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ABSTRACT

A compartmentalized reservoir is made up of a number of hydraulically-communicating
compartments. Usually the communication between a pair of neighboring compartments
is poor due to the presence of faults or low-permeability barriers. Here a new approach is
taken to understand the transient-pressure behavior of compartmentalized reservoirs.
Analytical solutions are developed for transient flow in compartmentalized systems
described by one-, two- and three-dimensional Cartesian coordinate systems. Solutions
are derived for dimensionless pressure in one- and two-dimensional systems and for
dimensionless potential in three-dimensional flow systems. The solutions for one- and
two-dimensional systems are useful for the purpose of studying areally-
compartmentalized reservoirs. Consideration of potential is important in a three-
dimensional system due to the importance of the effects of gravity. Such a situation can
be encountered in reservoir compartmentalization especially with vertical extent. The new
solutions have been validated by comparing a number of their simplified cases with those

available in the literature.

Interference due to production through multiple wells from a compartmentalized system
has been characterized. In addition, a compartmentalized system has been characterized in
terms of a homogeneous system. Conditions under which the principle of reciprocity is

applicable in the new analytical solutions have been determined.



Transient behavior in compartmentalized systems has been examined using the solutions
developed in this study. These include a linear system, a two-compartment system, a
system of small compartment in communication with a big one and a stacked channel
realization. Pressure-derivatives have been used to identify different flow regimes while
observing transient responses at the wellbore. Type-curves and simple solutions for late
times have been presented for the purpose of identifying the geological structure and of

quantifying the flow resistance at the interface boundary in terms of a skin factor.

A partially-communicating barrier between adjoining compartments has been observed to
behave as a sealing interface temporarily for a period of time. Using this observation, a
simple diagnostic technique has been developed for detection of poor hydraulic
communication between compartments from extended drawdown data. Methods have
been proposed to compute the pore volume in each compartment, the total reserve, and

the average reservoir pressure from stabilized drawdown data.
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CHAPTER 1
INTRODUCTION

1.1 Background

A compartmentalized reservoir is made up of a number of hydraulically-communicating
compartments. Rock and fluid properties in each compartment may be distinct. The
hydraulic communication between any two neighboring compartments is usually poor due
to the presence of faults or low-permeability barriers. However, Smalley and England
(1994) mention that these barriers could be of different strengths, ranging from relatively
minor features that might retard fluid flow to major features that will not allow any fluid
communication. Evidence of reservoir compartmentalization has been observed in both oil
and gas reservoirs (Junkin et al., 1992). Bradley and Powley (1994) have pointed out that
multiple compartments may be found both areally and vertically. A number of
compartmentalized reservoirs have been discovered in different parts of the world
including those in the North Sea (Fox et ai., 1988), Texas Gulf Coast (Lord and Collins,
1991; Lord et al., 1992; Junkin et al., 1992) and Australia (Malavazos and McDonough,
1991)

Lord et al. (1992) have given an example of a compartmentalized reservoir in South Texas.
In this reservoir, the producing compartment of 8 MMcf is in communication with a
secondary compartment of 24.7 MMcf through a barrier with a transmissibility of 4 md-
ft (the barrier is 8000 ft long, 1000 ft across, and 1 ft high with a permeability of 0.5 md).

Reservoir compartmentalization is detected primarily from observation of the
discontinuities in pressure both areally for areal compartmentalization and vertically for
vertical compartmentalization that have been found in produced fields when wireline
formation tester surveys have been run in newly-drilled wells (Stewart and Whaballa,
1989). Besides mentioning this primary method, Bradley and Powley (1994) list a number

of other ways the reservoir compartmentalization can be indicated, which are:



¢ by differing brine and hydrocarbon chemistries;
e by mineralogical differences;
e by electrical resistivity, sonic velocity, and density of shales;

e by mud weight requirements and drilling rate changes.

Also, Smalley and England (1994) have proposed a method to assess the behavior of
reservoir compartmentalization by analyzing the natural process of fluid mixing. These
authors have used the data from reservoir fluid with compositional heterogeneity to get
information about how fluids have been able to move through the reservoir over a geologic

time scale.

It is important to identify reservoir compartmentalization, if there is any. In the case of
detection of an unexpected reservoir compartmentalization later during production,
sometimes it becomes essential to drill more wells and build more facilities which could
force re-evaluation of the whole development project based on economics. Therefore, it is
essential to have as much information about the compartmentalization of a reservoir as
possible to avoid any unpleasant surprises in the future. Smalley and England (1994)
note, for example, that an unexpected detection of the presence of any compartment with
a high gas-oil ratio might cause oil production rates to be constrained due to the limited

capacity of the gas-handling facilities located at surface.

Massonnat and Bandiziol (1991) emphasize that the geology of a reservoir and the
selection of the most suitable solution for well-test interpretation are inter-dependent and
that these can complement and improve interpretation of the geology and the well test.
According to Norris et al. (1993), the results coming from the well-test interpretation
contribute to an improvement of the understanding and modeling of the geology.
Mikhailov and Crzisik (1984) have suggested that analytical solutions, when available, are
advantageous in that they provide good insight into the significance of various parameters
in the system affecting the transport phenomena, as well as accurate benchmarks for a

numerical approach. Along the same line, Massonnat et al. (1993) have opined that the



interpretation of transient pressure by the use of analytical models leads to a simplified
description of the geological heterogeneities around the well. Stewart and Whaballa (1989)
prefer the use of analytical solutions for identifying and quantifying major compartments
and flow barriers before running a reservoir simulation. Badgernt et al. (1996) have
observed that the production performance of a well is dependent on a number of variables
including formation permeability, completion efficiency, reservoir heterogeneities, fluid
properties, reservoir pressure and drawdown. These authors also opine that well test
analysis provides a means of quantifying these variables allowing for the cause(s) of non-
ideal well performance to be identified. Corapcioglu et al. (1983) suggested that analytical
solutions can sometimes be used as a partial check of numencal solutions for large-scale

problems.

The primary objective of this study is to recognize and evaluate the importance of
considering the contrasts of rock and fluid properties in a compartmentalized system by
using analytical models that are able to provide useful information about such a system.
These transient-pressure models for compartmentalized reservoirs are developed
analytically in a generalized way. Closed-form solutions are obtained for
compartmentalized systems with one-, two- and three-dimensional flow systems. The
interface-boundaries between adjoining compartments, due to vertical barriers of low-
permeability or partially-communicating faults, are modeled as thin skins. The production
rate at each producing well and conditions at the extreme boundaries of the reservoir are
considered to be time-dependent to deal with any changing production and changing
situations at these boundaries, respectively. An integral-transform technique for finite,
composite domains has been used to derive the solutions for dimensionless pressure in
terms of dimensionless time and space. The new analytical solutions have been validated
by comparing simplified cases with those available in the literature. A number of practical

applications of the new model are also discussed.

1.2 Geology of Compartmentalized Reservoirs




Due to geologic processes, most hydrocarbon reservoirs are heterogeneous. Some of the
reservoirs are compartmentalized (Junkin et al., 1992). A compartmentalized reservoir is
considered to have a number of hydraulically-connected compartments. The interfaces
between adjoining compartments are usually partially commu.icating due (o the presence
of faults or low-permeability barriers (Fox et al, 1988). According to Stewart and
Whaballa (1989), the discontinuities in pressure occur over both horizontal events such
as shales, micaceous streaks, stylolytes etc. and near vertical events such as partially-

communicating faults, turbidite lobe interfaces, etc.

Levorsen (1967) mentioned that the extent of a reservoir boundary may be sharp or it
may be gradational as is more often the case. This heterogeneous character in a reservoir
makes it difficult to model. However, to alleviate the mathematical difficulties of modeling
such a system, the concept of compartmentalization may be used. Using this concept, a
heterogeneous system is assumed to be comprised of a number of homogeneous
compartments. The communication of fluid between adjoining compartments may be

hindered due to the presence of faults, permeability pinch-outs or any other flow barriers.

Cant (1982) has opined that fluvial sediments are deposited by activities of rivers and
that they are common in geologic record. This author has also mentioned that river
sediments are highly variable in many aspects and cannot be characterized by any single
facies model. This is so because of the fact that different types of rivers occur in nature
and, although a continuous spectrum of river types exists, they can be catagorized into
discrete types - straight, anastomosing, meandering and sandy or pebbly braided.
According to this author, in braided river deposits, lateral migration coupled with
aggradation leads to sheet sandstones or conglomerates with thin, impersistent shales
enclosed within coarser sediments. Meandering rivers are generally more laterally-stable
than braided nivers because they have thicker, more vegetated, cohesive floodplain
deposits which are difficult to erode; they occur in areas of lower slope; and they show
more regular discharge pattern. These rivers are also confined laterally by abandoned mud-
filled meander loops, known as oxbow lakes, which are common on the floodplains of

most meandering rivers. Camt (1982) also notes that anastomosing rivers have semi-



permanent islands dividing the flow and well developed floodplain and backswamp areas
extending away from the river. Because of the coarse-grained nature of fluvial sediments,
they may form potentially good reservoir rocks for oil or gas. This author also pointed
out that ancient fluvial sediments with up to 30% porosity and thousands of millidarcys

permeability have been reported.

Kerr and Jirik (1990) have given a good description of reservoir compartmentalization in
the middle Frio (Oligocene) formation, South Texas. This formation is composed of sand-
rich channel-fill and splay deposits interstratified with floodplain mudstones, all forming
part of the Gueydan fluvial system. Channel-fill and associated splay sandstones are
reservoir facies while levee sandy mudstones obstruct flow and separate individual
reservoirs and compartments both laterally and vertically. These authors also observe that
laterally-stacked sandstone bodies lead to separate but potentially-leaky reservoir
compartments while vertically-stacked sandstone bodies favor more isolated reservoir
compartments. This means that in siwations with vertically-stacked sandstone bodies,
there is a high potential for reserve growth through the identification of untapped, poorly

drained and by-passed reservoir compartments.

Chilingarian et al. (1992) and Mazzullo and Chilingarian (1992) have given an account of
geologic and engineering aspects of compartmentalization in carbonate reservoirs and
reservoir heterogeniety. These authors have pointed out that reservoir
compartmentalization may result not only from vertical and lateral lithofacies changes,
but also from spatial variations in those processes of postdepositional diagenesis that
have created secondary porosity in the rocks. In a number of reservoirs, the interbedding
of originally-permeable and relatively non-permeable rock units is further accentuated by
subsequent modifications, or is reversed, such that the onginally-impermeable units

become porous and permeable, and vice versa.

Bradley and Powley (1994) have presented various aspects of a compartmentalized
system. These authors point out that a sealing boundary restricts the flow of both

hydrocarbon and brine and is formed where the pore throats become effectively closed



(that is, the permeability approaches zero). However, a hydraulically-communicating
boundary occurs when the pressure difference caused by subsidence-sedimentation or

uplift-erosion or other pressure sources is greater than the leakage pressure for that seal.

Qin and Ortoleva (1994) review the structure, mechanisms of formation and key role of
diagenetically-banded pressure seals. These authors mention that layered rock may make
a very efficient barrier to flow normal to the layering plane. If a few layers are of very low
permeability, the flow of fluid across the layering is repressed. These authors also point
out, as an example, that if 1% of the rock is occupied by 10 darcy material and the rest
is milli-darcy materials, the effective permeability is about 10”7 darcy. This shows how
the effective permeability is dominated by the presence of a few low-permeability
domains. According to Qin and Ortoleva (1994), intense layering can arise through
diagenesis even in the absence of appreciable textural contrast from sedimentary bedding
or lamination. They also mention that observed layered seals involve hundreds or

thousands of individual layers.

Meehan and Verma (1995) have pointed out that the lateral heterogeneities in a reservoir
appear to be diagenetic permeability alterations that result in partial

compartmentalization of the many individual sands.

1.3 Literature Review

The interfaces between adjoining compartments in a compartmentalized system are
usually partially-communicating due to the presence of faults or low-permeability barriers
(Fox et al., 1988). This kind of compartmentalized behavior becomes prominent in the
pressure history at late times when the other hydraulically-connected compartments start
contributing. For understanding the long term behavior of a compartmentalized reservoir,
it is important to characterize the inter-compartment fluid flow as a function of time.

Running a reservoir simulator to understand the behavior of a compartmentalized



reservoir is not a realistic approach before identifying and quantifying the major flow

units and barrier resistance (Stewart and Whaballa, 1989).

Presently, as described in the literature, a compartmentalized reservoir is analyzed by
using models, called tank models, that are based on material balance techniques that ignore
reservoir geometry (Junkin et al., 1992; Fox et al., 1988, Stewart and Whaballa, 1989,
Payne, 1996). The amount of fluid that communicates between any two neighboring
compartments is estimated using the difference in average pressures of the compartments.
However, the amount of communicating fluid can be estimated more accurately if the
reservoir is modeled using transient-pressure responses. The tank models are used to
quantify the volumes of each compartment of a reservoir and the barrier transmissibilities
through history matching and later to predict the future performance of the reservoir using

the already established information.

The mathematical formulation developed by Fox et al. (1988) is based on the assumption
that the fluid flow between adjoining compartments occurs under steady-state conditions.
Therefore, this model can be used when the hydraulic diffusivity is very high so that
transient effects dissipate very quickly. An analytical model has been developed by
Stewarr and Whaballa (1989) based on single-phase material balance equations. Here, the
concepts of boundary-pressure time delay and desuperposition are used to predict

bottom-hole pressures over different flow regimes.

Diagnostic techniques are presented by Hower and Collins (1989), for detecting and
quantifying poorly drained compartments, which use material balance equations and a
numerical simulator based on the finite element technique. But these techniques are valid
only if the reservoir is producing at pseudosteady state because they involve inflow

performance relationships.

Lord et al. (1992) show the usefulness of tank models for areal and stacked channel
realizations with the help of a simulator as developed by Kocberber and Collins (1991).

Lord er al. (1992) have observed that the tank models work reasonably well for gas



reservoirs having permeabilities in the range of moderate to high (greater than 5 md). They
have also concluded that these tank models are not appropriate for formation
permeabilities less than 5 md. Therefore, it is obvious that the above-mentioned criterion

will be much more restrictive for oil reservoirs.

Ehlig-Economides (1994) presents the material balance equations due to multi-phase fluid
production from a compartmentalized system with both areal and vertical extent. Here
she uses the formulation in terms of potential, rather than pressure, with a view to dealing
with the importance of gravity in vertical compartmentalization. This author argues that
the material balance technique provides an estimation of the volume of fluid in place
underground as a means independent of other sources like geophysical and geological

analyses.

1.4 Statement of the Problem

From the above literature review, it has been demonstrated that the models available in the
literature ignore the shape of the reservoir and the contrasts of rock and fluid properties
of a compartmentalized system. This leaves an obvious choice of running a numerical
simulator which can be very expensive. Therefore, it is very important to have transient-
pressure models that are capable of providing useful information about
compartmentalized systems with areal and vertical extent. These analytical models should
also be general enough to be applicable to a number of complicated cases of practical
interest. Compartmentalization of reservoirs with both areal and vertical extent is evident
in the field (Stewart and Whaballa, 1989; Ehlig-Economides, 1994). Stewart and Whaballa
(1989) have shown a cellular system as an example of areally-compartmentalized systems
and a stacked channel realization as an example of vertically-compartmentalized systems.
In the literature, it is evident that studies on compartmentalized reservoirs ignored the
variations of rock and fluid properties and the resistance to fluid flow within
compartments. There has been no analytical transient-pressure model available in the

literature that could lead to detailed information about rock and fluid properties and its




effect on long-term production performance of a compartmentalized reservoir. Therefore,
this study proposes new analytical solutions for transient responses in both areally and
vertically compartmentalized systems. Throughout this study, the Cartesian coordinate
system is used to formulate the problems. Moreover, for the sake of simplicity, rock and
fluid properties in a compartment are considered to be homogeneous. Here, a one-
dimensional flow system and also a two-dimensional flow system are considered to
simulate areally-compartmentalized reservoirs and a three-dimensional flow system is
considered to simulate vertically-compartmentalized reservoirs. For the convenience of
analysis, transient-pressure models for compartmentalized reservoirs need to be

developed analytically for the following three separate cases:

¢ one-dimensional flow system,
¢ two-dimensional flow system, and

e three dimensional flow system.

The model for a one-dimensional flow system is the simplest of the cases considered in
this study. This model applies to a situation where the fluid flow in narrow reservoirs or
aquifers is predominantly linear. Because of geological processes, the rock and/or fluid
properties in these linear systems may be non-uniform. Such systems can be considered

as one-dimensional, linear compartmentalized systems.

The model for a two-dimensional compartmentalized system is an extension of that for a
linear, one-dimensional flow model. This model is capable of dealing, in a general way,
with a compartmentalized system having areal extent. In this case, the flow of fluid in
each compartment, neglecting gravity effects, may be described with a two-dimensional,
Cartesian coordinate system. A cellular system is an example where this solution is

applicable.

In the event of the presence of reservoir compartmentalization in the vertical direction,
the modeis for areal compartmentalization cannot describe the transient-flow situation

properly (Rahman and Ambastha, 1997b). Therefore, the model for a three-dimensional




compartmentalized system is an extension of and more general than that for a two-
dimensional compartmentalized system. This model is capable of dealing with a
compartmentalized system of both areal and vertical extent in a general way. In this case,
the flow of fluid taking into account the effects of gravity in each compartment may be
described with a three-dimensional, Cartesian coordinate system. A system of stacked
channels (two sand bodies crossing over each other having hydraulic communication

through an interface) is an example where this model is applicable.

1.5 Objectives of the Study

Based on the preceding discussion, the objectives of this study are:
1. To develop analytical solutions for transient pressure (or potential) for
compartmentalized reservoirs with areal and vertical extent. These solutions
should be capable of dealing with a number of complicated scenarios of reservoir
compartmentalization. The new solutions are to be validated by comparing a

number of simplified cases with those available in the literature.

2. To find a way to characterize a compartmentalized system in terms of a simple

equivalent system like a homogeneous one.

3. To develop the necessary type-curves for the purpose of recognizing and

analyzing various aspects of reservoir compartmentalization using well-test data.

4. To develop a method for identifying a compartmentalized reservoir based on

recognizing different flow regimes with the use of the derivative analysis.

S. To use extended drawdown analysis for evaluating the parameters of a

compartmentalized system.
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1.6 Formulation of the Problem

A compartmentalized system is considered to have a number of parallelepiped
compartments. Each compartment may have distinct rock and fluid properties and may
produce through a number of wells. The pattern of compartments and type of wells

dictate how many dimensions need to be considered in the Cartesian coordinate system.

The difference in formulation between areal and vertical systems of compartmentalized
reservoirs is due to the fact that the effects of gravity are neglected in areal arrangements
of one- and two-dimensional flow systems. In vertical systems, that is, in three-
dimensional flow systems, a mathematical formulation with potential, as defined by
Hubbert (1940), rather than with pressure, is developed to take into account the gravity
effects of the flowing fluids. This idea is consistent with that of Ehlig-Economides
(1994).

