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Abstract

This work aimed to improve the evaluation of atmospheric black carbon (BC) mixing

states by using a tandem Centrifugal Particle Mass Analyzer (CPMA), and Single

Particle Soot Photometer (SP2) system. To derive a BC mixing state using the

CPMA SP2 system, the measurements should be deconvolved with a proper inversion

scheme that accounts for multiple charging of particles and physical constraints. Four

objectives were followed to improve the accuracy of the method: (i) developing a

novel deconvolution scheme; (ii) determining optimum measurement configurations

for the CPMA SP2 system response collection; (iii) experimentally characterizing the

CPMA transfer function; and (iv) incorporating CPMA-SP2 system into real-world

applications to demonstrate its performance.

The first objective was achieved by developing a novel inversion scheme for deter-

mining the two-dimensional number distribution of non-refractory materials on black

carbon (i.e., mp— mBC), taking into account both physical constraints and a lack of

knowledge about black carbon particle mobility. The novel approach was tested with

several well-established regularization methods to determine which method outper-

forms the other. The results revealed that the exponential distance method outper-

formed other regularization methods tested. Also, to derive the optimum sampling

settings of the CPMA SP2 responses, Monte Carlo sampling was utilized to examine
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the sensitivity of reconstruction error to experimental inputs. Based on the aerosol

concentration and measuring time, general recommendations for typical aged atmo-

spheric aerosols are: (i) large numbers of SP2 bins per decade (n
′
s = 64), (ii) a

preference for higher SP2 sampling counts per CPMA setpoint (Ns > 104), (iii) a

moderate number of CPMA setpoints per decade (n
′
c = 3 to 8), (iv) CPMA resolution

around 1.0, and (v) a high CPMA flow rate (1.5 L/min).

For improving the evaluation of the mathematical model of the CPMA-SP2 sys-

tem, which directly impacts the reconstruction accuracy of mp— mBC distribution,

the transfer function of CPMA was experimentally evaluated and approximated with

a triangular transfer function. Deviation of the idealized transfer function from the

actual case was measured, and it was found that the actual CPMA transfer function

is generally a little bit narrower than expected, while the losses are much higher than

expected.

Finally, the improved CPMA-SP2 system was demonstrated for the measurement

of wildfire BC mixing states and compared to other measurement techniques estab-

lished in the literature. The comprehensive comparison between methods indicates

that while the CPMA-SP2 measurement may suffer from poor temporal resolution,

it enjoys higher counting statistics to retrieve information, thus the reconstructed

results are less uncertain, and also information is retrieved on a larger validated

detection size range.
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Chapter 1

Introduction, Problem Statement,
and Thesis Objectives

1.1 Atmospheric aerosols

A population of liquid or solid particulate matter suspended in the atmosphere is

called atmospheric aerosol. Atmospheric aerosols, particularly originating from the

burning of fossil fuels, contribute considerably to both human morbidity/mortality

and climate change (Pachauri et al., 2014). Air pollution currently contributes to

a global human mortality rate of 5.5 million premature deaths per year (Brauer et

al., 2016). Atmospheric aerosols with a diameter less than 2.5 µm, also referred to

PM2.5, have been singled out as the most hazardous portion of atmospheric aerosol

populations (Robinson, 2020). Atmospheric aerosols are closely linked with a diverse

range of severe and long-lasting illnesses, more importantly, cardiovascular and res-

piratory diseases (Burnett et al., 2014), and to less extent, mental illnesses (Oudin

et al., 2016), skin-related diseases (Drakaki, Dessinioti, and Antoniou, 2014), and

sexual health (Sram, 1999). Atmospheric aerosols also have a substantial impact on

many critical processes in atmospheric chemistry and physics. Aerosols extensively
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influence the dynamics of the climate in either direct and indirect ways. Aerosols

scatter and absorb solar radiation, and are regarded as direct contributors to climate

change (Bellouin et al., 2005; Ravishankara, Rudich, and Wuebbles, 2015), e.g., black

carbon (BC) particles heat the atmosphere by directly absorbing sunlight (Bond and

Bergstrom, 2006; Jacobson, 2001). Also, aerosols indirectly influence large-scale at-

mospheric dynamics (Penner, Dong, and Chen, 2004) via providing nucleation sites

for water droplets to form, resulting in cloud formation (Andreae and Rosenfeld,

2008; DeMott et al., 2010, 2011; Farmer, Cappa, and Kreidenweis, 2015; Jacobson,

2006; Qi et al., 2017), causing indirect effects on climate by enhancing the global

albedo which lessens the amount of solar radiation striking the Earth surface; and as

sites for heterogeneous reactions to occur (Lee et al., 2017), changing not only aerosol

properties but also gaseous concentrations (Abbatt, Lee, and Thornton, 2012). Also,

BC particles settle on snow/ice, cause more heating by decreasing snow/ice albedo

(He et al., 2014; Lee et al., 2017; Liou et al., 2014), causing faster snow/ice melting

resulting in less snow-covered land reflecting sunlight back to space.

1.2 Refractive black carbon and its impact on the

climate change

Produced primarily by the incomplete combustion of fossil fuel or biomass (e.g.,

wildfires), BC is estimated by some to be the second-largest human-caused contrib-

utor to global warming after carbon dioxide (Bond et al., 2013; Ramanathan and

Carmichael, 2008). Black carbon is aggregates of spheroidal particles within the

range of 10 and 50 nm in diameter (Bellouin et al., 2005; Ravishankara, Rudich,

and Wuebbles, 2015), which are strongly light-absorbing and insoluble in water and
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atmospheric organic solvents.

To determine the degree to which worldwide climate is sensitive to individual at-

mospheric constitutions, e.g., BC-containing aerosols, the Intergovernmental Panel

on Climate Change (Houghton et al., 1995; Houghton, 1992; Houghton, Jenkins, and

Ephraums, 1990) defined a metric known as radiative forcing. Commonly defined

for the Earth surface-troposphere system, the radiative forcing [W/m2] is referred to

the change in the net irradiance at the tropopause after letting stratospheric tem-

peratures reach radiative equilibrium, while both Earth surface and tropospheric

temperatures are kept fixed at their initial unperturbed values. However, estimation

of the radiative forcing for some atmospheric aerosols like BC-containing particles

is not always easy, and is subject to a high degree of uncertainty (Prather, Hatch,

and Grassian, 2008; Ramanathan and Carmichael, 2008). One primary source of

uncertainties is the diversity and variation of physicochemical properties and mor-

phology of particles across the aerosol population during their evolution in the atmo-

sphere. Discriminating this diversity of particle physical characteristics and chemical

compounds within the atmospheric aerosol population is highly challenging and is

further complicated as the physical and chemical properties of particles are continu-

ously changing within their atmospheric lifespan. Despite these immense challenges

for both experimental measurements and modeling, it is essential to evaluate the

impacts of aerosols on the atmosphere and climate. For instance, some atmospheric

aerosols are composed of complex mixtures of various chemical substances (e.g., a

single 100-nm particle could comprise of thousands of distinct chemical substances,

Junge, 1952; Murphy and Thomson, 1997; Prather, Hatch, and Grassian, 2008) and

could be composed of both primary and secondary species. Primary species are those
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species that are produced during emission and reside in the condensed phase, sec-

ondary species are formed later in the atmosphere through chemical reactions. Two

common examples of primary particles in the atmosphere are combustion aerosols

such as BC particles and metals from unburnt lubricating oils (Toner et al., 2008).

Secondary species in the atmosphere are typically nitrates, sulfates, and secondary

organic aerosol (SOA), produced respectively from the oxidation of NOx, SO2, and

volatile organic compounds (VOCs) (Hallquist et al., 2009; Winkler, 1973). SOAs

are formed through the photo-oxidation of VOC’s and radicals in the atmosphere.

Winkler (1973) introduced the concept of aerosol mixing state to define the di-

versity in chemical composition across an atmospheric aerosol. He considered two

extremes; (i) internal mixing and (ii) external mixing. The former refers to a mixing

state where the population of particles within an aerosol are all composed of the same

chemical species with the same fractional composition. The latter represents states

that all particles within an aerosol are made up of pure chemical substances and have

separate compositions. As BC-containing particles undergo constant evolution dur-

ing their lifespan in the atmosphere due to coagulation processes and condensation of

secondary aerosols, ambient BC mixing states are found neither fully internally nor

externally mixed. Primary BC particles are often found in external mixing states,

and they are primarily water-insoluble and hydrophobic (Khalizov et al., 2013; Mil-

jevic et al., 2012), and they cannot act as cloud condensation nuclei and form cloud

droplets. As shown in Figure 1.1, after being emitted from a combustion source, BC

aggregates grow coatings of secondary aerosol and become considerably restructured,

bringing about significant changes to BC particle optical properties (He et al., 2016;

Moteki, Kondo, and Adachi, 2014), morphology (Cappa et al., 2012; Weingartner,
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Burtscher, and Baltensperger, 1997), particle physical and chemical properties (e.g.,

particle size, and surface chemical properties, Khalizov et al., 2013). The struc-

tural change happens when BC particles are internally mixed with (i.e., BC surfaces

are coated by) other atmospheric aerosol components via condensation or chemical

oxidation processes (He et al., 2016; Khalizov, Cruz-Quinones, and Zhang, 2010;

Moteki, Kondo, and Adachi, 2014). When BC particles are internally mixed with

hygroscopic compounds (i.e., the materials attracting water in either vapor or liquid

phase from their environment), they act as cloud condensation nuclei (CCN), which

directly and indirectly influence the radiative forcing of BC particles by forming cloud

droplets and altering cloud lifetimes. Nevertheless, practically, it is not common to

find exclusively internal or external aerosol mixing states in the atmosphere (Bondy

et al., 2018; Healy et al., 2014; O’Brien et al., 2015).

Figure 1.1: A summary of BC structure evolution during its aging process in the
atmosphere (adapted from Kokhanovsky (2019))

BC mixing states in the atmosphere and, consequently, their radiative forcing are

not fully characterized as a result of BC spatiotemporal alterations (due to various de-

grees of emissions in different regions), and its intricate microphysical properties (e.g.,
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particle morphology and size distribution, Lee et al., 2015; Stephens, Turner, and

Sandberg, 2003) that are constantly changing during the aging process. Although

considerable attention has been paid to establish more accurate climate models to

calculate BC optical properties and its radiative forcing (Andreae and Gelencsér,

2006; Schwarz et al., 2010), climate models are still unable to explain the extensive

variations in BC radiative forcing. Consequently, BC mixing states need to be mea-

sured to lessen the uncertainties in climate forcing due to BC. The single particle

soot photometer (SP2) is often used to measure atmospheric BC concentrations and

mixing states of BC-containing particles (Stephens, Turner, and Sandberg, 2003).

How the SP2 operates and how it measures BC mixing states will be explained in

detail in the next section.

1.2.1 The single particle soot photometer measurements

The SP2 measures the mass of refractory black carbon (rBC) in individual particles,

where refractory black carbon is defined as carbonaceous material which is insoluble

and vaporizes only at temperatures near 4000 K (Petzold et al., 2013). In the opera-

tion of the SP2, as shown in Figure 1.2, rBC-containing particles are directed toward

a laser cavity and are hit by an intracavity laser beam (i.e., Nd: YAG, Neodymium-

doped Yttrium Aluminum Garnet), causing the rBC portion to scatter and absorb

the incident light and heat up, whereas the non-rBC portion only scatters the in-

cident light. Increasing the particle temperature results in simultaneously inducing

vaporization of the non-rBC portion and the emission of laser-induced incandescence

(LII), i.e., blackbody radiation (Zhang et al., 2018b).

Compound lens assemblies direct scattered and incandescent light to four distinct
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Figure 1.2: A simple schematic representative the operating principles of the SP2

avalanche photodiodes (APDs) which convert the light to electricity using the pho-

toelectric effect. The SP2 is equipped with four APDs: one for measuring scattered

light, two for the detection of incandescence light in the visible light range (with a

wavelength ∼ 350–800 nm and 630–800 nm), and one for incandescence light within

the infrared range (∼ wavelength of 1400–1700 nm). The peak LII intensity (i.e.,

the blackbody radiation signal) in the SP2 occurs just before particle vaporization at

∼ 4000K, and is correlated to the BC mass of a particle using information derived

from the calibration of LII amplitude to particles of a known BC mass (Stephens,
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Turner, and Sandberg, 2003). The SP2 also monitors particle light scattering from

its 1064 nm laser. For non-rBC particles, the maximum light-scattering signal can

be used to measure an optical-equivalent particle size. However, for large non-rBC

particles (i.e., >∼ 400 nm), the detector saturates and direct correlation of the peak

height and particle size is not possible. Additionally, this size measurement is also

confounded for rBC-containing particles because the non-rBC material evaporates

due to the heating of the rBC during the passage of the particle through the laser

beam. Therefore, the scattering signal decreases as the non-rBC material evaporates,

and after evaporation, the scattering signal from the rBC core will vary depending on

its location in the laser beam. Furthermore, the scattering signal of the commercial

SP2 has a narrow detection range (∼ 200–400 nm in optical-equivalent diameter,

which depends on the laser power, optical alignment, and the sensitivity of the de-

tectors (Schill et al. (2018), Sharma et al. (2017), Wu et al. (2021), and Zhang et

al. (2018c)) and predicting the amount of non-rBC material requires assumptions

for morphology (e.g., core-shell morphology), material density and refractive indices

which are highly uncertain (Cappa et al., 2012; Taylor et al., 2015; Zhang et al.,

2016). Nevertheless, SP2 users attempt to use the scattering signal to estimate the

amount of non-rBC material in the rBC-containing particles and large non-rBC par-

ticles. Three common methods are: (i) leading-edge only (LEO; Gao et al. (2007)),

(ii) normalized derivative (ND; Moteki and Kondo (2008)), and (iii) incandescence

lag-time (Moteki and Kondo, 2007). Fundamentals of these measurement methods

are briefly described in the next sections, and more detail can be found in studies of

Moteki and Kondo (2007, 2008).
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1.2.1.1 Leading-edge only

In the literature, the amount of coating material in the rBC-containing particle is

typically represented as a coating thickness (tcoating), which is calculated as

tcoating =
dopt(RI)− drBC

2
, (1.1)

where, dopt(RI) is the optical diameter of the particle (a function of refractive

index, RI), and drBC is the mass equivalent diameter of the rBC portion of the

particle. According to the core-shell type morphology assumption and assuming a

core material density (i.e., ρrBC = 1800 kg/m3), the amount ofmrBC for each particle,

which is directly derived from the incandescence signal, is converted to drBC;

drBC =

(︃
6mrBC

πρrBC

)︃1/3

. (1.2)

To estimate dopt, the scattering cross-section (Leighton, 1994), is needed to be de-

termined as an input to the Mie theory. The scattering cross-section of the particles,

can be estimated from the peak intensity of the Gaussian scattering signal, which was

calibrated with measurements of PSL of known size. There is, however, a confound-

ing effect for scattering size measurements of rBC-containing particles, such that as

coated rBC particles pass through the laser beam, the rBCs heat up, and the coating

material evaporates, resulting in a lower peak intensity of the scattering signal. Ac-

cordingly, the peak intensity of the scattering signal cannot be directly derived from

the originally detected signal and requires the reconstruction of the undistorted scat-

tering signal. Developed by Gao et al., 2007, the leading-edge-only (LEO) approach

reconstructs the expected scattering signals of rBC-containing particles by fitting a

Gaussian function to the part of the scattering signal that precedes the evaporation
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of the coating material, i.e., the leading edge of the scattering signal. We defined

the leading edge of the scattering signal as 3% of the maximum laser intensity based

on scatter plots of LEO and standard analysis for non-absorbing particles, similar to

previous studies (Gao et al., 2007; Taylor et al., 2015).

Apart from the reconstructed scattering signal, several assumptions, like the re-

fractive indices of the coating and rBC core, are required as inputs to Mie theory

to obtain the optical diameter (scattering-equivalent size) of rBC-containing parti-

cles. In reality, the exact value of rBC’s refractive index is unknown and may vary

from one rBC material to another; nonetheless, it has been empirically shown that

κ ≈ n − 1, (Bond and Bergstrom, 2006; Moteki, Kondo, and Nakamura, 2010).

Taking this constraint into account, the SP2 Toolkit uses a range of lookup ta-

bles containing scattering cross-sections at the corresponding SP2 laser wavelength

(λ = 1064 nm) for diverse core and coating refractive indices. The user then se-

lects the most appropriate rBC refractive index by ensuring that the rBC volume

predicted from scattering by uncoated rBC particles is similar to the rBC volume

predicted from the incandescence signal. Uncoated rBC particles are defined from

the light-scattering signal just prior to incandescence onset, when coatings are as-

sumed to have evaporated. In our study, this resulted in nrBC = 2.26 + i 1.26. It

should be noted that this approach must not be mistakenly interpreted as quantify-

ing the rBC refractive index, which requires more supplementary measurements, but

as a mechanism to ensure internal consistency in the LEO results.

The LEO approach is commonly employed to derive the size or mixing state of

rBC-containing aerosols (Raatikainen et al., 2017; Sedlacek III et al., 2012; Zhang

et al., 2018a,b). However, the scattering detection range for pure scattering particles
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(with no rBC portion) is narrow (i.e., ∼ 200–500 nm). The size range for LEO

measurements of rBC-containing aerosols depends not only on the size of the particle,

but also on the amount of rBC in the particle which affects the refractive index and

the evaporation rate of the coating portion.

To measure coating thickness/mass of rBC-containing particles using the LEO

method, a spherical core-shell morphology with several core/shell property assump-

tions are required, namely, (i) a spherical void-free rBC core and values for: (ii)

rBC material density (ρrBC), (iii) coating material density (ρcoating), (iv) core refrac-

tive index (nrBC), and (v) coating refractive index (ncoating). The following values

are often used in the literature: ρrBC= 1800 kg/m3 (Bond and Bergstrom, 2006;

Corbin et al., 2018; Liu et al., 2020; Moteki, Kondo, and Nakamura, 2010; Ouf et al.,

2019; Park et al., 2004), ρcoating = 1000 kg/m3 (Ditas et al., 2018; Liu et al., 2019),

nrBC = 2.26 + i 1.26 (Dahlkötter et al., 2014; Laborde et al., 2013; Moteki, Kondo,

and Nakamura, 2010; Taylor et al., 2015; Zanatta et al., 2018), and ncoating = 1.5+i 0

(Laborde et al., 2013; Liu et al., 2015; Nakayama et al., 2010; Yuan et al., 2021). It

is well-known that the core-shell assumption is physically inaccurate (Sedlacek III

et al., 2012) and the accuracy of LEO in determining coating thickness will depend

on the four property values used in the calculation (Taylor et al., 2015; Zhang et al.,

2016).

1.2.1.2 Normalized Derivative

The normalized derivative approach (Moteki and Kondo, 2008) in evaluating rBC

mixing states is similar to the LEO approach except a different methodology is

used to estimate the undisturbed particle diameter. While a split-detector signal
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is used in the LEO to derive the particle positional information, which is essential

to recovering the undisturbed scattering signals, the normalized derivative of the

scattering signal is used in the ND approach to obtain analogous information. Thus,

the ND approach is similar to the LEO approach except that the detection limits

and noise in the optical sizing of the coated particle may be slightly different.

1.2.1.3 Lag-time analysis

Lag-time analysis is a categorical approach in determining a general picture of the

mixing state of BC. SP2 scattering signals can have two peaks, with the second one

occurring almost at the peak of the incandescence. While the second peak of the

scattering signal is typically higher than the first peak in thinly to moderately coated

rBC particles, the opposite is true for thickly coated rBC particles. For the latter,

the global maximum of scattering signals occurs well before the peak intensity of the

incandescence signals. Thus, the time difference between the peak intensity of the

time-resolved SP2 scattering and incandescence signals (∆τ = tmax,scat − tmax,incand)

is used to categorize rBC-containing particles into two groups: (i) rBC particles

with thick coating, or (ii) thin-to-moderate coating (Corbin et al., 2018; Moteki and

Kondo, 2007; Schwarz et al., 2006; Subramanian et al., 2010). Generally, particles are

categorized as rBC with thick coating if the time lag between the peak intensities of

the scattering and incandescence signals is more than ∼ 2 µs, indicating considerable

loss of coating material due to the heat absorbed by the particles as they transverse

the laser beam. For rBC particles with thin-to-moderate coating, the peak scattering

and incandescence signals occur nearly coincidentally (e.g., time lag < 2 µs).

One limitation of this method is that it cannot categorize rBC-containing particles
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whose rBC core and coating material are fragmented by laser light (Moteki and

Kondo, 2007; Sedlacek III et al., 2012). In such a case, the rBC portion reaches its

boiling point and evaporates, while the unevaporated non-rBC portion is fragmented

into smaller particles. A key to recognizing such a phenomenon is that the scattering

signal does not entirely vanish after the incandescence signal goes to zero. In addition

to the mentioned difficulty, the lag-time method cannot distinguish between uncoated

and thinly-to-moderately coated rBC particles. For more complex categorizations,

advanced methods should be implemented, e.g., supervised machine learning method

(Lamb, 2019).

Depending on the rBC-containing particles measured and the SP2 used, the time-

lag threshold varies slightly. For instance, Liu et al. (2022) and Zhang et al. (2018c)

used the threshold of ∆τ = 1.8 µs and 1.6 µs, respectively, while ∆τ = 2.0 µs was

used by Wang et al. (2014b) and Wu et al. (2016). Nevertheless, this variation,

which may be caused by the different coating compositions in different regions, is

almost negligible, e.g., less than ∼ 0.4µs (Moteki and Kondo, 2007), regardless of

the atmospheric conditions and pollution level (Laborde et al., 2012; Wu et al., 2016,

2017).

1.2.2 Soot particle aerosol mass spectrometer

The soot particle aerosol mass spectrometer (SP-AMS), which is analogous to hav-

ing an Aerosol Mass Spectrometer (AMS) and an SP2 in tandem, is designed to

measure the mass distribution of rBC and organic components in terms of vacuum

aerodynamic diameter, as well as determine the chemical characteristics of sources

(Onasch et al., 2012). A schematic of SP-AMS is shown in Figure 1.3. Initially,
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Figure 1.3: A schematics of SP-AMS instrument (Onasch et al., 2012).

aerosols are directed to the vacuum chamber through the inlet aerodynamic focus-

ing lens system, which comprises several orifice lenses that focus the particles into

a very narrow aerosol beam. The vacuum chamber (i.e., time-of-flight tube) is es-

sentially the particle sizing compartment, where the particle aerodynamic diameter

is determined by measuring the velocity of particles passing through the chamber.

The aerodynamic diameter of aerosols measured under the vacuum condition (i.e., in

the free-molecular regime) is referred to as the vacuum aerodynamic diameter (dva)

(DeCarlo et al., 2004). Afterward, particles enter the aerosol composition detection

chamber, where particles are passed through a tungsten plate heated to approxi-

mately 600◦C and Nd:YAG laser beam to evaporate non-refractory (e.g., organic

compounds) and refractory components (e.g., rBC), respectively. In addition to
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measuring the scattering and incandescence signals of refractory particles, similar to

the approach explained for SP2-only measurements in Section 1.2.1, the vaporized

materials are then ionized and collected for determining chemical properties by mass

spectroscopy. The fundamental SP-AMS measurements return an average aerosol

mass spectrum which are used to derive the average mass distribution of particles

in terms of vacuum aerodynamic diameter (i.e., dM
dlogdva

)(Jayne et al., 2000; Onasch

et al., 2012).

1.2.3 tandem CPMA-SP2 measurements

The aforementioned measurement techniques, however, are either highly uncertain

(i.e., indirect measurements based on assumptions Moteki and Kondo, 2007), or

have a poor range (e.g., SP-AMS with a detection limit of 25 fg of rBC per particle,

which is far larger than the median particle mass for most atmospheric rBC contain-

ing aerosols Lee et al., 2015). The purpose of this thesis is to develop another method

of measuring BC mixing state that overcomes the limitations of the prescribed ap-

proaches, such that it requires no optical model nor assumptions to obtain the total

particle mass, and can measure the entire population of rBC-containing particles

which can be measured by the SP2. Both of these advantages can be achieved when

the measurement method does not require the SP2 scattering signal to determine

the total particle mass. Alternately, a centrifugal particle mass analyzer (CPMA)

can be placed in front of the SP2 to classify particles by their mass-to-charge ratio

prior to SP2 measurements. Consequently, the SP2 determines the mass of rBC

in each particle whose total mass (BC and non-rBC mass) is known from CPMA

classification (Liu et al., 2017).
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1.2.3.1 Operating principles of the centrifugal particle mass analyzer

A summary of how the CPMA operates is briefly described here, and more detail

can be found in Olfert and Collings (2005). The CPMA is a particle mass classifier

made of two coaxial rotating cylindrical electrodes with a voltage difference applied

between them (the CPMA schematics are shown in Figure 1.4). Coaxial electrodes,
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Figure 1.4: Simple schematics of CPMA operating principles. FD, FC, and FE rep-
resent drag force, centrifugal force and electric force, respectively, that may act on
the particles passing through the classification regions.

which rotate with different rotational speeds, impose centrifugal and electrical forces

16



on charged particles simultaneously. Particles, based on their mass and electric

charge, experience different centrifugal and electrical forces, in which the centrifugal

force acts toward the outer cylinder, whereas the electrical force acts toward the inner

electrode. If the electrical and centrifugal force are nearly balanced, the particle will

exit the classification region. There are three fundamental concepts to consider in

CPMA analysis and data interpretation:

i. Aerosols with a mass-to-charge ratio marginally higher and lower than the se-

lected mass transverse the classifier. The probability of an aerosol of a chosen

mass-to-charge ratio passing through the CPMA classification region is described

by a distribution, known as a transfer function.

ii. The CPMA sorts aerosols by mass-to-charge ratio, and the classified aerosols

are not strictly monodisperse in mass. The reason being is, in addition to

singly charged particles of the desired mass, doubly charged particles of twice

the desired mass (and particles up to the maximum number of charges in the

aerosol) will also pass through the classification region.

iii. When the CPMA operates at low rotational speeds, for instance, when it classi-

fies fairly large aerosols, small uncharge particles may not be removed and can

successfully transverse the classifier.

1.2.3.2 CPMA-SP2 tandem measurements

As a morphology-independent measurement, a tandem CPMA-SP2 system can be

used to determine the mixing state of BC-containing particles, such that the mass

of rBC (mrBC) and the total mass of each particle (mp) can be measured, regardless
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of the particle morphology and coatings (Liu et al., 2017). A schematic of this

measurement system is shown in Figure 1.5.
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Figure 1.5: A simple schematics of the tandem CPMA-SP2 measurements.

In the system, aerosols are passed through a neutralizer to be electrically charged

and are then directed toward the CPMA inlet. The CPMA is successively stepped

through a desirable mass range, and the SP2 measures the mass of rBC in each

CPMA-classified particle. Figure 1.6a and b show the normalized SP2 responses

(concentrations) at different CPMA setpoints (m∗
p) for sample smoke particulates of

BC with no coating and BC with heavy coating, respectively. In order to take the

advantage of such morphology-independent measurements to determine the mixing

states of rBC particles, some studies (Hu et al., 2021b; Liu et al., 2017; Liu et

al., 2022), calculated the amount of non-BC material contained in the ensemble of

particles by

mnon−rBC = m∗
p −mrBC, (1.3)

where mnon−rBC is the mass of non-BC material in a BC-containing particle. Al-

though this measurement system eliminates scattering signal-associated uncertainties

and substantially improves a particle detection range of SP2-only methods, the ap-
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(m∗

p) for a sample (a) uncoated and (b) heavily coated distribution. Multiple modes
in panel (a) correspond to the multiple integer charge states. The red dotted-dash
lines represent the location where mrBC equals mp.

proach taken by these studies has two major issues. Neither the width of the CPMA

transfer function nor the concept of multiply charged particles (as discussed in Sec-

tion 1.2.3.1) are taken into account in this approach. Using this method, the results

would be valid only if the CPMA transfer function was extremely narrow and almost

all multiply-charged particles could be either removed by inspection or their portion

are insignificant. However, the atmospheric rBC population could have a wide range

of coating mass (i.e., some rBC contain little or no coating while some may contain

significant amounts) and fractions of the multiply-charged particle are not negligible.

Figure 1.6b illustrates an example of atmospheric rBC population with a wide range

of coating masses, making it virtually impossible to distinguish the multiply-charged

particles by inspection. As a result, the CPMA-SP2 measurements cannot directly

be used to determine the amount of non-rBC content.
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Accordingly, in order to address these difficulties in using the CPMA-SP2 re-

sponses and rather derive average values for rBC mixing states, Broda et al. (2018)

used tandem CPMA-SP2 measurements and set up a system of equations in such a

way as to derive a two-dimensional map of total particle mass (mp) and rBC mass

(mrBC), i.e., ∂2N/∂ logmp∂ logmrBC by linking the CPMA-SP2 responses with the

mathematical model of the measurement system. This link can be achieved by using

Fredholm integral equations (Kandlikar and Ramachandran, 1999). Applying Fred-

holm theory to the CPMA-SP2 tandem system, the system of equations becomes:

NR,i =

∫︂ ∞

0

∫︂ ∞

0

Ki (mp,mrBC)

(︃
∂2N

∂ logmp∂ logmrBC

)︃
d logmrBCd logmp + εi.,

i = 1, 2, . . . , n
(1.4)

where NR,i is the number concentration of refractory black carbon particles at the ith

CPMA setpoint; ∂2N/∂ logmp∂ logmrBC is the two-dimensional particle-rBC mass

distribution, which is the quantity-of-interest; Ki (mp,mrBC) is the kernel of system,

which describes the relationship between the CPMA-SP2 system responses and a

mathematical model of the measurement system, for the ith CPMA setpoint; and εi

is a measurement error. The kernel of the system can be described as the product of

two functions

Ki (mp,mrBC) = S (mrBC) Γi (mp) , i = 1, 2, . . . , n (1.5)

where S (mrBC) is an effective SP2 kernel that acts to bridge between the true aerosol

distribution and the binned measurements, and Γi (mp) is the CPMA transfer func-

tion and includes the charging fraction.

