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. ABSTRACT

'3,'\; . This thesis is devoted to the study of mathematical models p
which have been proposed tp describe the activities of the nerve cell

The models con51dered can be classified into two basic categories.

| The models in the first category are those vhich describe the )
electrical behavior of the nerve membrane.~ Several mathematical model X
which describe the electrical behavior of the Loligo giant nerve axon |
‘fp7 membrane are considered It will be shown that the models satisfyka
. ;‘ generalized formnlation.3 These models”for nerve excitation, impulseb
| "initiaéion, are extbnded to incorporate the phenomena of impulse
“fipg_ propagation in the nerve. One of the excitation models, that proposed
L .§F~ by Hodgkin and Huxley (1952d) is modified to describe excitation and {
‘ propagation in my¢1inated nerves._ Finally two models are considered which :,

account for the affect of the geometry of the dendrites on synaptic

- _A...':."i«‘ J.nput,

"3_7.)/5Q:}ya The second category of m$£hema£1¢;iﬁsE&ei§”;r; those which fh~7

_ describe the repetitive impulse activity of the nerve. Three such models

are considered. As in the case of the excitation models these will be flﬁf

"fshown to be special cases of a/generalized model.; By analysing this o

ifgeneral model it is possible to determine an fnteraction equation for .

1
. ,,‘, S
.- . . " o

x_gthe activity of nerves in a nerve network This mathematical nerve
"“T?_inecwork model forms the basis for three nerve network models which ‘
| |

j_are considered For one of these, the linear behavior of the solutions o

“Z;-is examined for small nerve networks.r i:
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. INTRODUCTION |

L]

The purpose of!this thesis is to g eyfthegmathematicalvnodelsf}l-

ties ‘of a single herve

» % The:fundamental characteristic o' the nerve cell is the nerve f
"lgimpulse.ﬂ Functionally and morphologically the nerve itself can be ;:v»,
;divided into three parts- the axpn, the soma, and the dendrites. gA{j

h«nerve impulse is generated in the axon portion of the nerve._ The axon
: of one nerve impinges on the dendrites and soma of other nerves at
";"points called synapses.‘ Once an impulse has been generated in the axon,.ﬁd
"ﬁgt will propagate oven the entire ‘axon and its effect will be transmitted;V
' ,‘to the soma—dendritic region of the other nerves through‘theso synapses;if*l
The dendrites and soma of the nerve therefore act as a receptive field

f?tfor stimulation of th{lnerve.‘ In vitro, if sufficient stimulation is R

Af“*;;received in the soma—dendritic portion of the nerve, ‘an impulse ia

-

f

g The nerve impulse is essentially ‘an electrical phenomena which'u :

"Sgenerated in the axon portion.'u'.

T?r_.can be recorded using microelectrodes.' Furthermore, stimulation of

'rthe nerve by electrical current of a sufficient strength.will initiate

v o "~‘ [P
v\ v . 8"

'af_?an impulse.sr

The physiological properties of the nerve originate in the R
'”fvmembrane which forms its surface,‘ Using the techniquee of intracellular,f.qf

:lijrecording, extracellular recording and voltage—clamp it is possible to
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j.determine the electrioal properties of the nerve membrane. Cha'ter I

.'hdbeen formulated to. generate this electrical behavior, in particula“

the initiation and propagation of a nerve impulse.‘_ f

B '

S

hku; - In certain cases the only information which can be obtained

'lfregarding the nerve is the pattern of impulses produced Such
{impulse patterns show a great deal of variability in the interval
bbetween impulses.: In Chapter II mathematical models are. considered which
'i: have been constructed to generate trains of impulses that resemble the |

' experimentally observed nerve activity. i

L

In studying the properties of the membrane and the impulse L

';patterns, a wealth of experimental data has been assembled The basic

,-(,_, ,47‘

jif:objectives of the mathematinl formulations an:to provide adequate R

'f“theoretical concepts for the processes involved in the production Of

: e g,

3Asuch behavior as well as methods for the analysis and comparison of

'ithis data.‘ Using these derived formulations it is possible to predict

’~hthe behavior of the propfsed model in this way providing a means of
R * L
“-~.vtesting the model and establishingdguidelines for further experimentation.
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L ‘f_" .‘”f'. | - ' CHAPTERll' ;

Introduction
v

Cto describe the electrical behavior of the nerve membrane ate discussed

- As stated. in ‘the Introduction, the initiation of the nerve impulse is

hs'associated essentially with the axon portion of the nerve. Since the;"”
. ~simpulse is an electrical phenomena, it is therefore necessary to o
” ‘consider the behavior of ﬂnzaxon membrane to electrical stimulation.lﬂfib
ikiThe axon considered will be Loligo giant nerve axon which has been
'{;extensively studied | | |

.
\_ .

In the abSence of stimulation‘ there is a constant potential

Hdifference maintained across the membrane.~ If a stimulus in the form

“fﬂ7of a brief Outward current pulse is applied to the ‘merve. axon through a. \{*

u -~

'stimulating electrode touching ‘the membrane, the: recorded membrane

jipotential changes from that of the resting potential The magnitude :

.,;'of this change is dependent upon the amplitude of the applied stimulus;ww, L

-d;For ‘a very weak stimulation, there is a temporary change of potential }3 Co

3 ;-.which decays away not only with time but also with distance from the e

'hf*-electrode. With increasing stimulus strength the recorded potential
‘._change increases faster thsn the stimulus amplitude.: The resulting »

o mpotentials still decay both temporally and spacially. Finally a critical

Tllevel of stimulus amplitude, called the threshold is reached, If a e

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.
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4.

= .. L ..

v

potential curve increases abruptly to form a unmistakablentriangular

wave, the action potential which does not dgcay with time and distance. <
SR
- For stimulus amplitudesabove this level which are not biologically R

1damaging to the tissue, an action potential results. The action potential a
- nerve- impulse, is inifiated near the electrode but immediately splits

B into two ‘waves which traVel at a cdnstant waveform and velocity in

- ;.f opposite directions away from the electrode over the nerve. For

.°

1-:natnral stimulation through the soma~dendritic region, the action poten~
: o

- TS~—

:tial is a single wave which propagates over the entire nerve. Thus the

NI

l}action potential once initiated can be recorded at any point on the
O inerve as it passes., It is however, impossible to determine from such '

a recording where it has originaeed on the axon,or the strength of the

..applied stimnlus. Nerve excitation, the initiation of a nerve impulse,'
'therefore is an all—or-none phenomena for which only the presence of

'-absence without intermediates, can be deduced.‘u ' f:f 11 “5jﬁ;.'=?

If a second above threshold stimulation is administered during

Y

. i a short time interval immediately following the action potential it

L

e is possible to initiate another impulse.‘ This time interval ia called

f.'w !fn the absolute refractory'period Following this is a period of time during

3

' which an action potentiav can be initiated by the second stimulation but
"';_the threshold value in this case is above that for the resting nerve.,f'x
'p_ During thia relative refractory period the threshold level gradually

returns to its resting state value.,[j*"

. ‘ Ve .

*%9?“4;:T, f the first stimulus is below threshold for excitation,

B

ﬁ;i“'lz'f nerve impnlse is not produced however, the membrane is affected “In. a,»b'gp

e

B
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_
ve 7

fshort period‘following.this;subthreshold.stimulation, the threéhold'

LI ¢ -

o RS oy L ' B
,value for ‘a second stimulation will be 1o7gr than the resting value.‘

- *After this phase, is a period of time during which the threshold for , ":"
}thjf, a second stimulus is greater than the resting value.'

A stimulus_applied to the nerve therefore ‘has a dual effect-h.‘

e

The first is exoitatory, which results in a pr0pagating nerve impulse '

'f'if the stimulus is strong enough Following this, the effect of the .

T stimulus is to reduce the excitability of the nerve.’

[P
e
r

The mathematical models of nerve excitation are formulated

©

7’in an effort ‘to determine the variables and interconnections which

3

) result such electrical behavior. The major objective is to determine

"Ff;fthe construction and operation of the membrane. As shall be seen it

'*:ihas been.possible in certain cases to associate with the mathematical

:model a physical or chemical model of the membrane which satisfies ;

. ¢ - St
..-a,.

"the pr0posed mathematical description., Although the major objective

4"
. "H{,:.l .

' fhas not been attained the models have provided guidelines for

~f‘physiologica1 researcb and haVe assisted in translating physiological}:f:g

, :
, concepts into quantitative and logical terms i;

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



§1.1 Early Mathematical Models for Nerve Excitation

Tl ' -

The first.mathematical models were formulated in au attempt to
"Texplain the observed,behavior of thHe nerve to ‘an’ applied electrical
f:stimulus. Experimentation made it possible t: determine a number of
quantitative relationships between the variables of the stimulus and the
_fﬁﬁ%ff :initiation of ‘an action potential in the nerve.~ It was these‘relation— ;{.

o _ships which provided the basis on which to test the models.p

An early model which was extensively examined for its

‘ predictions regarding the strength—duration relationship in the nerve
-

“fwas proposed by Blair (1932) Blair postulated that the initiatien of "
.'_‘.l. ' ’i.>’q ¥ ‘ : :
t;‘an action potential by an- applied electrical current was. governed by an:

¢

;.'J"excitation process" in the nerve which was under the,influence of the
.'stimulus. The state of this process was assumed to approachha threshold o
. P ‘.\ .

‘ 71‘1eve1 for excitatio' at a rate proportional‘to the applﬁed voltage' and

.if the stimulus was r

,ed before the threshold was reached to decreasej
‘:’3"'.’“ T R

t wards-a resting-lev\v at a rate proportional to the state of the pro—~5’

-

cess;, Thus the dynamic behavior of the state K of the "excitation |

.. 4" h' . . '

vhere V 1s the applied vo.l‘t_as’e::;.“ t iﬁ:-f-‘mé? K= 0" is the resting

“ﬁghprocess sjtisfied

T
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)l. .( ’,'.
. § - 7.
o I .
.1eve1,'and,both\b.and»k »aré'constants. An action:pOtential.wasvaeeuaéd ‘
.to occur ‘if . TR R -~
. . . . E . »\\‘ ) o " . ‘ ‘ )
(.12 \\ - MK>L. T
_ R The formulation given by (I 1 1) and (I 1. 2) had originally
o . -

Al (_ \ .
£ -

been considered as a model fo hherve excitation by Lapique (1907) The

difficiency of. the model was in its inaccurate formulation of the

-'strength-duration relationship for a step current..

Lo

: -;'__-Thevsolutioh of (I.l}l) £or'stimulation by a s;ép current |

- Ve e20
Vs
" ]lo,t<0

. \

.if the "excitation process" is at the resting level at t - 0 . By:f:
setting K = L in (I 1 3), the strength—duration relationship for a

istep current is given by
log (V ) = kt

'5_l;where R,— %L~ is the rheobase voltage. The major difference between

cr "V )
,the computed graph of 1og (;’—-———l-i) considered as a function of t for
T various values of k and the experimentally obtained graphs is that %; ‘

:hﬂthe curves in the latter case do not all pass through the origin. .These
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‘reSults suggestedhtojBlair that the strength-duration‘relationShip for

;a{step;current is of the form

R V - ; '
C o - 7' 1og (V ] - kt + C e

where C 1is a constant. .
#

‘ To theoretically justify the strength-duration relationship,,.

'fj-Blair proposed the threshold L must be a function of A given by i
- 'A"(_Iv.l‘lg),';z A e L=atev

vhere'{un and_ 8 are constants,: :

ég. h“":“ff‘ 37H This revised formulation consisting of (I l 1) hnd (I 1.4)

‘permitted good approximations of the experimentally obtained strength—f:t”

,duration curves for stimulation by a step curre t, a 1inear1y rising

7,Q current with a. sufficient rising rate, and cond nser discharge (Bla}r,f}f~

1932—35) Unfortunately the theory was unable to account for a number 3
’:dvof electrophysiological factS"ln particular, the equations did not {“f‘u#
‘;satisfy the constant quantity relationship for rectangular current of j;“:
.short duration (Hill 1936b), and linearly rising current would always.:;

. ;result in excitation irrespective of the gradient of the rise (Rashevsky
o 11938; Furthermore the assumption that the change of threshold depends
; only On the instantaneous voltage leads to conclusions which are con—.}i‘
.‘;:trary to known results (Rushton' 1934) These difficulties, Rushton ?:t;

:ifsuggested result fr0m the fact the theory does not adequately account

"'}'-for the accommodation property of the nerve.- .7
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The difficulties were overcome by a model proposed by Hill
(1936a) For this model that property of. the nerve in.the neighborhood
ffof the stimulating electrodes which was influenced by the electric ..
s u_v‘_'current was. called the "local potential" The dynamic behavior of: the :
"'{"local potential" with only slight modification was the same as that of

’the state of the "excitation process" in ‘Blair's formulation.f The

| _;"local pOtential"' K 'was determined,by
P R S e

K=K

el o o
(L1 o g e f,;-k ' | o
6 T T B P LT L o lﬁw

lwhere I is the applied°current Ko is the resting level of the

R

4"loca1 potential", and both b. and k are constants.‘ As in the model B

proposed by Blair excitation was assumed to occur if the "local
"‘fpotential" reached thgzlevel. L,r,~:’”-j: e
L . : S R L g ‘. V . ; vl", ] e | | |
The major difference between the two theories was in the for—,f
‘ mulation for the behavior of the threshold to an applied electrical sti-

».mulus Blair ‘ssumed the threshold was- determined by (I 1. 4) while Hill

. ;*.f.;fa K-k LSL
| (;‘1‘5)“ R T ;.3- Sakay S

: ;where VB and A are constant The formulation given by (I 1 6) was {fh
Hhadopted by Hill to acc6unt for accommodation in the nerve and the
:iobservation that the threshold gradually returned to a resting level
cho if the stimulus was‘removed ’ Hill simplified (1 1 6) by considering
:the particular case for which a nerpe, described to be fully accommodated

lresponds as’ if no’ current were passing through it-ithat is,;g:‘”v
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S ",

X -L=K - Lo,..'Hence,(I.l,G)'reduces.to‘

(o] .
S Lo K=K L-Lo
@wn et

Sde fl%; SR \
‘i Hill's model given by (I. l 5) and (I l 7) was shown to be’
| sufficient to explain anode break excitation, and the necessity”pf a
l<minimum current gradient for- excitation by a 1inear.rising currentv
';h;(Hill 19365) The theory gave satisfactory descriptions of strength—
duration curves for. a variety of stimulating current and good approxi;
f:mations of the results for numerous related experiments (Katz 939).
" . '-il..- o ’ ) . . o
The theory of Hill has been classified as a "Two—Factor Theory -
,ﬁvfor neryevexcitation; Hill's model is only one member of this class of
odale. o
Rashevsky (1933) also proposed ‘a two-factor theory to erplain et

‘~the initiation of an action potential by an applied electrical stimnlus.'

‘ The mathematical formulation for the theory was _ﬁf

L,

O R T P «;a»'dt bI - k(x-x )

? Where I is the stimulating urrent and a8y b k and m ‘are. constants. :

iuIn this theory K Was chose' to represent the concentration of an
;excitatory ion in the neighb rhood of the stimulus while L represented ...Lﬂ
.'the concentration of an inh bitory ion near the stimnlus. ‘Koﬂ:and'tL}”

' represented the resting le'el concentration of the respective ions.,:f
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. Excitation‘Was asSumedltofoccur if K >L.

The formal difference between Hill's theory and Rashevsky s

' theory is that in the latter, the term which accounts for accommodation

is a function of thev applied current while in the former the term is.ﬁ..if

-an implicit function of the applied stimulus. -

In 1934 Mbnnier proposed a two-factor theory for excitation

"which depended on a single process, the “state of excitation During,_'
N \ e
the application_of a constant current:,I » the "state of excitation"‘m.

was defined by -

T TT,

GRS .- Ki(e e H Sl

K vwhere K 12 ; and Tl are constants._ Hill (1936a) succeeded in

showing that s' corresponded to the quantity (L - K ) - (L - K) of(t;ﬂ‘
r_{his theory, and that theoretical predictions regarding excitation for -

= the two are equivalent. }357 S

.o

The final model to be considere&'inathis section is the,jf;'

.,v,

"ﬂ"generalized model of the "Two-Factor Theory" class proposed by Young fﬂ_

(1937) The\ mathematical formulation vas -

e .

Yy ;' R =.f:
- o . - v
(1.1.10) - § e ~ L .' . '
Lo dI‘ (K x) +k (L—-1.)+ab1
S "dt 21 22
| : %ﬁ”where kll’: 12,; 21,“ 22, & and b are constants, K represents the g:.
tif;f E hfiexcitatory process with resting level K I. represents the threshold
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B o =
with: resting level L ', ‘and I is® the current strength..Aiounéishowed“l::»
v that; in.terms of time-intensity relationships Rashevsky 's and Hill'
:L “ Jtheories were equivalent to this more general formulation.
Although the‘ t:no fdctor theories .were a satisfactory repre-
- sentation ‘of events 1eading to excitation by an electrical stimulation, .
fthey ‘were unable,'except in one case which will be considered in §I 5
‘tto describe events following the initiation of the impulse.{ A further
: drawback of these theories is the fact that no physical basis existed
ifor the variables which were chosen only to represent biological o
"phenomena that had been experimentally observed. To overcome thesev
1}difficu1ties more extensive knowledge of the nerve was reduiredt This
zi‘necessitated the advancement of experimental techniques and equinment.-..f.;

3

-The most important dfvelopment was the "voltage—clamp" technique of

Vdevelopment in modelling nerve excitation\>which is the subject of

DU L ',v,’i§I 2. :
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§I;23,The'HodgkineﬂuxleyiTheori for Nerve Excitation

i

‘.;:.n:

The most significant development in describing nerve exc1tation c
.:and events associated with it, was obtained by Hodgkin and Huxley (1952
A :

| »fa—d), initially working with Katz (Hodgkin, Huxley and Katz: 1952)

“‘vExperimental results obtained by employing the ”voltage—clamp

technique’on the axon of the giant nerve- fiber of "Loligo" indicated
’bthat a current flowing through the membrane of the axon could be b
'fseparated into a- capacitance and an ionic current.: The ionic current ifi:.
e consisted of three components' a potassium current. IK , & sodium “;1§r'

icurrent Iﬁ “y and a "1eakage" current 123 which was carried by chloriﬁf ;h'
.and other physically unidentified ions. ':'“
Hodgkin and Huxley postulated the ionic current to‘be a result

/ 'ofvthe'movement of the ions do;n their respective eiettrochemicaln *

R

¥ = -

.'Ab'potential gradients.' Hence, the current resulting from each eamponent

could be defined in terms of the ease with which the component ions
o " e i
"”crossed the membrane the permeability of the ions, an& the differente

s

o

5 5between the membrane potential and the equilibriuﬁ potential fof,the

’ . ’, r)'

“nions., Since the instantaneous current—potential difference relationship

v ~

' 3for each component was found to be linear, the mathematical formulationsvg,fi
L T o v- L ‘
};describing the current densities of the components were '_r-' o
. . “ S .. R ,.' .

. AT S e @
R N s

“f"'_.: R
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H B
]

@y Naf," gNa(EM EK) R L

' and EN are the equilibrium potentials.for potassium'and sodium,
‘"respectively,'and Br and gN "denote the conductance per unituazea of )
‘membrane of the respective ions. ’Ei' is the. membrane potential at which
‘ ‘th "leakage current" is zero and 82 denotes the conductance per. unit
‘:"'tarea of membrane of . the ions contributing to the "leakage Current" ' The 2""
"‘conductance term in each case is a measure of the permeability of the
' cOmponent'rona. | ' B R
':.'For ‘ practicalapp}ieation (I 21) was ' tra‘ns formed into.

1. IK': gg (V 'VK)

e 4 . ‘ : S VK-EK :_- Er
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and Er. isrthe'restinéfmembrane potential.
_ ;fThus:the total current”densitig,l‘ per unit'area'of membrane'isd

: (1-2'-4)__ : 1 ;CM a +._3N3'(V Vi) ¥ gK(V‘_ Ve 8V - V)
'where ‘CH'dE accounts for the capacitance current with CH the measure—
"ment of membrane capacitance per unit area, and t is timez
The experimental results indicated CH V s VN " Vi‘ and gz
are constant but gK and gN e functions of both time and membrane :
potential.u From the data Hodgkin and Huxley determined that for a given
membrane potential the experimental curve of gi = g (t) was best

described by assuming potassium conductance was prOportional to the £ourth

L power of a variable n which itself obeyed a first order differential

.‘equation.‘.Hence u'

. : %%_u a (1 - n) - B n

fffg', Hr‘.;“, i “; ' :‘.- 5§f7 o _ : R
[ where gK is'a constant which represents the maximum potassium con—
' f; ductance and 0 < n < 1 .ivn’ and B : are rate constants which were
'- determined to be functions of the mem ane potential for a fixed tem—i ‘
% perature and calcium concentration.: In the case of sodium conductance S

it was proposed that the experimental curve of 8Na (t) for a

fixed membrane potential couIa be described best by assuming that gNa

'”:variables m and h both of which abeyed first

Re issi [
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order differential equations. The proposed-eQuation'are.

dm ' A

wae . Eeea-w-ga

\

dh

ah(l - h) o~ B h

where 1s a constant representing the maximum conductance, S

SN :
';0 < m. < 1 and 0 < h < 1 . As in the case of potassium conductance,

for a fixed temperature and calcium concentration, the rate constantS':

fa 5 B > ah and 8 were found to be functions of the: membrane potential

The functional relationships between the rate constants,‘in SRS
J"

'i:both (I 2, 5) and (I 2 6), and the membrane potential were empirically ;

determined to fit the experimental data and at the same time conform as .

I~ . —

“ ~:“close1y as possible to the equation derived by Goldman (1943) for the

‘ movement of charged particles in a: constant field. The resulting

bjfunctionshwerel,,j“:'

C@as g =oase

R - g A0
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A T v
(1.2.10) . g =u4et®
v . : : S
: o v °
(r.2.11) o =0.07e20 )
- 'd.(xdi SR _‘":;cs‘ o ‘
c(T.2.12) o ' N 7 T R

+1

'_.The‘reason ﬁor'trying‘to.conform'to’Goldman's-equationﬂbﬁich isiof the .

. PR v—“va .
R . ae - =d -
I=C-V=0yg—

R e - 1 ;
.Q» S .

lwhere _C a, b K and d " are constants, will become clearer in the o

A

’discussion of the proposed mechanism for membrane permeability changes.
: ' - . ‘.¢

Thus the set of equations (I 2 4) = (I 2 12) makes 1t possible f‘
'-to determine the total membrane current I as. a function of time and
.;membraneppotential; These equatione are referred to in the literature

' 3 aevthe;ﬂuodgkin4ﬁuxley_equations“,‘"H

- Hodgkin and Huxley, in addition to deriving an empirical

j' fformulation determining the membrane current suggested a possible
e
g

*'“E&@ ;:ﬂﬂphysical model to describe the potassium and sodium conductance changes 4}:
1wm‘h;h".in terms of the mathematical formulation. Potassium permeability was

“the membrane, the movement of which was determined by the membrane

.
N
N
A
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[ ; : ' . a

.‘potentia1.< Each region of potassium permeability in ‘the membrane con—

tained four sites. If all. the four sites in such a region were simul—'

~

taneously~occupied by a charged particle, potassium was allowed to move |

a e_through the membrane at that region, otherwise the membrane remained T

-impermeable to potassium. “In terms of the mathematical formulation,- nu{;'

3
_,potassium activation, represents the probability that a charged particle
<n‘is at a site. The rate constant a denotes the rate of movement of /
T the. particles onto the sites while B represents the rate of particle

movament away from the sites.
'AD‘ - h

Sodium permeability was al%o assumed to be determined by

hsodium specific charged particles in the membrane. However, in contrast ;y,'

- to the situation hypothesized for potassium conductance there were two f
R Ly S .

1

tdistinctvtypes of particles an activating particle and an inactivating ‘
L;particle, which acted independently of each other. The membrane became

‘hi‘permeable to sodium in a certain region when three of the four sites f,'t'.

',,pcontained in that region were simultaneously occupied by activating o

k 1iparticles. The region became impermeable to sodium if at 1east one of

:_~the sites was occupied by an inactivating particle. In terms of the‘

thematical presentation, m , sodium activation, represents the

' 'probability an activating particle is at a site, and h > sodium in—
activation, denotes the probability an inactivating particle is not

: ’Qvoccupying a site. vm;; and Sh represent the rate of movement of the
:;'activating and inactivating particles respectively, onto a site. :B

. and ah denote the rate of movement of the respective particles in the L

opposite direction.»lx
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From this model propused for the mechanism of permeability

L changes it is evident the objective of trying to conform to’ Goldman s

equation was an attempt to account for the vsriation of the rate constants i

"_ with’ membrane potential in terms of the effect of the electric field on

;‘5J~ ’
the movement of the charged particles. <

. .-4

e ,':,j ' The Hodgkin-Huxley equations do not account for the passive
bahavior of the membrane to electrical stimulation._ In the form (I 2 4)
= (1. 2 12), they represent a. squid nerve axOn with the experdmentally

induced condition of a uniform membrane potential over the entire axon

¥

length or. a "space—clamped" axon. With this assumption, the total
membrane current is zero except duringastimnlation.' The equations have
Vﬁ%:f been extensively examined to test their ability to simulate the actions

v'fl of the squid giant nerve axdn under these conditions., Although the .

0

e existence of a unique solution has been demonstrated (Cole, Antosiewicz,
. and Rabinowitz' 1955), a: clos:d solution has not. been obtained Thus

- ﬁ@ﬁ'the behavior of the equat ons: has been studied by numerical methods and B
""computer simulations.le. :'f~daff-‘hr‘rw:7:;”"jQ‘ _-J_,,J,ﬂij R
- The original invgstigation of the validity of the equations

. o e
Al \,

' 'was carried out by Hodgkin and Huxley (1952d) To determine the res— nﬁ“-‘
. Ay ,

ponse of the membfane potential to an. impulse stimulation administered

[ 47, »vﬁ* : o
N2 IO oy

at thme t = 0 Hodgkin and Huxley soived the equatipns using the
f.numerical method of Hartree (1932-3) The form, amplitude, and‘thres-,'
'1khold of the calculated membrane action potential compared well with the

'f'experiment results.. By 1inearizing the equations, tbe damped oscillatory

Yf’
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-vbehaviorvof the membrane potential resulting from small amplitude

: constant current stimulatiOn ‘was reproduced The equations also .

