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Abstract

Timely, accurate predictions of potential influenza epidemics are essential for

healthcare providers and policy makers as the epidemics can result in heavy de-

mands for health services. Current statistical modeling of surveillance data has lim-

ited prediction abilities and often fails to respond effectively to the outbreaks. The

first part of this thesis, a collaboration with Alberta Health Services, aims at pre-

dicting clusters of influenza cases in Edmonton weeks in advance, using real-time

data collected from emergency-department visits by Alberta Real Time Syndromic

Surveillance Net. The 2004-2009 data are analyzed by spatio-temporal modeling

and predictions are cross-validated. In the second part of this thesis, a related theo-

retical work on multivariate modeling, with spatio-temporal modeling as a potential

application, is presented, proving that every conditional second moment is linear in

the empirical second moment of the conditioning vector if and only if the distribu-

tion belongs to the multivariate Pearson type VII family.

Key Words: influenza prediction, generalized linear mixed model, pseudo-likelihood,
cross-validation, multivariate Pearson Type VII family.
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1 Introduction
Pandemic of influenza can result in a heavy demand for health services. Over the
past 30 years, surveillance networks for real-time monitoring of influenza activity
have been developed worldwide to detect epidemics rapidly and to estimate the an-
nual impact of influenza. However, these networks provide information on present,
not future, activity. Therefore, it is essential to make timely and accurate prediction
based on statistical modeling of surveillance data, so that healthcare providers and
policy makers can have proper preparation and potential alleviation of the potential
epidemics.

A large body of work has been devoted to the real-time detection of influenza
outbreaks, defined as some increase above a historical baseline threshold (Le Strat
& Carrat, 1999; Hashimoto et al., 2000). However, only a limited range of ap-
proaches has been developed to predict the spread of the epidemic process. These
approaches fall into two categories: those that model the diffusion mechanisms and
those that model the epidemic curve. Baroyan et al. first used the first approach in
1971 to describe the time and geographic spread of influenza. Longini et al. (1986),
Flahault et al. (1988), and Flahault et al. (1994) also did similar applications based
on this approach. Application of these models to retrospective data provided useful
insight into the diffusion mechanisms but was not proven efficient for prospective
forecasting.

The second approach is based on time-series modeling of the epidemic curve.
Autoregressive seasonal linear models (Box & Jenkins, 1976) have previously been
applied to influenza surveillance data (Stroup, et al., 1988; Quenel & Dab, 1998).
However, these models did not take into account the spatial correlations related to
the influenza spread process and could not be adjusted to sudden changes in dynam-
ics. Nevertheless, although these models were not used in the past for operational
forecasts of influenza epidemics on a national or regional level, they can be consid-
ered reference models against which new methods should be tested.

My thesis work aims at predicting clusters of influenza cases in Edmonton,
using real time data collected over time and space from emergency department
(ED) visits by Alberta Real Time Syndromic Surveillance Net (ARTSSN). Spatio-
temporal modeling and pseudo likelihood estimation of the parameters are used and
a 5-fold cross-validation is performed on 5-year daily data collected over 2004 to
2009. The plan for the remainder of this thesis is as follows: in Section 2, we
describe some facts about influenza and current situation of influenza surveillance.
Specifically, the ARTSSN is briefly described since one of its subsets is used as
our analysis data. A few statistical topics that are related to our analytical method
are also described, including natural cubic splines, generalized linear mixed mod-
els (GLMMs), pseudo-likelihood estimation, and cross-validation. Section 3 is the
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method part of the thesis. We start by performing a GLMM analysis on the six-year
data with same natural cubic splines of daily indices for each year to depict the
systematic pattern of annual influenza activities. Then a temporal-spatio model is
applied on the daily residuals, with pseudo-likelihood method to estimate the pa-
rameters. In particular, unequal weighted pseudo-likelihood is used afterwards to
improve the prediction of influenza peaks. Section 4 is a theoretical piece about
multivariate data. In this section, we discuss a property of the multivariate Pearson
type VII family and use simulated data to illustrate the application of this unique
property. Finally in Section 5, we draw conclusions, and make a few suggestions
for future work after some discussions about the thesis.
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2 Background
We begin this section by introducing some facts about influenza, followed by de-
scribing the burden of influenza in Canada and worldwide. We then take a brief
review of current work done about influenza surveillance and prediction, and ad-
dress the importance of accurate and timely prediction of influenza. Then we pro-
vide a brief introduction to the ARTSSN, part of which is used as our data set
for the statistical modeling and prediction of influenza visits. Finally, we introduce
some statistical methods that are used in the method section, including natural cubic
splines, GLMM, pseudo-likelihood estimation, and cross-validation.

2.1 Key Facts about Influenza
Influenza, commonly referred to as flu, is a contagious respiratory illness caused by
influenza viruses. There are two types of influenza virus known as type A and B.
These two viruses, the so called human influenza viruses that routinely spread in
people, are responsible for seasonal flu epidemics each year.

The most common symptoms of influenza are chills, fever, cough, sore throat,
runny or stuffy nose, muscle or body aches, headaches, and fatigue. Some peo-
ple may have vomiting and diarrhea, though this is more common in children than
adults.

Although influenza is often confused with other influenza-like illnesses, espe-
cially the common cold, it is a more severe disease than the latter. It can cause mild
to severe illness, and at times can lead to death. Older people, young children, and
people with certain health conditions, are at higher risk for serious influenza com-
plications. In occasional cases, even for healthy young adults, influenza can cause
either respiratory distress syndrome or pneumonia, which manifest with a difficulty
in breathing.

Most experts believe that flu viruses spread mainly by droplets from people with
influenza when they cough, sneeze or talk. These droplets can land in the mouths or
noses of people nearby. Less often, a person might also get influenza by touching a
surface or object that has flu virus on it and then touching their own mouth, eyes or
noses.

Influenza typically lasts a week to 10 days, and the incubation period for in-
fluenza is 24 to 72 hours. It may pass to someone else before one knows he/she
is sick, as well as while he/she is sick. Most healthy adults may be able to infect
others beginning one day before symptoms develop and up to five to seven days
after becoming sick. Some people, especially children and people with weakened
immune systems, might be able to infect others for even longer time.
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2.2 Burden of Influenza
Influenza epidemics and pandemic have a huge impact on society and individuals.
The weight and scope of the burden of influenza varies with the age and underlying
health of the patient. The disease imposes a significant burden on all individuals,
but hospitalization and treatment occur more frequently in high-risk patients who
are elderly and/or with certain underlying medical conditions.

According to the World Health Organization (WHO), 5 - 15% of the population
are affected with upper respiratory tract infections in annual influenza epidemics.
Although difficult to assess, these annual epidemics are thought to result in between
three and five million cases of severe illness and between 250,000 and 500,000
deaths every year around the world. This imposes a considerable economic bur-
den in the form of hospital and other health care costs and lost productivity. In the
USA, for example, recent estimates put the annual influenza-related costs to US$
87.1 billion (Molinari, et al., 2007).

In Canada, the death rate for influenza is 500 - 1,500 cases per year. According
to the Community and Hospital Infection Control Association (CHICA) - Canada,
the seasonal influenza totals are increasing rapidly in the past five years, from 7,422
cases in 2004 - 2005 to 38,980 in 2009 - 2010. The increased cases in 2009 are
mainly due to the pandemic H1N1 influenza virus. Dianne & Thomson (2006) also
showed that the total annual costs of influenza were estimated at CA$1 billion in
Canada, and this is expected to increase in coming years.

In addition to the direct costs of medical care, the indirect costs of influenza are
substantial and stem largely from absenteeism and loss of work productivity. Es-
timates of the cost of influenza in the USA, France and Germany have shown that
indirect costs can be five- to 10-fold higher than direct costs. Other intangible costs
associated with influenza include impaired performance which can reduce reaction
times, and adverse effects on the quality of life of patients and their families.

