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Abstract 17 

Decision-making in construction planning and scheduling is complex because of budget and 18 

resource constraints, uncertainty, and the dynamic nature of construction environments. A 19 

knowledge gap in the construction literature exists regarding decision-making frameworks with 20 

the ability to learn and propose an optimal set of solutions for construction scheduling problems, 21 

such as activity sequencing and work breakdown structure formulations under uncertainty. The 22 

objective of this paper is to propose a hybrid reinforcement learning–graph embedding network 23 

model that 1) simulates complex construction planning environments using agent-based modeling 24 

and 2) minimizes computational burdens in establishing activity sequences and work breakdown 25 

formations. Three case studies with practical construction scheduling problems were used to 26 

demonstrate applicability of the developed model. This paper contributes to the body of knowledge 27 

by proposing the hybridization of reinforcement learning and simulation approaches to optimize 28 

project durations with resource constraints and support construction practitioners in making project 29 

planning decision-making. 30 
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planning, decision making 32 



2 | P a g e  

 

1. Introduction 33 

Construction planning and scheduling is the process of determining what activities are performed 34 

and establishing how and when these activities are conducted within the limits of the available 35 

time, budget, and resources [1]. According to the Project Management Institute (PMI), planning 36 

activities consists of transforming the scope of work to establish a hierarchy of manageable work 37 

packages, also called a work breakdown structure (WBS) [2,3], and then determining the sequence 38 

of activities’ execution according to project constraints including work environment layout, 39 

available resources, and scope. In the same manner, construction planning enables a project to 40 

accomplish a set of required objectives that can be considered as a two-part problem. First, the 41 

solution needs to capture the dynamic construction environment with activities representing 42 

project scopes that can be defined as a hierarchy of executable work packages. Second, the solution 43 

is a result of estimating duration requirements for activities and optimizing activity sequencing 44 

based on multiple and pre-determined constraints that also incorporate decision makers’ 45 

knowledge and experience. Construction planning includes scheduling and other forms of 46 

planning, such as material handling, site layout planning, equipment path planning, and site 47 

logistics planning [4]. Scheduling problems are an important part of construction planning 48 

activities in terms of planning physical construction project components that have a specified set 49 

of start and finish timelines and an estimated duration. 50 

Researchers have proposed multiple decision-aid methods, such as simulation, optimization, 51 

multi-criteria decision-making, and automation, to tackle activity sequencing and WBS formations 52 

in construction scheduling problems [4]. Some methods include linear programming, heuristic or 53 

meta-heuristic approaches, and hybrid simulation approaches such as discrete event simulation-54 

genetic algorithm (DES-GA). These methods have proposed solutions by solving mathematical 55 

objective functions that optimize a given metric, such as time, cost, resource, or quality. These 56 

approaches have some shortcomings in capturing uncertainty in the construction environment, 57 

raising computational burdens, and not being easily generalizable to multiple construction projects. 58 

In a scheduling problem, the optimization process needs to consider multiple constraints tied to 59 

each activity, such as time, budget, and resources. These constraints can include 1) precedence 60 

relationships, 2) project manager preferences, such as activity associated with a rented crane may 61 

need to take precedence to minimize equipment rental costs, and 3) interruptions, such as 62 
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equipment breakdowns. To tackle these constraints, methods are needed that can capitalize on the 63 

simulated environment to understand complex behaviors and derive more sufficient decisions. 64 

Reinforcement learning (RL) is very effective for decision-making processes in construction 65 

problems. RL algorithms are able to solve optimization problems with higher constraints [5] and 66 

perform efficiently with increasing complexity and number of activities [6]. The RL agent learns 67 

to implement better actions, including optimal sequencing of activities, through training achieved 68 

from exploiting local rewards and exploring random actions despite lower rewards. Hence, RL can 69 

help fill the aforementioned shortcomings of current decision-aid methods in construction planning 70 

by developing a local decision-making policy for each agent, based on communication channels, 71 

and by breaking down the problem into sub-problems, all of which contributes to computational 72 

efficiency. Using RL assists construction practitioners in facilitating generalizations through the 73 

learning process, because different problems can be broken down into similar sub-problems. 74 

Moreover, RL facilitates agent communications and enables agents to arrive at a set of decisions 75 

involving a set of joint actions. This results in a faster convergence to the optimum global policy. 76 

However, an RL process does not capture the dynamic nature of modeling in the construction 77 

environment, because of the complexity caused by various interactions between system 78 

components [7]. In a construction setting, however, having a model of the construction 79 

environment is crucial. 80 

Simulation techniques have been used to capture the dynamic nature of the construction 81 

environment as well as uncertainties in the modeling process [8]. Compared to other simulation 82 

techniques, such as DES and system dynamics (SD), agent-based modeling (ABM) is able to 83 

handle these complexities and capture emerging behaviors. ABM is capable of handling very 84 

complex real-world systems often containing large amounts of autonomous, goal-driven, and 85 

adapting agents [9]. ABM uses a bottom-up approach where the system is described as interacting 86 

objects with their behaviors, which allow complex emergent behaviors to be captured. ABM 87 

enables tracking of agent interactions in their artificial environments to understand overall 88 

processes that lead to global patterns [10]. By incorporating ABM in an RL process, necessary 89 

features that support environment modelling, such as system parameters, system behaviors, and 90 

rules, are provided in order to enable an efficient representation of the dynamic construction 91 

environment and provide the RL platform with the necessary features to support environment 92 

modelling. 93 
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The objective of this paper is to propose an RL-ABM method with graph networks that can be 94 

used to support decision-making in construction planning by providing optimum work package 95 

sequencing to schedule activities based on project constraints. The application of the proposed 96 

model can be extended to establishing a WBS for a construction project. Three case studies were 97 

used to demonstrate the proposed model and discuss the applicability of RL-ABM to addressing 98 

similar problems related to activity sequencing. The developed RL-ABM method enables 99 

construction decision-makers to evaluate project objectives, facilitates the optimization of multiple 100 

types of resources during planning through the RL agent’s learning ability, is able to incorporate 101 

resource planning during schedule development, and can be generalized to other construction 102 

planning problems. Moreover, the applications of the method can be extended to scope definition 103 

(WBS formulation) at the project level in future work that will extend this study. 104 

The rest of this paper is structured as follows. First, as background, a literature review section is 105 

presented, which discusses decision-making in construction planning and shortcomings of current 106 

decision-aid approaches to scheduling problems, followed by an introduction of simulation 107 

approaches and RL to address the gap in the literature. Next, the theoretical development of RL-108 

