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Abstract

Physics-based large-scale reservoir models are routinely employed in the pre-

diction of the SAGD (Steam Assisted Gravity Drainage) process under dif-

ferent operation situations. However, due to the uncertainty of the reservoir

and the limitations of the commercial reservoir simulators, the computational

time is highly associate with impractical simulated results for all locations,

especially when uncertainty and unexpected operational parameters are in-

cluded. This thesis develops a system identification proxy model to forecast

the SAGD reservoir production. Several combinations of system identification

model structures and input datasets are tested for short-term predictions to

understand the impact of model structures and input selection on the proxy

model performance. Then recursive proxy model estimations are performed to

increase the accuracy for long-term production prediction. After trying to im-

prove the model fits for a multiple-step proxy model prediction, a set of input

design cases using a simulator-built model are re-identified to test the validity

of open-loop simulation by a data-driven proxy model. The data-driven proxy

model could be used in reservoir management and optimization or to reduce

the computing load.
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Chapter 1

Introduction

The application of Steam Assisted Gravity Drainage (SAGD) is of great impor-

tance because of the vast reserves accessible with this production mechanism.

The Athabasca Oil Sands deposit (also known as the McMurray formation) is

located in northern Alberta, spanning 40,000 square kilometers and containing

140 billion cubic meters of original bitumen-in-place. However, only 10% is

economically recoverable by surface mining techniques currently used. SAGD

can provide significantly greater production rates, high recoveries, and a lower

steam-oil ratio (SOR), as compared to conventional surface mining extraction

techniques and other thermal recovery methods. An estimated additional 25%

of the Athabasca Oil Sands is economically recoverable using SAGD extraction.

To better understand the SAGD process and perform tasks such as assisted

history matching, production optimization and forecasting, there has been a

lot of research about reservoir modeling. In recent years, the development of
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commercial simulators has blossomed, which opened a new frontier for reser-

voir modeling. However, the major limiting factor in reservoir modeling or

optimization is computing ability. Reservoir engineers are always finding ways

to reduce the simulation time. Nonetheless the simulation time, according to

Van Essen et al. (2012):

1. Reservoir simulation models usually fail to represent near-well bore reser-

voir dynamics such as gas or water coning.

2. Random operational activities such as breakdown maintenance or well

interventions cannot be taken account into the reservoir simulator.

Therefore, the proxy models of the reservoir are gaining more and more atten-

tion these days. Proxy models are widely used in different areas of numerical

modeling such as sensitivity analysis of uncertainty variables, probabilistic

forecasting and reservoir management and optimization.

Jalali et al. (2010) proposed a technique that uses Artificial Neural Networks

(ANN) in order to build a Surrogate Reservoir Model (SRM) to perform an

uncertainty analysis on a coalbed methane reservoir. An SRM is a replica

of the full-field reservoir model that mimics the behavior of the reservoir. A

small number of realizations of the reservoir are required to develop the SRM,

which will reduce the simulation time significantly. Yeten et al. (2005) per-

formed a traditional one-parameter-at-a-time approach for linear sensitivity

analysis. Slotte et al. (2008) used polynomials and multi-dimension kriging

2



to construct a proxy model for assisted history matching and uncertainty as-

sessment. Venegas et al. (2008) built a proxy model based on Butlers theory

to perform an uncertainty assessment of SAGD performance. Fedutenko et al.

(2012) proposed a method for predicting production performance during the

SAGD process using a data-driven proxy model. Azad et al. (2013) recom-

mended an analytical proxy model to mimic the essential feature of a SAGD

field for history matching. Ghasemi et al. (2013) described an alternative

proxy approach to model SAGD with an isothermal black-oil reservoir simu-

lator to reduce the computing time.

Proxy models are also used in probabilistic forecasting as an input to the Monte

Carlo sampling process (Fishman, 1996). Proxy models exhaustive sampling

rates can be achieved due to high computational efficiency.

Reservoir management and optimization is another field where proxy model

is very useful. Reservoir management is the recurring process in which an

oilfield operator uses mathematical modeling, data and expertise to optimize

some stated objective about oilfield performance, such as net present value

(NPV). Mohajer et al. (2010) applied the proxy reservoir model in real time

optimization (RTO) to shortcut a complex numerical model because the proxy

model can provide a sufficiently accurate output value that describes the sys-

tem in a very short time. However, the restricted frequency of optimization in

this approach results in the shortcomings, which include the limited utiliza-
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tion of the dynamic degrees of freedom in the plant as well as the discrepancy

of the steady-state prediction and the dynamic behavior of the plant. To

overcome the shortcomings of the steady-state approach, RTO and the model

predictive controller (MPC) are combined into a single entity, which is also

called dynamic real time optimization (DRTO). Control technology has been

of particular interest for optimizing reservoir performance and displacement

efficiency. Ramirez (1987), Sudaryanto (1999) and Brouwer et al. (2001, 2004)

have proposed optimal control-theory strategies (Lee et al., 1967) for enhanc-

ing oil recovery (EOR) in projects. Nowadays MPC is widely used in the

control process and a data-driven proxy model is needed in the MPC algo-

rithm. The linear MPC has been becoming more and more popular due to the

theoretical results provided by the academic community and the successful in-

stallations in the industry (Borgesen, 2009). Nikolaou et al. (2001) performed

an appropriate control action through online optimization of a cost objective

function or production rate over a future horizon using a proxy model together

with MPC with respect to various constraints. Another advantage of the MPC

method, according to Genceli and Nikolaou (1996), Eker and Nikolaou (1999),

Schwarm et al (1998) or Schwarm and Nikolaou (1999), is that it can perform

a robust identification and control of linear and nonlinear systems at the same

time. Saputelli et al. (2005) presented an industrial automation framework

for control and optimization of hydrocarbon-producing fields while satisfying

business and physical constraints. Awasthi et al. (2007) built a proxy model

to simulate the reservoir dynamics, then applied it to the control process to
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optimize the production operation. Ljung (1987) has presented a system iden-

tification technique which creates a model solely based on measured data. The

quality of the system identification model determines the results in optimiza-

tion when using the MPC method.

1.1 Problem Definition

Nowadays, reservoir management plays an significant role in the oil and gas

industry. Historically, reservoir management used to be identified with pro-

duction engineering, and as time passed, it shared the same meaning with

reservoir simulation. Traditional reservoir simulation is time consuming and

requires copious CPU ability. What’s more, in order to reflect the real reservoir

dynamics through the simulation, history matching, which makes the process

more CPU-demanded, must be performed. In life-cycle optimization process,

short-term optimizations have recently attracted more attention (Van Essen,

2011). Short-term optimizations need a dynamic model to capture the fast

dynamics of the reservoir. To decrease the simulation time and make better

predictions for the short-term time period, a simple reservoir model should be

developed and studied. System identification uses statistical methods to build

mathematical models of dynamical systems from measured data. It has been

widely used in the control process (Czop and Wszotek, 2010). The character-

istics of system identification make it perfect to build a simple proxy model

of the reservoirs. Several studies about production optimization using a sys-
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tem identification model have been presented. However, none of these studies

elucidate how to build a promising system identification model itself.

1.2 Objective

The principal of this thesis is to develop a methodology using system iden-

tification to build proxy model of a SAGD reservoir. This work investigates

not only a short-term prediction of the production rate, but also a long-term

prediction using system identification, which is usually generated by a physics-

based model. To apply system identification to various kinds of reservoirs,

several cases studies, including cases involving a naturally fractured gas reser-

voir and a channel reservoir, are compared to a real reservoir model together

with commercial simulators.

