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Abstract—Various studies have been performed to explore 

the feasibility of detection of web-based attacks by machine 

learning techniques. False-positive and false-negative results 

have been reported as a major issue to be addressed to make 

machine learning-based detection and prevention of web-based 

attacks reliable and trustworthy. In our research, we tried to 

identify and address the root cause of the false-positive and 

false-negative results. In our experiment, we used the CSIC 2010 

HTTP dataset, which contains the generated traffic targeted to 

an e-commerce web application. Our experimental results 

demonstrate that applying the proposed fine-tuned feature set 

extraction results in improved detection and classification of 

web-based attacks for all tested machine learning algorithms. 

The performance of the machine learning algorithm in the 

detection of attacks was evaluated by the Precision, Recall, 

Accuracy, and F-measure metrics. Among three tested 

algorithms, the J48 decision tree algorithm provided the highest 

True Positive rate, Precision, and Recall. 

 

Keywords—web-based attacks, detection, machine learning, 

feature extraction.  

I. INTRODUCTION 

Identification of web-based attacks and prevention of the 
attacks by supervised and unsupervised machine learning 
tools has been a very active area of research. One of the key 
challenges in the detection of web-based attacks is feature set 
extraction which is essential for the development of machine 
learning detection models. A holistic feature set for effective 
detection of the attacks has not been developed. To address 
the gap, we present in this paper a feature set engineering as 
an approach to improve the detection of web-based attacks. 
We applied machine learning algorithms on a publicly 
available HTTP traffic dataset from an authentic source CSIC 
HTTP dataset 2010[1]. This dataset contains the generated 
traffic targeted to an e-commerce web application, the dataset 
was generated automatically and contains 36,000 normal and 
more than 25,000 anomalous requests [2] that include web-
based attacks like SQL injection, cross-site scripting and 
buffer overflow that were used in our experiments. The dataset 
was preprocessed and cleaned using Python script.  

The Python script was developed to extract features from 
the dataset, transform the dataset into CSV format, and 
distinguished between normal and anomalous traffic. After 
extracting useful features we applied machine learning 
techniques in WEKA. Feature engineering was the primary 
challenge and the most important component in this research. 
Python script parsed the dataset fields with various features 
like the length of the fields, user-agent length, content length, 
GET and POST request, cookie length. 

II.  RELATED WORK 

G. Kaur et al [3] proposed the detection mechanism of 
blind cross-site scripting using machine learning, where 
identification of the malicious payloads that were likely to 
store in the database through web application was achieved in 
the experiments. They used the Linear Support Vector 
Machine classifier technique to determine the difference 
between stored cross-site scripting and blind cross-site 
scripting and to detect the attack [3].  

The approach employed by Thomson [4] for exploration 
of SQL injection attack where they investigated areas that 
specialize in feature selection from the dataset. They used 
machine learning algorithms for experimental use to evaluate 
features that have greater significance than others in feature 
sets. Also, they performed feature extraction to parse the 
dataset using Python script and identified that some features 
have more impact on the performance of classifiers in 
detecting SQLi attacks [4]. Abby in [5] filtered down only the 
benign and SQL injection attacks from the CSIC HTTP and 
ECML/PKDD data set. He experimented with the dataset so 
as to realize higher accurate results, an iterative methodology 
was chosen which allows the re-evaluation during the design 
and planning.  

Sikha Bagui et al [6] used a hybrid feature selection 
process and classification techniques to classify cyber-attacks 
in the UNSW-NB15 dataset [7]. They employed two 
techniques (J48, Naïve Bayes) based on a correlation-based 
feature selection, where Naïve Bayes outperform with 
classification accuracy for most attacks but J48 did not 
perform any better with feature selection. Naïve Bayes 
classifier gave an attack detection rate for shellcode attack 
which is an injection attack at 91.53% with feature selection. 
Whereas, J48 was not able to detect attacks like shell code, 
Backdoor, Analysis, and Worms with feature selection. 

III. EXPERIMENTATION 

The performed experimentation in three phases is 
outlined in Fig 1. 

Phase 1 focuses on data preparation of the dataset and it’s 
pre-processing to identify sub-categories of anomalous traffic 
for a fine-tuned training set that helped us to identify the 
missing features for common attacks. The data set contains 
some errors, Latin characters, errors, blank space and rows at 
the end of the lines in the dataset which were fixed with the 
help of Python scripting language before being processed for 
the next phase.  

Phase 2 was dedicated towards the feature extraction from 
the dataset that contains fields like GET, POST request, 
content-length, keywords count for SELECT, DROP, 
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UNION, DELETE, MODIFY, content that contains field, 
number of special characters, login name, and password. The 
cleaned dataset was put into the CSV file before feeding it to 
Weka 3.8, an open-source tool for machine learning and data 
mining. 

