled instance. The algorithm then formsRi+1 by removing fromRi any region

if all of the hypotheses inHi+1 agree on the label of that region.

Balcanet al. [26] introduced theA2 agnostic active learner, which uses thresholds

for the error rate. At iterationi, let Ri be the region of uncertainty.A2 queries a set

of instancesDi from Ri and computes the lower boundLB(Di, h) and upper bound

UB(Di, h) on the true error rateL(h) for all the hypotheses in the version space. It

then eliminates all the hypotheses whose lower bound is greater than the minimum upper

bound. Iterationi is complete when enough samplesDi are gathered to eliminate at least

half of the current region of uncertainty. Similar to selective sampling methods, if all

hypotheses in the version space agree on some region of the instance space, this region

can be eliminated fromRi.

Dasguptaet al. [27] proposed an algorithm that maintains two sets of labeled in-

stances,S andS′, whereS contains instances that receive different labels from two min-

imum error hypotheses and this difference is less than a given threshold. Therefore, the

instances inS are labeled by the oracle. If the difference between the empirical error of

the minimum error hypotheses is greater than the given threshold, then the instances are

in setS′ and their labels are inferred. Note thatS′ can be viewed as the set of constraints,

i.e., in the next iteration we only consider classifiers that are consistent with the label of

instances inS′.

Each of the algorithms in [25], [26] and [27] only considers classifiers that are con-

sistent with the current labeled instances (“version space”), which is updated as more

instances are labeled. If there is noise in the data, these methods might not produce the

optimal classifier since there is the risk of eliminating theoptimal classifier if it is not

consistent with the current labeled instances.

Another group of algorithms [20], [28], [29] as well asISAL, avoid using a version
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space in their process. Balcanet al.[28] showed that for the margin-based classifiers with

linear separators and perfectly separable data, active learning can obtain an exponential

convergence rate if it only queries instances that are inside the margin. They used a

rejection sampling strategy to query such instances.

Some active learning algorithms includingISALuse an unbiased estimation of error

in their process. The recent works by Beygelzimeret al. [20] and Gantiet al. [29] use

importance weights to cancel the estimation bias of the error. Those algorithms use re-

jection sampling to query the desired instances by assigning a non-zero weight to them.

They also use an unbiased estimation of error when selectingthe next instance to query.

In contrast,ISALsamples directly from some appropriate distributions. Similarly, ISAL

also uses an unbiased estimation of error when selecting thenext sampling distribution

by assigning a weight proportional to the ratio between the sampling distribution and the

true distribution.

25



Chapter 4

Active Learning With Structured
Data

As noted in the previous section, most of the existing activelearning systems have been

used primarily to learn a classifier that maps each instance to asingle (scalar) label; even

the imaging work mentioned above has focused on mapping eachimage to one of small

sets of labelsY (object recognition). As images can often be recognized based on only a

small set of extracted features, object recognition corresponds to a typical machine learn-

ing problem. However, many important learning problems involve predicting labels for

structured data such as images. There have been relatively little active learning research

related toimage segmentation, which requires producing a more complicated label: such

systems map an image ofnr × nc pixels tonr × nc individual pixel-labels. Moreover,

these pixel-labels are not independent of one another (e.g., if one pixel is a tumor, it is

more likely that its neighbors are, as well; see Figure 4.1).This forces a segmenter to

consider the entire image (nr × nc pixels) as an instance, rather than label one pixel at

a time. Hence, notions like uncertainty and information content must be defined for the

entire image.

To label the structured data, probabilistic methods such asconditional random fields

(CRF) [58] are commonly used. This section overviews our basic system for actively

learning structured data with the focus on the image segmentation task. We first men-

tion the training process for the underlying segmentation system, based on Conditional

Random Fields (CRFs), that is designed to deal with variables that are organized in a

2-dimension grid [59]. We then describe our LMU system, which actively learns the

parameters of the CRF.

We letI represent the set ofnr × nc image pixels,x = {xi | i ∈ I} be an observed
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Figure 4.1: An unknown pixel that is surrounded by tumorous pixels.

input image, where eachxi is a vector describing pixeli (perhaps its intensity and texture)

andy = {yi | i ∈ I} is the corresponding joint set of labels over all pixels of the image.

We will assume the segmentation isbinary over nr × nc images, where eachyi ∈
{−1,+1} (e.g., is this pixel tumorous versus healthy), and the overall outputy isnr×nc

such bits.

At any time, our system has a pool of unsegmented instancesU , as well as a (pos-

sibly empty) pool of segmented instancesS. Later in section 4.3 where we describe our

experiments, we will also have a set of unlabeled test imagesSt. Note that these sets,

St, S, U , are disjoint. Throughout this chapter, we will use “labeled” as a synonym for

“segmented” and “unlabeled” for “unsegmented”.

In this chapter we present LMU active learner [8] for image segmentation tasks.1

Our active learner will sequentially select an unsegmentedimageu ∈ U , obtain its

label (recall this label is a set of|u| bits — one for each pixel inu), and then move this

now-labeled image fromU to S.

4.1 Conditional Random Field

A conditional random field (CRF) is a model of the conditionalprobability of a set of

labelsy given the observationsx, here given by

1A version of this chapter has been published in the proceedings of the ICML2009 conference.
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Pθ(y |x) =
1

Ωθ(x)
exp


∑

i∈I
Φw(yi,x) +

∑

i∈I

∑

j∈Ni

Ψv(yi, yj,x)


 , (4.1)

whereNi are the 4 neighbors ofi (north, east, south, west);

Φw(yi,x) = log(
1

1 + exp(−yiwT gi(x))
)

is theassociation potentialof pixel i that uses the association parametersw obtained from

training data, andgi(x) is the feature vector for pixeli;2 Ψv(yi, yj,x) = yiyjv
Tµij(x)

is the interaction potential that captures the spatial correlation with neighboring pixels

using the interaction parametersv obtained from the training data;µij(x) = xi − xj is

the difference between feature vectors in pixeli and j; andθ = [w,v] are the model

parameters.

The normalizing factor

Ωθ(x) =
∑

y

exp


∑

i∈I
Φw(yi,x) +

∑

i∈I

∑

j∈Ni

Ψv(yi, yj ,x)


 (4.2)

insures that the CRF produces a probability. Given a set of parametersθ, we can compute

the labely∗ for a given imagex: y∗ = argmaxy Pθ(y |x) (see Section 4.1.2). The

challenge is learning the best values for these parameters,θ∗. The rest of this subsection

discusses how to compute these optimal parameters from a setof labeled imagesS; then

for thisS and a single unlabeled imageu, it then provides a useful approximation to this

computation, to avoid its inherent intractability.

4.1.1 Training

Typical supervised CRF training involves finding the parameters

θ∗S = argmax
θ

LLS( θ ) (4.3)

that maximize the log of the posterior probability over training set of labeled imagesS

LLS( θ
∗ ) =

∑

s∈S
log Pθ∗(y

(s) |x(s)).

2Here, thisgi(x) is just the information inxi. In general, it could also include information from some
adjacent pixels, via some smoothing operator, etc.
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In our active learning framework, we need to consider the effect of adding one more

image from unlabeled set to the training set. Since the labely(u) of an unlabeled image

x(u) is not known before presenting it to an oracle, we use a conditional entropy term to

express the likelihood associated with the unlabeled imageas

LLu( θ ) =
∑

y

Pθ(y |x(u)) log Pθ(y |x(u)).

The overall objective function now consists of two terms: the first term deals with all

labeled images in training setS and the second term is for an unlabeled imageu as

LLS+u( θ ) = LLS( θ ) + γ LLu( θ ), (4.4)

where theγ ∈ R parameter trades-off the two factors. We then seek the parametersθ∗S+u

that maximize Equation 4.4.

4.1.2 Useful Approximation

Given the lattice neighborhood structure of the CRF for image data, it is intractable to

compute the normalizing factorΩθ(x) in Equation 4.2 [60]. Following [59], [60], we in-

corporate the pseudo-likelihood approximation, which assumes that the joint probability

distribution of all pixel labelsy can be approximated by the product of “local probabil-

ities” of each pixel, which is based on only the observationsof xi and the labels of the

neighboring nodesyNi
:

P̂θ(y|x) ≈
∏

i∈I
P̂θ(yi|yNi

,x),

P̂θ(yi|yNi
,x) =

1

Ωi(x)
exp

(
Φw(yi,x) +

∑

j∈Ni

Ψv(yi, yj,x)
)
, (4.5)

where thisΩi(x) is a “local normalizing term”, which deals only with theith pixel. Using

the approximation in Equation 4.5, the log likelihood term for (respectively) training set

S and a single unlabeled imageu is:

L̂LS( θ ) =
∑

s∈S

∑

i∈I(s)
log P̂θ(y

(s)
i |y

(s)
Ni

, x
(s)
i ), (4.6)

L̂Lu( θ ) =
∑

i∈I

∑

yi

P̂θ(yi|y(u)Ni
, x

(u)
i )× log P̂θ(yi|y(u)Ni

, x
(u)
i ). (4.7)

Following Equation 4.4, we can add the above equations to form a single objective

that combines the effect of the many labeled imagesS and an unlabeled datau:

L̂LS+u( θ ) = L̂LS( θ ) + γ L̂Lu( θ ). (4.8)
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In our experiments, we setγ = 1. We also used conjugate gradient to optimize the

objective function in Equation 4.8.

The L̂Lu( θ ) term from Equation 4.7 requires the label for unlabeled data, which

unfortunately is not yet available,i.e., y(u)Ni
is not known. An inference step is added

to estimate the labels based on current parameters. The inference is based on iterative

conditional probability (ICM) [61], which sets the label for each pixel as the maximum

posterior probability:

y∗i = argmax
yi

Pθ( yi | yNi
,x),

where for each pixeli, we assume that the labels of its neighborsyNi
are fixed to their

current estimate. We then usey∗i to compute the label of its neighbors. We repeat this

process until everyyi converges to its final value.

4.2 TheLMU Active Learning Algorithm

At each time, givenU andS, our LMU active learner [8] needs to select which unlabeled

imageu ∈ U to give to the oracle for labeling. (Recall that this now-labeledu will then

be added to the set of labeled imagesS.) One option is to choose the most uncertain

image:

MU(U,S) = argmax
u∈U

H(Y(u) |x(u), S ),

where

H(Y |x, S ) = −
∑

y∈Y
P (y |x, S ) log P (y |x, S ) (4.9)

≈ −
∑

y∈Y
P̂θS (y|x) log P̂θS (y|x) (4.10)

approximates the conditional entropy of the labelY given the image observationsx,

based on the current conditional probability, which is based on the training dataS. (To

explain Equation 4.10: As we use the dataS to produce the parametersθS , we identify

P (y |x, S ) with P̂θS (y|x); see Equation 4.3 and relevant approximation.)

The summation in Equation 4.10 is over all|Y| = 2nr×nc possible binary assign-

ments tonr × nc pixels. We approximate this as the simple sum of the entropies of the

labelsyi of each pixel of the image,i ∈ I:
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Ĥ(Y |x, S ) = Ĥ(Y |x, θS ) (4.11)

= −
∑

i∈I

∑

yi∈{±1}

[
P̂θS (yi|xi) log P̂θS (yi|xi)

]
. (4.12)

We view this most-uncertain instance MU(U,S) as being closest to theboundarybe-

tween positive and negative instances. Having the label forsuch boundary points will

help us to define the boundary more precisely and consequently increase the classifica-

tion accuracy. Of course, our active learner has to start with an emptyS = {}; here the

associatedθ{} parameters are problematic. Moreover, this approach does not consider the

distribution overX, which means knowing more about this “boundary” point mightnot

help identify that much with respect to thisX. The time complexity of this algorithm is

O(|U |) as it computes the uncertainty of all the unlabeled instances in each iteration.

This suggests an alternative approach: select the instancethat would provide the max-

imum information about the labels of remaining unlabeled instances —i.e., the instance

that most reduces the uncertainty (RU) of the other unlabeled instancesU − {u}:

RU(U, S) = argmax
u∈U

H(YU |xU , S ) −H(YU |xU , S + x(u) ) (4.13)

= argmin
u∈U

H(YU |xU , S + x(u) ) (4.14)

= argmin
u∈U

∑

v∈U ;v 6=u

H(Y(v) |x(v), S + x(u) ) (4.15)

≈ argmin
u∈U

∑

v∈U ;v 6=u

Ĥ(Y(v) |x(v), θS+x
(u) ). (4.16)

Equation 4.14 follows from the observation that the first term of Equation 4.13 is

constant for all instancesu; Equation 4.15 uses the fact that the entropy of the set of

independent images is just their sum; and Equation 4.16 again uses the approximate con-

ditional entropyĤ defined in Equation 4.12. (ThisθS+x(u) is the solution that maximizes

Equation 4.8.)

Note this RU approach works even forS = {} and its time complexity isO(|U |2),
which is computationally more expensive than MU approach (O(|U |)). Our actual

LMU system uses both approaches: Given a set of unlabeled imagesU and no labeled

instancesS = {}, it first uses RU to find the first instanceu1 to label, then setsS = {u1}.
Thereafter, it uses MU to find the second, third, and further images. See Figure 4.2.
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LMU( U : unsegmented images )

1: S = {} % S is initially empty

% Computeu1 = RU(U, {})
2: for each unlabeled imageu ∈ U

3: θu = argmaxθ L̂Lu( θ ) % Equation 4.7

4: su = 0

5: for each other unlabeled imagev ∈ U , v 6= u

6: su += Ĥ(Y(v) |x(v), θu ) % Equation 4.12

7: u1 = argminu su

8: y(u1) = Oracle(x(u1)) % Get label

9: S = (〈x(u1), y(u1) 〉)
10: θS = argmaxθ L̂LS( θ ) % Equation 4.6

11: U = U − {u1}
12: for i = 2, ...

% ui = MU(U, S)

13: for eachu ∈ U

14: tu = Ĥ(Y(u) |x(u), θS ) % Equation 4.12

15: ui = argmaxu tu

16: y(ui) = Oracle(x(ui)) % Get label

17: S = S + (〈x(ui), y(ui) 〉)
18: θS = argmaxθ L̂LS( θ ) % Equation 4.6

19: U = U − {ui}
20: end
21: return θS

Figure 4.2: Pseudo code for the LMU active learning algorithm.
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Figure 4.3: Sample “sky” images from Geometric context dataset.

4.3 Experiments

To investigate the empirical performance of our active learning algorithm, we conducted

a set of experiments on two challenging real-world problems: Finding the sky in the ge-

ometric context dataset and segmenting tumors in medical images. We also ran a scaling

study, to see the influence of the size of each image on the number of images required to

obtain good performance.

4.3.1 Finding The Sky in Color Images

The geometric context dataset [31] is a collection of 105 images, many very cluttered,

that span a variety of natural, urban, and suburban sceneries. Our goal here is to find the

sky within these images. Figure 4.3 shows three instances ofimages in this dataset. This

task is challenging since the sky could be blue or white, clear or overcast, and worse,

many scenes contain both sky and ocean, which are not easily separable based on their

color. The original images were of various sizes; we downsized each to64 × 64 pixels

to make the size uniform, and to make our computations more tractable. We partitioned

these images into the unlabeled-setU with 85 images and the test-setSt with 20 images.