In this approach, aerosols are passed through a neutralizer to be electrically
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charged and are then directed toward the CPMA inlet. The CPMA is successively

stepped through a desirable rBC-containing aerosol mass range, and the SP2 mea-

sures the mass of rBC portion of CPMA-classified particles using solely incandescence

light (i.e., LII signals). A time series of rBC masses of CPMA-classified particles is

then discretized into bins, and placed in a two-dimensional mp— mrBC to compute

BC mixing states. However, as can be seen from Equation(1.4), the true distribu-

tion ∂2N/∂ logmp∂ logmrBC measured by the CPMA-SP2 system is masked by a

convolution with the corresponding kernel functions (Kuwata, 2015; Sipkens, Olfert,

and Rogak, 2020a). As such, performing the inverse to find ∂2N/∂ logmp∂ logmrBC

from the tandem CPMA-SP2 response (i.e., NR,i), includes a deconvolution, which

comes with some mathematical challenges. First, the system of equations of these

problems are regularly rank deficient, i.e., the number of unknowns is more than the

number of equations, as a result of estimating the rBC mass distribution at more

positions than where CPMA-SP2 measurements are taken. Besides, even if the prob-

lem was full rank, the convolution presented in Equation 1.4 masks the ground truth

distribution with various instrument functions (e.g., including the effect of multiple

charging of the particles, and blurs the data. This issue is considered an ill-posed

problem in which (i) several solutions can equally represent the measured data and

(ii) the inversion procedure tends to magnify the error in the data. Therefore, suit-

able attention must be paid to retrieve the particle mass-rBC mass distribution,

even if the problem is full-rank. Several mathematical techniques have been devel-

oped and implemented for one-dimensional particle size distribution inversion (see

the review paper of Voutilainen, Kolehmainen, and Kaipio, 2001). Nevertheless, as

the derivation of two-dimensional distributions of aerosol properties using tandem ar-
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rangements of aerosol instruments is relatively new in aerosol science, the extension of

such techniques to two-dimensional distributions of aerosol properties, especially for

the CPMA-SP2 system, is an evolving field that needs careful consideration. Broda

et al. (2018) used Twomey-Markowski method (i.e., Twomey with routine smooth-

ing steps) as an inversion method and applied it to CPMA-SP2 measurements to

obtain corresponding mp— mrBC distributions. There are however limitations to

this method in terms of computational cost and measurement accuracy, which need

to be enhanced.

Hypothetical two-dimensional distributions of rBC mass (mp) over total particle

mass (mp) which could be derived from a tandem CPMA-SP2 measurements for a

rBC population with little to no non-rBC material and rBC population with large

amounts non-rBC material, are shown in Figure 1.7a and b. In these distributions,

∂2N represents the number concentration of particles, which have the total mass

between mp and mp + dmp and rBC mass between mrBC and mrBC + dmrBC. In

two-dimensional mp— mrBC space, the straight vertical lines correspond to a fixed

particle mass located on the x-axis (see Figure 1.7c). It is not physically possible

to have particles where the total mass is less than the rBC mass. In these plots,

lines of constant mass fraction of rBC, i.e., mrBC/mp, would correspond to straight

lines through the domain at an angle that is parallel to the main diagonal where

mrBC/mp = 1. Lines of constant non-rBC mass (shown as red dotted lines), which

we use as a surrogate for the mass of non-rBC materials in each particle and denote

as mnon−rBC, will follow log (mrBC) = log (mp −mnon−rBC), and are indicated by dash

lines in Figure 1.7c. Intuitively, these lines approach −∞ as mnon−rBC approaches mp

(where the particle would be all non-refractory). Moving vertically and horizontally
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Figure 1.7: (a,b) Normalized two-dimensional mrBC — mp distribution for a sample
(a) rBC population with no or little coating, and (b) rBC population with heavy
coating. (c) A representation of two-dimensional mrBC — mp.

away from the diagonal results in a decrease of rBC mass fraction (i.e., increasing

the coating mass fraction), where the latter one represents an increasing particle

mass while the rBC mass remains constant. Additionally, the mp— mrBC distri-

bution can also be mapped out into different spaces to derive explicit information

about other quantity of interests. Figure 1.8 illustrates the transformation of mp—

mrBC distribution of Figure 1.7b to other spaces. Figure 1.8a shows the normalized

number concentration of non-rBC component of rBC-containing particles, which ex-

plicitly demonstrates how non-rBC material is distributed on the total mass of rBC-

containing particles. Likewise, Figure 1.8b and c show ∂2N/∂logmrBC∂logmnon−rBC,

and ∂2N/∂logmp∂logfnon−rBC, which characterize how the the non-rBC material and

non-rBC fraction (fnon−rBC = mnon−rBC/mp) are distributed on the rBC mass and

total particle mass, respectively. It is evident that detailed information regarding
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non-rBC material in rBC-containing particles, which cannot be directly measured

with the CPMA-SP2 system, can be derived with this approach. Moreover, the

mp— mrBC distribution can also be integrated to obtain one-dimensional distribu-

tions; for instance, the particle mass concentration as a function of particle mass can

be derived using,

∂2M

∂ logmp

=

∫︂ ∞

0

∂2N

∂ logmp∂ logmrBC

mpd logmrBC, (1.6)

or likewise, the total mass concentration, M , can be derived through double inte-

gration of the distribution. It is worth noting that while N represents the number

concentration of BC-contacting particles, the mass concentration distribution derived

in Equation (1.6) refers to the total mass concentration of BC-containing particles.
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1.3 Problem Statement and Research Objectives

The fundamental goal of the present study is to improve the accuracy of retrieving

mp— mrBC distributions from CPMA-SP2 measurements. This is accomplished by

either optimizing how to collect and prepare data prior to the inversion or improving

the corresponding inversion approach. Four key objectives are:

i. The initial inversion scheme (i.e., Twomey-Markowski) introduced by Broda et

al. (2018) for retrieving the mp — mrBC distributions has limitations (Naseri

et al., 2021a). First, the reconstruction accuracy of Twomey-Markowski is inac-

curate for narrow distributions, and the approach incurs a high computational

cost. Further, the CPMA transfer function and particle losses in the CPMA are

poorly quantified, and the inversion of Broda et al. (2018) was a crude correction

scheme. Therefore, the first objective is to build on the efforts of Broda et al.

(2018) by improving the accuracy of the inversion scheme by i) setting up a

system of equations to allow for higher resolution reconstructions, ii) reducing

the computational effort and reconstruction accuracy by truncating the solution

domain to remove unphysical particles (i.e., the mass of rBC in a particle can-

not exceed the mass of the particle), and iii) introducing a marginal distribution

constraint to account for uncertainties in the CPMA transfer function and losses

in the CPMA.

ii. The accuracy of CPMA-SP2 measurements depends on operating conditions

like (i) the CPMA resolution, (ii) the number of SP2 counted at each CPMA

setpoint, (iii) the number of CPMA setpoints, and (iv) the number of SP2 bins

to discretize the SP2 measurements. Hence, the next objective is to determine
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the optimum operating conditions for a range of aerosol populations that might

be encounted in the atmosphere.

iii. Another objective is to experimentally determine the transfer function of

the CPMA to improve the accuracy of the CPMA-SP2 kernel function,

K(mp,mrBC), resulting in a more accurate deconvolution of CPMA-SP2 mea-

surements when the inversion is performed to derive a mp—mrBC distribution.

iv. The last objective is to compare the performance of CPMA-SP2 method with

SP2-only methods in terms of: detection size range, temporal resolution, count-

ing statistics, and errors associated with the measurements, in real-world mea-

surements.
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Chapter 2

Developing an improved inversion
scheme for retrieving
two-dimensional distributions
using CPMA-SP2 measurements

2.1 Introduction

This Chapter describes an improved inversion scheme for determining the mass distri-

bution of non-refractory materials on refractory black carbon using the CPMA-SP2

system. As described in section 1.2.3.2, the distribution of non-rBC mass on rBC-con-

taining particles can be obtained by deriving two-dimensional number distributions

of total particle mass and particle rBC mass. Accordingly, Broda et al. (2018) used

tandem CPMA-SP2 measurements and applied a novel Twomey-Markowski (i.e.,

Twomey with routine smoothing steps) inversion scheme to calculate the distribu-

tion of non-rBC mass in rBC-containing particles and a two-dimensional map of total

particle mass (mp) and rBC mass (mrBC), i.e.,
∂2N

∂ logmp∂ logmrBC
. Yu et al. (2020)

later employed this approach to measure the distribution of non-refractory coatings
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on BC in Beijing and found that the distribution of coatings varies greatly with the

pollution level.

However, the Twomey-Markowski approach is not without its limitations (Sip-

kens, Olfert, and Rogak, 2020a). Reconstruction accuracy is limited, particularly for

narrow distributions, and the approach incurs a high computational cost. Further,

though the width of the CPMA transfer function is a function of mobility, the mo-

bility of the particles is unknown. Also, the particle losses in the CPMA are poorly

quantified. Broda et al. (2018) tried to account for this by multiplying the reconstruc-

tion by a scalar such that the total number concentration of particles would agree

with that of measured directly by the SP2 when the CPMA was bypassed. However,

this approach neglects any size-dependent losses and broadening/narrowing due to

the transfer function.

In this chapter, the aim is to build on efforts of Broda et al. (2018) by (i) im-

proving the accuracy of the inversion scheme, (ii) setting up a system of equations

to allow for higher resolution reconstructions, (iii) reducing the computational effort

and reconstruction accuracy by truncating the solution domain to remove unphysical

particles (i.e., the mass of rBC in a particle cannot exceed the mass of the parti-

cle), and (iv) introducing a marginal distribution constraint to account for particle

mobility and losses in the CPMA. This work also builds on Sipkens, Olfert, and

Rogak (2020a,b), who demonstrated how more advanced inversion schemes can be

implemented for aerosol two-dimensional mass-mobility inversions. Following from

that work, we consider the performance of unregularized least-squares, Twomey-

Markowski, maximum entropy regularization, and Tikhonov regularization methods

on synthetic data phantoms representing a range of aerosols that could exist in the

28



atmosphere, including uncoated rBC, moderately-coated rBC, heavily-coated rBC,

and a mixture of uncoated and coated rBC particles.

2.2 Problem definition

The concept of deriving two-dimensional distributions from tandem aerosol measure-

ments was first introduced by Rawat et al. (2016) for mass-mobility distributions

(using a differential mobility) and improved upon by Buckley et al. (2017) and Sip-

kens, Olfert, and Rogak (2020a,b). Broda et al. (2018) extended this concept to the

problem of inverting CPMA-SP2 data. The problem involves a deconvolution of the

following integral equation,

NP,i =

∫︂ ∞

0

∫︂ ∞

0

η (mp, dm)Ki (mp,mrBC, dm,Φ)

(︃
∂2N

∂ logmp∂ logmrBC

)︃
·

dlogmrBCdlogmp + εi, i = 1, 2, . . . , n

(2.1)

where NP,i is the tandem CPMA-SP2 system response, i.e., the number con-

centration of refractory black carbon particles at the ith CPMA setpoint;

∂2N/∂ log mp∂ logmrBC is the two-dimensional particle-rBC mass distribution,

which is the quantity-of-interest and is discussed in more detail at the beginning

of Section 2.3; εi is a measurement error; and Ki(mp,mrBC, dm,Φ) is the kernel for

the ith CPMA setpoint. η is the particle transmission efficiency, and it accounts for

particle losses in the CPMA-SP2 system (e.g., diffusion and impaction) not included

in the instrument transfer functions. Generally, diffusional losses are a function of

the particle mobility (dm), while impaction losses are a function of mobility and mass

(mp).
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The kernel is the product of two functions

Ki (mp,mrBC, dm,Φ) = S (mrBC) Γi (mp, dm,Φ) , i = 1, 2, . . . , n (2.2)

where S(mrBC) is an effective SP2 kernel that acts to bridge between the true aerosol

distribution and the binned measurements, and Γi(mp, dm,Φ) is the CPMA transfer

function and includes the charging fraction.

2.2.1 The CPMA kernel

The theoretical instrument response of the CPMA, Γi, is defined for the ith setpoint,

characterized by a single-charged, target particle mass (mp
∗) and the number of

charges on a particle (Φ), as

Γi =
Φmax∑︂
Φ=1

f (dm,Φ)Ω (mp,i
∗,mp, dm,Φ), i = 1, 2, . . . , n (2.3)

where mp denotes the mass of a particle subjected to the CPMA; Ω(mp,i
∗,mp, dm,Φ)

is the CPMA transfer function evaluated using the analytical expressions of Sipkens,

Olfert, and Rogak (2020c) (using Case 1C in that work, which has computational

and other advantages over finite-difference simulations); and f (dm, Φ) is the charge

fraction, i.e., the fraction of the particles at an integer charge state of Φ, taken from

Wiedensohler (1988) with a maximum integer charge state of Φmax = 3. Implicit

in both the CPMA transfer function and the charge fraction is some assumption

about the mobility diameter, which is not explicitly specified in this procedure. It is

common to use an empirical mass-mobility equation (Kelly and McMurry, 1992) to

estimate the mobility diameter from the effective density. Olfert and Rogak (2019)
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found that

ρeff ≡ mp

πd3m
6

≈
(︃
510

kg

m3

)︃(︃
dm

100 nm

)︃−0.52

(2.4)

describes a large range of combustion-generated particles and is used to convert

the particle mass to a mobility diameter whenever the CPMA transfer function is

evaluated. This assumption will have impacts on the width (and in the case of dif-

fusion, the amplitude) of the CPMA transfer and charging functions that propagate

through to influence the width and amplitude of reconstructed distributions. Broda

et al. (2018) partially correct for this by scaling two-dimensional reconstructions by

a factor F such that the total number concentration of black carbon particles agrees

with SP2-only measurements, that is F = NSP2/N . However, such an approach

neglects size-dependent loss and broadening/narrowing due to the CPMA transfer

function. We instead address this issue by placing a new constraint into the inversion,

as is discussed in connection with Equation (2.31) later in this work.

2.2.2 The effective SP2 kernel

In contrast with the work of Broda et al. (2018), we present the measurements

as the product of a double convolution in Equation (2.1), incorporating an effec-

tive kernel for the SP2, S (mrBC), into the procedure. We say effective in that the

function is user-imposed, representing the binning of the discrete SP2 data, rather

than from the physical spreading of the distribution during measurement, as is the

case for a CPMA or differential mobility analyzer. More specifically, SP2 data is

fundamentally given as a series of u discrete points representing mrBC for each par-

ticle detected (i.e. the SP2 is a single-particle instrument). In this respect, we
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can consider the SP2 data as a vector containing the u measurements of mrBC,

mSP2 =
[︁
mSP2

1 ,mSP2
2 ,mSP2

3 , . . . ,mu
SP2
]︁T
. A list of this form is not immediately

amenable to being combined with CPMA data or for use in Equation (2.1), which

requires count-based data about a series of setpoints. In both the present work and

in Broda et al. (2018), this is overcome by binning the SP2 data to generate a set of

responses that act as an input to the inversion (in fact, data binning is one option

for data output in new models of the SP2). This binned response can be represented

mathematically by considering two observations:

(1) We note thatmSP2 contains a set of masses that, in the absence of measurement

errors, are expected to be drawn from the distribution dN/dlogmrBC.

In this respect, the cumulative distribution function (CDF) for mrBC, scaled by

the number of particles, can be represented as∫︂ mi

0

dN

dlogmrBC

dlogmrBC ≈
u∑︂

l=1

H
(︁
mi −mSP2

l

)︁
, (2.5)

where H(·) is the Heaviside function. This expression can be intuitively understood

to represent the CDF in that the function on the right side steps up everytime a

measurement, mSP2
l , is encountered. Thus, when many mSP2

l are clustered together,

the function increases more quickly. The two terms would be equal when u → ∞,

with an increasing error as the number of observations, u, decreases. Differentiating,

the mrBC distribution can now be represented as

dN

dlogmrBC

⃓⃓⃓⃓
mi

≈
u∑︂

l=1

δ
(︁
mi −mSP2

l

)︁
, (2.6)

where δ(·) is the δ-Dirac function. In other words, if we assume that the SP2 output

is exact, we can represent the rBC mass distribution as an infinite sum of δ-Dirac

32



functions centered on the observed mSP2
l . Though outside of the scope of this work,

one could also replace the δ-Dirac function in this expression with a function having

a finite width that represents the uncertainties in each measured mSP2
l .

(2) More importantly, for a continuous mrBC distribution, the theoretical binned

response from the SP2 (i.e., the counts in the ith histogram bin) can be repre-

sented by the convolution

NSP2
R,i =

∫︂ ∞

0

dN

dlogmrBC

[︂
H
(︁
mrBC −mlow

i

)︁
−H

(︂
mrBC −mhigh

i

)︂]︂
dlogmrBC (2.7)

where the combination of Heaviside functions collectively results in a boxcar func-

tion and mlow
i and mhigh

i are the lower and upper limit of the ith bin. Here, only

particles between mlow
i and mhigh

i counts towards the ith measurement (i.e., the data

is binned based on the single-particle output of the SP2). Noting similarity with

Equation (2.1), one can directly retrieve an effective kernel from this integral equa-

tion as

Si (mrBC) = H
(︁
mrBC −mlow

i

)︁
−H

(︂
mrBC −mhigh

i

)︂
. (2.8)

Combining these two principles, the equivalent binned response from the discrete

data can be evaluated as

NR,i =

∫︂ ∞

0

u∑︂
l=1

ηδ
(︁
mi −mSP2

l

)︁ [︂
H
(︁
mrBC −mlow

i

)︁
−H

(︂
mrBC −mhigh

i

)︂]︂
dlogmrBC

=
u∑︂

l=1

[︂
H
(︁
mSP2

l −mlow
i

)︁
−H

(︂
mSP2

l −mhigh
i

)︂]︂
(2.9)

Conveniently, the tandem response for a continuous distribution, as is relevant for

Equation (2.1), follows from substituting Equation (2.8) into Equation (2.1),
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NR,i =η

∫︂ ∞

0

∫︂ ∞

0

Γi (mp)
[︂
H
(︁
mrBC −mlow

i

)︁
−H

(︂
mrBC −mhigh

i

)︂]︂
×
(︃

∂2N

∂ logmp∂ logmrBC

)︃
d logmrBCdlogmp + εi.

(2.10)

2.2.3 Discretization

Practically, the problem must be discretized to allow for computation. To this end,

we discretize ∂2N/∂ logmp∂ logmrBC into n elements in which the quantity takes on

a uniform value (taking on the form of a reconstruction grid), such that

bi = NR,i =

j=n∑︂
j=1

∫︂ (mhigh
p )

j

(mlow
p )

j

∫︂ (mhigh
rBC)j

(mlow
rBC)j

ηΓi (mp)
[︁
H
(︁
mrBC −mlow

i

)︁
−

H
(︂
mrBC −mhigh

i

)︂]︂
·

(︄
∂2N

∂ logmp ∂ logmrBC

⃓⃓⃓⃓
j

)︄
dlogmrBCdlogmp + εi.

(2.11)

We explicitly note that the mrBC bin edges used in the reconstruction do not need

to be the same as those used to bin the data (i.e., mhigh
i does not necessarily equal

mhigh
rBC . Since ∂2N/∂ logmp∂ logmrBC|j is constant within the integral bounds, we

can move the term outside of the integrand

bi = NP,i =
n∑︂

j=1

η
∂2N

∂ logmp∂ logmrBC

⃓⃓⃓⃓
⃓
j

∫︂ (mhigh
p )

j

(mlow
p )

j

∫︂ (mhigh
rBC)j

(mlow
rBC)j

Γi (mp)

×
[︂
H
(︁
mrBC −mlow

i

)︁
−H

(︂
mrBC −mhigh

i

)︂]︂
d logmrBCd logmp + εi.

(2.12)

This expression now forms the basis for a set of linear equations, where the linear

operator is defined as
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Aij =

∫︂ (mhigh
p )

j

(mlow
p )

j

∫︂ (mhigh
rBC )

j

(mlow
rBC)j

Γi (mp)×
[︂
H
(︁
mrBC −mlow

i

)︁
−H

(︂
mrBC −mhigh

i

)︂]︂
× dlogmrBCdlogmp

(2.13)

and

xj =
∂2N

∂ logmp∂ logmrBC

⃓⃓⃓⃓
j

, (2.14)

which results in the system b = Ax+ε, where b ∈ Rni×1,A ∈ Rni×nj,x ∈ Rnj×1, ε ∈

Rni×1, and ni and nj are the number of data and reconstruction points, respectively.

Broda et al. (2018) used a simplified version of the problem in which
(︂
mhigh

rBC

)︂
j
=

mhigh
l , and

(︁
mlow

rBC

)︁
j
= mlow

l , such that one reconstructs ∂2N/∂ logmp∂ logmrBC

using an identical set of bins or grid points as was used to bin the original SP2 data.

In this case, the boxcar function in Aij is also uniform over each element and can be

removed from the expression, allowing for simplification of Equation (2.13) to

Aij =

∫︂ (mhigh
p )

j

(mlow
p )

j

∫︂ (mhigh
rBC)j

(mlow
rBC)j

Γi (mp) dlogmrBCdlogmp. (2.15)

The remaining integrand in this latter form is not a function of mrBC and can be

evaluated to yield

Aij = (∆ logmrBC)j

∫︂ (mhigh
p )

j

(mp
low)

j

Γi (mp) d logmp (2.16)

The remaining integrand in this latter form is not a function of msBC and can be

evaluated to yield

Aij = (∆ logmrBC)j

∫︂ (mhigh
p )

j

(mp low )j

Γi (mp) d logmp (2.17)
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Equation (11) in Broda et al. (2018), noting that the entire problem is reduced

by a factor of (∆ logmpBC)j. The generalization to Equation (2.13) offers a couple

advantageous over the treatment of Broda et al. (2018):

1. There are several occasions in which the measured data may be binned at a

coarse resolution, such as when there are limited counts or when the data is pre-

binned during collection. In such scenarios, the approach of Broda et al. (2018)

dramatically limits one’s ability to produce high-resolution reconstructions of

∂2N/∂ logmp∂ logmrBC .

2. For simulated cases, such as the current work, the approach of Broda et al.

(2018) requires that the same discretization scheme to be used for both gener-

ating and interpreting the mrBC data. This commits an inverse crime that can

otherwise be avoided if this simplification is not made.

The number of CPMA setpoints and SP2 data bins should be chosen by the

experimentalist based on the duration of measurements and the accuracy of results

(i.e., more CPMA setpoints will result in longer experiments but higher accuracy).1

The problem now resembles that from Buckley et al. (2017) and Sipkens, Olfert,

and Rogak (2020a). However, unlike mass-mobility measurements, the CPMA-SP2

problem presents a unique constraint in that mrBC cannot exceed the total particle

mass. Broda et al. (2018) included these points in the reconstruction and made

them zero at the beginning of each smoothing step. However, this may result in

1This topic itself is the subject of discussion later in Chapter 3, which demonstrates the overall
procedure for making CPMA-SP2 measurements using an optimal sampling configuration which
is defined as the conditions that yield the lowest Euclidean error relative to the input mp—mrBC

distribution.
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unnecessary smoothing over the diagonal where mp = mrBC, when priors are applied

during inversion, and unnecessarily increases the size of the problem. Here, we

instead accommodate the elements, the half of the diagonal elements is weighted in

the computations to perfectly follow the no-negative coating constraint. This results

in the reduced system,

b = A1x1 + ε (2.18)

where the invalid entries of x and columns ofA (the adjusted matrix will hereafter be

denoted as A1 and the size of x is determined therefrom). For the unique scenario

in which the reconstruction grid has the same discretization in the mp and mrBC

directions, with nj,0 points in each direction, this involves removing the upper left

triangle of the grid, as noted in Figure 2.1, and reduces the number of unknowns from

n2
j,0 to nj,0 (1 + nj,0) /2, such that A1 ∈ Rni×[nj,0(1+nj,0)/2] and x ∈ R[nj,0(1+nj,0)/2]×1.

Consistent with Sipkens, Olfert, and Rogak (2020a), a linear constraint is used in

conjunction with a linear least-squares solver to retrieve non-negative distributions.

2.3 Particle-rBC mass phantoms and data fabri-

cation

Consider now hypothetical two-dimensional mp − mrBC distributions or phantoms.

To provide context, first let us briefly describe mp − mrBC space. As noted in the

preceding section, the space is naturally limited by the mp = mrBC diagonal or

1:1 line, as the mass of rBC cannot exceed the total particle mass. For log-log

plots, lines parallel to this main diagonal will correspond to isolines of constant mass

fraction rBC, i.e., logmrBC = log
(︂
mrBC

mp
mp

)︂
= log (mpfrBC) = logmp + log frBC,
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Figure 2.1: Vector representation of x (a) with and (b) without considering the upper
triangle elements to implement non-negative mass of non-refractory component of
particles and accommodating the sharp edge where mrBC equals mp.

where frBC = mrBC/mp is the mass fraction of rBC in the particles. In this regard,

movement toward the lower, right portion of these plots corresponds to an increase

in the fraction of the particles that is not rBC. Horizontal lines, which correspond to

mrBC-selected or conditional mp distributions, correspond to particles that contain

the same amount of rBC. One interpretation, then, would be that these conditional

distributions represent the range in the thickness of non-rBC coating that is found

on the same rBC core. However, we need not assume a core-shell structure, which

allows for a generalization of this statement to the amount of non-rBC material in

otherwise similar rBC particles.
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2.3.1 Bivariate lognormal phantoms

Similar to the work of Sipkens et al. (2020 a, 2020b), we now use bivariate lognormal

distributions to construct phantoms. For any point in reconstruction space, the

bivariate lognormal distribution can be defined as

∂2N

∂ logmp∂ logmrBC

⃓⃓⃓⃓
log10 r

= p
(︂
[mrBC,mp]

T
)︂
= Ntot det(2πΣ)

−1
2

× exp

{︃
−1

2
(log10 r− µ)T (Σ)−1 (log10 r− µ)

}︃
,

(2.19)

where ∂N/ ∂ logrBC|log10 r is the joint mp − mrBC probability density function, r =

[mrBC,mp]
T is any point in the reconstructed mp − mrBC distribution, Ntot scales

the probability density function by the total number concentration in the aerosol,

det(·) denotes the determinant, and µ and Σ denote the mean and covariance of the

refractory black carbon mass and particle mass in logarithmic reconstruction space,

respectively. The latter two quantities are defined as

µ = [log10mrBC,g, log10mp,g]
T , (2.20)

Σ =

⎡⎣ (log10 σrBC)
2 R12 log10 σp log10 σrBC

R12 log10 σp log10 σrBC (log10 σp)
2

⎤⎦ (2.21)

wheremp,g andmrBC,g are the geometric mean of particle and rBC mass, respectively;

σrBC and σp are the geometric standard deviation of particle and rBC mass; and R12 is

the correlation between the logarithm of particle and rBC mass. The latter quantity

can be understood to control the slenderness of the distributions (e.g., Phantom 1 in

Figure 2.2 corresponds to a large degree of correlation). For more information on the

bivariate lognormal size distribution, we refer the reader to Appendix B of Sipkens,

Olfert, and Rogak (2020b). Five hypothetical phantoms are considered in an attempt
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to span a range of applications (i.e., atmospheric measurements, smog chamber

studies, and emission source characterization). In all cases, σrBC ∼ σp such that the

mass fraction of rBC in the particles is largely constant across the full range of particle

sizes and the distributions are approximately parallel to the 1 : 1 line. Further,

mrBC,g = mp,g will correspond to mostly bare soot, with some width allowing for the

addition of small amounts of non-rBC material, and mrBC,g < mp,g will correspond

to distributions where a majority of the particles contain non-rBC material. The

distribution parameters are given in Table.2.1, with the corresponding phantoms

shown in Figure 2.2. Figure 2.2 also shows the marginal number concentration

distribution of the particle mass (dN/dlogmp) and refractory black carbon mass

(dN/dlogmrBC ), obtained by integrating the two-dimensional mass distribution over

mp and mrBC, ,e.g., the marginal mrBC distribution would be

dN

dlogmrBC

=

∫︂ ∞

−∞

∂2N

∂ logmp∂ logmrBC

dlogmp (2.22)

where, in practice, the bounds are adjusted to span the considered reconstruction

domain.
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Table 2.1: Parameters used in the generation of hypothetical two-dimensional re-
fractory black carbon mass-total particle mass distributions. For table entries with
multiple comma-separated values, each entry refers to a different distribution mode,
in a consistent order.

 

Phantom mrBC,g(fg) mp,g(fg) srBC sp R12 
mp[fg] 
range 

mrBC[fg] 
range 

1) Uncoated soot particles 2.0 2.0 0.204 0.204 1 0.1-20 0.1-20 
2) Uncoated soot mixed with 
slightly coated soot particles  2.69 3.0 0.24 0.23 0.95 0.1-20 0.1-20 

3) Moderately coated soot 
particles 2.30 1.22 0.24 0.23 0.95 0.1-20 0.1-20 

4) Heavily coated soot particles 3.38 15 0.23 0.23 0.01 0.1-20 0.1-20 
5) Bimodal uncoated and coated 
soot particles 0.87, 2.56 0.90,8.00 0.15,0.24 0.15,0.23 0.96,0.97 0.1-20 0.1-20 

2.3.2 Synthetic data generation

The phantoms from the preceding section are discretized on a grid of 256 × 256

elements to give the ground truth of each phantom, xph, with the value in each

element of the grid given by Equation (2.19) evaluated at the center of the element.

Synthetic data, b, is generated by evaluating the forward model, Equation (2.17),

with this xph and corrupting the result with Poisson-Gaussian noise, following Foi et

al. (2008) and Sipkens et al. (2017). The high-resolution grid and noise were included

to avoid inverse crime (Wirgin, 2004). The level of the Gaussian component was set

to 5% of the max counts (i.e., 5% of 100,000 ). Data was generated to correspond to 8

setpoints per decade for the CPMA and 29 bins per decade for the SP2 data, resulting

in b ∈ R(12·64)×1 over the particle mass range defined in Table.2.1. The reconstruction

grid is composed of 64 × 64 elements with centers defined identically in the mpBC
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Figure 2.2: Discretized mp-mrBC distributions considered in the present study for
all five phantoms.

and mR directions (i.e., nj,0 = 64 ), such that x1 ∈ R2080×1 and A1 ∈ R768×2080.

Note that since, 2080 > 768, the problem is rank deficient, having more points in

the reconstruction than in the data. The CPMA parameters used to evaluate A are

given in Table.2.1. The particle transmission efficiency is set to a constant η = 0.8 for

all particle masses. This assumption is made since it is neither easy to quantify the

size/mass-dependent losses in the system or non-idealilities in the CPMA transfer

function. In the present study, the marginal distribution prior is introduced, to
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properly address this issue without knowing the size/mass-dependent particle losses

in the CPMA-SP2 system.

Table 2.2: CPMA parameters used in the current work.