1.3 Outline

This thesis consists of 8 chapters. Chapter 1 gives a brief overview of the

SAGD process and also states the challenges with it. This chapter also ex-

plains the aim of the research and the methodology adopted to address the

problem statement. Chapter 2 is devoted to the introduction of system identi-

fication and model predictive control. Chapter 3 proposes the methodology for

developing a proxy reservoir model. Chapter 4 is comprised of implementation

details of system identification carried out on real SAGD reservoir data. The

6



aim of this chapter is to demonstrate how to construct a dynamic model based

on pure data. Chapter 5 discusses the possibility of using system identification

to predict long-term production. Chapter 6 presents some method to improve

the performance of the multiple-step prediction of system identification. Chap-

ter 7 compares the system identification results combining different kinds of

reservoirs and input signals. Chapter 8 states the summary and conclusion

of the conducted study and discusses possible modifications of the proposed

algorithm.
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Chapter 2

System Identification and

Model Predictive Control

Model predictive control (MPC) has gained significant attention in the control

of dynamic systems. It is an advanced method of process control that has been

been used in process industries in chemical plants and oil refineries since the

1980s. In recent years more and more reservoir management cases have been

implementing the MPC method. Model predictive controllers rely on dynamic

models of the process, most often linear empirical models obtained by system

identification. System identification uses statistical methods to build mathe-

matical models of dynamical systems from measured data. As a result, not

only should model predictive control be investigated, much attention should

be paid to system identification.
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2.1 System Identification

Although system identification is considered a still-maturing subject, the first

International Federation of Automatic Control symposium on system identifi-

cation was held as long ago as 1967 and some classic textbooks and papers on

this topic were published during the 1970s and 1980s. Engineering problems

can be broadly categorized as direct or inverse problems. To clarify this distinc-

tion, consider the system illustrated in Figure 2.1. If the equations describing

the system in the figure are known, the direct problem consists of finding the

response to a specific input or excitation: for example, using Newton’s second

law to calculate the object’s acceleration. However, in most cases, the input

and the response to the particular input are known, but the equations describ-

ing the process are unknown, which gives us a more difficult inverse problem.

System identification aims at constructing mathematical models from prior

Figure 2.1: Engineering problem overview

knowledge of the system under study and noisy time series data. Therefore

system identification is a typical inverse problem. For example, the SAGD

process can be considered as a system identification problem, since we can

take the well bottom hole pressure as the known input and the oil production

rate as the known output, but the system, the reservoir itself, is unknown.
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In a dynamic system, the values of output signals are decided by both the

instantaneous values of the input signals and by the past behavior of the sys-

tem. For example, a car seat is a dynamic system - the seat shape (settling

position) depends on both the current weight of the passenger (instantaneous

value) and how long this passenger has been riding in the car (past behavior).

A model is a mathematical relationship between a system’s input and output

variables. Models of dynamic systems are typically described by differential or

difference equations, transfer functions, state-space equations, and pole-zero-

gain models. In system identification we need to specify the model structure,

then apply the data to the model to obtain the unknown parameters in the

model. There are various kinds of model structures and obviously we could

not use all of them. Next we will discuss the widely used model structures,

such as the common linear model, state-space model and nonlinear model, in

system identification.

1. Common linear model structures

A transfer function model is parameterized withG(z−1), input-to-output,

and H(z−1), which are rational functions of the operator z−1 of the form:

G(z−1) =
B(z−1)

A(z−1)F (z−1)
(2.1.1)

H(z−1) =
C(z−1)

A(z−1)D(z−1)
(2.1.2)

z is the counter part of time domain forward shift operator q, i.e.,
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q−1x(k) = x(k−1). And the overall model structure is shown as follows:

y(k) = G(z−1)u(k) +H(z−1)e(k) (2.1.3)

Where

A(z−1) = 1 + a1z
−1 + a2z

−2 + . . .+ anAz
−nA

B(z−1) = 1 + b1z
−1 + b2z

−2 + . . .+ bnBz
−nB

C(z−1) = 1 + c1z
−1 + c2z

−2 + . . .+ cnCz
−nC (2.1.4)

D(z−1) = 1 + d1z
−1 + d2z

−2 + . . .+ dnDz
−nD

F (z−1) = 1 + f1z
−1 + f2z

−2 + . . .+ fnF z
−nF

are polynomials used for model estimation. y stands for output, u stands

for input and e stands for noise. k here denotes the time step. Special

cases are:

AR(nD),

ARX(nA, nB, k),

ARMAX(nA, nB, nC, k),

BJ(nB, nC, nD, nF, k),

OE(nB, nF, k).

In the bracket, A,B,C,D and F are polynomials that are widely used in

linear models. n stands for the order of the polynomials. k is the delay

of the input, which is the number of samples before the input affects the

output of the system.

11



Figure 2.2: Overall linear model structure

The linear model structures are shown in Figure 2.2.

2. State space model structure

Instead of the input/output model, the state space model can also be

considered. The state space model structure can be described using the

following formula:

x(k + 1) = Ax(k) +Bu(k + 1) +Ke(k) (2.1.5)

y(k) = Cx(k) +Du(k) + e(k) (2.1.6)

Where A,B,C,D are the system matrices, K is the noise matrix, x is

the state vector and y,u,e,k have the same meaning as in the previous

section.

3. Nonlinear model structure

For the sake of simplicity, the following equations are formulated for

12



single input single output (SISO) systems. The optimal predictor of an

m
th

order ARX model is:

y(k) = b1u(k−1)+. . .+bmu(k−m)−a1y(k−1)−. . .−amy(k−m) (2.1.7)

This can be extended to a nonlinear ARX (NARX) model in a straight-

forward manner by replacing the linear relationship with some unknown

nonlinear function f(·), that is,

y(k) = f(u(k − 1), . . . , u(k −m), y(k − 1), . . . , y(k −m)) (2.1.8)

The nonlinear ARX model structure is depicted in Figure 2.3.

Figure 2.3: Nonlinear ARX model structure

2.2 Model Predictive Control

The MPC can be summarized as follows (Camacho and Bordons, 2004), (Ma-

ciejovski, 2002), (Rossiter, 2003):

1. Predict the future behavior of the process state/output over the finite

time horizon.

13



2. Compute the future input signals on line at each step by minimizing a

cost function under inequality constraints on the manipulated (control)

and/or controlled variables.

3. Apply on the controlled plant only the first of vector control variable

and repeat the previous step with new measured input/state/output

variables.

