
PSVN Manual (June 20, 2014)

Robert C. Holte
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(rholte@ualberta.ca)

Broderick Arneson Neil Burch
Computing Science Department

University of Alberta
Edmonton, AB Canada T6G 2E8

(nburch@ualberta.ca)

1 Introduction
This manual describes PSVN, a language for describing
state space search problems using multi-valued vari-
ables that lends itself to efficient calculation of a state’s
successors and predecessors without having to fully
ground the operators. It also describes the PSVN com-
piler, psvn2c, which accepts PSVN as input and compiles
it into efficient C code that can then be incorporated
into the search or planning code of one’s choice. Fi-
nally, it includes a set of tutorial lessons to help you
learn how to use PSVN.

To researchers or practitioners who are focused on a
specific search domain, PSVN will be useful as a rapid
prototyping tool, since the code psvn2c generates is
efficient and its move pruning analysis automatically
detects and removes redundant operator sequences that
are typical of the domain-specific optimizations done
when writing code by hand.

To researchers or practitioners interested in domain-
independent search or planning, PSVN offers an at-
tractive middle ground between first-order languages
for specifying state spaces, such as PDDL (Ghallab
et al. 1998), and fully grounded languages such as
FDR (Helmert 2009) and SAS+ (Bäckström and Nebel
1995). PSVN is very similar to the latter, but has a sim-
ple, efficient mechanism enabling the value of a state
variable to be referenced and copied without ground-
ing. By avoiding the exponential blowup that oc-
curs in some search domains when their operators are
grounded, PSVN extends the set of state spaces that can
be handled in practice and adds to the efficiency of rea-
soning about a state space by reducing the number of
operators and precondition tests.
PSVN is also designed to fully support the following

commonly needed functions:

• backward search (predecessor calculation); psvn2c
automatically infers inverses of the given operators;

• state space abstraction (in particular, “projection”
and “domain abstraction”).

2 The PSVN Language
PSVN is a slight extension of the language with the same
name introduced by Hernádvölgyi and Holte (1999).

One overarching principle has guided the design of the
language: efficiency of execution. Features are not
added to the language to make it more convenient for
humans to use or read; they are only added if they will
result in efficiency gains. PSVN is therefore more akin
to an assembly language than a high-level programming
language, and one can imagine an entirely separate lan-
guage specifically designed for ease of modelling that is
then compiled into PSVN. Expressiveness of the lan-
guage has not been a primary concern up to this point.
Our aim has been to make an efficient language expres-
sive enough that the standard testbed problems could
be compactly encoded in it.

2.1 States and Variable Domains

In PSVN a state is a vector of fixed length, n. The en-
try in position i is drawn from a finite set of possible
values called its domain, Di. In many state spaces ev-
ery position of the vector has the same domain, but in
principle they could all be different. Different domains
in PSVN are entirely distinct; the same symbols can ap-
pear in different domains, but they will internally be
considered distinct.

Figure 1 illustrates how domains are defined and as-
signed to each position of the state vector. The key-
word DOMAIN is followed by a user-given name for the
domain, the number of values in the domain, and then
the values in the domain, which can be any legal to-
kens. The domain definitions are followed by the length
of the state vector (n = 7 in this example). Then the
domain for each position in the vector is declared (the
line size gender size height 3 2N 4). In addition
to user-defined domains, there are two kinds of built-

DOMAIN gender 2 FEMALE MALE
DOMAIN size 5 SMALL MEDIUM LARGE XL XXL
DOMAIN height 3 SHORT MEDIUM TALL

7

size gender size height 3 2N 4

Figure 1: Domain Definitions and Declarations.

in numerical domains. A number by itself denotes the
domain containing that many integer values starting at
0 (e.g. 3 denotes the domain {0, 1, 2}), a number fol-
lowed by N denotes the domain containing that many
integer values starting at 1 (e.g. 2N denotes the do-
main {1, 2}). The token MEDIUM occurs in two of the
user-defined domains in this example, but the two oc-
currences are treated by PSVN as entirely distinct values
because they are in different domains. Likewise, the do-
mains 3, 2N, and 4 all have some numbers in common
but, because the domains are distinct, the numbers in
one domain are considered to be different than the num-
bers in the other two domains.

The PSVN language is entirely insensitive to case, so
the keyword DOMAIN could also be entered as domain,
Domain, etc., and constants such as MEDIUM, medium,
and MeDiUm are all indistinguishable from each other.

2.2 Operators

The transitions in the state space are specified by a set
of operators (also called rules). Each operator has a left-
hand side (LHS) specifying the operator’s preconditions
and a right-hand side (RHS) specifying the operator’s
effects. The LHS and RHS are each a vector of length
n. In both the LHS and the RHS, position i is either a
constant from Di or a variable symbol. Any number of
positions in these vectors (LHS and RHS) can contain
the same variable symbol providing their domains are
all the same.

State s = 〈s1...sn〉 matches LHS = 〈L1...Ln〉 if and
only if si=Li for every Li that is a constant and si=sj
for every i and j such that Li and Lj are the same
variable symbol.

An operator is “deterministic” if every variable sym-
bol in its RHS is also in its LHS. The effect of a de-
terministic operator when it is applied to state s =
〈s1...sn〉 matching its LHS is to create a state s′ =
〈s′1...s′n〉 such that: (i) if position j of the RHS is the
constant c ∈ Dj then s′j=c; (ii) if position j of the RHS
is the variable symbol that occurs in the position i of
the LHS then s′j=si.

An operator is “non-deterministic” if one or more of
the variable symbols in its RHS do not occur in its
LHS. We call such variable symbols “unbound”. The
effect of a non-deterministic operator when it is applied
to state s = 〈s1...sn〉 matching its LHS is to create a
set of successor states. There is one successor for every
possible combination of values of the unbound variables
(if the unbound variable is in position i, its values are
drawn from Di). Each of the other positions of these
successors will be the same in all the successors and
are determined by the rules for calculating the effects
of deterministic operators. For example, if n=4 and all
positions have domain {1, 2} then the rule1

1 A B C => E 1 D E

1Unless otherwise stated, in all rules in this manual do-
main values are integers and variable symbols are upper case
letters.

would create four successors when applied to state2

〈1, 2, 1, 2〉, namely, 〈1, 1, 1, 1〉, 〈2, 1, 1, 2〉, 〈1, 1, 2, 1〉, and
〈2, 1, 2, 2〉.

Optionally, an operator may be given a label or a
cost or both. In the current version, if both are given
the label must be given first. These are specified by
adding after the RHS the keyword LABEL followed by a
token or the keyword COST followed by a non-negative
integer. Zero-cost operators are allowed. The default
cost of an operator is 1. For example, specifying the
label example and a cost of 7 for the rule above would
be done as follows:

1 A B C => E 1 D E LABEL example COST 7

The same label can be given to multiple rules. For ex-
ample, in the sliding-tile puzzle one could give the label
UP to all operators that exchange a tile with the blank
by moving the blank up. In the absence of user-assigned
labels, the operators are labelled rule 1, rule 2, etc.

2.3 Special Symbols

Comments can be included anywhere in a PSVN descrip-
tion using the symbols # or ;. On an input line contain-
ing one of these symbols everything after the symbol is
ignored.

As a concession to human readability PSVN allows one
additional symbol, the dash (“-”), to be used in any po-
sition in an LHS or RHS. The aim is to allow positions
that “don’t matter” to be marked with a special sym-
bol so that the constants and variable symbols that do
occur in an operator are ones that “matter”. More pre-
cisely, a dash in position i of the LHS means that the
value in position i is not tested in a precondition in the
LHS or assigned to a different position in the RHS, and
a dash in position i of the RHS means that the value in
position i does not change when the operator is applied.
The dash does not add any expressiveness to the PSVN
language since its meaning can be defined in terms of
the other elements of the language.