Parameter Value

Inner radii (r1 [mm]) 60

Outer radii (r2 [mm]) 61

Flow rate (Q [m3/s]) 5x10-6

Classifier length (L [m]) 0.2

The speed ratio (ω=ω1/ω2) 0.9697

Temperature (T [K]) 293

Pressure (P [atm]) 1

CPMA Resolution (Rm) 10

2.4 Inversion schemes

Several commonly used methods (Carfora, Esposito, and Serio, 1998; Kandlikar and

Ramachandran, 1999; Sipkens, Olfert, and Rogak, 2020a; Voutilainen, Kolehmainen,

and Kaipio, 2001) were implemented to invert Equation (2.17), including; (i) least

squares, (ii) Twomey, (iii) Twomey-Markowski, (iv) the multiplicative algebraic

reconstruction technique (MART), (v) derivative-based Tikhonov regularization, and

(vi) exponential distance regularization. The reconstruction quality is assessed using

the relative Euclidean error,

ϵ =
∥x− xex∥22
∥xex∥22

, (2.23)
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where ∥ · ∥2 denotes the l2−norm and xex is the exact solution. The implementation

of the various inversion methods is described in Appendix.A.

Briefly, the unregularized, least-squares solution is given by

xLSQ = argmin
x

{︂⃦⃦
A1x− b

⃦⃦2
2

}︂
= argmin

x

⎧⎨⎩
Ni∑︂
i=1

⎡⎣⎛⎝ Nj∑︂
j=1

A1
ijxj

⎞⎠− bi

⎤⎦2⎫⎬⎭ , (2.24)

where argminx{. . .} denotes a minimization with respect to x. The Twomey ap-

proach (Twomey, 1975) and and MART (Gordon, Bender, and Herman, 1970) are

iterative approaches that use updating rules of

xk+1
j =

[︃
1 +

(︃
bi

aix
k
− 1

)︃
Aij

]︃
xk
j , (2.25)

and

xk+1
j = exp

(︄∑︂
i

frAijd
k
i

)︄
xk
j =

(︃
bi

aix
k

)︃frAij

xk
j , (2.26)

respectively. Here, xk+1 ∈ R[nj,0(1+nj,0)/2]×1 is the set of updated values obtained

from multiplying the two-dimensional distribution (the initial guess or the one cal-

culated in the previous iteration) to the kernel of the system, ai is the ith row of

kernel matrix A, and fr is a relaxation factor. Twomey-Markoski (Markowski, 1987)

improves on Twomey’s approach by introducing intermittent smoothing steps in the

main updating rule, with the two-dimensional adaptation described in Broda et al.

(2018), Buckley et al. (2017), and Sipkens, Olfert, and Rogak (2020a). An analogous

MART equivalent is also applied, using the same intermittent smoothing approach

proposed for the two-dimensional case proposed by Buckley et al. (2017). (We re-

fer the reader to the Appendix.A for additional information on how these schemes

are applied to the present application and Sipkens, Olfert, and Rogak (2020a) for a
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comparison of these approaches to Tikhonov regularization in the context of mass-

mobility inversion.) Tikhonov regularization adds a penalty term to the least-squares

scheme, most commonly aimed at minimizing the 0th, 1st, or 2nd order derivative

of the solution to dampen noise or encourage smoothness (Bashurova et al., 1991;

Crump and Seinfeld, 1982; Leighton, 1994; Seinfeld and Pandis, 1998; Talukdar and

Swihart, 2003; Wang et al., 2006; Wolfenbarger and Seinfeld, 1990). Regardless of

the derivative being minimized,

xTk
α = argmin

x

{︂⃦⃦
A1x− b

⃦⃦2
2
+ α

⃦⃦
LTkx

⃦⃦2
2

}︂
, (2.27)

where LTK is a discretized differential operator called the Tikhonov matrix, and

α > 0 is called the regularization parameter. The properties of the Tikhonov matrix

are described in the Appendix.A(Section A.2.1).

Exponential distance regularization (Sipkens, Olfert, and Rogak, 2020b) follows

from the general Tikhonov framework, Equation (2.27), but replaces LTk with an

exponential function of the distance between points in the reconstruction, such that

adjacent elements in the reconstruction should take on similar number concentra-

tions. Mathematically,

LTk = chol
[︁
[exp(D)]−1

]︁
, (2.28)

where chol(. . .) denotes the Cholesky factorization and D is a symmetric matrix

containing the Mahalanobis distance between pairwise ( i and j ) points in the

reconstruction domain. Accordingly, the entires of D are

Di,j =
[︂
(log10 ri − log10 rj)

T (︁ΓD
)︁−1

(log10 ri − log10 rj)
]︂1/2

, (2.29)
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where ΓD is a correlation matrix describing the correlation between points in the

reconstruction,

ΓD =

⎡⎣ lp
2 R12

DlplrBC

R12
DlplrBC lrBC

2

⎤⎦ ; (2.30)

lp and lrBC are the correlation lengths for mp and mrBC, respectively; and RD
12 is the

correlation in the distances (preferentially allowing smoothing along certain direc-

tions). For the CPMA-SP2 problem, these correlation lengths are expected to be

identical (i.e., lp = lrBC), such that smoothing preferentially occurs along the lines of

constant mass fraction rBC. For cases of very narrow distributions, e.g., when there is

little-to-no non-refractory material in the particles, the off-diagonals in ΓD can be set

such that smoothing is only applied along the length of the distributions. More infor-

mation on the exponential distance prior for the aerosol problem is given in Sipkens,

Olfert, and Rogak (2020b) and the Appendix.A, including discussion of the choice of

parameters for multimodal phantoms. Though not considered in previous works, the

value of dN/dlogmrBC can also be measured by the SP2 directly by bypassing the

CPMA. Logically, dN/dlogmrBC can be used to provide prior information. Adding

this term to the Tikhonov functional,

xα,λ
TK = argmin

x

{︂
λ
⃦⃦
A1xTK − b

⃦⃦2
2
+
⃦⃦
CxTK − d

⃦⃦2
2
+ α

⃦⃦
LTKxTK

⃦⃦2
2

}︂
, (2.31)

where λ is a second regularization parameter to account for the CPMA losses that

would cause a discrepancy between b and d;d is the discrete measurements of the

mrBC marginal distribution; and C is a composite kernel composed of the discrete,

effective SP2 transfer function, S (mrBC), and an operator C1 summing up the 2D

distribution (i.e., x ) in the corresponding direction, such that Cx = SC1x = d. We
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hereafter refer to this prior as the marginal distribution prior. (Note that since S

only incorporates the effective SP2 transfer function - (i.e., only incorporates bin-

ning of the measurements) and that this portion of the kernel is independent of the

particle mass and mobility diameter. The A1 term retains the same form as before,

incorporating the particle mass and mobility diameter, with that latter by way of the

effective density). Solutions obtained by Tikhonov methods are highly dependent on

the regularization parameters (e.g., α and λ ), leading to broad variation in converged

solutions. Here, the ground truth is known, such that the regularization parameters

can be obtained by calculating some form of error metric, e.g., the relative Euclidean

error. However, as in practice the ground truth is not known, we also consider two

heuristics for choosing the regularization parameter: (i) the well-established L-curve

approach, implementing the automated methods of Calvetti, Golub, and Reichel

(1999) , and Cultrera and Callegaro (2016), and (ii) the new Bayes factor method

introduced by Sipkens, Olfert, and Rogak (2020b), based on the work of Thomp-

son and Kay (1993) (see the Appendix.A for more information). The authors note

that while the L-curve framework can be generalized for determination of multiple

regularization parameters (e.g., Belge, Kilmer, and Miller, 1998, 2002), such as si-

multaneously estimating the α and λ, the automated L-curve approach is limited

to estimating α since the method commonly underestimates the regularization pa-

rameter in this work, even in this simpler case. This is also true of the exponential

distance prior parameters, which are not simple regularization parameters that scale

terms in the Tikhonov functional. Accordingly, whenever multiple prior parameters

must be chosen, the Bayes factor scheme is the only approach employed.
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2.5 Results and discussion

2.5.1 Comparison of inversion methods without considering
the marginal distribution prior

Figure 2.3 shows example solutions for Phantom 3 for the Twomey-Markowski, 1st

order Tikhonov, and the exponential distance methods, without the marginal dis-

tribution prior. Solutions for the other inversion methods and phantoms are shown

in the Appendix.A. As expected, the least-square method is poor (relative error of
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Figure 2.3: Distributions retrieved by the Twomey–Markowski, first-order Tikhonov,
and exponential distance methods for synthetic data fabricated from Phantom 3.
Marginal distributions are shown on either axis, where blue lines are the actual
marginal refractory black carbon (dN/dlogmrBC of the original phantom.

∼ 150% ), resulting from the rank deficiency of the problem and indicates the need

for some kind of regularization.

The Twomey-Markowski method results in a substantial improvement to the re-

trieved distributions (reducing the relative error to 30% ) but is prone to hotspots,

consistent with previous work (Sipkens, Olfert, and Rogak, 2020a). The 1st order

Tikhonov and the exponential distance reconstructions give a substantial further
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enhancement in reconstruction accuracy (relative errors of ∼ 18% and 15%, respec-

tively), again consistent with previous work (Sipkens, Olfert, and Rogak, 2020a).

Even a small degree of under-regularization was noted to result in artificial peaks

to the right of the main peaks, such that sensitivity to the regularization parame-

ter close to the minimum should be checked. Other, minor artifacts remain for the

Tikhonov and exponential distance priors at the lower limits of the distributions,

i.e., for mp < 1fg, which stem from the presence of noise in the data.

Figure 2.4 shows the relative Euclidean error across the broader range of inver-

sions methods for all phantoms. Reconstructions generally improve moving from

least-squares to Twomey-type to Tikhonov-type inversion schemes. Twomey regu-
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Figure 2.4: (Left) Relative Euclidean error and (right) average CPU time for conver-
gence for each reconstruction technique averaged over all phantoms. The CPU times
presented here are to be considered in comparative terms only as exact the CPU
times vary depending on the processor configuration and reconstruction resolution.
Both error and CPU times are presented on a logarithmic scale.

larization can only predict the rough phantom shape and magnitude of the origi-

nal phantoms, with the Twomey-Markowski method improving reconstructions at a
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higher computational cost (the Twomey-Markowski scheme is the slowest reconstruc-

tion method), again consistent with previous work. MART and MART with inter-

mittent smoothing retrieve solutions similar to the original Twomey and Twomey-

Markowski algorithms, respectively, though with convergence rates much faster than

the Twomey-type methods (nearly 23 times faster). Sipkens, Olfert, and Rogak

(2020a) also noted this speed enhancement comes with a small risk of erratic or

divergent behavior by the algorithm.

For Tikhonov-type reconstructions of all phantoms, Figure 2.4 indicates the rela-

tive Euclidean error is generally lower following the Bayes factor approach to regu-

larization parameter optimization, though at the cost of a doubling of convergence

time. Zeroth-order Tikhonov, which does not impose smoothness on the solution, is

only able to control the largest fluctuations and is generally considered insufficient.

The first and second-order Tikhonov schemes result in nearly 10% reductions in the

relative error, when compared to Twomey–Markowski. The exponential distance

approach marks a further improvement in terms of reconstruction accuracy.

2.5.1.1 Effect of the marginal distribution prior

Results presented up to this point are obtained without considering the marginal dis-

tribution prior. Figure 2.5 shows the first-order Tikhonov and exponential distance

solutions for phantoms of 1, 2, and 3, adding the marginal distribution prior. Figure

2.5 reveals that the marginal distribution prior decreases the reconstruction accuracy

of the Tikhonov methods as it produces some artifacts in the reconstruction area,

especially near the boundaries of the domain. Notably, for phantom 1, Figure2.5

shows a slender artifact near the upper limit of mp space. The shape, elongated in
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Figure 2.5: Distributions retrieved by considering both Tikhonov-type priors and
a marginal distribution as prior information for (top) the first-order Tikhonov and
(bottom) exponential distance methods. Blue lines are the actual marginal refractory
black carbon (dN/dlogmrBC) of the original phantom.

mrBC space, can be understood to stem from attempting to increase the height of the

marginal distribution by adding particles in a region that least affects the solution

norm. Similar statements can be made for artifacts located in similar regions for the

other phantoms.

Figure 2.6, which compares the performance of different Tikhonov and exponen-

tial distance methods with and without the marginal distribution prior, demonstrates

that while considering the mrBC marginal distribution prior improves the reconstruc-

tion accuracy of the exponential distance method, it would not boost the accuracy of

Tikhonov schemes. The authors note that by considering the rBC marginal distribu-

tion, the difference in reconstruction accuracy increases very significantly in moving
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Figure 2.6: The average (left) Euclidean error and (right) convergence time, CPU
time of reconstructions regularized solely with and without the marginal distribution
priors across all phantoms.

toward narrower phantoms, marking an improvement relative to first-order Tikhonov

regularization, from 8% across phantoms 2, 3, 4, and 5 to 65% for phantom 1, see

Figure S11 (Appendix.A). This implies that while the exponential distance recon-

structions of phantom 1 are highly accurate, with a relative Euclidian error of only

3%, neither of the Tikhonov regularization methods, whether the marginal distribu-

tion prior is considered or not, can reconstruct it properly (see Figures S8 and S11 of

the Appendix.A), as the structure of the Tikhonov matrix correlates distant points

in reconstructions. Generally, Figure 2.6 shows the average relative error for the

exponential distance method is preferentially improved, hovering around one-third

of the error for the 1st-order Tikhonov reconstructions.

Despite the accuracy afforded by the combination of exponential distance and

marginal distribution priors, this method does require the practitioner to define ΓD,

which can be challenging when multiple mixing states of black carbon are present,

such as for Phantom 5 (see Appendix.AFigure A.9). If lp and lrBC are defined in
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a similar manner to the unimodal distributions, the relative Euclidian error of the

reconstructions will not reduce enough to obtain the optimal solution, derived by the

exponential distance method and depicted in Figure 2.7. Even averaging values over

1st order
Tikhonov

1

10

0
1
2

mp [fg]

m
rB

C
[fg

]

1 10 0 1 2

Exponential
Distance

0
1

2nd order
Tikhonov

1

10

0
1
2

1

10

2

mp [fg]

m
rB

C
[fg

]

mp [fg]
10 0 1 21 10 0 1 2

m
rB

C
[fg

]

1

×105

×105

×105

×105

0 1.0 2.0
dN2/dlogmpdlogmrBC [cm−3]

×106

dN
/d

lo
gm

p
[c

m
-3

] 

×105

(a) (c)(b)

dN/dlogmrBC
[cm-3]

×105

dN
/d

lo
gm

p
[c

m
-3

] 

dN
/d

lo
gm

p
[c

m
-3

] 

dN/dlogmrBC
[cm-3]

dN/dlogmrBC
[cm-3]

Figure 2.7: The reconstructed distribution Phantom 4 regularized by considering
both smoothing and actual marginal distribution as prior information for the first
and second-order Tikhonov and Exponential distance methods. Blue lines are the
actual marginal refractory black carbon (dN/dlogmrBC) of the original phantom.

multiple modes may over-regularize narrow distributions, making them wider, and

under-regularized broad distributions, resulting in excessive noise. In the present

article, the elements of optimal ΓD are derived by doubling the arithmetic average of

correlation matrices of modes 1 and 2 of Phantom 4, which is similar to the result of

Sipkens, Olfert, and Rogak (2020b) suggested for the unimodal distributions. This

approach makes the elements of ΓD lie within ∼ 55% of the correlation lengths

and off-diagonals that would be expected for the phantom parameters from Table 1.

Further consideration of multimodal mp—mrBC distributions and their effect on the

optimal value of ΓD and reconstruction accuracy will be a topic of future work.
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2.6 Conclusions

In the present study, we present a new approach to obtain themp—mrBC distribution

from tandem CPMA-SP2 data. The new approach formally removes (non-physical)

elements where mrBC > mp, which allows for a faster convergence rate; better reg-

ularization in the vicinity of mrBC = mp by preventing smoothing over the con-

straint; and generally improves reconstruction accuracy. A range of priors, including

Twomey, Twomey-Markowski, MART (including the option for adding smoothing

function), and various Tikhonov-type inversion schemes, are considered. MART

with a smoothing function was shown to have a higher convergence rate, nearly eight

times faster than the current state-of-the-art Twomey-Markowski method. First- and

second-order Tikhonov methods further improve reconstruction accuracy, reducing

the relative error in the reconstructions by 10%. However, neither of the derivative-

based Tikhonov approaches can retrieve the pure uncoated state of black carbon,

phantom 1 , as the structure of the prior correlates distant points in reconstructions.

In response, we demonstrate that the exponential distance prior, which only cor-

relates local points in reconstructions, largely outperforms the other regularization

methods, with further improvements afforded by introducing a marginal distribution

prior (i.e., a prior that incorporates SP2-only measurements, where the CPMA is

bypassed).

In summary, for narrow distributions, we recommend that the exponential dis-

tance prior approach be used. For more general, wider, lognormal, or Gaussian-like

distributions, either first-order Tikhonov or the exponential distance prior are con-

sidered most appropriate, with the former being slightly faster and simpler and the
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latter being more accurate.
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Chapter 3

Optimum sampling configurations
for the CPMA-SP2 measurement
system

3.1 Introduction

This Chapter derives the overall procedure for making CPMA-SP2 measurements

using an optimal sampling configuration (i.e., optimal simulation), which is defined

as the conditions that give the lowest Euclidean error relative to the input mp−mrBC

distribution. Accordingly, the number of CPMA setpoints per decade, the number

of SP2 bins per decade, CPMA resolution, and the number of SP2 counts per CPMA

setpoint are derived as a function of aerosol concentration and desired measurement

time to accurately reconstruct mp −mrBC distributions.

In a typical classifier-detector system, in which common aerosol classifiers (e.g.,

DMA; Knutson and Whitby, 1975, and CPMA; Olfert and Collings, 2005) are used

in tandem arrangement with a particle detector, such as a condensation particle

counter (CPC; Quant et al., 1992), optical particle counter (OPC; Sorensen et al.,
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2011), or SP2 (Stephens, Turner, and Sandberg, 2003), the classifier is stepped or

scanned through a range of set points, with the output measured by the detec-

tor. Data inversion is then used to relate the detector data and classifier set points

to an aerosol distribution (e.g., count size or mass distribution). Common exam-

ples include the scanning mobility particle sizer (SMPS; Wang and Flagan, 1990)

which is a DMA-CPC system, and the scanning aerodynamic aerosol sizer (SASS;

Johnson et al., 2018) which is a AAC-CPC system. An important consideration in

classifier-detector systems is choosing optimal operating conditions. For example,

for an SMPS, scan time and classifier resolution (a parameter describing the width

of the monodisperse classifier output) can be specified in such a way to derive accu-

rate particle size distributions with appropriate counting statistics under a range of

sampling conditions. In most atmospheric studies, where number concentrations are

low, it is recommended to have longer scan times (e.g., 5 minutes) while maintaining

high resolutions (Birmili et al., 2007; Wallace, 2006; Weber et al., 1996; Zikova and

Zdimal, 2012). In contrast, when dealing with a transient source such as combustion

processes (Zhu et al., 2002) or some rapid particle nucleation processes (Kulmala

et al., 2012; Riccobono et al., 2014), such operating conditions may be suboptimal.

In such experimental situations, different recommendations are required to achieve

accurate size distributions at different sampling conditions (e.g., Shah and Cocker,

2005).

Tandem measurements, where two or more classifiers are placed in series with

a detector, have the promise of providing more detailed measures of aerosol char-

acteristics. However, tandem techniques also introduce an extra set of potentially

interrelated experimental parameters that must be optimized. For instance, in stud-
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ies with tandem arrangements of mass and mobility classifiers (e.g., the arrangements

in Buckley et al., 2017; Rawat et al., 2016; Sipkens, Olfert, and Rogak, 2020a,b), one

must simultaneously optimize the parameters of a mobility spectrometer (e.g., scan

time, flow rates, resolution) and a particle mass analyzer (e.g., device resolution),

including a number of interdependent parameters (e.g., the flow rates and charging

affect both devices). As such, experimental design is more complicated for tandem

measurements. Relative to the SMPS, optimizing the experimental properties for a

system that contains a CPMA is more critical, as the device takes longer to stabilize.

Thus, longer collection times are often preferred due to improvements in counting

statistics. However, as with SMPS measurements, these collection times come at the

expense of added work-hours and is inaccurate for non-stationary aerosols.

Similarly, this chapter aims to optimize the experimental parameters of the

CPMA-SP2 system, using Monte Carlo simulations to account for the non-linear rela-

tionship between the experiment parameters and the reconstruction accuracy ofmp—

mrBC distributions. We start by considering a scenario in which the aerosol source

is assumed to be stationary, such that measurement duration is unconstrained, and

examine trends with different experimental parameters (i.e., the number of CPMA

setpoints per decade, the number of SP2 bins per decade, CPMA resolution, and

the number of SP2 counts per CPMA setpoint). For each simulated experiment,

we also estimate the measurement duration, allowing for a discussion of the opti-

mal experiment settings for specific measurement durations as may be relevant if

the aerosol is non-stationary or the experiments are expensive. Next, we discuss the

effect of phantom (i.e., a synthetic mp—mrBC distribution) characteristics, ranging

from very narrow to very broad rBC distributions. We conclude by making prac-
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tical recommendations for the operating parameters across a range of measurement

durations and aerosol concentrations, describing a web app we have developed for

general recommendations and making specific recommendations for a moderately

broad distribution representative of an aged soot.

3.2 Problem definition

As discussed in Section 2.2.3, to derive mB − mrBC distribution a linear system of

equations of Equation (2.18), which is set up according to the using the CPMA-

SP2 measurements, should be solved. In this study, the reconstruction grid is held

constant with 24 elements per decade (x ∈ R5184×1). By contrast, the dimension

of system response (b ∈ R[nc×ns]×1) is variable, given as the product of the number

of CPMA setpoints(nc) and the number of SP2 bins (ns). For the remainder of

this work, s subscripts denote experimental parameters related to the SP2, and c

subscripts parameters related to the CPMA.

3.2.1 Inverse procedure

As discussed in Chapter 2, the overall system is ill-posed, and the system must be sup-

plemented with prior information, i.e., regularized. We here invert the problem using

1st order Tikhonov regularization (Kandlikar - Ramachandran, 1999; Voutilainen et

al., 2001) following the procedure described in Section 2.4. While this requires an

adaptation of the traditional scheme as it has historically applied to one-dimensional

size distributions (cf. Sipkens, Olfert, and Rogak, 2020a,b), the overall effect is the

same: to add prior information that encourages smoothness. The reconstruction

quality is assessed using the relative Euclidean error, ϵ = ∥x− xex∥22 / ∥xex∥22, where
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∥ · ∥2 denotes the L2 norm and xex is the exact solution. The optimal regulariza-

tion parameter is taken as that which minimizes the Euclidian distance between the

known ground truth and the reconstructed distribution.

3.2.2 Synthetic data, parameterization, and sampling pro-
cedure

The present work generates a series of synthetic data by sampling a range of pa-

rameters relevant to the experiment and analysis. Synthetic data is generating using

Equation (2.18) and requires knowledge of three components: a synthetic mp—mrBC

distribution or phantom to give x1; a set of experimental parameters that are used to

generate a kernel (A1); and a noise vector (ε) which is composed of Poisson-Gaussian

noise (Foi et al., 2008; Sipkens et al., 2017). Phantoms are taken as bivariate log-

normal, which can be described by Equation (2.19) to Equation (2.21), to represent

atmospheric mp—mrBC distributions.

3.2.2.1 Phantom parameterization for representative atmospheric distri-
butions

Parameters of Equation (2.19) to Equation (2.21), are chosen to represent a wide

range of black carbon mixing states found in the atmosphere following a condensation

process and based on several studies Gong et al. (2016), McMeeking et al. (2010),

and Yu et al. (2020). McMeeking et al. (2010), for example, conducted aircraft

measurements of rBC aerosol concentrations in the lower troposphere over Europe

using the SP2, spanning remote continental regions to highly populated urban areas.

They reported a mass median diameter (MMD) and geometric standard deviation

(GSD) of rBC mass of dMMD = 183 nm and σrBC = 2.08, respectively. Transforming

60



to the quantities of interest here follows from using the Hatch-Choate equation,

dCMD = dMMD exp [−3 (lnσrBC)] , (3.1)

to convert this mass median diameter of rBC to its equivalent count median diameter

(CMD) and mrBC,g = ρeff
πd3CMD

6 to convert to a median rBC mass using the same

rBC density of ρeff = 1800 kg/m3 as used by McMeeking et al. For the McMeeking

et al. parameters, dCMD = 135.6 nm and mrBC,g = 2.35 fg. Phantoms were created

which model a simple condensation process in the atmosphere, that is, the geometric

mean rBC mass and geometric standard deviation of mrBC were the same in all

phantoms (i.e., the rBC particles are unchanged through the condensation process

and coagulation is neglected)

As noted above, the covariance in Equation (2.21) is parameterized using a corre-

lation, R12, between two types of particle mass, thereby specifying the breadth of the

mp—mrBC distribution. Specifically, we assume that high rBC mass fractions are as-

sociated with very thin or non-existent coatings and thus very narrow distributions.

Conversely, particles with a substantial non-refractory component are associated with

thick coatings and broad distributions. Futhermore, it was assumed that the GSD

of the particle mass is equal to the GSD of the rBC mass (i.e., σp = σrBC = 2.08),

which is an arbitirary constraint, but one that is approximately observed by Yu et al.

(2020). This is implemented by stating R12 as a function of mp,g,

R12 = −
(︁
3.0× 10−4

)︁
mp,g

2 +
(︁
2.2× 10−3

)︁
mp,g + 9.9× 10−1. (3.2)

Given that mrBC,g = 2.35 fg is taken as a constant in the associated paper, this

acts as a surrogate for the mass fraction of non-rBC in the particles for the sampling
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procedure described subsequently. It must be emphasized that the form of this

relation is purely empirical, derived qualitatively based on observations of uncoated

aerosols and the coated urban aerosols observed by Yu et al. (2020), using two-

dimensional particle mass-rBC mass distributions, and studies by Liou et al. (2014)

and Gong et al. (2016), which demonstrate how the aging processes affects the coating

thickness of rBC-containing particles.

Throughout this work, mrBC,g, σp, and σrBC are fixed at the values reported in

Table 3.1, while mp,g is sampled to realize the range of phantoms shown in Figure

3.1.

Table 3.1: Parameters used in the generation of hypothetical two-dimensional par-
ticle mass-BC mass distributions.

mrBC,g [fg] mp,g [fg] σrBC σp mp [fg] mrBC [fg] 

2.35 Sampled 2.08 2.08 0.3-300 0.3-300 

 

3.2.2.2 Parameterizing the kernel

The kernel, A1, is parameterized using three independent, experimental parameters:

(i) the aforementioned CPMA resolution (Rm); (ii) the number of CPMA setpoints

per decade (n′
c), noting the prime is used to denote per decade); and (iii) the number

of SP2 bins per decade (n′
s). The latter two quantities define the size of the system

that is being inverted, with larger values incurring more computational effort. The

remaining kernel parameters, i.e., the flow rates and instrument dimensions, are

fixed. The CPMA flow rate is set to Qc = 0.42 L/min and is assumed not to

be equal to the SP2 flowrate (Qs = 0.12 L/ min). (i.e., generally, Qs ̸= Qc as
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Figure 3.1: Different non-dimensionalized phantoms with diverse variability of non-
refractory components between particles randomly generated for synthetic data fab-
rication.

some of the CPMA flow can be bypassed around the SP2). The dimensions of the

commercial CPMA (Cambustion) are used for evaluation of transfer function, though

most observations can be generalized to other particle mass analyzers (PMA).

3.2.3 A note on measurement duration

A key remaining quantity is the measurement duration. There are two strategies

for conducting experiments. First, the experimentalist can allocate a fixed time for

collecting particles at each CPMA setpoint, regardless of how many particles are
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detected by the SP2. Such a strategy could result in poor counting statistics away

from the distribution peak but does not greatly extend measurement time when there

are few particles available to be counted. Alternatively, the experimentalist can allow

the SP2 to continue measuring particles until a fixed number of SP2 counts, which we

denote as Ns, is reached for each CPMA setpoint. Such a strategy ensures sufficient

counting statistics at the expense of longer measurement durations for low particle

concentrations. In this study, we generally opt for the fixed number strategies - such

that Ns is included as part of the sampling procedure - to achieve improved counting

statistics, with two caveats discussed subsequently in reference to the SP2 sampling

time.

The measurement duration can then be estimated as a dependent variable made

up of three components: (i) the total CPMA settling time, where tc denotes the time

it takes for the CPMA to change rotational speed and voltage for all of the CPMA

setpoints; (ii) the sum of SP2 sampling times, where (ts)i is the time it takes for the

SP2 to measure a certain number of particles at the ith CPMA setpoint; and (iii)

the SP2-only sampling times (tso, the time it takes for the SP2 to measure a certain

number of particles when the CPMA is bypassed). Then,

t = tc +
nc∑︂
i=1

(ts)i + tso (3.3)

As shown in Figure 3.2, the CPMA sampling time is a weak function of resolution

and flow rate if the CPMA flowrate is within (commonly used) limits (Qc ∼ 0.4 −

1.5 L/min). Thus, the CPMA sampling time was derived empirically from a fit of
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Figure 3.2: CPMA measurement durations, tc, for stepping through 0.12 to 100 [fg]
across a range of flow rates and resolutions. With the exception of the lowest flow
rate, CPMA measurement durations are well-described by a single empirical function
of the number of CPMA setpoints.

the data shown in Fig 2 and is

tc = 40n′
c + 210. (3.4)

Note that the n′
c intercept in Equation (3.4) is associated with the time to reach the

initial rotational speed.1

In this scheme, the SP2 sampling time can be estimated as

1This is often chosen as the largest rotational speed of all of the setpoints as subsequent setpoints
can be reached faster when the angular speed is ramping down.

65



(ts)i =
Ns

Qs (Nc)i
, (3.5)

where (Nc)i is the number of particles output from the CPMA measurement stage

at the i th setpoint, defined as

(Nc)i =

∫︂ ∞

−∞
Γi (mp, dm,Φ;mp,i

∗, Rm)
∂N

∂ logmp

⃓⃓⃓⃓
mp

dmp

= Ntot

∫︂ ∞

−∞
Γi (mp, dm,Φ;mp,i, Rm) p (mp) dmp

where ∂N/∂ logmp it the (marginal) total particle mass distribution and p(mp) is

the corresponding probability density function (integrating to unity). Practically,

however, low number concentrations, high resolutions, and large Ns requirements

can result in unrealistic measurement durations, particularly at the edge of the dis-

tributions, which can extend beyond a hundred hours. As such, we modify the above

procedure using two additional caveats to generate more realistic measurement du-

rations:

• The 10 minute rule: The measurement time at any given CPMA setpoint

was limited to 10 minutes, which occasionally acts to truncate the counts at

the edge of the distributions for the lower number concentrations, with the

consequences noted in Section 3.3.