ABM is presented as part of the proposed methodology, which also includes the steps of problem 109 

definition, ABM simulation, and development of the RL model. Three case studies are then 110 

presented to demonstrate application of the proposed RL-ABM method. Finally, conclusions are 111 

presented and recommendations for future work are discussed. 112 

2. Background 113 

This section provides an overview of decision making in construction planning. Simulation 114 

approaches and RL are then discussed along with the knowledge gap existing in the construction 115 

planning literature. 116 

2.1. Decision-making in construction planning 117 

Decision-making is a critical aspect of construction processes such as policymaking, budgeting, 118 

risk and safety, planning and scheduling, bidding and tendering, productivity, and performance 119 

[11–13]. In construction planning and scheduling, decision-making–related problems consist of 120 

determining the optimum sequence of activities according to project objectives and constraints, 121 

and then defining the WBS [14]. For various optimization problems, current construction planning 122 

approaches mostly comprise one of or a combination of the following: expert opinion and 123 
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experience, mathematical and heuristic formulations, intelligent methods, evolutionary methods, 124 

and simulation techniques. Methods involving expert opinion and experience can exhibit potential 125 

uncertainty and might not significantly benefit objective problems that involve rigorous 126 

computation [15]. Mathematical methods, such as integer, linear, or dynamic programming, are 127 

computationally cumbersome, complex, and easily trapped in a local optimum [16]. Heuristic 128 

methods are a collection of proposed rules that do not use rigorous mathematical formulations [17] 129 

and offer a much simpler approach using rules-of-thumb and experience [16]. Some examples of 130 

heuristic and meta-heuristic approaches can be found in the work of Sonmez et al. [18], Yahya and 131 

Saka [19], Liu et al. [20], and Chen and Shahandashti [21]. Heuristic methods perform differently 132 

in different problem contexts and do not always guarantee optimum solutions, as no direct 133 

approach exists for selecting the best heuristic approach [22]. In situations where insufficient data 134 

is available for modeling and computing processes, intelligent methods [23–25] could be used to 135 

establish WBS and identify the proper sequence of activities. Evolutionary methods can become 136 

difficult to implement and make the computation process extremely intensive and expensive to 137 

perform [26]. Some studies [27–29] have also proposed hybrid simulation approaches that simulate 138 

construction problems using a simulation approach (such as DES) and an optimization method. 139 

This paper presents an alternative to other methods currently found in construction planning 140 

literature: a simulation engine that provides a scientific method for finding an optimal set of 141 

solutions for particular scheduling problems by simulating the environment, which consists of 142 

activity durations, resource availabilities, and precedence relationships, in an optimization 143 

platform, which takes into account the objective function and pre-defined constraints. 144 

2.2. Simulation approaches in construction 145 

Simulation as a scientific tool for analyzing complex behaviors and processes in construction 146 

projects was first introduced in the 1960s by Teicholz [30] via a “link-node” model to investigate 147 

simple networking concepts and explain construction operations. The first software 148 

implementation of DES is believed to have been introduced by Gordon [31]. Some examples of 149 

DES application in the construction industry include construction planning and project scheduling 150 

[32,33], estimation in construction processes [34–36], productivity and performance [37–39], and 151 

construction simulation [32,40,41]. Despite the capability of DES to simulate process-type 152 

systems, DES elements behave in a predetermined manner ignoring unique operational real-life 153 

scenarios that occur as a result of resource constraints. For many construction systems with 154 
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complex project scenarios, such as earthwork operations including a large number of equipment 155 

types, varying arrival, service, breakdown processes, and weakly defined haul-road networks and 156 

volumes, more entities are required to account for the increasing complexity, making DES 157 

approaches computationally demanding. Zankoul et al. [42] compared DES with ABM for the 158 

same earthmoving project and showed that DES had increased computational burden due to 159 

additional entities needed to represent the system. 160 

Agent-based modeling (ABM) surpasses earlier methods such as DES, as it can be used to capture 161 

emerging behaviors that result from complex interactions of interrelating model components [7]. 162 

ABM is a computer simulation technique that enables prediction of overall system behavior and 163 

emerging patterns by modeling the behaviors of system components as well as individual agents 164 

[43]. Agents are discrete entities whose descriptors can be a type, such as “construction worker” 165 

that have their own attributes, such as “age,” “workstation,” “assigned task,” and “behavior.” ABM 166 

can be used to model interactions of individual agents with each other and with their environment 167 

[44]. Examples of ABM applications include scheduling and planning [45–47] and decision 168 

making [11,48]. ABM is an appropriate tool for describing complex systems with dynamic 169 

processes of agent interactions that are repeatedly simulated over time [49], because competitive 170 

and repetitive interactions between agents can result in extremely complex behaviors [50]. In this 171 

regard, ABM can easily handle a large number of activities with differing attributes and allow for 172 

a better representation of complex relationships between those activities, such as precedence 173 

relationships, competitions for resources, and changing construction conditions, which makes this 174 

method ideal to simulate construction environments for planning and scheduling purposes. 175 

2.3. Reinforcement learning (RL) 176 

RL settings can be classified as single-agent RL or multi-agent RL (MARL) depending on the 177 

number of autonomous agents that influence the system’s state and reward [51]. RL can also be 178 

classified as model-based or model-free RL [52]. In terms of its applications, RL has been used in 179 

various applications in the field of civil engineering owing to its capabilities that make it 180 

particularly successful in solving complex problems [53]. Some of these applications include 181 

works in the area of design and operations for water structures [54,55], transportation engineering 182 

[56–58], and maintenance [59]. RL has been effectively applied to develop strategic conventional 183 

tunneling in construction, which provided optimal economic and safe policies with potential to 184 
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discover new tunneling strategies [60]. RL is also emerging as a control technique [61], and it is 185 

of growing interest in research, with demonstrated potential particularly in enhancing building 186 

performance [62–65]. Because RL uses an intelligent agent to learn to make a series of optimal 187 

decisions [52], it is a suitable approach for performing construction planning where a series of 188 

decisions (e.g., activity sequencing, resource allocation) are performed at different times 189 

throughout a project’s lifecycle. In the area of scheduling, the majority of RL-based research has 190 

focused on production scheduling. Creighton and Nahavandi [66] proposed an intelligent agent-191 

based scheduling system that uses DES as a simulation engine with the goal of minimizing total 192 

production costs depending on job sequence and batch size. Cao et al. [67] proposed an RL model 193 

using Monte Carlo simulation to solve a production planning problem that minimizes inventory 194 

and penalty costs. Wei and Zhao [68] used Q-learning algorithm to schedule a dynamic job-shop 195 

problem that considers machine selection. Zhang et al. [69] used an RL method coupled with 196 

heuristic method and simulation to perform parallel machine scheduling that minimizes mean flow 197 

time of jobs. Fonseca-Reyna et al. [70] used RL to solve a scheduling problem that finds a 198 

permutation of operations that is processed sequentially on a set of machines with the objective of 199 

minimizing the completion time of all jobs. Bouazza et al. [71] used an RL approach with Q-200 

learning to solve a job-shop scheduling problem. 201 

Unlike supervised and unsupervised learning approaches, RL is a machine learning technique that 202 

uses the environment for learning and is not dependent on a predefined dataset [72]. Moreover, 203 

