
ANALYSING DATA SECURITY REQUIREMENTS OF ANDROID MOBILE
BANKING APPLICATION

Co-authored by

Student: Shikhar Bhatnagar

Primary advisor: Yasir Malik

Secondary advisor: Sergey Butakov

Project report

Submitted to the Faculty of Graduate Studies,
Concordia University of Edmonton

In Partial Fulfillment of the

Requirements for the Final

Research Project for the Degree

MASTER OF INFORMATION SYSTEMS SECURITY

MANAGEMENT

Concordia University of Edmonton

FACULTY OF GRADUATE STUDIES

Edmonton, Alberta

April 2018

Analysing Data Security Requirements of Android

Mobile Banking Application

Shikhar Bhatnagar, Yasir Malik, Sergey Butakov
Department of Information Systems Security Management

Concordia University of Edmonton

sbhatna1@student.concordia.ab.ca

Abstract - Mobile banking applications are at high risk of cyber

attacks due to security vulnerabilities in their underlying

operating systems. Android is the most popular operating system

with feature like openness and customization. The Inter-Process

Communication mechanism in Android enables applications to

communicate, share data and reuse functionality between them.

However, if used incorrectly, it can become attack surface, which

allows malicious applications to exploit devices and compromise

sensitive financial information. In this research, fuzzing approach

is studied to analyse the data security requirement of Android

mobile banking application during the inter process

communication. Firstly, experimental setup automatically

constructs application behaviour, after that generative fuzzing is

applied to the information collected during behaviour analysis to

analyse the data leak vulnerabilities. Experimental analysis and

results shows the easily exploitable entry points in the

applications under test.

Keywords- Intent, Fuzzing, Generative fuzzing, Mutation

fuzzing, Security testing, Data Leaks

I. INTRODUCTION

Internet and Smartphone usage continue to rise rapidly, and

variety of applications and services are available for user’s

convenience and entertainment. Among other services, use of

mobile banking is becoming common and Canadian banks are

offering services and applications that allow its customer to

carry out everyday banking ubiquitously through their mobile

devices.

While these services and applications greatly improve

productivity, they also introduce several new risks of cyber

attacks. Mobile banking applications are in peril of cyber

attacks due to security vulnerabilities and loopholes in the

underlying operating systems. Among all, Android operating

system has become a prime target for attackers as most of the

Smartphone market is currently dominated by Android users.

Due to the openness and customization feature in Android,

applications can share resources, data and reuse functionality

between them. Inter-component communication (ICC) model

is partly contributing in success of collaborative framework for

Android operating system [1]. However, if used incorrectly, it

can become attack surface, which allows malicious

applications to exploit devices and compromise confidentiality,

integrity and availability of user’s personal and financial

information. Android operating system which is referred as

Android for the rest of the paper.

The collaborative model for Android framework provides

functionality like code reusability and service sharing [2]. For

instance, if banking application needs to take a picture of the

cheque, camera application programming interface (API) can

be called to carry out this task rather than writing the whole

code again. Messaging object called intent is used to make

communication in between components of same application as

well as different applications. The problem arises when the

developer does not test the application against the security

requirements/guideline provided by OWASP Mobile

Application Security Verification Standard (MASVS) [3].

Attackers use evolving techniques to bypass the security

mechanisms put in place by the Android to prevent user data

abuse. Bankbot Trojan [4] is one such attack, which intercepts

the inter-component communication to perform activity

hijacking on the target financial application, and it

subsequently tricks the user with fake user interface to steal the

credentials [5].

The objective of this research is to analyse the data security

requirements via fuzz testing the financial application's intents

for data leaks. According to Google security report, the data

leakage has increased up to 10 times as compared to the

previous year [1], [6]. Consider a scenario in which financial

application uses camera API to take picture of check to deposit

money into the user account. Since no intent filter can be

defined to use such service, thus malicious component such as

Bankbot Trojan can attempt to hijack the activity of camera

API causing potentially data loss and fraudulent transactions.

