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Abstract

In the first of the two projects comprising this thesis we consider the construction of
experimental designs aimed at the elucidation of a functional relationship between a
response variable and various covariates, under various forms of model uncertainty.
In such a scenario a central goal may be to design —i.e., to choose those covariates in a
sample space at which to observe the response — in order to distinguish between rival
models. Specifically we assume that two rival models are available. Usually, one can
cast the model discrimination problem as one of hypothesis testing. If the parameters
are known (there are adjustments possible otherwise) the Neyman-Pearson test rejects
the null hypothesis for large values of test statistic.

The classical design of experiments for discriminating between two rival models
are based on the classical assumption that the true model exactly coincides with one
of the two rival models. From a point view of robustness it is more realistic to suppose
that the correct model lies in one of those only approximately known classes centred
around those rival models.

Under the assumption that the true model is in a Hellinger neighbourhood of
one of the nominal models, we propose methods of construction for experimental
designs by maximizing the worst power of the Neyman-Pearson test over the Hellinger
neighbourhoods. The asymptotic properties of the Neyman-Pearson test statistic is
derived. The optimal designs are “maximin” designs, which maximize (through the
design) the minimum (among the neighbourhoods) asymptotic power function.

To motivate the second project, we note that stochastic processes are widely
used in the study of phenomena nowadays. In particular, the question of whether
a stochastic process is larger than a critical level is of ecological interest.

Usually, a model used to describe the observed data of the stochastic process

includes a deterministic mean perturbed by stochastic errors and uncorrelated, addi-
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tive measurement error. People are interested in estimating the threshold probability
that the deterministic mean perturbed by stochastic errors at each location is above
a fixed threshold. Under certain conditions, the threshold probability is a simple
function depending on the variance/covariance structure of the stochastic process,
and the regression response function. In practice, however, the variance/covariance
structures of the stochastic process, and therefore those of the threshold probability,
are only approximately known. As well, the regression response functions might be
misspecified.

We consider methods for the construction of robust sampling designs for the esti-
mation of the threshold probability, with particular attention being paid to the effect
of spatial correlation between adjoining locations and the regression response func-
tions. A minimax approach is adopted. The optimal design minimizes the maximum
over the neighbourhood of the working model of the loss function. The natural loss
function is the ratio of mean squared error of the prediction and the true value. We
approximate the loss function by the sum of the constant and terms with smaller or-
ders under the increasing domain framework. The approximated loss function is then
maximized over realistic neighbourhoods of the fitted linear relationship, and of the
assumed variance and correlation structures. This maximized loss function is then
minimized over the class of possible samples, yielding an optimally robust design.
As an example, the methodology to find the optimal design is applied for a data set

previously analyzied in the spatial design literature.
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Chapter 1

Introduction

In most statistical procedures for mathematical convenience there are kinds of explicit
or implicit assumptions about models, data independence, randomness and so on.
However, some of the most common statistical procedures are excessively sensitive
to such assumptions. Minor derivations from the assumptions can cause a disastrous
error in the final conclusions. Most time we only have fuzzy knowledge or belief about
the underlying situation. A robust procedure should be proposed in these cases which
ensures the relative insensitivity to small deviations from the prior assumptions (Box
1953, Huber 1981, Wiens 2015a).

The statistical design of experiments is usually referred to as the process of plan-
ning an experiment to collect data appropriately so that they may be analysed by
statistical methods resulting in valid and objective conclusions (Montgomery 1984).
In classical optimal design theory, one usually has in mind a particular model believed
to be correct. An optimal design will be chosen through optimizing a “loss function”
which is derived based on the assumed, fitted model. A misspecified form of regres-
sion model however can be dangerous as described by researchers (Box and Draper
1959, Ford, Titterington and Kitsos 1989). In robust design theory, one anticipates
that the model fitted by the experimenter is not necessarily the true one and the
design criterion must work well over classes to which the true model might belong.
In this dissertation two design problems are studied which fall into this category:
robustness of design for model discrimination problem, and robust design problem
for the prediction of a threshold probability.

This work contains five chapters. Chapter 2 and Chapter 4 are independent papers
which have been prepared for publication. Chapter 2 studies the model discrimination
problem and Chapter 3 provides detailed deviation and proofs to support theoretical
results in Chapter 2. Chapter 4 focuses on the robust design problem for the pre-

diction of a threshold probability. This work aims to construct a spatial (sampling)



design which gives accurate and robust estimates of the probabilities that a stochas-
tic process exceeds a particular threshold, possibly as a function of various covariates
besides time or location.

This chapter is an introductory chapter presenting a literature review of previous
work about designs for model discrimination and designs in spacial statistics. Section
1.1 presents the problem in model discrimination. A brief review of the hypothesis
tests will be included in Section 1.1.1 and the properties of test powers underlying
different assumptions will be investigated. Especially, test powers are found out to
be an increasing function of the Kullback-Leibler divergence which is also briefly in-
troduced. Various optimality criteria based on test power in the literature will be
discussed in Section 1.1.2. In this section classical optimal design problems, and also
an extension of the regression design problems to possibly misspecified models, are
described. Section 1.2 introduces the designs for spatial models: spatial experimental
design and spatial sampling design. Section 1.2.1 introduces the classical and ro-
bust (experimental and sampling) designs in literature. Section 1.2.2 gives the brief
introduction of the preliminary knowledge required for the construction of spatial

designs.

1.1 Designs for model discrimination

The primary aim of theoretical studies in scientific disciplines (e.g. physics, chem-
istry, engineering, etc.) is to discover the actual physical mechanism which governs
the process under investigation. Investigators are concerned with a mathematical
model relating the response y and the variables x. The mathematical model is often
constructed based directly upon an understanding of the mechanism. In practice it is
often the case that the investigator will have several plausible models in mind. The
central goal of the investigator is therefore to design an experiment distinguishing
among these rival models. However, a design that is not well-chosen may result in

failure of detecting serious inadequacies of a tentatively entertained model.

Example 1 Michaelis-Menten kinetics and the exponential response models can be
used as mathematical descriptions of the relationship between oxygen consumption and
ozxygen delivery (Lubarsky, Smith, Sladen, Mault, and Reed 1995). The Michaelis-

Menten model s

Vo

EY|z) = Kot

and the exponential response model is
E(Y|z) = Vi(1 — exp{—Kyz})
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Figure 1.1: Comparison of Michaelis-Menten model and exponential response model.
Dashed line represents Michaelis-Menten model. The dotted line represents expo-
nential response model. The horizontal axis denotes variable x and the vertical axis
denotes the mean of y at z.

where E(Y |x) is the expected value of the response y with the variable x. When
Vo=Ky=1,V; =12, K1 = 0.3, and x varies from 1 to 5, the two curves defined by
the above two models respectively intersect at x = 2.485 as shown in Fig 1.1. In an
extreme situation, an experimenter made most observations at x = 2.485. If the true
model is one of the two models, the observations would not permit the inadequacy of
the other model to be detected.

This undesirable situation illustrated in Example 1 can occur in other cases, and
in general is difficult to detect by a mere inspection of the response functions of the
rival models, due to the fact that the regression parameters are usually unknown.

The design of experiments for discriminating between models has been investigated
in literature under the following possible conditions:

(1) (Hunter and Reiner 1965, Atkinson and Fedorov 1975a) two rival models are
available:

Model T : the distribution of the observations is fy(y|x, to(X), ¥o)  (1.1)
Model IT :  the distribution of the observations is fi(y|x, 11(X), ¥1)



where fy and f; are normal densities and

pi(x) = /yfj(y\x, ®;)dy.
In particular, there exist functions 7, (z, 0y), 7, (z,61) such that

pi(x) =n;(x,0;), j=0,1 (1.2)
where 6y, 0; are unknown regression parameters. Then (1.1) can be rewritten as

Model I: y(x) = ny(x,00) + ¢ (1.3)
Model II: y(x) =n,(x,601) +¢

where the error terms &’s are normally and independently distributed with constant
variance 02, i.e. ¢, = p; = 0.

(2) (Fedorov and Pazman 1968) There are two rival models as in (1.3) while the
error terms are normally and independently distributed with non-constant variances.

(3) (L6pez-Fidalgo, Tommasi and Trandafir 2007) The two rival models, fo(y|x, 11o(X), g)
and f1(y|x, 11(x), ¢, ), are non-normal models with (1.2) holding.

(4) (Atkinson and Fedorov 1975b) There are several rival models:

y(X) = T]j(xv 0]) +é, j =1,.v
and the error terms are normally and independently distributed with constant vari-
ance o2, the same for all models.
(5) (Ucinski and Bogacka, 2005) There are several rival models:
y(X) = nj(xa 9]) + &, .7 = 17 U

and the error terms are normally and independently distributed with nonconstant

variance.

1.1.1 Hypothesis test for discriminating between two rival
models

We assume that two rival models are available as in (1.1). Usually, the model dis-

crimination problem is cast as a problem of hypothesis testing:
Hy: Model I versus H,: Model II (1.4)

and we suppose that n observations y,, = (y1,¥2, ..., ¥»)? at, not necessarily distinct,
design points s = (x,,...,X,) have been made. Here s is chosen from a finite set

S = {x;}¥, C R ¢ > 1. In the following, for convenience, we denote

77](0]> = (n]<xla0])7 -"777j(Xn79j))T7 j = 07 1.



Homoscedastic normal linear regression models: F-test

When condition (1.1) is true and 7,(x, 8;) = g; (x)8;,

1n9(00) = Xobp for Xg:n xpy and Og:pg x 1
771(01) = X101 for X1 n xXpmp and 01 :p1 X 1

where Xo = (go(x1), -, g0(%0))", X1 = (91(x1), -+, 91(x0))", X1 = (Xo: Xy), Xy is
X (p1 — po) and Oy, 0, are unknown regression parameters. One can apply an F-
test for the model discrimination hypothesis test. The unknown parameters can be

estimated by least square estimates:
0= (X! Xo) 'XIy and 6, = (X' X,) ' XTy.
Then the sums of squares of the residuals for these two models are

SSEy = (y—Xe00)" (y — X,00) =y (I - Hy)y
SSEl = (y - X191)T(y - X191) - yT(I - Hl)Y:

respectively, where H;= Xi(XiTXi)_lXiT, i = 0,1, are idempotent matrices with
dim(H;) = p;. By applying the Gram-Schmidt Theorem, we can obtain QR de-

compositions for X; and Xs:

Xo= (@ Q) () omd Xi= Qs Q) )

where Q;= (Q,;: Q;2),i = 0,1, are orthogonal matrices and (Qi1),,,,, ; (QiQ)nX(nfpi).
Then H Q11Q217 nxn Hl: Q12sz; and

y (I-H)y = (Quy)" (Qpy).
If the null hypothesis is true, i.e., the nested model is true, we have
Q 2y NMNTL —pi )><1(0 o I(n pi)x(n—pi))ai = 07 17

and

SSEy— SSE1)/(p1 — po)
SSE:1/(n— p1)

SSEno™2_,. SSEy— SSEi~o,_,, and & ~E

Then F-test reject Hy for large value of

(SSEy— SSE1)/(p1 — po)
SSE\/(n—p1) '

5



Under the alternative hypothesis, i.e., the reduced model is different from the full
model (which is assumed to be the true model), 0 72SSFE; follows a noncentral chi-

square distribution with noncentrality parameter

A(6) = 07X QuQpXi0:=01X{(I,,,—QnQi)X,0:=||1,,,—QuQdH)X, 01|
= |’X191—H0X191||2=i§tf 1m,(6,) — m,(6,)]]*.

The power of the test is an increasing function of A(6;). Notice that ||n,(8,) — n,(60,)|?
is the sum of the Kullback-Leibler divergence between two normal densities with

means 7.(x,0,),7 = 0,1, and the same standard deviation.
77] J j

Nonlinear regression models: Neymann-Pearson test

Nonlinear regression models are much more complicated than linear models. Assume
that the regression parameters 8y, 8, and the nuisance parameters ¢, ¢, are known.
Then Neymann-Pearson test is the uniformly most powerful test. The null hypothesis

test is rejected if the value of the test statistic R is large:

Hfl(yi|ﬂl(xi)7901>
R = 2log{ =2

n

Hfo(yiluo(xi),%)

yz':“’l ) 901)
= 2 log .
Z yz|ﬂ0 ) 900)

If Model II is true, the expectation of the test statistic is

E(R| Model II) = Zif{fo, filxi}

=1

where

[ J1(ylp (x), 90)
Z{fo, frlx} —/1 ® Folulie(x).0)”!

is the Kullback-Leibler divergence of fy to f.

Intuitively, the power of the test should depend on the expectation of the test
statistic: the larger F(R| Model II), the larger the power ( Loépez-Fidalgo, et al.
2007). When Model I and Model II are both normal, the claim is provable.

f1(ylp (%), 1)dy

Homoscedastic models When Model I and Model II are both normal with the

same nuisance parameter, we can calculate the power of the test explicitly. In this



case,

_ o exp{ g2 Z’L 1( n (X, 01))2}
K 2los {exp { 202 > i (i 0<X7 90))2} }
= [20(80) ~ )" (15(80) — m(62)) — [mo(6y) — m,(0,)IF

When Model I is true, the test statistic follows a normal distribution with mean

1
——511m0(60) — 7,(6,)]?
and variance

oh = Hno(%) m,(6,)[*

When Model II is true, the test stat1stlc follows a normal distribution with mean
1
E(R| Model II) = FHT’O(GO) - "71(91)“2

and variance 0%. Given the significance level «, the critical value ¢ = o pu, with u,
being the 100(1 — «) percentile of the standard normal distribution. The power of
the test is

E(R| Model II) —
P (R > c| Model II is true) = q)( (R| Model II) c)

OR

~- <\/E(R| Model 1) — ua> .

It is clear that the power is an increasing function of E(R| Model II).
When Model I and Model II are not normal, it is usually hard to investigate the
distribution of the test statistic. Wiens (2009b) derived the asymptotic properties of

the Neymann-Pearson test statistic.

Theorem 2 (Theorem 1.1 in Wiens (2009b)) Suppose that Model I and Model II
satisfy the following conditions:
(a) fi(ylx, py, 05) = fylx, 1y, ;) for a density f;
(b) iy (z5) = po(zs) + Ay/n'/?i=1,...,N.
Define
D— %E(m Model I1). (15)
Then under the regqularity conditions D is O(n™') and the Neymann-Pearson test

statistic R is asymptotically normally distributed under each hypothesis:
R+2nD [

JoD
R —2nD

T

under Hy, ——— L, N(0,1);

under Hy, ——

= N(0,1).



Based on this theorem, a Neymann-Pearson test with asymptotic size a has the

asymptotic power

B=a <\/2n_D - ua> (1.6)

which is an increasing function of D.
In particular, when Model I and Model II are normal with the same variance, the

test power is exactly the asymptotic power and

1

D—
2no?

[1m6(60) — 7 (61)]]*.

Heteroscedastic models When Model I and Model II are both normal with non-

constant variances, we can also obtain the power of the test explicitly. In this case,

exp { = S0y 5t (0 — (%, 01))*}

exp { = S0y b (s = molx, 60))?}

= 2(ny(85) = ¥)" =7 (mo(80) — m,(61)
~(10(8) = 1 (62))"S " (1o(80) — 1, (61)

R = 2log

where
> = diag(o7?, ...,0,,%).

aey n

When Model I is true, the test statistic follows a normal distribution with mean

—(19(80) — 11(61))" =7 (no(60) — 1, (61))

and variance
oh = 4(ny(80) — 11(61))"Z " (19(80) — 1,(61)).

When Model II is true, the test statistic follows a normal distribution with mean

E(R| Model IT) = (1(60) — 1,(61))" =7 (1(8o) — 0,(61))

and variance a%. Given the significant level «, the critical vale ¢ = ogu, with u,
being the 100(1 — «) percentile of the standard normal distribution. The power of
the test is

P (R > ¢| Model IT is true) = & (\/E(R| Model 1I) — ua> .

When Model I and Model II are not normal, in Chapter 2, asymptotic properties
of the test statistic are derived where assumption (a) in Theorem 2 is no longer

necessary.



Proposition 3 Given a design space S = {x;}¥, , assume that the experiment has
n; replicates at each covariate X;, with Zf\il n; = n. Define D as in (1.5) and for

any two densities fo, f1 define

Ji(ylxi, g (x3))

r(ylxi; fo, 1) = So(ylxi, w1 (%))

Assume that two densities fo, f1 satisfy
(a) for the KL-divergence,
nD = O(1), (1.7)

(b) for all § >0

i 3 olwlo o 09) (VrTTs o~ 1) dy =0, (1)

{llog r(ylxi;fo,f1)|>6}

(c) there is a T > 0 such that

lim an/ Siylxi, 1y (x)) logr (y[xs; fo, f1) dy = 0. (1.9)
e IOgr ylxwaafl }

Then R = 2 Zfil ey log r(y|xs; fo, f1) and:

(i) under the null hypothesis,

R+2nD |

= N(0,1
&nD ( )

(ii) under the alternative hypothesis,

R —-2nD

= N(0,1
8nD ( )

Based on this result, the Neymann-Pearson test with asymptotic size « has the
same asymptotic power as shown in (1.6) which is an increasing function of the sum
of the Kullback-Leibler divergence D of f, from f;.

Kullback-Leibler divergence

Kullback-Leibler divergence, also called information divergence, is widely used in
information theory. It is a non-symmetric measure of the difference between two
probability distributions Fy and Fj. Informally, it quantifies the lost information

when Fj is used to approximate F.



Definition 4 Given two probability distributions, Fy << Fy, the Kullback-Leibler

divergence of Fy from F} is

dFy

If Fy is not absolutely continuous with respect to Fy, then the KL-divergence is oc.

Er {log dFl]

Remark 5 Here Fy << Fi denotes that Fy is absolutely continuous with respect to
. That is, there exists a Borel-measurable function g such that g > 0, f g(t)dF, =
1 and

Fw) = [ g0ar

—00

Remark 6 If Fyy and Fy are both absolutely continuous and their densities are fo and

f1, respectively, the Kullback-Leibler divergence is

+00
Tt )= [ Ae)los )

Remark 7 Kullback-Leibler divergence has the following properties.

dt.

1. The KL-divergence is nonnegative and is zero iff Fy = I} almost everywhere.

2. The KL-divergence is not symmetric (therefore, it is not a true metric).

1.1.2 The design criteria and designs

To discriminate the two models effectively, one should try to choose a design which
truly places the hypothesized models in jeopardy, in other words, the optimal design
should maximize the power of the discrimination test. Denote & as the design measure
placing mass ¢; at x; € S where S = {xy,...,xy}. That is, € is a vector with elements
¢, such that £, > 0 and 2111151' =1

Classical optimal designs

The design of experiments for discriminating between rival models has been investi-
gated by numerous authors. A common assumption is that one of the two proposed
models is the true one. That is, that model does in fact represent the true physi-
cal mechanism in such a way that either Model I or Model II will hold. Under this
assumption the powers of the discrimination tests depend on the Kullback-Leibler

divergence of the two rival models. In particular, for homoscedastic normal linear

10



regression models, one should choose a design based on the criterion:
§ = ag m?Xi&f |[10(60) — 771(01)”2
= argm?XHXlel—HoXlOlHZ
= argmax 6] <X1TX1—X1TXO (XTX,) ™" X0TX1> 0,
where

N
XiX = &on(xi)gl (i), k,1=0,1;
=1

for nonlinear heteroscedastic normal regression models, the optimal design is chosen
such that

& = arg mgaxfb <\/E(R] Model II) — ua>
= argmax E(R| Model II)
= arg mgXHno(OO) —n1(01)|?