-2'successfully predicted the form of subthreshold responses, anode breakf
responses, the response to stimulation during a refractory period andi

1mpedance changes during the action potential.. ; B ~”; .'~._"_. .v”Cﬁ

. ' Under‘certain circumstances the predictions of . the model areif
‘db.not in keeping with known electrophysiological results’ The equations={;
.. predict an indefinite train of impulses for stimulation by a rectangular‘a
:waveecurrent of strength above a critical 1eve1 (Cole Antosiewicz and
#'Rabinowitz' 1955 FitzHugh and Antosiewicz 1959) ‘ However, for a.-.:d
o " pace—clamped" squid nerve, sttmulation by a rectangular wave current
ftalways results in at most a finite number of impulses (Hagiwara and | }ffi
'?jOomura 1958) This represents a serious discrepancy between the o
‘ predictions of the model and - the?behavior of the squid nerve. The -‘dV
:model also does not satisfy ‘the : all—or—none propertywof the nerve._'
‘pFitzHugh and Antosiewicz (1959) using a. digital computer demonstratedﬂ~‘
the existence of a_ continuous gradation in response amplitude ranging
U.from that of a subthreshold response to that of a full action potential._.:“i
'i“‘This particular difference between the computed and experimental results f7 fi
v":is not considered to be serious but rather ‘the- resultiof the digital ‘b' ; ];~

”»computer not being programmed to account for the spontaneous fluctuations

:‘fin the membrane potential (FitzHugh 1969) ‘1'4:[f"‘1 ’jalih' e

‘g Further testing of the equat&on s ability to simulate ‘the

- fbehavior o£ the squid nerve has required modiffcation of. the equatious

-
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:in a manner prescribed by experimental results. Certain experiments
‘indicate that the" dependent variables of- the Hodgkin—Huxley equationsk ‘ 3;_
'7“@§¥?‘can be altered by variables not-accounted for by the equations. ,By_ 1
7modifying the- equations in the manner determined by the experiment
' the predictions of the equations can be compared with the behavior of‘

- athe nerve. ' ;’. "'v~i’ l”" e "'ﬁ‘hf‘; y

Frankenhaeusér and Hodgkin (1957) observed that the membrane
vpotential varied with the extracellular calcium ion concentration. The
H‘_ relationship between the change in membrane potential AV - and the

calcium concentration :[Ca] -was experimentally determined to be

e
Vo= -9, i
yo==9 v32_1“'_.[ca]ﬂ TR

'rwhere [Ca]ﬁ is the normal calcium concentration.. Huxley (1959)
=_1ncorporated this in equations (I 2. 4) —'(I 2 12) by substituting
R fV + AV for V . The predictions of these modified equations agreed o

well with the experimental results for different calcium concentrations.;fl

By injecting tetraethylammonium chloride into the squid nerve _fﬁ“‘

axon; an above threshold stimulation produces a long lasting action -
:potential (Tasaki and Hagiv:ra. 1957) FitzHugh (1960) was able to ubl
v:‘reproduce this phenomena with the equations by reducing a and B
) tby a factor of 100 and increasing ah \and Bh by a factor of 3 5
thhese modifications are supported in part by the voltage-clamp data
“fwhich revealed that during the first few milliseconds of the response of -

df’a nerve injected with tetraethylammonium, the potassium current is'v“
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‘either absent or significantly delayed,

.Calculations using these modifications agree with.other
experimental results also obtained frOm a nerve treated with tetra—
.ethylammonium. These include ‘the abolition of the response to a .
repolarizing current of a critical threshold value applied during the:,_.'
;plateau phase of the response, and the response to a second stimulation _
'b following the long lasting action potential. The impedance changes

'occurring during the plateau, however, are not reproduced by the equations.hf

Another validation of the equations using an analogous '_f‘
_ approach has been carried out to predict the effect of high extracellular's
';v'potassium concentration on the squid nerVe axon’ (George and Johnson._1961) -

. 1In this case. only partial success ‘was obtained in reproducing the '; ’

‘behavior of the:nerve.5'”

ffg:'f The Hodgkin~Huxley theory, with certain exceptions, has ’
bdemonstrated a remarkable ability to simulate the behavior of the
o space clamped" squid axon to electrical stimulation., However, Hodgkin

and Huxley (1952d) expressed twolimportant reservations regarding the

- formulation. First the equations.have been empirically determined
',and as. such may not be the only satisfactory formulation. Second the
.. success of these equations does not necessarily~provide a proof that '
‘fithe h;pothesized mechanism for membrane permeability changes is valid
::'It is in the ;?Sht of these two temarka that alternative formulations i“iefx‘

'i;and interpretations of the Hodgkin—ﬂuxley theory have arisen.- These L

':“;ngi"'alternative fqpmulatiOns will be’ discussed in §I 3. g ;?f“:“"v' E

v'\.
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-§I'3afAitéf“ativé Formulations:for‘the‘Hodgkin—Huilev-Theoryi'

A The reservations regarding the HodgkinrHuxley formulation '
Jexpressed in the last paragraph of §I 2 have fostered two avenues of
vresearch Investigations have been initiated to determine alternative
‘chemical and physical mechanisms for membrane permeability changes which ;‘
'-hsatisfy the Hodgkin-Huxley equations,and alternative empirical formula—vr
“tion which satisfy the experimental data obtained by Hodgkin and Huxleybl

"(1952d) Although the success of the equations does not establish

cowclusively the validity of the hypothesized mechanism of permeability_r,;fz

thanges, it does lend support.f Other physical and chemical mechanisms e
'which satisfy the equations therefore.must also be considered n the
,realm of possibilities. These hvpbthetical mechanisms serve to provide f{ell
l}a guide line for future experimental work to determine the actual | “
;:mechanism. Alternative mathematical models which satisfy the experi— :

| *ﬂ,mental results could also suggest différeat physical or chemical
:mechanisms for the membrane permeability changes._ In these cases the'

thematical formulations are available to distinguish between the

Hj.mechanisms. With theﬁmathematical formulations it is possible to predict

F

hliige behavior of the squid nerve axon thereby providing a quantitative ji"
"lmeans to distinguish the models and establish to a certain degree the
ﬁfbvalidity of each permeability mechanism.' In §I 3 certain of the
l-dalternative empirical formulations and mechanisms for the permeability

changes which have been derived will be described

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



2.

.
In 1 63 Agin derived an alternative theoretical basis for the
conductance equations (I 2 5) - (I 2. 12) of the Hodgkin—Huxley model
' thereby providing an alternative physica]. framework on which to formulate

j the,-mechanism for _membrane_ perme_ability.

~ The motivation for the model was the ‘fo_fm of the equation for =

the rate constant_' o A.resulti'n'g ftom_ a transformation. "'"By,'d_efining s

,*‘ . v .‘ (1.3.1) » a: "3‘ 10 ‘ " ..

then ah"givgn'by.(1;2;7) can be transformed to -

ry | .
@ et

'. In this form a is proportional to the mean value function of
'-.‘statistical mechanics.» Further developments result from considering the
‘ ‘-solution of the potassium conductance equation (I 2 5) for a. given @3

_constan_t membrane po‘_ten/tial »anci ini_t-ia_l condition '

T IR Len T I : _::idﬁ.»"-.:' ‘1‘  .
“; ‘v('I'3-3)- R Con = nl. =———-—- « s

@38 e =§K‘ = a pre B A
AT X nm
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By writing 'B, ='beff . where b = 8 - and employing (I.3.2)?_thé initialr‘
. E :condition (I 3. 3) can. be reformulated as" v o
e Lo el 2 (Q -a)e )
S (L.35) = j=0 — —
'(f,3-5) LBy ‘ o v

. 2 (Q + abe )e- ji
30, -

_Horeover, thehsteadydstate valuefofibn , ‘glven by
¢ 75 5.5 e B s T
K isbequivalentlybwritten as .

| ;l;_ ;;,j. fe;';lf-i'hflb.f*°‘vzf Qsé;fi'f"

7ﬁk, - :n.i.l 2 (Q + abe )e :j -"V_fﬁgh  ; 4 ?V
o %? T e L R
: In forms (I 3. 5) and (I 3 7), ﬁo» and n?~ represent statistical
: distribution functions with properties identical to equilibrium diatri— :
; bution functions of statistical mechanics.n Similar formulations can be
v-'obtained for the rate constants a -,and B _; and initial and steady
fr,state values of m ; Furthermore the rate constant Bh 'of eodium '

H‘.Tinactivation given by (I 2 12) is analogous to the Fermi-Dirac distri— :

__bution function.lve

Thia analysis suggested that a possible theoretical framework

‘;”on which to base the empirical conductance equations could be obtained

e
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"using statistical mechanics To illustrate.this hypothesis,iAgin;“'

Ll

fusing an abstract model satisfying appropriate probabilistic constraints -

‘f,dderived an equation which is formally equivalent to the potassium

: Aconductance equation (I 3 4)., Although the analysis was not carried

oL ¥
.out, it was suggested that in ‘an analogous manner a model could also
: 'be derived which would produce equations formally equivalent to the

,sodium conductance equations.‘

The analysis of Agin suggests a posaible framework for a

hlphysical model of: membrane permeability, the mathematical descriptionij
of which is the Hodgkin~Huxlegdequations.» The original Bodgkin—Huxley
-v‘formulation remained unchanged? An alternative form of the potassium
‘.conductance equation (I 2 S) was derived by Cole and Mbore (1960) ilttq”flj
was found necessary to modify these equations in order to account for"y@,J
..a time delay in the potassium current IK" resulting from the y

"Zrdcpolarization.Of a.prehyperpolarized squid axon., The required ;:
. ﬁ“‘feformulation‘isv:i" : o . LA T

o 25

'??;Sl{3;§lj‘,q{;‘f" - . ; i':ihgk;n gK ‘;

dt_

: ;where gK is a constant 'and both o, and B A are functionq of the
jmembrane potential With the appropriate values of a » 8, and initial-

- . ,
"-conditiOn for (I 3 9) the reformulation proved adequate 4in representin w
) g,,
"-ng for the experimental conditions originally considered by Hodgkin 3

“V'and Huxley (Cole and Moore' 1960) The model thereby extends the range ?':'

"™
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- of membrané potentials over which the eqﬁatiot@ accu?g'raate, 2
| : "“.-_-.3_ ) PR/ S ﬁ(ﬁ.
-\_behaﬁior of the Equid axon.ﬂ, R SO S o 302

A satisfactory alternative formplation for both the‘potassi
. . o “Ql
- o and sodium conductance equations of the_‘_ Hoﬁgkin-ﬁuxley, model was pro

v by Hoyt (1963)

3 In the presentatidﬁ °by Hoyt, pota o ‘@.’ u
-'assumed to be a function of the variable "K > ‘which».-.
. Y ” ‘

order differential equation -

. (1,'3;i0) o

- where \)K and a.K are functions of the mbrane potential. ‘The

r/‘

'functiona o 9 -

gK(wK{\ ""., : L
Cand o "K aK(v) ‘

; ‘where V » as in the Hodgkin-Huxley formulation denotes the difference
'v"-.-between the membrane potential and resting potential were empirically

determined in order that for a given membrane potential the g@h of

| gK = gK(t) agreed with the experimental results obtained by flodgkin

: i=and Huxley (1932d)

Sodium conductance gN was defined to be a function of the

-

f'-“cqnductance agi was ,, -

single variable A _' which satisfies the second order differential -

Na'
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“equation

5 } .. . NaA Na % )
@ R oy, - vl < O

e e L LN , i
o where VN w » Y and § are functions of the membrane-pgtential. "As in
wp . C ) : C : S B o ) o o

Y. the case‘offpotaseium‘conduetance,7thenfﬁnctions'

’,.%Na(”ua‘)
L e e

| IR : Y c

Bna

" and the initgal condition
WL R A
vua&.»vq. TR

dt - lt=0 R f f# :

_ '"vwere chosen to obtain the best fit of the curve gNa gN (t) for a
given membrane potential to the results of Hodgk:l.n and Huxley (1952d)
°_f~ In order to simplify the analysis, Hoyt proposed that equation :

',~:(I 3 11) resnlts from the system of coupled first order differential

L

L

L equations

.m\. o

";;.d;_ﬂ_w lgN?~:.33 Ng‘-- 4f}",fff
"Cﬂﬁwhere ki for i 1 2 3 4 are functions of the}nembrane potential
": .xThis system of equations is equivalent to the second orJer differential

"equetionp_; f; ‘“f
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| B N
L : vd_vN va kK,
(1.3.13) —E g (O + k) + k1k3 x| T
TR, o de” P 3
. dkl-_ . dk, dka a
\"¥a "av © “ya dV_ K-C

y;For a constant membrane potential equation (I 3 13) reduces to the form
' of (1.3.11). and the functions k =‘k (V) for i = 1 2 3 4 can be

”determined by comparing coefficients.,'

1

The validity of Hoyt 8 formulation was examined by computing

s

E the form of a membrane action potential Comparison of the result with
.pthat computed by Hodgkin and Huxley (1952d) revealed a difference only

. during the repolarization phaae."

Hoyt also proposed a possible physical mechanism for the

'membrane permeability changes whicb would satiafy the mathematical

”mmformulation. In the case of potassium the membrane was assumed to poasess.

' potassium specific pores each of which contains a series of p dipoles. S
«4:Each dipole pbssesses two stable orientations, of whichnonly one allows »‘
fthe potassium ion to pass through the membrane. A quantitative.fn;
@}1_description of the mechanism for permeability changes was obtained by o
'assuming the two stable orientations to be separated by an energy .
x;barrier .e:r e would therefore correspond tﬁ,the energy required to

A

'in'orient a dipole to permit the passage of a.potgssium ion,and a poq;i\bf'

<_:with j(j = O 1 2,...,p) dipoles oriented to permit the passage of

“wapotassium could be considered to possess the amount of energy je-.‘v
bWith this formulation a pore resembles a quantum system with a ground

nj v :
: a0
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: ?“‘/. |
h all dipoles are oriented to

.

o ‘ , : ,
state, corresponding to the case 1n whic

er ch determined '

prevent the passage of potaasium, and p exc:t.ted states ea

passage of potasaium 1ons._»

by the number of dipoles oriented to allorw the

A collection of such pores obey

Vf"_; : case the probability Pp that a pore has all dipoles in a potassium

fpermeable orientation and the pore is open, 18 given by - S

@38y

©or equival_ently" h S

R R = 13

olute temperatnre. -

where k is Bqltzmann s. constant ang T is the abs

Further, the probability y that in equilibrium a dipole is oriented

to allow potassimn to pass is_

— o T e ;»Z,;ls;:b 1
@38 y= —'f-"“z' -

:_’Subatltntion of (1 3, 16) 1ato (1 3. 15) yields )
C Vasant R - - 1 'pi} L
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w

o By comparing the graphs of gK = gK(v ) and P - P (Y) ’

"Hoyt determined potassium conductance gK -as a function of the -

probability P (y) thatna pore is open.: Agreement between the

funetions was attained with p = 9 and the 1inear transfo"

y.=0. 357 + 0 00394v . The formulation,for gK defined as a function

S~ . .,A._»_

7ffof P (y) i
(i.3.v18): T Y ?:gou?g(y)”

where g denotes the ccnductance of a pore with all dipoles oriented
'*to permit the passage of potassium and N is the number of pores per

) 'unit are,a. of membrane. This formulation enab]es the determination of the -

‘h‘range of VK ;'thereby providing the means to approximate the delay of

| jthe potassium current IK ‘s resulting when a depolarizing spltage—clamp

ig preceeded by a large hyperpolarization., The calculated delay was in-;;":l

'd,“close agreement with-that determined by Cole and Moore (1960)

‘. . ,5‘ S T
B R o § ; :
Ve ) .

: Hoyt s hypothesized physical model for the POtassium per- p _5.
_;f";'meabili:y meChaniSQQ%resents one complication. The difficulty lies in

| the fact that for large changes of vK the calculated energy barrier

‘;? between the two orientations is ‘too large to permit the proposed

- serial arrangement of’ the dipoles. . | B v.-l.@ ]T L_-f.i'T_Q>5@‘1I¥-”

CoEEy

The sodium permeability changes, Hoyt suggested could be o
~"_;mcvdeled in a similar manner except in’ this case the dipoles would

_ipossess three stable orientations only one of which would allow a ', i

‘:_ .

:sodiumnion to- pass.n::j€~ 'QQCF{
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-,
A feature common‘to ‘the models proposed by Hodgkin and.Huxley,
nd by Hoyt is that potassium conductance at- each permeability region or. o
pore ‘is governed by a number of identical events which occur independently-»
of'each'other.: If ‘the potassium conductance equatipns derived by Cole
and Moore are interpreted in the same manner as those of Eodgkin and
L Huxley, then twenty-five identical events must occur at each potassium
-specific region in order for the membrane to become permeable.w Tille
. (1965) suggested that it is difficult to reconcile the fact that these
Vevents occur, independently of each other and,at the same time are
. ;0*

localized within a region or near a pore dn” such ‘2. manner . that the

, action of any one can prevent the passage of ‘otassium ion.

_Rf' f.' '; Johnson and Tille (unpublished) determined that the experi—

2imenta1 data of Hodgkin and Huxley (1952d) for potassium conductance con— '

s idered “as a function of time for a given membrane potential can be

":*empirically described bY ”ei‘?iﬁi;i
L@y ! o S
@y %‘%=lm<w- w* - pn

' _:where k..and gK ‘are constants, and both W and 8 are fnnctions of}
’the membrane potential.v Equation (I 3 20) lends itself to the physical

. interpretation of describing a system of dipoles each of which can exist
‘Qpin one of two stable orientations hnt which can change orientation only

if an adjacent dipole is in a specific orientation.
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o k
0- T-his analys‘is of Johnson an'd Tille laid the foundation for ‘a -

e mathematical model of potassium condu’ctance, proposed by Til&e (1965),

o which would avoid the above mentioned difficulty gf the previously

_descrai"bed models.'_» The model avoids the complic tion by requiring only

. . . . _) E § - . -
. Cote? - 2
Lodee

.a single event: the reorientation of a dipole or the movement: of a

P

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.

St



. 34. .

AP O 0079(V - 5. 9)

: F(V) : 5.9-v
, Lo . ibjl". L l-e -4’0,'
| (1.3."2'3’)’. R o o SR
L s . ‘ . 'j. o Sy
| T 5%

R "
‘B(V).=‘O.79e R
Rearrangement of (I 3 22) reveals that it is of a form closely

' resembling (I 3 20)

COmputations carried<1¢ using (I 3 21), (I 3. 22) and (I 3 23)
. -\ / “ . .
for the potassium conductance equations in the Hodgkin—Huxley formulation
. gave good approximations of the experimental results obtained by Hodgkin

. and Huxley (1952d) and by Cole and Moore (1966)

T bf}lf;i Another model for ‘the mechanism of potassium permeability
changes which avoids the &ifficulty of prescribing the precise number
M
of events occurring at a region or pore was described by FitzHugh (1965)
This model asJumed that associated with each pore is an infinite number
f_ of sites.‘ If at least one - of: the sites is occupied by a potassium

specific charged particle,the potassium ion is prevented from moving ,fi

'f—:<‘through the membrane.

Potassium conductance gK > 88 in Tille s formulation, was o

defined to be B

where gK is a con?tant and n is the probability a pore is open.l To .

X

~j:‘obtain the dynamic behavior of the system, it was’ supposed the charged
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. l‘. “ )
particles enter and leave the‘sites'at'random, independently of the
‘number of sites occupied ’Further, the rate of arrivaliand-departure'A
of the particles is governed by the rate constants o and 8

.respectively, both of which were assumed to be functions of the membrane

.potential.v With these assumptions,-the_probability( xj that a givenr*l

P
et hk

' pore has 'j :sites occupied is-,

R e T A S LT

Cdx

(1.3.25) —di Q‘ + jB)x + (j +1)Bx 3+1 i

rrRs

e

. f»for j-n.;o-,1,2,.., and 'x_l_-= 0. "
.. The steady state solutionfof:(1.3{25) for a given'membrane pOtEntial'is__"

P
e

b + (I.3.26) X —7— for. 3 =10,1,2,... . R

o ¢ Since ;LZ j =1 othen n Exb " the probability a pore is open, is el
RN L . - . t ','

; . , a

“.4‘

and equation (I 3 26) can be explicitly written as’

5

| '<I-3-'27) T f_xj ""—5!_" for j = o 1, 2 |

r.

By (I 3 27) for a given membrane potential the number of occupied sites

HITALTE VS TUAMIVI T R ST L
o
N

' for a given pore in a steady state obeys a Poisson distribution\with mean

EC 2]

ULy

;g__ Assuming the number of occupied sites for a given pore also obeys

B,'
.a Poisson distribution during the transient state, that is assuming the

' ”_i“solution for a step cnrrent applied at t = 0 to be xj Sﬂz}j—-

*H'transforms (I 3. 25) to - B ._'.; : f’%A -"'“‘ e 0N ER 7\f'
!‘ . . : : ' - S

3 . . . . [ ST Ry
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s ‘ ‘. ) _ ‘
(1.3.28) %%-s a - Bu; for each j =0,1,2,...
-'Therefore,' since the derivation of (I 3“28)‘ is'independent' of the
functional dependence of o and B on membrane potential and. time,
v o the dynamic behavior of n is given by
(r.3.29 - n=e™
.'_where u satisfies (I 3 285’1 "To determine.the'fnnctions o = o.(V) :
--an'd' B = B(V) FitzHugh assumed for convenience that these obeyed
the Eyring theory of reaction ratess.%3 The functional dependence of - (’zg
.» and B one the membrane notential was therefore given by
S RS r S ['H+ 2]

A, ;B‘ B and C are constants, H denotes the energy barrier which the

particles must cross to enter or leave a aite, : _r is the fraction of
the total mvbrane potential between the two wells, and N is the

' number of electronic charges on the particle.

FitzHugh's formulation for potassium c’onduetance is therefore

',—r

given by (1 3. 24), (1 3. 28), (1 3 29), and (x 3. 30) With empirically:'

determined values of ot and B and the appropriate initial condition"._‘ "

..
U’.

for (I 3 28), the solution of the conductance eqnations fitted the
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“experimental results of both Hodgkin and Huxley (1952d),‘and Cole and

: Moore (1960) with reasonable accuracy. 1¥%H- : e

The basic model can also be generalized to include the case_»,'

| in which" more than one species of“charged particles controls the
-:;permeability of the ion, as is the case hypothesized for sodium f

’ 4';permeability in the Hodgkin—Huxley model For the general model the

i o S _pore was assumed to be closed if at 1east one particle, irrespectivei J?

b ;”of which type, occupied a site., The formulation was derived by

:imodifying (1 3 299 and (1 3 30) to

(1-3.32) —dt-= ai - 81“1; 1 .B ‘.1.’2.,._...‘,’1) ..
- :respectively, where p is the number of distinct species of charged
:.particles and ai _and 6 reuresent the rate of movements of the o
4 “'particles of the i th 'species.-‘f B ' o R
- An interesting feature of the model proposed by FitzHugh isJ‘f”
L :x.pftthat by assuming the number of sites associated with each pore to be i
if;fﬁ ;';-lginite reduces the formulation for potassium permeability to that of _-l¥
o '-‘?'ﬁthe Hodgkin and Huxley model -or Cole and Moore model.a This results
SO ,irom the fact that with a finite number of sites, th
L . bution is replaced by a binomial distribution in whic
L gﬁ'and (I 3 28) would be replaced by “”f
§ ’ - \ \
L
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L@y o (1 - 1S
fﬂ'&@ﬁ" i and ‘
- " . ‘_ v ° ) . _‘ . .. . d ,"‘ N . ‘ . '- ‘4 . ) ‘

Y
p/
""vr - E i

. where S denotes the number of sites at each pore. . For (l - E) ,n;'

ll,

.S ='4 , and the appropriate definition of a and B s equations (I 3, 24)

eitlv- ‘V(I 3 33), ‘and (I 3. 345 give the original formulation for potassium

.)‘l.

'”; conductance proposed by’ Hodgkin and Huxley.‘ With S = 25 the equations e

\

' are formally equivalent to the model of Cole and Mbore. :

A number of different models have been discussed in §I 3 and

“in each case certain aspects of the behavior of the squid nerve axon is o

g accurately simulated by the models. There do, however, exist certain '

EE S

- similarities between the models. In. particular, the mathematical

i :;s_'f _ structure of the equations for certain of the models are similar in

3 g

Ry R

O PV N QLIS

lﬁatheir formulation for certain qualitative features of the axon necessary

"'and comparison of the models.v Before considering such a classification

.;of the models it is desirable to extend the variety of excitation' .

manner from those discussed to this point will be described in §I 4

IR
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' 1models considered : A class of models which are formulated in a different
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o R
Al

§I.4 Physical and:Chemical'Modelsifor Nerve Eacitation,

“1.- For the mathematical models of nerve excitation considered in \
i]v _:vf¥§I 2 and §I 3, the equations were empirically determined then a physicalv)
{'v-".l T:mechanism, which satisfies the mathematical formulation, was porposed to
explain the membrane permeability changes.f A number of mathematical :
models for excitation have been derived by postulating the mechanism of
permeability changes the then deriving the equations., ‘In’ each case, the,.
fmeahcnism was based. on certain physiological or histological features of"i
the squid axon which are . conceivably related to such permeability changes.
'tThe mathematics was then employed to describe the model and make predic-'i

' tions regarding it. In §I 4 three models which were- constructed in this.f"

'g'manner will be considered

Mullins (1959) proposed that the ionic currents reault from '
‘,i’the movement of‘ions through membrane pores._ In contrast to previously
discussed pore models, it was supposed that the pores are not ion i |
-;specific. Ionic selectivity of the membrane was accounted for by
lassuming membrane pores discriminate between ions on the basis of 1on - -

"size. For the model a permeable ion is permitted to pass through a ;

(f:pore only if the ion and pore have identical radii

The membrane permeability changes were attributed to changes

o dn the distribution of the pore sizes.; At zerO“membrane potential the

B pore sizes were hypothesized to ‘be disﬁributed wit : Gaussian distri-»

"'-bution such that the mode of the distribution corresponds to the radius

R
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.of thejpotaSSium:ion;"Réduction oflthe membnane‘potential to’that of
,thesresting membrane potential results.in the continuous;transformation.
of the distribution of pore sizes present. at the zero membrane potential
T . to a Gaussian distribution with mode that oi the radius of a sodium ionz'
1at the resting membrane potential This change of theadistribution of
pore sizes with membrane potential was assumed to follow from the :l
,deformation of the membrane by nonpermeable ions and ions of low
'permeability. Such ions are forced into the entrances of certain pore

e )

‘,by the non—zero membrane potential thereby altering the size of the

pore to that of the intruding ions. The ions considered ‘to be reSpo,sible

:for this action are calcium ions at the extracellular membrane surface
.and isethionate ions at the intracellular surface.- In both case, the
"ionic radii are equivalent to that of the sodium ion and at the resting ;;‘
membrane potential these ions‘are assumed to block all pores of that .ff

radius. Subsequent depolarization of the membrane removes the intruding

: ions#from a blockéd\pore and restores the pore to its undistorted size. ';

The axon‘membrane under the influence of annelectrical field
v:exhibits,the properties of a- parallel plate condenser.* In this case the"
mechanical force exerted by the calcium or isethionate ion is proportionali‘
‘”to the square of the membrane potential.: Since this applied force results*'
.in the redistribution of pore sizes Mullins proposed that the mode * f;hf
.{of the distribution of pore sizes is a linear function of the square of‘

j‘the‘membrane'potentialvgiVGu‘by;j

(1'4'1) i , . .. x ='rK — kEM; B . <r>rNa) -

R

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



wherev rK’ and rNa are the radii of the potassium and sodium ion,
‘.respectively, and k is a constant. Vlth (1.4.1), the probability h
.that the extracellular ‘entrance to a pore is of the sodium ion radius

'at a. given membrane potential is given by the error function

e . ow b e @Ry
LAD e hym ] o e dr

e

'j'where v6 is anvarbitrarily chosen tolerance‘and' c is a constant. dA'
‘psimilar formulation can be written for' hi , the probability the intra—
cellular entrance of a pore is of the sodium ion radiusl By assuming

’ that in the steady state all sodium sized pores are blOcked at both
entrances Mullins succeedeﬁﬁig<deriving expressions for both potassium;'

'and sodium conductance in terms of h ) and h

i For this physical model proposed for ion permeability and

membrane permeability changes, potassium conductance gK is defined to
be E

where.‘j and jib are the prqpabilities that extracallular and intrarﬁi
,cellular entrances, respectively, of a pore have the radii of the B
o potassium ion, and gK is a constant.: Calculations indicated that the_7.
: _:results of this formulation were comparable if j : and ji are’ replaced
= by- b + (l—h.) and b + (l—h ) ’ where b denotes the probability that‘

,\‘

“the entrance of a pore is of the potassium ion size in a fully distorted

i membrane. The formulation for potassium conductance was therefore giVen
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(1.14.'4) ' : : ‘_‘riﬁ g [b + @ - h)] [b + (1 ,—V“hi)] .