This project analyses the security vetting of intents against the

security requirements in OWASP Mobile Application Security

Vetting Standard.

The project also intends to test the activities and services

that financial applications use to transfer money via fuzzed

intent injection, also verifying if this leads to data loss and

determine whether it comply with OWASP mobile security

best practices or not [7]. The research outcomes will help

vendors, security professional and application developer to

 2

strengthen application security requirements and enhance

security of their products against attacks data leak.

II. RELATED WORKS

Recently studies has been carried out to test the mobile

banking applications against the exploited vulnerabilities [8],

[9], [10]. In current banking application model, banks have full

control over the server end, thus they have adequate measures

in place to keep the data intact, but have no or little control at

the user end. This make user end prone to attack and hence the

scope of the research is restricted to end user security analysis.

OWASP MASVS [3] is a framework of security

requirements to design, develop and test mobile applications,

comprising four security verification levels namely L1, L2, L3

and L4. Where L4 being the topmost verification level and L1

being the standard security which includes the list of best

security practices that any mobile application should adheres to

and comply with. Level L2 consists of basic requirements and

additional security controls, which are necessary for securing

applications that handles sensitive information like mobile

banking. The purpose of this guide is to make developers

aware of security mistakes during the development phase, and

focus to integrate the security in the development lifecycle.

This helps to make the code more robust and end product to

have less vulnerabilities. This guide can also be used as a

reference for security testing methodologies.

Explored areas of testing along with the type of testing to

verify the security of Android applications [3], [8], [11], [12].

Some issues/gaps were found unaddressed such as dynamic

code loading, library spoofing, data capability leaks [13]

etcetera. The code reusability is an Android feature that allows

application developers to inherit the functionality from the

code, instead of writing its own. Although, it also inherits the

vulnerabilities of the third party developer's library, if imported

carelessly (without testing the code). Android itself doesn't

have a mechanism to detect whether used library is spoofed or

benign [12]. Also, Android does not verify the loaded code

integrity, which means it doesn't have the ability to

differentiate if the loaded code was fetched remotely or from

package itself, however the usage of latter one involves code

injection attacks from other applications [14]. This makes an

application exploitable, if it does not undergo regressive

testing.

Study [15] points to world writable files risk. Another study

[11] shows that 33 percent of the financial applications that

NowSecure tested permits other applications to make changes

to its files. This makes financial applications vulnerable to data

leakage. In study [9] author tried to test security features of

mobile banking application by exploiting man-in-the-middle

vulnerability. They tested 19 Indian public sector mobile

banking applications on Android platform, and observed that

90 percent of the applications failed to verify origin of

certificates, and even accepted third party certificates. This led

to intrusion of third party entity to eavesdrop the

communication between application and server. In [16] author

studied security of Android banking applications and banking

server through reverse engineering the application. The temper

able source code of an application which handles sensitive data

is dangerous. This information can be used to apprehend the

inner functioning of an application, which if misused can cause

issues like SYN flood attack on bank’s server. There is also a

possibility to repackage the banking application with malicious

URLs to obtain user credentials by circulating it as third party

application. As per to a report [17], some Canadian banks lack

proper measures to detect duplication of cheque deposits. This

can motivate attacker to target financial applications for fraud.

Intents are messaging objects which are used to

communicate between components of applications and to

trigger the components to perform some specified action.

Components of Android are activity, service, broadcast

receiver, and content provider (does not use intents for

communication) [18]. The attributes of intent structure

includes action, data, type, component and extras [19].

Financial applications that are registered to receive

broadcast intent such as Alarm, Boot Completed notification

etcetera without imposing control through permission. Here

broadcast intent can be spoofed to cause security risk such as

data leakage, as the application would not be able to identify if

it came from system event or a malicious application [15].

Testing intents is important, since intents used in application

component's communication are not sanitised, and can be

misused by serving as attack surface, abusing the exported

components of an application to carry out attacks such as intent

interception, intent spoofing, intent hijacking, and data leaks.