Features: We associate each pixel with twelve values: its 3 color intensities, its ver-

tical position (as the sky is typically at the top of the image) and 8 texture values: We

apply the MR8 filter banks [62] (which contain edge filters andbar filters at 6 different

orientations, at 3 scales) to the region centered on each pixel, but record only the max-

imum filter response at each of the 6 orientations; we also include 2 isotropic features:

Gaussian and a Laplacian of Gaussian.

In each iteration of the active learning process, our LMU system identifies one specific

imageu fromU , which is removed fromU , labeled by an oracle, then added to the labeled

training setS. We then train a segmenter on this augmented training setS+“labeled”u to
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Figure 4.4: Accuracy of segmentation versus number of training data chosen from unla-
beled set for geometric context dataset.

produceθS+u, then test this system on 20 images in the test-setSt, recording the average

F-measure

F-measure =
2× (precision)(recall)

(precision+ recall)

whereprecision = tp/(tp+fp) andrecall = tp/(tp+fn), wheretp, fp, fn are true

positive, false positive and false negative respectively.Note this measure is problematic

whentp = 0; see Footnote 3.

In Figure 4.4, the horizontal axis represents the number of added unlabeled images

and vertical axis is the average F-measure. The “all” line shows the results of training on

(the oracle-labeled versions of)all 85 unlabeled images. Checking the “LMU” line, we

see that the first carefully-selected image alone produced aclassifier whose F-measure

was67%, and this accuracy improved to81% by using the second image. Note this is

only 2% below the accuracy obtained by training on all unlabeled data; moreover, this

is statistically indistinguishable at thep < 0.05 level, based on a paired t-test. (The

accuracy of the second iteration was significantly better than the first — paired t-test

p < 0.05.) There is no significant change between the second iteration and subsequent

iterations, which means that the first two images chosen by LMU are good enough to train

the classifier. Those two images are the left and middle images shown in Figure 4.3.

Of course, it is possible thatany two imageswould be sufficient. To test this, we
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Figure 4.5: Sample images from brain tumor dataset, tumor issegmented in red.

randomlyselected images for the training set; see the “random” line in Figure 4.4. Each

point in this line is the average over 10 random choices. We see that this line is well

below the LMU line. Moreover, the segmenter remains statistically inferior to the “all”

line until observing (on average) 5 randomly-drawn images.

We also developed LMU logReg, which actively learns the parameters of the logistic

regression segmentor. Note that in logistic regression there is no interaction potential

between every pixel and its neighbors. The results of applying LMU logReg on geometric

context dataset is shown in Figure 4.4. This figure shows thatthe logistic regression

on the geometric context dataset has slightly lower accuracy compared to CRF, which

implies that the interaction potential in Equation 4.1 has lower weight than the association

potential.

4.3.2 Finding Tumors in Brain Scans

Here, we consider the challenge of finding tumors within a patient’s brain — that is, label-

ing each pixel in a magnetic resonance (MR) image as either tumorous or non-tumorous.

This task is crucial in surgical planning and radiation therapy, and currently requires a

significant amount of manual work by human medical experts.

Here, we have 80 images (axial slices) from the brains of 16 patients. These are taken

from different regions of the brain; in particular, no two images are adjacent to each other.

We resized each image from256× 256 pixels to64× 64. Figure 4.5 shows three images

from this dataset, with the tumor segmentation outlined in red. We again partition these

images into an unlabeled setU , containing 71 images from 11 individuals, and a test set

St, containing 9 images from the other 5 patients.3

Features: Most patient visits yield scans in 3 different MR modalities: T1, T2, and

3 The F-measure score is problematic if any test image has no tumor, as here there can be no true positives
(tp = 0). Hence, to simplify our analysis, ourSt includes only images that contain some tumor. However,
the unlabeled setU includes some images that have no tumor.
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T1c (that is, T1 after the patient has received a contrastingagent) [63]. We identify

each pixeli with a vector of 4 values, including the T2 value and the difference between

T1c and T1. As each brain is somewhat symmetric around the sagittal plane, we also

include the symmetry feature by computing the difference between intensities of pairs of

symmetrical pixels with respect to the sagittal plane, for both T2 and T1c - T1 modalities.

So we compute four features for each pixel.

Figure 4.6 shows the results of actively selecting the training set. Actively training

on one image in this dataset produces an average F-measure of57%. This segmenter is

as good as the one obtained using all of the data (paired t-test p < 0.05). (The specific

image selected is the left one in Figure 4.5.) Training on thesecond LMU-selected image

increased the average accuracy to70%, which is higher than the61% accuracy obtained

using all of the data.

Note that some of the images in the unlabeled setU do not contain any tumor. On

the other hand, the test set only contains images that have some tumor (see Footnote 3).

This difference between the test domain and the training domain is known as “covariate

shift” [64]. Therefore, the optimal model obtained by training on all the images in the

dataset may not be the optimal for the test set. We conjecturethat the active learner can

obtain higher segmentation accuracy by querying images that better represent the images

in the test set (i.e., better represent the characteristics of the tumors).

Donmez and Carbonell [65] report a similar situation (albeit in active sampling for

learning the ranking on the TREC 2004 dataset), noting that the performance of their

active learning algorithm is sometimes better than the one obtained by training on all the

data. Finally, as with the Sky data, on average, the segmenters produced using the first

several (here three)randomlydrawn images were all significantly inferior to the “all”

segmenter.

The results of applying LMU logReg on brain tumor dataset is shown in Figure 4.6.

This figure shows that the performance of LMU logReg is statistically significantly worse

(at p < 0.05) than LMU in the brain tumor dataset. The reason could be the fact that the

labels for each pixel in a brain image is very dependent on thelabels of its neighboring

pixels.
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Figure 4.6: Accuracy of segmentation versus number of training data chosen from unla-
beled set for brain tumor dataset.

4.3.3 Scalability Study

This subsection explores how our LMU scales with the size of the images. We therefore

downsized the images in the geometric context dataset from64 × 64 to 32 × 32, then

repeated the same active learning process described above.The results, appearing in Fig-

ure 4.7, show essentially the same trend that appeared in Figure 4.4. Here, however, LMU

required 7 images before it first obtained a segmenter whose performance was statistically

“equivalent” to the one based on all of the data (paired t-test, p < 0.05).

4.3.4 Discussion

It is, at first, very surprising that one can produce an effective segmenter with so few

images — here, only 2 for the (original) sky data, and 1 for thebrain tumor data! Towards

explaining this, note that each of these images is not reallya single “point”, but is actually

64 × 64 ≈ 4,000 pixels, and each oracle-label is actually providing around 4000 bits.

Hence, the 2 sky images is essentially 8000 bits, which is a lot of information. The

results in the scaling studies are consistent with this conjecture: Here, we required 7

carefully-selected images to obtain the information needed to do well; notice that this

7 × (32 × 32) ≈ 2 × (64 × 64).4

4We are not claiming that 8000 bits is a magical number — instead, we are just observing that our active
learner requires more small images than large images, whichis consistent with the claim that the number of
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Figure 4.7: Accuracy of segmentation versus number of training data chosen from unla-
beled set for geometric context dataset with images downsized to32× 32 pixels.

As further support, consider the segmenters based on randomly-drawn images. While

they were, typically, worse than ones based on images specified by LMU, we found that

we were still getting good segmenters using only a few such random images. Again,

this is consistent with the view that the label of each image is supplying a great deal of

information — even if the image is drawn randomly.

4.3.5 Other Results

The results shown above strongly suggest that very few images are sufficient to train a

CRF-based segmentor, but only if they are well selected. We explored this claim over

other datasets. Figure 4.8 shows the results of applying LMU on the set of sunflower

objects from Caltech101 dataset [66]. Since the dataset is intended for object recognition

task, it is relatively easy to segment the object from background, which is probably why

LMU gets good accuracy after actively selecting only one image.

We also explored some approaches to reduce LMU ’s computational complexity. For

example, LMU can start with a randomly selected image (LMU randStart). Figure 4.9

shows the result of this algorithm on brain tumor dataset. Wesee that LMU randStart

may need more queries to obtain an accurate segmentor. Here,LMU randStart requires 3

queries to have the accuracy obtained by training on all unlabeled data.

pixels being labeled seems significant.
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Figure 4.8: Accuracy of segmentation versus number of training data on the sunflower
category in Caltech101 dataset.

Figure 4.9: Accuracy of segmentation versus number of training data chosen from unla-
beled set on brain tumor dataset for LMU and LMU with random start.
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4.4 Summary

In this chapter we presented the LMU active learning algorithm developed for image seg-

mentation tasks. LMU is one of the first studies that considers the challenge of actively

learning the parameters of a machine learning model (CRF-based segmenter) for images.

LMU combines two active learning strategies by first querying animage that most reduces

the uncertainty of other images and then selecting the imagewith maximal uncertainty.

Our experiments on real world datasets showed that this particular combination was ef-

fective for this task and it could produce an effective segmenter using very few segmented

images. Our studies support the claim that it may be because the label for a single image

contains a great deal of information;i.e., corresponds to receiving many single-bit labels,

in the standard active learning framework.

If some images in the dataset contain more information aboutthe relation between

image features and labels than others, then LMU is likely to produce an accurate segmen-

tor with fewer labeled images than random sampling. On the other hand, if all images

in the dataset contain the same amount of information about the relation between image

features and labels, then LMU is likely to have similar performance to random sampling.
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Chapter 5

Importance Sampling Active
Learning

In this section we introduce importance sampling active learning algorithm (ISAL), which

attempts to reduce the number of queried instances by drawing them from an appropriate

distribution, which can be different from the underlying distribution.

One application ofISAL is in experimental design where sampling from the under-

lying distribution is difficult. For example, consider the task of tuning the parameters of

a jet engine where we are interested in knowing the engine’s breaking point. Figure 5.1

shows the probability density function for the cruising speed of an airplane. This fig-

ure shows that the average cruising speed of the plane is500 mph and700 mph is the

minimum speed at which the engine is likely to fail.
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Figure 5.1: Hypothetical distribution for the cruising speed of an airplane (solid line).
Dashed lines show the sampling distributions around the point that the engine fails.
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Here we can use an engine simulator, change the parameters and record the outcome.

The naı̈ve approach is to randomly choose the values of the parameters from the un-

derlying distribution. Given that the breaking point is relatively unlikely (in underlying

distribution), it may take a long time to find the breaking point of the engine. Alterna-

tively, by clever selection of points around the decision boundary, ISAL might be able

to find the breaking point using few probes. For example in Figure 5.1, it would be a

good choice to select two data points with different labels around the estimated decision

boundary. Those two points are important because with a perfectly separable data, the

decision boundary is located somewhere between them.

In the rest of this chapter we describeISALand analyze its performance.

5.1 Preliminaries

Let 〈X,Y 〉 be jointly sampled from a distributionP overX × Y, whereX = R
d and

Y = {−1,+1}. The specification of the learning problem includes the set of hypotheses

H ⊂ {h : X → Y}. The performance of a hypothesish ∈ H, whose goal is to predictY

givenX, is measured by

L(h) = E [ℓ(h(X), Y )] , (5.1)

whereℓ(h(X), Y ) = 1
2 |h(X) − Y | and the expectation is over random variablesX

and Y . We will typically think of ℓ(a, b) = 1 if a 6= b, and is0 otherwise. Then

L(h) = P (h(X) 6= Y ).

LetZ1, . . . , Zn ∈ X ×Y be random variables such thatZi = 〈Xi, Yi〉, where the dis-

tribution ofXi is possibly governed by the learner andYi is generated from the marginal

PY |X givenXi: Yi ∼ PY |X(·|Xi). Lethn : X → Y be a hypothesis obtained after train-

ing on(Z1, . . . , Zn). We will assume that the auxiliary random variables〈X,Y 〉, which

represent the future test instance, are disjoint from(Z1, . . . , Zn). The value of labelY is

predicted byhn(X).

For simplicity, we assume thatPX , the true marginal ofX, is absolute continuous

and its density (with respect to the Lebesgue measure) isp(·). Similarly, we assume that

the marginal ofXi given the past instances,PXi|Z1,...,Zi−1
, has densityqi. In fact, during

learning, the learner selectsqi.

We assume that all densitiesqi ∈ Q have support that includesp’s support, i.e.,
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Algorithm 1 (Importance Sampling Active Learning (ISAL) )

Input :
p is the density for true distribution ofX .
H is the class of hypotheses.
n is the total number of iterations.
Q is the set of distributions where everyq ∈ Q has the support that includesp’s support.

h′[x, y, Si] = argminh∈H{L̂(h|Si) : h(x) 6= y}.
L̂(h|Si) is defined in Equation 5.3.
S0 = ∅.

1: for i = 1, . . . , n

2: if (i==1) thenq1 ← p

3: elsegenerateqi ← argminq∈Q Ex∼q[1{L̂i−1(h
′
i−1[x, h

∗
i−1(x), Si−1]

∣∣Si−1) 6= 0}]
4: xi ← Draw(qi(.)) % draw from distribution with densityqi
5: request the label forxi : yi
6: Si = Si−1 ∪ {[qi, xi, yi]}
7: h∗

i = argminh∈H L̂(h|Si)

8: end
9: returnh∗

n

Figure 5.2: Importance sampling active learning (ISAL) algorithm.

{x : p(x) 6= 0} ⊆ {x : qi(x) 6= 0}. The set

Si = {(q1, x1, y1), ..., (qi, xi, yi)} (5.2)

represents thei triples of distributionqj, drawsxj ∈ X , and labelsyj ∈ Y for j =

1, . . . , i.

5.2 Importance Sampling Active Learning Algorithm (ISAL)

The ISAL algorithm is shown in Figure 5.2. In iterationi = 1, . . . , n, the algorithm

draws an instancexi from the distribution with densityqi, which (for i > 1) had the

lowest expected empirical error of alternative hypothesis(line 4 of ISAL) in the(i− 1)-th

iteration.

Choosing the Candidate Point: ISALwill sequentially request the labels of instances

x1, . . . , xn from the oracle, using the following approach by Beygelzimer et al. [20]:

on thei-th iteration, first find a hypothesish∗i that has the minimum empirical error on

the current labeled set,Si. It then finds an alternative hypothesish′i that has minimum

empirical error over all hypotheses that disagree withh∗i on the label of the candidate

point x ∈ X . If the empirical error ofh∗i andh′i are close to each other, then there is

43



uncertainty on the label ofx and we ask an oracle to provide the label. However, instead

of identifying a single candidatex, ISAL identifies a distributionqi that puts high weight

on instances that have highly uncertain labels.

The Sampling Distribution qi: In the situation where the data is noise-free and the

true model is linear (HLinear), we can directly compute the optimal suchqi (line 3 of

Figure 5.2). Here,qi ← N (µi,Σi) for some relevantµi,Σi, which depends on the

current margin.

