

MACHINE LEARNING BASED INTRUSION DETECTION SYSTEM FOR WEB-
BASED ATTACKS

Co-authored by Sushant Sharma

Pavol Zavarsky

Sergey Butakov

Project report

Submitted to the Faculty of Graduate Studies,

Concordia University of Edmonton

in Partial Fulfillment of the

Requirements for the

Final Research Project for the Degree

MASTER OF INFORMATION SYSTEMS SECURITY MANAGEMENT

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

April 2020

MACHINE LEARNING BASED INTRUSION DETECTION SYSTEM FOR WEB-
BASED ATTACKS

Sushant Sharma

Approved:

Pavol Zavarsky [Original Approval on File]

Pavol Zavarsky Date: April 14, 2020

Primary Supervisor

Edgar Schmidt [Original Approval on File]

Edgar Schmidt, DSocSci Date: April 15, 2020

Dean, Faculty of Graduate Studie

Machine Learning based Intrusion Detection System

for Web-Based Attacks

Sushant Sharma

Information System Security and

Assurance Management

Concordia University of Edmonton

Edmonton AB, Canada

ssharm11@csa.concordia.ab.ca

Pavol Zavarsky

Information System Security and

Assurance Management

Concordia University of Edmonton

Edmonton AB, Canada

pavol.zavarsky@concordia.ab.ca

Sergey Butakov

Information System Security and

Assurance Management

Concordia University of Edmonton

Edmonton AB, Canada

sergey.butakov@concordia.ab.ca

Abstract—Various studies have been performed to explore

the feasibility of detection of web-based attacks by machine

learning techniques. False-positive and false-negative results

have been reported as a major issue to be addressed to make

machine learning-based detection and prevention of web-based

attacks reliable and trustworthy. In our research, we tried to

identify and address the root cause of the false-positive and

false-negative results. In our experiment, we used the CSIC 2010

HTTP dataset, which contains the generated traffic targeted to

an e-commerce web application. Our experimental results

demonstrate that applying the proposed fine-tuned feature set

extraction results in improved detection and classification of

web-based attacks for all tested machine learning algorithms.

The performance of the machine learning algorithm in the

detection of attacks was evaluated by the Precision, Recall,

Accuracy, and F-measure metrics. Among three tested

algorithms, the J48 decision tree algorithm provided the highest

True Positive rate, Precision, and Recall.

Keywords—web-based attacks, detection, machine learning,

feature extraction.

I. INTRODUCTION

Identification of web-based attacks and prevention of the
attacks by supervised and unsupervised machine learning
tools has been a very active area of research. One of the key
challenges in the detection of web-based attacks is feature set
extraction which is essential for the development of machine
learning detection models. A holistic feature set for effective
detection of the attacks has not been developed. To address
the gap, we present in this paper a feature set engineering as
an approach to improve the detection of web-based attacks.
We applied machine learning algorithms on a publicly
available HTTP traffic dataset from an authentic source CSIC
HTTP dataset 2010[1]. This dataset contains the generated
traffic targeted to an e-commerce web application, the dataset
was generated automatically and contains 36,000 normal and
more than 25,000 anomalous requests [2] that include web-
based attacks like SQL injection, cross-site scripting and
buffer overflow that were used in our experiments. The dataset
was preprocessed and cleaned using Python script.

The Python script was developed to extract features from
the dataset, transform the dataset into CSV format, and
distinguished between normal and anomalous traffic. After
extracting useful features we applied machine learning
techniques in WEKA. Feature engineering was the primary
challenge and the most important component in this research.
Python script parsed the dataset fields with various features
like the length of the fields, user-agent length, content length,
GET and POST request, cookie length.

II. RELATED WORK

G. Kaur et al [3] proposed the detection mechanism of
blind cross-site scripting using machine learning, where
identification of the malicious payloads that were likely to
store in the database through web application was achieved in
the experiments. They used the Linear Support Vector
Machine classifier technique to determine the difference
between stored cross-site scripting and blind cross-site
scripting and to detect the attack [3].