Number of testing techniques studied to perform application

security vetting of intents include Taint analysis [20], [21],

[22], Fuzzing [1], [13], [23], [24], [25] and reverse engineering

[3].

To the best of our knowledge, fuzzers can identify the

exported services and activities, which undergo stress test

yielding crash reports. This is basically caused due to

programming faults, where developer unintentionally fails to

implement proper exception handling. In case of data leaks,

studies [1], [13] closely relates to our approach. They

implemented permission checking module methodology in

detecting ICC data leak vulnerability. List of ICC

vulnerabilities includes null pointer exception, intent

interception, intent spoofing, intent hijacking, and data leaks.

While this study basically covers activity hijacking, exception

handling along with data leaks on the basis of scenarios

discussed earlier, caused due to usage of non vetted intents

communicating with exported and non-exported components in

financial applications. This study aims to analyze the data

security requirements of Android mobile banking applications

by employing hybrid fuzz testing approach, targeting to test the

Level 2 security requirements of MASVS OWASP guideline.

Control flow graph was used to construct the application

behavior to analyze the data flow during inter-process

communication. Experiments were conducted on publically

available applications for testing purpose which were side

loaded on emulator. Results may vary as per to final version to

application which is available to the end user. Testing financial

applications Testapp4 and Testapp5 detected that the device

was rooted terminating the application right away.

 3

III. EXPERIMENTAL SETUP AND USED METHODOLOGY

 The focus of this study is to analyse if the intents of

financial applications are thoroughly vetted, so it does not

leave any security loophole to allow malicious applications

communicate through intent, and exploit activity/service which

is not meant to be accessible. Fuzzing technique is used to find

zero day security vulnerabilities in applications. Firstly,

mutation fuzzing was applied to test the financial applications,

and findings were later used to implement the hybrid fuzzing

approach.

 For mutation fuzzing test bed, Drozer [26], an open source

tool by MWR InfoSecurity was used. This tool allows

interacting with the underlying operating system and other

applications to make use of Android Inter-Process

Communication (IPC) mechanism. Some modifications were

made to Drozer by adding a module named intent.fuzzinozer

[27]. Drozer agent was installed on Genymotion Android

emulator [28] to use server embedded on agent for establishing

session between Android device and host machine. Fuzzinozer

is a client side injection tool which injects intents for fuzz

testing.

Fuzzinozer module provides utility of features such as

broadcast intent, dos attack, run seed, select fuzz parameters

and fuzzing intent. Out of which, fuzzing intent and run seed

were used. For fuzzing intent functionality, target application’s

package name needs to be specified which automatically

mutate the intents to target Application package (APK)

activities. While with run seed feature, manually created list of

fuzzed intents were fed to application components. The

attributes of intent are mutated on basis of algorithms defined

in the fuzzinozer module. The input generation method is

defined for different attributes. For example, input generator

function for URI is illustrated in the Snippet 1.

def generate_random_uri():

return random.choice(["http", "https"]) + "://"

+ str(string_generator(random.randint(1, 100)))

+ random.choice(domains)

Snippet 1 URI input generator function in fuzzinozer module [27]

Where the selection in between http or https is made,

followed by special characters "://". And random string of

value between 1 and 100 is appended, followed by domain. In

the same manner, other attributes of intent are also fuzzed as

per to respective pre-defined generation algorithm in the

module. The fuzzinozer was used to test the financial

applications and yield results like like null pointer exception,

illegal argument exception and runtime exception.

This possibility to reuse this collected information as input

motivated this study to fuzz test other components as well. As

mentioned in Experimental setup Figure 1, this study made use

of different frameworks including MARA [29], Drozer and

Fuzzinozer. For hybrid (mutation + generation) testing, the

methodology includes following steps:

1.Identification of exported as well as non-exported

components by statically analysing the Android manifest file

of the application.

2.Gather other relevant information about intent that is

fuzzable such as action and type of data that it tends to receive

through IPC by checking intent filter. For instance, action

attribute can be fuzzed with options such as Action_Main,

Action_Edit, Action_View etcetera, and to be fed as input

along with other attributes targeting the component.