In two- and three-dimensional flow systems, anisotropy of formation permeability in
each compartment is considered. The geometric axes (x and y in a two-dimensional or x, y
and z in a three-dimensional system) are parallel to the principal axes of permeability.
Ramey (1975) developed a method for interference analysis to determine the
permeabilities along the principal axes in a two-dimensional system using a set of
injection data. However, if in a case where the principal axes of permeability are not along
the geometric axes, then the necessary coordinate transformations can be made to have the
equivalent system conform to the geometric axes following the method described by Chao
(1964). According to Ramey (1975), many formations, such as channel sands, appear to
exhibit anisotropy in horizontal planes. Lake (1988) points out that geologic features like
crossbedding and shales are responsible for causing high anisotropy of a formation. This
author has also shown that heterogeneity is the major source of anisotropy at the large
scale. Streltsova (1988) has mentioned that massive faulting, for example, can cause such
preferential or directional permeability. She also points out that braided stream deposits
show highly directional permeability. Since some compartmentalized reservoirs were

subject to braided stream deposition in geologic periods (Malavazos and McDonough,
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1991), it is very likely that these would show directional permeability and the
consideration of anisotropy is, therefore, justified. Link (1987) observes that the grains
oriented in one direction can increase rock permeability parallel to their long axes and

reduce it normal to their long axes.

The interface-boundaries between adjoining compartments are due to low-permeability
barriers or partially-communicating faults and are modeled as thin skins following the
ideas of van Everdingen (1953) and Hurst (1953). The presence of such a thin skin at an
interface is meant to cause an extra pressure-drop due to fluid flow across a low-
permeability barrier or partially-communicating fault. However, this extra pressure-drop
is directly proportional to the rate of fluid crossing the interface as will be illustrated later
in this Section. The representation of the resistance to flow at an interface as a thin skin is
a technique commonly used in the literature (Carslaw and Jaeger, 1959, Ambastha and
Sageev, 1987, Ambastha et al., 1989; Acosta and Ambastha, 1994). Stewart et al. (1984)
developed a method for interference-test analysis using a two-dimensional simulator to
determine the transmissibility of a partially-communicating fault. Yaxley (1987) modeled
the communication of fluid through a partially-communicating fault separating two-
regions of a composite system in terms of fault permeability and thickness. Lord et al.
(1992) have adopted the use of transmissibility as a function of barrier dimensions and
permeability in their model for compartmentalized reservoirs taking a similar approach of
Yaxley (1987). But Kuchuk and Habashy (1992) mention that this approach exhibits
computational difficulties in cases where the permeability of the fault is lower than the
permeability of adjoining formations. Abbaszadeh and Cinco-Ley (1995) have modeled a
partially-communicating fault analytically allowing for linear flow along the fault plane in
addition to a pressure-drop across the fault plane during communication of fluid through
it. These authors have pointed out that this model is appropriate when the fault-

permeability is larger than that of the adjoining formations.
In this study, the skin factor at an interface boundary between adjoining compartments is

defined as the dimensionless pressure drop across the interface boundary (boundary skin

or thin skin) due to the flow of fluid. However, the mathematical definition of the skin
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factor is slightly different in the cases of one-, two- and three-dimensional flow systems
because of the distinctness of the pattern of fluid flow in each case. This is illustrated

with the corresponding definitions of skin factors as follows:

One-dimensional flow (Figure 1.1):

kp hp [pl_ P,]
%,58,1,

Here, at any elapsed time, the rate of flow, g,, is constant over the entire interface, BR,,, in

linear, one-dimensional systems.

Two-dimensional flow (Figure 1.2):

& [p,-pl,,
T B (1.2)

At any elapsed time, the rate of flow per unit width, g,*, is constant along the pay

thickness on the interface, dR,.

Three-dimensional flow (Figure 1.3):

k,[@,- <D,]aRU

S S e et (1.3)
" q, Bu, X,

Here, at any elapsed time, the rate of flow per unit area, g,**, is not necessarily constant

at any position on the interface, dR,.
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Figure 1.1: Linear, one-dimensional flow sy stem with skin boundary.
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Figure 1.2: Two-dimensional flow sy stem with skin boundary -
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Figure 1.3: Three-dimensional flow system with skin boundary .
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In Egs. (1.1) through (1.3), the subscript, p, indicates reference parameters for rock and
fluid properties. The skin factor defined in these equations cannot be negative, because a
negative value of skin factor implies flow across an interface in the positive direction of
pressure (or potential) gradient, violating a natural principle. This paradox, which arises
when a negative skin factor is used, can be observed in the interface conditions presented
in Chapters 2, 3 and 4. Ambastha (1988) examined a few cases of negative skin factor in
radial, composite systems and reported that the corresponding solutions do not converge

in those cases.

When the conditions at the extreme boundaries of the reservoir are considered to be time-
dependent, Cauchy-type conditions are needed to deal with any changing situations at
these boundaries. The non-homogeneous, Cauchy-type boundary conditions can be
modified to any form of the boundary conditions that is encountered in the field
(Corapcioglu et al., 1983). This means that Cauchy-type boundary conditions can be
changed to form Dirichlet-type or Neumann-type boundary conditions as special cases.
This type of boundary condition (Cauchy-type) is applicable to confined or phreatic
aquifers in contact with a clogged bed (Bear, 1972) and also when a linear system
communicates hydraulically with an adjoining region through a partially-communicating
fault. Fox et al. (1988) and Srewart and Whaballa (1989) have given a practical example of
reservoir compartmentalization where the producing compartment is in hydraulic
communication with another compartment of bigger size through a low-permeability
barrier. These authors have assumed that the pressure in the bigger compartment remains
unchanged during production through a well in the smaller compartment. In this particular
example, the Cauchy-type boundary condition is applicable at the interface between the
two compartments (Rahman and Ambastha, 1997a). However, in this study, the
boundary conditions at an interface between a pair of adjoining compartments are meant
to ensure continuity of flow rate and discontinuity of pressure (or potential) due to the
presence of a thin skin, if there is any. However, continuity of pressure (or potential) at
an interface prevails for the case of perfect communication between the compartments (no

fault or low-permeability barrier).
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Time-dependent situations can arise if the production rate in a well is varying and/or the
conditions at a boundary change with time. An example of a changing boundary condition
would be a situation where an aquifer that has been providing pressure-support at a
boundary due to compaction of aquifer-rock is no longer able to maintain the same level of
pressure-support; rather, the pressure support declines with time. Any changing pattern
of the production rate from a well or of the condition at a boundary may occur over a
period of time, rather than being abrupt. But similar time-dependent situations are taken
care of in the literature by the use of the principle of superposition in time (Lee, 1982,
Dake, 1994) or Duhamel’s theorem (Collins, 1961, Thompson and Reynolds, 1986,
Rahman and Ambastha, 1996a;, Moser, 1996). In this study, any kind of time-dependent
situation is handled through a direct approach that can be highlighted with:

e a production rate as a function of time in the source-term of the corresponding

diffusivity equation;
e a Cauchy-type boundary condition as a non-homogeneous and time-dependent

one.
A time-dependent changeover can be taken care of with proper formulation. Two such

methods are outlined briefly as follows:
A. Linear-Segment Approximation Method

McEawards (1981), Stewart et al. (1983) and Meunier et al. (1985) proposed this method
for representing a time-dependent production rate. These authors suggest that a time-
dependent function be approximated by a series of linear segments connecting the nodes
of intervals. For example, a variable production rate, q(f), is approximated by a series of
linear segments as illustrated in Fig. 1.4. The rate within the it/ interval is mathematically

represented as:

q() = q_, +% T R YOO (1.4)

[ !

where, t,_; <t <1,
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Figure 1.4: Schematic illustrating Linear-Segment Approximation
Method.
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This method is appropriate and widely used in convolution and deconvolution problems
related to afterflow analysis where the production rate at the sand face can be better
represented as illustrated above. As modem downhole instruments are capable of
measuring flow rates reliably, this method is particularly useful in incorporating variable

flow rate data (Kuchuk and Ayestaran, 1985, Mendes et al., 1989).

B. Heaviside Unit-Step Function Method

The idea of representing a variable (pressure or flow rate) as a stair-step distribution has
been used in the Petroleum Engineering literature for a long time. van Everdingen and
Hurst (1949) and Horner (1951) suggested the use of stair-step representation of variable
terminal pressures and variable production rates for subsequent use with the principle of
superposition. Odeh and Jones (1965) and Jargon and van Poollen (1965) used this idea
in multi-rate well test analysis. Later, Guillot and Horne (1986) used this idea in
developing computer-based techniques for well-test interpretation using simultaneously
measured flow rate and pressure data. Latinopoulos (1984) also used a similar approach
to solve analytically a groundwater flow problem of recharging for two rates. Horne
(1990) has suggested that a continuously-varying production rate with time can be dealt
with by treating each data point as a small stair-step of constant rate. However, this idea
can be extended to any case of time-dependent conditions at the extreme boundaries,
including the case of time-dependent pressure at a boundary. When the production rate or
extreme boundary condition is represented as a stair-step variation, its mathematical
representation becomes very convenient with the use of the Heaviside unit-step function.
Figure 1.5 illustrates this idea where it shows a stair-step representation of an arbitrary,

time-dependent function, y(7). A mathematical expression for y(f) being represented as a

stair-step function within the domain of 7 is given by:

v = WHE-T)-H@e-T)I+V,[H(-T)-H@-T)I+y,[H(-T,)-H@-T))]
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Figure 1.5: Schematc illustrating use of the Heaviside unit-step function.
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The subsequent mathematical operations with the above representation is quite

straightforward as explained by Correa and Ramey (1988).

The mathematical models of this study have been developed in such a way that the
production rates and extreme boundary conditions are expressed as general functions of
the time variable. Therefore, both of the simplification techniques discussed above are
applicable in these models. However, the idea of a Heaviside unit-step function will be
used in this study for the purpose of illustrating the use of time-dependent production

rates and boundary conditions.

1.7 Solution Methodology

In developing the solutions for transient pressure of compartmentalized reservoirs, an
integral-transform technique for finite, composite domains has been used following the
theory as developed by Title (1965) and Title and Robinson (1965). This technique allows
the solution to be derived in terms of independent variables (time and space variables)
with eigenvalues as parameters. Lockwood and Mulholland (1973) argue the superiority
of the integral-transform technique over Laplace-transform technique based on the fact
that the inversion of Laplace transforms becomes difficult when the number of
compartments is more than two. In this study, a closed-form solution is obtained in terms
of dimensionless time and space vanables with eigenvalues as parameters. Raghavan
(1993) notes the probable difficulties that are encountered while inverting a solution in
Laplace space numerically into real space (for example, the time variable) using Stehfest ’s
algorithm (1970). However, the integral-transform technique used in this study has been
found to converge rapidly while computing the numerical values of the solutions. Almeida
and Corta (1995) have discussed a number of simple applications of the integral-transform
technique illustrating examples of steady-state flow and time-dependent diffusion
problems. In the groundwater hydrology literature, a number of investigators (Chan et al.,

1976; Case and Peck, 1977, Gill, 1981; Mustafa, 1984) used the finite Fourier transforms
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for solving the problems of unsteady flow through rectangular, homogeneous porous
media. In fact, the Fourier transforms are special cases of the integral transforms for finite

domains as used in this study (Mikhailov, 1997).

In this study, the goveming equations are partial differential equations (diffusivity
equations) with specified initial, interface and extreme boundary conditions. An integral-
transform technique for finite, composite domains is used to solve these equations. The

procedure for this technique is illustrated in Fig. 1.6. This includes the following steps:
1. Development of the integral-transform pair (transformation and inversion
formulas) solving the homogeneous version of a given set of partial differential
equations (diffusivity equations) and boundary conditions.
2. Integral transformation of the given set of partial differential equations
(diffusivity equations) resulting in an initial value problem with dimensionless
time as the independent variable.

3. Solution to the initial value problem for the transformed solution.

4. Calculation of the eigenvalues using all the prescribed interface and boundary

conditions.

5. Inversion of the transformed solution for dimensionless pressure (or

potential) in terms of dimensionless time and space variables.

The details of this procedure will be discussed later while developing solutions for one-,

two- and three-dimensional flow systems in Chapters 2, 3 and 4, respectively.

1.8 Summary of the Following Chapters
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Figure 1.6: Schematic illustrating steps of the integral
transform technique for finite, composite domains.
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This study has taken a new approach to understand the behavior of a compartmentalized

reservoir by modeling the transient fluid flow analytically.

In Chapters 2, 3 and 4, the analytical solutions for transient pressure (or potential) for
compartmentalized reservoirs in one-, two-, and three- dimensional flow systems,
respectively, are developed and validated by comparing their simplified cases with the
solutions available in the literature. Practical applications of these solutions are also
discussed. Chapter S deals with the interference of wells and proposes a method to unify
the effects of all the wells in a compartmentalized system. Also an approach is taken to
find an equivalent production rate with respect to a homogeneous system which
subsequently leads to the use of the type-curves of homogeneous system for a
compartmentalized system. Chapter 6 studies the transient behavior of
compartmentalized reservoirs. Different flow regimes have been identified taking
advantage of the derivative analysis. A number of compartmentalized systems that are
often encountered in the field will be considered. These include a linear system, a system
of a small producing compartment in communication with a big one, a two-compartment
system and a stacked channel realization. The effects of the contrasts of rock and fluid
properties in the compartments and of the presence of the boundary skins at the
interfaces between compartments are shown. Where possible, different time cniteria to the
start or end of different flow regimes and late-time solutions are also presented. Chapter 7
deals with the extended drawdown analysis for compartmentalized reservoirs. Methods
are proposed for detecting the poor communication between adjoining compartments and
for estimating the hydrocarbon pore-volume in each compartment and the average
reservoir pressure. Chapter 8 presents a general discussion, conclusions of the work

presented in this study and recommendations for future work.

Computer programs in FORTRAN 77 have been developed to compute the numerical
values from the analytical solutions for one-, two- and three-dimensional flow systems.
Appendices A, B and C present the respective source codes of these programs. Appendix
D presents the analytical solutions for transient potential as a function of dimensionless

time and space variables in a rectangular parallelepiped due to production at a constant
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rate through a partially-penetrating well. These solutions are used to validate the
solutions for the three-dimensional flow system in Chapter 4 and to study the
interference of wells in Chapter 5. Appendix E presents a proof of the applicability of the

principle of reciprocity with the new solutions of this study.
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CHAPTER 2
LINEAR, ONE-DIMENSIONAL FLOW SYSTEM

2.1 Introduction

Flow of fluid through narrow reservoirs or aquifers is predominantly linear. However, this
linear-flow system may possess variations in rock and fluid properties and/or faults due
to geological phenomena. Ehlig-Economides and Economides (1985) have pointed out that
there are several depositional environments showing possible oil- and gas-reservoir
geometries that result in predominantly linear flow. These formations, which generally
have long, narrow shapes, may be the result of river meander point bars, oxbow lakes,
river channels, or tectonic breccias. However, such systems may also be
compartmentalized due to variations of rock and fluid properties and the presence of

faults and, therefore, can be modeled as linear, compartmentalized systems.

In the literature, a number of studies of linear, one-dimensional flow systems are related
to homogeneous reservoirs or aquifers (Miller, 1962, Nabor and Barham, 1964, Bear,
1972). Nutakki and Marrar (1982) generated transient pressure responses using the line-
source solution with the principle of superposition for an infinitely long, narrow,
homogeneous channel. They also developed a method to determine the time to the end of
the radial-flow period and the beginning of the linear-flow period. Ehlig-Economides and
Economides (1985) have presented the techniques for interference, drawdown and
buildup analysis for an elongated linear flow system. They also provided an example
illustrating the estimation of permeability, porosity, channel width and the extent of the

well drainage area from those analyses.
However, few studies on composite systems with or without a linear discontinuity have

been reported. Carslaw and Jaeger (1959) used the Laplace-transform technique to solve

heat transfer problems in composite media. Bixel et al. (1963) developed a mathematical
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model for a composite system with two regions having a fully-communicating interface

with the well located near it.

Ambastha and Sageev (1987) obtained an analytical solution using the Laplace-transform
technique for a linear, composite system composed of a finite region and an infinite region
being separated by a boundary skin. Poon and Chhina (1989) developed a two-region
linear, composite model in the Laplace-space domain for the purpose of investigating the
transient-pressure behavior in an in-situ combustion pilot. Larsen (1993 and 1996)
developed analytical solutions in the Laplace-space domain for systems of intersecting

linear reservoirs.

In this Chapter, a linear, compartmentalized system with n parallelepiped compartments
is considered (Fig. 2.1). Any irregularity of the size of individual compartments in the
transverse direction is acceptable, provided the assumption that this will not affect the
linear character of the flow holds. The presence of a thin skin or boundary skin at the
interface of adjoining compartments is considered to represent an extra resistance to flow
following the ideas of van Everdingen (1953) and Hurst (1953). The rate of fluid
communication between any two neighboring compartments depends on a specified skin
factor at the interface. The presence of such a boundary skin at an interface causes a
discontinuity in pressure at the interface separating the two neighboring compartments. A

detailed illustration of this skin factor has been presented in Section 1.6, Chapter 1.

In this study, the goveming partial differential equations with appropriate initial and
boundary conditions are set up starting with the diffusivity equations describing the one-
dimensional, single-phase flow of a slightly-compressible fluid with constant
compressibility through a compartmentalized system. The partial differential equations
with initial and boundary conditions are solved using an integral-transform technique for
finite domains following the steps of Mulholland and Cobble (1972) which are based on
the theory of Title (1965) and Title and Robinson (1965). The kemel function for this

integral transformation is found by solving an eigenvalue problem which has been
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Figure 2.1: Schematic of a linear, compartmentalized system (n = 4).
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developed from the homogeneous version of the given set of partial differential equations
along with the corresponding initial and boundary conditions. An integral-transform
technique with respect to the space-variable removes the spatial dependence of the partial
differential equations. Thus, a partial differential equation is transformed into an ordinary
differential equation with time as the only independent variable and the eigenvalues as the
parameters. Non-homogeneous, Cauchy-type boundary conditions at the extreme
boundaries are considered which allow for any possible situation of partial
communication at those locations. However, these conditions can be modified easily by
specifying the Dirichlet-type condition, as in a specified pressure case or by specifying
the Neumann-type condition as in a specified rate case. In the following section, this

method of solution is illustrated.

2.2 Development of the Analytical Solution

Let us consider a system of » linear compartments. In the following subsections, the

solution for transient-pressure responses is developed step by step:

2.2.1 Setting up Governing Differential Equations

A dimensionless form of the diffusivity equation for a single-phase, slightly-compressible
fluid with constant compressibility for the mth compartment, producing through a plane-
sink, is given by:

9°D,p Qmp(p) dp
2P 4+ Im 3(x, - = e e i
ox3 &5~ a,5) =, di, (21

m

where the dimensionless variables are defined as:
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where the subscript, p, refers to a reference compartment or a reference parameter.

