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Abstract

Optimal receivers are useful to ensure effective bit error rates (BERs) in communications 

systems, particularly in an environment of cochannel interference. This work analyzes op

timal detection of a binary phase-shift keying (BPSK) signal in the presence of cochannel 

interference and noise. The definition of individually and jointly optimal receivers is clar

ified, and the decision boundaries of these receivers in two-dimensional signal space are 

examined. A new, exact analytical expression for the BER performance is then derived. 

In addition, an efficient importance sampling simulation technique is described. This new 

application of a two-dimensional importance sampling method allows one to efficiently 

simulate the case of multiple cochannel interferers for arbitrarily small probabilities of er

ror. A thorough discussion of the effects of interferers on the jointly optimal receiver is 

provided.
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Chapter 1

Introduction

1.1 Background and Motivation

The wireless communications industry has been a dominant force over the past century. 

From broadcast radio stations to cellular telephones to wireless Internet, there are more 

wireless applications than ever before.

Nonetheless, the high growth of wireless communications poses challenges and issues 

for today’s society. As wireless communications becomes more ubiquitous, there are in

creasing demands for higher bandwidth, greater amounts of data, and lower costs. These 

demands exist in spite of a limited supply of radiofrequency spectrum. Indeed, there exists 

only a finite amount of radiofrequency spectrum, and the increasing number of users who 

want wireless devices is causing the system to be strained. As more radio bandwidth is 

used in the world, it is becoming increasingly difficult to provide reliable wireless commu

nications. The excessive number of wireless channel users causes them to interfere with 

one another, eroding the quality of all users.

It is thus important to assess the nature of signals in the presence of interference. In par

ticular, it is useful to analyze the effects of cochannel interference, where the desired and 

interfering users are transmitted with identical carrier frequencies. Cochannel interference 

is essentially a fact of life in the wireless industry. There is a limited number of chan-

1
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nels and an increasing number of users. Therefore, proper characterization of cochannel 

interference is needed.

One performance metric for wireless communications is the level of bit error rate 

(BER). The BER represents the proportion of the total transmitted signal bits that are re

ceived incorrectly. For effective communications, it is therefore desirable to attain as low a 

BER as possible. However, the BER of a communications system is limited by the exter

nal environment -  if there are more interferers present, the BER increases. As well, there 

may be other undesired disturbances within the frequency band of interest. Additive noise 

is one such disturbance. Additive white Gaussian noise (AWGN) can affect a signal and 

distort the information carried by the signal over a specific frequency band. The BER of a 

communications system is also limited by the relative amount of AWGN present.

As a result of the negative consequences of interference and noise, it is desirable to 

design a commmunications receiver that reaches a minimum BER under certain conditions. 

In general, this is synonymous to designing an optimal receiver.

This work discusses the performance of various types of optimal receivers. Reference 

[1] serves as the motivation for this work. In [1], Kwan and Leung derive an optimal 

receiver structure for a binary phase-shift keying (BPSK) signal in the presence of one 

interferer and AWGN. This receiver is “individually optimal”, i.e. it achieves the minimum 

bit error rate for the desired bit in this system [2].

As BPSK is used throughout this work, it is relevant to define binary phase-shift key

ing. Suppose that one has a random binary signal m(t) that consists of symbols 1 and 0. In 

particular, symbol 1 is represented by a constant level of +1 and symbol 0 is represented 

by a constant —1, each of which lasts for a time duration T. To facilitate the transmis

sion of these symbols over a communications channel, one can employ a basic modulation 

scheme known as phase shift keying. Specifically, the information in m(t) is multiplied by 

a sinusoidal carrier wave A cs(t) = Accos(2nfct), where A c is the carrier amplitude, f c is 

the carrier frequency, and t is time. One can also denote the carrier wave with an angular

2
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frequency 0)c, which would yield a binary phase-shift keying signal of
/

:os(o)ct) for symbol 1

A ccos(a>ct) for symbol 0.
y(t) = m(t)Acs{t) =

Acs(t) =  J  YAccos(coct)
<

A cs(t) — -y r Accos(

The y j± term in (1.1) is used to ensure that the signal s(t) is normalized. Essentially, the

signals in (1.1) are different only by a relative phase shift of 180 degrees (n  radians) -  

hence the term “phase-shift keying”.

There are generally two main techniques for determining the BER performance of an 

arbitrary communications system. One method is to determine exact analytical results 

(such as those in [3] and [4]) that can mathematically show the error rate performance 

of the system. Another method is to perform a random simulation of the communications 

system. This simulation can be done using unique importance sampling techniques (such as 

those in [5]), or they can be completed using traditional Monte Carlo simulation methods.

Literature is available on the subject of error rate performance of cochannel interfer- 

erence systems. Reference [6] developed a method to determine exact error probabilities 

for a BPSK signal corrupted with Gaussian noise and cochannel interference. While this 

method does consider traditional coherent detection and quasi-coherent detection, no at

tempt is made to determine an “optimal” detection for the system. In [7], error probabilities 

for intersymbol and cochannel interference are calculated. The approach in [7] uses numer

ical quadratures of Laplace inversion integrals. Reference [8] introduces an infinite series 

to determine the error probability of the system. This approach introduces significant com

putational savings for error performance analysis. This series representation is used in [9] 

to perform a precise analysis of cochannel interference in quadrature phase-shift keying 

(QPSK) systems. Reference [10] investigates the BER of non-coherent frequency shift- 

keying in the presence of interferers. Note that none of [6] -  [10] examine an optimal 

detection for the communications system.

Multiuser detection theory [2] is a useful approach to examine the case of a desired 

signal in the presence of other interfering users. Because of the system complexity, mul

tiuser detection theory has generally focused on approximate analytical results. Maximum-

3
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likelihood multiuser receivers are studied in [11] and [12]. Reference [13] investigates 

improved receiver designs for cochannel interference and noise. Optimal detection is ex

amined for signals in various noise environments in [14] and [15]. Reference [16] exam

ines a type of maximum a posteriori (MAP) receiver to improve system performance in 

code-division multiple-access (CDMA) channels. In [17], a multiuser detector is examined 

using a successive cancellation technique. While the field of multiuser detection is useful 

in examining cochannel interference, the results in [11] -  [17] are either sub-optimal or not 

specific to the case of BPSK signals.

This thesis analyzes the error rate performance of a jointly optimal receiver for BPSK 

signals in the presence of cochannel interferers and noise. One clarifies the definition of 

“optimality” in this work, and analyzes how the receiver in [1] is optimal. An exact ana

lytical expression for the error rate performance is then derived. In addition, an interesting 

application of importance sampling simulation is used as an efficient method for simu

lating this system. Thus, this thesis examines the performance using both analytical and 

simulation techniques.

1.2 Thesis Outline and Contributions

This thesis is organized as follows. Chapter 2 provides a thorough description of the dif

ference between “jointly optimal” and “individually optimal” multiuser receivers. This 

clarification is essential to the analysis of [1], Indeed, through this clarification, one learns 

that the receiver structure in [1] is not a new result. Even so, the analysis of the two- 

dimensional decision boundaries in Chapter 2 provides good background for later analysis 

and simulation.

Chapter 3 provides a new and exact analytical expression for the BER of a jointly 

optimal BPSK receiver. This result is achieved through the use of Craig’s method in [3], 

and is a result of the fact that the decision regions of this receiver are polygonal. Through 

this analytical result, one makes useful observations in the joint detection of a BPSK signal 

plus one cochannel interferer.

4
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An importance sampling simulation technique is introduced in Chapter 4. Through im

portance sampling, one is able to quickly simulate the performance of the jointly optimal 

receiver. This technique is an interesting and new application of the results of [18], which 

provides a useful method of simulating in two-dimensional signal space. One discovers 

that very low BER values can be simulated, which is a significant improvement over tra

ditional Monte Carlo simulation processes. Chapter 5 extends this importance sampling 

technique to the case of a BPSK signal with multiple interferers. Indeed, the usefulness 

of the technique in [18] is reinforced in this chapter, as one is able to effectively simulate 

more than one interferer using this technique. Various observations are then made for the 

case of a BPSK signal in the presence of multiple interferers. To the best of the author’s 

knowledge, these observations are new in the literature.

Chapter 6 concludes the thesis with a summary of contributions.

5
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Chapter 2

Jointly and Individually Optimal 

Receivers -  A Comparison

To properly analyze and simulate “optimal receivers”, it is useful to properly define an in

dividually optimum receiver and a receiver that is jointly optimum. This Chapter compares 

and contrasts the individually optimum and jointly optimum receivers for BPSK signals in 

the presence of a cochannel interferer plus noise. The decision boundaries of each receiver 

in two-dimensional space are shown, and simulation results are discussed. By using this 

foundation in individually and jointly optimal receivers, one can effectively analyze and 

simulate this system in future chapters.

2.1 Individually and Jointly Optimal BPSK Receivers

To properly derive the optimum receiver, it is important to correctly define what one means 

by an individually optimum receiver and a receiver that is jointly optimum.

Verdu effectively distinguishes the differences between receivers that are jointly optimal 

and individually optim al in [2]. The definitions below  fo llow  Verdu’s d iscussion  closely .

Consider a desired BPSK signal A0bQsQ(t) transmitted over an AWGN channel. This 

transmission is in the presence of a second interfering BPSK signal, A lb1s1(t). In this

6
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notation, A;- is the amplitude of the signal from user i, while bt is the bit transmitted (either 

— 1 or +1) by user i. The deterministic signal assigned to the r'th user is denoted as st(t) .

If one assumes that the desired and interfering signals are cochannel and synchronous, 

the received signal can then be written as

v(t) — A06050( i)+ A 1̂ 1s1(t) +  n(f), 0 <  t < T

-  / io ^ o y ^ 'cos((ur) + /1i&i Y ^ 'cos(a jr+ 0 ) + n(t), o <  t < t , (2.i)

where n(t) is white Gaussian noise with two-sided power spectral density N0/2, T  is the bit 

duration, 0) is the angular frequency, and 0 is the phase difference between signals 0 and 1.

To minimize the bit error rate (BER) of the receiver, one should use a maximum a 

posteriori (MAP) receiver. Receivers that use the MAP decision rule will select the hy

pothesis with the highest a posteriori probability. If one was to recover user 0 from (2.1), 

the minimum BER decision is obtained by selecting the appropriate bit bQ e  {—1, +1} that 

maximizes the a posteriori probability

P[b0\v(t), 0 < t < T } .  (2.2)

Since the received signal is a function of both bQ and bl , this is equivalent to maximizing 

the probability

p[»„|v(0, 0 < « < r ]  =  />[((»,,),(», = - i ) ) K » ) ,  0 < » < r ]

+ ‘F [ ( ( W & i= + l) ) K < ) >  0<t<r] .  (2.3)

If we maximize this a posteriori probability, one obtains an individually optimum receiver.

Determining the jointly optimum receiver provides a solution to a different problem — 

selecting the pair of bits (&0,£>i) that maximizes the joint a posteriori probability

jP[(*0»* l)lv (0» 0 < t < T } .  ( 2 . 4 )

At first glance, the jointly optimum and individually optimum probabilities seem to be 

similar. Verdu [2] elaborates that these probabilities do not necessarily have to be equal

7
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because of the fact that bQ and b { are not independent when conditioned on the observed 

waveform v(t). Using these definitions, one can then proceed to derive the individually 

optimal receiver structure.

2.2 Individually and Jointly Optimal Decisions for a 2- 

User BPSK System

2.2.1 Individually Optimal Decisions

References [1], [2], [19] all perform some type of individually optimum receiver derivation 

for two-user antipodal systems. Much of the derivation below originates from these works.

It is known that a detector based on the MAP criterion makes the same decisions as one 

based on a maximum-likelihood (ML) criterion if the a priori probabilities are equal. As

suming that user 0 in (2.1) is the desired signal (and user 1 is the interferer), the likelihood 

ratio is
A(v (t)) =  /(>(»)!+ V o ( 0 )  a  S)

where f ( v ( t )  | + A 0s,0(f)) is the probability density function (PDF) of v(t) given that +AQsQ(t) 

is sent. As a result, it is desired to precisely derive the likelihood function for an individu

ally optimum detector.

To determine the individually optimum decision for a BPSK signal in the presence of a 

cochannel interferer plus noise, one can examine the characteristics of multiuser detection 

systems. As explained above, a MAP decision rule for user 0 selects the hypothesis with

the highest a posteriori probability, i.e. the bit b0 €  { -1 , +1} that maximizes

p[bolv(»), o < « < r ]  =  /•[((40) ,(» 1 =  - i) ) |v (» ), 0 < / < r ]

+/>[(((>„), (i> ,=+l))|v(<), o < t < T \ .  (2.6)

It is thus important to obtain a likelihood function for each of the probability summands 

in (2.6). Consider an arbitrary n-dimensional received signal r =  [rj r2 ... rn] —  x +  n,
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wherex =  [xx x2 ...xn] is the signal sent, andn  =  [nl n2 ...nn] is n-dimensional AWGN. The 

conditional probability density [20] is

/ ( r|x) =  / ( r - x )  

=
k=\

where

f ( rk\xk) = exp (■rk ~ xk)2 
Nn

(2.7)

(2 .8)

Note that the (rk — xk)2 term is simply a metric for the distance between rk and xk, \\rk — 

xk\\2. This PDF essentially states that the received signal minus the transmitted determinis

tic components is Gaussian.