The approach employed by Thomson [4] for exploration
of SQL injection attack where they investigated areas that
specialize in feature selection from the dataset. They used
machine learning algorithms for experimental use to evaluate
features that have greater significance than others in feature
sets. Also, they performed feature extraction to parse the
dataset using Python script and identified that some features
have more impact on the performance of classifiers in
detecting SQLi attacks [4]. Abby in [5] filtered down only the
benign and SQL injection attacks from the CSIC HTTP and
ECML/PKDD data set. He experimented with the dataset so
as to realize higher accurate results, an iterative methodology
was chosen which allows the re-evaluation during the design
and planning.

Sikha Bagui et al [6] used a hybrid feature selection
process and classification techniques to classify cyber-attacks
in the UNSW-NB15 dataset [7]. They employed two
techniques (J48, Naïve Bayes) based on a correlation-based
feature selection, where Naïve Bayes outperform with
classification accuracy for most attacks but J48 did not
perform any better with feature selection. Naïve Bayes
classifier gave an attack detection rate for shellcode attack
which is an injection attack at 91.53% with feature selection.
Whereas, J48 was not able to detect attacks like shell code,
Backdoor, Analysis, and Worms with feature selection.

III. EXPERIMENTATION

The performed experimentation in three phases is
outlined in Fig 1.

Phase 1 focuses on data preparation of the dataset and it’s
pre-processing to identify sub-categories of anomalous traffic
for a fine-tuned training set that helped us to identify the
missing features for common attacks. The data set contains
some errors, Latin characters, errors, blank space and rows at
the end of the lines in the dataset which were fixed with the
help of Python scripting language before being processed for
the next phase.

Phase 2 was dedicated towards the feature extraction from
the dataset that contains fields like GET, POST request,
content-length, keywords count for SELECT, DROP,

mailto:ssharm11@student.concordia.ab.ca

UNION, DELETE, MODIFY, content that contains field,
number of special characters, login name, and password. The
cleaned dataset was put into the CSV file before feeding it to
Weka 3.8, an open-source tool for machine learning and data
mining.

The dataset set was pre-processed at a finite level using
Pyhton script. The feature extraction is the most important
component of the research. The script successfully parse the
dataset fields with various features like length of the fields,
user-agent length, content length, GET and POST requests
length, cookie. The steps used to parse the dataset using
Python script are explained below:

Step 1 - Script infrastructure to process multiple files, where

we go through multiple files and produce a single output file.

Step 2 - If we process multiple input files, we used a Global

variable to write the header only once.

Step 3 - We choose the columns of the processed CSV files

to parse. These keywords are searched in input files to extract

their text. For example, “Host:” will be searched, and that line

will be extracted and input to Python dictionary.

Step 4 - We not only extracted selected features into selected

CSV columns, but added our processed features. These were

denoted by CSV columns preceded with an underscore for

e.g. “_keywords”. The “_keywords” column was input after

analyzing the GET request to search for features like SQL

injection.

Step 5 - “refine_results()” function was used to further

analyzer the input data. We counted the number of characters

of the GET request, and stored the result into a CSV column

called “_len_of_GET”. We parsed out four additional fields

from within the “content” field, namely: login, password,

nombre, and email. We found selected features from GET,

POST, or content fields, such as those that indicated SQL

injection, buffer overflow, or XSS script attacks. Below is the

script to count the number of characters of the GET request.

Create GET request length

 if od['GET'] == 'null':

 od['_len_of_GET'] = '0'

 else:

 od['_len_of_GET'] = '{0}'.format(len(od['GET']))

 content = od['content']

 _login = parse_field(content, 'login')

 od['_login'] = (_login)

 _password = parse_field(content, 'password')

 od['_password'] = (_password)

 _nombre = parse_field(content, 'nombre')

 od['_nombre'] = (_nombre)

 _email = parse_field(content, 'email')

 od['_email'] = (_email)

Step 6 - We read all lines from each input file, and search for

the chosen CSV columns from step 3. The “Content-Length”

text is special. Upon reading this line, we extract the number

of bytes of content, and then read that many bytes from the

file.

Step 7 - When there is an empty line, that means it is the end

of one GET or POST request. At this time, we write the

parsed data of GET and POST to the output file.