The expression for -sodium conductance gN is more complex
than that for potassium since it is necessary to account for the compe- :
: tition between sodium and the blocking ions ‘and the inactivation of the

‘sodium current. Ih the model the blocking ions were assumed to be

'embedded in the pore entrance in a partially hydrated form. Removal of

such an ion from the pore requires energy to completely hydrate the A

.'ion. The effect of this energy barrier at the extracellular surfaces"
;was incorporated in the formulation by supposing that upon instantaneous_h
. depolarization, the distribution of entrances which remain blocked is

.”an exponential distribution with mean k . At the intracellular surface

“the distribution is exponential with mean ki
v

'sodium current was assumed to be the property of- the membrane itself

Inactivation of the

VOnce the intruding ion is removed from the entrance the internal
”'jlstructure of the membrane restores ‘the: pore ‘to its undistorted size. E
:Hence sodium permeability is prevented if the undistorted size of the
'funblocked pore is not that of the sodium ion. Mathematically sodium d””
ubinactivation was expressed in terms of the distribution of pores which
have been unblocked by depolarization and have returned to their un-:*ﬁﬁd'
_h distorted size. The distribution was chosen to’ be an exponential with S _
..,’_mean_kh‘_., " e \
Thus.for sodium permeability to occur, a pore of sodium ion ;t

'radius must become unblocked and a sodium ion must penetrate the pore
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before it attains a size ontside the limits which permit the passage of

this ion.. The equation chosen to describe the pnobability the entrance |
L to a pore is both unblocked and of the sodium ion size was that for the

concentration of an intermediate in a series of chemical reactions.:

Sodium:condUCtance gNa 'was therefore given by ’@:
R kg ke ckr)]
(LA3) ey, < ey, [.Aho‘k'h‘- K )(“" ¢ )} _

{ " «ok ) ( _kit {?;khtn« B

11, -

.where “8ya vis‘a constant t denotes time, and 'Ah - and Ahv' represent'
the probabilities an extracellular and intracellular entrance, respectively,

is open during the depolarization. ‘The quantities in square brackets of '

(I 4.5) represent the probabilities an entrance is both unblocked and of -
the sodium ion size.- : mv »- _ g

vThe mathematiCal‘description for the electricaljbehavior of the ‘.l
'squid axon . proposed by Hullins consists of (I 2. 3)»- (I‘?Jg) of the
'-;Hodgkin-ﬁuxley equations together with (I 4 1) - (I 4 5) Although"
'-extensive analysis of . this formulation has not been carried oist it has
been demonstrated that the formulation for potassium conductance consik

o ydered as a function of membrane potential yields accurate results B \
Q . ".(Mullins 1959) T e

For Mullin s theory, the structure of the membrane was

e AR ) oy

'Significant only in the inactivation of ‘the sodium current. To incorporate ;

this membrane phenomena in the theory it was not necessary to provide a

L;;;:;:fi,gi?“;i;iffli.i;/'i‘_: ﬂl”lh_}‘ dh,l7i'h2;;ffi;?liydvii::bzl .l vy.;;b:
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‘degcription of the membrane structure. A model for nerve excitation
vwhich requires the explicit description of the structure of the membrane
‘was proposed by Goldman (1964) The model was . based on the\electron
microscope evidence which indicated the axon: gembrane consists‘of a
,bimolecular layer of 1ipid covered on either side by a protein layer.
At intervals throughout the bilayer, phospholipids are also found to be
- :present. Each phospholipid consists of a polar phosphate end group;
which is- situated at the" surface of the membrane, and a’ hydrocarbonv'
o ‘lchain, which extends into the interior of the membrane., A polar endy
' group which is" not/bonded to a membrane protein forms a/aiiSI; which::
- can, bind to ions in the external medium. This Eact forms the corner-
j‘stone of Goldman 8 theony for cationic permeability.. ln‘order for a
’cation to penetrate thermembrane it must initially be. bonded to such
-ia dipole.ﬁ Permeability is initiated by the collision of an unbonded

- cation with the bonded cation with sufficient energy to break the bond

A and driuf_the released cation into the membrane.\ The released cation

L :;;@then diffuses through the membrane interior which is assumed to be a

4 continuous, inert medium. -

i To.account.for the ionic specificity of the membrane, Goldman ,i"b
:;proposed that an unbonded phosphate group, which can change configuration:y‘
.h‘with the alteration of the electric field and ionic environment present
'“::would iu this manner change its combining'properties for different ions;:
' For each phOSpholipid three interchangeable ion specific configurations o

of the phosphate end group were considered These aﬁg denoted by C

f'..cu , and C.

| TIIL

(I8

Under the influence of the electric field for the .

N
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- CII » for which the phosphate group has’ an affinite for sodium ions._~

t potassium permeability.

g3

: cations. To obtain the quantitative descriptio

"nIlI denote the number with configuration

45,

resting membrane potential, configuration CIf; which favors the:bonaiggr_
of calcium ions, predo inates. Removal of this electric field by

depolarization results in a predominance of dipoles in configuration

~
»

Also present in a significant proportion during depolarization of the

membrane is the potassium specific configuration CIII .- By considerinw

iy
‘\\

the interchange.betWeen'-C id and CIII to be. independent of the electric

'field present Goldman prOposed that during depolarization sodium

1permeability would attain a maximum then decline and be replaced by

[}

If: it is assumed the ionic exchange at the polar end grbup -
occurs with sufficient rapidity that the. configurational changes repre-l
sent the rate-limiting steps it is possible to quantitatively describe |
the ionic currents resulting at the membrane surface in terms of the

end groups and. configurational changes. For convenience in determining

‘tthe mathematical formulation only ‘phosphate - end groups at the extracellular

' _surface membrane were assumed to participate in the membrane transfer of

Goldman considered the

; total number nT of end groups per unit area of ex hacellular membrane

'surface which are in the form of dipoles. Of th 8 total ng II ’ and

I

CII ,'and C

R o III ?

x-reSpectively. The ionic currents were defined in terms of %hese variables

'and their dynamic behavior which is" dependent upon the interchange of’ the |

J

configurations and the effect of the ionic environment present.

do
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The rates of interchange among the configurations ‘are governed
by the rate constants k 2,-k3, 4, 5 R and k6 . Rate constants

"kl_'?#dIIFS‘ denote the rate of change from CI into CII 'and, CIIr ,

respectively, k2 and k6 represent-the respective reverse‘transfor—

‘. mation rates.r k3_ denotes the rate of change of end groups from

,ponfiguration CII into CIII s yhile k4 denotes the rate of:change

-'in the opposite direction. Since ki, kz, ks and 'ké 'are‘dependent on
the electric field strength it is possible to derive explicit expressions
for these in terms of the energy required to change the configuration.» i>“

Vi

: The~formplations are

surface of the membrane, ‘and 'ml, s ms.

‘and m6 are constants._

 The effect of the ionic environment present is to restrict the

o

' number of phosphate end groups which are available for configurational '

y .
-'changes.' In particular, end ‘roups with configuration_ C or-rC

III
_which are bonded to their prererred cations can not participate in :z'
':configurational-changes.: In order to determine the number of end groups

- which are bonded to catiOns, it is necessary-to‘take into;account the

T T SR S e e
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ble endfc—groups. "I"or those phosphate end "groups which are in '

v oups J,w:(t:h configurat n' CI which are not

' and P
e i
denot;e he, ve10cities of the ions in the respective med:l.a,. and nIiI

is the nmnbér of unbonded end grour: .d.th configurétio .-\ Those

were asaumed to be weakly bo ded

B

end 'groups Vith configuration LII-.
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.‘
rational changes and the effect of the ionic environment the dynamic
behav1or of the ion exchange process occurring at the end groups is

given by

_..lve'_'- ‘ . ! : E “I' ‘
qe = 7k P RgIny Fpnpy + kghygy

b
e

e a S -
(4.9 < St _ o
S - kﬁ“x + i (e + kgdnpyy

N

L nlgn nNa = nT— (I:]': +‘n¢a1 + n]".II+ nK) _ v,

) together with (1.4;6) - (1.4.8). o
! _ Ll L %,
_‘q;?. o \ The ionic currents resulting from the transfer of ions at. the
end groups was determined in terms of the inward and outward ionic fluxes.f

o -'In the case of potassium, the inward ionic flux is given by

~

R T < v S e |

_and'the‘outwardffluxlisiﬁi'%7

e

RN

B ) B _K., KinK[K] L

-,
L3NS

‘cf _:'rnhere nﬂié 'and"ﬂxi‘ represent the energiea)required to displise a .

b°ndéd'P5t§séium‘ion, k' is the B9lt2mann s constant, 'T .'ﬁ

o ;'”fabsolute temperature ‘and both UK R and GKi are- constants which
\ .

/account for molecular velocity and membfane area factors. The resulting o

TQ?formulation for the potassium current Ik is
L:J/ e T c .

S

Ao
N
o
-8
~ PG
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(r.8-12), o T = ang o Ky e T oKl e T

where q is the electronic charge. Similarly the sodium current

'-'resulting from transfer of ions at the extracellular membrane surface* PR

T ;

is giyen:bYV ,fiQJ,u;ffd“';fu.vfx-

eyt 0 i INae

(I 4 13) 7f7r= qu [Na] e J. kT",QQEZ[N?]; e %?“.li'

Since the membrane interior was assumed to be- inert and

icontinuous, upon reaching the interior the ion is only under the influence '
fof electrical and concentration gradients. To this point only the
‘ permeability of cations has been considered. ‘In the.caserof anions,'

f,permeability wab‘assumed to be independent of the phosphate end groupsl
& " SN

SR and resulted entirely from diffusion. The permeable anion is therefore

o i

'x‘only affected by the electric and concentration gradients across the

£

R ) .‘ f {/ s
’ -

,membrane.‘ Thus the formulations for the ionic current of the anions,

A

- predominately chlonide, and that for the cations in the membrane interior

vare analogous_and givenzby the flow equations

P

c_‘q.’Na'(/.: 9% o+ [Na] ax_;" ‘

L falell e 28)
.;FL

R . . .
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"where 6 is the gbtential dcross’ the interior of the membrane, and aK
i ) “

.qNa and acl .are. the diffusion coefficients of: the respective ions ,”I? R

- ~ 'in the membrane.u In addition, the continuity equation and Poisson S.

A ' ”

equation are also satisfied by the system. Hence

| v 'wfw/: -
e . o - ”31 S o

IR rEEE Bt

R | if';~‘ AT R
g d[Na].

B TR N T

K

N

(1.4.15).

T o y - .
B . . . : N RN : Lt !
SR N2 S R IR
S I AT TN

S (r.e.16) . D Gv=._34wq_4 - e T
T T T ([K] + [Na] [01]) I
: Y B . : ‘ ’ S
. . o )
~where ,D.Mis,the dielectric‘constantifor the‘membrane interior.

3».°_p',.=« i f In order to examine the formulatidn presented by Goldman '

it is necessary to obtain approximations for the energy terms.' Although RO

F'Athe analysis is limited approximate solutions show good agreement with

'?¢ ’experimental data for steady—state current-voltage relations and potassium .

.

-”tracer-flux ratios.-:‘”l~,e‘fli.% L f*‘*, 'ﬂf,¥A75l NS

- TFe final modek to be discussed in §I 4 was prOposed by

LA ANERSY 7 ARSI B 32 S S RS e AL g

._lMcIlroy (1970) In this theory the membrane permeability changes are

X

'e-determined by enzymatic activity The model is of considerable interest L

since the formulation proposed for potsssium conductance is formally
- ‘ roo ‘ R ,
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equivalent to that proposed by Hodgkin and Huxley (1952d), even though

it the mechanisms for membrane permeability changes in- the two theories'

o :differ considerably.» ; K
’:Jf’ ' d l Lf McIlroy s model represents the extension of two f‘
.previously obtained results.» Bass and Hoore (1968)

iobserved that a critical depolarization o{ the squid axon membrane'

5 produces an increment in the membrane pH . Furthermore, an increment
"in membrane pH of sudh magnitude was found to be sufficient to initiate
'anvaction potential by nonelectrical means. In an attempt to associate Q,
‘changes in membrane pH with the changes in membrane permeability, Bassgf
‘and HcIlroy (1968) considered the effects of, pH changes on enzymes.:'
The model adopted for study was that of Michaelis—Davidsohn.x For this

- model the enzyme possesses a. neutral base and a singly charged base both._
' u_of which can accept at most one proton in the formation of a cationic -
.acid and neutral acid respectively. The arrangc/ﬁyts of the enzyme are{h
- ‘denoted by. E | 'wherer-p‘ and p ' represent’the nnmber of protons
"i:on the neutralcazd sinély charged bases respectively. Of the four

‘"fpossible arrangements, bElb' was assumed to be the only active form of

[IEv ST T S .

. f'the enzyme with respect to the enzymatic substrate. Bass and McIlroy
"succeeded in determining the fraction f of enzymes in active form as .

a functiou of the membrane pH . The fdrmulation is given by

b.fl”'

Co(Tig, 17y 'f [E ] 1. +-7r-+ a cosh y
B S ) tOt : A S »
* . where

|?'h|m[-‘-" RO
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(l;&t?d% " I oy = (phif pHmax)ln li)1

N
C SR

-~ and
- Te419) T “.‘='2(§ ce

’ Theb.'s_ymbols [Elo] and .j[E.‘ f ] denote the concentration of the active
| ’""‘v.enzyme form and of all the. enzyme forms, respectively, Ko and K
“"“‘are the dissociation constants of the cationic and neutral acid respec-A
'tively, and y is a measure of. the ratio of proton concentration to that
% Which f = f ;: . Using (I 4.17) - (I 4. 19), Bass and McIlroy |
| ',"’demonstrated that in the membrane medium the activity of suitably
chosen enzymes undergo significant changes following the increment in

membrane pH capable of producing an action potential HcIlroy

L ‘extended these results by proposing a physical model in which enzymes

"_under the influence of the membrane ' pH produce the membrane permeability

‘e -

changes .

The model for nerve excitation considered by McIl . y closely

B

- resembles that proposed by Nachmansohn (1959) For _ ts'- theory, L
y 1,;1& vacetylcholine S S present in the membrane a‘ s as the substrate for
‘ ' ) an unidentified receptor enzyme R a ‘ the esterase enzyme H At‘:
' o ,': the resting membrane potential acetylcholine is assumed to be stored-‘
- in a 1ipid-bound form free from hydrofysis. Upon depolarizatiOn, the
. %tive form RElO ‘ of the receptor enzyme combines with acetylcholine, '
S to form a receptor protein colmplexbwith the configurational form COpenbﬁ\i;\» .

This configuration 1is reversibly converted to. the configurational form o
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“C closed which produces thevper%eab%}ity changes responsible for’ the

Wy

rising part: of the actidn potential Hydrolysis of the configurational

-H :
form C open of the receptor protein by the active form ElO of the

esterase results in the inactivation of - the ionic currents. The dynamic

vbehavior is determined by rate constants which govern each step of the'jf
procedure. The capture of acetylcholine by the receptor enzyme was _-
'~assumed to‘proceed(at a rate determined by the constant kl Trans;

formation of the configurational form C péﬁ xinto .C iS'determined‘t

losed .
v_by the rate constant while the reverse rate is given by '—5225 .

“‘conf .. ‘conf -
The rate of hYdrOIYSis is governed by the constant k& : : -

A quantitative description of potassium conductance was

y . T

obtained by considering the membrane to/contain specialized potassium c

sPecific permeability regions. In each region, potassium ions are '

1“”;‘:,:,permitted to pass through the membrane only if the region contains N

o receptor proteins of the configurational form C
e closed

Hence‘potassinm
.,. ﬁconductance gK is given by
K (Ia44?°1 | gK [ closed] ,

: where [C losed]

_the receptor protein, and gk is a constant. By considering the rate

is the concentration of the closed.configuration of .I.ﬁi

- constants governing the process it is possible to determine the dynamic ;if |

R LR

N 'behavior of [C

.‘ closed] The formulation for the dynamic behavior.l is o

BRI R FT _d— S o
'-_(1'6'2;)735;_-.”gtconf'dt Igclosedll‘ff%xhonf[ closed] ‘[ Open]

o and
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Sy

‘where

4

- (>I. .4'.”23)

(1.4.24).

L (1.4.25)

and

(1.4.26) -

R ;the receptor enzyme This is accomplished by replacing [ E

S ’proposed 1n (I 4 17) by fRE

RN

The equation for f E

Certain physiological results P

formulation for potassium conductance.

,' €3§

%Ia.

e 1o fe iR
[Ctot] = k8] E

R |
b=lc 1+1c

[c
open”

. .~ tot

S D TR 7”4?-
o R o Etotj - [cC

10]“ kzj

closed’
L)
. )

1 ».';
totg‘ -

E10) Copen’

1. open”

ot

¢

+ Ra cosh’(Ry),

14+ -2

1

i e
a=2(r*|,
Rk WA

given by (I 4 24) dif

tocj ’:[gtot] .

r"' e « \.)' .

iy_="(pH - ipH'" )Zn 10

© )

L=RH .

fers from that proposed byfv-

(I 4 17) since it is necessary to’ account for the effec%Dof saturation ofij

tot] ,?S

tﬂ%fsiﬁplificécion of'the

Examina ou of thextime constants,

f;. of voltage—clamp data associated with potassium conductance reveal it is
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poss:.ble to‘cgnsider énf = 0'._ Hence (I 4 21) is((eplaced by
(1.4;&7) ﬂf‘i.

By letting | W%

J(I.zhzg) .. ' . . ’ n* = __.L

‘equt.x;a'tioné (I.;li.ZO)fand ,'(1.4.‘22)“*ar'e respectively transfdruiedto :

&
. 4N N

B T L W
; v : _ o Q‘__»‘conf

Sand

)n}-Bn

(L0 0 A - e
REahé o o , x
: : conf

~ where.

ey ‘a* . — ,',1 ]

) . : R ‘A -,
} (1 +I,-z'—v+ Ra»cosh (-Ry)l 1.+ K 1
' R L ~conf

’ ; and :

!
l

(1.4.23) g B o= -
ER 1+-—e—+ acosh ( y);(

| chn.f._.' -

McIlroy also determined that: K f >> 1 in which case (I 4 30) :ls :
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vfurther simplified to

(1.-4.3'3)_, o .g%—=a*(l—n*)—8*n*'"f’v‘g.‘ I
.With N = 4 » (1.4, 29) and (I 4’33) are equivalent to (I 2.5), the
equatioq#proposed by Hodgkin and Huxley (19Sld) for potassium conductance '
This result is encouraging since no attempt was initially made to simulate
the formulations obtained by Hodgkin and Huxley in the derivation of this
enzyme model for nerve excitation. |
) ; The formulation for sodium conductance is idenfical to that ;‘
‘for potassium conductance. '%?nce the same formulation (I 4. 29), (I.4. ;1),.ﬁ
(I 4, 32), and (1.4, 33) must be able to describe the different behaviors
exhibited by the two codductances.i The difficulty is. resolved by i
:~assuming the enzymes associated with each conductance have different
locations in the membrane.- Those for potassium conductance are located
‘-_Vat the interior of the membrane while those - for sodium are located at
the exterior of the membrane.» By assuming that the values of the time t‘ E

~

fconstant for the return of the membrane pH to its resting level
IR e e
following a voltage-clamp depolarization differ significantly between

';the two regions, the differences between the behavior of potassium and

P ‘,sodium conductances are realized

¢

The models discussed in §I 2 §I.3 and §I 4 do not exhaust the :
'3 p0531bilities which exist for mathematical models of nerve excitation.t
These models do however, indicgte the variety of approaches that are .

Ki.:nused in deriving the models. It has been suggested in §I 3 that certain -
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- . >

of the excitation models can be classified in terms of . the structure

of their mathematical formulation. Since it is possible to classify

the models in terms of their mathematical formulations it may also be

possible to determine a generalized mathematical formulation for nerve
.

exc1tation. .To obtain such a generalization -it is necessary to examine-_

the mathematical properties of the*fdﬁgulations for the different
& - . .
models. Much of the research on the mathematical structure of the

/formulations for nerve excitation models has been done by FitzHugh

and will be reviewed in §I 5
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§l;5 .Classification'and Generalization of the
Mathematical Models of Nerve Excitation

- v,

The fact the mathematical formulations provide a means to
establish the validity of the proposed permeability mechanisms of each |
model demonstrates their usefulness #n the study of . the excitatory behavior
of nerve. - The importance of the\mathematical formulations however is
not restricted to this\application alone. As pointed out in §I.3, by
considering the structure of the equations it is possible to categorize.-

o the models on the basis of their formulation for certain of the bask:

_qualitative features necessary for excitatory behavior. Employing ‘the B

fquantitative nature of the formulations in the investigation :of these

;‘ categories hopefully will provide a means*to determine the exact: nature o
.of these basic features.r In §I 4 this proposal was extended by
‘dguggesting that through the investigation of the structure and mathe— v

n;‘matical propert%@s&gf the formulations it may be nossible to derive ‘a 5_.

A

Lgeneralized formulation for ‘the basic. interactions required to describe l'
,“,59@‘\? : ) .

"jthe excitable behavior of the squid nerve axon. §I 5 is devoted to the“ ?

._ﬁs,

PR - 8 L
RN PO s - R

‘ : "

It is possible to classify certain qf the models intovtwo ’3?1

categories on the basis of their formulation for sodium con—'

,distinc

xductance. In : e Hodgkin—Huxley theory, sodium conductance is a o

.‘_
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N

independent processes. For the theories proposed by Mullins (1959),
Hoyt (1963) Goldman (1964) and McIlroy 11970) sodium conductance is a

function of one variabligwhich 1tse1f is dependent on two or more'.q

coupled processes This qualitative mathematical distinction between the =

two categroies has been shown ‘by Hoyt (1968) to lead to quantitative
_ 9
» differences in their predictions of sodium conductance for different

voltage-clamp potentials following a conditioning voltage-clamp., Con—

~

clusive experimental evidence, however has not to this point been

obtained which indicates which of the categories simulates the axon%most

accurately. S R o EE :A» " o

LR

Certain of the models can also be categorized in terms of the

?”’ihtegtep\npence,demonstrated in the formulation,between the - sodium and

potassium . The models proposed by Hodgkin and Huxley (1952d),

Eozt/£y963) and McIlroy (1970) consider the sodium and potassium

permeability changes .to be independent of each other., The models of

._ M\fll%

in (1959) and Goldman (1964) however, consider the sodium and ;;:

.,"at Ty ‘
) ‘t

pohassium permeability chagges to be coupled ‘ This coupling results .

S T

Ty

; from }ihe assumption that both sodium and potassium ions share a common’

gthday through the membrane. Mullins (1968) conjectures that the .

,~‘-'n

7b hypothesis of a common~pathway‘would be inwelid if: circumstances exist4
%%.

o for which the sum. of sodium andupotassium conductance at -a given time |
S exceeds that of the maximum sodic)/conductance.. 4gain, experimental

evidences has not completely resolved which of the proposals is valid

e
s E RV N . . . D
A R e T

'“r3 In order ‘to obtain a generalized formulation for nerve

RPN S
T

RS
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excitation, it was p01nted out in- §I 4 that the mathematical _structure of
the existing formulations must be 1nvestigated FitzHugh in a series of
papers (FitzHugh 1960 and 1961) analyzed the Hodgkin—ﬂuxley equations in
an attempt to determine the phy31ologica1 importance of ,each of the
'dependent variables. The analysis_was carried out ‘using phase space
methods,~ » 3 S | |

‘ Ty

~To determine the significance of the dependent variables of the '
. Hodgkin—Huxley equations and to reduce the four dimensional (V,m h n)
phase space to one which can be graphically portrayed Fingugh (1960)
'<'vreduced the system of equations by considering one or more of the
'dependent variables to be constant» It is possible to classify the
variables V m:'@? and n on°the basis of the magnitude of their
. relaxation times which are given by S S - V", : : v_érfh
B ey, tEy i

s .

“and

' respeetiVely.' Since the magnitude Qf. T g

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



axon. The two stable separatrices tbgether with the saddle point

o correspond to the threshold phenomena present Qn the squid axon, whilei p

L]
3
)

phase plane regions and points to phﬁsiological states éfwihﬁagquid negve*[f

T

9

the two stable singular points represent the physiological states of

' restﬁﬁnd Excitation, respectively.

L0 A - . IS

Ao By removing the restrictions on n and h and considering the '

1

-(J,m) phase plane for the complete Hodgkin—ﬂuxley equations produces a

number of changes. Only the stable singular point corresponding ‘to the
RS . T e

resting state remains. The threshold phenomena ﬁ% this case is repre—

sentedhby a“trajectory, for which only a portion of its 1ength acts as .
w
a separatrix dividing the neighboring trajectories, which represent the

'responses to' instantaneous current impulses, into subthreshold and full

_action potential responses. At was impossible, however, to find a unique |

&

g'separatrix which would distinguish between all the trajectories on the -

d..-

basis of this property. The (V m) phase plane, therefore, demonstrates -

[N

o 'the inability ofathe Hodggin-ﬂuxley equations to satisfy the "all-or—none"

= phase plane with“ h_

f;law as demonstrate EYythe squid nerve axon.' In contrast to the (V m)r

.‘and n constant, the (Vgno phase plane-repre—

v.‘_

4senting the complete Hodgkin—Huxley equations contains regions w&ich

5-“correspond to the physiological states of recovery and refractoriness.

'iﬁﬁThus the pair of dependent variables V and m. can be considered to '

' Mffrepresent the properties of recovery and refractoriness. et

&

represent the property of excitability of the axon while n and h
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.

be a member of a elass of non—linear systems which demonstrate excitable |
_'and oscillatory behavior. To‘further analyze the properties of the

Hodgkin-Huxley equation FitzHugh derived a mathematical model which would

represent-this class ‘of non—linear systems and at the same time be more
-‘tractable than the Hodgkin-Huxley equations. The model was not designed
',~to represent experimental data accurately but rather to represent.the

basic interactions required to produce the various physiological states

»
. B

of the squid azon. w
Theygpﬂéi'proposed'by FitzHugh:is’based‘on the_van.der'Pol

',equatibnp(vanfder Pol:vl926),_for a relaxation'oscillatorfgiven by

PR Q : ' /
. _ L9 . Lo -
- S o dx : . oL
R (r.5.2) .. L Ty + c(x 1) +-x = 0 ‘ .
' where c is a positive conetant. Applying the Liénard tranoformation»
(Lienard, 1928) .»‘.
: ';;"».)
Wy - et gkdx X
llto (1;5.3)-vields the;set;of,differential*equatidns~
) SR S T o B
. N ¢ dx =‘ T L - s
o B ai ‘c_(y + x- 3 )
(1.5.5) S0 -
8 & - ...' .‘.'-c-ll‘s—-’—c-i, .
Ced L ¢ {.dt c ,, R 5
'\; o ( B 'w‘u,b . Y-"l SRR SR .

" The phase plane of (I.S S)\contains an unstahle singular point at the .
“Torigin,n To remove this un table singular point, Fitzﬁugh considered the T

"Tequations . \,:ﬁgQ:
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S| dx L X
A ! dt ] c(y +x -3 + z)
(1.5.6) ° T e
o C | ey @x-atby
1 dt e e 7
with ‘ A o
| v % _
L Co1-Poacr, SR
A ST S
g o o(@sn e b.;< 13’; 2 e

and both a ~and b constant.‘ In order to considér system (I 5 6) as a:

odel for nerve excitation it was assumed that x denotes the displace-—
. . .p : &v . o
ment. of the membrane potential from the res&]:ing potential and z denotes o

the membrane current density. System (I 5 6) els referred to in the

' 1iterature as the Bonhoeffer—van der Pol equations’ ",.4.;' i ',]‘lu," A

-v.g'“' R ﬁn_ Syl e e T e

FitzHugh analysized the Bonhoefferu-van der Pol equations by
phase space methods usings computef simulations. Conditions (I 5 7) had
3 been chosen in order that for f}. = 0_. » theb‘lisoc]!ines corresponding to '
h-j—: =0 nd _X = 0 intersect at a unfque po:Lnt which is stable. This :

Jngular point represents the resti,dg state of the squid nerve axon. 'lt

. was also possible to correspond oﬂner physiological states of the axon, l

\

: such as the threshold phenomena and refractory period to specifichegions

of the phase plane. Furthermore ’ the electrical behavior of ‘the axon

R under a variety of stimulus conditions could be adequately interpreted on
. [ \
- the phase plane. However ’ for a step current of magnitude exceeding s e

-

. critical value the trajectories in the phase plane a.pproach a stable limit
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.cycle. Hence, the, Bonhoeffer-van der- Pol model produces an infinite train -
»of impulses for constant current stimulation arve a critical leveI as
d1d the Hodgkin—Huxley model As pointed out in §I 2, this is contrary to

the known behavior of the squid nerve axon, . - '

. vv 4;"1‘ & _‘_'gq‘,ed system"'o.f (1. 5 6) with y held constant was also

considered.hy,f‘it&z}iugh (1961) The x phase line of. this reduced system )
.. contains three singular points._ Two of the singular points are. stable '
and represent respectively, the physiological states of @st and ‘
'.-excitation. The third singular point a saddle point situated between
the two stable singu‘lar points, represents the threshold phenomena. of the‘ 4
' axon. | There are, however, no regions in the x phase line which. h

| correSpond to the recovery or. the refractory period of the axon. The '

. dependent variable b3 ,'_therefore, represents nerve excitability and

o corre%ponds t% the ables ‘m and V of the Hodgkin—ﬂuxley equations,
' ‘”-while the variahle ';\y reprresents the states of recovery and refractoriness ‘
'and corresponds to the. variables ‘n and h of the Hodgkin—ﬂuxley

",equations. This final result provides a’ means for comparing the :

formulations proposed by Hodgkin and Huxley and by FitzHugh LA

| In ordex;, to compare the Hodgkin-ﬂuxley equations a.nd the . |
; Bonhoeffer-van der Pol equations it is necessary to obtain a phase plane
" of the Hodgkin—Huxley equations which can be compared to the (x,y)
: ‘phase plane. , To construct such a phase plane, FitzHugh utilized the

' -previously obtained result which reveals the correspondence between the T

EI

dependent variables of the mo formulations. "I.'he‘" res“l't,ins ‘ph'a 8.@ Plane -';:; .
G T e
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5 A4
. is the (u,w) phase plane"for which u is a function of m: and V §°
i‘r’ : and‘ w‘ is a fundtionsof.in and vh ‘7The poihts '(u,w) in the plane
wvere determined in the following mann Each value u corresponds to

the points in the (m, V) plane for which u = V - 36m while each value
W ‘correspondsvtovthe points in the’ (n‘h) plane for which W ;t~ (n - h)
The projections in.each case had”beeh chosen in order to preserve ‘the

physiologically significant features represented on the, respective planes.