3.Implemented use of analyser to get the control flow graph

to construct the application behaviour to analyze the data flow

during inter-process communication. Also statically collected

the string values for extras field in intent structure with

analyser.

4.Created null intent to test the target component identified

in first step and apply following fuzzer steps to find the

vulnerable entry point in an application.

5.Mutation test results helped to create seed file for

generative testing along with manually established number of

random combinations filling up the intent attributes i.e.

“Action“, ”Data”, ”Category” and “Extras” to test data flow

components

6.Performed intent injection using seed file to hit the target

component.

7.Monitor the logs to determine which test case caused the

data leak.

8.Verify the results with Android Debug Bridge (adb)

command and list down the vulnerable application.

Figure 1 System diagram for testing setup environment

 4

IV. RESULTS

Mostly fuzzinozer results represents the improper exception

handling by developers. While in addition to that, experimental

setup was also able to point out the architectural security

weakness.

$ adb shell am start -n

net.one97.Testapp2/.wallet.activity.MoneyTransfer

Activity

Starting: Intent { act=android.intent.action.SENDTO

dat=63578888

cmp=net.one97.Testapp2/.wallet.activity.MoneyTransfe

rActivity }

Snippet 2 Activity Manager sending null intent to test money
transfer activity in financial application Testapp2

From Snippet 3, it is evident that Testapp2 leaked Intent

Receiver at “MoneyTransferActivity“, allowing

unauthorized access bypassing authentication method, causing

malicious application to inject intents to target this activity and

access components without any required permission. Although

this activity is not even categorised as exported, still no

restriction have been applied to it. The fault lies with the

developer of the application as if component is marked non-

exported, it should at least be protected with some permissions.

Currently the exploit that this study can concur is that

malicious application can use this activity to transfer money

into different accounts without user's consent. All that it needs

is access to add extras, money amount and phone number to

transfer sum with logged in user. This possible data leaks can

cause financial fraud.

04-12 18:31:17.375 583 604 I ActivityManager:

Displayed

net.one97.Testapp2/.wallet.activity.MoneyTransferA

ctivity: +1s150ms

04-12 18:31:17.821 3656 3676 W System.err:

net.one97.Testapp2.common.b.c:

{"type":null,"requestGuid":null,"orderId":null,"st

atus":null,"statusCode":"403","statusMessage":"Una

uthorized Access","response":null,"metadata":null}

04-12 18:32:21.476 3656 3656 E ActivityThread:

Activity

net.one97.Testapp2.wallet.activity.MoneyTransferAc

tivity has leaked IntentReceiver

net.one97.Testapp2.wallet.f.c$a@9492992 that was

originally registered here. Are you missing a call

to unregisterReceiver()?

04-12 18:32:21.476 3656 3656 E ActivityThread:

android.app.IntentReceiverLeaked: Activity

net.one97.Testapp2.wallet.activity.MoneyTransferAc

tivity has leaked IntentReceiver

net.one97.Testapp2.wallet.f.c$a@9492992

Snippet 3 Leaked intent receiver causing activity bypassing
authentication method

And when tried to open story camera activity of Testapp2

with Snippet 4 command, application crashed.

$ adb shell am start -n

net.one97.Testapp2/.social.activity.AJRUserS

toryCamera

Snippet 4 Access camera activity in financial application Testapp2
caused the application to crash in Genymotion

 The mutated intents injected through Fuzzinozer were able

to detect exception handling errors including null pointer

exception, illegal argument exception and runtime exception

violating the V7: Code Quality and Build Setting requirements

in OWASP MASVS guideline, leading abnormal termination

of test applications.

 Null pointer exception was identified in financial application

Testapp2 which occurred due to null object referenced to

interface method as mentioned in log file of Snippet 5.

 Financial application Testapp1 crashed with intent injection

on "DeveloperConfigRcsFlagsActivity" with the

runtime exception.