• The 10 second rule: Sampling is stopped if the SP2 measures less than 3

particles in 10 seconds, which implies Nc < 0.1 cm−3 when the SP2 flowrate

is 0.12 L/min. The 10 second rule implicitly incorporates the total number

concentration (Ntot ), CPMA resolution (Rm), and flowrate (Qs).

When applied, these rules will reduce the observed number of particles measured
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by the SP2 at the ith setpoint, which we denote as (Ns.col)i. We then summarize

using the average number concentration output by the CPMA,

Ns,avg =
1

nc

nc∑︂
i=1

(Ns,col)i . (3.6)

As Ns.avg is an average over all of the CPMA setpoints, it will have a single value

for a given set of experimental parameters, acting as a summary quantity for a given

set of experimental parameters that will recur in subsequent analysis.

The last term in Equation (3.3), i.e., tso, is the SP2 sampling time when the CPMA

is bypassed and is calculated based on Equation (3.5) when Nc = Ntot (because

there is no CPMA to classify the particles). The same sampling rule as to what

is described for calculation of (ts)i is considered here (i.e., the 10 minute rule). It

is worth mentioning that it is only important when collecting a high number of

SP2 counts at low number concentration of particles, e.g., the ten-minute rule is

applicable when the goal is to collect 50, 000 SP2 counts at Ntot = 40 cm−3.

3.2.4 Ranges considered for the experimental parameters

Overall, the preceding procedure results in a set of six parameters, listed in Table 3.2,

which are sampled randomly in a Monte Carlo procedure. In general, parameters are

sampled uniformly on a log-scale within a physical range, with modifications made

to account for parameters that are necessarily discrete (i.e., for Ns, nc and n′
s).
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Table 3.2: The experimental parameters that are sampled in the Monte Carlo pro-
cedure. All parameters are sampled approximately from a log-uniform distribution,
with special consideration for discrete variables. Secondary parameters, including
measurement duration, the average number of SP2 counts per CPMA setpoint, and
phantom correlation, were computed from these quantities. Note that the CPMA
resolution is sampled to values lower than that typically used in experiments (and,
on occasion, to values that cannot be realized for the given flow rates), to emphasize
trends at the extreme lower range of the quantity.

 

Symbol Sampled parameters Distribution Range Unit 

Rm CPMA resolution Log-uniform [0.01, 10] - 
ns' Number of SP2 bins per decade Log-uniform, rounded [2, 103] counts 

nc' Number of CPMA setpoints per decade Log-uniform, rounded [2, 20] counts 

Ntot Total number concentration of particles Log-uniform [10, 106] cm-3 
Ns Number of SP2 counts per CPMA setpoint Log-uniform [100, 106] counts 

mp,g The geometric mean of particle mass distribution Log-uniform [2.37, 70] fg 
 

The effective SP2 kernel described in Chapter 2 allows for an arbitrary number of

bins. While a large n′
s is precise, it will result in noisier counts in each bin and in a

large A1 matrix, with an associated increase in computational effort for the inver-

sion. Accordingly, given that the number of bins does not affect the measurement

duration, we chose a large interval for n′
s: [2, 10

3], with subsequent notes about the

computational effort.2

Unlike n′
s, n

′
c is related to the measurement duration, which limits the reasonable

range of the CPMA setpoints that were considered. Also, unlike ns, n
′
c does not have

an effect on the noise, as the experiments are generally performed such that a specific

number of particles is collected at each CPMA setpoint. Accordingly, we considered

2We explicitly note that the number of measurements (i.e., the size of the A1 matrix and b
vector) vary considerably with the sampled parameters, causing the problem to move from being
underdefined to overdefined (the latter particularly occurs when n′

s is at the upper end of its range).
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the smaller domain of [2, 20], where the upper limit yields measurement durations

that still occasionally extended above 10 hours for low number concentrations.

The CPMA resolution has consequences for the measurement duration, the pre-

cision with which particles are mass-selected, and the degree to which the CPMA

transfer function spans between CPMA setpoints. The latter aspect relates back

to n′
c, where high Rm and low n′

c will result in a significant contingent of particles

falling between CPMA transfer functions and and thus not having an impact on the

instrument response.

For instance, the peak of the distribution could be missed if it is not aligned with

a CPMA setpoint (e.g., if the peak of the distribution is at mp = 3 fg and the

CPMA setpoints are such that measurements are taken at mp = 1 and 5 fg with

a high resolution, then mp = 3 fg particles are not measured and the peak will be

underrepresented). The inversion then has no knowledge of these particles, with

consequences for reconstruction accuracy (e.g., the peak of the distribution could

be missed entirely, depending on the positioning of the CPMA setpoints). As such,

the present work considers Rm below that typically used in (or even possible with)

the commercially-available CPMA (Cambustion). These theoretical operating points

are also modeled to better elucidate larger trends (showing where the inversions are

poor). We discuss the feasibility of the recommended CPMA resolutions in Section

3.4. The total number concentration of particles (i.e., [10, 106]) is selected to span

the range of atmospheric number concentrations corresponding to clean and heavy

air pollution episodes (Cheng et al., 2012; Reddington et al., 2013; Wang et al.,

2014a) and the total number concentration of particles generated from combustion

(Sipkens et al., 2021).
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As noted above, a range of phantoms is realized by sampling the geometric mean of

particle mass, mp,g , which is sampled randomly over a domain of [2.35, 70] fg. When

combined with the empirical relation for R12, Equation (3.2), considered phantoms

(i.e., distributions) span from uncoated particles to the heavily coated particles that

were observed by Yu et al. (2020) for an urban aerosol.

3.3 Results and discussion

Reconstructions are assessed using the relative Euclidean error, i.e., the Euclidian

distance between the reconstructed distribution and the known ground truth divided

by the ℓ2-norm of the ground truth. Note that because the reconstruction grid is

identical for all of the reconstructions, the considered error metric is reasonable for

all of the simulations.

3.3.1 Trends in reconstruction error with experimental pa-
rameters

Figure 3.3 depicts trends in the reconstruction error as a function of the input pa-

rameters. The relative Euclidean error appears on the vertical axis with favorable

reconstructions with lower reconstruction errors towards the bottom and unfavor-

able reconstructions towards the top. Each panel depicts one of the six independent

variables on the horizontal axis, except for the first panel, which indicates Ns,avg,

following Equation (3.6). A strong dependence (for a main effect) manifests as a

discernable slope in these plots (e.g., Figure 3.3a), whereas a flat scattering of points

indicates less dependence (e.g., Figure 3.3d). The significance of the input vari-

ables is also assessed using an analysis of variance (ANOVA), including two-factor
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interactions, shown in Table 3.2., sorted by p−value.
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Figure 3.3: The sensitivity of reconstruction accuracy to (a) the average number of
SP2 counts per CPMA setpoint, (b) the total number concentration of aerosol, (c)
the CPMA resolution, (d) the number of CPMA setpoints per decade, (e) the number
of SP2 bins per decade, (f) the number of SP2 counts per CPMA setpoint, and (g)
the distribution width. All panels are log-log. The results give an indication of the
main effects. The results are most sensitive to the average number of SP2 counts
per CPMA setpoint (Ns.avg ), such that points are colored according to it throughout
the panels. The phantom parameters are varied, with trends with respect to that
parameter examined later in this work.
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Table 3.3: Six-way ANOVA table identifying the significance of the main effects
and two-factor interactions on the reconstruction error, sorted by ascending p-value.
Interaction effects are denoted with two symbols separated by an asterisk. The
quantity 1−R12, which is the dependent variable plotted in Figure 3.3, is used in the
place of mp,g. The analysis is run using the logarithm of both the stated quantities
and reconstruction error and treats all of the parameters as continuous. The last
three effects (i.e., Ns) are considered negligible as its p-value exceeds 0.05.

Source F p-value 

Ns * Ntot 1145.0 < 10-100 
Rm* nc' 750.6 < 10-100 
ns' 404.7 1.6×10-88 
Rm* Ntot 282.7 1.0×10-62 
nc'* Ntot 265.6 4.6×10-59 
Rm 182.3 3.0×10-41 
Ntot * (1 – R12) 175.7 8.1×10-40 
Rm* Ns  147.1 1.2×10-33 
ns' * nc' 105.4 1.3×10-24 
ns' * Ns  90.7 2.0×10-21 
 ns'* (1 – R12) 77.3 1.6×10-18 
Ntot * ns' 74.5 6.7×10-18 
Ntot  74.3 7.6×10-18 
Ns * (1 – R12) 57.4 3.8×10-18 
Rm * (1 – R12) 49.5 2.1×10-14 
1-R12 32.3 1.4×10-12 
nc'* (1 – R12) 11.2 8.0×10-8 
Rm * ns' 7.3 7.0×10-3 
nc'*Ns  2.0 1.6×10-1 
nc' 0.8 3.6×10-1 
Ns 0.3 6.1×10-1 
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Figure 3.3 indicates that the strongest relationship is associated with the average

number of SP2 counts per CPMA setpoint, Ns.avg. Trends are as expected. Higher

counts measured by the SP2 generally allow for better signal-to-noise ratio and thus

result in lower errors, from an average of 40% atNs.avg ≲ 50 to 4% atNs.avg ≳ 50, 000.

The data is scattered around this central trend due to the effects of the other in-

put parameters (e.g., the effect of a range of Rm) and different realizations of noise.

Points are colored according to Ns.avg throughout the other panels. The discussed

observation is generally supported by the ANOVA, where the Ns ∗Ntot interaction -

which is largely determinant of Ns avg is the most significant source of variance in the

reconstruction error. This follows from noting that (i) Ns = Ns,avg when measure-

ment durations are reasonable and that (ii) Ntot is the primary independent variable

determining if enough particles are present to reach that threshold measurement

duration.

Structure in the Ns ∗Ntot interaction is demonstrated in Figure 3.4a, by plotting

trends with Ns for the extremes of Ntot . For Ntot > 160, 000, the reconstruction

error declines with Ns, consistent with the overall trend noted for Ns,avg in Figure

3.3. In contrast, for Ntot < 54, the reconstruction error is nearly constant, as the 10

minute and 10 second rules are nearly always applied and thus Ns has no bearing on

the measurements (and thus no effect on the error). These observations also drive the

shape of the trends with Ntot and Ns in Figure 3.3b and f , where the larger spread of

errors at the upper end of those panels derives from the effect of the other variable.

Comparing Figure 3.3a and f indicates that the ten minute and second rules are

invoked rather rarely in terms of all simulations, and it clearly shows where they are

significantly invoked (i.e., the points where the linear change in colour is disrupted).
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As expected, these points are associated with low Ntot and high Rm, resulting in

very low Ns,avg, and consequently larger errors on average. This demonstrates that

Ns is often an acceptable surrogate for Nsavg, which is important given that Ns is

parameter the experimentalist can control.
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Figure 3.4: Trends in the reconstruction error (a) with Ns at the limits of Ntot,

and (b) with Rm at the limits of n′
c. The two data clouds in panel a diverge for

higher values of Ns, with an upward trend in error for Ntot < 54 [ cm−3] and a
persistent downward trend for Ntot > 160, 000 [ cm−3]. The two data clouds in
panel b diverge somewhat for higher values of Rm, with an upward trend in error
for n′

c < 3 and a persistent downward trend for n′
c > 14. Solid lines correspond to

the moving average of the different data sets in log-log space, with the upper lines
correspond to Ntot < 54 [ cm−3] and n′

c < 3; and the lower lines corresponds to
Ntot > 160, 000 [ cm−3] and n′

c > 14 in panel a and b, respectively. Trend lines are
only provided to guide the eye.

The second most significant effect, n′
c ∗Rm, can be similarly visualized by plotting

trends in the error at the limits of n′
c. In Figure 3.4b. For standard resolutions

(Rm > 1), opposite trends are observed in the error. Overall, for n′
c > 14, the recon-

struction error mostly trends downwards with increasing Rm. This is consistent with

expectations, where these long experiments often benefit from the increased speci-
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ficity of having narrow CPMA transfer functions. Inspection of the cloud of errors

presents limits to the simple interpretation mentioned above, however, where the

bottom of the cloud shows a clear inflection upward for Rm > 3 even when n′
c > 14.

The upward inflection likely stems from the narrow transfer functions effectively re-

ducing Ns,avg, with the corresponding impact on the signal-to-noise ratio. Collecting

considerably less Ns,avg via the narrow transfer functions would be particularly true

when Ntot is low, such that the Ntot ∗ Rm interaction effect is also listed high in

Table 3.3. As such, there appears to be little motivation to use Rm > 5, a sentiment

repeated in Section 3.4.1. In contrast, for n′
c < 3, the reconstruction error trends

upwards through the Rm > 3 region. Here, large gaps between the CPMA setpoints

yields two possibilities: (i) maintain a high degree of specificity with respect to mp

at the expense of any information about particles between the CPMA setpoints or

(ii) use low resolutions so as to still measure the particles between the CPMA set-

points. The observations here indicate the latter scenario is preferred, that is, a

limited number of CPMA setpoints (e.g., because of limited measurement duration)

should be accommodated by using lower resolutions. We note that similar principles

(i.e., measure the particles between the PMA setpoints via using higher PMA res-

olution) are likely to apply to particle mass analyzer-SMPS measurements. In fact,

this effect receives some qualitative support in Sipkens, Olfert, and Rogak (2020b)

for moderate CPMA resolutions used in that work. Interestingly, trends for the main

Rm and n′
c effects (cf. Figure3.3c and d) are relatively weak and are better governed

by rules derived from the Rm ∗ n′
c interaction effect.

The ANOVA analysis indicates that the most dominant main effect is n′
s. In-

creasing n′
s to hundreds of SP2 bins per decade improves reconstruction accuracy by
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nearly an order of magnitude. The inclination toward using higher n′
s indicates a

clear preference for resolution in terms of mrBC, over signal-to-noise ratio improve-

ments obtained by grouping the measurements into larger bins, and suggests that the

practitioner should use as large a n′
s as possible. However, there are practical limita-

tions to the above-mentioned recommendation. For instance, increasing n′
s results in

a linear increase in the size of the system to be solved during inversion. As computa-

tional effort scales with the size of the system squared, such an increase can quickly

become computational impractical.3 At the same time, there are limits in terms of

the precision of the particle mass output by the SP2. We recommend that n′
s be

set such that the bin width approximates the uncertainties in the mrBC measured by

the SP2, beyond which the extra resolution is no longer useful and computationally

expensive. We propose n′
s = 64 , which implies an SP2 accuracy of 3.7%4 . Relevant

interaction effects involving n′
s include n′

s ∗ n′
c and n′

s ∗ Ns . The latter interaction

likely refers to the limitations for low Ns, where a high number of SP2 bins only acts

to increase the number of empty bins rather than increasing precision.

3number of entries in A1, which ultimately needs to be inverted, scales as a multiple of n′
s.

Specifically, the overall number of entries in A1 is given by nA = n′
sn

′
cnj(1 + nj)/2, where nj is

the number of elements per dimension of the reconstruction grid (assuming a square grid). For an
appropriate reconstruction grid (e.g., 100×100, that is nj = 100) and moderate n′

c = 10, the upper
end of n′

s = 1000 yields more than 454 million entries in A1 (i.e., approx. 3.6 GB assuming double
precisions floats).

4Logarithmically spaced points, by their nature, imply that adjacent bins are a constant multiple
apart. For instance, [1, 3.1622, 10] is logarithmically spaced data with a multiple of 3.1622. The
precision of the input to the inversion algorithm is limited by the bin widths, with individual particle
information grouped below this. Then, the minimum precision implied by the spacing above,
normalizing by the lower bound (i.e., Precision = 100%× (UB− LB)/LB = 100%× (UB/LB− 1),
where LB is the lower bound of the bin and UB is the upper bound of the bin). As UB/LB is a
constant, the precision can be stated as a single percentage over the entire range. In such a case,
for 64 logarithmically spaced points per decade, Precision = 100%× (1.037− 1) = 3.7%
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3.3.2 Effect of phantom width

In general, Figure 3.3g indicates that wider phantoms (small R12) are associated

both with lower reconstruction errors (on average) and with a larger range of errors.

The downward trend with increasing phantom width is partially rooted in the nature

of the Tikhonov regularization scheme, which dampens noise at the expense of sharp

edges, a feature that is limiting for very narrowmp—mrBC distributions (cf., Chapter

2).

ANOVA analysis indicates that interaction effects dominate trends in the recon-

struction error with distribution width. Figure 3.5 shows these effects by plotting

trends in the reconstruction error for very broad (R12 < 0.5) and very narrow phan-

toms (R12 > 0.98). Figure 3.5 affirms observations from the ANOVA analysis, with

distinct reconstruction error profiles for the broad and narrow phantoms. Of note,

Figure 3.5a indicates a strong preference for higher CPMA resolutions for narrow

distributions; while Rm ∼ 1.5 is optimal for broad distributions. Figure 3.5b also

shows that while employing higher values of n′
s would improve the reconstruction

accuracy of broad distributions, there is no benefit for thin distributions. The recon-

struction errors in other panels trend in the same direction for the broad and narrow

phantoms, with a simple shift to larger errors for the narrow phantoms.5

3.3.3 Trends with measurement duration

Figure 3.6 shows trends in the reconstruction error as a function of the estimated

measurement duration, which ranges from 5 minutes to 10 hours. The various ex-

5There is a structural relationship between the optimal Tikhonov regularization parameter and
the distribution width (cf., Appendix C for more information.
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Figure 3.5: Trends in the reconstruction error with (a) Rm, (b) n
′
s, (c) Ntot , (d) nc,

and e) Ns for broad (R12 < 0.5) and narrow (R12 > 0.98) phantoms. Solid, black
lines correspond to moving average of the different data sets in log-log space, with
the upper black line correspond to R12 > 0.98 and the lower yellow line corresponds
to R12 < 0.5, which are provided to guide the eye.

perimental parameters are used to color the data in each panel. Within these panels,

vertical layering of colour (e.g., progressing from light to dark from left to right, as

is the case for Ntot Ns, and n′
c) indicate a strong functional dependence between the

measurement duration and a given parameter. By contrast, strong horizontal layer-

ing indicates a stronger dependence between a parameter and the error, without any

dependence on measurement duration. The minimum measurement duration corre-

sponds to the lowest values of n′
c, when Ntot is high (> 105) and, when Ns is low (e.g.,

100). In these cases, the time required to stabilize the CPMA at each setpoint dom-

inates measurement duration. The longest measurements durations are associated

with cases where n′
c = 20 (the maximum), very low Ntot (e.g., Ntot = 10 ∼ cm−3);
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resembling the remote area condition), and large Ns (e.g., Ns > 105), where the

ten-minute rule is applicable for all CPMA setpoints and ts dominates measurement

duration. Horizontal layering of colour in panels Figure 3.6e and f indicates that

phantom width and the number of SP2 bins do not affect the measurement dura-

tion, but that they still have significant effects on the overall reconstruction error,

consistent with discussion in Section 3.3.1.
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3.4 Recommendations and experimental proce-

dure

Thus far, we have demonstrated the overall trends in the error as a function of

experimental parameters. These results can be used to make recommendations by

choosing the experimental parameters that give the lowest Euclidean error for a

given set of experimental conditions. Figure 3.7 demonstrates the overall procedure

for making CPMA-SP2 measurements using an optimal sampling configuration (i.e.,

optimal simulation), which is defined as the conditions that give the lowest Euclidean

error relative to the input mp −mrBC distribution. Start by obtaining estimates of

Ntot and R12, using an SP2-only measurement (where the CPMA is bypassed) to

estimate Ntot, , collecting around 50,000 particles, and using a single CPMA setpoint

to estimate R12.

CPMABipolar 
charger

SP2

nc↔,Rm,,Q Ns , ns↔

i) CPMA-SP2 
measurements

BC Mixing States
BC 
aggregate

Coating

Finish

ii) SP2-only measurement

ii

Opt imize device 
set t ings
Get {Rm, Ns, nc’, ns’} from: 
- the PMA-SP2 

optimizer web app or
- Table 3 (if R12 ~ 0.5)

Start i

Est imate inputs
- Ntot from SP2-only 

measurements
- R12 from a single 

CPMA setpoint

vi 

SP2-only 
measurement
Verifies the 
degree to which 
Ntot has changed

iii

Make tandem 
measurements

bi

vii 

- Estimate the kernel 
matrix, A, (cf., Eq. 1-3).

mi
∗ 2mi

∗
Inversion

- Invert using a proper 
regularization scheme, cf. Fig. 
6 from Sipkens et al. (2020b)

Figure 3.7: Schematic demonstrating the recommended procedure to conduct a
proper CPMA-SP2 measurement using optimal sampling configurations recom-
mended by PMA-SP2 Optimizer.
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For the latter quantity, the distribution at a single CPMA setpoint can be used

to estimate the conditional width, i.e., σrBC|p, which is the geometric standard devi-

ation of the measurements at the single CPMA setpoint, and converted to R12 using

(Bertsekas and Tsitsiklis, 2002)

R12 =

[︄
1−

(︃
log10 σrBC|p

log10 σrBC

)︃2
]︄1/2

(3.7)

where σrBC is the width from the SP2-only measurements. We refer the reader to

Appendix B for the derivation of this expression.

One can use the estimated R12, Ntot, with the desired measurement duration as in-

puts to determine the optimal sampling configuration. We have provided a web app

(PMA-SP2 optimizer) as supplement to this thesis to accomplish this task generally.

The web app bins the simulation and reports the experimental settings that gave

the lowest Euclidean error within the specified bin. The number concentration range

within the web app includes all simulations above and below the specified value,

thus spanning half an order of magnitude. For the input time, the app considers any

simulation with a time below that specified. For R12, the range is shown explicitly in

the drop down menu in the app. Finally, use the optimum sampling configurations to

conduct the CPMA-SP2 measurements through an entire BC-containing population.

Following the experiment, the practitioners may wish to perform a second SP2-only

measurement, to determine whether the number concentration of rBC particles has

changed over the measurement period. The average of these two SP2-only measure-

ments can be used as a sort of prior information and incorporated into the inversion

procedure as prior information distribution (cf., Chapter 2).

Following measurement, the collected data is preprocessed and discretized based
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on Ns (i.e., computing b, cf., Section 2.2.3). Finally, compute the kernel matrix,

A, and invert the system using an appropriate regularization scheme to retrieve the

mp—mrBC distribution.

3.4.1 Case study: Recommendations for moderately broad
distributions

Rather than present detailed recommendations for all distribution shapes, for which

it is challenging to define a simple set of rules, we present a case study for a mod-

erately broad mrBC −mp distribution (R12 = 0.5), consistent with an aged aerosol,

for which we run a dedicated set of 8,000 Monte Carlo simulations. Figure 3.8 shows

examples of the distributions retrieved by data fabricated by choosing different sam-

pling configurations for CPMA-SP2 measurements. A sampling of the resultant
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Figure 3.8: a) The synthetic distribution of rBC particles characterized with R12 =
0.5 and Ntot = 1000 cm−3 and b-d) examples of distributions retrieved from fabri-
cated data derived by setting different CPMA-SP2 configurations. Reconstruction
accuracy improves from panel b to d.
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reconstructions shown in Figure 3.8a to d illustrates how the quality of the recon-

struction depends on the CPMA-SP2 configurations relative to the phantom, shown

in Figure 3.8a.

Figure 3.9 shows the optimal settings for the R12 = 0.5 case study, after binning

the new set of simulations with respect to measurement duration and total number

concentration, which allows for more precise predictions for such a specific case.

Figure 3.9 shows that long experiments (large t) and high number concentrations

(large Ntot) - corresponding to the upper, right corner of the panels - yield lower

reconstruction errors. These experiments correspond to optimal values with larger

n′
c and Rm. Consistent with Figure 3.9b and the surrounding discussion, n′

c and

Rm often change together. This is particularly true for short experiments, where

a reduction in n′
c (necessary to reduce measurement duration) is associated with a

substantial drop in Rm that allows the instruments to still measure the particles

between the CPMA setpoints. Generally, however, a value of Rm = 1 to 2 covers all

but a few scenarios (low Ntot and t).

The optimal number of SP2 bins, n′
s, is uniform relative to the input sampling

range, with a preference towards n′
s > 100, consistent with the discussion in Section

3.3.1. As noted in Section Section 3.3.1, there are limitations in terms of computa-

tional effort and precision, such that realizing these larger values is often impractical.

As such, we recommend n′
s = 64 across the entire domain, consistent with the pre-

vious discussion. However, in some exceptional circumstances, at other values of

R12 when the particle concentration is low (e.g., Ntot < 100), and the measurement

duration is short (e.g., less than 30 minutes), it is advantageous to discretize the SP2

counts on fewer SP2 bins (i.e., n′
s < 64, refer to PMA-SP2 Optimizer for optimum
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n′
s in such cases). Figure 3.9c shows that the reconstruction accuracy that results by

using n′
s = 64 (a similar resolution as what is commonly used in SMPS inversion) is

normally within 2% of that produced for higher values of n′
s.

Finally, a note on CPMA flow rate. Figure 3.10 indicates that the full range of

recommended resolutions (generously, within Rm = 0.6 to 2) are achievable with the

commercially-available CPMA (Cambustion) for the range of masses considered here

(i.e., 0.3-300 fg) with a flowrate of Qc = 1.5 L/min.

0.01

0.1

1

10

100

0.1 1 10 100 1000
mp [fg]

Rm

Potential 
operating range

Not available at 
Qc = 1.5 LPM

Figure 3.10: Limitations in Cambustion’s CPMA operating conditions at a flowrate
of Qc = 1.5 L/min. The grey, shaded regions represents the optimum range of CPMA
resolution recommended in the present study.
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While Qc = 0.3 L/min would also cover nearly 75% of the recommended opera-

tional range, flowrates of Qc < 1 L/min are not recommended due to the increases in

the particle residence time in the CPMA, which increases diffusional losses. On the

other hand, while higher CPMA flowrates are theoretically possible, flowrates above

1.5 L/min are rarely used in the literature. It is also worth noting that the CPMA

transfer function had only been experimentally validated only for moderate and high

resolutions (Olfert et al., 2006) at the time of this study, but not at lower resolutions

(e.g., Rm < 1). In the next chapter, the CPMA transfer function will be experi-

mentally evaluated for broad ranges of operating configurations (i.e., 2 < Rm < 15,

0.3 LPM < Q < 8 LPM, and 0.05 fg< m∗ < 100 fg). Furthermore, running the

CPMA with lower resolution at high mass setpoints results in low rotational speeds

and allows a larger number of small uncharged particles to penetrate the CPMA.6

The observation that these lower resolutions are preferred in cases of limited mea-

surement duration suggests the utility in pursuing experimental validation of the

transfer function in these regions, noting the increased need for inversion to properly

interpret these measurements (wider transfer functions result in measurements that

deviate more significantly from the shape of the underlying size distribution).

In summary, when limiting the measurement duration to an hour and assuming

R12 = 0.5 (moderately broad distributions, such as those for atmospheric black

carbon), practitioners should use the settings recommended in Table 3.4.

6The presence of uncharged particles can be addressed by either (i) including uncharged particles
in the kernel function (i.e. including Φ = 0 in the summation in Equation (2.2.1) or (ii) by
preprocessing the collected data, e.g., by comparing scattering and incandescent signals, as the
small, rBC-containing uncharged particles have very small masses and would have tiny scattering
signals relative to the charged particles.
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Symbol Instrument configuration Recommended Unit Notes
Rm CPMA resolution 1-2 - Lower resolutions are recommended when n’c is at the 

lower end of the range.

ns' Number of SP2 bins per decade 64 counts Higher is better, but lower values can be used when 
testing.

nc' Number of CPMA setpoints per 
decade

6-8 counts cf. note for Rm

Ns Number of SP2 counts per CPMA 
setpoint

5000-50000 counts This will depend on the total BC number concentration 
(e.g., 5000 at Ntot = 100, 50000 at Ntot = 10000)

Qc CPMA flow rate 1.5 LPM Recommendation is not explicitly derived from sampling 
procedure.

Table 3.4: Recommended operating envelope for conducting the CPMA-SP2 mea-
surements within an hour for the case study of a moderately broad phantom
(R12 = 0.5).

3.5 Conclusions

The present study identifies the optimum sampling settings (i.e., the number of

CPMA setpoints per decade n′
c, the number of SP2 bins per decade (n′

s ), CPMA

resolution (Rm), and the number of SP2 counts per CPMA setpoint (Ns) to deter-

mine accurate two-dimensional mp—mrBC distributions. The non-linear relationship

between the reconstruction error and experimental parameters is realized using a

Monte Carlo analysis. Optimal experimental parameters are stated for a moderately

broad mp—mrBC distribution. Generally, optimal results are achieved by collecting

as many particles as possible and by using as many SP2 bins per decade (n′
s ) as is

computationally reasonable. The authors noted that reconstruction accuracy that

results by conditioning on ns < 64 is almost within 2% of that produced for higher

values of n′
s. Thus, n

′
s is recommended to be on the order of 50 to 100. Note, that n′

s

can be adjusted in post-processing of the data and thus can be adjusted by the user

based on a trade-off between computational time and solution convergence. For a
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moderately broadmrBC−mp distribution (cf., Figure 8; R12 = 0.5), and also valid for

most of a given range of phantoms, reconstruction accuracies below 3% are achieved

by using 3-8 CPMA setpoints over three decades (according to measurement time

availability) with CPMA resolutions around 1. These operating conditions can be

achieved using a flowrate of Qc = 1.5 L/min for Cambustion’s CPMA.

In this study we only explicitly show optimized results for moderately broad

mp −mrBC distributions (R12 = 0.5). For the convenience of CPMA-SP2 users, we

have posted a web-based application capable of making recommendations for broader

range of experimental conditions. This simple web app is designed to estimate the

optimal experimental parameters for tandem PMA-SP2 experiments. The app uses

data from this study, and optimal experimental parameters are chosen as the mini-

mum simulated error for a specific range about chosen for (i) measurement duration,

(ii) total number concentration of BC particles and (iii) R12 as and input param-

eters to the app. For the number concentration, the range is up and down by a

factor of
√
10, thus spanning an interval of an order of magnitude. For time, the

app considers any simulation with a time below that specified. In other words, if the

optimal simulation occurs in half the time, that simulation is shown in the output.

For the correlation, specifying the width of the mp—mrBC distribution, the range is

shown explicitly in the dropdown menu in the app (cf., Figure B.1 of Appendix. B

for further understanding).