As an example, consider the 4-peg Towers of Hanoi
problem. There are many ways to encode this state
space in PSVN, here we shall consider one of the most
compact. For each disk there will be four binary state
variables indicating which peg the disk is on (if disk d
is on peg i, the ith state variable for d will be 1 and
the others will be 0). For each disk d and for each pair
of pegs i and j 6= i one PSVN operator is needed for
moving d from the top of peg i to the top of peg j. For
example, if there are just three disks, the operator for
moving the largest disk from peg 2 to peg 3 is:

- 0 0 - - 0 0 - - 1 - -
=> - - - - - - - - - 0 1 -

The 0s among the first eight positions of the LHS en-
code the requirement that the smaller disks not be on
pegs 2 and 3, so they are not blocking this move. The 1

2The angle brackets around vectors and commas sepa-
rating the vector positions are not part of PSVN, they are in
the text for readability.

2

among the last four positions in the LHS tests that the
largest disk is indeed on peg 2. The RHS only changes
the state variables indicating which peg the largest disk
is on.

This operator works perfectly well in the forward di-
rection (for successor generation) but, for reasons that
will be discussed in detail below (Section 3.2), it does
not work as intended when used in the backward direc-
tion (for predecessor generation). This is not a bug in
PSVN, it is inappropriate modelling by the person who
wrote the rule if the intent was to use the rule in both
directions. The appropriate way to write the rule so it
behaves as intended in both directions is:3

- 0 0 - - 0 0 - - 1 0 -
=> - 0 0 - - 0 0 - - 0 1 -

From an efficiency point of view, this way of writing
the rule is less than ideal because the 0 in the last four
positions of the LHS will have to be tested when, in
fact, it is guaranteed to be 0 in a legitimate Towers
of Hanoi state given that the 1 occurs as shown. The
extra testing is a waste of time. PSVN allows the user to
indicate that a constant need not be tested by putting
an asterisk in front of it. The most efficient encoding
of this Towers of Hanoi operator that works properly in
both directions uses this as follows:

- 0 0 - - 0 0 - - 1 *0 -
=> - 0 0 - - 0 0 - - *0 1 -

Asterisks in the RHS have no effect when the rule is
used in the forward direction, but avoid needless testing
when the rule is used in the backwards direction, since
the RHS specifies the preconditions of the backwards
application of a rule (see Section 3.2).

An asterisk can also be used when a state variable
is involved in an equality test. For example, consider
the following LHS, which tests if the first three state
variables all have the same value:

X X X ... => ...

psvn2c would generate two equality tests to test this
precondition: the first and second state variables would
be compared and, if they were equal, the first and third
state variables would be compared. If, however, you
knew that the first state variable had to be the same
as the other two if they were equal, you could use this
knowledge to write the LHS in a more efficient form:

*X X X ... => ...

For this LHS psvn2c would generate only one equality
test: only the second and third state variables would
be compared. If the rule was applied backwards all
three variables still would be guaranteed to be assigned
the same value. The general meaning of the asterisk
on a particular state variable in the LHS (or the RHS
if the rule is being used backwards) is that it removes

3In this rule it is not necessary to specify a 0 for pegs
1 and 4 of the largest disk because these positions “don’t
matter” at all, there is a dash for them in both the LHS
and the RHS.

4-Pancake Puzzle
4 # 4 vector positions
4 4 4 4 # all domains = {0,1,2,3}
A B - - => B A - - LABEL reverse2
A - C - => C - A - LABEL reverse3
A B C D => D C B A LABEL reverse4
GOAL 0 1 2 3

Figure 2: Complete PSVN for the 4-Pancake Puzzle.

that state variable from any involvement in precondi-
tion testing. The rule

*X *X X ... => ...

therefore does no testing, since there is no variable with-
out an asterisk for the third state variable to be com-
pared to. It is equivalent to:

*X *X *X ... => ...

2.4 Goal Conditions

The final feature of PSVN is that the goal of a search is
not required to be a single state. Goal conditions are
specified by writing one or more special operators of
the form “GOAL Condition”, where Condition takes
the same form as the LHS of a normal operator. An
example is shown in the last line of Figure 2. If there
are several such goal statements they are interpreted
disjunctively. GOAL statements can be placed before or
after the operators, or even intermingled with them.

2.5 Discussion

Although the PSVN language is extremely simple, it
gains enormous power from the way variables in its rules
get bound to values in the state to which the rule is
being applied and then copied into arbitrary locations
in the successor state. This is a very efficient opera-
tion that allows replicating and/or swapping of values
in a state without having to enumerate all the different
ways the rule could be grounded. Many planning and
search problems involve shifting objects among a set
of locations (e.g. driving a truck from one location to
another). This power is most evident in pure “permu-
tation” puzzles such as the Pancake Puzzle (Dweighter
1975). In the k-Pancake Puzzle, a state is a permuta-
tion of the numbers 1 to k and has k−1 successors, with
the lth successor formed by reversing the order of the
first l + 1 positions of the permutation (1 ≤ l ≤ k − 1).
In PSVN these rules are trivial to encode: the complete
PSVN for the 4-Pancake Puzzle is shown in Figure 2.

3 psvn2c, the PSVN Compiler
The primary purpose of psvn2c, the PSVN compiler,
is to read a PSVN description and produce a corre-
sponding set of functions and type definitions, in the
C programming language that can be used in a user’s
search or planning code. These include functions for
testing if a state satisfies the goal conditions and for

3

state_t state, child;
ruleid_iterator_t iter;
int move_cost, ruleid;
...
init_fwd_iter(&iter, &state);
while((ruleid=next_ruleid(&iter)) >= 0)
{

apply_fwd_rule(ruleid,&state,&child);
move_cost = get_fwd_rule_cost(ruleid);
if(is_goal(&child))
...

}

Figure 3: C code for iterating through a state’s succes-
sors.

generating the successors of a state one by one. Fig-
ure 3 shows a code fragment for iterating through the
successors of the state stored in variable state and
testing if each is a goal state. The code also shows
how to get the cost of the rule used to generate each
child. state t and ruleid iterator t are types de-
fined by psvn2c for states and iterators, respectively,
and init fwd iter, next ruleid, apply fwd rule,
get fwd rule cost, and is goal are functions psvn2c
has defined. Note that applying a rule to a state cre-
ates an entirely new state (child in the figure), it does
not modify the given state. Also note that the order in
which successors are generated is determined internally
by psvn2c and is not necessarily the order in which the
operators are given in the PSVN description.

The type state t is the internal representation of
the state that is used by most PSVN functions. It is
not advisable for user code to make any assumptions
about the internal details of state t since they might
not always be the same. To convert back and forth
between the internal representation and a string rep-
resentation that is human readable and easy for user
code to manipulate, psvn2c provides three functions,
sprint state, print state, and read state, whose
use is illustrated in Figure 4. Note that sprint state
takes a maximum length parameter (256 in the exam-
ple) and sprint state will fail if the string represen-

state_t state;
char string[256];
ssize_t len;
...
/* convert a state to a string*/
len = sprint_state(string,256,&state);
...
/* convert a string to a state */
len = read_state(string,&state);
...

Figure 4: C code for converting a state between internal
and string representations.

tation exceeds this limit.
The string representation of a state contains the

domain values separated by white space. For example,
the string representation of a typical state based on
the definitions in Figure 1 would be

"SMALL MALE XXL TALL 0 2 3".

3.1 How to Run the psvn2c Compiler

In this section, we briefly describe how to actually run
psvn2c on a PSVN source file and include the C code that
it generates when the user’s search code is compiled.
psvn2c was developed and tested on Linux using gcc

and g++. The code requires only the STL libraries, so
it should be easily portable to other systems.

Assume there is a file called pancake4.psvn contain-
ing the PSVN shown in Figure 2. If it is in the same di-
rectory as the psvn2c executable (called psvn2c) then
the first step is to apply psvn2c to the PSVN source file
as follows:

./psvn2c < pancake4.psvn > pancake4.c

The resulting file (pancake4.c) contains C language
definitions of the types, constants, and functions that
psvn2c produces. A full list of these is given in the PSVN
API Manual. The user’s search/planning code should
be written in C or C++ using these, as illustrated by
the code fragments throughout this document (e.g. Fig-
ure 3). The integration of the psvn2c-generated code
with the user’s code happens when the user’s code is
compiled. If the user’s code, mysearch.cpp, is in C++,
for example, it should be compiled as follows:

g++ mysearch.cpp -include pancake4.c -o
mysearch.pancake4

This manual is accompanied by a series of tutorial
lessons to help you learn the practical aspects of us-
ing the PSVN system. The lessons can be found at the
end of this manual, and the code and other files for each
of them is found in a directory called LessonNN (where
NN is the lesson number, e.g. Lesson01 for Lesson #1).
Lesson #1 is an introduction to writing your own PSVN
state space definitions, running the psvn2c compiler,
and integrating the code it creates with the search code
you have written.