Take the SAGD process, for instance. As usual, the life-cycle optimization

aims at maximizing NPV defined as an economic objective function J , which,

for our example, becomes:

J =
K∑
K=1

[∑n1

i=1 rwi(qwi,i)k +
∑n2

i=1[rwp(qwp,j) + ro(qo,j)k]

(1 + h)
tk
τt

4 tk

]
(2.2.1)

where k = 1, 2, ..., K is are the time steps in the model, n1 is the number of

injection wells, n2 is the production wells, qwi,i is the water injection rate of

well i, qwp,j is the water production rate of well j, qo,j is the oil production

rate of well j, rwj is the water injection cost, rwp is the water production

cost, ro is the oil revenue, 4tk is the time interval of time step k, and h is

the discount rate for reference time τt. During the optimization procedure,

the input vectors u are iteratively changed until a maximum value of J is

obtained. For most of the time, the optimal input vector û is the desired

life-cycle optimization procedure. In the MPC algorithm, we will choose the

corresponding optimal output ŷ as the reference value. The controller now

attempts to find the corrected inputs ū such that the difference between the

actual measured outputs y and the optimal outputs ŷ is minimal. This is
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achieved by minimizing the following objective function over a relatively short

time horizon:

Q = min

[
N∑
i=1

(yk+i − yspk+i)
TWy(yk+i − yspk+i) +

M−1∑
i=0

(uk+i − uspk+i−1)TWu(uk+i − uspk+i−1)

]
(2.2.2)

umin ≤ uk+i ≤ umax (2.2.3)

ymin ≤ yk+i ≤ ymax (2.2.4)

where N is the predict horizon, yspk+i is the output targets, yk+i is the measured

outputs, uk+i is the i step ahead inputs and Wy and Wu are the weight coeffi-

cients on output and input deviations respectively. Only the first step of the

control strategy is implemented, then the plant state is sampled again and the

calculations are repeated starting from the now current state, yielding a new

control and new predicted state path. The basic MPC structure is illustrated

in Figure 2.4. The plant in the figure stands for the system identification

data-driven model. The setpoint is the optimal output vector ŷ we want to

obtain. At each time step, an input vector u is inserted until Q is minimal.
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Figure 2.4: Model predictive controller structure
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Chapter 3

Workflow of Building Proxy

Model Using System

Identification

Different from the physics-based reservoir model, the quality of a proxy model

built with system identification is determined by the underlying algorithm and

dataset used to create the model. It is obvious that we cannot obtain a dataset

of infinite size to capture all reservoir dynamics. The different input variables

and model structures can lead to completely different simulation results. In

order to make precise predictions on the production profiles, various combina-

tions of datasets, input variables and model structures should be tested. The

good model should not only capture the main reservoir dynamics but also be

simple to build considering the computing efficiency. Once the validated model
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is built, it can be used in short-term or long-term production prediction. With

input design and the CMG flexwell model, the feasibility of the proxy model

can be tested. A typical workflow of steps of proxy-modeling is depicted in

Figure 3.1.

Figure 3.1: Proxy-modeling workflow

1. Input variables

In proxy reservoir modeling using the system identification method, only

a few variables are needed to describe the reservoir dynamics. There is

no restriction to determine which variables should be used. However, it
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is always better to include the variables that people are interested in or

variables which will be applied to the control process in the future. Also,

the manipulated variables should be considered first.

2. Model structure

The model structures are very significant in the system identification

process. There are various kinds of model structures which could be

applied to the reservoir: for example, the autoregressive (AR) model and

output error (OE) model. A good model should capture the reservoir

dynamics and be explicit. Based on the performances of different model

structures, the model structures that can predict the production data

most precisely will be chosen to predict the production profiles.

3. Input data selection

Considering that the data collected by the sensors is usually of great

quantity, it is impossible to build the proxy model with all of them. And

in real operation, the shut-in well event will give zero injection or zero

production. This kind of data can’t reflect the reservoir dynamics. As

a result, a reasonable dataset must be chosen. There are two problems

need to be addressed:

(a) How much data is needed to build a validated model?

(b) When should start building the model?

Taking these two questions into consideration, a specific time period
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and time instant of the dataset will be selected to build the final system

identification model.

4. Proxy model estimation and validation

Once the dataset is fixed, it will be divided into two equal parts. The

first part will be used for model estimation and the second part for

model validation. A good model should not only capture the reservoir

dynamics in the validation part but also fit the trend of the dataset in

the estimation part, meaning it can make predictions about the future.

However, it should be noted that over-fitting one part will lead to bad

performance in the other part; therefore a balance point should always

be found and the standard should not be fixed.

5. Input dataset improvement

The initial dataset selection is not always sufficient for construction of a

reliable proxy model. If the model validation part reveals a high error

in predicting the production data, a new dataset should be selected, one

with either new data or starting from another time instant. The new

dataset should be used to identify a new model until the proxy model

quality is sufficient.
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Chapter 4

System Identification Using

Raw Field Data

In this chapter we will build proxy reservoir models step by step, using sys-

tem identification. Except for common linear model structures, we will also

test the performance of state space models. The data used here is obtained

from 15-year operation of SAGD reservoir located in northern Alberta. All

the production rates presented throughout the thesis are subtracted by the

linear trends. First, short term prediction will be introduced, considering the

various combinations of input/output parameters, model structures and the

time when the modeling should start. Then we will try to build models which

are able to predict for longer time periods. When building the model, the data

comes from the same well pair. After the model is validated, we can apply

the same model to another well pair in the same reservoir to test whether the

model can reflect the reservoir dynamics or whether it will be significantly in-
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fluenced by external factors. Some geological specifications are listed in Table

4.1.

Table 4.1: Reservoir geological parameters

Parameters Value

Depth from surface 125 to 175 m

Net pay thickness 15 to 20 m

Sand porosity 35%

Sand permeability 5 to 12 Darcy

Bitumen saturation 85%

Bitumen viscosity (70 Celsius) 5× 106 cp

Weight of bitumen 16%

API 8◦

4.1 Input and Output Variables Selection

The first step toward developing a proxy model for a SAGD reservoir is to

assign input and output variables. The continuously obtained field data can

be used as input variables (L.Saputelli, 2005). Also, in order to apply the

model to the control process in the future, some manipulated variables need

to be chosen. In this thesis, the data is obtained from a reservoir with three

well pairs, and one certain well pair will be considered. According to van Essen
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et al. (2012), the input variables could be:

u = [u1 u2]T = [qw pwf ]
T (4.1.1)

Where qw represents the steam injection rate in the injector, and pwf is the

bottom hole pressure in the producer. To represent the reservoir dynamics,

the water and bitumen production rates will be chosen as output variables.

In order to eliminate the cross correlation and increase the accuracy of the

model, the water rate and bitumen rate will be simulated separately. That is,

yo = [y1]T = [qo]
T (4.1.2)

yw = [y2]T = [qwp]
T (4.1.3)

Where qo is the oil production rate in the producer and qwp is the water pro-

duction rate in the producer.

The model structure here is the default as the ARX model, since the purpose

here is to test the validity of the input and output variables. The result is

shown in Figure 4.1 and Figure 4.2. Figure 4.1 shows the model estimation

at the beginning, which means the model is built based on the data shown

in the figure. Figure 4.2 shows the model validation, which means using the

model built in Figure 4.1 to predict the production data. It is obvious that

the input and output variables used here can capture the reservoir dynamics.

The model predicted production rates are almost the same as the real ones.

The reason why the production rates have a negative value is that the dataset
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used here is subtracted by the linear trends.

(a) Water production rate

(b) Bitumen production rate

Figure 4.1: Input and output variables’ selection: model estimation
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(a) Water production rate

(b) Bitumen production rate

Figure 4.2: Input and output variables’ selection: model validation

From the figures we notice an index called “best fits,” which is an important

standard of choosing the best model. Best fits can be described in the following
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formula:

Best Fits =

(
1− |y − ŷ|
|y − ȳ|

)
× 100% (4.1.4)

In Equation 4.1.4, y is the measured output, ŷ is the simulated or predicted

model output, and ȳ is the mean of y. One hundred percent corresponds to a

perfect fit, and zero percent indicates that the fit is no better than guessing the

output to be a constant(ŷ = ȳ). Because of the definition of best fit, it is pos-

sible for this value to be negative. A negative value is worse than zero percent.