RL is particularly advantageous in the area of sequential decision making, which is a key challenge 204 

in artificial intelligence research [73]. When sequential decision making is formalized as Markov 205 

decision process (MDP) framework optimization problem, selecting the sequence of actions that 206 

produce optimal results (e.g., path planning) becomes complicated because of inherent key 207 

elements of the world (i.e., information about the environment and states; influence of actions on 208 

the environment; the notion of preferred actions now and in the future) [73]. In this regard, RL can 209 

offer an efficient solution for construction operation problems that may be viewed as a collection 210 

of recurring activities [53] where the objective is to produce an optimal solution (i.e., optimal 211 

project performance measure such as minimum project duration or minimum cost) in a dynamic 212 

environment (i.e., changing project conditions) subject to constraints (i.e., limited resources). RL's 213 

capability also extends to solving large-scale dynamic optimization problems and complex multi-214 

objective sequential decision-making problems [73]. 215 
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Even though there is growing research into RL-based optimization approaches that demonstrate 216 

the benefits of RL method in other fields within construction, most applications of RL for 217 

scheduling problems with respect to improving production have been limited to the manufacturing 218 

sector. In construction planning, decision makers analyze various activities to ensure optimal use 219 

of available resources and achieve required performance to meet project objectives with respect to 220 

cost, time, and quality. Establishing WBS and activity sequencing requires consideration of 221 

numerous interacting factors between the activities themselves, such as technology constraints, 222 

precedence relationships, available resources, conflicting objectives, and incomplete information. 223 

In this regard, RL enables a model to process optimization approaches that provide human-like 224 

intuitions and learning capabilities, which can enable decision makers to obtain better solutions 225 

that can adapt to changing environments. 226 

2.3.1. Markov decision process (MDP) 227 

Markov decision process (MDP) is a framework that describes the process of learning from 228 

interaction with the environment in order to achieve a goal. MDP has five components [74]: 1) the 229 

set of possible actions (𝐴𝑡 ∈ A) that can be taken by the agent or the decision-maker; 2) the set of 230 

all possible states (𝑆𝑡 ∈ S) that can be experienced by the agent; 3) the immediate reward 𝑟 that is 231 

received by the agent corresponding to the given state and action pair, defined in Eq. (1); 4) the 232 

discount factor 𝛾 that signifies the relative importance future rewards have compared to the current 233 

immediate reward, defined in Eq. (2), which denotes the discounted cumulative reward 𝐺𝑡 234 

following time t; and 5) the transition probability 𝑝(𝑠′, 𝑟 | 𝑠, 𝑎) of a state corresponding to past 235 

state and action, defined in Eq. (3). The agent-environment interaction in MDP is summarized in 236 

Fig. 1. 237 

𝑅(𝑠, 𝑎) = 𝐸[𝑟𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]    (1) 238 

𝐺𝑡 = ∑ 𝛾𝑘𝑟𝑡+𝑘
∞
𝑘=0     (2) 239 

𝑝(𝑠′,   𝑟 | 𝑠,   𝑎) =̇ p(𝑆𝑡 = 𝑠′,  𝑅𝑡 = 𝑟 | 𝑆𝑡−1 = 𝑠, 𝐴𝑡−1 = 𝑎)     (3) 240 

 241 
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 242 

Fig. 1. Agent-environment interaction in MDP (adapted from [52]). 243 

 244 

In MDP, the optimal policy 𝜋∗(𝑎|𝑠) can be the function that maps the current state s to the best 245 

action 𝑎∗ while maximizing the expected future reward, as shown in Eq. (4). 246 

𝜋∗ = 𝑎𝑟𝑔𝑚𝑎𝑥 𝔼[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]     (4) 247 

2.3.2. RL algorithms 248 

RL algorithms for solving an MDP problem can be implemented in two ways: through 1) action-249 

value approximation or 2) policy approximation. Action-value methods directly learn the expected 250 

return of taking each action 𝑎 in a specific state s [52]. The action-value function 𝑞𝜋(𝑠, 𝑎) is 251 

defined in Eq. (5), and the optimal action-value function for the optimal policy (𝜋∗) is defined in 252 

Eq. (6) by considering the Bellman optimality equation, Eq. (5), and Eq. (3): 253 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]    (5) 254 

𝑞𝜋∗(𝑠, 𝑎) = ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 +  𝛾 max
𝑎′

𝑞𝜋∗( 𝑠′, 𝑎′)]    (6) 255 

On the other hand, in some MDPs, directly learning action-value functions is challenging in a big 256 

action space, and as a result, the policy function is used to calculate the preferences for each action 257 

in each state. The parameterized policy formula is defined in Eq. (7). 258 

𝜋(𝑎|𝑠, 𝜃) = 𝑃𝑟[𝐴𝑡 = 𝑎| 𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃]    (7) 259 

Eq. (7) presents the probability of selecting an action as action preference. For example, this 260 

probability could be a linear function of any complex structure of deep learning, where 𝜃 is the 261 

weights or parameters of the function. Eq. (8) and Eq. (9) express the discrete action space for a 262 

linear parameterized policy with soft-max distribution [75]. The objective in RL processes is to 263 

learn 𝑞∗ or 𝜃∗ by interacting with the environment and receiving rewards. This learning is 264 
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accomplished by updating a policy or set of action-value function parameters, which means 265 

learning the best values for each state or sub-problem, which leads to solving the MDP. 266 

𝜋(𝑎|𝑠, 𝜃) =
𝑒ℎ(𝑠,𝑎,𝜃)

∑ 𝑒ℎ(𝑠,𝑏,𝜃)
𝑏

     (8) 267 

where 268 

ℎ(𝑠, 𝑎, 𝜃) =  𝜃𝑇𝑥(𝑠, 𝑎)    (9) 269 

3. Methodology 270 

The research methodology of this study consists of four steps: 1) development of the RL model, 271 

2) problem definition, 3) ABM simulation process, and 4) development of the RL process for 272 

construction planning. 273 

3.1 Development of RL model 274 

3.1.1. MDP states and actions 275 

In the construction environment, formalizing resource-constraint scheduling as an MDP is 276 

described as follows. Possible actions (𝐴𝑡 ∈ A) are activities that can be scheduled according to 277 

project state (𝑆𝑡 ∈ S). Project state in this study is characterized by project time, available 278 

resources, and the state of each activity in the network. Each activity has four states, namely 279 