The dataset set was pre-processed at a finite level using 
Pyhton script. The feature extraction is the most important 
component of the research. The script successfully parse the 
dataset fields with various features like length of the fields, 
user-agent length, content length, GET and POST requests 
length, cookie. The steps used to parse the dataset using 
Python script are explained below: 

Step 1 - Script infrastructure to process multiple files, where 

we go through multiple files and produce a single output file.  

Step 2 - If we process multiple input files, we used a Global 

variable to write the header only once.  

Step 3 - We choose the columns of the processed CSV files 

to parse. These keywords are searched in input files to extract 

their text. For example, “Host:” will be searched, and that line 

will be extracted and input to Python dictionary.  

Step 4 - We not only extracted selected features into selected 

CSV columns, but added our processed features. These were 

denoted by CSV columns preceded with an underscore for 

e.g. “_keywords”. The “_keywords” column was input after 

analyzing the GET request to search for features like SQL 

injection.  

Step 5 - “refine_results()” function was used to further 

analyzer the input data. We counted the number of characters 

of the GET request, and stored the result into a CSV column 

called “_len_of_GET”. We parsed out four additional fields 

from within the “content” field, namely: login, password, 

nombre, and email. We found selected features from GET, 

POST, or content fields, such as those that indicated SQL 

injection, buffer overflow, or XSS script attacks. Below is the 

script to count the number of characters of the GET request. 

 

# Create GET request length 

    if od['GET'] == 'null': 

        od['_len_of_GET'] = '0' 

    else: 

        od['_len_of_GET'] = '{0}'.format(len(od['GET'])) 

 

    content = od['content'] 

 

    _login = parse_field(content, 'login') 

    od['_login'] = (_login) 

 

    _password = parse_field(content, 'password') 

    od['_password'] = (_password) 

 

    _nombre = parse_field(content, 'nombre') 

    od['_nombre'] = (_nombre) 

 

    _email = parse_field(content, 'email') 

    od['_email'] = (_email) 

Step 6 - We read all lines from each input file, and search for 

the chosen CSV columns from step 3. The “Content-Length” 

text is special. Upon reading this line, we extract the number 

of bytes of content, and then read that many bytes from the 

file.  

Step 7 - When there is an empty line, that means it is the end 

of one GET or POST request. At this time, we write the 

parsed data of GET and POST to the output file.  

 

 
Fig 2: Extraction using keywords 

Fig 1: Flow chart outlines three phases 



Step 8 - When parsing a selected CSV column, we altered 

some input. We changed all commas to underscore and 

stripped newline characters. 

 
In Phase 3, the data was fed to machine learning methods 

using algorithms and classifiers that are pre-defined in the 
Weka with multiple features extracted from phase 2. The final 
phase consists of four procedures which were data collection, 
data preprocessing, feature extraction and classification of the 
data. Firstly, cleaning of the data was done from errors which 
came across while feeding it to Weka. Secondly, Weka gave 
a leverage to transform text/string into nominal type using 
built-in filter during pre-processing step. Thirdly, feature 
extraction using a python script was conducted that helped in 
distinguish between the most relevant features in the detection 
of web-based attacks in the HTTP traffic from the dataset. 

IV. EXPERIMENTAL RESULTS AND DISCUSSION 

A detail of extracted features and experimental results 
using evaluation metrics for the machine learning classifiers 
can be seen in table Ⅰ and table II. 

We have used three ML classifier for the research., J48 
from the decision tree, One rule (OneR) from rule system and 
Naïve Bayes from bayesian ML models. Firstly, J48  is used 
to classify different applications and perform accurate results 
of the classification. J48 algorithm is one of the best machine 
learning algorithms to examine the data categoriacally and 
continuously that is used to measure the improved 
performance and produce higher rate of accuracy. The 
decision tree consists of internal nodes that denote different 
attributes, the branches depict the possible values of the 
attributes between the nodes, and terminal node tell the final 
value. Secondly, OneR classifier is one of the simple and most 
effective callsifier algorithm in ML. It depends upon the 
classification rules based on the single predictor’s value and 
not rely on the frequency of the target, then select the rule with 
the smallest total error as its “one rule”. To create a rule for a 
predictor, one can construct an evaluation/frequency table for 
each predictor against the target. It is easy to interpret the rules 
for each predictor, its value and the target. Thirdly, Naïve 
Bayes is a high-bais, low-variance classifier that mainly 
calculates the probability of an item belonging to a certain 
class depending on the metrics obtained from the training data 
[8]. Also, it requires a small amount of training data to 
estimate the parameters. Being an intuitive method, it uses the 
conditionl probabilities of each attribute belonging to each 
class to make a predicition. 