The corresponding dimensionless forms of the initial and boundary conditions associated

with Eq. (2.1) are given as follows:
(a) Initial condition:

k,h
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(b) Boundary conditions:

(1) at the extreme boundaries

[ 9

Y aRD - gopw] =y )overerenenereeeee e (2.10)

- *p Xip

[ 9

y, Lo gnpm] S fi(p)eereeenereeenen e (2.11)

| " ox, v,

(i1) at the interfaces

u_, [p,D —p,_lD] =a, Iiip—’ig-] .......................................................................... (2.12)

X, p axD X,

o [%J = a [ap—"’} .................................................................................... (2.13)
dxp |, oxp |

with

R (2.14)
St-l

fori=2ton.

The parameters, ¥,, {,, Y, and { , in Eqs. (2.10) and (2.11), can be chosen in such a way

that these equations would take

communication or the presence of

care of appropriate conditions due to partial

skin at the extreme boundaries. However, these

parameters can also be set to either 1 or O if the extreme boundary conditions are of the

Dirichlet- or of the Neumann-type. Also, the time-dependent functions, f(z,) and £ (z,),
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in Egs. (2.10) and (2.11), respectively, allow specification of any time-dependent
conditions at the extreme boundaries. However, these functions can be replaced by
suitable constant numbers if there is no time-dependent condition existing there. The
interface conditions, expressed by Egs. (2.12) and (2.13), take into account the
discontinuity of pressure due to the presence of a skin and also continuity of the amount

of fluid crossing an interface between two compartments.

2.2.2 Solving the Differential Equations

The system of differential equations, given by Eq. (2.1), is solved with the set of initial
and boundary conditions, Eqgs. (2.9) through (2.13), following the steps outlined by
Mulholland and Cobble (1972). The procedure is explained in the following steps:

(a) Obtaining Homogeneous Conditions at the Extreme Boundaries:

The conditions at the extreme boundaries, given by Egs. (2.10) and (2.11), are non-
homogeneous. However, the system of equations, expressed by Egs. (2.1) and (2.9)
through (2.13), is analytically solvable. Mikhailov (1977) mentioned that this system is
not always uniformly convergent and needs to be split to obtain uniformly-convergent
systems. The following substitution is made into Eqs. (2.1) and (2.9) through (2.13) to
make the conditions at the extreme boundaries, given by Egs. (2.10) and (2.11),

homogeneous:

PonCios tp) = Lon(ep) folty) + Lun(p) fultp) + ©,(eps fpYomrmemoioeeoooireeer (2.15)

This results in three sets of simpler problems in L, , L, , and ©, that are expressed in

Eqgs. (2.16), (2.17) and (2.18), respectively, as follows:
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fori=2ton.

d’L, (x,) _
dx;,

subject to the boundary conditions,

di,
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fori=2ton.

and
AC) d0
= -G, b ettt 1
> 5 (2.18a)
where,
1 df,(t ar.(

Ga= 5 9a0lo) 35~ 4,0) = M, [Lom(xo)—{‘;f;’ . L.m(xu)—{;fo")] ........... (2.18b)
subject to the boundary conditions,

Yo ? - z;ac-),l YOO OO (2.18¢)
- xD 10

1. 9, _ - 9"], T 0ttt ettt ea e (2.18d)
- axD ne! D

20,
u,[®, @'-']x.,, = a, [ axD' LD .......................................................................... (2.18¢)
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fori=2ton.
and the initial condition,

8. (ty, 0)= Pop — Low Gp) fo©) = Loy () fol0)eoorvoooooioseceeseccceccicccccecc (2.18g)

The extreme boundary conditions in ©_(x,, #,), expressed by Eqs. (2.18c) and (2.18d),
are homogeneous. This development has made the system in © (x,, 1,), expressed by
Egs. (2.18a) through (2.18g), simpler than the system in p, p(xp, #p), expressed by Egs.
(2.1) and (2.9) through (2.13), from the solution point of view.

(b) Solution of Sets of Equations

Solution of L, ,

The general solution to Eq. (2.16a) is given by:

Lo m0)= Aom X0 = Bom e, (2.19)

Substituting Eq. (2.19) into the boundary and interface conditions, given by Egs. (2.16b)
through (2.16e), it follows that,

L B S (2.20)

where,
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-Yo+ CoXip Co 0 0 0 0
uX,p,— 0o, -y X,pu 1y 0 0
Q, 0 -a, 0 0
R o] =
0 0 0 0 Yn - CKXR*-{D Cu
| B (2.21a)
T
{Swu} = {40 By 4, B, c Agn Bon} (2.21b)
T
L R e (2.21¢)

The coefficient vector, {S; 4}, is computed from the solution of the linear system of

equations, given by Eq. (2.20).

Solution of L, ,

The general solution to Eq. (2.17a) is given by:

L, (Gcp)= A, Xy 7 By et e (2.22)

nm

Substituting Eq. (2.22) into the boundary and interface conditions, given by Egs. (2.17b)
through (2.17e), it follows that,

(R Sind = {Hiad e (2.23)

where,
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-Yo"' Co XID Co 0 0 0 0 ]
yX,p—-0, —u, uX,, y 0 0
Q, 0 -, 0 0 0
R .| =
0 0 0 0 o™ CXin G
I i (2.24a)
s.}={4, 8., 4. B, Ao Buto (2.24b)
waf={ o o B (2.24c)

The coefficient vector, {S; ,}, is computed from the solution of the linear system of

equations, given by Eq. (2.23).

Solution of ©,,

The procedure for solving for ©,, involves the use of an integral-transform technique and

will be explained in the following steps:

(i) Development of an integral-transform pair

Let us represent ©,(xp, tp), as defined in the region within the mth compartment, R, in

terms of the eigenfunctions, Y, {xp, A;), in the form as follows:
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The eigenvalue problem corresponding to the set of differential equations, given by Egs.
(2.18a) through (2.18g), is developed upon separating the space and time vanables in the
homogeneous version of these equations. Therefore, the set of separated equations in
terms of the space variable is referred to as the eigenvalue problem with an eigenvalue as a

parameter and is given as follows:

with the following boundary conditions:

v, ¢, w,} 0 e e (2.27)

| ox, -

Y. N, _ C. \yn] S 0 et (2.28)

" ox, s

u_, [w v, ’]1 =a, l:%‘—’-] ............................................................................ (2.29)

@, [ﬂ'-] = o [LJ“L] ..................................................................................... (2.30)
de X,p de X, p

where A is an eigenvalue and y,, is an eigenfunction at the mth compartment for i =2 to n.

The eigenfunction, v, of this eigenvalue problem should satisfy the following condition

of orthogonality:

Z o, N, I\le v, de = 8!1' Nl ............................................................................. (2.31)
Ra

m=l
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where the norm, N, is defined as:
N, = Z a,n, I‘Vi.: Gy oo (2.32)
m=t Re

Multiplying both sides of Eq. (2.25) by O, Nm Wm - dxp and integrating over R, then

summing up the resulting expressions over all the compartments, it follows,

z": 0N [O Ve diy= Y, 0, MY [ 20 W W (2.33)
m=1 R, m=1 IS4 R,

With Egs. (2.31), (2.32) and (2.33), it can be shown that,

z = NL z o My [ @ W o v (2.34)

! m=l Ry

From Egs. (2.25) and (2.34), one finds,

-l ;7 &
@m = 2 }\TZ o, nmj@m V., dxo:l Y, oeeeem e e (2.35)
R-

1£233 ! m=l
From Eq. (2.35), the integral-transform pair is written as:

Inversion formula:

Transformation formula:
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e' 2 a T‘ J'e \vm‘ck ....................................................................................... (237)
m=1

(ii) Integral transformation of differential equations along with associated conditions

Multiplying both sides of Eq. (2.18a) by &, ¥, ; dxp and integrating over R,, then

summing up the resulting expressions over all the compartments, one finds,

ZaI

The first term in Eq. (2.38) is expanded using Green's theorem, and then the values from
Eqs. (2.18c) through (2.18f) and (2.26) through (2.29) are substituted into it. The second
term is simplified with the substitution of Eq. (2.18b). Then, Eq. (2.37) is substituted on
both sides of the simplified Eq. (2.38) which follows as:

RO - gy = e (2.39)

where,

J‘Z( df( ()

800~ {[¥u], 90000~ [orana anteo) S5 200 L) 55 22 1 s )

Taking the integral transformation of the initial condition, given by Eq. (2.18g), one gets,
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6:(10 =0)= i a, n,,,j[pmb -L, (x) £, 0)- L, (x5) [O),, dx,--- (2.41)
R-

m=]
At this point in time, we have an initial-value problem with an ordinary differential

equation, given by Eq. (2.39), and an initial condition, given by Eq. (2.41). The solution to

this initial-value problem is given by,
Oi(1,) = e™i® [5,(10 =0) - ["g@) e‘“dt] ........................................................... (2.42)

where, T is a dummy variable and g{t) is the same as g(/p), defined in Eq. (2.40), except
that 7 is replaced by t. @ in Eq. (2.42) is inverted into ©,,(x,, f,) with the inversion

formula, given by Eq. (2.36), as follows:

:
fod -Aip

e, = 2[6,(1,, =0) - [*g@ elf‘dr] “’#';7__ ................................................... (2.43)

(iii) Computation of eigenvalues and eigenfunctions

The general solution to Eq. (2.26) for the /th eigenvalue is given by (Mikhailov and
Vulchanov, 1983; Cotta, 1993),

W, = W U = Wl et e (2.44)

where,

sin (\yM,, }"I(XmHD — Xp))

U,..;O»nxo) =
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sin (JT]_,,, A, — X,p))
sin ('J;l: A'l("Ym-HD - XmD))

Vi te,xp) =

Equations (2.44), (2.45a) and (2.45b) have been set up in such a way that vy, and .,

represent the values of V., at X;, p and X~ p, respectively. The derivative of both sides

of Eq. (2.44) with respect to xp is written as:

d:c;" = W Pt T Wt T (2.46)
where,

\/T—]:}H €os (\/E A(X pip = Xp))

P, AL XD ) T — T e T T T T )
(A xp) i ( «/E X~ X)) (2.47a)
T, (A,xp)= Vo Micos GMa M= Kapd) (2.47b)

sin Vnm }\'I(Xm+lD - XMD))

Substitution of Egs. (2.44) and (2.46) in the boundary conditions, expressed by Egs.

(2.26) through (2.29), results in a system of homogeneous, linear equations in y , and

y_;,- This system of equations is written in matrix notation as:

DY} = 0] e (2.48)

where,
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(D(1. 1) D(1,2) 0 0 0 0
D 1) D22 D23 D24 0 0
[D]=|D@3.1) D3,2) D3.3) DG4 0 0

D(2n, 2n-1) D(2n, 2n)| (2.49a)

with

DU, 1) = Lyt Yo Py Xy ) oo (2.49b)
DU, 2) = Yy T Qs Xy ) eoveooooeeremmso e oeeeeesooes e (2.49¢)
D2 1) == 0 P yhys K p )eoororooooooeooeeesosse s (2.49d)
D2 2)= =t = 0 T, j(hgs Xap ) cessseeeeeene s (2.4%)
U2, 3) = U eeee oo (2.49f)
D2, A) = 0o (2.49g)
DGy 1) = 0y By Xy )eooooooiooooooso oo (2.49h)
D3y 2) = 0y Ty Xapoooooooorooeoemeeeeeeesemoneos s (2.49i)
Do YE T T T 3o WO G OSSOSO (2.49j)
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oY E I T T s ¢ N s OSSO (2.49K)

Dn, 2n-1)= Y, Py, X a1 D) eeeeeeeeemmieie e eeeeee e (2.491)

DCn,2n) = C, + Yu Tatys X aip )eeeeeeee e (2.49m)
T . - . - - -

{Y} = {w,, Vo Wo Wapo e Yot \y.,,l,} .................................................. (2.49n)

and {0} isa (2n X 1)-null vector.

To get a nontrivial set of the coefficients, vy, and v ,, the corresponding coefficient

matrix, described by Eq. (2.49a), has to be singular. That means,

Equation (2.50) results in a transcendental equation which can be solved for positive
eigenvalues, A, by a suitable method. However, in this study, the modified regula falsi

method has been used to get a good estimation of the eigenvalues which are later used as
an initial guess to compute the corresponding eigenvalues with more accuracy using
Newton's method (Borse, 1985). The number of eigenvalues to be calculated is dependent
on the desired level of accuracy of the computed solution. Then, with each of these
eigenvalues, the system of homogeneous, linear equation, given by Eq. (2.48), is solved
for the coefficient vector, {¥}. From these known coefficients, the eigenfunctions are

computed from Eq. (2.44).

Substituting Eqgs. (2.19), (2.22) and (2.42) in Eq. (2.15), the expression for dimensionless

pressure at the mrh compartment takes the form as follows:
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Pup(Xps 1p) = [AOvnxD + Bam] Joltp) + [Anme + Bnm] L)+ 2[61(10 =0)

Y
X7 tp

o Ale YV €
. L g@e dt] B T (2.51)

2.2.3 Summary of the Solution Procedure

The following is a summary of the solution procedure:

(i) Solve for the coefficient vectors, { S; o} and {S; ,} from Egs. (2.20) and (2.23),

respectively. Thus, the coefficients, 49 m, Bom, Anm and B, »,, become known;

(ii) Determine the first available positive eigenvalue, A,, from the transcendental equation

(2.50);

(iii) Determine the coefficient vector, {¥}, from Eq. (2.48) and the norm from Eq. (2.31)
corresponding to a calculated eigenvalue;

(iv) For a given set of xp and #p, evaluate p,, p (or its derivative as the case may be) from
Eq. (2.51);

(v) Determine higher positive eigenvalues from Eq. (2.50) and include their resulting
contributions to p,, p (or its derivative) in Eq. (2.51) following steps (iii) and (iv). Also
keep comparing the contribution to p, p (or its derivative) due to each additional
eigenvalue with the desired level of accuracy;

(vi) When the desired level of accuracy is met, stop calculating eigenvalue and report the

value of p,, p (or its derivative).

2.2.4 Computer Program for Numerical Values

A computer program incorporating the solution scheme described in Section 2.2.3 has
been developed in FORTRAN 77 for the purpose of generating numerical values from the

solution developed in this Chapter. The complete source code and a sample data file are
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presented in Appendix A. This program has a number of Subroutines and Subroutine-
Subfunctions which are coordinated by the Main Program. Typically, it takes less than 30
seconds to run the program for a 4-compartment system in the “Numerical Server”
(RS/6000 Model 59Hs, 66.7 MHz) at the University of Alberta.

2.2.5 Determination of Cumulative Flux at an Interface
The dimensionless influx rate, ¢/, at the ith interface, between two compartments as a

function of 7 can be evaluated by substituting Eq. (2.51) into Darcy's equation for one-

dimensional, linear flow through porous media. It follows as:

[él (ID = 0)-— j: g (’t) elf T d‘rl%} e—lf b
qr)=—o, [ A4, f,(tp) - Aurf;t(to)+z o Jy,

The dimensionless cumulative influx, Q. , p(fp), over a dimensionless period of 7 is given

by,

T T (2.53)

Substituting the value of g/, () from Eq. (2.52) into Eq. (2.53) and evaluating the integral,

2

i - d _ .
0..ol)= - [[{4,1,0) + 4, SO+ T2, =0) (- )

one gets,

+~ fg, (tHdr - g fg,(t) &Mt }] ...................................................... (2.54)
0 0

45



2.2.6 Special Cases

The general solution for dimensionless pressure, given by Eq. (2.51), needs modification

for some particular cases. These are discussed below:

(a) Neumann-type Boundary Conditions:

Orzisik (1980) mentions that when the conditions at both extreme boundaries are of the
Neumann-type, Ao = 0 is also an eigenvalue. This kind of situation would arise when both
extreme boundaries are closed or when one boundary is closed and the other is producing
at a specified rate. In this case, we have, {o = {, = 0. But the expression for 6, in Eq.

(2.43) is valid for positive, non-zero eigenvalues. Therefore, Equation (2.43) needs to

include an additional term due to the zero-eigenvalue. The zero-eigenvalue corresponds to

an eigenfunction, ¥, ¢, which is equal to £, a non-zero constant.

Multiplying both sides of Eq. (2.18a) by a, £, dxp and integrating over R, then

summing up the resulting expressions over all the compartments, one finds,

: PLe) a s 30 <
m = M Ay ceeecericiirinienen, (235)
;ami ~ Emdx0+m2=; amIJ;Emede ;a’"n“,{ato E, dx,

Substitution of the values from Eqs. (2.18c) through (2.18f), (2.26) through (2.29) and
(2.37) in an expanded form of Eq. (2.53) results in an ordinary differential equation. The
initial condition to this ordinary differential equation is set up by taking the integral
transformation of the initial condition, given by Eq. (2.18g). The solution to this initial-

value problem is given by,
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B0u(1,) = Oolty =0) + j;’ G (T) B (2.56)

where,

Go(t =0)= z o, N, jE [me L, Gp)f-L,, (xD)]:(o)]de ..................... (2.57)

m=l1

(%) —}_‘, o p(®) En— ja N Ly 0) L2 dfo(‘) o L) 2O dfu(‘) VE, digjro (2.58)

Therefore, a final form of ©,, that includes the zero-eigenvalue condition becomes,

)

I | =Z-. . ? . N ‘l’mze-ﬁlo a =0)~
e = N [@o (t, =0)+ J;go('c) er+§T—[ez(tD =0) Ig,(t)d‘r] ---------- (2.59)

0

where,
Ny = 3ty My [ i st (2.60)
Oolty =0)= 3 & [[Pans = Lom o) fol0) = Ly (2p) fu0)] i e @61
m=! Re
d
g® = > {200 - ja N Uonte) LB o 1, ) 2o ]dx,,} --------------- (2.62)

The evaluation of the integral in Eqs. (2.43) and (2.59) requires prior knowledge of the
functional dependence of g, on ¢ (that is, g p on tp). Horne (1990) suggested that a
continuously varying flow rate can be dealt with by treating each data point as a small
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stair-step of constant rate. However, this idea can be extended to any other time-
dependent extreme boundary conditions including time-dependent pressure at a boundary.
Mathematically, this stair-step variation of a variable can be treated conveniently when

represented by a Heaviside unit-step function as illustrated in Section 1.6, Chapter 1.

(b) Perfect Communication at an Interface:

In the absence of a skin at the itk interface, the adjoining compartments become perfectly-

communicating. Thus, we should consider the limiting condition as s; — 0. This modifies

the interface boundary conditions, given by Egs. (2.12) and (2.13), to the following form:

[po], = ] B (2.63a)

and

o, || = | Pol e (2.63b)
ox,, s ox,, .,

This also changes the other equations related to interface conditions. Thus,

Equations (2.16d) and (2.16e) are modified to:

[Lo,_,]xm= [[m]x,,, ...................................................................................................... (2.64a)

and

., [dL"'-'] = ai[dL"'] .................................................................................. (2.64b)
aD X, p ¢D X, p
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Equations (2.17d) and (2.17e) are modified to:

[L... .= [z,“]xw ...................................................................................................... (2.65a)

and

o, [i_r_} _— [dL] ................................................................................... (2.65b)
@y |, d, |,

Equations (2.18¢e) and (2.18f) are modified to:

[@,]X‘D = [©,], o (2.66a)
and

3,1 _ [90,
o [ °. ]\ . [ax,, ]\ .................................................................................... (2.66b)

and Equations (2.29) and (2.30) are modified to:

2 2 L P (2.67a)
and
@, [%]x =0 [%L .................................................................................... (2.67b)

Accommodating the above changes into the solution would simulate the situation of no

skin at an interface.