Observations here are generally extendable to other particle mass analyzers and

have some ramifications for tandem CPMA-SP2 measurement more generally (i.e.,

not just to reconstructing 2D distributions). For example, overall trends in the

errors with the experimental properties here will also generally apply to summary
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parameters (e.g., the distribution mode) inferred from CPMA-SP2 measurements

(e.g., errors will grow as the number of CPMA setpoints is reduced).
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Chapter 4

Measurement of the centrifugal
particle mass analyzer transfer
function

4.1 Introduction

Developed by Olfert and Collings, 2005, the centrifugal particle mass analyzer

(CPMA) is an instrument that classifies particles by their mass-to-charge ratio. The

CPMA is made up of two coaxial rotating cylindrical electrodes with a voltage poten-

tial between them. The cylinders, which rotate at different rotational speeds, impose

centrifugal and electrical forces on charged particles simultaneously. Aerosols, based

on their mass and electric charge, experience different centrifugal and electrical forces,

with the centrifugal force acting toward the outer cylinder and the electrical force

acting toward the inner electrode. Consequently, large aerosols are subjected to a

larger centrifugal force and pushed toward the outer cylinder, while small ones are

attracted toward the inner electrode. Particle will exit the classifier if a balance

between the electrical and centrifugal force occurs.
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CPMAs have been increasingly used in various aerosol applications such as the

measurement of particles emitted from combustion engines, (Graves et al., 2015;

Graves, Koch, and Olfert, 2017; Momenimovahed and Olfert, 2015; Olfert, Symonds,

and Collings, 2007; Sakai and Rothamer, 2017; Ubogu et al., 2018) and the mea-

surement of particulates emitted from other sources, e.g., cigarette smoke (Johnson

et al., 2014, 2015a,b), gas flaring (Kazemimanesh et al., 2021; Sipkens et al., 2021),

spark-discharge generators (Nilsson et al., 2015), plasma generator (Graves et al.,

2020), powdered mineral dust (Marsden et al., 2018). Moreover, pairing CPMAs

with other aerosol classifiers in a tandem arrangement has yielded extensive infor-

mation about such particles. In these tandem measurements, the CPMA is operated

in various static modes, i.e., at a fixed mass set point, to allow aerosols of a par-

ticular mass-to-charge ratio to pass through the CPMA classification region and be

measured by instruments downstream. Of particular note are measurements of the

mass-mobility relationships of aerosols using a CPMA in tandem with a differential

mobility analyzer (DMA; Knutson and Whitby, 1975; Liu and Pui, 1974) or with

a condensation particle counter (CPC; Agarwal and Sem, 1980), also known as a

scanning mobility particle sizer (SMPS), (Afroughi et al., 2019; Ghazi et al., 2013;

Graves, Koch, and Olfert, 2017; Johnson et al., 2014; Olfert, Symonds, and Collings,

2007; Quiros et al., 2015; Sipkens, Olfert, and Rogak, 2020a,b; Sipkens et al., 2021).

These measurements have typically been used to determine either summary param-

eters or the relationship between the distribution of desired parameters of measured

aerosols, such as the effective density (Johnson et al., 2014; Olfert et al., 2017; Olfert,

Symonds, and Collings, 2007), dynamic shape factor (Beranek, Imre, and Zelenyuk,

2012; Kuwata and Kondo, 2009), and mass-mobility exponent (Shapiro et al., 2012).
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Using a similar methodology, some studies have paired the CPMA with other aerosol

instruments, for instance, optical instruments (e.g., single-particle soot photometer;

Broda et al., 2018; Liu et al., 2017; Naseri et al., 2021a,b; Sedlacek III et al., 2018;

Sipkens et al., 2021 and cavity attenuated phase shift spectrometers (CAPS) (Das-

tanpour et al., 2017), or aerosol mass spectrometers (Bell et al., 2017; Marsden et

al., 2018), to measure the average coating mass and optical properties, or chemical

compositions of measured aerosols, respectively.

While the CPMA classifies particles by mass-to-charge ratio, the classified par-

ticles are not strictly monodisperse in mass because, in addition to singly charged

particles of the desired mass, doubly charged particles of twice the desired mass (and

particles up to the maximum number of charges in the aerosol) also pass through the

classification region. When the CPMA operates at low rotational speeds (e.g., when

it classifies relatively large aerosols), small uncharged particles may not be sorted

out and may escape the classification region. Also, aerosols with a mass-to-charge

ratio marginally higher and lower than the selected mass transverse the classifier.

The performance of the CPMA in the classification of a chosen mass-to-charge ratio

is described by a probability distribution known as a transfer function. The transfer

function has profound implications for interpreting the mass-to-charge ratio distribu-

tions measured by the CPMA. Of note, in tandem measurement systems where the

CPMA is used (e.g., the CPMA-SP2 or CPMA-SMPS), the CPMA transfer function

plays a crucial role in evaluating the kernel function (i.e., the theoretical response)

of the system, which is used for retrieving desired information via inversion (Broda

et al., 2018; Buckley et al., 2017; Naseri et al., 2021a,b; Rawat et al., 2016; Sip-

kens, Olfert, and Rogak, 2020a; Sipkens et al., 2021). Accordingly, it is essential to
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characterize the CPMA transfer function carefully.

The theoretical CPMA transfer function was initially derived by Olfert and Collings,

2005, using a finite difference scheme and mathematical methods. Sipkens, Olfert,

and Rogak, 2020c revisited the evaluation of the CPMA transfer function, implement-

ing novel numerical approaches to improve the computational efficiency of calculating

the transfer function. Despite the theoretical ability to calculate the transfer func-

tion of the device, to date, little data have been collected regarding how the actual

transfer function differs from the theoretical model (Olfert et al., 2006). Further-

more, no data are available for the commercially available CPMA (Cambustion Ltd.,

Cambridge, UK).

The transfer functions of the differential mobility analyzer (DMA; Knutson and

Whitby, 1975) aerodynamic aerosol classifier (AAC; Tavakoli and Olfert, 2013) have

been experimentally characterized using a tandem measurement system (Birmili et

al., 1997; Collins et al., 2004; Fissan et al., 1996; Hummes et al., 1996; Johnson et al.,

2018; Karlsson and Martinsson, 2003; Li, Li, and Chen, 2006; Martinsson, Karlsson,

and Frank, 2001; Stratmann et al., 1997). In this system, two identical aerosol

classifiers are employed in series (i.e., a tandem arrangement). The first instrument

is configured so that it operates at one set point and the total number concentration

of particles exiting the classifier is counted. The second instrument, downstream of

the first, is then stepped or scanned over the range of particle sizes exiting the first

classifier, and the number concentration of particles exiting the second classifier is

measured. Consequently, there is a distribution of particle counts measured at the

exit of the second classifier as a result of the convolution of the transfer functions of

the two classifiers. The actual transfer function or how it differs from an ideal case
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is estimated using data deconvolution or fitting routines (Li, Li, and Chen, 2006),

assuming that the two classifiers have identical transfer functions.

In this study, the tandem CPMAmethodology was used to characterize the CPMA

transfer function. Following previous work on the DMA and AAC, it is assumed

that the ideal CPMA transfer function is triangular and experiments are used to

determine factors which account for deviations from the ideal triangular transfer

function namely the width factor (µ), which accounts for diffusional broadening or

other factors which may increase or decrease the width of the transfer function, and

the height factor (λ), which accounts for losses in the CPMA due to impaction or

diffusion losses, etc. This study is of considerable significance as the experimentally

evaluated CPMA transfer function can significantly enhance CPMA data analysis

routines, e.g., data inversion.

4.2 Theory and Methodology

4.2.1 CPMA Transfer Functions

Figure 4.1 shows a simple schematic of the Couette CPMA, in which aerosols flow

between two coaxial cylinders rotating around their axis while a voltage is applied be-

tween them. Particles with different mass (m) and charge states (nq) are exposed to

centrifugal (FC) and electrical (FE) forces, such that a limited range of particles can

pass through the classification region. The performance of the CPMA in classifying

particles is characterized by a probability distribution known as a transfer function.

A number of theoretical models have been developed for the Couette CPMA (Olfert

and Collings, 2005; Sipkens, Olfert, and Rogak, 2020c) in order to numerically es-
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Figure 4.1: Schematics demonstrating (a) geometric features of the Couette CPMA,
(b) operating principles in the CPMA classification region.

timate the CPMA transfer functions. In contrast to these numerical models which

are computationally intensive for evaluating the CPMA transfer function, there is

a simplified representation of the CPMA transfer function in the form of a trian-

gular shape that has been implemented in the CPMA software (Cambustion Ltd.,

Cambridge, UK).

To derive the triangular transfer function, it is necessary to examine the motion

of particles in the classification region (see Fig. 4.1) in order to determine a mass
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range of particles which can pass through the classifier. Accordingly, the following

assumptions will be made to simplify the equation of motion: (i) it is assumed that

the channel is sufficiently narrow that the forces on the particles in the gap are

constant, (ii) particle diffusion and image forces are negligible, (iii) particles acquire

their terminal velocity instantly1, (iv) the flow field is quasi-steady and the axial flow

(vx) in the classification region is laminar plug flow, and (v) the gap between the

coaxial cylinders is much smaller than the CPMA radii (∆gap ≪ r). Consequently,

the equation of motion of particles in the CPMA classification region in the radial

(r) direction, can be expressed as

∑︂
Fr = FC − FE − FD =

mdvr
dt

, (4.1)

where FD is viscous drag force, and vr is the particle velocity in the radial direction.

Using Stokes’ law, the viscous drag force is expressed as:

FD =
3πµfdm
Cc(dm)

vr =
vr
B
, (4.2)

where dm is the mobility equivalent diameter, Cc is Cunningham slip correction

factor, µf is the viscosity of the carrier gas, and B is the particle mechanical mobility.

The electrical and centrifugal forces on an aerosol at a distance r from the rotational

axis are

FE =
qV

r ln (r2/r1)
, (4.3)

and

FC = mrω2, (4.4)

1This assumption holds true since the relation time of the particles is much shorter than their
residence time in the classification region.
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respectively. Here, r1 and r2 are the inner and outer cylinder radius, respectively, V

is the potential difference applied between the inner and outer cylinder, and q is the

charge on the aerosol, and ω is rotational speed of the gas. Since the forces on the

particles are assumed to be constant across the narrow gap between cylinders, the

centrifugal and electric forces are calculated at the center of the gap (ω = ωc and

r = rc).

At a given operational condition of the CPMA (i.e., a particular rotational speed

and a voltage applied between cylinders), the centrifugal and electrical forces become

equal for particles with a certain mass and charge state, such that they transit axially

along the classifier. As a result, Equation 4.1 for equilibrium (i.e., FD = 0) in the

radial direction can be written as FE = FC;

qV

rc ln (r2/r1)
= mrcω

2
c . (4.5)

Rearranging Equation 4.5 in terms of the mass-to-charge ratio yields:

m∗ =

(︃
m

q

)︃
eq

=
V

ω2
cr

2
c ln (r2/r1)

. (4.6)

The particle with the greatest mass that can pass through the CPMA is the

particle that enters the classification region at the inner edge of the classifier (point

A in Figure 4.1b) and reaches the outer edge of the classifier at the end of the

classification region (point B in Figure 4.1b). Accordingly, Equation 4.1 for the

maximum particle mass (mmax) that exits the classifier is,

mmaxrcω
2
c −

qV

rc ln (r2/r1)
− vr

Bmax

=
mdvr
dt

= 0, (4.7)

where Bmax is the mobility of the particle with the mass of mmax. The term on

the right-hand side is zero as the particles reach their terminal velocity instantly.
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Due to the plug flow assumption, the radial particle velocity, vr, is approximated by

Q∆gap/A∆L, where Q is the volumetric aerosol flow rate, ∆gap and L are the gap

and the length of the classifier, respectively, and A∆ is the flow cross-sectional area

which can be estimated as 2πr∆gap. Substituting Equation 4.6 into Equation 4.7

gives,

mmax = m∗ +
Q

2πr2cω
2
cBmaxL

, (4.8)

where the second term on the right-hand side is the full-width half max (FWHM)

of the triangular transfer function in mass space. Consequently, the resolution of

the triangular transfer function of the CPMA, which is the dimensionless form of

FWHM (normalized by the equilibrium mass), is estimated by,

1

Rm

=
mmax

m∗ − 1. (4.9)

The voltage and rotational speed in Equation 4.5 are adjustable variables to obtain

the user-selected mass set point (i.e., the equilibrium mass, m∗) and resolution.

Alternative transfer functions have been derived. Olfert, 2005 and Sipkens, Olfert,

and Rogak, 2020c derived an identical expression (albeit calculated differently) for

the CPMA transfer function by using the same assumptions as the triangular transfer

function, except that they assumed the axial flow to be parabolic and forces to vary

radially. Due to the variations in forces and the assumption of parabolic flow, the

CPMA transfer function has a trapezoidal shape in their model. Furthermore, they

have presented an expression for the transfer function that incorporates particle

diffusion, which here is referred to as the diffusion model.

Figure 4.2a illustrates the transfer function of the triangular model together with

the trapezoidal and diffusion models of Sipkens, Olfert, and Rogak, 2020c (i.e.,
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using Cases 1C and 1C-diff in that work) evaluated for the mass set point of m∗ =

0.05 fg (∼ 42 nm) with a constant flow rate of Q = 0.3 LPM and resolutions of

Rm = 2 and Rm = 15, respectively. It is observed that while the triangular model

is symmetric around the equilibrium mass-to-charge ratio, the trapezoidal model is

positively skewed (i.e., concentrated on higher particle masses) and has a narrower

width at low resolution. The difference arises from the fact that while the forces are

assumed to be constant in evaluation of the triangular model, they vary slightly with

radius, such that the electrostatic and centrifugal forces are larger near the inner

cylinder. As a result, smaller particles are removed more efficiently than larger ones,

resulting in slight skewness towards higher masses. Moreover, it can be seen that the

diffusion model is more skewed than the trapezoidal model when the sample flow rate

and resolution are low. This is because diffusion is dominant for smaller particles

resulting in a greater removal of smaller particles. A comparison between Figure 4.2a

and b reveals that as the resolution increases from a low resolution of Rm = 2 to a

high resolution of Rm = 15, both trapezoidal and diffusion models become nearly

symmetrical, and the width of trapezoidal and diffusion models approach that of

triangular transfer functions.

4.2.2 Determining Deviations from the Triangular Transfer
Function

It will be shown in the Results section that none of the transfer function models ac-

curately predict the actual transfer function of the CPMA. Therefore, an empirical

model can be used to correct a theoretical transfer function model. Theoretically,

this could be done by applying correction factors to any of the idealized transfer
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Figure 4.2: Comparison of three theoretical transfer functions of the CPMA; (i)
triangular, (ii)trapezoidal, and (iii) diffusion model of Sipkens, Olfert, and Rogak,
2020c evaluated for a mass set point of m∗ = 0.05 fg (∼ 42 nm) and flow rate of
Q=0.3 LPM at (a) low (Rm = 2) and (b) high (Rm = 15) resolutions. (c) Comparison
of idealized (Equation 4.2.2) and non-idealized (Equation 4.2.2) triangular CPMA
transfer functions.

functions described above. However, the diffusion and trapezoidal transfer functions

are computationally expensive which prohibits their use on the hardware of the com-

mercial CPMA, and they also make two-dimensional inversion very time-consuming.

Thus, the work presented here will examine how the actual transfer function differs

from the triangular transfer function and use correction factors to the triangular

transfer function to create an empirical transfer function.

An ideal triangular (i.e., non-diffusing) transfer function of the CPMA (Ωideal) in

non-dimensional particle mass space, m̃ = m/m∗, can simply be expressed as

Ωideal (m̃, β) =
1

2β
[|m̃− (1 + β)|+ |m̃− (1− β)| − 2 |m̃− 1|] , (4.10)

where β is the inverse of the CPMA resolution (1/Rm) or equivalently the full-

width of the triangle at half-maximum (FWHM). The area of the prescribed transfer

function, which determines the number of particles passing through the classifier, can

100



then be calculated by A = hm∗/Rm, where h = 1 is the height of the ideal triangular

transfer function at the instrument set point. This simple expression is the CPMA

transfer function derived in Equation 4.8 and 4.9, but expressed in non-dimensional

mass space.

As a result of non-idealities in particle classification, the actual shape of the CPMA

transfer function will differ from a triangle and may narrow or broaden the width

or increase or decrease the height of the transfer function relative to the idealized

triangle. Previous, researchers using the DMA or AAC (Birmili et al., 1997; Johnson

et al., 2018; Martinsson, Karlsson, and Frank, 2001) have used various adjustable

factors to correct Eq. 4.2.2 to account for non-idealities, although the definitions of

the adjustable factors varies between studies. Following the work of Birmili et al.,

1997, two adjustable factors are introduced to Equation 4.2.2 as

Ωnon−ideal (m̃, β, µ, λ) = λµ
2β

[︂⃓⃓⃓
m̃−

(︂
1 + β

µ

)︂⃓⃓⃓
+
⃓⃓⃓
m̃−

(︂
1− β

µ

)︂⃓⃓⃓
− 2 |m̃− 1|

]︂
,

(4.11)

where λ and µ are height factor and width factor, respectively. While the height

factor scales the transfer function’s integrated area (A) by modifying the height of

the transfer function (h) to account for particle losses (e.g., losses occurring through

diffusion and impaction), the width factor adjusts the width of the triangular transfer

function (FWHMnon−ideal= β/µ) to account for the widening of the transfer function

due to particle diffusion or any other non-idealities in the CPMA (e.g., flow effects).

An illustration of the idealized transfer function (Equation 4.2.2) and how its width,

height, and area are modified by the adjustable factors (i.e., non-idealized transfer

function, Equation 4.2.2) are shown in Figure 4.2c. In this example, the non-idealized
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transfer deviates from the idealized transfer function with µ and λ < 1, demonstrat-

ing that along with losses, the actual transfer function may be broader than the

idealized one.

The adjustable factors λ and µ are derived by conducting the tandem CPMA mea-

surements as shown in Figure 4.3a. In the experiment, the number concentration

of aerosols counted downstream (N2) and upstream (N1) of the second CPMA are

counted with a CPC as the second CPMA is stepped through a range of set points.

The theoretical number concentrations can also be calculated through the convolu-

tion of the incoming particle count distribution and the CPMA transfer functions,

N2(m∗
2,m

∗
1)

N1(m∗
1)

=
∫︁
η(m∗

2)dN/dlogmiΩ1(m1,m∗
1,λ1,µ1)Ω2(m2,m∗

2,m
∗
12,λ2,µ2)dmi∫︁

η(m∗
1)dN/dlogmiΩ1(m1,m∗

1,λ1,µ1)dmi
,

(4.12)

where dN/dlogmi is the number distribution of aerosol entering the first CPMA,

η (m∗) is the counting efficiency of the CPC at a mass set point (m∗), Ω is the non-

idealized triangular CPMA transfer function, in which the subscript 1 and 2 refer to

the first and second CPMA, andm∗
12 represents the mass set point agreement between

the two CPMA set points (i.e., m∗
12 = m∗

2/m
∗
1). This factor was included in Equation

4.2.2 to account for the offset between the actual and ideal N2/N1 ratios potentially

resulting from any discrepancies in the mass set points of the two CPMAs that

might have been caused by differences in voltage and rotational speed calibrations,

etc. The equation is simplified by assuming that the counting efficiency of the CPC is

constant over the narrow mass domain stepped through by the downstream CPMA,

i.e., η (m∗
1) = η (m∗

2). It is also assumed that both CPMA transfer function width

factors were identical (µ1 = µ2). (Note, the relative resolution of both CPMAs (Rm
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or β) is the same at all set points in an experiment; however, the absolute width

of the transfer function of the second CPMA (e.g., mmax −m∗) changes at each set

point). Additionally, as N1 was directly measured, all losses within the upstream

CPMA were already taken into account, and accordingly, λ1 = 1 was used in the

theoretical convolution.

Minimizing the difference between the theoretical and experimental values of the

N2/N1 concentration ratio (Equation 4.2.2) using chi-squared minimization deter-

mined λ, µ and m∗
12. This analysis was based on the assumption that the likelihood

of having multiply-charged aerosols at the entrance of the first CPMA was negligible

so that their effects on the convolution of would likewise be negligible. It is shown

in the Appendix that the fraction of multiply-charged aerosols was very small and

does not have a significant affect on the results.

Unlike previous studies with DMAs and AACs, which assumed a uniform distri-

bution of aerosols entering the tandem measurements, (e.g., Martinsson, Karlsson,

and Frank, 2001 and Johnson et al., 2018) the number distribution of aerosols pass-

ing through the AAC was measured by an SMPS and considered in the convolution.

This helped to increase the accuracy of the fits.

4.3 Experimental setup and procedure

4.3.1 Tandem CPMA measurements

A schematic of the TCPMA experimental setup is shown in Figure 4.3a. Since the

width of the CPMA transfer function and its calculation depends on particle mobility,

it was necessary to measure an aerosol with known mobility. To this end, a ∼ 1%
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solution of Santovac 5 in acetone (purity ≥ 99.5%) was used to generate spherical

aerosols with a known density (1198 kg/m3). The TSI atomizer (Model 3076) was

employed to atomize the solution and generate the aerosols. In order to evaporate

the acetone, the generated aerosol was diluted by a factor of ∼ 25 with dilution air

at a temperature of 60 ◦C using a two-stage diluter (Dekati® eDiluter Pro).

CPMA 1 CPCNeutralizer AAC
(Running @ low Rs)

N1

CPMA 2

N2

MFC
(-suction flow @ CPMA 
flow rate >1.5 LPM)

Static
mixer

Suction PumpMFC
(+excess flow @ CPMA 
flow rate >1.5 LPM)
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Diluter

(DF~25)

Ve
nt

Santavac5 (1%)
+Acetone

Pure compressed air (2bar)
Exhaust collection

Atomizer

CPCDMA

CPCDMA
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CPMA
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(- suction flow @ CPMA 
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Suction Pump

Tandem CPMA measurement
(a)

Stationary loss measurement
(b)

N2

bypass line

Figure 4.3: A schematic of a) the tandem CPMA measurement b) the stationary loss
measurement setups.
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TCPMA measurements can be complicated because small uncharged aerosols may

pass through the classifier at very low rotational speeds when the centrifugal force

is low (e.g., when the CPMA operates at high mass set points and low resolutions).

Consequently, an AAC (Cambustion Ltd., Cambridge, UK) was used upstream of

the CPMAs to remove small particles that were outside the CPMA transfer func-

tion which could have passed through the CPMA if they were uncharged. The

AAC was set to operate at low resolutions (e.g., Rs ranging between 1.5 and 4), so

that a wide range of particle sizes could pass through it and enter the first CPMA.

Furthermore, the AAC aerodynamic diameter set points were selected so that the

mode of AAC-classified distributions would always be slightly smaller than the mass

equivalent diameters of the first CPMA mass set points. This AAC set point se-

lection was undertaken to maximize the number of aerosols entering the TCPMA

system while minimizing the portion of multiply charged particles smaller than that

of singly charged ones. The size distributions of AAC-classified aerosols were then

measured by scanning mobility particle sizers (SMPS, TSI Inc.) to be used in the

data convolution explained in Section 4.2.

In the measurements taken at flow rates of 0.3 or 1.5 LPM, the TCPMA aerosol

flow rate was controlled by an internal flow controller within the condensation particle

counter (CPC; TSI, Model 3775). For the measurements with higher flow rates (i.e.,

4 and 8 LPM), the CPC was operated at a flow rate of 1.5 LPM, and a vacuum

pump and a mass flow controller (MFC; Alicat Scientific, MCV–Series: Vacuum Gas

Mass Flow Controllers, serial number 175509) were employed together to regulate

makeup flows of 2.5 and 6.5 LPM, resulting in the net flow of 4 and 8 LPM through

the TCPMA system, respectively. Additionally, because the AAC cannot operate
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at flow rates higher than 3 LPM, the aerosol flow from the AAC was supplemented

with filtered compressed air controlled with a mass flow controller (MFC; Alicat

Scientific, mc-series, serial number 270591) to maintain the desired flows. A static

mixer (Ko-flo Corporation, 1-800 Static, model number 3/8-40-3-12-2) was then used

to generate a well-mixed aerosol flow prior to measurement by the TCPMA system.

Prior to TCPMA measurement, the aerodynamically classified aerosols were elec-

trically charged by passing them through a radioactive Kr-85 bipolar diffusion charger

(TSI Inc., Model 3077A). The first CPMA (Cambustion Ltd., serial number C220)

was operated at a fixed mass set point of m∗
1 = 0.05, 0.1, 1, 10, or 100 fg, while

the downstream CPMA (Cambustion Ltd., serial number C313) was stepped (m∗
2)

through the range of classified particles, and the number concentration of the twice-

classified particles (N2) was measured with the CPC. At the beginning and end of

each TCPMA measurement, the second CPMA was bypassed to measure the steady-

state number concentration of aerosols passing through the upstream CPMA (N1)

during the measurement.

The CPMAs were examined at five mass set points between 0.05 – 100 fg, four

flow rates ranging from 0.3 – 8 LPM, and five resolutions (Rm) of 2, 3, 6, 10 or

15 if the operating conditions fell within the CPMA’s operating window (i.e., it

was not possible to test certain conditions because the voltage or rotational speed

of the CPMA would have exceeded the maximum or minimum). There were some

measurements that were within the operating envelope of the CPMAs; however, the

experiments could not be completed because high motor temperature errors that

occurred. Each TCPMA configuration was repeated three times in order to assess

the repeatability of the measurement See Table A1 for a complete list of all data
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collected in the study.

4.3.2 Stationary loss measurements

In addition to the CPMA losses characterized as height factor from the TCPMA

measurements, the losses were measured as the transmission efficiency of the CPMA

(N2/N1) when the CPMA was not operating (i.e., no rotational speed and no volt-

age). Figure 4.3b shows a schematic of the stationary loss measurement setup. In

this measurement, the SMPS was used to measure the number concentration of par-

ticles upstream (N1) and downstream (N2) of the CPMA when it was not operating.

These measurements approximate the TCPMA case of Rm = 0, which were made at

flow rates of 0.3, 1.5, and 4 LPM.

4.4 Results and Discussion

Figure 4.4 depicts the concentration ratios (N2/N1) derived from the TCPMA mea-

surements (i.e., convolution of the two CPMA transfer functions) conducted at a

flow rate of 0.3 LPM for five CPMA mass set points ranging from 0.05 to 100 fg,

with a resolution of Rm= 6, and compares them with their theoretical counterparts,

which are the convolution of two theoretical transfer functions: (i) triangular model,

(ii) trapezoidal, and (iii) diffusion model, shown as dashed green, solid red, and

blue lines, respectively. Compared to their ideal counterparts, the observed N2/N1

ratios generally had lower amplitudes and a slight offset, and they were either slightly

wider for low mass set points, e.g., m∗ = 0.05 and 0.1 fg, or narrower for high mass

set points. It can be seen that the convolution of the theoretical models could not

accurately represent the measured N2/N1. In contrast, the convolution of two non-
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Figure 4.4: TCPMA measurements conducted at a flow rate of 0.3 LPM for five
CPMA mass set points (0.05 – 100 fg), with a resolution of Rm= 6.

idealized CPMA triangular functions fits the data well (solid black lines), indicating

that a reasonable approximation of the actual CPMA transfer function had been

obtained by using the triangular transfer function with three adjustable factors (λ,

µ and m∗
12). The following sections describe the results of the three factors for the

rest of the data set.

4.4.1 Set point agreement (m∗
12)

Figure 4.5a illustrates the mass set point agreement between the two CPMAs. The

values in this figure represent the relative offset between the mass set points of the

two CPMAs, such that a value of 1 indicates that the mass set points of the two

CPMA are equivalent. The offset between the actual and ideal N2/N1 ratios results

from any discrepancies in the mass set points of the two CPMAs that might have
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been caused by differences in voltage and rotational speed calibrations or differences

in classifier radii. It is observed that the offset has a small dependence on mass set
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Figure 4.5: (a) The the mass set point agreement derived from TCPMA measure-
ments for different flow rates ranging from 0.3 to 8 LPM, at five CPMA mass set
points between 0.05 and 100 fg, with five different resolutions ranging in Rm from 2
to 15. (b) Comparison between the mass set point agreement derived from the orig-
inal arrangement of TCPMA system and the swapped arrangement at a particular
measurement configuration of Q = 1.5 LPM and Rm = 6.

point and resolution, as reflected in color in Figure 4.5a, such that higher CPMA

resolutions tend to result in a smaller offset between the CPMA’s mass set points at

larger mass set points. In the current study, the measurements with mass set point

agreements greater than 1.15 or lower than 0.85, have been regarded as outliers as

they do not conform to the main assumption underlying TCPMA measurements

(running two identical CPMAs in series). The outliers are identified by red lines

encircling the data points in Figure 4.5a, which are associated with low mass set

point measurements conducted at a low flow rate of Q = 0.3 LPM and resolutions of

Rm =2 and 3. Neglecting the outliers, the average mass set point agreement between

the CPMAs ism∗
12 = 1.02±0.03, indicating sound reproducibility among the CPMAs.
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This was tested by swapping the positions of the CPMAs as shown in Figure 4.5b,

which shows the mass set point agreements of the original CPMA arrangement and

when the CPMA position is swapped for mass set points ranging between 0.05 fg

to 100 fg, with Q = 1.5 LPM and Rm = 6. The nature of the experiment calls for

symmetry around 1 (here with an average error of ∼1.5 %), such that when CPMA

positions are swapped, the magnitude of the offset is expected to remain the same

while shifting in opposite direction (inversed). This implies that swapping the CPMA

positions does not have a major impact on the results.

4.4.2 Width factor (µ)

Figure 4.6a–c illustrate the width factors measured by TCPMA method as a function

of the CPMA mass set point for the flow rates of Q = 0.3, 1.5, 4 and 8 LPM,

respectively. Figure 4.6a–c shows the CPMA resolution in gradations of color to

highlight its effect on the width factor variation. It is observed that the dependence

of width factors on particle mass appears to be notable only at a flow rate of 0.3 LPM

and low mass set points (see Figure 4.6a). On the other hand, the width factor has

little dependence on the particle mass at higher flow rates. These observations are

expected since particle transport is influenced by diffusion when the flow rate and the

particle mass are sufficiently low. This finding was verified by three-way ANOVA

analysis, which was used to quantitatively evaluate the significance of the CPMA

settings (m∗, Rm, Q) on the width factor. The results are listed in Table 4.1, sorted

by p-value for three groups of data: (i) all measurements, (ii) low flow measurements

(Q = 0.3 LPM), and (iii) high flow measurements (Q > 0.3 LPM). The effects of any

parameter on an adjustable factor are more significant when the p-value is smaller.
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The ANOVA analysis performed on data points at all flow rates (first column of

Table 4.1) indicates that Q was the most effective input parameter to explain the

variations in width factor (p-value ∼ 10−16). Comparing the ANOVA analysis using

only the low-flow data (second column in the Table) and measurements at flow rates

above 0.3 LPM (third column in the Table), reveals that the mass set point (m∗)

only became significant at the low flow rate setting. It is seen in Figure 4.6a that

the width factor dropped to less than one for low mass set points (m∗ < 1 fg) when

the CPMA was run at low flow rates (Q = 0.3 LPM), which means that the CPMA

transfer function was broader than the ideal transfer function. This is expected since

the particles will have a longer residence time in the classifier when the sample flow
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Table 4.1: Three-way ANOVA table indicating the significance of the CPMA sam-
pling configurations (i.e., m∗, Rm, Q) to the width and height factors. The analysis
was conducted using the logarithm of mass set points, and all parameters were treated
as continuous.