Note that one can also use a distance metric for (2.1). Since the distance is simply the 

received signal minus the deterministic component of the signal, the distance can be written 

as

IIv - a o V o - a i V i I I 2 =  [ M 0 - ( Ao V o ( 0 + A i V i ( 0 ) ] 2 ^ -  (2.9)
J  u

Therefore, disregarding the l
fllNn

term from (2.8) (this term does not depend on the

pair of bits (bQ, bx) for maximization), the likelihood function becomes

L[v(f), 0 <  t < T | (fc0, bx)] =  exp j -  ^  [v(f) -  A Qb0sQ(t) -  Ajfcj^ (t)]2dt | . (2.10)

The individually optimum decision for user 0 is equivalent to maximizing the prob

ability given in (2.6). Assuming equiprobable bits bx G {— 1,-hi}, this is equivalent to 

maximizing the likelihood function sum of

L % )  =  ^ 1=+i(^o) + ^ j= - i ( ^ o )

= exp {- ^ ^  [v (0 -V * o (0 -V i(0 ] ’* }

+  ex p { - 4 / 0 [v(t) - A 0b0s0(t) +  A j j  1 (t)}2dt J . (2.11)

One can then expand this sum algebraically using some manipulations. Consider the

9
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=  exp< —

(2.12)

(2.13)

first summand. One has

=  exp{ - ^ /  K O - ^ 0V o ( 0 - V i ( 0 ] 2̂ }

... [  v2{t)dt+ f  A^blsQ(t)dt+ f  A \s\{t)d t
A'o I/O JQ ^0

- 2 / or v(,)A0V „ ( 0 * - 2  [  v{t)Axs^{t)dt

+ 2 f  A qA ^ qSq^ s ^(t)dt 
JO

Let s0(t) and (t ) be normalized, i.e.

T
[  sf(t)dt =  1.

Jo

One can also define the correlation coefficient p  between sQ(t) and 5, (t) as

P =  f  S ( ) ( t ) s i ( t ) d t .
J 0

Define

= lo v̂ ŝ dt
as the projection of v(t) along signal st(t). Since bQ G {—1, +1}, fig =  1, and (2.12) can be 

written as

L b l = + i ( b o)  =  ex p { _ ^~ J Q v2( 0 * + A o + A i - 2 A ov0f c o - 2A iV i+ 2AoAiPfco

exp i r ^ o  (~A°v°b° ~ AiVi+ w * 0) )

=  tc(0exp ( - A QvQb0 - A lVl + A 0A 1pb0)^j ,

where K ( t ) is a function that is independent of the b 0 term.

Similar algebra would yield the second summand in (2.11) as

(2.14)

(2.15)

(2.16)

\ = - \ { b o )  =  K(OexP ( ~ A0V( A ) + A 1V1 “ A A P ^ o ) )  •

10
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To determine the decision bit bQ, one can do a simple likelihood ratio test. One can 

compare the likelihood functions for each bit b0 to see which one is larger. The likelihood 

function with the larger value will be associated with the decision bit, as in

L(b0 = +1) ^  L(b0 =  —1). (2.18)

We can manipulate (2.18) and use (2.16) and (2.17) to obtain the likelihood ratio

*• ^L (b 0 =  - ! )
*0=-!

* ( 0 e x p ( - j |  ( -A qVq - A jVj + A oAj p ) )  + /c ( r ) e x p ( - ]|  ( -A 0v0 + A lVl - A ^ p ) )  ^ +1 ^

K(f)exp (+A0v0 - A jVj - A qAj p ) )  +  Kr(t)exp (t-Aq̂ A ^  + A 0A1p )^   ̂^

(2.19b)
exp ( - ^  ( -A qVq - A 1v1 + A 0A1p ) )  + exp  ( -A qVq+ A ^  - A ^ p ) )  ' ^ +'

exP ( + V o  ~ Aivi — AqAip) )  +exp (t-AqVo+A^! +AQAJP))  ̂^
° (2.19c)

exp ( ^ )  exP ( ~ 4  (~Aivi + AoAiP)) + exP ( ~ 4  (+Aivi - A(AiP)) X +‘ {
exp ( - ^ )  ^ 1 ,

°(2.19d)
bQ- + 1

/ 4Anvn\  cosh ( i  (Aivi - M i P ) )  .
^    At <  1, (2.19e)

V /  cosh (+AjVj + A 0A lp ) j  ^

since cosh(x) =  gt+2c *.

Eqn. (2.19e) is the likelihood ratio test result that determines the individually optimum 

decision. One key note regarding this optimum decision is that it is dependent on the noise 

term N0. This fact will be significant when determining the decision boundaries of this 

receiver in orthonormal space.

Verdu [2] denotes the maximum likelihood decision in a different form. One can show

11
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that the result in (2.19e) is equivalent to Verdu’s notation:

/ 4AqVq\  cosh (?% (A i vi ~ AoA iP ))

\  No /  cosh ^  (+AjVj H-AqAjp)^

bQ= + l

S 1.
40 = - l

( 4 A 0v0\  <=°sh
exp 1 — —

Nf
(w0 (A lVl + A <A\pj) 

<  co sh ( i l ( Alvl " 4

>

b r . -  1

'0

&0=+l

b0 = - 1

Nn

AoAjP))

io>+11_ [ cosh (4 (AlVl +w ) )^  1̂1 t  \  5

_cosh ^ ( A 1vi - A 0Aip)J_ 

c°sh( ^ ( A i vi + AoAi p))

cosh( i | ( Ar '  * 4

a a y cosh
^C rO  >

Nf
b0 — \

vo < ^ - ln4 A

v0" 4A,
•In

Lo

v , 0 ,  .  .  V i p ) ) .

( ^ l vl + A 0A lP) ')  °>

c°s h (^ (A iV i-A o A ip ) )

cosh
= + i  

>  0.

\ u / ^O""1
/».

Eqn. (2.20e) matches the result of [2] for the optimum decision bit b0 of

| 'c o s h ( ^ ( A 1v14-A0A1p ) )  
& 0 =  sgn v0 - — in

_ c o sh (^ (A 1v1- A 0AIp ))_

(2.20a)

(2.20b)

(2.20c)

(2.20d)

(2.20e)

(2 .21)

where sgn(t) is the sign function.

One can expand the result from (2.21) by noting that the correlation coefficient p  can 

be found using (2.14). One can recall the system model for a BPSK signal plus interferer 

as

v(t) = b0A0^ c o s ( ( O 0t) + b1A 1^ c o s ( ( O 1t + 6 )+ n ( t) .  (2.22)

Assuming that the frequency of the desired signal and the cochannel interferer are the same 

(i.e. m — mQ — ft>j), the variable p  can be found through simple trigonometric manipulat e .  co — £0 (

12
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tions as

T
p  =  /  sQ{t)s{(t)dt

J 0

=  / ’Jo
Y  cos(cof) J  y  cos (cot +  6)dt

2 1 f T
t ' i Jq

1 f T
= — cosddt + 0

T Jo
= cos 6.

4-11
cos 6 +  cos(— t +  0) dt

(2.23)

Using this value for p , (2.20e) becomes

%  
4A,

In
cosh ^  (AjVj -f AqAjCOsQ)^ 

cosh ^  {A\V\ — AqAjCOS0) j

bQ- + 1

b0 = - 1

(2.24)

where 0 is the phase difference between sQ(t) and Sj (t).

As a result of the derived individually optimum decision statistic in (2.24), it is use

ful to examine other derivations of the individually optimum receiver in the literature. In 

1995, reference [19] described an individually optimum decision with the likelihood ratio 

function

cosh ((r i ~  cos0 +  r2sin 0 ))
A (r|vP, 6) =  exp(4yrj)

cosh +  I)co s0  +  r2s in 0 )j
(2.25)

where y is the signal-to-noise ratio (SNR) (in the system model from (2.1), y =  jf-), and
A2 °¥  is the signal-to-interference ratio (SIR, ¥  =  ^§). The quantities rl and r2 are simply

components of the received signal (denoted as v(t) in the system model in (2.1)) along a

pair of orthonormal signals. It is apparent that (2.19e) and (2.25) are similar in form.

In 2002, reference [1] introduced an optimal detection scheme for a BPSK signal in the

presence of a cochannel interferer plus noise. The likelihood decision ratio was denoted as

A(v)
e x p f e z

cosh

cosh
(2.26)

13
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where

Y = J  v(t)A^\j^cos{(i)]t + Q)dt (2.27)

Z =  Jo v(^ Ao \ / f ' cos(coo O ^  (2.28)

sin(o), — (On)T  1 — cos(co, — 0)n)T
y = --/■—■  A^—AoA, c o s  6 -----------------——r — ArA,  sin 6. (2.29)
7 (cOt-co^T  (o>! -  cob)7’

Reference [1] also shows a schematic diagram of this receiver, shown in Fig. 2.1. 

One point of note is that implementing this decision metric may be difficult, due to the 

hyperbolic cosine terms. Indeed, the diagram in [1] simply shows a “Likelihood ratio 

calculation and Decision Device”.

v(t)

AM) W

Likelihood 
Ratio 

Calculation 
/ Decision 

Device

Decision

Fig. 2.1. Block diagram of an individually optimal receiver for a BPSK signal plus a 

single cochannel interferer, from [1].

Note that the structure of (2.26) is very similar to (2.19e) and (2.25). Thus, one sees 

that the individually optimum receiver derived in [1] is not a new result. Nonetheless, the

14
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derivation of this receiver is important when comparing the performance of this receiver 

with a jointly optimum one.

2.2.2 Jointly Optimal Decisions

A jointly optimum receiver needs to maximize the likelihood function from (2.10). After 

some manipulations, this is equivalent to choosing the pair of bits that maximizes

L j o i m ( K b\ ) =  ¥ o vo + ¥ i vi - ¥ i ¥ t c o s 0 ’ (2.30)

A A

Verdu [2] shows that the jointly optimal decisions (bQ,b j) are

b0 = sgn ^AqVq +  ^IAjVj — A c c o s t? !  -  ^(A1v1 + A oA1co s0 |^  , (2.31a)

bx =  sgn^A 1v1 +  ^|A ovo - A oA1c o s 0 |- ^ |A ovo + A oA1co s0 |^  . (2.31b)

A diagram for the jointly optimal receiver can be found in [2], and is shown in Fig. 2.2.

Kg)

Kg)

&

Fig. 2.2. Block diagram of a jointly optimal receiver for a BPSK signal plus a single 

cochannel interferer, from [2].

When examining (2.21), (2.31a), and (2.31b), there are a couple of notes. Firstly, the 

jointly optimal case is independent of the variance of the Gaussian noise. This is a sharp 

contrast to the decision for an individually optimum receiver. The individually optimum 

decision has its decision boundaries changing depending on the noise variance. This does 

not occur in the joint case, which does not have a noise factor.

15
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Secondly, further mathematical manipulations [2] can show that as the noise decreases 

(i.e. N0 —>■ 0), the joint decision for bQ approaches that for the individual case. With this 

knowledge, the comparisons between the decision regions for the two receivers can be 

shown.

2.3 Examining the Decision Regions for Individually and 

Jointly Optimal Receivers

Fig. 2.3 shows a sample signal constellation diagram of the system, which originally was 

shown in [l] .1 The received signal v(t) is projected along 2 orthnormal axes determined by 

the Gram-Schmidt procedure [21] as

h ( ‘) = = \ j j  c o s ( c o 0t )  (2.32a)

* i (0 =  =  _ V ? sin(“ o° (232b)

where ^ ( t )  =  y^cos(tw 0?) and = y ^c o s (o )0t + 9). Consider the received signal

without noise, y(t) — v(t) -  n(t). There are four possible received signal combinations,

±A0^ ( t )  ±A!0{(O, given by

yj(t) =  (A0 + A l cosO) (j)0(t) + (Al sind)<j)l (t) (2.33a)

y2(t) =  (Aq-A jCosQ ) 0o(t) -  (A jSinflj^^r) (2.33b)

y3(t) = -  (Ao -A jc o s 0 )  0o(?) +  (A1sin0)01(r) (2.33c)

y4(t) = -  (Ao + A jc o s0 ) 0o(t) -  (Aj s in 0 )0 j(t). (2.33d)

The resulting signal constellation is similar to that shown in Fig. 2.3. If one wished to 

jointly detect the correct constellation point on this diagram, one would have the decision 

boundaries shown in Fig. 2.3. Note that because the decision metric from (2.31a) does not

'N ote that the authors o f [1] show decision boundaries as straight lines, even though an individually 

optimum receiver is derived in [1].

16
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Fig. 2.3. Signal constellation for a desired signal plus interferer, from [1].

have a dependency on the noise variance N0, the decision boundaries are independent of 

N0.

However, in an individually optimum detection case, one does not simply draw the 

decision boundaries based on straight lines which divide the constellation points. Since 

(2.19e) is the decision metric, one sees that the decision is a function of NQ.

One can observe this difference with a few examples. The following example figures

are structured in a manner similar to those given in [19] and [22]. Consider a scenario where
A2the signal-to-interference ratio (SIR), Y  =  ^  =  1, or 0 dB SIR. For purposes of illustration, 

let 6 be known, and equal to 6 =  §. Fig. 2.4 illustrates the varying decision boundary for
A2an individually optimum receiver when the signal-to-noise ratio (SNR, Y — j^)  changes.

Note that the decision boundary for the individually optimum receiver varies signifi

cantly when the noise component is large. One point of note is that the decision boundary 

is not equidistant from the various points of the signal constellation. An explanation of this 

fact is that one must consider the two joint PDFs, which are formed from the individual 

PDFs when the interferer bits b { are —1 or +1. In effect, averaging the PDFs for the two 

constellation points (bQ = — 1 and b0 = +1) over bl bends the decision boundaries.

17
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0.5

3 d B S N R

12 dB SNR

- X-0 .5
6 dB SNR

0 dB SNR

-1 .5

-2
-1 .5-2 1 -0 .5 0 0.5 1 1.5 2

Fig. 2.4. Decision boundaries for an individually optimum receiver at various values of 

SNR, determined using (2.19e), with 'F  = 0 dB, and 0 =  | .
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One can compare this to the jointly optimum decision, where the decision regions are 

made based on the PDFs for each of the four constellation points (b0, bx). Since the decision 

statistic from (2.31a) does not depend on N0, the decision boundary is formed by straight 

lines.

Fig. 2.5 compares a jointly optimal decision boundary with those for individually op

timum decisions, using the same parameters as Fig. 2.4. Note that as the signal-to-noise 

ratio increases, the individually optimum receiver boundary approaches that of the jointly 

optimum case. This is to be expected, since the decision statistic (2.19e) asymptotically 

approaches (2.31a) as the noise variance N0 decreases.

Another interesting example for the decision boundaries of the individually optimum 

receiver occurs when = — 3 dB, and 0 =  f . For these values, the jointly optimal decision 

boundaries are composed of perpendicular line segments. In contrast, the individually 

optimal decision boundaries, as shown in Fig. 2.6, are curved. In particular, note that 

as the SNR decreases to small values, the minimum distance to the decision boundary is 

no longer halfway between constellation points. Recognizing this fact will be very useful 

when simulating jointly optimal receivers in future chapters.