2.3 Current Influenza Surveillance and Prediction
2.3.1 Overview of Influenza Surveillance Network

The WHO Global Influenza Surveillance Network (GISN) serves as a global alert
mechanism for the emergence of influenza viruses with pandemic potential. Its ac-
tivities have contributed greatly to the understanding of influenza epidemiology.
The network was established in 1952, currently with 135 institutions from 105
countries recognized by WHO as National Influenza Centers. In addition, vari-
ous other laboratories have regularly submitted influenza viruses to the programme
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in the past years.

Besides WHO’s GISN, Canada also has its own national surveillance system
called FluWatch, which monitors the spread of influenza and influenza-like illnesses
on an on-going basis. FluWatch reports, posted every Friday, contain specific infor-
mation for health professionals on flu viruses circulating in Canada. The program
consists of a network of labs, hospitals, doctor’s offices and provincial and territo-
rial ministries of health.

2.3.2 The Alberta Real Time Syndromic Surveillance Net

In Canada, provinces and territories usually have their own surveillance network in
addition to the national surveillance. In order to improve public health surveillance
of infectious diseases in Edmonton and Area (The former Capital Health region of
the Alberta Health Services (AHS)), the Alberta Real Time Syndromic Surveillance
Net (ARTSSN) was initiated in 2006 with financial support from the Alberta Health
and Wellness (AHW) and in kind contributions from the Information Systems de-
partment and the Public Health Division of Capital Health.

The goal of ARTSSN is to enhance public health surveillance through the early
(real time) automated detection and tracking of disease outbreaks, environmental
hazard exposures and injuries. Moreover, rapid communication of the findings to
public health decision-makers, using both syndromic (i.e. pre-diagnostic and pre-
laboratory confirmatory) and laboratory electronic data, through a secure intranet-
based network, will facilitate more direct and timely action.

ARTSSN data sources include residents of Edmonton and Area only (records on
non-residents are excluded) and a common set of patient demographic information
(PDI) in all data sources. There are four electronic data sources that are currently
employed in real-time (10 minutes intervals, unless stated otherwise) in ARTSSN:

1. Health Link (HL) Alberta is a province-wide 365/7/24 telephone health
advice service. Its database contains rich information on health concerns
reported by the community. ARTSSN has HL data dating back to April 1,
2003. Data fields include: call date and time, PDI, chief complaint (called
protocol in HL) and disposition (advice given to patients) under 132 protocols
that are relevant to public health.

2. Emergency Department (ED) Visit Data are contributed by nine hospitals
through the Emergency Department Information System (EDIS) and the E-
Triage system. ARTSSN has ED data starting in mid-2004 for all nine hospi-
tals and in 2000 for the Northeast Community Health Center, the University
of Alberta Hospital and the Stollery Children’s Hospital. Data fields include
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visit date and time, PDI, chief complaint, diagnosis, discharge disposition,
transfer, and hospital name.

3. School Absenteeism Data targets all elementary schools offering kinder-
garten to grade 6 education in the districts of the Edmonton Public Schools,
Edmonton Catholic Schools, and the Parkland School Division #70. The data
holdings go back to November 14, 2007 for the Edmonton Public Schools.
Data fields in this source include student PDI, absence date, absence duration,
school name, and school postal code.

4. Laboratory Data are contributed by the Provincial Laboratory for Public
Health of Alberta and the laboratories of DynaLifeDX Inc. They contain
positive results for notifiable communicable diseases. The data holdings are
estimated to go back nearly 15 years. The data fields include PDI, specimen
source and type, collection date and time, order date and time, receiving date
and time, result date and time, test procedure, test result, organism tested for,
antibiotic resistance of the organism and ordering date and time. This data
source is still under development.

2.3.3 Current Influenza Prediction

Much work has been devoted to the real-time detection of influenza outbreaks, de-
fined as some increase above a historical baseline threshold. However, a very lim-
ited range of approaches has been developed to predict the spread of the epidemic
process, especially those that model the epidemic curve.

Modeling of epidemic curves is usually based on time-series approach. Au-
toregressive seasonal linear models (Box & Jenkins, 1976) have previously been
applied to influenza surveillance data by Stroup et al. (1988), and Quenel & Dab
(1998). S̆altytėbenth & Hofoss (2008) further improve model fit by analyzing
the squared residuals after fitting a seasonal time-series model, and show that the
squared residuals can reveal the presence of the remaining seasonal variation which
is not exhibited by the analysis of residuals.

However, these models did not take into account of the spatial correlations
which are quite important in predicting regional influenza activity. As an improve-
ment, Viboud et al. (2003) apply the method of analogues to forecast the regional
spread of influenza-like illnesses, which is a nonparametric approach first devel-
oped by Lorenz (1969) to forecast meteorologic time series. Temporal and spatial
correlations are both considered, however, when predicting well ahead of time is at-
tempted, influenza peaks, which are key in prediction, are not well captured. More-
over, due to the computational complexity, this method cannot be easily generalized
to researchers in non-mathematical fields.
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Therefore, it is important to introduce a relatively simple model which captures
both temporal and spatial correlations in influenza prediction, and can accurately
predict both non-peaks and peaks of influenza activities well ahead of time.

2.4 Review of Statistical Methods
In this section we review the following topics: natural cubic splines, the generalized
linear mixed model (GLMM), pseudo likelihood and cross validation.

2.4.1 Natural Cubic Splines

In mathematics, cubic splines are usually used to capture the non-linear effect of a
covariate X using a flexible curve without knowing the shape of the curve. In order
to fit a natural cubic spline curve, we need to first decide the number and locations
of knots. While the number of knots determines the smoothness of the spline curve,
their locations are not as critical as the number. Suppose that {(xk, yk)}nk=0 are
n + 1 knots, where a = x0 < x1 < . . . < xn−1 < xn = b. The function S (x)
is called a cubic spline if there exists n cubic polynomials Sk (x) with coefficients
sk,0, sk,1, sk,2, and sk,3 that satisfy the following properties:

1. S (x) = Sk (x) = sk,0 + sk,1 (x− xk) + sk,2 (x− xk)
2 + sk,3 (x− xk)

3 for
x ∈ [xk, xk+1] and k = 0, 1, . . . , n− 1.

2. S (xk) = yk for k = 0, 1, . . . , n. i.e. The spline curve passes through each
knots.

3. Sk (xk+1) = Sk+1 (xk+1) for k = 0, 1, . . . , n − 2. i.e. The spline forms a
continuous function over [a, b].

4. S
′

k (xk+1) = S
′

k+1 (xk+1) for k = 0, 1, . . . , n − 2. i.e. The spline forms a
smooth function.

5. S
′′

k (xk+1) = S
′′

k+1 (xk+1) for k = 0, 1, . . . , n − 2. i.e. The second derivative
is continuous.

There exists a unique cubic spline with free boundary conditions S
′′
(a) = 0 and

S
′′
(b) = 0, and such splines are called natural cubic splines. In particular, the

spline functions are specified as following:
S0 (x) = x, for k = 0;

Sk (x) = (x− xk−1)
3
+ − (x− xn)

3
+

(xn+1−xk−1)

xn+1−xn
+ (x− xn+1)

3
+

xn−xk−1

xn+1−xn
,

for k = 1, 2, . . . , n− 1.