You are now ready to do Tutorial Lessons #1,
#1A, and #2.

3.2 Applying Operators Backwards

Figure 3 and the related text described the “for-
ward” application of the operators, whereby the suc-
cessors of a state are computed by testing if the state
matches each operator’s LHS and, if it does, using the
RHS to determine the successor state(s). Techniques
such as regression planning (Rintanen 2008), bidirec-
tional search (Kaindl and Kainz 1997), and pattern
databases (Culberson and Schaeffer 1998) require com-
puting the predecessors of a state s, i.e., the set P (s)
containing all and only the states p such that r(p) = s

4

for some rule r that can be applied to be p. Fortunately,
it is very easy to generate the backwards rule for a given
PSVN rule.

Consider a rule r = 〈t1, ..., tn〉 → 〈a1, ..., an〉. The
backwards rule b = 〈tb1, ..., tbn〉 → 〈ab1, ..., abn〉 can
be constructed one test/action pair at a time. There
are three cases. First, if neither ti nor ai is a dash
(−), then we can just switch their roles: tbi = ai and
abi = ti. If ai is a dash, then tbi = ti and abi = ai.
Finally, if ai is a variable or constant and ti is a dash,
then tbi = ai and abi is assigned a variable name which
does not occur anywhere else in the backwards rule. For
example, 〈−, X, 0,−,−, X, 2〉 → 〈−,−,−, 1, 1, 3, X〉 be-
comes 〈−, X, 0, 1, 1, 3, X〉 → 〈−,−,−, T1, T2, X, 2〉.

A special circumstance to note is when a rule, applied
in the forward direction, loses information about one or
more of the values of the state to which it was applied.
This will happen when ti is a variable symbol that does
not occur in the rule’s RHS or, equivalently, if ti is a
dash and ai is not. When such a rule is applied to
a state s, si can be any value, but its value is lost,
overwritten by ai. That is, we have a rule which maps
many different states to the same state. We must satisfy
s′i = ai, so going backwards we have tbi = ai. Since
there is no way to recover the specific value of si, we
must generate all possible values for it, so we make abi
an unbound variable.

This can produce some unexpected results. If the
state space is encoded in a way where only some of the
possible state vectors are considered to be valid, and the
rules make implicit use of this, the backwards rules may
generate invalid states from valid states. For example,
most encodings of permutation puzzles will have n vari-
ables with a domain of size n. There are n! valid states
out of nn possible states. A rule like 〈1, 2,−〉 → 〈3, 1, 2〉
is quite reasonable. There is no reason to test that the
third variable is 3, because we know it must be 3 to
be a valid state. Applying this rule backwards we get
〈1, 2, 3〉, but we also get the undesirable states 〈1, 2, 1〉
and 〈1, 2, 2〉, because there is nothing explicitly enforc-
ing the constraints of a valid state. It is for this reason
that the first version of the Towers of Hanoi rule given
as an example in Section 2.3 does not work correctly
when used in the backward direction.

The semantics of applying an operator backwards is
such that if the operator is applicable to state s in the
forward direction and doing so produces state s′ (not
necessarily deterministically), then the operator, when
used in the backwards mode, is guaranteed to be appli-
cable to state s′ and is guaranteed to produce state s
when it is applied to s′ (again, not necessarily determin-
istically). Note that an operator that is deterministic in
one direction might be non-deterministic in the other.

A code fragment illustrating how to generate
all the predecessors of a state is given in Fig-
ure 5. It is very similar to the code for generat-
ing the successors of a state (Figure 3), except that
init fwd iter and apply fwd ruleid have been re-
placed by init bwd iter and apply bwd ruleid. Note

state_t state, child;
ruleid_iterator_t iter;
int ruleid;
...
init_bwd_iter(&iter, &state);
while((ruleid=next_ruleid(&iter)) >= 0)
{

apply_bwd_rule(ruleid,&state,&child);
...

}

Figure 5: C code for iterating through a state’s prede-
cessors.

that next ruleid has not changed, since the direction
(forward, backward) of the iterator is fixed when it is
initialized.

It is optional whether psvn2c generates back-
wards rules or not. The command line option
--no backwards moves specifies that they should
not be generated, the command line option
--backwards moves specifies that they should. A
full list of the command line options for psvn2c is
given in the Appendix.

3.3 Searching Backwards from the Goal

As mentioned in Section 2.4, in PSVN the goal is not
necessarily a single, fully specified state, it is one or
more goal conditions that may specify a large set of
states. Most searches that occur backwards start at the
goal. Ideally, this would be done by reasoning “sym-
bolically” about the goal conditions without grounding
them. This is possible in PSVN but the current imple-
mentation does not implement it. Instead, it provides
a mechanism for iterating through all the states that
match the goal conditions one at a time. The code for
a loop that generates all the states that match the goal
conditions is shown in Figure 6.

In Figure 6, goal num stores an id for the current goal
condition, starting at 0 and incrementing over goal con-
ditions in the same order as they appear in the PSVN de-
scription. When next goal state has enumerated all
states for the current condition, goal num is automati-
cally incremented and next goal state will then enu-
merate states for the next condition, and so on. This is
all handled internally, the user need only copy the code

state_t state;
int goal_num; /* does not need to be initialized */

...
first_goal_state(&state, &goal_num);
do {

...
} while(next_goal_state(&state, &goal_num));

...

Figure 6: C code for iterating through all the states that
match the goal conditions.

5

in the example to obtain this functionality.
Note that the code generated by psvn2c generates all

the states that match each goal condition, so if a state
matches more than one goal condition it will be gener-
ate more than once (exactly once for each goal condition
it matches). If you want to eliminate duplicates of this
kind, you will have to write that code yourself.

You are now ready to do Tutorial Lessons #3 and
#4.

3.4 Move Pruning

In most state spaces, there are multiple paths leading
from one state to another, and any effort beyond ex-
ploring one of the cheapest such paths is wasted. Tay-
lor and Korf (1993) introduced a method for identifying
redundant move sequences, in a preprocessing step.

We have generalized their method (Burch and Holte
2011; 2012; Holte 2013; Holte and Burch 2014) to work
on any PSVN state space definition. As it is compiling
your PSVN file, psvn2c can perform this analysis and
create a function you can use to avoid executing redun-
dant operator sequences (this is illustrated in Figure 7
and discussed below). The basic idea behind psvn2c’s
analysis is that it builds a complete search tree of a
user-specified (small) depth from a generic state, and
checks for duplicate states within this search tree. If a
sequence of moves from a generic state is a transposi-
tion, then this sequence of moves will also be a trans-
position for any real state, and the final move of the
sequence should be pruned. Because there are often
many rules in a PSVN state space description, the anal-
ysis should be limited to short sequences of moves, but
this is sufficient to do eliminate the costliest cycles and
transpositions.

Table 1, from (Burch and Holte 2012; Holte and
Burch 2014), demonstrates the power of move pruning
in a range of state spaces, including several in which the
operators have complex preconditions. For each state
space, we compared the number of nodes generated, and
execution time, of three variations of depth-first search
(DFS) with a depth bound: (1) DFS with parent prun-
ing (length 2 cycle detection), (2) DFS with our move
pruning method applied to sequences of length L = 2
or less, and (3) DFS with our move pruning method
applied to sequences of length L = 3 or less. All exper-
iments were run on a machine with a 2.83GHz Core2
Q9550 CPU and 8GB of RAM). Node counts (in thou-
sands of nodes) and computation times (in seconds)
are totals (not averages) across 100 randomly generated
start states.