Using the decision metrics given in (2.19e) and (2.31a), one can further examine the 

decision boundaries for the individually optimum receiver by changing different parame

ters.

Consider the case where the SNR and 0 are fixed, and one varies the SIR. Fig. 2.7 is 

one such example (0 =  | ,  y = 3 dB). Note that when the interferer increases in amplitude 

relative to the desired signal (i.e. a smaller SIR), the decision boundary becomes increas

ingly curved. When the SIR is large, the decision boundary is very similar to that of a 

matched filter receiver. A smaller SIR results in a decision boundary with more distinct 

comers, as seen in Fig. 2.7. The jointly optimum case is shown in Fig. 2.8. In Fig. 2.8, a 

decrease in SIR causes a significant change in the decision boundary, but since the receiver 

uses a jointly optimal scheme, the decision boundaries are straight lines. These straight 

boundaries would become useful in the analysis of Chapter 3.

19

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



0.5

jointly optimum

6 dB SNR,
individually'
optimum

-0 .5

12 dB SNR, 
individually 
optimum

-1 .5

-2
0.5-0 .5-2 -1 .5

Fig. 2.5. Sample signal constellation for a BPSK signal plus one cochannel interferer, 

for T  = 0 dB, 0 — f ,  with decision boundaries for an individually optimum receiver 

(at 6 dB and 12 dB SNR), and a decision boundary for a jointly optimum receiver 

determined by (2.31a).
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-1 .6  dB SNR

x -

3 dB SNR

0.5
0 dB SNR 6 dB SNR

-eT

-0 .5

-X

-1 .5

1.5 20.5 1-0 .5 0-2 -1 .5 ■1

Fig. 2.6. Decision boundaries for an individually optimum receiver at various values of 

SNR, determined using (2.19e), with *P = — 3 dB, and 0 =  f .
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= 0  dB

+3 dB

SIR = - 6  dB

-2

SIR = +6 dB

-2- 3

Fig. 2.7. Individually optimal decision boundaries for a BPSK signal plus one cochannel 

interferer, for different values of SIR, with y = 3 dB, and 6 =  | .
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= 0 dB

-eT 0

-2

= +6 dB

-2
f,'o

Fig. 2.8. Jointly optimal decision boundaries for a BPSK signal plus one cochannel 

interferer, for different values of SIR, with y = 3 dB, and 9 =  ^ .
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Fig. 2.9 shows the effects of known phase difference on the individually optimum 

decision, with y = 3 dB, and W =  — 2 dB. A phase difference of 0 =  § results in a straight 

vertical line for the individually optimum decision. As the phase difference becomes less 

than |  and approaches 0 =  0, the decision regions become significantly more curved. This 

is also seen in the jointly optimum case shown in Fig. 2.10.

By examining the actual decision boundaries on a pair of orthonormal axes and 

0 j(t), one can clearly see that there are differences in the decision boundaries between 

jointly optimal and individually optimal receivers. This is largely because the noise vari

ance N0 affects the joint PDFs used in the individually optimal case. One can also see that 

the use of Fig. 2.3 in [1] is misleading, since it is a diagram for jointly optimal decisions, 

despite the fact that [1] discusses only individually optimal receivers.
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1.5

0.5

-0 .5

0 = 71/19

-1 .5
0.5-1 .5 -0 .5

'0

Fig. 2.9. Individually optimal decision boundaries for a BPSK signal plus one cochannel 

interferer, for different phases, with y = 3 dB, and = - 2  dB.

25

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



1.5

0.5

-0 .5

:: n/4

0 =71/2
=.n/3

-1 .5  *— 
-1 .5 1 -0 .5 0.5 10 1.5

♦o

Fig. 2.10. Jointly optimal decision boundaries for a BPSK signal plus one cochannel 

interferer, for different phases, with y = 3 dB, and Y  = — 2 dB.
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2.4 Simulation Results and Comparisons of Receivers

Having the knowledge of the effects of SNR on an individually optimal receiver, one can 

obtain simulation results comparing the individually optimal receiver with a jointly optimal 

one.

From the decision boundary plots in Figs. 2.4-2.10, one can see that as the SNR in

creases, the difference between an individually optimal decision boundary and one for 

jointly optimal decisions is negligible. As a result, one can focus on the differences at 

low regions of SNR. Indeed, simulation results for the two types of receivers show that 

even at SNR levels of y = 0 to 3 dB, the performance improvement in the individually 

optimal case is negligibly small.

Some BER performance results for the two types of receiver are shown in Fig. 2.11. 

Note that above 2 dB SNR, the two receiver structures have similar error performance. That 

is, for SNR values larger than 2 dB, there is little difference in performance between jointly 

optimal receivers and individually optimal receivers. However, the results show that for 

SNR values less than 0 dB, there is a small improvement in performance for individually 

optimum receivers.

To see an individually optimal receiver performance that is significantly different from 

a jointly optimal one, one has to have an even lower SNR. Fig. 2.12 shows the performance 

curves for various SIR simulations for Q — | , and y =  — 3 dB. Obviously, y =  —3 dB is 

not a useful case. The purpose of the plot is to show that the individually optimal receiver 

does perform better than the jointly optimal one. However, the region where this occurs is 

at a very small SNR. Note that in Fig. 2.12, one can see a difference in performance for a 

range of SIR values between - 5  dB and +10 dB. However, for small and large values of 

SIR, the difference in performance between the two receivers is small.

The performance results of individually optimal and jointly optimal receivers are sig

nificant for practical receiver design. Since the performance of these two types of receivers 

are almost indistinguishable at relatively high SNR, performance analysis of jointly opti

mal receivers is usually sufficient. Indeed, future chapters derive an exact analysis of BER
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Fig. 2.11. The BER performance versus SNR for individually optimum and jointly opti

mum receivers, with 'F = 0 dB, and 0 = |.
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performance of a jointly optimal receiver using Craig’s method [3]. This methodology 

could not be performed under an individually optimal case, where the decision boundaries 

are not composed of straight line segments. Having this knowledge, future performance 

analysis can be completed on the jointly optimal case.

2.5 Summary

The individually optimal receiver in [1] is a useful result. The receiver has been derived to 

be optimal, and the performance of the receiver has been shown to be good in regions of 

low and high SIR.

Distinguishing between individually optimal and jointly optimal receivers is important. 

Individually optimal receivers have a decision region that is a curved line in orthonormal 

space. Jointly optimal receivers, on the other hand, have decision boundaries that are com

posed of straight line segments (even though the receiver is sub-optimal for an individual 

user). Jointly optimal receiver structures are easier to implement and their straight-line de

cision boundaries facilitate performance analysis. Using these straight line segments, one 

can obtain an exact analytical result for the error performance in future chapters.

The work in this chapter has been presented in [23], and is an important result, clar

ifying results in past works. While the work in [1] implies the use of a jointly optimal 

receiver, the results in [1] indicate that a minimum-BER individually optimal receiver is 

used. Furthermore, the work in this chapter also reinforces that for most levels of SNR, 

there is indistinguishable difference in BER between individually and jointly optimal re

ceivers. These results justify the analysis of jointly optimal receivers in future chapters.
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Chapter 3 

Performance Analysis of the Jointly 

Optimal BPSK Receiver

Using the jointly optimal receiver described in Chapter 2, one now develops a powerful 

way to analyze the error rate performance of this system. In this Chapter, bounds to the 

error rate performance are developed, and a new, exact, analytical expression for the BER 

is found.

The receivers in [1] and [24] have been shown to perform better than a matched filter 

receiver for a BPSK signal in the presence of a cochannel interferer. In particular, when the 

interferer amplitude is large relative to that of the desired signal, the BER is significantly 

smaller than that of a matched filter receiver.

The performance assessment results in [1] and [24] were obtained using simulation. 

However, simulation may take a significant amount of time. It is thus valuable to obtain an 

analytical solution for the error rate performance of the jointly optimal BPSK receiver that 

follows the main assumptions in [25].
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3.1 Signaling Constellation of a BPSK Desired Signal Plus 

Interferer

In [1] and [24], a BPSK signal with amplitude A0 is transmitted over an AWGN channel 

and corrupted by an interferer signal with amplitude A v  The received signal is given by

where ®0 and are the angular carrier frequencies of the desired and interferer signals, 

respectively, n{t) is an AWGN process with two-sided power spectral density NQ/2,  and 

T  is the bit period of the desired and interferer signals. The carrier phase of the interferer 

signal, 0, has uniform distribution in [0, 2n). The binary random variable (RV) b0 {bx) 

assumes value +1 if the desired (interferer) bit is “1” and - 1  if it is “0”.

The receiver design used in [1] and [24] assumes knowledge of the carrier frequencies, 

the carrier phases, the amplitudes, and the symbol timings of the desired and interferer 

signals.

Furthermore, following [1], let co0 = ool . One can then project v(t) on a pair of orthonormal 

basis functions determined by the Gram-Schmidt procedure as

N ow  consider the received  signal w ithout noise, y ( t )  =  v ( t )  — n ( t ) .  There are four 

possible received signal combinations, ±A q0q(?) ( t ) ,  given by

cos(cu0t) + blA l cos(a)ji+  0) +n(t) (3.1)

Let

(3.2a)

(3.2b)

(3.3a)

(3.3b)

y \ (t ) = (Aq + A 1 cos 0) 0o(f) +  (Aj sin 0 ) ^  (?) (3.4a)
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=  (Aq- A j Cos©) 0o(t) -  (A1sin0)01(O (3.4b)

^ ( 0  =  _  (Ao -A jc o s 0 )  0o(f)4-(A1sin0)01(f) (3.4c)

^4(0 =  ~ (A o+ A jcose) (j)0(t) -  (A js in 0 )0 j(t). (3.4d)

Note that the locations of the signal points depend on the parameters A0, Aj, and 0. As

a result, the constellation points are dependent on the signal-to-interference ratio (SIR),
A2defined as Y  =  ^§. Since the signaling constellation is dependent on A0, A v  and 0, the 

decision boundaries for the receiver will also depend on these parameters.

Examining the four-point signal constellation, we distinguish three classes of cases, 

shown in Figs. 3.1-3.3. Fig. 3.1 shows a sample signal constellation where the SIR is 

large. The resulting signal constellation has a large 0o(f) component and a small 0j (t) 

component, due to the larger value of A0. Note that the decision boundaries depend on 

the phase and the SIR. Through trigonometric manipulation, the two intersection points of 

these decision boundaries, Pl and Pj, can be found at

Note that the Pt component along the 0j (t ) axis is greater than the 0j (t) component of the 

highest constellation point (i.e. A° t̂ ° -" >  A ( sin 0).

If, however, point Pt moves below the highest constellation point, one has the situa

tion of Fig. 3.2. Fig. 3.2 depicts the signal constellation for an intermediate SIR level,
A  A cos 0 1where A 1 sin 0 >  0 taij0—  which occurs when =  'F  <  ^ tq- Any SIR greater than this

threshold level corresponds to the case of Fig. 3.1.

Fig. 3.3 shows an additional signal constellation scenario, which is the case if the con-
-A , co 
tan 9

cos 0stellation decision boundary begins to “twist”. That is, this case occurs when 0 t —  <

— A° ill fl°S 8 ■ This occurs when =  T7 <  cos2 0. If cos2 0 <  T  one obtains thetan u A j cosz 0

case of Fig. 3.2.

It is seen that the threshold regions are dependent on the phase difference between the 

desired and the interferer signals and that there are three distinct cases. By determining
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these three cases and their corresponding decision regions, one can derive an analytical 

expression for the BER of this jointly optimal receiver.

tan 6

Desired bit “0”, 
interferer bit “1” . gin q

Desired bit“ l",
interferer bit “1”

Desired bit ‘T \^  
interferer bit “0” \

Desired bit “0”, 
interferer bit “(T

An -  A, cos 6
tan 6

Fig. 3.1. Sample signal constellation for a BPSK signal plus one cochannel interferer 

for large SIR. The thick solid line is the decision boundary. The grey regions are 

trilaterals used to calculate the error performance for the upper right point, as in [3].
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Desired bit “0”, 
interferer bit “ 1 ’ .Desired bit “ 1”, 

interferer bit “ 1”A, sin 6

An -  A, cos 6
tan 6

An -  A, cos 0
tan 6

-  A, i in 0

Desired bit “0”, 
interferer bit “O’"

Desired b it‘T \  
interferer bit “0r

Fig. 3.2. Sample signal constellation for a BPSK signal plus one cochannel interferer for 

an intermediate SIR region (cos2 0 < W < c~jr§)- The grey regions and the thick solid 

lines indicate trilaterals and the decision boundary, respectively.
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Desired bit “0” 
interferer bit “1

Desired bit “1” 
interferer bit “1

Desired bit “1”. 
interferer bit “O'

Desired bit “0”. 
interferer bit “O'

Fig. 3.3. Sample signal constellation for a BPSK signal plus one cochannel interferer. 

This case is for small SIR. Note that is lower than P- in this SIR region.
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3.2 An Analytical Expression for the Error Rate Perfor

mance of the Jointly Optimal Receiver

The Craig representation [3] for determining the error rate performance of 2-dimensional 

signal constellations can be used with the signal constellation derived in Section 3.1. This 

approach is not straightforward. Typically, in single-user receiver structures for four-point 

signal constellations, one divides the signal space into four distinct decision regions. How

ever, when used to recover only the desired signals, the jointly optimal receiver has only 

two decision regions, as shown in Figs. 3.1-3.3.

As shown in [3], [4], [26], the BER is the weighted sum of basic probability expressions 

given by

Using this approach, one divides the correct decision region for a given point into trilat

erals, as in Fig. 3.4. The divisions are straight line segments originating at the constellation 

point and ending at the intersection of two decision boundaries. The angles rj and y/ are 

determined by the geometry of the trilaterals shown in [3] and [4]. The square of the dis

tance from the constellation point to the decision boundary intersection is (V)2 =  a E s. If 

Es = 1, then a  =  (V)2. The parameter £ is a dummy variable.