“NotReady,” “Ready,” “InProgress,” and “Complete,” and each state is represented in a binary 280 

format. Hence, the MDP environment for the scheduling problem starts by defining which 281 

activities can be used to prioritize schedules and thus minimize project total finish time T. At each 282 

step, the environment advances to the nearest finish time of activities in order to update the 283 

background, and then, based on project state, possible activities are scheduled from the pool of 284 

possible actions. In the scheduling problem, the reward is considered as a negative value of time, 285 

and the objective is to maximize the long-term reward. In this sense, maximizing over negative 286 

value results in minimizing the total project time. The “state” and “action” pairs, which are the two 287 

major components in the MDP, are described below. 288 

State: The construction scheduling problem is formulated as an MDP problem with RL algorithms 289 

that use an MDP framework to derive optimal strategies. Each state in the RL algorithms is 290 

represented in a structure format as an input to calculate future values according to possible actions 291 

in the current state. For the scheduling problem regarding resource constraints, each state 292 
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corresponds to the activity on node (AON) network at a given timestep. Therefore, each state S 293 

represents the outcome of a previous action and comprises the following information: 294 

i. Activities states in simulation: These can be obtained from the simulation model at each 295 

timestep per a corresponding numeric value, as shown in Table 1. 296 

Table 1: Description of activities. 297 

State State description 

0 NotReady 

1 Ready 

2 InProgress 

3 Complete 

 298 

ii. Available resources: The current availability of resources should be present in the state 299 

information, because they are required to assess which actions can be performed next. 300 

iii. Activities duration: The state gives information on the activities’ duration. 301 

Action: For each state, the agent selects an action from the available activities, which affects the 302 

resource pool of activities. Hence, selecting an action results in changing the project state, and the 303 

agents use updated information to select the next action. In other words, agents select one action 304 

per state. 305 

3.1.2. In construction planning environments, the agents select an environment action (𝐴𝑡 ∈ A) 306 

that affects project total duration. These agents learn to make the optimal sequence of decisions 307 

that can meet the predefined objective by maximizing the received reward for a given action while 308 

also exploring the decision space to avoid local solutions, as shown in Eq. (10). 309 

𝑞𝜋(𝑠, 𝑎) = 𝔼𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎]𝑞𝜋∗(𝑠, 𝑎) = ∑ 𝑝(𝑠′, 𝑟|𝑠, 𝑎)𝑠′,𝑟 [𝑟 +310 

 𝛾 𝑚𝑎𝑥
𝑎′

𝑞𝜋∗( 𝑠′, 𝑎′)𝜋(𝑎|𝑠, 𝜃) = 𝑃𝑟[𝐴𝑡 = 𝑎| 𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃]𝜋(𝑎|𝑠, 𝜃) =
𝑒ℎ(𝑠,𝑎,𝜃)

∑ 𝑒ℎ(𝑠,𝑏,𝜃)
𝑏

 ℎ(𝑠, 𝑎, 𝜃) =311 

 𝜃𝑇𝑥(𝑠, 𝑎)  (10) 312 

The value function therefore learns to calculate the value of each possible activity based on 313 

receiving rewards and tries to estimate the priority of the activities according to the project state. 314 

Fig. 2 provides an example of how the RL agent performs the optimization process to produce an 315 
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improved network diagram. In Step 1, the RL agent observes the current state of the AON to 316 

recognize the resource requirements, initial project network with technology constraints, and the 317 

duration of each activity. In Step 2, the agent prioritizes what action to take based on the current 318 

state and reward system of the RL algorithm. In Step 3, it takes the action to start activity A, based 319 

on priority rules and agent preferences from the previous step. In Step 4, the RL agent observes 320 

the next state and updates the AON network based on the previous action taken. As a result, the 321 

path from A to B is resource constrained in order to minimize total project duration from 3 days 322 

to 2 days. 323 

 324 

Fig. 2. RL process for optimizing AON. 325 

3.2. Problem definition 326 

Construction practitioners can be faced with several combinations of planning issues related to 327 

factors such as time, cost, and quality. Additionally, construction projects are usually executed 328 

under resource constraints related to labor, material, and equipment. Therefore, the planning 329 
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process aims to optimize the use of resources and to sequence activities in order to meet project 330 

objectives. The problem in this study is defined as scheduling the network of construction activities 331 

that are subject to resource constraints with the objective of minimizing the total project duration. 332 

Each construction activity in a given project has its own normal activity duration, signified by the 333 

amount of time required to complete such an activity under normal circumstances. The duration 334 

for the assigned activities is measured in increments of time called planning units. In this study, 335 

these activities are sequenced to comply with project schedule requirements in order to complete 336 

the overall project with the shortest possible duration. 337 

Eqs. (10–12) show the logic for resource allocation optimization: 338 

minimize 𝑇 = max{𝑡𝑖 + 𝑑𝑖 | 𝑖 = 1, 2, … , 𝑛} (10) 339 

subject to 𝑡𝑗  −  𝑡𝑖  −  𝑑𝑖  ≥  0      𝑗 ∈  𝑆𝑖   (11) 340 

 ∑ 𝑟𝑑𝑖𝑘
 ≤  𝑏𝑘      (𝑘 = 1,2, … , 𝑚)

𝑡𝑗 𝜖 𝐴𝑡𝑖 

            (12) 341 

where T = project duration; 𝑡𝑖,𝑗 = starting date of activity i, j; 𝑑𝑖 = duration of activity i; 𝐴𝑡𝑖  = set 342 

of ongoing activities at date 𝑡𝑖 ; and 𝑏𝑘 = resource limit of kth resource. 343 

Eq. (10) indicates the computation for project duration. Eq. (11) indicates that the difference 344 

between the occurrence times of two connected nodes should be greater than or equal to the 345 

duration of the connecting activity. Eq. (12) imposes the restriction on utilization of resources, 346 

which can not exceed available resources. The proposed model for solving this scheduling problem 347 

is shown in Fig. 3 and elaborated in the subsequent sections. The proposed model starts with the 348 

ABM component, where the construction activities are analyzed using critical path method (CPM) 349 

and then used to create the model environment. The RL component consists of establishing the 350 

graph embedding network in an ABM environment to optimize the duration of the scheduling 351 

problem. 352 
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 353 

Fig. 3. Flow diagram of the proposed RL-ABM method. 354 

3.3. ABM simulation 355 

The optimization problem introduced in Eq. (10) is solved using the RL approach. In this section, 356 

ABM simulation is discussed in order to define the environment for the RL optimization platform. 357 

The ABM is used to define the environment, which consists of the intelligent RL agent and the 358 

activity agents representing activities of the project. 359 

3.3.1. Input to ABM simulation 360 

The input to ABM simulation was the characteristics of the AON network, which holds the project 361 

information related to the sequence of activities that comply with technological constraints. These 362 

activities are connected in a finish-to-start manner, where the end of the preceding activity marks 363 

the possible beginning of subsequent activities. This information was used to define the project 364 
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environment in the ABM platform. The main advantage of using ABM is to enable the creation of 365 

the RL environment, which can be used by the RL agent to obtain the current state of the system 366 

and facilitate the optimization process. 367 

3.3.2. ABM simulation process 368 

Using the given AON network, the early start (ES), early finish (EF), late start (LS), late finish 369 

