
InTml Concepts

by

Pablo Figueroa
and J. H. Hoover

and Pierre Boulanger

Technical Report TR 04-06
May 2004

DEPARTMENT OF COMPUTING SCIENCE
University of Alberta

Edmonton, Alberta, Canada

Abstract

In this document, we describe from different viewpoints our model
for Virtual Reality applications. We give first an informal description
of the basic concepts, the execution model, and some examples of mod-
eling for devices, behaviors, and media content elements. Second, we
give a more in depth description of each concept, the way they are re-
lated to each other, and their XML syntax. Finally, we present a more
formal description in the Z language [12] that clarifies the semantics of
the model and generalizes some of the concepts presented in the two
previous presentations.

1 An Informal Introduction to InTml

We consider a VR application a data flow of interconnected filters, described
in a language called InTml, the Interaction Techniques Markup Language.
Filters are the building blocks that describe the standard connections for any
of the following entities: input or output devices, interaction techniques,
object behavior, animations, geometric objects, and other media objects.
Details about gathering information from devices or about object behavior
code are described in a lower level of abstraction through the use of pro-
gramming languages. Also, geometry or other media types related to VR
objects are produced in any of the available tools for that purpose, such
as Maya [2], 3D Max [1], or Blender [4]. InTml is then an integration lan-
guage for all elements involved in VR applications. It enables the designer
to concentrate on the architecture of the application, without dealing with
too many details. As an example, while dataflow–based languages such as
VRML focuses on description of geometry and animation, InTml focuses on
the integration of application–specific behavior, object behavior, and events
from input devices. Geometry is something that is described at a lower level,
in a loadable format, and InTml refers to it as a reference to an object. The
same can be applied to sound or haptic content.

A filter represents any device, interaction technique, behavior, or content
in a VR application. Its interface is defined in terms of input and output
ports, which are the type of events it can receive or produce, respectively.
Some input ports can be considered parameters, or ports that will receive
information only once at application startup. A filter can have an internal
state, which is important in order to model complex filters. However, we
do not include this description at the architectural level due to its low–level
nature. Figure 1 shows a way to represent a filter, SelectByTouching, with
input ports on the left of a box and output ports on the right. In this

1

particular example, its output port is a selected object from the scene, and
its input ports are the VR object used as hand representation, the current
position and orientation of such an object, the scene of objects to pick from,
and the events that inform about added or deleted objects from the scene.
Note that the input ports for the hand representation and the scene can be
considered parameters of such a filter, i.e. they will not change once they
are assigned.

SelectByTouchingposition

orientation

handRepr

scene

addObject

removeObject

selectedObject

Figure 1: Select by Touching. An Example of a Filter

The computation of a filter is divided in three main stages:

• Data collection. All information generated in a certain time interval
is collected. This stage is considered a preprocessing stage, in which
filters select and manipulate the information they have received, in
order to prepare for the next stage.

• Processing. In this stage a filter executes, given the collected input
information and its internal state. Output information is generated,
but not propagated

• Output propagation. Output information is propagated to all inter-
ested filters.

VR objects represent identifiable pieces of content in the virtual environ-
ment: elements that can be seen, heard, or touched by the user. An object
holder is a filter that associates one object to a set of desired changes. It is
drawn with an additional decoration for a special input port, object, that re-
ceives objects to be hold (a small rectangle between the port and the object

2

holder) 1. Once an object O is associated to an object holder, by sending
such an object through the port object, all information coming to the object
holder is redirected to O. In the same way, outputs from O are sent to the fil-
ters connected to the object holder. An application is a set of interconnected
filters, that meet certain user requirements. Figure 2 shows a simple appli-
cation, which allows a user to move a virtual hand with a tracker and touch
virtual objects. In this example, a device (handTracker) gives position and
orientation information to a selection technique (SelectByTouching) and an
object holder (handRepresentation). The actual object representing the
user’s hand (handRepr) is given to SelectByTouching for collision detec-
tion, and to handRepresentation for changing the object. Once a collision
is detected, the collided object is passed to Feedback, which changes the
color of the object. Filters and applications are independent of any partic-
ular software framework and hardware, so the designer does not have to be
limited by platform specific elements, and the developer is free to reorganize
the implementation in order to improve the performance of the application
in a particular platform.

SelectByTouchingposition

orientation

handRepr

scene

addObject

removeObject

selectedObject

console

�
�
�
�

�
�
�
�

handTracker

handRepresentation

Feedback
type

color

scene

handRepr

Figure 2: Simple Application. Touching Objects With a Virtual Hand.

An input device is a filter with just output ports that sends events of a
certain type to the dataflow. An output device is a placeholder that describes
where the output of the application will be displayed – it is internally related
to the VR objects, but the details are hidden to the VR designer.

In order to reduce the complexity of an application, subsets of intercon-
nected filters can be encapsulated in a composed filter. A composed filter

1For more details about object holders, see Section 4.11

3

represents a complex behavior in an application, that might be treated as
a unit and reused in new applications. Composed filters can be used to
encapsulate all necessary details of an interaction technique. As an exam-
ple, Figure 3 shows two views of the Go-Go interaction technique [9] – an
interaction technique to lengthen the user’s virtual arm for reaching distant
objects. The left image shows enough detail to allow VR designers to use
such an interaction technique, while the image at the right shows all the
filters and objects involved.

K

D

posHead

qHead

posHand

qHand

handRepr

scene

addObject

removeObject

type

color

GoGoIT

object

���
�

���
�

��
�
��
�

����������
	�	�	�	
�
�
�

posHead

qHead

handRepr

scene

addObject

removeObject

gogo cube

SelectByTouching
pos

q

object

currentcurrentObject

setBBCurrent

setColorCurrent

previouspreviousObject

setBBPrevious

setColorPrevious

FeedbackOne

SelectByTouchingIT

FeedbackOneIT

color

type

cubeObj

isVisible

K

D

qHand

posHand
GoGoIT

Figure 3: The Go-Go interaction technique. General and detailed views.

2 Execution Model of an InTml Application

An InTml application is executed as a sequence of identical steps, each one
composed of four stages. The actual execution time of each step and the
resulting application frame rate are considered implementation dependant,
since they vary according to the computational power of the particular hard-
ware platform and the particular method for translating InTml to such a
target environment. We assume that a minimum frame rate per device
is known, and that the translation process from InTml to code takes into
account such rates in order to provide a usable virtual experience. The se-
mantic model of InTml defines which filters are executed in each step, no
matter their order, and which results are expected. It is up to the InTml
implementation to execute such filters fast enough to reach the target speed
of the VR application.

4

Figure 4 shows the stages in an InTml execution step. The activities
performed during each stage are the following:

t t+1
Read
input
devices

Behavior
execution

Update
VR
objects

Output
rendering

......

Figure 4: Execution Model of InTml Applications between two rendering
steps.

• Device reading: Events from active devices are read during this period
of time. All events during such a period are considered simultaneous.

• Data flow execution: Events received in the previous stage are fed to
the dataflow, which propagates the events throughout reachable filters.
All changes to objects requested by filters are queued, and they will
be executed in the following stage.

• Object updating: All changes requested in the previous stage are con-
sidered, and the selected ones are executed. Each object type should
implement its own conflict resolution policy, when several conflicting
changes are requested. For example, if an object receives several po-
sition changes, it might decide to either execute any of the changes
at random, or execute the average of the requested changes. This ob-
jects’ feature is important due to the fact that the order of execution
of filters behind any object is unknown, since InTml implementations
with more computational power might execute filters in parallel, and
each object might receive changes from more than one filter. However,
a selection policy defines if the dataflow is deterministic or not 2.

• Object rendering: Changes to objects are shown to users, in each one
of the output devices available. This stage is usually transparent to
users of modern graphic APIs, such as Performer and Java3D, and
usually supported by dedicated hardware.

2The average policy results in a deterministic execution, whereas a random selection
policy will produce a non-deterministic result.

5

The non-deterministic feature of some object updating policies deserves
one more comment. While this is in general an undesirable characteristic,
created by the availability of more than one input event of a certain type,
in practice it is not very noticeable. If we assume that all input events have
been generated from a certain device, or by several filters that indirectly re-
ceived such events, and that filters compute “smooth” functions, the spatial
and temporal coherence of the input events will guarantee certain proximity
of the values computed from each input event. In practice, when input val-
ues are close enough, users will not notice differences related to the chosen
value.

Stages can be parallelized or pipelined, so it is possible to get the best
performance from each platform, with only one application description. An
example is shown in Figure 5. Additional threads are dedicated to device
event gathering, filter execution, or object updating. There are some points
where threads should be synchronized, but in general this approach permits
a better application throughput and more complex computations.

Read
input
devices

Behavior
execution

Update
VR
objects

t t+1
Output
rendering

......

thread

thread

thread

thread

thread

thread

Figure 5: Extended InTml Execution Model.