ANOVA Analysis

Width factor Height factor

All flow rates
(Q= 0.3 — 4 LPM)

Low flow rate
(Q= 0.3 LPM)

High flow rates
(Q= 1.5 , 4 LPM)

All TCPMA
data

F p-value F p-value F p-value F p-value

Q 85.0 1.49× 10−16 m∗ 45.78 6.23× 10−9 Rm 30.7 2.73× 10−7 m∗ 255 3.63× 10−35

Rm 44.7 3.44× 10−10 Rm 41.9 1.95× 10−8 Q 9.89 2.23× 10−3 Rm 82.7 3.19× 10−16

m∗ 7.65 6.32× 10−3 Q — — m∗ 8.14 5.33× 10−3 Q 4.21 4.18× 10−2

rate is low allowing small particles to diffuse more efficiently. As shown in Figure

4.6a–c, the width factor is generally observed to be higher than one and increases

with flow rate. This means that the actual CPMA transfer function was narrower

than the idealized triangular transfer function. Referring back to Figure 4.2a, the

actual transfer function, which is likely better represented with the trapezoidal or

diffusion model, is expected to be narrower that the triangular transfer function

(except for a flow rate of Q =0.3 LPM cases where diffusion is significant, resulting

in a broader transfer function).

These observations can be supported by theoretical models. Figure 4.6a–c also

illustrate the width factor derived from fitting synthetic data fabricated by the con-

volution of the theoretical trapezoidal and diffusion transfer functions as solid and

dotted lines, respectively, in color gradations that correspond to the variation in

resolution at a given CPMA flow rate. In agreement with the experimental observa-

tions, Figure 4.6a–c demonstrates that the theoretical width factor (diffusion model)
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decreases at low masses only at low flow rates for the range of data measured, with

some functional dependence on the CPMA resolution, and is constant with particle

mass at high flows. Additionally, the ANOVA analysis using only data at flow rates

above 0.3 LPM (third column of the Table) demonstrates that the CPMA resolution

to a great extent explain a functional variation in the width factor (Q, and m∗ had

negligible impacts) at high-flow measurements. According to theory, the convolution

of two trapezoidal transfer functions results in width factors greater than one and is

a function of resolution, such that it decreases with resolution and gets close to one

at higher resolutions, which is in close agreement with the measurements shown in

panels of Figure 4.6a–c. However, it is evident that the values of theoretical width

factors do not fully correspond to experimental observations. This suggests that there

are some other mechanisms inside and outside the classification region that may be

important but are not considered in the transfer function models. For instance, the

theoretical models neglect entrance effects and assume the flow is fully developed and

laminar at the entrance of the classification region when in reality, there is an entry

length for fully developed flow. Moreover, the models assume an even distribution

of particles across the gap, but flow effects may result in non-uniform concentration

at the entrance. Therefore, since current theoretical models of the transfer function

cannot accurately model the resolution of the CPMA, thus an empirical model is

needed.

An empirical model was found using multivariate non-linear curve-fitting of the

width factor data. An iteratively reweighted least squares (Dumouchel, O’brien, et

al., 1989; Holland and Welsch, 1977) routine was implemented in Matlab® with the

nlinfit function using the Welsch weight function. From this fitting procedure, the
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following equation was derived

µ (m∗, Rm, Q) =
al

1 + exp [−bl · (log10 (m∗) + cl)]
± 0.105;

al =
(︁
0.0258Q+ 1.31R−2.57

m + 1.12
)︁
,

bl = (4.07Rm + 0.967) ,

cl = 4.63Rm + 0.428.

(4.13)

where Q, Rm, and m∗ are the volumetric flow rate in LPM, CPMA resolution, and

the CPMA mass set point in fg; respectively. Figure 4.7a–c show the measured

width factor and the results of the fitted model shown as solid lines at the four

different flow rates. The length of the solid lines represent the operating region of

the CPMA such that the CPMA cannot be operated above or below the mass set

point at the flow and resolution indicated. It is worth mentioning that although it

is theoretically possible to run the CPMA for particle masses smaller than 0.05 fg at

a flow of 0.3 LPM, in reality, the particle losses are so high that reliable data could

not be collected 2. Figure 4.7d shows the distribution of measured versus predicted

values of width factor along with a 95% prediction interval, which is defined as an

interval which contains 95% of the data (±0.105). The parity plot shows that the

majority of points lie near the diagonal, which is a positive indication that the fit

model was acceptable. The determined prediction interval was added to Equation

4.4.2 as an upper and lower bound to illustrate the accuracy of the fit. For reference,

the root-mean-square error for the fit is 0.0651.

2As shown later in Figure 4.8a, the stationary transmission efficiency for particles below 0.05
fg in a single CPMA at Q =0.3 LPM is ∼ 0.2, which would be nearly two times higher for two
CPMAs in the tandem arrangement.
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Figure 4.7: The width factor derived from TCPMA measurements for (a) Q = 0.3
LPM, (b) Q = 1.5 LPM, and (c) Q = 4.0 and Q = 8.0 LPM, at five CPMA mass set
points between 0.05 and 100 fg, with five different resolutions ranging in Rm from 2
to 15. The corresponding results of fitted model (Equation 4.4.2) to distribution of
measured width factor are illustrated as solid lines at a corresponding flow rate and
CPMA resolution. (d) Parity plot of the width factor correlation (Equation 4.4.2)
based on the TCPMA measurements.

4.4.3 Height factor (λ)

Figure 4.8a–c illustrate the height factor derived from TCPMA measurements as

a function of mass set point for the flow rates of Q = 0.3, 1.5, 4 and 8 LPM,

respectively. The height factor is a measure of the fractional loss of particles within

the CPMA with the ideal transfer function having a value of one and a lower value
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indicating lower transmission efficiency. In addition to the height factors derived

from the TCPMA measurements, the losses were measured when the CPMA was not

operating (no rotational speed and no voltage) using SMPS measurements upstream

and downstream of the CPMA. This is an approximation of the case of Rm = 0,

and the measurements were made with flow rates of 0.3, 1.5, and 4 LPM. This

piece of information provides information at small particle masses where TCPMA

measurements were not possible. The CPMA resolution is shown in gradations of

color in Figure 4.8a–c to illustrate its effects on height factor. A distinct slope in

Figure 4.8a–c indicates that height factors are highly dependent on particle mass,

such that the height factor decreased with the CPMA mass set point. This trend

is supported by the ANOVA findings shown in Table 4.1 (fourth column), which

shows that a variation of the height factor was predominantly determined by the

mass set point of the CPMA. Also, ANOVA suggests that the CPMA resolution

also contributed to the variation of the height factor to a considerable extent. This

functional dependence on CPMA resolution can be seen as a vertical layer of color in

Figure 4.8a–c, such that higher resolutions (moving from light to dark color) result in

a lower height factor. Additionally, as can be seen from the ANOVA results in Table

4.1, the p-value for flow rate is close to than 0.05, implying that the loss factor did

not functionally vary with CPMA flow rate for the range of set points tested however

this data set did not include the stationary measurements at mass set points lower

than 0.05 fg, which clearly show a flow rate dependence.

Part of the losses in the CPMA can be attributed to inertial impaction, which

is caused by the centrifugal forces acting on the particles as they pass through the

CPMA. At higher CPMA resolution, the rotational speed of the cylinders for the
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Figure 4.8: The height factor derived from the stationary loss measurements,
TCPMA measurements, and corresponding synthetic data as a function of mass
set point for flow rates of (a) Q=0.3 LPM, (b) Q=1.5 LPM, and (c) Q=4.0 and
8.0 LPM. The results of fitted model (Equation 4.4.3) to distribution of measured
height factor are illustrated as solid lines at a corresponding flow rate and CPMA
resolution. (d) Parity plot of the height factor correlation (Equation 4.4.3) based on
the TCPMA measurements.

same mass set point is higher, so higher impaction loss are expected for particles

moving through the turns before and after the classification region. Impaction, how-

ever, cannot account for the lower height factor of lower mass set points at a given

resolution. At smaller particle masses losses are caused by diffusion which maybe be

enhanced by turbulent flow outside of the classification region.
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Figure 4.8a–c also depict the height factor derived from the synthetic data fab-

ricated by convolution of theoretical trapezoidal and diffusion transfer functions for

flow rates of Q=0.3, 1.5, 4 and 8 LPM, at CPMA mass set points ranging from 0.0001

to 100 fg, with five different resolutions ranging in Rm from 2 to 15. The theoretical

height factors are greater than one (except where particle diffusion dominates, e.g.,

at low flow rate and low mass set points), which is caused by the larger area of the

theoretical models compared to the idealized triangular transfer function. It is ev-

ident that theoretical models do not correspond to experimental observations. The

substantial discrepancy between the theoretical and measured height factors implies

that there might be some effects, both inside and outside of the classification region,

which have been neglected while developing the models. In addition to the assump-

tions mentioned in the previous section, the theoretical models assume no forces act

on particles outside of the classification regions. In contrast, particles are subjected

to both centrifugal and electrostatic forces while moving through the turns before

and after the classification region. Therefore, the current theoretical models of the

transfer function cannot accurately describe the loss of the CPMA, and an empirical

model is necessary.

Accordingly, as with the width factor, data on height factors derived from TCPMA

measurements for each flow rate were fitted to a single form of multivariate nonlinear

model using multivariate nonlinear regression. The stationary data were incorporated

into the fit to constrain the fit at small particle masses where TCPMA measurements
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were impossible. The fitted relation found was,

λ (m∗, Rm) |Q=const =
al

1 + exp [−bl · (log10 (m∗) + cl)]
± 0.143;

al =
(︁
a1R

3
m + a2R

2
m + a3Rm + a4

)︁
,

bl = (b1Rm + b2) ,

cl = c1 exp (c2Rm) + c3.

(4.14)

where Rm is the CPMA resolution, and m∗ is the CPMA mass set point in fg;

respectively. Table 4.2 shows the required coefficients of Equation 4.4.3 for each flow

rate. Figure 4.8a–c show the results of fitted model to distribution of measured

height factor as solid lines at three different flow rates of 0.3 to 8 LPM. The length

of solid lines represents the theoretical operating region of the CPMA. As can be

seen in Figure 4.8, there is a very narrow operational range in which the CPMA

can operate at Q = 8 LPM, and the height factor remains constant throughout that

range. Therefore, the regression coefficients in Equation 4.4.3 were set in such a way

that the fit model gives a constant result. It is significant to note that this fit is only

valid over the range of data collected, and the height factor for flow rates other than

those measured in this study can be derived by interpolation.

Figure 4.8d shows the distribution of measured versus predicted values of height

factor based on the TCPMA measurements for all three flow rates along with a 95%

prediction interval (±0.143). The parity plot indicates that most points are near a

diagonal, which suggests the model was fitted correctly. In the case of the fit, the

root-mean-square error was found to be 0.0876.
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Table 4.2: The regression coefficients of the fitted expression for height factor at
three flow rates of Q =0.3, 1.5, and 8 LPM.

Regression Coefficients

a1 a2 a3 a4 b1 b2 c1 c2 c3

Q0.3 -0.000605 0.0170 -0.159 1.373 0.00970 1.49 -0.0125 0.305 0.730

Q1.5 0.000 0.000 -0.0130 0.950 0.151 1.89 2.37 -0.0636 -0.482

Q4.0 0.000 0.000 0.000970 0.882 0.190 1.99 3.28 -0.300 0.000

Q8.0 0.000 0.000 0.000 0.938 0.000 0.000 0.000 0.000 0.000

4.5 Conclusions

This study examined the transfer function of the CPMA by using a tandem CPMA

configuration. Following the methodology described, a triangular transfer function

was used to approximate the CPMA transfer function, and deviations from the ide-

alized triangular transfer function were determined by three factors: (i) the mass set

point agreement, (ii) the width factor, and (iii) the losses factor. The measurements

with mass set point agreements greater than 1.15 or lower than 0.85, have been con-

sidered as outliers in this study as they do not conform to the main assumption

underlying TCPMA measurements (i.e., running two identical CPMAs in series).

Excluding the outliers, the average mass set point agreement between the CPMAs

is m∗
12 = 1.02 ± 0.03, indicating sound reproducibility among the CPMAs. In ac-

cordance with the TCPMA measurements, the width factor was typically found to

be marginally higher than one (µ > 1), indicating that the CPMA transfer function

was narrower than the idealized triangular transfer function. Nevertheless, a broader
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CPMA transfer function (µ < 1) was observed when the CPMA was run at low mass

set points (i.e., m∗ < 1 fg) and low flow rates (Q = 0.3 LPM). Actual CPMA transfer

functions differed most significantly from idealized triangular transfer functions in

terms of the height factor, which was influenced by the mass set point, resolution,

and flow rate. The height factor decreased with a decrease in the CPMA mass set

point and flow rate and increased with a decrease in the resolution. Multivariate

non-linear fitting models were fitted to measured data in order to capture functional

variations in the CPMA width and height factors.
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Chapter 5

Comparing single-particle soot
photometer mixing state
measurement methods

5.1 Introduction

As described in Section 1.2.1 BC mixing states can be derived from SP2 measure-

ments using different methods suggested in the literature, including (i) leading-edge

only (LEO), (ii) incandescence lag-time, and (iii) tandem centrifugal particle mass

analyzer (CPMA)-SP2 measurement. This study builds upon Chapter 2 work to

provide the first comprehensive comparison of SP2-based methods to determine the

mixing state of BC. Specifically, we compare the leading-edge-only (LEO), incan-

descence lag-time, and CPMA-SP2 methods in terms of detection size range, tem-

poral resolution, counting statistics, and associated uncertainties. The normalized-

derivative method is not explicitly considered, since it is similar to the leading-edge-

only method. We evaluate these methods using atmospheric measurements taken in

Kamloops, British Columbia, Canada during episodes dominated by predominately
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urban and highway soot particles (low coating content) or moderate to heavy wildfire

smoke particulate (moderate to high coating content).

5.2 Experimental methods

5.2.1 Measurement location

The measurements were carried out in a urban setting with the city of Kamloops,

British Columbia, Canada (50◦39′58.4′′ N, 120◦21′45.5′′ W). The site was located 2.2

km from an air quality station operated by the British Columbia Ministry of Envi-

ronment and Climate Change and ∼ 0.7 km from the Trans-Canada highway, which

is a major corridor for heavy-duty diesel vehicles carrying freight. Experiments took

place on July 21 and July 22, 2021; however, three periods of time are used in this

work as examples to compare the measurement methods. The examples include pe-

riods where ambient particulate levels were at: i) Case I; low concentrations and

mostly thinly coated rBC particles, presumably composed of mostly urban and high-

way emissions and may also contain some wildfire smokes (July 21, 11:54 am to 1:44;

PM2.5 concentrations of 1.7 to 4 µg/m3 as measured at the nearby air quality sta-

tion), ii) Case II; moderate concentrations and mixture of thinly and thickly coated

rBC particles due to urban and highway emissions and smoke from nearby forest

fires having bimodal particle size/mass distribution (July 22, 11:31 am to 12:41 pm;

PM2.5 concentrations of ∼ 104 to 81 µg/m3), and iii) Case III; high concentrations

and mostly thickly coated rBC due to wildfire smoke (July 22, 10:23 to 11:29 am;

PM2.5 concentrations of 122 to 104 µg/m3).
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5.2.2 Measurement system

Figure 5.1 shows the method used to measure ambient particles. Ambient particles

are drawn through ∼ 2.5 m of silicone conductive tubing and an X-ray aerosol charger

(Model 3088, TSI Inc) where they received a bipolar equilibrium charge distribution.

The particles were then directly sampled by the SP2 or classified by mass-to-charge

ratio by the CPMA (Cambustion Ltd.) before being measured by SP2. The SP2

flow rate was maintained at 0.12 L/min during the experiments. However, to lessen

particle diffusional losses (in the sampling line and the CPMA), a additional pump

and critical orifice was used to maintain a flow of 1.5 L/min from the ambient inlet

to the SP2 inlet.

CPMA(1.5 LPM)

X-ray aerosol 
neutralizer

SP2 (0.12 LPM)

ii) SP2-only 
measurement

i) CPMA-SP2 
measurements

BC Mixing states
BC aggregate
Coatings

TSI 3088

Vacuum pump

Orifice Flow 
controller
(1.38 LPM)

Figure 5.1: A schematic of the measurement system.

For CPMA-SP2 measurements, the CPMA was stepped through mass set points

over the range of m∗ =0.2–100 fg, with 5 CPMA set points per decade, and a CPMA

resolution of 9. In general, 3 to 5 minutes were spent at each CPMA set point so

that the total measurement time was limited to about an hour. This procedure

led to about 1000 or more BC-containing particles being counted by the SP2 at

each CPMA set point (the exception being CPMA set points near the limits of
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the distribution where particle counts were very low). These experimental settings

(resolution, number of CPMA set points, SP2 counts) were chosen based on the

optimized settings suggested by Naseri et al. (2021b) for the particle concentrations

and measurement time frames in this work. The SP2-only measurements were taken

at the beginning, end, and occasionally between CPMA-SP2 scans.

5.2.3 SP2 calibration

The SP2 incandescence signal was calibrated using soot from a miniature inverted

soot generator (Argonaut Scientific Corp.; Kazemimanesh et al., 2019; Moallemi et

al., 2019) denuded with a catalytic stripper (Model CS08, Catalytic Instruments;

Swanson and Kittelson, 2010). The denuded soot was classified with a CPMA over

a wide range of set points and measured by the SP2, similar to the procedure used

by Irwin et al., 2013. Since volatile material is removed from the rBC particles, the

calibration particles have no coating by definition and the CPMA mass is equal to

the rBC mass (mp = mrBC).
1 The scattering signal was calibrated using polystyrene

latex (PSL) sphere standards (Thermo Scientific 3000 Series) with a diameter of 300

nm. The PSI SP2 toolkit, version 4.114, was used to obtain the calibration curves

for each signal (Moteki and Kondo, 2007).

1In this context, the masses measured for incandescing particles using this calibration data are
to be interpreted as rBC equivalent mass.
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5.3 Data analysis methods

5.3.1 SP2-only measurements

5.3.1.1 Leading-edge only

Section 1.2.1 provides an explanation of the assumptions that underlie the LEO

approach, as well as how it measures coating thickness (tcoating). To measure coating

thickness/mass of rBC-containing particles using the Equation 1.1, the following

values, which are often used in the literature, are used in this work as inputs to LEO

approach unless otherwise stated: ρrBC= 1800 kg/m3 (Bond and Bergstrom, 2006;

Corbin et al., 2018; Liu et al., 2020; Moteki, Kondo, and Nakamura, 2010; Ouf et al.,

2019; Park et al., 2004), ρcoating = 1000 kg/m3 (Ditas et al., 2018; Liu et al., 2019),

nrBC = 2.26 + i 1.26 (Dahlkötter et al., 2014; Laborde et al., 2013; Moteki, Kondo,

and Nakamura, 2010; Taylor et al., 2015; Zanatta et al., 2018), and ncoating = 1.5+i 0

(Laborde et al., 2013; Liu et al., 2015; Nakayama et al., 2010; Yuan et al., 2021).

5.3.1.2 Lag-time analysis

Section 1.2.1.3 provides an explanation of how Lag-time analysis categorizes BC-

containing particles and provides a general picture of the mixing state of BC. In the

present study, we used a time-lag threshold of ∆τ = 2 µs based on the observed

bimodal distribution of lag times in our data.

5.3.2 CPMA-SP2

Chapter 2 describes in detail how the CPMA-SP2 system measures BC mixing states.

In this study, the model of Sipkens, Olfert, and Rogak (2020c) (Case 1C) was used

to calculate the CPMA transfer function and the model of Wiedensohler (1988) was
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used for the charge fraction. The inversion used a solution resolution of 64 bins per

decade, a Bayesian model for regularization parameter selection, and the exponential

distance method for imposing distribution smoothness on the solution.

5.3.3 Comparison of CPMA-SP2 and SP2-only data

We analyzed the CPMA-SP2 and SP2-only results according to their traditional

methods of presentation below. We also converted between the two methods, to

allow a direct comparison of differences in the two sets of results. To this end, a

conversion from either rBC mass (mrBC) and coating mass (mcoating) to rBC mass-

equivalent diameter (drBC) and coating thickness (tcoating) or vice versa is required for

comparison. The core-shell type morphology with core and shell material densities

assumptions are required to convert CPMA-SP2 measurements (i.e., mp and mrBC)

to coating thickness (tcoating) and rBC mass equivalent diameter (drBC). The drBC is

calculated by Equation 1.2, and tcoating can be derived from

tcoating =
1

2

(︄(︃
6 (mp −mrBC)

πρcoating

)︃ 1
3

− drBC

)︄
, (5.1)

where ρcoating is coating density and is assumed to be 1000 kg/m3, to match the

assumptions made in the LEO analysis (c.f., Section 5.3.1.1).This assumption is

evaluated later in Section 5.4.3. While CPMA-SP2 needs no optical model assump-

tions to derive coating thickness, the LEO model, in addition to the core-shell Mie

model and the material densities, requires assumptions for rBC and coating refractive

indices.
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5.4 Results and Discussion

5.4.1 LEO detection limits

Figure 5.2 shows two-dimensional distributions of Case II measured by the CPMA-

SP2 (green images; panels a and b) and LEO (blue images; panels c and d) methods.

The distributions are presented both in terms of coating thickness versus rBC mass-

equivalent diameter (Figure 5.2a and c) and in rBC mass versus total particle mass

(Figure 5.2b and d). The rBC mass and total mass are both measured directly by

the CPMA-SP2 method, while the coating thickness and mass equivalent diameter

are typically shown in the LEO literature. As such, we have included both types of

plots for comparison.

Figure 5.2a and c demonstrate the relationships between rBC diameter and coat-

ing thickness derived from the CPMA-SP2 and the LEO analysis, respectively. The

detection limits of the LEO method are indicated by red lines in Figure 5.2. The

light scattering detection (LSD) and broadband incandescence detection (BID) limits

are defined as the lowest and highest amount of light that the optics and detectors

can collect and will vary between SP2 units and models. For the SP2 used here the

limits are equivalent to about 150 nm — 430 nm in optical diameter, and 74 nm —

254 nm in rBC mass-equivalent diameter (0.38 and 15.36 fg), respectively. Lines iii

and iv in Figure 5.2 are simply the low and high BID limits of the SP2. Line ii is the

upper coating detection limit of the LEO method and it is limited by the saturation

of the scattering detector. Since LEO is performed at a small fraction of the total

scattering signal for a given particle, it increases the detection limit (ii) for sizing

of non-absorbing particles. The upper coating thickness limit of LEO (line ii), was
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Figure 5.2: Distributions of rBC diameter and coating thickness (a, c), and total
particle and rBC mass (b, d) of the same wildfire plume. Variants of the CPMA-
SP2 measurements in panels (a) and (b) are shown in green. The variants of LEO
analysis in panels (c) and (d) are shown in blue. Red lines in panels a and c indicate
the detection limits, with iii and iv showing the low and high broadband incandes-
cence detection limits, respectively, for both LEO and CPMA-SP2 methods, i and
ii showing the LEO lower and higher coating detection limits.

∼ 285 nm due to saturation of the scattering detector. The low coating thickness

limit of LEO (Line i) is due to a combination of both lower LSD and BID limits.

Because coating thickness is defined from the sum of rBC diameter and optical di-
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ameter (Equation 1.1), the limit i means that the lowest coating thickness detectable

increases with decreasing rBC diameter. This increase occurs because the additional

light scattered by the rBC core raises the scattering signal above its detection limit.

The exact boundary of the lower coating thickness limit of LEO is difficult to deter-

mine, especially because not only the LSD but also the split detector must be above

the LOD. However, the endpoints of the limit are simply the lower coating thickness

limit of LEO at the BID limits (Line i) (i.e., lowest detectable coating thickness at

low BID limit, and zero coating thickness at high BID limit) and is shown as a linear

dashed line in the figure.

To make a general comparison between the LEO results and those derived directly

by the CPMA-SP2 measurements without making any morphological and density as-

sumptions (Figure 5.2b), the distribution of Figure 5.2c was mapped onto mp—mrBC

mass space (Figure 5.2d) by rearranging Equation 5.1 to find mp. It is not physically

possible to have a particle in which the rBC mass exceeds the total mass of the parti-

cle; thus the reconstruction elements for which mp is greater than mrBC were prohib-

ited during the formal inversion and are greyed out in the figure. A comparison of the

particle mass range (mp) of distributions represented in Figure 5.2b and d measured

by the CPMA-SP2 and the LEO measurements, respectively, demonstrates that the

LEO reconstruction range is far more limited than that of the CPMA-SP2 method.

This deficiency is rooted in LEO’s structural dependence on the scattering signal,

which results in a high LOD for mp, which can make using the LEO model ineffi-

cient when dealing with particles with low rBC mass and thin- to moderate-coatings.

This point can be made clearer by a closer look at the mixing states of uncoated to

heavily coated rBC particles from LEO and CPMA-SP2 measurements. Figure 5.3
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shows three examples of mp— mrBC distributions, representing rBC-containing par-

ticles with mostly thin to no coatings (Case I, Figure 5.3a and d), as compared to a

mixture of rBC particles with no coating to moderate and heavy coatings (Case II,

Figure 5.3b and e), and rBC-containing particles mostly with heavy coatings (Case

III, Figure 5.3c and f ). In these plots, the main diagonal corresponds to the mass
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fraction of rBC of one, i.e., mrBC/mp = 1, with any line parallel to it corresponding

to lines of constant rBC mass fraction of less than one, representing coated particles

(lines of rBC mass fractions of mrBC/mp =0.75, 0.5, 0.25 and 0.05 are shown in

Figure 5.3). Consequently, a part of distributions that are clustered along the di-

agonal line represents rBC-containing particles with thinly to no coatings. Overall,

Figure 5.3a-c shows bimodal-bivariate distributions in which the distribution with a

smaller particle mass mode corresponds to rBC particles with thin coatings (small

rBC to coating mass ratio; mcoating/mrBC ≪ 1), and the second mode represents rBC

particles with moderate to heavy coatings (mcoating/mrBC ≫ 1). As the relative con-

centration of rBC particles with thin and moderate to heavy coatings varies mostly

due to changes in wildfire conditions, moving from the left distributions to the right

ones in Figure 5.3, the second mode becomes wider and dominates the first mode.

It can be seen from Figure 5.3 that considerably more information on the mixing

states of rBC-containing particles can be measured from CPMA-SP2 measurements

than from the LEO analyses, such that LEO is biased towards the rBC with heavy

coatings. The reason for this disparity is that rBC particles with thin-to-moderate

may not be measured by the LEO method because of the lower LEO detection limit

(line i). Thus, LEO analysis may only describe a small fraction of rBC-containing

particle population.

Apart from a more limited detection range of LEO, a comparison of distributions

represented in Figure 5.2a and c, show that LEO data is concentrated near the

higher LSD limits (ii) in Figure 5.2c; however, the CPMA-SP2 results suggest there

are no particles there. This indicates that the LEO method over-predicts the coating

thickness of rBC-containing particles, which stems from the assumptions made in
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LEO analysis, e.g., the core-shell morphology. Besides, there are also some rBC

particles with a total particle mass of ∼ 4–20 fg that is clustered near the 1:1 line

in each case, which is an artifact discussed in detail in Section 5.4.3. Additionally, a

closer look at Figures 5.2 and 5.3 shows that the number concentration of the LEO

analysis is much lower that the CPMA-SP2. These two issues are discussed in the

following sections.

5.4.2 LEO counting statistics limitation

Figure 5.4 shows the number concentration distributions of particle mass

(dN/dlogmp) and rBC mass (dN/dlogmrBC), respectively, for the LEO and CPMA-

SP2 methods which are found by integrating the two-dimensional distributions of

Figure 5.2b and d over mp,

dN

dlogmrBC

=

∫︂ ∞

0

∂2N

∂ logmp∂ logmrBC

dlogmp, (5.2)

and mrBC,

dN

dlogmp

=

∫︂ ∞

0

∂2N

∂ logmp∂ logmrBC

dlogmrBC. (5.3)

According to Figure 5.4, the maximum number concentration of rBC-containing

particles detected by LEO analysis is only ∼ 50% of that directly measured from the

incandescence signal of the SP2, because of the higher LOD of the scattering signal.

There are three common types of rBC-containing particles with reliable incandes-

cence signals whose scattering signals escape detection by LEO analysis. The first

is rBC-containing particles with negligible scattering signals, which result in noisy

fits and unreliable sizing (below line i in Figure 5.2). The second is rBC-containing

particles with very large scattering signals, in which the LSD is saturated from the
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leading edge, making the fits unreliable (above line ii in Figure 5.2). The exact

threshold for this effect may vary between instruments, and these particles can be

excluded from the LEO analysis (Gao et al., 2007). Finally, the third type is those

rBC particles that evaporate before their position in the laser beam (i.e., notch po-

sition) can be detected appropriately by the avalanche photodiode (split detector).

The split detector is used in the SP2 measurements to constrain the Gaussian fits

used in the LEO analysis in such a way that when rBC-containing particles cross

through the laser beam, the light scattered by them shifts from one element of the

detector to another while it is inverted on one side. As particles move through the

center of the detector, this inversion in scattering signal creates a clear notch that is

used to infer the position of rBC-containing particles inside the laser beam, as the
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distance between the notch and the peak intensity of the laser changes only when

the instrument optics are realigned during servicing (i.e., it remains constant during

the measurements). The effect of excluding these rBC-containing particles from the

LEO analysis can be seen in Figure 5.4, where the concentration of rBC-containing

particles having valid scattering data and are measurable by the LEO is compared

with the one directly measured by the incandescence signal of the SP2. Overall,

the concentration of LEO rBC-containing particles is considerably lower than the

one measured by the CPMA-SP2 method, as discussed above. The second reason

is that the CPMA-SP2 measures only incandescence signals and the rBC-containing

particles excluded in the LEO analysis remain in the CPMA-SP2 analysis. More-

over, due to constraints placed on the inversion of the CPMA-SP2 measurements,

the dN/d logmrBC distributions measured by the SP2-only and the CPMA-SP2 are

almost the same. Overall, we conclude that LEO method only provides mixing state

information on a small and biased subset of the entire rBC population.