The (u w) phase plane of .the reduced system of Hodgkin—Huxley.
equations, as with the .(x,y) phase\plane of the Bonhoeffer—van der Pol
vequations, contained regions and points which correspond to specifici
' physiological states o%lthe nerve. Furthermore, the (u,w) phase plane
and the' (x,y) phase plane were found\to be qualitatively similar for ,'{
a variety of stimulus current inputs. In particular, for both models |
—— : the"trajectories representing the response to stimulation by a step of -
‘) sufficient magnitude, approach a stable 1imit cycle. These similarities
i‘lé_iAsuggest that the Hodgkin—Huxley and Bonhoeffer—Van der Bol models can be
! considered as belonging to the same general class of excitable—oscillatory_;
systems.» FitzHugh‘£l961) however, expressesAone‘reservation in makin;“
wMCumwmkmeqummeWom@m,ﬂw&kamththe
(u,w) plane is not a phasg?plane since in general there exist .an in—L

[

finite number of values of gt »and :t for each point (u w) In Sh»'u
spite of this reservation, the ability of the Bonhoefferhvan der Pol v
" model to qualitatively describe the physiological states of the nerve"i*f'

"1‘ and accurately predict certain excitable neural phenomena secures its-w»'

relevance in neural modelling.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



>~"Q
‘In 1969 FitzHugh attempted to derive a, generalized mathematical

model of squid nerve excitation. The basis of’ the mathematical

formulation is thenﬁssumption that the squid axon megbraae can be-L"”&‘u'ﬂF

a.{ ,"5".:,-.1‘
: con51dered to consist of a capacitor in parallel'with'a‘co%ddctdr% &Henge o

the basic equation is 4

5.8 -i‘l;‘—-u

4.“ 1 vcn

Bl

4 )Awhere I v, CM » and t are as defined for the Hodgkin~Huxley equations f
. SRR

&
. and‘ I, s the current density per unit area of membrane through the

,";;f Experimental evidence (Hodgkin and Huxley 1952) indicates
'"the excitatory behavior of the axon can be attributed primarily to the
‘_behavior of the conductance current Ii . For the generalized formn—-fti
: lation to exhibit the: excitatory behavior of the nerve, FitzHugh proposed -
f"‘that Ii must be a- function of variables which ‘as’ in the case of the -~f
. dependent variables of the Hodgkin—ﬂuxley and Bonhoeffer-van der Pol
'fformulations represent specific physiological states of the excitation
f,process. The functional form of 11. was derived from the fact it is
e_possibie to classify the physiological states or events of excitation.,.
.according to their duration time._ The classifications considered by
‘FitzHugh listed in order of increasing time duration, are excitation ;“'
'events,.recovery events and adaptation events. ExcitAtion events include:
",the threshold phenomena, and the.rising phase of the action potential
']:whilefrecovery events consist of the falling phase of the action potential
'ff and the refra%tory phase. Adaptation events which develop the slowest
i._}»raccount for the reduction of the frequency and possible termination of a.

R : e -’ e ‘J"’J‘-):‘,' A

i e PR v ()
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.
train of impulses produced by a prolonged constant stimulation. The
, excitatory nerve behavior was,therefore,incorporated in the formulation

i is a function of the membrane potential and one or more .

- e—

- time dependent variables each of.%hich can be classified according to

R

*”f: the case of the Bonhoeffeﬁhvan der Pol formulation (I 5 6) which

the system devised for classifying physiological events of excitation.

Thus the generalized mathematical formulation for ﬁerve excitation is

given by
{ dV . .
S g e e BT o
Tt o) ! j
o i" dt = F (V 2,...,Wﬁ)‘ | j = l 2,...,u

where each Wj for- j 1 2,...,u is either an excitation variable,-

recovery variable, or adaptation variable.

¢

e The mathematical models discussed in\sections §I 1 throu h
A R o

§I 5 with the exception of the model of Young (1937) for b #0 can all
be described by the system (I 5 9) It is of interest to classif

excitation models discussed For the models of the two—factor t‘eory of,.’
excitation, L is a. recovery variable while K represents the
potential.e For the model proposgdlby Hodgkin and Huxley (1952d) m is

‘an, excitation variable, and both n and h are recovery variables, In

transformed to the equivalent formulation
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P s
. TR T o . : R
: : ' ‘. dv o v s ) X
IR AT LR R L. I b S . oy
@ i 4 de 3 vl . S
(1.5.10) oo 3 . s
| ‘jw.‘. (V+a—bW) |

with a, b s and ¢ constant and with the conventional notation for R

L N

membrane potential and membrane current in’ excitation models, jW is a

recovery variable, Neither the Hodgkin—Huxley formulation nor the '

o
(

nhoeffer—van der Pol formulations contain adaptation variables.
=_.F1tzHugh (1969) suggests that the absence hf such-variables is responsible'
- for the formulationssproduction of an. inﬁinite train of impulses for step'
current stimulation of sufficient magnitude. ' E_,jh;‘ﬁ,"_ S S
V}” ey e S ; T
‘ J;‘ FitzHugh (1969) has attempted to eniend the Hodgkin—Huxley and |
.Bonhoeffer-van der Pol formulations to include adaptation variables.a To_,:
:rnzfobtain the required formulation it_is necessary to reconsider the two- :‘
factor theory of excitation.;fgs :tated'in §I 1 the two-factor theory
'with only one exception is unable to account for events following the
»initiation of an action potentialL‘ This excepti@h derived by . Katz.'
‘e (1936), is the extension of Hill's model (Hill 1936a) to enable theh
’.3determination of the duration of a- train of impulses. Katz proposed
'ithat if k << A in (I 1.5) and (I 1'7) then for stimulation by a step
"current ofésufficient magnitude the 1ocal potential K‘ would remain ”
;”above the threshold L for a period of time during which repetitive f,ld
U'timpulses would occur.v The effect of the assumptidn that k << A is to 'bh

';change variable L to an adaptation variable. This assumption 8180'

.{?‘ produces ehanges in the formulation proposed by HiLl (1936a) _fori“°“"
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' ' . . . Z -2
: dz dI )
(I.S.iZ) i o TR T + 5

where Z°‘= K - L" « In the case of stimulation By a step current of .

magnitude_'Il administered at t = 0 , (1. 5 12) is given by

(1.5.i3) . . I Pl CI G(t) - '——)\-—-,— .
~where §(t) is the Dirac delta-functipn, and has solution 3\
z_ 5 t<0
(Ls.1e) .l e |
T Betheye T s e 2 0;

4“<ACCOrding teyKatz assumption, repetitive impulses occur when

;

_“TK =‘Klf L 5 0 . By (I 5 14), repetitive impulses occur only 1f
A'_C114>.fz f and only during the time interval 0 < t < t1 where
v§1'5'14): - L gyt X £n 'Zo |

is the duration of the train of impulses. This Hill—Katz model can ba.
: 4

-used to: introduce adaptation variables into an. excitation model by

hfassuming that Z - Z is the effective stimulating current instead of

-

:I and-that _—?Zo' is the threshold for repetitive behavior.;'infapplying o

SRR Lo S
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.
this procedUre to the Hodgkin—Huxley-formulation, FitzHugh (unpublished)
succeeded in producing only.a finite'train of impulses to stimulationlby
step current irrespective‘ofvits)magnitude; This‘proCedure does not;
”'however resolvee thelprfblem completely since it is impﬂ'Fible to

stimulate all experimentally observed features of a finite train of

o impulses (FitzHugh 1969)i DR .

ﬁ?In §I 2 it was pointed out that the Hodgkin-Huxley equations |
:lare a model for the squid nerve axon with the experimentally induced
;condition of a uniform membrane potential over the entire axon membrane.
This 1nterpretation also applies to the: models of excitation considered |
in §I 3, §I 4 and §I 5 including the generalized(zodel. The models of

.excitation are therefore restricted in three major ways. “First, the

formulations do not take into’account the passive electrical behavior

"‘of the membrane to electrical stimulus. Secondly, since the squid nerver
'h axon is a representative of only one class of excitable tissue, the
l .models do not necessarily apply to. other excitable tissue vhich‘is
structurally different from that of the squid nerve., Finally all the;
models account for nervous stimulation in terms of an electrical
stimulation administered to the .axon. Thus the models neglect to
:account for the effect of the soma—dendritic, through which the nervei“‘_‘
fnormal receives stimulation, on the excitable behavior of the nerve.
N The three remaining sections‘of‘Chapter I describe the'ettempts ghich'3'1
‘shavehheen‘madelto svéréoﬁercheséf:héée ;estrictionsiofhthe:excitationfj,h':"

" model.
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§I.6,.Mathematical Models oquction Potential Propagation -

:To this point the models of nerve ekcitation haVe been
restricted to the special case for which the membrane potential is

assumed-to be uniform‘over the entire axon. The models have not included

“the passive electrical properties of the nerve resulting from the v_/"“

~

d administration of a stimulating current. Nprmally during the application
.of -an external current at a point on ‘the squid nerve,_there are circulating

' currents which flow along and through the membrane. It is these circulating
.currents which account for the propagation over the entire nerve of an

action potential initiated at a point on the axon..

The distribution of the membrane potential over the membrane
-5of the squid nerve axon: has been modelled by assuming the axon possesses
" f:the properties of::.core conductor. To obtain the mathematical descrip--
:tion, the axon is considered to be a cyclindrical cable—like structure ofh71
infinite length consisting of a conducting core, the axoplssm, which is

separated from the extracellular conducting medium by a resistive and

capacitative sheath the nerve membrane.'

A number of assumptions have been placed on this basic model in"“
‘order to simplify the mathematical formulation. First the axoplasm and
:extracellular fluid are considered to be ohmic conductors. Secondly, by }f“
O :

: jaSsuming the axon to be sufficiently thin and the axoplssmic and

*extracellular fluid resistances to be low compared with the membrsne_',fﬂu~‘
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; resistance it is, possible to ignore the radial currents in both media.

Thls restriction permits the three dimensional problem.to be considered

in one dimension. Both assumptions have been shown not to introduce e
R

serious errors in the calculations (Hodgkin and Rushton' 1946).‘ A +

. . :

' further simplification results by - considering the extracellular medium,

K

;,r, B .- '.‘i
to be of sufficient volume in order that the(extracellular fluid is

essentially isopotential This final assumption makes it possible tov57b“nz

L

"u; neglect the extracellular fluid resistance whieh will be negligible

: under the circumstances (Noble. 1966)

.

Hence

(1.6.1) o

-

where X

tligk_'irfmbgﬂebjjlj ,‘iyi 3 |
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are tvenby w1y
S e .' ST T
' ' o LE W, . B gl T

ST ey e e el
0 at t; = 0 for o< X @i & 05;9 A .

. 'llm‘.__Y('x;Q&}) =0 for 0 < <o o

T JFor pfac%ical application i%. :Ls cong_@,nient to. reformulate (I.

"')’

of mor;a basic quar:n:d:t::i.es.E9 This’ ?s acdomplished bys\ﬂ,efiniﬁ?g:‘ e

: -'px 13 tm sPecific gsistivity og

. m:‘iw:._
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O ,‘Va

L%e

In this case if it :i.s
ot

t the external current is applied at x =0, then at each

B 4p 8x2‘> CM at RM e A
S, @9; e . I T S
Where _ B‘M isw the membrane resistance per unit ab%:of membrane. To cen
solve (I ;6. 8) it is convenient to consider the tra.n\sformation determined

e by definLng o . - ) - 'f '\;.; . . ERER 'f e o

ey T ‘
. . | . L . . . . - . L > ' d EEI v,b'-._._';'a, -
T where T = RMC is the ,membra.ne time constant and )t = 40 :I.e the R
g membrane space constant.. The resulting transformation of (I 6 8), 31‘{ |

&
.

weo (e 10y 0 ‘L‘zl-g—g""\ 0, T
: . . ST ) SUEEE SO N S

T 'lis amenable to solution by Fourier /transform methods. An importent

” .application of cable equation (I 6 10) will be considered"in §I Bne ‘ '

u'4- ,-_L..,"' :

‘ To model the bebavior under electrical stimulation of a squid

nerve axon, for awhich the membrane potential is not uniformly maintained

Vo s i B N . - . . . . - N N - " .
R oo . AN . ) oo ; oo . ST B _ S - .
. o
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L v - 3 . . . ) ]
4 :, . N 1 e ‘ \\ "'v‘(—, .
v ( ( Q' ';I;" B ' ‘ ‘.,‘ e "- . ’ o q - ’. - ! N : '7 '
. ".’,. . . PRI ' o ' L - o g “ ! ‘ \' )
over the entire axon, it is necessary tp consi.der not only the excitable ;
- , ? T \' ‘ N )1 L ) " L“;
C ot properties of the nerve but also t,he passive electrical properties. o '
) o. v e . S M ., '-" :‘ g
Under these circnmstances the mathematical formulation describi'ng the e
. -‘ ' ‘.(.- . . $o
axtm results by combining the cable equ.ation which determineg; the passive ' ;
R S s, L L
o behavior of the n'erve to electrical *stimulation ﬁth a“"iormulation‘ des-
' N ;;f,cribing the excitatory behavior.-‘.,__‘_ _ At .' ;4‘ , "; Y
. _' AR Y n. B Q‘A' R . e < ‘: Lt . X r;. e . m TR ,:3 -"5" . -
- By combining cable 'equation ﬁ(l 6. 6) with the Hodgkin-Huxley f'-,"'v-éf
v -'/ ! [T
equations, Hodgkin ’and Huxley (l952d) attempted to ,calculate the foftp of

-
5:; P N

‘A"“"‘ m action, potential which is propagated«, along the axon.' 'i'his system of==J

L s Tawe L L :

(1.6 11) RPN —‘———2- $ X +.1 *+1

- G T gyt M IE ’4‘ Na o
The set of equations consisting of (I 6 11) and (I 1 5) - (I.l 12) is | o

% R Y

g referred to as the= Bodgkin-ﬂuxley partial differenti.al equatlons. T.o
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=CME+I +1K+Iz..

recorded pappagating action potentiala.'

3.
" a3

Egﬂ‘ ' Further analysis of the Hodgkin»Huxley partial differential R

,Aui‘} equation with (I 6. 13) substituted for (I.6.11) has been carried out by .

‘i

Huxley (19593 b) using a digital computer. In particular, the effect o
o of'temperatune on the conduction velocity was calculated Hodgkin and J'f

Huxley (1952d) had determihed that in order for the Hodgkinrﬂuxley

___' LS "o

IR Ao - A A R
f-" each of the ra*e constants a > B s O 0’ B , ah and Bh must be

multiplied by the factor '

o ;.l;”7i,: 3“ »ﬁfiih\f h“' L -'.‘ it T-6 3 "¢¥z e
§’§5' ,ghere T denotes the temperature. The numerical solution of the 'f {;7;ﬁ@l1;

ﬁf?'{fjsys:em of equations . 6.12) aad ex 1. 5) - (1 1.12) with the modification T

required to incorporate the effect of témperature, indicates there exists

o

& equationa to include the effect of temperature variation on the nerve,"lilix'

a criticai value W« of w such that for v > w the propagation of an ‘f,

,action potential can\not océur (Hleey' 1959a). Furthermore, for w < w
/J'itwo solutions in addition to that corresponding to the normal propagated
_ action potential were obtained (Huxley. 19S9b) One of these eolutions lh'

\ IS

v

B L
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‘/ o ”. , ol - R
.represents ‘a low amplitude propagated action potential while the other o
represents an infinite train of oscillations which are propagated along
~ the axon. Both reSponses are conducted at a velocity lower than that for, L

the normal prOpagated action potential. Neither response has been observed

'experimentally.

3" Fitzﬂugh (1969) examined the propagation of an action potential‘f:
"using the Bonhoeffer-van der Pol eguation (I 3. 10) as the formulation )

describing nerve excitation. The model was reatricted to the’ case. of the

\
~

Thus the gequired formulation is “f'ﬁ;‘v | o
;—‘1—3—2— i31’-— v +Y—3-+w’ e
| % 4pe at? Bt L .i T
ety e e SN
SR S B W“""” T e

R
A

PR

:'The numerical solution of (I 6 15) determined hy digital computer

simulationa demonstrates there exists 2 critical val 1,c. of ¢ such SR

‘«

that for ¢ > ¢ it is imp ssible for an act on potential to propagate.

'For each ¢ < ¢ there are two distinct solutions of (I 6. 15) ;dne f» ' "j:

S solution corresponds to ‘a’ normal.propagated action potential;il he.second
_solution,’arlow amplitude action potential propagated at a-velocity 1ower- %.
"'Ehan that of the normal action potential is similar to the so tion “ |
‘”determined hy Huxley (1959b) for the syster of equations (1.6 13) and' N
(1.1, 5) - (I 1, 12) Hence ¢ appears to. play the same role in thh B »
i,Bonhoeffer-van der 201 equations as the factor w 3 given by\(I{6 14)}lh
- }lh‘does in the Hodgkin—ﬂuxley equations."j'flfgﬁtfﬁf'iyuf Jif§=-ai;iﬂiyii»""‘

Y

Re i issi [
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_ In order to be able to quantitatively describe the initiation -
-_of an action potential at the point of stimulation and its subsequent

propagation along the axon, the restriction that the action potential is .
I

o

prOpagated at a constant velocity and waveform must be removed There— .
e

fore it is necessary to obtain the solution to a formulation consisting

of an excitation equation together with cable equation (I 6 6) or one of

:its equivalent forms A digital computer solution to such a formulation, lo
" the Hodgyin-Huxley partial differential equations, has been obtained by

"_ Cooley -and Dodge (1966) The solution was determined by approximating

U

‘l»(I .6. 12) with a finite difference equation.,'

S g

-‘;jx . - X
To obtain this approximation, a. squid nerve axon of finite
o .
’length was assumed to be represented on’ the one—dimensional xhaxis by

the interval [O,xk+l] This interval was then partitioned into K + 1.
;_subintervals each of 1ength ox . - It was supposed that over each sub-.
'3Thterva1 k.(k = 0 1,2, 3,...,K) - the' membrane potential is uniform andl ;.'*~V

"1s determined by the Hodgkin-Huxley equations apprOpriately subscribed

»to distinguish individual sdbijtervals. If the external stimmlus is ?
2 ; '-.A'Ak-
T aﬂministered at the point x = O_, then the boundary condition for i
o . e N A S
Rt each~subinter\ial e (k,u 1, 2 3,...,x) 13 T T IR
sl PR 1 "'A Vi1 zvk + Vk+1[ R P
BT R E T FEI o k 4p S ,;53 . -
' _.(,Iv.;6.~f6)' i where o e ) -' ‘

w ]d’?ié'the aion;diameter,, p is‘the specific resistivity of the axoplasm,

e o
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o2

' L is the membrane‘current density for the k h subinterval and Vk 1
| th

# ’and vk‘l‘ are the membrane potentials for the k =1, k ,wand

k41 subintervals, respectively. To account for the external stimulus :

‘applied at’ _x‘e 0, the boundary condition.for the subinterval k = 0 is ]

. /

EEEEERE R z,'v’ SRR P (V v )l
BN ey a 1)
61D e ; lioa % Ls T2 & ‘/J‘--'

v -

The‘solution to- this finite difference approximation of the: ;:J'

| Hodgkin—Huxley partially diffgrential equation with boundary conditions

o (II 6 16) and (II 6 17)?ﬁakobtained by numerical integyation with respectg'
l»”gto B nThe computed results for a propagating action potential have 1t -
“been compared with«thOSe obtained by Hodgkin and Huxley for a- prapagating‘ =
'4action potential wieh constant wave form and velocity. The two~ cal— |

)\» :
.ou!ations agreed in regard to the peak amplitude and durLtion of the

-

L axon.potential Differences were however noted in the exponentiation
'rate in the foot of the rising phase.;'ﬁ

R . ‘ ‘-"a

Before attempting to derive excitation and propagation models

. . . o R |
1._._"‘ ...4.« . - L~ .

..fbr excitable tissue other than the squid nerve -axon, in §I T it is of
~mathematical interest to consider the formulgtion for a generalized ;"'} "

’ propagation equation. This generalization follows from combining the ;' 55: 'f

e

f_generalized excitation formulation (I 5 9) and cable equation (I 6 6)

A

:'r The resulting formnlation is id‘f'vh:" o - ;5 ¢9ﬁJ

T O o
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3V d Sy 1 . Y S
& ey = (L (VW W, .. W )] ,
R g e
(1.6.18) B ~ S
L W e o g o
l .__j.u F (VW W) mL,2,0 o

. .

ot 1’ 2""’

In order to analyze this" system, Evans and Shenk (1970) ave considered

Lo
Cy

- the simplified system :

, - SV =1 (V, W)

(1.6.19) % e
- ‘ EERE AR || SSURTApAEI R

P B ‘E_(V.W) .

‘Evans and “'Shgtt?ﬁ*whé\.ie shown that with initfal _cdn.dit;iqhs; )

R V(x,0) = )

(1.6.20)

“J-. .

"‘W(!wﬂ) = w<x)

e o i
B R

”.the solution of (I 6; 19) ia exactLy the solution of the syst:em of

A
~ e - : i

"',:integral equation

T L me s [ Sl
Cweay < 0w Gy e UGG ,yds L

oy
-

Sy
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i y“"_’; §I 7 Mathematical Mbdels of Excitation and Propagation

A

121;,'- R S , ,f’ in Myelinated Nerve:

v
The squid nerve axon is a representative of only one type of

:-excitable tissue.- For other exciiazle tissue, which differ structurally'4

i

A_from that of the squid nerve axon,~f?- Hodgkin—Huxley equation have been'

' successfully modified to describe tﬁi xcitable behavior.\

In vertebrates the axons’ of certain '”7}es-are covered ekcept» o

,'for small regions, called nodes of Ranvier, bf -sulating myelin sheath »

| ﬁThis insulating sheath restricts the excitable ane’ of the axon to
the nodes of Ranvier. Voltage—clamp analysis H-de of Ranvier of

a myelinated Xenopus laevis nerve reveals certain similarities between "w:'

)

_this myelinated axon and the squid nerv axon (Frankenhaeuser. 1959,

REks
7.

‘; 1960 and 1962) ﬁ_ﬁh»both nerves the memhrane current consists'ofial

Lo
. - capacitance curren; and an’ 1onic current.; Furthermore, the components/~'

' IR

of the ionic current found in the squid nerve axon are also present ing';f.
‘the myelinated toad nerve axon.'\' f 5ijf1;?r . :’ffl;,w‘. T
Frankenhaeuser'did h ver find important differences between

-y,

';the voltage-clamp data for &uamyelinated nerve*and thaglfor tbe un—‘
meelinated nerve.. It is these differencesnwhich account for the *‘ﬂxu”
'modification of the’Hodgkin-Huxley equations required to make the

-formulation applicable to the myelinated'nerve.' In addition to the |

.three components of the ionic current which are common to both nerves, ﬁv

a fourth component, a nonspecific ionic current IP. carried predominantlyfﬂf

\
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l‘:' ' .
. ) '
!
by sodium ions, was found to be present at the node of Ranvier. Hence

: , "
for the myelinated axon the membrane current density I per'un'tgarea
' IR &
of membrane is defined by e fﬁh}ﬁ L
! » ¥ R .
a7y N + I + 1 +1, 4 st
@ny .,.-qcu Ip |

for which du:notation is defined in the Hodgkin—Huxley equations " The

"most significant difference between the two nerve types is that the

I instantaneous current-voltage relationship for the myelinated nerve is
linear only in the case of the leakage current.~ For the sodium,potassium,
and nonspecific currents, this relationship is. most accurately described

; by the. constant field equations of Goldman (1943) which in the case of
- 'V'the sodium current is N S , _
[T T S EMF [Na] - [Na] R SR
C(1.7.2) v . U Tap 1
R PR ;[Na' Na ,RT el EHF
e T i e | e
L EARTF A
L ‘, S i% § ~ S U
_-where7f[Na]. and [Na] are the concentrations of“sodium in the'_fil
o ,extracellular medium and axoplaam, reSpectively,.v?ﬁ' is the sodium ;dd1,.7ﬁ‘

;permeability, F is*Faraday s constant R, is the gas constant and T

.~;ﬁ;1a thewhbsolue temperature. fkp‘and IP are given by expreSsions :;

5 o e ‘ "v - . ....‘,' v;)';‘
,;'similar to (I 7 2) which contain the appropriatelconcentrations and o 'd'ﬁi
%{f.ﬂ'uPermFabilities.gi”d a.fgfﬁrg_e"?i:fﬁfuuf,iff,f:d{5'; 'f-7$fijru'flf ~'fi;gi3¥5

| By (I 7 2),.the permeabilities PN s P K ,_and P at a given
‘r.rdtime are independent of the membrane potential._ Therefore in considering

.i-fthe sodium, potassium and nonspecific ionic currents it is more
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. ; | ‘ | 7 "v v | o . . | ; ﬁh‘q v

’ . ) . " “ ) } - . ‘ - .o vv_‘. .
\ . .

g B
appropnate to-use the permeability rather than the conductance no des—

cribe the state of the respective ionic currents. As in the case of

the cbnd'uctances, the p_ermeabilities ';Pk,_ rNa; and_ Pp - are f_uncti,ons

' of both time and the memb'ane'potential ‘ To‘determine thelfunctions "
oth time and ! N

.

PK‘= Pv(t)'}and 'PN P (t) at a given membrane potential .
v“'. ) :.\

Frankenhaeuser used the formulations for g gK(t) and gN "Na(t)ﬂ ;-

oi-the Hodgkin-Huxley equations as a guide line. The resulting

‘equations are AT o
| R
(1.7.3) R
‘ . da
and . ‘f‘ '
: rNa B PNa hﬁ
3 *
‘ . . o ,L ) . ! . -
(Li.e - B g’: a (1 - m) +Bm
| T LD SEC N
L T DU »';J '._ ‘ '
reSpeCtiueiy,twhere' P‘ ‘and PN are constants and O < n,m,h < l .a'
‘f“The formulation for Pp-= P (t) at a given membrane potential which
o &
: both satisfies the experimental data and is of\l t‘he foén of a Hodgkin-— ‘
) ‘VHuxley conductance equation, is P | B e
dt ,_gp'(lv- ’ p_) +_B:p(?) Sl .
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- nhere i’; ‘i's" a conetant‘and | 0< psl As is .'the case fo‘r 'the v
conductances ‘of the Hodgkin—Huxley formulation, the dependence of the ’
“.permeabilities on the membrane potential is determined by the rate |
coefficients O'i, and -B for i ,m,h,p . The formulations for the
rate coefficients, as functions of the membrane potential, were |

empiri@ally determined and are, given by-

J’r .
Y C A(V -B) R

Q '1‘,.—:e_.l : S R Lo

| ::2.(1.7;9);1;} SR
- i '.. . : e vv“."
{ and o -
) A ‘
' L By =T
1+eC

' 'where A B and .C . are constants and V is the displacement of the -

N~

fmembrane potential from the resting potential
, -Using thia formulation (I 7. 1) - (I 7 6) Frankenhaeuaer and
‘Huxley (1964) computed the membrane currents and potential changes .

«

'voccurring during a membrane action potential Thevre.sulting computer
i ,simulations were in close agreement with the experimentally recorded

. resulte. . IR Y

C
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myelineated nerve - differs significantly from that fOr an unmyelinated

'nerve. For the myelinated nerve: the insulating qualities of the myelin f

’ msheath restricts the generation of memb e current to the region of“

» the nodes of Ranvier. Hence during the propagation oﬁ_an action

?.

;'d - ',-potential the excitation jumps from node to node. “Qﬂ"~ ST

S

For the purposes of theoretical treatment the myelinated
a.'axon is considered to consist ‘of passive electrical segments, representiug
'the internode iengths of myelin, separated from each other by short
_.iisopotential areas of excitable membrane, representing the nOdes. To;

v

‘W‘ : ,-obtain the mathematical description of the propagation,of an: action
- »¥ e

"potential in ﬁx:myelinated nerve, Goldman and)Albus (1968) represented

a Xenopus laevis nerve by the one dimensigpal x—axis such that there is
‘a node at X = 0 and the rest are evenly spaced with internodal dis—i ~

tance \i : By assuming the axon is symmetric with respect to the origin

b

"where the external stimulus current is applied only non-negative values

.of x- need to be considered

aﬁi_- ﬁ‘ ‘f';::_ 1} .At.each node -k (k = 0 1 2 3,...) the membrane potential is

ﬁi:: :f“v.determined by equations (147 1) - (1. 7. 6) with appropriate notation to

| distinguish the individual nodes. The passive electricai segments were |

' 'assumed to be a 1inear core. conducting cable. In order to apply cable -
‘equation (I 6 11) to describe the distribution of the membrane potential

L

: over the internodal ﬁegments, mgdifications are required to account for
" 1

the resistance and capacitanCe of the myelin sheath The internodal

i
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'-»'f.node. . For k # 0.,

is

 where :Lk is the membrane current ' At the origin x =-0 X-t-hé“nddel

4

L '.corresponding to k 0 > the Bounda:y condition for (I 7. 8) ‘:Ls“

€
i
-
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?Fﬁ

s oy -

v where is; is the externally applied stimulus current at 'x = 0 and
7 r, is the resistance ‘per unit length of axon of the extracellular

medium To ensure the.continuity of the p&tential over the entire axon

. it was assumed that .