To further investigate the importance of input, we will build an AR model

using the same data. As shown in Chapter 2, the AR model has only D

polynomials, which means there is no input value contributing to the model’s

output. If the model’s best fit is acceptable, it means the input signal is not

significant for the field data we used. The results are depicted in Figure 4.3.

From the comparison, we can see clearly that the ARX model has a better best

fit compared to the AR model, which indicates that the proper input selection

can surely improve the model’s performance. And one thing needed to clarify

is these two models are based on seven-step-ahead prediction, which will be

introduced in Chapter 6.
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(a) AR model without input channel

(b) ARX model with input channel

Figure 4.3: The impact of input on the model’s quality
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4.2 Model Structures Selection

Once the input and output variables are decided, the next step is to find the

suitable model structure which can describe the reservoir dynamics best. In

general, the good model should be not only accurate, but implicit. TThe

model structures used here are the linear models used in Chapter 3. The re-

sults are depicted in Figure 4.4, and all of the models except for the OE can

capture the reservoir dynamics. The model orders are listed in Table 4.2. Of

all the linear models discussed so far, the BJ model is the most general and

flexible. It allows one to estimate separate transfer functions with arbitrary

numerators and denominators from the input to the output and from the dis-

turbance to the output. However, the flexibility of the BJ model requires one

to estimate a large number of parameters. From Table 4.2 and Table 4.3, we

can easily note that BJ model has larger orders than the others. As a result,

the BJ model yields better best fits. Considering all the models used here

are easily identified using the MATLAB system identification toolbox, we will

choose the BJ model as the target model structure.
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(a) Water production rate

(b) Bitumen production rate

Figure 4.4: Model structure selection
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Table 4.2: Water rate model orders

Model Structure Orders

ARX nA = 2, nB = [1 1], k = [1 1]

ARMAX nA = 2, nB = [2 2], nC = 2, k = [1 1]

BJ nB = [1 1], nC = 1, nD = 1, nF = [2 2], k = [1 1]

OE nB = [3 1], nF = [1 1], k = [1 1]

Table 4.3: Bitumen rate model orders

Model Structure Orders

ARX nA = 1, nB = [1 1], k = [1 1]

ARMAX nA = 1, nB = [4 1], nC = 1, k = [3 1]

BJ nB = [6 1], nC = 1, nD = 1, nF = [1 1], k = [3 3]

OE nB = [2 2], nF = [2 2], k = [1 1]

4.3 Model Construction Based on Different Time

Periods

As mentioned before, the data used here is 15-year SAGD reservoir produc-

tion profile based on the characteristics of system identification. Thus it is

impossible to include all the data in one model, for example, using the first

seven years’ worth of data to build the model, then predicting for the next
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eight years’ production profiles. A relatively short time period, that is, two

months, six months and one year of dataset, will be used to build the model.

The purpose here is to find out how much data to include to give the best

performance. The results can be observed in Figure 4.5 - Figure 4.7. All mod-

els built can capture the reservoir dynamics. The models built based on six

months and one year of data have even better performances than the one with

two months of data. However, it is obvious that when the real production rate

is zero (the horizontal line in Figure 4.6 and Figure 4.7, there are big jumps in

production profile and around this time period a lot of model errors appear.

It is hard to identify this kind of data in system identification.
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(a) Water production rate

(b) Bitumen production rate

Figure 4.5: Model construction based on two months of data
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(a) Water production rate

(b) Bitumen production rate

Figure 4.6: Model construction based on six months of data
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(a) Water production rate

(b) Bitumen production rate

Figure 4.7: Model construction based on one year of data

From the results, it seems that all three models are validated and satisfied. In

order to distinguish them, we will bring in another standard for model selec-

tion. Figure 4.8 - Figure 4.9 show the cumulative production rate comparison.
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From the figures we notice that the models built with two months worth of

data and one year worth of data have a better fit in cumulative production

comparison, while the fit of model built with 6 month’s data has some gaps at

the end. Considering the cumulative production is easier to match, the model

built with six months worth of data will be ignored.

(a) Cumulative water

(b) Cumulative bitumen

Figure 4.8: Two months cumulative production comparison
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(a) Cumulative water

(b) Cumulative bitumen

Figure 4.9: Six months cumulative production comparison
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(a) Cumulative water

(b) Cumulative bitumen

Figure 4.10: One year cumulative production comparison

Another way to test the model’s performance is the residual test. The results

are depicted in Figure 4.11 - Figure 4.13. The top axes show the autocorre-

lation of residuals for the output (whiteness test). The horizontal scale is the

number of lags, which is the time difference (in samples) between the signals
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at which the correlation is estimated. The horizontal dashed lines on the plot

represent the confidence interval of the corresponding estimates. Any fluctua-

tions within the confidence interval are considered to be insignificant. A good

model should have a residual autocorrelation function within the confidence

interval, indicating that the residuals are uncorrelated. The bottom axes show

the cross-correlation of the residuals with the input. A good model should

have residuals uncorrelated with past inputs (independence test). Evidence

of correlation indicates that the model does not describe how the output is

formed from the corresponding input. For example, when there is a peak out-

side the confidence interval for lag k, this means that the contribution to the

output y(t) that originates from the input u(t − k) is not properly described

by the model. From these three figures it is obvious that only the model with

two months of data passed the residuals test. Taking all these factors into

consideration, it is better to build the model based on two months worth of

data.
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(a) Water channel

(b) Bitumen channel

Figure 4.11: Model residuals test of two-month model
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(a) Water channel

(b) Bitumen channel

Figure 4.12: Model residuals test of six-month model
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(a) Water channel

(b) Bitumen channel

Figure 4.13: Model residuals test of one-year model
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4.4 Model Construction Start From Different

Time Spots

In real reservoir life, the well may be shut in for many reasons, which will

create zero values in production profiles and the production and make it hard

to identify the production. In addition, the reservoir dynamics are unstable at

the very early and late stages of production. Therefore, in order to avoid the

zero value and unstable dynamics, a reasonable time instant must be found to

start to build the proxy reservoir model. In this research we chose four typical

time periods in which to build the proxy model. The first is the beginning of

the reservoir production history, staring from year one. The second is when the

reservoir comes to a stable time period, starting from year three. The third is

also when the reservoir comes to a stable time period, starting from year eight.

The fourth is the end of the reservoir production history, staring from year 13.

The results are shown in Figure 4.14 - Figure 4.17. At the beginning and the

end of the reservoir production history, the model fits are not good because

the reservoir dynamics are not stable at that time. Even when the reservoir

comes to a relatively stable time period, the case starting from year eight, the

model fit is not good enough to represent reservoir dynamics. Only the one

staring from year three gives the best model fit and it captures all trends of

the production profile. Taking all these into consideration, the model will be

built starting from year three.