(3.6)

F  A 2where the signal-to-noise ratio (SNR) is ^  ^  (Es is the average symbol energy).
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Fig. 3.4. Trilateral decision regions for a signal point, from [3] and [4].
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3.2.1 Error Rate Performance in Large SIR Regions

In this case, 'F  >  and the constellation looks similar to Fig. 3.1. Fig. 3.5 shows the 

various regions used to determine the error performance of this jointly optimal detection 

scheme. Note that regions 1 and 6 are identical. Since each point of the constellation is 

equiprobable, the Craig representation as developed in (3.6) can be given in an analytical 

form. Through trigonometric manipulations, one can determine the angles and distances of 

Fig. 3.5 as

k  —  V  I -  sin2 0 (3.7a)

2 _ A l + A 21 - 2 A QA l K 

a sin2 0
(3.7b)

a  _
b -

A q  + A2 + 6AoAj k  -  8 A q A j  k 3 

sin2 9

,2  _  4(Ag +  A2 — 2A0Aj k )  

tan 2 0
(3.7d)

(3.7c)

j% = n  — arccos(2cos2 0 — 1) (3.7e)

=  arcsin

— arcsin (3.7g)

=  arcsin (3.7h)

t,e — arcsin (3.7i)

Define six additional variables, which are the angles of the error regions as

Va — — A (3.8a)

Vc = Zc, <$>c = n - ? sC (3.8b)

Pb =  n - Z a - ^ c ,  <S>b =  £a +  Ze- (3.8c)
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(a) (b)

Fig. 3.5. The 5 trilateral regions used in (3.7)-(3.11). A high SIR example is used here. 

These trilaterals were found using techniques similar to those described in [3] and 

[4], The drawing is for illustration purposes; it is not to scale, (a) Regions 1-3 are 

referenced to the upper right constellation point, (b) Regions 4-5 are referenced to the 

lower right constellation point. Note that region 6 is geometrically identical to region 

1.
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The average probability of bit error is

(3.9)

Note that the first integral has a factor of 2 because regions 1 and 6 are identical in Fig. 3.5.

3.2.2 Error Rate Performance in Intermediate SIR Regions

If one is operating in an intermediate SIR range, cos2 0 <  Y  < ^ r § ,  and the signal constel

lation looks similar to Fig. 3.2. The angles and distances needed for Craig’s representation 

are similar to those in the large SIR case. However, because of the different orientations of 

the decision regions, some angles are changed. This changes the set of variables in (3.8) to

Note the changes in r)a and Oa. The values assigned to these variables are reversed from 

those in (3.8a). This is a result of the new orientation of the constellation points relative 

to the decision  boundary intersection. S ince the intersection point is now  “below” the 

constellation point, the geometry changes. As a result of these changes, (3.9) can then be 

used to determine the probability of error in this intermediate region.

Va = n - £ a ,  &a = £a 

ric  =  Z c , <f>c =  n - Z c

Pb = Z a - & ,  ®b = n - £ a + £e.

(3.10b)

(3.10a)

(3.10c)
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3.2.3 Error Rate Performance in Small SIR Regions

Fig. 3.3 shows a sample constellation for small SIR. This occurs when <  cos2 0. Equa

tion (3.9) can still be used in this case, but there are different variables for the regions now 

given by

Performing the integrals in small SIR regions requires care. In particular, for small SIR, an 

error made by “oversweeping” an area beyond the decision region is less obvious. In this 

case, some of the integrals in (3.9) produce negative values, indicating the oversweep. Fur

thermore, these negative integral values are small compared to the dominant contribution 

from region 1 (Figs. 3.3 and 3.5), making their inclusion harder to detect.

3.3 Numerical Results and Discussion

Using the analytical expression (3.9) with the three sets of variables in (3.8), (3.10), and

(3.11), one can determine the error performance of a jointly optimal BPSK receiver in the 

presence of one interferer for any given 0 and SIR. If 0 is a uniformly distributed RV over 

[0,27t), the average error rate is found by taking the expected value of (3.9) over all 0, i.e.

The result is a sum of double integrals. Our use of the Craig method reduces a three- 

dimensional integral problem to a sum of two-dimensional integrals, where the outer in

tegral is a simple uniform averaging over a closed definite interval. This results in a sig

nificant reduction in complexity. Fig. 3.6 shows some results for various values of SNR 

between 3 dB and 12 dB. Fig. 3.7 shows results for various values of SNR between —6 

dB and 3 dB. While Fig. 3.7 is an extreme case, the figure is useful to show the regions of

Va =  n - Z a ,  <&«, =  £,

r)c =  n -  | c ,  ®c =  &

Pb = n - Z a - £ c ,  <£* =  £, +  &.

(3.11b)

(3.11a)

(3.11c)

(3.12)
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local maxima. Note that the curve for ys = 12 dB is difficult to obtain by simulation in a 

reasonable time frame, demonstrating the usefulness and power of our analytical solution.

Note that this receiver structure has a very small BER at both small and large SIR. The 

theoretical curve for ys = 9 dB in Fig. 3.6 matches the simulation results from [1]. As in [1], 

both sides of this curve asymptotically approach the minimum BER in AWGN when there 

is no interference (at 9 dB SNR, BER = 3.2 x 10” 5 in AWGN). Intuitively, this is because 

detecting the desired signal in a small SIR case is equivalent to detecting the interferer in a 

large SIR case.

Also note that for reasonably large values of SNR (e.g. 3 dB or greater), the worst 

performance occurs when the signal and the interferer are equally strong, i.e. 0 dB SIR. 

This is shown in Fig. 3.6, and enhances the results of [1], which did not have a simulation 

point at 0 dB and appears to have a maximum at approximately 0.5 dB. However, for 

smaller values of SNR, such as those in Fig. 3.7, the maxima are no longer at an SIR value 

of 0 dB. Thus, the maximum is zero only when the SNR approaches large values.
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 9 dB SN R  (analytical)

6  dB  SN R  
—  3  dB SN R  

□ 9  dB  SN R  (sim ulation)

-10
SIR  (in dB)

Fig. 3.6. Bit-error performance of optimal receiver obtained using (3.9) with (3.12). The 

simulation points for 9 dB SNR are from [1].
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-  3  dB SN R
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Fig. 3.7. Bit-error performance of optimal receiver obtained using (3.9) with (3.12), for 

low values of SNR.
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The analytical result from (3.12) now allows one to examine the effects of SNR and 

SIR on the error performance. Figs. 3.8 and 3.9 provide good examples of the effects of 

SIR and SNR.

By observing Figs. 3.8 and 3.9, one can see that there is a region of SIR where the 

BER will remain relatively high. As one increases SNR, the BER curves usually display 

“waterfall”-shaped curves, particularly at very low and at very high SIR. However, in the 

intermediate region, the curves are much flatter, and do not display an sharp “waterfall” 

shape.

The exact analytical result in (3.12) is a useful result that allows one to make many 

observations in the jointly optimal receiver. While one had to previously compute extensive 

simulations to make relevant observations, this new result in (3.12) provides an effective 

tool in assessing the performance of the system.
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Fig. 3.8. The BER performance versus SNR and SIR, of the jointly optimal receiver, for 

9 = n! 12.
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3.4 Bounds to the Error Rate Performance of the Jointly 

Optimal Receiver

The new analytical result allows one to make useful observations concerning the jointly op

timal receiver. In fact, by looking at some analytical bounds to the error rate performance, 

one can see the power of this exact, analytical result.

Verdu [2] gives a thorough description of bounds to the jointly optimal receiver, using 

results from [27] and [28]. These results follow previous works by Forney [29], [30] in the 

investigation of error probability bounds.

In the two-user case (i.e. a desired (BPSK) signal plus one interferer), [2] shows that 

the bQ error probability in the jointly optimal receiver is

P e J o ,„ ,  =  =  (1.0)|(&o,*l) =  (0,0)]

+ 5 P [ ( M i ) =  ( U ) I ( M > )  =  (0>0)]

+ 5p [ ( * o i i )  =  ( 1. o ) l ( M i )  =  ( o , i ) ]
+ \p [ (K A )  = (M)l(*o>&i) =  (0.!)]

where (b0,b {) are the input bits of the original signals, and (&0>^i) are the decision bits at 

the output of the receiver.

One can first examine the upper bounds of this jointly optimal receiver. In [2] and [28], 

the two-dimensional signal space is divided into half-planes. Then, upper bounds can be 

evaluated so that each error probability summand in (3.13) can be upper-bounded by the 

probability of error of a simple binary problem. With this technique, an upper bound to the 

problem can be found as

A0 \  I f  \ / Ao +  A l 2AqA j | P | \

^ -  Q \ y / N j 2 }  +  2 G (  ^ 7 2  J <314)
where A0 is the amplitude of the desired signal, and A x is the amplitude of the interferer. 

These signals are in the presence of an AWGN process with zero mean and double-sided
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power spectral density N0/2.  The correlation between the desired and interfering signals 

is p . If the signals are cochannel signals and have a phase difference of 0, then p  =  cos 0. 

The function Q(-) is the (2-function (the area under the tail of a Gaussian PDF).

A lower bound to the jointly optimal receiver is also described in [2] and [29]. This 

lower bound is found by examining a hypothetical genie-aided receiver, which has addi

tional side information about the transmitted bits.

As an example, suppose that a genie-aided receiver informs the receiver of the value of 

bv  the interferer’s bit. Since bQ, bv  and the noise are independent, the best strategy in this 

genie-aided receiver is to subtract A xbxsx (t) from the received waveform v(t) , which gives 

one the single-user channel of

v ( r ) - A iV iO )  = A 0b0s0(t) + (3.15)

which has a minimum error probability of Q '  —^

One could also have a genie-aided receiver which has information of whether bits b0 

and bx are equal or not, and if they are, what bits are present. This receiver then either 

receives full information or has to solve a binary hypothesis-testing problem. From [2], 

this receiver would have a probability of error of

e'geme 2 1 j N j l  J  K '

Since the jointly optimal receiver has less information than these genie-aided receivers, 

one can thus find a minimum bound to the error rate performance Pe as

\JA  o +A^  2AqAj | p | \
P e, jo in t ^ maX f i j -To | ’ 9 * I ^ / N j 2 (3.17)

One now has enough information to compare the analytical result with these bounds to 

the error rate performance. By examining the effectiveness of the bounds, one can see when 

the exact analytical result is valuable, and when the bounds give a good approximation to 

the system performance.
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Figs. 3.10 and 3.11 show the effects of the bounds as the SNR varies. In Fig. 3.10, 

where 0 =  y |, the lower bound is fairly tight to the exact analytical result. However, the 

upper bound is fairly loose, especially at SNR values less than 3 dB. In Fig. 3.11, where 

0 =  f f , both bounds are much more tight. This comparison shows how the value of 0 can 

significantly affect the value of the bounds. When the desired and interferer signals are 

similar to one another (i.e. with a small 0), the upper bound is not tight. However, when 

the two signals are nearly orthogonal to one another (i.e. as 0 approaches f ), the bounds 

tighten up.

In Figs. 3.12 and 3.13, the value of 0 is constant (0 =  y |) , but the SIR is different in 

each graph. In Fig. 3.12, the SIR is —3 dB, and both the upper and lower bounds are tighter 

to the actual BER performance of the system. However, when the SIR increases to a level 

of 6 dB (in Fig. 3.13), the bounds are looser.

The bounds discussed are for a specfic correlation coefficient p , i.e. a specific value 

of 0. As previously discussed, if the signals are cochannel signals and have a phase dif

ference of 0, then p  =  cos 0. However, it would also be useful to see these bounds with a 

uniformly distributed 0 over the interval [0, 2n). One can thus rewrite the bound by taking 

the expected value of these bounds over a uniformly distributed 0 (or, alternately, over a p  

with an arcsine distribution over [—1, 1] [31]), which creates an upper bound of

• j m )  2 \  v % 7 5

i (  v ^ o + ^ - ^ i A I p I

and a lower bound of

max
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—  u p p e r  b o u n d
—  low er b o u n d

S N R  in dB

Fig. 3.10. Lower and upper BER bounds for a jointly optimal receiver for a BPSK signal 

plus one cochannel interferer, with 'F  = 1 dB, and 9 = n/12, along with the exact 

analytical result.
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x analy tical resu lt
 u p p e r  b o u n d
  low er b o u n d

S N R  in dB

Fig. 3.11. Lower and upper BER bounds for a jointly optimal receiver for a BPSK signal 

plus one cochannel interferer, with = 1 dB, and Q = 5n/l2,  along with the exact 

analytical result.
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Fig. 3.12. Lower and upper BER bounds for a jointly optimal receiver for a BPSK signal 

plus one cochannel interferer, with ¥  = — 3 dB, and G = 5n/12, along with the exact 

analytical result.

54

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



, B
E

R

x analy tical resu lt 
—  u p p e r  b o u n d  
  low er b o u n d

0 1 2 3 4 5 6 7 8
SN R  in dB

Fig. 3.13. Lower and upper BER bounds for a jointly optimal receiver for a BPSK signal 

plus one cochannel interferer, with ¥  = 6 dB, and 0 = 5tt/12, along with the exact 

analytical result.
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Using the bounds in (3.18) and (3.19), one can then look at the effects of the bounds 

with a random 6. One can see in Fig. 3.14 that with a random 6, the upper bound becomes 

fairly loose as the SIR increases to large levels. It can be seen from Fig. 3.14, however, 

that except for this high SIR region, both bounds are fairly tight.

—  Low er bound
—  U pper bound

x analy tical resu lt

ocinm
<D

Q_

\

f 5L
-10 30- 5

SIR  in dB

Fig. 3.14. Lower and upper BER bounds of the jointly optimal BPSK receiver with one 

interferer, with 6 uniformly distributed over [0, 2n), y = 9 dB, along with the exact 

analytical result.

However, one can tighten the upper bound, since one knows that the jointly optimal 

receiver performs better than a conventional m atched filter receiver. Thus, w e can have 

another upper bound, which would be the error rate performance of a matched filter in this
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system. This would create a new upper bound of

Pe, U B 2 ~
(2n _L I 0

Jo 2 n 2
dd.  (3.20)

With this bound in addition to (3.18), a composite upper bound is

P e ,U B  =  m a X { ^ e ,  U B V  P e ,U B 2 (3.21)

The bound in (3.21) is much tighter, and does result in a more accurate upper bound for 

most levels of SIR, as seen in Fig. 3.15. In Fig. 3.16, one further sees how the SNR affects 

the tightness of the bounds. The graph shows that at most high values of SNR (i.e. greater 

than 6 dB), both upper and lower bounds are very tight. The bounds tend to diverge as one 

reaches lower values of SNR (0 to 5 dB). The upper bound is still relatively tight at these 

low levels of SNR, because of the additional upper bound Pe UB2. It is stated in [2] that this 

particular upper bound becomes tight as the SNR approaches 0.