N
= arg mgax Z &;(10(xi, 00) =11 (x;, 1))
i=1

and for non-normal models, the optimal design is

& = arg mEaX(I) <\/E(R| Model II) — ua>

= argmax D(&).

The optimization criteria above depend on unknown parameters 6; (€ RP7), j =
0,1. It is a common problem one needs to deal with in the construction of model
discrimination designs. There are several methods to address this issue. Two main
methods are discussed in literature. The first method assumes that ny observations
have been made and the unknown parameters can be estimated and updated when
new observations are available. This method is used in sequential approaches for
constructing designs. Another method is based on the assumption that one of the
rival models is true and the regression parameters of that model are known. The
unknown parameters in another model are estimated by a least squares estimate,
that is, the one that minimizes the L?—distance between the true model and the
other rival model. The method is helpful for constructing static designs.

Sequential methods to construct the optimal designs for model discrimination
were first proposed by Hunter and Reiner (1965). Two homoscedastic normal models

were considered. The authors assumed that ny observations have been made already.

11



Parameters 6, can be estimated by least squares (LS) estimates @;l) and the (no+1)th
observation then will be made at the new point X(,,41) maximizing

~(1) ~(1)
X(ng+1) = arg mgX(no(X, 0y, ) —m(x,0,

).

One can repeat this procedure and update the estimates of 8; at each step until
n (n > ng) design points are obtained. Fedorov and Pazman (1968) extended the
sequential method to heteroscedastic normal models.

An example of static designs for model discrimination is T-optimal design pro-
posed in Atkinson and Fedorov (1975a). Two homoscedastic nonlinear normal models
are assumed. Model I is assumed to be the true model and the parameters 6; are
known. The optimal design should be the one that maximizes the power of the dis-
crimination test. The problem again is that the power function depends on unknown
regression parameters @y. Instead of updating the estimate of regression parameters
in each iteration, an estimate of 8y which minimize the L?—distance between 1,(6,)

and 7,(61) is employed and a T-optimal design is

N
§'=arg SLglp eggcgo 121 &i(no(x4,00) — 0y (x4, 0,)).

Loépez-Fidalgo et al. (2007) investigated the construction of KL-optimal designs for
non-normal models. Two models as in (1.4) are considered with the first model being
assumed to be the true model with known parameter 8,. The asymptotic power of the
discrimination test can proved to be an increasing function of the KL distance between
Model I and Model II (Wiens 2009b). It is reasonable to choose the design which
maximizes the KL divergence between these two models. The authors employed the
method in Atkinson and Fedorov (1975a) to address the issue of unknown parameters

6y, and the design criterion becomes

N
* ; Ji(wilm (xi,04), ¢,)
&'=argsup inf éi/log £yl (%1, 6,), . )dy.
S 906@0; Jo(wilne(xi, 80), ¥p) il (i 61). 1)

Robust designs

In the classical designs introduced above, one of the two rival models is assumed to

be exactly correct and the following assumption is common:

py(x) = 11(x, 04), p19(x) = 179(x, ).
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However, in most applications, the assumed model is, at best, only a reasonable
approximation to the true model. In the pioneering work of Box and Draper (1959),
the inherent dangers can be serious of designing an experiment based on the belief
that the assumed models are exactly correct. Therefore, in light of modern notions
of robustness, it is more common to suppose that the correct model is a member of
one of two only approximately known classes Fy, Fi.

Wiens (2009a) proposed methods of constructing discrimination designs which are
robust against model misspecification. Usually, the means 11;(x) are only partially
known and the function 7,(x, 6;) is at best an approximation of the mean p,(x). A
problem arising immediately due to model misspecification is that the meaning of the
parameter 8; becomes unclear. To address the problem, a working response E(Y|x)

is adopted and the parameter is defined as

6; = argmin | > (E[Y|x) — (%, 0,))°| . (1.10)
s
According to the definition, the parameter defined in (1.10) provides the closest
agreement between the working response and that in model j. There are different
choices of working response. In particular, if E[Y|x| = n,(x,0;) with a specified 04,
the method of determining 6, is analogous to that in Atkinson and Fedorov (1975a)
and Atkinson and Fedorov (1975b). For more details, see the discussion in Wiens
(2009a).
Define d;(x) = E[Y|x] — n;(x,08;) and denote

6j = (5j(xl)7"'76j(xN))T7
U Omi(0) _ (0n;(x,6;)  Ony(xn,05)\"
08 06 7 08

Then according to definition (1.10), §; and U; should satisfy U] d; = 0. The
“errors” should also be bounded. Therefore, two neighbourhoods of 17;(68;) considered
in Wiens (2009a) are

Fy = {n,;(0;) + &,UT8; = 0,16, < 7},

for some 7; such that FoNF; = 0. The true model is no longer one of the hypothesized
models. Instead, the true model is assumed fall in one of the two classes Fy, ;. The
optimal design still needs to maximize the power of the test. According to the result

in Theorem 2, the robust optimal design problem is that of determining

al J1 (il (%3), 1)
*: . f ) VA 1 1) 1 . .
¢ argsgpélor}él;@/bg fo(yimo(xi)’%)fl(yz!m(xz),cpl)dy,
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with p,(x) = n,(x,0;) + ;(x) and §; € C;.

When both models fy, fi are normal with common variance o2, robust T-optimal
design is proposed. The parameters 6; are computed from equation (1.10) and a static
design is constructed. When fy, f; are non-normal densities, robust Kullback—Leibler
optimal designs are considered. Both static and sequential designs are constructed.

As a natural sequel of Wiens (2009a), in Chapter 2 we assume that the true
model is in a Hellinger neighbourhood of one of nominal models. Construction for
experimental designs is proposed by maximizing the worst power of the Neyman-
Pearson test over the Hellinger neighbourhoods. More specifically, the optimal designs
in this project are “maximin” designs, which maximize (through the design) the

minimum (among the neighbourhoods F;, j = 0,1) asymptotic power function.

1.2 Designs for spatial models

In many areas such as epidemiology, economics, climatology, agriculture and geology,
spatial data are observed and recorded. A distinctive characteristic of the spatial
data is that the analysis of the spatial data depends on the locations of the objects
being collected. A possible spatial model is

Y(x,t) = n(x,t) +(t) + (t) (1.11)

where t €7:={t;,--- ,ty} C R? is a location where the object might be measured,
and x €R? is a treatment covariate, and 7(x,t) is the deterministic mean (large-
scale variation) perturbed by stochastic errors §(t) (small-scale variation), and &(t)
is uncorrelated, additive measurement error. Typically, observations obtained from
different locations are correlated and a correlation function is used to describe the

statistical correlation between the random variables.

1.2.1 Spatial experimental and sampling designs: classical
and robust

As discussed in Cressie (1993) (Wiens 2015b), spatial designs for model (1.11) can be
distinguished between spatial experimental designs and spatial sampling designs. In
spatial experimental designs, locations are fixed and the design allocates treatments
to these locations. In spatial sampling design, however, experimenters need to choose
locations to make observations and usually only one observation is available at any

spatial location.
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Spatial experimental design

Spatial experimental design was derived from agricultural experiments and developed
later on. In classical experimental designs (based on randomization, blocking, and
replication), the spatial positions of the treatments in the design are often ignored.
And the efficiency is always measured based on the error variation. However, the
effects of spatial correlation between adjoining plots have been well documented (see,
Taplin 1999, Wu and Dutilleul 1999, Legendre, Dale, Fortin, Casgrain and Gurevitch
2004). Petraitis (2001) proposed experimental designs where the effect of spatial
variation is controlled by grouping observations and treatments into blocks.

In most existing methods, various specific correlation structures, variance struc-
tures and regression responses were modelled. Wiens and Zhou (2008) considered the
construction of robust spatial experimental designs for test-control field experiments,
with a degree of uncertainty on the model structures. In Wiens and Zhou (2008) the
locations of field plots are fixed, and each is to be assigned exactly one treatment, a
value of x. The design problem is that of assigning the variable x, varying in a set, in
some optional manner. The robust optimal design minimizes the trace of the mean
squared error matrix which is first maximized over the neighbourhoods quantifying

the model uncertainty.

Spatial sampling design

In spatial sampling design, various designs were proposed due to different purposes,
see Thompson (1997). Here, we mainly discuss the optimal sampling designs. Classi-
cal method of choosing a spatial sampling design is based on some statistical criterion
under the assumption that a model adequately approximates the observations. Such
criteria include A-optimality, D-optimality, minimizing the integrated mean squared
prediction error, and so on.

An A-optimal design minimizes the trace of the covariance matrix of the least-
square estimators of the regression parameters. A D-optimal design minimizes the
determinant of the covariance matrix of the regression parameters, the volume of a
confidence ellipsoid for the regression parameters. An application of D-optimality is
in Miiller (2005) where designs are proposed to help the prediction of the chloride
concentration (y) at location (t) in a region in the Danube river basin in Austria.
Under the assumption that only one monitoring station may be placed at a particular
location, the D-optimal design proposed in Miiller (2005) maximizes the determinant
of the information matrix for the regression parameters.

Constructing spatial sampling designs for efficient prediction of the response at
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unsampled locations is usually of the main interest. For that purpose, minimizing
the integrated mean squared prediction error (IMSE) over locations in the region of
interest is a common aim of the designer and experimenters need to choose locations
to make observations. We assume that a stochastic process u(t) at sampled locations
is observed:

Y (t) = p(t) +e(t) (1.12)
where £(t) with t €7 is uncorrelated, additive measurement error.

In Cressie (1993), the random-field model (1.12) is assumed. The purpose is
to predict p(t) and the kriging predictors are applied. Due to the optimal proper-
ties of kriging predictors, the mean squared prediction errors are simply the kriging
(prediction) variances. Then an optimal spatial sampling design minimizes the in-
tegrated kriging (prediction) variances. The criterion of minimizing the IMSPEs is
also applicable in computer experimental designs, where the deterministic output of
computer code is modelled as a random process with spatial correlation structures.
Assuming that Y (t) is predicted by universal kriging predictors, Santner, Williams
and Notz (2003) discussed different algorithms obtaining IMSPE-optimal designs and
MMSPE-optimal (MMSPE: maximum mean squared prediction error) designs in com-
puter experiments.

It is noticeable that many criterion functions, such as IMSPE, require knowl-
edge of the correlation/covariance function, which often depends on unknown corre-
lation/covariance parameters, and sometimes the true values of regression parame-
ters. In practice, a two-stage procedure is used. In the first stage, data are collected
using some design strategy (for example, Latin Hypercube design) and used to ob-
tain estimates of the unknown parameters; in the second stage, those estimates are
treated as the true parameter values and plugged into the criterion function. Then
one can determine an optimal design based on the criterion. The estimation of the
unknown correlation/covariance parameters results in only approximately known vari-
ance/covariance structures of the stochastic process Y (t). When uncertainties occur,
classical methods can cause a disastrous error in the final conclusions. In these cases
a robust procedure should be proposed which are the relatively insensitive to small
deviations from the prior assumptions (see Box 1953, Huber 1981 and Wiens 2015a).

In Wiens (2005a), the variance/covariance structures of process Y (t) and of the
measurement errors are assumed to be only approximately known. A robust (min-
imax) linear predictor is then obtained, where the loss function is first maximized
over the neighbourhoods quantifying the model uncertainty, and then minimized over
the coefficients of the predictor subject to a constraint of unbiasedness. The loss

function chosen is the mean squared error loss. Notice that the predictor also relies
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on the assumption that the fitted model is correct. Wiens (2005b) constructed ro-
bust sampling designs which are robust against misspecified regression responses. To
obtain the robust designs, the loss function is maximized analytically over a neigh-
bourhood quantifying the departures from the fitted linear regression response and
the maximum is minimized numerically to obtain the optimal designs.

Knowing how to predict p(t) is a prerequisite for optimal spatial designs. In par-
ticular, the design criteria for optimal spatial designs depend on kriging and the
estimation of the parameter. The asymptotic analysis of the spatial data can play an
important role in solving design problems since the asymptotic results can be used
to approximate the complex design criteria to a certain order. In the following, the

necessary preliminaries are briefly introduced.

1.2.2 Preliminaries

Prediction: universal kriging

One main purpose of spatial statistics study is prediction. Given datay, = (Y (t1), ..., Y(tn))T
and a location tg ¢ {ti, ..., t,}, one hopes to predict the value of a measurement-error-

free version of Y (tg), i.e. u(ty) in (1.12). Kriging is a minimum-mean-squared-error
method for prediction. Different kriging methods have been introduced since Math-

eron (1963, 1967) developed the theoretical basis for the method of optimal spatial

linear prediction. Depending on different model assumptions, different types of krig-

ing can be deduced (Cressie 1993). Here we mainly introduce a common kriging
method: universal kriging (the best linear unbiased predictor).

Assume for the random-field model (1.12)

E(Y(t)) = f7(t)0, (1.13)

where f(t) = (fi(t), -, f,(t))T a p—dimensional vector of functions. We consider

an unbiased linear (in data) predictor 7i(tg)

Ti(to) = Z Y (&) (1.14)

The unbiasedness implies

D N (t) = £(to). (1.15)

1=1

The parameters are chosen to minimize the mean-squared prediction error

MSPE = E (u(to) — fi(to))?
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and satisfy the unbiasedness condition (1.15). The universal kriging equations can be
solved by applying the method of Lagrangian multipliers.

Under the assumption that the stochastic process p(t) is a Gaussian process,
E(u(to)| (Y(t1), ..., Y(t,))) minimizes the MSPE (see the proof of Theorem 3.2.1 in
Santner, Williams, and Notz 2003) and

E(u(to)] (Y (t1), .., Y(tn))) = £ (t0)0 + 21,37, (v — Fu6) (1.16)

where X1, =Cov(u(to), y2), E,n =Var(y,) and F, = (£(t1),...,f(t,))". Here we
always assume that F,, has full column rank p.

With 6 in (1.16) being replaced by generalized least squares estimate (GLSE)
Ocrs = (FTS-IF,)"'F7% -1y, the universal kriging is 7i(to) = aly, (see page 154
Cressie 1993) where

a, = (Fu(FTS,IF,) (o) + (I, — F,(FIX,MF,) 'FIE ) 2,,) 250 (1.17)

Here, the covariance matrix X, of y, and the covariance vector X,; of u(ty) and
yI depend on the covariance/variance structure of the process Y'(t). In most cases,
the parameters in covariance/variance structure are unknown. We will introduce the

maximum likelihood method to estimate the unknown parameters.

Estimation of the parameters

In general, there are four methods to estimate parameters in the correlation func-
tion (Santner, Williams and Notz 2003): maximum likelihood, restricted maximum
likelihood, cross-validation and posterior mode. We mainly talk about maximum
likelihood method.

Assume that the correlation function has parameters v = (vy,...,%,)". Let
Var(u(t)) = o2 and Var(e(t)) = 2. The log-likelihood is

1
Z(O,Ji, U?v ) = D) [log det(gnn(¢)) + (Yn - FnO)TEr_w{(d’)(Yn - Fne)] . (1'18)
We obtain the ML estimates for the parameters:

(O,Gi,az,@b):e’%l%}gc, Z(O,Ji,ag, ).

Asymptotics

There are two different asymptotic frameworks applicable to spatial data: increasing

domain asymptotics and infill asymptotics. In increasing domain asymptotics,
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the minimum distance between sampling points is bounded away from zero. There-
fore, the spatial domain of observation is also increasing; while in infill asymptotics,
observations are taken in a fixed and bounded domain, more and more densely.

Consider a spatial process (1.12) with F(Y (t)) satisfying (1.13). The distribution
of observations then depends on the parameter @ € RP, where p € Z*. As discussed in
Zhang and Zimmerman (2005), the asymptotic behaviour of parameter estimators can
be different under increasing domain asymptotics and infill asymptotics. An example
is the maximum likelihood estimator (MLE) of the parameter 6.

The work in Mardia and Marshall (1984) is fundamental in discussing the asymp-
totic properties of a MLE of 0. Under an increasing domain asymptotic framework
they showed that if Y (t) is Gaussian the maximum likelihood estimator of € is approx-
imately normal with mean @ and covariance matrix I"1(6,1)) under some regularity

conditions. Here,

%1,(0,%;y,)
0000T

with ,,(0;,Y,,) being defined in (1.18).

One of the regularity condition is that the information matrix satisfies

0.4 - (- ) -FIswr,

I.%(0,9) — 0asn— co. (1.19)

n

Condition (1.19) is satisfied if the following two conditions hold (Mardia and Marshall
1984)

(i) lim, oo A\, = C' < 00 where A, is the maximum eigenvalue of X, (1);

(ii) lim, o (FIF,)"! = 0.

Condition (ii) can hold when the regression function is suitably chosen. Condition
(i) is guaranteed if the row sum norm of 3, is finite for all n. We consider a simple
example when 7 is an N; X ... X Ny regular lattice. Moreover, we assume that the
spatial process Y (t) is a covariance stationary process in R? with covariance function
o(t,t+h)=o(h). Let o, = 7, |o(h;;)| where o(h;;) = o(t;, t;) with hy; = t; —t,.
Then condition (i) is guaranteed when

lim max o; < 0. (1.20)

n—oo 1=1,...,n

Under infill asymptotics, condition (1.20) may not hold.

Example 8 On an 1-dimensional lattice, consider a correlation function o(-,-) sat-
18fying
o(t,t+h)=(1+h)2
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Under increasing domain asymptotics, assume that on the lattice the minimum dis-
tance between any two sampling points is longer than r > 0. we have |t; —t;| = h;; >
|7 —i|lr >0 and

. - N~ 2
i o, oth) < Jun D < o0
Under infill asymptotics, we sample points from a finite domain [0,1] by t; = (i—1)/n.
Then we have

Juax ) o(hi) = > o(hy) =) (1 4! ; 1)_2 o

77777

j=1 j=1 j=1

where O'(hlj) = U(tl, t]) and tl =0.

Infill asymptotics of universal kriging Fazekas and Kukush (2005) studied a

linear geostatistical model,
Y (t) = f1(£)0 + 8(t)+e(t) =p(t)+e(t).

They investigated the properties of universal kriging when the locations of the obser-
vations are not known precisely, i.e. the locations are no longer non-random points but
follow a known distribution. Fazekas and Kukush (2005) proposed a modification of
the universal kriging, 7i(t), and proved that the mean squared error, F [u(t) — 7i(t)]?,
approaches zero as the number of observations increases. Their method, however,
can be used in the case where the locations are non-random points. Following the
procedure in Fazekas and Kukush (2005), we can derive the asymptotic property of
the regular universal kriging.