Move pruning is an optional feature of psvn2c. The
command line option --history len=H specifies that
move pruning analysis should be performed on all se-
quences of length L = H + 1 or less. --history len=0
effectively turns move pruning off, since it will only look
fors redundancy among the operators themselves (such
redundancy is not uncommon in PSVN files created au-
tomatically by the abstraction methods described in

Section 3.5 below). If backwards rules are being gen-
erated by psvn2c, move pruning for the backwards
rules can be specified separately from move pruning
for the forward rules by using command line options
--fwd history len=Hf and --bwd history len=Hb

instead of --history len=H. With these options,
move pruning analysis for the forward rules will be ap-
plied to sequences of length Hf + 1 or less, and for the
backwards rules to sequences of length Hb + 1 or less.

Figure 7 shows code for generating the children
of a state when move pruning is being used. The
function fwd rule valid for history returns 0 if the
move pruning analysis done by psvn2c determines that
ruleid should not be applied given the preceding se-
quence of moves (which is what the variable hist
records). The PSVN API Manual gives a full descrip-
tion of the functions supporting move pruning.

State d DFS+PP DFS+MP DFS+MP
Space L=2 L=3

16-Arrow ? 3,277 3,277
puzzle 15 >3600s 0.39s 0.39s

0.07s 18.58s
10 Blocks 352,028 352,028 352,028

World 11 25.02s 12.23s 12.53s
5.97s 8m 27s

368,357 368,357 368,357
8-puzzle 25 24.77s 10.40s 10.40s

0.01s 0.08s
Pancake 5,380,481 5,380,481 5,288,231
puzzle 9 246.49s 115.22s 111.18s

0.01s 0.02s
Towers 1,422,419 31,673 9,060

of 10 97.02s 1.45s 0.49s
Hanoi 0.30s 3m 43s
2x2x2 2,715,477 833,111 515,614

Rubik’s 6 132.74s 20.00s 13.35s
Cube 0.02s 1.10s

? 2,165,977 316,437
TopSpin 9 >3600s 73.80s 12.59s

0.00s 1.11s
Work ? 209,501 58,712

or 13 >3600s 16.44s 5.14s
Golf 2.98s 15m 4s

9,794,961 590,870 25,982
Gripper 14 544.85s 17.22s 0.95s

0.08s 0.85s

Table 1: The first two columns indicate the state space
and the depth bound used. The other columns give
results for each DFS variation. In each results cell the
top number is the total number of nodes generated, in
thousands, to solve all the test problems. The number
below that is the total time, in seconds, to solve all the
test problems. In the DFS+MP columns the bottom
number is the time (“m” for minutes, “s” for seconds)
needed for the move pruning analysis.

6

int hist, child_hist;
hist = init_history;
...
init_fwd_iter(&iter, &state);
while((ruleid=next_ruleid(&iter)) >= 0)
{

if (!fwd_rule_valid_for_history(hist,ruleid))
continue;

child_hist = next_fwd_history(hist,ruleid);
apply_fwd_rule(ruleid,&state,&child);
...

}

Figure 7: C code for iterating through a state’s succes-
sors with move pruning. The history variable passed to
fwd rule valid for history (hist in this example)
must always have a valid history value. This can be
done by using init history to initialize it, as shown.

It is important to note that move pruning is not,
in general, safe to use with any form of transposi-
tion table (Akagi et al. 2010), not even something as
simple as the duplicate detection in A*. Interactions
between move pruning and these other methods cre-
ates the risk of eliminating all possible optimal solu-
tions to a problem (Burch and Holte 2012; Holte 2013;
Holte and Burch 2014).

3.5 State Space Abstraction

State space abstraction is a process by which the defini-
tion of a state space is changed to create the definition
of a state space that is (ideally) smaller. There are nu-
merous kinds of state space abstractions but at present
PSVN supports just two, namely, projection and domain
abstraction.

In projection, the length of the state vector is ef-
fectively reduced by eliminating from consideration a
specified subset of vector positions. The domains of
the remaining vector positions are unchanged.

The way projection is currently implemented, the
variables that are projected away are not actually elim-
inated from the state vector. Instead, they remain in
memory and the length of the state vector is unchanged,
but the operators are changed so no operator ever reads
or writes to these vector positions, and the goal condi-
tions are changed to ignore these vector positions. In
addition, their domain is changed to be 1, which means
their value cannot change, it must always be 0.

For example, Figure 8 shows the PSVN representing
the 4-pancake puzzle when the last two vector positions
have been projected away. This definition is created by
taking the definition of the 4-pancake puzzle in Fig-
ure 2 and effectively removing the last two positions
from the LHS and RHS of every rule and from the goal
condition. Note that there are still 4 distinct constants
(representing the 4 different pancakes) in the domain of
the unprojected vector positions. Note also that some
of the rules have become nondeterministic (in the last
two rules there are variables in the RHS that do not

4-Pancake Puzzle
4 # 4 vector positions
4 4 1 1
A B - - => B A - - LABEL reverse2
A - - - => C - - - LABEL reverse3
A B - - => D C - - LABEL reverse4
GOAL 0 1 - -

Figure 8: PSVN for the 4-Pancake Puzzle with the last
two vector positions projected away.

4-Pancake Puzzle
4 # 4 vector positions
4 4 4 4
A B - - => B A - - LABEL reverse2
A - C - => C - A - LABEL reverse3
A B C D => D C B A LABEL reverse4
GOAL 0 0 0 3

Figure 9: Resulting PSVN when the domain abstraction
in the text is applied to the 4-Pancake Puzzle.

occur in the rule’s LHS).
Domain abstraction allows each element of a domain

to be mapped to a different element of that domain
(note that the current implementation does not allow
elements to map to different domains). Generally, sev-
eral elements are made to map to a single element, ef-
fectively reducing the size of the domain. For example,
an abstraction of the domain in the 4-pancake puzzle
might map constants 0, 1 and 2 to 0 and map 3 to it-
self. This abstraction would be applied to states to cre-
ate the corresponding abstract states, and to the PSVN
operators and goal conditions to create their abstract
counterparts. The resulting PSVN is shown in Figure 9.
Of course, projection and domain abstraction can be
used together to create an abstract space in which the
state vectors are effectively shorter and one or more of
the domains has been abstracted.

Figures 8 and 9 show the PSVN encoding of the
resulting abstracted spaces after the abstraction has
been performed, but the abstraction itself needs to
be encoded somehow so that PSVN knows how to map
states from the original state space to the abstract state
space at runtime. The way an abstraction is repre-
sented is shown in Figure 10. The format consists of an
abstraction block enclosed with curly braces. This
block contains a list of abstraction elements, which can

abstraction {
4 { 0 0 0 3 }
projection { K K P P }

}

Figure 10: Abstraction encoding both example abstrac-
tions on the 4-pancake puzzle.

7

be either projection abstractions or domain abstrac-
tions. A projection abstraction is the token projection
followed by a block containing a letter for each variable,
where K means keep the variable and P means project
the variable away. A projection of the form “K K P P”
as in Figure 10 will keep the first two variables and
project away the last two.

A domain abstraction is the domain name followed
by a value mapping. The value mapping is a block
of domain values, one for each element of the domain,
the value of which is the name of the element it will
map to. A domain abstraction of “4 { 0 0 0 3 }”,
as in Figure 10, specifies a mapping for domain 4 (the
standard zero-based four element domain and the only
domain in the 4-pancake puzzle). The mapping “0 0 0
3” means 0 maps to 0, 1 maps to 0, 2 maps to 0, and
3 maps to 3.