As a result, these 2-user bounds yield the following results:

•  The lower genie bound is tight for most cases of SNR and SIR. The lower bound is 

slightly loose at low values of SNR, but it is still a good approximation to the derived 

exact analytical result.

•  The original upper bound in [2] is loose for large values of SIR and small values of 

SNR. However, if one combines this bound with a matched filter upper bound, the 

upper bound is also relatively tight.

•  Most importantly, both bounds are relatively tight to the derived analytical result. 

This gives the analytical result validity, and emphasizes the importance of the derived 

result. While the bounds are tight, they are not exact. This reinforces the importance 

of the performance analysis in this chapter.
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Fig. 3.15. Lower bound and composite upper bound of the BER of the jointly optimal 

BPSK receiver with one interferer, with 0 uniformly distributed over [0, 2n), y  = 9 

dB, along with the exact analytical result.
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Fig. 3.16. Lower bound and composite upper bound of the BER of the jointly optimal 

BPSK receiver with one interferer, with 9 uniformly distributed over [0, 2n), ¥  = 3 

dB, along with the exact analytical result.
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3.5 Summary

Analytical expressions for the error rate performance were derived for a jointly optimal 

receiver for BPSK signals in the presence of one cochannel interferes While simulation 

results were shown in [1], simulation cannot be used for some SIR and SNR values of 

interest. Nor can simulation be used in some system optimizations.

It is seen that an analytical solution is intricate due to the changing nature of the decision 

regions. In fact, the expression takes different forms, depending on specific SIR threshold 

levels. This result (3.9) is a tractable, exact analytical solution for the average error rate 

performance of a BPSK jointly optimal receiver structure for one cochannel interferes

These results have been accepted for publication in [32] and [33]. Since these exact 

results are more precise than previous upper and lower bounds, the derivation in (3.9) is 

both useful and invaluable to the analysis of the jointly optimal receiver. Eqn. (3.9) is a 

powerful result that allows one to obtain the precise BER of the jointly optimal receiver, 

without having to perform extensive simulations.
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Chapter 4

Simulating the Jointly Optimal Receiver 

with Importance Sampling

The case of a BPSK signal in the presence of a single interferer plus AWGN was discussed 

in Chapter 3. By using the derived analytical result, one can obtain the error rate perfor

mance of the the jointly optimal receiver for an arbitrary value of SNR. Thus, one can 

determine the error rate performance much faster than a standard Monte Carlo simulation, 

particularly when the BER is at a small value (such as 10“ 10).

Nonetheless, it is useful to obtain efficient simulation techniques for small values of 

BER. Moreover, it is desirable to extend the study of this jointly optimal BPSK receiver to 

situations with multiple interferers, where theoretical results are not available. The follow

ing discussion describes how an importance sampling simulation technique can be used to 

efficiently achieve low BER values.

4.1 A Background to Importance Sampling

Importance sampling has been shown [34], [35] to be a useful method in reducing the 

computer processing time for a simulation process. In one of the key works on the subject 

of importance sampling [36], Shanmugan and Balaban describe the usefulness of the IS
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technique and how it can be useful for communications systems. This procedure has been 

used in digital satellite simulations [37], and a rigorous mathematical description of the 

technique is found in [38].

The conventional IS technique has been modified by others in [5], [39] and [40] to 

achieve greater sample size savings. In addition, references [41] and [42] remark that 

the effectiveness of importance sampling decreases as the memory (or dimensionality) in

creases. This is also an important finding of [18], which is one of the key references in the 

following discussion.

To understand importance sampling techniques, one must first understand the back

ground to traditional Monte Carlo simulations. Typically, communications systems are 

simulated using a Monte Carlo approach. Reference [43] gives a good description of Monte 

Carlo simulation processes. In this type of simulation, the behaviour of a physical system 

can be described by probability density functions (PDF’s). With the known PDF’s, a Monte 

Carlo simulation takes a random sampling from the PDF’s. Multiple simulation trials are 

then performed, and the desired result can be found as an average over the number of 

observations. In practical communications systems, one can find the statistical error (the 

variance) in this result. With the variance, one can obtain an estimate of the number of 

Monte Carlo trials needed to obtain a specific error value.

Monte Carlo simulations are effective because they can be applied to general cases. 

These simulations can be used to analyze the effects of several disturbances to a commu

nications system. However, one significant drawback of Monte Carlo simulations is the 

large number of trials needed for low error probabilities. For example, if the BER is at 

approximately 10~6, one needs approximately 107 trials per simulation run [44].

Since computing resources are finite, one desires to reduce the number of samples or 

trials needed to generate low error probabilities. Reference [36] describes the IS technique 

by biasing the trials [45], In this biasing process, more trials are generated from the tails 

of the noise process. More tail samples are useful because errors are usually generated by 

samples in the presence of high noise. If one knows the bias associated with each noise 

trial, one can then unbias the error count at the output [36] , allowing one to develop an
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unbiased estimate of the error probability of the system.

To understand the context of IS in communications system simulation, consider the 

basic baseband communication system shown in Fig. 4.1. Following the discussion in [44], 

suppose that the input to the system S(t) has the form

where {cij} is the input amplitude sequence, assuming values of ± A  depending on whether 

the input bit is 0 or 1. The waveform p(t) is a non-retum-to-zero pulse, and Tb is the bit 

duration.

In the model, AWGN n(t) added to the signal to form X(t).  The signal X(t)  passes 

through a memoryless system h(-) and is sampled to obtain the sequence {Yk}.

Fig. 4.1. Block diagram of baseband communications system, from [5].

To obtain the probability of the error Pe of the system, one can perform a Monte Carlo 

simulation. One obtains sampled values of the random processes S(t) and n(t) using ran

dom number generators. This forms values of X (t), which generates a corresponding sam

pled sequence {Yk}. The output bit is chosen by comparing {Tfc} against some threshold. If 

this output bit does not match the input bit, an error is generated, and is added to a counter 

in the simulation program.

If one knows the output PDF f Y(y) of the system, one can obtain Pe as

where #  is the region of y that corresponds to an error. Alternately, one can write Pe in

S ( t ) ^ ' Z a jp ( t - j T b) (4.1)
j

k

(4.2)

63

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



terms of an error counter function, I$(y), where

1, y e &
W = {  (4-3)

0, y £ $ .

Following the discussion in [43], one can then rework (4.2) as

pe =  l_Ji:(y)fr(y)‘iy

= •EM1')] <4-4)

where E[-] is the expectation operation. It can be shown [46] that the sample mean is a 

natural estimator Pe of the expectation. Therefore,

=  (4-5)
j=l

where N  is the number of trials. It can then be shown [43], [44] that the mean and variance 

of the Monte Carlo estimator are then

E(Pe)= P e  (4.6)

and
,  _ f t d - p . )

a MC ~  ^  I )

Since the mean of the estimator is equal to Pe, the estimator is unbiased.

Another way to use simulation to estimate Pe is to note that if gY (y) is another proba

bility density function such that f y(y) is zero whenever gy(y) =  0, then one can express Pe

as [47]

Pe - /
OO

h ( y ) f y ( y ) dy
-O O

/
OO

^ ( y ) w (y)sr(y)dy
-O O

£*[/»(>)«'(>’)]• (4.8)
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where one defines W  (y), the weight of the trial y  as

(4 9 )

From (4.8), one can see that Pe can be estimated by generating values of a sequence (1^} 

that has a density function gY (y), and then by using as an estimator the average of the values 

of I$(y)W(y).  When a density function gY(y) is chosen such that the random variable 

has a small variance, this “importance sampling” technique can result in an 

efficient estimator of Pe [47].

Since (4.8) is the same as (4.4), this estimator is also unbiased. From [43], the variance 

is found by
,  _ S Z .W fr < y ) W (y )d y - l fOj s — -----------------—----------------- . (4.1UJ

In the importance sampling technique, one chooses gY(y) such that f Y(y) < gY(y) for 

all y  € $ . This action causes more errors in the simulation. However, each error will be 

counted with a weight of W(y) for the unbiased result. As shown in [44], this can result in 

a sample size reduction of

y , = ° k  = ________________   ( 4 i i )

There are a number of practical difficulties with importance sampling. Firstly, in multi

dimensional cases, it may be difficult to analytically compute I$(y), f Y(y), or W(y). Fur

thermore, when counting the errors in importance sampling, one needs to compute the 

weight W (y) for each and every error. This increased computation may lead to increased 

time to determine the estimation of the error. Finally, in certain communications systems, 

if Pe is the quantity to be estimated, the boundaries for the error region in signal space 

may not be actually known. This uncertainty may cause difficulties in choosing a properly 

biased gY(y) to create more error samples.

Thus, it is important to use importance sampling with care. The time savings in simu

lation using IS techniques can be significant. For efficient simulations, however, one needs 

to properly bias the noise PDF’s and efficiently compute the weight W(y). By using an 

effective IS technique, one can greatly reduce the sample variance and create quick and 

effective simulations.
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4.2 Importance Sampling in 2-Dimensional Space

When a BPSK signal is in the presence of a cochannel interferer, one can project the re

sulting signal constellation as four points in a two-dimensional plane. Two-dimensional 

AWGN is then added to the signal, which can then be detected in the jointly optimal re

ceiver.

Consider two orthogonal axes x  and y in signal space. One can then consider the input 

noise with the joint Gaussian density of

where one is assuming that a 2 =  1. A 3-dimensional representation of this joint PDF is 

shown in Fig. 4.2.

-5  -5

Fig. 4.2. Three-dimensional representation of the jointly Gaussian PDF (versus x  and y, 

from (4.12)), with cr=l.

Following the derivation of the mean and variance in Section 4.1 and in [44], one can 

derive the estimator for the bit error of the desired 2-dimensional signal. The probability

(4.12)

0.16

5

66

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



of bit error is now

Pe =  [  f x , y ( x , y ) d y d x  (4.13)
j y e &

where & is the region in signal space that corresponds to an error. Again, one can write Pe

in terms of an error counter function, I &{ x , y ) ,  where

[ 1, (*,;y) e  #
=  { (4.14)

[o , (x.y) i  0 .

As in Section 4.1, one can choose another PDF gXj{x ,y)  such that the variance of the new 

estimator is smaller than that of the direct Monte Carlo method. Then, one has

/oo

h ^ y ) U y i x ^ y ) d y d x
-OO

f °  h{x,y)fx,y{x,y)

=  L ^ Z M ~ g x A ’y ) y

/oo

I & ( x , y ) W { x , y ) g X!y ( x , y ) d y
-oo

=  Eg U & i^yW i^y )]  (4.1.5)

where one now defines a two-dimensional weight W ( x , y )  as

W(x,y)  =  A M .  (4.16)
8 XA x ^y)

An appropriate estimator for the bit error rate of the desired BPSK signal is then

£  =  h  2 ) h ^ p y ^ ^ p y j ) -  (4.17)
j=  1

Reference [44] describes the fact that the estimator is unbiased, since

E[pe] = ^  'Zj'JdfxAx’y)dydx
=  Pe- (4.18)

The variance of the estimator is also shown in [44] as

t f s  f x A x i y ) l w (x i y )  ~  P e ] d y d x  (4.19)
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and the sample size reduction factor Ysampies *s

y = __________ P e ( i ~ P e ) _________________ „  2Q,
( J f t f Xiy(x,y)W(X, y ) d y d x ) - P f

Thus, one wishes to appropriately bias a PDF gx,y(x,y) such that more error samples 

occur at the tails. As an example, consider the biased PDF of

gx,y(x>y) = s(x)s(y) (4-2!)

where [44]

g ( x )  = { 1 V *}  ' ’ ' (4.22)

k - exp ( (4.23)

where

k  - exn  (  — ̂

and D is a parameter that controls the degree of biasing of the PDF.

Reference [44] investigates the effectiveness of this biased PDF for importance sam

pling purposes. However, Beaulieu, Biglieri, and Lai [18] develop a more effective PDF 

for importance sampling using [48]. Consider the Box-Muller method [49] for generating 

two independent Gaussian random variables. This transformation yields two independent 

Gaussian random variables

X l =  v/ —2TnZ7  ̂cos(2nU2) (4.24a)

Yx =  x/ - 2 1 n t /1sin(27rC/2) (4.24b)

where Ul and U2 are uniformly distributed random variables over the interval (0,1).

By considering the joint PDF created by the two random variables X 1 and Tj, reference 

[18] introduces an useful technique to create a hole in the joint PDF. One can now generate 

two new random variables X  and Y, according to

X  =  J - 2 \ n { k U x)cos{2nU2) (4.25a)

Y = -2 \n{kUx)sm(2nU2) (4.25b)
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where

k — exp
R * \
~2 r

(4.26)

where the parameter R can be used to control the degree of the biasing of the generated 

noise samples.

Through the results of (4.25a) and (4.25b), one would then obtain a 2-dimensional joint 

PDF with a hole in the middle. Reference [44] describes the joint PDF of the random 

variables X  and Y as

where R is the same parameter as in (4.26). This parameter can be used to create the radius 

of the “displaced mass” from the original joint Gaussian PDF.

The results of [18] are worth emphasizing. Consider a basic scatterplot of trials gener

ated from the joint PDF in Fig. 4.2. If we project these trials on a basic orthogonal set of x  

and y axes, one can have the plot of Fig. 4.3.

Now consider a slice of the joint PDF from Fig. 4.2 along the z-plane at y  =  0. If 

one made a similar slice of the joint PDF of (4.27), one would have the result of Fig. 4.4. 

By examining the slices of these PDF’s, one can clearly see that the centre mass has been 

redistributed to the tails of the joint PDF. This mass redistribution restricts sample points 

to areas outside the circle of radius R. A scatterplot of this resulting PDF is shown in Fig. 