42



(a) Water production rate

(b) Bitumen production rate

Figure 4.14: Model construction starts from year one
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(a) Water production rate

(b) Bitumen production rate

Figure 4.15: Model construction starts from year three
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(a) Water production rate

(b) Bitumen production rate

Figure 4.16: Model construction starts from year eight
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(a) Water production rate

(b) Bitumen production rate

Figure 4.17: Model construction starts from year 13
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4.5 Check the Performance of State-space Model

Using the Subspace Method

In multivariable dynamical system identification, the subspace-based state-

space system identification method is always applied. For this method, the

only parameter that needs to be specified is the model order. The major ad-

vantage of a state-space representation is that prior knowledge from first prin-

ciples can be incorporated in the form of equations and can be utilized to pre-

structure the model. Furthermore, the number of regressors is usually smaller

in state space models than in input/output models. For a system of m
th

order

a state-space model possesses m+1 regressors (x1(k), . . . , xm(k)andu(k)) while

an input/output model requires 2m regressors (u(k−1), . . . , u(k−m)andy(k−

1), . . . , y(k−m)). After choosing the input, output, time period and time spot

to start building the model, a state-space model is constructed. Figure 4.18

shows the result. From the figure, it is obvious that the reservoir dynamics

are captured, which means the state-space model using subspace method is

validated for building the dynamic model.
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(a) Water production rate

(b) Bitumen production rate

Figure 4.18: State-space model using subspace method
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Chapter 5

Recursive Estimation for

Long-term Prediction

Until now, the common system identification method was only used to predict

relatively short time periods, because in real-field operations, there are a lot of

emergencies that cannot be predicted by reservoir dynamics. In order to make

a long-term prediction, a new technique: recursive estimation is introduced

(Wellstead and Zarrop, 1996). Many real-world applications, such as adaptive

control, adaptive filtering, and adaptive prediction, require that a model of

the system be available online while the system is in operation. Therefore,

recursive estimation can be used to make online predictions, which will increase

the performance of long-term predictions. Every identification model structure

has its own coefficient applied to input and output data, such as a and b

parameters. These coefficients are correlated with the reservoir condition and

fixed once the model is built. For that reason, the model structure is validated
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just for the time when the model is built and cannot be used for predicting a

longer time horizon. However, recursive estimation can update the coefficient

every time step instead of just fixing it, which will give us a new model for

every time step corresponding to the current reservoir condition. Therefore,

using recursive estimation is a good choice for long-term prediction.

5.1 Recursive Estimation Algorithm

The general recursive identification algorithm is given by the following equa-

tion:

θ̂(t) = θ̂(t− 1) +K(t)[y(t)− ŷ(t− 1)] (5.1.1)

where θ̂(t) is the parameter estimate at time t. y(t) is the measured output

at time t and ŷ(t) is the prediction of output based on observations up to

time t − 1. K(t) is the multiplier that determines how much the current

prediction error y(t)− y(t− 1) affects the update of the parameter estimation.

The estimation algorithms minimize the prediction error y(t)− ŷ(t− 1). The

multiplier usually has the following form:

K(t) = Q(t)Ψ(t) (5.1.2)

The recursive algorithm supported by the System Identification ToolboxTM

differs based on different approaches for choosing the form of Q(t) and com-

puting Ψ(t), where Ψ(t) stands for the gradient of the predicted model output

ŷ(t|θ) with respect to the parameters θ.
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Considering the model with a linear-regression form:

ŷ(t) = ΨT (t)θ0(t) + e(t) (5.1.3)

In this equation, Ψ(t) is the regression vector that is computed based on pre-

vious values of measured inputs and outputs. θ(t) represents true parameters.

e(t) is the noise term which is assumed to be white noise. The specific form of

Ψ(t) depends on the structure of the polynomial model. For linear regression

equations, the predicted output is given by the following:

ŷ(t) = ΨT (t)θ̂(t− 1) (5.1.4)

There are three main algorithms used for recursive estimation: Kalman fil-

ter algorithm, forgetting factor algorithm and unnormalized and normalized

gradient algorithm. In the thesis, we will use the forgetting factor algorithm.

Equation 5.1.1, 5.1.2 and 5.1.4, together with the following set of equations,

summarized the forgetting factor adaptation algorithm:

Q(t) = P (t) =
P (t− 1)

λ+ Ψ(t)TP (t− 1)Ψ(t)
(5.1.5)

P (t) =
1

λ

[
P (t− 1)− P (t− 1)Ψ(t)Ψ(t)TP (t− 1)

λ+ Ψ(t)TP (t− 1)Ψ(t)

]
(5.1.6)

To obtain Q(t), the following function is minimized at time t:

t∑
k=1

λt−ke2(k) (5.1.7)

This approach discounts old measurements exponentially such that an obser-

vation that is τ samples old carries a weight that is equal to λτ times the weight

of the most recent observation. τ = 1
1−λ represents the memory horizon of this
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algorithm. Measurements older than τ = 1
1−λ typically carry a weight that

is less than about 0.3. λ is called the forgetting factor and typically has a

positive value between 0.97 and 0.995.

5.2 Recursive Estimation for Two Months

First, the performance of recursive estimation for the short term, two months,

will be tested. The basic model structure was built in the model structure se-

lection section in Chapter 4 and the ARX model is chosen because the BJ

model has too many parameters to be estimated, which will decrease the

recursive estimation accuracy. The results are shown in Figure 4.1. The

model fits improve a lot to the non-recursive estimation and the coefficients

are slightly changed every time step, which can be observed in Figure 5.2. Be-

cause the order of the ARX model for the water production rate is nA = 2 and

nB = [1 1], there are four free coefficients changing with time. The order of

the ARX model for the bitumen production rate is nA = 1 and nB = [1 1]

— there are three free coefficients. It is obvious that changing the coefficients

due to the reservoir condition will result in a better performance than just

fixing them. Using the recursive estimation, the model will update every time

step. We also noticed that for a relatively short time period, the coefficients

are almost unchanged, which proves that the non-recursive estimation has a

acceptable performance for short-term prediction.
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(a) Water production rate

(b) Bitumen production rate

Figure 5.1: Recursive estimation for two months
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(a) Water channel

(b) Bitumen channel

Figure 5.2: Coefficients changing with time for two-month recursive

estimation
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5.3 Recursive Estimation for One Year

Once the recursive estimation has been completed for the two-month model, a

longer time period, for example, one year, can be used to test the validity of the

recursive estimation. The results are depicted in Figure 5.3. The coefficients

changing with time are shown in Figure 5.4. In Figure 5.3, recursive estimation

captured nearly all reservoir dynamics even when there was no production.

There are some jumps in coefficients due to big fluctuations in the production

profile, which can explain why non-recursive estimation cannot be used to

predict long time periods. The coefficients of non-recursive estimation is fixed.

When there are no big changes in the production profiles, coefficients won’t

be changed significantly. As a result, the non-recursive model could capture

the main dynamics of the system. However, obviously the coefficients need to

be changed either when the production is stable or when it is fluctuating.

55



(a) Water production rate

(b) Bitumen production rate

Figure 5.3: Recursive estimation for one year
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(a) Water channel

(b) Bitumen channel

Figure 5.4: Coefficients changing with time for one-year recursive

estimation
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5.4 Recursive Estimation for Two and Five

Years

Based on the previous case, we could infer that recursive estimation is validated

for an even longer time period. Another two cases, recursive estimation for

two years and five years, will be tested here. Figure 5.5 - Figure 5.8 show the

results. From the figures we can see that the predicted production rates are

almost perfectly matched with the real ones. The model fits are even better

than those of recursive estimation for one year. That is because when the

time period is longer, the weight of absolute error is lower than that of the

short time case. The recursive estimation captures all the reservoir dynamics.