6

Information in the dataflow and the state of VR objects are considered
immutable in a particular time frame. For this reason all filters will see the
same state of an object inside a computation frame. An InTml application
describes the first two stages — devices to read and data flow —, and the
other two are hidden at this level from the designer. We assume an implicit
connection between media objects and output devices, in order to allow
devices to render the entire state of the world.

From the point of view of designers of VR applications, an InTml applica-
tion is a set of modules that has to be implemented on top of a foundation
framework, and certain rules of execution have to be taken into account.
The designer’s work is divided between the definition of new filters, reuse of
previously defined ones, and definition of applications. Designers collabo-
rate with developers of VR applications, whose main job in an InTml–based
environment is to develop the inner code in the filters.

2.1 Implementation issues of the Execution Model

As we have mentioned, the actual execution time of a particular InTml ap-
plication depends on the implementation in which the code is running on,
since all concepts related to time are abstracted from the general description
we have presented. In particular, we assume that all information generated
at a particular time simultaneously arrives to interested filters. The purpose
of this abstraction is to hide complexity to designers, whose work is to de-
scribe a solution no matter the hardware characteristics of the platform they
have available. An implementation of InTml has to address the following
issues related with time:

• Network delay. This delay is due to the physical characteristics of the
network technology used between the computers of a specific platform.
Once it is measured, it can be considered constant, no matter the
network load.

• Processing delay. This delay is due to the inherent time required to
compute results inside a filter. It depends on the amount of input at
a particular time, and the algorithms used in the implementation of a
filter. It is possible to create models for particular filters in order to
predict this delay and take decisions regarding frame execution.

• Latency. This time is caused by the load in the network. It is difficult
to predict, but it is possible to define a maximum waiting time, used
to discard messages that arrive late.

7

A simple implementation of InTml, in which there is only one computer
receiving data and processing it, does not require to handle the previous
concepts. In a more complex setup, it is possible to create a model based
on the previous time definitions in order to handle such delays. A simple
way to deal with such issues, based on the framework for multi-modal VR
applications presented in [13], requires that every filter waits for a period of
time before collecting information from input ports. Such a period of time
assures that all simultaneous events are received before its processing, so a
filter can execute in the normal way without extra considerations.

3 InTml Examples

InTml is useful to represent devices, interaction techniques, content behav-
ior, and applications that combine all these elements. Let us illustrate these
concepts with some simple examples. A real design of such elements might
be different in order to support a more modular and reusable structure, but
the presentation here aims at illustrating instead of optimizing for reuse.

One can start with a common input device, a three–button mouse. A
graphical representation of a mouse with three buttons in InTml is shown in
Figure 6. We show the information one can get as separate output ports: x
position, y position, both coordinates together as a mouse move, and events
for the actions of pressing and releasing each button3. Other representations
and events are possible. For example, buttons can be represented as separate
devices inside a mouse, and events for clicking or double clicking a button
can be generated, separate from the press and release events. Any element
can have redundant output ports. In this way, other elements can choose
what is the right type of information they are interested in.

3Types for each event are not shown in this diagram, but each port only allows events
of a certain type.

8

GenericMouse xPos

yPos

mouseMove

rButtonDn

mButtonDn

lButtonDn

rButtonUp

mButtonUp

lButtonUp

Figure 6: A Simple Representation of a Mouse in InTml.

A more advanced device is the 6DOF wand tracker from InterSense. It
not only provides position and orientation in 3D space, but it also has a
small joystick and four buttons. Such a wand can be represented in InTml
as it is shown in Figure 7. In this case, buttons only generate one type of
event, when they are clicked. It is also possible to have events when a button
is pressed or released, as in the mouse example.

InterSenseWandTracker pos

q

xPos

yPos

pos

button1Clicked

button2Clicked

button3Clicked

button4Clicked

Figure 7: An InTml Representation of the InterSense Wand.

An example of a 3D selection widget is the ring menu [6]. A ring menu
shows a set of objects in a ring that can be rotated along its 3D axis.

9

Extra geometry in the middle of the ring makes the selected object more
visible, which is between the user’s viewpoint and the ring’s axis. An InTml
representation of a ring menu is shown in Figure 8.

RingMenuITframeObj

pHead

posHand

qHand

setObjs

object

Figure 8: An InTml Representation of the Ring Menu.

The geometry for the frame can be given through the frameObj port.
The position of the user’s head is also required, with the position and orien-
tation of a hand tracker. Its output is the selected object, if it has changed
since the last selection.

Barrilleaux [3] describes several interaction techniques for 3D manipula-
tion in standard desktops. For example, object movements can be performed
in relation to the displacement of the mouse in the display plane, or the pro-
jetion of such a movement over the virtual “floor”. The latest option is
called world–related–movement, and it can be represented in InTml as it
is shown in Figure 9. The manipulation technique receives a position p in
display coordinates, the plane that represents the floor in the current scene,
the object to be moved and the current user’s viewpoint. The result is a
new 3D position for the object.

WRMMoveOffsetp

plane

object

viewpoint

pos

Figure 9: An InTml Representation of World–Related Movement.

10

The basic behavior for objects in the world can also be represented in
InTml. Figure 10 shows VRObject, which encapsulates basic behavior of
an interactive object. Position, orientation, and scale can be changed, in a
separate way or at once by a transformation matrix. Parts can be added
and removed, a bounding box can be drawn around the object, and its main
color can be changed. An object can also inform any interested filter of any
of the previous modifications.

VRObjectsetPos

setQ

setScale

setMatrix

addObject

removeObject

setTransparency

highlightState

setVisible

posChanged

qChanged

scaleChanged

objectAdded

objectRemoved

transparencyChanged

highlightChanged

visibilityChanged

Figure 10: An InTml Representation of an Interactive Object.

4 InTml Ontology and XML representation

We describe in this section the concepts in InTml and their relationships,
together to the XML syntax we have created for them. Figure 11 shows
two views of the concepts (in rectangles) and relationships (as arrows) in
InTml. A dashed box represents an abstract concept with no instances,
but useful to describe relationships of several other concepts related to it
by an isA relationship. The following paragraphs describe these concepts
and relationships in more detail. This description is related to the current

11

XML implementation, according to its DTD definition. The description
in Section 5 separates from current implementations and describes a more
general approach, with more solid semantics. XML fragments in this section
use the following conventions: String values are written as value, optional
attributes or entities are enclosed in “[]”, optional values are written as
opt1/opt2/opt3, where opt1 is the value by default.

Application ObjectHolder

Device

Object

Behavior

Info Type

ComposedFilter

OPort

IPort

hasMany

hasMany

hasMany

containsOne

hasMany

isA

isA

isA

hasMany

hasManyhasMany

Filter

isA

Constant belongsToisA

compatibleWith

hasMany
hasMany

ObjectHolder

IPort

Connection

Port

OPort

InfoDevice

Physical
Device

pulls

Object

Scene
Graph
Node

ComposedFilter

Application

destination
to

transports

isA

from

isA

Filter

generatescollects

Type
enforces

changes

refersTo

hasMany

retargetedTo

hasMany,
changes

removes

adds,

replaces,

hasOne, replaces

origin

hasMany

Figure 11: Entities and relationships in InTml.

4.1 Port

A port is a filter’s connection point. It is called an input port (iport) if
receives information, and an output port (oport) if propagates information
generated from the filter.

The main purpose of a port is to transport information from one filter
(origin) to another (destination), which are connected by an oport and an
iport, respectively. The type of information flowing through a port should
be compatible with the port type.

We have not designed any XML representation for this abstract entity.

4.2 IPort

An input port is an entry point for information of a certain type. Its decla-
ration inside a filter class has the following syntax:

<IPort id="aName" type="aType" [defValue="stringRep"] [policy="aPolicyName"]

12

[isArray="false/true"] [typeArray="static/dynamic"]
[maxArray="aNumber"] >

<ShortDesc></ShortDesc>
[<Description></Description>]

</IPort>

An input port is identified by a name. The information received by the
port should have a compatible type with the input port’s type. An input
port might have a default value, which corresponds to the first value re-
ceived. The attribute policy refers to the name of the policy management
for multiple events of the same type at the same time. It is optional, with
implementation–dependant values. It is also assumed that any implemen-
tation has one policy by default 4. As a way to reduce the syntax of some
filter classes, and also as a way to create multiplexors and mergers, we use
the following attributes to describe an array of ports with the same basic
syntax. The attribute isArray is true when the node is an array of input
ports, in which case the next two attributes can be defined: typeArray that
says if there is a fixed (static) or variable number of ports in the array, and
maxArray that defines the maximum number of ports if the array is static.
For example, an IPort declaration such as

<IPort id="ip1" type="int" isArray="true" typeArray="dynamic"/>

will allow references to ports ip1[2] or ip1[15], whereas

<IPort id="ip1" type="int" isArray="true" typeArray="static" maxArray="10"/>

will allow just the first one.
Any input port might have a short and a long description. It can also

be associated to an object holder, in which case it is not explicitly declared
(i.e. there is no declaration of a type for an object holder), but it is deduced
from the type of the first object connected to the object holder 5.