4.5, clearly depicting the exclusion of trials inside the hole of radius R.

Reference [18] further describes that the weighting function is undefined whenever one 

is within the radius R:

Eqn. (4.28) is undefined within R because sample points never occur in that region. This is 

an important fact; it is thus important that the region of integration #  lies outside the disk 

if the estimator is to be unbiased.

x2 + y 2 > R2 

x2 + y 2  <  R2
(4.27)

k, x2 + y2 > R 2

undefined, x2 + y 2 < R2.
(4.28)
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Fig. 4.3. Scatterplot of 2-dimensional Gaussian noise simulation (with iV=1500, and a  = 

1 ), centered at the origin.
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—  Gaussian PDF
— ■ Biased PDF (centre m ass removed)
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Fig. 4.4. Slice of 2-dimensional joint Gaussian PDF, from (4.12), and the biased PDF 

from (4.27), with >>=0, c = l ,  and /?=1.
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Fig. 4.5. Scatterplot of biased noise simulation, using the PDF in (4.27), centered at the 

origin, with iV=1500, and R= 1.
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Let d  be the minimum distance from the signal point to the decision boundary. Ref

erence [18] shows that the variance of the estimator is minimized when k is minimized. 

Because of this fact, [44] describes that the smallest variance occurs when R is set equal to 

the threshold distance d.

Therefore, it is desirable to set the noise sample points greater than a radius d  away 

from the signal points (since no errors occur when the radius is less than d). Using this 

distance, one minimizes the variance and appropriately biases the PDF’s so that one can 

achieve low-BER simulations. An example of this effect with a two-point orthogonal signal 

constellation is shown in Fig. 4.6. In this Figure, the noise points are distributed so that 

they lie beyond a distance d. This creates more sample points in the error region, and by 

counting each error sample with weight k, one can obtain very low BER’s.

- 4  - 3  - 2  -1  0 1 2  3  4  5 6
X

Fig. 4.6. Scatterplot simulation points of 2-dimensional biased Gaussian noise for 2 points 

centered at A  and B, with a straight line decision boundary, with iV=350, and R = d.
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By using an importance sampling technique in 2-dimensional signal space, one now has 

a method to efficiently simulate the jointly optimal BPSK receiver. This powerful technique 

will reduce simulation time and allow one to extend the simulation to small levels of BER.

4.3 Importance Sampling and the Jointly Optimal 2-User 

Receiver

The technique developed in Section 4.2 will allow one to obtain accurate simulations for 

the jointly optimal 2-user receiver. The basic method for the simulation follows:

•  For N  number of points, a uniformly distributed random variable between 0 and 1 is 

created by a random number generator. If the random variable is less than 0.5, one 

assigns the input bit b0 to the BPSK signal as “0”. Otherwise, b0 is “1”.

•  The process above is repeated for bv  the interferer’s bit.

•  If the phase difference 0 is random, N  uniformly random 0 values in the interval [0, 

2n) are created.

• Based on the values of SNR, SIR, and theta, the signal constellation points from 

Chapter 2 are calculated for the orthogonal axes for <j)Q(t) and 0j (t), i.e.

yj(f) =  (Ao + A jc o s0 ) 0o(f) +  (A1 s in 0 )0 1 (r) (4.29a)

y2(t) = (Ao -A jC o s0 ) 0o(f) -  (A jS in© )^^) (4.29b)

y3(t) =  -  (Aq — A jco s0) 0o(r) +  (Aj s in0)0 j(r) (4.29c)

yA(t) =  -  (Aq+Aj cos0) 0o(r) -  (Aj s in0 )0 1 (t). (4.29d)

•  Consider the constellation point (b0, b x) = (1,0) (i.e. the “desired” bit is equal to “1”). 

One will then calculate the distance between these points and each of (b0, b x) = (0,0) 

and (0,1). The smallest distance determines the decision boundary. The threshold
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length d^  is equal to half this distance, as shown in Fig. 4.7. This process is 

repeated for (b0, bx) = (1,1) to find ^  . One does not have to repeat the process 

for either of (b0, bx) = (0,0) or (0,1), since the problem has symmetry. That is, the 

decision regions for points (bQ, b x) = (0 ,0 ) and (0 ,1 ) are mirror images of those for 

points (bQ, bx) = (1,0) and (1,1). With this knowledge, one reduces the number of 

simulation samples required.

0 , 1)

' ( 1 . 0 )

(0, 0)
» x

Fig. 4.7. Constellation points and decision boundary calculation (dotted line) for a jointly 

optimal BPSK receiver for 2 users. The value of R (in this case, d^x op  is also shown.

•  Using d^x and d ^  one can calculate a corresponding and ^  from (4.26).

•  The values of k^x and k^x ^  are then used with (4.25a) and (4.25b) to create biased 

noise trials. The resulting signal plus noise constellation points are (v0, V j ) .

•  The jointly optimal receiver decodes the point by determining the closest (bQ, bx) 

point to (v0, Vj). The bit bQ is chosen based on this operation. If b0 ^  bQ, an error

75

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



occurs.

•  Because the original PDF was biased, every error is counted with a weight W(x,y)

(4.28). The weight W(x,y) is either or depending on the original PDF.

• The weighted errors are counted, and are then divided by N  to yield the estimate of 

the BER of the jointly optimal receiver.

Importance sampling results in tremendous time savings when simulating the results 

for the jointly optimal receiver. In a tradtional Monte Carlo process, one needs to sample 

1015 to 1016 points to simulate BER’s of the order of 10“ 14. With importance sampling, 

one can have many orders of magnitude fewer samples to achieve the same BER’s with 

similar variance.

It is important to verify this simulation technique with known results. Since Chapter 3 

determined an exact analytical result, one can compare the results of IS simulations with 

the analytical formulae in Chapter 3. The results are shown in Fig. 4.8. Relatively large 

values of SNR are used in the simulation (10 dB, 12 dB, and 14 dB), and yet one is still 

able to simulate BER’s of 10“12. As in Chapter 3, the curves asymptotically reach the BER 

value of a single BPSK signal in AWGN. Fig. 4.8 shows that the IS simulation works well, 

matching the curves obtained by analytical expressions.
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5  10 15
SIR  in dB

Fig. 4.8. The BER performance versus SIR of a jointly optimal receiver for a BPSK signal 

plus one interferer, determined by analysis and IS simulations, with Q=n/6.
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This importance sampling technique also allows one to see how the BER changes in 

relation to a non-random 0. While these changes could have been observed using the 

analytical method from Chapter 3, a quick simulation technique is also useful. Figs. 4.9 

and 4.10 demonstrate how the error rate curve changes according to 0. In Fig. 4.9, one 

sees that as 0 approaches zero, the SIR bump in the error rate curve increases significantly. 

Conversely, as 0 approaches f , the curve flattens out. This is intuitively correct, as when 

the BPSK signals differ by a value of f , the signals’ orthogonality makes it easier to detect 

the desired signal.

The effect of a changing 0 is also seen in Fig 4.10. This Figure shows that as 0 ap

proaches j ,  the SNR curve approaches that of a single BPSK signal in AWGN. However, 

as 0  approaches zero, the error rate performance does not decrease as sharply.

Importance sampling has a significant effect on the simulation of the jointly optimal 

BPSK receiver. Moreover, this simulation technique reinforces the analytical results of 

Chapter 3. In the case of a desired signal plus one interferer, the simulation time savings 

are large. One can achieve low BER’s with small variances. This allows the technique to 

apply to many values of SNR, SIR, and 0, which reinforces the power of the IS procedure.
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BPSK signal plus one interferer, with SIR of 'P = 6  dB.

80

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



4.4 Importance Sampling Simulation Gains

4.4.1 Comparing Monte Carlo Simulations to Importance Sampling 

Simulations

To assess the value of the importance sampling technique, it is useful to examine the savings 

in simulation time. One can determine these savings by finding the appropriate number of 

necessary simulation samples.

References [18] and [44] describe certain run-time considerations for efficient simula

tions. Consider N  iterations by a typical Monte Carlo simulation. Suppose that the time to 

generate a random noise variate is tG, and the time to compute the rest of the decoding is 

tD. Then, the total time for simulation is

r « c  =  A f( 'c + 'D)- (4.30)

For a similar variance in the estimate, NIS trials will be used, with j^=Ysampies- Let the 

generation of each IS random noise sample be of duration time tG2. This yields the total 

time of importance sampling simulation as

s = ^ is^ gi +  *d)> (4.31)

assuming that the calculation of weight W(.x,;y) is not large, relative to the decoding time 

tD.

The simulation time savings is

t m c  _  N ( tG +  tD ) (4.32)
T l s  N i S ( t G2 +  r£>)

If tD »  tG or if tD » tG2, an approximation is

T a  = J T  =  (4-33)
1 I S  n IS

Thus, if one can find the value of Ysampies, one can find the approximate simulation 

time savings. This is a useful result, since the value of Ysampies was defined in (4.20).

81

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Furthermore, it is shown in [44] that when the threshold distance d  is used as the radius R, 

the sample size saving can be approximated by

The result of (4.34) indicates that with specific values of d  and Pe, one can determine the 

simulation savings time.

To find the savings time, it is useful to determine the number of trials required for 

a typical Monte Carlo simulation. A typical rule of thumb is to choose N  to be on the 

order of 10/Pe to 100/Pe [34], [43], [50]. Choosing an N  value of 100/Pe should yield a 

relatively small sample variance. Reference [43] describes the 95% confidence interval of 

this simulation to be about (0.8Pe, 1.25Pe). If one wishes to have small graphical variance 

in simulation plots, one could choose an N  value of 1000/Pe, which has a 95% confidence 

interval of about (0.94Pe, 1.06PC) [43].

Using the rule of thumb of N  = 100/Pe, it can be seen that a large number of trials 

is needed for good simulations. From the number of Monte Carlo trials in Figs. 4.11 and 

4 .1 2 , one observes the inverse relationship between the number of trials and Pe, the sampled

One can also use (4.34) to examine the sample size savings Ysamples of the simulation. 

Plots of Ysampies versus SIR and SNR are shown in Figs. 4.13 and 4.14. An arbitrary 

value of 0 is chosen for illustrative purposes, and the minimum value of d  is chosen in the 

calculations.

As discussed, the value of Ysampies is a rough indication of the ratio of time elapsed 

between a Monte Carlo simulation and an importance sampling one. However, the plots of 

Figs. 4.13 and 4.14 are very similar to those of Figs. 4.11 and 4.12. This seems to indicate 

that for the specific rule of thumb (N  — 100/Pe), there is not a significant increase in the 

number of IS sample points.

Fig. 4.13 shows that importance sampling benefits when the SNR increases. In general, 

this is because high-SNR regions have larger values of d  and lower values of Pe, which 

would decrease the value of the denominator in (4.34). For a similar reason, importance

(4.34)

BER.
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sampling has greater benefits when the SIR is either really large or really small.

4.4.2 Number of Trials for Importance Sampling and Monte Carlo 

Simulations

Subsection 4.4.1 introduces the rule of thumb for Monte Carlo simulations of NMC =  

cMC/Pe, where cMC is some constant. Thus, the number of Monte Carlo simulation points 

is inversely proportional to the error rate Pe. This relationship is why so many trials are 

required to simulate low error rates.

However, the results of Subsection 4.4.1 indicate that NIS is not as dependent on Pe. To 

verify this, one can examine the variance a 2. In the case of Monte Carlo simulation, [44] 

states that the variance of the Monte Carlo estimator is

o £ c = ^ .  (4.35)
MC

Set the normalized variance o 2/P 2 as a constant cvar, i.e.

°M C  _  ( \ ~ P e ) ___

PJ Pe*MC
(4.36)

An approximation for NMC can be made by noting that as Pe approaches small values (such 

as 10“6), the numerator in (4.36) approaches 1. Then,

— ------- —  -  cmr, (4.37)
P} PeNMC

or, by rearranging terms with cMC — 1 / cvar,

CMC (4-38)
r e

where cMC is an arbitrary constant. Thus, for an arbitrarily-sized variance, choose a cMC for 

the variance (for example, 10,100, or 1000), which leads to the rule of thumb in Subsection 

4.4.1.

A similar calculation can be performed for the normalized importance sampling vari

ance ofs/P 2. The variance is [44]

_ 2  _
7 5  “  N  lwis
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where k is from (4.26). Since, from (4.28), W (x,y ) =  k beyond the radius d, (4.39) can be 

rearranged to

=  (4.40)
N I S  N IS

Set the normalized variance equal to some constant cmr2, i.e.

° h  k ~ p‘ r , - 1
P} PpN,r N, ^VarT

(4-41)
e e IS  i y IS  

Again, one can make a rearrangement where cIS — 1 / c var2, yielding

k
Nis = ci s { y e - 1)  <4-42>

One can now find an approximate value of Pe. Consider a constellation point in two- 

dimensional signal space. If d  were the perpendicular distance from the point to a straight- 

line decision boundary, then an approximate value of Pe is

Pe ~  Q{d), (4.43)

assuming a normalized noise variance equal to 1. The function Q(-) is the Q function. Note 

that in the jointly optimal receiver case, the decision boundary is not simply a straight line. 

However, as d  increases, the value of Pe in (4.43) approaches Q(d).

An asymptotic approximation to the function Q(d) can now be made as [51]

(4.44)
z \ /n

where erfc(-) is the complimentary error function, related to Q(-) by

Q(x) =  ierfc fZL) . (4.45)

A rough approximation of (4.43) is then

exP ( —t )
Pe ~  Q(d) ^  d ' ^ 46>

Combine (4.26) with (4.42) and (4.46) to yield

/  ,  * \  \

«  y/2nc[Sd — cis . (4.47)
k

Nis ~  cis ( pg ~  1 ) ~  cis
exp H I-.

e x p ( - ^ )

V d y / 2 n  )
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That is, NIS is approximately linearly dependent on d, the minimum distance to the decision 

boundary. This is a useful result. Empirically, we have observed that N[S is approximately 

independent of Pe. This is a very important result because it implies that one can simulate 

arbitrarily small values of Pe using this importance sampling technique. While there is 

still dependency on d, this value does not fluctuate as significantly as Pe, allowing one 

to efficiently simulate small Pe values. In fact, a slight change in d results in a significant 

change in Pe. For example, using the approximation in (4.43), Pe is approximately 3 x 10- 5  

for a value of d  =  4, while it is approximately 1 x 10- 7  for a value of d  =  7. For this reason, 

one can simulate extremely small BER’s using a slowly-increasing N[S.