49




(c) Presence of a Non-communicating Fault at an Interface:

If there is a non-communicating fault present at an interface, we take the limit as sj — oo

in the interface conditions. Hence, the condition at the ith interface, given by Eq. (2.13)

takes the following form:

9p..; p Pp,p
—_— = | —= ¢ PRSP 2.68
|: ox,, :LD [ax,, . ( )

The above condition forces the corresponding interface conditions in Ly,, L,,, ©, and y, to

change into homogeneous, Neumann-type conditions. Accommodating the above changes
into the solution would simulate the situation of a non-communicating fault at an

interface.

2.3 Validation of New Solution

The new analytical solution developed in this study has been validated by comparing the
transient data for homogeneous and composite systems with those generated from the
solutions available in the literature. In all the solutions generated in this study, each
compartment has been assumed to have a distinct and uniform initial pressure. The
dimensions of each compartment along the planes perpendicular to the direction of flow
have been considered uniform. Also the dimensionless parameters are based on the first
compartment as the reference compartment, and the initial pressure as the reference
pressure (p,). In all cases of model validation, the inner boundary is located at x, = O and

the outer boundary is located at x,, = 1. Transient data for a homogeneous system from

the new solution have been generated by considering identical rock and fluid properties in

each compartment of a compartmentalized system. Time-dependent, stair-step varying
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conditions are considered in this solution using the Heaviside unit-step function following

the approach illustrated in Section 1.6, Chapter 1.

Figure 2.2 illustrates a comparison of the solution of this study with that of Nabor and
Barham (1964) for a homogeneous system with no skin present at the interfaces. An
excellent match for a two-rate flow condition at the inner boundary and a closed outer
boundary has been obtained. The Nabor and Barham (1964) solution was used in
conjunction with the application of the principle of superposition to deal with tais

variable rate situation.

Figure 2.3 shows a comparison of dimensionless cumulative influx due to a constant,
dimensionless pressure at the inner boundary while the outer boundary is closed for a
homogeneous system with no skin at the interfaces. The definition of dimensionless
pressure used in this study has been modified to the following form to have it comparable
with that of Nabor and Barham (1964) for the case of a constant pressure at the inner

boundary:

DPom — Pu(X, )
)= B M s 2.69
Po(xp, 1) 5 — p0. 1) (2.69)

where, p,(0, 1) is the pressure maintained at the inner boundary for 7 > 0. For this
particular case, the definition for dimensionless cumulative influx, Q. p, at the inner

boundary, xp = 0, becomes,

where Q. is defined in the same way as Q. ,, in the Nomenclature. The above definition is
used for both the new solution and that of Nabor and Earham (1964). The comparison in

Fig. 2.3 also shows an excellent match.
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Figure 2.2: Two-rate flow condition at the inner boundary and
closed outer boundary in a homogeneous system.
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Figure 2.3: Comparison of dimensionless cumulative influx at the
constant pressure inner boundary while the outer boundary is

closed.
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Figure 2.4 shows a comparison of buildup behavior of a homogeneous system with no
skin at the interfaces. In this case, a period of production is followed by a shut-in period
while the outer boundary is maintained at a constant, dimensionless pressure. This also
shows an excellent match of the data from Nabor and Barham (1964) with the data from
the new solution. As before, the solution of Nabor and Barham (1964) has been used

with the application of the principle of superposition.

Figures 2.5 and 2.6 show comparisons of the solution from this study with that of a
modified form of the work of Ambastha and Sageev (1987). The solution of this study
belongs to the case of constant dimensionless-rate production at the inner boundary and
constant dimensionless-pressure at the outer boundary. The solution of Ambastha and
Sageev (1987) has been modified to consider the outer boundary at a finite distance and to
keep this at a constant pressure. Figure 2.5 shows the transient-pressure responses for a
homogeneous, two-compartment system with a skin boundary located at xp = 0.1 for
skin-factors, s; = 100, 1000 and 10000. This shows an excellent match. Figure 2.6
compares the dimensionless transient-pressure responses for a two-region, composite
system with a skin boundary located at xp = 0.1 for skin-factors, 5, = 100, 1000 and
10000. Two distinct mobility ratios, M, = 1 and M, = 5 have been used for the two

regions. Each of these comparisons also shows an excellent match.
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Figure 2.4: Shut-in followed by production at the inner boundary and
constant pressure at the outer boundary.
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Figure 2.5: Comparison of the dimensionless pressure at the
producing boundary of a homogeneous system with the
modified solution of Ambastha and Sageev (1987).
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Figure 2.6: Comparison of the dimensionless pressure at

the producing boundary of a composite system with the
modified solution of Ambastha and Sageev (1987).
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2.4 Scope of the Model

In this study, a generalized transient solution for an » region linear, compartmentalized
system has been developed. Each compartment is allowed to have distinct rock and/or
fluid properties. Also, each compartment may have distinct physical dimensions
provided it still maintains the linear character of flow. The conditions at the extreme
boundaries may need adjustment with time as a result of the way a compartmentalized
system produces. In addition, the production rate from a compartment may not be kept
at a constant value. The proposed solution has been generalized by allowing the extreme
boundary conditions and the production rate through a line-sink in each compartment to
be time-dependent. Thus, this solution is capable of dealing with a time-dependent
situation directly. Conventionally, this kind of time-dependent situation is dealt with by
the use of the principle of superposition and/or Duhamel's theorem. Corapcioglu et al.
(1983) mention that various types of boundary conditions can be encountered in the field,
depending on the geological conditions. Considering the extreme boundary conditions as
the Cauchy-type for the new solution has a number of advantages. This type of boundary
condition is applicable in confined or phreatic aquifers in contact with a clogged bed
(Bear, 1972) and also when a linear system communicates fluid with an adjoining region
through a partially-communicating fault. Also, the Cauchy-type boundary condition can
easily be modified to the Dirichlet- or the Neumann-type boundary condition as a special
case. The Dirichlet-type condition applies to specifying the pressure at a boundary while
the Neumann-type applies to specifying rate and to the condition of no-flow. Therefore,
the Cauchy-type boundary condition that has been adopted in this study is general in
nature and can be modified easily to conform with various types of problems encountered

in the field.

The inclusion of property contrasts in the compartments and skin factors at the interfaces
permits one to investigate complicated scenarios of heterogeneity in a linear system.
Conventionally, transient responses of an aquifer are studied based on the assumption

that the reservoir-aquifer interface is either at a constant pressure or producing at a
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constant rate. In this kind of analysis, the transient behavior of the reservoir is neglected.
However, the new solution can be used to study the transient behavior of an entire

reservoir-aquifer system which predominantly maintains a linear character of flow.

2.5 Example Problems

It is very important to estimate the cumulative water influx into a reservoir from an
adjoining aquifer for material balance purposes. Any error in the cumulative water influx
will result in an error in the estimation of the initial oil in-place and in the projected future
performance of the reservoir. In this section, a number of example problems are studied
with the new analytical solution to check on the validity of certain conventionally-
accepted simplifying assumptions in the calculation of cumulative water influx. In these
assumptions the transients and compressibilities in the reservoir are neglected while
calculating the cumulative water influx through the reservoir-aquifer interface (Craft et al.,
1991). These assumptions lead to a situation where the pressure responses at the
reservoir-aquifer interface are the same as those at the producing boundary of the
reservoir. Thus, the transient-pressure behavior of an aquifer is analyzed assuming that
the reservoir-aquifer interface is at a constant pressure or that the aquifer is replenishing
the reservoir at a constant rate. Earlougher (1977) pointed out that the reservoir-aquifer
interface, in practice, is generally neither at a constant pressure nor replenishing the
reservoir at a constant rate. However, with the use of the new solution of this study, it is
possible to include the transients and compressibilities of the reservoir to calculate the

cumulative water influx.

Figure 2.7 shows a schematic of a reservoir-aquifer system. The reservoir-aquifer interface
is located at xp = X, p. The adjoining aquifer is considered to have two regions with
different rock and fluid properties. For all the example problems discussed in this section,
it is considered that the inner boundary is located at xp = 0 and that the outer boundary is

located at xp = 1.
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Figure 2.7: Schematic of a reservoir-aquifer system.
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First, a reservoir-aquifer system is considered with the following properties or

parameters:

M1= 1, M_v = 10, M3 =6, F[ =1, Fz = 0.64, F3 = O.SS,X;)D= 0.05, X3D= 0.7, B;/B[ =
ByB; =0.895.

Here, multiple, dimensionless production-rates at the inner boundary and a constant,
dimensionless pressure at the outer boundary are considered. Figure 2.8 shows a stair-
step variation of dimensionless rate at the inner boundary with dimensionless time. The
outer boundary always maintains the initial pressure. The finite aquifer is considered to
have two compartments with contrasts in rock and fluid properties. The dimensionless
cumulative influxes, Q. ; p at the inner boundary and Q. , p at the reservoir-aquifer
interface are computed and are shown in Fig. 2.9. Conventionally, the cumulative influx
through the reservoir-aquifer interface in this kind of situation is computed assuming that
the water-influx rate is equal to the production rate at the inner boundary neglecting any
possibility of the effects of transients and compressibilities in the reservoir. However, the
coincidence of O, ; p with Q. » p in Fig. 2.9 within 1% demonstrates the validity of this
assumption despite the presence of transients at the reservoir-aquifer interface due to the

variable dimensionless production rate at the inner boundary.

Another reservoir-aquifer system is considered with the following properties:

M] = 1,M3= 10, M3 = 6, F1 =1, F_’ = 064, F_; = 062, XgD = 005, X_;D = 07, B_’/B[ =
B,/B, = 0.895.

In this case, the inner boundary is producing at a variable dimensionless pressure and the
outer boundary is closed. Figure 2.10 shows the comparison of the stair-step variation of
dimensionless pressure at the inner boundary due to production and the corresponding
dimensionless-pressure response at the reservoir-aquifer interface. Also the dimensionless
cumulative influxes are calculated at the inner boundary and at the reservoir-aquifer

interface with dimensionless time and then plotted in Fig. 2.11. Conventionally, the
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Figure 2.8: The variation of flow rate at the inner boundary.
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Figure 2.9: Comparison of dimensionless cumulative influxes
at the inner boundary and the reservoir-aquifer interface.
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Figure 2.10: Comparison of dimensionless pressures at the
inner boundary and reservoir-aquifer interface.
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Figure 2.11: Comparison of dimensionless cumulative influxes
at the inner boundary and the reservoir-aquifer interface.

61



cumulative influx at the reservoir-aquifer interface in this kind of situation is considered to
be equal to the cumulative production at the inner boundary, neglecting the effects of
transients and compressibilities in the reservoir. Fig. 2.11 shows that there will be an

error of 8.4% near fp = 1, if the transient and compressibility effects in the reservoir are

neglected.

Finally, homogeneous rock and fluid properties, and dimensions in a reservoir-aquifer
system are considered. The inner boundary is considered to be producing at a constant
dimensionless pressure of p; p (0, #p) = 1. The corresponding dimensionless-pressure
response at the reservoir-aquifer interface is shown in Fig. 2.12. The dimensionless
cumulative influxes at the inner boundary and at the reservoir-aquifer interface are
compared in Fig. 2.13. This plot shows that at the flow cut-off point (near 7p = 1), there
will be a 5% error if the transient and compressibility effects of the reservoir are

neglected.
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Figure 2.12: Dimensionless pressure response at the
reservoir-aquifer interface for a homogeneous system.
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Figure 2.13: Comparison of dimensionless cumulative
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CHAPTER 3
TWO-DIMENSIONAL FLOW SYSTEM

3.1 Introduction

The model for a linear, one-dimensional flow system developed in Chapter 2 may not be
able to describe an areally-compartmentalized system adequately. This can happen when
an areal system is not narrow enough to have predominantly linear flow of fluid. An areal
compartmentalization is observed due to the presence of partially-communicating faults
and turbidite lobe interfaces (Stewart and Whaballa, 1989). Such a system may be
dominated by two-dimensional flow. In this Chapter, an analytical transient-pressure

model for two-dimensional compartmentalized systems will be developed.

There are a number of papers available in the literature on the transient-pressure behavior
of rectangular reservoirs. Earlougher et al. (1968) generated the pressure responses at
different locations for various rectangular systems and well locations. Ramey and Cobb
(1971) developed a general pressure buildup theory for a well in closed drainage areas of
any shape. Kumar and Ramey (1974) presented the methods for drawdown and buildup
analysis for a well inside a square with constant-pressure boundaries. These authors also
showed how to measure the average pressure at any time during shut-in when the

reservoir boundaries are maintained at a constant pressure.

There are a few studies reported on two-dimensional composite systems. Of these, Yaxley
(1987) presented a mathematical model for a homogeneous system with a linear, partially-
communicating fault of finite thickness and finite conductivity. Ambastha et al. (1989)
extended the work of Yaxley (1987) and developed a2 more generalized, analytical,
mathematical model for a composite system of two regions with property contrasts and

separated by a boundary skin. These authors developed the solutions for transient-
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pressure behavior for a line-sink well producing at a constant rate using a Fourier
transformation in one space-variable and Laplace transformations in the other space-
variable and time-variable. Kuchuk and Habashy (1992) obtained analytical solutions for
transient-pressure responses in the Laplace-space domain for a laterally-composite
system with a finite number of fully-communicating zones, each of which is of a constant
cross-sectional area and parallel to the interfaces. In these solutions, these authors
considered the property contrasts and that the production is through a single well located
in one of the zones. Butler and Liu (1991) developed a semi-analytical solution for a
three-region composite system to study aquifers with property contrasts using the
Laplace-transform technique. These authors also generated both drawdown and
drawdown-derivative responses for aquifer systems with different rock and fluid

property contrasts.

3.2 Development of the Analytical Solution

An analytical solution for transient pressure will be developed here. The resistance to
fluid communication between any two neighboring compartments is specified by a skin
factor. The presence of this skin is meant to cause an extra pressure drop at an interface
between two compartments simulating the effect of the presence of a low-permeability
barrier or a partially-communicating fault in between two hydraulically-communicating
compartments. Partial differential equations with appropriate initial and boundary
conditions are set up starting from diffusivity equations describing two-dimensional flow
through porous media. The partial differential equations are solved by an integral-
transform technique for finite, composite domains, following the ideas of Zitle (1965),
Title and Robinson (1965) and Padovan (1974). The kemel functions of the integral
transformation are developed by solving an eigenvalue problem which has been developed
from the homogeneous version of the partial differential equation in hand. The governing

partial differential equation for a compartment has three independent variables: two space
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variables and one time variable. Integral transformation with respect to the space-variables
removes the spatial dependence of the partial differential equations. Thus, a partial
differential equation transforms into an ordinary differential equation with time as the

only independent variable with the eigenvalues as the parameters.

Let us suppose that there are #» compartments in a compartmentalized system. The
amount of fluid communication between any two neighboring compartments is specified
by a skin factor. Definition of this skin factor has been illustrated in Section 1.6, Chapter

1. In the following Sub-Sections, an analytical solution will be developed step by step.

3.2.1 Setting up Governing Differential Equations

We consider a compartmentalized reservoir in a finite region, R, bounded by a surface,
dR , and divided into » finite subregions or compartments, R, with i=1, 2, 3,.... ,n
Each compartment may have distinct rock or fluid properties. There are N, , fully-
penetrating, line-sink wells in R, producing at time-dependent rates. Kamal and Hegeman
(1988) pointed out that the multiple-well tests provide information about reservoir
characteristics such as permeability, porosity, communication between wells, and
reservoir heterogeneity. Any compartment, R, is hydraulically communicating with at
most four adjacent compartments. A general configuration like this is shown in Fig 3.1.
However, for the sake of mathematical generality, let us suppose that compartment R, is
communicating with adjacent (along the x-axis) compartment R ,, through the interface

boundary, dR, and with another adjacent (along the y-axis) compartment, R,, through the
interface boundary, dR,,. Compartment R, may have extreme boundaries, oR__, and dR,,.

A dimensionless form of the diffusivity equation for the flow of a single-phase, slightly-

compressible fluid with a constant compressibility through an anisotropic and
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Figure 3.1: Schematic illustrating the geometry of a two-dimensional,
areally -compartmentalized system.




homogeneous porous medium in the ith compartment which is producing through N, ,

fully-penetrating line-sink wells is given by:

az az i L m, m, m, a L
a., axp};: T, a;: +hpD§qn(D)(tD)8(xD_ai(D,) 8, —b7)= e, ﬁf’ """"""""" G.1)

The initial and boundary conditions are prescribed as:
(a) initial condition:

kP hP
Po&ps Yo. 0)=Pop = ;—— (B = Pou)-woreoeeresseeessiscees e 3.2)

Pu'PBP

(b) boundary conditions:

(i) at an extreme boundary parallel to the y-axis, dR,,.,

g,
[ym % - amp,,,] S YOO (3.3)
*p W,

(ii) at an extreme boundary parallel to the x-axis, dR,,,,

Po . } = £, 34
[y@, D2~ Lo " A (2% YO (3.4)

(iii) at an interface parallel to the y-axis, dR,,
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0
- = [P tusly, = @ [%L ........................................................................... (3.7)
a,, [239-] =a,, [QEQ_] .................................................................................... (3.8)
L9 3R, %y aR,,

where the dimensionless variables are defined as:

ki’ hP
pp= (By = D)orsoereroeesosseeeesse ettt (3.9)
qP uP BP

X = X/ e (3.10)
Vb = K e (3.11)
L k! (3.12)
D - ¢p upc,p X}p ..................................................................................................... -
A T @™ X oo (3.13
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BT = ™ X ook (3.14)

' 14

P S (3.15)
B

= B e e e (3.16)
Bk X,

R (.17)
owB kX,

e = ¢xcnhx BP
' B, ¢,c,X,

G )= G UV Qoo (3.19)

where the subscript, p, refers to a reference compartment or a reference parameter.

The mathematical formulation described above has considered variations of dimensionless
pay thickness. In this case, there is an underlying simplification that assumes that the
variation of dimensionless pay thickness does not lead to predominantly three-
dimensional flow. Specifying a uniform pay thickness for each compartment would
guarantee two-dimensional flow. The conditions at the extreme boundaries expressed in
Eqgs. (3.3) and (3.4) are of the non-homogeneous, Cauchy-type which allow for any
possible situation of partial communication at those locations. However, the parameters

for the conditions at the extreme boundaries, Yu,, Car s Yoy, and Loy, in Egs. (3.3) and (3.4),

can be chosen in such a way that these equations take care of the appropriate conditions
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due to partial communication or the presence of skin at the extreme boundaries. These
parameters can also be set to 0 or 1 to obtain the conditions at the extreme boundaries as
the Dirichlet- or the Neumann-type. Also, the time-dependent functions, /o (1p) and £,
(tp) in Egs. (3.3) and (3.4), respectively, allow for specifying any time-dependent
conditions at the extreme boundaries. Thus, the mathematical formulation described by
Egs. (3.1) through (3.8) deals with time-dependent variations of production rates and

extreme boundary conditions directly.