References to ports are used inside connections. This syntax will be
described later in this chapter.

4For example, in a Java3D implementation we did we use two names: ALL and ANY
to describe a policy that takes into account all events, or one at random, respectively.

5More details in Section 4.11.

13

4.3 OPort

An output port is a channel of information from a filter. A filter can have
several output ports, some of them redundant 6, with an entire set of infor-
mation it can produce. Its XML structure is similar to the one of an input
port:

<OPort id="aName" type="aType"
[isArray="false/true"] [typeArray="static/dynamic"]
[maxArray="aNumber"] >

<ShortDesc></ShortDesc> [<Description></Description>]
</OPort>

The attributes id, type, isArray, typeArray, and maxArray have the
same meaning as the ones in an IPort. Output ports do not have a defValue,
since the only information that goes out of a filter is the one computed from
the information in its input ports, at any period of time. Neither does it
have a policy, since all information generated is sent to interested filters,
and it is up to their input ports to decide a policy for several simultaneous
events. In the same way as an IPort, it may have some textual description
associated and it may be associated to an ObjectHolder.

4.4 Filter

A Filter is the minimum unit of computation in InTml. It defines a set of
input ports that receive events from other filters, and a set of output ports
that sends computed values from the received events at any time. It also can
have an internal state, hidden from the external definition in terms of ports
7. A filter can be part of composed filters, applications, or object holders.
It is involved in connections by binding an output port of a filter with an
input port of another. There are three concrete flavors of filters: devices,
objects (or media), and behavior (or interaction techniques). It performs
the following three tasks at every execution step: collection of events from
its input ports, processing of this information, and generation of events to
be send through output ports. It does not directly have instances, but the
ones from its subclasses (Device, Object, Behavior).

6In some cases it is useful to count with several ports with several representations of
the same information, i.e. a matrix and a quaternion representation of a rotation.

7Such an internal state is usually documented for completeness reasons

14

4.5 Device

A device 8 is the simplest filter class. It represents a physical unit that
produces certain type of information. It usually gets its information by
pulling it from a physical device, but the relationship is not necessarily one to
one, i.e. a logical device can pull information from several physical devices,
or a physical device can be associated to several logical ones. Devices are
instances of device classes, declared as follows:

<DeviceClass id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]
[<Implements classId="aClassName"/>]
[<IPort>...</IPort>]
[<OPort>...</OPort>]
...

</DeviceClass>

A device class has a name as identifier, and it contains the input and
output ports of every instance of such a class. The special tag Implements
allows an inheritance–like relationship between device classes: The class
contains all input and output ports of the implemented one. An instance of
a device class can be created inside an application as follows

<IDevice id="aName" type="aType"/>

or

<ODevice id="aName" type="aType"/>

The IDevice emphasizes the fact that the device will produce input in-
formation for other filters in the application. The purpose of ODevice is
to mention output devices in the environment. If a device both produces
and consumes information at the same time, it should be considered as an
IDevice.

4.6 Physical Device

A physical device is a physical entity that produces information to be read
by the computer. It is represented in an InTml application as one or many

8Sometimes is called logical device, in contrast to a physical device, defined below.

15

instances of class Device. Special tuning of physical devices (callibration
procedures, startup, alignment, particular method for accessing information
from it) are considered out of the scope of InTml. In this way, InTml users
concentrate on what type of information they can use from devices, instead
of both information and setup. There is no visibility of physical devices in
InTml, appart from a tacit correspondence with logical devices.

4.7 Object

An object is a filter that affects the media involved in the VR application,
i.e. a piece of geometry, a sound effect, a haptic effect, etc. In the case of
geometry, media is usually represented with a scene graph. InTml objects
are built on top of scene graph nodes, and are used inside an InTml applica-
tion to make changes in particular nodes in the scene. During an execution
step, an object queues all changes that filters request. At the end of the
execution step, once all filters involved in its input have been executed, an
object executes the requested changes according to the policies of its input
ports. If the object report changes through its output ports, they will be
noticed in the next execution step. In this way it is assured that all filters
can read the same state of an object during one execution step, no matter
the order of execution. An object type is defined as follows:

<ObjectClass id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]
[<Implements classId="aClassName"/>]
[<IPort>...</IPort>]
[<OPort>...</OPort>]
...

</ObjectClass>

This structure is identical to the one for device classes. An instance of an
object can be created inside an application or a composed filter as follows:

<Object id="aName" type="aType" [fileName="aFile"]
[primitive="Box/Cone/Cylinder/Ellipse"] />

Every object has an unique identifier (aName), declares the name of its
object class (aType), can load a piece of geometry or other loadable type of
content from a file (aFile), or it can correspond to one of 4 simple shapes
(Box/Cone/Cylinder/Ellipse).

16

Objects can also be sent to other filters as information, and in particular
to object holders. The following syntax is used for this task:

<Binding iE=" self" iP="objectName"
oE="aFilter" oP="anIPort" />

The special identifier self refers to the current composed filter or ap-
plication that contains the object called objectName. The filter aFilter will
receive objectName through the port anIPort. Objects can be plugged to
object holders through a special port called object.

4.8 Scene Graph Node

A Scene graph is the main data structure for geometry processing in modern
graphic APIs, such as Performer [11] or Java3D [7]. An object in InTml can
refer to an element in such a hierarchy, in such a way that it hides the
complexity of geometry rendering inherent to the scene graph structure but
at the same time allows interaction with such elements. Figure 12 shows the
relationship between nodes in the scene graph and InTml objects. There
could be an implicit dependance between InTml objects, since they can
refer to scene graphs nodes that depend on each other, i.e. objects A and B
in the figure. There are ways to make this relationship explicit, for example,
by allowing InTml objects to replicate such a hierarchy. However, in the
general case, we consider this relationship out of the scope of the InTml
description.

Scene Graph InTml

A

B

Figure 12: Relationship between scene graph nodes and InTml objects.

17

4.9 Behavior

Behavior is represented by filters in InTml. A filter can represent a piece of
computation in an InTml application. It represents interaction techniques,
special object behavior, animations, or application specific behavior as filters
in the dataflow. In its simplest form, the type of a filter in InTml is declared
as follows:

<FilterClass id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]
[<Implements classId="aClassName"/>]
[<IPort>...</IPort>]
[<OPort>...</OPort>]
...

</FilterClass>

This has the same structure of a DeviceClass or an ObjectClass. Fil-
ter instances can be created in applications or composed filters with the
following statement:

<Filter id="aName" type="aType"/>

As in devices and objects, a filter is identified by a name and a type.

4.10 Connection

A connection defines a relationship between devices, behavior, and media
content. It is the only way to pass information from one software component
to another, and the only visible relationship possible at runtime 9. The XML
syntax of a connection is as follows:

<Binding iE="aFilter" iP="anOPort" [iI="anIndex"]
oE="aFilter" oP="anIPort" [oI="anIndex"] />

A connection is uniquely identified by an origin element (iE), an output
port in such an element (iP), an optional index in the output port declaration
(iI), a destination element (oE), an input port in such an element (oP),
and an optional index for the input port (oI). Connections appear inside
applications and filter classes in order to describe the dataflow between
elements.

9Devices are related to physical devices and objects to scene graph nodes, but such
relationships are considered out of the scope of InTml.

18

4.11 ObjectHolder

An object holder is a way to define placeholders with a certain structure
of connections in a dataflow, places where media content elements can be
plugged, executed, and changed. Section 5 will describe a more general
concept, a filter holder, allowed to hold any type of element. Current im-
plementations of InTml are limited to hold just objects, but this constraint
can be avoided in the future, by following the semantics of filter holders 10.

The XML syntax for an object holder is as follows:

<ObjectHolder id="aName" />

We can notice that an object holder does not have a type in its dec-
laration. Our current implementation of object holders finds out its ports
by “copying” the ports of the first object it gets to hold. Additionally, an
object holder will always have two additional ports: an iport called object
that allows receiving new objects, and an oport called objectChanged that
will inform interested filters about changes in the contained object. If such
an object is replaced, subsequent objects will be connected to the ports al-
ready defined at the object holder, provided that ports are compatible 11.
An example of this mechanism is shown in Figure 13. When the application
starts and an object holder has not received any events, there are only two
ports declared: one for receiving object events, one to inform changes in the
contained object. Once an object A is connected, the object holder copies
its definition and adds to itself the corresponding ports. Later on, when A
is replaced by an object B of a different class, just the compatible ports are
connected, i.e. ports r and s will not be connected. If A is embedded again
in the object holder, it will be conneted as it is was before.

ObjectHolder
object objectChanged

A
m

n

o

p

q

object
ObjectHolder

objectChanged

m

n

o

p

q

object
ObjectHolder

objectChanged

m

o

p

m

r

r

p

s
B

Figure 13: Different states of an Object Holder during execution.