Otherwise, the user provides the set of distributionsQ as an input toISALbased on

his knowledge of the data. We assume that the cardinality of this set of distributionsQ is

small enough such that we can evaluate each, to find the best suchqi (line 3 of Figure 5.2).

Q may include a set of Gaussian distributionsN (µ,Σ), where eachµ = [µ1, . . . , µd], d

is the dimension of the space, andΣ = diag(σ1, . . . , σd), where for eachj = 1, . . . , d,

it includesµj = cj +mτj , wherem = 1, . . . ,M andcj ∈ R, τj ∈ R
+, σj ∈ R

+ and

M ∈ N are the parameters set by the user such that it covers the regions of interest (e.g.,

boundary regions), known from heuristics. In addition,Q always includes the underlying

distributionp(·) too.

Using Weighted Estimation of Error: In learning, a good empirical measure of the

performance of a hypothesis is the number of mistakes that the hypothesis makes over

all instances in a hold-out dataset. Whenxi is drawn fromqi (line 4 of Figure 5.2),

which is different fromp, this measure would become biased. In order to remove the

bias, we introduce importance weights and estimate the performance of a hypothesish

by Equation 5.3; see Figure 5.2.

L̂(h|S) = 1

|S|
∑

(q,x,y)∈S

p(x)

q(x)
ℓ(h(x), y). (5.3)

Definition 1. Let L̂(h|Si) be the empirical error ofh ∈ H over a set ofi instances

Si = {(q1, x1, y1), . . . , (qi, xi, yi)} (Equation 5.3) andH be a set of linear classifiers.

Let h∗i = argminh∈H{L̂(h|Si)}. For an instancex ∈ X , we define the alternative

hypothesis

h′i[x, h
∗
i , Si] = argmin

h∈H
{L̂(h|Si) : h(x) 6= h∗i (x)}. (5.4)

Note thath′i[x, h
∗
i , Si] is itself a function, which takes an argument inX and re-

turns a value inY. If there are more than one function that satisfies the condition

argminh∈H{L̂(h|Si) : h
∗
i (x) 6= h(x)}, just pick one arbitrarily. In the case of threshold

classifiers for one-dimensional data, we consider
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h′i[x
(j), h∗i , Si](x) =





−1 if x < x(j)

−h∗i (x) if x = x(j)

+1 if x > x(j).

(5.5)

We will suppressh∗i , Si in h′i[x
(j), h∗i , Si](x) when it is clear from context.

Lemma 1. For anyh ∈ H and set ofn instancesSn = {(q1, x1, y1), . . . , (qn, xn, yn)},
E

[
L̂(h|Sn)

]
= L(h).

Proof. By linearity of expectation,

E

[
L̂(h|Sn)

]
=

1

n

n∑

i=1

E

[
p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

]
.

Sinceqi is computed based onZ1, . . . , Zi−1 and eachXi is generated fromqi, a simple

calculation gives thatE
[
p(Xi)
qi(Xi)

ℓ(h(Xi), Yi)
]

= E [ℓ(h(X), Y )] = L(h). Therefore,

E

[
L̂(h|Sn)

]
= L(h).

Definition 2. (Weighted loss function) LetQ be the set of permissible densities,X ∈ X
have the labelY ∈ Y, andH ⊂ {h : X → Y} be the class of hypotheses. Letp be

the true probability density function of random variableX. Supposex is drawn from

a distribution with densityq ∈ Q whereq has support that includesp, and p(x)
q(x) ≤

rmax, ∀x ∈ X , wherermax is a finite positive number. Define the class of weighted loss

functionsF to be

F = {f : Q×X × Y ×H× R→ R : f(q, x, y, h, p) =
p(x)

q(x)
ℓ(h(x), y)}, (5.6)

whereℓ(h(x), y) = 1
2 |h(x)− y|.

5.2.1 Analysis ofISAL on Realizable One-Dimensional Data

In this section, we investigate the performance ofISALon a one-dimensional datasetX ⊆
R that can be perfectly separated by some simple threshold functionsH = {hc : c ∈ R},

hc(x) =

{
+1 if x ≥ c
−1 if x < c,

(5.7)

(used by [25], [30], [67]). Figure 5.3 shows a few instances of the input spaceX .

According to VC theory, in order to achieve an error rate of less thanǫ, a passive

learner requiresO(1ǫ ) random draws fromp [68] (ignoring the confidence termδ). Das-

gupta [30] showed that a binary search withO(log 1
ǫ ) draws can achieve an error rate
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Figure 5.3: Two scenarios forISAL algorithm on one-dimensional data, when the new
instance is (a)x(1) inside boundary region or (b)x(2) outside of boundary region.

of less thanǫ on this one-dimensional case. As a special case, we also showthat ISAL

can achieve this accuracy with expectedO(log 1
ǫ ) draws, although its application is not

restricted to one-dimensional data.

Definition 3. At iteration i of ISAL, let x(−)
i be the maximum valued instance inSi of

Equation 5.2 with−1 label,x(+)
i be the minimum valued instance inSi with+1 label, and

(x
(−)
i , x

(+)
i ) be the boundary region with midpointx(b)i =

x
(−)
i +x

(+)
i

2 ; see Figure 5.3(a).

We consider two scenarios for any drawn instance. In the firstscenario, instancex(1)

is located inside the boundary region,e.g., the green point in Figure 5.3(a) and the alter-

native classifierh′i[x
(1)] corresponding to it has the boundary point shown in green. Note

that in Figure 5.3(a),̂L(h∗i |Si) = L̂(h′i[x
(1)]
∣∣Si) = 0. In the second scenario, the new in-

stancex(2) is located outside the boundary region (blue point in Figure5.3(b)). Similarly,

h∗i andh′i[x
(2)] are shown as red and blue lines respectively. HereL̂(h′i[x

(2)]
∣∣Si) > 0

because the decision boundary corresponding toh′i[x
(2)] is outside the boundary region.

In summary, instances inside the boundary region haveL̂(h′i|Si) = 0 and points outside

the boundary region havêL(h′i|Si) > 0.

Lemma 2 extends this analysis to a group of instances. It compares two distributions

with densitiesq(1) andq(2), whereq(1) has more weights inside the boundary region than

q(2). Lemma 2 shows thatISALselectsq(1) rather thanq(2).

Lemma 2. Let X ⊆ R, Y = {−1,+1} and x ∈ X be perfectly separable by some

hypothesis inH. DefineSi, x
(−)
i , x(+)

i , and x
(b)
i using definition 3; andH, L̂(h|Si),

h∗i , h′i[x
(j)] using definition 1. At iterationi of ISAL, letq(1) beN (x

(b)
i , σ2

min), q
(2) be

N (x
(b)
i + η, σ2), whereσmin < σ or η 6= 0. Let x(1) ∈ X have distributionq(1) and
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x(2) ∈ X have distributionq(2). Then

Ex(1)∼q(1) [1{L̂(h′i[x(1)]
∣∣Si) 6= 0}] < Ex(2)∼q(2) [1{L̂(h′i[x(2)]

∣∣Si) 6= 0}]. (5.8)

Proof. We have that

Ex(1)∼q(1) [1{L̂(h′i[x(1)]
∣∣Si) 6= 0}] =

∫ ∞

−∞
1{L̂(h′i[x]

∣∣Si) 6= 0}q(1)(x)dx. (5.9)

As we discussed earlier,̂L(h′i[x]
∣∣Si) is zero in the boundary regionx ∈ (x

(−)
i , x

(+)
i ),

so we have

Ex(1)∼q(1) [1{L̂(h′i[x(1)]
∣∣Si) 6= 0}] =

∫ x
(−)
i

−∞
1× q(1)(x)dx

+

∫ ∞

x
(+)
i

1× q(1)(x)dx. (5.10)

From Equation 5.10, we note thatEx(1)∼q(1) [1{L̂(h′i[x(1)]
∣∣Si) 6= 0}] is equivalent to the

area under the curve of density functionq(1) outside the boundary region. Therefore, we

can write it as

Ex(1)∼q(1) [1{L̂(h′i[x(1)]
∣∣Si) 6= 0}] = 1−

∫ x
(+)
i

x
(−)
i

q(1)(x)dx. (5.11)

Similarly,

Ex(2)∼q(2) [1{L̂(h′i[x(2)]
∣∣Si) 6= 0}] = 1−

∫ x
(+)
i

x
(−)
i

q(2)(x)dx. (5.12)

Therefore, to show thatEx(1)∼q(1) [1{L̂(h′i[x(1)]
∣∣Si) 6= 0}] < Ex(2)∼q(2) [1{L̂(h′i[x(2)]

∣∣Si)

6= 0}], we have to show that the area under the curve in the boundary region forq(1) is

greater than the one forq(2).

The area under the curve in the boundary region is the probability that a random

variableX ∈ X is inside the boundary region,i.e., P
(
x
(−)
i < X < x

(−)
i

)
.

First we compareN (x
(b)
i , σ2

min) with all the distributionsN (x
(b)
i , σ2), whereσ >

σmin (see Figure 5.4). Then we compareN (x
(b)
i , σ2) with all the distributionsN (x

(b)
i +

η, σ2), whereη 6= 0. Finally, we extend the comparison betweenN (x
(b)
i , σ2

min) and all

the distributionsN (x
(b)
i + η, σ2), whereη 6= 0 andσ > σmin.

Random variablesX(1) andX(3) have distributionsN (x
(b)
i , σ2

min) andN (x
(b)
i , σ2)

respectively. We show that the instancex(1) ∼ N (x
(b)
i , σ2

min) has higher probability of
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Figure 5.4: Normal distributionsN (x
(b)
i , σ2

min) andN (x
(b)
i , σ2).

being inside the boundary region than the instancex(3) ∼ N (x
(b)
i , σ2). Probability of

x(1) ∼ N (x
(b)
i , σ2

min) being inside the boundary region is

P

(
x
(−)
i < X(1) < x

(+)
i

)
= Φ(

x
(+)
i − x

(b)
i√

σ2
min

)− Φ(
x
(−)
i − x

(b)
i√

σ2
min

), (5.13)

whereΦ(.) is the standard normal cumulative probability function.

Similarly, probability ofx(3) ∼ N (x
(b)
i , σ2) being inside the boundary region is

P

(
x
(−)
i < X(3) < x

(+)
i

)
= Φ(

x
(+)
i − x

(b)
i√

σ2
)− Φ(

x
(−)
i − x

(b)
i√

σ2
). (5.14)

Sinceσmin < σ we have thatx
(+)
i −x

(b)
i√

σ2
<

x
(+)
i −x

(b)
i√

σ2
min

. Φ(.) is monotonically in-

creasing, which implies thatΦ(x
(+)
i −x

(b)
i√

σ2
) < Φ(

x
(+)
i −x

(b)
i√

σ2
min

). Similarly, Φ(x
(−)
i −x

(b)
i√

σ2
min

) <

Φ(
x
(−)
i −x

(b)
i√

σ2
). From Equations 5.13 and 5.14, we conclude that

P

(
x
(−)
i < X(1) < x

(+)
i

)
> P

(
x
(−)
i < X(3) < x

(+)
i

)
. (5.15)

We now show thatISAL selectsN (x
(b)
i , σ2) overN (x

(b)
i + η, σ2), whereη 6= 0.

Figure 5.5 shows two Gaussian distributions with the same variance but different means.

The figure shows that when we shift the distribution byη, the area under the curve that is

outside(x(−)
i , x

(+)
i ) grows faster than the area inside(x(−)

i , x
(+)
i ) due to the exponential

nature of Gaussian density function. This implies that the area under the curve in the
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Figure 5.5: Normal distributionsN (x
(b)
i , σ2) andN (x

(b)
i + η, σ2).

boundary region forN (x
(b)
i , σ2) is higher than the one forN (x

(b)
i + η, σ2), i.e., for

x(2) ∼ N (x
(b)
i + η, σ2) andx(3) ∼ N (x

(b)
i , σ2), we conclude that

P

(
x
(−)
i < X(3) < x

(+)
i

)
> P

(
x
(−)
i < X(2) < x

(+)
i

)
. (5.16)

By combining Equations 5.15 and 5.16, we conclude that forx(1) ∼ N (x
(b)
i , σ2

min)

andx(2) ∼ N (x
(b)
i + η, σ2), P

(
x
(−)
i < X(1) < x

(+)
i

)
> P

(
x
(−)
i < X(2) < x

(+)
i

)
.

Consequently,

Ex(1)∼q(1) [1{L̂(h′i[x(1)]
∣∣Si) 6= 0}] < Ex(2)∼q(2) [1{L̂(h′i[x(2)]

∣∣Si) 6= 0}]. (5.17)

This implies thatISALalgorithm will selectq(1) overq(2). Consequently,xi will be

drawn fromq(1) rather thanq(2). If the label of drawn instancexi, yi, is+1 then we update

x
(+)
i+1 = xi andx(−)

i+1 = x
(−)
i . Otherwise,x(−)

i+1 = xi andx(+)
i+1 = x

(+)
i . We continue this

process until the size of the boundary region is less thanǫ. Note thatσmin = 0 implies

thatq(x) is a delta function, thus the importance weightp(x)
q(x) is always zero. To avoid this

situationISALassumes thatσmin > 0.

5.2.1.1 Convergence Rate ofISAL on One-Dimensional Data

We are interested in bounding the number of iterationsn required to shrink the size of

the boundary region from its initial sizeb1 = x
(+)
1 − x

(−)
1 to less thanǫ > 0. At iteration

i+ 1, the size of the boundary region is a function ofZi = (Xi, Yi), i.e.,
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Figure 5.6: Change in the size of the boundary region from iteration i to i+ 1. (i) when
xi is outside of the boundary region, (ii) whenxi is inside the boundary region and is
positive, (iii) whenxi is inside the boundary region and is negative.

B(Zi) =





x
(+)
i − x

(−)
i if Xi ≤ x

(−)
i or Xi ≥ x

(+)
i

Xi − x
(−)
i if x

(−)
i < Xi < x

(+)
i , Yi = +1

x
(+)
i −Xi if x

(−)
i < Xi < x

(+)
i , Yi = −1.

(5.18)

Figure 5.6 shows three different draws at iterationi, which are related to three cases of

Equation 5.18. For example, in Figure 5.6(i)xi is outside of the interval(x(−)
i , x

(+)
i )

so the boundary region does not change for the next iteration, i.e., x(−)
i+1 = x

(−)
i and

x
(+)
i+1 = x

(+)
i . However, in Figure 5.6(ii),xi is inside the boundary region and is positive,

therefore,x(+)
i+1 will be updated tox(+)

i+1 = xi. In addition, in Figure 5.6(iii)xi is inside

the boundary region and is negative, thus,x
(−)
i+1 will be updated tox(−)

i+1 = xi.

The boundary region at iterationi+ 1, (x(−)
i+1, x

(+)
i+1), is a function ofZi and depends

on the previous boundary region(x(−)
i , x

(+)
i ). Similarly, (x(−)

i , x
(+)
i ) is a function of

Zi−1. Therefore,Zi andZi−1 are dependent. In the same way,Zi−1 depends onZi−2

and so on. Therefore,Z1, . . . , Zi are dependent random variables.