3.2.2 Solution of Differential Equations

An integral-transform technique for finite, composite domains, based on the theory and
technique as developed by Tirle (1965), Title and Robinson (1965), and Padovan (1974),
will be used to develop an analytical solution of the set of equations in the following

steps:

(i) Development of integral-transform pair

To develop the integral-transform pair, it is necessary to define the corresponding
eigenvalue problems. Following the similar procedure for one-dimensional flow described
in Chapter 2, and also by Padovan (1974), two sets of eigenvalue problems with the lth
eigenvalue as a parameter can be developed by separating variables of the homogeneous

version of the set of governing differential equations listed above as follows:

x-direction eigenvalue problem

dzUl { (xD ) =

e — 0 M, U, (X0 )eoeeeeee e (3.20)
D

where,
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with the boundary conditions:

[ym aVy ¢ U,,] S S (3.22)
[ 59 wD aR,’,
1 au
-—=\U,-U v s 3.23
Su[ ¥ ]l]aR xx[do ]a&l ( )
du
a,, [dU"] = a,,[ "] .................................................................................. (3.24)
ﬁD 3R, ‘ixD R,

y-direction eigenvalue problem

d'v,,(Jp) ) .

j;—”— = =0, My, PO ) o (3.25)
where,

L TR 2 (3.26)

with the boundary conditions:

dv
Wl = 0 3.27
[Ya, B, 3 L., (3.27)
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1 dav,
W =V = a, | e 3.28
— ViVl = o [% L" (328)

mn

dv dv
. et ¥ X = n L USSR U RO RO SRRSO 329
“"[%L, % [dyo L, -29)

The functions, U, {x,) and ¥, {y,,) are lth eigenfunctions for the ith compartment in the x

and y directions, respectively. Title (1965) and Title and Robinson (1965) mention that the
eigenvalue problems for the x- and y-directions described above are related by the
condition of identical time-behavior of dimensionless pressure on both sides of an

interface which is given as follows:

Salt (1983 a and b) also endorsed the above relationship (Eq. (3.30)) between eigenvalues
in the x- and y-directions. Following the similar procedure described by Padovan (1974),

one has the following integral-transform pair:

Inversion formula:
=p, U,V

Pip = 3 o e e (3.31)
= Nl

Transformation formula:

Poi= 2 [[ P Ui Vi dep @y oo (3.32)

=1 R,

where,
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=Y e [[UR Vg By (3.33)
R,

(ii) Integral transformation of differential equations along with their conditions

Multiplying both sides of Eq. (3.1) by U, ¥, ,dx,, dy,, and integrating over R, and then

summing up the resulting expressions over all compartments, one gets,

J‘I p'D U, V,dodyp~ J‘Iaa}’;D U, .ldedYDjl*'hpDz {ﬁ:qj’g([p)

m, m, a t
- _UU,I V,, dx, —alp ) 8y, — b ) dx, dyo} Ee ‘U P U Videp dyp.ee. (3.34)
RI
The first two terms of the above equation are simplified by using Green’s theorem. Then

substituting the values from Egs. (3.3) through (3.8), (3.20), (3.22) through (3.25), (3.27)
through (3.30) and (3.32) in Eq. (3.34), it can be shown that,

, = dp

— A DL, T B T m e s (3.35)
tEpe St dr,

where,

A = B2 G2 e (3.36)

v,
g,(t)= Z{tho g ) U, @) V. rm:)_‘_[_x_ML&" J.V: @D,[M]%. J’U'de}
Ry R,

i=] m=} axs Yoyx
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A detailed procedure for the above step that leads to the development of an initial value
problem upon integral transformation is described in Chapter 2. The parameter A; in Eq.
(3.36) is the same for each compartment;, therefore, Egs. (3.30) and (3.36) are identical.
Both of these equations ensure that the time-behavior of the dimensionless pressure at
either side of an interface is identical on the assumption that the skin boundary does not

have any storage.

Taking the integral transformation of the initial condition, Eq. (3.2), one gets,
Pty =0)="2 Pop [[U, Vi @ty @ oo (3.38)
=1 R,

We now have an initial-value problem with an ordinary differential equation, given by Eq.
(3.35), with an initial condition, given by Eq. (3.38), as a result of an integral
transformation of the space variables. The solution of this initial-value problem is given

by,
Poi ) =[ pp, ©) —jo"g,(r) T | €MO (3.39)
(iii) Inversion

;D , (tp) from Eq. (3.39) is inverted into p, (xp, Vp, {p) using the inversion formula, Eq.

(3.31), as follows:

ol 1. U v Al
pr(xDrYD-tD)=2[pm(’D - 0+ [Ja@e dz] u(p) 'A'[(YD)e
= .
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Before carrying out the above inversion process, it is required to have calculated a number
of eigenvalues of the system. Computation of eigenvalues is discussed in the next step. In
general, the rate of convergence for summing up the series in Eq. (3.40) is very high. The
number of eigenvalues or the number of terms required in the series is dependent on the

desired level of accuracy.

(iv) Computation of eigenvalues and eigenfunctions

First we need to evaluate the /th eigenvalues, 0,; and G, ,, for each compartment (/ = 1, 2, 3,
4,..., n) in order to determine the corresponding eigenfunctions, U, and V,, According to
Mikhailov and Vulchanov (1983) and Cotta (1993), the general expressions for these

eigenfunctions are the general solutions to Eqs. (3.20) and (3.25), respectively, as follows:

U, 0= UL Uy = UliUn ) (3.41)
V)= ViV = T it . (3.42)
where,
n (8, M., Xouip-
U, ,©,,,x,)= S_"'( Ve Koip= X)) (3.43)
sin (6, '\/;lxx(Xﬂ—lD - X,p))
in (0, - X
U i(Byxg)= —POu e O = X)) (3.44)

sin (9“ ‘\/TT,:: (X»ID - XxD))

76



sin (G, \/T]—,,(Y,,w- o))
sin (6., M, Cup— ¥5)

Vil ¥p)=

sin (G“ ‘JT‘_y, (yD - KD))
sin (6, \M,, Tup— ¥p))

Vou(inn dp) =

Also, U, and U7, are the values of U, (xp) at xp = X, p and X,., p, respectively, and, V,

and V] are the values of ¥, {yp) at yp =Y, p and Y., p, respectively.

The substitution of Eqs. (3.41) and (3.42) in the boundary conditions for the x-direction
eigenvalue problem (Eqs. (3.22) through (3.24)) and for the y-direction eigenvalue problem
(Egs. (3.27) through (3.29)) results in two systems of linear, homogeneous algebraic
equations in U, and U;,, and V,, and V], respectively, with the eigenvalues as
parameters. Thus, a two-dimensional eigenvalue problem in this study has been converted
into two one-dimensional eigenvalue problems related by the condition expressed by Eq.
(3.30). For n compartments, there are 2n of the /th eigenvalues to be calculated. There are
also 2n non-linear equations available for the purpose of calculating the 2n eigenvalues. Of
these 2n equations, there are (7 — 1) equations due to the continuity of the time-
independent behavior at an interface-boundary and the other (7 + 1) equations are from
the conditions of non-trivial values of eigenfunctions (Rahman and Ambastha, 1996a).
Padovan (1974) mentions that the positive roots of this simultaneous system of
equations are the eigenvalues and that they can be computed by using a suitable method.
In this study, a modified regula falsi method has been used to get a good estimation of the
eigenvalues which are later used as an initial guess to compute the corresponding
eigenvalues with an assigned accuracy by using Newton’s method (Borse, 1985). Since

the mathematical model developed in this study is an extension of that for the one-
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dimensional flow situation described in Chapter 2, a similar procedure has been followed

here to calculate the eigenvalues and eigenfunctions.

The formal solution to the set of Egs. (3.1) through (3.8) is given by Eq. (3.40). This

solution is subject to accommodation of changes corresponding to certain special cases

which will be discussed later in Section 3.2.7.

3.2.3 Computer Program for Numerical Values

A computer program incorporating the solution scheme described in Section 3.2.2 has
been developed in FORTRAN 77 for the purpose of generating numerical values of the
solution developed in this Chapter. The complete source code and a sample data file are
presented in Appendix B. This program has a number of Subroutines and Subroutine-
Subfunctions which are coordinated by the Main Program. Typically, it takes about 5
minutes to run the program for a 4-compartment system in the “Numerical Server”

(RS/6000 Model S9Hs, 66.7 MHz) at the University of Alberta.

3.2.4 Average Compartment Pressure

The expression for the volumetric average dimensionless pressure in the ith compartment

as a function of dimensionless time is given by:

Proaltn) = A[ Pio (o1 Yo 1) @ @ v (3.47)
Rl

where,

A= (Xo)p=Xip) Foyp=Y,p)eoermermreosseeriesieseseeesessssessireeesseseesessessss s (3.48)
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Substituting the expression for p, p from Eq. (3.40) in Eq. (3.47) results in the following

expression,
— |~ b Je [_jx I7: e—l}%
N (N Z [pD, (tp = 0)+ fo g, Pk dt] —’A'—N— ................................... (3.49)
= 1 t
where,
- '\’NID
0= UL D) @Y o (3.50)
XID
— Y»ID
Vo= V00 @ oo (3.51)
YID

The expression for dimensionless average pressure in the ith compartment shown in Eq.
(3.49) has considered dimensionless pressure in that compartment based on extreme
boundary conditions of the Cauchy-type. However, similar expressions for average
dimensionless pressure with any other type of conditions at the extreme boundaries can
be shown by taking care of the appropriate changes in the expression for dimensionless

pressure which will be discussed later.

3.2.5 Cumulative Influx through an Interface

Following a similar approach to that described in Chapter 2, the expression for the

dimensionless cumulative influx through an interface at dR, as a function of dimensionless

time is given by:
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0100)= [ @ p (@ @O (3.52)

where,

In Eq. (3.53), the flow of fluid from the jzi compartment to the ith compartment has been
considered positive. Therefore, a positive value of the cumulative influx, 0, p (tp), will

mean that the net flow has been from the jth compartment to the ith compartment.

It is also assumed that ali compartments have been at a uniform, initial pressure prior to

going on production. Substituting Eqs. (3.40) and (3.53) into Eq. (3.52), one gets,

a - dU V 2 —A°
0. () =— —= [ "] Tt fF(T) €M@Y e (3.54)
o hyo ;{ %o o M "[
where,
Fi®)= [GUT) T @ i (3.55)
0

An expression similar to Eq. (3.54) can be shown for the dimensionless cumulative influx,

O.» D, through an interface parallel to the x-axis, OR,,.

3.2.6 Relationship between Skin Factor and Barrier Transmissibility
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Fox et al. (1988) and Stewart and Whaballa (1989) gave the expression for the rate of fluid

that communicates between ith and jth compartments as:

]
<
|
il
“
e
—~
(78]
(¥, ]
(2))
~

9y

The above definition neglects the internal resistance to flow in each compartment (Stewart
and Whaballa, 1989). But the barrier resistance in the form of a skin factor as used in this
study does not impose any limitation on the internal resistance to flow within any
compartment (Rahman and Ambastha, 1996b). However, there is a relationship between
the skin factor at an interface as used in this study and the barrier transmissibility defined

by Fox et al. (1988) and Stewart and Whaballa (1989). This relationship is given by:
Y

s, =1k, 100, B, T, B~ [[P= P, @ (3.57)
Y, v

where [ p—pP l]aR defines the difference in pressures between the ith and jth compartments

across an interface parallel to the y-axis, dR,. Equation (3.57) can be rearranged to obtain

the following dimensionless form:

Yy (3.58)
8 T T e et e e e e )
! TuD
where,
u,B,T,
Tp= I’c, ; e e et e e naeereeesnearans (3.59)
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Y.bp
v, = (/@5 -5,0)] j[p,b-p,,,]a&dy,, ................................................................. (3.60)
Yo

Expressions similar to Eqs. (3.57) and (3.58) can be obtained for the relationship between

T, and s;, due to fluid communication through an interface parallel to the x-axis. oR,,.

3.2.7 Modification of Solution for Special Cases

The general solution developed above needs modification in some special cases. These are

discussed below:
(i) Perfect communication at an interface
If there is a perfect communication at an interface, CR;, we can write. 5, — 0. This

establishes the condition of continuity of pressure. Thus, the corresponding interface

conditions described in Egs. (3.5) and (3.6) take the following form:

[Poole = 1 O (3.61)

v )
o, [a”—"’] = a, [ﬁﬂ} ...................................................................................... (3.62)
ox,, a8, ox, e

Subsequent interface conditions for the comresponding eigenvalue problem should be

updated also to reflect the conditions expressed by Egs. (3.61) and (3.62).
(ii) Dirichlet-type condition at an extreme boundary
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When the condition at an extreme boundary is of the Dirichlet-type, the solution as given
by Eq. (3.40) remains the same (Ozisik, 1980). But the expression for g; in Eq. (3.37)
needs to be modified. For example, if an extreme boundary parallel to the y-axis in the ith
compartment has the dimensionless pressure specified, then the following changes should
be introduced:

Here, Y, = 0, therefore,

U,, 1 dU,,
replace —— by =,
‘Yoxx éaxx ‘ixD

(iii) Neumann-type condition at extreme boundaries

When the conditions at the extreme boundaries are of both the Cauchy- and the Neumann-
type, then the expression for p, p in Eq. (3.40) remains unchanged (Ozisik, 1980). But
when the conditions at the extreme boundaries are all of the Neumann-type, the solution
given by Eq. (3.40) needs to be augmented by an amount pp .44, due to the fact that Ag=0
is an eigenvalue of the system. This means that an additional term corresponding to the
zero-eigenvalue has to be added to the solution presented in Eq. (3.40). Here all £, ,'s and
&,y ‘s are equal to 0. The additional term corresponding to the zero-eigenvalue has becn

derived following the procedure discussed in Chapter 2 and is presented below:

Pooss = X;_ Pty =0) + jg,,(r)dr] ................................................................. (3.63)

where,
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2@ =3O h o gu@+ 2Ly, [ay,+ (Soorry [y} (3.64)
~ md ‘me aRwl Yay: Ry,
No= effdin @y oottt (3.65)
=l R,
Powsa(ly = 0) = 2 S | — (3.66)
=1 R

3.3 Validation of New Solution

It is necessary to validate the new solution to check its arithmetic reliability. Here, the
new solution developed in this study has been validated by comparing a number of its

simplified forms with those available in the literature.

Figure 3.2 shows the comparison of dimensionless pressure responses at xp = 0.553, yp =
0.553 due to a constant dimensionless production rate of gp = 1 from a well located at ap
=0.52, bp = 0.434. The comparison has been made between the analytical solution for a
closed, homogeneous rectangular reservoir as developed by Hovanessian (1961) and that
from this study. To generate responses for a homogeneous reservoir from this study, a
three-compartment system with each compartment having identical rock and fluid
properties and the presence of no skin at the interfaces is considered. This comparison

shows an excellent match.

Figure 3.3 shows a comparison of the dimensionless pressure responses using the
solution of Hovanessian (1961) with the principle of superposition and that of this study
atxp =0.5, yp = 0.5 of a closed homogeneous reservoir. The well is located at ap = 0.2, bp

= 0.7 producing at three different rates:
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Figure 3.2: Comparison of dimensionless pressure responses in a
closed homogeneous reservoir.
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Figure 3.3: Comparison of dimensionless pressure responses for a
3-rate situation in a closed homogeneous system.
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qip= 1, while 0 < ID_<. 10,
qg>p= 2, while 10 <{p< 50; and

q:;p =1, while (p> 50.

The multiple-flow rate situation for this study has been dealt with directly by the use of
the Heaviside unit-step function while the solution of Hovanessian (1961) is used in

conjunction with the principle of superposition. This shows an excellent match.

Figure 3.4 shows a comparison of responses atxp = 0.5, yp = 0.5 where a shut-in period
is followed by a flow period in a closed homogeneous reservoir. The well located at ap =
0.2, bp = 0.7 produces at the rate of gp = 1, while 0 < 7p < 10. This situation has been
dealt with as two-rate flow situation and the principle of superposition is used with the
solution of Hovanessian (1961). The comparison made in this plot shows an excellent

match.

Figure 3.5 shows a comparison of dimensionless pressure responses at xp = 04,yp =06
due to a constant dimensionless production rate of gp = 1 from a well located at ap = 0.3,
bp = 0.7. The comparison has been made between the analytical solution for a
homogeneous rectangular reservoir with constant-pressure boundaries as developed by
Hovanessian (1961) and that from this study. To generate responses for a homogeneous
reservoir from this study, a three-compartment system with each compartment having
identical rock and fluid properties and presence of no skin at the interfaces is considered.

This comparison shows an excellent match.

Figure 3.6 shows a comparison of the dimensionless pressure responses using the
solution of Hovanessian (1961) with the principle of superposition and that of this study
atxp = 0.4, yp = 0.6 of a homogeneous reservoir with constant-pressure boundaries. The

well is located at ap = 0.3, bp = 0.7 and produces at three different rates:
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Figure 3.4: Comparison of buildup responses in a closed
homogeneous system.
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Figure 3.5: Comparison of dimensionless pressure responses in a
homogeneous reservoir with constant-pressure boundaries.
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Figure 3.6: Comparison of dimensionless pressure responses for a
3-rate situation in a homogeneous system with constant-pressure
boundaries.
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q;p=1, while0 <1, 10;

q2p = 2, while 10 < 15 < 50; and

q3p =1, while tp > 50.

The multiple-flow rate situation for this study has been dealt with directly by the use of
the Heaviside unit-step function while the solution of Hovanessian (1961) is used in

conjunction with the principle of superposition. This shows an excellent match.

Figure 3.7 shows a comparison of responses atxp = 0.4, yp = 0.6 where a shut-in period
is followed by a flow period in a homogeneous reservoir with constant-pressure
boundaries. The well located at ap = 0.3, bp = 0.7 produces at the rate of gp = 1, while 0
< tp < 1. For this situation, the principle of superposition is used with the corresponding
solution of Hovanessian (1961) for the two-rate flow condition. This comparison shows

an excellent match.