Through all these investigation, it is safe to say that recursive estimation can

be used for long-term prediction.
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(a) Water production rate

(b) Bitumen production rate

Figure 5.5: Recursive estimation for two years
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(a) Water channel

(b) Bitumen channel

Figure 5.6: Coefficients changing with time for two-year recursive

estimation
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(a) Water production rate

(b) Bitumen production rate

Figure 5.7: Recursive estimation for five years
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(a) Water channel

(b) Bitumen channel

Figure 5.8: Coefficients changing with time for five-year recursive

estimation
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5.5 Using the Same Model Structure to Pre-

dict in Another Well Pair

The data used here is recorded through a single well pair while there are three

well pairs in total in the reservoir. Another way to test the effectiveness of

model is to apply the same model structure in another well pair. If the model

can successfully predict the water and bitumen rate in another well pair in

spite of some difference in the operation and well conditions, it means the

model can really capture the reservoir dynamics instead of merely fitting into

a single well pair. As shown in Figure 5.9, the model output fits the measured

data perfectly. The coefficients are depicted in Figure 5.10. The coefficients

are different from those in Figure 5.8 because of different well event. Supported

by this case, the model built before can represent reservoir dynamics.
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(a) Water production rate

(b) Bitumen production rate

Figure 5.9: Recursive estimation for 15 years in another well pair

using the same model structure
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(a) Water channel

(b) Bitumen channel

Figure 5.10: Coefficients changing with time for 15 years recursive

estimation in another well pair using the same model structure
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Chapter 6

Strategy of Improving

Multiple-step Predictions

Before we talk about the multiple-step prediction, two cases have to be dis-

tinguished: simulation and prediction. If the responses of the model to an

input sequence have to be calculated while the process outputs are unknown,

that is called simulation. However, if the process outputs are known to some

time instant, say, k, and it is asked for the model output l steps in the future,

that is called prediction. Until now all the models’ forecasts are based on one

step predictions, and in this case l = 1. Figure 6.1 and Figure 6.2 explain the

meaning of these two scenarios (Nelles, 2001). From Figure 6.1, it is obvious

that the simulation is fully deterministic:

ŷ(k) = G(z−1)u(k) (6.0.1)

66



Figure 6.1: Simulation structure

Thus, the noise model H(z−1) seems irrelevant for simulation. But actually

H(z−1) influences the estimation of the parameters in G(z−1), so it does have

an impact on the simulation results even if it doesn’t appear in Equation 6.0.1.

In contrast to simulation, the information about the previous process output

can be used for prediction. In Figure 6.2, the expression “|k−1” means “on the

information available at time instant k−1.” For prediction, besides the inputs,

the previous process outputs are known. Note that if the prediction horizon l

becomes very large the information about the previous outputs becomes less

important. As a result, as l→∞ prediction approaches simulation.
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(a) One-step prediction

(b) Two-step prediction

Figure 6.2: Prediction structure
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6.1 Seven-step and Ten-step Recursive Esti-

mations

At each time step the recursive model has one set of fixed coefficients. In the

seven-step recursive estimation, the coefficients set obtained at time k will be

used to predict the water and bitumen rate at time k + 7. Here,e a five years

recursive estimation is chosen directly to test the validity of the long-term

prediction. The results are depicted in Figure 6.3. Because the seven-step

prediction uses data until the current time instant to predict for the time

instant which is seven time steps away from it, the accuracy of the model fits

decrease a little bit. However, it is fair to say that the model basically captures

reservoir dynamics. All trends of production profiles are fitted ideally. It is

also important to clarify that a small modification was made by setting all

the predicted negative and too high production value to zero. This was done

because the production value cannot be zero or bigger than the valve value

in reality. As discussed previously, if the production value is wrong, errors

will result. All in all, the seven-step recursive estimation is valid for long-term

prediction. We also test the longer prediction horizon, ten steps, to see the

effect of increasing the prediction horizon. The results are shown in Figure

6.4. From the figure we can see that the water rate model is still promising;

however, there is a big decrease of best fit in the bitumen rate model, which

could be caused by the initial sets of coefficients, which are not that precise.
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(a) Water channel

(b) Bitumen channel

Figure 6.3: Seven-step recursive estimation for five years
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(a) Water channel

(b) Bitumen channel

Figure 6.4: Ten-step recursive estimation for five years
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When there are production shutdowns in production profiles, the model fits

are never as good as before. In order to test the effect of big changes in

production profiles, we can remove them and then rebuild the model. In Figure

6.5 and Figure 6.6, the model fits improved a lot compared to the model using

unprocessed data. The reason why one-step recursive estimation will give

better results compared to seven-step and ten-step recursive estimations is

that one-step recursive estimation will update the model structure every time

step so the model itself ”knows” what happened at each time step, while

production shutdowns in production profiles are too abrupt for seven-step and

ten-step recursive prediction and it will take some time for the model to find

the proper coefficients to reflect the real reservoir dynamics. Basically, when

the production rate is stable or not changing too much, the coefficients of

the model won’t change too much either. In that case, when the production

shutdowns of the data is removed, the coefficients also tend to be stable and

easier to identify. Thus, in reality, if there are production shutdowns in the

long-term dataset, one should remove the them or restart the identification

from a new time instant when the production is stable.
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(a) Water production rate

(b) Bitumen production rate

Figure 6.5: Seven-step recursive estimation without production

shutdown for five years
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(a) Water channel

(b) Bitumen channel

Figure 6.6: Ten-step recursive estimation without production shut-

down for five years
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6.2 Seven-step Recursive Estimation in An-

other Well Pair

In order to show that a seven-step recursive estimation can be used to describe

the reservoir dynamics, the same model structure will be applied to another

well pair to check the model performance. The data used here are the 15-year

operation profiles. One thing that needs to be clarified is that in this part

the coefficients will also be the same as in the previous seven-step recursive

estimation in Section 6.1. Thus, it means we just use a completely built

model to make the prediction under a different operating situation. The only

same part of these two cases is these two well pairs come from the same

reservoir, which means the reservoir dynamic is the same. The results are

depicted in Figure 6.7. Compared to the previous results, the model fits are

not satisfactory, but they capture the main trends of the production profiles.

Considering that this is a seven-step recursive estimation in another well pair,

it is still safe to say that the results are encouraging.
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(a) Water production rate

(b) Bitumen production rate

Figure 6.7: Seven-step recursive estimation for 15 years in another

well pair using the same model structure
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6.3 Seven-step Nonlinear ARX Estimation

After trying all kinds of linear models, a set of nonlinear models should also

be checked. The most widely used nonlinear model structure - nonlinear ARX

model will be used. The input and output variables will be kept the same as

before. The time period will be the same as the seven-step recursive estimation.

The results are shown in Figure 6.8. The model can just reflect the basic

reservoir dynamics, and in order to fit the production shutdown, the model

sacrifices accuracy in the nearby region. The same assumption made here is

that the error of seven-step nonlinear estimation comes from the production

shutdown. The big jumps are removed as well to verify the assumption. The

results are depicted in Figure 6.9. The model performances improve a lot, and

all reservoir dynamics are captured basically. Once again, we proved that the

big error comes from the big fluctuation from the production profile, which

should be avoided from the identification process.
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(a) Water production rate

(b) Bitumen production rate

Figure 6.8: Seven-step nonlinear ARX estimation for five years
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(a) Water production rate

(b) Bitumen production rate

Figure 6.9: Seven-step nonlinear ARX estimation without produc-

tion shutdowns for five years
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6.4 Pure Simulation

After many cases of multiple-step recursive estimation and nonlinear estima-

tion, we also want to test the performance of linear non-recursive pure sim-

ulation, which means there will be infinite-step predictions. Because the BJ

model is the best linear model that could capture the reservoir dynamics, we

use BJ model to test the pure simulation case. The results are shown in Figure

6.10. The BJ model here is employed to simulate the output for the next two

months. From the figure we can see that the models capture the main trend

in the measured data. We also use the model to simulate the output for the

next four months. The results are depicted in Figure 6.11. When there is a

production shutdown, the fix-coefficients BJ models fail to capture the abrupt

change and, overall, the models’ performance is insufficient. This is another

example showing that the non-recursive model should be used in short-term

predictions.
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(a) Water production rate