'_(1.7.1;), © 0 lm V(x, c) =V (). for k=0,1,2,3,... |
" where " V (t) is themembrane potential at the k th ‘node. . '.’fdu ' gi:'

- : [

By assuming the ratio of the axon diameter d to myelinated

- - ’ * -

axon diameter D to be constant -and the internode length L to be ff; e
.proportional to the myelinated‘axon diameter D as is the ‘case for the fi
?{myelinate nerve, Goldman and Albus carried out a dimensional analyais‘fs;fi"

.of the theoretipal nerve. The computed results demonstrated that thev

propagation velocity of an action potential is porportional to the e
; ,

lmyelinatﬁd axnn diameter D in agreement with the experimental reaults

”'for the myelinated nerve.

‘_\\.
\

The myelinated nerve axon is not the only'type of excitable
i'tissue for which a modified form of Hodgkin-Huxley has been successfully

’

fapplied Brady and Woodbury (1957) have succeeded in modifying the ih

eQuations to describe the excitable behavior of the ventricular fibers‘di V

V'of cardiac muscle of frog., n.,A Uaing an entirely different formu-7

' lation from that of Brady and Wbodbury, Noble (1960 and 1962) was able e
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to describe ‘the behavior of the mammalian Purkinje fibers-for cardiac

muscle. C
. o - B (,: . . S . T .
4 |
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§I 8 Mathematical @els of the Significanc.e of the N
Soma-Dendritic Region on the Nerves Excitability

; - ., . R : . T
- - . K S . . ) . . . . e

ikt

For the models é'bnsidered in §I l ~ S§L.7 nervous stinmlation
'\hss been assumed to bé ‘an electrical stimulus administered to -the axon
'.‘of the nerve. In vivo, however, a nerve receives stimulation thr,ough o
“its dendritic and soma region, from other nerves._ On thig basie the.‘
“’nerve can be functionally divided into the axon porti'on and the soma- 2 .,
:v‘dendritic portion. ‘ The models of excitation and propagation presented ‘
f_‘ ;in the preceding. sections ire models related exclusiv,ehj w:l.th the function
| "'.._. _ 'associated with the axon protion of the nerve. In SI. 8 two mthematical
: ‘_ theories are presented which model the structural end functional .
. _'relationship of the soma-dendritic portion of the nerve tq the excitability
; ;of the nerve- : a ,b .
& «"-‘-.. . e I'na .nenrel system.consisting of many ‘n‘erves., the axon.of _' '
| -";one“nerve will terminate on the dendritic and somstic regionsﬁof other T

nerves. ' The region of close contact between the a:non of o!f/ nerve and

| .Cthe soma and dendrites oﬁ another is known as the synapse. The influence -

| "'of the presynaptic nerve on the dendrites and soma of th postsynaptic R
ey _-f_nerve can be transmitted ‘By either electrical or chemical means. In

) the case of a "chemical synapse“, the propagation of @ actiﬂn potent:ial

'along the presynaptic axon res‘ _‘s in the release of a specific chemical

' *”“';".from the presynatic membrane which ‘produces permeability changes in the
S
'"f'«f-{postsynaptic membrane at the synapse. : These permeability changee

:”
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o & h : S
d result in ionic currents which may alter the membrane potential in the f-f

4

"';neighborhood of the synapse. If the membrane pOtential is changed then '
o this increment in potential, called the postsynaptic potential will

/

'bv;passively Spread over the rest of the nerve membrane. Its distribution ‘
'-: in . terms of time and distance will be determined by the membrane

resistance and capacity. (Mountcastle° 1968)

fx.v v There are two types of postsynaptic potentials each of which
is determined by the character of the presynaptic nerve, The excitatory
postsynaptic potential (EPSP), which ia generated by an excitatory

presynaptic nerve, is a depolarizing potential The effect of EPSP'
; 13
are summed both spatially and temporally. If an EPSP or the sum of—

v

number of EPSP's attain an amplitude such that a criticel level of

)

ﬂ: depolarization is reached at the trigger ‘zone of dxanerve associated
with the soma or axon, then a propagating action potential is generated

The other type of postsynaptic potential is an.inhibitory postsynaptic

\

potential (IPSP) which is produced at a synap by an inhibitory
i presynaptic nerve. The IPSP can be either a dizb

larizing or hyper-:'
’ polarizing potential depending on the value of the membrane potential

The effect of an IPSP is to reduce the excitability of the nerve.( As 3;1

\

in the case of EPSP's, the effect- of IPSP 8 can be summed spatially and

temPorally-:;f ﬂ : f-:-{'Fr.‘ﬁbf'ﬁff’ffil'“b:f'v

In many nerves the dendrites are branched in complex geometri— 4;

.o e D, "
vcal,structures.; Since the effect of the postsynaptic potentials decays

‘gv,with'both}time‘and distanteuthen;different spatioftemporal_patterns;ofj;jﬂ
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R ey A '
‘ , : _;g 1
~_synaptic activity on such dendrites and the associated soma would seem .

\ .
to have different effects at the trigger zone and hence on nerve ."

excitation (Rall 1962) Two mathematical models which permit the :_v

‘\'

prediction of the effect of various spatio—temporal patterns of synaptic;zib

activity have been proposed by Rall (1962 1964) .
: , . o - f}f
The experimental evidence of ionic permeability changes and \\

e 'currents at\the synapse suggest that a uniform patch of dendritic 7,7

membrane can be described by an equivalent electrical

-

‘;“circuit. (Coombs Eccles and Fatt 1955) ' The model for the dendritic

.

o membrane proposed by Rall (1962) consists of a capacitor in parallel ”
g with three separate parallel conductors.: The three conductors represented
three separate ionic pathways associated with the resting membrane po— -

‘fﬂ tential the EPSP ~and the IPSP respectively. For this circuit the

‘ mathematical formulation relating the membrane potential»and membrane ﬁ*

EN

o current of a unit patch of dendritic mambrane was proposed by Rall (1962)

,(I'.,8_.1;-)'- i-c dt+G(EM-E)+G(EH—E)+G(EH—E)

l:fv phereisr; é and j represent the ionic pathway associated with the .
resting membrane, the EPSP and the IPSP reSpectively.:n > G and Gj
denote the nespective separate conductsnces per unit areé'of membrane, .
and E v:é- and Ej ‘denote the equilibrium potentials.ggvthe respective
pathways.“ EM is the membrane potential CM isWthe membrane capacitance ‘
per unit area of membrane and I is the membrane current density per |

unit area of membrane.t For the model CM G s G , G . Gr:r'g“fﬂnd,'gj‘f‘f‘
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-
?'were assumed to be constant ‘with respect to time and membrane potential

To apply (1. 8 1) it wds reformulated into the equivalent form given by

“where

A . T=RC, and RM---_E T

)

@83 i T, 6 +6 +g
- . . . ‘.k2' Lix e 4
< LT R
o, and i o
P ; RN
. 1v* G_(E _.gr)v+;c (E, - E;) -
* ‘." \‘

.

I order to. reduce the difficulty~o£ determining“the distrI““’"‘f”fmt’
gbution of the membrane potential over a branched dendritic Eree, Ra11

"7(1962) considered a special class of dendritic trees which are mathe-
7ﬁmatica11y equivalent to a’ cylindrical condueting core. To obtain thia

f‘particular class, each dendritic tree is categorized in terme of the

a
number n of equal branches of common radius r which are at a distance
cA from the soma.l It had been assumed the cross section of thedbranches ‘u‘ﬂ'H;
- are circles, but the branches are not necesserily considered to be -
gcylinders.'7" ;:
“5d}defire ;hisu‘classification, it 13 necessary to determine
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. \

“the distribution of the membrane potential over a- theoretical dendritic

-

tree ' The mathematics are simplified by assuming that the extracellular

medium is isopotential and that in the intracellular medium of the

1

T branchea, the radial current flow ia sufficiently Smallto be neglected ﬁff-
' In this ca8e, the combined longitudinal intracellular current id for.«QA'

fn dendritic branches with common radius r at a distance x from the_.

soma s ' e

v where Pd is the specific resistivity of the intracellular fl id of the Al

dendrites. Furthermore. for these n branches the combined membrane: L

: current density T per unit area.of membrane is given by

:,\_

.‘.

B - - . " ' G R . e ‘\,"‘ o ,' i . RO A

@se) o ALy, de

C@en g “[“ (‘qﬁ} ]

h;and A is the membrane surface area of‘each of the branches._ By .

"'1ddif£erentiating (I 8 4) with respect to x and making the appropriate i;»‘:”

'substitutions given by (I ' _and (I 8 6), transforms (I 8 4) to

| ‘Ru as)” ‘azv av ! 2'! ‘;
-_(1 8 8) - mM 2°d dx : g.éx ax dx zn(\rn)l ¥

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



96,

. " The change of variable given by ‘
, A “rRMi dsld
S L R
. transfdi:ms (I.88) to - _
: L fa- [y : ,g: -2— ’ l .é.g. ] dv L
| .;1’.8..10) IRy - 7t X zn‘ r.:‘1 : dx_ R
' _ If it is assumed that the conductance current of the membrane is a linear
function of the membrane potential then o o e

'*,,#nd'th?.éoﬁiiﬂation‘ofici;S;lo)land?fiia:il) ta..

L 2
- (1.8:12)

2;_

+ K 3T -

. .vhere - - . ¢ S e

C@say k=[] L g S

v AN T Rl T VR L e

Hemce, for a given K o the diatributiou of membrane potentj.al over the

dendrites :!.s determined— by equation (I 8 12) if by (I 8 13), its branches

satisfy b ,_-.<
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;_ o ) s
. » .a - '. )
) . 3L )
» - N 2y T2 Kz-z) .
(1.8.14) . . oo, x !t o Tids: ( |
. - Lo . n . _{.r . i x} , .
E : B« R o R
, SR

" where, no, r, and.‘zblrare'the values of ‘n; r and Z for x = 0.

For the class of dendritic trees with K -0, (I 8 12) reduces_f

to cable equation (1. 6. 12) and the distribution of the membrane potential_f o

ver the dendrites is equﬁvalent u:the distribution of the potential over

’f a cylindrical core conductor whose length is expressed in unita of Z .,:45'ﬁ5

ii;\\Furthermore, equations (I 8. 6),‘(1 8 9) and (I 8 14) imply that in the";
case when K =‘D > equal increments of dendritic surface area correspondhf.
.J, to equal intrements of length of the equivalent cylinder. This fact
permits the comparison of the result of synaptic activity in distinct
e regions of the dendritic tree which have equivalent surface area but

are at aifferent diatances x from the aoma._ If each branch of the

vr cree is’ assumed to be a cylinder,_that is, ‘{}é = 1 in (1 8 6) then thea'ﬂ
class of dendritic treea with- K - O can Be extended to include den— o
dritic trees with unequal branches at a given distance x .from the 'f |
":fh{. soma_~ In this case the constraint on. the branches at a given distance f?;;ﬁ”'
.x from the Bom is:'i-'i‘_ . : ST : - B
%é":_ff'i_'i_ S f, 2_. s .
";: where rk his‘the radius.oi the kt h branch and the sunmation over.
a':f eXhaust a11 hranches‘at this value of X e )v - |
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To determine the distribution of the membrane potential over

L

a dendritic tree resulting from synaptic activity,. it is’ neceesary to -

]

consider both the effect of presynaptic activity on the membrane potent:.al

and the passive electrical properties of the membrane. (,Matbematically

this is accompli hed by coubining (I 8 2) and (I 8 3), which account

effect of presynaptic activity,with (I 8 12), which determines .

the passive distribution of the membrane potential over the dendritic

\

tree. g In the formulation, synaptic excitation and inhibition are
:l
For the r.lass of dendritic trees with K= 0 » (I 8 2) and (I 8 12) can

A

be combined to yield -

BZ‘ »

Y .
Lo

‘ g ' To investigate the structurai significance of the soma- ':I R
dendritic r?ﬁion Rall (1962) considered two boundary valued problems
for the system (I 8 16) and (I 8 3) The first corresponds to tl:?a . o
decay from a nonuniform membrane potential distribution over the T
dendritic tree to a uniform steady state determined by the values
chosen for k and V ' in (I 8 3) _ In this case the boundary

conditions are o n

| o ';e=zrwzw;:&xx+f*' e
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«

._where )h is the length of the equivalent cylinder.’ The solution was
obtained by the method of separation of variables together with an’
ordinary Fourier series expansion to satisfy the initial conditions.

"fThe second problem examines the resulting steady-state membrane

potential distribution over the entire dendritic tree Y?;n initially g

_fthe tree is separated into two distinct regions of uniform membrane

‘2“~potentia1 distribution. Oon- the equivalent cylinder of 1ength z =1

-

o ,',;A
,the separated dendritic regions correspond to the lengths of cylinder

.from Z = 0 to Z = A and from Z=A to’ Z = L ‘s respectivelyr

.EaCh length °f the cylinder is represented by a distinct formulation Y.

. ‘-,the system (I 8. 16) and (I 8. 3) defined by the regional values of k.

and V which are determined by values of G . Gj and»the,membrane o
;constants chosen to represent the region. ,The_boundarytconditionrin

,this case is R
o (I.a,lB);A‘._ e 3z =0 at Z=0 and Z =1L

Sy

.with both V and ‘%% assumed to be continuous at Z - Av.» The solution L

v“
“was obtained by the method of separation of variables together with a

'iﬁfgeneralized Fourier series expansiona- In both of t b problems, the

'b fmembrane potential across the soms ‘was assumed to be the potential

'determdned for the point % - 0 ;on the equivalent cylinder.;hu’“
R B T N T RO

e ‘.‘,“ L ® f

The numerical results obtained by Rall (1962) to these two}'i

”symaptic activity. Dendritic synaptic activity, in particular, that“
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"

occurring at the dendritic periphery, &xms to contribute significantly
to the maintance and adjustment in the background level of membrane
’depolarization., Synaptic activity at or near the soma, however, seem s

"to be effective in initiating precisely timed actiOn potentials. ‘t
AR ' ’ v

The applicability of this "equivalent-cylinder model" to the

study of the dendritic trees is seriously restricted in two respects..

First the constraint imposed by the power of 3 vin equation (I 8. lS),,JLj ,:

2
: although satisfied by the dendritic branches of motorneurons of the

. spinal cord is not aatisfied by the dendritic branches of all nerves. o

'fSecondly since a particular range of values ‘of Z corresponds to a
'<>fnumber of branches on the dendritic tree, it is impossible to consider'
.=;'the effect of synaptic activity which differs between branches that

'f'correspond to the same range -of values of Z

To overcome these difficulties, Rall (1964) proposed a S

l‘ﬂ; cdmpartmental model" of the soma—dendritic region.» In this model the‘ o

AR

tdendritic tree is represented by a series of discrete elements or © -

L

: compartments. LT ;,::ftf’ - ":;3f'

Each isolated compartment was assumed to represent a uniform'ph“73:‘

;patch of soma—dendritic membrane.» The mathematical formulation deter—ff*il
7€:ymining the membrane potential across such a uniform patch is given by “” ‘
"‘(I 8. 1) Hence for a given compartment, denoted by Ci s the membranek;
4‘_potential across the compartment satisfies the equivalent form of -

"(I 8. 1) given by f’
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(1'.‘8.;':19_)_ : S e ,-71—;'!?= .‘,.“1("; }-.-A_~\)s )" |

where

: (1.8.20) J - ' . 1 4+ Ei.+v1Ji'v

| (1821) L

£

"th

\ - and..

>
u v .
l-'-H

The notat:ion of (I 8 19), (I 8 20) and (I 8 21) is: defined as for:

. _.-"v_equation (I 8. 1) and those symbols which are not subscript: with i‘ are L
.assumed t:o be t:he same “for: each compartment. The variable "i re-

' .‘ presents the norma.lized value of t:hQ depart:ure of the membrane potential

. .,.;from th B t‘ .
Hrom e xjest:f.ng pot:envtia‘l such Fhat \)i - 0 when EM = E and

.. . S - X Ly
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and v, = 1 when EM = Ee L
For the case ,when’ two compartmqnts'are directly connected.

there: will be a flow of cnr_xje,nt ,be,tw"een .;tnem. If ,Ci and c:1 "denote:

two' t&ixfectla'y'connected como'ar't:ments ‘then the net flow of cnrr_ent from

G &t A

o kS - w

..\)'

C(1.8.22) D

z;j‘%’
de !
-

;?13?“3

where g ij the conductance from Cj to | i . is '- aesmed to. be equei
g 2 il’ the conductant:e from C i ‘to  C; Cy . Hence the membrane

'potential across compartment -C;

‘to

i when it isg directly connected to"

' another compartment Cj ’ is detemined by I ' t—

s dey g g ‘
- (1.8.23) o y ._.—:-L.. = ...u _ii) v + _j'i \’ R u .
Bt A St Yyt e

wv}j"‘et‘e". ci is t:he cépatitande' of C

Cy . By defining":‘

g+ BT X

Py

A i
0
-

1.8.24)

“and

e "
B st R L
SEPURRERNE s

o -

- __tﬁeﬁ-.(x;.'s.z'g,) ) 1s“‘g°iv'en. by N .
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,(I.B.?S) e © uiivi + uijvj + £
For i{e general case consisting of n compartments the "b';> K
membrane potent al,across compar tment C for i= 1,2 3,...,n
satisfies v
dbzey L TRL R . .
(1.8.26) 3 = Z “1j“j + £ 1=1,2,3,...,0 .
where - T ' o
( E, +B8J, +X
¥ f = i '
i ‘\'\t
. (1.8.27) - ’ . = —_1.= 41 for 1 ¥3.
o ol '_ij ci cy Lo

- . :;,—(l‘+ Ei.fuJi)'r il

‘band: ' o - i-;_ . - ".‘_~ o
RS O R
-<I:3a?8> G By f‘gji § Qo.

- for two compartments c, and C which are not directly connected

1 -3
jHence for the compartment model the distribution of the membrane f’f

'r'potential over the soma—dendritic region is described by the system
1'of linear fits-‘order differential equations (I 8.26). e
| ; . o

The advantage of. the compartmental\model is that the region f’

! .
-~

of the dendritic tree which each compartment represents is not specified

‘3and can be arbitrarily chosen according to the need of the problem.<~

v . “’
_‘(\_;‘. | .
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Rall (1967) solved system (I 8 26) for a-chain of ten compartments of

which the first compartment Cl
\

' \
4For each of the nine chmpartments associated with the dendrites, various

was assumed to. represent the soma.,f

' values of G and GJ were chosen and the potentialichangevproduced.inf‘ f‘

Cy waS»determined. Transient increases of G in ani compartment

! . . . ‘:\{ . . N . .

”were assumed to be of the form S,
‘<I.8;?9)>, ﬂ;“: o CA "the: | ._...;svs'ns o 2LA;.=' .
where Td"iS'a constant' A number of predictions regarding the effect | ’
of the dendrite structure on processing of presynaptic stimulation were'”
N
detegmined Three ‘of the more important predictions are that the same
transients applied to compartments ‘at increasing distance from the soma ;_d
"_result in potentials at the soma of decreasing size and increased rise
time that small conductance changes are added linearly, and that time
course changes of the conductance é%ansients have greater effects at ;;_”
.:1ocations qn. the dendrites nearer the soma.“ The predictions have been

: tested with only partial success in the cat spinal mororneurons (Rall
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' . ' CHAPTER II - °

' introduction

The nerve - impulse constitutes the output signal for the nerve.
:From microelectrode recordings it is observed that in a train of
impulses, there is variability in the. intervals between successive
lintervaIs.. The activity of the nerve therefore has a stochastic nature
hin tha@git is impossible to predict the exact occurrence of an impulse
‘(Johannesma. 1969) ' Hence, it ig necessary to consider the activity

‘.d;of the nerve in probabilistic terms The experimental data must

i- therefore be analyzed in terms of certain qtatistical quantities such e

‘as. the distribution of interresponse intervals. |

The variability of the output signaI is “onsidered to :”
' import certain information regarding the generation of impulses.‘;
“:Mathematical models have therefore been developed which are capable of ‘iiz
'generating trains of impulse which resemble experimentally observed. |
’"behavior.. By analyzing sudh models it may be possible to determine the

s

A»vprocesses ofthe nerve which are responsible for such behavior.:,'gv‘

As pointed out above, there is a random element associated

with impulse generation._ Experimental evidence exists which suggests,vs-'vd

”,this randomne/s is inherent in the synaptic input to the nerve
.(Johannesma. 1969) It is therefore of intenest to determine the output
A»activity of a nerve in terms of the input signal characteristics.: Such

,analysis results in ‘an-. input—output relationship for nerve activity hhich

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



' 'can be used as the basis for the interactions between nerves o a

mathematical nerve’ network model . By analyzing the behavior of small

-
1

‘nerve network models for which the activity of each nerve is determined |

. bv this input—output relationship it may be possible to gain insight '

'into thefactivity of. more realistic nerve networks

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



107.

‘-

T e TR s

As stated in the introduction to Chapter II the variability

- in the spontaneous impulse pattern of a nerve may indicate certain
"properties of the mechanism of nerve impulse generation. In~§I.l an

Y

early attempt to derive ‘a mathematical model.which w111rgenerate the

_ spontaneous activity of nerve is considered ,‘~x dj*

Rodieck Kiang and Gerstein (1962) analyzed the spike train

1

recordings of the - spontaneous activity of a nerve in. the cochlear

nucleus of the cat. Three measurements were considerza These are

y the interresponse time, the joint distribqtion of two successive .
' .interresponse intervals, and the distribution of time intervals between
_2??1 action potentials, where ‘m: is a positive integer. For each

_measurement a histogram was - plotted These histograms give an A

‘estimation of the probability density function for the respective

PR Y

”distribntions. ,.-’g 'v" B :'”'vihiL]dev;;; j:: R s;,ljj‘ o '\;fA‘

. -, Two significant properiies of the histograms enabled Gersteinsbf
:_/éand Mandelbrot (1964) to- suggest a possible mathematical model for the - H
:v::generation of such spike train 'ctivity.: First the density function
iof the interresponse time dist ibution, must be able to account for
| comparatively 1ong interrespo je intervals.i Furthermore, the data

‘7indicated for appropriate cha'ges of the time scale, the histograms for.

~.the distribution of time int rvals between 2 1, action potentials for’ {f" ’

".each m remains approximat‘ly the same as the histogram of’the inter— Vf“: |
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» b

response time‘distribution;A For this last property, if the duration of
successive interresponse intervals is assumed independent then _
successive convolutions of the density function for the interresponse oo
"time distribution, with itself must remain of the same functional form,
except for linear scaling changes of the independent variable. :Av:,-f"harg
5probability distribution which satisfies this criterion is said to’ be ‘

: A_stable._:

A distribution whose density function satisfies both pro-

;f perties is that of the stable distribution of order This is,

'2".,
l':fhoweverb ‘the probability density for the first passage time in a simple
hf one—dimensional random walk which begins at a fixed distance from the
habsorbing barrier.' Hence Gerstein and Mandelbrot (1964) considered ‘
 the mathematical model which generates the spontaneous neural activity '->t'

- -_dto be of that form

The random walk model considered was given the following |
hphysiological interpretation., The membrane potential is represented

| dhby a state point on the one-dimensional x-axis. The threshold
rphenomena, correaponds to the absorbing barrier for the random walk

'g'and is represented by the point x = d- - If tﬁe membrane potential

Y

NS ~

-v'7greaches the threshold value, x ad ; and action potential is assumed
to‘occur and the membrane potential is immediately reset to: the
“fdresting value x = x -%1 Steps taken during the random walk correspond
‘to postsynaptic potentials resulting from presynaptic nerve impulses._;s'
“,'An excitatory impulse produces a: unit step toward the threshold while

'?an inhibitory impulse resulta in a unit step in the toward resting

]l e .o

S
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" potential.
. ' ’ . .
By assuming the unit step sizes to ‘be small in comparison to

the difference d - x and the temporal spacin between the incoming

impulseS'tO'be'small, it is possiblevin:thexlimi pg case to consider

¢

-Tthe random walk as a Wiener process (Cox and Miller. 1965) For'this _

_process, 5§e stationary probability density function f(y, ,x) that

-the membrane potential is at a value y at time t after the occurrence B

of a value x : assuming the value d. has not been attained in the o

: time interval, satisfies the forward diffusion equation

,ﬁrrr)ug-.insn _smme+ 2 tr,ex

where ‘m and ﬂsz' are the mear and variance of the limiting\process

respectively. ~With the appropriate initial and boundary condition given

. . by . V - N - A- R . B . . . .
E(,0,%) = §(y -x)

B Eeeexo=0 R

s

£d,t,®) =0

:7\;+gf:l;»;,_ R R S S L T
" where &= 8(u) 1is the Dirac'delta function; the solution (IL:1.1) s
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s N ’ 110.
' Liy-xi? 1-!1'-x-2d‘;2_j mymm e
e Y= R 1 P e
(II l 3) f(y,t,x) = 1 e \s/t?: - = 1 '"e‘ ' B/E. l-»:ie 5
i s/2t - s/2tm L -
- for - t 3_'0”1. .
=0 .for';v t<O0.
The probability density function for the interresponse time
- distribution is given by the probability.. density g(t,x ) for the
i fgst passage time of the absorbing barrier starting from X = x *
i ‘:Using the property of conservation of probability given by o
‘ (11.1,4') o ' g(t x) = - 5—-} £(y,t,x)dy C
" and equation (II.1,1), g(t-,xo) "'wa's'f"deteruined ‘to be
o ' AR ‘_ydfxo?;'p R
C(IXAL5) o g(tx) = —— e - for t >0
ST t‘j . e/2mt e T e T
' “ . Initially, Gerstein and Mandelbrot considered the average rate'

: v-of incoming excitatory and inhibitory impulses to be equal For this f‘

-;_case the probability of the occurrence of an excitatory impulse and the,_ '

‘probability of the occurrence of an inhibitory impulseﬂ)at time t are

‘”equal and m = O ig (II 1 S) Although for this case the stability

e

. propetty lmlds, the temporal scaling factor required to ensure stability_:
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.‘\ ‘ A

‘ﬂoes not closeLy approximate that determined from: the recorded data.

& . S

If the rate of incoming excitatory and inhibitory impulses are assumed

~

" to be different, that is. m # 0 in (II 1 5) then the stability
\prsperty does not hold However for this case, an- adequate approxi—
'-mation of the variance under conyolution is obtained by judicious choice \

' of the parameters. e

s

In order to compare the theoretical predictions of the model
1

.‘with the experimental data Gerstein and Mandelbrot considered sz =}l'

\

and equation (II 1. 5) to be of the generalized form S »L’;““
T PR L SRS (-;—bt)—i
(11.1.6) = .”_ SR g(t x ) = Ke SR -
' where X is constant a is a constant representing the square of the
[Qidistance between the threshold and reset value, and b 187 a constant
2denoting the difference in the rate of incoming excitatory and inhibitory
‘_impulses. For the appropriate choice of parameters it was possible to

: hobtain a good fit with the experimentally determined histograms

if»-Furthermore good agreement was found between the theoretical and

._experimental joint distribution of two . successive interresponse intervals.,::f’

-r“Discrepancies in this case exist when the successive intervals are of
.‘ja short duration. This was- attributed to the fact that for the random :h |

.walk model the duration of interspike intervals is independent while this L
e was not the case for thé experimental data. h;vh;f';“fgpfﬁﬁjf:7bblb;hif Qb:; I.