Note that this is only an approximation; there is a fluctuation in the required number 

of trials. Even so, the variation in NIS is much smaller than the resulting increase in NMC. 

Thus, importance sampling in this particular two-dimensional problem results in significant 

savings in the number of required trials. Consequently, the time for simulation is decreased 

by several orders of magnitude, particularly for low values of BER. This benefit of impor

tance sampling allows one to efficiently simulate the jointly optimal BPSK receiver.

4.5 Summary

The importance sampling simulation technique in [18] is a very useful procedure in the 

simulation of a jointly optimal BPSK receiver. Since the two BPSK signals create a 4-point 

signalling constellation in 2 -dimensional space, appropriate decision boundaries can be 

found. One can then bias the PDF to that of (4.27) and count the sample errors accordingly.

For this 2-dimensional jointly optimal receiver problem, importance sampling is a pow

erful technique. It has 2 main benefits:

•  For a given constellation point, the weight W(x,y) is constant; W(x,y) =  k. This 

can lead to substantial gains in com putational time. W hereas traditional importance 

sampling causes continuous recalculation of W(x,y) and f x,y(x,y), the IS technique 

developed in [18] has W(x,y) =  k.
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•  As shown in [18], this version of IS is most effective only when we can accurately 

estimate the minimum distance d. However, with the assumptions made in this inves

tigation, d  is known in this receiver. In fact, d  is half the minimum distance between 

two points in the 4-point signalling constellation.

Importance sampling has been shown to be an efficient simulation technique. It results 

in a significant decrease in sample points for a small variance. Moreover, by calculating the 

minimum threshold distance d  between points, one has an effective method of extending 

this case to scenarios where there are more than 4 constellation points. These multiple- 

interferer situations will be analyzed in the following chapter.
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Chapter 5 

Performance of Multiple-Interferer 

Jointly Optimal Receivers

The procedure of Chapter 4 provides a useful technique in simulating the jointly optimal 

receiver for BPSK signals in the presence of multiple interferes. Using importance sam

pling, one can obtain efficient simulations for multiple interferes.

One can better understand the nature of the jointly optimal receiver when considering 

these multiple-interferer cases. Indeed, the results of this Chapter verify that additional 

interferes worsen the error rate performance of the jointly optimal receiver.

5.1 Simulating the Multiple-interferer Jointly Optimal Re

ceivers

In [52], Kwan and Leung consider an individually optimal receiver in the case of a BPSK 

signal in the presence of 2 interferes [53].

The description of the problem follows that of the 2-user case in Chapter 2. Consider 

again the desired BPSK signal A0 Z?0 v0 (r) transmitted over an AWGN channel. This trans

mission is now in the presence of additional interfering BPSK signals, where

i =  1,2, ...K (K  is the total number of interferes). Again, A( is the amplitude of the signal
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from user i, while bi is the bit transmitted (either —1 or +1) by user i. The deterministic 

signal assigned to the ith user is st(t). Synchronous signals are assumed. One can then 

write the received signal as

where n(t) is white Gaussian noise with two-sided power spectral density NQ/2, T  is the 

bit duration, and ft),- is the angular frequency of signal i. Since one is considering cochannel 

interference scenarios, let ft),- =  ft)0  =  ft) for all i. The phase difference between signals 0 

and i is 0 ,- (0 O =  0 )-

An individually optimal receiver using a maximum likelihood ratio was developed in 

[52]. Previously, in [2] and [54], jointly and individually optimal receivers are described. 

In essence, an individually optimal receiver selects the appropriate bit b0 6  {—1, +  1} that 

maximizes the a posteriori probability

while the jointly optimal receiver selects the bit vector b = [b0 bl ... bk] that maximizes the 

joint a posteriori probability

It is shown in [2] that as the SNR increases in the multi-user channel, the jointly optimal 

receiver performs nearly as well as the individually optimal receiver. This result is similar 

to the two-user case discussed in Chapter 2.

Following [1], [52], and Chapter 2, project v(t) on a pair of orthonormal basis functions 

determined by the Gram-Schmidt procedure as

K

v(t) = £ AM ( 0 +«(*)» o < t < t
i= 0

(5.1)

(5.2)

P[(b)|v(0, o < * < r]. (5.3)

(5.4a)

(5.4b)
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where 0 g(f) =  y ^co s(o )0 f) and =  y/^cos(£U0f +  0 ,). 

One important aspect of this orthogonalization is that all signals A fj^s ft)  can be ex

pressed as the sum of the two orthonormal signals in (5.4a) and (5.4b). That is, one can 

express s f t )  as the sum of two orthonormal functions:

Jo( 0  =  0 o(O (5-5a>

si(t) =  (c°s0,-)0o(O +  (sin 0 /)0i(O> i = l , 2 , . . . K  (5.5b)

Thus, the dimensionality of this problem is 2, independent o f  the value o f  K }  The 

consistently two-dimensional nature of this problem is beneficial. Importance sampling 

techniques from Chapter 4 can be used for any number, K, of cochannel interferers.

One can now consider the received signal without noise, y(t) =  v(t) — n(t). There are 

2K+l possible received signal combinations, ±A 0 .Sg(r) ± A {s {(t)... ± A KsK(t).

For example, if there are 2 interferers, there are 8  possible received signal combinations, 

as shown on the scatter plot of Fig. 5.1:

y0 0 0 (t) =  ( -A o -A jc o s 0 j  - A 2cos02) 0o(r) +  ( - A 1 sin0 1 - A 2 sin02 )0j(r) (5.6a)

y001(r) =  (-A q-A jC osO j + A 2cos02) 0o(O +  (-AjSinOj -F A jS inO j)^^) (5.6b)

y010(r) =  (—Aq+AjCOsOj —A2cos02) 0o(i) -I- (-fAjSinOj —A2smQ2)0i(t) (5.6c)

y011 (i) =  ( -A 0 +  Aj cos 0j +  A2cos02) 0o(f) +  (+Aj sin0j +  A2sin02) ^ (t ) (5.6d)

y100(0  =  (+A0 -  Aj cos 0j - A 2cos02) 0o(O +  (-AjSinOj - A 2sin02)(/>1(r) (5.6e)

yioi(t) =  (4-Ao - A 1cos01-|-A2cos02)0 o(i) +  ( - A 1sin01-|-A2sin02)01(r) (5.6f)

y110(0  =  (-t-Ag-l-AjCos©! - A 2cos02) (p0(t) + (+A1sinOl -  A2sin02)01(r) (5.6g)

y n i (t) — (+A0 + A jco s0 j + A 2cos02) (j)0(t) +  (+A jsin0j + A 2sin02)0j(f) (5.6h)

xThis is a result of the cochannel nature of the signals, i.e. (£>i =  c o 0 =  CO. It is shown in [1] and [52] that 

if the K  interferers do not have common there could be up to K  required orthonormal vectors.
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Fig. 5.1. Scatterplot of BPSK signal plus 2 interferers and AWGN, with SNR=20 dB, 

XF,=3 dB, ^ = 0  dB, 6X = n/6, and 02  = 2n/3.

The process can also be repeated for 3 interferers. A scatter plot of this scenario is 

shown on Fig. 5.2. On Fig. 5.2, the noise of two pairs of constellation points causes 

the scatter plot to overlap (where (j)Q = —20 to —10), giving the appearance of 14 points. 

This overlap is for illustrative purposes; this plot shows the difficulty in having a 4-user 

(16-point) constellation with easily separated points.

One can continue this process continues for K  interferers, although the number of con

stellation points exponentially increases relative to K. For any K  number of interferers, 

with the bit vector b =  [b0 bx ... bk\ , one could represent y(t) as

y(t) =  X  (A A - c o s ( t )  + A ibi sin0,0, ( t ) ) . (5.7)

Note that this remains a two-dimensional problem, and the decision boundaries can be 

shown in two-dimensional signal space.

The simulation of the jointly optimal BPSK receiver for K  interferers is similar to the 

simulation of the jointly optimal receiver for 1 interferer. The process in Section 4.3 applies,
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Fig. 5.2. Scatterplot of BPSK signal plus 3 interferers and AWGN, with SNR=20 dB, 

^ = 3  dB, ^ 2 = 0  dB, vF3=— 15 dB, Qx = n/6, 02  = 2n/3, and 0 = 3n/2.

since this is still a two-dimensional signal space. However, there are two major differences:

•  Finding the threshold distances d  requires more calculation. For example, in the 

single-interferer case of Section 4.3, one needed to calculate the minimum distance 

between 2 pairs of points. However, in the case of 2 interferers, each threshold 

distance d  is found by minimizing the distance for 4 pairs of points. For a 3-interferer 

case, the distance between 8 pairs of points must be calculated. For K  interferers, one 

must calculate 2K distances to find the value of d.

•  Not only do the values of d  require more calculation, but there are also more values 

of d  to be found. Consider Section 4.3, where one requires the threshold lengths 

d ^  and d ^  This is because there are 22  =  4 constellation points, and 2 1 =  2 

possible combinations where the desired bit is equal to one.

However, in the case of K  interferers, there are 2K+i constellation points, and 2K 

possible combinations where the desired bit is equal to one. This results in more d
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values to be calculated, which causes more k values to be calculated, which causes 

more biased PDF’s in Equation (4.27).

Given this additional complexity, the importance sampling technique developed in Chap

ter 4 is all the more needed. This simulation procedure is still effective for the following 

reasons:

•  For a given constellation point, the weight W(x,y) is still constant; W(x,y) = k. On 

an overall basis, this allows the IS simulation to require fewer calculations. Granted, 

there are more constellation points, which requires more W(jc,y) calculations. How

ever, this is still preferable over a continuous calculation of W(jc,y) for each and 

every sample point, which often occurs in IS simulation.

•  The assumption in [18] is still valid -  this IS simulation is most effective if one can 

accurately calculate the minimum threshold distance d. Regardless of the number of 

interferers in the system, this value can be calculated within reasonable time.

•  In addition, this simulation technique emphasizes the importance of two-dimensional 

decision boundaries. This is not the only way to make a jointly optimal decision; 

joint-likelihood decision statistics are discussed in [2 ], and achieve the same result. 

However, in order to implement joint-likelihood decision statistics for K  interferers, 

one may require more complex calculations. The “minimum-distance” jointly opti

mal receiver is fairly straightforward to simulate, and achieves good results.

In summary, the importance sampling technique developed in Chapter 4 is equally ef

fective for multiple-interferer BPSK cases. This is a result of the continued 2-dimensional 

nature of the problem. However, one requires more time to calculate the biased points in 

IS. As the number of constellation points exponentially increase as K  increases, more pre

lim inary calculations are required for K  interferers. N onetheless, im portance sam pling is 

still a useful procedure to examine the multiple-interferer problem.
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5.2 Results and Discussion

The jointly optimal receiver for multiple interferers is simulated. Simulation results were 

obtained for K  =  2 and K  =  3 interferers. Results for K  =  6  were also obtained, as this is a 

practical example for a cellular network environment.

One first compares the multiple-interferer results with similar simulations in certain 

peer-reviewed publications. Reference [52] simulates an individually optimal receiver for 

a BPSK signal in the presence of two interferers. One of the simulation curves from [52] is 

shown in Fig. 5.3. Also recall that according to [2], as the SNR increases in the multi-user 

channel, the jointly optimal receiver performs nearly identically to the individually optimal 

receiver. As a result, some jointly optimal simulations are also present in Fig. 5.3. Fig. 5.3 

shows the BER versus the SIR for the two-interferer case. Curves for three different SNR 

values are plotted on the graph.

The results of Fig. 5.3 indicate that the importance sampling simulations from Section 

5.1 are valid. The simulation from [52] matches that of the IS simulation that uses the same 

input parameters (the curve for 7 dB SNR in Fig. 5.3). This result thus implies that the IS 

simulation technique works for the multiple-interferer scenario.

One can obtain other useful observations from Fig. 5.3. Firstly, as the SIR increases, 

the curves progress towards the “error floor” of a single BPSK signal in AWGN, i.e.

^e (B P SK )^s  ̂ =  Q (V^% ) ’ 

where ys is the signal-to-noise ratio. However, compared to the single-interferer case, this 

does not rapidly occur as the SIR decreases (i.e. when the SIR achieves a large negative dB 

value). The SNR curves for 7 dB and 10 dB indicate that once a value of approximately -5 

dB SIR is reached, the “tail” of the curve slows down significantly. These curve shapes can 

be compared to the curve shapes of single BPSK interferer scenarios (for an example, see 

Fig. 4.8).

Other observations can be made in this Figure. The maxima of the curves still occurs 

at 0 dB when 6 is a random variable between [0, 2tt), which is also the case in a single- 

interferer scenario. In addition, the 10 dB SNR curve offers an interesting result. There
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Fig. 5.3. The BER performance of a jointly optimal receiver versus SIRlt for a BPSK 

signal plus two interferers, with SIRl=SIR2, and Q uniformly distributed over [0 ,2 n).
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is a “bulge” in the curve where the SIR is approximately +5 dB. The slope of the BER- 

versus-SIR curve is still negative at this inflection point, but the result is still interesting, 

particularly when compared with Fig. 5.4.