Lemma 3. Let X ⊆ R, Y = {−1,+1}, Z = X × Y. Assume allx ∈ X can be

perfectly classified by some hypothesis inH. At iterationi of ISAL, let(x(−)
i , x

(+)
i ) be the

boundary region, wherex(−)
i andx(+)

i are defined in definition 3 andbi = x
(+)
i − x

(−)
i .

Letqi = N (x
(b)
i , σ2

i ) be the density of the distribution forXi ∈ X . LetB(Zi) be the size

of the boundary region at iterationi+ 1, as defined in Equation 5.18.

Then the expected reduction in size of the boundary region atiteration i + 1, given

the previous boundary regions, is

E

[
B(Zi)

bi

∣∣∣Z1, . . . , Zi−1

]
≤ 1

2
+ Φ(

−1
2σu

) +

√
2σu√
π

(1− e
−1

8σ2
u ), (5.19)

whereΦ is the normal cumulative probability function andσu = σi

bi
.
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Proof. Let r(X1, Y1) =
B(X1,Y1)

b1
. By definition,

E

[
r(X1, Y1)|x(−)

1 , x
(+)
1

]
=

∫ ∞

−∞
q1(x|x(−)

1 , x
(+)
1 )

∑

y∈{−1,+1}
P (y|x)r(x, y|x(−)

1 , x
(+)
1 )dx.

(5.20)

We know thatP (Y1 = +1|X1 ≥ x
(+)
1 ) = 1 andr(X1, Y1|x(−)

1 , x
(+)
1 ,X1 ≥ x

(+)
1 ) =

1. In additionP (Y1 = −1|X1 ≤ x
(−)
1 ) = 1 andr(X1, Y1|x(−)

1 , x
(+)
1 ,X1 ≤ x

(−)
1 ) = 1.

Therefore,

E

[
r(X1, Y1)|x(−)

1 , x
(+)
1

]
=

∫ x
(−)
1

−∞
r(x, y|x(−)

1 , x
(+)
1 )q1(x|x(−)

1 , x
(+)
1 )dx

+

∫ ∞

x
(+)
1

r(x, y|x(−)
1 , x

(+)
1 )q1(x|x(−)

1 , x
(+)
1 )dx

+

∫ x
(+)
1

x
(−)
1

∑

y∈{−1,+1}
P (y|x)r(x, y|x(−)

1 , x
(+)
1 )q1(x|x(−)

1 , x
(+)
1 )dx

(5.21)

=2Φ(
x
(−)
1 − x

(b)
1

σ1
)

+

∫ x
(+)
1

x
(−)
1

∑

y∈{−1,+1}
P (y|x)r(x, y|x(−)

1 , x
(+)
1 )q1(x|x(−)

1 , x
(+)
1 )dx

(5.22)

=2Φ(
x
(−)
1 − x

(b)
1

σ1
)

+

∫ x
(b)
1

x
(−)
1

∑

y∈{−1,+1}
P (y|x)B(x, y|x(−)

1 , x
(+)
1 )

b1
q1(x|x(−)

1 , x
(+)
1 )dx

+

∫ x
(+)
1

x
(b)
1

∑

y∈{−1,+1}
P (y|x)B(x, y|x(−)

1 , x
(+)
1 )

b1
q1(x|x(−)

1 , x
(+)
1 )dx

(5.23)

≤2Φ(x
(−)
1 − x

(b)
1

σ1
)

+
1

b1

∫ x
(b)
1

x
(−)
1

(x
(+)
1 − x)q1(x|x(−)

1 , x
(+)
1 )dx

+
1

b1

∫ x
(+)
1

x
(b)
1

(x− x
(−)
1 )q1(x|x(−)

1 , x
(+)
1 )dx. (5.24)

Note that the last inequality is obtained by knowing thatB(X1, Y1|x(−)
1 , x

(+)
1 ) ≤
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x
(+)
1 − X1, for x(−)

1 < X1 < x
(b)
1 and,B(X1, Y1|x(−)

1 , x
(+)
1 ) ≤ X1 − x

(−)
1 for x(b)1 <

X1 < x
(+)
1 .

Throughout this proof, we assume thatx
(−)
1 andx(+)

1 are given and suppress them

when it is clear from the context. We also useZ1 = (X1, Y1).

Now we compute the integrals in the right side of Equation 5.24 as

∫ x
(b)
1

x
(−)
1

(x
(+)
1 − x)q1(x)dx =

∫ x
(b)
1

x
(−)
1

(x
(+)
1 − x)

1√
2πσ1

e
− (x−x

(b)
1

)2

2σ2
1 dx. (5.25)

Using a change of variableu =
x−x

(b)
1

x
(+)
1 −x

(−)
1

, σu = σ1

x
(+)
1 −x

(−)
1

= σ1
b1

(knowing that

b1 = x
(+)
1 − x

(−)
1 ), we have

∫ x
(b)
1

x
(−)
1

(x
(+)
1 − x)q1(x)dx =

b1√
2πσu

∫ 0

−0.5
(0.5 − u)e

− u2

2σ2
u du (5.26)

=
b1√
2πσu

(√
2πσu
2

(
1

2
− Φ(

−1
2σu

))− σ2
ue

−1

8σ2
u + σ2

u

)

(5.27)

= b1


1

4
− 1

2
Φ(
−1
2σu

) +
σu(1− e

−1

8σ2
u )√

2π


 . (5.28)

Similarly,

∫ x
(+)
1

x
(b)
1

(x− x
(−)
1 )q1(x)dx = b1


1

4
− 1

2
Φ(
−1
2σu

) +
σu(1− e

−1

8σ2
u )√

2π


 . (5.29)

Therefore, Equation 5.24 can be written as

E [r(Z1)] ≤ 2Φ(
−1
2σu

) + 2


1

4
− 1

2
Φ(
−1
2σu

) +
σu(1− e

−1

8σ2
u )√

2π




=
1

2
+ Φ(

−1
2σu

) +

√
2√
π
σu(1− e

−1

8σ2
u ), (5.30)

whereσu = σ1
b1

andb1 = x
(+)
1 − x

(−)
1 .

In other words,

E

[
B(Z1)

b1

]
≤ 1

2
+ Φ(

−1
2σu

) +

√
2√
π
σu(1− e

−1

8σ2
u ). (5.31)
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Figure 5.7: Upper bound for the expected reduction in size ofboundary region versus the
variance of sampling distribution.

Figure 5.7 shows the value of12 +Φ( −1
2σu

) +
√
2√
π
σu(1− e

−1

8σ2
u ) versusσu. Asσu gets

smaller, the upper bound gets closer to1
2 . For example, ifσu < 1

2 , i.e., the standard

deviation ofq1 is less than half the boundary size, thenE

[
B(Z1)
b1

]
< 0.82.

We also have

lim
σu→∞

(
1

2
+ Φ(

−1
2σu

) +

√
2√
π
σu(1− e

−1

8σ2
u )

)
= 1, (5.32)

lim
σu→0

(
1

2
+ Φ(

−1
2σu

) +

√
2√
π
σu(1− e

−1

8σ2
u )

)
=

1

2
. (5.33)

As

(
1
2 +Φ( −1

2σu
) +

√
2√
π
σu(1− e

−1

8σ2
u )

)
is a monotonically increasing function ofσu,

from Equations 5.31 and 5.32 we get, for anyσu > 0, E
[
B(Z1)
b1

]
< 1.

In general, at iterationi of ISAL, z1, . . . , zi−1 were drawn in the previous iterations

andx(−)
i andx(+)

i are now known.

The upper bound forE [B(Zi)|Z1, . . . , Zi−1] is computed as

E [B(Zi)|Z1, . . . , Zi−1] ≤biΦ(
x
(−)
i − x

(b)
i

σi
) +

∫ x
(b)
i

x
(−)
i

(x
(+)
i − x)qi(x|z1, . . . , zi−1)dx
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+

∫ x
(+)
i

x
(b)
i

(x− x
(−)
i )qi(x|z1, . . . , zi−1)dx+ bi(1− Φ(

x
(+)
i − x

(b)
i

σi
)).

(5.34)

After computing the integrals in the right side of Equation 5.34, we get

E

[
B(Zi)

bi

∣∣∣Z1, . . . , Zi−1

]
≤ 1

2
+ Φ(

−1
2σu

) +

√
2√
π
σu(1− e

−1

8σ2
u ), (5.35)

whereσu = σi

bi
.

To have the same upper bound forE

[
B(Zi−1)
bi−1

∣∣∣Z1, . . . , Zi−2

]
andE

[
B(Zi)
bi

∣∣∣Z1, . . . ,

Zi−1

]
, for i = 1, . . . , n, we make the following assumption:

Assumption 1. At thei-th iteration of ISAL, we assume thatσi

bi
≤ σup, whereσup ∈ R

+,

σi is the standard deviation of the sampling distribution andbi is the size of the boundary

region.

Theorem 2. LetZ = X × Y whereX ⊆ R, Y = {−1,+1} and assume that Assump-

tion 1 holds, and that allx ∈ X can be perfectly classified by some hypothesis inH.

Let (Z1(p1), . . . , Zn(pn)) be a parametric class of random variables with the property

thatZi ∼ pi. At iterationi of ISAL, let(x(−)
i , x

(+)
i ) be the boundary region, wherex(−)

i

and x
(+)
i are defined in Definition 3. Fix anǫ ∈ R

+ and assumex(−)
1 and x

(+)
1 are

given. Then the expected number of iterations required by ISAL to reduce the size of the

boundary region to less thanǫ isO(log 1
ǫ ).

Proof. B(Zn−1) is the size of boundary region at iterationn as defined in Equation 5.18.

The expected size of boundary region at iterationn can be written as

E [B(Zn−1)] = b1E

[
B(Z1)

b1

B(Z2)

B(Z1)
. . .

B(Zn−1)

B(Zn−2)

]
(5.36)

= b1

∫

z1

p1(z1)E

[
B(Z1)

b1

B(Z2)

B(Z1)
. . .

B(Zn−1)

B(Zn−2)

∣∣∣Z1 = z1

]
dz1 (5.37)

= b1

∫

z1

p1(z1) . . .

∫

zn−2

pn−2(zn−2|z1, . . . , zn−3)×

E

[
B(Z1)

b1

B(Z2)

B(Z1)
. . .

B(Zn−1)

B(Zn−2)

∣∣∣Z1 = z1, . . . , Zn−2 = zn−2

]
dzn−2 . . . dz1.

(5.38)

B(Z1)
b1

B(Z2)
B(Z1)

. . . B(Zn−2)
B(Zn−3)

can be pulled out of the conditional expectation as
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E [B(Zn−1)] =b1

∫

z1

p1(z1) . . .

∫

zn−2

pn−2(zn−2|z1, . . . , zn−3)
B(z1)

b1
. . .

B(zn−2)

B(zn−3)
×

E

[
B(Zn−1)

B(Zn−2)

∣∣∣Z1 = z1, . . . , Zn−2 = zn−2

]
dzn−2 . . . dz1. (5.39)

From lemma 3 and assumption 1, we have (note thatB(zn−2) = bn−1)

E

[
B(Zn−1)

B(Zn−2)

∣∣∣Z1 = z1, . . . , Zn−2 = zn−2

]
≤ 1

2
+ Φ(

−1
2σup

) +

√
2σup√
π

(1− e
−1

8σ2
up ).

Letαup =
1
2 +Φ( −1

2σup
) +

√
2σup√
π

(1− e
−1

8σ2
up ), which means12 < αup < 1. Therefore,

E [B(Zn−1)] ≤ b1

∫

z1

p1(z1) . . .

∫

zn−2

pn−2(zn−2|z1, . . . , zn−3)×

B(z1)

b1

B(z2)

B(z1)
. . .

B(zn−2)

B(zn−3)
αup dzn−2 . . . dz1. (5.40)

Note thatB(z1)
b1

B(z2)
B(z1)

. . . B(zn−3)
B(zn−4)

can be pulled out of the last integral overzn−2 as:

E [B(Zn−1)] ≤ αupb1

∫

z1

p1(z1) . . .

∫

zn−3

pn−3(zn−3|z1, . . . , zn−4)
B(z1)

b1
. . .

B(zn−3)

B(zn−4)

×
∫

zn−2

pn−2(zn−2|z1, . . . , zn−3)
B(zn−2)

B(zn−3)
dzn−2 . . . dz1.

(5.41)

By definition,

E

[
B(Zn−2)

B(zn−3)

∣∣∣Z1 = z1, ..., Zn−3 = zn−3

]
=

∫

zn−2

pn−2(zn−2|z1, ..., zn−3)
B(zn−2)

B(zn−3)
dzn−2.

Therefore, the above equation can be written as:

E [B(Zn−1)] ≤ αupb1

∫

z1

p1(z1) . . .

∫

zn−3

pn−3(zn−3|z1, . . . , zn−4)
B(z1)

b1
. . .

B(zn−3)

B(zn−4)

× E

[
B(Zn−2)

B(zn−3)

∣∣∣Z1 = z1, . . . , Zn−3 = zn−3

]
dzn−3 . . . dz1.

(5.42)

Again from lemma 3 and assumption 1, we have

E

[
B(Zn−2)

B(zn−3)

∣∣∣Z1 = z1, . . . , Zn−3 = zn−3

]
≤ αup,
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whereB(zn−2) = bn−1. Therefore,

E [B(Zn−1)] ≤α2
up b1

∫

z1

p1(z1)...

∫

zn−3

pn−3(zn−3|z1, ..., zn−4)×

B(z1)

b1
...
B(zn−3)

B(zn−4)
dzn−3...dz1. (5.43)

This process continues until we get to

E [B(Zn−1)] ≤ αn
up b1. (5.44)

To guaranteeE [B(Zn−1)] ≤ ǫ, we use its upper bound as

αn
up b1 ≤ ǫ (5.45)

αn
up ≥

ǫ

b1
(5.46)

n ≥ logαup

1

b1
+ logαup

ǫ. (5.47)

Therefore, for a given12 < αup < 1, the expected number of iterations required to

obtain a boundary size ofǫ is logαup
ǫ + logαup

1
b1

, which is equivalent tolog 1
αup

1
ǫ +

log 1
αup

b1, so can be written asO(log 1
ǫ ).

Equation 5.47 shows that the convergence rate ofISAL is logαup
ǫ, assuming that

b1 = 1. To have convergence rate faster than passive learning, we needlogαup
ǫ < 1

ǫ . In

other words,αup should be less thanǫǫ. For example, whenǫ = 0.01 thenαup should be

less than0.955, which requiresσup ≤ 2 (see Figure 5.7).