The PSVN software suite provides a tool
(abstractor.cpp) to interactively create the ab-
straction and PSVN definition files for an abstract space
from a given PSVN definition. The PSVN definition
of the abstracted space can then be compiled using
psvn2c and integrated with the user’s search code (the
API for manipulating abstractions is given in the PSVN
API Manual). For example, a pattern database (PDB)
would be built and used during search by executing
the following six steps:

1. Given the PSVN definition for a state space,
abstractor.cpp is used to create an abstraction file
and the PSVN definition of the abstract space;

2. The PSVN for the abstract space is compiled by
psvn2c;

3. The user’s search code for enumerating the ab-
stract space and recording distances to the goal (e.g.
distSummary.c from Lesson #3) is compiled and run
on the abstract space to create the PDB;

4. The PSVN for the original space is compiled by
psvn2c;

5. The user’s heuristic search code is compiled together
with the C code for the original state space created
by psvn2c in the preceding step. In the user’s code,
states are abstracted to the abstract space using the
abstraction description, and the value for the ab-
stracted state is looked up in the PDB and used as a
heuristic;

6. The user’s heuristic search code, compiled in the pre-
vious step, is executed on one or more start states.

This sequence of steps is implemented in the Makefile
associated with Tutorial Lesson #5.

IMPORTANT: Be sure move pruning is not used
when the abstract space is being enumerated (step 3).

You are now ready for Tutorial Lesson #5.

4 Acknowledgements
Thanks to Rong Zhou for alpha testing early versions
of the PSVN compiler, to Shahab Jabbari Arfaee, Zhaox-
ing Bu, Levi Lelis, Fan Xie, and Dylan Cassidy for

their contributions to the PSVN software suite, and
to Alberta’s Informatics Circle of Research Excellence
(iCORE), the Alberta Innovates Centre for Machine
Learning (AICML), and Canada’s Natural Sciences and
Engineering Research Council (NSERC) for their re-
search funding.

Appendix. Command Line Options for
psvn2c

psvn2c reads the PSVN definition from standard input
and outputs the C code for the PSVN API to stdout.

--help or -h Print out the command line options.

--backwards_moves Create the backwards rules and
generate the API code for using them.

--no_backwards_moves Don’t create the backwards
rules or generate the API code for using them.

--history_len=len Use move histories of
length len for pruning forward and backwards
moves. Note that --history_len=len is equiv-
alent to having --fwd_history_len=len and
--bwd_history_len=len. If len is 0, no move
pruning is done.

--fwd_history_len=len Use move histories of
length len for pruning forward moves.

--bwd_history_len=len Use move histories of
length len for pruning backwards moves.

--rule_group_size=num In an attempt to be as effi-
cient as possible in determining (during search) which
operators are applicable to a given state, psvn2c rea-
sons about all the preconditions that occur in groups
of rules, not about individual rules. If two rules in the
same group have exactly the same preconditions, for
example, the preconditions will just be tested once
to determine whether or not both rules apply. num
determines the size of the rule groups that psvn2c
analyzes. If num is 0, all the rules in the PSVN defini-
tion will be considered as a single group. This max-
imizes the efficiency of precondition testing during
search, but can make psvn2c’s analysis very time-
consuming. If num is 1, rules will be considered indi-
vidually. Larger values of num specify the size of the
rule groups to be used. psvn2c will automatically
decrease the size of the rule groups if too much time
is being taken for this analysis.

--keep_duplicate_rules Keep rules with identical
preconditions and effects.

--remove_duplicate_rules If two or more rules
have identical preconditions and effects, only one
copy is kept. Testing this is quadratic in the number
of rules, so is only recommended if you are fairly sure
there are identical copies of the same rule in the PSVN
definition (e.g. because it was generated by project-
ing out many variables).

--abstraction Generate the code needed for state
space abstraction.

8

--no_abstraction Don’t generate the code for state
space abstraction.

--state_map Generate the code for the state map
data structure.

--no_state_map Don’t generate the state map code.

--verbosity=val Set the verbosity level to val.
val=0 suppresses all of the step-by-step output
about psvn2c’s processing of a PSVN file. val=1
would be used if psvn2c is slow and you want to know
which parts of psvn2c’s processing are responsible
(e.g. so that you could change command line param-
eters accordingly). Higher values are not intended for
users (unless they are curious about psvn2c’s inner
workings), they are for debugging the psvn2c code.

References
Yuima Akagi, Akihiro Kishimoto, and Alex Fuku-
naga. On transposition tables for single-agent search
and planning: Summary of results. In Proceeding of
the Third Annual Symposium on Combinatorial Search
(SOCS-10), 2010.

Christer Bäckström and Bernhard Nebel. Complexity
results for SAS+ planning. Computational Intelligence,
11:625–656, 1995.

Neil Burch and Robert C. Holte. Automatic move prun-
ing in general single-player games. In Proceedings of the
4th Symposium on Combinatorial Search (SoCS), 2011.

Neil Burch and Robert C. Holte. Automatic move prun-
ing revisted. In Proceedings of the 5th Symposium on
Combinatorial Search (SoCS), 2012.

Joseph Culberson and Jonathan Schaeffer. Pattern
databases. Computational Intelligence, 14(3):318–334,
1998.

Harry Dweighter. Problem E2569. American Mathe-
matical Monthly, 82:1010, 1975.

Malik Ghallab, Craig K. Isi, Scott Penberthy, David E.
Smith, Ying Sun, and Daniel Weld. PDDL - the plan-
ning domain definition language. Technical report,
CVC TR-98-003/DCS TR-1165, Yale Center for Com-
putational Vision and Control, 1998.

Malte Helmert. Concise finite-domain representa-
tions for PDDL planning tasks. Artificial Intelligence,
173:503–535, 2009.

István Hernádvölgyi and Robert Holte. PSVN: A vec-
tor representation for production systems. Technical
Report TR-99-04, Department of Computer Science,
University of Ottawa, 1999.

Robert C. Holte and Neil Burch. Automatic move prun-
ing for single-agent search. AI Communications, 2014.
(to appear).

Robert C. Holte. Move pruning and duplicate detec-
tion. In Proceedings of the 26th Canadian Conference
on Artificial Intelligence, pages 40–51, 2013.

Hermann Kaindl and Gerhard Kainz. Bidirectional
heuristic search reconsidered. Journal of Artificial In-
telligence Research, 7:283–317, 1997.

Jussi Rintanen. Regression for classical and nondeter-
ministic planning. In Proceeding of the 18th European
Conference on Artificial Intelligence, pages 568–572.
IOS Press, 2008.

Larry A. Taylor and Richard E. Korf. Pruning duplicate
nodes in depth-first search. In AAAI, pages 756–761,
1993.

9

PSVN Tutorial Lesson #1
Abstract

This lesson is to get you familiar with the PSVN lan-
guage, some of the basic elements of the PSVN API,
and how to compile and execute psvn2c.

Before Starting this Lesson
1. Read up to the end of Section 3.1 in the PSVN Manual.

2. Login to a Unix system, change to the directory
where you placed the PSVN home directory.

3. If you haven’t done so before, type make psvn2c in
the PSVN home directory. This creates a working ex-
ecutable of the psvn2c compiler.

4. Change to the Lesson01 directory.

succ.c
File succ.c contains a C program that reads a state
from stdin and prints out the state’s successors (chil-
dren) and the cost and label of the operator that gen-
erates each successor. It illustrates several of the most
important elements in the PSVN API.

The most important thing to note is that this pro-
gram is completely independent of the state space to
which it is applied. This is because its manipulation of
states is done entirely through the PSVN API.

sliding tile1x3.psvn
File sliding tile1x3.psvn contains a PSVN definition
for a 1x3 sliding tile puzzle. It uses the symbol b to rep-
resent the blank and numbers 1 and 2 to represent the
tiles. Each operator has a label and a cost. Although
very small, it illustrates almost all the elements of the
PSVN language.

Putting the pieces together
How do we create a version of succ.c that is
specific to the 1x3 sliding tile puzzle as defined
in sliding tile1x3.psvn? The answer is make
sliding tile1x3.succ. This will create an executable
called sliding tile1x3.succ that will perform the
function defined by succ.c specifically for the 1x3 slid-
ing tile puzzle as defined in sliding tile1x3.psvn.

If you look inside the Makefile you will see this hap-
pens in two steps. First, the psvn2c compiler is ap-
plied to sliding tile1x3.psvn to create a file called
sliding tile1x3.c. You should see this file in the Les-
son01 directory once the make has finished. This is a C
program that implements the PSVN API for the 1x3 slid-
ing tile puzzle (as defined in sliding tile1x3.psvn).
You will need to be delete this file manually if you
make any changes to the PSVN file from which it was
created. Once sliding tile1x3.c has been created,
program succ.c is compiled with sliding tile1x3.c
included in it. The result of this compilation is
sliding tile1x3.succ.