The universal kriging estimate 7i(t) of u(t) is al(t)y, with a,(t) being defined
n (1.17). Notice that according to unbiasedness we should have f7(t) = al (t)F,,.
Moreover, if fi(t) =1 in £(t) = (fi(t), -, f(t))T, we have a’ (t)1,, = 1. Therefore,

the mean squared error of 7i(t) is

E [p(t) - i(t)])”

E [f7(t)6+6(t) — a (t)F,0 — a’(t)8, — al(t)z, ]’

E [6(t)—al(t)8,]" + o?al (t)a,(t)

E[a](t 5(1; 1,—a (t)an} + o2al (t)a,(t)

= al(t)E[6(t)1,—d,)" a,(t) + o2al (t)a,(t). (1.21)
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Assume that there is a sequence of r positive integers with r = r(n) such that a

subset in 7 are locations {tg"), £t } satisfying the following properties:

I
a; < = 1.7, (1.22)
lim Y a; =0(n"") (1.23)
n— oo o
where
_ (t) — f (t™ P
a] - (?;zag)i) fl(t) fl (t] ) ) 17 ey T

As remarked in Fazekas and Kukush (2005) assumptions (1.21) and (1.22) imply

that the sequence {tﬁ”) 5 tﬁn)} converges to an unsampled location t, in some

sense. Moreover, assume that in 7 there are p + 1 locations {t, t, ..., t,} such that

the matrix ® = (fi(t7))} ,— is invertible (1.24)

and
H&rl < K, (1.25)
where ||-|| denotes the spectral norm of a matrix and K is a finite constant not

depending on n. This condition implies that the locations t,ts,...,t, do not con-
verge to t, (Fazekas and Kukush, 2005). Let T = {tg”),tg”), ...,t,(n”),to,tl,...,tp}
and & = (6(1:@), o B8, 8(te), ...,5(tp)>. Assume that each element in I'(T) :=

2
E [5(1:*)1,1—6} satisfies

‘ (r(rfr))m

where M is a finite constant not depending on n. Moreover,
‘ ‘ 1 T T »
Jim My = fim 53232 (1CT),

i=1 j=1
Based on all these assumptions, via a similar proof as that of Theorem 3 in Fazekas
and Kukush (2005) we can obtain the following result.

<M, i,j=1,...,r+p+1 (1.26)

= 0. (1.27)

Theorem 9 Assume that (1.22)-(1.27) are satisfied. Then the mean squared error

of universal kriging estimate at an unsampled location t, approches 0, i.e.

lim E [u(tt,) — 7i(t,)]° = 0. (1.28)

n—oo
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Chapter 2

Robust discrimination designs over
Hellinger neighbourhoods

Abstract To aid in the discrimination between two, possibly nonlinear, regression
models, we study the construction of experimental designs. Considering that each of
these two models might be only approximately specified, robust “maximin” designs
are proposed. The rough idea is as follows. We impose neighbourhood structures
on each regression response, to describe the uncertainty in the specifications of the
true underlying models. We determine the least favourable — in terms of Kullback-
Leibler divergence — members of these neighbourhoods. Optimal designs are those
maximizing this minimum divergence. Two particular cases are investigated and in

each case sequential approaches are studied. Asymptotic optimality is established.

Key words and phrases Hellinger distance; Kullback—Leibler; Maximin; Michaelis—
Menten model; Model discrimination; Neyman—Pearson test; Non-linear regression;

Optimal design; Robustness; Sequential design

2.1 Introduction

Much of the experimental work in scientific disciplines — physics, chemistry, engineer-
ing, etc. — is concerned with the elucidation of a functional relationship between a
response variable y and various covariates x. However, in practice it is often the case
that the investigator will not know the correct functional form, but instead will have
several plausible models in mind. A first aim of the investigator is therefore to design
an experiment distinguishing among these rival models. Specifically, we assume that

two rival models are available. Under the first model, the data arise from a population

25



with density fo(y|x,4,) while under the other model the density is fi(y|x, ¢;); the

conditional means are

(%) = /yfj(ylxa ®;)dy, j=0,1. (2.1)

Here ¢, and ¢, represent nuisance parameters and will not be explicitly mentioned
if there is no possibility of confusion. Given a design space & = {x;}¥,, assume
that y;,l = 1,...,n; > 0 , are observations made at the covariate x;. Usually, the
model discrimination problem is cast as a problem of hypothesis testing (Atkinson

and Fedorov 1975a,b; Fedorov 1975):

Ho: folylx, py (%)) versus Hy: fi(y|x, p, (X)), x E€S.

The Neyman-Pearson test then can be used to compare these two hypotheses. Define
R = Zi,l R (ya) with

910 fi(yalxi, 1y (%))
Rlya) = 2log { Folal%i o (%1)) } | (22)

We reject H for large values of R. We shall assume that the experimenter models
f1;(x) parametrically as 1;(x|6;), with the form of 7;(x|6,) specified but the parame-
ters 6; unknown.

The design of experiments for discriminating between rival models has been in-
vestigated by numerous authors, among them Fedorov (1975) and Hill (1978). Se-
quential and static designs are the two most well-studied strategies. In particular,
Hunter and Reiner (1965) proposed a sequential design assuming that both densi-
ties were Gaussian, viz., f;(y|x,u;, o) = o lo ((y — uj(x)) /0) , j = 0,1. Fedorov
and Pazman (1968) extended the method to heteroscedastic models. Static, i.e. non-
sequential, design strategies were constructed under the normality assumption by
Atkinson and Fedorov (1975a,b). Lépez-Fidalgo, Tommasi and Trandafir (2007) ex-
tended static design to non-normal models. The criteria to be optimized in these
works are seen to be equivalent to the integrated Kullback-Leibler (KL) divergence
D:

Dforfu €l 1) = | T il s () .y (9}l 2.3)

S
with £ being the design measure placing mass §; = n;/n at x;, and

filx, py (%))

Tfon iy () (0} = [ e ) log { Folwl. o (%))

} dy  (2.4)
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being the Kullback-Leibler divergence measuring the information lost when fo(y|x, 1, (X))
is used to approximate f1(y|x, 1, (x)).

In the references above, one of f;(y|x,u;), j = 0,1, is assumed to correctly rep-
resent the true physical mechanism. However, it is dangerous to apply a method
that is highly dependent on a specific form (Box and Draper 1959; Huber 1981; Ford,
Titterington and Kitsos 1989). From a viewpoint of robustness it is more sensible to
suppose only that the correct model lies in a neighbourhood of a specified density.
Wiens (2009a) allowed for the means (but not the f;) to be specified erroneously, and

imposed the neighbourhood structure

pi(x) = 1;(x0;) + ¥;(x) (2.5)

for specified 7,(x|-) The vectors ¥; = (¥,(x1), ..., ¥;(xn))" were allowed to range over

classes W}, resulting in the neighbourhoods

Fj= {fj('|X, Mj) |Nj(xi) = 77j(X|9j) + ¢j(x>=¢j S ‘I’j}a Jj=0,1

Under this setting robust Kullback-Leibler optimal designs were obtained in Wiens
(2009a) by maximizing the minimum asymptotic power of the Neyman-Pearson test
statistic R over Fy and F;. The asymptotic properties of R were derived in Wiens
(2009b) for two rival models with common densities f;(y|x, 11;(x)) = f(y[x, p;(x)).

Our work is a natural sequel to Wiens (2009a). Model misspecification is still
the problem we would like to address but under a more general scenario as follows.
The two rival models are f;(y|x, p;(x)), j = 0,1, with p; (x) determined by (2.1)
and assumed to be of the form 7,;(x|0;) for some 6;. i.e. ¥; = 0. Define F; to be
neighbourhoods of f;(y|x, 11;(x)) used to describe inaccuracies in the specifications of
the true underlying densities. The true model lies in one of F;, j = 0,1. It is our
purpose in this paper to propose methods of discrimination design which are robust
against the possible model misspecification mentioned above.

There are two possible scenarios:

Case I: under the null hypothesis the density function fo(y|x, 1(x)) of the response
variable is fixed and its mean p, is as defined in (2.1); under the alternative hypoth-

esis the density function varies over a Hellinger neighbourhood of a nominal density
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Ji(y|x, py(x)). Recall that the Hellinger distance dj, (f, g) between densities f,g is
defined by

& (f,g) = %/(fm(y) —g"?(y)) dy =1 —/\/f(y)g (y)dy.

Here the two classes are Fy = {fo(y|x,10(x)} and F; is a Hellinger neighbourhood
defined as

Fi(er) = {f(ylx)[ maxd (f (y[x) . fi (ylx, 1 (x))) < ex} (2.6)

for some £; > 0. The members of F; may differ from f; because of differences in the
functional form of the density, or in their mean structures, or both.

Case II: under the null hypothesis, the response variable has density f(y|x) varying
over a Hellinger neighbourhood of a nominal density fo(y|x, 1, (x)). The members
of Fy may differ from f; because of differences in the functional form of the density,
or in their mean structures, or both. Under the alternative hypothesis the density
function is fi(y|x, p; (x)) with the mean p, defined in (2.1). In this case, the two

classes Fy(eo) and F; are defined as

Fileo) = { 10010

(7 ) o lx i) <20 b (2)

for some gy > 0, and F; = {f1(y|x, 1 (x))}, respectively.

Thus Case I fixes the null model and allows the alternate to vary over a Hellinger
class; in Case II these are reversed. In the upcoming proposition and corollary, we will
show that the Neyman-Pearson test for discriminating between any pair in Fy x F;

is related to the KL-divergence defined in (2.3) between the pair of densities.

Asymptotic properties of the test statistic R

In the asymptotics literature one finds numerous results about the asymptotic dis-
tribution of R, the test statistic for the discrimination between a pair of models
folylx, po (x)) and fi(y|x, 1y (x)), under various conditions. Wiens (2009b) proved
the asymptotic normality of the test statistic R under standard regularity conditions
for likelihood estimation. In Oosterhoff and van Zwet (2012) similar results are proved
under certain contiguity assumptions. In the appendix we derive the asymptotic dis-
tribution of R under conditions tailored to our problem. The proof follows that in

Oosterhoff and van Zwet (2012).
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Proposition 10 Given a design space S = {x;}., , assume that the experiment has
n; replicates at each covariate x;, with S~ n; = n. Define D as in (2.3) and for
any two densities fo, f1 define

Jiylxi, py (%))
So(ylxi, po (%))

r (y|xi; fo, f1) =

Assume that two densities fy, f1 satisfy
(a) for the KL-divergence,
nD = O(1), (2.8)

(b) for all § >0

nh_r{looznl/ Jo(ylxi, 1o (%)) (\/ r (Y35 fo, f1) — 1)2dy =0, (2.9

HOgT |x77f0>f1 |>6}
(c) there is a T > 0 such that

nlgnoozm / ool i () ogr (yis fo fi) dy =0 (210)

IOgT y|x’uf0’f1 >T}

Then R = 221.]\;1 ey log r(y|xs; fo, f1) and:
(i) when the null hypothesis is true,

oD
RA20D 1y, 1)
8nD

(ii) when the alternative hypothesis is true,

ST
Remark 1 Conditions (2.8)-(2.10) in Proposition 10 hold in particular when the
two densities f;(y|x, u;(x),0) = ¢ ((y — p;(x)) /o) /o, j = 0,1, have means which
satisfy p;(x) = p(x) +n"/2A(x) for a bounded function A. In particular, condition
(2.10) holds for every 7 > 0. The same conclusion holds for log-normal densities
Fiylx, p1(x), v?) with gy (x) = p15(x)+n"/2A(x) and homogeneous variances v? = v?,
These statements are verified in §A.2, A.3 of the Appendix.

Remark 2 Denote by F' a distribution function whose density is f. To guarantee that

the KL divergence between two densities fy and f; is finite, F; should be absolutely

continuous with respect to Fy. Moreover, it is natural to assume that the two rival
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models are close to each other in some sense. Therefore, in the following we let
fo(y|x, 1o(x)) and fi(y|x, p,(x)) have the same support set €2y, and its complement
set is
O ={y: Aulylx, (X)) = folylx, po(x)) = 0} .

Then to make sure that condition (2.8) is reasonable, F; should be absolutely con-
tinuous with respect to Fy. Therefore, we only consider f(y|x) € Fi(e1) such that
f(y|x) = 0 on Qf. For simplicity we assume that the densities we consider in this
paper are continuous in the interiors of their support sets.

If the radii ¢; of Hellinger neighbourhoods Fy(gg) of fo(:|x, po(x)) and Fi(ey) of
f1(|x, jt;(x)) shrink at a rate o(n~'/2) then the results in Proposition 10 also hold
for any pair of densities in Fy(gg) x Fi(e1). This is guaranteed by the result in the

following corollary.

Corollary 11 Assume that the central densities fo(y|x, py(x)) and fi(y|x, p,(x)) sat-
isfy conditions (2.8)-(2.10) in Proposition 10 and that ¢ = o(n~Y/?), &, = o(n=1/2).
Then for any pair (f©O(y|x), fP(y|x)) € Fo(eo) x Fi(e1) satisfying (2.10) we have
that f©(y|x) and fO(y|x) also satisfy conditions (2.8) and (2.9).

The main results in Proposition 10 and Corollary 11 show the asymptotic normal-

ity of the statistic

N n;
R (O, fD) =233 “logr(ylxi; O, f)

i=1 1=1

under fO(y|x) € Foleo) or fP(y|x) € Fi(e1), i.e. the density of the observation
variable Y is f© (y|x) or f)(y|x). In practice, we are more interested in the asymp-
totic normality of the test statistic R := R (fo, f1) for the discrimination of the two
nominal models fy(y|x, 1y (x)) and f1(y|x, i1 (x)), when, however, the true model is
in Fy(ep) or Fi(e1). In the following theorem we show that the asymptotic normality

of R still holds under any density f € Fo(gq) or Fi(e1).

Proposition 12 Assume that two models fi(y|x, pu;(x)) and fo(y|x, py(x)) satisfy
conditions (2.8)-(2.10) in Proposition 10. Then

(i) under f € Fi(e1),
R~ 21Dy, f) 1

8nD<f0, f)
30

N(0,1);



(ii) under f € Fo(eo),
R+ 2nD(f, f1) L

87’LD(f7 fl)

Based on the results in Proposition 12, we obtain the asymptotic power against a

N(0,1).

density f € Fy or Fi in the following theorem.

Theorem 13 The asymptotic power against a density [ € Fo or Fy is

—c+y(f, fo, [1) 1
2 |7(f>f0afl)|>+0(),

7 (f) == Pr (R (fo, 1) >c):<1><

where Py (-) means that the calculations are to be made assuming that f is the density

of Y, and where

[ 2D f), iff € Fo.
’”f’f“’f1>‘{ Do 1), i f e P

The critical value is

c = —2nD(fo, f1) + ua\/80D( fo, f1)

determined by
a = P, (R (fo, f1) > ¢)

with u, being the (1 — «)-quantile of the standard normal distribution.

Design criteria for Case I

In Case I, where Fi(e1) is a neighbourhood of f;, the design problem is to find a
design to maximize the ‘worst’ power with controlled Type I error. In particular, a
robust maximin design £* is constructed which maximizes the minimum power, with
significance level «, over Fi(e1), i.e.

*=argmax min Py (R > c¢), subject to a = Py, (R > ¢ 2.11
¢ hem( fo
1€F1(e1

where ¢ is the critical value defining the rejection region {R > c}. According to The-
orem 13, asymptotically, the robust design is the solution to the following optimality
problem

*=argmax min 7 2.12
¢ = argmax_min 7 (f) 212
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and the minimum asymptotic power is

e —c+2nD(fo, f) (2.13)
f€Fi(er) 2 ZHD(f()»f) |

where ¢ is defined in Theorem 13. Under certain condition, we can solve the mini-

mization problem by minimizing the integrated KL-divergence D( fo, f) as shown in

the following proposition.

Proposition 14 Define

fr. = arg fergligl)D(fo, f)- (2.14)
If
D(fo, f1x) = —¢, (2.15)

then also fi. minimizes 7 (f) in Fi(e1), and so is the desired minimizer in (2.13).

Remark 3: If ¢ > 0, then (2.15) is automatic. Otherwise, we check it numerically.
The problem now is to find fi, as at (2.14), and then

£ =argmax min 7 (f) = argmaxD(fo, f1«)- (2.16)
feFi(er)

For Case II, we view the null hypothesis as composite, in the sense that fy is
the representative of the whole neighbourhood and the nominal size of the test is
evaluated at fp, and is to be . We should accept the null if it appears that the
f generating the data is anything in Fy(g9). Then, if f € Fy(eg) is generating the
data we make an error if we reject the null hypothesis, and we would like to minimize
the (maximum) probability of this. A robust mazimin design £ is then constructed
which minimizes the maximum probability of such an error, with significance level «,
over Fy(go). In this paper, we will only focus Case I and Case II will be followed up
in a future work.

As an illustration, we consider two models fy (y|x, 1o(x)) and f; (y|x, (X)) with
fo(x) = 1y(x|60) and p; (x) = 1;(x|61). The design obtained from the criterion (2.16)
is robust for testing the hypotheses

Hy : fo(y|X> N’O(X)) vs. Hy : f1<y’X7:u1<X>>

when the true model is in a small neighbourhood of one of the hypothesized models.
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Of course the values of the regression parameters are unknown. To address this
problem, Atkinson and Fedorov (1975a) (see also Lépez-Fidalgo et al. 2007) assumes
a range of plausible values for the parameters. The worst possible values of the
parameters, i.e. those that minimize D, are obtained within their respective ranges
and the maximin optimal design that maximizes this minimum value is constructed.
This method leads to static design strategies. In this paper, we proceed sequentially,
with the parameters 6; replaced by updated least squares (LS) estimates éj before
proceeding to the next stage. The next observation then will be made at the point
Xnew Optimizing the discrepancy function (e.g. the KL divergence (2.4)) evaluated
at the @j. This is repeated until sufficiently many design points and observations
are obtained. See Hunter and Reiner (1965) and Fedorov and Pazman (1968) for
background material.

In Section 2, the minimization problem is solved analytically at each fixed x €S.
The maximization leading to optimal designs is done numerically in Section 3. A se-
quential discrimination design is proposed, with the unknown parameters in 7,(x|6;)
updated as described above. To see how the test performs with our robust designs,
we simulate the sizes and powers of the model discrimination test to discriminate be-
tween two models fo(y|x, 1o(x)) and fi(y|x, pt;(x)) when the true model may merely
be close to the nominal model fi(y|x, i;(x)).

Derivations and longer mathematical arguments are in the Appendix.

2.2 Minimization of the discrepancy function

Assume that

er < mindy(fo(ylx po (%)), fi(ylx, m (x));
this ensures that Fy and Fi(e1) are disjoint — otherwise, the minimum power of the
test is zero. That e, is sufficiently small will be checked numerically in each example.