 Financial application Testapp3 crashed with illegal

argument exception during fuzz intent injection on

"SMFeedbackActivity " as shown in Snippet 7

12-04 17:14:17.100 5732 5732 F fuzzing_intent:

type: fuzzing package: net.one97.Testapp2 component:

net.one97.Testapp2.movies.activity.AJRCinemasSearchL

anding data_uri:

http://cXxw2GJyngEL5Xad4EBuMzt5j6rrs5wKW9psqmbXWn4QE

fElf94SrQKhUbsfSMC5b3xX03.gov category:

android.intent.category.CAR_MODE action:

android.intent.action.PACKAGE_RESTARTED flag:

ACTIVITY_NO_USER_ACTION extra_type: boolean

extra_key: android.intent.extra.UID extra_value:

True

--------- beginning of crash

12-04 17:14:18.223 1498 1498 E AndroidRuntime:

Process: net.one97.Testapp2, PID: 1498

--------- beginning of main

12-04 17:14:18.223 1498 1498 E AndroidRuntime:

java.lang.RuntimeException: Unable to start activity

ComponentInfo{net.one97.Testapp2/net.one97.Testapp2.

movies.activity.AJRCinemasSearchLanding}:

java.lang.NullPointerException: Attempt to invoke

interface method 'int java.util.Map.size()' on a

null object reference

Snippet 5 Null pointer exception in financial application Testapp2

 5

12-04 18:12:31.183 17198 17198 F fuzzing_intent:

type: fuzzing package:

com.Testapp1.android.p2pmobile component:

com.Testapp1.android.foundation.presentation.activit

y.DeveloperConfigRcsFlagsActivity data_uri:

http://nkPZ.com category:

android.intent.category.APP_MARKET action:

android.intent.action.TIME_TICK flag:

ACTIVITY_LAUNCHED_FROM_HISTORY extra_type: boolean

extra_key: android.intent.extra.KEY_EVENT

extra_value: True

12-04 18:12:32.303 11592 11592 E AndroidRuntime:

java.lang.RuntimeException: Unable to start

activity

ComponentInfo{com.Testapp1.android.p2pmobile/com.T

estapp1.android.foundation.presentation.activity.D

eveloperConfigRcsFlagsActivity}:com.Testapp1.andro

id.foundation.core.DesignByContract$DbCEnsureExcep

tion: ### FAILED ENSURE: !!! Usage of this

Activity is only allowed in debug mode !!!

Snippet 6 Runtime exception in financial application Testapp1

03-11 22:16:12.637 14431 14431 F fuzzing_intent:

type: fuzzing package: com.Testapp3 component:

com.surveymonkey.surveymonkeyandroidsdk.SMFeedbackAc

tivity data_uri:

http://a5mOkhTgSGvkSrHQXN43DmmLXKL3wpVFhPbqQ.mil

scategory: android.intent.category.PREFERENCE

action: android.intent.action.UID_REMOVED flag:

ACTIVITY_RESET_TASK_IF_NEEDED extra_type: boolean

extra_key: android.intent.extra.ORIGINATING_URI

extra_value: False

--------- beginning of crash

03-11 22:16:15.207 11503 11503 E AndroidRuntime:

FATAL EXCEPTION: main

03-11 22:16:15.207 11503 11503 E AndroidRuntime:

Process: com.Testapp3, PID: 11503

03-11 22:16:15.207 11503 11503 E AndroidRuntime:

java.lang.RuntimeException: Unable to destroy

activity

{com.Testapp3/com.surveymonkey.surveymonkeyandroid

sdk.SMFeedbackActivity}:

java.lang.IllegalArgumentException: Receiver not

registered: null

Snippet 7 illegal argument exception in Testapp3

V. CONCLUSION AND RECOMMENDATIONS

 This study contributes to the data security analysis using

Fuzzing approach to test components that are meant to be

private, but developer didn't assigned the proper permission on

intent receiver. And thus forged intents can cause data security

leakage as found in Testapp2. This project propose

authentication and session management requirements of

MASVS to validate activities and services that are not

accessible through intents or any other means of

communication without the authentication validation in

OWASP.