Fig 2: Extraction using keywords

Fig 1: Flow chart outlines three phases

Step 8 - When parsing a selected CSV column, we altered

some input. We changed all commas to underscore and

stripped newline characters.

In Phase 3, the data was fed to machine learning methods

using algorithms and classifiers that are pre-defined in the
Weka with multiple features extracted from phase 2. The final
phase consists of four procedures which were data collection,
data preprocessing, feature extraction and classification of the
data. Firstly, cleaning of the data was done from errors which
came across while feeding it to Weka. Secondly, Weka gave
a leverage to transform text/string into nominal type using
built-in filter during pre-processing step. Thirdly, feature
extraction using a python script was conducted that helped in
distinguish between the most relevant features in the detection
of web-based attacks in the HTTP traffic from the dataset.

IV. EXPERIMENTAL RESULTS AND DISCUSSION

A detail of extracted features and experimental results
using evaluation metrics for the machine learning classifiers
can be seen in table Ⅰ and table II.

We have used three ML classifier for the research., J48
from the decision tree, One rule (OneR) from rule system and
Naïve Bayes from bayesian ML models. Firstly, J48 is used
to classify different applications and perform accurate results
of the classification. J48 algorithm is one of the best machine
learning algorithms to examine the data categoriacally and
continuously that is used to measure the improved
performance and produce higher rate of accuracy. The
decision tree consists of internal nodes that denote different
attributes, the branches depict the possible values of the
attributes between the nodes, and terminal node tell the final
value. Secondly, OneR classifier is one of the simple and most
effective callsifier algorithm in ML. It depends upon the
classification rules based on the single predictor’s value and
not rely on the frequency of the target, then select the rule with
the smallest total error as its “one rule”. To create a rule for a
predictor, one can construct an evaluation/frequency table for
each predictor against the target. It is easy to interpret the rules
for each predictor, its value and the target. Thirdly, Naïve
Bayes is a high-bais, low-variance classifier that mainly
calculates the probability of an item belonging to a certain
class depending on the metrics obtained from the training data
[8]. Also, it requires a small amount of training data to
estimate the parameters. Being an intuitive method, it uses the
conditionl probabilities of each attribute belonging to each
class to make a predicition.

The preprocessing of the data was done at a granular level
using a python script to identify missing features for common
attacks. Initially, raw data was cleaned by removing errors
before testing it on the Weka 3.8. Further, using in-built filters
from the Weka 3.8 made the transformation of type from
string to nominal followed by the attribute selection process
for desired results. Lastly, feature extraction was carried using
Python script to extract the most relevant features that
contributed to identifying the web-based attacks. The script
successfully parsed the dataset fields by distinguishing normal
and anomalous traffic, along with special features that define
the type of web-attacks. The metrices used to evaluate the
accuracy of the classifier in the research.

The features extracted using the Python script were (1)
content_length, (2) content, _(3) label (norm & anom), (4)

keywords, (5)_length_of_GET, (6)_login_count, (7)
special_chars, (8) Pragma, (9) cookie_len, (10) host, (11)
connection, (12) cache_control, (13) accept_language, (14)
accept_encoding, (15) _email, (16) user-agent, (17) nombre,
(18) password count, (19) _special chars, (20) login.

The list of special extracted features is shown in Table I.

TABLE I – EXTRACTED FEATURES DESCRIPTION

Feature Name Description

_len_of_GET
Number of Characters in

getting request

_keywords
To identify the type of web-

based attack.

content_length
A number of bytes of the

content.

password_count
A number of characters in the

password field.

_login count
A number of attempts to log

in to the database.

_cookie_len

The amount of time it will

hold information on to the

user system.

_special_chars
To identify the special

characters in the request field.

Results of the performance of machine learning algorithms
in the detection of malicious traffic are summarized in table
II. J48 classifier gave the highest detection rate of 94.5% that
helped in detecting the type of attack from the HTTP traffic
dataset with cross-validation of n=10 folds using Weka 3.8.
Whereas, Naïve Bayes classifier gave the highest F-measure
rate of 93.9% among the three-classifier used in our research.