10Filter holders are defined later in this chapter.
11Currently, compatibility between ports is defined by their names.

19

4.12 Events in the Dataflow and Types

Every piece of information flowing through the dataflow is an event, or Info
in Figure 11. Pieces of information have a type associated to it and its
value could be atomic or composed. A value is considered atomic if it is
implementation–dependant and do not have a complex representation in
InTml. Note that a complex structure such a quaternion [10] can be treated
as atomic if there is no definition of its structure in InTml. A value is
composed if they correspond to objects defined in InTml. Types can have
an implicit compatibility relationship, i.e. inheritance in object–oriented
languages. However, this relationship is not declared in the current imple-
mentation at the level of InTml, but at the implementation level. Type
declarations are either implicit, when they appear as types of ports or con-
stants, or explicit, when they are described as an ObjectClass.

All events are time–stamped, and all events received at the same frame
from devices and propagated through the dataflow are considered simulta-
neous. Events are immutable, so their values can not be changed by filters.
An event can be propagated to several filters (fan-out), so several filters can
refer to the same Info.

4.13 Constant

A constant is a value of a certain type. Constants are used to give a de-
fault initial value to a filter, through a particular input port. A constant is
declared as follows

<Constant id="aName" type="aType" value="aValue"/>

A constant has an identifier and a type. Its value is a string–based
representation of its value inside the InTml execution. Constants can be
pushed through input ports, so its value will be the first value received by
a port. Constants can be declared inside applications and composed filters,
and sent to filters through a particular input port. The following is an
example, in which a filter f receives a constant c1 through its input port ip.
We use the special identifier self in order to refer the constant c1 defined
in the current context.

<Binding iE=" self" iP="c1" oE="f" oP="ip" />

20

4.14 ComposedFilter

A composed filter is an InTml construct that allows designers to hide com-
plexity by encapsulating a piece of an InTml program as a simple filter in
the environment. A composed filter describes a subset of filters, objects,
object holders, constants, and connections that execute certain tasks. We
use the same XML element to declare simple and composed filters, but a
composed filter can include other elements, such as:

<FilterClass id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]
[<Implements classId="aClassName"/>]
[<IPort>...</IPort>]
[<OPort>...</OPort>]
...
[<Filter>...</>]
[<Object>...</>]
[<ObjectHolder>...</>]
[<Constant>...</>]
[<Binding>...</>]
...

</FilterClass>

A composed fiter describes a dataflow with a certain interface given by its
own input and output ports. IPort and OPort elements should be connected
to ports of internal entities through Binding statements. For example:

<FilterClass id="ComposedFilter1" >
<ShortDesc>An example of composed filter</ShortDesc>
<IPort id="ip1" type="Type1"/>
<OPort id="op1" type="Type1"/>
...
<Filter id="f1" type="Filter1"/>
<Object id="obj1" type="Object1" fileName="f1"/>
<Binding iE=" self" iP="ip1" oE="f1" oP="ip"/>
<Binding iE="obj1" iP="op" oE=" self" oP="op1"/>
...

</FilterClass>

Assuming that filter f1 has an input port ip, and that object obj1 has
an output port op, the previous example connects the input and output of

21

the composed filter to its internal structure. Note the use of self to refer
to the composed filter, when necessary.

An instance of a composed filter can be created inside an application or
inside other composed filters with the same syntax used for normal behavior.

4.15 Application

An application element in InTml describes a dataflow of filters that accom-
plish certain tasks. The XML syntax for an application is the following:

<App id="aName" >
<ShortDesc></ShortDesc>
[<Description></Description>]
...
[<IDevice>...</>]
[<ODevice>...</>]
[<Filter>...</>]
[<Object>...</>]
[<ObjectHolder>...</>]
[<Constant>...</>]
[<Binding>...</>]
...

</App>

An application is identified by a name. It contains all the required
elements for a dataflow in InTml: input devices, output devices, filters,
objects, object holders, constants, and connections.

Two important development tasks are involved with applications: initial
definition, and retargeting to other hardware platforms. The initial defi-
nition creates the required filter classes and connections to satisfy certain
set of user requirements in a particular platform. A retargeting process
consists of deriving new applications from a previously defined one, by re-
placing elements for the more suitable ones in a new hardware platform.
Such a change starts in devices, and changes can be propagated to filters,
constants, objects, object holders, and connections.

4.16 Other Language Features

The XML representation of InTml has some extra constructs, which are
useful at design time or for documentation purposes. These concepts are the
following: Package, Import, Overrides, Platform, Index, and PaperRef.

22

Package allows the creation of name spaces in InTml. The name of a
filter class can be used without qualifiers by classes or applications of the
same package. Otherwise it should be fully qualified, or its package should
be imported. The sentence Import allows any package to refer to filter
classes in a non fully–qualified form. The syntax for these two elements is
as follows:

<Package id="aName">
[<Import id="aPackageName">]
...
[<DeviceClass>...</DeviceClass>]
[<FilterClass>...</FilterClass>]
[<ObjectClass>...</ObjectClass>]

</Package>

A package gives a prefix to all classes declared inside of it. Classes can
be used without a qualifier inside classes of the same package. Outside
the package, classes can be named either by its fully qualified name, or by
importing its package. When an package is imported, all its classes can be
used with their simple names. Conflict names in the current implementation
are resolved by taking the first match to a filter class in the list of imported
packages.

An application is not defined inside a package declaration, but instead
it can be created with its fully qualified name. For example:

<App id="a.b.c" >
...

</App>

defines application c, in the package a.b.
Overrides is a special relationship between applications. If application B

overrides A, the resulting application is the set operation (A\B)∪B . In other
words, B has all objects, behaviors, devices, and connections in A that are not
defined in B, plus all elements of B. In this way, B replaces elements in A with
new definitions. This mechanism has been used in order to create default
values for an application: A corresponds to the basic implementation of an
application, common to other ones, while B redefines only some elements
and adds many more.

Platform is a special construct that groups together sets of devices. It
is planned to be used for automatic retargeting of applications, but their
semantics is not fully defined.

23

Index in an extra tag that applications and class declarations have for
documentation purposes. Index classifies an application or a class under an
index name. Several indexes are allowed, so an element can be classified
under several criteria. For example, the following declaration:

<FilterClass id="SelectByTouching">
<Indexes>
<Index id="first" value="intml.selection.details"/>
<Index id="papers" value="_hidden"/>

</Indexes>
...

</FilterClass>

classifies the class SelectByTouching under two criteria: first, with
value intml.
selection.details, and papers with the special value hidden, which
is used to officially hide an element from a particular classification. Docu-
mentation tools can use this information to create browsers of elements.

5 A Formal Description of InTml in the Z Lan-
guage

A Virtual Reality application is described here as a flow of messages in which
input messages or events are read from devices and propagated to all the
functionality of an application, represented in terms of filters. This dataflow
might be executed in parallel or pipelined, complex functions can be encap-
sulated in order to reduce complexity, information from several simultaneous
devices can be received, and all simultaneous filters are guaranteed to see the
same world state. A formal description of this architecture based on the Z
language [12] is given here, and it is shown how these special characteristics
are accomplished, independently from a particular implementation. Such a
formal description serves as a blueprint for new implementations of this ar-
chitecture, a reference that explains the semantics of InTml, independently
from any particular implementation. Finally, we analyze the differences be-
tween our presentation and theirs, and some of the lessons learned from this
specification exercise.

24

5.1 Basic Concepts

A filter is a processing element in the dataflow. Names for filters are unique
in the system, and belong to the set L. Filters are connected by channels,
whose names are also unique and belong to the set C . A channel uniquely
describes a particular output of a filter 12. Messages are indivisible chunks
of information that go through channels and belong to the set M .

A stream is a function that relates a channel name with a particular
sequence of messages. Messages in a stream are ordered in bags, and each
bag represents a set of messages received in a particular interval. In this way,
more than one message can be received in a particular interval, messages
of different intervals can be identified, and the order of messages in the
same interval is not relevant, a very useful property for non-synchronous,
parallel execution of components. We use the property described by Philipps
and Rumpe [8] that it is impossible to distinguish between a function that
computes its output given the history of its input so far, and one that
selects the current output from a sequence of precomputed results. This
gives uniformity between our presentation and theirs in order to reuse some
of their specification styles.

Stream
c : C
m : seq(bag M)

We use the operator ↓ 13 to refer to the messages in a stream up to a
certain moment, and it is defined in several contexts. In its simple form,
st ↓ i is the operation of extracting a sequence from a stream st with only
the first i elements.

[X]
↓ : seqX ×
" seqX

∀ st : seqX ; i :
 •
st ↓ i = (1 . . i)� st

We also use this operator at the level of streams
12Channels are a concept defined by [8] which facilitates connections between filters. It

replaces at the specification level the concept of ports, which are the entry and exit points
of channels.