- . P o ]
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,,:"discussed in §II 2 :

‘112,

Two major difficulties are inherent tn the model First it
is impossible to, obtain an exponential interresponse time distribution,;__ :
' which has been experimentally observed. Secondly;the large magnitude
’]Of the membrane time constant determined by the formulation has not been )

‘obtained experimentally for the vertebrate nervous system., Ten HOOpen

_(1966) suggests that this large value of membrane time constant can be
:‘attributed to: the-fact that each incoming impulse produces a pdstsynaptic
| potential which remaina at a constant magnitude until it is aboliahed '
bx an action potential , Both short comings of this random walk model

.
~have been overcome in the model proposed by Stein (1965), which is
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‘ which it is based it is not able to generate certain other experi—

.. SII.2 Exponential Decay Model of Neuronal Variability -

The model proposed by*Gerstein and Mondelbrot (1964) to
“faccount for the variable spontaneous'behavior of nerve was based ,

. predominately on the mathematical properties of the experimentally f

.‘determined distribution of interresponse\times for a*single nerve type. 7'

Although thé model is successful in reproducing the distributions on

mentally recorded interreSponse time distributions. To overcome these

difficulties it is necessary to include in such a model certain of the-
. 0

-bexperimentally determined properties of synaptic behavior in the nerve. '

'pIn §II 2, a model of neuronal variability proposed by Stein (1965) which

incorporates ‘such behavior is discussed

' Experimental evidences indicate that postsynAptic potentials »“h

resulting from either excitatory or: inhibitory presynaptic impulses can. o

o~

y_be summed and decay approximately exponentially with time (Eccles-1957). o

$§'Furthe re it vas found that at certain synapses, in the absence of

' neural input excitatory transmitter is réleased at random.and the

'Qt:'resulting.postsynaptic potentials decay approximately exponentially

-

(Katz and Miledi' 1963) o

The model proposed by Stein (1965) iucorporates these facts.

o by assuming excitatory and inhibitory input impulses occur at random }7;:'

‘A#”{with mean frequencies ne and.;ni s respectively, and between impulses;ijt“ o
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.\

the depolarized subthreshold membrane potentials decaya exponential '

with time congtant T, Each excitatory impulse was assumed to result

in a unit depolarization while each inhibitory impulse produces c

A

unitsg repolarization If the threshold value of membrane potential is

reached an action potential is assumed to. occur, where upon the

membrane potential is immediately reset to the resting level

‘z _ ' o ~With these assumptions the probability distribution F(v t)
<'that the displacement V of ‘the membrane potential from the resting
potential is less than or equal to the value v 4t timev t;jSatisfies
» : F(v t + At) - F(v, t) = [1 - (n + ni)At][F(v + AV, t) - F(v t)]
SN L ,,m o ) :

lil“-'n AtTF(v t) - F(v -1 c)] +

+ n At[F(v + c t) = F(v t)]

l;, 1”; F(d,ti+ At)'?,i;f F(d;fi'+‘neAt[F(d;C)if F(d "ll't)]<5t‘r

':where d is the difference between the threshold potential and resting = g
1.fmembrane potential,and n At and n&dt are the probabilities of the
:goccurrence of an excitatory and an inhibitory presynaptic impulse,idt‘:iu'

'respectively, during the interval (t t + At) Since a depolarized

. ) FRpn
-‘,subthreshold membrane potentisl decays exponentially toward the resting

L 'mambrane potential with time constant r then :hf"j u" rui-fvil‘ ‘;i'f\jﬁf'” )
"L(I;‘z’z),“[ EEREEE R T
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' . [sR v
C(na3y R &y = 7 At .
By (I1.2.3), letting At.+ 0 iin'(1132e19'Yiel¢sv‘“ A R
e F(y,t) t
-2 %E,),a%?F(;\,)._:-‘n[F(v 0 -F(\’“l")]
R +n[F(v+ct)-F(Vt)] f°r'f"<d
(1r.2.4) . . o - i

o EY e e - r@ - 1,0] .
o _ The solution: in'(ll 2 4) has not been obtained in a closed
.-form. "In order to' investig'até th!.s formulation, two special cases of
(II 2 4), which permit: analytic treatment have been considered These
. _cases result from assuming either ,that the action potential does not
o

occur or that the decay of a depolarized subthreshold membrane potential -
By assuming t:he action potential does ‘not occur, that is

. ’.; letting d + in (II 2. 4), reduces t:he formulation for ‘F(\) t). 't':o;

-

aF(v t) _\g QF(\) t)
ot T v -

anasy n [F(v c) - F(v - 1 :)]

+ n. [F(v *e £ - F(v t)] for v <w ‘;d

The solution to (II 2 5) is obtained by considering the transformed ’

: equation
A R

SRR e el e s
"(11.2;6),_3C(§;F)1 - 6°<g;t> ='n c(p.t)[l - e p] ~n C(p,t)[l -e i“P]
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wﬁth boundary_conditioni~. v
(11.2.7) {A5i:f"“ - LH;ICQHHQ =1
e A el T
‘where -+ _
J(11.2.8) - clp,t), = | .ae*VPar(v;t)

. . s o
is the characteristic function for the distribution F(v t) : Equation _ i
(II 2. 6) can be reformulated into two ordinary linear differentia%

{'\,e‘ _'r'.

.equations for which the”solution w1th boundary condition (II 2, 7) is

given by

Yo

,_(Irtz.g)fIIOg.c(p;t)Né'?:

oz, equivaiéncly .
o e | B G A
(r.2.10) -~ 108 C(p,t) = X (1p) (1 Se L )t A nt-w® L

. k=0

°

. To examine the properties of this and the other specialicases
| of (II 2 4) considered Stein attemnted to- d§$ermine, where it is poesible
the interresponse time distribution and mean frequency of response as - R

a functlon uf the 1nput frequency._ For the case in which the action 1
| potential is not assumed to occur it is possible to examine the inter—ﬁiaf; {}
fh_ response time distribution by determining the mean and variance of the
'hilmembrane potential distribution F(v t) i Since -{;ht:f'«'hh"“ |

s
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SR & §

: R n log C(P’t) -
. 9ip Cotp=0

oy

“‘Aig the nth cumulant of the distribution F(v t) then'the mean W ,
l;and variance 03 'of the distribution F(v t) aren :

]

.é?dgh, . v
; S ., '.;}2 2 , s -—'(t-t)
o (11.2.13) L7 o = log C(p.t), =3 (n +c. ‘n )(1 —e Ty

T,

Equations (II 2 10), (II 2. ll) and (II 2 12) lead to two _
/\ .

44important conclusions with regard to- the interresponse time distribution..f

"By (II 2 10), as 't »®’ the mean, variance and other cumulants of the =

distribution of the membrane potential with time approach steady sta e Af‘

1evels._ Tne distribution of membrane potential,‘therefore becomes 5

ce

i
l

;f time—dependent and for eitper weak excitation or predominant inhibi"ion’
.in which case the steady state‘mean membrane potential is always less |
-‘than the threshold value, the conditional probahility that an action i
, potential occurs becomes constant for times greater than several time ‘
hconstants T Thus, the interresponse ‘time distribution‘possesses an }~1":

,v'exponential tail By (II 2. 12) and (II 2 13)< o (t) increases ‘at a-

,vgrate twice that of u (t) Hence in the case of predominant inhibition

ffor which u (t) < 0 in the steady state, the con'itional probability
4fjthat an action potential occurs can increase to signi icant values |

'.before attaining its constant value. The interresponse/tf'e distribution ‘

LA T

e
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Y

‘in"this_ ca'se will rise to a. sharp _peak _b'efore approaching an expo‘nential ,
distribution.

For the special case of (II 2 4) in which the decay of a‘

depolarized subthreshold membrane potential is assumed to be negligible

* Stein also assumed that the effect of excitation and inhibition are’

equal to one unit of depolarization and repolarization, respectively.
“_T_he model v’therefore 'r,edu'ces‘ tto“a birth_ and _deathv process -or.queuei_ng
p.rovce'ss w’):‘i'th“an«."abs_:orbing,ba‘rrier‘ 'al_t} x=d. In: .t.t-‘}l.s." case. system
’ (1124) is r‘eplace‘dlby | o |
& ?ef'k.l“_)_ T (g r )R (E) FRgFy () for ldkeds2

(t) :
1 .
dt T k 2( )

SR SR 's

(n +n )F (t)

Careas! -&F.d@ Lol

”dEo(t), - LT
.wher‘e ’ k(l:) is the probability that membrane potential is k units, IR
for 'k = 0 1,2,...,d ', above the resting potential. “The . moments of . S
the interresponse time distribut:ion for this model have been determined“_‘ '

by the metho‘d of probability generating functions. The mean inter- '

response time in thj> case is given by »> .
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n =-n

B . SRR ‘n,
(I11.2.15) y (t) = d-a , 4 2[ ~
R S Te i (n' - n,)

. e ; d - a(d + a - 1) ) L
. Sn = | for n, = | o,

1fo.

“‘nhere a is the initial displacement of the membrane potential from

'::the resting poten&ial (Bailey 1964) Hence the mean frequency N

&

. reSponses is A' . : o S S

(I1.2.16) ‘ﬁ% — =1

R R R n
- : o f.i- (n - ni)(d - a)ﬁ+:ni{(;1
- . : T : el

d a e

: n
n VRl )
'-tBy (II 2 16), for predominant excﬁtation n_ »>ni thehfrequency of

',responses is proportional to ne>- ni s that is

‘ e ;' o - ,h{'h  ?§ f?pi ‘
L @nz2ans R LT e

_ne’ given by

arz2as . w ‘T'ni(»n__")
A o R o ' 1‘PbQ$:En: SINEE R & R

of

-'and for predondnant inhibition Ini >> nei;‘,N 'is?a pdwef'funCtiOn*cf

1 If in addition to considering the decay of the subthreshold

“-membrane potential to be negligible. It is also assumed ‘that presynaptic

R

f'inhibition is absent then the model reduces to a Poisson proéess.

Hence,,

the internesponse time distribution is a gamma distrib%tion with the

/2
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.probability density function‘ g(t) given by

e g o 1 - -
219 g =& ol — et

1 'where rtb is the duration of the absolute refractory period following
the action potential during which time incoming impulsas are asaumed
to be ineffective.. The mean u and variance Ut of the interresponse f

l, time distribution for (I1.2. 19) are.. e : ,;"-;2';”‘_7'

'(1-1.2.'20)._' TR Y '=£_7,+t-_;:.;’ SIS R

and. -
arnzoy. Colad
A e T2
. . ' : o al
o
‘Hence_the'mean-freqnency of'reSponses_lsgn‘s
e

(11222) S

f&l' For the case in which potential decay is assumed to be "
fhnegllgible and inhibition o, be absent if d is less than or equal |
to one unit of depolarization then the interresponse time distribution
,,;‘is exponential : Hence, by considering the incoming impulses to be o
f:ra“d°mly distribute? with time, overcomes one of the difficulties ‘;*il

Ao

i ibi i ission.
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ﬁ_nresent.inhthe model proposed‘by éerStein and Mandelbrotv(l9€din
A' Theifinal special‘case for'(II;Z 45‘consideredlby’8tein'
, assumes that potentlal decay and the threshold are present but that
‘presynaptic inhibition is not.’ Solutions of thetformulation'in thisf
‘case were obtained by.computer simulation. for each choice of the
parameterslyne,rdy_and' to“ considered in the simulations it was
-nossible to determineiparameters ne,td’: and‘ t;: for;argamma‘

_'distributionAnhich.wouldlaccurately abptdximate the.simulated results.v

To determine analytically the mean frequency of responses ‘
"for this model it is necessary to reconsider equation (1. 2 12) which
: determines the mean level of the membrane potential in the absence of the

7_occurrence of.an action potential.- In the absence of presynaptic

finhibition‘(II,Z.Zd) reduces to

\ , S L
R B A A “-”,L 5;1 T e
S SRR oo PSR, SO : -
(11.2.24) . - . S p()=nt(l-e 7). -
A S . A AN TR e :
CIf it is assumed that ‘the fractional variability ﬁH?t) in%ihe .

fmembrane potential is sufficiently small then the mean time u .for L
‘ the occurrence of an. action potential would correspond to the time t

.after the refractory period t when the mean value of the membrane

V 't'potential H, (t) 515; equal to the threshold Hence by (II 2 23)
-(u -t)
""7{""—

o (Ir.2.25) -

5 6rue§uiva1entlwa‘i o

d = (n 1)(1 - e 3,1Ad‘)y ihu
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eI DR de T
.(II.Z.Zb);» R % ut = 7T‘log (1 —'E;;i7+ t¢

' in which case‘the'mean‘frequency' N - of responSes:isfgiven‘by

| B 1 o 1 _“.. -
(L.2.zny SRRt ol wHE Tt
T log net_jxd'_f-;ol"‘

Computer simulations were fOund to be in agreement with (II 2, 26) if

the parameters for the simulations were . chosen such that n T > l 5d

The predictions of the modél proposed by Stein, and its
c special cases have been compared where it is possible, with existing |

\ . .
experimental results. Examples»o , relation between N and o,

~ and n,. derived in equations (II 2. 17),
been obtained experimentally. The prediction of a gamma interresponse'

\time distribution has been found for the interresponse time histograms
for»certain nerves;l Furthermore, the interresponse time histograms of‘ff

N

'certain nerves revealed a sharp peak followed by a long tail as had beft'i»

il ’ :
predicted in the case of predominant inhibition."In general,,goodv
comparison was found between the predictions and ‘the experimental

reSults.',

For the model proposed by Stein (1965) the analytical predic
tions are. restricted to the cases for which either the decay of the‘
"membrane potential between incoming impulses is negligible, or’ for
which the action potential is assumed not to occur. Ten Hoopen (l966)xl

attempted to design a model which would be more tractable tha& the
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.lformer vbut.would»yield similarfresults intthese limiting cases. ‘The-_
-iamain difference between the two models was with regard to the decay of
vthe subthreshold membrane potential between incoming impulses. For the -
A.lmodel proposed by Stein, the effect of each depolarizing subthreshold
input pulse is assumed to decay exponentially with time constant T .'!
In Ten H00pen 8 model the duration of the effect of each unit of
subthreshold potential resulting ‘from an input impulse is assumed to |

- .
Qbe exponentially distributed with nean T ..

In order to nndel the nerve when both excitatory and inhibitory
lincoming‘impulsessare present ‘Ten HOOpen consider two cases. If the
'subthreshold membrane poteptial is depolarized at time t > then an,
excitatory impulse was assumed to result in a unit depolarization, while;
an inhibitory impulse returned the membrane potential one unit towards i
the restingvpotential Further, the duration of: each unit of depolari-,
zation resulting from an excitatory impulse was assumed to be expo-‘
nentially distributed with mean T For a hyperpolarized somatic B

Al‘potential at time t O an inhibitory impulse further hyperpolarized the l‘,g.,

K -potential by dhe unit while an excitatory impulse returned the potential
f‘fone unit towards the resting value. The duration of each unit of -

':hyperpolarization produced by an. inhibitory impulse was also assumed to,;-

'be distributed exponentially with mean r . As in the case of the modelpf“p:"

fi proposed by Stein the arrival of excitatory and inhibitoryqimpulses are'dﬁ
: each assumed to be distributed randouly with mean frequencies ne‘ and

ﬂ i g reSpectively., For this model the prdbability F (t) the displace— fd'

1ment V of the membrane potential from‘rest is equal to k ‘at time t .

b-fx;.hj
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.. ' ’M 2 ’.’ . ’
| | ; l;. ‘,- ;“4 % DL ;. Yy
aft:er an action. potential “has OGQ“rred at \“t ". ), 3988

N R Vﬂ v. ) '. A
. Vo . ;A/’,‘.’_.‘-,

"<Hi-2°’2_8) | F, (" + At‘) N Fk+l(t) [1 - “e‘éﬂ "

* ‘0 o - . L .
L3 . wul L . :
’ " . . : .
v . _ : )
Bg ad . o RS
A . .
Yo - Vose o - .
P e ) |
~g 'h
1»1 W C LT
= R L
< o :

% o L . 3
L + F C&){l = n At][l - n At-_..{a%

/ " | L e % g Fw(;) En At[n -!-

" for =1 2,...,d-—l where “’F L(t) = 0"‘;%&-;“ NS e
, d+1 ST -

N

| ;(11..2'.'-2‘9)'_1'-. e - ae) = kJrl(c) [a Ac][L - n At - i————-?- At]
e o %
.

I,!P

+ Fk(t) [n Gt][n e T T ——]At

+ Fk(t)[l <'n At][l - nght - ‘ k) At

Fk_lgtlg;v*:niétlg?é - k;; At1 

PR SNt AN
) (11.2'.‘30‘),""‘_? F kt + At) F (;;)[.3. - a At][; + —jAt '
R +F(c>[1-n%:][1-nAt]
FE (t) [n At][n At]

4 + F. (t) [l - n At][n + :dét

where -L-I-At re.presents the probabilit:y of the membrane somatic
S potent:ial retuming one unit toward t:he restmg pctential during t:he '

interval (t t + At) when V(t) = k.. Allowing At -0 t:hen equat:ions

i
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S 125. -
(11.2.28), (I1.2.29) and (II.2.30) yield
dFk(t) k + 1 | : |

dt = (n1-+ _ ) k-i-i‘ )

(1z.2. 31) 'ei(n:f+f% +{né)?£(t5.+:nng%l(t)

i 7
. Vl_‘folrt_ k = l',Z’:,“,l‘;‘r,d—l angi Fd_*_l(t)‘: 0
S dF(t) | PP o
k. n - Ky @)+ @ -E=Ly
(I1.2.32) —gg— =1y k+1(t> R e AR+ (@, - ST OIE(6)
" for k = -1,-2,-3;... sand . a.'iz-

dF_(t) , R L &

f?i%?fi (o o+ )F (t) - (a +n )F (t) + (n + —)F 1(:)

o (112, 33)

vresfaect\ively'.- B _ . PR BT

: The probability density function g(t) for i.nterresponse \.
: time distributlon is- given by o o R .
(II.243§)e:,i el V»g(t) = “e?d}l‘t)"'

By inttodnting‘the refl‘_ecting barrier at k = -r .:<:0.£'».‘f,;‘ forf-.wh‘ieh | _L ’_:4

a2 ko ¥ <t> mm -G, #L+n >F <c> |
and _the ,'initi'a»-lv:c_;onditions o
| ,;f» F (0) =0 for ® ='—r,-r+1,..., -1 1,..., 1
;, LN »; ; . | . k “‘ .

‘-. then by solving the set of linear different/ial equations given by

(II 2. 31), (II 2. 32) and (II 2 33) for k = ‘—r,...,d—l and arbitrarily £ &,,i%
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close approximation of the solution of 'Fd_l(c)' and hence ‘'g(t) can

‘be determined.

A comparlson with the results obtain for the model prOposed
"' by Stein was carried out for the limiting cases as either T+ 0 or
d =, With the assumption that the . action potential does not occur

, - . k.
" _the_mean value' ud(t) of the membrane potential at time L was obtained

‘using
an2.3m L u(e) = 2 KF (c)
with initial ‘condition T
.)a‘ : ,. o .‘ S SRR
(11.2,38) o w@=0.
vf'LHence uv(t): waetdetermined;to‘be"“
S | : e, NPT EE J
(II‘.2_..39)1_-,.“ - -_u\»‘t) : T(ne‘-. n )@ =e ) B

e -

which corresponds to equation (II 2. 12) for the exponential decay model
 of Stein with c 1 and t Q;ZO . For the case in which decay was
fcneglected and 0 L k < d then the two models are both equivalent a E

‘rqueueing proceSS with absbrbing barrier at k = d

“ .

If inhibition was neglectedﬁshen the probabllity Fk(t) that '

N

‘Jthe ’V(t) = k after an action potential occura at to= « 0 *‘satisfies :

3
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"‘j;1,2.40)f‘ Fg(ﬁ + A;S‘ k+1(t)[l -n At][(k +-1) ]

~

o

- '.+ Fk(t){l_ - ne-At{lvfl_- k E ]
+ Fk__i(t) [neAt][l —'-‘(k - 1) -
Cfor k =0,1,2,...,d-1 where
(0 = fd.(,,t)f 0.5
~Allowing At -+ 0 , then (II 2 40) results in the set of linear SR R
differential equations ' | |

: |
dF (t) g (k + 1
& T

ar 3. ) k+l(v:) (ue + %’?’L‘Q-f%l’gld’ A

for k= 0,1,2,..,,d-1 where; e
| o | L8 SRR
Fel(g)'_,?d<?),;:9-f“

- With the initial »lc'onditi'ons' e

- o , N F0(0)= 1 AR
(In.2.42) - < and

L Fk(o) = o for k =1,2,3,--,d-l - B . <
e then an exact solution ‘can be’ obtained fot the set of first order

.linear differential equations (II 2, 41) and for g(t) d l(t) x,

A»_;.f;_the density function for the interresponse time distribution. R

A
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T | |
In order to compare t.’ne models of Stein and Ten Hoopen when
only excitation was present the limiting cases were again considered
If the decay ‘between impulses is negligible ~the two models are
K equivalent to a Poisson process and therefore yield a gamma interres—
. ponse t1me distribution.. For the case in which the action potential
vwas assumed not to’ occur then the mean value My (t) of the membrane P
'potential at time t for the exponentially distributed decay model of -

‘Ten Hoopen was determined to be

—

P 'The same value was obtained for the exponential decay model Wnder these.
- ~.

- "conditions. The variance U (t) of the membrane potential at time t
. o A
for the exponentially distributed decay model was determined to be .

: (_1,1..42"444) ; o (t) = n T(l -2 ) R
o R

:.quation (I%Z < 44) can be put in the equivalent form \

G

| e o

] A ‘ s o S 2t

» o N D 2(1 - e 5yilT IS
arzss 0 o) - j.( ezzf?i Q- 7). \

R R TR T O

‘for comparison with o'v(t) given by equation (II 2 13) for the model

) ‘.proposed by Stein 1n the case when n 0 and t ' = 0 . Since_- .

e ey

. {g ‘;..". v
N
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(11.2.46) Lo lf.- 2 (—l—ez—t_li,z . i
- . T . N - -? . X

' s "then the variance in the exponentially distributed decay model 4s at
the most twice that in the ‘case of. Stein s model.. This implies
A:the mean interresponse interval is shorter in the case of the |

' /exponentially distributed decay model if the threshold is reintroduced

£ v

To consider the effect of ‘t?'xis descrepancy the threshold
and decay were reintroduced intoaboth *els. For the case in@ich

only excitation was present, Stein haﬂ obtained c0mputer simula ons
. 0

for the inberresponse time‘ In each case the distribution _ |

can be closely approximated by a gamma distribution. Close agreement

a

between ‘the mean and variance of these gamma distributions and the

ol

‘mean and variance determined by Ten Hoopen s model under these coﬁditions " et

‘was obtained if the input fx,eque;xcies were corrected b a. fact T for .

o v‘exponentially distributedr decay model

Thus the two models are in close agreement" ay
,.exponentially distributed model with its advantage of an analytical
' _ approach becomes a useful reference for the more realistic exponentia} _

¥ decay model

K

| In addition to being an approximation of the exponential o

°

decay model Ten Hoopen 5 model has further applications.' Ten Hoopen
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. suggested thats the exponentially distributed decay model may behl
.‘applicable for, modelling the variable duration of post—synaptic

._potentials of incoming impulses resulting from the transmission"
'properties of the synaps or the dlstance between the synaps and the

-

‘ soma. Furthermore, it was. pointed out that nonlinear summation can

©

;_‘conveniently be incorporated in- the model.
In §II l ard §II 2 three models have been presented which
v“attempt to account for the variability in the interresponse interval
~_In §1. 1 through §I 4 a variety of mathematical mndels for nerve
fexcitation were considered ‘For these excitation models it was possible
“to determine a general formulation for which each of the models is a.
f“special case. This is also the case for the models of neuronal variability

“discussed in §II 1. and §II 2. The generalization will be discussed in e

§11.3.
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§1I.3 Generalized Mathematical Model for Neuronal]Variability'

Ta

For the models discussed in. §II 1 and §II.2, the variability _
nin the 1nterresponse intervals is attributed to the. fluctuations in
"synaptlc input Therefore, ﬁnorder to determine the mathematical |
_ description of the signal processing aspect of neural activities it is
‘necessary to account not only for the properties of the nerve but also
f'the prOperties of the input signal Johannesma (1969) has- presented i

'ia formgl mathematical treatment of signal processing which is based |
“on five fundamental assumptions determined both by the nerve properties

‘““Ehd the input 51gnal characteristics.x The resulting formulation for
_the subthreshold behavior of the nerve to synaptic input prOVes to be, ‘:.ﬁ
-the generalécase for which the models discussed in §I l and §I 2 are
vt Special cases.i':i'_wEbvf} ' ‘v ’?T’n*t_"': R -‘f_hh » ' 7j” ,;1‘ s
The first‘assumption is that for the nerve the subthreshold j
'F;potential’§2havior is completely described by the single variable V

which melsures the displacement of the membrane potential from the

"l resting membrane potential and for which the rate of change at time Tt
-f: is dependent only on.the value of V at time t- and the influence i(t)

:ijof other neurons at time t. This dependence is described by

h (ilga.l)’ ' dv ' f(V) + g(v) . i(t)

 vhere £ and;[g””arepdifferential functions.
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The input signal i(t) rep;esents the membrane current‘
vresulting from changes in synaptic permeability. Since a nerve may

receive synaptic input from a 1arge number of other nerves the detailed-*

C L e —

structure of. i(t) may be very complex.. To reduce the difficulties
of attempting to describe all the complexities of such input i(t) is
'regarded as a: stochastic process which can be. characterized by its most'

prominent features, the mean
.32y m(t). = (1(:))
. and incremental-variance R

ardy o= (when) - {aoXieo) a .

o

. To normalize this input signal to one of zero mean and unit*variance ,

AN

' i(t) is considered to be«of the form
. ;'_<I:_-;§-,.4>’ 'x.,1(,t)‘=_qm<t>-+s<t>;- o

' where

- . . . . . .
4 :

 Hence (II.3.1) ,is’?:,rans.,f.oriﬁédg_;to Ll /
ST _"-'--'dv' | BN AT
C(Ir.3.6) . - S2s a(v t) + (V t) . J(t) /

dt / l

e T

where .

,'d:(‘v;t) = _f‘(&) »_+_*g(v_) n;(t)
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. » Lt
. In (II 3 6) and (II 3 7) the properties of the nerve are B
determined by f(V) and g(V) land the characteristics of the input:
.are determined by m(t) and s(t) The explicit behavior of j(t)' .,
is unknown and 1t may under certain circumstances be. con31dered as a -
A"stochastic.carrier for which its microscopical propertieg are irrelevant
" to the behavior of system (II 3. 6) and (II 3 7) In order to. determine
} ‘.the conditions under which this interpretation of j(t) 1is' valid :Lt is
‘ -necessary to consider three time constants which are rJelated to the * E -
system (II 3. 6) and (I.I 3 7) 'I'hese are the time constant ‘l‘ ’ I'of'_.the--

' statistical fluctuations of the input defined by

-1 {p

v1 P I

s (:) - (1(:;) 1(:-1)) (1(:))(1(c-r))

, (II38) T, =

S the time constant TS' of the variation of the statistical characteristics

: _'of the input defined by i SR
y2 0, . q2)

ey - ‘{—‘Ei(i) +4ﬂ>_&
SR T s 1, m(t;‘)”.f:;_” '.‘_.»-s-(t),-j“- ‘ ﬂ,‘

_ and the time co%tant 'r
: .ﬂ

ot

o (?x'i.'a.io)"-_' = -( , (y,t) + (y.t)j(t)l >

",-The second fnndamental aésumption of Johannesma s treatment requires o

chae . | |
ST IR T << T o N A RITI
S l I S SRR PR
o (s “oland -
. e ,\.T ol o
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By this‘assumption, for'timepdifferences,'At‘, such that Tr,=gté'a

the microscopical properties of j(t) are irrelevant to.the‘behavior

of system (II 3.6) and (II 3 7) and j(t) may be replaced by the

L white noise signal m(t) which has zero mean, nnit variance, and a W‘
delta correlation functiou. Equacion (II 3. 6) is in this case replaced

) by the Langevin equation

i &

| (II;-.j3'.1.2)‘ o o ava a(v,t)dt + s(v t)dW(t)
uwhere ' | |
AW (t o
—az—lif '(F)._ “
SO " o (w(t)> =0 - S
(I1.3.13) < , o T i .

. and -

(w(t)~w(t+'r)> 8 -

C . e e - . . _("

Thus the replacement of j(t) by m(t) implies that for At >> T the

v

process described by (II 3. 6) is a first order Markov process describedf il

by (11 3. 12) T s e # e
e (5> DA In order to analyze (II 3. 12) it is necessary to consider the""'
(transition probability density function -f(y,t[x s) the probability

f:density that V has a value y at time o given that it was ' x at

h time1f8;;' The fact w(t) has a delta correlation function, implies

xthat the transition probability density is independent of previous history. h

_Hence f(y,tlx s) satisfies the Smoluchowski equation L
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(II;B.lA);ﬁ‘h f(y,t + Atlx s) If(y;t + Atlzgt)f(i}tlx,s)dz-

br equlvalently |

(1133;15) . 3%-f(y,t X, s) 2 £—ll—- 3 {A (y,t)f(y,tlx s)}

' e K _ ‘n=1 oy

where . = ' - o k j l‘ o B :%&.A‘

(11.3.16) % A‘n,_(y,c)' = lim —— [z f(y bz, €+ Atly,t)dz
CEREL T Ac+0 | T v

' are the incremental'moments of which the first two;”the drift of 'V -
CaAn3an. . L oo T A G = aly,e)

r .
T .t

~and dispersion of"V~

C(IL3.18) T Ay (,E) = bt

CoE

are the mostvsigniﬁicant;‘

It is possible to~simplify the Smoluchowski differential
. equation to .a second order partial differeutial equation. In order. to
~.do this it is necessary to consider the amplitude diatribution of the
- :white noise w(t) If ‘the. amplitude distribution of w(t) is assumed :;'%

_ to be Gaussian then w(t) is continuous and (II 3. 12) describes a.