Fig. 5.4 shows the same scenario as that in Fig. 5.3, but 3 interferers are in the sys

tem instead of two. This graph emphasizes the nature of the multi-interferer “bulge” in the 

BER/SIR curve. To the best of the author’s knowledge, this bulge has not been reported in 

previous works. The bulge is again present at the region around +5 dB SIR, and is empha

sized for the curves where the SNR is 7 dB and 10 dB. Again, as in Fig. 5.3, the curves 

tend towards an asymptotic limit as the SIR increases. However, as the SIR decreases (i.e. 

as the SIR in units of dB’s becomes much more negative), the curves do not have a sharp 

decrease in BER. Thus, for most reasonable negative dB values of SIR, the performance 

benefits are not significant in the jointly optimal receiver.
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Fig. 5.4. The BER performance of a jointly optimal receiver versus SIR{, for a BPSK 

receiver with three interferers, with SIRX = SIR2 = SIR2, and 9 a uniformly distributed 

random variable on [Q,2n).
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Why is the small SIR case so different with multiple interferers compared with one 

interferer? This is partly a result of the nature of the simulation models used in Figs. 5.3 

and 5.4. In these two figures, the SIR for each interferer was identical; i.e.

a 2 a 2 a 2

= = ^  =  J  =  (5.9)
1 2 3

Thus, in Figs. 5.3 and 5.4, a large amount of signal energy resides with the interferers at 

very negative dB SIR. On a relative scale, compare this with the single-interferer case (for 

an example, see Fig. 4.8). At an SIRX of - 3  dB, for example, the interferers have twice 

the energy of the desired signal in the case of one single interferer. However, with three 

interferers, where SIR { = SIR2 = SIR3, the combined interferers now have six times the 

energy of the desired signal. This increased interferer energy makes it more difficult to 

detect the desired signal, resulting in decreased performance in the negative dB regions of 

the curve. This is seen in Figs. 5.3 and 5.4, which reaches a BER of 10- 3  in the case of 2 

interferers at 10 dB SNR and - 1 0  dB SIR, but only 10- 2  in the case of three interferers in 

the same conditions.

The comparison among one, two, and three BPSK interferers is shown in Fig. 5.5. Two 

levels of SNR are shown on this plot (4 dB and 12 dB). Note that this plot also shows the 

features of the importance sampling technique. Most of the 12 dB SNR curves reach a 

BER of the order of 10~ 7 to 10“ 8. This is achieved with NIS only on the order of 40,000 to 

100,000 trials. As discussed in Chapter 4, importance sampling is a powerful technique in 

this problem. The technique allows one to simulate very low BER’s in reasonable time.

Upon examination of Fig. 5.5, the following observations can be made:

•  While the single-interferer receiver performs fairly well at reasonably low values of 

SIR (from an SIR of —10 to —5 dB), this is not the case for multiple interferers. 

As previously discussed, this occurs because there is more interferer energy in the 

multiple-interferer scenario. This increased energy makes the desired signal harder 

to detect.

•  At large values of SIR, the curves progress towards the “error floor” of a single BPSK
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Fig. 5.5. The BER performance of a jointly optimal BPSK receiver versus SIRi (i = 1,2,3), 

in the presence of one, two, or three interferers, with SIR { = SIR2 = SIR3, and 0- 

uniformly distributed over [ 0 , 2 tt).
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signal in AWGN. With more interferers, one needs larger values of SIR to achieve 

the error floor.

•  The “bulge” in the SIR curve still occurs at a value of around +5 dB SIR for two or 

three interferers.

•  Except for very high values of SIR, there is significant performance degradation in 

the jointly optimal receiver as one increases the number of interferers. Even for a 

relatively poor BER value (at 0 dB SIR), the BER for three interferers is nearly four 

times worse than the BER for one interferer.

Simulations for K  =  6  interferers are introduced in Fig. 5.6. The simulation of 6  in

terferers is of particular use in a practical wireless cellular environment. Since there is a 

finite number of channels in a mobile telephone environment, cellular frequencies must be 

reused. Typical network design thus divides a geographical area into hexagons, where each 

hexagon represents the coverage area of an omnidirectional base station. As a result of 

this hexagonal design, one can have 6  equidistant cochannel interferers to a desired signal. 

Thus, it is useful to simulate a 6 -interferer case.

The following observations can be made upon examination of Fig. 5.6:

•  At any arbitrary value of SIR in Fig. 5.6, the net interferer energy is equal for all 

cases of interferers. Even so, an increased number of interferers causes a degradation 

of performance. For example, at a total SIR of 5 dB, the 2-interferer case performs 

approximately 1.5 dB worse than the single-interferer scenario with the same total 

interferer energy. The six-interferer case performs about 3 dB worse than the single- 

interferer case with the same total interferer energy.

•  The error rate curves in Fig. 5.6 cross at certain values of SIR. One could surmise that 

this occurs because the energy is distributed am ong different num bers o f  interferers. 

For example, at 0 dB total SIR, the single-interferer case has one BPSK signal with 

the same energy as the (only) interferer. However, the two-interferer case has the one

103

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



P 
,B

E
R

- V -  1 in terferer, 12 dB SN R
-* 2  in terferers, 12 dB SN R

-A -  3  in terferers, 12 dB SN R
□ 6 in terferers, 12 dB SN R

■1
1 0 '

-2
1 0 '

-3
1 0 '

■4
1 0 '

■5
1 0

-6
1 0

■7
1 0 '

■8
1 0 '

f 9 L 
-10

10
5 0 5 10 15 20

SIR in dB

Fig. 5.6. The BER performance of a jointly optimal BPSK receiver versus total SIR, in the 

presence of one, two, three, or six interferers, with all interferer SIRi equal, an SNR 

of 12 dB, and 6i uniformly distributed over [0,2tt).
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BPSK signal with twice the energy as each cochannel interferer. The variety in the 

distribution of energy causes different performance results.

•  Note that the absolute maximum of the error rate curves still occurs at a level where 

the desired signal has the same energy as each of the single interferers (0 dB SIR for 

1 interferer, -3 dB SIR for 2 interferers, etc.) This is verified when observing Fig. 

5.5.

Further observations can be made if one places the SNR along the x-axis and plots 

the results. Fig. 5.7 displays this scenario, and again shows the power of the importance 

sampling technique, obtaining simulation points for BER’s of nearly 10-25. At a relatively 

high SIRt value (12 dB), it is shown that the jointly optimal receiver has sharply different 

performance characteristics as one increases the SNR .2  For example, at a (relatively high) 

SNR value of 10 dB, the single-interferer jointly optimal receiver performs with a gain of 

almost 2 dB, compared to the 2-interferer receiver. This gain increases as one increases the 

SNR. In addition, the performance gain between receivers with one and three interferers 

is very large. Upon examination of this plot, one can conclude that increasing the number 

of interferers K  significantly degrades the performance in detecting a single desired BPSK 

signal.

One reason that an increased number of interferers K  causes such a performance degra

dation lies in the energy of the interferers. When the interferers have more energy than the 

desired signal, the decision boundaries in two-dimensional signal space may be very near 

the desired signal constellation points. As an example, if a dominant A x or A2 is present 

in (5.6a) -  (5.6h), the orientation of the constellation points changes. If the constellation 

is such that a — A 0 is fairly indistinguishable from a +A0, it would make the desired bit b0 

more difficult to detect.

Another reason why Fig. 5.7 has such a performance degradation lies in the nature of 

the curves. In Fig. 5.7, all curves had a SIRi value equal. However, this means that the

2A 1 s o  recall that as the SNR increases, the jointly optimal detector converges to the individually optimal 

(minimum-BER) detector [2]; thus, these results are equally valid for individually optimal detectors.
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3-interferer case has more interferer energy than the single-interferer case. In this plot, the 

multiple-interferer case has more energy, which makes the desired signal more difficult to 

detect.

To specifically examine the performance of the jointly optimal receiver, it is useful 

to examine the case of multiple interferers with the same net interferer energy. That is, 

one wants the interferer energy for 1 interferer to be equal to that for 3 interferers. Thus, 

the individual SIRi for the 3-interferer case is larger than that for the single-interferer case. 

Thus, for these curves, the total SIR will be equal. This is shown in Fig. 5.8. Note that there 

is still a performance degradation between the single-interferer case and the 3-interferer 

case, but it is not as large as that in Fig. 5.7.

An expanded version of a region of Fig. 5.8 is shown in Fig. 5.9. This plot shows that 

for a range of SNR between 0 and 6  dB, the error rate performance for one, two, three, 

and six interferers is similar. The error rate curves diverge significantly once an SNR of 

10 dB is reached. Thus, one sees that when the interferer energy is constant, performance 

degradation in the multiple-interferer case occurs mainly at SNR values above 10 dB. The 

error function becomes more non-linear at values greater than 10 dB, causing the curves to 

diverge at this value. In fact, it is shown in [55] and [56] that the degradation in error rate 

performance is a result of the upward-concavity of the ^-function.
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Fig. 5.8. The BER performance of a jointly optimal BPSK receiver versus SNR, in the 

presence of one, two, three, and six interferers, with the net interferer energy constant 

(i.e. the total SIR is 10 dB), and 0(- uniformly distributed over [0,27t).
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As a further example, consider Fig. 5.10, where the SIR among interferers is not equal, 

but with a constant dB difference. An IS simulation was done to achieve the curves in Fig. 

5.10, which allowed one to achieve BER values down to 10-15. These curves yield some 

interesting results. Firstly, local maxima of the BER curve occur whenever SIRt is equal to 

0 dB, fo r  any i=l,..K. That is, the two-interferer curve has 2 local maxima, while the 3- 

interferer curve has 3 local maxima, where the BER is poorest. One can thus conclude that 

whenever an interferer’s energy is the same as that of the desired signal, the BER would be 

poor (many bit errors will occur).

Other interesting observations arise from Fig. 5.10. If there is enough difference in the 

energies of the individual interfering signals, the curve obtains a “multiple-bump” shape, 

achieving its local maxima, then sharply decreasing towards the error floor of a single 

BPSK signal in AWGN. This is seen in the 3-interferer curve in Fig. 5.10. However, if 

the difference among interferer SIR is not that large, the “bumps” converge, as seen in the 

two-interferer case. As well, note that at very low values of SIRl , the 3-interferer case still 

performs relatively poorly.
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With a variety of input parameters (from the SIR of each interferes to the SNR, to the 

Q, to the importance sampling technique), there are a large number of parameters affecting 

the performance of the jointly optimal BPSK receiver in the presence of K  interferers. In 

this section, one has highlighted the main points. Adding interferers causes a performance 

degradation in the system. While this is not a surprising result, what is surprising is the 

relative magnitude of the degradation. As well, because there is more interferer energy, 

the jointly optimal multiple-interferer receiver does not perform as well at largely negative 

dB values of SIR. These observations, along with others made in this section, point to the 

difficulties in detecting a BPSK signal in the presence of multiple interferers.

5.3 Summary

One needs a technique to efficiently simulate the jointly optimal BPSK receiver in the pres

ence of multiple cochannel interferers. The importance sampling technique from Chapter 

4 provides a very useful tool in examining this scenario. This is a result of the consistently 

two-dimensional nature of the problem, regardless of the number of interferers K.

It is seen that the IS simulation technique allows one to achieve very low BER’s for the 

receiver in the presence of multiple interferers. However, when extending the IS technique 

to multiple interferers, more preliminary calculations are required. This is because there is 

an exponential increase in the number of constellation points 2K+1, causing more weight

ing functions W(;c,y) to be needed. Still, this is preferred over continued recalculation of 

W(x,y ) for each and every sample point.

One observes that for a given value of SNR and SIR, the performance of a multiple- 

interferer jointly optimal receiver is worse than one with only one single interferer. This 

can be explained as a result of increased interferer signal energy, which makes the desired 

signal more difficult to detect.

The results of this Chapter show that adding BPSK interferers to the system causes 

performance degradation. While this is generally known, what this Chapter offers is a 

quantifiable measure of how much better a single-interferer receiver performs. Further-
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more, throughout this chapter, one applies a useful IS technique to a problem well-suited 

for the procedure. The techniques and observations are useful for practical cellular system 

design, particularly in areas such as power control. These new results allow one to examine 

the behaviours of multiple-interferer scenarios.
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Chapter 6

Conclusions

It is important to analyze the effects of communications systems in the presence of cochan

nel interference plus noise. The addition of cochannel interferers makes the desired signal 

more difficult to detect, and degrades the BER performance of the communications system. 

In addition, when analyzing optimal receiver structures, it is often difficult to make effec

tive observations of BER performance. Exact, analytical mathematical expressions are not 

always obvious, and bounds to the error rate performance are often needed. One could also 

simulate the communications system, but it is usually time-consuming to simulate a very 

large number of trials.

This thesis examines the case of a jointly optimal receiver for a desired BPSK signal 

in the presence of cochannel interference plus noise. An efficient importance sampling 

technique is used to simulate the system using a relatively small number of samples. This 

technique is valuable because it allows one to examine the case of multiple interferers. This 

work also derives a new, exact, analytical expression for the BER performance of a BPSK 

signal in the presence of one cochannel interferer plus noise. In summary:

1. The optimality of the BPSK receiver in [1] is clarified. While the signal constellation 

diagrams in [1 ] imply the use of a jointly optimal receiver, one determines that a 

minimum-BER individually optimal receiver is used. The BER performance of this 

receiver is seen to be good in regions of small and large SIR.
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2. This thesis clarified the definition of individually optimal and jointly optimal re

ceivers. Individually optimal receivers have a decision boundary that is a curved line 

in two-dimensional signal space. Jointly optimal receivers, on the other hand, have 

a decision boundary composed of straight line segments. While individually optimal 

receivers perform better than jointly optimal ones, the performance of these two re

ceivers is significantly different only at very small values of SNR. Thus, it is useful 

to analyze the BER performance of jointly optimal receivers.

3. A new, exact analytical expression for the BER performance of the jointly optimal 

BPSK receiver is derived. This expression is derived using Craig’s method [3]. This 

analytical expression takes different forms, depending on specific SIR threshold lev

els. The result is a tractable, exact analytical solution. Upper and lower analytical 

bounds are also analyzed, and are tight to the derived expression.

4. An efficient simulation technique is applied to the jointly optimal BPSK receiver. 

This is a new application of the importance sampling method of [18], and is a pow

erful technique in the simulation of this receiver. Since the decision boundary of this 

receiver is composed of straight line segments, this IS technique introduces signifi

cant savings in simulation time. The technique allows one to use significantly fewer 

trials for a small variance in BER.

5. The new IS simulation application is used for the case of a BPSK signal in the pres

ence of multiple cochannel interferers. This simulation is useful and powerful be

cause it allows for significant time savings over traditional Monte Carlo simulation. 

The IS technique allows one to make useful performance observations that would 

otherwise be unaddressed. One sees that adding BPSK interferers to the system 

causes performance degradation, and one makes quantifiable observations of how 

m uch better a single-interferer receiver performs. B y  exp loiting the significant tim e  

savings in importance sampling, one is able to thoroughly analyze the performance 

of the jointly optimal receiver.
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