Here (A)+ = max(0, A).
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2.4.2 Generalized Linear Mixed Model

Fixed effects models, which assume that all observations are independent of each
other, are not appropriate for analysis of several types of correlated data structures,
in particular, for clustered and/or longitudinal data. In clustered designs, subjects
are observed nested within larger units, e.g. schools, hospitals, neighborhoods,
workplaces, etc. In longitudinal designs, repeated observations are nested within
subjects. For analysis of such data, random cluster/suject effects can be added
into the regression model to account for the correlation of the data. The resulting
model is an extension to the generalized linear model in which the linear predictor
contains random effects in addition to the usual fixed effects. These random effects
are usually assumed to follow normal distributions. This kind of models are called
generalized linear mixed models (GLMMs). Denote the response measurement of
the jth subject/observation of the ith cluster/subject as Yij , then a GLMM can be
represented as follows:

Systematic Part
h (E [Yij|b0i, b1i, . . . , bqi]) = β0 + β1X1ij + . . .+ βpXpij

+b0i + b1iZ1ij + . . .+ bqiZqij, where Z
′s are subsets of X ′s, q < p.

Random Part
(Yij|b0i, b1i, . . . , bqi) ∼ Normal, Binomial, Poisson, etc.
(b0i, b1i, . . . , bqi) ∼ MVN (0,Σ) for all clusters/subjects.

In the above model, β0+β1X1ij + . . .+βpXpij + b0i+ b1iZ1ij + . . .+ bqiZqij is
the linear predictor, and h is the link function, which is used to map the value of the
linear predictor to the conditional mean of the distribution function of Yij’s. The
link function can take different forms depending on the conditional distribution of
the responses. The identity function, logit function, and log function are canonical
links when (Yij|b0i, b1i, . . . , bqi) follows a normal distribution, a binomial distribu-
tion, and a Poisson distribution, respectively.

The GLMM is especially popular when the interest is in estimating subject-
specific effects. This kind of models uses other clusters/subjects’ information as
well as the ith cluster/subject’s information to estimate the ith cluster/subject-specific
effect. Although small sample size per cluster/subject cannot provide stable esti-
mates on cluster/subject-specific effects, use of the overall average across all sub-
jects can help overcome this problem.

2.4.3 Cross-Validation

Cross-validation is a technique for assessing how the results of a statistical analysis
will generalize to an independent data set. It is mainly used in settings where the
goal is prediction, and one wants to estimate how accurately a predictive model will
perform in practice. Cross-validation is also a commonly used approach to avoid
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model overfitting. One round of cross-validation involves partitioning a sample of
data into complementary subsets, performing the analysis on one subset (the train-
ing set), and validating the analysis on the other subset (called the validation set or
testing set). To reduce variability, multiple rounds of cross-validation are performed
using different partitions, and the validation results are averaged over the rounds.

There are four common types of cross-validation: K-fold cross-validation, k ×
2 cross-validation, repeated random sub-sampling validation, and leave-one-out
cross-validation (LOOCV). In the presented work, the LOOCV is applied where
each year’s observation are treated as one unit. As the name suggests, LOOCV
involves using a single observation from the original sample as the validation data,
and the remaining observations as the training data. This is repeated such that each
observation in the sample is used once as the validation data. This the same as the
K-fold cross-validation with K equal to the number of observations in the original
sample.

For correlated data, like the ARTSSN data we used, the validity of the common
LOOCV for independent cases is proved by Hart & Vieu (1990), who showed that
the LOOCV is reasonably effective unless the data are very highly correlated. In
fact, the cross-validation is still asymptotically optimal when they leave out only
one unit at each time.

2.4.4 Pseudo-Likelihood

In some estimation problems the joint likelihood involves an analytically-intractable
normalizing function of the parameters. In such cases the method of maximum
likelihood is not easy to use. An alternative is to replace the joint likelihood by a
suitable product of ratios of likelihoods of subsets of the variables. We call these
products pseudo-likelihoods, e.g. the product of various conditional densities is
a pseudo-likelihood that does not involve the normalizing function. The practical
use of it is that it can provide an approximation to the likelihood function of a set
of observed data which may either provide a computationally simpler problem for
estimation, or may provide a way of obtaining explicit estimates of model param-
eters. Under regularity conditions, pseudo-likelihood estimators are consistent and
asymptotically normal.

Let X = (X1, X2, . . . , Xn) be i.i.d random variables with probability distri-
bution FΘ where Θ is a vector of unknown variables. Let the set E be the de-
pendencies between these random variables, where {Xi, Xj} ∈ E implies Xi is
conditionally dependent of Xj given X

′
js neighbors. Then the pseudo-likelihood of
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X = x = (x1, x2, . . . , xn) is:

PL (Θ|x) =
∏
i

PΘ (xi|xj for all j where {Xi, Xj} ∈ E) ,

More often, we use the log function of pseudo-likelihood instead, known as the
pseudo-log-likelihood:

pl = logPL (Θ|x) =
∑
i

logPΘ (xi| xj for all j where {Xi, Xj} ∈ E) .

In particular, consider the special case that Xi fits into the auto-normal scheme,
i.e. the conditional distribution of Xi is normal with conditional mean

E [Xi|xj for all j where {Xi, Xj} ∈ E] = µi +
∑
j

βi,j (xj − µj) ,

where βi,i = 0, and conditional variance

Var [Xi|xj for all j where {Xi, Xj} ∈ E] = σ2
i .

This also holds if Xi follows an elliptical distribution, or equivalently an auto-
normal scheme after an affine transformation. Besag (1975) shows that the pseudo-
log-likelihood can be reduced to the ordinary method of least squares. In fact, the
maximum pseudo-likelihood estimates Θ̂ can be obtained by minimizing

pl =
∑
i

{
xi − µi −

∑
j

βi,j (xj − µj)

}2

,

for all j where {Xi, Xj} ∈ E.
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3 Statistical Modeling and Prediction of Influenza ED
Visits

In this section, we introduce our method for modeling and predicting the daily
counts of Edmonton ED visits.

3.1 Data Preparation
In this work, we focus on emergency department (ED) visit data recorded in ARTSSN
from August 1, 2004 to July 31, 2009 with a total of 1,826 days. The raw data were
collected in 10 minutes interval from residents in Edmonton and Area (The former
Capital Health region of the AHS). The location of residency was indicated by the
first three digits of patients’ residence postal codes. Since our analyses concen-
trate on modeling and prediction of daily ED visits in Edmonton only, we extract
subjects from Edmonton according to first three digits postal codes, and aggregate
data into daily counts. After the aggregation, there are 1,826 observations (days)
for each of the 38 first three digits postal codes in our data. The daily ED visit
pattern is represented by the yellow line in Figure 3.1, which shows that, despite
daily fluctuations over time, there appears to be a systematic trend throughout the
five years.

3.2 Model without Spatial or Temporal Correlation
We start describing the influenza activity in Edmonton by a systematic yearly trend.
This trend can be represented with a flexible curve that is the same for every year,
and this can be done by fitting a GLMM with daily influenza ED visits as the re-
sponse variable and natural cubic splines of days during the five years as the ex-
planatory variables.

To capture the annual pattern, we use cubic splines that are identical for every
year. Specifically, we code the days as 1 to 365 for each year or 1 to 366 for the leap
year, denoted by X , i.e. X = (1, 2, . . . , 365, 1, 2, . . . , 365, 1, 2, . . . , 365, 1, 2 . . . ,
366, 1, 2 . . . , 365). Then for each year, we choose the first days of each week as the
knots, resulting in 52 knots and 51 spline functions for the natural cubic splines.
The spline functions are denoted by S(k) (X) , k = 0, 1, . . . , 50.