<5

e

continuous first order Markov process. In this case - fe;;/y

)
B
ot

.(11-..3.1_9)"_ RO An(y_;;)- =% for n>3

‘i‘;in (11'3.15).. Hence the thfrd fundamental assumption of Johannesma s:,;

: model is that w(t)' is continuous.g The consequence of this third :

G assumption is that (II 3. 15) reduces to the forward differential equation
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‘ (II-;_3;20) e 3: f(y,tlx 5) = %{a(y’t)f(y,tlx,s')_} ». S
| ,azi' "1 S
+ ——‘f {5 b(y,of-(y,tlx.s)} |
dy : v )
‘where &(y,t) = A (y,t) is the drift of V and b(y,t) = A, (y,t) is

'the dispersion of V.. Furthermore f(y,tlx,s) also satisfies the

-backward diffusion equation :

BN

. R o 2
‘-“(II 3. 21) 5—-f(y,t|x,s) = a(x s)a f(y,t]x s) + = b(x s)———-f(y,t[x,s)

vIt has been demonstrated that the drift ahd dispersion terms of the
"diffusion equations (II 3 20) and (II 3;21) are related to. the signal
characteristies o and. B of ‘the fluctuation equation (II 3. 12)
(Stratonovich: 1963), “The.relationship'is givenuby_ '
A - '&c'y.t>"_+'- i CeRO) S
BTN and T e PR E
TR .-vb'('y',c‘}f;"{s(y;fo'}z._., ST e

-

rFor the stationary case, in which the mean and variance of the-
"‘input are indepéﬁdent of time, the transition probahility density is o

-7f(y,t x) 5 the probability density of the transition of V from x to

I

y in a.time interval of duration t . Diffusion equations (II 3 20)
g s

Lo

and (I1.3. 21) in the stationary case are replaced by

f (i_I',.*z.,i?,,) -aa—t.‘f‘(yj‘,,t_,i:)' - - %.“{a(-y)'f'(m:t,x)'}_ .+'~;_§7’ {%b'(y):f(j;ﬁ,g)}' |
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“and o ‘ ”_ o , ,
: R 3 1 '32l R
C(I1.3.24) f(y,t x) a(x)—— f(y, ) +¥§-b(x)—f5ff(y,t,x) y
. : R ox. v
reapectiyely.

s ’ . e -

In order to complete the diffusion equations for the
stationary ‘case it is necessary to define the initial and boundary
“:conditions. For the forward diffusion equation (II 3. 23), the obvious -
initial and boundary condition which hold are
| 'f(’y.Osx)'r»‘(Y.,’-.x),.'] | | '
I :f(fa;t;x) é‘o;,; R
;YTTo obtain a second boundary condition ‘an assumption is required Thia.
fourth fundamental assumption of the formulation establishes the

A

‘f‘existence of a threshold value of the membrane potential for the:"
." r
‘.initiation of an action potential. The boundary condition for (II 2, 23)

'resulting from.the assumption'ia._"
7;_(11 3. 26) RERARS '”g-flq ’"f(d,t,xi:a,o:'

where d is the difference between the threshold potential and the

i ,resting membrane potential This assumption also places a restriction . f'i

on the transition probability density function f(y,t x) The function h'

';_:f(y,t x) is redefined to, be the probability density that V. moves o
'wfrom x to y in the time interval t . aasuming that V has not

- attained the~va1ue, d .

PR

‘tthe'fifth”fundamentailaasumptiontis inciuded initheﬂformulation‘};

R
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to 51mplify the mathematical description of repetitive activity.i This
is accomplished by ommitting all refractory properties of the action
potential by assuming that V' is returned to a reset value xo .

immediately upon the initiation of an action potential
: \ ‘

With these assumptions and formulatidn Johannesma vas able
4'.to show'that the formulations for the subthreshold behavior of each
_of the models discussed in §II.1 and §II.2 are special cases of the
Ameoluchowski differential equations (II 3. 15) for the stationary case

',vgiven by

(11.3.27) . 2 f,tx =7 ER (D A mee.ex)

A

there A éy) is defined by (II 3 16) The mathematical differences ‘
. . .

) between the models is expressed in their formulations for the incremental
' §?érmoments A (y) , For the five basic assumptions only- the third m(t)
is continuous, is not satisfied by each of the models.,The models which
: do not satisfy this third assumption are the exponential decay model of

Stein (1965) and the exponentia.ly distributed decay model of Ten Hoopen -

'(1966}; In both cases the input signal was assumed to be discrete in d-”z' ‘

nature. ,_' R RS E ;;:”vf,”u ' L

For the model proposed by Gerstein and Mandelbrot (1964)

discussed in §II 1 equation (II 3. 1) is given by
3
o av

aLazm I
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" Hence by (11;3.7),‘(11.3.19), (I1.3.22), and (1I.3.28) the:incremental
hnments aretgiven by ' A v |

f Al'(.y) = a(y) -_—-"n '

] meeed

(1I1.3.29) | B 3 |

‘and L | - o~
‘ ;{ Aj(y) =0 for 4 23 ' S e

where m and 2' are defined by (II.3. 2) and (II 3 3) Thus the sub-

‘fthreshold behavior as determined by the model of Gerstein and Mandelbrot -

is described by the Smoluchowski equation : : : }
v,'(II 3 30) f(x t,y) = ——-{mf(x, ,y)} +-—'——§ {s f(x t,y)}
' - , T8y -

whieh is equiValent'tov(Ii.l.l) of the-formulation'proposed bvaerstein.-
and -Mandelbrot. .

s

In order to examine the models of Stein (1965) and Ten HOOpen
1(1966) in terms of the generalized formulation it is necessary to derive ﬂ
"expressions for the input when it is of a discrete nature. The

: ﬂformulation determined for the stationary discrete input i(t) is

s (11;3.31j . ',fli"?.ff 'i(t)_=‘$ +'sw(t); S
'-‘wherer'
Canss - m=Ylme .
. and o
T Do o Co g
C(11.3.33)° oo o E sz"é 2 nkcki’_ .
e TR T : K-~ 5
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nk is the frequency of arrival of presynaptic nerve impulses at the k th

synaps, and C is the modality and strength of the effect of the

impulse at the 'k ‘hv synaps. - - _ E | .‘;

“ For the exponential decay model pteposed by Stein, equatioig'
(11.3.1) is giver; by o r{;‘ ’
(.3 g‘t’ =3 y—+ 1(:)

From (II 3. 7), (II 3. 16), (II 3 31) and - (II 3. 34) the incrementa.l

O - R \
.moments are : i -

RAOR aly) = 1_1:1";—,.-%.-
, o o A (y) =b(y) = 8"
~  (11.3.35) .\ . - T2y 1.

o .‘;' 4 v.t“ A (y) ..z nij} for j 5 3
, T A‘-k o : ko a;:.%

u . ) G
RS . . L

‘véheie ' m “a'md ' 32, are given by (II 3 32) and (II 3 33) ‘ Henc’e thé,
e resultlng Smoluchowski equation is o ST ;\ E
(II.‘.'3'."'3'6) ,. at f(y,t x) = ___I. {f(y,t x)} + ):nk{f(y-ck,t x) f(y, ,x)}

3

.fo,r which the integrated version is given by (II 2. 5) in the formulation ' v'

L

'derived by Stein. o

' _membrane potential occurs in jumps with the probability of occu;;tence .

- exponentially distributed only the special case where all exciFarory P
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and inhibitorjsinput impulses are of equal strength was consider.
'Hence

(I1.3.37) - o R

din (II 3 32) and (II 3. 33) The increwental moments in this case are

given by S . e ST . '.'h e

| ‘-i(.I,II.B_.38>; - g __Aj'(y) - n ) .!.‘éi(f_c)'j - (_c)._-vj‘.'_lf. %}

&

forp y > 0 and j = l 2 3,... where ne Aand »ni" are the frequency

-of. he excitatory and imhibitory impulses, respectively. ,Ihe'_ o

Smoluchowski equation for y > 0 is

w3

- (IL. 3. 39) sE,X) = e S (y + c)f(y + c,t X) - yf(y. ,x)

i'-5+ n {f(y = c,yt,x) - f(y. »x)}

+ni{f(y+ c,t,x) ‘-:‘f(y.tb._x)}- .

: for which the 1ntegrated forms is given by (1I1. 2 34) of Ten Boopen 8

B

ormulation.l For the cases in which y = 0 and y > 0 analogous

' Smoluchowski equations apply.;,.fvv
L An extension of the model proposed by Gerstein and Mandelbrot :
e T
(1964) was: also considered by Johannesma._ This model which had first
,“been prOposed by Gluss (1967), resulted by’including in the model of
Gerstein and Mandelbrot (19 4) the proposal that subthreshold membrane

‘potentials decay exponentia y with time towards the resting m mhrane

'potential In this case the eneral equation (II 3 l) is of the form

| "(1.1.‘3.40_)‘ e | .EE = -'i.¥+.»1:‘(t)'; .
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‘Since the model also’ sati fies the other four assumptions of the
general formulation then by (II 3. 7), (II 3 '16), (II 3. 22) and&‘;l 3 40) .

r
‘the incremental moments are_:

- Al(y?_= a(y) =_'m..ﬂ_v¥, | o Ll
A A,(y) = b(y) = 8" o
(11.3.41) |

o : ~and’

Aj(y)'= b for j 2_3 .« 7

us the Smoluchowski eqdatior ning the subthreshold. behavior v

. is,.

- - v SR 5 S
(I1.3.42) "Bt f(y,t x) 2 - — {(m - )f(y_,_tv,x)} ,'*';52—2-‘ {szf(y»,t,x)}-.

.nhere m and s are given byi(II.3;2)_andv(11;3.3);

S Having established a generalized model for neuronal variability

based on both the properties of the nerve and the characteristics of the

input signal it is now of interest ‘to determine its hehavior in terms

of'the-input,characteristics;‘ In §II 4, the stationary activit# of two :
Speciai cases of theTJohannesmaTs;formulation wiil be discussed

-
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§II 4 Stationary Behavior of the Perfect Integrator

" and Leaky Integrator ‘

-In order to be able to examine a mathematical model for the
signal processing activity of the nerve it is necessary to gormulate in
:terms of the model, statistical measurements of nerve behavior which are
amenable to experimental investigation.v Such measurements include the -
distribution of interresponse time, the distribution of membrane potential
and the mean interresponse interval. To determine the behavior of the
general formulation proposed by Johannesma for signal processi;g models,
Johannesma (1969) analyzed the stationary activity of two special cases
of this general formulation. These are the model proposed by Gerstein
¢ and Handelbrot (1964) described by (II 3. 28), (II 3. 29) and (II 3 30)

zand its extension, the model proposed by Gluss (1967) discribed by

(II 3 40), (11. 3. 41) and (II 3. 42) Ihe models are referred to respec-

Rl tiveL”.as the Perfect Integrator and Leaky Integrator, a nomenclature e

‘"'regarding the behavior of the model in terms of the input characteristics.
. ,_n L E .

To determine the required statistical measurements, it was:
) necessary to consider three probability density functions in addition
o7 ,I}.. ..‘
- to f(y,t x) ' definec in §Il=3._ These are the probability density ,I
| fg(t x) that the first action potential occurs at time ot .after V =X,

'ithe probability density h(y,t x) that V is at a value y at time‘ t

S
T3
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..
after the ocgurrence of the value x irrespective of whether an action

“ potential has occurred in the time interval and the probability density

°

n(t x) ‘that an action potential occurs at time t after V = x . Two'
important special cases of these functions are . g(t, X ) and’ a(t, X, )

‘where xo: is the reset value taken by V immediately after an action

*%otential.occurs; g(t x ) is the probability density for the interval

>

= between action potentials, while n(t X, ) is the conditional event
< : &

b

density that ‘an action potential occurs at time t after the occurrence',

of an ‘action potential. v'{

. . . . . -

ﬁf . C Using these probability density functions, Johannesma was able ‘
to derive general expressions for the stationary distribution of tﬁe
LB ' '

: membrane potential and the moments of the interresponse time distribution

"in terms of the coefficients a(y) and b(y) of the diffusion equation o

(11.3.23). The stationary probability density h(y) for the membrane :

. potential was determined to be ' 8 S P C
A | R I R
@141 k() - Lin h(y,o =T T [ ete e C"’
U e R —b(Y) y o :

" where B

. = &
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c(z - X ) is the Heavesmde unit function and T (x ) 1is‘'the mean
interre3ponse time. Using (1I1. 3 22), an equivalent formulation forf

zh(y) ‘can be obtained in terms of the coefficients,, a(y) 'and B(y)

of the fluctuation equation (II 3 12) In this case

SRR ERT r<y) . T@
(11.4.3) h(y) = T (x )2 ) f e(z - x) T @ dz

where

(I1.4.4). i

' 'I'(}’)_'..‘"_}I T¥@dz .

i e

In order to determine the distribution of the interresponse times it 3

- is necessary to determine ﬁuaprobability densiyy g(g,x ) ﬁy ‘the

o

backward diffusion equation ?II 3. 24) and the property of conservation

- of probability given by

(I;-'.‘l_r-.S,) e g(t,x) -=,r_3f€f £(y,t,x}dy
g(t,x) ~satisfies o R ' MR

(II-‘,{»:ﬁ), o 'ﬁ'g(t,x) = '_a(X). -3;‘3(3:,;:) +3 b (x) :;xf g.(.t-',-lf)‘ g

. S e il T s
twith'initial,andiboundarylcondition? I L

&
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L ' AR ' g(0,x) = 0 B

e g(t,x = 8(t)
f}fyup4ﬂ), ' 7

and - -
Y 'uihmdhﬂeo.n'
4 PSS ; S :
// . : o o . : - '
The solution of (II 4, 6), with initial and boundary conditions (II 4 7)

/
exists in closed form only for the cases in which the coefficients‘

ta(x) anﬁ b(x) are independent of > Therefore, ‘to be able to *
”hTﬂpcharacterize the interresponse time distribution when the coefficients
.“/of (II 4 6) are not’ constant Johannesma determined expressions for the
- m0ments T (x) of the interresponse time distribution., The formulation_'
o fobtained-isvi‘”

: -F(y) ¥y F(z)
B(y) B(z)

(I1.4.8) T (x) = n12 j dz dy n=0,1,2,3,

h';'where ’%p and 8 'are given in (II b, 4) Since-fornulations-(11t4 1);-

“":pjfor the staﬂlonary distribution of the membrane potential and (II 4 8),".
jffor the moments of the interméSponse time diatribution, are derived in

:'i:terms of the coefficients‘of the fluctuation equation (II 3 12) and !

- udiffusion equation (IA:3‘23) both expressions can “be applied to the two 35:

r,,/ .. e

"‘models under consideration.iiv

,/'r

For the Perfect Integrator model the probability density
\J

}frﬁnfg(t X ) forﬁtﬁl interval between responses can be determined explicitly-,

‘f;fsince th@ coefficients a(x) and b(x) of (II 4 6) are equal to the ﬂ’~-"

;: constants m "and szf, respectively.- The interresponse time distribution

et}

. LN
.1 :

gisgtherefore*
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(11.4.9) L gltx) = ‘ "e.-i o T

‘ & sV2Tt - o
. The mean int%rreSponse time T (x ) for the Perfect Integator is ) e
B 'obtalned by solving (II 4 8) for . a(y) = m, B(y) =g, a.nd n= 1 e
b"Hence ‘. ‘ ¢ R ,."' ) e a - A e ::

aLam o ne)

‘ : ' . & C X “ '7 S : j’” o h E :' . : o b » .
" .and’ the:mean frequency of response: N 1is , T
. PR i . . . oo o ’ b Lo . o o h

] (_11.4-.10),, oo W= L

Solving (n 4. 3) anid (11 4 4y with a(y) - m and B(y) =35 ; as. defined -

kFS
-.M-'. s
. "é’l\v: : L -

':fvin the case of the Penfect Integrator, yieldsﬁ.. J

o V .,l_C(Y’;X )' ’ _ ‘ S c(y—x )
,h'(Y)"g%-;* e ° -e °(Y ) +E(y - % )Il -e -.-;%‘;o.‘]}v
S . o . . 3 I n e . s .

ﬁ.

.for the stationary probability density of the membrane potential :F.rc::n

- “\s 6

vstationary distribution of the membrane potential depends on the retio’

_of the mean and incremental variance of the input signal rather than

A _ their individual values.

N

In ‘the cdse of the Leaky Int\egrator a closed solution to

(II 4 6), which detemines the distribution of interresponse times, can

““ SN

a0
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(II 4 11), Johannesma concluded that, for the Perfect Integrator, the o
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not be' obtained since coefficient‘ a(x) given by

(I11.4.12) o ax) =m -2

E »Ar the Leaky Integrator model is not independent of X . Honeverr, the -
moments of the interresponse time distribution can be determined by
o o
(II I4 .8), with the appropriate substitutions for o and B The
'resulting formulation vis; ’ _ : o ‘ :
: N y-mTt JzomTt .
L \'g‘n’&) i 2 2 ﬁ sz'r‘- oo ‘82‘ Tn-?l( 2) L
‘(II."»[&.13_) . Al = T 3 I e K I e —(;—_—]3'! dz dy .
: - T8 X o .

.('].:»1.4.13)‘ can be ‘simplified _‘-by_int'rodueing the di_m‘ensionless \'rariab'les' :
mr - X

A E e ) e } o

©(I1.4.14) and

B T

- The result _13 a'-recurrence relationship giveu'_b'y

(11.4.15) -~ w.(%D) =2 e EI' e ” wy_q(z,D)dz ] dy’.
TSI A A Cipl iy o EE b
_ . . Gl J

o

From (II 4 lS), Johannesma concluded that 1f time is measured in units y
" of the time constant then the moments/ of the interval distribution for E
~a Leaky Integrator depend only on the two combinations of system and in-

put parameters given by X\ and D . For the mean interresponse t:Lme

—
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’ "'
T (x) numerical computations were made. The result were formulated in -

terms of three dimensionless variables.' These are N = -,1-[- ., the average
. . . s I
numbtar ﬁ reSponses within a time constant, M= T ’ »the steady state -

(o

value of the somatic potential in the absence of a threshold and : @ :
2 e -
‘SZ = ._s}__‘g_ e By &ve fitting, the relat‘ionship, in terms of these

L Himensionless variables, _between the mean interresponse time Tléx) and '
‘the mean. m and incremental variance s of the input was determined to.

be most: accurately appro ted by o

: (11,4.16) . N =“eq¥*3s-'qnf5'.
v where OL, B » _and 5 are constant. The stationary Jistribution h(y)

\
of the membrane potential for a Leaky Integrator was also determined.

By (II 4 3) the formulation is P

- gty 2
TR S e T G 2.
C (IL1.4.17)"- h(y) = 22 e \ st { ez - x)e T 4z

a

Thus it is possible to describe stationary behavior of the :
"'Perfect Integrator and Leaky Integrator models in terms of the input
_ signal characteristics. Of interest is the relationship determined |
S ,_Ubetween the mean interresponse time and the input signal characteristics - | ~ |
o for the Leaky Integrator model. This relationship, defined by (11 4 16) |
_.‘LlS essentially an input-output relationship for the nerve and ‘as such

_ will form the basis of the interaction equation for a nerve net - model

‘_described in §II 5.‘ _
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In the Inﬁtodﬁction of Chapter II it was suggested that it is

: _possible to derive a mathematical model ‘a nerve network in terms of
the interactions between the individual members of the network._
‘]order to do this it must>be possible to define the activity of each
nerve in terms of its input signal characteristics. Therefore, axc*
:natural starting point for the mathematical formulation is the input—f
_v output relationship given by (II 4 16) which was derived for the Leaky
‘ Integrator Model Since this equatinn would describe the behavior of _
'a single member of the network it is subscripted to distinguish the‘

.nerves of;the net. Hence (II 4 16) ie

- R -_‘i"'{ci-'m"" s2-a N, 6 1
(11.5.1) :1' _ {"_ N hq.e’_i i 1 1 B R § i ; .
SR B T R AR D N *
) ) . . ‘ . . ) : . * L : . .
-
(‘.J . . . . .
The output signal from each nerve is necessarily discrete 1n

nature. Therefore it is possible to give explicit expresses for signal

'fcharacteristics Mi and 32 By definition My | and Si re given by o

3 | u =
C o ausa 0 ad g
. o1 : di-<.'. Ve -?'\
kp‘-ﬁ ﬂfi* .“:‘,. >{A ;”} o

" Using thé formulations (II.3.32) and (II.3.33) for the mean m, and the
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. 1hcremehtal variance 8y for a dié@te ihput eigna_l, Mi ahd SZ.L

can be expressed as
<3

7. (II.5.3)

Jrtnre el s 122
(7]
e N
i
Lo
—__,r_"—
,Ln
e
H. .
N
o -—!I L
_s-‘- M :
“_._z_ :

I

\

. where e ij represents the modali'ty and st!rength of the input receive%ﬁ v

i

_,by nerve i from j , and the summation is taken over all nerves j .
:ln the net.> Thus, the stationary activity of the network conaisting
of “n  nerves is given by the sy’s‘@ég : .
{ N6}
2'*15 3

'(11}5;4) eiv_ *f-‘ '_.N. =e 3

N s j 1=1,2,.00m

or 'eq\iivalentlj v_ :

"“(1115;5).t:-; Th_3 .ile NV = Z Yij j 61-; f_is, ;,2;.,;,; A

-ulff‘-.'.v_:here- o

. (n.5.6) (amd

‘ L3 ' .
R N s e BT X

.
o . : i
gy ™ “, <—1'-1) + By (T)

SR

: \ The basic formulation (II 5 5) has he/en extended to 1nc1ude .
. G-

the effects of the refractory period .an external st:hmluL and

P Y
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‘to determine the dynamic behavior of the nethk. To account for the

refractory periéfollowing an actlon potential, Johannesma multiplied
3 | the righthand sid.e & (II ﬂ’) b. S % L,
CILS.TY @ '
‘ P ' f{a’.z‘

. ‘where’ P i ~i8 the vdurationo’f the refrao'toryq' per od i:i.n"uni-t of .the' ‘

: :‘meinbrene eons'ten't T . The resulting stationary equations are

S T e S {Xyij j 51} | R
‘/ (11.5.7) i Ni = (1 - P )e j : ' i - 1‘9.2:3‘,-.0,11 '
2 L@ . s

or equivalently |

R I §Y13“J’T‘S

i = 1&.3,...,[1
11 - SN

Cowan (1972) has extended the treatment by considering the dynamic

"behavior of the network to be deacribed by

o (11.5.9) Ckgp t _i)zn T, - Xaijgj 83 1=1,2,:0m
N -t “- R

_\ . e ._.‘

g wh'ere T"»'F_:ﬁ_%- ‘ System (II 5. 9) accounts for only the interaction of R

“the nerves -of the network If however, an external input to each _

N

l "neuron 1s incorporated then (II 5. 9) is transformed to "
- (11:5.10) - ( -+ 1) n (l 1) =€, + g 2 o.ij j, = 1,2 3,..,n

" where x,. = 1- 'piN’i is defined to be the ‘s,ensitivity_:o‘f thé';'neivé and T

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



153.

.

€ i contélins the external 1nput as parametric_'excitation. : % <

' The description of the neural network by equation (II 5 lO)
L
has been dﬁ:ived by Cowan (1968) in a more heuristic manner. For this

y

derivation the mean frequency of responses N (t) was assumed to be wﬁ

given by the logistic fenction

" : f 7

s . B _ e - : ,__1
B | B(—(—L-l))
"(I_I;5'.l'l)j : . Ni(t) = pi(l +e
T T
(1r.s5.12) - = B = ( - ’..£9_ - &1(——1)!{—”2) ' -

'ith "is the'.current which”drives the nerve at. the 502 rattje', ' iov‘ is.
| -'the smallest current which will elicit an impulse and N | is the

‘corresponding firing rate.’ Using the model for a patch of dendritic
“:membrane derived by Rall (1962) R Cowan determined the mean current

"build up" in the cell membrane of the nerve to be

Sansy '<i<t-,>>*r-'c‘§2’51 5811 "(e

: .-where ( ) denotes a suitable time average, Ej - EH the me_mbrene_
’ voltage, x,CM is the membrane capacitance,‘ 81;] is the conductence
N change associated with the EPS and ¢ cand- o ,_nreqc:onetantes: ’ ',Ta;k'ing.
the time-average of - (e > to be e where 0 < @ < 1 reduces - .. -
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L.
)

T (11.5.13) to R B e o

(11.5.14) R (1(c)>= 2 GgijE N (t)

CM 33
Hence by substitut‘;:pn of (I1.5.14) ,' .(II.'S'I. 12) is 'traﬁsf.orme;dv‘tq .
| K BcO’C’-i _ } T : -1
5 . B ‘ ) . ‘ . o . ' - C
.(11.5.15) ‘N, (t) = {p(2 + Mi?h 3y 8 N (t) + B)
. o . 1 - o ) j =1 ij

which determines N.(t) , the firing ra;e of the 1~ nerve ds a

function of N, (t) the firing rate of the 3 nerve. Simplifying
"f:‘-the no't;:atzl_'.o.n-byn defining ' '
. (1105-16) ) ﬂbv N  $ . *i - l - pini ?v
an'd'le‘ttir.ig ‘ TR S B R )
Sg By =0, e
-Ggijvj LT
. Beoo,

L
Cui hpi By

asan

R N

‘-_'and o .
Co T ,“~1_ n.'.
g, = B o~ a

o i.?, »"giljnl ,ij

. ,.__-_....:.. .-

:teduces (11517) to

(IiQSgiB)f Lo 1f. lh

p
I
N
~
B3
'
~
Q
H
U.
Uo
~~
r
o
.
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. )
o .

-The heuristic assumption that the dynamic behavior of the npural network ’

,,\‘

‘is given by
- | R ke . m
. : e d oo L 1% :
(I1.5.19) ) C T + _1) £n m—— €y + Bi jzlaijxj

_completes the development'of'the neural equation.

Cowan (1968 1972) also determined the propertiea of a specific
case’ of (II 5. 18) for which there is no: self inhibition or exnitation

and for which the net is symmetrical . Mathematically, these criteria.-

¥

i'are given hy N -‘ ‘ ”“: : hﬂéi
N o %y =0
(11.5.20) . and
‘ 11 ¥ %4 "_°_ -

¥ ;l' in the cerebral cortex ‘and thalamus.' For large external inPut that

1
» _is for la g%a i ’ (II 5. 19) is closely approximated by

*{IE.5.21) i j):laij x (L - x)) e

i
2, .

-predator-gtey-interactions.‘

"»i The properties of - (II 5 21) can. be studied using Gibbs
‘fstatistical mechanics.» To obtain applicable form for (II 5 20), the

1traneformation DR
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,_VWith these assumptions the hypothetical network resembles those present '

which is of a form;closely related to the Lotka Volterra equations for o

t
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| o | Yy
(1r.s.22) 0 V1T T ox

. where gq i the stationary state of the network given by
sy et e
S : — j=1 ,
,‘,‘ ~is ‘app'lied.' ‘Hence (_11.5.21) is reduced to the eqt\lyivélllent'fom
. - .dv n .
: . ‘ et - aG
- (11.5.24) . | - TaT jZ Yij ij

4 ‘—

where

o

(II.5.26) G=ZB ['Zn‘. (1 +.q,e j‘]"-‘ q,Vv
2” i‘gy he Liapunov function for the system. - Since:
(II-S 27)' L o @

S

".:. 3

i Ve
R

: then the activity of the net is asymptotically stable and oscillations o

. about the stationary states gradually damp out.

uﬂ‘»

"'Equ-ation (I‘f[’ 5. 22) can bé eittenoed' to 'é'ccount »fot fthe:

fluctuations of the activity ﬁp the neuron by assuming

c}d{ -

NI A
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v ‘I‘_ ’
o Y »‘dv
. (11.5.28) . - Xyﬁiu+wm
. < | 13
‘ " ..';,. “ ‘ v :
where dB(Tv) is a Lanyg"evin- term with variance parameter -.ki", The

Fokker-—Planck equation for the probability density—function

f(vl’VZ" <V ,T) associated with the Langevin equation- (X1.5.28) is

¢

 given by *
‘ : i of j ti Z ki 32.f\'. |
(1II.5.29) A= = ).y f] ———7‘..}
RPN R = j’i 1 a"j, 2 avy |
. with equilibrium solution. e -
. (II.S. 30) } ) ‘4_ ‘ i 5 ) L f(vl’vz”-o ’vzn) e v “A: . v
. ‘ .;?_00 :. e . Lt o
Furthermore, since G is a sum function for each individual -
variable, then ‘ ) N
| _(11.5:31) S R rf_,(vi)c_lvir_é- é}‘- dvi -

This particular result justif ies the treatment of the network as a 3

o u_Gibbs ensemble. ' ‘

I

' A number' of results were. obtained by Cowan (1970) using a

“Gibbs ensemble treatment. .. The equilibrium density was determined to be

P

T 'xP (l-x)qldx
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. . . .
where B(p,q) 1s the Euler.B-function for which p = ;'i ~and
B;€1 - q)) . : : . |
q ~‘—-——e——,.1 and B ‘measures the amplitude of the flfuctuation of . o
activity which is given by S e |
. o - o ' » . x (1-x)
(.53 - . e=g AL -
- - o - (xi T_‘_qi) . e
~ T ] - —————— - . o
- . o . - . ) o .." ‘N ' . " .. . | ,

Using the equilibrium diversity, it was poss:.ble to
' determine the interval density function, amplitude density function of
membrane potential and the mean rate at which fluctuation in activity :

occur.. With these functiona N it was possible to determine certain

o

general conclusions- regarding ‘the net._ ‘In particular, it was . found

¢
that the nerves of the network spend most of their ti@ either completely

off or _else firing at’ their maximum rates.