For the first step, we minimize D over the neighbourhood F;(e1). Equivalently,

we consider the optimization problem

- f(y]x:)

under the constraints (2.6) and [ f(y|x)dy = 1. (The requirement that f be non-

negative turns out to be satisfied automatically and need not be prescribed.)
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It is sufficient to find, for each x, the minimizer fi,(y|x) of

T{fo Sty ()} = [ Slolx)tog (JCL'X)())) dy (2.18)

o(ylx, po(x

subject to (I') [ v/ f(ylx)fi(ylx, p(x))dy > 1 — ¥ and (ii') [ f(y|x)dy = 1. That is,
we consider the optimality problem at each x.

To solve this minimization problem, we adopt the Lagrange multiplier method
and obtain the following result. For each x, this gives a value f1.(y|x,u,(x)) of the
least favourable density, with mean p,,(x) given by (2.1).

Proposition 15 For x € S consider the system

on —JWX) I 25 1 (D) £~ () 4 Ay —

log T ) L STl () (ylx) + A2 =0, (2.19)
/ flylx)dy = 1, (2.20)
/Q VW) fi(ylx, p (x))dy = 1 — €7 (2.21)

Define fua(yl%, (%)) as follows: fory € 0%, fuu(yl%, jn.()) =0 and for y € O,
fre(y|x, 1, (X)) is a solution to (2.19)-(2.21) with \i(x) < 0 and \y(x) € R. Then

J1(y|x, 1, (X)) is the minimizer of (2.18).

As examples, in Figure 2.1 we plot, for fixed values of x, the densities fo(y|x, 1o(x)) and
fi(y|x, py(x)) and the least favourable density fi.(y|x,p,.(x)). In Figure 2.1(a) both
fo and f; are normal; in Figure 2.1(b) both are log-normal. In both cases, the shape
of the least favourable density obtained from Proposition 15 is, as one would expect,
close to the nominal density fi(y|x, i1(x)).

Based on results in Proposition 15, the answer to the optimality problem (2.17)

is given in following theorem.

Theorem 16 For a design & placing o fraction &, of the observations at x;, the

minimum divergence D over Fy is

N
Z giz{fm fl*|xi7 Ho (XZ) y 1 (X%)} )

=1

where f1. 1s as given in Proposition 15.
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Figure 2.1: Dotted line represents fo(y|z, pty) and solid line is fi(y|x, u,) at x = 2.8947.
(a) fo and f; are normal densities (see Example 1 in Section 2.2.1). (b) fo and fi
are lognormal densities (see Example 2 in Section 2.2.2). Here f; and f; have
mean functions py(x) and p,(x) being given by (2.23) and (2.24), respectively, with
V = K = 1. The two nominal densities have the same variance 0.1. Dashed line

represents least favourable density in F;(0.045).

2.3 Sequential discrimination designs

We employ a sequential approach to obtain the optimal design. To address the
problem of unknown parameters, we adopt a ‘working model’ similar to that in
Wiens (2009a).

The designs we propose are robust against the assumption that the hypotheses
are correctly specified. To demonstrate this in finite samples, we shall simulate the
sizes and minimum powers of the model discrimination tests based on our robust
designs and those based on ‘classically optimal’ designs — those which entertain no
neighbourhood structure on the models, i.e. g = ¢ = 0. On this basis we will
compare the methods.

Given a working ‘null” model 1, (x) = 14(x|6@0true), We simulate the observations
from either fo (y|ny(x|@otrue)) or from a chosen member f (y|x) of F; (¢1). We simulate
from f; when investigating the sizes of the tests associated with the robust and

classically optimal designs. To investigate the minimum powers we simulate from

fro (1%, p11, (%))

35



We construct sequential designs as follows.

Step 1: Choose an initial design &, = {£y;}Y, of size n; = ZZN:l Niinit, Where
§oi = nzzmt/ Tinit-

Step 2: Simulate n; observations at each covariate x;.

Carry out steps 3-5, starting with m = 0, until an n-point design is obtained.

Step 3: Estimate both parameter vectors 8y, 0;. In each case, estimation of 8;
is done assuming that j; (x) = 7,;(x|0;) exactly. We denote these estimates by
0,, = <§0m,51m>.

Step 4: The next design point in the classical design is

x(7), = argmaxT {fo, i %m0 (%) = g (X|50m) g (%) =my (xl51m> } :

The next design point in the robust design is

x(1}, = argmax 7 {fo, Fre | %110 (%) = 109 (XI50m> i (%) =m (xl51m> } :

We note, but for ease of presentation do not emphasize, that the estimates 5m will
depend on the designs used up to this point.

Step 5: Simulate ¥,., as described above.

These steps in the construction of sequential design will be illustrated in detail in
the examples which follow. Before doing this, we state the related result that, under
appropriate conditions, the sequential designs so obtained are asymptotically optimal.
We entertain two sequences of models fo, (y|x, 1ty (X)), fin(y|x, 11, (x)) indexed by the

sample size n. We assume that

|770(X|90n) - 771(X|01n)| = O(”_l/Q)-

This guarantees, as in Remark 1, that if fy, (y|x, 1o (x)) and fi,,(y|x, 111 (x)) are both
normal or both lognormal densities with s(x) = 1y(x|6,,,), 1 (x) = 1,(x/6,,) and
the same nuisance parameters, then conditions (2.8) - (2.10) in Proposition 10 hold.
It is also needed for (i) of Theorem 2, which is based on Theorem 3.1 in Sinha and

Wiens (2003). By (i) of Theorem 17, the LSEs 6, updated in each iteration are

consistent for sequences 8, of parameters defined as
N
0, = arg rnein S A{EY|xi] — nj(xiw)}2 : (2.22)
i=1
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In fact, §jn —0;, 5 0 as shown in Sinha and Wiens (2003). With this consistency we
then can obtain that the sequential designs {£,,} constructed as in Steps 1-5 above
are asymptotically optimal. We require assumptions (B1)-(B5) and A3’ as stated in
Sinha and Wiens (2003). Moreover, we have two additional assumptions:

(B6) For each fixed x, the KL-divergence in Proposition 15, given by
T { fo, f1slx, 1o (x) = 1o(x]6,), 111 (x) = 1,(x|6,)}, is Lipschitz continuous with respect
to (6o, 61).

(B7) The size of the initial sample n;,;; satisfies

. Ninit
lim = 0.

Ninit—00 T

Sequential optimality has been treated elsewhere in the literature. In particular
Wynn (1970) proposed a sequential method converging to a D-optimal design. Wiens
and Li (2014) gave a sequential estimation method yielding both consistent variance
estimates and an asymptotically V-optimal design. Our proof of the following optimal

design theorem closely parallels those in Wynn (1970) and Wiens and Li (2014).

Theorem 17 Under assumptions (B1)-(B7) and (A% ), as nii: — oo, there are
sequences {0;,} for which

(i) the LS estimates 5]-” -6;,“30,j=0,1, and

(i1) D (én,§n> — maxeep D (€,0,) B 0 with 6, = (Bon,01,) and
0, = (6o,,01,).

Here D (€, 0) is the KL-divergence between fo(y|x,puo (X)) and the least favourable
density fuu(ylxpn, (x)):

N
D(£.0) = Z&I{fm Julxi, po (%) = no(x16,), py (x) = 1, (x]61)},
i=1
and P is the set of all possible n-point designs.

In the following we consider several examples in a 20-point design space S ={1, ..., 5},

dividing [1, 5] into 50 equal subintervals.
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Figure 2.2: In Example 1, (a) classical design with sample size 20 (b) robust design
with sample size 20 for €, = .17. In this graph and the following graph, the horizontal
axis denotes the value of covariate x and the vertical axis denotes the number of
observations made at each covariate value.

2.3.1 Example 1.

Assume that both fy and f; are normal densities with mean 7,(x|0;), j = 0,1,
and common variance 02 = 0.1. We consider the Michaelis-Menten and exponential

response models

Vox
mlalbe) = o 2.2

N (x|01) = Vi(1 —exp{—Kiz}), (2.24)

where 0y = (Vp, Ko)', 01 = (W1, K7)'.

Following steps 1-5 as described above, we obtain robust (or classical) sequential
designs with sample size 20. Fig 2.2 shows a robust design and a classical design
obtained in this example.

After a robust (or classical) design, i.e., a design measure € = (£, ...,&y), is ob-
tained, observations at the design points will be simulated from the ‘null’ model or

the ‘alternative’ model. To investigate the sizes of the tests, we simulate from the
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Table 1. Simulated sizes and minimum powers (standard errors
in parentheses) for Example 1 £; = 0.058

Criterion Classical design Robust design
Size 0.049(0.0068) 0.055(0.0072)
minimum power 0.684(0.0147) 0.73(0.0140)

Table 2. Simulated sizes and minimum powers (standard errors
in parentheses) for Example 1 &; = 0.063

Criterion Classical design Robust design
Size 0.044(.0065) .043(.0064)
minimum power 0.703(0.0144) 0.711(0.0143)

working ‘null’ model fo (y|no(2|@otrue)) With Ogiue = (1,1)T. To investigate the min-
imum powers we simulate from the ‘alternative’ model, the least favourable density
f1« (y|x, 1y, (z)). Then the observations are substituted into the test statistic R and

a model discrimination test is performed for the following hypotheses

Hy : fo(ylno(x|60)) vs. Hy: fi(y|n,(x]61)).

We simulate 1000 robust (classical) designs and do the hypothesis tests of size
a = .05. The number of rejections is counted and the ratio of number of rejections to
number of tests is the estimate of the size (if the working model is the ‘null” model)
or the minimum power (if the working model is the ‘alternative’ model). To complete
the definition of the neighbourhood Fi(g1), we take £; = 0.058,0.063,0.1,0.17. The

simulated results are recorded in Tables 1-4.

According to the four tables, the sizes of model discrimination tests for both
classical and robust designs are close to the test size « = .05. The minimum powers
for robust designs are higher than those of classical designs. As the neighbourhood
Fi(e1) is enlarged with respect to 1, the minimum powers are decreasing because

the least favourable densities are found in a bigger neighbourhood.

2.3.2 Example 2.

Suppose that under each model the observations are log-normal, i.e. logY is nor-

mally distributed. Assume that the logarithm of the observation has mean «;(x) and
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Table 3. Simulated sizes and minimum powers (standard errors
in parentheses) for Example 1 ¢; = 0.1

Criterion Classical design Robust design
Size .054(.0071) .052(.007)
minimum power 0.681(0.0147) 0.707(0.0144)

Table 4. Simulated sizes and minimum powers (standard errors
in parentheses) for Example 1 ¢; = 0.17

Criterion Classical design Robust design
Size 0.054(0.0071) 0.052(0.007)
power 0.67(0.0149) 0.699(0.0145)

variance o7 (z). Then

Buoaai[Y1e] = p1;(w) = exp(0%(x)/2 + (),
Varmoa(Y]z) = v2(x) = p2(a){exp(0?(x)) — 1}.

The density of YV is

P logy — a;(z)
filyle 15(@) = 20 ( a;(x)

) I(y > 0).
In the following we assume homoscedastic models and specify the variance function
v¥(z) = 0v* = 0.1.

Let fo and f; be log-normal densities with means 7n,(z|6¢) and y|n,(z|0;). Here
n;(x6;), j = 0,1, are the Michaelis-Menten and exponential response models defined
in (2.23) and (2.24), respectively. The robust designs and classical optimal designs
can be obtained by following steps 1-5. As an example a robust design and a classical
design are illustrated in Fig 2.3.

To investigate the sizes of the tests, we simulate from a working ‘null’” model
fo (YN (2]00true)) With Ogsrue = (1,1)T. To assess the minimum powers we simulate
from f1. (y|x, 41, (X)), the least favourable density in the neighbourhood Fi(e;) for
g1 =0.01,0.032,0.17,0.2, respectively.

As described in Example 1, We simulate 1000 robust (classical) designs and per-
form model discrimination tests with size & = .05. The estimates of type-I error and
minimum powers are as follows:

In this example, the numerical results show that the robust designs are superior

to the classical designs in the sense that the powers for robust designs in the worst
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Figure 2.3: In Example 2, (a) classical design with sample size 20 (b) robust design
with sample size 20 for ¢; = .17.

Table 5. Simulated sizes and minimum powers (standard errors
in parentheses) for Example 2 £, = 0.01

Criterion Classical design Robust design
Size 0.052(0.007) 0.049(0.0068)
minimum power 0.602(0.0155) 0.649(0.0151)

Table 6. Simulated sizes and minimum powers (standard errors
in parentheses) for Example 2 ¢; = 0.032

Criterion Classical design Robust design
Size 0.053(0.0071) 0.054(0.0071)
minimum power 0.641(0.0152) 0.675(0.0148)

Table 7. Simulated sizes and minimum powers (standard errors
in parentheses) for Example 2 ¢; = 0.17

Criterion Classical design Robust design
Size 0.0610(0.0076) 0.05(0.0069)
minimum power 0.601(0.0155) 0.63(0.0153)
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Table 8. Simulated sizes and minimum powers (standard errors
in parentheses) for Example 2 ¢; = 0.2

Criterion Classical design Robust design
Size 0.043(0.0064) 0.053(0.0071)
minimum power 0.593(0.0155) 0.623(0.0153)

case are higher than those for classical designs. One can also notice that the sizes are
all around the significance size @ = .05 and the ‘worst’ powers decreases as the size

of neighbourhoods are increasing.

2.4 Summarizing remarks

We have considered the construction of robust model discrimination designs, to aid in
the choice of regression models. In the existing literature on discrimination designs,
the construction has generally been based on the assumption that the true model is
one of the nominal models. Our method instead assumes that the true model is an
unknown member of Hellinger neighbourhoods of the nominal models. The model
discrimination problem can be cast as a problem of hypothesis testing. In particular,
a case is considered: let the neighbourhood be a singleton - a fixed density func-
tion, under the null hypothesis; under the alternative hypothesis the density lies in a
Hellinger neighbourhood of the (possibly incorrectly) hypothesized density. We aimed
at constructing experimental designs by maximizing the worst power of the Neyman-
Pearson test, i.e. the minimum power over the Hellinger neighbourhood. We derived
the asymptotic properties of the Neyman-Pearson test statistic and proved that the
power of the Neyman-Pearson test is a monotonic function of the Kullback-Leibler
divergence between the two rival models under certain condition. Therefore, we have
proposed designs that maximize the minimum KL divergence in the neighbourhood.

The minimization part of this procedure has been carried out analytically; the
optimal designs are obtained by maximizing the minimized discrepancy function se-
quentially. Different examples are discussed, especially, when nominal densities are
both normal or log-normal. In the examples we have obtained sequential designs via
simulating observations from a ‘true’ model which might be slightly away from the
two nominal models. We obtained 1000 robust designs and 1000 classical designs for
each example. To illustrate that the robust designs is robust against slight deviation

from the nominal model, we compared the minimum powers of model discrimination
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tests based on robust designs and classical designs. According to the results in Tables
1-8, we can see that for all the examples the minimum test powers based on robust

designs are higher than those based on classical designs.
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Chapter 3

Derivation and proofs for Chapter
2

3.1 Proof of Proposition 10

Denote by Fi;, Fy; the distribution functions with densities fi(y|x;) and fo(y|x;),
respectively. We denote the probability of an event A, under F, as F'(A). To prove

Proposition 10, we need several preliminary results. In this section we abbreviate
r(ylxi; fo, f1) by r(ylx:).

Lemma 18 Condition (2.9) holds iff each of

N
lim ZniFM (logr(y|x;) >d) = 0, (3.1)
i=1
N
lim ZniFOi (logr(y|x;) < —6) = 0, (3.2)

=1

holds for all 6 > 0.
Proof. This is proven in Theorem 2 of Oosterhoff and van Zwet (2012). m

Lemma 19 Define F\” = TIY,(Fo))" and F™ = TN, (F,)". Then (2.8) and
(2.9) imply that the sequences {Fo(n)} and {Fl(")} are contiguous with respect to
each other, i.e. for any sequence {A,} of measurable sets, lim, Fo(n)(An) =0 iff
lim,, . Fl(n)(An) = 0. Moreover, {Fo(n)} and {Fl(n)} being contiguous with respect

to each other also implies that
N N
i=1 i=1
for any collection of measurable sets A,,.
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Proof. Corollary 1 in Oosterhoff and van Zwet (2012) shows that {FO(")} and
{F 1(")} are contiguous with respect to each other under (3.1), (3.2) and the condition
N
lim sup Znidi(fl(mxz‘)a Jolylxi)) < oo. (3.4)
e =1

Lemma 18 shows that condition (2.9) is equivalent to (3.1) and (3.2). Therefore, to
establish contiguity it suffices to show that (2.8) implies (3.4). For this we note that
the KL distance between fy(y|x;), fi(y|x;) is larger than twice their squared Hellinger

distance, i.e.
| ntxostxay = [ (570 - £ k) dy
= 2d2(f1(y|xi)vf0(y|xi));

now (2.8) gives Zf\il nidz (f1(yx;), fo(y|x;)) = O(1). The equivalence in (3.3) follows
from (2.1) in Oosterhoff and van Zwet (2012). m

Lemma 20 Under conditions (2.8) and (2.9), for all § > 0

N
lim ZniFu(|logT(y|xi)| > ) =0, (3.5)
=1
N
lim Y " n;Fy(|logr~ (ylx;)| > 8)=0. (3.6)

i=1
Proof. Under (2.8) and (2.9) we have both (3.2) and (3.3), hence

N
lim ZniFli (log(y|x;) < —d) = 0;

i=1

this with (3.1) gives (3.5). The proof of (3.6) is completely analogous. m

The following lemma shows two different expansions of log r(y|x;). Both expan-
sions are used in the proof of the asymptotic distribution of the test statistic R under

the null and alternative hypotheses.

Lemma 21 Assume that |logr(y|x;)| < § for some § € (0,1). Then r(y|x;) can be

expanded as
log r(ylx;) = —2(r 2 (y[x;) — 1) + (r~2(ylx:) = D*(1+ pu), (3.7)
and
log 7 (ylx;) = 2(r/2(ylx;) — 1) = (1 = 7' (y|x:))*(1 + pass), (3.8)

where |pj;s| < 39,5 =1,2.
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Proof. Expansion (3.8) is (3.11) in Oosterhoff and van Zwet (2012); expansion

(3.7) is obtained in a similar manner. m

The following lemma gives two expansions of (logr(y|x;))? under the conditions
of Lemma 21. It is a rather immediate consequence of Lemma 21 and so is presented
without proof. The first expansion (3.9) is used in the determination of the asymptotic
distribution of the test statistic R under the alternative hypothesis H;; the second
expansion (3.10) is used in the proof of the asymptotic distribution of the test statistic

R under the null hypothesis Hj.
Lemma 22 Assume |logr(y|x;)| <. Let0<d < 1. Then

(log r(y[x;))* = 4(7”_1/2(y|xz‘) —1)2+ (1 + pli&)(r_1/2(y|xi) — 1)* @ (3.9)
and

(log r(ylx:))” = 4(L = 2 (y[x:)) + (1 + puis) (1 — 72 (y]x,)) s (3.10)
where |wjs| <60, j=1,2 andi=1,..,N.