 The taint analysis of intents can be an effective way in

detecting unintended data leakage problem in financial

applications during the lifecycle of component. This approach

has been matured to a great extent by peer researchers.

Application developers can implement usage of this testing

method in detecting application colluding through inter-app

data flows which is conceivable via malware [30].

 The analysis of financial applications conclude that the

financial applications intents that carry sensitive information to

communicate across application must be protected by

permissions. Since some Trojan (Bankbot) variants [31] can

detect the device it is running on and did not worked with

Android emulator, and some probably did not worked with the

dataset of financial applications used in this project. Study also

depicts that few financial applications can detect the device it

is running on, and if the running device has Google play

services or not. Hypothetically, there is also a slight possibility

for banking server to detect the version of application

attempting to connect with. We recommend the financial

applications should make user to update it to the latest version

through Google play. This step can verify enforced certificate

pinning and reduce the attacks carried out via application side

loading.

REFERENCES

[1] W. Tianjun and Y. Yuexiang, "Crafting Intents to Detect

ICC Vulnerabilities of Android Apps," in International

Conference on Computational Intelligence and Security,

2016.

[2] A. K. Jha and W. J. Lee, "An empirical study of

collaborative model and its security risk in Android,"

Journal of Systems and Software, 2017.

[3] B. Mueller, S. Schleier, S. Corbiaux, J. Willemsen, A.

Shrivastava, A. Temmar, A. Antukh, R. Martelloni, S.

Seys, P. Singh, F. Stillavato and A. Sejpal, "About the

Standard," FOREWORD BY BERNHARD MUELLER,

OWASP MOBILE PROJECT, p. 7, 2017.

[4] Dr.WEB, "Android BankBot," [Online]. Available:

https://vms.drweb.com/virus/?i=14895561&lng=en.

[Accessed November 2017].

[5] Z. WANG, C. LI, Y. GUAN, Y. XUE and Y. DONG,

"ActivityHijacker: Hijacking the Android Activity

Component for Sensitive Data," in 25th International

Conference on Computer Communication and Networks,

2016.

[6] Google, "Android Security 2016 Year In Review," March

2017. [Online]. Available:

https://source.android.com/security/reports/Google_Andr

oid_Security_2016_Report_Final.pdf. [Accessed

September 2017].

 6

[7] OWASP, "OWASP Mobile Security Project," [Online].

Available:

https://www.owasp.org/index.php/OWASP_Mobile_Secu

rity_Project#tab=Secure_M-Development. [Accessed

Novenmber 2017].

[8] S. Bojjagani and V. N. Sastry, "STAMBA: Security

Testing for Android Mobile Banking Apps," in Advances

in Signal Processing and Intelligent Recognition Systems,

vol. 425, Springer, Cham, 2016, pp. 671-683.

[9] S. Kaka, V. N. Sastry and R. R. Maiti, "On the MitM

vulnerability in mobile banking applications for android

devices," in IEEE International Conference on Advanced

Networks and Telecommunications Systems (ANTS),

2016.

[10] B. Panja, D. Fattaleh, M. Mercado, A. Robinson and P.

Meharia, "Cybersecurity in banking and financial sector:

Security analysis of a mobile banking application," in

International Conference on Collaboration Technologies

and Systems (CTS), San Diego, 2013.

[11] C. Thompson, R. Bhatt and R. Leininger, "Mobile

Banking Applications Security Challenges For Banks,"

2017. [Online]. Available:

https://www.accenture.com/t20170421T060949__w__/us

-en/_acnmedia/PDF-49/Accenture-Mobile-Banking-

Apps-Security-Challenges-Banks.pdf. [Accessed October

2017].

[12] D. Titze and J. Schütte, "Preventing library spoofing on

android.," in Trustcom/BigDataSE/ISPA, 2015.