Figure 3.8 shows the semilog derivative and the Cartesian derivative responses due to
production through a well located at the center of a closed square reservoir. This shows an
excellent match of the semilog derivative responses with those generated using the
solution of Hovanessian (1961). From observation of the end of the zero-slope line of the
semilog derivative responses (that is, end of the infinite-acting period), as computed using
the new solution, it is inferred that the pseudosteady-state flow starts when 7, > 0.1.
This is confirmed here by the observation that the Cartesian derivative line with zero
slope begins around 5 = 0.1. The study of Ramey and Cobb (1971) observes the onset of
pseudosteady-state flow at the same dimensionless time based on the area for a closed
rectangular system. Therefore, this comparison of semilog derivative responses and the
start of pseudosteady-state period confirms the validity of the solution developed earlier

in this Chapter.
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Figure 3.7: Comparison of buildup responses in a homogeneous
system with constant-pressure boundaries.
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Figure 3.8: Comparison of semilog derivative responses with
those from Hovanessian (1961).
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In the preceding discussion, a number of simplified cases leading to homogeneous systems
have been compared with the corresponding homogeneous systems. The solution
presented in this Chapter corresponds to an extension of the solution for the linear, one-
dimensional system presented in Chapter 2. The system of partial differential equations
for a two-dimensional system is essentially similar to that for a one-dimensional system.
Both systems of equations are solved using the same theory for an integral-transform
technique. As shown in Chapter 2, the solution for a one-dimensional system was
validated with a number of cases involving distinct rock and fluid properties in the
compartments, with or without skin at the interfaces. Therefore the comparison of the
solution for two-dimensional system with the cases of distinct rock and fluid properties
in the compartments, with or without skin at the interfaces, would obviously lead to the

same conclusion of good matching.

3.4 Application of New Model

The new analytical solution developed in this study may be used for understanding the
transient-pressure behavior of an areally-compartmentalized system. Detecting and
quantifying the flow units and flow barriers in a compartmentalized system is very
important for designing development schemes. The new analytical solution is capable of
providing useful information for this purpose. It is also possible to generate type-curves
of transient-pressure responses for diagnostic identification of compartmentalized

behavior in a reservoir.

The ability to consider the time-dependence of production rates and extreme boundary
conditions directly makes this model more flexible from a practical point of view. Also,
the Cauchy-type boundary condition is a general way of specifying conditions at an
extreme boundary which can be modified to the Dirichlet- or the Neumann-type as special

cases. Since this model considers contrasts of rock and fluid properties, including
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anisotropy in compartments, it can be used for studying reservoir heterogeneity.
Bourgeois et al. (1993) underline the importance of using analytical solutions for
understanding the pressure behavior of channel-levee complexes. These complexes are
modeled as a main channel bounded laterally by finite or infinite width levees with
distinct rock and fluid properties. The solution developed earlier can be used to study the
transient-pressure behavior of channel-levee complexes. A number of applications of this

solution will be illustrated in Chapter 6.
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CHAPTER 4
THREE-DIMENSIONAL FLOW SYSTEM

4.1 Introduction

In the case of vertical compartmentalization of reservoirs, the models presented for areal
compartmentalization are not able to describe the transient-flow behavior adequately
because the effects of gravity have been neglected in these models. Therefore, an
analytical solution will be developed in this Chapter that accounts for the effects of
gravity by formulating the problem in terms of potential, rather than pressure. The
solution to the problem will be of a general nature, but it degenerates to the solutions for
areal compartmentalization when the effects of gravity and the flow in the vertical
direction are neglected. This kind of formulation is considered as an appropriate
description of the flow of fluid in complex geological structures of compartmentalized
systems including cellular systems, stacked channel realizations, and aeolian dune sand
realizations. Smalley and Hale (1996) have pointed out that the identification of
stratigraphic (vertical) compartmentalization is very important for the purpose of
assessing the effectiveness of a production strategy. In these kinds of geological
structures, the areal models, as developed in Chapters 2 and 3, are able to describe the
mechanics of flow adequately because of the high degree of compartmentalization in the
vertical direction. Here, we consider that there are n compartments that might be arranged

vertically and areally for the purpose of developing the solution.

In this analytical solution, the resistance to fluid communication between any two
neighboring compartments is specified by a skin factor to take into account the poor
hydraulic communication between these compartments. The reason for the presence of

such probable poor communication and the implication of representing this with a skin
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boundary have already been discussed in Section 1.6, Chapter 1. Partial differential
equations with appropriate initial and boundary conditions are set up starting from
diffusivity equations describing three-dimensional flow through porous media. Due to the
importance of gravity, the goveming equations are considered in terms of potential,
instead of pressure. Ehlig-Economides (1994) emphasized the importance of considering
the formulation in terms of potential for compartmentalized systems. Collins (1961) used
the force potential, as described by Hubbert (1940), in the form of energy per unit volume
to formulate Darcy’s equation for incompressible flow. In this study, a similar approach
is taken with the transient potential, ®(x, y, z, 7), defining it at a point, (x, ¥, z), in the

Cartesian coordinate system, within the domain under consideration, as:

DX, Y, 2,1) = P(X, Y 20 8) = P B T 4.1)

where p(x, y, z, 1) is the pore pressure at the point, (x, y, z), at time ¢, and z is the distance
from a reference plane (x-y plane as in this case) which is taken positive in the direction of
gravity. A similar approach with potential in the form of the energy per unit volume has
also been taken by Papatzacos (1987) in formulating an analytical model for a partially-
penetrating well. The introduction of potential in the diffusivity equation means that the

flow of fluid at a point occurs only if there a potential gradient at that point.

4.2 Development of the Analytical Solution

The partial differential equations describing the flow of each compartment are solved by a
integral-transform technique for finite, composite domains, following the ideas of Zitle
(1965), Title and Robinson (1965) and Padovan (1974). The kemel functions for the
integral transformation are developed by solving an eigenvalue problem which has been

developed from separating the variables of the homogeneous version of the partial
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differential equations. The governing partial differential equation for a compartment has
four independent variables: three space variables and the time variable. Therefore, the
integral transformation of the partial differential equations and associated conditions with
respect to the space-variables removes the spatial dependence of the partial differential
equations and associated conditions. Thus, a partial differential equation is transformed
into an ordinary differential equation with time as the only independent variable with the
eigenvalues as the parameters. In the following Sub-Sections, an analytical solution will be

developed step by step.

4.2.1 Setting up Governing Differential Equations

We consider a compartmentalized reservoir in a finite region, R, bounded by a surface,
oR,, and divided into # finite sub-regions or compartments, R,withi=1, 2, 3, ... , n.
Each compartment may have distinct rock or fluid properties. There are V, , partially-
penetrating, line-sink wells in R, producing at time-dependent rates. Any compartment,
R, is hydraulically communicating with at most six adjacent compartments. A general
configuration like this is shown in Fig. 4.1. Here, for the sake of mathematical generality,
let us consider that the compartment, R, is communicating with the compartment, R,

adjacent along the x-axis, through the interface boundary, dR, with compartment, R,,
adjacent along the y-axis through the interface boundary, oR,, and with another
compartment, R,,, adjacent along the z-axis, through the interface boundary, dR,,. The
compartment, R, may have extreme boundaries, dR,,, dR,,, and dR,. A dimensionless

form of the diffusivity equation for the flow of a single-phase, slightly-compressible fluid
with constant compressibility through an anisotropic and homogeneous porous medium
in the ith compartment which is producing through ¥, , partially-penetrating, line-sink

wells, as illustrated in Fig. 4.2, is given by:
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Figure 4.1: Schematic of a general arrangement in a three-dimensional
compartmentalized system.
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Figure 4.2: Schematic showing location of wells in ith compartment.
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azd)nD + az(DtD +a Z q’”')(t)

axx ar:) yi a}é :l (,,,) (,,,D) —a:Z'))s(yD —b,";'))
9P, ,
=e — 42
The initial and boundary conditions are prescribed as:
(a) initial condition:
D ,( 0)=o,, = £ By @ o) 43
.0¥p>Vps» Zp> = ¥aD qpupBP P ) ( . )
(b) boundary conditions:
(i) at an extreme boundary parallel to the y-z-plane, dR,_,,
ad, ,
Yo ~ &, D, = (I ) e 4.4)
ox,, =
(ii) at an extreme boundary parallel to the x-z-plane, dR,_,,
od
Yor: L - £, D, = St UD) oo 4.5)
ayD 3R gz
(iii) at an extreme boundary parallel to the x-y-plane, dR,,,
e Leo)
Vo =—2 + E,.,D,p = oI e (4.6)
oz, .,
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(iv) at an interface parallel to the y-z-plane, oR

1 ad
-—|®,-P = D e
S,-J [ 1D 1D ar, a:x[ axD ]BRU
oD
o, 9P| - e
ax, x, ax, =,

(v) at an interface parallel to the x-z-plane, dR,,

! D
- —S: [(D,D—(DkD]aR,, = Cly'[ D}BRI‘ ........ et

Yy

o, | - a,, o |
)y R, Py ar,

(vi) at an interface parallel to the x-y-plane, oR,,,

o, [a“"o] - a [a;"_] ...................................................
1 9z, - A -

where the dimensionless variables are defined as:

99




= PP (@ = D)ot (4.13)
°= w8, T
XD = X/ e (4.14)
B s (4.15)
2. S (4.16)
t, = k! e 4.17)
¢P l'l'}’ C'P XP
G = ™1 X e (4.18)
BImY = BI™ X e (4.19)
)
h) e (4.20)
hP
nt)
h) = B e (4.21)
hP
o, = b s e (4.22)
W,B k,
o, :—’éu’l"—B”- ....................................................................................................... (4.23)
t 14
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e e 424
T OWB Kk, *29
B
o= B Te e (4.25)
Bx ¢pcrp
QD)= G G e (4.26)

where the subscript, p, refers to a reference compartment or a reference parameter.

The conditions at extreme boundaries expressed in Egs. (4.4) through (4.6) are of the non-
homogeneous, Cauchy-type which allow for any possible situation of partial
communication at those locations. However, the parameters for the conditions at extreme
boundaries, Yo 1> oz Yoy 1» oy Yor: and Cozy, in Eqs. (4.4) through (4.6), resp.ctively, can
be chosen in such a way that these equations would take care of the appropnate
conditions due to partial communication or presence of skin at the extreme boundaries.
These parameters can also be set to 0 or 1 to obtain the conditions at the extreme
boundaries of the Dirichlet- or the Neumann-type. The time-dependent functions, f, .(/p),
Joy {tp) and fo (tp) in Eqs. (4.4) through (4.6), respectively, allow for specifying any time-
dependent conditions at the extreme boundaries. Thus, the mathematical formulation,
described by Egs. (4.2) through (4.12), deals with time-dependent varations of

production rates and extreme boundary conditions directly.

4.2.2 Solution of Differential Equations
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An integral-transform technique for finite, composite domains, based on the theory and
technique as developed by Title (1965), Title and Robinson (1965) and Padovan (1974)
will be used to develop an analytical solution to the set of goveming differential

equations, as developed in the previous Section, in the following steps:

(i) Development of integral-transform pair

To develop an integral-transform pair, it is necessary to define the corresponding
eigenvalue problems. Following the similar procedure for one-dimensional flow described
in Chapter 2 and also by Padovan (1974), three sets of eigenvalue problems with the /th
eigenvalue as a parameter can be developed by separating variables of the homogeneous

version of the set of governing differential equations listed above as follows:

x-direction eigenvalue problem

dZU X, ?

_aé_'r;(,L) R (TR 01 2 YOO (4.27)
where,

M, S €/ QL et e (4.28)

d
{ _ szﬂ - E ,,] SO (4.29)
D aRw‘
I duU
Ll v = 7
Su[ WU, "[dx,, L (4.30)
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y-direction eigenvalue problem

d:V. ()

Py =—0, L2 T G T (4.32)
D
where,
n,, = € /Oy (4.33)

with the boundary conditions:

[ym LTI € V,,:| T2 0 e (4.34)
dyD 3R,
dp?
_L Vi-Vul, av,[ "] ........................................................................... (4.35)
Sin ’ @D 3R,
dv, g
ay,[ "} =a,, l:dl/"’] ................................................................................... (4.36)
aj}D 3R, dyD 3R,
z-direction eigenvalue problem
d'W,,(zp) ;
_deD—D_ = € M., W, (20 )i, (4.37)
where,
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Mo = €/ O, oo (4.38)

with the boundary conditions:

Y, Wi v & W, = O e (4.39)
dzD Ry,
_ 4 w,-w,]. =eq., TN (4.40)
Sm R ¢'D 3R,
o, [JW] [dW] .................................................................................. @)
dzy J &y

The functions U, Axp), V. (yp) and W, (z,) are the lth eigenfunctions for the ith
compartment in the x-, y- and z-directions, respectively. Title (1965) and Title and
Robinson (1965) mentioned that the eigenvalue problems with the x-, y- and z-directions
described above are related by the condition of identical time-behavior of the

dimensionless potential on both sides of an interface boundary which is given as follows:

2 2
9{,*0’?,‘»‘8’,,=92 - O

11

Sait (1983 a and b) and Mikhailov and Ozisik (1986) also endorsed the above relationship
between eigenvalues in the x-, y- and z-directions, respectively. Following a similar

procedure described by Padovan (1974), one has the following integral-transform pair as:

Inversion formula:
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= O U, V, W,
®,= Y — T BB (4.43)
= !

Transformation formula:

®o: = Ze ﬂ D LU, V., W, @ @ @2p oo (4.44)
=1
where,
Ny= 3 e [[[UL VW iy @y diy s (4.45)
=1 R,

(ii) Integral transformation of differential equations along with their conditions

Multiplying both sides of Eq. (4.2) by U, V,, W, dx, dy, dz, and integrating over R, and

then summing up the resulting expressions over all compartments, one gets,

S[e 1220w~ 5

=1 R,

=1 =178, D 11D

o [[[ T2 0 Wdeo drp ey |- 3 5L ([[U, ¥
aVa W, D B _ h"'{) IREY W,

Sx, —ay ) &y, — b5’ ) depdy, dz, = ie'”‘jag:m
1=! D

U,V W, dx, dy, dz, ....(4.46)

The first three terms of the above equation are simplified by using Green’s theorem. Then
substituting the values from Eqs. (4.4) through (4.12), (4.27), (4.29) through {4.32),
(4.34) through (4.37), (4.39) through (4..41), (4.44) and (4.45) in Eq. (4.35), it can be

shown that,
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— dd
-X®p + g = dt:’ ............................................................................................ (4.47)
where,
A = 0t O T Bt e (4.48)

2| Ney oir YU (@™ V(b 74
gl(to)=z z qlD(D) ll(alD) 11( xD) J‘W:[(zp)dzp

=1} =l hgnx{l)J —hll’:% l-;"f)
axl Ul ax 1 N a ! V: le
v (it [V, W, dy, ey, - (222, (UL g dz
ar: Ry, oy Ree,
a‘l WI os 1
- [--—YL]MW [[U.Videy @ | (4.49)
oz aan
(m’) hP (m°)
K, = Z,D+ 7 - (4.50)
14
(m*) hP (m’}
K, = Z,D"l' -/_Y—- }5,0 ................................................................................................ (4.51)
14

A detailed procedure of the above step that leads to the development of an ordinary
differential equation, given by Eq. (4.47), upon integral transformation is described in
Chapter 2. The parameter A, in Eq. (4.48) is the same for each compartment. Therefore,
Egs. (4.42) and (4.48) are identical. Both of these equations ensure that the time-behavior
of the dimensionless potential at either side of an interface is identical on the assumption

that the skin boundary does not have any storage.
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Taking the integral transformation of the initial condition, Eq. (4.3), we get,
Doilty =0)= Y @ [[[U. Vi Wby dyp dop i (4.52)
=1 R,

One now has an initial-value problem with an ordinary differential equation, given by Eq.
(4.47) and with an initial condition, given by Eq. (4.52), as a result of the integral

transformation of the space variables. The solution to this initial-value problem is given

by,

@i (1) = [ED, O - [ ac )e‘f‘dr] e e, (4.53)

(iii) Inversion

60, (tp) from Eq. (4.53) is inverted into @, (xp, ¥p, 2D, Ip) using the inversion formula,

Eq. (4.43), as follows:

:I Uxp) V.i(yp) W, (2p) et

o (X0 Yo 25: 10) = 2[“’01 (to = 0)= [ g(v) ¥t N
=1 l

Before carrying out the above inversion process, it is required to have calculated a number
of eigenvalues of the system. Computation of eigenvalues is discussed in the next step. In
general, the rate of convergence for summing the series in Eq. (4.54) is very high. The

number of eigenvalues or the number of terms required in the series is dependent on the
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desired level of accuracy. For example, in a 6-compartment system, it requires about 100

sets of eigenvalues for a level of accuracy of 10°.

(iv) Computation of eigenvalues and eigenfunctions

First one needs to evaluate the /th set of eigenvalues, 0, ; , G, , and g ; for each
compartment (i = 1, 2, 3, 4,..., n) in order to determine the corresponding eigenfunctions,
U, ,, V, and W, ;. According to Mikhailov and Vulchanov (1983), Mikhailov and Ozisik
(1984) and Cotta (1993), the general expressions for these eigenfunctions are the general
solutions to Eqs. (4.27), (4.32) and (4.37), respectively, as follows:

UniGp)= Ul Uy = UltUsi e (4.56)
V)= F iV = Vi it e (4.57)
W)= W B B it e (4.58)
where,

sin (ei[ \Jnxx (X»ID_ xD))

U, (6, x,)= —itN et ZmiD T TDI e 459
XD sin (eil Ixr(anD - XxD)) ( )
U, (8,,.5p)= sin (@ . Gp= Xpd) (4.60)

sin (e” 'Jix, (X,.HD - XID))
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sin (0“ Jn—y, O,»ID - yD))

V(O )= Mot SR T IDTT e (4.61)
T i (00 A, B~ E0))
n (G, ~Y
V)= —n (Gt n, Go=¥o) (4.62)
sin (G, \[ﬂ,, Foin— Y5))
W, (€.,.2)= sin (€;, W/Tl—:. (Zwip — 2p)) (4.63)
)= ot N Eip T T e .
sin (€, \/T: Zsp— Z,p)
W, €)= —lCu . G=-2,) (4.64)

sin (eil \/-TE (Z»ID - Z:D))

Also, U', and U, are the values of U, (xp) at xp = X, p and X,., p, respectively; }", andV;;
are the values of V, {yp) at yp = ¥, p and Y., p, respectively; and W, and W, are the

values of W, (zp) at zp = Z,p and Z, -, p, respectively.

Substituting Eq. (4.56) in the boundary conditions in the x-direction eigenvalue problem
(Eqgs. (4.29) through (4.31)), Eq. (4.57) in the y-direction eigenvalue problem (Egs. (4.34)
through (4.36)), and also Eq. (4.58) in the z-direction eigenvalue problem (Eqs. (4.39)

through (4.41)) results in three systems of linear, homogeneous algebraic equations in U,
and U, V,, and V), and W, and W], respectively, with eigenvalues as parameters.
Thus, a three-dimensional eigenvalue problem in this study has been converted into three
one-dimensional eigenvalue problems related by the condition expressed by Eq. (4.42).
For n compartments, there are 3n of Ith eigenvalues to be calculated. There are also 3n
non-linear equations available for the purpose of calculating 3n eigenvalues. Of these 3n
equations, there are (7 — 1) equations due to the continuity of time-independent behavior

at an interface-boundary and the other (2n + 1) equations are from the conditions of non-
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trivial values of eigenfunctions (Rahman and Ambastha, 1996a). Padovan (1974)
mentions that the positive roots of this simultaneous system of equations are the
eigenvalues and that they can be computed by using a suitable method. In this study, each
set of eigenvalues is computed by using Newton’s method (Scarborough, 1966). Since
the mathematical model developed in this Chapter is an extension of that for the one-
dimensional flow situation described in Chapter 2, a similar procedure has been followed

here to calculate the eigenvalues and eigenfunctions.