13The symbol ↓ is read “downarrow”.

25

↓ : Stream ×
" Stream

∀ st , stO : Stream; i :
 •
(st ↓ i = stO ⇔ stO .c = st .c ∧ stO .m = st .m ↓ i)

And at the level of sets of streams

↓ : �Stream ×
"�Stream

∀ stSet : �Stream; i :
 •
stSet ↓ i = {stI : stSet • stI ↓ i}

The function stream describes the association between a channel name
and its corresponding stream. The function streams applies to a set of
channel names and gives us a set of streams.

stream : C " Stream
streams : �C "�Stream

∀ c : C • (∃ st : Stream • stream(c) = st ∧ st .c = c)

∀ cSet : �C • streams(cSet) = {c : cSet • stream(c)}

We use the function restr later, in the definition of a filter function. It
is the selection of a subset of streams with specific names.

restr : (�Stream × �C)��Stream

∀ iSet : �Stream; cSet : �C •
restr(iSet , cSet) = {s : Stream | s ∈ iSet ∧ s.c ∈ cSet}

5.2 Filters and Delays

A primitive filter is a computation unit that receives some information in its
input streams and computes information each interval in its output streams.
By definition, input and output streams do not form cycles. We define the
function inside a filter in the schema Behavior, with the property that the
output of two streams that are equal up to a interval i is the same up to such
an interval. In this way, the computation of the behavior up to this interval

26

does not depend on future states, just previous states. Such a function is
capable of computing the information in O, the output channels of interest.

Behavior
fun : �Stream ��Stream

∀SI ,SO : �Stream • fun(SI) = SO ⇒ SI ∩ SO = �

∀S1,S2 : �Stream; i :
 •
S1 ↓ i = S2 ↓ i ⇒ fun(S1) ↓ i = fun(S2) ↓ i

PrimitiveFilter
name : L
I : �C
O : �C
Behavior

restr(fun(streams(I)),O) = streams(O)

I ∩O = �

A delay of one unit is a special type of filter, with one input and one
output stream, in which the output at interval i+1 is equal to the input at
interval i. We define it as:

Delay
PrimitiveFilter
ID : C
OD : C

{ID} = I ∧ {OD} = O

fun(streams{ID}) = streams({OD}) ∧
tail ((stream(OD)).m) = (stream(ID)).m

We can simulate memory inside a filter by having a delay between a pair
of input - output streams, in which the information through the delay can
be as complex as necessary:

FilterWithMem
PrimitiveFilter
delay : Delay

delay .ID ∈ O ∧ delay .OD ∈ I

27

We can also define parameters, as those input channels that just receive
information at the beginning of the execution.

FilterWithParams
PrimitiveFilter
params : �C

params ⊆ I

∀ p : params • (∀ i :
 • i > 1 ⇒ ((stream(p)).m)(i) = �)

We define a filter as a primitive filter that might have memory and
parameters,

Filter =̂ PrimitiveFilter ∧ FilterWithMem ∧ FilterWithParams

5.3 An Example: A One-Bit Adder

As an example of how a PrimitiveFilter represents an operation, lets describe
an adder of the information from two streams. A one-bit adder has three
input channels, two for actual values and one for a carry value, and sends
its output through two channels, one for the actual addition and one for
the possible carry value. All messages are assumed to be either 1s or 0s.
Since an input channel can receive several messages at once, we define the
functionality in terms of an appearance of at least a 1 value.

asBin : M " {0, 1}
asBinBag : bag M " {0, 1}

∀ b : bag M • (asBinBag(b) = 1 ⇔ (∃m : M • m � b ∧
asBin(m) = 1))

We use the following definition of a xor function between two bits,

xor : ({0, 1} × {0, 1})" {0, 1}

∀ a, b : {0, 1} • (xor(a, b) = 0 ⇔ (a = 0 ∧ b = 0) ∨ (a = 1 ∧ b = 1))

A bit adder is then defined as follows:

28

BitAdder
PrimitiveFilter
i1 : C
i2 : C
cI : C
o : C
cO : C

I = {i1, i2, cI } ∧ O = {o, cO}

∀ i :
 •
#(((stream(o)).m)(i)) = 1 ∧ #(((stream(cO)).m)(i)) = 1

∀ i :
 •
asBinBag(((stream(o)).m)(i)) =
xor(xor(asBinBag(((stream(i1)).m)(i)), asBinBag(((stream(i2)).m)(i))),
asBinBag(((stream(cI)).m)(i)))

∀ i :
 • asBinBag(((stream(cO)).m)(i)) = 1 ⇔
�asBinBag(((stream(i1)).m)(i)), asBinBag(((stream(i2)).m)(i)),
asBinBag(((stream(cI)).m)(i))�] 1 > 1

Such an adder can be used as a parallel or a sequential adder. Several
bit adders can be connected in order to add several bits at once, or just
one adder can sequentially receive several bits to be added, providing some
delayed feedback of the carry information.

5.4 Applications

We compose groups of filters to form applications. We define first two aux-
iliary functions: successors, and paths. The successors of a filter f given
a set of filters iSet are all those filters in iSet that have an input channel
connected to an output channel of f ,

succ1 : (�Filter × Filter × C)"�Filter
successors : (�Filter × Filter)"�Filter

∀ iSet : �Filter ; f : Filter • (∀ c : f .O •
succ1(iSet , f , c) = {f 2 : iSet | c ∈ f 2.I })

∀ iSet : �Filter ; f : Filter •
successors(iSet , f) = {f 2 : iSet | (∃ c : C • c ∈ f .O ∧
c ∈ f 2.I)}

29

The paths from a filter f in a set of filters is the set of all sequences of
consecutive successors, starting at f . This set might be infinite, if there are
cycles.

paths : (�Filter × Filter)"�(seqFilter)

∀ iSet : �Filter ; f : Filter •
paths(iSet , f) = {s : seqFilter | s(0) = f ∧ (∀ i :
 •
s(i + 1) ∈ successors(iSet , s(i)))}

Given a set of filters F, we say that there is a cycle from one of its filters
if it exists a path that name such a filter more than once. We define the
function cyclic over a set F that gives us a subset of filters with this property.

cyclic : �Filter "�Filter

∀ iSet : �Filter •
cyclic(iSet) = {f 2 : iSet | (∃ p : paths(iSet , f 2) •
(items p] f 2) > 1)}

The concept of cycles is used now for the definition of a composition of
filters. A set of interconnected filters create a composed filter 14. A composed
filter is uniquely identified by a name, its input and output channels are
disjoint, its filters do not share output channels, and filters do not have
loops unless they are mediated by delays. Delays can connect two distinct
filters or delays, in any combination, so strings of delays are allowed. Objects
represent references to content in the application 15. We avoid two filters
from reading different object states in a particular execution frame by forcing
objects to be followed by delays. The behavior of a composed filter is defined
as the composition of all behaviors in its filters and delays 16.

14A ComposedFilter is also a Filter, when all its details are hidden,so several layers of
composition are possible.

15Such objects might be interrelated, but any conflicts between operations in different
objects are treated with application logic, which may be generic.

16The last condition in this schema is redundant, but we want to emphasize the rela-
tionship between the composed filter’s function and the functions of each filter inside.

30

ComposedFilter
name : L
filters : �1 Filter
delays : �Delay
objects : �Filter
IU : �C
OU : �C
I : �C
O : �C
Behavior

objects ⊆ filters

IU =
⋃
{f : filters • f .I } ∪

⋃
{d : delays • d .I }

OU =
⋃
{f : filters • f .O} ∪

⋃
{d : delays • d .O}

I = IU \OU

O = OU

∀ f 1, f 2 : filters • f 1 6= f 2 ⇒ (f 1.name 6= f 2.name ∧
f 1.name 6= name)

I ∩O = �

∀ f 1, f 2 : filters • f 1 6= f 2 ⇒ f 1.O ∩ f 2.O = �

cyclic(filters) = �

∀ o : objects • (∀ c : o.O • c /∈
⋃
{f : filters • f .I })

restr(fun(streams(I)),O) = streams(O)

∀ c : O • ((∃ f : filters; l : � IU •
stream(c) ∈ f .fun(streams(l))) ∨
(∃ d : delays; l : � IU • stream(c) ∈ d .fun(streams(l))))

Our first attempt to define an application is as a composed filter with
a special subset of filters, called devices. Devices are sources or sinks of
information. In general, input channels to sources of information are pa-
rameters, and the input of a sink of information is the entire set of objects
in the application.

31

Application0
ComposedFilter
devices : �1 Filter

devices ⊆ filters ∧ devices ∩ objects = �

An application can be seen in some cases as a complex filter, by hiding
the extra definition. We do that with the function app2Comp

app2Comp : Application0" ComposedFilter

∀ a : Application0; c : ComposedFilter • app2Comp(a) = c ⇔
a.name = c.name ∧ a.filters = c.filters ∧ a.delays = c.delays
∧ a.objects = c.objects ∧ a.fun = c.fun

5.5 Dataflow Execution

An ExecutionStep of a filter is the process of obtaining certain information
in the output ports, given the information in the input ports at a particular
interval. The operation just shows the information in the output channels
at a given interval.