Go ahead and make sliding tile1x3.succ and try
executing it.

Exercises
Note: In all the tutorial lessons, the time required to
do an exercise can vary from a few minutes to a day or
two. You are not required to do all the exercises in one
lesson before proceeding to the next lesson. The exer-
cises, especially the larger ones, are meant to illustrate
what you should be capable of doing if you have fully
understood the lesson.

1. How many successors does the state b b b have ?
Note that they are not produced in the order that
the rules occur in sliding tile1x3.psvn.

2. Modify succ.c so that it also prints out if a successor
is a goal state or not. You will need additional things
from the PSVN API for this.

3. Modify succ.c so that it reads in two states and
determines if the second state is a child of the first
one. You will need additional things from the PSVN
API for this.

4. Modify succ.c so that it prints out a random path
of length 4 starting at the given state.

5. Create a PSVN file for the 2x2 sliding tile puzzle (call
it sliding tile2x2.psvn.), then create and test out
sliding tile2x2.succ.

6. Create PSVN files and the corresponding .succ pro-
grams for a variety of small state spaces (the Arrow
puzzle, Towers of Hanoi, the Pancake puzzle, etc.).

7. You will find it tedious and error-prone to create PSVN
files by hand. The solution is to write a program,
called a PSVN generator, that creates the PSVN for a
problem domain. This idea is explained in detail in
Lesson #1A and numerous PSVN generators can be
found in the directory ProblemDomains.

10

PSVN Tutorial Lesson #1A
Abstract

This lesson is about writing PSVN generators for prob-
lem domains.

Before Starting this Lesson

1. Complete Tutorial #1.

2. Change to the ProblemDomains directory.

What is a PSVN Generator?

Most problem domains have one or more parameters
associated with them, and different settings of those pa-
rameters define a different version of the problem. For
example, in the Towers of Hanoi the number of disks is
the most natural parameter. The number of pegs could
be another parameter. The idea of a PSVN generator is
to write a program (in any language you like) that will
accept the values of the problem domain’s parameters
and generate the PSVN representing that specific version
of the problem domain.

Alternative Encodings

An “encoding” of a problem domain is a choice of state
variables to represent the states in the problem domain.
Usually there are several different encodings that are
more or less equally natural and compact. The encod-
ing is known to have a significant effect on several as-
pects of search algorithms. For example, the Blocks
World can be encoded with a “hand” to pick up and
put down a block, or without a hand, in which case a
block on top of a stack can be moved directly to the
table or to the top of any other stack. Solutions using
the “hand” encoding are twice as deep as solutions us-
ing the “no hand” encoding, but the branching factor
in the ”no hand” encoding is roughly the square of the
branching factor in the “hand” encoding.

A situation in which there are always two different
encodings is when states are permutations, as in the
Sliding Tile puzzle, the Pancake Puzzle, TopSpin, and
Scanalyzer. In permutation problems, the number of
“objects” (e.g. pancakes in the Pancake puzzle) is al-
ways exactly the same as the number of “locations”
where objects can be placed. In the “standard” encod-
ing, there is one state variable for each location and
the value of a variable indicates which object is in that
location in the current state. In the “dual” encoding,
there is one state variable for each object and the value
of a variable indicates the location of that object in the
current state. The two encodings can produce very dif-
ferent results. In some cases, operator preconditions
are much easier to express in one encoding than in the
other (this is why the dual encoding is not supported
in the Pancake Puzzle generator, for example).

In order to study the effects of different encodings,
you are encouraged to support multiple encodings when
you write a generator for a problem domain.

Cost Models
A cost model defines how operator costs are determined.
The simplest cost model has all operators costing one.
This is called the “unit cost” model. Another common
cost model in experiments is to assign operator costs
randomly in a given range (e.g. between 1 and 100).
There can also be cost models specific to a problem
domain. In the Towers of Hanoi, for example, it is
natural to think of a larger disk being “heavier” than a
smaller disk and therefore more costly to move.

A PSVN generator ideally supports several cost mod-
els. In most cases there are parameters associated with
the cost model in addition to the parameters associated
with the problem domain. For example, to generate
random costs in a given range, one needs parameters
specifying the lower and upper values of the range and
the random number seed.

Using Operators Backwards
Lesson #3 is all about using operators backwards. It
points out that it is possible to write operators that
work correctly in the forward direction but don’t work
as intended if used backwards. PSVN provides a solu-
tion to this that does not sacrifice efficiency (the special
symbol “*”). This is important to keep in mind when
writing a PSVN generator, since it is quite likely that the
PSVN created will, for one reason or another, be used in
the backwards direction. All generators should create
PSVN that works correctly and efficiently in both the
forward and backwards directions.

Exercises
1. Study the given PSVN generators. Try adding a differ-

ent cost model to one or more of them, or a different
encoding.

2. Try writing your own generator for a new state space.
Support multiple cost models and, if appropriate,
multiple encodings.

References
The following papers investigate the effect of different
encodings on the performance of search or planning sys-
tems.

1. Sandra Zilles and Robert C. Holte (2010), “The Com-
putational Complexity of Avoiding Spurious States
in State Space Abstraction”, Artificial Intelligence,
174:1072-1092.

2. Pat J. Riddle, Robert C. Holte, and Michael W. Bar-
ley (2011), “Does Representation Matter in the Plan-
ning Competition?”, Symposium on Abstraction, Re-
formulation, and Approximation (SARA).

3. Levi Lelis, Sandra Zilles and Robert C. Holte (2013),
“Stratified Tree Search: A Novel Suboptimal Heuris-
tic Search Algorithm”, Conference on Autonomous
Agents and Multiagent Systems (AAMAS).

11

PSVN Tutorial Lesson #2
Abstract

This lesson is to study a complete search algorithm
using PSVN. There is very little new, PSVN-wise, com-
pared to Tutorial #1, but the search algorithm (DFID)
is more complex than the successor program used to get
you started.

Before Starting this Lesson
1. Read up to the end of Section 3.1 in the PSVN Manual

and complete Lesson #1.

2. If you aren’t familiar with the search algorithm
called “depth-first iterative deepening” (DFID), learn
about it.

3. Go to the Lesson02 directory.

dfid.c
File dfid.c contains a C program that reads a start
state from stdin and uses depth-first iterative deepen-
ing (DFID) to find a minimum length path from start
to goal. As with succ.c from Lesson #1, the most
important thing to note is that this program is com-
pletely independent of the state space to which it is
applied. This is because its manipulation of states is
done entirely through the PSVN API.

slidejump07.psvn
File slidejump07.psvn contains a PSVN definition for
a “slide-jump” peg solitaire puzzle. The puzzle is de-
scribed in the comments at the beginning of the file. It
was chosen as a test domain for DFID because it con-
tains deadend states (ones with no children) at various
depths, a good way to test that the code for updating
the depth bound is working correctly. It also has a fairly
deep solution (15 moves) for the standard start state,
and its state space is a finite directed acyclic graph, so
DFID will always terminate on it.

Putting the pieces together
Similar to Lesson #1 type make slidejump07.dfid.
This illustrates a convention we are going to follow
throughout these lessons. If we have a program called
xxx.c (or xxx.cpp) which we wish to apply to a state
space define by ss.psvn, we will create a Makefile that
has %.xxx as a target so that we can put the pieces
together by typing make ss.xxx. Although the details
of the Makefiles might differ depending on the target,
they will often look very much like the Makefile in Les-
son #1. For example, the Makefile for this lesson is
identical to the one for Lesson #1 except that succ has
been replaced everywhere by dfid. Another convention
we will follow is to not delete the ss.c file that gets cre-
ated as an intermediate step in making ss.xxx. For ex-
ample, you should see slidejump07.c in the Lesson02
directory after executing make slidejump07.dfid the
first time. We keep this file because the psvn2c process
that creates it can sometimes be quite time-consuming.

It needs to be deleted (manually, by you) if you make
any changes to the PSVN file from which it was created.