The formal solution to the set of Eqs. (4.2) through (4.12) is given by Eq. (4.54). This
solution is subject to changes corresponding to certain special cases which will be

discussed later in Section 4.2.7.

4.2.3 Computer Program for Numerical Values

A computer program incorporating the solution scheme described in Section 4.2.2 has
been developed in FORTRAN 77 for the purpose of generating numerical values of the
solution developed in this Chapter. The complete source code and a sample data file are
presented in Appendix C. This program has a number of Subroutines and Subroutine-
Subfunctions which are coordinated by the Main Program. Typically, it takes about 14
minutes to run the program for a 6-compartment system in the “Numerical Server”

(RS/6000 Model 59Hs, 66.7 MHz) at the University of Alberta.

4.2.4 Average Compartment Potential

An average compartment potential at a given time is a measure of the available driving
force to produce hydrocarbon from that compartment. Knowing this value also helps to

prepare a production schedule that avoids producing from a compartment below the
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bubble-point pressure. Ehlig-Fconomides (1994) has presented an expression for the
average compartment pressure based on the assumption that the system has already
reached pseudosteady state. The expression for the volumetric average dimensionless

potential in the ith compartment as a function of dimensionless time is given by:

D, poeltn) = WA[[®,5 (50, Yo, 20, 15) @p Wy oy oo (4.65)
R,

where,

RN GRS G A Y v S A S (4.66)

Substituting the expression for @, , from Eq. (4.54) in Eq. (4.65) results in the following

expression,
—~ | = i 2 —’ —’ —, -\
LIRS [cpm (tp = 0)~ L g,(r)e"‘dt] YoaVuWue?? oo (4.67)
= AN,
where,
— X"ID
U= JU0) @ty oo .(4.68)
Xip
- YNID
A S (4.69)
YID
— Zep
Wit = | W, (Z0) @2 oo e (4.70)
ZID

111



The expression for the average dimensionless potential in the /z2 compartment shown in
Eq. (4.67) has considered the dimensionless potential in that compartment based on
extreme boundary conditions of the Cauchy-type. However, similar expressions for the
average dimensionless potential with any other type of conditions at the extreme
boundaries can be developed by taking care of the appropriate changes in the expression

for dimensioniess potential which will be discussed later.

4.2.5 Cumulative Influx through an Interface

Following a similar approach to that taken in Chapter 2, the expression for the
dimensionless cumulative influx through an interface at dR, (parallel to the y-z-plane) as a

function of dimensionless time is given by:

0,0)= ;fquo(‘t)d‘t ................................................................................................. (4.71)

where,

4,0 = —a,,C,,,ymzm[a;'D] @Yy @iy (4.72)
fio 2o b O¥D Jg,

Gt = X B (4.73)

In Eq. (4.72), the flow from the jth compartment to the ith compartment is considered to
be positive. Therefore a positive value of cumulative influx, O, p (#p), implies that the net

flow has been from the jtA compartment to the ith compartment.
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Substituting Eqs. (4.54) and (4.72) into Eq. (4.71), one gets,

= dU 7 W[l 2 -
(t)=—«a,C [ "] Ll F(O) €M@ (4.74)
Quolty i lzﬂ{ dx,, X1 N, '!
where,
F(t)= j T €T G oo (4.75)
0

Expressions, similar to that in Eq. (4.74), for the dimensionless cumulative influxes, Q. p,

through an interface parallel to the x-z-plane, ORy, and Q,,, p, through an interface parallel

to the x-y-plane, dR,,, can be derived.

4.2.6 Relationship between Skin Factor and Barrier Transmissibility

Fox et al. (1988) and Stewart and Whaballa (1989) gave the expression for the rate of fluid

that communicates between the ith and jth compartments as:

By =T, (@i ) oo e (4.76)

The relationship between the skin factor at an interface as used in this study and the
barrier transmissibility as defined by Fox et al. (1988) and Stewart and Whaballa (1989) is

given by:
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Y2

5,= /B T, @ =@ [ [[0,-] dydze (4.77)
Y,z

where [CD,—<D JLR implies the difference in potentials between the ith and jth

compartments on an interface parallel to the y-axis, dR,. Equation (4.77) can be written in

dimensionless form as follows:

= (4.78)
T
where,

H,B,17,
T,p= /: A", et e (4.79)

_ _ YiyyoZyn
v, = U@>-B,0)] | |[®0-P,0]

Y'D ZID

Expressions, similar to Egs. (4.77) and (4.78), can be developed for the relationships
between T and s, due to fluid communication through an interface parallel to the x-z-

plane, oRy, and between T, and s,, due to fluid communication through an interface

parallel to the x-y-plane, oR,,,.

4.2.7 Modification of Solution for Special Cases

The general solution developed above needs modification in some special cases. These are

discussed below:
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(i) Perfect communication at an interface

If there is a perfect communication at an interface, dR,, one can write, s, — 0. This
establishes the condition of continuity of potential. Thus, the corresponding interface

conditions described in Eqs. (4.7) and (4.8) take the following form:

2P
o, [a‘bm] = a”[ "’} .................................................................................. (4.82)
ox,, x, ox, =

Subsequent interface conditions for the corresponding eigenvalue problem should also be

updated reflecting the conditions expressed by Eqs. (4.81) and (4.82).
(ii) Dirichlet-type condition at an extreme boundary

When the cordition at an extreme boundary is of the Dirichlet-type, the solution as given
by Eq. (4.54) remains the same (Ozisik, 1980). But the expression for g;in Eq. (4.49)
needs to be modified. For example, if an extreme boundary, dR,,. ,, parallel to the y-z-
plane in the ith compartment has the dimensionless potential specified, then the following
changes should be introduced:

Here, Y, = 0, therefore,

replace Ui by ! dU".
YOXI éoxx ‘kD

(iii) Neumann-type condition at extreme boundaries
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When the conditions at the extreme boundaries are mixed with both the Cauchy- and the
Neumann-types, then the expression for @, p in Eq. (4.54) remains unchanged (Orzisik,
1980). But when the conditions at all the extreme boundaries are of the Neumann-type,
the solution given by Eq. (4.54) needs to be augmented by an amount ®p .44, due to the
fact that Ay = O is an eigenvalue of the system. This means that an additional term
corresponding to the zero-eigenvalue has to be added to the solution presented in Eq.
(4.54). Here all £,,’s, E,,,'s and &, ,’s are equal to 0. The additional term corresponding

to the zero-eigenvalue has been derived following the procedure discussed in Chapter 2

and is presented below:

I \

(DDadd

2

4

[@oas(ty =0) = [Eo(T) @i (4.83)

where,

axt

n | Nwi m’)
go(t) z 2 q:D (t) & - a‘;,faxx]akqm ‘”d}bdz
R,

- (e Y'f“'b&g j dx, dz, - [“ﬂ—fw]a,,m [fa, dyD} ................... (4.84)

o1 da.,
N,=Ye[[[dodyodzy o (4.85)
patallo =0)= @5 [[[dep dyp @z oo (4.86)

and Cj, has already been defined in Eq. (4.73).
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4.3 Validation of New Solution

It is necessary to validate the new solution to check its arithmetic reliability. Here, the
new solution for a compartmentalized system developed in this Chapter is validated by
comparing a number of its simplified forms with those of homogeneous systems.
Analytical solutions for a homogeneous and isotropic, rectangular parallelepiped
producing through a partially-penetrating well are presented in Appendix D following the
ideas of Hovanessian (1961). The solutions for a homogeneous system for special cases
of the compartmentalized system are compared with the solutions for the homogeneous

system.

A homogeneous, isotropic parallelepiped (Xop = ¥y p = Zo p = 1) is considered to be
producing through a partially-penetrating well for validation purposes. The corresponding
solution for the compartmentalized system is generated by considering three
compartments with identical rock and fluid properties and no skins at the interfaces. Two

cases of the extreme boundary conditions are considered below.
All Boundaries Closed

Here all the extreme boundaries are considered closed. Figure 4.3 shows the comparison of
the dimensionless potential responses, the Cartesian derivative, d®p/dlp, and the
particular derivative, (fp)"* d®p/dlp, for spherical flow with dimensionless time at xp =
0.51, yp = 0.51 and zp = 0.5 for systems with closed boundaries. The well is located
areally at xp = 0.5 and yp = 0.5, and vertically between h; p = 0.45 and h> p = 0.55, and is
producing at a dimensionless rate of gp = 1. According to Issaka and Ambastha (1996), an
infinite-acting spherical flow period is characterized by a zero-slope line of this particular
derivative. Therefore, the transient period (up to 7p = 0.1, approximately) for this

particular case is dominated by the infinite-acting spherical flow pattern due to a very
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Figure 4.3: Comparison of the dimensionless potential response and its
derivatives from the solution of a compartmentalized system with those
from a closed, homogeneous system.
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small producing interval (10% of total pay). It is also observed that the pseudosteady-
state flow period starts approximately at #p = 0.1 which is characterized by a zero-
slope line of the Cartesian derivative (Proano and Lilley, 1986). This plot shows an

excellent match of all profiles.

Figure 4.4 shows the comparison of the dimensionless potential responses, its Cartesian
and semilog derivatives with dimensionless time at xp = 0.5, yp = 0.5 and zp = 0.5 for
systems with closed boundaries. The well is located areally at xp = 0.5 and yp = 0.5 and
vertically between h; , = 0.0 and A> p = 1.0 (fully-penetrating interval), and is producing
at a constant dimensionless rate of gp = 1. As a result of the presence of the fully-
penetrating interval, the flow of fluid degenerates to the two-dimensional flow system and
therefore is comparable with the solution of Hovanessian (1961). This graph shows an
excellent match of the dimensionless potential responses generated from the solutions of a
compartmentalized system, a homogeneous parallelepiped system and a homogeneous,

rectangular system as developed by Hovanessian (1961).

All Boundaries at Constant Potential

Here all the extreme boundaries are maintained at a constant potential (initial potential).
Figure 4.5 shows the comparison of the dimensionless potential responses and its
Cartesian derivative, d®p/dtp, with dimensionless time at xp = 0.51, yp = 0.51 and zp =
0.5 for systems with constant-potential boundaries. The well is located areally at xp = 0.5
and yp = 0.5, and vertically between h; p = 0.45 and h; p = 0.55, and is producing at a
dimensionless rate of go = 1. This shows an excellent match of the dimensionless
potential responses and its Cartesian derivative. This graph also shows that the transient
period ends approximately at 5 = 0.1. Also, the steady-state flow starts approximately

at tp = 0.1 which is characterized by a zero-slope line with zero-intercept of the Cartesian
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Cartesian derivative from the solution of a compartmentalized system
with those from a closed, homogeneous system and Hovanessian (1961).
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Figure 4.5: Comparison of the dimensionless potential response and its
Cartesian derivative from the solution of a compartmentalized system
with those from a homogeneous system.
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derivative (Proano and Lilley, 1986). Moreover, the comparison of the potential

responses and its derivative shows an excellent match.

Figure 4.6 shows the comparison of the dimensionless potential responses with
dimensionless time at xp, = 0.51, yp = 0.51 and zp = 0.5 for systems with closed
boundaries. The well is located areally at x, = 0.5 and yp = 0.5, and vertically between A,
p = 0.0 and A, p = 1.0 (fully-penetrating interval), and is producing at a dimensionless rate
of gp = 1. As aresult of the presence of the fully-penetrating interval, unlike the case of
closed boundaries, the flow of fluid in this case does not degenerate to the two-

dimensional flow system. This plot shows an excellent match of the profiles.

In the preceding discussion, a number of simplified cases leading to homogeneous systems
have been compared with the corresponding homogeneous systems. The solution
presented in this Chapter corresponds to an extension of the solution for the linear, one-
dimensional system presented in Chapter 2. The system of partial differential equations
for a three-dimensional system is essentially similar to that for a one-dimensional system.
Both systems of equations are solved using an integral-transform technique. As shown in
Chapter 2, the solution for a one-dimensional system was validated with a number of
cases involving distinct rock and fluid properties in the compartments with or without
skin at the interfaces. Therefore, the comparison of the solution for a three-dimensional
system from this Chapter with the cases of distinct rock and fluid properties in the
compartments with or without skin at the interfaces would lead to the same conclusion

with respect to the quality of the match.

4.4 Application of New Model

The new analytical solution developed in this study may be used for understanding the

transient behavior of a compartmentalized system with vertical extent. Detecting and

121



1 T rrm - mm 8
- Compartmentalized system J§ -
B e  Homogeneous system N 6
- - -1 4 _=
[ - )
< - N a
- S
—_— 2 =’
- 0
0.1 [ 1 Illlll[ L1 lllll_ll | lllllll [l lllllll 1 1 lllll|| 14 |||H|| 1 | Hll—lll 22

0001 001 0.1 1 %, 10 10 1000 10°

Figure 4.6: Comparison of the dimensionless potential response and its
Cartesian derivative generated from the solution of a compartmentalized
system with those from a homogeneous system.
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quantifying the flow units and flow barriers in a compartmentalized system are very
important for designing development schemes. The new analytical solution is capable of
providing useful information for this purpose. It is also possible to generate type-curves
of transient responses at the wellbore for diagnostic identification of compartmentalized

behavior in a reservoir. This possibility will be illustrated with an example in Chapter 6.

The ability to consider the time-dependence of production rates and extreme boundary
conditions directly makes this model more flexible from a practical point of view. Also,
the Cauchy-type boundary condition is a general way of specifying condition at an
extreme boundary which can be modified to the Dirichlet- or the Neumann-type, as

special cases.

Since this model considers contrasts of rock and fluid properties including anisotropy in

compartments, it can be used for studying computationally the reservoir heterogeneity.
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CHAPTER 5
INTERFERENCE OF WELLS DUE TO PRODUCTION

5.1 Introduction

Interference in the pressure behavior of a well is inherent due to production through the
other wells located in the same compartment or in other hydraulically-communicating
compartments of the same reservoir. Ramey et al. (1973) have defined interference as the
effect of a production well that causes a detectable pressure drop at an adjacent well. The
system becomes particularly complicated when each well has a distinct production
schedule. However, in this Chapter, it is intended to integrate the interference of wells due
to production and to express this in terms of an equivalent parameter. Interference
becomes very simple to deal with if the effects of all the wells in each compartment can
be lumped into the behavior of a single well. In that case, studying with a single producing
well would give the desired transient pressure effects of multiple wells with different
production schedules. This Chapter shows the development of an equivalent
dimensionless production rate with respect to a corresponding equivalent system as a
function of dimensionless time. In this development, the advantage of the fact that the
eigenvalues are not functions of time has been utilized. This means that an equivalent
dimensionless production rate as a function of dimensionless time can be computed for a
compartmentalized system with a multi-well and a multi-rate configuration. The primary
objective of computing such equivalent production rates is to characterize a
compartmentalized system with a plausible parameter, rather than in terms of a series of
eigenvalues. This would also facilitate the use of solutions of homogeneous systems in a
compartmentalized system under the condition of equivalence which will be illustrated

later.
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Hurst (1960) and Mortada (1960) developed analytical solutions for studying interference
in radial systems with distinct rock and fluid properties. Hurst (1960) examined the
interference pressure drop due to a point sink located in an infinite system consisting of
two regions in series where the permeability has changed at some distance from the point
sink. However, Mortada (1960) has considered a line-sink well producing from a two-
region system and showed the effects of such variations of properties by comparing the

transient responses with those of a homogeneous system.

Ramey et al. (1973) used the principle of superposition to generate the transient-pressure
responses in rectangular reservoirs producing with multiple wells under water-drive
conditions. Dake (1994) suggests the use of the principle of superposition in time and
space to generate pressure responses in the case of multi-well and multi-rate situations.
Earlougher and Ramey (1973) computed the dimensionless pressure responses as a
function of dimensionless time at different locations within bounded rectangular reservoirs
for selected locations of a producing well using the principle of superposition for the
purpose of using it in interference test analysis. However, this method of superposition is
not applicable in a compartmentalized system because of the presence of partially-
communicating faults and the variations of rock and fluid properties. As shown in
Chapters 3 and 4, multi-well and multi-rate situations are dealt with directly in the source
term of the diffusivity equation for each compartment in this study. Dwong (1989)
develops the expressions for equivalent time in a muiti-rate production situation with a
view to applying it with type-curves based on constant-rate production incorporating
the variation of production rate. These expressions are derived for both drawdown and
buildup analyses. In this Chapter, a similar attempt will be made to derive an equivalent
flow-rate for a compartmentalized system.
’
By observing the respective solutions, it has been found that the eigenvalues calculated

for two- and three-dimensional flow systems represent the characteristics of a
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compartmentalized system. A set of these eigenvalues is dependent on the following

properties of a compartmentalized system:

e Geometry of the system including all the boundaries
e Location of the boundaries
¢ Extreme boundary conditions (homogeneous form)

« Interface conditions due to the presence of skins, if any.

However, these eigenvalues are not dependent on the following properties of a

compartmentalized system:

e Number and location of wells in any compartment

e Production rate from a well, even as a function of time.

5.2 Mathematical Consideration

For a one-to-one correspondence of the dimensionless pressure (or potential) at a point in
a compartmentalized system with that in a simpler system, one has to equate
dimensionless pressures (or potentials) to find the necessary relationship. The original
system is considered to have n compartments, where the ith compartment has N,, (=1,
2, 3,...., n) wells and the m ‘th well in the ith compartment is producing at a dimensionless
rate of q,(';”(tD) (withthem ' =1,2,3,...... , N...). We also consider that both onginal and
equivalent systems have been subject to uniform pressure (or potential) initially which
leads to the homogeneous initial conditions in dimensionless form for both systems with
the reference pressure (or potential) taken as the initial pressure (or potential) in the

definition for dimensionless pressures (or potentials) as in Egs. (3.9) and (4.10). Also it is

considered that the extreme boundaries are all closed. The source terms ( g; ) that consider
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the locations of wells and the production rates as a function of dimensionless time are
within the diffusivity equations, expressed by Eqgs. (3.1) and (4.2). In the following Sub-
Sections, the equivalent systems are developed for two- and three-dimensional flow

systems:

5.2.1 Two-Dimensional System

Here the solutions developed in Section 3.2, Chapter 3, are considered. The dimensionless

pressure, pcp, at (xp, yp) of an equivalent system for the original system is defined as:

Pso(xovyua ’D) hpD 22{—_[4""(t)d‘t

= md Oo

2
A lp

SU.@z)V, ’"’)jq“"'(r)e"‘dc Y.iep) V}\'f(”ﬂ)‘" S 5.1)

Equivalence to Compartmentalized System with a Single Well

If an equivalent system refers to the same compartmentalized system but which is
producing through a single well located at (ap p, o p) in the ith compartment at a constant
rate of gz . p(?p) until the elapsed dimensionless time of 75, then Eq. (5.1) reduces to the

following relationship:

Geeolts) = 5— 23,6 jcf"’(r)dr
—1, Ip
[ZU,,(a’”’) V., ’”’)jq’ (1) ehiT U.ilxp) Vx,(yb) | S (5.2)
where,
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D = _’D_. - iUll(at)D) I/xl(bop) U,I(XD) I/”(yD)(I_e‘lffn)
EC — N A?N
0 i 1 .