Y

I
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considered. Each of these models .extends the original model éo
l

inco#porate certain physiological features of the nerve which are not

ﬁinherent in ﬁheoriginal Mathematically these improvenents are

accomplished through modifications of the baaic interaction equation

(II 5. 11) In §II 6’ three improved nerve network moaels are considered

-

' e . .
: The first modification of the model was made in order to

| G
account for self-inhibition in the nerves., By (II 5 10), the stationary

_ activity of the net consisting of n members, is determined by the-
s

s
system .

anen - oy e— L i — for 1=1,2,...,8
R Sy Z E ,le e ;

1 +e

. \_))—* o o
. B . / . g
: where'-xi' is the

sensitivity of the i th nerve,,.ei' accounts for :ﬁ_

4y

,,external stimnlatﬁon,'and aij given by (II 5. 6), represents the

influence of the j nerve on i h: nerve.. To incorporate self-

'inhibition in the formulation, it was proposed that the dynamic behavior

‘1:'of the. network is described by

<

@
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o . ) - : . ) .
N '
»
. .

@ : B .,g

(II.6.2)-£ whereﬂ'e

the constant B “dn (II 6 1) 4 assumed to be equal to I, and iYi

'_is a nonnegative constant ‘hich represents the self—inhibition of the

gt nerve cell (Oguz /Kel {1 725.
] R " Y o
T - Oguztoreli (19;\)>has'investigated the behavior-of the solution
. ‘ L
of (II 6 2) for the case in which the dinitial conditions are given by

.'; .... ) ‘:‘ . = ; . i<r ; < k. . A- : ...v.;‘..

g _(IIr6 3) xi(O)_‘.xi’o wherei 0 'xiso »l .tor ila l,2:d, o
AN e - . ' A B . v‘.‘: "
;and the network model contains infinitely many elemente.» Using the.’
vtcontraction-mapping pfinfiple, Oguztoreli succeeded in proving there :
*dexists a unique solution of (II 6 2). in an interval 0 <£t<h, which

»is determined by initial condition (II 6 3). The domain of h was
"determined by the conditions for the required contraction map. It wasy

also demonstrated that in the interval 0 < t < h," Xy (t) 1s monotonic.. -

;For small values of Yi > weak seff—inhibition,. x; (t) is decreasing.;.,gt.

“&
Furthermore, the mean value of the sensitivities given by
IR Ui P T b ~ .
| '(11;6.4): ' ;.‘{;cl‘,v X (t) = z x (t) | ,.kﬂl‘.;
B PR PRI j=1 j. S e
s defined 4n 0 £t <h , aid 0 :s.i;'@‘rs 1. Stnce X(t) s the
-
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-~ " . . . ” - . A\

. sum ogxmonotoﬂic functionsgthen'it is of boaned.variatioh in- 0 < t<h

TR . PR

and- therefore may exhlggt random OScillations.

T :
P

) given by

6.5 Ygw = 1 (,\"‘/ ; 123,...' e

Y%
"-[s + Z r;;

’,1V+'e,

¢ The ste;%y state equations of system (II.

]

with initial condition (II 6. 3) have also been analyzed. The existence '
',og/a\unique solution has been demonsﬁrated and was determined tp be

stable if the conditions - B | , L ;f ‘ _,' e L

. (11.6.6): . . and B T

4,_of the solutions of (II 6. %) for small netve networks Sonsisting of

0. s R

e one, two, and three elements.5 In each‘case, the conditions ‘on’ the

derived to dete;mine when the solutions of (II 6 2) f';;;pf
z-tare stable or. unst"ﬂle and when they exhibit damped, periodic; or growing

: oscillatory behavior (Leung et al° 1972) jf}.: SO 'i.;gp

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



Ve B . L = 15

o

. In the case of the actual nerve, with prolonged stimulation
" the firing rate declines and may terminate. This property of the nerve
>is known as adap;ation and was previously discussed in 8I. 5 with regards
| to'excitatory models. : Stein (unpublished) su'" gested that the mo’
'bappropriate manner to introduce adaptation into the interaction equation

‘ (II 6. 2) is to add an integral term which is the convolution of an

,”T‘

u,_exponenti' v)iéh‘g factor proportional to the firing rate ‘at a previous

time. The‘iz‘.%sulting formulation for the activity of a network consisting )

- of ‘n' nerves is RERER o
. e L -8 (t..o') | , N - _
. dxi ' St S s
(1r. 6. 7)'r + yi 1 + 2y Je X (o)do - *EQF z
' ' : -[e + ) o
R i3 j
1+e 3 =1

]

 for i=1,2,...5m : ) o

where 'y i’, ‘A, and:  are constsnts‘ for which y; and 8, ~are
'-posii'tive. : "" n "r

a’ i . ‘A,‘L"‘a
4 b.‘ N &

ares

(o)dO’ for 1 = 1,52‘\_:-;‘.*3'“- :

" then (I1.6.7) is equivalent to the system of differential equations
,"7rrlr.v,‘1?"i”"_ G o
B S Tt fle Tﬁxixi,i-* R o
L T T L -
e e R [ei-!' Z aij ]

1..

A

o

4 anes
dxi L

vt -6 x Fox,

dt ial E 8 fol' i = '1’2"',:7 . ’n'
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nf
L;\li‘;, b

..

The behavior of the system (I1.6.7) has been analyzed w1t:h

3¢

initial conditions S

P e -
) _ . x,(0) .= %0 whereJ 0 < o <1
(I1.6.10) . ' and =~ - . - ‘ :

xi,lv(ov) - ;%

- for the céses JAin which v'n.- ‘1,,/:and n= 2
. . ~<For n=1, (IL.6.7) 1s

n o . B -9 (c-cr)
$0.L) lel + l f e xl(o‘)dO’ = —

or, by (11.6.9)

(11.6712)

P
e
L+
o

B . —h——'——n - . : - ) .
cole s : { T dt L _‘e;‘[x]_,l + ('.[x‘]_l S R
R ‘Wi.th,iniit‘;ial cénditic)né S i : ..j - R

-

A

[ Y
B

(11.6.13)

Let xl and xl 1 be the steady-state solutions of (II 6 12), that: is ,

RPN P

the solutions for f- '
o I
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Clearly, ’ﬁ and xl 1 and unique\solutions ‘if and o ly: iﬁ A

l'.,‘

3(11;6.15) -

Wk

"holds. The necessary and sufficient condition :Ln order that x1 ’femain) 1 S

bounded within the domain of definition ‘ (0 1) for the sensit.ivit:ies, " -

. .is determined by algebraic solution of (II 6 14), td‘kbe

a-eh

. In order to st:udy the behavior of the solutions of system

F (L6l 12) At 1s assumed that :"’; RS :»,1;j"]*ii 5.“‘ lw”f

€ a _,c, . L \
. . RTINS . i, .

xl xl + Yl where yl = yl(t)

- i L

arne.an -

L sol_ve (1136,.12) Heno_e,v _byi‘-silmple a:xivalys_:‘l.vsv,“
(I1.6.18) . L :.ﬁQf PR ,~ L
—'—2—- . -t L o . . - o

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



<

J S ‘
.i B ’ .
and Fhe corresponding characteristic equation is .

H
3

(11.6.19) - . . [

_' Expanding (II.§,.19) »’y-i}elds the eqpétidn bf‘ thé:'rfbr‘m
(II. 6&.20) i : b.8" .+ b.s +b = 0 v',./";,; »
R o : = .0 1 2 v

" " where -

bl =-1 .

7'?.5{7f? B o 1: S,
et D (I1.6,21 == -

-
[ b, =2 (y.0, +2 1:)' o
e T A Ak
Furthermore,the ,'det":evrmi.‘nants Aland Az-defined.iay IR
PR "n‘@ 5:AI!"1b1|,_-
Lo L e 0 TRt NPT
T [ =hyby

L A EA TR G | L0 P R
ot (11.6023) 00 o CSnd T e TSI
et Ty Ty G 88y H 4T L
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¥4 .1./
<——\

_ RW(II 6 20) are neg:tive proviﬂed the coefficients b » bl, and, b2. and ;f

o

"wdeterminants ﬂAl and A aﬂe positive.x 1f the Routh—Hurwitz

riterion is satitfied then solutions of (II 6 12) ‘are stable otherwise

N

By ﬁﬁé definition of the coefficients for system

p- . . V]

they are unstable”
(11, 6 7) and" by (II 6 15), which insures the uniqueness of solution
_for (II 6. 12), the Routh-Hurwitz criterion is satisfied in the case .

| 2 7
of (II 6. 20) ' Henje solutions of (II 6 12) are stable. The

discriminant of cha'fcteristic equation (II 6 20) is given by .

D, = -L'/-( * 61)2~ ' (Y TN 'r)
\1"Z2™M1 S 21 i

(11.6.24) 7

(/, .
“ . a

The roots of (II 6 20) a‘e real if D1 > 0 and cOmplex if D1 < O
. ,// 3
Thus the solutions of (II. 20) a;e stable and nonoscillatory if

i :

) i 0, thst 1s if

(AL6.29) - v o My

‘finjsno_are stéblefsndioffdaﬁééd osoillation'if"D'<‘O;;“in which case
S(IL.6:26) T e gy 41

oy

(R
RO L

"7;Fuftherﬁore,(siuoel“51 f,Oxlperiodie.solutions of'(II.ﬁ.ZO)“do uot_eiist..-_

oy -

For‘ n = 2 (II 6 7) is given by
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’ -[elmlz'le_ ‘

e-[el*“zile |

~or: equivalently,‘ by the system of differential equatiomns .
| 1

T—== -y | e}x' f{ + T —
_qt: - 1ﬁ - 1x1,:]." SR [,€1+ 12"21

d Sy

,_r—-=-sz 5 T - —
code T T2 _ =le,+ 1
cLE 14e T 271

(11.6,28) ¢

.-—-—-’—:.— X
T ae e1‘1,.17‘_“‘1

e v ERE . dx2 1 o
L < S oy e
Ta T 0,1t TR

with initial condition =
DR j | .Ixi(O), =%, b‘.atrxere 0.< Tii,'o <1 | o
©(11.6.29) | ‘and el

]

Sl A @m0 fr i=L2.

In order to examine the behavior of (II 6 28) it :I.s first .
"-f'necessary to demonstrate the e:dstence and uniqueness of the solutions

e of the steady state equations for system (II 6. 28) given by

-
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. o
. ’ ! 1,1 . e'al"Blez
61‘ ey
| o %, 2%2,1 ‘“z’Biiﬁl
(11.6.30) b e T
x = x
1,178, "1 f
) ST
~ 2,178, %2,

where Gi = v »fot i=1,2. Pet xl,l'— x3.and, x2'l .34 and
‘_consider the‘Banach‘Spece X - of vector fundtions x(t) , which have

:mcontinuous components xl(t) xz(t), X, (t), 4(t) such that

0 < x, (t) LI for 1 = 1 2 and t > 0. Further_assume that' X is.1S

;quipped with the norm .

-(II 6. 31) : .t ' fﬁl i ||x“ = max lx (t)l
: o ' ' . , i,t

o - The boundary conditions, 0 < X (t) < 1 for i=1,2 and £ > 0

b4
A_result from the definition of the sensitlvities. N

To determine the existence and uniqueness of the solutions of
v'(II 6. 30) it is necessary to determine a contraction mapping T on X

. Let T be the operator defined on X by

(11.6.32) SR ,‘Q] -—u<fw[_ Cmx=zoc T
'_whe?e‘,z’ 1s»the‘vector. (zlf?2’23’§4)ff??di : o _\-f
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C 5 _61)‘1},:3 + el—dizxz'
1 ) i . . ‘1 ‘+' i

2, = =8 h,m, = —— . L e

(I1.6.33)

T -will map X into X if it can‘be 'szlxowcthet ‘z(t).‘ ie coﬁciﬁﬁous_
| 'v‘?mdk ,“?hatv °.<_ 21(“) i'lh" fof i-=1,2 and t> 0. By definition
'c-(t)" is cdnt'inuous f.br : t > -0 . To determine the boundary conditions
it is necessary to consider two cases for each of the components
V]

zy ‘ acc z‘2 . Let vxl >0 and consider

-

(#Q43§»'-yi_ul':f e=aXf%4-_cc;'c"7-}
Si:nce che. function"

f (;;:5;3$)V"' : _e’i:,;ijlfj »nga)we7;;;_____
"ie ’ﬁ;ccct_':dtiically ih_\ﬁreeeing" and '.
e gl - |312| <ot 2"2 leII +|alzl

- .then
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Lo 8 5 o C 8
.+ = — < =8, A.x ' —
1 é]e:»1[+[£:'§12]. 1 1 3 -[€ \

(11.6.37) -6,)
" B 1+

"Hence for- )\13 0, 0<z2

(11.6.38) . 4 amd . .4

" that is, if |

[RS  SE .

(11.6.39) and T

S For A <0 in (I1.6.34)
. (11.6.40) - — — & - b ————————— <
St ] Bt S e T )
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by (I1.6.35) and (I1.6.36). Hence 0%z <1 for ) < 0 if o

: SR " o
1= e d-leg,l
-1 +e. L 12 e

Q\‘v’ ...r
v

~(I1.6.41) = . ‘and '

o> —_— - - -Y
1= " =lggl-lap,l
14 e 1 12

: ,‘Co"nzbi:niﬁg~ cqﬁditio‘ns (II;‘6.3.9)"}§1}d (I1.6.41) r.eveals;;(g:hat 0.2 zy _<_1 1f

Ve

’

.

! . A

<)\<

e -Ie l la I ey l+ay, T 7
. 1l+e 2 21 14e 2 2 4

'/ S

Thus: - '1‘ maps X 1nto X if (II 6 42) aand (II 6. 43) are satisfied T. '

:ls a cont:raction mapping on X if there ex:lsts a mnnber p such that

(IL.6.44) 1 L { eand T

- [.'"ﬁf";;?;;llif»ﬁllx“’-_‘-v‘;Il,_“ . |
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for all _fuflctions x and x

Sy

L/72Z.

of X . Consider lzl -z

°

+6>\x

Lt S
. i l4e

< ,Id | |x3
_,}:_w:

v

7.
Hence

»

-where |

N I‘P‘,
o

g o

. " By ele:%xenta_th%ulus the func(:io'n L e IR

: gﬁtains its&maximum value -IJ;‘-

B \\ Fass

Iz - z | < ]6

.‘.<

At Lo
ST sl ey

(Iiﬁé,b

D el

by ‘thg‘ mean vé.llvx'é'.thédreiz"ﬁof‘.cralcx.xlug"' , o - -
I ~  A '
: L,zf;—-zll_(_ |6 Hx

4y '-is-a constant for.which. -

() = -

 ; v - 5 (IA | +-

-0, , X,

l 12 2 1_-‘1 3.

~=

|+|5|_ L -‘_.’"1
I ve e 12 2

o, . . " . . i ol
° i : l . o . . 1&“{;"

n

_‘ 3| * I‘31““"‘12 2 * "‘12"2l

A . . . e .

< *'< '
X A
12 2 (.0 €

“12 z

’ , —~5 Lo T

e .(’1»4{ efw}_ S o

. ' Therefore = oL
N -

l lll 12|

__._____ Ix

Il l |
J‘xa x3 ’2

/.
lHﬂ*‘ x|| +

Hx-ﬂt

Il
“12 >ux ; xu
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Similaz—ly. L

i

. 3 o V. ‘ : i ‘l'a21|;1 ~“
P (1L.6.47) . |g2.f~;2| 5_52¢|32]»fj_f27-)“x -=ll.

For "rl'za = ;3| 3 2

are.ss) 2o |

. _Siﬁila,x;ly-
. G . . ) . . - .‘r' | ’ » ot .
._ (11-6-4_9) - |z3 ‘- z3| iy BY — x“ -

B ¢

" Thus T will be a gﬁ,énf:raction mapping on Xv-"if!‘v e

[
-~

o (I1.6.50)

@D

‘and . - -

S EY f o

R 92“’ "\.'1

a that _:l's,i'if o v o t L \\-'.: S ES / L
ST DR S . o
R . ' . \ ) .7; o l .':‘

e : : .
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Tu o (I1.6.51)

v e N .
. N
[

o

1f (II 6. 51) is satisfied by the parameters of (II 6. 30) then by the |

S *
o contraction mapping theorem there exists an unique x in X such that

a

k3

Xk i'

Hence the components xl xz, xl l end xa xﬁ’l x'f‘fbrﬁ_theng\.

- unique solution set of (II 6 30) R

o SR '“"'uLTu'Qtde-the beheuiet’oflfhé golutieng'of (11.6;28);:1et7{e”‘

— . i . . : . Lo . . . P

" C, [ . v A . : DETER A

FAR

o x =y, where ¥ =y (e)

oy
e

. (11.6.53) . amd o ,'
R O ,,’5‘1 71 1 ore Yi 1«. y:l 1 "

~ for 1 = 1,2};,;In?tnis'caee,i (II 6 30) is given by the systen

‘,

S A .':T’"?'dyi" | S s s
o ,-._"'_il:/"“'" _.;.‘ _ R T —EE = ':Yl(xl + Yi) o (*1 + yl 1) +, ,_ . ( *+y )

T 4

Tae Yz " Yz "2 1 "2 YT '_e ( y
) o REAREE e T 1 +e 2 21 x]."-yl o
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b f

(T e — P
»'(&1-§'54?ilf dt 81,1 ¥y, ) YT Yy
St Tde ",2(?‘2,1_+ ¥2,1 x, +y, -
System (II 6 54) can- be linearized about the steady-state values by

obtaining the Taylor Series expansion of the functions .

Fo. L

L (11.6.55)

terms of these expansions can be neglected and the linearized form

for (II 6. 54) will be

p‘[
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U anese)

“

By letting

(11.6.57)

LY

3]

-

o
>
2

£ ..Equat"j.‘:on“ (11.6.58) can be "e”xvpét‘x_de‘d.: tq the'fflb‘u‘rvt:h_dﬁ:ler.‘ equation .

PR Y

L -

A3

ol
[N -
Y .
- .
S -
L~
o

.
X/ a_nd' X, cliein_ot:ev.vi

ot

the expressions o o
K . - " =
Lo N
R T 3t NS

le |

N S U
e © ST

-l

1+

. ! '. " .‘ " *' . ' N ' . . s "
e-rsl-ﬁlzxz_ - | : . ,,"'

=€ =0 SRR TR TN DR U

|
~

respectively, then, :hé;chaffactefist'ic equa‘ti'on _fgj‘f:'_(\II.'AG,.eSG“‘)Vis‘- '

A

o,

T,‘XZfJ\

o

s

X
T

EY

Al

R
1 y * .
. R
: . e T Lo ‘
' 2 R ‘ Sl
- . 5 pory 'lf PP ] o
e L - »Q . $
. . P\ AN \
e - c ks -
. " . N r .
o . -a
) - . o .
* > - R
i) SRR S
. g5 P o e
o . - & :
- . o, e
' W
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i b, = ? (Yl-l— YZ + 6.1 + 92)
b {(ylwz)(el-wz) +a 2 + ele + A ‘l' + 1
‘r_ :

v"v‘g S - : R . ‘ 12 21 lxz}
(I1.6.60) \ o LD s g

. o U . . . : TN B B L : R
. : < R . .
% o * . ’ ’
: LI . ’ S
“ . . e

SRR 3 {7172(9 +62) +9 62(71”2) +A T(YZ * 92)

'ii'YlBAT-i-Yze)\r-i-llrz_

2

» 121221"1’(} R

@,
'

SRR
-

n ‘

JETS L
-

4‘%
S
o
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‘the Routh Hurwitz criterion can be applied to, determined the stability

of ‘the solutions for (II. 6 30) in terms of the parameters.i“By e

I

rewriting (II 6. 59) as the product of two quadraqic terms given by

anesy @2*_‘-‘18:*,@2)?52:*'?3"-'*;“4")_;7*"

where

o
1

= 4.+ a

i . ‘hz = a, f a4;+ra1a3.,

N,

IR U (e s ik 2o ¥

P4 a28'4..;-’0

'i it is possible, by examining the discriminant of each term, to: determine
: SO

‘”whether the solutions of (II 6 59) are real or ocomplex. Thus.it is

li-possiblé’to determine the parameteric conditions for the existence and
Q,. .

'number of oscillatory solutions of (II 6. 27) The oscillatory solutions
5;] v»are either damped or. growing in nature. This results from the fact

<'b1 > 0 which eliminates the possibility of the existence of periodic

¢ e . :", '#Q' .
»f;solutions. F-;f“ R ff_‘-or’~

An interesting special case of (II.6 27) is that for which the
ujtwo nerves have the same linear behavior to the same input. In terms f3g

/ _:of the formulation this is accomplished by assuming

B : e y .
B Sl ~ k . . 2 . . N e Ve
B ; . B e 'in . . B . : B
. PRI . - R A £ . PO S P o .
TR RN PR ol - . . E Lo
s h
in i

Rl

i .o
- T

(11.6.63)  « -

o . .
: . <) o
. 3 0 . S . v
; R L . < R
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A . s B Tl L e . . .

P R S R W M . -

- 179.
T2 ’ ‘ RN . . . : : »

AN . . i " . 1L, . oo

In- chis' “c':aé‘e “ 'cha:.'."a}é:'té‘r':ttsjtfé .eqdat:fén (II .6 59) is ' i'educed . t;o‘j,_ L

-

B T RPN X, o g
aresn, SRR s)(— g. s) A -,——————12 21x1 _ (_-T 9_'- i=0.

CIf the two . nerves are assumed to be mut:ually :thj.bitory or excitatory, N

B4

that is '

i <;f5§'65):‘ RIS S TS

” S ‘o

;'-.‘f ttgg;iithé solutions 6: (11.6.64) satisfy either :

B VR SR WU SR
(11666) ,(- T " B)(f T .— B) +‘t /K(— T —“s)_-‘ SR

or’ L.l ;ftﬁf

e Ly -__ _,_ __-
oane.en | f‘;' %; s)( /s) + /_( - s)

‘where . -

N v;:‘ (Ii.6.68) “ - .' " : .‘:'.':\““"4_‘. A :n

" Hence ‘the Mr.pot‘_s' of (11.6.64) are :

(116.69) R

-

 Applying the Routh-Hurwits criterion it can be shown that the solutions -

S
eIttt
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r"‘ / ’
. fo f,of (II 6. 21), which correspond to the roots 8;

and s, of (I1.6.4)
are stabie if and only if :&f., |

»

: e '/“\‘zc
ST R 9 +y+68/A>0" R
- (11.6,71) - 5 < and = °
- Similarly the solutions corriéionding “to the roots ‘3.-and 847?afe'
- ; : : : <
' .stable’if~and only if£- - gﬁk
L esi%Y o/A> 0
(11.6.72) and- o .
o . Y8 + X+ 6/A o
In order for: oscillatory solutions to :lm' >0 in both'(II 6.69)
-and (II 6. 70) and for si; and s2 v
-y+e+2/'>"_'/5.>.-y+e-2/' "
‘ar. 6 74) N »".-¥+\e+,2JX >‘-JlT‘>1 +',%;'+‘e"5'2ﬁ'.
'Thus it is possible to determine for (II 6 27),for the case in which
vfr. two identical nerves are mutually inhibitory or excitatory, the‘i;
— ; condition on the para ers in qrder for the solutions to be stable
' ’ A L SR
: or unstable,and to be 0f nouoscillatory or of damped {or growing oscilla-"
_toty behavior.} This particular special case has been solved by numerical
‘ means to determine its behavior (Stein et al' 1973)
-ﬁ,f" S Therfinally.eitenaion of‘thevbaaic‘neural'model has been ' .
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derived in or-de}' to include the vph}‘vsiol_og'ical phenomena'o,f !_self-‘
:\ _ . excitation as well 'as se'].'.f—inhibition‘. Both phenomena have been
L

,encorporated by adding convolution integrals to the basic fwulation.v

The result:ing int:eraction equat:ion for a nerve netwgtk containing n

7 rﬂ‘)’" ..
g -
1 o
Pa (t-o) R —qi(t—o)
& 1§°+bife . 11d°
Ay ' E :

Cfor 1=1,2,3,..0,0 .

~

_/‘ .

) The behavior of the model given by (II 6. 75) has been analyzed for

. networks which include upto five elements (Stein et a1 1973)

o . \ "
. f

\)‘

- ;,.'
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In the thesis two basic types of mathematical models for the
actiirities of the nerve have been considered. Chapter I contains those
models which account for the recorded electrical behavior of the nerve.

; ‘ Those in Chapter II are concerned with the impulse—processing behavior

of the nerve .

In Chapter Ia nmnber of different models for excitation in
the squid giant nerve axon were discussed. Each model ‘was able to ;

simulate to a degree certain aspects of the az:on 8 beha.vior. It was’

| demonstrated in 8T. 5 that it is possible to. give a generalized formulation

|

for excitation for which ‘the previously discussed models are special
' case. The excitation models have also been extended By assuming the

axon possessed the properties of a core - conducting cable the propagation _

. of an action potential can be modelled This results by combining &

formulation for excitation with ‘the cable equation. 'i'he Hodgkin—lluxley

-

formulation for excitation in the squid nerve axon has been nodified to
' model excitation and propagation in myelinated nerves which are .
structurally different from that of the s%id nerve. Finally in Chapter

I two mdels were considered vhich demonstrnted that the distance between

l

d the synapse and soma in electronic terms has considerable influence on

| -v the amplitude and time course of the memhrane potentials recorded at the

-.soma'_-'.Wh’ich ,I_'es'ult- from ;synapticiac‘tiﬁt% i £
T S ) . el .‘ :1!1_.”'

LTI L e emee o - T T Tle- . : . “—
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T

. o In Chapter II three models which attempt to account for
neuronal variability have been discussed As in the case of the

excitation models f\r*the~squid nerve axon, it was possible to determine

-

a general formnlation for which these\three models can be considered as

o~

special cases. By analyaing 'the behavior of a special case of this

.

general formulation, the @mperfect Integrator an\input—output relation-,'

shg? between the mean frequency of response for a nerve and the’ input

. sié;al charagteristics has been determined This relationship forms ;: -
thquzsic interaction equation for a nerve network model Three\t”_;;;iiéf//
extensions of. this basic nerve network model were considered/ each one -
of whichhincorporates certain physid}ogical-phenomena of the nerve
not in the original model " Forx;, one of these extensions that which e

. lI a 3° LI
V2R ~ .
incorporates accommodation of &e nerve in the formnlation, the linear S

v 4 T

behavior of the solutions has been analyzed for networks containing one '

. and, two elements. : - i: e ‘y' “‘"" Sy

ot

¥ The review has been restricted to the analysis of the :
activities of only the single nerve. In the case of the nerve network
’ model considered the activity was determined in terms of the activity |
| of the individual members.. A class of- models which has not been ;
o considered are those of ay nerve network for which the net is -cons dered
as a continuous medium (Beurle' 1956, Griffin.,l963 and Cowan 1972)
For. these models the active fraction of nerves as a functiongof time
- and space is the/characteristic variable. The drawback of these models
is that there is no connectidn made between the activttiee of the 4’11

v fndividual nerves and gross activity of the network. The interact on

r
L
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o 'le
T

o - «

equation (II 5.10) derived hopefully represents the int!emed*ia;-\_ -

between- the mathematic‘al models of activity of single nerve cells and

)

those of t\he activity of nerve networks which are considered as a

'.,

' continuoug medium. S
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