(LF), and total float (TF) of each activity agent is calculated using CPM [76]. These values are 370 

used as RL agent parameters and processed by the intelligent RL agent. The activity agent is the 371 

main agent in the proposed ABM and the main driver of the simulation. Activity agents could be 372 

considered as goal-oriented reactive agents whose sole purpose is to be completed. An activity 373 

agent transitions into different state-charts by starting, performing certain tasks for a given 374 

duration, then concluding. In addition to the information on states, the activity agent includes the 375 

list of resources and predecessors for each activity and the normal duration associated with it.  376 

Fig. 4 shows the states of an activity agent considered in the ABM simulation. All activities start 377 

in a “NotReady” state, which signifies the initial state of all activities and the states of all other 378 

activities whose predecessor activities have not been completed. Next, each activity checks if its 379 

corresponding predecessors are completed. This check is completed by making sure the 380 

conditional statements are returned as 'TRUE' for initial technological constraints within in each 381 

activity agent. After confirming this check, the activity transforms to a "Ready" state. An activity 382 

in "Ready" state then checks if its corresponding resources are available to start the activity and 383 

move to the "InProgress" state. Multiple activities in the "Ready" state will compete for similar 384 

resources based on present priority rules. The RL agent checks whether enough resources are 385 

available for an activity in the "Ready" state. In this stage, if a predefined priority rule exists (e.g., 386 

activities with longer duration get preference; activities with lesser number of resources get 387 

preference), the activity agents utilize that priority rule to capture the required resources and 388 

transition to the next state. Otherwise, the agent assigns priorities for potential activities based on 389 

its deep neural network and selects the highest-priority one to proceed. An activity remains in a 390 

“Ready” state if there are not enough resources available. 391 
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 392 

Fig. 4. States of an activity agent considered in the ABM simulation (where ES is early start, EF 393 

is early finish, LS is late start, LF is late finish, and TF is total float). 394 

3.4. Implementation of RL model in construction planning problems 395 

3.4.1. Input to RL modelling 396 

As noted in section 3.3.2, ES, EF, LS, LF, and TF are the parameters calculated using CPM. As 397 

part of the defining features of each activity, these parameters are used as inputs for the RL agent's 398 

deep neural network. Agent-based modelling output is used as input to define states and actions 399 

for each step of optimization. 400 

3.4.2. Graph embedding network 401 

As noted in section 2.3.1, agents select one action per state in the MDP. To model an action, a 402 

graph neural network structure is used to address the challenges of project size and modeling 403 

relationships between activities. One of the biggest challenges for this type of optimization is the 404 

running time corresponding to the number of activities or actions, which depends on project size. 405 

Graph neural network applications in similar problems show great performance because instead of 406 

a complex network, the whole graph consists of a simple neural network mostly with one hidden 407 

layer, which decreases the required computational resources needed for calculation. Regarding 408 

modeling relationships between activities, it is very important to understand precedent 409 

relationships between activities, which can significantly impact scheduling. In the graph neural 410 
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network architecture, this important feature can be easily modeled and used to help RL agents to 411 

make optimal actions. 412 

With the objective to optimize duration over a project network, graph G is defined according to 413 

the project network, in which nodes represent activities and edges are used to represent pre-defined 414 

technological constraints. After defining graph G, the graph structure is converted to vectors to 415 

represent such complex phenomena. In this study, a deep learning architecture is leveraged over 416 

the graph, in particular structure2vec [75]. In this study, the value function was the result of 417 

structure2vec of environment according to project state. 418 

3.4.3 Parameterizing Q-function 419 

Parameterization of Q-function is performed using the embeddings from structure2vec. Eq. (13) 420 

[75] shows the design of F to update a p-dimensional embedding 𝜇𝑣
𝑡  as:  421 

𝜇𝑣
𝑡+1 ← 𝑟𝑒𝑙𝑢 (𝜃1𝑥𝑣 +  𝜃2 ∑ 𝜇𝑢

(𝑡)
𝑢∈𝑁(𝑣) +   𝜃3 ∑ 𝑟𝑒𝑙𝑢𝑢∈𝑁(𝑣) (𝜃4(𝑣, 𝑢)))   (13) 422 

where 𝑥𝑣 is a binary scalar of activity state; relu is the rectified linear unit (𝑟𝑒𝑙𝑢(𝑧)  =  𝑚𝑎𝑥(0, 𝑧)) 423 

applied elementwise to its input; and 𝜃1, 𝜃4 ∈ ℝ𝑝and 𝜃2, 𝜃3 ∈ ℝ𝑝×𝑝 are the model parameters. 424 

Next, Q-function is defined as shown in Eq. (14): 425 

𝑄 = 𝜃5
𝑇 𝑟𝑒𝑙𝑢 ([ 𝜃6 ∑ 𝜇𝑢

(𝑇)
𝑢∈𝑉 , 𝜃7𝜇𝑣

(𝑇)
])    (14) 426 

where 𝜃5 ∈ ℝ2𝑝and 𝜃6, 𝜃7 ∈ ℝ𝑝×𝑝. 427 

Q-function depends on a collection of seven parameters. For the graph embedding computation, 428 

the number of iterations T for the graph embedding computation is typically small (i.e., T=4) [75]. 429 

3.4.4. Training: Q-learning 430 

Two distinctions are made, where the term “episode” refers to the complete sequence of activities 431 

from simulation start to termination. A single step within an episode is one action, such as an 432 

“InProgress” activity. In this regard, the Q-learning performs a gradient step to minimize the 433 

squared loss, as shown in Eq. (15), by updating the function approximator's parameters: 434 

(𝑦 −  𝑄(𝑣))2    (15) 435 

where 𝑦 =  𝛾 max
𝑣′

𝑄(𝑣′)  + 𝑟(𝑆𝑡 , 𝑣𝑡 , ) for a non-terminal state 𝑆𝑡. 436 
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3.4.5. RL-ABM simulation 437 