We now give the proof of the main result Proposition 10. Notice that for the test

statistic R = 2 Zfil n;log r(y|x;), the means and variances under the two hypotheses

Eu(R) = 23 m [ (ogr(yixi) fululx)d.
VAR, (R) = 4 [Z [ Qg (i) fululx)dy - <EHO<R>>2] ;
and
E(R) = 23 m [ (ogrylx) filulx)d.

Zni/(logr(y|xi))2f1(y]xi)dy — (B, (R))2] .

1

VARm, (R) = 4[

2

According to the Normal Convergence Criterion (Loeve 1963, p. 316) and an
equivalent form of this result, to prove Proposition 10 it is sufficient to prove the

following;:
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(1) under Hy,

N
lim » " n;Fy(|log r(Y]x;)| > 6) = 0, for every § > 0, (3.11)
i=1
N
lim lim n; (/ (log r(y|x:)) fo(y|x:)dy + D) =0, (3.12)
oot [Tog r(ylxi)] <6
) ) N f|1og7~(y\xi)\§5(10gT(y’Xi))QfO(y‘Xz’)dy -
lim lim n; 2 = 0. (3.13)
60+ n—o0 £ (ﬁ lOgr(y‘xi)‘g(log r(y[xi))fo(y|xi)dy) - 2D
(2) under H,,
N
lim Z”th(’ logr(Y|x;)| > d) =0, for every § > 0, (3.14)
i=1
N
lim lim n; </ (log r(y|x;)) fi(y|x:)dy — D) =0, (3.15)
T e i | log (y]xi)| <8

. . N .ﬁlogr(y\xi)\gé(logr(y|xi))2f1(y|xi)dy -
lim lim an 2
§—0+ n—o0 £ <f| log r(y|x:)| <6 (log r(y[xi)) f1 (y|xi)dy> —2D
Conditions (3.11) and (3.14) are direct results of Lemma 20. We prove (3.12); the
proof of (3.15) is similar. For 7 > § > 0 we first split nD into three terms

} —0. (3.16)

3 N

wD= 3" [ (logr(ybe) Atyixi)ds

j=1 i=1
where Ey = {[log r(y|x;)| < 6}, E» = {6 < |logr(y[x;)| < 7}, B3 = {[logr(y|x;)| > 7}
Then in (3.12) we have that

N

> ni (/lbgr(yan (log r(y[x:)) fo(y|xi)dy + D)

i=1

IN

> [E [(og r(y) (b + ol dy (3.17)

2

7=2,3

> i [ Qogr(yx) ulylx)dy|. (3.18)

i=1

We first prove that the terms in (3.18) tend to zero as n — oo. For j = 2, using (3.5)

we have
N N
S / (log r(y1x:)) (o) dy| < 75" nsFie(| log r(ylx:)| > 6) — 0.
i=1 E i=1
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Now consider j = 3. Using (3.5) we have

N N
S, / (log r(ylx:)) F(ylxi)dy < —7 3" niFra(log r(Y[xo) < —7) = 0
1 log r(y|x:)<—7 i=1

i=

and since —logu >1—u

N
S f (log r{y[x:)) i (y/x:)dy
i—1 log r(y|x;)<—7
N
- Yo/ (—log = (ylx.)) i (y1x,)dy
i=1 log r(y|x;)<—7
N
> >ouf (1= (ylx)) i (i) dy
i=1 log r(y|x;)<—7
N N
= ZmFu(logr(ylxi) < -T) - an‘FOiaOgr(sz’) < —71) = 0.
=1 =1
Therefore,
N
S | (og r{ylx) f(ylx)dy| — 0
i=1 log r(y|x;)

Combining this with (2.10),

— 0.

nz IOgT’ y|xz fl(y’Xde

Finally, the sum in (3.17) is, by Lemma 21, equal to

an [ [0 = R0 05— o]

+2an | (i) = fotwbeydy (319

The second sum in (3.19) tends to 0 as n — oo by (3.3) and (3.5). For the first we

have, again using Lemma 21, that

lim lim Zm/ 1/2 (y|x;) fl/Q(y’X@'))z(pm_Pzia)} dy

J—0t+ n—oo

< lim lim 6(5an/ 1/2 (y]x;) fl/Q(y|Xi))2i| dy

d—0t+ n—oo

< lim lim [66nD| = 0.

d—0t+ n—oo
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This completes the proof of (3.12).
The proofs of (3.13) and (3.16) run along the same lines, but using the bounds of
Lemma 22 rather than those of Lemma 21. B

3.2 Applying (2.8)-(2.10) to normal densities

As in Remark 1, assume that f;(y|x;,p;(xi),0) = 1¢(%(X)) , 7 =0,1,71 =

1,..., N, satisfy u,(x;) = po(x:) + A(x;)/+/n. Without loss of generality we take
to(x) =0, 0 = 1. Condition (2.8) follows from

fl(y|Xz‘aM1(Xz’))dy _ AQ(Xz‘)'

Jo(ylxi, p1o(x:)) 2n

[ s ) g

For condition (2.9) we note that

filylxi (i)
log ool () = 1y (i) (y — 11 (x4)/2)

so that for any 6 > 0

A*(x;)

2\/n
For sufficiently large n there exists 5 satisfying

o (35 -t |2

A?(x;)

NG + v/nd < yA(x;).

—V/néd > yA(x;) or

|log r(y|x;)| > ¢ <

)
VAR

>>\/ﬁg.

)

Then

/ (VFoloPee 0] — V/Falobee ()
{llog r(y|x:)[=d}

< [ (VElRmt) - Vb)) dy
V!
= @ <M1(Xi> - m> + @ <—u1(x,~) - m> + 29 <—\/ﬁ§>
Qe Hi(xi)/8 (q; (M _ \/ﬁ) + (_M _ m>) ‘

2 2

Now (2.9) follows from the observation that
nd (ﬁ(xi)n_l/2 - \/ﬁg) — 0 as n — o0,
for each of A(x;) = +A(x;), £A(x;)/2 or 0.
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Finally, we show that condition (2.10) holds for any 7 > 0. We take A(x;) > 0;
if A(x;) < 0 the procedure is similar. For 7 > 0 we have, by calculations similar to

those above, that

f1(y|X¢,M1(X¢))d
Jo(ylxi, p1o(x:))

fi(y|xi, pq (%
< n / Fulylc 1y (x,)) log TP 1
RNTINED Jo(y|xi, po(x;

0 < n/ fiylxi, py (%)) log
logr>T

)
)

— 0 asn — oo.

For A(x;) < 0, we reach the same conclusion. W

3.3 Applying (2.8)-(2.10) to log-normal densities

Under the conditions of Remark 1 the densities are

_ (logy—9;(x))?
L% py(x),0%) =yt @2rod(x) e O I(y>0),  (3.20)
Mj(x) ]
{1+ 02(x)/12(x) 2]

U2

oi(x) = log {1 + m] :

Using py(x;) = po(x:) + A(x;)/+/n we have that

where ¥(x) = log{

D1(x;) = Yo(x;) + k(x:) /v + o(n~1?), (3.21)

for
1 v?

+ ;
po(xi) (%) + v2pg(xi)
and that o%(x) = 02(x) + o(1). One can now substitute (3.21) and (3.22) into (3.20)

K(x;) =

(3.22)

and proceed as in §A.2 to conclude that fo(y|x, po(x), v?) and fi(y|x, p(x), v?) satisfy
all the conditions in Proposition 10. Moreover, condition (2.10) holds for any 7 >

0. |
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3.4 Proof of Corollary 11

We first show that (2.9) holds, under the conditions in the statement of the Corollary.
For arbitrary (f(©, f1)) and any § > 0 denote

E={y:|logr (yxi; O, fV) | >4}

Then

2
JRS ( — f<1>>—1) dy

[VFOyx) = /Ty, n(xi))] +
= [ | [VAuR G - VG D] | d
+ [V o)) = I x|

< 3Z/<\/ff) (ylx:) — \/fg (ylxi, p1(x:) ) dy (3.23)

7=0,1

/(\/fo Y[xi, po(xi)) \/fl |X17M1(Xl)))2dy

We show that each term in (3.23) is o(n™!). Since g = o(n"'/?),e; = o(n~'/?), the

2

first term is o(n™!) for each j, and

nh_f)ﬂooinz/g (\/ fO(ylxi) — \/fj(y|xivuj<xi))>2dy =0,7=0,1 (3.24)

With

[1]
|

1= {\103;7’ (ylxis fO, f0) | 2 6 & [logr (ylxss fo, 1) | =

[1]
|

v = {l1osr (o 19, 7) | 2 6 & logr (i o )| <

the second term in (3.23) can be divided into two terms

| (VA ra) = v/ )
/ (\/fo ylxi, p1o(xi)) \/fl y|XZ=M1(XZ))> dy

/E (\/fo yIxi, p1o(x:)) — V/ fi( y|xl,u1(xz))> dy. (3.25)
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Notice that Z; € Z3 = { |logr (y[xs; fo, f1)| > 2}. Then the first term in (3.25)

satisfies

/: (\/f() y|xs, 1o (%)) \/f1 y|x“'ul(xz))>2dy

< / (\/fo Y|xi, 1o (%)) \/fl 3/|Xu/~L1(XZ))>2dy-

=3

Moreover, since fo(y|x:, to(X:)) and fi(y|x;, p1(x;)) satisfy (2.9), we have

N
2
n@mzn/_ \/fo (Y[, 10 (x:)) — v/ fu ylxz,m(xz))) dy
i=1 =1

IN

i S [ (VAR i) - VAl m () dy (320
= 0.

For the second term in (3.25), noticing that

0 —5/n n
Hogr(y|xlaf07f1)| < E<:>e o/ S7,(zy|xlafo7fl> §€6/ )

we have

| (VAo = v/ Filubes <)

=2

< max{(1 —e )2 (1 — )2} = o(n™1),

and then

N
2
i S [ (ViR - VAl m0) dy=0. @27
i=1 =2
Therefore, combining (3.24), (3.26) and (3.27) we have that
lim an/ff” (i) (r (g £O, FD) = 1) dy = 0,

ie., fO(ylx) and fM(y|x) satisfy (2.9).
To prove that f(©(y|x) and f)(y|x) satisfy (2.8), first write

N
nD Zn/f (y[x:) logr (ylxs; f©, fO) dy
+> ni [ fOylx) logr (yhi; £, 1) dy. (3.28)
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We will prove that the limit of the first term in (3.28) is 0 as n — oo and the limit of
the second term is finite.

By the triangle inequality for Hellinger distance we have

di(FO(ylxi), fO(ylxi)) < ef + €T+ di (folylxis po(x)), Fi(ylxi, i (x:))) < O(n 7).
(3.29)
According to Oosterhoff and van Zwet (2012), (3.29) and condition (2.9) imply that
{Hf\;l (Fi(o)>ni} and {Hf\il (Fi(l))ni} are contiguous with respect to each other,
where F” and F are the distributions correcponding to f© (y|x;) and f®(y|x;),
respectively. Therefore, we have conclusions that are similar to (3.5) and (3.6): for

all d >0

lim Zn, ‘logr y[xl, ,f(l))‘ 2(5) = 0, (3.30)
lim an ‘logr ! (y]xi;f(o),f(l))‘ > (5) = 0. (3.31)

Moreover, according to the contiguity of {Hf—il (Fi(o)> } and {Hfil (FZ-(I)) i}, we

have
lim an }logr ylxs; f¢ ,f(l))} >6) = 0. (3.32)

Then by similar analysis as in the proof of Proposition 10 and using condition
(2.10), the limit of the first term in (3.28) is 0. To prove that the second term in
(3.28) has a finite limit, we apply the expansion of (3.7) in Lemma 21 to log r(y|x;),
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obtaining

N 1 0 1

;ni 3 f )(?J|Xz‘)10g7“ (y|Xz‘;f( ) 1 )) dy‘

r_ HN )

2y (VI ~ VIO dy
- (1) = 7(0lx) dy
+ zn@- Ecpm( TG~ VTOWR)) dy
(AT ad(OR) O
> o o (FO0lx) — 1) o | (339

+35and2( (y‘XZ))7f(1)<y’Xi))

IN

nz

7

VAN
+

= 0(1).

Here the second term in (3.33) satisfies

/5 (FOylx:) — FO(ylx:)) dy‘ _

s [ (P lx) = SO lx0) dy| — 0

(3.34)
due to (3.30) and (3.32). Combining (3.33) and (3.34), we can conclude that f© (y|x)
and f(y|x) satisfy (2.8). W

3.5 Proof of Proposition 12

we first prove (i). According to Proposition 10, if f(y|x) € Fi(e;) is the true model,
the test statistic

TR o )

=1 =1

is normally distributed with mean —2nD ( fy, f) and standard deviation /8nD ( fo, f).
Recall that

R(fo. £ —2ZZ1og{f1 Gl ()|

i=1 1=1 fO ?le|Xz;M0 (Xz))
Therefore, if we can prove that when f(y|x) € Fi(e1) is the true model

S (alxi) — 0
Zlog{fl al i (xz»} = o)
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then the asymptotic normality of R in (i) is proved since
R = R(fo, f)—QZn

and nD (fy, f) = O(1) according to Corollary 11. With the notation as in Proposition

10, under f(y|x) to prove z, = 0,(1), we need to prove that for any ¢ > 0

ll’Xl) }
r}ir{:oF ( Zlog{fl zllxlvlul (Xl))

> e) = 0. (3.35)

Notice that

F < iZJlog{ﬁ(ngf'z)(xm} ] 6)
< F(”)<“ o8 S ) >6)
>

o | Tt ) ) (3:36)

If we can prove that

le " ( log { f(YJ:gl 'Z )<xi>> H g 5) —0 (3.37)

according to (3.36), (3.35) holds.
Notice that the Hellinger distance between fi(y|x;, pt; (x;)) and f(y|x;) is at most
£1 = o(n~'/?), and then

in/ (x/f(y\xz-) — v Filylxi, 11y (Xi)))Qdy = o(1).

Based on (1.5) in Oosterhoff and van Zwet (2012), we have Fl(") and F™ are con-
tiguous with respect to each other.

Then according to the proof of Theorem 2 in OQosterhoff and van Zwet (2012), to
prove (3.37), it is equivalent to prove that for any € > 0

s, 3 |

It is true since

i >

—1 {log r(ylxs:f,f1)|>
< lim 2ne? =0.

n—-:uoo

(o) = v/ Filubiom (x))) dy =0, (339)

|10g7‘ ‘xz ffl |> (

., (V0T = VG () dy
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We then finished the proof that the test statistic R is normally distributed with means
being —2nD (fo, f) and standard deviation 1/8nD (fy, f) under f(y|x). Similarly, we

can prove (ii). W

3.6 Proof of Proposition 14

For an arbitrary f € Fi(e1) set t = D(fo, f), and define ty = D( fo, f1«), so that, by
definition and assumption,

t> 1> —c. (3.39)

In this notation we are to show that @ (_20\;%0) <o (;i;’;), i.e. that

—C—|—t0 < —c+t
Vie TVt

After a re-arrangement this condition becomes

for t > t.

—c < \/%\/f

This is obvious if ¢ > 0, otherwise it follows from (3.39). [

3.7 Proof of Proposition 15

In the following, we denote f(y|x), fo(ylx, to(X)), fi(ylx, 111(x)) by f(¥), folyli),
fi(ylpy) . Define

L) M ha) = () log f{;f;) VTRl + Aaf(y) for y € Oy

For each fixed y € )y, the function £(f(y), A1, A2) is convex with respect to f(y) >
0. It follows that the critical point which is a solution to (2.19) is a minimizer of
L(f(y), A1, A2). Then the solution to (2.19)-(2.21) is also the solution to the optimality
problem (2.18), as we now show. Assume that (f1.(y|u;.), A1, A2) is a solution to
the equation system. For any f(y) such that f(y) vanishes on €5 and satisfies the

constraints of the optimization problem (2.18), it is clear that

‘C(f(y)v /\17 /\2) Z £(f1*(y>a )‘1a )\2),
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i.e.

f()
Jo(ylpo)

> Fulylis) log (%) AT @Al + Aefu(ylin.).

f(y)log ( ) + MV W) i) + X f(y)

and then

Z{fo; flmo} = /Qfl*(y!m*)log(%) dy

+A1/ (\/fl* ylp) Aulyli) = V() f ylul)
= I{fo, frelpo, 1.}
[ (VARG R ~ VTR
I{ fo, freltto, 1112}

AV

since

/ <\/f1* yle) fr(ylm) =V F ) fr(yl) )dy > 0.

Therefore, the solution to equations (2.19),(2.20) and (2.21) is the minimizer of the
optimality problem (2.18).

The multiplier \; is strictly negative. For, if Ay = 0 then according to (2.19) we
have fi.(y|lp.) = fo(ylug) exp{—1 — A2}. However, constraint (2.20) then implies
Ay = —1 and f1.(y|p1.) = fo(ylpg). But then constraint (2.21) cannot be satisfied,
since minges dp(fo, f1|x) > 1. Therefore, A\; < 0.

Finally, by using the constraints (2.20) and (2.21) the minimum of the optimality
problem (2.18) can be simplified:

1
I{an f1*|H07M1*} =—-1- §>‘1(1 - 6%) - )‘2'

3.8 Proof of Theorem 17

(i) The consistency of the LS estimates is a direct result of Theorem 3.1 in Sinha and
Wiens (2003).
(i) We prove that D(¢™,8,,) — maxeep D(€,0,) 2 0 by verifying that
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(E1) maxgep D(E, 6,) — maxeep D(€,0,,) 2 0 as njpi — 00,

(E2) D(ﬁ(”),an) — MaXgep D(ﬁ,b\n) L0 as Ny — 0.
We first prove (E1). Let £ be a design such that D(&;,, §n) = maxgep D(&, /B\n) and
let £,,, be the design such that D(§,,, 0,,) = maxeep D(€,6,,). Then

Ly := D(Eona /én)_,D(Eon, 0n) < D(EZ: an)_D(EOna en) < D(&Z? /O\n)_’D(gzv 071) =: Un.

Recall that

N

D(£,60) = > &T{fo, fralxi, ng(xi[0p), my (x:(61)} .

i=1
According to condition (B6), the integrand Z { fo, fi.|x, n9(x|6,),n, (x]61)} is Lip-
schitz continuous with respect to 8 = (6,,6). Via the consistency of En, and the

linearity of D(€, @) with respect to & we have that for any design &,

D(¢, ) ) —D(£,6,)| < max {fO f1*|X27770(X2|00n m (szln)} @),
=L N1 =T { fo, filxis mo(%i|00n), 71 (xi[010) }
(3.40)
Therefore, L,,, U, “> 0 and (E1) follows.
To prove (E2) we first write
) g \_
D(€™,0,) — maxD(E, 0,)

— (PE".8,) - DEM.8,..) + (PEV,Bu) - max DIE D))

+ (1 D(€B1) ~ DD, (3.41)

The first and last terms in (3.41) converge to 0 in probability as n;,; — oo, due to

(3.40) and (E1). Then it suffices to prove that, for any € > 0,

Pr <’D(£(n)7/0\nznzt) - I?Gag(D(f,amm) > _€> — L. (342)

Recall that given the (n — 1) design €™ Y and the estimates @n, the next design

point is

.....