(b) Bitumen production rate

Figure 6.10: Open loop simulation for two months
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(a) Water production rate

(b) Bitumen production rate

Figure 6.11: Open loop simulation for four months
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Chapter 7

Importance of Input Design for

System Identification of

Reservoirs

The previous discussions show that the model error comes mainly from the

production shutdowns in production profiles. Production rate is the output

variable in the model and the output is actually determined by the input. If

the input variables have enough excitation to be identified, the accuracy of

the model will be improved significantly. However, the real reservoir cannot

be accessed. As a result, simulation reservoir models will be built in this

section to realize the input design. In this section, we will combine different

reservoir models and different kinds of input signals. The reservoir models are

a homogeneous SAGD reservoir, naturally fractured gas reservoir, channelled
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water-flooding reservoir and heterogeneous SAGD reservoir. The different in-

put signals are pseudo random binary sequence (PRBS) signal, multiple level

PRBS signal and sine wave signal. We are trying to determine two things: if

the input signal is well-designed, will the system identification performance be

improved, and what kind of reservoir will be suitable for system identification.

7.1 Homogeneous SAGD Reservoir

A 3-D SAGD reservoir model, with 11 × 10 × 10 grid blocks with model di-

mensions of 44 meters × 1400 meters × 30 meters, has been used in this case

study. A pair of injector and producer wells is used in this simulation model.

As we discussed before, steam injection rate and production pressure will be

used as in the input signals, and the output signals are water rate and bitumen

rate in the producer. The permeability is 2200 md in the i and j direction, and

the permeability in teh k direction is 1760 md. The other reservoir properties

are presented in Table 7.1.
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Table 7.1: Homogeneous SAGD reservoir properties

Parameters Value

Depth from surface 280 m

Porosity 34%

Reservoir temperature 10◦ C

Formation heat capacity 2.35× 106 J/(m3×◦C)

Rock thermal conductivity 6.6× 105 J/(m× day×◦C)

Fluid injected Steam

Steam quality 0.9

Steam temperature 224◦C

The reservoir model is depicted in Figure 7.1. Figure 7.2 shows part of the

PRBS input signal applied to this reservoir. The bottom axes are the designed

PRBS input signal. The values change between two levels and the changing

frequency is random. The input signal is applied to the CMG flexwell model

and the top axes show the output value obtained from the CMG simulator. All

these values will be sent to system identification to build a new proxy model.

The blue line in the figure is for model construction and the purple one is for

model validation. The results are depicted in Figure 7.3. From the figure we

can see that the model can capture the reservoir dynamics perfectly, and the

focus here is pure simulation, as discussed in Chapter 6.
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Figure 7.1: Homogeneous SAGD reservoir

Figure 7.2: PRBS input signal
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(a) Water production rate

(b) Bitumen production rate

Figure 7.3: Open loop simulation of homogeneous SAGD reservoir

for PRBS input design
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Although the results in the previous section are very encouraging, the input

values just have two levels. In order to add complexities to the case, we ar-

ranged a multiple-level PRBS input signal as shown in Figure 7.4. The results

are depicted in Figure 7.5. From the figure we can see that the model fits

are still promising. The quality of the fits is slightly less than that of the

fits generated by the PRBS signal. That is because the multiple-level PRBS

signal has more uncertainties than that of PRBS signal. All in all, this is

a good simulation that captures basically all reservoir dynamics. One thing

that needs to be clarified is the selection of the frequency band of PRBS and

multiple level PRBS signal. The lower and upper frequencies are expressed in

fractions of the Nyquist frequency.

Figure 7.4: Multiple-level PRBS input signal
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(a) Water production rate

(b) Bitumen production rate

Figure 7.5: Open loop simulation of homogeneous SAGD reservoir

for multiple-level PRBS input design
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Some other types of input designs, such as the sine wave input signals shown

in Figure 7.6, can be tested. In order to increase the model validity, the data

used for model construction has a different amplitude and frequency than the

data used for model validation. The results are shown in Figure 7.7. The

models capture the reservoir dynamics as well.

Figure 7.6: Sine wave input signal
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(a) Water production rate

(b) Bitumen production rate

Figure 7.7: Open loop simulation of homogeneous SAGD reservoir

for sine wave input design
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7.2 Naturally Fractured Gas Reservoir

In this section a dual porosity 2-D naturally fractured gas reservoir will be

used to test for the input design. The model has 25×25×1 gird blocks with a

dimension of 6000 feet × 7000 feet × 250 feet. Other parameters are presented

in Table 7.2.

Table 7.2: Naturally fractured gas reservoir properties

Parameters Value

Depth from surface 4000 ft

Matrix porosity 20%

Matrix permeability 1 mD

Fracture porosity 100%

Fracture permeability 0 to 11.34 mD

Initial reservoir pressure 3000 psia

Initial gas saturation 100%

No. of wells 3 producers

The fracture’s structure is shown in Figure 7.8. In this model we didn’t activate

dual permeability, which means there is no direct flow between matrix cells.

The gas will flow from the matrix cells to the fractures, and then to the

producers. The permeability distribution of the fracture system is depicted in

Figure 7.9.
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Figure 7.8: Discrete Fracture Network (DFN) model. Five percent

of the fractures are displayed in the figure

Figure 7.9: Permeability of fracture system
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Since the model is a naturally fractured gas reservoir, we don’t need to add

injection wells. Only production wells are needed, which means that the steam

injection rate isn’t an input signal any more. In fact, in this case study, we

have just one input, production pressure, and one output, gas production rate.

We have chosen P2 well as our data source. All types of input signals are used

such as PRBS signal, multiple level PRBS signal and sine wave signal. The

only differences are the value and frequency. The procedure of building a proxy

model is the same as that in the previous section. The results are shown in

Figure 7.10 - Figure 7.12. From the figures, we can see that every input design

case captures the reservoir dynamics and the prediction is almost perfect. That

is because this is a relatively simple model compared to the SAGD reservoir

model. And in case, we can build a Single Input Single Output (SISO) model

for identification.
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Figure 7.10: Open loop simulation of naturally fractured gas reser-

voir for PRBS input design

Figure 7.11: Open loop simulation of naturally fractured gas reser-

voir for multiple PRBS input design
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Figure 7.12: Open loop simulation of naturally fractured gas reser-

voir for sine wave input design

7.3 Channel Reservoir

After testing the performance of system identifications applied to a homoge-

neous SAGD reservoir and a naturally fractured gas reservoir, a 2-D channel

reservoir will be built to proceed with the input design again, in this section.

This is a 64 × 64 × 1 reservoir with the dimension of 2100 ft × 2100 ft ×

32.8084 ft. The highly permeable sand channel is surrounded by low perme-

able shale. The permeability of the sand is 10,000 mD, and for the shale it

is 500 mD. The other parameters are shown in Table 7.3. The visual shape

of the channel is shown in Figure 7.13. I1 is a horizontal injector and P1 is a

horizontal producer.
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Table 7.3: Channel reservoir properties

Parameters Value

Depth from surface 3000 ft

Porosity 20%

Initial reservoir pressure 5000 psia

Initial oil saturation 98%

No. of wells 1 injector & 1 producer

Fluid injected Water

Figure 7.13: Permeability distribution of channel reservoir
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The method for EOR here is water flooding. As a result, the water injection

rate and production pressure will be used as input signals. The output signals

are the water and oil production rates. The model is switched to a Multiple

Input Single Output (MISO) model again. The types of the input signal are

kept the same as in the previous section. The results are presented in Figure

7.14 - Figure 7.16. Once again, the models make accurate predictions for the

production rate. In Figure 7.14 and Figure 7.15 we can see that the fit of

the water production rate model is better than that of the oil rate model.