ExecutionStep
ΞFilter
input? : �(bag M)
output ! : �(bag M)
i? :

∀ in : input? • (∃ c : I • in = ((stream(c)).m)(i?))

∀ out : output ! • (∃ c : O ′ • out = ((stream(c)).m)(i?))

The initialization state of a filter assigns the input and output channels
of such a filter, and executes changes related to its parameters.

32

InitFilter
Filter ′

ic? : �C
oc? : �C
input? : �(bag M)
output ! : �(bag M)

I ′ = ic? ∧ O ′ = oc?

∀ in : input? • (∃ c : I ′ • in = ((stream(c)).m)(0))

∀ out : output ! • (∃ c : O ′ • out = ((stream(c)).m)(0))

An execution step for an application is given by the execution step of
all filters that have some information in their input ports in a given frame,
plus delays that had information in the previous interval. We define the
functions executingFilters and executingDelays to describe which filters and
delays are activated at any given interval.

streamsWithInput : (�Stream ×
)"�Stream
executingFilters : (ComposedFilter ×
)"�Filter
executingDelays : (ComposedFilter ×
)"�Delay

∀ iSet : �Stream; i :
 • streamsWithInput(iSet , i) = {s : iSet | (s.m)(i) 6= �}

∀ f : ComposedFilter ; i :
 •
executingFilters(f , i) = {f 2 : f .filters | streamsWithInput(streams(f 2.I), i) 6= �}

∀ f : ComposedFilter ; i :
 •
executingDelays(f , i) = {d2 : f .delays | streamsWithInput(streams(d2.I), i) 6= �}

Is it possible that not all filters and delays are executed in a particular
interval, but over time, all filters and delays should be executed. The mini-
mum number of intervals required for the execution of a composed filter is
called its minimum execution time.

In order to properly execute an application we define extra requirements.
No filter in an application generates output from information in parameters
at interval 0, and the only filters with information at interval 1 are devices
or connected to devices. These two conditions avoid problems with filters
in execution separated by delays.

33

Application
Application0

∀ f : filters • (∀ c : f .O • ((stream(c)).m)(0) = �)

∀ d : delays • (∀ c : d .O • ((stream(c)).m)(0) = �)

∀ f : executingFilters(app2Comp(θApplication0), 1) •
f ∈ devices ∨ (∃ d : devices • (∃ p : paths(filters, d) •
p � {f } 6= �))

5.6 Changes in the Dataflow

We will consider three types of changes in the dataflow: One that changes
channels in a filter, without changing the structure of its output connections,
another one that changes a filter in a connection scheme by replacing it for
a compatible one and connecting it to the previous scheme, and a last one
when filters are removed or added to the dataflow.

5.6.1 Channel Changes in a Filter

We assume that a filter function can compute the new output channels from
the new input ones, since we have assumed that in general we see just a
subset of possible results 17. The operation is defined in a way that each
old channel keeps the same, or has only one replacement. We also define
the function isCompatible, which says if two channels can be replaced one
by the other.

isCompatible : (C × C)" {0, 1}

∀ c1, c2, c3 : C • (isCompatible(c1, c1) = 1 ∧
isCompatible(c1, c2) = isCompatible(c2, c1) ∧
(isCompatible(c1, c2) = 1 ∧ isCompatible(c2, c3) = 1) ⇒
isCompatible(c1, c3) = 1)

For a filter, a channel change is straightforward: the new channels replace
the old ones, providing that they are only pairs between these sets that are
compatible.

17See the textitBehavior schema.

34

ChangeChannels
f : Filter
f ′ : Filter
newIC ? : �C
newOC ? : �C
oldIC ? : �C
oldOC ? : �C

f ′.name = f .name

oldIC ? ⊆ f .I ∧ oldOC ? ⊆ f .O

f ′.I = newIC ? ∧ #newIC ? = #oldIC ? ∧
(∀ c′ : newIC ? • (∃1 c : oldIC ? • c′ = c ∨ isCompatible(c, c′) = 1))

f ′.O = newOC ? ∧ #newOC ? = #oldOC ? ∧
(∀ c′ : newOC ? • (∃1 c : oldOC ? • c′ = c ∨ isCompatible(c, c′) = 1))

ChangeChannelsCF defines a change of channels in a composed filter. All
references to old channels are replaced by the new ones, and the structure of
the composed channel is kept, since there is only one possible replacement
for each channel.

35

ChangeChannelsCF
∆ComposedFilter
newIC ? : �C
newOC ? : �C
oldIC ? : �C
oldOC ? : �C

name ′ = name ∧
#filters = #filters ′ ∧ #delays = #delays ′ ∧
#objects = #objects ′ ∧ #delays = #delays ′

∀ f : filters • (∃1 f ′ : filters ′ •
((oldIC ? ∩ f .I = � ∧ oldOC ? ∩ f .O = � ∧ f = f ′)
∨ ((oldIC ? ∩ f .I 6= � ∨ oldOC ? ∩ f .O 6= �)
∧ (∃1 ic, oc, ic′, oc′ : �C • ic ⊆ oldIC ? ∧ oc ⊆ oldOC ? ∧
ic′ ⊆ newIC ? ∧ oc′ ⊆ newOC ? ∧
ChangeChannels[ic/oldIC ?, oc/oldOC ?, ic′/newIC ?, oc′/newOC ?]))))

∀ f : filters • (∃1 f ′ : filters ′ •
(∃1 c : f .O ; c′ : f ′.O •
(f .name = f ′.name ∧ {f 2 : succ1(filters, f , c) • f 2.name} =
{f 2′ : succ1(filters ′, f ′, c′) • f 2′.name})))

5.6.2 Change a Filter in a Connection Scheme

Let’s now define a way to replace a filter by another in the dataflow, while
connections are kept as much as possible. A filter holder allows us to replace
a filter f by another, while keeping as much as possible previous connections
of f . Part of the definition of a filter holder are a merge filter, a duplicator
filter, and a compability function between channels similar to isCompatible,
defined as follows:

Merge2
Filter
i1 : C
i2 : C
o : C

I = {i1, i2} ∧ O = {o} ∧ i1 6= i2 ∧ i1 6= o

∀ i :
 • ((stream(o)).m)(i) = ((stream(i1)).m)(i)] ((stream(i2)).m)(i)

36

Duplicate
Filter
i : C
o1 : C
o2 : C

I = {i} ∧ O = {o1, o2}

∀n :
 • ((stream(i)).m)(n) = ((stream(o1)).m)(n) ∧
((stream(i)).m)(n) = ((stream(o2)).m)(n)

fhCompatible : (C × C)" {0, 1}

∀ c1, c2, c3 : C • (fhCompatible(c1, c1) = 1 ∧
fhCompatible(c1, c2) = fhCompatible(c2, c1) ∧
(fhCompatible(c1, c2) = 1 ∧ fhCompatible(c2, c3) = 1) ⇒
fhCompatible(c1, c3) = 1)

∀ c1, c2 : C • (fhCompatible(c1, c2) = 1 ⇒ isCompatible(c1, c2) = 1)

Mergers and duplicators can be seen as filters with the following func-
tions:

m2f : Merge2" Filter
d2f : Duplicate " Filter

∀m : Merge2; f : Filter • (m2f (m) = f ⇒
m.name = f .name ∧ m.I = f .I ∧ m.O = f .O ∧ m.fun = f .fun ∧
m.delay = f .delay ∧ m.params = f .params)

∀ d : Duplicate; f : Filter • (d2f (d) = f ⇒
d .name = f .name ∧ d .I = f .I ∧ d .O = f .O ∧ d .fun = f .fun ∧
d .delay = f .delay ∧ d .params = f .params)

A filter holder surrounds its contained filter by a structure of filters shown
in Figure 14. We assume the imposed structure is given by the channels with
numbers and the contained filter f originally had the channels with letters.

37

D

D

Filter Holder

fm1

m2

mp

d1

d2

dq
D

1

2

p

o1

o2

oq

D

A

B

C
M

M

M

Du

Du

Du

Figure 14: Internal Structure of an Filter Holder

The schema for a filter holder is as follows:

FilterHolder
nameFH : L
IFH : �C
OFH : �C
predecessors : �Filter
successors : �Filter
fSet : �Filter
mrgs : �Merge2
dels : �Delay
dups : �Duplicate

#fSet < 2

∀ p : predecessors • p.O ∩ IFH 6= �

∀ s : successors • s.I ∩OFH 6= �

∀ ifh : IFH • ∃1 m : mrgs • ifh = m.i1

∀ ofh : OFH • ∃1 del : dels; dup : dups •
(del .OD = dup.i ∧ dup.o1 = ofh)

fSet 6= � ∧ (∃ f : fSet •
((∀ ic : f .I • (∀ ifh : IFH • fhCompatible(ic, ifh) = 0) ∨
(∃1 ifh : IFH • fhCompatible(ic, ifh) = 1))))

Once a new filter f 2 is assigned to an object holder, it disconnects the

38

previous f contained, restores its original connections, and connects f 2 inside
the structure. Such a structure keeps the original connections of any filter,
and avoids cycle problems, due the delays in the outputs.