[13] K. Yang, J. Zhuge, Y. Wang, L. Zhou and H. Duan,

"IntentFuzzer: detecting capability leaks of android

applications," in Proceedings of the 9th ACM symposium

on Information, computer and communications security,

2014.

[14] Z. Qu, S. Alam, Y. Chen, X. Zhou, W. Hong and R.

Riley, "DYDROID: Measuring Dynamic Code Loading

and Its Security Implications in Android Applications," in

47th Annual IEEE/IFIP International Conference on

Dependable Systems and Networks (DSN), Denver, 2017.

[15] F. H. Shezan, S. F. Afroze and A. Iqbal, "Vulnerability

detection in recent Android apps: An empirical study," in

International Conference on Networking, Systems and

Security (NSysS), 2017.

[16] Y. Kouraogo, K. Zkik and G. Orhanou, "Attacks on

Android banking applications," in International

Conference on Engineering & MIS (ICEMIS), 2016.

[17] R. Marchitelli, "When banks cash your same cheque

twice, you may be on the hook to pay," April 2018.

[Online]. Available:

http://www.cbc.ca/news/business/duplicate-deposits-

mobile-chequing-banks-1.4584304.

[18] Android Developers, "Application Components,"

[Online]. Available:

https://developer.android.com/guide/components/fundam

entals.html. [Accessed 2017].

[19] Android Developers, "Intent Structure," [Online].

Available:

https://developer.android.com/reference/android/content/I

ntent.html. [Accessed 2017].

[20] L. Li, A. Bartel, T. F. Bissyandé, J. Klein, Y. L. Traon, S.

Arzt, S. Rasthofer, E. Bodden, D. Octeau and P.

McDaniel, "Iccta: Detecting inter-component privacy

leaks in android apps," in Proceedings of the 37th

International Conference on Software Engineering, 2015.

[21] F. Wei, S. Roy and X. Ou, "Amandroid: A precise and

general inter-component data flow analysis framework

for security vetting of android apps," in Proceedings of

the 2014 ACM SIGSAC Conference on Computer and

Communications Security, 2014.

[22] W. Klieber, L. Flynn, A. Bhosale, L. Jia and L. Bauer,

"Android taint flow analysis for app sets," in Proceedings

of the 3rd ACM SIGPLAN International Workshop on the

State of the Art in Java Program Analysis, 2014.

[23] R. Sasnauskas and J. Regehr, "Intent fuzzer: crafting

intents of death," in Proceedings of the 2014 Joint

International Workshop on Dynamic Analysis (WODA)

and Software and System Performance Testing,

Debugging, and Analytics (PERTEA), 2014.

[24] Y. Wang, J. Zhuge, D. Sun, W. Liu and F. Li,

"ActivityFuzzer: Detecting the Security Vulnerabilities of

Android Activity Components".

[25] J. Wang, B. Chen, L. Wei and Y. Liu, "Skyfire: Data-

driven seed generation for fuzzing," in IEEE Symposium

on Security and Privacy (SP), 2017.

[26] MWR InfoSecurity, "Drozer tool," [Online]. Available:

https://labs.mwrinfosecurity.com/tools/drozer/.

[27] R. Ionescu and C. S. Popescu, "Drozer Module

Fuzzinozer," [Online]. Available:

https://github.com/mwrlabs/drozer-

modules/blob/master/intents/fuzzinozer.py. [Accessed

2017].

[28] Genymotion, "Genymotion Android Emulator," [Online].

Available: https://www.genymotion.com/. [Accessed

2017].

[29] "MARA Framework," [Online]. Available:

https://github.com/xtiankisutsa/MARA_Framework.

[Accessed 2017].

[30] A. Bosu, F. Liu, D. (. Yao and G. Wang, "Collusive Data

Leak and More: Large-scale Threat Analysis of Inter-app

Communications," in Proceedings of the 2017 ACM on

Asia Conference on Computer and Communications

Security, 2017.

[31] Virus Total, "Bankbot Variants," [Online]. Available:

https://www.virustotal.com. [Accessed 2018].