Let Yj, j = 1, 2, . . . , 1826, be the daily count of ED visits, S
(k)
j (X) , j =

1, 2, . . . , 1826, k = 0, 1, . . . , 50, be the explanatory variables for the systematic
variation represented by the cubic splines of X and are identical across five years,
rj, j = 1, 2, . . . , 1826, be the daily random variations. We have the following
GLMM:

11



log (E [Yj| rj]) = β0 + rj + β1S
(0)
j (X) + β2S

(1)
j (X) + . . .+ β51S

(50)
j (X) ,

(Yj| rj) ∼ Poisson (E [Yj| rj]) ,
rj ∼ N

(
0, σ2

)
, j = 1, 2, . . . , 1826.

(3.1)

This model results in fitting the daily ED visits in Edmonton by an identical
flexible curve across five years, and we show the fitted values by the blue line in
Figure 3.1.

3.3 Model with Spatial and Temporal Correlations
Figure 3.1 shows that although GLMM extracts the systematic trend of influenza
activities during the five years, there are still considerable variations remained un-
explained, possibly because the model does not take into account of the spatial or
temporal correlations. In particular, the high daily counts of ED visits are not pre-
dicted well. In this section, we will introduce an exploratory model which incor-
porates both spatial and temporal correlations, and is shown to improve the model
fitting substantially.

3.3.1 Spatial Decomposition of Daily Variations

In order to incorporate the spatial correlations into our model, we consider the lo-
cation information in Edmonton represented by the first three digits postal codes.
Instead of using the 38 different first three digits postal codes directly, we partition
Edmonton into 24 subareas with approximately equal total ED visits throughout the
five years. We do so to balance the contributions of the subareas in the model fit-
ting. The partition is shown in Figure 3.2 with different colors indicating different
subareas. The daily ED visits are then partitioned into 24 parts accordingly. Denote
pi as the ED visits proportion in the ith subarea, where

pi =
number of ED visits in ith subarea
number of ED visits in Edmonton

in the five years, i = 1, 2, . . . , 24.

Denote Yij for the observed ED visits in the ith subarea on the jth day, and
denote Ŷj for the estimated Yj from model (3.1). Then the estimated Ŷij is:

Ŷij = piŶj, i = 1, 2, . . . , 24, j = 1, 2, . . . , 1826. (3.2)

The unexplained variation in the ith subarea on the jth day, Rij (though strictly
speaking, it should be R̂ij since it is estimated from the GLMM, but we use Rij for

12



0 10 20 30 40 50 60

ED Counts

01/08/2004
26/09/2004
21/11/2004
16/01/2005
13/03/2005
08/05/2005
03/07/2005
28/08/2005
23/10/2005
18/12/2005
12/02/2006
09/04/2006
04/06/2006
30/07/2006
24/09/2006
19/11/2006
14/01/2007
11/03/2007
06/05/2007
01/07/2007
26/08/2007
21/10/2007
16/12/2007
10/02/2008
06/04/2008
01/06/2008
27/07/2008
21/09/2008
16/11/2008
11/01/2009
08/03/2009
03/05/2009
28/06/2009

O
b
s
e
r
v
e
d
 E

D
 c

o
u
n
ts

G
L
M

M
 fitte

d
 c

o
u
n
ts

Figure 3.1: Daily ED Counts in Edmonton from Aug. 1, 2004 to July 31, 2009
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Figure 3.2: 24 Subareas in Edmonton

now for notational purposes), after fitting a GLMM, can be obtained by:

Rij = Yij − Ŷij, i = 1, 2, . . . , 24, j = 1, 2, . . . , 1826. (3.3)

Rij can be standardized within each subarea, which is shown below:

R∗
ij =

(
Rij − Ri·

)/
SD[Ri·], (3.4)

where Ri· is the mean of daily variations in the ith subarea across the five years, and
SD[Ri·] is the standard deviation of Rij’s.

3.3.2 Exploratory Modeling

It is reasonable to assume that the unexplained standardized daily variations R∗
ij’s

are correlated with each other through both time and spatial locations. This moti-
vates us to consider that R∗

ij’s can be modeled with daily variations R∗
i′j′’s of all its

spatial proximities prior to the jth day, and we represent it with an exploratory mod-
eling in which every R∗

ij is linear in such R∗
i′j′’s with weights wi′j′’s. The spatial

proximities are represented by physical neighbors which are defined as all subareas
that share at least some border with the ith subarea. Denote the set of ith subarea’s
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neighbors as N (i). The exploratory model is shown below:

E
[
R∗

ij

∣∣R∗
i′j′’s

]
=

j′<j∑
i′∈{i,N (i)}

wi′j′R
∗
i′j′

/
Ni,

i = 1, 2, . . . , 24, j = 1, 2, . . . , 1826,

(3.5)

where {i,N (i)} is the set of N (i) and ith subarea itself, and Ni is 1 plus the
number of elements in N (i). Here we divide each component by Ni in order to
standardize, since N (i) can have different sizes.

3.3.3 Parameter Estimation

For an exploratory model like ours, the common approach for parameter estimation,
such as maximum likelihood estimation, is not plausible as there is no joint or
marginal distribution assumption in the model. Thus, we need to utilize another
simple estimation approach: the pseudo-likelihood method, which is introduced in
Section 2.4.4. The pseudo-likelihood is defined as follows:

pl
(
wij|R∗

ij’s
)
=
∑
i,j

(
R∗

ij − E
[
R∗

ij

∣∣R∗
i′j′’s

])2
,

i = 1, 2, . . . , 24, j = 1, 2, . . . , 1826, i′ ∈ {i,N (i)} , j′ < j.

(3.6)

Then, according to model (3.5), the pseudo likelihood (3.6) becomes:

pl
(
wij|R∗

ij’s
)
=
∑
i,j

R∗
ij −

j′<j∑
i′∈{i,N (i)}

wi′j′R
∗
i′j′

/
Ni

2

,

i = 1, 2, . . . , 24, j = 1, 2, . . . , 1826, i′ ∈ {i,N (i)} , j′ < j.

(3.7)

Consider, for example, we want to know the influenza activities in Edmonton
emergency departments one week ahead so that hospital staff and policy makers
can get prepared for necessary facilities. Furthermore, we may want to make pre-
dictions with records of ED visits from a month ago up to the current day. To
state this scenario in general, that is, we are interested in predicting P days ahead
ED influenza visits with L days of ED visits records. Using the pseudo likeli-
hood (3.7), this general prediction scenario is equivalent to minimize (3.7) where
j′ = j − P − L, j − P − L+ 1, . . . , j − P − 1.

In order to estimate the parameters, we re-parameterize wi′j′’s into αl’s:

wi′j′ =

{
α2l−1 i′ = i, j′ = j − P − l
α2l i′ ∈ N (i) , j′ = j − P − l

, l = 1, 2, . . . , L. (3.8)
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Then the exploratory model (3.5) becomes:

E
[
R∗

ij

∣∣R∗
i′j′’s

]
=
∑
i′,j′,l

αlR
∗
i′j′

/
Ni, (3.9)

where i = 1, 2, . . . , 24, j = 1, 2, . . . , 1826, i′ ∈ {i,N (i)}, j′ = j−P −L, j−P −
L + 1, . . . , j − P − 1, and l = 1, 2, . . . , 2L. With the same re-parameterizations,
the pseudo likelihood (3.7) is expressed as:

pl
(
αl|R∗

ij’s
)
=
∑
i,j

(
R∗

ij −
∑
i′,j′,l

αlR
∗
i′j′

/
Ni

)2

, (3.10)

where i, j, i′, j′, and l are defined same as equation (3.9). The estimates α̂l’s are
those that minimize the pseudo likelihood (3.10), i.e.

α̂ = (α̂1, α̂2, . . . , α̂2L)
′ = argmin

α
pl
(
αl|R∗

ij’s
)
. (3.11)

3.4 Prediction of ED Influenza Visits
This section describes the method to predict ED influenza visits and provides the
prediction results.