Then the n'" design is
n—1 1
€M = ——¢0"V + —du(x),
n n
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where §,,(x) = I (X = X,e). Therefore, the KL-divergence for the n'* design is

~ n—1 1 7 1 )
D(g(n)u enmn) - D(g(n 1)7 Oninit) + ED((S”(X)’ envmt)

n

and the difference between the KIL-divergence with the n'” design and that with
(n — 1) design is

-~ -~

n o n— n D 6” X 70ninit - D €(n)7 Oninit
D(E( )7 anznzt) - D<£( 1)70ninit) = ( ( ) TL)— 1 ( )

(3.43)

Now to establish (3.42), denote &}, ;, = arg maxecp D(E, @LM) For any ¢ > 0, divide

init

the sequence {E(”)} into two disjoint subsequences S;(g) and Sy(¢) such that

Sie) + = {€:DE™,Br,) 2 D€ Onin) — /2}
$2(e) = = {€" : DE, Bu) < D€l On) —2/2)

We first show that S;(e) is non-empty for each £ > 0. If not, there must exist an &
such that for any n we have

D(g(n)7 aninit) < 'D(ﬁ* /e\ninit) - 8/2'

inits

Then according to (3.43), and with

210 = (D(aX); i) = D030 00)) + (D(Ehii On) = DEDii Br))
we have that

D(E™,0,,.,) —D(E",6,,.)

D(60(%), Orni) = D&t Oninsr) +2/2
n—1
_ € 4 Zln + D(gfm‘t’ 0,) — D(S:nib Oninit)
2(n—1) n-—1 n—1
) Z1n

2(n—1)+n—1’

> (3.44)

~ ~

since D(,(x), 0,) > D(&7pies 0n) by the definition of §,,(x).
We can prove z;, — 0 by applying (3.40). According to the proof of Theo-
rem 3.1(i) in Sinha and Wiens (2003), there exists small enough ¢ (> 0) such that

lim,, nq(ﬁn —0,,) < oo almost surely. Then because of condition (B6) (or (B67)),
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we also have lim,, ., n%zy, < oo almost surely. Moreover, since z1,, is bounded by the
maximum KL-divergence, we have

o0

Z Am oo aus. (3.45)
m

m=1
Since N /n — 0 as ng,; — oo we have

n

D B,,,) = DE.00,0+ Y (DE™.0,,,) -DE".0,,,)

m=npn;t+1

(nv'n?f) 7 - € Zl_m a.s.

m=njpn;t+1

as N — 00, a contradiction to the assumption that the maximum KL-divergence

is finite. Therefore, for any ¢ > 0, Si(¢) is nonempty and we can find a sequence
{em}” € 5i(0), te. DE™,B,,,) arbitrarily close to D(€}, O,.,)- By (3.43)
=1

inat)

we have

D(E(nl-‘rl) Y gnznlt)

5 D b\ —-D (ny+1) /é .
- ’D(é(nl)JGWmn)_F (5nl+1(x) ) (E ) nmzt)

) Y Ninit

ny

D0y 11(X), Opys1) — DE™HY 0,,11)

ny

D(6p41(X), i) — D0y 11(%), 0ps1)  DE™D6,,11) — DE™NH,. )

- D(é(nl) ? aninit) +

+ +
ny n
~ D(6,, 6,,+1) — D™D B, n
= D(f(m),emmt) + ( l+1(x)> l+1)nl (€ ’ z+1) + Z;lz
* -~ £ Zon,
> D(Einitﬂ gninit> - 5 + 721_;>

for €M) € S () or Sy(e), where

220 = (D0 11(0), Oipi) = DG 11(%), Bu1) )+ (DE™D, Bp1) = DEP. D) )

and, similar to zy,, we also have 25, — 0 a.s.

In summary, as in (3.44), for all €™ e Sy(¢) we have

~ 1 N g Z1 1D 21
D(E").0,,..,) > DE™0,, . "o p(emh g, )+ Tk
<£ ? znzt) (E Y 'ant) + 2(nk o 1) + 'n/k (é Y znzt) + nk ?
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iterating this gives

ng

~ R .
D<£(nk)7 anznzt) > D(g(nﬁ_l)? enmzt) + Z 1_
m=n;+2 m
ng
) € 22n Z1m
> D(&:.,.0, )— -+ 20 Am
(szmﬁ Wt) B + " + Z -
m=n;+2
* 2 g
= D(sinit? enim—t) - 5 + YTLk;?
with ]
f;l’ ifn=mn+1
Y, = i
n — Z2n 2im .
T Z An ifn#Fm+1

m=n;+2

Notice that Y, 2 0 by (3.45). Therefore, for any € > 0,
Pr (D). 8,,,) —~ D€ Bu) > <) — 1

) U Minit inat?

as Npir — 00. Then we have proved (3.42) holds which implies (E2). W
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Chapter 4

Robust design for the estimation of
a threshold probability

Abstract We consider the construction of robust sampling designs for the estimation
of threshold probabilities in spatial studies. A threshold probability is a probability
that the value of a stochastic process at a particular location exceeds a given thresh-
old. We propose designs which estimate a threshold probability efficiently, and also
deal with two possible model uncertainties: misspecified regression responses and mis-
specified variance/covariance structures. The designs minimize a loss function based
on the relative mean squared error of the predicted values (i.e., relative to the true
values). To this end an asymptotic approximation of the loss function is derived.
To address the uncertainty of the variance/covariance structures of this process, we
average this loss over all such structures in a neighbourhood of the experimenter’s
nominal choice. We then maximize this averaged loss over a neighbourhood of the
experimenter’s fitted model. Finally the maximum is minimized, to obtain a minimax
design.

Key words and phrases Environmental monitoring; Increasing domain asymp-
totics; Robust design; Spatial sampling design; Threshold probability; Universal krig-

ing

4.1 Introduction

Stochastic processes are widely used in the study of, in particular, environmental
phenomena. For instance, whether or not a stochastic process is larger than a certain

critical level is of ecological interest. Consider aerosol optical depth (AOD) as an
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example. AOD is an indirect measure of radiative forcing and air quality (Oleson,
Kumar and Smith 2012). High AOD (> 0.6) has been shown to have detrimental
effects on people’s health, and to adversely affect cloud formation (Prasad, Singh,
Singh and Kafatos 2005).

Let {Y(t) : t € 7} be a stochastic process, for instance representing realized AOD.
Here t = (¢4, ..., td)T, d > 1, is a “location” — we use the term loosely, to include spatial
locations and possibly non-spatial covariates as well — from a set 7 = {ty,--- ,ty} C
R? at which the process might be measured. Observations y, = (y(ts1), - ,y(ts))"

will be obtained once sample locations & = {ts, -+ ,ts,} C 7 are chosen. A model

used to describe the observed data is
Y (£) = plt) + =(t) (4.1)

where p(t) = n(t)+0(t), n(t) is the deterministic mean perturbed by stochastic errors
d(t), and e(t) is uncorrelated, additive measurement error. Moreover, {J(t) : t € 7}
and {(t) : t € T} are independent. Our interest in this article is to construct a design
which is robust against some uncertainties for the estimation of the probability that

the value of the p process, at a given location t, is above a fixed threshold u,, i.e.
2(6) = P (u(t) > 1)

We refer to z(t) as the “threshold probability”.

The problem of design related to a probability has received considerable atten-
tion. In Bect, Ginsbourger, Li, Picheny and Vazquez (2012) sequential designs were
proposed for the estimation of the volume of the excursion set of a Gaussian process
¢ above a fixed threshold w., & = P{x : ¢(z) > u,}. This probability corresponds to
a probability of a system failure in the industrial world.

Gaussian processes are among the most widely used stochastic processes for mod-
elling dependent data (Fahrmeir and Tutz 1994; Rosenblatt 2000). Thus, in the fol-
lowing context, both §(t) and £(t) are Gaussian. Moreover, assume that {6(t)|t € 7}
has covariance matrix Gy = (g(ti,t;))),_; and {e(t)|t € T} has known, uniformly
bounded variance matrix Hy,y =diag(h(t;))Y,, with h(t) € [hy, hy] for all t € T
and 0 < h; < hy < co. A natural and optimal (Cressie 1993) estimator of z(t) is

5a(t) == B 1(u(t) > u.)ly]
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Under the Gaussian assumption, and a linear structure for E(Y (t)), we shall obtain
an explicit form of Z,(t). This is based on the result in Lemma 23 below. Before
stating this lemma, we introduce some notation.

When t = t, let e; denote the i* column of Iy. Let & be the N x 1 “design”
vector, with elements §; = I (t; € S). Here I (-) is an indicator function. Let (M) _ v
be those rows of Iy for which £, = 1, and (LE)(N v those for which §; = 0. Then
( Mg L5T )T is a permutation of the rows of Iy and for t €7,

Var(u(t)) = Var(6(t)) = e{ Ge; =: 07(G), (4.2)
Var(y,) = Me(G+H)M{ =: %,,(G), (4.3)
Cov(p(t),y,) = e GM{ = Z7,(G). (4.4)

We write u(t)|y, ~ GP(ji(t),02,(G)) if the conditional mean and covariance func-

7nt

tions of the Gaussian process u(t)|y, are ji(t) and 02,(G), respectively.

Lemma 23 Assume that E(Y (t)) = f7(t)0 for a p—dimensional vector of functions
£(t) = (fr(t), -, f,(t))", and that @ ~ Ugs, the improper uniform distribution over
RP. Define ¥, = (£(t,,), - ,f(t,,))". Then

p(t)lyn ~ GP(fu(t), 076(G)),

where the conditional mean of p(t) (given data'y,, ) is the best linear unbiased predictor
(BLUP)

with
T _ f7(t )(ngﬁﬁ((}) n) -1
(G _{ +3T (G)I - 2 (G)F,(FF (G)Fn)—ng) }2"”((})' (4.5)

The conditional variance o2, (G) of u(t) given data'y, is the mean squared prediction

error of the BLUP,
on(G) = Var(u(t) — ji(t))

- @- w05 (£ 55 (5%, ) e
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The proof of this lemma is similar to that of Theorem 4.1.1 in Santner, Williams

and Notz (2003) and is omitted. Based on Lemma 23, we have

Note that the estimator Z,(t) is derived under quite restrictive assumptions:
(U1) the variance/covariance structure of Y'(t) is known.

These kinds of structures are only approximately known in applications. For instance,
aerosol concentrations (and therefore the value of AOD) at some sites are significantly
affected by those of adjoining locations. But the correlations can be influenced by
meteorological conditions whose effect on the correlation is difficult to measure.
(U2) The mean response E(Y(t)) is linear in these regressors f(t).

In real life, the mean structure is generally only partially known and unlikely to be
exactly linear.

We anticipate that the investigator will not address these challenges at the esti-
mation/prediction stage, but hopes to do so through the design. That is, the estimate
Z,(t) is still computed based on the possibly incorrect response and a nominal covari-
ance matrix Gg. Our interest is to develop a design such that the estimate of z(t) is
robust against uncertainties (U1) and (U2).

The necessity of robust design in spatial studies has been documented in the lit-
erature. Wiens (2005a) obtained a robust predictor of Y (t) in the face of uncertainty
(U1). As a natural sequel to Wiens (2005a), Wiens (2005b) considered designs robust
against misspecified models. Wiens and Zhou (2008) considered the construction of
robust designs for test-control field experiment with particular attention paid to the
effects of both (U1) and (U2).

To address the first uncertainty — (U1) — we assume that the covariance matrix
G varies over a neighbourhood G. We entertain a scenario under which the true
covariance matrix G of {d(t) : t € 7} is an element of the random set

Ga: Gq = Udiag(\;e¥/vV™)N UT,
d is a bounded random variable with

mean 0 and standard deviation w? ,
and —oo<d; <d <dy <0

Here A\; < ... < Ay are the eigenvalues of a nominal, positive definite covariance
matrix Gg specified by the experimenter, and U is the orthogonal matrix whose

columns are the corresponding eigenvectors.
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Where necessary, for G4 € G, we simply denote the functions of G4 by functions of
d. For example, ¥,,,(Gq) and X,,14(Gq) as defined in (4.3) and (4.4) will be denoted
as X, (d), X,1¢(d), respectively. Similarly, 07(Gq) in (4.2), a,:(Gq) and 02,(Gq) in
Lemma 23 will be denoted as ¢2(d), a,(d), 02,(d). The distribution of Y (t) is then
determined by the random variable d. Given the regression parameter 8, and given
d, the conditional distribution of Y (t) is that Y (t)[(6,d) ~N(f7(t)0, 02(d) + h(t)).

To address the second uncertainty — (U2) — we suppose that E(Y (t)) ~ fT(t)0.
Without further restrictions the parameter vector 8 is unidentifiable; we shall define
it by

6 = argmin Y _ (E(Y(t)) - £7(t)v)” .

Define ¥ (t) by
vit)
n

The factor n='/2 is for the asymptotics, and is analogous to the requirement of con-

E(Y(t)) =n(t) =f1(t)0 + (4.7)

tiguity in the asymptotic theory of hypothesis testing. These definitions imply the

orthogonality condition
FL®y =) f(t)o(t) =0
teT

where Fy = (£(t,),--- ,f(ty))" and O = (¢by,--- ,9by)T with ¢; = (t;). We then

let W vary over a set quantifying the model uncertainty:
U= {Ty:FROy=0, |[Ty|| <7},

where ||-|| is the Euclidean norm. With the above notations, the true model should

be

Y(t) = n(t)+e(t)+6(t)
= f7(t)0 + ﬂ\/%) + £(t) + 4(t)

eZ\I’N

vn

= f7(t)0 + +e(t) + d(t).

Let ,, = (n(ts1), ..., n(tsn))T, 0 = (6(ts1), .., 6(tsn)) T, €0 = (E(ts1), o, e(tsn))T
and W, = (1 (ts1), ..., (ts,))?. Notice that

AU
=F,0 +—=,
M T
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0, +e,= 27%2(d)zn with z,, ~ N,(0,I) and ¥,, = M ¥y. With these notations,

v,
— F.0+—2+6,+¢,
n

Vn

MWy
_ F04 MUY sy, 18
P ) (43)

An optimally robust design £ is a design that optimizes a chosen loss function
Ly in the face of uncertainties. This loss will be averaged, with respect to a “prior”
distribution on d, as a means of relaxing (U1). The “averaged” loss is then maximized
over ¥ to handle the non-robustness source (U2). An optimal design is the one that
minimizes this maximized loss. Here, we choose the loss function £ to be the relative
conditional mean squared prediction error (MSPE), averaged over locations in 7\S

at which observations are not obtained:

1 Z Ey .04 (2(t) — én(t))z.

Lo (€|n,0,d) = 0

—-n
teT\S

Upon taking an expectation with respect to d, the loss becomes

e = Y Fao (gyne,dczzg?t)—zn(t))) (49)

teT\S

A problem that arises immediately is that this loss depends on the unknown
values of the parameters @. There are various methods of handling this problem.
One is by constructing a “locally optimal” design — one that is optimal only at a
particular value @ of the parameter. This local parameter value might arise from the
experimenter’s prior knowledge, or perhaps as an estimate from an earlier experiment.
To allow for uncertainty about the parameter values, one might first maximize the
loss function over a neighbourhood of a local parameter 6, and then minimize the
maximized loss function over the class of designs. For details of this second approach
see Atkinson and Fedorov (1975a,b), King and Wong (2000), Dette and Biedermann
(2003), Lépez-Fidalgo, Tommasi and Trandafir (2007), Dette and Pepelyshev (2008).
Bayesian methods are also applicable in eliminating the parameters from the loss
function — the loss function is averaged, with respect to a prior distribution on the
parameters before being minimized (Dette and Neugebauer 1997, Karami and Wiens

2014). These three methods allow for static, i.e. non-sequential, design construction.
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A method which is arguably more practical is sequential design. In this approach
(Hunter and Reiner 1965; Fedorov and Pazman 1968; Sinha and Wiens 2002), esti-
mates are computed using the available data and subsequent observations are made
at new design points minimizing the loss function, evaluated at the current estimates.
Here we propose such a strategy.

In Section 2, we give an expansion of the loss function (4.9) up to and including
terms that are O(n ') under the increasing domain asymptotic framework — this
derivation is in the appendix. We then approximate the loss by the terms of this
expansion, ignoring the remainder. We maximize, over ¥, the average, over d, value
of this asymptotic loss. This maximized loss is exhibited in Proposition 26 in Section
3. In Section 4, we describe and apply the sequential algorithm to choose designs
minimizing the maximum loss. In order to illustrate an application of the construction
of robust designs, we find optimal designs for the coal-ash data (Gomez and Hazen

1970, Cressie 1993), where the fitted model is
E(Y(t)) =f7(t)0

with f7(t) = (1,t1,t2),t = (t1,t2). The nominal correlation structure of the sto-
chastic error ¢, from which Gg is computed, is determined by a certain isotropic

correlation/covariance function.

4.2 Increasing domain asymptotics and expansion
of the loss

Our ‘large n and N’ approach is one of increasing domain, rather than infill, asymp-
totics (Cressie 1993). Mardia and Marshall (1984) discussed asymptotic normality
of the MLE under an increasing domain framework. Evangelou and Zhu (2012) as-
sumed increasing domain asymptotics and proposed optimal prediction designs for
spatial generalized linear mixed models. In this section, we expand the loss func-
tion Lo (§|¥ y, @) under an increasing domain asymptotic framework in the spirit of
Mardia and Marshall (1984).

To discuss the asymptotic properties, we require the following definition.

Definition 24 A matriz A is O(n™%),q € Z, if ||A|| = O(n™9), where ||A||? is the

mazimum eigenvalue of ATA.
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Assumptions (A2)-(A4), listed below, are similar to those in Mardia and Marshall
(1984); they together with (A1) are critical for the discussion of asymptotic expansion
of the loss.

(A1) The eigenvalues \; < ... < Ay of Gg are bounded, and bounded away from
0, as N — oo.

(A2) (FIF,)"! = O(n!) and FIF, = O(n).

(A3) X14(0) = O(1), where X7,,(0) = e{ GoM{ .

(A4) n/N — r with r € (0, 1].

At each location t € 7\S, the expected relative mean squared prediction error
(MSPE) Eqj¢ <Ey"‘d"I’N’9(z(t)_2"(t))2) satisfies

2(0)

Ey,jo.a (2(t) — 2a(t))”
Eqje ( 2(t)

) = Ed7}’n|9 (1 _Ft (‘IINad)>2; (410)
where Fy (¥n, d) is the ratio between the threshold probability z(t) at location t and
its estimate 2, (t)

Ry (En,d) = 22 (4.11)

Recall that according to Lemma 23

2.(t) = @ (%) , (4.12)

where ji(t) = al,(d)y, is the BLUP of u(t) and 0,,+(d) is the mean squared prediction

error of the BLUP as defined in Lemma 23.
Notice that

because the BLUP is unbiased. Substituting (4.8) into fi(t) = al,(d)y,, then 2,(t)

becomes
ap, (d)Mg &)
Ont (d) \/ﬁ ’

B ()7 + 1 ()6 — .
Yndt = )
O'nt<0)

() =0 (gndtammms(d) n (4.13)

where

with b, (d) := aZ,(d) S (d).
Recall that the threshold probability z(t) at location t is defined as

2(t) = P (p(t) > u.),
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where u(t) = n(t) 4+ §(t). Since 6(t) ~ N(0,0¢(d)) where o¢(d) is the variance of
d(t) as defined in (4.2), the threshold probability z(t) is

() = @ (%) .