5.4.3 Evaluation of the accuracy of LEO coating thickness
measurement

A comparison of the particle mass (mp) distributions illustrated in Figure 5.2 to 5.4

shows that the LEO particle mass modes are noticeably larger than the correspond-

ing CPMA-SP2 ones. The accuracy of LEO coating thickness measurements, and the

assumptions used to calculate it, can be tested by measuring coated rBC particles

of known mass. This was done using the CPMA to select particles (known particle

mass) and conducting LEO analysis on the CPMA-classified particles. In such an

experiment, the particle mass determined by LEO analysis should fall within the
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mass range given by the CPMA set-point (m∗) (i.e., mp ∈ qm∗ × (1± 1/Rm); where

Rm is the CPMA resolution). LEO analysis was performed on CPMA-classified par-

ticles at a mass set point of m∗ = 14.38 fg with Rm=9 (a set point where a large

number of coated particles are present) for the Case I and Case III. Figure 5.5a

and b shows the normalized mp— mrBC distributions of CPMA-classified particles,

along with their corresponding marginal distributions (i.e., dN/dlogmp, Equation

5.3), that were determined by LEO for rBC particles mostly with thin or no coating

(Case I) and moderate-to-heavy coatings (Case III) using a coating refractive index

of ncoating = 1.5 and ρcoating=1000 kg/m3. The distribution of CPMA-classified par-

ticles should exhibit two modes if the rBC-containing particles were homogeneous

in chemical composition (e.g., of the same type), and LEO analysis, and its corre-

sponding assumptions, were perfectly correct: (i) a mode with a higher concentration

which would equal the CPMA mass set point (shown as dashed line in Figure 5.5)

and (ii) a lower-concentration mode at twice the CPMA mass set point representing

doubly-charged particles (q = 2). However, it is observed that for both cases, not

only is there another mode at smaller particle masses (Mode A), but also the ex-

pected modes (Mode B and C) occur at particle masses which are higher than they

should be.

Figure 5.5a and 5.5b show that Mode A is associated with particles that have a

large rBC mass and a small amount of coatings. The particle mass of these rBC

particles is underestimated by LEO since there are some particles with a total mass

below 12.8 fg which can not physically pass through the CPMA at the given operating

condition (the transfer function width is 12.8 to 16.0 fg, shown as a red shaded

region in Figure 5.5). Additionally, it is seen that the peak of Mode B for Case I
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the coating refractive index of ncoating = 1.5 and (a,b) ρcoating=1000 kg/m3 or the
coating effective densities of ρeff,c=830 and 650 kg/m3 derived for (c) Case I and (d)
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is slightly larger than the CPMA set point (∼ 6%) while the peak of Mode B for

Case III is ∼ 53% larger than the CPMA set point and lies outside the physically-

possible mass classification range of the CPMA transfer function at the given set

point. Consequently, the LEO method overestimates the particle mass (i.e, coating

mass) of particles that are highly coated (Mode B of Case III), while it underestimates

the particle mass of thinly coated rBC (Mode A). This suggests that the error in the

LEO method might have been due to the physical properties of the coatings (e.g.,

coating density and refractive index) used in Mie theory or due to the shell-core

assumption.

To explore the role of LEO’s property assumptions, Equation 5.1 was solved for

the coating density such that Mode B, determined by the LEO analysis at a given

coating refractive index, matched the CPMA mass set point. Figure 5.5b and d

show the adjusted mp— mrBC LEO distributions of CPMA-classified particles using

effective coating densities at a coating refractive index of ncoating = 1.5. As shown

in Figure 5.5c and d, an effective coating density of 830 kg/m3 was needed to adjust

the peak of Mode B to the correct particle mass for Case I, while an effective coating

density of 650 kg/m3 was needed for Case III. However, using this effective coating

density overcompensates Mode A and shifts it to even lower masses. Thus, the LEO

results could only be partially corrected by this approach; Mode B and Mode C

are forced to be in the expected places while Mode A still appears at physically-

impossible particle masses. This suggests that particles in Mode A are physically

different than Mode B, meaning they could have different coating or core physical

properties (refractive index and density). This might be expected as some rBC

particles could be mature soot generated by combustion engines or high-temperature
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biomass combustion while the other could be immature soot from wildfire biomass

pyrolysis.

This analysis method was extended to include changing both the effective coating

density and the coating refractive index to align the LEO-analyzed particle mass

from Mode B with the actual particle mass as shown in Figure 5.6 for the three

cases. Case I yields, on average, a ∼ 30% higher effective coating density than Cases

II and III. The reason for this considerable difference could be because there were

0

400

800

1200

1.2 1.3 1.4 1.5 1.6 1.7

Ef
fe

ct
ive

 d
en

sit
y 

of
 

Co
at

in
g 

[k
g/

m
3 ]

Coating Refractive index 

Case I
Case II
Case III

Smoke particulate
conditions

Figure 5.6: (a) The coating effect of the refractive index of coating materials in Mie
calculations on the effective coating densities that match the particle mass modes of
various rBC-containing particles retrieved by the LEO method at a CPMA mass set
point of 14.38 fg.

different types of rBC-containing particles in each case. Many factors, like the type

of biomass and its moisture contents, and any influence on the pre-ignition pyrolysis

phase would change the physical and chemical composition, and consequently, the

material density of organics emitted from the combustion (Hu et al., 2021a). Also, the

particle concentrations in Case I are substantially lower that the other cases, which
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likely results in a higher fraction of rBC particles originating from Diesel engines

rather than wildfire smoke, which likely have different physical and optical properties.

It is also seen that for Case II and III, which are primarily composed of thickly coated

rBC particles presumably caused by wildfire smoke, the coating densities determined

at a given range of coating refractive index are quite low, ranging from 350 to 900

kg/m3 over a range of coating refractive index of 1.25 to 1.7. However, studies have

shown that the material density of organics in wildfire smoke ranges from 800 to 1600

kg/m3 (Hu et al., 2021a; Li et al., 2016; Nakao et al., 2013; Turpin and Lim, 2001).

These densities are as low as the effective densities measured for soot agglomerates

with highly open structures, which is extremely unlikely to be the case for soot

coatings. This implies that the range of effective densities shown here are not the

material density of the coating, but rather an effective density that reconciles the

errors in the LEO analysis. Alternatively, these effective densities may imply tarball

agglomerates were present in the sample (Girotto et al., 2018; Yuan et al., 2020).

This study found that the LEO method was not successful in measuring the par-

ticle mass (or coating mass) of rBC-containing particles. The error in LEO measure-

ments becomes even larger when the sample populations are composed of a variety

of rBC-containing particles with their own optical and morphological characteristics.

While the LEO analysis is considerably sensitive to such assumptions and inputs,

the CPMA-SP2 measurement, on the other hand, is independent of the optical and

morphological properties of the particles.
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5.4.4 Lag-time limitations in coating estimation

Lag-time analysis of SP2 data is used qualitatively to classify rBC particles as thickly-

or thinly-coated. The range and accuracy of the lag-time classification can be as-

sessed by comparing it to CPMA-SP2 data. Figure 5.7a-c shows the normalized

number concentration distributions of lag-times as a function of rBC mass for the

three sample cases. Colors represent the number fraction of particles within a finite

rBC mass range and lag-time (dlogmrBC and d∆τ). As shown in Figure 5.7a-c the

measured particles exhibit a distribution of lag-times, spanning negative and positive

values, and with multiple modes (most clearly seen in Case I). A positive lag-time

occurs when the scattering signal reaches a maxima before the incandescence signal

maxima. This is interpreted as a considerable loss of coating material due to the heat

absorbed by the rBC particles (i.e., the particles were thickly-coated). This type of

particle appeared as a distinct mode in Figure 5.7a-c centered around ∆τ ∼ 6µs and

covering almost the entire rBC mass range. Lag-times near zero are attributed to

rBC-containing particles with thin or no coatings. As expected, this type of particle

is more evident in Case I, which consists mostly of thinly coated rBC particles, and

exhibits a distinct mode in Figure 5.7a. This mode spans only over the range of

rBC mass higher than 1 fg as rBC particles with thin or no coating do not scatter

enough light to be detected. As a result, the lag-time method, similar to the LEO

method, has a limited detection range. There is also another scenario where the

incandescence signal peaks before that of the scattering signal, resulting in negative

lag-times. Negative lag-times can be caused by the fracturing of particles which have

a surface-attached rBC component (e.g., not a core-shell morphology) (Dahlkötter
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et al., 2014; Moteki and Kondo, 2007; Moteki, Kondo, and Adachi, 2014; Sedlacek

III et al., 2012, 2015). In this case, the non-BC components pass through the laser

beam and evaporate only partially or not at all, resulting in light scattering after

the rBC has incandesced. Consequently, these particles are erroneously categorized

as thinly coated.

The time-lag threshold of ∆τ = 2 µs, which is shown as gray dashed lines in Figure

5.7a-c, is used to categorize the rBC and the results are shown in Figure 5.7d-f. Figure

5.7d-f illustrates the number fractions of particles with thick coatings (lag-time >2

µs) versus thin-to-moderate coatings (lag-time <2 µs) for an rBC mass range mrBC ∼

1 fg —15.4 fg (rBC mass-equivalent diameter drBC ∼102 nm—254 nm). Additionally,

there were some particles that could not be assigned to either category. The number

fraction of these particles is attributed to particles with reliable incandescence signals

whose scattering signals cannot be reliably detected or saturated by the detector. The

indicated number fractions of particles with thick or thin-to-moderate coating are

calculated with respect to either i) the total number of rBC particles detected over

the course of measurement time (as it is done in this paper), or ii) the total number

of rBC particles whose scattering signals are not less than limit of quantification as

done in the PSI SP2 toolkit lag-time analysis. Therefore, the latter approach excludes

a portion of rBC-containing particles from the lag-time analysis and estimates the

number fractions of rBC with thick and thin-to-moderate coating at a given rBC

mass based on the remainder. For meaningful binning, it is imperative that the

number fraction of rBC particles with unreliable scattering signals be small in the

lag-time analysis otherwise the lag-time-related uncertainties become so large because

a significant number of particles are not identified with either category. According to
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Figure 5.7d-f, the fraction of particles that could not be assigned to either category

by the PSI SP2 toolkit remains below 40 % over the entire rBC mass range. It

is evident, however, that when all rBC particles are taken into consideration, the

proportion of uncategorized rBC particles rises to a significant level, such that over

∼60% of particles in Cases II and III were unclassified due to detector saturation.

The unclassified particles could be of either type, thus the uncertainty in the number

fraction of each type will be determined by assigning all the unclassified particles

to one bin or the other. Figure 5.7g-i show the number fraction of particle types

where the limits of the shaded region represent the maximum and minimum number

fraction possible. The figure shows there is a substantial uncertainty above the values

indicated by the lag-time analysis, such that the only time in which the uncertainties

of particles do not overlap, and thus one can distinguish between particles with thick

and thin-to-moderate coating, is when the number of particles with invalid scattering

signals is below ∼ 10%, which occurred only in Case I when the rBC mass range was

between 7 fg and 15 fg.

Figure 5.7j-i shows the normalized number distributions of coating mass fraction

(fc = mcoating/mp) as a function of rBC mass for all three cases measured by the

CPMA-SP2 system. These distributions are derived by transforming the mp—mrBC

distributions of Figure 5.3 into coating mass fraction — rBC mass space. In contrast

to lagtime analysis: i) the amount of coating is quantified, ii) the range is not limited

by the scattering detector, iii) and particles are not misclassified if the rBC is attached

to the side of the coating fraction.
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Figure 5.7: Normalized number concentration distributions of lag-times as a function
of rBC mass for (a) Case I, (b) Case II and (c) Case III. The time-lag threshold of
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mcoating/mp) as a function of rBC mass of particle populations measured by the
CPMA-SP2 measurement system.
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5.4.5 Temporal resolution of SP2 measurement methods

Figure 5.8 shows the differences between the mp—mrBC distribution of smoke partic-

ulates of Case III derived from a ∼80-minute CPMA-SP2 measurement (Figure 5.8a)

and that obtained by ∼ 1-minute SP2 LEO measurements performed (Figure 5.8b)

before (t= 0 min), (Figure 5.8c) during (t= 30 min; between the CPMA set points

of 5.2 fg and 8.6 fg), and (Figure 5.8d) after the CPMA-SP2 scan (t= 80 min).
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Figure 5.8: Comparison of the average mp—mrBC distribution of smoke particulates
of Case III derived from (a) CPMA-SP2 measurement and the average distribution
obtained by instantaneous LEO measurements performed (b) before, (c) during, and
(d) after the CPMA-SP2 scan.

The CPMA-SP2 measurement was performed in such a way that the CPMA mass

set point was scanned in an ascending order (i.e., CPMA was stepped from the low

CPMA mass set point of 0.4 fg to the high mass set point of 100 fg over ∼80 min-

utes). The mp—mrBC distribution in Figure 5.8a is normalized by the total number

concentration of rBC-containing particles derived from the CPMA-SP2 measure-
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ment, whereas the mp—mrBC distributions in Figure 5.8b-d are normalized by the

maximum total number of particles found in the LEO measurements. The number

concentration of rBC-containing particles increased by ∼ 3.7 times over the first 30

min and ∼5.6 times over the entire time of the CPMA-SP2 scan. The CPMA-SP2

inversion assumes that the number concentration of particles is constant with respect

to time over the course of the CPMA-SP2 scan. As is the case here, this assump-

tion is not always true. Since the CPMA set points were stepped upward in mass,

the number concentration of low-mass particles is underestimated, while the number

concentration of high-mass particles is overestimated relative to time-averaged LEO

measurements.

The compromise of the CPMA-SP2 approach is that it is slower, typically requiring

over 30 minutes per scan, compared to a few minutes for SP2-only measurements

(both durations depend on the number concentration of particles). Therefore, for

measurements of samples that are highly transient, as in the case of high-altitude

research aircraft the CPMA-SP2 method would require a sample reservoir.

5.5 Conclusions

The present study examined the performance of different SP2 measurement methods

in measuring rBC mixing states using example data with a wide range of mixing

states. The rBC mixing states were characterized with a particular focus on the

tandem CPMA-SP2 measurements and SP2-only measurements using LEO analysis

that map out the rBC-containing particle characteristics in two-dimensional mass

space. Comparison of the results of the LEO analysis and the CPMA-SP2 indi-

cates that the LEO reconstruction range is very limited, because it relies on the
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less-sensitive light-scattering signal as well as the position-sensitive light-scattering

detector. These limitations, along with the assumptions on which the LEO is based

(e.g., core-shell morphology and assumed density for coating materials), bring about

biased results and make the LEO method a qualitative measure, for a narrow range

of the population. The results of this study indicate that the CPMA-SP2 measure-

ment outperforms SP2-only measurements in terms of accuracy. The compromise of

the CPMA-SP2 method is that it is not a real-time measurement, requiring about

30 minutes per scan. Rapidly changing aerosol samples should therefore be captured

in a reservoir prior to CPMA-SP2 measurement, to ensure valid results. In addition,

as a result of the high level of uncertainty in classifying rBC particles with invalid

scattering signals, the lag-time analysis could not distinguish between the relative

number fraction of rBC particles with thick and thin-to-moderate coating in the

example data presented.
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Chapter 6

Conclusion

6.1 Summary

In previous chapters, an improved morphology-independent measurement was ex-

plained for determining the coating mass of atmospheric BC particles. This

method employs CPMA and SP2 in tandem, coupled with novel inversion schemes,

to measure the two-variable distribution of total particle mass and rBC mass,

∂2N
∂logmp∂logmrBC

, from which the distributions of coating mass or coating mass ratio

on each rBC particle can also be calculated ( ∂2N
∂logmcoating∂logmrBC

). Furthermore,

by performing iterative integration of the two-dimensional distributions, a single

variable of mass and number concentrations, as well as the total mass and number

concentration of rBC-containing particles, can be obtained. Since the inversion of

CPMA-SP2 data is required to account for the CPMA-SP2 transfer function and

multiply charged particles, as well as the physical constraints associated with this

measurement system, extensive effort has been dedicated to developing a novel in-

version scheme.

The novel inversion scheme introduced the deconvolution scheme appropriately
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accommodating the physical constraint that limits rBC mass not to exceed the to-

tal particle mass. A regularization method must consider this constraint during the

inversion to account for the sharp edge that occurs at mrBC equals mp, which re-

sults in established regularization methods underperforming and possibly smoothing

the distribution over this border. Furthermore, the proposed method addresses the

problem that the mobility of black carbon particles is unknown yet essential for

kernel construction by using an innovative approach to constrain the inversion in

such a way that the marginal distribution resulting from the CPMA-SP2 inversion

corresponds to the distribution of the black carbon particles measured directly by

SP2 when CPMA is bypassed (i.e., dN/dlogmrBC). The introduced inversion scheme

is examined by fabricating synthetic rBC mass — particle mass distributions (i.e.,

phantoms) and discuss regularization approaches of the following categories: (i)

unregularized least-squares analysis, (ii) Twomey-type approaches, (iii) maximum

entropy regularization, (iv) Tikhonov regularization, and (v) exponential distance

regularization. The results reveal that the exponential distance method outperforms

the other regularization methods tested.

Determining the optimal sampling settings in a collection of the CPMA SP2 sys-

tem response, which is described in Chapter 3, was the next step to improve the ac-

curacy of reconstruction of i.e., mp— mBC distribution. Monte Carlo sampling was

used to assess the sensitivity of reconstruction error to experimental inputs across a

range of distribution widths, and recommendations were made. Recommendations

vary based on the concentration of the aerosol, the time available for the measure-

ment, and the width of the distribution, yet general recommendations for optimum

CPMA-SP2 sampling configuration to conduct the measurement on typical aged at-
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mospheric aerosols include: (i) large numbers of SP2 bins per decade (n
′
s = 64),

(ii) a preference for higher SP2 sampling counts per CPMA setpoint (Ns > 104),

(iii) a moderate number of CPMA setpoints per decade (n
′
c = 3 to 8), (iv) CPMA

resolution around 1.0, and (v) a high CPMA flow rate (1.5 L/min). These settings

generally result in reconstruction accuracies below 3%.

Since the experimentally evaluated CPMA transfer function can significantly en-

hance CPMA data analysis routines, especially in the case of CPMA-SP2 data in-

version, the tandem CPMA methodology, described in Chapter 3, was utilized to

characterize the CPMA transfer function. The CPMA transfer function is approxi-

mated with a triangular transfer function and experimentally evaluated by the tan-

dem CPMA measurement technique. Deviation of the idealized transfer function

from the actual case is measured by two adjustable factors; (i) the width factor (µ),

and (ii) the transmission efficiency (i.e., the loss factor, λ). These factors are quanti-

fied in relation to CPMA configurations (i.e. CPMA mass setpoints, resolutions, and

operating flow rates). Finally, multivariate non-linear fitting models were fitted to

measured data to capture functional variations in the CPMA width and loss factors.

The resulting correlations were presented accordingly after passing the goodness of

fit test.

In Chapter 5, the performance of the proposed inversion scheme was examined

on real-world mixing states of BC aerosols caused by seasonal wildfires at a regional

site (Kamloops, about 350 km northeast of Vancouver, British Columbia, Canada)

and compared with widely-accepted measurement methods in measuring rBC mixing

states. The rBC mixing states were characterized with a particular focus on the tan-

dem CPMA-SP2 and SP2-only measurements, including LEO and lagtime analysis.
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The measurement methods were compared in terms of: detection size range, tempo-

ral resolution, counting statistics, and errors associated with the measurements. The

CPMA-SP2 measurement is less uncertain than the other two methods in the overall

comparison. Moreover, because the CPMA-SP2 measurement system can measure

coatings on much smaller particles, it has a much larger detection range. However,

CPMA-SP2 measurements have a poorer temporal resolution than SP2-only mea-

surements, which can provide real-time, but qualitative measurements.

6.2 Future Work

Based on this work, three future research projects could be developed. According to

the comparison between LEO and CPMA-SP2 approaches using wildfire measure-

ments, there may not be consensus on whether the significant lack of accuracy in LEO

results is a structural issue that cannot be corrected, even if all inputs are assigned

accurately. Comparing these two methods using measurements made in a controlled

laboratory environment can provide a suitable platform for an accurate and thor-

ough assessment. Accordingly, smog chamber experiments can be designed to sim-

ulate atmospheric processes of forming secondary organic aerosols (SOAs) through

photochemical reactions in a controlled laboratory environment and yet still provide

flexibility in varying input parameters of the study, while the physical characteristics

(i.e., density and refractive index) of rBC and coating components can be measured

throughout the measurements. Second, the same procedure followed for CPMA-SP2

measurements could be used for other tandem instrument arrangements to derive

optimal sampling configurations as a function of aerosol concentration and desired

measurement time. For instance, the optimum sampling configuration can be derived
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for the CPMA-DMA system, which is used to derive a two-dimensional distribution

of particle mass and mobility diameter (mp− dm ) distributions. Lastly, the CPMA

transfer function is a function of the mobility diameter, and varying effective particle

density (often resulting from varying particle morphology) will affect the particle’s

equivalent mobility diameter. For BC aggregates, more specifically, accurate mobility

is unknown, and it is common to use an empirical mass-mobility equation to convert

the particle mass to a mobility diameter whenever the CPMA transfer function is

evaluated. This assumption will impact the width and, in the case of diffusion, the

amplitude of the CPMA transfer. Consequently, for non-spherical particles like BC

aggregates, employing tandem CPMA measurements for characterizing the CPMA

transfer function would be challenging. Instead, one might take advantage of SP2

in tandem with CPMA and use thermally denuded BC particles to characterize the

CPMA transfer function for BC aggregates.
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Appendix A: Inversion Schemes

A.1 Iterative regularization methods

Iterative regularization methods have been broadly employed in the aerosol litera-

ture for a one dimensional aerosol inversion problem, ,e.g., Twomey, 1975. Rawat

et al. (2016) developed and employed the improved version of the Twomey method

to obtain two-dimensional mass-mobility distributions, and Broda et al. (2018) ap-

plied this method to derive the two-dimensional mass distribution of non-refractory

coatings on refractory black carbon.

An initial guess is required for the initiation of iterative regularization methods like

the Twomey-type algorithms or MART regularization methods. Here in this paper,

the methodology introduced by Broda et al. (2018) is modified and employed to

obtain an adequate initial guess. The initial guess is acquired by dividing the CPMA-

SP2 data by the analytical solution to the integral of a triangular CPMA transfer

function (β̃) and by the charge fraction (f̄) of singly charged particles (Φ = 1);

x0 =
b

f̄ (mp,Φ = 1) β̃ (mp,Φ = 1)
(A.1)

The fabricated data b derived from Phantom 1 to 5 are depicted in Figure A.1.
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Figure A.1: Normalized synthetic data, generated by implementing the forward ap-
proach on each of the phantoms and corrupting with Poisson-Gaussian noise. Dots
are located at the intersection of the CPMA and SP2 setpoints, while the size and
color indicate the relative number of particles measured at that location. Multiple
modes correspond to the multiple integer charge states (Φ = 1, 2, or 3) considered in
the present paper. The dotted-dash lines represent the location where mrBC equals
mp.
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Additionally, to have the initial guess consistent with the dimension x, linear

interpolation from the quantity calculated by the Equation (A.1) is required (Buckley

et al., 2017). Also, as mentioned in Section 2.3, it is easy to use the SP2 to obtain

the total particle number concentration and a correction factor (F ) could be defined

as, F = NSP2/N , to make the initial guess more accurate. Figure A.2 shows the

initial guess for all of the phantoms considered in this study. Results of Figure

2.4 quantitatively indicates the accuracy of the initial guesses with relatively no

computational time.
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Figure A.2: Initial guesses obtained from synthetic data. The blue lines are the
actual marginal number concentration distribution of refractory black carbon (
dN/dlogmrBC) of the original phantom.
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The general shapes of the initial guesses, especially for broad distributions, are

relatively similar to what the Twomey algorithm, described later in this section, can

retrieve at the end of consecutive iterations. Also, it can be seen that there are

clouds of data near the main distributions which are related to the multiply-charged

particles classified by the CPMA. This deficiency is expected because the initial guess

is evaluated for only singly charged particles (Φ = 1). Besides, it is noted that as

distributions get broader, the accuracy of initial guess improves.

A.1.1 Twomey’s original method

Twomey, 1975 original algorithm uses an updating scheme of

xk+1
j =

[︃
1 +

(︃
bi

aix
k
− 1

)︃
Aij

]︃
xk
j , (A.2)

where xk+1
j ∈ RN2

j represent a set of updated values obtained from multiplying the

two-dimensional distribution (the initial guess or the one calculated in the previous

iteration) to the kernel of the system. Here, ai is the ith row of kernel matrix, A,

scaled such that its element have a maximum value of unity; |Aij| ≤ 1. The kernel

matrix should be normalized by its maximum value to avoid returning negative

values (Twomey, 1975). The updating rule of Equation (A.2) should be repeated

nb = ninj times to update the entire x for one iteration. Also, note that the accuracy

of the Twomey algorithm depends strongly on the initial guess. Figure A.3 shows

the distribution retrieved by the Twomey method for phantoms 1 to 5 .
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Figure A.3: Distributions retrieved by the Twomey method for synthetic data fab-
ricated from phantoms 1 to 5 . The blue lines are the actual marginal number
concentration distribution of refractory black carbon (dN/dlogmrBC) of the original
phantom.
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The results show relatively noisy solutions. The noisy solutions are an outcome of

the rank-deficient problem as the collected CPMA-SP2 data is sparse in comparison

with the reconstruction grid, and consequently, it results in poor reconstructions

away from the sampled data points. The solutions get worst if the number of CPMA

setpoints decreases relative to the reconstruction resolution.

A.1.2 Twomey-Markowski regularization method

Some modifications of the Twomey method have been proposed to deal with this

problem. Markowski (1987) proposed the most widespread variant of Twomey’s,

here referred to as the Twomey-Markowski regularization method following Sip-

kens, Olfert, and Rogak (2020a). The Twomey- Markowski regularization method

solves the speckle problem caused by the original Twomey regularization approach by

adding a smoothing step before and after each Twomey updating step. Markowski

proposed and applied the updating step for one-dimensional size distributions by

using a locally-weighted average smoothing practice:

xk+1
j =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
0.75xk

j + 0.25xk
j+1 j = 1

0.5xk
j + 0.25xk

j−1 + 0.25xk
j+1 1 < j < Nj.

0.75xk
j + 0.25xk

j−1 j = Nj

(A.3)

The Markowski smoothing method can be extended to the two-dimensional distri-

bution by including all surrounding cells and reweight the adjacent cells in keeping

with the number of nodes. Nonetheless, the reweight of peripheral cells in a two-

dimensional case needs careful attention, and simple reweights, i.e., allocating half

of the value of the central cell to itself and assigning the rest to the adjacent cells,

precisely like what Markowski did for one-dimensional case, leads into exceedingly
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smooth results. Rawat et al. (2016) modified the original Markowski smoothing

function to make it applicable for a two-variable distribution. Broda et al. (2018)

adjusted Rawat et al.’s (2016) smoothing function by assigning a weight function

according to a Gaussian distribution for smoothing function to account for the dis-

tance between bins of data. Also, they modified the smoothing function to make

it agree with the physics of the no-negative coating. Buckley et al. (2017) modified

Rawat et al. (2016) smoothing function by introducing the smoothing factor, Sf , to

regulate the weight assigned to the peripheral cells, directly regulating the degree to

which smoothing is applied. Buckley et al. (2017) proposed the smoothing function

for the central cells (2 < i < Ni − 1; 2 < j < Nj − 1) as

xk+1
i,j =

0.5xk+1
i,j + Sf

(︁
xk
i+1,j + xk

i,j+1 + xk
i,j+1 + xk

i+1,j+1 + xk
i−1,j + xk

i,j−1 + xk
i+1,j−1 + xk

i−1,j+1

)︁
0.5 + 8Sf

(A.4)

Besides, the smoothing function for the cells located at the edge of two-dimensional

distributions was proposed to be:

xk+1
1,j = 0.75xk

1,j + 0.25xk
2,j

xk+1
i,1 = 0.75xk

i,1 + 0.25xk
i,2

xk+1
Ni,j

= 0.75xk
Ni,j

+ 0.25xk
Ni,j ,j

, and

xk+1
i,Nj

= 0.75xk
i,Nj

+ 0.25xk
2,Nj

.

(A.5)

Nonetheless, for the CPMA-SP2 application, the smoothing function proposed by

Buckley et al. (2017) needs to be modified to be inline with the physics of no-negative

coating. This modification, or in other words, imposing constraint, is only considered

for those cells on the diagonal of two-dimensional distribution: For internal cells on
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the diagonal,

xk+1
i,j =

0.5xk+1
i,j + Sf

(︁
xk
i+1,j + xk

i,j+1 + xk
i−1,j + xk

i,j−1 + xk
i−1,j+1

)︁
0.5 + 5Sf

(A.6)

and for the first and the last cell on the diagonal,

xk+1
1,1 = xk

1,1

xk+1
Ni,Nj

= 0.75xk
Ni,Nj

+ 0.25xk
Ni−1,Nj

.
(A.7)

Figure A.4 depicts the distribution retrieved by the Twomey-Markowski regular-

ization scheme for the phantom 1 to 5. It is noted that the Twomey-Markowski

regularization scheme, to some extent, enhanced the quality of deconvolution of the

Twomey scheme by decreasing the oscillations between nearby cells. Besides, it

is noted that as distributions get broader, the performance of Twomey-Markowski

enhances, e.g., the error or reconstruction of Phantom 1, 3 and 4 by the Twomey-

Markowski decreases respectively, from 67 to 30 and 17%. Despite this improvement

and avoiding producing overly smooth results by using the optimal value of Sf in the

present study, specifying Sf is so tricky for experimental cases and makes the use of

the Twomey-Markowski method a bit challenging.

A.1.3 Maximum entropy regularization

A few studies in the aerosol literature have considered Maximum-entropy-type meth-

ods to solve ill-posed problems (e.g., Amato et al., 1995; Sipkens, Olfert, and Rogak,

2020a; Wang, 2008; Yee, 1989). This method regularizes the problem by simultane-

ously minimizing the information entropy:

H = −
∫︂ ∞

0

∫︂ ∞

0

N (mp,mrBC) lnN (mp,mrBC) dlnmpdlnmrBC (A.8)
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or in the discrete form,

H(x) = −
Nx∑︂
j=1

xj lnxj · (∆ lnmp)j · (∆ lnmrBC)j . (A.9)

The regularization of ill-posed problems can be done by linking it to the entropy

information of the solution. One way of incorporating entropy information into the

deconvolution is to use the entropy information as penalty term, Φ(x) = −H(x) in

Tikhonov methods (discussed in the next section):

xME = argmin
x

{︁
∥Ax− b∥22 + λΦ(x)

}︁
= argmin

x

{︄
∥Ax− b∥22 + λ

Nx∑︂
j=1

xj lnxj · (∆ lnmp)j · (∆ lnmrBC)j

}︄
(A.10)

In the above equation, λ is a regularization parameter. A nonlinear solver, along

with two types of constraints, should be considered to minimize the above expres-

sion. The convergence rate of the above approach, due to non-linearity of iterative

solvers combined with the constrained solution, is extremely low. Therefore, some

studies (Amato et al., 1995; Carfora, Esposito, and Serio, 1998), suggest not to

implement this technique to regularize any ill-posed problem. The convergence of

this approach gets worse for two-dimensional cases, like those in the present study.