The preprocessing of the data was done at a granular level 
using a python script to identify missing features for common 
attacks. Initially, raw data was cleaned by removing errors 
before testing it on the Weka 3.8. Further, using in-built filters 
from the Weka 3.8 made the transformation of type from 
string to nominal followed by the attribute selection process 
for desired results. Lastly, feature extraction was carried using 
Python script to extract the most relevant features that 
contributed to identifying the web-based attacks. The script 
successfully parsed the dataset fields by distinguishing normal 
and anomalous traffic, along with special features that define 
the type of web-attacks. The metrices used to evaluate the 
accuracy of the classifier in the research. 

The features extracted using the Python script were (1) 
content_length, (2) content, _(3) label (norm & anom), (4)  

keywords, (5)_length_of_GET, (6)_login_count, (7) 
special_chars, (8) Pragma, (9) cookie_len, (10) host, (11) 
connection, (12) cache_control, (13) accept_language, (14) 
accept_encoding, (15)  _email, (16) user-agent, (17) nombre, 
(18) password count, (19) _special chars, (20) login. 

The list of special extracted features is shown in Table I. 

TABLE I – EXTRACTED FEATURES DESCRIPTION 

Feature Name Description 

_len_of_GET 
Number of Characters in 

getting request 

_keywords 
To identify the type of web-

based attack. 

content_length 
A number of bytes of the 

content. 

password_count 
A number of characters in the 

password field. 

_login count 
A number of attempts to log 

in to the database. 

_cookie_len 

The amount of time it will 

hold information on to the 

user system. 

_special_chars 
To identify the special 

characters in the request field. 

 

Results of the performance of machine learning algorithms 
in the detection of malicious traffic are summarized in table 
II. J48 classifier gave the highest detection rate of 94.5% that 
helped in detecting the type of attack from the HTTP traffic 
dataset with cross-validation of n=10 folds using Weka 3.8. 
Whereas, Naïve Bayes classifier gave the highest F-measure 
rate of 93.9% among the three-classifier used in our research. 

TABLE ⅠI: EXPERIMENTAL RESULTS 

Classifier 
TP  

Rate 
Precision Recall F-Measure 

J48 94.5 94.7 94.5 93.4 

Naïve 

Bayes 
94.0 94.5 94.0 93.9 

OneR 92.5 93.1 92.5 89.8 

 

The attack detection rate concluded by Sikha Bagui et al 

[6] in their research for Naïve Bayes classifier was averaging 

90% with feature selection for cyber-attacks whereas our 

research brought results from Naïve Bayes at 94% true 

positive rate with feature selection. The F1-Measure for NB 

turns out to be the best at 93.9% among the three classifiers. 

However, J48 outperform other classifiers with a True 

positive rate of 94.50% having the best attack detection rate 

as compared to Sikha Bagui et al [6] of 0% attack detection 

rate for cyber-attacks. 

 

Thomson [4] in the research thesis referred to 10 features 

extracted and selected by the CFS from the CSIC-2010 

dataset. However, we extracted 20 features that contributed 

essentially in detecting web-based attacks like SQLi, XSS, 

Buffer Overflow. The TP rate for SQL-Injection of Thomson 

[4] was 91.2% without feature selection and 53.7% with 

general feature selection compared to our results for 94.5% 

TP rate for J48 classifier in detecting the web-based attack. 



V. CONCLUSION 

While performing experiments, we cleaned and labeled 

CSIC HTTP 2010 dataset that helped in distinguish between 

normal and anomalous traffic. The preprocessing of the data 

was done at a granular level using a python script to identify 

missing features for a common attack. Further, feature 

extraction from the dataset played a key role in identifying 

malicious behavior and the attack types like SQL injection 

(SQLi), Cross-Site Scripting (XSS) and Buffer Overflow by 

using various Machine Learning classifiers like J48, Naïve 

Bayes, OneR, Decision table that use evaluation metrics to 

find the accuracy using Weka 3.8. Also, by applying fine-

tuned feature set engineering resulted in 20 features extracted 

with improved detection of web-based attacks, thereby 

increasing the true positive rate. Lastly, our experimental 

results with three machine learning algorithms (J48, Naïve 

Bayes, OneR) demonstrates the reliability in the detection of 

web-based attacks, and the J48 decision tree algorithm was 

depicted to be the best performing algorithm with the best 

attack detection rate of 94.5%.  
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