5.2.1.2 Analysis ofISAL When the Sampling Distribution Partially Overlaps With
Decision Boundary

In the scenario that the sampling distribution is not centered in the middle of the boundary

region (e.g., dashed curve in Figure 5.5),E [r(Zi)|Z1, . . . , Zi−1] is computed as

E [r(Zi)|Z1, . . . , Zi−1] =P

(
Xi ≤ x

(−)
i

)
× 1 + P

(
Xi ≥ x

(+)
i

)
× 1

+ P

(
x
(−)
i < Xi < x

(+)
i

)
× αi, (5.48)

wherer(Zi) =
B(Zi)
bi

and 1
2 < αi < 1. Recall that the size of the boundary region does

not change whenXi ≤ x
(−)
i orXi ≥ x

(+)
i . If the sampling distributionqi has the property
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thatqi(x) 6= 0 for all x ∈ X (e.g., Gaussian distribution), thenP
(
x
(−)
i < Xi < x

(+)
i

)
>

c for some constantc > 0. Consequently,

E [r(Zi)|Z1, . . . , Zi−1] < 1. (5.49)

The above equation means if the sampling distributionqi is not centered in the middle

of the boundary region, the expected size of the boundary region at iterationi+ 1 is less

than its size at iterationi. This characteristic of the algorithm implies that it converges to

the optimal classifier even if the exact location of the boundary region is not known.

From Equation 5.34,E [r(Zi)|Z1, . . . , Zi−1] givenqi = N (µi, σ
2
i ), is

E [r(Zi)|Z1, . . . , Zi−1] ≤Φ(
x
(−)
i − µi

σi
) +

∫ x
(b)
i

x
(−)
i

(x
(+)
i − x)qi(x|z1, . . . , zi−1)dx

+

∫ x
(+)
i

x
(b)
i

(x− x
(−)
i )qi(x|z1, . . . , zi−1)dx+ 1− Φ(

x
(+)
i − µi

σi
)

(5.50)

=1 +
σ2
i√
2π

(
2e

− (x
(b)
i

−µi)
2

2σ2
i − e

− (x
(+)
i

−µi)
2

2σ2
i − e

− (x
(−)
i

−µi)
2

2σ2
i

)

+Φ(
x
(+)
i − µi

σi
)(µi − x

(−)
i − 1)

+ Φ(
x
(−)
i − µi

σi
)(µi − x

(+)
i + 1)

+ Φ(
x
(b)
i − µi

σi
)(−2µi + x

(+)
i + x

(−)
i ). (5.51)

Note that the right side of Equation 5.51 depends onx
(+)
i , x(−)

i , µi, σi; moreover,

unlike Equation 5.34, it can not be simplified further. To ensure a convergence rate faster

than passive learning, the right side of Equation 5.51 has tobe less thanǫǫ. Givenx(+)
i ,

x
(−)
i , µi, σi, one has to compute the value ofαi and verify that it is less thanǫǫ.

If we normalize the data such thatx(−)
i = −0.5, x(+)

i = 0.5, andµu andσu are the

normalized versions ofµi andσi respectively, then Equation 5.51 can be written as

E [r(Zi)|Z1, . . . , Zi−1] ≤1 +
σ2
u√
2π

(
2e

− µ2u
2σ2

u − e
− (0.5−µu)2

2σ2
u − e

− (−0.5−µu)2

2σ2
u

)

+Φ(
0.5− µu

σu
)(µu − 0.5)

+ Φ(
−0.5− µu

σu
)(µu + 0.5)

+ Φ(
−µu

σu
)(−2µu). (5.52)
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Figure 5.8: Upper bound forE [r(Zi)|Z1, . . . , Zi−1] when the sampling distribution is
N (µu, σ

2
u) and the data is normalized such that the middle of boundary region is the

origin.

Figure 5.8 shows the upper bound forE [r(Zi)|Z1, . . . , Zi−1] versusµu for three values

of σu. For example,µu = 0 is the case where the distribution is centered in the middle of

the boundary region. Asµu moves further away from the middle of the boundary region,

E [r(Zi)|Z1, . . . , Zi−1] gets closer to1. Similar to the previous section, to obtain a faster

convergence rate forISAL whereǫ = 0.01, E [r(Zi)|Z1, . . . , Zi−1] should be less than

0.955 in each iteration. For example,σu = 0.1 and0 ≤ µu ≤ 0.5 satisfy this condition;

see Figure 5.8.

5.2.2 Analysis ofISAL on Realizable Multi-Dimensional Data

In this section, we consider a commonly studied setting in the active learning litera-

ture [30] [28] [69], as described in Assumption 2.

Assumption 2. Instances are located uniformly on a unit ball inRd. Here the Bayes

classifier is a linear separatorhBayes with parameterwBayes that goes through the origin

(e.g., dashed line in Figure 5.9).

In this analysis we consider the margin-based classifiers with linear separators. In

margin-based classification, the optimization problem is

maximize b
subject to wT · xjyj ≥ b, j = 1, . . . , i,

||w|| = 1,
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Figure 5.9: Two dimensional data with a margin-based classifier. ISAL samples from a
distribution that has more weight inside the margin.

wherew is the parameter of the linear separator andb is the margin parameter [36].

Definition 4. Let H be the class of real measurable functions onX . For α > 0, a

sequence(x1, . . . , xm) ∈ Xm is said to beα-shattered byH if there is an(r1, . . . , rm) ∈
R
m such that for each(y1, . . . , ym) ∈ {−1, 1}m, there is a functionh ∈ H satisfying for

all i = 1, . . . ,m,

h(xi) ≥ ri + α if yi = 1,

h(xi) ≤ ri − α if yi = −1.

Thefat shattering dimension ofH at scaleα, denoted byfatα(H), is the size of a

largestα-shattered set [70].

Intuitively, the fat shattering dimension is the size of thelargest set that can be shat-

tered with a functionh ∈ H, while leaving a margin of errorα, i.e., in all cases, all

points are outside the margin. Figure 5.10 shows 3 points that areα-shattered by a linear

classifier.

The sample complexity of PAC learning has a general lower bound of Ω(V C(H)
ǫ +

1
ǫ log

1
δ ), whereV C(H) is the VC dimension ofH [71]. The VC dimension of class of
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Figure 5.10: 3 points that areα-shattered by linear classifiers

hypothesesH over instance spaceX is the cardinality of largest set of points that can be

shattered byH (corresponding toα = 0 in definition 4). Under Assumption 2, the sample

complexity of PAC learning has a lower bound of

n = Ω(
1

ǫ
(d+ log

1

δ
)) (5.53)

since the VC dimension of homogeneous half spaces on a unit ball in R
d is d [68]. We

consider a realizable case whereP (wBayes · xy ≤ 0) = 0, wherewBayes is the param-

eter of the Bayes classifier, which is linear under assumption 2. At iterationi, h∗i is

the linear classifier that is consistent with the labeled setSi. By standard VC bounds

(Equation 5.53), a sample size of̃O(2id) is required to ensureL(h∗i ) ≤ 1
2i

(with high

probability); this implies thatÕ(2id) new labeled instances should be added to ensure

thatL(h∗i ) is halved [28]. The goal is to show that we can set the margin parameterbi

such that only a fraction of̃O(2id) instances require a label from the oracle.

Balcanet al. [28] showed that, for the above settings and margin-based classifiers,

active learning can obtain an exponential convergence rateif instances are queried inside

1 the margin. They proved that there exists a constantC such that, for anyǫ, δ > 0, and the

margin parameterbi = π
2i−1 at iterationi, if the active learner samplesCd

1
2 (d ln d+ln i

δ )

instances inside the margin, then with probability of at least1−δ, after
⌈
log2

1
ǫ

⌉
iterations,

it can find a classifier with error of at mostǫ. In other words, they showed that at iteration

1Forx inside the margin we have|w∗
i · x| ≤ bi.
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i, with the margin parameters ofbi = O(2−i), active learning obtains a convergence

rate ofÕ(d
3
2 log 1

ǫ ). Consequently, they used a rejection sampling strategy to reject the

instances outside the margin, and only request the label forinstances inside the margin.

Theorem 3. Let qi = N (µi,Σi), whereµi is on the linear separator andΣi is such that

more than half theqi’s weight is inside the margin. There exists a constant C suchthat, for

anyǫ, δ > 0, if rmaxCd
1
2 (d ln d+ln i

δ ) instances are drawn fromqi at i-th iteration, with

margin parameterbi = π
2i−1 , then with probability of at least1 − δ, aftern =

⌈
log2

1
ǫ

⌉

iterations, we obtain a classifierh∗n = argminh∈H L̂(h|Sn) with error of at mostǫ.

Proof. We actively sample the instances from the distributionqi, whose weight inside

the margin is more than half. Therefore, the instances drawnare more likely (with prob-

ability of ζ > 1
2 ) to be inside the margin. Asymptotically, if we samplen instances,

thennζ of them will be inside the margin. Based on the results by Balcan et al. [28]

(Theorem 1), we know that, for margin-based classifiers, if at i-th iteration for some

constantC ′ > 0, C ′d
1
2 (d ln d + ln i

δ ) instances are drawn inside the margin, then with

probability at least1 − δ, we find a classifier with the (expected) error of at mostǫ.

By using the weighted loss function of definition 2 with the maximum weight ofrmax,
rmaxC′

ζ d
1
2 (d ln d+ln i

δ ) < 2rmaxC
′d

1
2 (d ln d+ln i

δ ) = rmaxCd
1
2 (d ln d+ln i

δ ) instances

are required ini-th iteration, whereC = 2C ′.

Corollary 1. There exits a constant C such that, for anyǫ, δ > 0, using ISAL algorithm

with margin parameterbi = π
21+(i−1)β at iteration i, whereβ = log2(1 + 1

d
√
d
), after

n = rmaxC(
⌈
log2

1
ǫ

⌉
)d

1
2 (d ln d+ ln

⌈log2 1
ǫ ⌉

δ ) iterations, ISAL returns a classifier whose

error is at mostǫ, with probability at least1− δ.

Proof. Given that the data is uniformly distributed over a unit ballin R
d, the error rate of

any linear classifierh, which passes through the origin, isL(h) =
θ(h,hBayes)

π , where

θ(h, hBayes) is the angle betweenh and hBayes. Therefore,L(h∗i ) ≤ 2−m implies

||w∗
i − wBayes||2 ≤ 2−mπ, wherem > 0 andw∗

i andwBayes are the parameter of

h∗i andhBayes respectively. Consequently, bothh∗i andhBayes predict the same label for

instances whenever|w∗
i ·x| ≥ 2−mπ. As we mentioned before, the probability of an arbi-

traryx ∈ X such that|w∗
i · x| ≤ 2−mπ is Õ(2−m

√
d), because ford > 1, the projection

of uniform random variables in the unit ball onto one-dimension can be approximated by

a Gaussian distribution with variance1d [28]. If in the i-th iteration, we setbi = O(2−m)

and drawÕ( 2
m√
d
) instances, then onlỹO(1) of the new instances have|w∗

i · x| ≤ 2−mπ,
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i.e., require the label from an oracle. Then the error ofh∗i+1 isL(h∗i+1) <
1

2m(1+ 1
d
√
d
)
. Let

β = log2(1+
1

d
√
d
), thenL(h∗i+1) ≤ 2−(m+β), i.e., the error ofh∗i+1 is reduced by a factor

of 2−β = 1
1+ 1

d
√

d

from the error ofh∗i . Similarly,L(h∗i+2) ≤ 2−(m+2β). Similar to Theo-

rem 3, for some constantC ′ > 0, after rmaxC′

ζ d
1
2 (d ln d+ln

⌈log2 1
ǫ⌉

δ ) iterations,L(h∗i ) is

at least halved. This implies that a total ofn = 1
ζ

∑⌈log2 1
ǫ ⌉

i=1 rmaxC
′d

1
2 (d ln d+ln i

δ ) iter-

ations ofISAL is sufficient to find a classifier with the error of at mostǫ, with probability

of at least1− δ. We can boundn as

n =
1

ζ

⌈log2 1
ǫ⌉∑

i=1

rmaxC
′d

1
2 (d ln d+ ln

i

δ
) <

rmaxC
′

ζ
(⌈log2

1

ǫ
⌉)d 1

2 (d ln d+ ln

⌈
log2

1
ǫ

⌉

δ
)

(5.54)

< 2rmaxC
′(⌈log2

1

ǫ
⌉)d 1

2 (d ln d+ ln

⌈
log2

1
ǫ

⌉

δ
)

(5.55)

= rmaxC(⌈log2
1

ǫ
⌉)d 1

2 (d ln d+ ln

⌈
log2

1
ǫ

⌉

δ
)

(5.56)

Ford ≥ 4, a faster convergence rate forISALcan be achieved as:

Theorem 4. Let qi = N (µi,Σi), whereµi is on the linear separator andΣi is such that

more than half theqi’s weight is inside the margin. There exists a constant C suchthat,

for anyd ≥ 4 and anyδ > 0, 0 < ǫ < 1/4, if rmaxC
√
ln(1 + i)(d ln(1 + ln i) + ln( iδ ))

instances are drawn fromqi at i-th iteration, with margin parameterbi = 21−iπd−1/2

√
5 + ln(1 + i), then with probability of at least1− δ, aftern =

⌈
log2

1
ǫ

⌉
−2 iterations,

we obtain a classifierh∗n = argminh∈H L̂(h|Sn) with error of at mostǫ.

Proof. We actively sample the instances from the distributionqi, whose weight inside the

margin is more than half. Therefore, the drawn instances aremore likely (with probability

of ζ > 1
2 ) to be inside the margin. Asymptotically, if we samplen instances, thennζ of

them will be inside the margin. Based on the results by Balcanet al. [28] (Theorem 2),

we know that for margin-based classifiers, if ati-th iteration for some constantC ′ > 0,

C ′√ln(1 + i)
(
d ln(1 + ln i) + ln( iδ )

)
instances are drawn inside the margin, then with

probability at least1− δ, we find a classifier with the error of at mostǫ.

By using the weighted loss function of definition 2 with the maximum weight of

rmax, rmaxC′

ζ

√
ln(1 + i)

(
d ln(1 + ln i) + ln( iδ )

)
≤ 2rmaxC

′√ln(1 + i)(d ln(1 + ln i)
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+ ln( iδ )) = rmaxC
√
ln(1 + i)(d ln(1 + ln i) + ln( iδ )) instances are required ini-th iter-

ation, whereC = 2C ′.

Corollary 2. There exits a constant C such that ford ≥ 4 and anyǫ, δ > 0, ǫ <

1/4, using ISAL algorithm with margin parameterbi = 21−iπd−1/2
√

5 + ln(1 + i) at

iteration i, after

n = rmaxC

(⌈
log2

1

ǫ

⌉
− 2

)√
ln

(
⌈log2

1

ǫ
⌉ − 1

)

×
[
d ln

(
1 + ln

(
⌈log2

1

ǫ
⌉ − 2

))
+ ln

(⌈
log2

1
ǫ

⌉
− 2

δ

)]

(5.57)

iterations, ISAL returns a classifier whose error is at mostǫ, with probability at least

1− δ.

5.2.3 General Version of the Algorithm (ISALg)

ISALalgorithm of Figure 5.2 can be generalized by replacing (line 3)argminq∈QEx∼q

[1{L̂i−1 (h′i−1[x, h
∗
i−1(x)]

∣∣Si−1) 6= 0}] with argminq∈QEx∼q[L̂i−1(h
′
i−1[x, h

∗
i−1(x)]

∣∣

Si−1)] as it might be impossible to havêLi−1(h
′
i−1[x, h

∗
i−1(x)]

∣∣Si−1) = 0 in the pres-

ence of label noise. This leads to the generalized version ofthe algorithm,ISALg; see

Figure 5.11.