To optimize project duration while allocating labor resource appropriately, the proposed RL-ABM 438 

method consists of three phases. First, the ABM platform performs forward and backward passes 439 

to the AON network to obtain the initializing parameters described in the ABM model. The AON 440 

diagram then serves as the environment of the RL model, where initial sequencing requirements 441 

are fulfilled according to technology constraints. Each activity is given an initial “Not-Ready” 442 

state. Second, the AON is transformed into a graph network so the RL agent understands the 443 

position of each activity in the overall AON network. In this step, additional identifiers of each 444 

activity (i.e., duration of task, required resources, dependency relationships) are used as inputs to 445 

form the graph network using the Networkx library. The architecture of the graph neural network 446 

for an example AON of five activities (i.e., A, B, C, D, E) is shown in Fig. 5. In this regard, each 447 

activity is defined by eight attributes to be used in the RL platform. The first four attributes 448 

represent the quaternary value of an activity's state as defined in Table 1. The remaining four 449 

attributes capture the resources available (r), duration of the activity (d), and two attributes for the 450 

position of the activity in the AON (edges). Third, the RL platform executes the RL optimization 451 

algorithm, which uses Q-learning to select an action, calculate action values, and learn to perform 452 

activity sequencing that satisfies resource requirements and minimizes project durations. In this 453 

regard, the graph neural network class is defined with the PyTorch library. The graph neural 454 

network has eight layers to compute the value function. The first layer computes the nodes’ values 455 

based on defining attributes, while the second layer computes the values of neighbor nodes. The 456 

third and fourth layers compute edged values. The last four layers convert the value of each node 457 

to a vector value. In the graph neural network, to reduce loss in calculating neighbor values, the 458 

values are calculated in three iterations. In the RL section, the code utilizes Q-learning with ε-459 

greedy policy. The reply buffer class saves experience for re-calculating values in order to train 460 

the network weights for improving the learning value network. 461 
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 462 

Fig. 5. Graph neural network for an example AON of five activities. 463 

3.4.6. Output from RL-ABM simulation 464 

The simulation outputs integrate processes executed in the RL and ABM. The ABM simulates the 465 

resource-constrained activity scheduling to produce the outputs resulting from the optimization 466 

performed by the RL platform. The resulting output consists of a modified project AON network 467 

that sequences 1) the set of activities to satisfy resource constraint requirements and 2) the 468 

activities to optimize with pre-determined objectives, such as duration and cost. This guides 469 

construction practitioners in performing the set of activities in an optimal and informed manner, 470 

executing the planning process efficiently, and meeting project objectives. The proposed RL model 471 

addresses the uncertainties that arise from assigning durations for activities. In the overall process 472 

of construction scheduling, a probabilistic approach is used that assigns a triangular distribution of 473 

duration for each activity. The consequent uncertainty in the overall scheduling problem, resulting 474 

from the dependencies and relationships between individual activities, is solved in the RL platform 475 

via coding that accounts for such types of uncertainty. Compared to other scheduling optimization 476 

methods, the RL agent can be modeled to arrive to a policy that finds the shortest possible project 477 

duration. However, for this study, the uncertainties stemming from activity duration assignments 478 

are assigned in a deterministic manner to provide straightforward comparisons to the case studies 479 

referred from Lu and Li [68]. 480 

4. Case studies 481 

To demonstrate the proposed RL-ABM methodology, this study utilized construction planning 482 

case studies elaborated from three scheduling problems. The first two are described in Lu and Li 483 

[77]. Case study 1 illustrates how to utilize the proposed RL-ABM method to address a simple 484 
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scheduling problem. Case study 2 demonstrates the applicability of the proposed model in 485 

construction planning to address a more complicated scheduling problem from a bridge 486 

construction project. Case study 3 is a more complicated scheduling problem adapted from Zhang 487 

et al. [78], selected in order to further demonstrate the methodology. 488 

4.1. Case study 1 489 

The first case study included a simple network with nine activities with the one resource type of 490 

labor, for a simple scheduling problem [77]. The resource in this case study was limited to four 491 

units of labor per day. The AON network is illustrated in Fig. 6, and the structure of the activity 492 

table is shown in Table 2. 493 

 494 

Fig. 6. AON network of case-study 1, a simple scheduling problem (adapted from [77]). 495 

 496 

Table 2. Structure of activity table for case study 1, a simple scheduling problem (adapted from 497 

[77]). 498 

Node 

number 
Activity Duration Resource Predecessor(s) 

1 A 2 4L - 

2 B 3 4L - 

3 C 5 4L - 

4 D 4 3L A 

5 E 4 1L A 

6 F 3 2L B 
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7 G 6 2L B, C 

8 H 2 2L D 

9 I 3 2L F, G 

 499 

In case study 1, the learning rate and ε value were scheduled to decrease during learning. As a 500 

result, in the first episodes of learning, the code attempted to use more random actions. However, 501 

in the middle of training, since the ε value was less than 0.5, the network dominated the RL 502 

decision-making process. In this problem, since this case study project had only one type of 503 

resource, the RL agent found the best policy by prioritizing the sequence of activities based on 504 

their TF. For training the model, some hyperparameters need to be set in order to achieve optimum 505 

performance of training. Hence, for the learning process, four important hyperparameters directly 506 

affect the speed of convergence to the optimum policy: number of episodes, memory capacity, 507 

number of steps to update GNN, and batch size. In this case study, these values were set to 4000, 508 

10,000, 2, and 16, respectively. 509 

The result of the AON network using the proposed RL-ABM method for case study 1 is shown in 510 

Fig. 7, and the corresponding Gantt chart is shown in Fig. 8. In this regard, the result of the RL-511 

ABM algorithm improved the result of the total duration of this network by a total of 3 days 512 

compared to the previous research of Lu and Li [77]. 513 

 514 

Fig. 7. Resulting AON network for case study 1 based on the proposed RL-ABM method. 515 
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 516 

Fig. 8. Corresponding Gantt chart for the RL-ABM solution for case study 1. 517 

4.2. Case study 2 518 

The second case study is a scheduling problem in a bridge construction project [77]. A sample 519 

application of the proposed RL-ABM method was based on a local project of constructing a small 520 

footbridge, consisting of three stages of construction and requiring multiple types of resources. 521 

Two abutments, including footers and supports, were constructed in Stages 1 and 2, respectively, 522 

which were reinforced cast-in-place concrete structures. Stage 3 was erection of the superstructure, 523 

which was prefabricated in a remote steel plant and moved to the site for installation. The project 524 

network is shown in Fig. 9, and Table 3 lists the duration and resource requirements for each 525 

activity. Available resources were six skilled laborers (LB), one set of rented formwork for 526 

concreting footer and abutment (FM), one excavator (EX), two mobile cranes (MC), and one set 527 

of prefabricated steel superstructure (ST) scheduled to be moved to site on day 17. The work 528 

contents of identical activities on two stages were slightly different because of particular site 529 

conditions and slight design variations on each abutment. In this bridge project, the labor work 530 

content of multitasking skilled laborers was the primary criteria in deciding the priority for 531 

assigning resources to competing activities. 532 

 533 
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 534 

Fig. 9. AON network for case study 2, the bridge construction problem (adapted from [77]). 535 

 536 

Table 3. Structure of activity table for case study 2, the bridge construction problem (adapted 537 

from [77]). 538 

Node 

Number 
Activity Description Duration Resource(s) Predecessor(s) 