That is because the reservoir model is a water-flooding model, and the water

production rate is more affected by the input signal - water injection rate. The

sine wave signal seems appropriate for both the water and oil production rate

models.
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(a) Water production rate

(b) Oil production rate

Figure 7.14: Open loop simulation of channel reservoir for PRBS

input design
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(a) Water production rate

(b) Oil production rate

Figure 7.15: Open loop simulation of channel reservoir for multiple

level PRBS input design
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(a) Water production rate

(b) Oil production rate

Figure 7.16: Open loop simulation of channel reservoir for sine wave

input design
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7.4 Heterogeneous SAGD Reservoir

In Section 7.1 we discussed the homogeneous SAGD reservoir case. What if

we change the homogeneous case to a heterogeneous one? In this section, we

replicate the procedures in the reservoir model built in section 7.1 but change

the permeability. The permeability ranges from 1982 mD to 4834 mD. The

permeability distribution of one layer is shown in Figure 7.17.

Figure 7.17: Permeability distribution of heterogeneous SAGD

reservoir

After repeating the system identification procedure, the results are depicted

in Figure 7.18 - Figure 7.20. We can see that the model fits decrease a lot

although the model can still capture the main trends of the production profiles.

Needless to say, random permeability acts as an important factor in system

identification. System identification is a technique to find the relationship

102



between the input and output. The simpler the system is, the better results

the system identification yields. From the figures we can also see that the

production rate is more abrupt than that of other cases. But all in all, these are

still good models and can direct the decision-making of production schedule.
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(a) Water production rate

(b) Oil production rate

Figure 7.18: Open loop simulation of heterogeneous SAGD reservoir

for PRBS input design
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(a) Water production rate

(b) Oil production rate

Figure 7.19: Open loop simulation of heterogeneous SAGD reservoir

for multiple-level PRBS input design
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(a) Water production rate

(b) Oil production rate

Figure 7.20: Open loop simulation of heterogeneous SAGD reservoir

for sine wave input design
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Chapter 8

Discussions, Conclusions and

Future Work

8.1 Discussions

System identification techniques, which are widely used in process control,

seem to have promising results in forecasting production profiles of various

kinds of reservoirs. Compared to physics-based reservoir models, system iden-

tification models are easier to build and calculate. Traditional models can run

for days; however, system identification models need just a few seconds. Ad-

vanced production measurement devices increase the measurement frequency

to a quite high level, i.e., on the order of seconds to minutes. This effi-

ciency promotes the development of system identification; the time step in

most physics-based models takes on the order of days to months. As a result,

before the high-frequency data are assimilated into these physics modes, they
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are post-processed to match the simulator time step size. However, system

identification can capture the fast dynamics such that short-term predictions

are better, compared to those of physics-based reservoir models. In this thesis

we applied system identification on real SAGD reservoir data and discussed

how to build system identification models in detail. After accomplishing model

construction for short-term prediction, we presented self-tuning models used

for long-term prediction. To investigate what kinds of reservoirs and data

are suitable for system identification, we designed different kinds of input for

different kinds of reservoirs. The case studies shown in this thesis and their

conclusions can be summarized as follows:

1. In the first case study we built a system identification proxy model using

real data. The data used here is 15 years worth of SAGD operation

data. Production pressure and the steam injection rate are used as the

input signal, and the water production rate and bitumen production

rate are used, separately, for the output signal. This creates two MISO

models. The models built here are utilized for the two-month short-term

prediction. The model structure are fixed as BJ model due to the error

residuals between the model output and the real data. A time instant

of when to start the effective identification is also specified to better

reflect the reservoir dynamics. From this work we can say that in order

to build a validated system identification model, the factors listed must

be considered and a perfect combination of them should be chosen.
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2. The second case study was also system identification on real SAGD reser-

voir data. However, in this case we tried to make a long-term prediction.

To achieve this goal, we introduced recursive estimation, which can au-

tomatically update the system identification model every time step. In

real data, there are big jumps which are difficult for non-recursive esti-

mation to detect. Once the model is built, the coefficients of the models

are fixed. Based on pure data, if there are significant changes, the system

identification’s performance is barely satisfied. With recursive estima-

tion, new data can come into estimation, leading to updating coefficients

to adjust to every situation. Therefore recursive estimation can not only

predict for long time period, but can also lead to a better model fit.

3. In order to increase the prediction horizon, another seven-step recursive

estimation case was built. As expected, the fit of the models decreased

a little, but the results were still promising because the estimation case

captured basically all the reservoir dynamics. After removing big jumps

of the data, the performance was better. A non-linear model was also

tested here. However, non-linear models are not main topics of this

thesis.

4. To address the question of whether the system identification performance

will be better if there aren’t big jumps in the data, we designed three

different kinds of input signals — the PRBS signal, multiple-level PRBS

signal, and sine wave signal — for different kinds of reservoirs. The
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reservoirs are a homogeneous SAGD reservoir, a naturally fractured gas

reservoir, a water-flooding channel reservoir and a heterogeneous SAGD

reservoir. The results showed that enough excitations in input are really

important for system identification, and that system identification can

be used for all kinds of reservoirs.

8.2 Conclusions

System identification using MATLAB System Identification Toolbox coupled

with CMG STARS and Eclipse E100 simulators built a proxy reservoir model

and forecasted the production profile. Different identification methods were

compared to increase the model validity. The following conclusions can be

drawn from this thesis:

1. System identification is a very efficient and robust technique for forecast-

ing production of all kinds of reservoirs. The quality of system identifica-

tion is determined by various factors such as input and output parameter

selection, model structure selection, identification time period, time in-

stant, and where to start the identification and excitation level of the

input signal.

2. System identification can not only be used in short-term prediction but

can also be used in long-term prediction once the recursive estimation

technique is added. If the big jumps of data can be removed, the model

fit will increase significantly.
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3. Although most reservoir production problems are non-linear ones, linear

system identification models can also be applied to capture the reservoir

dynamics. Among all linear models, BJ models have the best fit due to

their flexibility.

4. For short-term prediction, although the rule of thumb for the chosen

experiment duration is that the length should be minimal give times the

largest time constant. We demonstrated that too much data would also

lead to a poor identification and a proper amount of data samples should

be chosen to build the system identification model.

5. System identification of real data is restricted by the quality of the data.

Once the model is built, it can only reflect the reservoir dynamics over

a short period of time. However recursive estimation could update the

model coefficients every time step to obtain better results.

6. Multiple step estimation will decrease the model fit but can still capture

the reservoir dynamics, which is good news for control process.

7. With input design, the model fit of system identification increases be-

cause there is enough excitation in input signal. The SAGD process is

harder to identify than other cases because it is a more sophisticated

process. For easy case, the SISO model yields better results than that

of MISO model.
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8.3 Recommendations for Future Work

As for future work, the system identification can be applied to a history-

matched model. Nonlinear model structures can be tested for different reser-

voir cases. System identification models are also important in dynamic real-

time optimization. One could combine system identification with a model

predictive controller to investigate production optimization.
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