NewFilterFH
∆FilterHolder
f ? : Filter
f ! : Filter

nameFH = nameFH ′ ∧ IFH = IFH ′ ∧ OFH = OFH ′ ∧
predecessors = predecessors ′ ∧ successors = successors ′

fSet 6= � ∧ (∃1 fOld : fSet •
fOld .name = f !.name ∧
f !.I = fOld .I \ {mrg : mrgs | mrg .o ∈ fOld .I • mrg .o}∪
{mrg : mrgs | mrg .o ∈ fOld .I • mrg .i2} ∧
f !.O = fOld .O \ {del : dels | del .ID ∈ fOld .O • del .ID}∪
{dup : dups | (∃ oc : fOld .O • fhCompatible(dup.o2, oc) = 1) • dup.o2})

∃ f ?′ : fSet ′; ic, ic′, oc, oc′ : �C •
(ic = {c : f ?.I | (∃1 ifh : IFH • fhCompatible(c, ifh) = 1)} ∧
oc = {c : f ?.O | (∃1 ofh : OFH • fhCompatible(c, ofh) = 1)} ∧
ic′ = {m : mrgs | (∃1 ifh : IFH ; c : f ?.I •
(fhCompatible(c, ifh) = 1) ∧ ifh = m.i1) • m.o} ∧
oc′ = {del : dels | (∃1 ofh : OFH ; dup : dups; c : f ?.O •
(fhCompatible(c, ofh) = 1) ∧ ofh = dup.o1 ∧ dup.i = del .OD) • del .ID} ∧
ChangeChannels[f ?/f , f ?′/f ′, ic/oldIC ?, oc/oldOC ?, ic′/newIC ?, oc′/newOC ?])

5.6.3 Add and Remove Filters

The addition and removal of filters — or delays — in a composed filter is
straightforward: The new filter is added or removed from the set of filters
18.

18It is important to notice that these two operations have to fulfill all previous require-
ments for composed filters; in particular, cycles without delays are not allowed.

39

AddFilter
∆Application
newF? : Filter

name = name ′ ∧ delays = delays ′ ∧ objects = objects ′ ∧
devices = devices ′

newF?.name /∈ {f : filters • f .name} ∪ {name} ∧
newF?.O ∩

⋃
{f : filters • f .O} = � ∧

(∀ o : objects • o.O ∩ newF?.I = �) ∧

filters ′ = filters ∪ {newF?} ∧ cyclic(filters ′) = �

RemoveFilter
∆Application
oldF? : Filter

name = name ′ ∧ delays = delays ′ ∧ objects = objects ′ ∧
devices = devices ′

filters ′ = filters \ {oldF?}

In the same way, modifications of delays can be defined as follows:

AddDelay
∆Application
newD? : Delay

name = name ′ ∧ filters = filters ′ ∧ objects = objects ′ ∧
devices = devices ′

newD?.name /∈ {d : delays • d .name} ∪ {name} ∧
newD?.O ∩

⋃
{d : delays • d .O} = �

delays ′ = delays ∪ {newD?}

RemoveDelay
∆Application
oldD? : Delay

name = name ′ ∧ filters = filters ′ ∧ objects = objects ′ ∧
devices = devices ′

delays ′ = delays \ {oldD?}

40

5.7 Operations Over an Application

The operations over an application are based on the previous schemas. An
InTml application is a well defined application with object holders:

InTmlApp
Application
fhs : �FilterHolder

∀ fh : fhs • fh.IFH ⊆ IU ∧ fh.OFH ⊆ OU
∧ fh.predecessors ⊂ filters
∧ fh.successors ⊂ filters
∧ fh.fSet ⊂ filters ∧ fh.dels ⊆ delays
∧ {mrg : fh.mrgs • m2f (mrg)} ⊂ filters
∧ {dup : fh.dups • d2f (dup)} ⊂ filters

The execution of an InTml application is either the normal flow of mes-
sages, or one of the following special changes: channel changes, object holder
executions, addition of filters, removal of filters, addition of delays, and re-
moval of delays. The normal dataflow execution is similar to the execution
of any filter:

InTmlExecuteDataflow
ΞInTmlApp
inputD? : �(bag M)
output ! : �(bag M)
i? :

∀ in : inputD? • (∃ c : I • in = ((stream(c)).m)(i?))

∀ out : output ! • (∃ c : O ′ • out = ((stream(c)).m)(i?))

A change of channels is defined on top of the changes in a composed filter,
with extra conditions for filter holders that assures that if the change involves
a filter connected to a filter holder, the change will keep the structure of the
dataflow as it was before:

41

InTmlExecuteChangeChannels
∆InTmlApp
newIC ? : �C
newOC ? : �C
oldIC ? : �C
oldOC ? : �C

ChangeChannelsCF

∀ fh : fhs • (∃1 fh ′ : fhs ′ •
(fh.IFH ∩ newIC ? = � ∧ fh.OFH ∩ newOC ? = � ∧
fh = fh ′) ∨
((fh.IFH ∩ newIC ? 6= � ∨ fh.OFH ∩ newOC ? 6= �)
∧ (fh.nameFH = fh ′.nameFH ∧ fh.predecessors = fh ′.predecessors ∧
fh.successors = fh ′.successors ∧ fh.fSet = fh ′.fSet ∧
fh ′.IFH = fh.IFH \ oldIC ? ∪ {m : fh ′.mrgs • m.i1} ∧
fh ′.OFH = fh.OFH \ oldOC ? ∪ {d : fh ′.dups • d .o1})))

The execution of filter holders in an InTml application is based on the
previous schema NewFilterFH, with an additional condition to assure that
nothing else changes:

InTmlExecuteFHs
∆InTmlApp
f ? : Filter
f ! : Filter

f ? ∈ filters ∧ f ! ∈ filters

name = name ′ ∧ delays = delays ′ ∧ objects = objects ′ ∧
devices = devices ′

∃1 fh : fhs; fh ′ : fhs ′; NewFilterFH •
(fh.nameFH = nameFH ∧ fh.IFH = IFH ∧ fh.OFH = OFH ∧
fh.predecessors = predecessors ∧ fh.successors = successors ∧
fh.fSet = fSet ∧ fh.mrgs = mrgs ∧ fh.dels = dels ∧
fh.dups = dups ∧ fh ′.nameFH = nameFH ′ ∧ fh ′.IFH = IFH ′ ∧
fh ′.OFH = OFH ′ ∧ fh ′.predecessors = predecessors ′ ∧
fh ′.successors = successors ′ ∧
fh ′.fSet = fSet ′ ∧ fh ′.mrgs = mrgs ′ ∧ fh ′.dels = dels ′ ∧
fh ′.dups = dups ′)

42

Adding and removing filters are directly defined over the previous schemas
AddFilter and RemoveFilter, respectively:

InTmlExecuteAddFilter
∆InTmlApp
newF? : Filter

fhs = fhs ′

AddFilter

InTmlExecuteRemoveFilter
∆InTmlApp
oldF? : Filter

fhs = fhs ′

RemoveFilter

Similarly changes in delays are defined as follows:

InTmlExecuteAddDelay
∆InTmlApp
newD? : Delay

fhs = fhs ′

AddDelay

InTmlExecuteRemoveDelay
∆InTmlApp
oldD? : Delay

fhs = fhs ′

RemoveDelay

Finally, an InTmlStep is the execution of any of the tasks that change
the state of the dataflow, followed by the execution of the dataflow.

InTmlStep =̂ (InTmlExecuteChangeChannels ∨ InTmlExecuteFHs ∨
InTmlExecuteAddFilter ∨ InTmlExecuteRemoveFilter ∨
InTmlExecuteAddDelay ∨ InTmlExecuteRemoveDelay) ∧
InTmlExecuteDataflow

43

6 Properties of this Architecture

This architecture has the following features:

• Filters can run in different processors. There are no restrictions on
the simultaneous execution of filters, and how they send information
to followers. This allows parallel implementations and also sequential
ones, with the same semantics.

• A filter ”knows” all events that are originated in the same time frame
and received through its input channels. This allows specific imple-
mentations to filter unnecessary information.

• The state of the world, reflected in terms of the state of the objects
in the application, is consistent for all filters during the execution of
a time frame. This avoids side effects, as in other dataflow–based
implementations such as VRML, related to the order of execution of
filters.