Hence, the above-explained approach has not been considered in the present paper.

Nevertheless, another type of maximum entropy regularization method, known as

the multiplicative algebraic reconstruction technique (MART) Elfving, 1980; Lent,

1976, in which the regularized solution is obtained by minimizing the argument of
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H(x) instead of minimizing the argument mentioned in Equation (A.10) is:

xME = argminx{H(x)} s.t. =

⎧⎪⎪⎪⎨⎪⎪⎪⎩
Ax = b

Constraints ≡

⎧⎨⎩ non-negative particle concentration

no negative coating

(A.11)

Introduced by Gordon, Bender, and Herman (1970), the MART method requires

regularization parameters which are challenging to determine. Also, it is a multi-

plicative method, like the Twomey method, which keeps updating an initial guess.

The updating rule of MART method is:

xk+1
j =

(︂
e
∑︁

i frAijd
k
i

)︂
xs
j =

(︃
bi

aix
k

)︃frAij

xk
j , (A.12)

where aT
j the jth row ofA and fr is a relaxation factor, which should be determined to

maximize the entropy information. According to the study of Lent (1976), fr equals

to unity leads to the convergence of the maximum entropy information. Also, dki is

the fidelity term, here is taken as ln
(︁
bi/aix

k
)︁
. The iterative procedure of the MART

algorithm is quite similar to the original Twomey’s method. Similar to Twomey-

type methods, not only does it need the initial guess linear interpolated from the

quantity calculated by Equation (A.1), but also it starts iterating over every element

in b. The speed of the MART algorithm can be improved considerably by the block

implementation of the MART algorithm (Willis, 2000), though both executions lead

to the same result:

xk+1 =
(︂
efrA

T dk
)︂
⊙ xk (A.13)

where ⊙ is the elementwise product. As the results of MART and Twomey look

quite similar, the graphical results of the MART method are not presented.
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Figure A.4: Distributions retrieved by the Twomey-Markowski methods for synthetic
data fabricated from phantoms 1 to 5 . Blue lines are the actual marginal number
concentration distribution of refractory black carbon (dN/dlogmrBC) of the ground
truths.
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A.1.4 MART with the smoothing function

Similar to the Twomey-Markowski algorithm, the MART solution can be improved

by implementing a smoothing step. Consequently, the smoothing function already

presented for the Twomey-Markowski algorithm was also employed for the MART al-

gorithm to examine the potential advantage of adding smoothing steps to the MART

algorithm over the TwomeyMarkowski algorithm. Figure A.5 shows the results of

MART with Markowski smoothing. As shown in Figure 2.4, MART-Markowski (i.e.,

MART with Markowski smoothing) and Twomey-Markowski have the same accuracy;

however, the convergence rate is almost eight times faster with MART-Markowski.
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Figure A.5: Distributions retrieved by the MART with the smoothing approach for
synthetic data fabricated from phantoms 1 to 5 . Blue lines are the actual marginal
number concentration distribution of refractory black carbon (dN/dlogmrBC) of the
ground truths.
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A.2 Tikhonov regularization methods

The least-squares problem expressed in Equation 2.31 is presented in the stacked

form of:⎡⎢⎢⎢⎣
√
λA1

C
√
αLTK

⎤⎥⎥⎥⎦xTK =

⎡⎢⎢⎢⎣
√
b

d

0

⎤⎥⎥⎥⎦ (A.14)

This new form of a least-squares problem shows two sets of equations are added:

nj,0 equations of CxTK = d, for considering the marginal distribution prior, and(︁
n2
j,0 + nj,0

)︁
/2 equations of

√
αLTKxTK = 0, for considering smoothing prior infor-

mation. Additionally, Equation (A.14) can also be rearranged to be solved alge-

braically for any Tikhonov scheme:

xα,λ
TK =

⎛⎜⎜⎜⎜⎝
⎡⎢⎢⎢⎣

√
λA

C
√
αLTK

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

√
λA

C
√
αLTK

⎤⎥⎥⎥⎦
⎞⎟⎟⎟⎟⎠

−1 ⎡⎢⎢⎢⎣
√
λA

C
√
αLTK

⎤⎥⎥⎥⎦
T ⎡⎢⎢⎢⎣

√
λb

d

0

⎤⎥⎥⎥⎦

=
[︁
λATA+CTA+ αLTKLTK

]︁−1 [︁
λATb+CTd

]︁
.

(A.15)

However, since the non-negative particle concentration constraint should be consid-

ered in retrieving the distributions, iterative solvers, e.g., Lagrange’s method, along

with regularization searching schemes, , here the L-curve and Bayesian approaches,

should be used in practice to derive the optimum reconstruction. General informa-

tion regarding L-curve and Bayesian methods is also provided in section A.2.2.
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A.2.1 Tikhonov matrix

The form and design of the discretized differential operator, LTK, depends on the

order of Tikhonov applied for regularizing the problem. In the literature (Bashurova

et al., 1991; Crump and Seinfeld, 1982; Lesnic, Elliott, and Ingham, 1995; Talukdar

and Swihart, 2003; Wang et al., 2006; Wolfenbarger and Seinfeld, 1990), three rules

(i.e., 0th-, 1st-, and 2nd-order) of the Tikhonov method are typically used where each

of them has a damping effect on the experimental data noise or, in other words, the

level of smoothness (e.g., the first-order Tikhonov (FOT) scheme tries to minimize

the differences between the nearby cells, the second-order Tikhonov (SOT) scheme

seeks to lessen second-order differences between neighboring cells).

The basics of the Tikhonov matrix can be understood through finite-difference in

the two dimensions, though to help understanding how the LTK would be defined,

the xTK with the dimensions of 4 × 4 corresponding to the upper triangle elements

of 10×1, (see Figure A.6a) is considered and the LTK is calculated based on the first

order forward difference. The colored boxes and their corresponding dotted-dash

lines in Figure A.6a are presented to schematically show which elements are used in

implementing the two-dimensional form of the first-order forward difference for some

sample element of xTK to derive the LTK matrix (see Figure A.6b).
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Figure A.6: (a) Vector representation of xTK with colored boxes to schematically
show which elements are used in implementing the two-dimensional form of forward-
difference for some sample elements, element number 1,2 , and 10 , of xTK to derive
the Tikhonov matrix of the first-order forward difference. The colored dash lines
represent the row and column directions of the twodimensional forward difference of
each sample cell of the xTK, highlighted with the same solid colors.

In the two-dimensional form, one cell for each direction is needed to implement

the first-order forward difference for each cell of the xTK, e.g., cell number 3 in

column direction and cell number 5 in the row direction are required to implement

the first-order finite-difference for cell number 2. However, boundary cells may have

one (e.g., cell number 1) or two missing cells (e.g., cell number 10) in the forward

directions. The LTK (Figure A.6b) is generated in a way that every row should

sum to zero, and in the case that one of adjacent element in the forward direction is

missing (on either side), this means that either the diagonal must be decreased or the

off-diagonal increased. There would be a slight difference depending on which one of

these two schemes is chosen, and in the present paper, the former scheme is selected
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to minimize the effect of the slope at the boundaries, such that the absolute value

of diagonals, the targeted elements, decreases from 1 to 0.5 for boundary elements

(Figure A.6).

A.2.2 L-curve and Bayesian methods to inversion and regu-
larization parameter selection

In all Tikhonov regularization approaches considered in the present study, an itera-

tive nonnegative least-squares approach was employed to solve the system of linear

equations introduced by Equation (2.27) and the L-curve and Bayesian approaches

were considered to derive an optimal regularization parameter.

The concept of the L-curve method for obtaining the optimal regularization pa-

rameter relies on the fact that the Tikhonov regularized solution would be achieved

by making a balance between having a small residual
(︁
AxTK

α − b
)︁
and having the

L2-norm of the penalty term, i.e., α
⃦⃦
LTkx

⃦⃦2
2
, as small as possible (see Equation

(2.27). Thereby, the regularization parameter would act as a tuning parameter and

relates the residual and L2-norm of the penalty term by an L-shaped curve. The

optimal regularization parameter would exist at the corner of the L-shaped curve

since both the residual and the L2-norm of the penalty terms are simultaneously at

the closest location to zero. Although, the visual inspection of the L-shaped curve is

rather straightforward, implementing automated methods (e.g., Calvetti, Golub, and

Reichel, 1999 and Cultrera and Callegaro, 2016) to accurately attain the corner in

the presence of noise can be challenging. Finding an optimal regularization parame-

ter would become worse when several types of constraints should also be considered

in solving a system of linear equations, which would lead to multiple irregularities in
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the L-shaped curve. The details of the automated version of the L-curved method

(Cultrera and Callegaro, 2016) developed and used in the present study are not de-

scribed here due to the sake of conciseness, and only a summary of the Bayesian

approach is explained in the following.

The Bayesian scheme, like all statistical models, is based on some random quanti-

ties following some form of statistical distributions. It treats the data and quantities

of desired the two-dimensional distributions, as random variables. Additionally, it

seeks to relate these to random variables by means of likelihood, e.g., the probabili-

ties describing the errors existing between the model and the data, ε = Ax− b. In

the Bayesian scheme, Bayes’ equation, is used to derive the prior information,

ppo(x | b) = p1i(b | x)ppr(x)
p(b)

∝ pli(b | x)ppr(x) (A.16)

Here, ppo(x | b) is the posterior distribution or, in other words, the inclusive so-

lution of the problem; ppr(x) is the prior, and p(b) is the evidence. Also, pli(bx) is

the likelihood defined based on the understanding of the error distribution between

the model and the data, ε. In the case of the CPMA-SP2, in which single soot

particles are measured by the SP2, the error distribution (the likelihood) is expected

to follow the Poisson distribution (Voutilainen, Kolehmainen, and Kaipio, 2001).

Priors are selected based on the applications, and in case of aerosol inversion, the

Bayesian interpretation of Tikhonov regularization is often used, retrieving the same

distributions as we already discussed. However, there are quite a few deficiencies for

Tikhonov regularization priors, most remarkably that all points in the reconstruction

area are equally weighted in regularization. Thereby, we use another type of Gaus-

sian prior, which regularizes the solutions regionally, and it is known as exponential
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distance prior. The general form of the Gaussian prior used along with the Bayesian

method is

ppr(x) = det (2πΣpr)−1/2 exp

(︃
−1

2
(x− x0)

T (Σpr)−1 (x− x0)

)︃
= det

(︂
2π (Lpr)T Lpr

)︂
exp

(︃
−1

2
∥Lppr (x− x0)∥22

)︃ (A.17)

where Σpr is the prior covariance and Lpr is the Cholesky factorization of the in-

verse covariance matrix of prior
(︁
Lpr = chol

[︁
(Σpr)−1]︁ ; and x0 is a rough estimation

of desired quantities (more discussion regarding the prior is provided later in this

section). Considering the proper form of both likelihood and prior, the optimum

solution, statistically regularized solution, would be the one that maximizes the pos-

terior distribution, known as the maximum a posteriori estimate:

xMAP = argmax
x

{ppo(x | b)} = argmax
x

{p1i(b | x)ppr(x)} . (A.18)

which can also be represented to the CPMA-SP2 system of equations as

xMAP = argmin
x

{︂
λ
⃦⃦
Lb
(︁
AxTK − b

)︁⃦⃦2
2
+
⃦⃦
Ld
(︁
CxTK − d

)︁⃦⃦2
2
+ α ∥Lpr (x− x0)∥22

}︂

= argmin
x

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⃦⃦⃦⃦
⃦⃦⃦⃦
⃦

Lb
(︁
AxTK − b

)︁
Ld
(︁
CxTK − d

)︁
αLpr (x− x0)

⃦⃦⃦⃦
⃦⃦⃦⃦
⃦
2

2

⎫⎪⎪⎪⎬⎪⎪⎪⎭
(A.19)

which is similar to what was discussed in the Tikhonov regularization methods. The

most direct way of solving the above system of equations would be linear algebra.

However, as the nonnegative particle concentration constraint should be considered,

using iterative solvers is inevitable (e.g., the interior-point optimization algorithm).

In this study, using the lsqnonneg function from Matlab® (Lawson and Hanson,
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1995) used as the iterative solver to achieve the solutions. More detail regarding

the Bayesian approach could be found in the work of Sipkens, Olfert, and Rogak

(2020a,b). Figure A.7 depicts the regularized distributions reconstructed by the

Tikhonov zeroth order method, along with implementing the Bayesian method to

find the optimum regularization parameter.
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Figure A.7: Distributions retrieved by the Tikhonov 0th-order regularization
method for synthetic data fabricated from phantoms 1 to 5. The blue line is
the actual marginal number concentration distribution of refractory black carbon
(dN/dlog (mrBC) of ground truths.
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It can be seen that the Tikhonov zeroth-order scheme does not impose smoothness

on the solution and it only tries to minimize the solution norm. The scheme was

only able to control the large fluctuations in the unregularized least-squares solu-

tion, and the solutions retrieved by the Tikhonov zeroth-order scheme seem jagged

rather than being smooth. In addition, a graphical comparison between Tikhonov

zeroth-order scheme and Towomey and MART with smoothing function shows that

the latter methods reconstructed two-dimensional distributions to a greater extent.

Consequently, to enhance the regularization results of the Tikhonov method, some

level of smoothness on the solutions is considered as prior information about x val-

ues. The degree to which each x value is smoothed depends on the order of the

Tikhonov method. In the present study, the first and second-order Tikhonov schemes

are considered as higher-order Tikhonov regularization methods to retrieve the solu-

tions. Figure 2.4 indicates that although the convergence rate of the L-curve method

is nearly two times faster than the Bayesian method, implementing the L-curve

method for the first and second-order Tikhonov causes respectively 15% and ∼ 17%

higher Euclidian error than using the Bayesian approach for finding the regulariza-

tion parameter. This is because the L-curve method underestimates the value of

the optimal regularization parameter at which the optimal reconstruction would be

attained, leading to under-regularized solutions, which is shown in Figure A.8. Con-

sequently, the L-curve method is not considered as the best searching scheme for the

regularization parameter in comparison with the Bayesian method.
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Figure A.8: Distributions retrieved by implementing the first-order Tikhonov regu-
larization method along with (top) L-curve method and (bottom) Bayesian method
for synthetic data fabricated from phantoms 1, 2, 3, and 4. The blue line is
the actual marginal number concentration distribution of refractory black carbon
(dN/dlogmrBC) of ground truths.

The considerable reduction in the corresponding relative Euclidean error and os-

cillations in solutions of higher-order Tikhonov schemes in comparison with the other

inversion methods discussed up to here is mostly because of imposing the smoothing

prior to the structure of the solution making the higher-order Tikhonov schemes able

to fill the cells containing no data by acquiring information from neighboring cells

(especially for those states having bare soot, where mrBC equals mP). Furthermore,

the novel approach used in the present paper to accommodate the sharp edge where

mrBC equals mp, is able to retrieve the values on the sharp edge without performing

smoothing, and it can also reconstruct the distribution away from the edge with
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the proper level of smoothing. However, it is seen that black carbon (Phantom 1)

satisfactorily (as also shown in Figure A.8).

A.3 Exponential Distance Prior

In comparison with the Tikhonov regularization prior, which considers the equal

weight for all points in the reconstruction, the correlation matrix, ΓD, only applies

regularization locally. This is the case since, in the correlation matrix, a high degree

of correlation is expected when the Euclidean distance between the elements is small,

and the correlation between elements in the reconstruction would quickly decline as

the distance grows. As mentioned in Section 2.4, when dealing with unimodal dis-

tributions, i.e., phantoms 1 to 4, the width of the SP2-only measurement can be

used to properly estimate the optimum correlation lengths and define the correla-

tion matrices, albeit the true correlation matrices are used in the present study to

derive the optimal distributions. The optimal solutions retrieved by the exponential

distance method in reconstructing the unimodal distributions (i.e., phantoms 1 to

4) are demonstrated in Fig. A.9. However, defining the correlation lengths and off-

diagonals of ΓD for multimodal distributions, i.e., Phantom 5, is more challenging.

Using the width of one of the modes or simply averaging values over multiple modes

may over-regularize narrow distributions, making them wider, and under-regularized

broad distributions, resulting in excessive noise. For instance, in the case of the bi-

modal distribution of Phantom 5, ΓD can be approximated by different approaches

listed in Table S1, and the optimal solution is obtained when the elements of ΓD are

obtained by doubling the arithmetic average of the correlation matrices of modes 1

and 2 of Phantom 5.
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Fig. A.10 depicts the distributions retrieved by the exponential distance method,

while different approaches listed in Table S1 are employed to estimate ΓD .

Table A.1: Relative error of reconstruction of Phantom 5, obtained by implementing
the exponential distance method, where ΓD defined based on different approaches.

 

Phantom mrBC,g(fg) mp,g(fg) srBC sp R12 
mp[fg] 
range 

mrBC[fg] 
range 

1) Uncoated soot particles 2.0 2.0 0.204 0.204 1 0.1-20 0.1-20 
2) Uncoated soot mixed with 
slightly coated soot particles  2.69 3.0 0.24 0.23 0.95 0.1-20 0.1-20 

3) Moderately coated soot 
particles 2.30 1.22 0.24 0.23 0.95 0.1-20 0.1-20 

4) Heavily coated soot particles 3.38 15 0.23 0.23 0.01 0.1-20 0.1-20 
5) Bimodal uncoated and coated 
soot particles 0.87, 2.56 0.90,8.00 0.15,0.24 0.15,0.23 0.96,0.97 0.1-20 0.1-20 
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Figure A.9: Distributions retrieved by the exponential distance method for synthetic
data fabricated from 1 to 5. Blue lines are the actual marginal refractory black
carbon (dN/dlogmrBC) of the original phantom.
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Figure A.10: Distributions retrieved by the exponential distance method, the expo-
nential distance method, while different approaches listed in Table A.1 are employed
to estimate ΓD, for synthetic data fabricated from Phantom 5. Blue lines are the
actual marginal refractory black carbon (dN/dlogmrBC) of the original phantom.
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Although, a linear combination of correlation matrices of modes 1 and 2 of Phan-

tom 5 results in the optimal solution, this approach cannot be generalized to other

multimodal distributions. However, this finding does provide a basis for future stud-

ies involving more multimodal distributions, different in shape, location, arrangement

concentration, etc. Also, the quantitative comparison of exponential distance and

the Tikhonov methods in retrieving each mp −mrBC distributions with considering

both smoothing and marginal distribution priors are presented in Fig. A.11.
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Figure A.11: The relative Euclidean error of reconstructions regularized by the expo-
nential distance method and the Tikhonov methods with considering both smoothing
and marginal distribution priors.
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Appendix B: An alternative
parameterization for bivariate
lognormal distributions

B.1 An alternative parameterization for bivariate

lognormal distributions

Following Sipkens, Olfert, and Rogak (2020b), the above representation can also be

phrased in terms of a conditional geometric standard deviation, σrBC|p. This quantity

represents the width of vertical slices through the 2D distributions, as shown in Figure

B.1.

For very narrow distributions, where R12 = 1, σrBC|p = 1; for wide distributions,

where R12 = 0, σrBC|p = σrBC. As such, this parameter can replace R12 in the

definition of the bivariate lognormal distribution to give,

p (mp,mrBC) =
Ntot

2πmpmrBC lnσp lnσrBC|p
exp

{︄
−1

2

(︃
lnmp − lnmp,g

lnσp

)︃2

−1

2

(︃
lnmrBC − ln (mrBC,g | mp)

lnσrBC|p

)︃2
}︄
,

where mrBC,g | mp is the conditional geometric mean rBC mass, and σrBC|p is the

conditional geometric standard deviation, which be derived from Σ in Equation (2.21)
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Figure B.1: Different non-dimensionalized phantoms with the conditional distribu-
tions.

using (Bertsekas and Tsitsiklis, 2002),

log10 σrBC|p =
√︂

Σ1,1

(︁
1−R2

1,2

)︁
.

Figure B.2 shows this relationship, where the condition geometric standard deviation

changes from σrBC|p = 1.0 when R12 = 1 to σrBC|p = σrBC when R12 = 0.
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Appendix C: Trends in optimum
Tikhonov regularization parameter
with the distribution width

C.1 Trends in optimum Tikhonov regularization

parameter with the distribution width

Figure C.1 indicates a positive correlation between the optimal Tikhonov regulariza-

tion parameter and the width of the distribution. While larger regularization param-

eters are often associated with lower errors, these large regularization parameters are

only reasonable for broad phantoms. Generally, broader distributions respond better

to prior information (via the Tikhonov regularization scheme) that encodes smooth-

ness. By contrast, very narrow phantoms will have their edges smoothed away by

the prior, requiring lower regularization parameters to preserve sharpness. At the

same time, the smaller regularization parameter will increase the amount of noise

that propagates forward into the reconstructions, such that the minimum achievable

error is larger. Some of this may be overcome using a different prior, e.g., exponential

distance prior (Chapter 2) or a total variation prior.
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Figure C.1: The sensitivity of reconstruction accuracy to R12 indices (i.e., distribu-
tions’ broadness) and colored with the regularization parameter.
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Appendix D: Effects of multiple
charges and summary of data

D.1 Effects of multiple charges on TCPMA data

This study evaluates the CPMA transfer function on the assumption that the aerosol

particles are only singly charged; however, the charge neutralizer employed is capable

of imparting multiple charges to the particles. Assuming the number of charge state

φ = 1 to 5 on the aerosols, a fraction of multiply charged aerosols entering the

TCPMA measurement can be calculated as

Fφ>+1 = 1− F+1 ≈ 1−
Nm∗

φ=1
× f (φ = 1, dφ=1)∑︁5

φ=2Nm∗
φ
× f (φ, dφ)

, (D.1)

where F+1 is the number fraction of singly charged aerosols, and Nm∗
φ
is the number

concentration of aerosols with a mass of m∗
φ = φ×m∗

1 leaving the AAC. Here, dφ is

the equivalent mobility diameter of particles having the mass of m∗
φ, and f (zφ, dφ)

represents the charge fraction of aerosols of a certain size (dφ) and charge state (φ).

Traditionally, the charging function is calculated using Wiedensohler, 1988 as

f (zk, d) =
1

[2πσz(d)]
1/2

exp

{︄
−1

2

[zk − σz(d) ln (ZZ)]
2

σz(d)

}︄
(D.2)
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where Zz is the ion mobility ratio which is approximated by ∼ 0.875 (Wiedensohler

et al., 1986). Also,

σZ(d) =
2πε0dkBT

e2
, (D.3)

where e is the elementary electron charge (e = 1.6 × 10−19c), ε0 is the dielectric

constant, kB is the Boltzmann constant, and T is the aerosol temperature.

D.2 Summary of TCPMA data

Table A1 illustrates a summary of the results measured from the TCPMA experi-

ments, along with the fraction of multiply charged aerosols entering the measurement

system.

The calculated likelihood of multiply-charged aerosols at the entrance of the first

CPMA is about 2% on average, which is negligible.
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Table A1: An overview of all tandem CPMA measurements as well as the fraction
of multiply-charged aerosols entering the measurement system. The measurements
marked by † are regarded as outliers and not included in the fits.

Outline of TCPMA data

Q Rm m∗ µ λ m∗
12 FΦ>1

† 0.3 2 0.1 1.26 ± 0.01 0.54 ± 0.03 0.84 ± 0.00 0.00 ± 0.00
0.3 2 1 1.42 ± 0.02 0.96 ± 0.02 0.93 ± 0.02 0.02 ± 0.00
0.3 2 10 1.46 ± 0.01 1.12 ± 0.02 0.97 ± 0.00 0.06 ± 0.00

† 0.3 3 0.05 0.96 ± 0.01 0.32 ± 0.01 1.25 ± 0.06 0.00 ± 0.00
† 0.3 3 0.1 1.05 ± 0.01 0.51 ± 0.01 1.22 ± 0.04 0.01 ± 0.00

0.3 3 1 1.20 ± 0.01 0.84 ± 0.05 1.00 ± 0.01 0.02 ± 0.00
0.3 3 10 1.21 ± 0.02 0.88 ± 0.06 1.00 ± 0.00 0.05 ± 0.00
0.3 3 100 1.24 ± 0.01 1.07 ± 0.02 0.99 ± 0.00 0.13 ± 0.00
0.3 6 0.05 0.79 ± 0.01 0.20 ± 0.01 1.12 ± 0.01 0.01 ± 0.00
0.3 6 0.1 0.90 ± 0.00 0.32 ± 0.03 1.06 ± 0.01 0.01 ± 0.00
0.3 6 1 1.08 ± 0.01 0.64 ± 0.01 1.02 ± 0.01 0.03 ± 0.00
0.3 6 10 1.10 ± 0.02 0.82 ± 0.01 1.01 ± 0.00 0.03 ± 0.00
0.3 6 100 1.13 ± 0.00 0.90 ± 0.03 1.02 ± 0.01 0.00 ± 0.00
0.3 10 0.05 0.86 ± 0.09 0.18 ± 0.01 1.10 ± 0.01 0.01 ± 0.00
0.3 10 0.1 0.91 ± 0.01 0.24 ± 0.10 1.05 ± 0.00 0.01 ± 0.00
0.3 10 1 1.06 ± 0.02 0.63 ± 0.01 0.99 ± 0.00 0.03 ± 0.00
0.3 10 10 1.18 ± 0.02 0.86 ± 0.02 1.02 ± 0.00 0.17 ± 0.00
0.3 10 100 1.13 ± 0.02 0.87 ± 0.03 1.02 ± 0.00 0.00 ± 0.00
0.3 15 1 1.03 ± 0.02 0.27 ± 0.02 1.01 ± 0.00 0.01 ± 0.00
0.3 15 10 1.06 ± 0.01 0.55 ± 0.02 1.03 ± 0.00 0.02 ± 0.00
0.3 15 100 1.03 ± 0.03 0.70 ± 0.04 1.03 ± 0.00 0.00 ± 0.00
1.5 2 0.05 1.38 ± 0.01 0.65 ± 0.02 1.04 ± 0.00 0.00 ± 0.00
1.5 2 0.1 1.36 ± 0.01 0.74 ± 0.01 1.00 ± 0.00 0.00 ± 0.00
1.5 2 1 1.36 ± 0.01 0.94 ± 0.00 1.00 ± 0.00 0.01 ± 0.00
1.5 2 10 1.33 ± 0.00 0.98 ± 0.01 1.02 ± 0.00 0.03 ± 0.00
1.5 2 100 1.36 ± 0.00 1.02 ± 0.03 1.01 ± 0.00 0.00 ± 0.00
1.5 3 0.05 1.17 ± 0.01 0.64 ± 0.02 1.04 ± 0.01 0.01 ± 0.00
1.5 3 0.1 1.15 ± 0.01 0.72 ± 0.15 0.96 ± 0.01 0.02 ± 0.00
1.5 3 1 1.22 ± 0.01 0.90 ± 0.01 0.99 ± 0.00 0.02 ± 0.00
1.5 3 10 1.26 ± 0.01 0.96 ± 0.03 1.03 ± 0.00 0.02 ± 0.00
1.5 3 100 1.21 ± 0.01 0.93 ± 0.04 1.04 ± 0.00 0.00 ± 0.00
1.5 6 0.05 1.35 ± 0.05 0.30 ± 0.03 1.05 ± 0.01 0.01 ± 0.00
1.5 6 0.1 1.17 ± 0.04 0.50 ± 0.01 1.02 ± 0.03 0.00 ± 0.00
1.5 6 1 1.15 ± 0.01 0.80 ± 0.03 1.03 ± 0.00 0.01 ± 0.00
1.5 6 10 1.20 ± 0.02 0.81 ± 0.02 1.02 ± 0.00 0.06 ± 0.00
1.5 6 100 1.17 ± 0.03 0.93 ± 0.02 1.04 ± 0.00 0.00 ± 0.00
1.5 10 0.05 1.22 ± 0.05 0.14 ± 0.05 1.03 ± 0.00 0.01 ± 0.00
1.5 10 0.1 1.28 ± 0.05 0.28 ± 0.08 1.04 ± 0.01 0.01 ± 0.00
1.5 10 1 1.10 ± 0.05 0.71 ± 0.06 1.03 ± 0.00 0.01 ± 0.00
1.5 10 10 1.06 ± 0.00 0.84 ± 0.01 1.03 ± 0.00 0.04 ± 0.00
1.5 15 1 1.25 ± 0.00 0.67 ± 0.04 1.04 ± 0.00 0.01 ± 0.00
1.5 15 10 1.17 ± 0.06 0.72 ± 0.07 1.02 ± 0.02 0.04 ± 0.03
4 2 0.05 1.53 ± 0.02 0.55 ± 0.01 1.03 ± 0.00 0.01 ± 0.00
4 2 0.1 1.39 ± 0.01 0.67 ± 0.03 1.02 ± 0.00 0.01 ± 0.00
4 2 1 1.41 ± 0.07 0.81 ± 0.06 1.02 ± 0.00 0.01 ± 0.00
4 2 10 1.31 ± 0.04 0.89 ± 0.01 1.02 ± 0.00 0.03 ± 0.00
4 3 0.05 1.35 ± 0.04 0.52 ± 0.04 1.02 ± 0.00 0.03 ± 0.00
4 3 0.1 1.29 ± 0.01 0.70 ± 0.01 1.02 ± 0.00 0.04 ± 0.00
4 3 1 1.26 ± 0.01 0.84 ± 0.02 1.05 ± 0.00 0.02 ± 0.00
4 3 10 1.36 ± 0.02 0.87 ± 0.01 1.02 ± 0.00 0.02 ± 0.00
4 6 1 1.24 ± 0.01 0.76 ± 0.01 1.00 ± 0.00 0.03 ± 0.00
4 6 10 1.18 ± 0.00 0.86 ± 0.03 1.00 ± 0.00 0.05 ± 0.00
4 10 1 1.23 ± 0.02 0.70 ± 0.02 1.01 ± 0.00 0.02 ± 0.00
8 2 1 1.56 ± 0.01 0.46 ± 0.02 0.99 ± 0.00 0.01 ± 0.00
8 2 10 1.58 ± 0.04 0.47 ± 0.02 0.95 ± 0.00 0.02 ± 0.00
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