In this section, we analyze the performance ofISALg on perfectly separable one-

dimensional data of Section 5.2.1 and in Section 5.2.4 we discuss the non-realizable case.

For a distributionq ∈ Q, we have that

E

[
L̂(h′i[x]

∣∣Si)
]
=

∫ ∞

−∞
L̂(h′i[x]

∣∣Si)q(x)dx. (5.58)

SinceL̂(h′i[x]
∣∣Si) is zero inside the boundary region(x(−)

i , x
(+)
i ), we have that

E

[
L̂(h′i[x]

∣∣Si)
]
=

∫ x(−)

−∞
L̂(h′i[x]

∣∣Si)q(x)dx

+

∫ ∞

x(+)

L̂(h′i[x]
∣∣Si)q(x)dx. (5.59)

Let q(1) ∈ Q beN (x
(b)
i , σ2

i ) (solid blue curve in Figure 5.13) andq(2) ∈ Q be

N (x
(b)
i + η, σ2

i ), whereη ∈ R (dashed red curve in Figure 5.13). Note thatL̂(h′i[x]
∣∣Si)

is a non-decreasing function in(x(+)
i ,∞) and is also non-increasing in(−∞, x

(−)
i ) (Fig-

ure 5.13).
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Algorithm 2 (General version of Importance Sampling Active Learning (ISALg)
algorithm )

Input :
p is the density for true distribution ofX .
H is the class of hypotheses.
n is the total number of iterations.

h′[x, y] = argminh∈H{L̂(h|Si) : h(x) 6= y}.
L̂(h|Si) is defined in Equation 5.3.
S0 = ∅.

1: for i = 1, . . . , n

2: if (i==1) thenq1 ← p

3: elsegenerateqi ← argminq Ex∼q

[
L̂i−1

(
h′
i−1[x, h

∗
i−1(x)]

∣∣Si−1

)]

4: xi ← Draw(qi(.)) % draw from distribution with densityqi
5: request the label forxi : yi
6: Si = Si−1 ∪ {[qi, xi, yi]}
7: h∗

i = argminh∈H L̂(h|Si)

8: end
9: returnh∗

n

Figure 5.11: General version of importance sampling activelearning (ISALg) algorithm.
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Figure 5.12: Normal distributionsN (x
(b)
i , σ2

i ) andN (x
(b)
i + η, σ2

i ) whenL̂(h′i[x]
∣∣Si) in

(x
(+)
i ,∞) region is similar to the one in(−∞, x

(−)
i ) region.
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Figure 5.13: Normal distributionsN (x
(b)
i , σ2

i ) andN (x
(b)
i + η, σ2

i ) whenL̂(h′i[x]
∣∣Si) is

greater in(x(+)
i ,∞) region compared to(−∞, x

(−)
i ) region.

Figure 5.12 shows an example for a scenario whereL̂(h′i[x]
∣∣Si) in the interval(x(+)

i ,

∞) is similar toL̂(h′i[x]
∣∣Si) in the interval(−∞, x

(−)
i ). Then the (solid) blue distribution

will haveE

[
L̂(h′i[x]

∣∣Si)
]

smaller than the (dashed) red distribution, since its area under

the curve outside the boundary region is smaller.

Now imagine a scenario where there are more positive instances in the training set

than negative instances. For example, in Figure 5.13, we have i = 6 instances in the

training set where four are positive, each corresponding toone step ofL̂(h′i[x]
∣∣Si) in

(x
(+)
i ,∞) region, and two negative instances corresponding to two steps of L̂(h′i[x]

∣∣Si)

in (−∞, x
(−)
i ) region. Figure 5.13 shows that̂L(h′i[x]

∣∣Si) in the interval(x(+)
i ,∞) is

much bigger than̂L(h′i[x]
∣∣Si) in the interval(−∞, x

(−)
i ). As a result, the (dashed) red

distribution will have smallerE
[
L̂(h′i[x]

∣∣Si)
]

than the (solid) blue distribution because

its area under the curve in the high error region of(x
(+)
i ,∞) is smaller.

This means that ifQ only containsq(1) and q(2), the next instance will be drawn

from the (dashed) red distribution,i.e., xi ∼ q(2). Consequently, it is more likely that

the new instance be drawn from(−∞, x
(b)
i ), which means that̂L(h′i[x]

∣∣Si) will increase

in the (−∞, x
(−)
i ) region (one step will be added tôL(h′i[x]

∣∣Si) in that region). For

example, the new instancexi in Figure 5.14 has added one step toL̂i+1(h
′
i+1[x]

∣∣Si+1) in

the(−∞, x
(b)
i+1) region. It also has updatedx(−)

i+1 to xi given thatyi = −1.

In summary,ISALg is balancing the empirical error ofh′ in both sides of boundary

region. Once the empirical error ofh′ in the left side of the boundary region is similar
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Figure 5.14: The instancexi has added one step tôLi+1(h
′
i+1[x]

∣∣Si+1) in the(−∞, x
(b)
i+1)

region in an attempt to balancêLi+1(h
′
i+1[x]

∣∣Si+1) in both sides of boundary region.

to the one on the right (at iterationj > i), then the distributionN (x
(b)
j , σ2

min), which is

centered in the middle of the boundary region, will haveminq∈QE

[
L̂j(h

′
j [x]
∣∣Sj)

]
and

will be chosen byISALg.

Note that the empirical error̂L(h′i[x]
∣∣Si) is a random variable with unknown den-

sity function. In addition,L̂(h′i[x]
∣∣Si) is a piecewise linear function (one example is

shown in Figure 5.14). Therefore, it is difficult to obtain a closed form formula for

E

[
L̂(h′i[x]

∣∣Si)
]
. However, the convergence rate ofISALgon perfectly separable data

is expected to beO(log 1
ǫ ) similar to ISAL.

5.2.4 Analysis ofISAL for Non-Realizable Case

Some of the recent works on active learning [20], [28], [72],[73] have considered the

Tsybakov noise condition [74] along the decision boundary.This condition, describes a

noise distribution using a detailed parameterization. A passive learning algorithm under

this condition can obtain a convergence rate of betweenO(1ǫ ) andO( 1
ǫ2 ) [28]. We assume

that the data instances are drawn uniformly from the unit ball in R
d, the Bayes classifier

hBayes is linear and the Bayes error is non-zero. Similar to the workby Balcanet al.[28],

we assume the following noise condition, where there existsa known parameterβ > 0

such that

PX

(∣∣P (Y = +1|X) − P (Y = −1|X)
∣∣ ≥ 4β

)
= 1. (5.60)
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This assumption implies [28] that forα′ = 0

L(h)− L(hBayes) ≥ βmin

(
1,

4θ(h, hBayes)

π

)1/(1−α′)

, (5.61)

whereθ(h, hBayes) is the angle between linear classifiersh andhBayes. We analyze a

more general case ofα′ ∈ [0, 1) whereα′ in Equation 5.61 characterizes the amount

of label noise in the data,i.e., how fastP (Y = +1|X = x) changes near the decision

boundary [75], thus the user has no control over it. Anα′ = 0 may happen when there

are few instances near the decision boundary, since in practice these instances are more

prone to label noise [72].

Figure 5.15 shows the importance sampling active learning algorithm for non-separable

case (ISALn). In each iteration ofISALn, mi instances are queried fromqi. The set

of labeled instancesSi are updated to only include themi new instances. Note that

h∗i is within the radiusρi of h∗i−1, i.e., h∗i = argminh∈diam(h∗
i−1,ρi)

{L̂(h|Si)}, where

diam(h, ρ) = {g ∈ H, x ∈ X |P (h(x) 6= g(x)) ≤ ρ} is the set of all hypothesesg ∈ H
whose probability of disagreement withh is less than someρ > 0.

Theorem 5. Let d ≥ 4. Assume there exists a hypothesishBayes such that Equa-

tion 5.61 holds. In each iteration of ISALn of Figure 5.15, let qi = N (µi,Σi), where

µi is on the linear separator andΣi is such that more than half theqi’s weight is in-

side the margin. There exists a constantC, such that for anyǫ, δ > 0, andǫ < β/8, if

mi = Crmaxǫ
−2
i (d + ln i

δ ) instances are drawn fromqi at iteration i of ISALn, where

rmax is defined in Definition 2,ǫi = 2−α′(i−1)−4 β/
√

5 + α′i ln 2− ln β + ln(1 + i),

bi = 2−(1−α′)iπd−1/2
√

5 + α′i ln 2− ln β + ln(2 + i), ρi = 2−(1−α′)i−2π for i > 1,

α′ ≥ 0, ρ1 = π, then, with probability of at least1− δ, aftern = ⌈log2(β/ǫ)⌉ iterations,

ISALn returns a classifier with error of at mostǫ.

Proof. The proof is similar to Theorem 3 in [28]. However,ISALnuses the weighted loss

function of Definition 2, thus, ati-th iteration for some constantC ′ > 0 andξ > 1/2,

it needsmi =
C′

ζ rmaxǫ
−2
i (d + ln i

δ ) ≤ 2C ′rmaxǫ
−2
i (d + ln i

δ ) = Crmaxǫ
−2
i (d + ln i

δ )

instances to obtainL(h∗i |U) − L(hBayes|U) ≤ 2ǫi√
π

, with probability1 − δ
(i+i2)

, where

U = {x ∈ X : |w∗
i−1 · x| ≤ bi−1}, w∗

i−1 is the parameter ofh∗i−1 andC = 2C ′.

Note thatISALnhas to query
∑n

i=1mi = O(rmaxǫ
−2α′

ln(1/ǫ)(d + ln(n/δ))) in-

stances inside the margin to achieve an error rate ofǫ. Therefore, forα′ = 0, active

learning can achieve exponential convergence rate, however, for α′ ∈ (0, 1), only a poly-

nomial improvement can be achieved over passive learning.
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Algorithm 3 (Importance Sampling Active Learning algorithm, non-separable case
(ISALn))

Input :
p is the density for true distribution ofX .
H is the class of hypotheses.
n is the total number of iterations.
mi > 0 is the number of queries in iterationi.
Forh ∈ H andρ > 0, diam(h, ρ) = {g ∈ H|P (h(x) 6= g(x)) ≤ ρ}, wherex ∈ X

andρ is the radius around hypothesish.

h′[x, y] = argminh∈H{L̂(h|Si) : h(x) 6= y}.
L̂(h|Si) is defined in Equation 5.3.
S0 = ∅.
h∗
0 is drawn randomly fromH.

1: for i = 1, . . . , n

2: if (i==1) thenq1 ← p

3: elsegenerateqi ← argminq Ex∼q

[
L̂i−1

(
h′
i−1[x, h

∗
i−1(x)]

∣∣Si−1

)]

4: for j ← 1, 2, . . . ,mi % drawmi instances fromqi
5: xij ← Draw(qi(.))

6: request label forxij : yij
7: end
8: Si = {[qi, xi1 , yi1 ], . . . , [qi, ximi

, yimi
]}

9: h∗
i = argminh∈diam(h∗

i−1,ρi){L̂(h|Si)}
10: end
11: returnh∗

n

Figure 5.15: Importance sampling active learning (ISALn) algorithm for non-separable
case.
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5.3 Bound for the Importance Weighted Error

As previously mentioned,ISAL uses importance weighted loss function to identify the

sampling distribution. Theorem 6 shows the upper bound forsuph∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣.

It also proves that the errorL(h∗n) of the hypothesis returned byISAL, is close to the best

possible errorinfh∈H L(h).

Theorem 6. Let x ∈ X and y ∈ Y. Fix a class of hypothesesH and letL(h) be the

expected error of hypothesish ∈ H. Let n be the number of instances queried and

h∗n = argminh∈H{L̂(h|Sn)}, whereL̂(h|Sn) is the weighted empirical error ofh on the

queried setSn. Letrmax be the maximum weight of the loss, defined in Definition 2. Then

with probability of at least1− δ, we have

L(h∗n)− inf
h∈H

L(h) ≤ sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣ (5.62)

≤ 2rmax inf
α>0



4α+ 12(1 − α)

√
fatα(H) log(2enα )

n



+ rmax

√
8 ln 2

δ

n
.

(5.63)

This section describes the steps to prove Theorem 6.

Given thatL̂(h∗n|Sn)− infh∈H L(h) = suph∈H(L̂(h
∗
n|Sn)−L(h)) andL̂(h∗n|Sn) ≤

L̂(h|Sn) for all h ∈ H, we see

L̂(h∗n|Sn)− inf
h∈H

L(h) ≤ sup
h∈H
|L̂(h|Sn)− L(h)| (5.64)

= sup
h∈H
|L(h) − L̂(h|Sn)|. (5.65)

Similarly,

L(h∗n)− L̂(h∗n|Sn) ≤ sup
h∈H

(L(h) − L̂(h|Sn))

≤ sup
h∈H
|L(h) − L̂(h|Sn)|. (5.66)

Summing up the two inequalities (5.65) and (5.66), we get:

L(h∗n)− inf
h∈H

L(h) ≤ 2 sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣ (5.67)

=
2

n
sup
h∈H

∣∣∣∣∣
n∑

i=1

E

[
p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

]
−

n∑

i=1

p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

∣∣∣∣∣ .

(5.68)

In the rest of this section we will obtain the bound forsuph∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣ .
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Lemma 4. (Hoeffding-Azuma inequality [76]). Letg : Un → R be a function ofn

random variables such that, for some nonnegative constantc, for all ui ∈ U andu′i ∈ U ,

|g(u1, . . . , un)− g(u1, . . . , ui−1, u
′
i, ui+1, . . . , un)| ≤ c, 1 ≤ i ≤ n. (5.69)

If V = g(U1, . . . , Un), whereUis are Martingale sequence, then the Hoeffding-Azuma

inequality holds:

P (|V − E [V ] | ≥ κ) ≤ 2e−
κ2

2nc2 . (5.70)

Our main example of such a function is the term in the right hand side of Equa-

tion 5.68, which is

V =
1

n
sup
h∈H

∣∣∣∣∣
n∑

i=1

E

[
p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

]
−

n∑

i=1

p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

∣∣∣∣∣ . (5.71)

Note thatV in Equation 5.71 satisfies the condition of Lemma 4 withc = 2rmax/n,

because for everyi, p(Xi)
qi(Xi)

is at mostrmax andℓ(h(Xi), Yi) is at most1.

Therefore, by applying Lemma 4 toV in Equation 5.71 we get:

for anyδ ∈ (0, 1), with probability at least1− δ,

1

n
sup
h∈H

∣∣∣∣∣
n∑

i=1

E

[
p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

]
−

n∑

i=1

p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

∣∣∣∣∣ ≤

E

[
1

n
sup
h∈H

∣∣∣∣∣
n∑

i=1

E

[
p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

]
−

n∑

i=1

p(Xi)

qi(Xi)
ℓ(h(Xi), Yi)

∣∣∣∣∣

]
+ rmax

√
8 ln 2

δ

n
.