1 A Excavation stage 1 2 2LB, 1EX - 

2 B Formwork stage 1 3 4LB, 1FM, 1MC A 

3 C Concrete stage 1 5 4LB B 

4 D Backfill stage 1 4 2LB, 1EX D 

5 E Excavation stage 2 3 2LB, 1EX - 

6 F Formwork stage 2 3 4LB, 1FM, 1MC E 

7 G Concrete stage 2 6 4LB G 

8 H Backfill stage 2 2 2LB, 1EX H 

9 I Erect steel work 3 3LB, 2MC, 1ST D, H 

 539 

Similar to case study 1, the four hyperparameters, namely the number of episodes, memory 540 

capacity, number of steps to update GNN, and batch size, were set to 4000, 10,000, 2, and 16, 541 

respectively. 542 

The result of the AON network using the proposed RL-ABM method for case study 2 is shown in 543 

Fig. 10, and the corresponding Gantt chart is shown in Fig. 11. Given the resources assigned, the 544 

footbridge construction took 24 days to complete and the prefabricated superstructure was ready 545 
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for erection by day 21. Compared with previous research referenced for this case study [77], RL-546 

ABM reduces total project finish time by 3 days. 547 

 548 

 549 

Fig. 10. Resulting AON network for case study 2 based on the proposed RL-ABM method. 550 

 551 

 552 

Fig. 11. Corresponding Gantt chart for the RL-ABM solution for case study 2. 553 

4.3. Case study 3 554 

The third case study is a scheduling problem adapted from Zhang et al. [78]. The case study was 555 

specifically selected in order to compare RL-ABM output with the results presented in the 556 

aforementioned research [78]. In effect, results of RL-ABM output are compared with from other 557 

heuristic methods, namely: minimum total float (MITF), shortest activity duration (SAD), 558 

minimum late finish time (MILFT), genetic algorithm (GA), and particle swarm optimization 559 

(PSO). In this case study [78], the scheduling problem consists of 25 activities and 2 dummy 560 

activities, with three different types of resources (R1, R2, and R3). The AON network is illustrated 561 

in Fig. 12., and the structure of the activity table is shown in Table 4. 562 
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 563 

Fig. 12. AON network of case-study 3, a more complicated scheduling problem (adapted 564 

from[78]). 565 

Table 4. Structure of activity table for case study 3, a more complicated scheduling problem 566 

(adapted from[78]). 567 

Node 

Number 
Activity Duration Resources Predecessor(s) 

1 1 5 {'r1': '5', 'r2': '3', 'r3': '2'} - 

2 2 5 {'r1': '4', 'r2': '5', 'r3': '3'} - 

3 3 3 {'r1': '2', 'r2': '5', 'r3': '2'} - 

4 4 4 {'r1': '1', 'r2': '4', 'r3': '4'} 1, 2 

5 5 2 {'r1': '4', 'r2': '2', 'r3': '4'} 1, 2 

6 6 1 {'r1': '5', 'r2': '5', 'r3': '4'} 3 

7 7 6 {'r1': '5', 'r2': '3', 'r3': '2'} 3 

8 8 6 {'r1': '2', 'r2': '3', 'r3': '2'} 4, 5, 7 

9 9 1 {'r1': '1', 'r2': '4', 'r3': '4'} 4 

10 10 3 {'r1': '2', 'r2': '3', 'r3': '4'} 5, 6, 7 

11 11 3 {'r1': '3', 'r2': '3', 'r3': '2'} 6 

12 12 3 {'r1': '4', 'r2': '1', 'r3': '4'} 8, 10 

13 13 3 {'r1': '5', 'r2': '5', 'r3': '4'} 8 

14 14 6 {'r1': '2', 'r2': '2', 'r3': '2'} 9 

15 15 4 {'r1': '5', 'r2': '1', 'r3': '4'} 11 

16 16 3 {'r1': '3', 'r2': '5', 'r3': '3'} 12 

17 17 3 {'r1': '2', 'r2': '3', 'r3': '3'} 14 

18 18 4 {'r1': '5', 'r2': '4', 'r3': '4'} 13, 15 

19 19 1 {'r1': '4', 'r2': '2', 'r3': '6'} 15 

20 20 4 {'r1': '0', 'r3': '4', 'r2': '1'} 16 
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21 21 4 {'r1': '6', 'r2': '1', 'r3': '2'} 16, 17 

22 22 1 {'r1': '2', 'r2': '2', 'r3': '1'} 18 

23 23 6 {'r1': '2', 'r2': '3', 'r3': '1'} 18, 19 

24 24 3 {'r1': '2', 'r2': '2', 'r3': '2'} 20 

25 25 3 {'r1': '1', 'r2': '0', 'r3': '3'} 20, 21, 22, 23 

 568 

The four hyperparameters utilized for modeling this problem, namely, the number of episodes, 569 

memory capacity, number of steps to update GNN, and batch size, were set to 4000, 10,000, 2, 570 

and 16, respectively. These model parameters are similar to those for case studies 1 and 2. 571 

The result of the RL-ABM output is shown in the Gantt chart in Fig. 13. The total duration for the 572 

project is computed to be 64 days, where different allocation is assigned for the three resources 573 

shown in Figs. 14–16. 574 

 575 

Fig. 13. Corresponding Gantt chart for the RL-ABM solution for case study 3. 576 

 577 
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 578 

Fig. 14. Model output: resource profile for R1. 579 

 580 

 581 

Fig. 15. Model output: resource profile for R2. 582 

 583 

 584 

Fig. 16. Model output: resource profile for R3. 585 

4.4. Discussion 586 
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This section discusses the validation of the proposed RL-ABM method in each case study and 587 

insights into how construction practitioners can utilize results of the proposed model to optimize 588 

their scheduling problems. 589 

In case study 1, the ABM process included 4000 iterations of forward and backward passes from 590 

“NotReady to “Complete,” as shown in Fig. 4, to obtain the RL agent parameters. Accordingly, 591 

the RL agent checked whether enough labor resource was available for an activity in the "Ready" 592 

state. After the RL agent identified the sufficient labor resource required for the activity, the ABM 593 

simulation environment started the “InProgress” and then “Completed” states. As a result, the 594 

model shows a minor training loss with low computational average time. Specifically, Fig. 17 595 

shows the training loss for 4000 iterations. In effect, after reducing ε to less than 0.5, the policy 596 

converges to optimum value. The processing efficiency is described in terms of the time taken to 597 

execute the model. The model was run using a desktop computer, Intel(R) Core(TM) i7-6700 CPU 598 

@ 3.40GHz, and took less than 2 minutes to complete. Fig. 18 shows the learning loss and average 599 

time for each episode. 600 

 601 

Fig. 17. Training loss for 4000 iterations in case study 1. 602 
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 603 

Fig. 18. Average time for 4000 episodes in case study 1. 604 

In case study 2, similarly using 4000 iterations in the ABM simulation process with a more 605 

complex set of resources, the RL-ABM method also shows an efficient optimization outcome. 606 