3.4.1 Prediction with Equal Weights

To unbiasedly estimate the prediction performance of a model in the absence of
an independent validation set, we use five-fold cross-validation where each year is
considered as a fold. That is, each time we exclude one year’s ED visits data, and
perform parameter estimation using the remaining four years’ data. The predicted
ED visits of the excluded year are then obtained using the estimated parameters.
The detailed process is described below:

1. Exclude the first year’s data, applying Equations (3.10) and (3.11) to perform
parameter estimation (α̂l’s) on the remaining four years’ data.

2. Plug α̂l’s into the re-parameterized exploratory model (3.9) on the first year’s
data to obtain R̂∗

ij’s.

3. Obtain the estimated unstandardized daily variation in ith subarea, R̂ij , through
Equation (3.4).

4. Predict Ỹij for the first year through Equation (3.3), where Ỹij = Ŷij + R̂ij .

5. The predicted daily ED influenza visits Ỹj =
∑
i

Ỹij .
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Figure 3.3: Comparison of MSE: GLMM vs. Equally Weighted Approach
All Observations

Repeat the process on the second year to the fifth year respectively to get all five
years’ predicted ED influenza visits.

Using model (3.9) and pseudo likelihood (3.10), we implement one-day prior to
30-day prior predictions using two-week, three-week, and four-week ED visits data,
i.e. P ranges from 1 to 30, and L = 14, 21 and 28. The prediction performance is
evaluated by a quantity called mean absolute deviation (MAD), which is the mean
of the absolute distances between the observed and predicted daily ED visits:

MAD = mean
j

∣∣∣Yj − Ỹj

∣∣∣ , j = P + L+ 1, P + L+ 2, . . . , 1826. (3.12)

Figure 3.3 shows the prediction performance from Model (3.9), compared to
the GLMM model (3.1). It shows that by taking both temporal and spatial correla-
tions into account, the exploratory model (3.9) improves the prediction substantially
compared to applying the GLMM (3.1) alone. The MAD decreases from about 5 in
GLMM to a range of 4.3 to 4.8 for one-day prior to 30-days prior predictions, with
only a few weeks information. To better illustrate, we also provide Figure 3.4 to
show the fitted results from models (3.1) and (3.9). In particular, we only show the
results from one-week prior prediction with four-week information for illustration,
represented by the light green line in Figure 3.4.

As shown from Figure 3.4, the exploratory model improves the prediction sub-
stantially. However, the prediction performance is not quite satisfactory for days
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Figure 3.4: Predicted ED Counts in Edmonton: GLMM vs. Exploratory Model
from Sep. 27, 2004 to July 31, 2009
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with higher daily influenza counts. In fact, it tends to underestimate the ED in-
fluenza visits when there are epidemics. This is unacceptable for policy makers
and health departments, since the underestimation would lead them to be unpre-
pared when influenza activity is rampant. To better illustrate, we provide Figure
3.5 which shows the MADs of those daily influenza visits that are greater than the
overall median, as only influenza activities that are more frequent than usual draw
our special attention. That is, we obtain the median of daily influenza visits during
the five years, and select only those daily visits that are greater than the median to
calculate MADs.
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Figure 3.5: Comparison of MAD: GLMM vs. Equally Weighted Approach
Observations Greater than the Overall Median

Figure 3.5 shows that MADs of large daily visits are much greater than those
of all visits, which confirms what we observe from Figure 3.4, that influenza peaks
are not well predicted compared to non peaks. In order to solve this problem, we
propose a modified method with unequal weights which is introduced in the next
section.

3.4.2 Prediction with Unequal Weights

We introduce a modified method of using the exploratory model (3.5) by incorpo-
rating unequal weights into the pseudo likelihood estimation (3.10). Specifically,
apply higher weights to the days with larger daily ED visits and lower weights to
those with fewer visits, so that days with larger daily ED visits contribute more in
the estimation and thus can be predicted better. The weighted pseudo likelihood is
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expressed as:

pl
(
αl|R∗

ij’s
)
=
∑
i,j

(Yij + 0.5)s
(
R∗

ij −
∑
i′,j′,l

αlR
∗
i′j′

/
Ni

)2

, (3.13)

where i, j, i′, j′, l are defined the same way as Equation (3.10), and s can be any
positive integers. In our analyzes, we use s equal to positive integers to find the best
weights. Here we add 0.5 to the actual daily counts Yij to avoid zero weights. α̂l’s
are obtained through equation (3.11).

After comparing the prediction performance with s equal to positive integers,
we find that the prediction is best when s = 3. Thus, we use s = 3 in Equation
(3.13) hereafter. However, although the influenza peaks are well predicted via in-
serting proportional weights into the pseudo likelihood, daily visits that are rare are
poorly predicted compared to the equally weighted approach. Therefore, we com-
bine the equally and unequally weighted approaches by choosing each predicted
daily visit that is closer to the observed daily visit. Denote the equally weighted
daily influenza prediction as Ej , the unequally weighted prediction as Uj , and the
combined prediction as Cj , then

Cj = max (Ej, Uj) , j = 1, 2, ..., 1826− P − L.

We plot the MADs of predictions above median for both the equally weighted
approach and the combined approach, which is shown in Figure 3.6. The solid lines
are the equally weighted one-week, two-week, and three-week prior predictions
introduced in Section 3.4.1, with two-week, three-week, and four-week daily ED
visits records, respectively; the dashed lines are those predictions that combine the
equally and unequally weighted approaches. However, from Figure 3.6, the com-
bined approach does not improve the prediction for above median observations, in
fact, the MADs of the combined approach are even a little larger than those of the
equally weighted approach. This is because the proportionally weighted approach
concentrates on accurately predicting high daily observations, i.e., the peaks, while
it loosens the predictions on the non-peaks. Therefore, if we compare the MADs
of daily observations that are greater than the 75%ile, we expect to see an improve-
ment in the prediction by the combined approach, compared to the equally weighted
approach. This is confirmed by Figure 3.7.

Figure 3.8 shows the one-week prior predicted line from the combined ap-
proach, using four weeks records of daily ED visits. In comparison, we also show
the GLMM fitted line and the predicted line using equally weighted pseudo like-
lihood. The plot again shows that the combined approach predicts daily influenza
visits well, with nice performance on both the peaks and non-peaks.
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Figure 3.6: Comparison of MAD: Equally Weighted vs. Combined Approaches
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Figure 3.8: Prediction Comparison of Equal Weights vs. Combined Approach
from Sep. 27, 2004 to July 31, 2009

22



4 Symmetric Multivariate Pearson Type VII Family
and Applications

A characterization of the class of elliptical symmetric distributions, under the fi-
nite second moments assumption, is that all regressions are linear (Nimmo-Smith,
1979). Within the elliptical symmetric class, all regressions are homoscedastic if
and only if the distribution is Gaussian (Kelker, 1970). Given the substantial roles
the Gaussian distribution plays in multivariate statistics, it is of considerable interest
to extend the family by relaxing the homoscedasticity of regressions while retaining
their linearity, as one of the features of Gaussian distributions that one may regard
as questionable is the constant conditional second moments. That is, realizations of
the conditioning variables do not influence the magnitudes of the conditional sec-
ond moments, thus may not represent real stochastic processes.

This section introduces the Multivariate Pearson Type VII (MP VII) family, a
family of multivariate distributions which has the same useful feature that all regres-
sions are linear as Gaussian distributions, and yet its conditional second moments
are not constant like Gaussian. In particular, they are linear in the empirical second
moment of the entire conditioning vector. The development is based on the theory
of elliptical distributions (Kelker 1970; Cambanis, Huang & Simmons, 1981; Fang,
Kotz & Ng, 1990; Fang & Zhang, 1990).