(5.72)

The above equation can also be written as

sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣ ≤ E

[
sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣
]
+ rmax

√
8 ln 2

δ

n
. (5.73)

Equation 5.73 allows us to focus on the expected value ofsuph∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣,

which can be bounded by a symmetrization device. In the rest of this section we obtain

the bound for the expectation term in the right hand side of Equation 5.73.

Since the active learning model is a repeated process, we canrepresent it in the form

of a tree [77]. LetT (Z, n) be the set of allZ-valued binary trees of depthn. A sequence

of (z1, . . . , zn) of n mappingszi : {±1}i−1 → Z defines aZ-valued tree of depthn

for a given setZ [77]. For a functionf : Z → R, definef(z) to be the mapping

(f ◦ z1, . . . , f ◦ zn). For a treez ∈ T (Z, n) and a class of functionsF , F(z) = {f(z) :
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f ∈ F} is the projection ofF on z. A path of lengthn in the tree is the sequence

ξ = (ξ1, . . . , ξn) ∈ {±1}n and throughout this section we refer tozi(ξ1, . . . , ξi−1) as

zi(ξ).

Definition 5. The sequential Rademacher complexity [33] of a function classF is

defined as

Rn(F) = sup
z∈T (Z,n)

Eξ

[
sup
f∈F

n∑

i=1

ξif(zi(ξ))

]
, (5.74)

whereξ = (ξ1, . . . , ξn) is the sequence of i.i.d. Rademacher random variables.

During the proof of Theorem 2 in [77], the following inequality is proved:

Theorem 7. (from [77]) Let

Dn(F) =

sup
p1∈P

Ez1∼p1 sup
p2∈P

Ez2∼p2 . . . sup
pn∈P

Ezn∼pn

[
sup
f∈F

{ n∑

i=1

∫
f(z′i)dpi(z

′
i)−

n∑

i=1

f(zi)
}
]

(5.75)

whereP is an arbitrary collection of distributions. ThenDn(F) ≤ 2Rn(F), assuming

that(z1, . . . , zn)→ supf∈F
∑n

i=1 f(zi) is (p1, . . . , pn)-integrable, for any(p1, . . . , pn) ∈
Pn.

Note that in the proof of Theorem 2 in [77], Fubini’s theorem is implicitly used mul-

tiple times. Thus the condition of Theorem 7 ensures that theconditions of Fubini’s

theorem is satisfied.

LetF be the class of weighted loss functions of Definition 2. The termE{suph∈H |L(h)
−L̂(h|Sn)|} in Equation 5.73 can be written as

E

[
sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣
]
= E

[
1

n
sup
f∈F

∣∣∣∣∣
n∑

i=1

E [f(Qi,Xi, Yi)]−
n∑

i=1

f(Qi,Xi, Yi)

∣∣∣∣∣

]
,

(5.76)

whereQi is (Q1,X1, Y1, . . . , Qi−1,Xi−1, Yi−1)-measurable,Xi ∼ Qi,Yi ∼ PY |X(·|Xi),

andQ1, . . . , Qn ∈ Q are (randomly generated) densities. We assumesupx∈X
q∈Q

p(x)
q(x) ≤

rmax, thusE [f(Qi,Xi, Yi)] =
∫
f(q, x, y)dSi(q, x, y), whereSi is the joint distribution

of (Qi,Xi, Yi). Note thatSi is random and in particular(Q1,X1, Y1, . . . , Qi−1,Xi−1,
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Yi−1)-measurable. Therefore, by lettingM = {R ⊗ P |R ∈ V(Q)}, whereV(Q) is the

space of probability measures overQ, we have

E

[
sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣
]
= sup

S1∈M
E(Q1,X1,Y1)∼S1

sup
S2∈M

E(Q2,X2,Y2)∼S2
. . .

sup
Sn∈M

E(Qn,Xn,Yn)∼Sn

[
1

n
sup
f∈F

∣∣∣∣∣
n∑

i=1

∫
f(q, x, y)dSi(q, x, y) −

n∑

i=1

f(Qi,Xi, Yi)

∣∣∣∣∣

]
.

(5.77)

By Theorem 7, the last term in Equation 5.77 is bounded by2Rn(F), since the

integrability condition holds, becausesupf∈F
∑n

i=1 f(qi, xi, yi) ≤ nrmax is bounded.

Definition 6. (from [77]) Let K be the class of functionsk : X → R. Let x =

{x1, ..., xn}, wherexi ∈ X for i = 1, . . . , n, be a set of n points. A set of vectors

V ⊂ R
n is anα-cover, with respect to thep-norm ofK onx if for all k ∈ K there exists

a v ∈ V such that: (
1

n

n∑

i=1

|vi − k(xi)|p
) 1

p

≤ α. (5.78)

We definep-norm covering numberNp(α,K,x) as the size of minimal such coverV, i.e.,

Np(α,K,x) = min{|V| : V is anα-cover, under the p-norm, ofK onx}.

Also defineNp(α,K, n) = supxNp(α,K,x). In other words,Np(α,K, n) is the maxi-

mum covering number overx.

We use the following two lemmas from [77] in our proofs.

Lemma 5. SupposeH is a class of[−1, 1]-valued functions onX . Then for anyα > 0,

anyn > 0, and any setx = {x1, . . . , xn} wherexi ∈ X ,

N1(α,H,x) ≤ N2(α,H,x) ≤ N∞(α,H,x) ≤
(
2en

α

)fatα(H)

(5.79)

Lemma 6. Fix a classH ⊆ R
Z and a functionφ : R× Z → R. Assume, for allz ∈ Z,

φ(·, z) is a Lipschitz function with a constantC. Then

Rn(φ(H)) ≤ C · Rn(H)

whereφ(H) = {z → φ(h(z), z), h ∈ H, z ∈ Z}.

72



Corollary 3. SupposeH is a class of[−1, 1]-valued functions onX . Then for anyα > 0,

and anyn > 0

N2(α,H, n) ≤
(
2en

α

)fatα(H)

(5.80)

Proof. Lemma 5 is true for any setx = {x1, . . . , xn} wherexi ∈ X . This includes the

set whose covering number isN2(α,K, n) = supxN2(α,K,x).

5.3.1 Bounding Sequential Rademacher Complexity

Sequential Rademacher complexityRn(H) can be bounded using Lemma 7.

Lemma 7. LetH ⊆ [−1, 1]X . We have

Rn(H) ≤ inf
α



4α+ 12(1 − α)

√
fatα(H) log(2enα )

n



 .

Proof. From Theorem 9 and Definition 11 of [77], we have2

Rn(H) ≤ inf
α

{
4α + 12

∫ 1

α

√
logN2(t,H, n)

n
dt

}
. (5.81)

By replacingN2(t,H, n) in (5.81) with its bound from (5.80), we get

Rn(H) ≤ inf
α



4α + 12

∫ 1

α

√
fatt(H) log(2ent )

n
dt



 . (5.82)

The term inside the integral of Equation (5.82) is monotonically decreasing with re-

spect tot, as bothfatt(H) andlog(2ent ) decrease ast increases. Therefore the integrand

in (5.82) can be bounded by its maximum value, which happens at t = α for 0 < α ≤ 1,

i.e.,

Rn(H) ≤ inf
α



4α+ 12(1 − α)

√
fatα(H) log(2enα )

n



 . (5.83)

Lemma 8. Pick anyn ≥ 1 and letα > 0. Letx ∈ X andy ∈ Y . Fix a set of permissible

densitiesQ and a class of hypothesesH. LetF be the class of weighted loss functions

2Note that our definition of sequential Rademacher complexity in definition 5 has a normalizing factor of
1
n

.
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defined in Definition 2. Then the sequential Rademacher complexity of class of weighted

loss functionsF is bounded by

Rn(F) ≤ rmax × inf
α



4α+ 12(1 − α)

√
fatα(H) log(2enα )

n



 (5.84)

wherefatα(H) denotes the fat shattering dimension ofH at scaleα.

Proof. Using Lemma 6 withZ = X × Y andφ(t, (x, y)) = p(x)
q(x) |t − y|, we have

Rn(F) ≤ rmaxRn(H). This is becausep(x)q(x) |t − y| is rmax Lipschitz in t for anyx and

y, wherermax = maxx∈X
p(x)
q(x) .

Then Lemma 7 shows thatinfα

{
4α+ 12(1 − α)

√
fatα(H) log( 2en

α
)

n

}
is the bound

for Rn(H), which implies that its product withrmax is the bound forRn(F) too.

Proof of Theorem 6.From Equation 5.67 we have

L(h∗n)− inf
h∈H

L(h) ≤ sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣ . (5.85)

Also from Equation 5.73, with probability of at least1− δ, we have that

sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣ ≤ E

[
sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣
]
+ rmax

√
8 ln 2

δ

n
. (5.86)

By combining the above two equations, with probability of atleast1− δ, we have

L(h∗n)− inf
h∈H

L(h) ≤ E

[
sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣
]
+ rmax

√
8 ln 2

δ

n
. (5.87)

From Equation 5.77 we have that

E

[
sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣
]
≤ 2Rn(F). (5.88)

Inserting the bound of Equation 5.88 into right hand side of Equation 5.87 yields:

with probability of at least1− δ

L(h∗n)− inf
h∈H

L(h) ≤ 2Rn(F) + rmax

√
8 ln 2

δ

n
. (5.89)

Using Lemma 8, we can boundRn(F) by rmax infα

{
4α+12(1−α)

√
fatα(H) log( 2en

α
)

n

}
,

which results in
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L(h∗n)− inf
h∈H

L(h) ≤ sup
h∈H

∣∣∣L(h)− L̂(h|Sn)
∣∣∣ (5.90)

≤ 2rmax inf
α

{
4α+ 12(1 − α)

√
fatα(H) log(2enα )

n

}
+ rmax

√
8 ln 2

δ

n
.

(5.91)

5.4 Experiments

This section describes our empirical evaluation ofISALgon noise-free data as well as data

with various amounts of label noise. These experiments focus on binary classification

tasks withY = {−1,+1}.

5.4.1 Neurophysiology Data

An efficient data collection procedure is essential in experimental designs. For example,

in neurophysiology experiments where the goal is to characterize a neural system, we are

interested in the response of a cell to different stimuli. Following the work of Lewiet

al. [56] to design a neurophysiology experiment, we simulate the receptive field of a vi-

sually sensitive neuron. Generalized linear models are often used in the neurophysiology

experiments to model the space. The number of spikes, which is the likelihood of the

responseν, is related to the firing rateλ, where

λ = Eν|x,θ[ν] = exp(θT · x). (5.92)

The relationship between the stimulusx and the response of the neuron is given by a

Poisson distribution where

log P (ν|x, θ) = log
e−λ∆t(λ∆t)ν

ν!
, (5.93)

where∆t is the length of the time frame for measuring the firing rate,λ.

A Gabor function is considered for the receptive field of the neuron, which is a proxy

model of aV 1 simple cell. Simulated responses are generated by samplingfrom Equa-

tion 5.93. We assume that the stimulusx is in the form of a vector obtained by rasterizing

am ×m image andθ is a vector obtained by rasterizing am ×m Gabor function. For
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Figure 5.16:ISALggenerates the sampling distribution (green oval) for a two dimensional
dataset.

these experiments, we consider the case ofm = 3 (d = 9 features) andm = 4 (d = 16

features).

We assign the response of zero (no response) to−1 class and other responses are in

+1 class. Similar to [56], we draw the intensity of each pixel inthe stimulusx from a

Gaussian distribution, hereN (128, 10) wherex < 0 are set to0 andx > 256 are set to

256.

5.4.2 Experimental Setup

Throughout the experiments, we use support vector machines(SVM) as the classifier. To

consider the weighted loss function of Definition 2 in our implementation, we modified

the code of LIBSVM software [78].

The sampling distributionqi in each iteration isN (µi,Σi), whereµi is obtained by

selecting a point randomly from the underlying distribution and projecting it onto the

current linear separator. Note that before applyingISALg, we first normalize the data

such that all the features have the same empirical marginal variance. The covariance

matrixΣi depends on the margin at iterationi (see the experiments below).

Figure 5.16 shows a two dimensional dataset that are separated by a linear separator.

In this figure, ISALg draws a point randomly from the underlying distribution (black

dot), then projects it onto the separator to getµ (blue dot). It then centers a Gaussian

distribution atµ,N (µ,Σ). A contour for this Gaussian is shown by green oval.
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Figure 5.17: An example scenario of a Gaussian, parallel to the linear separator, to be
rotated with angleθ.

5.4.3 Remarks on the Sampling Distribution ofISALg

In this section we investigate the difference between usingthe Gaussian distribution par-

allel to the linear separator and a non-parallel Gaussian for ISALg. Figure 5.17 shows a

scenario for 2-dimensional data where the linear separatoris shown as dashed line.

We could let the red Gaussian with covariance parallel to theseparator, be the sam-

pling distribution forISALg. We estimate the covariance matrix by sampling some in-

stances around the separator. Then, the covariance matrix can be numerically estimated

by randomly selecting a point (red point in Figure 5.18) on the separator as the center of

the Gaussian (µi).

We select an arbitrary direction uniformly on the separatorand pick a point (blue

point in Figure 5.18) with a distance ofdist1 ∼ N (0, b2i ) from µi, wherebi is half of the

size of margin at iterationi. Next we select a direction perpendicular to the separator and

pick a point (green point in Figure 5.18) with a distance ofdist2 ∼ N (0, b2i ) from the

separator. We repeat this process for 1000 times to obtain 1000 instances, then estimate

their covariance matrix.

Figure 5.18: The process of estimating the covariance matrix for ISALgparallel.
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However, this approach increases the sample complexity ofISALgand hence may not

be suitable for applications where sample efficiency is important. Therefore, because of

sample inefficiency of the above-mentioned approach, we mayapproximate the covari-

ance matrix by only considering the diagonal elements of thematrix.

5.4.4 ISALg for Experimental Design

In this section we study the application ofISALgin the experimental design setting where

the active learner can generate any data point it wants, using the neurophysiology data of

Section 5.4.1.

5.4.4.1 ISALg on Data Without Label-Noise

In the first active learning algorithm as a baseline, instances are sequentially sampled

from the underlying distribution to train the classifier (random sampling). The average

test error over 50 trials on noise-free data is shown as dashed line in Figure 5.19 for

d = 9 (3 × 3 image) and Figure 5.20 ford = 16 (4 × 4 image); see Section 5.4.1. The

performance ofISALgthat uses a Gaussian distribution with a diagonal covariance matrix

is shown as solid blue line in the figures (ISALgdiagonal). In addition, the performance

of ISALgwith a Gaussian distribution whose mahalanobis ellipsoidsare parallel to the

separator is also shown in the figures (ISALgparallel). Here,ISALgrandomly samples

the first four instances from the underlying distribution.ISALgdiagonal samples the rest

of instances fromN (µi,Σi), whereµi is randomly selected on the current separator, and

Σi is the a diagonal matrix whose diagonal elements are half thesize of current margin

squared,i.e., b2i . For ISALgparallel, we estimate the covariance matrix that is parallel

to the separator as described in Section 5.4.3 wheredist1 and dist2 are drawn from

N (0, b2i ).