• Composed filters have clear recursive semantics and allow complexity
management, by hiding unnecessary details.

• An application can have as many devices as required, all treated in a
uniform way.

• The particular implementation of the behavior of a filter is hidden
from the dataflow point of view. In this way, we can separate the high
level design of the dataflow and the low level design of behaviors and
interaction techniques.

• Object holders define a mechanism similar to pointers in common pro-
gramming languages, and they are very useful for the definition of
dynamic changes.

• The semantics described here can be implemented in several platforms
from a simple desktop computer to a massively parallel computer. In
this way, a VR application is scalable to a wide variety of hardware
platforms, while it keeps the same semantics.

• A designer can easily identify which filters in a dataflow are specific
to a particular hardware platform. This allows designers to perform
a process of reaccomodation of VR applications to different hardware
platforms and interaction styles. We call such a process retargeting,
and it will be part of the methodology we define later in this thesis.

44

There are also some issues that require further research, such as:

• Actual comparative results between a parallel and a sequential imple-
mentation of InTml have to be performed. Ideally, we should be able
to create some analytical methods for measuring performance advan-
tages in a parallel implementation of a specific application, but we
have to explore this possibility in more in detail.

• InTml is a new component technology that takes into account the
specific quality attributes required in VR applications. However, we
require more applications implemented in this technology to validate
more thoroughly its advantages and features. Such experimental tests
will require a community of users and an active developer community
to support them.

• Exact time management and synchronization are issues not directly
visible in InTml. This allows designers to worry about requirements
without taking care of synchronization issues. However, such issues
should be addressed in a succesful VR application. Our current ap-
proach forces designers to hide synchronization issues under filters that
transparently handle several streams into a synchronized one. This ap-
proach has to be tested in more detail to understand its implications.

• More development tools are necessary in order to provide a true pro-
fessional environment for VR designers.

• As InTml libraries grow, tools for finding and organizing them will be
required in order to make them usable and avoid work repetition.

6.1 An Example of InTml Interpretation

This specification allows us to understand the semantics behind an InTml
application representation. For example, if we analyze again Figure 2 one
can infer the following characteristics:

• All filters in the application can be executed in one step, since all
filters are reachable from the device handTracker without delays in the
middle 19. The handTracker sends changes to both the object and the
selection technique. The selection technique takes the new coordinates
and the current object state and decides if the object will collide any

19See definition of executingFilters in Section 5.5

45

other object in the scene, once the new coordinates are set. If this
is the case, the collided object is sent to the feedback technique. All
these operations are executed at the same interval. Once the dataflow
execution has finalized, changes in objects are executed (In this case,
new position and orientation for handRepr from the tracker).

• Since InTmlExecuteFHs is executed before InTmlExecuteDataflow, the
object handRepr is assigned to the object holder handRepresentation
before events from the tracker arrive (i.e., position and orientation).

• Another representation of the same application is shown in Figure 15,
with a slightly different meaning but with the same results. In this
case, changes in position and orientation are propagated after they
are executed in the object. This representation executes the entire
dataflow in two steps: the first one with {handTracker, handRepresentation}
and the second with {SelectByTouching, Feedback}. This approach
might be preferred if the object can decide if it can do the requested op-
eration. In this case, the processing is executed first, and if the object
decides that the change can be done, it will propagate the changes to
the selection technique. Also note that when the selection technique
executes, handRepr actually has the same position and orientation
as the ones received in the input ports position and orientation.
We allow then SelectByTouching to operate in two slightly different
modes, since it does not take into account the actual position and
orientation of the object.

• The actual description of the function executed by a filter is hidden
from the diagram, and in the current InTml implementation, it is de-
fined in a textual description attached to each filter class. For example,
the function SelectByTouching is described as follows: It is a selec-
tion technique that takes an object and checks if it will collide with
another object in a scene after moving to a new position and orienta-
tion, received as parameters. Addition and removals of objects in the
scene are allowed, but those changes have to be explicitly informed.
It is possible to design this selection technique in a different way, and
Figure 16 shows a different one, with the following interpretation: it is
a selection technique that takes the current position of an object and
checks if it collides with another object in the scene. Changes in the
scene or in the object are implicitly taken into account. This definition
might be preferred, since it allows less modes of operation and avoids
possible misinterpretations of its execution. It might also be defined

46

in terms of the previous one. However, it takes two intervals to be
totally executed, due the inner object holders.

• If the first representation of SelectByTouching is used, handRepr will
receive two copies of the events from handTracker: one from the object
holder inside the selection technique, one from handRepresentation.
While this might be redundant it does not affect the semantics of the
application in any way, and compiler techniques can be used to avoid
this redundancy.

handRepresentation

console

�
�
�
�

�
�
�
�

handTracker Feedback
type

color

SelectByTouchingposition

orientation

handRepr

scene

addObject

removeObject

selectedObject

scene

handRepr

Figure 15: A Modified Version of a Simple Application.

���
�

sceneOH

��
�
��
�

handRepr

scene

SelectByTouching

hand

addObject

removeObject object

NewSelectbyTouching

pos

q

Figure 16: A Modified Version of SelectByTouching.

6.2 Lessons Learned from the Z Language Description

Our attempt to formally describe the semantics of InTml gave us a better
understanding of what our model is, and what are its capabilities. We

47

started our first implementation after prototyping three environments for
VR development, which gave us a good understanding of the requirements
of such an endeavour. However, the description in the Z language that we
started after the first implementation gave us a more generic, clean, and
scalable description than the one that we implemented. We extended the
concept of object holders to allow any type of filter, which makes InTml a
second–order language (filters can have filters as arguments).

Formalization allowed us to better understand the meaning of an InTml
application than from just a drawing, since the inner semantics of each
element and the overall execution model is clearer. The formalism allowed
us to cleanly separate the meaning of a filter from the concept of a filter
holder, and what could be the type of a holder. It also allowed us to make
clearer the differences and similarities between applications and composed
filters.

The concept of a delay emerged from the work Lee and Parks [5] as a
very useful addition to the set of concepts in InTml. Despite the fact that
it does not yet appear in the XML syntax, a delay is a very useful abstract
concept that allows us to understand the execution model, how cycles are
executed, and how object holders work.

An important concept in the Z description is the one of dynamic changes
in the structure of the dataflow, that will allow us in the future to offer a
richer language, i.e. with support for adding or deleting filters, changes in
connections, delays at the XML level, and filter holders.

Finally, the description in the Z language also allowed us to compare the
semantics of our dataflow proposal with other dataflow proposals, and reuse
part of their notation and their semantics. The differences of our proposal
with previous ones in the area of dataflow based computation are clearer,
and new questions have emerged for future work.

48

References

[1] Alias Wavefront. 3D Max. http://www.discreet.com/products/3dsmax/,
2003.

[2] Alias Wavefront. Maya. http://www.aliaswavefront.com/en/products/
maya/index.shtml, 2003.

[3] Jon Barrileaux. 3D User Interfaces With Java 3D. Manning Publica-
tions, August 2000.

[4] Blender.org. Blender. http://www.blender.org/, 2003.

[5] Edward A. Lee and Thomas M. Parks. Dataflow process networks. In
Proceedings of the IEEE, pages 773–799, May 1995.

[6] Jiandong Liang and Mark Green. Geometric modeling using six degrees
of freedom input devices. In 3rd International Conference on CAD and
Computer Graphics, pages 217–222, 1993.

[7] Sun Microsystems. Java 3D Home Page.
http://java.sun.com/products/ java-media/3D/index.html, 1997.

[8] Jan Philipps and Bernhard Rumpe. Refinement of pipe-and-filter archi-
tectures. In J. M. Wing, J. Woodcock, and J. Davies, editors, FM’99 –
Formal Methods, Proceedings of the World Congress on Formal Methods
in the Development of Computing System. LNCS 1708, pages 96-115.
Springer, 1999.

[9] Ivan Poupyrev, Mark Billinghurst, Suzanne Weghorst, and Tadao
Ichikawa. The go-go interaction technique: non-linear mapping for
direct manipulation in vr. In Proceedings of the 9th annual ACM sym-
posium on User interface software and technology, pages 79–80. ACM
Press, 1996.

[10] The matrix and quaternion faq. http://skal.planet-
d.net/demo/matrixfaq.htm.

[11] SGI. Iris performer home page.
http://www.sgi.com/software/performer, 2003.

[12] Mike Spivey. The Z Notation: A Reference Manual. Prentice-Hall, 2nd
edition edition, 1992.

49

[13] D. Touraine, P. Bourdot, Y. Bellik, and L. Bolot. A framework to
manage multimodal fusion of events for advanced interactions within
virtual environments. In S. Müller W. St?rzlinger, editor, Virtual Envi-
ronments ’02, Eurographics, pages 159–168. Springer-Verlag Wien New
York, 2002. Proc’s Eurographics Workshop, Barcelona, Spain, 2002.

50