Accordingly, there is low training loss in the ABM simulation after the RL agent identifies the 607 

resources to change from “NotReady to “Complete.” Fig. 19 shows the learning loss for each 608 

episode. Convergence of policy to optimum value is obtained after reducing ε to less than 0.5, as 609 

Fig. 17, Fig. 19, and Fig. 21. The processing efficiency is described in terms of time taken to 610 

execute the model. Fig. 20 gives the average time per episode, which shows a decreasing trend at 611 

the end of episode 4000. 612 

 613 

Fig. 19. Training loss for 4000 iterations in case study 2. 614 
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 615 

Fig. 20. Average time for 4000 episodes in case study 2. 616 

In case study 3, the model shows a similar minor training loss with low computational average 617 

time as the previous two case studies do under the same 4000 iterations in the ABM simulation 618 

environment. Fig. 21 shows the training loss for 4000 iterations. The processing efficiency is 619 

described in terms of the time taken to execute the model. Fig. 22 shows the learning loss and 620 

average time for each episode. 621 

 622 

Fig. 21. Training loss for 4000 iterations in case study 3. 623 
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 624 

Fig. 22. Average time for 4000 episodes in case study 3. 625 

The hybridization of RL-ABM and graph embedding methods proposed in this study elucidates 626 

advanced machine learning techniques that can be used in construction scheduling optimization. 627 

The case study results indicate that compared to the solution proposed using the resource-628 

constrained CPM scheduling, outcomes from the proposed RL-ABM method provide greater 629 

improvements in optimizing project durations. In case study 1, RL-ABM improved the total project 630 

duration by 15 percent. Similarly, results from case study 2 show an improvement of 15 percent 631 

in project duration. Moreover, the results from case study 3, which show a more complicated set 632 

of activities with a greater resource profile, demonstrate the capability of RL-ABM to address 633 

more complicated problems and produce comparable results with better efficiency and that RL-634 

ABM performed better compared with the results from other heuristic approaches in Zhang et al. 635 

[78]. The results from MITF, SAD, and MILFT produced 74 days, 71 days, and 67 days, 636 

respectively. Compared with the results from GA and PSO, RL-ABM had a similar result of 64 637 

days. However, the proposed RL-ABM method offers a significantly greater advantage, not only 638 

because of its computational efficiency, but also because it is able to provide several scheduling 639 

scenarios where the minimum possible duration can be reached. In this regard, RL-ABM offers 640 

multiple scenarios of scheduling to achieve the minimum duration, where planners can make 641 

activity sequencing decisions based on other additional criteria, such as resource leveling. 642 

The case study results also indicate that the proposed RL-ABM method provides a more 643 

comprehensive approach to planning, because it provides a dynamic solution to the optimization 644 

problem by effectively changing the AON network even as project situations change on the 645 

construction site. This feature makes the model capable of proposing flexible planning solutions 646 

in changing construction environments, such as adapting initial WBS and AON when project 647 
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conditions change. This paper also extends the application of RL-ABM for proposing construction 648 

planning solutions by incorporating the graph-embedding method to enable handling of more 649 

activities and activity network relationships for use in the RL optimization platform. 650 

Furthermore, the RL-ABM method proposed in this study has an accompanying user-friendly 651 

application that allows practitioners to utilize this model using easy-to-understand features 652 

embedded in a graphical user interface (GUI). The different sections of the application are shown 653 

in Fig. 23, Fig. 24, Fig. 25, and Fig. 26, which detail the simple steps a user has to perform to 654 

utilize RL-ABM. 655 

 656 

Fig. 23. Prompt to enter scheduling data (precedence relationships) from a file. 657 

 658 
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 659 

Fig. 24. Prompt to add node for new activities. 660 

 661 

 662 

Fig. 25. Prompt to log resource requirements. 663 

 664 
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 665 

Fig. 26. Interface to execute the RL-ABM method and view iterations. 666 

As Fig. 23 illustrates, the user needs to first input the precedence relationships for each activity, 667 

which includes the duration of each activity in relation to the associated technological constraints. 668 

This is performed by reading a dataset created as an Excel or .csv file format. The user is also able 669 

to add nodes using the GUI feature, as shown in Fig. 24. Next, the user is prompted to input 670 

resource requirements corresponding to each activity and assign nodes, as shown in Fig. 25. 671 

Finally, as shown in Fig. 26, the 'Run' button enables the user to execute the model and get the 672 

results based on predefined RL-ABM parameters. 673 

5. Conclusions and Future Work 674 

In construction planning, the optimal solution for sequencing activities is often selected from a set 675 

of finite solutions. However, the optimization problem is everchanging, because the environment, 676 

which includes the number of activities, type, and number of allocated resources, changes during 677 

execution of the project. Agents in RL algorithms learn better solutions even as the environment 678 

changes. A review of the literature emphasizes the need for an effective decision-making tool that 679 

can be easily used by stakeholders in accordance with their preferences for improving project 680 

performance with respect to constraints such as time, cost, and quality. 681 

This study developed a hybrid RL-ABM method to support decision-making in construction 682 

planning that includes three major steps: converting a construction schedule to a graph network, 683 

performing ABM, and implementing RL to perform schedule optimization. The proposed model 684 

was demonstrated using three case studies in construction scheduling problems obtained from the 685 

work of Lu and Li [77] and Zhang et al. [78]. As a result, using ABM was shown to better enable 686 
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representation of the construction environment through the use of state charts. This is because 687 

complex relationships, which are the function of an activity's parameters, including an activity's 688 

lifespan from “Started” to “Finished,” as well as agent interactions, including activities 689 

competition to obtain resources could be effectively captured with the principle of ABM. 690 

This study has some limitations. First, the underlying uncertainties related to activity duration were 691 

not demonstrated in this manuscript despite the proposed model having such features, as more 692 

focus was given to presenting how the model works compared with other previous similar studies. 693 

The study is also limited to addressing single-objective optimization (minimize project duration) 694 

subject to single or multiple constraints. Optimization of multiple objectives using multiple RL-695 

agents was not performed in this study. In future work, the proposed RL-ABM method will be 696 

extended to represent a more comprehensive project by incorporating varying distributions of 697 

project duration, multiple sub-contractors, and varying descriptions of resources including 698 

equipment specification, labor profile, and experience during the simulation process. Moreover, 699 

the proposed model will also be extended to perform multi-objective optimizations with more 700 

constraints, such as time, cost, and quality, by incorporating multiple RL agents. Using multi-agent 701 

reinforcement learning approach, conflicting objectives such as increasing direct cost versus 702 

minimizing duration will be addressed by using mixed cooperative–competitive RL-agents in the 703 

RL platform. The RL-ABM GUI will also be improved to include an interface that enables 704 

changing RL-ABM hyperparameters, which can allow the user to become more seamlessly 705 

involved in the training process. 706 
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