Figures 5.19 and 5.20 also show the active learning algorithm of [20], referred to as

IWAL2 here. IWAL2 draws instance from the underlying distribution, and only accepts

those instances whose label uncertainty is above a given threshold. We use the parameters

used in [20].

We also propose the BI (boundary instance) active learning algorithm, that in each it-

eration, randomly draws an instance on the current decisionboundary (obtained by train-

ing on current labeled setSi). Note that the current decision boundary changes as more

instances are added to the labeled set. In addition, BI algorithm uses a biased estimation
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Figure 5.19: Average test error versus number of queried instances forISALgand four
other active learning algorithms on neurophysiology data with 3 × 3 image as stimulus,
using SVM.

0 20 40 60 80 100 120 140 160 180 200
0

5

10

15

20

25

30

35

40

45

50

Number of queried instances

A
ve

ra
ge

 te
st

 e
rr

or
 (

%
) 

ov
er

 5
0 

tr
ia

ls

 

 

BI
MI
Random
IWAL2
ISAL diagonal
ISAL parallel

Figure 5.20: Average test error versus number of queried instances forISALgand four
other active learning algorithms on neurophysiology data with 4 × 4 image as stimulus,
using SVM.
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Figure 5.21: Average test error versus number of queried instances forISALgand four
other active learning algorithms on neurophysiology data that has15% label noise with
3× 3 image as stimulus, using SVM.

of the error. The fifth active learning algorithm in Figures 5.19 and 5.20 is MI (margin

instance algorithm, similar to the approach in [28]), whichdraws instances inside the

current margin. Similar to BI, the estimation of error by MI is biased.

Figures 5.19 and 5.20 show thatISALg, BI and MI have similar performances by

converging quickly to the minimal test error. However, the performance of each of them

is statistically better than the random sampling and IWAL2 (paired t-test,p < 0.05).

5.4.4.2 ISALg on Data With Label Noise

Figures 5.21 and 5.22 show the performance of the active learning algorithms on the

neurophysiology data that contains15% label noise (i.e., the label of each instance is

flipped15% of the time), ford = 9 andd = 16 respectively (see Section 5.4.1).

Figures 5.21 and 5.22 show thatISALgconverges faster than the other active learning

algorithms to the optimal classifier. Furthermore, its performance is statistically bet-

ter then the other four algorithms (paired t-test,p < 0.05). The reason is thatISALg

draws the instances from a distributionqi, which has more weight inside the margin,

however, random sampling and IWAL2 draw instances outside the margin too. Recall

that in margin-based classifiers, having an instance on the wrong side of the margin is

not desirable for the learning (this can happen because of the label noise). On the other

hand, having label noise inside the margin, is more tolerable. Based on our observation
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Figure 5.22: Average test error versus number of queried instances forISALgand four
other active learning algorithms on neurophysiology data that has15% label noise with
4× 4 image as stimulus, using SVM.

of the data, the average distance3 to the optimal separator for instances drawn byISALgis

approximately half of the ones for the instances drawn by random sampling and IWAL2.

Figures 5.21 and 5.22 show that as the current decision boundary becomes more ac-

curate,i.e., gets closer to the optimal classifier, the performance ofISALgimproves sig-

nificantly.

To evaluate the performance ofISALgalgorithm in the non-realizable case, we added

various amounts of label noise to the neurophysiology data of Section 5.4.1. Figures

5.23 and 5.24 show the average test error over50 trials onn = 200 queried instances

versus different amounts of label noise forISALgalgorithm, BI, IWAL2, MI and sampling

from underlying distribution. As Figures 5.23 and 5.24 show, ISALgoutperforms other

algorithms on data with large amounts of label noise.

5.4.5 ISALg for Pool-based Data

In this section, we discussISALp, which is the extension ofISALg to pool-based data.

Note thatISALgalgorithm of Figure 5.11 has to be modified such that it only queries

instances from the pool of data. We also implemented the highly referenced algorithm by

Tong and Koller [12] designed for SVM, called MU here, that queries the instance closest

to the current linear separator. The distance of a point to the linear separator is obtained

3We measure the distance for a point(x, y) to the optimal separator (with parameterw) using|wT · x|.
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Figure 5.23: Average test error versus various amounts of label noise forISALgand four
other active learning algorithms on neurophysiology data with n = 200 and3× 3 image
as stimulus.
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Figure 5.24: Average test error versus various amounts of label noise forISALgand four
other active learning algorithms on neurophysiology data with n = 200 queries and4×4
image as stimulus.
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by projecting that point onto the separator.

In early steps of active learning, the number of queried instances is limited. Thus, it

is likely that the current separator is not a good approximation to the optimal separator.

As such,ISALp initially assigns a probability to each instance. This probability is pro-

portional to the distance of an instance to the current separator, i.e., for an instancexi, it

equals

P (xi) =
e

−∆2
i

σ2
p

∑
j e

−∆2
j

σ2
p

(5.94)

where∆i denotes the distance of the instancexi to the separator, andσp is the bandwidth

parameter. A small value forσp assigns a higher probability to instances near the decision

boundary.

After querying a certain number of instances, the current separator is a good approx-

imation of the margin, thus,ISALp switches to the MU algorithm. For example, the

switching point can be obtained using the 5-fold cross validation error on the training

data. In these experiments, we use a cross validation error of 20% as the switching point.

We also useσp = 1.

In addition, we compare the above algorithms with LMU logReg, which is a variant of

LMU algorithm of Chapter 4 that actively learns the parameters of the logistic regression

classifier for non-structured data. We also report the results of randomly selecting the

instances to train the logistic regression classifier (Random logReg).

In this section, we investigate the performance of the abovealgorithms on the follow-

ing datasets:

• neurophysiology data: we generated two pools of10, 000 instances from neuro-

physiology data withd = 9, one without label noise and one with15% label noise.

• wine dataset [24] where we classified the data into high quality (for ratings more

than 6) versus low quality wine. This dataset has 11 featuresand 3661 instances.

• vehicle dataset [24] with 18 features and 846 instances where we classified bus and

van as+1 and the rest as−1.

For each dataset,20% of the data is set aside as the test set. We also normalize each

feature by subtracting its mean and dividing by its standarddeviaion.
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Figures 5.25 to 5.28 show the performance ofISALp, MU, LMU logReg and random

sampling on these four datasets. Note that in all the datasets, active learning converges

faster to the optimal classifier than the random sampling. Inaddition, the performance of

ISALp is initially better than MU in the two datasets that are not perfectly separable by

a linear classifier (i.e., neurophysiology data with15% label noise and the wine dataset).

We conjecture that the probabilistic approach used byISALpin the initial steps contributes

to its improvement over the MU. For example, on the noisy neurophysiology data,ISALp

achieves test error that is about7% better than MU for100 queried instances. On the other

hand, on perfectly separable data (i.e., neurophysiology data with no label noise and the

vehicle dataset),ISALpperforms as well as the MU algorithm. This is because the current

separator quickly converges to optimal classifier,e.g., on the noise-free neurophysiology

data, both algorithms reach20% test error after querying10 instances.

By comparing the performance of Random and Randomlogreg in Figures 5.26 to

5.28, we observe that the classification error obtained fromSVM is lower than logistic

regression. The only exception is in realizable neurophysiology data where logistic re-

gression performs slightly better. We conjecture that the confidence that SVM has in

its predictions (by considering a margin around the decision boundary) results in the

lower classification error. Therefore, the difference between the error rate ofISALpand

LMU logReg is due to their underlying learning model. In the scenario that the under-

lying learning models have similar error rates (e.g., realizable neurophysiology data in

Figures 5.25), the active learnersISALpand LMU logReg also have similar error rates.

5.5 Summary

We presented an importance sampling active learning algorithm ISAL, where instances

are queried from an appropriate distribution. We showed that ISAL can be effective in

reducing the cost of labeling, in scenarios where new instances can be generated upon

active learner’s request.ISALprovides an active learning framework to learn classifiers

in many situations. It uses importance weights to reduce thebias of error estimation,

while controlling the variance of the estimation. It has thepossibility of converging to the

best of the available classifiers, unlike some active learning approaches that maintain a

version space. In addition, it can be more sample-efficient since it directly samples from

an appropriate distribution. Our empirical results show that it achieves fast convergence

rate to the optimal error with SVM classifier on both noise-free and noisy data.
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Figure 5.25:ISALpversus random sampling, MU, and LMU logreg on a pool of10, 000
neurophysiology data without label noise.
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Figure 5.26:ISALpversus random sampling, MU, and LMU logreg on a pool of10, 000
neurophysiology data with15% label noise.
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Figure 5.27:ISALpversus random sampling, MU, and LMU logreg on wine dataset.
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Figure 5.28:ISALpversus random sampling and MU on vehicle dataset.
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Chapter 6

Conclusion

Supervised machine learning approaches are used extensively to solve real-world chal-

lenges. Sometimes these methods are given a limited budget to spend per instance before

returning a label. Such scenario corresponds naturally to decision trees. The near optimal

fixed-depth decision tree presented here improves the computational cost of obtaining

such tree while yielding relatively high accuracy.

In addition, the use of supervised machine learning methodsare limited by requiring

labeled training data, which are often hard to obtain. However, there are often plenty of

unlabeled instances available; this motivates the use of active learning to request the label

of a small set of (sequentially) specified unlabeled data points.

The active learning methods proposed here aim to reduce the overall cost of acquiring

labeled data by allowing the learner to effectively choose the informative instances that

help to produce an accurate classifier.

6.1 Future Directions

Here, we discuss several future directions inspired by the work of this thesis.

• In Chapter 2 we discussed how to use theopt-feature listto fill in the features

at thelast levelof the tree, However, our techniques are not specific to this final

row. These ideas can be extended to pre-compute an optimal tree list with the final

depth-d′ subtree at the end of a path given the label posterior, ratherthan just the

final internal node;i.e., so far, we have dealt only withd′ = 1. While this will

significantly increase the cost of the precomputational stage, it should provide a

significant computational gain when growing the actual tree.
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• A second extension to OPTNBDT is to develop further tricks that allow us to effi-

ciently build and compare asetof related decision trees — perhaps trees that are

based on slightly different distributions, obtained from slightly different training

samples. This might be relevant in the context of some ensemble methods [79],

such as boosting or bagging, or in the context of budgeted learning of bounded

classifiers [47].

• Our approach in OPTNBDT uses a simple cost model, where every feature has unit

cost. An extension would allow different features to have different costs, where the

goal is to produce a decision tree whose “cost depth” is bounded.1

• In Chapter 4 we found that LMU can be effective for the image segmentation task

by producing a segmenter using very few segmented images. Itmay be possible to

apply these ideas (and perhaps LMU) to other structured data, such as text, where

the label of each word in a sentence is dependent on the label of the other words in

the sentence.

• The current version of LMU assumes that all the images have the same labeling

cost. There could be scenarios where the labeling cost varies from different sources.

For example, the cost of segmenting tumors in human brain by aradiation oncol-

ogist can be more than that of a medical student. Here, the active learner could

request the label of some images from the medical student, and others, from the ra-

diation oncologist, with the understanding that it is important for the active learner

to be cost-efficient while producing an accurate classifier.

• The ISAL algorithm of Chapter 5 uses a linear separator as its classifier. We an-

ticipate further improvements by extendingISAL to other class of separators on

non-linear data. This involves finding an appropriate sampling distribution for the

given class of separators such thatISALmaintains its sample efficiency. One solu-

tion is to transform the data into a new space such that the data becomes linearly

separable in this new space. This involves learning the appropriate transform func-

tion from the current space to the latent space.

• One application ofISAL can be in situations where instances from one class are

1The “cost depth” of a leaf of a decision tree is the sum of the costs of the tests of the nodes connecting
the root to this leaf; and the “cost depth” of a tree is the maximal cost depth over the leaves. Note “cost
depth” equals “depth” if all features have unit cost.
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less frequent than other classes. In these scenarios, measures such as F-measure are

typically used to evaluate the performance of a classifier. Here, one may consider

modifying ISALto use the F-measure instead of the current weighted loss function.

Consequently, the convergence rate analysis for theISAL should be modified to

reflect these changes.

6.2 Summary of Contributions

The first part of this dissertation presents:

• OPTNBDT, a novel algorithm to produce the near optimal fixed-depth decision tree

under Naı̈ve Bayes assumption. We prove that under the Naı̈ve Bayes assumption

the optimal feature at the last level of the tree depends onlyonP (Y = +|π), the

posterior probability of the class label given the tests previously performed. There-

fore, in a pre-processing step we precompute a list of features to use in the final

layer. OPTNBDT uses this list to quickly assign a final feature based on a given

path in the tree. We prove that OPTNBDT is computationally more efficient than

the naı̈ve method of testing all the features in the last level and provide empirical

evidence to support this claim. Our empirical results illustrate that OPTNBDT is

often more accurate than ID3 entropy-based decision tree.

We also extend the research on active learning in the following ways:

• Active learning for image segmentation tasks. Chapter 4 focuses on developing an

effective active learner LMU for image segmentation. While there are now many

results in active learning, this is one of the first studies that considers the challenge

of actively learning the parameters of a machine learning model (CRF-based seg-

menter) for images. While LMU system is based on standard “parts” — selecting

the image with maximal uncertainty, and the one that most reduces the uncertainty

of other images — we found that this particular combination was effective for this

task and it could produce an effective segmenter using very few segmented images.

• Importance sampling active learning algorithm. In chapter 5 we introduce a new

active learning algorithmISAL, based on importance sampling technique, where

instances are queried from an appropriate distribution.ISAL provides an active

learning framework that can be applied to many classifiers. We show thatISAL
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can effectively reduce the cost of labeling, a useful feature for scenarios with high

label costs. In addition,ISAL does not maintain a version space, which means

it always has the possibility of converging to the best in class classifier. It uses

importance weights to reduce the bias of error estimation, while controlling the

variance of the estimation. It also is more sample-efficientby directly sampling

from an appropriate distribution.

90



Bibliography

[1] R. S. Sutton and A. G. Barto.Reinforcement Learning. MIT Press, 1998.

[2] J. R. Quinlan.C4.5: Programs for Machine Learning. Morgan Kaufmann, 1993.

[3] L. Breiman, J. Friedman, J. Olshen, and C. Stone.Classification and Regression

Trees. Wadsworth and Brooks, Monterey, CA, 1984.

[4] P. Auer, R. C. Holte, and W. Maass. Theory and applications of agnostic PAC-

learning with small decision trees. InICML, 1995.

[5] R. O. Duda and P. E. Hart.Pattern Classification and Scene Analysis. Wiley, 1973.

[6] Simon Tong and Edward Chang. Support vector machine active learning for im-

age retrieval. InMULTIMEDIA ’01: Proceedings of the ninth ACM international

conference on Multimedia, pages 107–118, 2001.

[7] Cha Zhang and Tsuhan Chen. An active learning framework for content based infor-

mation retrieval.IEEE trans. on Multimedia, Special Issue on Multimedia Database,

4:260–268, 2002.

[8] Alireza Farhangfar, Russell Greiner, and Csaba Szepesvári. Learning to segment
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