Go ahead and make slidejump07.dfid and try ex-
ecuting it. The first thing to try is the standard start
state: r r r e y y y.

Exercises
1. Change slidejump07.psvn so that the goal is to get

all the yellow pegs adjacent to one another but not
at either end of the puzzle and there is at least one
red peg to the right of all the yellows (such a state
can be reached from the standard state state).
Reminder: If you change slidejump07.psvn (or any
other .psvn file), you will need to delete the corre-
sponding .c file manually, the Makefile is not set up
to do this for you.

2. Change DFID so that it takes into account operator
costs. i.e. instead of finding the minimum length so-
lution, it finds the least-cost solution in spaces where
different operators have different costs. This is an im-
portant change to make before getting to Lesson #5
on heuristics, because once we have heuristics, it will
be essential to have a cost-based version of DFID (its
official name is IDA*). Be sure your code correctly
handles 0-cost operators. A good test for your code
would be a cost-based version of the Pancake puzzle
or TopSpin in which the cost of an operator was a
function of the tokens moved by the operator.

3. Read Section 3.4 of the PSVN Manual. Modify dfid.c
and the Makefile to use move pruning and run an ex-
periment like the one described in Section 3.4 (note:
the hist len parameter is 1 less than L in the table).

12

PSVN Tutorial Lesson #3
Abstract

This lesson looks at searching backwards.

Before Starting this Lesson
1. Read up to the end of Section 3.2 in the PSVN Manual

and complete Lessons #1 and #2.

2. Read about the state map data structure in the
psvn2c Appendix to the PSVN API Manual.

3. If you aren’t familiar with the search algorithm called
Dijkstra’s algorithm, learn about it.

4. Go to the Lesson03 directory.

dist.cpp, distSummary.cpp
File dist.cpp contains a C++ program (not C) that
searches backwards from the goal in order to calculate
distances to goal4 of all the states from which the goal
can be reached. It uses Dijkstra’s algorithm in conjunc-
tion with the backward operators that psvn2c generates
automatically from the operators given in a PSVN file.
As with all the programs in these tutorials, dist.cpp
is completely independent of the state space to which
it is applied because its manipulation of states is done
entirely through the PSVN API. distSummary.cpp is ex-
actly the same as dist.cpp except that it prints a sum-
mary of distances to goal to standard output instead of
the distance for each individual state.

This is an important program. When it is applied
to an abstraction of a state space (“abstraction” is the
topic of Lesson #5) the state map it creates (and, op-
tionally, writes to a file) is a pattern database (PDB)
that will be used by our heuristic search algorithms.
It is also important because one of the classic search
algorithms, A∗, is very closely related to it.5

hanoi4p03d.psvn, hanoi4p03d bad.psvn

Files hanoi4p03d.psvn and hanoi4p03d bad.psvn
each contain a PSVN definition for the 4-peg Towers of
Hanoi puzzle with 3 disks. Both use the encoding dis-
cussed in Section 2 of the PSVN manual. They are iden-
tical except for the operators that move the smallest
disk. As discussed in Section 2.3 of the PSVN manual,
file hanoi4p03d bad.psvn is missing an implicit pre-
condition for these operators. The first operator, for
example, moves the smallest disk from peg 1 to peg 2.
In hanoi4p03d bad.psvn it tests if the smallest disk

4Some authors use “distance to goal” of state s to mean
the number of edges in a path from s to the goal with the
fewest edges regardless of their cost. In the PSVN documents
and code the “distance to goal” of state s is the cost of a
least-cost path from s to the goal regardless of how many
edges are in the path.

5The priority queue used by dist.cpp is designed to be
used by A∗. That is why it has two keys (the primary key
is “f”, in A∗ terminology, the secondary key is “g”), even
though Dijkstra’s algorithm only requires one key (“g”).

is on peg 1, but it does not check if the smallest disk
is not on peg 2. In hanoi4p03d.psvn both conditions
are checked. This makes no difference if the operators
are used in the forward direction starting at a state in
which the smallest disk is on exactly one peg but, as
explained in Section 3.2 of the PSVN manual, this does
affect what happens when the operators are used in the
backwards direction.

Putting the pieces together
Following our convention, type make hanoi4p03d.dist
and make hanoi4p03d bad.dist. Note that these
are C++ programs, not C. When they are executed
you will see they produce different results. This
is because the backwards operators generated from
hanoi4p03d bad.psvn are missing implicit precondi-
tions and therefore generate more states than they
should.

Exercises
1. Modify succ.c from Lesson #1 so that it computes

the predecessors of a state instead of the successors
(called the resulting program pred.c).

2. Make a version of dist.cpp called dijkstra.cpp
that reads in a start state and applies Dijk-
stra’s algorithm forward from that state until
the distances from that state to all reachable
states have been calculated. Change the make-
file so that it can make ss.dijkstra given a
state space defined by ss.psvn. When applied
to any start state hanoi4p03d.dijkstra and
hanoi4p03d bad.dijkstra should produce identical
output—this shows that the “bad” operators work
correctly in the forward direction. When applied to
the start state in which all the disks are on peg 1 the
number of states at each distance should be the same
for hanoi4p03d.dijkstra and hanoi4p03d.dist,
but not for hanoi4p03d bad.dijkstra and
hanoi4p03d bad.dist, showing that the backwards
operators based on hanoi4p03d.psvn are working
correctly but those based on hanoi4p03d bad.psvn
are not.

3. Section 2.3 of the PSVN manual described the spe-
cial symbol “*”. Add it to the appropriate places
in hanoi4p03d.psvn so that the operators have ex-
actly the same behaviour, forwards and backwards,
as in hanoi4p03d.psvn, but are more efficient (be-
cause fewer preconditions are tested).

4. If you have written any PSVN generators of your own
(Lesson #1A), check them to make sure the PSVN
they generate works as intended when used back-
wards and that the special symbol “*” is generated
everywhere that it is appropriate. Test the PSVN with
your pred.c program.

13

PSVN Tutorial Lesson #4
Abstract

This lesson looks at one way of testing a search algo-
rithm.

Before Starting this Lesson
1. Complete Lessons #2 and #3.

dfid.c and dijkstra.cpp
File dfid.c is identical to the dfid.c in Lesson #2
except that a command line option has been added. If
you don’t specify the command line option it behaves
exactly like dfid.c in Lesson #2. If you specify the
command line option --test, instead of prompting for
input and reading one state from stdin, dfid.c does
not prompt for input, it keeps reading one line at a
time from stdin until there are no more input lines,
and each input line should contain a distance from goal
followed by a state. It calls the dfid function to get
a solution length for the state and then compares that
solution length to the distance that was read in. This
is called “testing mode”, and it is useful if you have a
file of states whose distances to goal are known, or you
can pipe the output of dist.c into dfid.c --test and
test if dfid.c correctly calculates the distances to goal
of all the states from which the goal can be reached.
dijkstra.cpp is Dijkstra’s algorithm, the “for-

ward” version of dist.cpp from Lesson #3 (except
that dist.cpp finds all distances to goal, whereas
dijkstra.cpp finds the cost of the least-cost path from
a given start state to goal). It has the same --test
command line option as dfid.c and is included here to
show that the code for this option can, and should, be
included in all the search functions that you write.

Makefile
Testing search algorithms thoroughly is important.
This Makefile provides a very easy way for you to test
a search algorithm in which you have implemented the
--test command line option described above. This
Makefile has two command line arguments that must
be provided, p and dir. Argument p specifies which
program you want to test. Argument dir specifies a
directory containing the test files to use for testing pro-
gram p.

To illustrate this, there is a directory in the PSVN
home directory called TEST that contains two subdirec-
tories, Small and SmallCosts. Exactly what they con-
tain is described below, but the key difference between
them is that one of them (Small) is for testing programs
that do not take operator costs into account, whereas
the other one (SmallCosts) is for testing programs that
do take operator costs into account (of course, those
programs should also work correctly when all operator
costs are one).

To test program dfid.c on all the files in
TEST/Small simply type make test p=dfid.c
dir=../TEST/Small.

To test program dijkstra.cpp on all the
files in TEST/SmallCosts simply type make test
p=dijkstra.cpp dir=../TEST/SmallCosts.