4.1 Introduction to MP VII Family
We first introduce the elliptical family to which the MP VII family belong, followed
by results on the conditional moments and definition of MP VII family.

4.1.1 Elliptical Distribution

Suppose a n×1 random vector Y ∈ Rn has finite second moments and the support
that does not lie in any proper linear subspace. Nimmo-Smith (1979) proved that
Y follows an elliptical distribution, or equivalently a spherical distribution after an
affine transformation, if and only if all regressions are linear. Cambanis, Huang &
Simmons (1981) showed that any elliptical distribution can be expressed uniquely
by the following stochastic representation. Let U (n) denote a random vector dis-
tributed uniformly on the surface of the unit sphere in Rn. Let R be the positive
generating variate of Y and is independent of U (n), with the density of T = R2

given by

πn/2

Γ (n/2)
tn/2−1g (t) ,
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where g satisfies

πn/2

Γ (n/2)

∫ ∞

0

un/2−1g (u) du = 1. (4.1)

Then the distribution of Y is an elliptical distribution with mean µ, positive definite
characteristic matrix Σ, and density generator g, if and only if

Y
d
= µ+RΣ1/2U (n), (4.2)

where the sign d
= means the random vectors on each side of the sign has the same

distribution, and Σ1/2 is the square root matrix of Σ. The density of Y is

|Σ|−1/2 g

(
1

2
(y − µ)

′
Σ−1 (y − µ)

)
.

We use Y ∼ ECn (µ,Σ, g) to denote this distribution. For instance, if R2 has a χ2

distribution with n degrees of freedom, the distribution of Y is multivariate normal
(MVN) with g (t) = e−t/2.

4.1.2 Conditional Second Moments

Consider the partition

Y =

(
Y1

Y2

)
, µ =

(
µ1

µ2

)
, Σ =

(
Σ11 Σ12

Σ21 Σ22

)
, (4.3)

where Y1 and µ1 are m × 1, Σ11 is m × m, and 1 ≤ m < n. The conditional
expectations of elliptical distributions are determined entirely by µ and Σ and are
independent of g (Kelker, 1970):

E [Y1|Y2 = y2] = µ1 +Σ12Σ
−1
22 (y2 − µ2) , (4.4)

The conditional second moments are given by Szablowski (1990) as below:

Cov [Y1|Y2 = y2] =

∫∞
a/2

g∗n−m (2u) du

g∗n−m (a)
Σ11.2, (4.5)

where

g∗k (x) =
π (n−k)/2

Γ ((n− k)/ 2)

∫ ∞

x

(u− x) (n−k)/2−1 g (u) du, (4.6)

a = (y2 − µ2)
′
Σ−1

22 (y2 − µ2) , (4.7)
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and

Σ11.2 = Σ11 −Σ12Σ
−1
22 Σ21. (4.8)

4.1.3 Symmetric Multivariate Pearson Type VII Distribution

When the density of T = R2 is found to be

1

λB (n/2, N − n/2)
(t/λ)n/2−1 (1 + t/λ)−N , t > 0,

i.e., R2/λ has a beta type II distribution with parameters n/2 and N − n/2, then Y
in (4.2) follows the MP VII distribution (Fang, Kotz & Ng, 1990), and,

g (t) =
Γ (N)

Γ (N − n/2)
(πλ)−n/2 (1 + t/λ)−N . (4.9)

REMARK A random variable B is said to have a beta type II distribution with
parameters α and β if B has density

1

B (α, β)
bα−1 (1 + b)−(α+β) , b > 0,

and we shall denote it by B ∼ BeII (α, β).

A special and commonly used distribution in MP VII family is the multivariate
t-distribution (MVt), denoted as MVt (µ,Σ, λ). It satisfies when N = (n + λ)/2
and λ is an integer.

4.2 Property of MP VII Distribution
Here we state a characterization of the MP VII family as a theorem with proof.

THEOREM Suppose Y ∼ ECn (µ,Σ, g) and Y possesses finite second mo-
ments. Consider the partition (4.3) and a defined in (4.7). The conditional second
moments, Cov [Y1|Y2 = y2], are linear in a if and only if the distribution of Y be-
longs to the MP VII family.

Proof Consider the sufficient part first. Apply the Liouville’s integral transfor-
mation (Samko, Kilbas & Marichev, 1993)

Iαf (x) =

∫ ∞

x

f (t) (t− x)α−1 dt

/
Γ (α) , (4.10)
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to the right side of equation (4.6), then

g∗k (x) = π (n−k)/2I (n−k)/2g (x) . (4.11)

Note that equation (4.10) has the following property

d

dx

[
Iα+1f (x)

]
= −Iαf (x) , (4.12)

thus the conditional second moments (4.5) have the following expression:

Cov [Y1|Y2 = y2] =

∫∞
a

Im/2g (2u) du

Im/2g (a)
Σ11.2

=
1
2
Im/2+1g (a)

Im/2g (a)
Σ11.2

= −
1
2
Im/2+1g (a)

d
da
Im/2+1g (a)

Σ11.2.

Therefore, Cov [Y1|Y2 = y2] is linear in a if and only if Im/2+1g (a)
/

d
da
Im/2+1g (a)

= Aa+B with some constants A and B. By solving this ordinary differential equa-
tion, we obtain

Im/2+1g (a) = C (Aa+B)−1/A ,

where A, B, and C are constants. Differentiating both sides l times, where l is the
largest integer which satisfies l ≤ m/2 + 1, we have

(−1)l I
m
2
−l+1g (a) = (−1)l CAlΓ (1/A+ l) (Aa+B)−1/A−l

/
Γ (1/A) .

Using Table 9.3 of Samko, Kilbas & Marichev (1993), we obtain the solution

g (a) = CAm/2+1Γ (1/A+ m/ 2 + 1) (Aa+B)−1/A−m/2−1

, C∗ (1 + a/λ)−N ,

where C∗, λ, and N are constants. The function g, however, has to satisfy (4.1)
because the left side of the equation is the integral of a density over the support.
Therefore,

g (a) =
Γ (N)

Γ (N − n/ 2)
(πλ)−n/2 (1 + a/λ)−N ,

which is the density generator (4.9) of MP VII family.

Now consider the necessary part. If Y belongs to MP VII family, the density
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generator g (t) has the form in (4.9). Then, according to equation (4.6),

g∗n−m (x) =
π− (n−m)/2λ−n/2Γ (N)

Γ (m/ 2) Γ (N − n/ 2)

∫ ∞

x

(u− x)m/2−1 (1 + u/λ)−N dt.

Use integration by parts and repeat (m/ 2− 1) times, we obtain

g∗n−m (x) =
Γ (N − m/ 2)

Γ (N − n/ 2)
(πλ)− (n−m)/2 (1 + x/λ)−N+m/2 .

Then ∫ ∞

a/2

g∗n−m (2u) du

=
Γ (N − m/ 2)

Γ (N − n/ 2)
· λ/ 2

N − m/ 2− 1
· (πλ)− (n−m)/2 · (1 + a/λ)−N+m/2+1

= g∗n−m (a)
a+ λ

2N −m− 2
.

According to equation (4.5), we obtain the expression of the conditional second
moment for MP VII distribution:

Cov [Y1|Y2 = y2] =
a+ λ

2N −m− 2
Σ11.2, (4.13)

which is linear in a. This completes the proof.

4.3 Conditional Prediction Interval for MVt Distribution
We present a scenario where the conditional prediction interval is of interest, and
show that if we erroneously assume MVN distribution when the underlying distri-
bution indeed belongs to the MP VII family, the coverage probability is not nominal
because the conditional second moments behave differently between the two distri-
butions.