TABLE ⅠI: EXPERIMENTAL RESULTS

Classifier
TP

Rate
Precision Recall F-Measure

J48 94.5 94.7 94.5 93.4

Naïve

Bayes
94.0 94.5 94.0 93.9

OneR 92.5 93.1 92.5 89.8

The attack detection rate concluded by Sikha Bagui et al

[6] in their research for Naïve Bayes classifier was averaging

90% with feature selection for cyber-attacks whereas our

research brought results from Naïve Bayes at 94% true

positive rate with feature selection. The F1-Measure for NB

turns out to be the best at 93.9% among the three classifiers.

However, J48 outperform other classifiers with a True

positive rate of 94.50% having the best attack detection rate

as compared to Sikha Bagui et al [6] of 0% attack detection

rate for cyber-attacks.

Thomson [4] in the research thesis referred to 10 features

extracted and selected by the CFS from the CSIC-2010

dataset. However, we extracted 20 features that contributed

essentially in detecting web-based attacks like SQLi, XSS,

Buffer Overflow. The TP rate for SQL-Injection of Thomson

[4] was 91.2% without feature selection and 53.7% with

general feature selection compared to our results for 94.5%

TP rate for J48 classifier in detecting the web-based attack.

V. CONCLUSION

While performing experiments, we cleaned and labeled

CSIC HTTP 2010 dataset that helped in distinguish between

normal and anomalous traffic. The preprocessing of the data

was done at a granular level using a python script to identify

missing features for a common attack. Further, feature

extraction from the dataset played a key role in identifying

malicious behavior and the attack types like SQL injection

(SQLi), Cross-Site Scripting (XSS) and Buffer Overflow by

using various Machine Learning classifiers like J48, Naïve

Bayes, OneR, Decision table that use evaluation metrics to

find the accuracy using Weka 3.8. Also, by applying fine-

tuned feature set engineering resulted in 20 features extracted

with improved detection of web-based attacks, thereby

increasing the true positive rate. Lastly, our experimental

results with three machine learning algorithms (J48, Naïve

Bayes, OneR) demonstrates the reliability in the detection of

web-based attacks, and the J48 decision tree algorithm was

depicted to be the best performing algorithm with the best

attack detection rate of 94.5%.

VI. ACKNOWLEDGMENT

I am very thankful to Preetpal Kang from Sibros Tech,

California USA for his supreme assistance in developing

Python script.

REFERENCES

[1] R. Martinez, 2018. “Web Application Attacks-Datasets” GSI / web-
application-attacks-datasets,” GitLab. [Online]. Available:
https://gitlab.fing.edu.uy/gsi/web-application-attacks-datasets.

[2] HTTP DATASET CSIC 2010. [Online]. Available:
https://www.isi.csic.es/dataset/.

[3] G. Kaur, Y. Malik, H. Samuel, F. Jaafar, “Detecting Blind Cross-Site
Scripting Attacks Using Machine Learning,” Proceedings of the 2018

International Conference on Signal Processing and Machine Learning
- SPML 18, 2018.

[4] A. Thomson, 2016. A “Exploration of SQL Injection (SQLi) Detection
using Machine Learning” Edinburgh Napier University.

[5] P. Aaby, 2016.” Evaluating Web App Datasets towards Detection of
SQL Injection Attacks with Machine Learning Techniques” Edinburgh
Napier University.

[6] S. Bagui, E. Kalaimannan, S. Bagui, D. Nandi, and A. Pinto, “Using
machine learning techniques to identify rare cyber‐attacks on the
UNSW‐NB15 dataset,” Security and Privacy, vol. 2, no. 6, Oct. 2019.

[7] The UNSW-NB15 data set description. [Online]. Available:
https://www.unsw.adfa.edu.au/unsw-canberra-
cyber/cybersecurity/ADFA-NB15-Datasets/.

[8] R. M. GmbH, "Naive Bayes (RapidMiner Studio Core)," Naive Bayes
- RapidMiner Documentation. [Online]. Available:
https://docs.rapidminer.com/latest/studio/operators/modeling/predicti
ve/bayesian/naive_bayes.html.

	Sharma, Sushant - 138989 - MISSM - Title Page
	Sharma, Sushant - 138989 - MISSM - Signature Page
	Sharma, Sushant - 138989 - MISSM - Capstone Project