What is in the test directories?
Have a look in directory TEST/Small. What you will see
is a number of .psvn files together with the correspond-
ing .c and .dist files created using the Makefile in
Lesson #3. To add more problem domains for testing,
you would first create the .psvn file (either manually
or using a generator, as described in Lesson #1A), use
the Makefile in Lesson #3 to create the corresponding
.c and .dist files, and then move these into the test
directory (TEST/Small or TEST/SmallCosts or a test
directory of your own making).

Exercises
1. Add one or more new test files to TEST/Small and

test dfid.c using the Makefile in this lesson. Make
sure you see in the output that is produced that
dfid.c has been applied to your new test files and
worked properly.

2. Add one or more new test files to TEST/SmallCosts
and test dijkstra.cpp using the Makefile in this les-
son. Make sure you see in the output that is produced
that dijkstra.cpp has been applied to your new test
files and worked properly.

14

PSVN Tutorial Lesson #5
Abstract

This lesson looks at using abstraction to create a pat-
tern database.

Before Starting this Lesson
1. Read up to the end of Section 3.5 of the PSVN Manual

and complete Lessons #2 and #3.

2. If you aren’t familiar with domain abstraction, pro-
jection, pattern databases (PDBs), and the IDA*
search algorithm, learn about them.

3. Go to the Lesson05 directory.

abstractor.cpp and hanoi3 5d.psvn

Program abstractor.cpp is briefly described in Sec-
tion 3.5 of the PSVN Manual. A PSVN file is specified as
a command line argument and abstractor.cpp then
reads a series of commands from stdin, which can in-
clude commands specifying projection and/or domain
abstractions to apply to the PSVN file. The set of pos-
sible commands is printed when abstractor.cpp be-
gins execution. When there are no more commands,
abstractor.cpp writes out two files: (1) a file con-
taining the new PSVN definition named absname.psvn,
where absname is given as the second command line
argument to abstractor.cpp; and (2) a file named
absname.abst containing the representation of the ab-
straction (as illustrated in Figure 10 of the PSVN Man-
ual). The code for abstractor.cpp illustrates how to
use the PSVN class, which is how a PSVN definition is
represented internally. The definition of the PSVN class
is in the file psvn.hpp in the main PSVN directory.
hanoi3 5d.psvn is the PSVN for the 3-peg, 5-disk

Towers of Hanoi, in the special encoding for the 3-disk
version of the problem. It is useful for illustrating ab-
straction because projection has an intuitive meaning
(each variable represents the status of a disk, so when
you project out a variable you are eliminating a disk)
and it is multi-valued, so domain abstraction is also
possible. The meaning of domain abstraction is not in-
tuitive; you should think about exactly what it means
to map values 1 and 2 to the same constant (say, 1).

Before proceeding further in the tutorial, compile
abstractor.cpp (make abstractor) and test it on
hanoi3 5d.psvn with a variety of projections and do-
main abstractions, first separately and then together.
Look carefully at the resulting PSVN file to understand
exactly what is being done.

Makefile
The six-step process for creating a PDB described at
the end of Section 3.5 of the PSVN Manual is coded in
the pdb target of this Makefile. There are two argu-
ments that must be specified: absname, as described
above, and ss, the prefix of the .psvn file of the origi-
nal, unabstracted state space (e.g. if we wish to create

a PDB for hanoi3 5d.psvn and name the resulting ab-
straction files with the prefix foo, we would type make
pdb ss=hanoi3 5d absname=foo). If absname is not
specified its default is absname. During this make pro-
cess abstractor.cpp is compiled and executed, so user
input, as described above, is required. Optionally, if a
file called foo.txt exists it will be used as the source
of commands for abstractor.cpp instead of stdin.

The PDB is created by the first three steps of the pro-
cess, the subsequent steps compile and run a search al-
gorithm using the PDB created by the first three steps.
In this lesson IDA* is the search algorithm used (see
ida.c below for more about it). The final step is also
interactive, the user is asked to enter start states. Op-
tionally, if a file called baz.test exists (where baz is the
string assigned to the ss argument) it will be used as
the source of start states for this step instead of stdin.

Five files will remain after this make process has
finished: (1) foo.abst (created by abstractor.cpp),
(2) the PDB is in foo.state map (created by running
distSummary.cpp from Lesson #3 on foo.psvn), (3)
ss.ida is an executable for ida.c specialized to search
the state space defined by ss.psvn, (4) and (5) are the
.c files created when psvn2c is run on ss.psvn and
foo.psvn.

If the PDB foo.state map has been created by this
make process and you wish to run IDA* with the PDB
on additional start states, there is no need to go through
the make process again, you can just run ./ss.ida foo
(in our example ./hanoi3 5d.ida foo).

ida.c
ida.c is a straightforward, efficient implementation of
IDA*, complete with timers and counters for running
actual experiments.

The key thing to study in this code are the two com-
ponents of the abstraction data t structure. One of
these (abst) is of type abstraction t. This is the data
structure used to store an abstraction mapping, as il-
lustrated in Figure 10 of the PSVN Manual. This type
is defined by psvn2c when it compiles a PSVN file. The
functions that manipulate this type (e.g. the ones used
in ida.c) are defined in the section on ABSTRACTION in
the PSVN API Manual.

The other component (map) is the actual PDB stored
in a data structure called a state map; its type is
state map t. This type, and the functions that manip-
ulate it, were first used in Lesson #3 and are described
in the Additional Functions section of the psvn2c Ap-
pendix to the PSVN API Manual.

It is important to know how to use the state map t
type because the PDBs in all your heuristic search al-
gorithms will be of this type (unless you write your own
PDB data structure). The state map is not the ideal
data structure for a PDB because it can be very waste-
ful of memory. A new data structure for PDBs, based
on the BDZ public domain minimal perfect hash function
code at http://cmph.sourceforge.net/bdz.html, is
currently being incorporated into the PSVN system. It

15

has excellent memory performance and its lookup time
is adequate, although not as fast as the lookup time for
a state map.

The other feature of the PSVN API that is illustrated
in ida.c is the use of #ifdef’s to change how IDA* be-
haves depending on the command line options specified
for psvn2c when the PSVN description was compiled. As
described in the PSVN API Manual, psvn2c will generate
#define HAVE FWD MOVE PRUNING if and only if the for-
ward search move pruning part of the API is generated
(by specifying a len greater than zero in the psvn2c
command line option --fwd history len=len). ida.c
tests if HAVE FWD MOVE PRUNING is defined. If it is, then
the code in ida.c that uses move pruning is activated
(by #ifdef’s). If it is not, the code ida.c that does
parent pruning is activated.

Exercises
1. Test IDA* on various abstractions of

hanoi3 5d.psvn. Notice how its run time changes
depending on whether it is a given a strong or
weak heuristic.6 Also test IDA* on a variety of
abstractions of other state spaces.

2. Modify the given ida.c so that it uses two PDBs
instead of one (to compute the heuristic value of state
s it should take the maximum of the values returned
for s by each PDB).

Do Lesson #4 prior the following exercises.

3. Create an implementation of A* by modifying the
dijkstra.cpp code in Lesson #4 so that it uses a
PDB as a heuristic function. Ignore the testing mode
for now (see next exercise). Note that once a PDB
has been built using Lesson #5’s Makefile, it can be
used with any heuristic search algorithm.

4. To test a search algorithm that uses a PDB, you
should try it on a variety of problem domains, as dis-
cussed in Lesson #4, and for each problem domain
you should test it with a variety of PDBs. This means
adding two or more .state map files, and the corre-
sponding .abst files, for each domain in TEST/Small
and/or TEST/SmallCosts, and changing the make-
file given in Lesson #4 so that it iterates over all the
PDBs for a given domain. Do this. Test your A*
code. Add testing mode code to ida.c and test it.

6In the 3-peg Towers of Hanoi the distance between
states in which all the disks are on one peg grow exponen-
tially with the number of disks (2d − 1 when there are d
disks). Even with 5 disks, this can be challenge for IDA*
unless it is given quite a good heuristic.

16