Consider n independent random vectors Y1,Y2, . . . ,Yn which are i.i.d. MP VII
distributed, where each Yi, i = 1, . . . , n, are n × 1 vectors. We are interested in
constructing a prediction interval for Yij given other components in Yi and Y

′
j s,

where j = 1, 2, . . . , i − 1, i + 1, . . . , n, i.e. the conditional prediction interval of
Yij|−ij , where Yij|−ij denotes Yij conditioning on Y−ij , and Y−ij denotes all compo-
nents from the k vectors except the jth component in Yi. This prediction interval is
more precise than the unconditional intervals, since it incorporates the information
from the known components of the same vector.
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4.3.1 Multivariate t-Distribution

For computational ease, we use a special distribution within the MP VII family,
called multivariate t-distribution (MVt), to illustrate the conditional prediction in-
terval application afterwards. It satisfies when N = (n + λ)/2 and λ is an integer
in equation (4.9). Denote Y ∼ MVtn (µ,Σ, λ), where λ is a scaler which is the
degrees of freedom. The stochastic representation of MVt distribution is:

Y = µ+ λ1/2Z
/
s, (4.14)

where s follows Chi distribution with degrees of freedom λ, and Z ∼ MVNn (0,Σ).

The univariate case of the MVt distribution is the student t-distribution, which
satisfies when µ and Z in equation (4.14) both reduce to scalers.

4.3.2 Generalized Multivariate t-Distribution

In order to construct the correct MVt-based prediction interval of Yij|−ij and show
that the coverage probability of MVN-based prediction interval is incorrect, we
need to utilize some important properties of a generalized version of the MVt distri-
bution, the so called generalized multivariate t-distribution (GMVt) (Dickey, 1967).

The stochastic representation of the GMVt distribution differs slightly from that
of the MVt distribution:

Y = µ+ λ1/2Z
/
s∗, (4.15)

where the only difference from equation (4.14) is that s∗ follows Chi distribu-
tion with degrees of freedom ν, which adds an additional degrees of freedom to
the distribution. Denote the distribution of Y which satisfies equation (4.15) as
Y ∼ GMVtn (µ,Σ, λ, ν).

When λ = ν, it follows that GMVtn (µ,Σ, λ, λ) = MVtn (µ,Σ, λ), where the
latter is the MVt distribution discussed in Section 4.1.

We list some important properties of the generalized multivariate t-distribution
according to Arellano-Valle & Bolfarine (1995) as follows.

1. Let X ∼ GMVtn (µ,Σ, λ, ν). Then,E [X] = µ and Cov [X] = (λ/ (ν − 2))Σ,
for λ > 1 and ν > 2, respectively.

2. Let X ∼ GMVtn (µ,Σ, λ, ν) and consider partition (4.5), we have

(a) X1 ∼ GMVtm (µ1,Σ11, λ, ν) and X2 ∼ GMVtn−m (µ2,Σ22, λ, ν),
and,
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(b) (X1|X2 = x2) ∼ GMVtm
(
µ1|2,Σ11.2, λq(x2), νm

)
where, for Σ > 0,

µ1|2 = µ1 +Σ12Σ
−1
22 (x2 − µ2) , Σ11.2 = Σ11 −Σ12Σ

−1
22 Σ21,

q (x2) = (x2 − µ2)
′
Σ−1

22 (x2 − µ2),

λa = λ+ a and νm = ν + p− 1.

3. Let X ∼ GMVtn (0, In, λ, ν), where In is the n-dimensional identity ma-
trix. Let A be a n × n symmetric matrix. Then we have that X ′

AX ∼
λBeII (m/2, ν/2) (or, equivalently, (mλ/ν)Fm,ν) if and only if A2 = A and
rank (A) = m, 1 ≤ m ≤ n.

4.3.3 Construction of Conditional Prediction Interval

Now we proceed to the construction of the conditional prediction interval with MVt
as the underlying distribution. For simple notations, consider instead the prediction
interval of Y11|−11, and the following partition:

Y1 =

(
Y11

Y12

)
,µ =

(
µ1

µ2

)
,Σ =

(
σ11 Σ12

Σ21 Σ22

)
. (4.16)

According to previous properties (a), (b) and (c), we obtain the following results.

(a’) Y11|−11 ∼ GMVt1
(
µ1|2, σ11.2, λq(y12), λ1

)
, where

µ1|2 = µ1 + Σ12Σ
−1
22 (y12 − µ2) , σ11.2 = σ11 − Σ12Σ

−1
22 Σ21,

λq(y12) = λ+ (y12 − µ2)
′
Σ−1

22 (y12 − µ2) , λ1 = λ+ p− 1.
(4.17)

(b’) (
Y11|−11−µ1|2)

2

σ2
11.2

∼ λq(y12)BeII (1/2, λ1/2) (or, equivalently,
λq(y12)

λ1
F1,λ1).

Based on result (b’), we can construct the 100(1 − α)% prediction interval of
Y11|−11 for the MVt distributed data:

Y11|−11 ∈ µ1|2 ± |tλ1 (α/ 2)| ·
√

λq(y12)

/
λ1 · σ11.2, (4.18)

where µ1|2, σ11.2, λq(y12) and λ1 are defined in (4.17), tλ1 (α/ 2) is the lower α/ 2
quartile of the t distribution with degrees of freedom λ1. Here we utilize the result
F1,λ1 (x) = t2λ1

(x). When µ and Σ are unknown, and µ̂ and Σ̂ which are the
estimates of µ and Σ are used, thus the prediction interval of Y11|−11 becomes:

Y11|−11 ∈ µ̂1|2 ± |tλ1 (α/ 2)| ·
√

λq(y12)

/
λ1 · σ̂11.2. (4.19)

If the MVN family is erroneously assumed for the MVt distributed data, the
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100 (1− α)% prediction interval of Y11|−11 has the form:

Y11|−11 ∈ µ̂1|2 ± |tk−1 (α/ 2)| ·
√

λ/ (λ− 2) · σ̂11.2, (4.20)

when µ and Σ are unknown.

4.3.4 Coverage Probability of Prediction Intervals

The coverage probability of the MVt-based prediction interval is nominal because
we use correct distribution assumption to construct the intervals. For the MVN-
based prediction intervals,however, because the distributional assumption is incor-
rect, their coverage probability is different from the nominal level, which we show
in the following result.

RESULT Suppose Y1,Y2, . . . ,Yn ∼ MVt (µ,Σ, λ), then, the coverage prob-
ability of the MVN-based 100 (1− α)% prediction interval of Y11|−11 is different
from 1− α.

Proof According to (4.20), the coverage probability of the MVN-based prediction
interval can be expressed as:

PCoverage = P

(∣∣∣∣∣ Y11|−11 − µ̂1|2√
λ/ (λ− 2)σ̂11.2

∣∣∣∣∣ ≤ |tk−1 (α/ 2)|

)

= P

((
Y11|−11 − µ̂1|2

)2
λ

λ−2
σ̂2
11.2

≤ F1,k−1 (1− α)

)
. (4.21)

According to Results (a’) and (b’) in Section 4.3.3, Equation (4.21) is equivalent to:

P

((
Y11|−11 − µ̂1|2

)2
σ̂2
11.2

≤
[

λ1

λq(y12)

· λ

λ− 2
· F1,k−1 (1− α)

F1,λ1 (1− α)

]
·
λq(y12)

λ1

F1,λq(y12)

)
,

where Fa,b (1− α) is the lower 1 − α quartile of F distribution with degrees of
freedom a and b. According to (b’), it is clear that PCoverage ̸= 1− α as the quantity
in the square bracket is not equal to 1.