Substituting (4.7), the true model of 7(t), into z(t), we have

1 etT ﬁ
() = @ (s 0oy @) + S 5. (4.14)
with
- f7(t)0 — u.
ot O't(()) .

Combining (4.13) and (4.14), F; (¥n,d) becomes

~ —_ aT
® (uanria )07 (d) + Sl 1)

o <$0t0t(0)0t_1(d) + gtez:d)‘l’_\/%])

Ft (lIIN, d) -

In the following, when there is no confusion, Eqy, ¢ is simplified as £.
We will expand the MSPE in (4.10) up to order O(n™!). That is, we seek an

expansion of the form

E(1—-F (¥yN,d))’

1 1
= ©o(Cot) + 2E(¢1(Coy, Clt))% + E(py(Cot, Ct, C2t))ﬁ + Rne, (4.15)

where ¢,(-), j = 0,1,2, are polynomial functions, and Cj; is the coefficient of n?/? in
the expansion of Fy (¥n,d).
To obtain (4.15), we first expand Fy (N, d) as

1 1
Ft (\I’N7 d) = C()t + Clt% + CQtﬁ + Tnt, (416)

such that Cog, E(C%), E(Cs;) < 00, the remainder term 7,4 is 0,(n™1) with E(r,) =
O(n=3/%) and E(r2,) = O(n3). We substitute the expansion (4.16) into (1 — F, (¥, d))?,
and take expectation with respect to random variables (d and y,,) in the terms condi-
tional on the unknown regression parameter 8. Then expansion, (4.15), is obtained, in
which the constant term ¢,(Co) and the expectations are bounded, and the remain
term R, is O(n=3/?). Explicit forms of Cjt, the calculation of expectations in (4.15)

and their properties are discussed in Chapter 5.
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Taking the average of (4.15) over t € 7\S we approximate the loss (4.9) by

1 1 1
S 90(Cor) + 2E(1(Cor, Cre)—= + E(95(Cor, Cre, Car))~ | -
teT\S \/ﬁ n

Denote

OF; (¥N,d) 0?Fy (I, d)
DLF, (Wnd) = Z0END - mop gy d) = LN

DllIlNFt (\IlNad) = JFt (\IlNad) = (agzp(f;]\\;;)a ] ag:/}(]:?/%)) t1x Na

Dy, Fi (¥y,d) = Hp (¥y,d)= (a

02F, (W, d) .
(/)0 (%/ﬁ))i,j_l A

Then, the above results are summarized in the following theorem.

Theorem 25 Apart from terms which are o(n™'), the loss (4.9) is

1 1 1 w2
Lo (¢|¥n,0) = N —n Z {\I’%Atﬁﬂ‘PNﬁ + 2b{£9‘I'N% + (C1t50 + C2t§07d)} ;
teT\S

(4.17)

where

cieo = By (1— F(0,0)),

coco = Eyjo | (DhF(0,0))* — D3F,(0,0) + F4(0,0)D3F4(0,0) ,

bzée = E}’n|9 [(Ft<070) - 1) D\lPNFt<070)} ’

[ —D% F.(00) + (DY Fi(00))" Dy F(0,0) |
+ (F(0,0) Dy F¢(0,0))

Awo = Ey,0

In the following, we will use (4.17), the approximation of the original loss function,
as the new loss function. To deal with the second non-robustness source (U2) —
the possible model misspecification — in the following section we maximize the loss

function (4.17) over the set ¥ which quantifies the model misspecification.

4.3 Maximization of the loss L ((| Wy, 0) over ¥y €
v

In this section we maximize Ly ({|®y, @) over the set ¥. The orthogonality re-

quirement F4 Wy = 0 is equivalent to the statement that ¥y lies in the orthogonal
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complement to the column space of Fy. Let K : N X (N — p) be a matrix whose
columns form an orthonormal basis for this orthogonal complement. Then ¥y = Kv
for some v € RY™P with ||v|| = ||®y]|. Thus, maximizing Lo (£|Py, 0) over ¥ is

equivalent to solving the problem

1
max Loy (&v,0) = max vIAgov +2bl v +ceq), (4.18
veRN-#i[lv]|<r (Ev.6) = 57— VERN =P [lv||;<r (ViAo goV o), (418)

where

1
Ao = - > K"AwoK,

teT\S
1
T T
beo = 7n > bleK,
teT\S
2
Wyq
C = E c <.
.0 ( 1te0 T Cateo . )
teT\S

Based on Lemmas 2.4 and 2.8 in Sorensen (1982), we can give a characterization of

the solution to problem (4.18) .
Proposition 26 The solution v 4 to problem (4.18) is the solution of
(Acolnxn — Ago)Vig = beo,

and the mazimum loss is

Lo (5|V29, 9) = VZ%A&QVEB + 2b£0V20 + 0579) , (4.19)

N —n (
where Aeg is chosen such that \eg(||vig|| —7) = 0 and AeoInun — Agp is positive

semi-definite.

In Sections 2 and 3, for each design &, the loss function (4.9) is first approximated
by (4.17). Within a neighbourhood of the parametric model thought to be a reason-
able approximation to the true response, the approximated loss function is maximized
as shown in Proposition 26. Let Lp.x(£]6) = Lo (€ Vi e 6), with v¢ as defined in
Proposition 26. In the following section, we will find by numerical methods a design

€, which minimizes £,,x(£|0), among all designs of the same size.
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4.4 Robust optimal designs and case study

To find the optimal design which minimizes the maximized loss £, (£]0), we proceed
sequentially. The MATLAB code for the computations in this section is available from

the authors.

4.4.1 Sequential algorithm

The design criterion L£,,x(£|6) to be optimized depends on unknown regression para-
meters O and other nuisance parameters, including the variances of the measurement
error £(t), and the parameters of the variance/covariance function of the § process.
For convenience, we denote the nuisance parameters as ¢ and the design criterion as
Lax (€10, ). To address the issue of dependence, we propose a sequential design —
one design point at a time — replacing @ by the GLS estimates at each iteration, and

¢ by the maximum likelihood estimates.

Step 1: choose an initial design &, .

For m = 0,1, ... until an n-point design &,, is obtained carry out steps 2-5.

Step 2: make observation at the sampled locations of the current design §,, =
{ts1, s tam}-

Step 3: the regression parameters that are required in the evaluation of the loss
are replaced by GLS estimation 8,,, and nuisance parameters ¢ by MLE P

Step 4: substitute 6,y ®,, into the loss function and obtain Emax(€m|§m, ®,,) by
maximizing the loss function over the set W.

Step 5: make the next observation at

thew = arg Igél%_l £max({tsl7 cey by t} |0750)

4.4.2 Coal-ash data example

We study the “coal-ash” data to illustrate our methods. These data are given by
Gomez and Hazen (1970) and described in Cressie (1993). There are 208 coal-ash
core measurements obtained from a Pittsburgh coal seam, at sites throughout a grid.
In the data set each location is determined by its relative east-west and relative

north-south positions. The percent coal ash at each location is recorded.
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Table 1. Minimax losses for varying 7 and ny
2

-
0.3 0.5 1 1.5
ng = 20 489.1 326.7 806.4 901.6
ny =41 107.7 108.2 109.3 110.2
ng = 52 42.9 43.2 43.8 44.3

Chemicals, such as arsenic and selenium, in coal ash above a certain threshold are
key facts to determine that coal ash is hazardous according to the U.S. Environmental
Protection Agency. Burning coal with high ash and sulfur content will affect human
health. Therefore, our study aim to obtain a robust design which helps to estimate
the probability that the percent coal ash at each site of a Pttsburgh coal seam exceeds
a certain value u, based on the coal-ash data.

The proposed random-process model is
y(t) = By + Bits + Bata + 0(t) +(t), t = (t1,t2). (4.20)

Denote Var(d(t)) = 02 and Var(e(t)) = 03. The nominal correlation structure of

J process is determined by an isotropic correlation function (Wiens 2005a)
pu(h) = (14 kh)~,

where h = ||t — t'||,t,t' € T.
The values of 02, 03 and k are unknown, and in practice are replaced by estimates
~2 ~2 ~
01,05 and K, thus
N
ij=1"

Go =7 (L +&|[t; — 1]])7°)
To obtain the estimates, we assume that an initial sample at ng locations has been
collected. With these data, initial maximum likelihood estimates 53,55 and & were
obtained; these are updated as more data are collected. From the remaining 208 — ng
locations we then sequentially determine the robust design.

We take ng = 20,41, 52, and the initial sample locations are spread out across the
whole domain. We assume that the true covariance/variance structure varies in the
neighbourhood G of Gg with d ~ U(—1,1), w3 = 1/3. As an example, we take the
third quartile of all the y values as the threshold value and u, = 10.575.

The robust sequential designs with size ny + n = ng + 30 for the prediction of

the threshold probability P(y(t) > 10.575) are shown in Figs 4.1- 4.4. To find the
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Figure 4.1: Optimal design for Coal-ash data example with N = 208 locations.
Observations are obtained at no = 20 initial sample locations (denoted by asterisks
in the graph). A minimax design (denoted by filled circles) is obtained with n = 30
sites chosen among the remaining 188 locations. (a) 7 = 0.3; (b) 7 = 0.5.

maximum of the loss, we choose 72 = 0.3, 0.5, 1, 1.5, which defines the neighbourhood
quantifying the misspecified model. The minimax losses obtained for different com-
binations of the parameters (ny and 72) are shown in Table 1. From there, we notice
that for a given initial sample the minimax losses generally increase with respect to
the value of 72 determining the range of the set ¥. When the sample size of the initial
sample is small, the prediction error is large. And when we increase the sample size of
the initial sample (and therefore, the size of the design) the prediction error decreases
dramatically.

Figure 4.1 shows the ny = 20 initial sample locations denoted by asterisks in
the graph and the robust designs consisting of a further 30 points (denoted by filled
circles) when 72 = 0.3 and 0.5, respectively. Fig 4.2 shows the robust designs when
72 = 1 and 1.5, respectively. In Figures 4.3, initial 41-point designs were chosen and
the minimax designs with design points 71 for 72 = 0.3,0.5,1,1.5 are the same as
shown.

Fig 4.4 illustrate the ng = 52 initial sample locations and the robust designs of

size 82 for 72 = 0.3,0.5,1,1.5. The robust designs are the same for all these 72.
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Figure 4.2: Optimal design for Coal-ash data example with N = 208 locations.
Observations are obtained at ny = 20 initial sample locations (denoted by asterisks
in the graph) for parameter estimation. A minimax design (denoted by filled circles)
is obtained with n = 30 sites chosen among the remaining 188 locations. (a) 7 = 1;
(b) 7 = 1.5.
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Figure 4.3: Optimal design for Coal-ash data example with N = 208 locations.
Observations are obtained at ny = 41 initial sample locations (denoted by asterisks
in the graph) . A minimax design (denoted by filled circles) is obtained with n = 30
sites chosen among the remaining 167 locations. 7 = 0.3,0.5,1, 1.5.
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Figure 4.4: Optimal design for Coal-ash data example with N = 208 locations.
Observations are obtained at ny = 52 initial sample locations (denoted by asterisks in
the graph). A minimax design (denoted by filled circles) is obtained with n = 30 sites
chosen among the remaining 156 locations. Here the best designs for 7 = 0.3,0.5,1
and 7 = 1.5 are the same.

It is noticeable that the design points vary in a non-subtle way for different com-
binations of parameters (ng and 72). However, the z-coordinate values of most design
points range from 9 to 11. This might be because the effect of the east-west direction

is stronger than that of the the north-south direction.
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Chapter 5

Derivation and proofs for Chapter
4

To prove Theorem 25, we require some preliminary results. Recall that oZ(d) =
el Ggey, ani(d) is defined in (4.5), 02,(d) is the variance of the prediction error

defined in (4.6). For convenience, in the following context for any vector function

g(d) = (g1(d), ..., gn(d))" we denote

d’“91 (d) dkgm (d) >T for k=1.2. .
d(d/y/n)" d(d/vn)*) h

The derivatives of DXa,:(d), Dko?(d) and Do, (d) for 0 < k < 3 play important

Dgg (d) = g (d) and Djg(d) = (

roles in the expansion of the loss function in Theorem 25. To prove Theorem 25,
we need to show that the expectation of the squared norms (or squared norms when
d = 0) of the derivatives are all O(1). In particular, that the expectations of powers,
up to 16th, of |D4a,(d)|| are O(1) is needed in the proof. This is the result of the

following proposition.

Proposition 27 Under assumptions (A1)-(A8), we have for k,l € Z and 0 < k < 3,
9 <1< 16,

E (||DSau@]) = O(1), and [Dian(0)]' = 001
E (Dfo?(d))” = O(1), and Djo}(0) = O(1),
E (Ddant(d)) = 0(1), and D%o,(0) = O(1).

The proof of Proposition 27 is in Appendix B.
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5.1 Proof of Theorem 25

5.1.1 Taylor expansions

We first expand Fi (P, d) around Wy /\/n = 0, obtaining

Uy WEDG,F(0.d) ¥y
\/ﬁ 2n

1 P F (U, d) U, (R0
6 00,005,002

i,7,0=1

F; (In,d) = Fy(0,d) + Dq, F; (0,d)

(5.1)

Here 1);,1);, 1, are elements of ¥ and Wy € RY is between 0 and Wy //n (ie., all
clements of Wy are between 0 and the corresponding elements of Wy /\/n).

We then expand the terms in (5.1) with order higher than O(n=3/2) at d/\/n = 0.
With the same notation as in (4.16)

1 1 1
Ft (\IIN7 d) p— Cot + Clt% + C2tﬁ + C3tm (5.2)
1 1
= Cu + Clt% + CZtE + Tnt,
where
C()t = Ft(0,0), (53&)
Ciy = DyF(0,0)d+ Dy Ft(O 0)®y, (5.3b)

Coe = Dy qFe(0,0)¥yd + \IfﬁDéNFt(o 0)® y
1

+§D§Ft(0,0)d , (5.3¢)
1 - 1 -~
Oy = ngFt(O,d)d?’ + §D}I;fvdFt(0,d)\IlNd2 (5.3d)
1 ~ 1 O3F, (\TJN )
~oT D% F(0,d)¥Nd + = ;

with d between 0 and d/+/n. As shown in the Section 5.1.2, E(C%) < o0,i = 1,2, 3.
Therefore, 7t = Cs¢/n%/? is 0,(n!) with E(r,) = o(n™!) and E(r2,) = o(n72).
Substituting (5.2) into (1 — F} (¥, d))?, with the same notations as in (4.15) we

have

1
(1 — Fy (Tn, d))* = ¢o(Cor) + 29, (Cop, Cre)—

1
NG + ©5(Cos, Cis, C2t)ﬁ + R, (5.4)
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where

0o(Cor) = (1- F(0,0)),
901(00t, Clt) = Ft(OaO)Olt - Clt7
02(Cot, Cue, Cap) = CFy — 205 + 2F(0,0)Cy,

and the remainder

1 1
Rny = 2(F;(0,0)Cs — C¢ + OltCQt) (022'5 + 201t03t) -
1 1
+C§t$ + 2021;&%@
satisfies E(R,;) = O(n™%/?), since E(C%) < o0,i = 1,2,3.
Recall that
E(d) =0 and E(d?) =

Substituting C1y, Cot into (5.4) and taking expectation with respect to d and y,, gives,
after a calculation, that the expectation of (5.4) is

2

1 wq
E (1 — Ft (\I’N,d)) = ‘I’ AtgglI’N + 2bt§0 \/_ <Clt£0 + Cgtgo—) + E(R )

with Ayeo, bfge, citeo and caeep as defined in Theorem 25.

Then an expansion of the loss (4.9) is

1 1 1 w?
Lo({|¥N,0) = i Z {Q%Atﬁe‘IINE + 2b?€g\I’Nﬁ + (Cuge + Cztg@ﬁ)]
teT\S

+—N1_n > E(R,)

teT\S

where, according to Assumption (A4), the remainder, +— dtens E(R), is o(n™1).

5.1.2 Proof that E(C%) < c0,i=1,2,3

Recall (5.3b) - (5.3d). The derivatives of Fi (¥n,d) with respect to d/y/n and
Wy /y/n are shown in Appendix C. The second moments of Ciy, Cy and Csg in-
clude the moments of 7,0t and D}a,+(0)z,. In fact, these two random variables
are normally distributed with finite mean and variance. Since 7,4(0) is bounded as
shown in Lemma 31 (in Section 5.2.1), £ (||ant(0)|]2) B (||am(0)||4) < 00 as shown

in Proposition 27, and z, ~ N, (0,I), the random variable
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_ bl (0)z, + f7(t)0 — u.
Ynot = 5
O'nt(O)

with bZ,(0) := azt(O)E:ﬁO, has mean

~ f7(t)0 — u,
E, not) = ———— , .
n‘e (y Ot) Unt(o) < &0 (5 5)
and its variance is
. b, (0)]1?
V. n =
ar (y Ot) O'%t(O)

[l (0)11”

S Amax (Enn,O) O'%t((])
IIam( )II”
< 0Q.

Similarly, since |D}a,o(t)|| < 0o, D}a,+(0)z, is also normally distributed with finite
mean and variance. Therefore, all the moments of ,0t and D}a,;(0)z, are finite.
Next, we show that the second moments of each terms in Cyi, Co, Csi are finite.
Since
C2 < 2(DLF(0,0)" % + 2 (DY F4(0,0)®y)°, (5.6)
we need to prove the expectation of each term is finite. Substituting (B.18) in Section

5.3 into E, o ((DéFt(O,O))Q) gives

o (PARO0Y) < iz (IR B ) (D)’

¢2 (ot) fEOt 1 2
+3m (Ddo-nt (0))

3 | Diale(0)Znol|” + A e (0)]]
2@ (100) 02 (0) \  +Bajo (Bor) (Daous(0))
3 a8, (Daow(0)’
21 B (104) 02(0)

For some positive constant k£; we have

D3, (0> + Ax [[aZ (0)||”

ki Eajo ((DfliFt(O’O»Q) = D2 (wog) 024(0)
n E (o) (Di04(0)" | 23, (Diow(0))’
D2 (01) 07,4(0) P (zot) 05(0)
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Recall that || DYan (0)]% , |ane (0], Do (0) < oo as shown in Proposition 27, ¢, (0)
is bounded as shown in Lemma 31 (in Appendix B.1), and 0¢(0) is bounded by A,

and Ay. Then we have

b By <(D(11Ft(0,0))2) < 0. (5.7)

Similarly, for the second term in (5.6) there exists some positive constant ks such that
qt(0)] 1

ky'Ey e (D}I,NFt(O,O)\IIN)2 < 22 (0)] + < 0. (5.8)

~ 0 (0)2 (zor)  0E(0)* (wor)
Therefore, combining (5.7) and (5.8), we have
Eyoap(CE) < 2B, 0(D3F(0,0)2E(d?) + 2E,, o (D, Fu(0,0)Ty)
= 2E, o(D}F(0,0)%02 + 2B, o (DY F:(0,0)® )

< 00.