4.3.5 Simulation Results

Consider the following scenario. We have multivariate data for N subjects. For ex-
ample, the multivariate measurements can be any characteristics of the subjects such
as body mass index, gender, blood pressure, etc., and they tend to be correlated. Al-
though in literature we usually assume MVN for the underlying distribution, in
reality, such data may be close to MVt. Suppose one of the measurement of one
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subject is randomly missing, and the conditional prediction interval of this miss-
ing measurement is of interest. Conditional prediction intervals are more accurate
than the commonly used marginal prediction intervals, since they incorporate the
observed information from the the subject him/herself in addition to observations
from other subjects. However, according to our previous result, the MVN-based
conditional prediction interval is incorrect as it does not possess the nominal cov-
erage probability if the underlying distribution is MVt, and we illustrate this point
using a simulation below.

The simulation study is described as follows:

1. Randomly generate N (N is large) independent p-variate Yi’s following MVt

distribution: Yi
i.i.d.∼ MVtp (µ,Σ, λ) , i = 1, 2, . . . , N .

2. Randomly select an observation Yi, and calculate the conditional prediction
intervals for (Yij|Y−ij), where j = 1, 2, . . . , p, respectively, using both the
MVt- and MVN-based formulae.

3. Record the bounds of the prediction interval and its width. Record also
whether the true missing value lies in the constructed prediction intervals.

4. Repeat Steps 1, 2, and 3 for K times, where K is large.

In our simulation, we set N = 1000 and K = 1000. We apply different λ and p
values to see how the two types of prediction intervals behave. For correctly con-
structed 100(1− α)% conditional prediction intervals, we expect the probability of
simultaneously covering s components of a p-variate vector Yi is Cs

pα
s (1− α)p−s.

Therefore, the expected counts of simultaneously covering s components of Yi with
K simulations are KCs

pα
s (1− α)p−s. By comparing the covered counts with the

MVt- and MVN-based intervals to the expected counts, we can tell whether the
MVN-based prediction intervals have nominal coverage. In particular, we show the
simulation results of the 95% conditional prediction intervals in Figures 4.1 and 4.2
for λ = 100 and 3, respectively, and p = 5.
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Figure 4.1: Frequencies of Covered Prediction Intervals (df=100)

0
2

0
0

4
0

0
6

0
0

8
0

0

t N E t N E t N E t N E t N E t N E

0 1 2 3 4 5

MVt−based
MVN−based
Expected

Figure 4.2: Frequencies of Covered Prediction Intervals (df=3)

In the two figures, the light and dark green bars represent the covered counts
of MVt and MVN-based prediction intervals, respectively, while the brown bars
represent the expected covered counts. As is shown from Figure 4.1, there is not
much difference among the three when λ = 100. This is reasonable due to the fact
that as λ gets large for MVt, the distribution tends to be more similar to a MVN
distribution. Therefore both of the covered counts are close to the expected ones.
However, when λ is small, that is, when the MVt distribution is quite different from
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the MVN distribution, the MVN-based prediction intervals do not have nominal
coverage probabilities, as shown in Figure 4.2.

We also compare the width of MVt-based prediction intervals with that of the
MVN-based intervals. We only show interval widths for Y1|−1 in Figures 4.3 and
4.4: others for Yj|−j , where j = 2, 3, . . . , p, look similar.

There is no noticeable difference between the two types of intervals when λ is
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Figure 4.3: Comparison of the Widths of Prediction Intervals (df=100)

large. However, when λ is small, Figure 4.4 shows that the MVt-based intervals
behave better than the MVN counterparts when the interval width is large, which
shows nicely of the unique property of MVt distributions that their conditional sec-
ond moments are linear in the empirical second moments of the conditioning vector,
as contrasted to the constant conditional second moments of MVN distributions.
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4.4 Graphical Check of MP VII Distribution
In this section we introduce a graphical method to qualitatively check the MP VII
distribution vs. MVN.

This method is based on the unique conditional second moments property of
the MP VII distribution, as is described in Section 4.2. Since its conditional second
moment is linear in the empirical second moment of the entire conditioning vector,
we expect that if we fit a LOWESS curve of the two quantities, the line should be
approximately linear with a non-zero slope. Specifically, the conditional second
moment can be replaced by the empirical conditional second moment, since in re-
ality, the former is usually unknown. This can be done as follows: consider the data
Yi ∼ MP VII (µ,Σ, g) , i = 1, 2, . . . , N , the empirical conditional second moments
can be calculated as

(
Yi1 − µ1 −Σ12Σ

−1
22 (Yi2 − µ2)

)2, and the empirical second
moments of the conditioning vector are denoted as (Yi2 − µ2)

′
Σ−1

22 (Yi2 − µ2). We
can then check the LOWESS plot to see if there is a linear relationship between the
two. Here we choose the second to last components of each vector as the condition-
ing vector, but theoretically we should alternate the conditioning vectors and check
each time to see if the conditional second moments are linear in any conditioning
vectors of the given data. We show the LOWESS plot in Figure 4.5 as an example,
where there are 1000 observations in the data and are simulated from a 5-variate
MVt distribution with df = 3.
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Figure 4.5: LOWESS from MVt Distribution
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Figure 4.6: LOWESS from MVN Distribution
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Figure 4.5 shows clearly a straight smoothed line, thus verifies there is a lin-
ear relationship with non-zero slope between the two variables. As a result, we
can tell that the data is MP VII distributed from a LOWESS plot like Figure 4.5.
For comparison purpose, we also generate Y

′
i s from a MVN distribution with the

same mean and covariance matrix as the MVt distributions, and the corresponding
LOWESS plot is shown in Figure 4.6. It is clear that the empirical conditional sec-
ond moments do not depend on the empirical second moments of the conditioning
vector, which is consistent with the fact that the conditional second moments of a
MVN distribution are constant.
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5 Conclusion and Discussions
The presented work aims to predict daily ED influenza visits in Edmonton. The
prediction is based on the ED visits data collected over 10 minutes intervals by
ARTSSN, from August 1, 2004 to July 31, 2009. We first extract the systematic
trend of ED influenza visits by fitting a GLMM, with natural cubic splines of the
dates as explanatory variables. The daily variations can be represented by the resid-
uals obtained from the observed daily counts and estimated daily counts from the
GLMM. We then decompose the daily variations into subareas in Edmonton accord-
ing to first three postal codes recorded in the data. Exploratory modeling is used to
model the decomposed daily variations, assuming that the expected variation of a
subarea on one day can be linearly represented by the variations of the same sub-
area on previous days, as well as the variations on previous days of all neighboring
subareas. Parameter estimations are obtained through pseudo-likelihood method.
By adding proportional weights to the pseudo-likelihood, and combining the re-
sults with those from the commonly used equally weighted pseudo-likelihood, we
are able to predict the daily ED influenza visits precisely enough. Specifically, the
performance of the prediction of peaking visits is good. The prediction of the peaks
plays a more important role since policy makers and healthcare providers need to
be better prepared for influenza epidemics.

Our prediction method takes both temporal and spatial correlations into con-
sideration, thus provides more accurate predictions. The modeling and analytical
methods are also of computational ease, and therefore can be utilized by scientists
in various fields. We expect the proposed prediction method to inform healthcare
providers and policy makers weeks in advance regarding the potential epidemics of
influenza for proper preparation and potential alleviation of influenza epidemics.

Despite the merits mentioned above, we also have a few suggestions regarding
future work. First of all, we will seek non-parametric methods to construct confi-
dence intervals or confidence bands for the predictions. Since ARTSSN has other
data sources including health link telephone calls and school absenteeism data, we
could apply similar models to them to get predictions for each of the data sources.
After that, we can predict the actual daily influenza cases (lab confirmed influenza
cases) using prior information combined from all other three data sources, with
sufficient days ahead to be useful for AHS. Finally, the prediction method can be
applied to other communicable diseases.
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