Via a similar process, we can prove that E, 9(C3;) < co. The proof is omitted.

Next, we find the upper bound for the expectation of (Z PR Ty, d)w iy wl) .

3,5, O, O ;0
d)M, e; (t
ntst()d)g, ot((d; SE{ = (CH, ...,ClN) and ¢ C2 = (021, ...,CQN),

respectively. Then Fi (¥, d) becomes

- _ T
¢ (yndtant (O)Unt1 (d) + 1\/\1%]\]>

For COIlVGIlleIlCe we denote

F; (In,d) = - e
@ (oo (0)o; () + )
. . . . . BF(Ty,d) - . . .
In this notation, the third order derivative B6,90.00, 18 shown in (B.19) in Section
]

5.3. Note that all the denominators in (B.19) are ® (Zo) with powers up to 4. Here
?E\Qt == CL’OtO't(O)O't_l(d) + Eg@N

We first prove that ®! (Zg;) is bounded. In Lemma 31, we showed that o,(d) >
|ane(d)|| v/2ii. Moreover, since ||aZ, (d)M|| < [|al,(d)|| we have|/¢;| < 1/v/hy. Since
d; < d < dy, for sufficiently n,

/e o V2

= 04(0) = 04(0)
and
1 2
(cricijen)® < h—i,,(CuClezl)QS 1252(0)’
(cricajen)” < W?(C%C%Cﬂ) SO’?(O)'
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Therefore,

Ed‘g (Ckicsjctl) 2 = 0(1) and Ed|9 (ckn-csjctl) 4 = 0(1),
for k,s,t = 1,2, andi,j,l=1,...,N.

Since |2g0¢(0)o; H(d) + EE\T!N‘ < (|zos| + 0¢ ' (t)Tn"1/2) v/2 when n is large enough,

we have

o (Gor) = O (%tat(())a;l(d) +a’§\i:N)
< &7 (= (Jwoel + 05 (t)rn %) V2).

Based on (B.19), we have for some positive constant k3

~ 2
3 Pando O, 00,00,

1
= 35 (fwor] + 03 (€)72) V)

Eznyd\9<@?1dt)+1 Ez,/l d\6(~3dt)

y i T he)
+(|x0t‘+0;1(0)7—n71/2)2+1 4 <|1‘0t\+0t71(0)7'"71/2)2+1
h10¢(0) o (0)
= Zk4.

Noticing that E (||D}iant(d) Hl) = O(1) for 2 <[ < 16 as shown in Proposition 27 and
-1

0,¢(0) are bounded, via a direct proof the moments of y,q¢ in k4 are finite. Therefore,
2
ky=0O(1) and E,. a6 {(%W) } is bounded by k4. Moreover, we have
O Fy(® :
t Na
By, .l ¢ by
| ( 00,00 l)

- Z PF( ‘I’N; )83Ft(‘/I}N’ d)
E,., a6 Py OO0, Oy, O, 0,

S k’3]€4‘|‘IlNHg < 0.

Vi it %)

Via direct calculation similar as before,

E, de ((DgFt(O’a)Y) ;
K, de <(D\115VdFt(07a)‘I’N)2)
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and
2,1 5 2
E, a0 (DiraF(0.4)®y)
can be bounded by
~k1 ko T (3 2 k2 <\ 2
o Feo (7a) Fuvo ([ Dol (3)) oo (Do (3))
k1 =2,4,ky =0,1,2,3
X0~ (= (frotl + o7 (0)rn %) V2).

N2
Here ¢(-) is a polynomial function of Ezma‘e (i/v:}it), Ezn,aIG (HDﬁzagt <d) H ) and

A 2
E, e (D?O’nt (d)) which are all O(1) according to Proposition 27. Therefore,
E(C%,) < oc.

5.2 Proof of Proposition 27

5.2.1 Preliminary results for the proof of Proposition 27

Before proving Proposition 27, we establish the following results.

Lemma 28 With assumptions (A1), Apin(H) > h1 > 0, \nax(H) < hy < 00 and
di <d < dy, there exist 0 < ¢; < ¢ < 00 such that

=]
—
M
3
3
—
o
~—
~—
v
)
'

)\mi
A

"
—~
\d!

3

3
—~
o
~—
~—

S Co.

ma:

In particular, the eigenvalues of 3, o are all bounded from below and above by c; and

co, Tespectively.

Proof. Recall that 3,,,(d) = M¢(Gqa + H)M; and Gq = Udiag(\e?/v")Y UT.
According to Weyl’s inequality, we have

in(MeGaM{) + Ain(MHMY),

>\min (Enn (d))
A ax(MeGaM{) + Apax(McHMY ).

> Am
max(znn(d)) < >\m
Notice that McM{ = Tup, Amin(H) > hy > 0 and Apax(H) < hy < oco. Then we
have

Amin(McHMY ) > hy > 0

87



and

Amax(McHMY) < hy < .

According to Assumption (A1), the following holds
)\mln(MngMg) Z Aled/\/ﬁ > )\ledl/\/ﬁ > 07

and
Amax(MeGaM{ ) < Ayed/V™ < Aye®/Vr,

Therefore,

)\ledl/\/ﬁ + hl =. (1,
(Zon(d) < Ane®VP L hy = ¢,

Z.
\g!
3
3.
2
V

>\mi
A

ma:

»®

Let d = 0. Via the same procedure, we can show that the eigenvalues of ¥,,, ¢ are

bounded by ¢; and ¢c;. =

Lemma 29 Denote
M,,,(d) = (FI }(@)F,) . (B.1)

Under assumptions (A1)-(A3), we have

Especially,

Proof. We first prove that M,,(0) = O(n™'). Since M, }(0) = FI'X, F, is
positive definite, we can decompose this matrix as M;!(0) = QKQ” where Q is a
matrix with orthogonal eigenvectors of M-1(0) as its columns and K is the diagonal

matrix with eigenvalues on the diagonal. It is straightforward that
Mnn(o) = QK_IQTa

and that
1

min (diag (K))

ML, (0)]] = max (diag (K™)) =
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Therefore, to prove that | M,,,(0)|| = O(n™'), we need to prove that min (diag (K)) >
O(n). This holds since

min (diag (K)) = min 2" M, }(0)x

l[ol|=1,0€R

_ . TpTs—1
= Hr;hlgla: | QD DR P

> ;' min 2'FIF, o
|lzl|=1

= o [[(F,Fa) |7 = O(n).

Now since

I1E (M (d)]| < E ([Maun(d)]])

we can follow the same strategy as above and show that the norm is O(n™1), i.e.,
E(M,,(d))=0(n""). =
Lemma 30 Under Assumption (3), we have for each t €T\S

E (||Z1ne(d)]]*) = O(1)

Proof. Since the elements of G4 are bounded, the proof is straightforward. =

Lemma 31 Under assumptions (A1)-(A8) and dy < d < dy, for each t €T\S the
prediction error variance o2,(d) is bounded by o2(d) + we(d) and hy ||£(t)]°,

o¢(d) + @y(d) 2 07 (d) 2 D [lan(d)]* = A [E(E)]”,
where with M,,,,(d) being defined in (B.1)
wi(d) = (£(t) = F, 2,0 (d) Zp16(A)) "M () (£(t) = F,, 2,0 (d) Se(d))

18 positive.

Proof. Recall that

and that



where 17,, = (9(ts1), ..., n(tsn))T are the deterministic means, 8,, = (8(ts1), ..., 6 (tsn))T
and €, = (g(ts), ..., e(ts))T. Notice that §(t;) and e(t;) are independent. Then

one(d) = Var (u(t) — ji(t))

(
(t)) — (azt(d)’r’n + ant (d) 571)} + Var( (d)EN)
> Var )

Notice that al,(d)y, is an estimate of u(t) with al,(d)F, = f7(t). Another
estimate of p(t) is aZ(d) = f7(t) (FLF,) FT which also satisfies al, (d)F,, = f1(t).
We can show that [la,(d)|* > H — ||f(t)||*. And then, 02,(d) is further
bounded below by hq||£(t)]|*. The proof is straightforward and we omit it here.

On the other hand, we have that

oo (d) = op(d) — (F7(t),B1ne(d)) ( F, %..(d) ) ( 2:1(:801) )
< o¢(d) + we(d)

r 0 Fl O\ _ft
(f (t)vzlnt(d)) ( F, Znn(d) > ( Enlt(d) >
= DS, () 0e(d) — wi(d).

5.2.2 Proof of Proposition 27

In this Proposition, we investigate the expectations of al,(d) and o,:(d) at each
location t € 7\S. The following inequality in Kleinman and Athans (1968) (see also
in Fang, Y., Loparo, K. A., and Feng, X. 1994) is very useful in our proof:

Amin(A)tr(B) < tr(AB) < Apax(A)tr(B) (B.2)
for both A and B being positive semi-definite matrices.
First, we prove £ (||ant(d)||2) = O(1) and ||a,(0)||> = O(1). To prove

E (||ant(d)||2) = O(l)’ (B,3)
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it is sufficient to prove that
E (||af @=y2@)]*) = 0 (B.4)
since, according to Lemma 28 and (B.2),
E ([l @S2 @) = e F (Jlan(d)]?)

We prove (B.4) instead of (B.3)

Jafi(@)]"

To establish (B.4), first let

2
E,%z(d)H is easier than

ane(d) = aj,e(d) + az,,(d), (B.5)
where with M,,,,(d) being defined in (B.1),

al,,(d) = 7 ()M

nn(

and
a2Tnd = Elnt<d)<1_Eii(d)FnMnn(d>FZ)2;$(d)
= S, - Q,,(d)T,,*(d), (B.7)
with
an(d) = E;A/Q(d)FnMnﬁd)nggé/Q(d) (B-S)

being an idempotent matrix.
Notice that
a{nt(d)znn(d)aQnt(d> - O (Bg)

Then

d)ag,(d). (B.10)

n

2l ()SY2(@)||” = &l (d)Sun(d)ar(d) + al, (d)S
Substituting (B.6) into the first term of (B.10), we have
B (8, ()8 (D)aye(d) = £7(6) 2 (M, () £(t).
Moreover, according to the result in Lemma 29, we have
E (a, (d) S (d)ars(d)) < [[E (Mo (@) £7(©)F(E) = O(Y).  (B.11)
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As for the second term in (B.10), let
agnt (d)znn<d)a2nt (d) = t?”[AB]

where
B =%,/2(d)Su(d)Siu(d)E,,(d)
with Q,.,(d) being defined in (B.8). Since Q,,,,(d) is an idempotent matrix, we have

that the matrices A, B are both positive semi-definite and that Apax(A) = 1. Applying
the inequality (B.2) we have E (tr(AB)) > 0 and according to Lemma 30

E(tr(AB)) < FE(tr(B)Anax(A))
= E(Suu(d)S51(d)S0e(d))
E (| 10(Q)]?)

1

= 0(1). (B.12)

Combining (B.11) and (B.12), we have that (B.4), and therefore (B.3), holds. Fol-
lowing the same procedure, we can prove that ||a,(0)]|* = O(1).

Next, we prove E (HDdant( )H2> — O(1) and ||Dia,(0)||> = O(1). Similar as
before, we split a,¢(d) into two parts a;,¢(d) and ag,(d). Then

Dla,i(d) = Diai,i(d) + Diag,(d).
We can prove that
E (||D}1amt )| ) O(nY) and E (|| Dsagm(d)|2) = O(1), (B.13)
and at d = 0,
[ Diar:(0)||* = O(n™") and || Djagmol?> = O(1).
Via direct calculation, we have
Dgain(d) = —£" ()M, (Q)F1 . (d)McGa,

and
Elm(d)E_l(d)Mg ~

Dagan(d) = +2M<d)2‘”2< 1QuaSa @ | G (B
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where
Ga = GaM{' %, 2(d) (I - Qun(d)) Z;0/2(d).

nn

To prove (B.13), it is enough to prove that the mean square of each term in D}ay,+(d)
and Dlage(d) is O(1). First, notice that I — Q,,(d) in G4 is an idempotent matrix

and its maximum eigenvalue is 1. We have
GaGl < 7'GaM{ 2, H(A)MG] < 7223 Inxn- (B.15)

Here, for any two symmetric matrix A and B we say A < B if B — A is a positive
semi-definite matrix.

Applying the inequality (B.15) on D}ay,.(d) we have
2 _ _
E (HD}ialnt(d)H ) T (4) E (M, (d)) £(t) = O(n™Y).

Similarly, for the first and second terms in (B.14), we have

a

~ 2
E (Hzlnad)z;;(d)MdeH ) < N [S(@))P = O(1).

etTCN;dHQ) <2\ =0(1),

Moreover, since Q.4 is also an idempotent matrix, for the third term in (B.14)
~ 2
(Hzm a)s: 1/2(d)an,d2;;/2(d)M5GdH ) —0(1).

Therefore, E(||Ddant( )||2) — O(1). Moreover, || Dian(0)]* = O(1).

Via similar calculation, it is straightforward to prove that E (HDﬁam(d)”l) =
O(1) and ||Da(0)||' = O(1) for 0 < k < 3,2 <1 <16, k,I € Z.

For the variance of the stochastic error  at location t, since o2(d) = e] Gge; and

the eigenvalues of G4 are bounded by some constants, it is straightforward that
E ((D§a§<d))2) O(1) and DE2(0) = O(1). (B.16)

In the following, we prove that

2

E ((Dﬁant(d))2) = 0(1) and (Dho,(0))* = O(1). (B.17)

We first investigate E (02,(d)) and E <(D}iait(d))2>. According to Lemma 31,

the prediction error variance o2,(d) is dominated by o%(d) + w@¢(d) from above and
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bounded below by hy||£(t)[|?. We can show that E(w(d)) = O(1). Actually, accord-
ing to Lemma 28 and Assumption (A3), applying inequality (B.2) we can directly
prove that each term in E(wy(d)) is at most O(1). The proof is omitted here. There-

fore

hllf(®)|* < E (07,,(0) < E (0¢(d)) + E (@e(d)) = O(1).

Moreover, we have

one(d) = Var(u(t) — fu(t))
= 0¢(d)—ay,(d) Zn(d)az(d) + ag,(d) Snn (d)aree (d) —2aj,,, (d) Znie(d),

and F <HDdam'c )H2> = O(1), it is a direct proof that

2

E (Djo?,(d))” = O(1) and (D}o?,(0))" = O(1).

According to Lemma 31,

£ (Dl (@)
B @lona)] = | (325 g)'J EOI o0

By deduction, we can further conclude that £ (Ddant(d))2 =0(1).

5.3 Derivatives in Theorem 25

Theorem 25 includes derivatives of the function Fy(W¥n,d) with respect to its argu-

ments. In this subsection, we calculate them term by term. First,

DgF(0,0) i%;’:; (Dd::(<(?))z” —~ JZ:‘(’B)D;%(O)) (B.18)
P @nOt) ¢ (%t) Lot
+ (0)@2 (I()t) Dd t(O)
1 O (Unot) 2 ()M @ (Ynot) ¢ (ot) €f
Do 00 = g () 0a0) 8 () 0 (0)
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2 _ =& (Ynot) Ynot <Dc11b£t(0)zn _ Ynot 1 )2
DdFt(OaO) = CI) (gj’Ot) O'nt(O) O_nt(()) Ddant(o)

_ D2bT,(0)z, | 2Gnot(Dhont(0))’
+ ﬁ)(yn‘)t) 0 chnt(ozo) +D1 b7 l(j(%t Y
(Tor) - y"olni(oﬁt - daf:(o) =D g0t (0)

2¢ @nOt) ¢ (%t) l’OthUt (0) <Débgt (O)Zn Unot

2 (100) 74 0) () 7e0) Dd""*“”)

D (Ynot) ¢ (Tot) (D}igt(o)) (xgt — 2x0) 4 D (Ynot) ¢ (Tot) IOtD?iUt(O)

_|_

_|_

D2 (1) 07 (0) @2 (z01) 04(0)
+2<1’ (not) ° (zot) 73, (D4o¢(0))?
®3 (o¢) 03 (0) ’

Tnot) Tnot 8%, (0)Me ( DIBZ (0)z,  Tno
DY F(00) = _¢(yn0t)yn0t A ( 3 d™nt no_ _In0t pi (0
Pnd t( ) ) (I)(Q}Ut) O't(O) a9 t( )

0nt(0) ot (0)
_¢ (Unot) s (0)M 1 ¢ (Ynot) Dyl (0) M
3 @) 050 27O G ) T 0(0)

¢ (Unot) ¢ (or) o Dyoe(0)ar, (0) My

- 207 (107) (0104 (0)
_¢ (§n0t> ¢ (th) Dglbgt(o)zn _ gnOt g i
o (T~ i) 2%,
+(I) @nOt) ¢ (%t) D(liat(O)eg’
D2 (0¢) 03 (0)
_ D (Ynot) & (zor) 23, Dgos(0)ef _ 29 (Ynot) ¢ (zot) ot Dyoe(0)e!
P2 () 05 (0) ®3 (o) 05 (0) ’
D2 F,(0,0)
_ ¢(yn0t)yn0t ¢’ (20t) @ Wnot) , 1
= ) o2y ) P O OMe 2550 ) e
¢ (-TOt) ¢ (Ynot) T
92 (zot) 0(0)0t(0) (etant(O)Ms - Mg ant(O)et )

¢ @nOt) o (51701;) Lot el

02 (ag) 02(0)
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and

PF, (PN, d)
;0,00
_d)@ndt)@%dtcucucu _ ¢2 @ndt) C1iC15C11 ¢ @ndt) o) (/x\Ot) gndtCh;CuCzl
P (Zot) D3 (Zot) P2 (Tot)
49 ¢ (/y\ndt) o) (fm) @\ndtclic2jcll 19 ¢ @ndt) o) (;E\Oi) /x\OtCu‘CszQz (B.19)
(I) (Z)’J()t) (I) (ZL’Ot)
+4¢ @ndt) €Z52 (/x\Ot) C1iC25C21
D3 (Zoy)
®(Unat)$* @ot)caicajen 2@(ﬂndt)¢2(50t)50t02i62j021 9
: ( PO SaP Gogencen ) (1 ! >
Yn X0t )C2iC2;5C I~
—9 dt <I>3(5E(:t)2 25 C21 o (th)
20 (@\ndt) ¢3 (/1'\01:) C2iC2;Coj
4 (Zoy) ’
T eT
where ?(t();\)/lg =: ¢, Jtt((;g =: ¢, ¢ = (1, an) and €5 = (can, .., con), and
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