Equivalence to Homogeneous Rectangular System with a Single Well

Here an equivalent system is defined as a closed, homogeneous rectangular system with
the single well, located at (ay p, by p), as shown in Fig. 5.1, that is producing at a constant
rate of gr i p(¢p) until the elapsed dimensionless time of 75. By equating the dimensionless
pressure responses at (x. p, Y. p) of the compartmentalized system under consideration

and at (xp, yp) of the homogeneous system, Eq. (5.1) leads to the following relationship:

h n N, / "}
qEHD(tD) = 22 22{—!@13'(1:)&
DEH s m= NO 0
- D ’ —li(o
|\ XU.@7)V.b7)| gt e d Unbep) Viip)e™>, (5.4)
& 0 N1
where,
Doy = 1 = 3 L) Vi) U.if5) VuGp)d=e™ey (5.5)

I 7\-21N¢

The nomenclature for the symbols used in Egs. (5.1) through (5.5) is the same as that for
Chapter 3.

In the above development, the solution for a closed, homogeneous system has been taken

from Hovanessian (1961).
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Figure 5.1: A homogeneous rectangular reservoir with a two-dimensional flow system.
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5.2.2 Three-Dimensional System

Here the solutions developed in Section 4.2, Chapter 4, are considered. The dimensionless

potential, ®zp, at (xp, yp, zp) of an equivalent system for the original system is defined

as:

n N,

R
(DED(xD’ Yp» 2 ! ) ; #{Ch N, qug)('t)dt
m’ 0

- U (m’) 174 b(m ‘) ‘:: - X V 774 e‘ﬁ o
Shulle)ulo) [, ;) dz, jcf,,'(r)e*' Lulto) Pulro) Pup)
4 1D D l':m-; !

Equivalence to Compartmentalized System with a Single Well

If an equivalent system refers to the same compartmentalized system but which is
producing through a single well located at (ao p, bo p, co p) in the ith compartment at a
constant rate of gz . p(¢p) until the elapsed dimensionless time of #p, then Eq. (5.6) reduces

to the following relationship:

1 " LT
H = . m’) o dt
qECD(D) DEC m#{Na ‘([q{D( )
| S Uu@) Y GE) ey e o | Vet Voaldp) Wo(zp) €4
+ ; l/l!m) h(’m)D IW',(ZD)¢ J.q,’D'(t)e" dt *p ! zjv 1“p }
1D 1:D ‘“ ,
........................................................................................................................................ (5.7
where,

130



t =U V., (b)) U V. [—etir
Dc = 2+ X :10) V1 bop) 5}(‘1‘5) up)Ue 7)o (5.8)
0 = 1

The nomenclature for the symbols used in Eqs. (5.6) through (5.8) is the same as that for
Chapter 4.

Equivalence to Homogeneous Parallelepiped with a Single Well

Here, an equivalent system is defined as a closed, homogeneous parallelepiped with a
single well, located at (@, p, bo p) and completed between the interval h; p and h; p, as
shown in Fig. 5.2, that is producing at a constant rate of gz » p(fp) until the elapsed
dimensionless time of /p. By equating the dimensionless potential responses at (x. p, Y ps
z. p) of the compartmentalized system under consideration and at (xp, yp, zp) of the

homogeneous system, Eq. (5.6) leads to the following relationship as:

qEﬂD(’D) ! iA,Z{'I_J-q(m)('t)d‘t

EH = m'd
oo (m’) (m’) "u Y
zU,I(a;D )I/x’l'f)be ) IW,I( D)d4' Jqlm)(,t) Ajt drt xl(xD) I/:l(}]D) W,I(ZD)e }
5] h, |:4-) N’
........................................................................................................................................ (5.9)
where,
Doy = 1y + 5 Yus00) Visbop) Uoi(5) Vugp)U=-etey (5.10)

4 7\.2,N

In the above development, the solution for a closed, homogeneous rectangular

parallelepiped has been taken from that presented in Appendix D.
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Figure 5.2: A homogeneous rectangular parallelepiped with a three-dimensional flow system.
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5.3 Results and Discussion

The ideas of equivalent dimensionless production rate presented in the preceding Section
are meant to help understand the effects of production rate and/or production time on the
interference behavior in a compartmentalized system. Thus, the effects of all the
producing and/or shut-in wells are felt through the equivalent dimensionless rate at a
single well in an equivalent system. In this Section, these ideas will be illustrated by

examples.

First, a two-compartment system which is subject to two-dimensional flow is considered.
Wells are located at xp = 0.25, yp = 0.5 in the first compartment and at xp = 0.75, yp = 0.5
in the second compartment. Both wells are producing at a constant dimensionless rate, gp
= 1. Profiles for the equivalent dimensionless production rate in the same
compartmentalized system with the well located at xp = 0.25, yp = 0.5 for different values
of the skin factor are presented in Fig. 5.3. The periods with an equivalent dimensionless
rate, gr ¢ p, of 2.0 signifies the fact that both the compartmentalized system with two
wells and the equivalent compartmentalized system with one well have simultaneously
reached pseudosteady state. But the beginning of such a period for the compartmentalized
system under consideration cannot be ascertained from these profiles, because the
equivalent system was late in arriving at its pseudosteady state. For instance, with s =
100, the system with two wells reaches pseudosteady state at 7p = 0.08, whereas the
equivalent system with one well reaches pseudosteady state at 7, = 14.08; therefore, the
profile in Fig. 5.3 shows the corresponding flat profile after 7, = 14.08. Figure 5.4 shows
the profiles for the equivalent dimensionless rates for the compartmentalized system
described above but with a two-rate production history having the following

dimensionless rates:

From the well in the first compartment: qp:=1.0, while, 0 <7p <100
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Figure 5.3: Profiles of equivalent dimensionless production rate due
to interference of wells in a two-well, two-compartment system .
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system.
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qp ;= 0.0, while, 7, > 100

From the well in the second compartment: qp>= 0.0, while, 0 <, <100

qp>=1.0, while, 715, > 100

Since the well in the second compartment is producing before £, = 100, up to this time the
compartmentalized system under consideration is generating the same responses as its
equivalent system, as evidenced from gg .p = 1. After the well in the first compartment is
shut in and the well in the second compartment starts producing at zp = 100, the deviation
of the dimensionless profile is towards a higher value of the skin factor, where it takes

longer for the system to stabilize.

Figures 5.5 and 5.6 present the profiles for equivalent production rate with respect to a
homogeneous system of the same systems considered in Figs. 5.3 and 5.4, respectively.
Figure 5.5 shows that all profiles for the equivalent production rate, gx 4 p, have merged
into a single line. This is an indication of the fact that the compartmentalized system is
acting like a homogeneous system. In the compartmentalized system under consideration,
the skin boundary is behaving like a no-flow boundary regardless of the value of the skin
factor because each of the producing wells has been placed at an equal distance from and
on opposite sides of the skin boundary. Thus the dimensionless pressure responses in the
first compartment would follow the pattern of a homogeneous system resulting in
merging of equivalent dimensionless rates for all skin factors. Figure 5.6 shows the
profiles for the equivalent production rates of the same system as described for Fig. 5.4.
This shows that the interference behavior of the compartmentalized system under
consideration merges with that of the homogeneous system when both systems are at
pseudosteady state, resulting in g p = 1. However this merging is delayed longer, after
the rate change at 7p = 100, by a higher value of the skin factor in the compartmentalized

system under consideration.
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5.4 Applicability of the Principle of Reciprocity

McKinley et al. (1968) stated the principle of reciprocity as - “The pressure response at
well A, pp.(f), caused by injecting fluid at well B at a rate of g(?) is equal to the pressure
response at well B, p4(?), caused by injecting fluid at well A at the same rate, q(t).” They

also added that this principle is applicable subject to the following conditions:

e the pressure responses must satisfy the diffusivity equation;
o the mobility and storativity of the reservoir may have arbitrary spaual

variation, but these must not be pressure-sensitive.

Raghavan (1993) has pointed out the main advantage of this theorem is that the decision
to choose an active well or an observation well from a pair of wells is moot because
identical information is obtained in an interference test with either case. McKinley et al.

(1968) demonstrated that this principle is applicable in the following cases:

e constant pressure on the boundary;
¢ no flow on the boundary;
e constant pressure on part of the boundary and no flow on the rest of it;

e an infinite medium.

Ogbe and Bringham (1984) have studied the effects of the presence of wellbore storage
and skin on the principle of reciprocity for infinite reservoirs. They also presented
correlations for correcting the pulse response amplitude and time lag due to wellbore
storage. Deng and Horne (1993) have provided an extension of this principle to

discontinuous distributions of reservoir properties, developing analytical solutions in
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terms of Green’s function. These authors also found that the principle of reciprocity does

not hold for non-uniform, initial pressure.

As far as the solutions of this study are concemed, the principle of reciprocity is valid,
provided the initial pressure (or potential) in the compartments is uniform. From an
inspection of these solutions, it is also found that the distinctness of the rock and fluid
properties in each compartment and the presence of skin at an interface do not affect the
validity of this principle. However, the conditions at the extreme boundaries should be of
the homogeneous, Dirichlet-, Neumann-type or a combination of these. This means that
the boundary condition can be constant pressure (or potential), no-flow or a combination
of these, which is in agreement with the findings of Deng and Horne (1993) for bounded
systems. Appendix E presents a proof of the applicability of the principle of reciprocity
when the conditions at the extreme boundaries in a compartmentalized system are of the

homogeneous, Dirichlet-type.
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CHAPTER 6

TRANSIENT-PRESSURE BEHAVIOR OF COMPARTMENTALIZED
SYSTEMS

6.1 Introduction

In this Chapter, the transient-pressure behavior of a number of compartmentalized
systems will be studied using the analytical solutions developed in Chapters 2, 3 and 4.
When a new model of transient behavior is introduced in the literature, it is important to
illustrate the similarities to commonly observed trends, and to identify the distinguishing
characteristics (Ehlig-Economides et al., 1989). The advantage of the fact that an analysis
based on pressure-derivative responses provides more definitive results than that on

pressure responses will also be utilized here.

It has been demonstrated in the literature that the pressure-derivative responses show
more features than the pressure responses (Bourdet et al., 1983; Proano and Lilley, 1986,
Ehlig-Economides, 1988). The pressure-derivative analysis requires an accurate set of
pressure data which is now possible to acquire with the advent of sensitive pressure
gauges (Ehlig-FEconomides, 1988, Bourdet et al., 1989 and Raghavan, 1993). Ramey
(1992) has pointed out that the pressure-derivative type-curves are sensitive throughout
the time domain and permit identification of events not evident on either log-log or
semilog pressure graphs. Alvarado (1994) has mentioned that the basis of pressure-

derivative analysis is recognizing a pattern for each flow regime.

According to Raghavan (1993), the use of pressure derivatives was first discussed by
Chow (1952) in the ground-water hydrology literature and the applications of the
derivative were first discussed by Jones (1957) in the petroleum literature. Chow (1952)

also formulated the basis for semilog derivative responses by introducing a similar
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parameter involving logarithms to the base 10. 7iab and Kumar (1980) developed a
pressure-derivative method for a system with a line-source well in an infinite system.
Later, Bourdet et al. (1983) introduced the idea of the semilog pressure derivative, defined
as the derivative of the well pressure with respect to the natural logarithm of time. Wong
et al. (1986) presented Cartesian and semilog pressure-derivative responses for closed
rectangular reservoirs with different well locations outlining the criteria of identifying
different flow regimes. According to Proano and Lilley (1986), the basis for the derivative
approach involves the recognition of a pattern of any departure of well test data from a
reference line. Ehlig-Economides (1988) has discussed the use of pressure-derivative
responses for diagnostic purposes in characterizing different flow regimes, adapting the
examples from Matthews and Russell (1967). Duong (1989) developed a new set of type-
curves using the pressure/pressure-derivative ratio which is applicable for use in
computer-aided analysis. /ssaka and Ambastha (1996) have extended the notion of a
generalized pressure-derivative analysis, proposed by Jelmert (1993 a and b), to different

flow regimes of composite systems.

In this chapter, the effect of the contrasts of rock and fluid properties on pressure (or
potential) and its derivative responses for various compartmentalized configurations will
be examined. The contrasts of rock and fluid properties are shown by assigning different
mobility and storativity ratios to different compartments. From this pressure (or
potential)-derivative analysis, it is possible to estimate the dimensionless time to the start
of steady-state or pseudosteady-state flow. Lord and Collins (1991) used the production
data in the pseudosteady-state period for evaluating the production performance of a
compartmentalized system using the inflow performance relationship. This inflow
performance relationship is valid only when pseudosteady-state flow has been achieved.
Therefore, it is important to know the time to the end of the transient-flow period and the
time to the start of the pseudosteady-state period to use the inflow performance

relationship. In the next four Sections, the pressure-derivative analysis is used for
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understanding the pressure behavior of different compartmentalized systems. Here a
linear system, a system composed of a small compartment in communication with a big

one, a two-compartment system and a stacked channel realization will be considered.

6.2 Linear System

Gringarten et al. (1974), Ershaghi and Woodbury (1985) and Wong et al. (1986) have
characterized the infinite-acting linear flow period by a 1/2-slope on log-log plots of the
pressure responses versus time for a homogeneous system. However, Kamal et al. (1995)
have pointed out that this slope is less than 1/2 on a log-log plot of pressure responses
versus time if the wellbore skin is non-zero. The entire flow regime in a linear,
compartmentalized system of this study is linear. It would be interesting to see how the
flow regimes in a compartmentalized system that may have rock and fluid properties
contrasts and skins at interface boundaries would behave in comparison to the 1/2-slope
criterion of infinite-acting linear flow for homogeneous systems as presented in the

literature.

In this Section on a linear system, the analytical solution for linear, one-dimensional
systems as developed in Chapter 2 has been used. A system with two linear
compartments is considered here. The communication between the compartments is poor
due to the presence of a thin skin at the interface located at xp = X p. One extreme
boundary of the system at xp = X, p = 0 is producing while the other extreme boundary at
xp=X;p=1is closed. Here the variation of the value of the skin factor (s) and the rock
and fluid properties is considered. The reference values of the rock and fluid properties

are taken with respect to the first compartment (X; p < xp < X p ). Initially, both

compartments are considered to be at a uniform pressure.
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Issaka and Ambastha (1996) have shown that the specific derivative (1p>° dp.p/dip)
during an infinite-acting linear flow period has a value of I, Therefore, the specific
derivative profile along dimensionless time in infinite-acting linear flow is a zero-slope
line. In this study, the criterion for the end of the infinite-acting linear flow period is taken
as 2% deviation of the specific derivative from 1Nr. Also the criterion for the
dimensionless time to the start of the pseudosteady-state flow period is taken as the

Cartesian derivative (dp,p/dtp) falling within 2% of unity.

Figure 6.1 shows dimensionless pressure responses at the wellbore located at xp = X; p =
0. The situation with s = 0 corresponds to a linear homogeneous system whose extreme
boundaries are located at xp = X;p =0 and xp = X, p = 1. It is also observed that the slope
increases to slightly more than 1/2 in this log-log plot of dimensionless pressure
responses versus dimensionless time as the infinitely-acting linear flow ends for a non-
zero value of the skin factor. Figure 6.2 shows the specific derivative profile of
dimensionless pressure responses (tp° dp.p/dtp) with dimensionless time. This plot
clearly demonstrates that a longer period of infinite-acting linear flow exists for s = 0 than

for s # 0. The Cartesian derivative ( dp.p/dip ) profile of dimensionless pressure

responses with dimensionless time is presented in Fig. 6.3. This figure shows that with an
increase in the value of the skin factor, the onset of pseudosteady-steady state flow is
delayed. Using the criteria mentioned earlier, the end of the infinite-acting linear flow
period (fp;) and the start of pseudosteady-state flow period (fp,,) for the linear
compartmentalized system are presented in Table 6.1. It has also been observed that 1p; =

0.054 for s > 0. However, 15, = 0.22 for s = 0 (homogeneous system).
Figures 6.4 and 6.5 show the effect of contrasts of rock and fluid properties on the

Cartesian derivative of dimensionless pressure responses at the wellbore for s = 100.

With low storativity in the second compartment (F>=0.01), the flow reaches
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Figure 6.1: Dimensionless wellbore pressure responses in a linear system.
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TABLE 6.1: DIMENSIONLESS TIME TO THE END OF INFINITE-ACTING LINEAR FLOW,
tpz, AND THE START OF PSEUDOSTEADY-STATE FLOW, #p pss

N Ipr Ip pss

0 0.22 0.465

10 0.054 10.15

100 0.054 98.01
1000 0.054 980.07
10000 0.054 9795.4
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pseudosteady-state very quickly. Moreover, the Cartesian derivative of dimensionless

pressure responses at late times can be approximated by,

dgw = — Do (6.1)
°  NFXap-X.p)
=1

where n is the total number of linear compartments and F, is the storativity ratio in the ith
compartment. For the system under consideration with F; =1, F>= 10, we have,
dp,, p/dtp = 0.1818 at late times. Equation (6.1) shows that the Cartesian derivative of
dimensionless pressure responses at late times is not a function of the mobility ratio (M)
or the values of the skin factor. However, any higher value of F, decreases the value of
this derivative due to an increase of the pore volume and/or of the total compressibility in
the system. The values of the Cartesian derivative at late times are found to be in good
agreement with the respective values as found from Figs. 6.4 and 6.5. Equation (6.1) can
play an important role in confirming the volume-weighted storativity from the late-time

data.

6.3 A Small Compartment in Communication with a Big one

In this section, one of the very important aspects of reservoir compartmentalization will
be considered. Sometimes it is discovered that a small compartment is in poor hydraulic
communication with a big one (Fox et al., 1988). Here the volume and hydraulic
diffus vity of the supporting compartment are very large compared to the producing
compartment. The big compartment has been termed the “source reservoir” by Fox et al.
(1988). According to Stewart and Whaballa (1989), because of its large size, depletion of
the supporting compartment is very slow indeed and it remains essentially at the initial
pressure. Therefore, any production from the small compartment apparently would not

have any effect on the pressure behavior of the neighboring big compartment in the short
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term. It is apparently a situation where the condition at the extreme boundary (at the
interface on the side of the big compartment) can be considered as a constant-pressure
condition. As a result of such a consideration, the condition at the communicating
boundary becomes a Cauchy-type boundary condition. This situation is illustrated
schematically in Fig. 6.6. In this study, the small compartment is considered to be
producing through a well, located at the center, at a constant rate of gp. The region within
the small compartment with a well is bounded by 0 <xp < Xpp and 0 < yp < Y, p areally
and has a dimensionless pay thickness of 4p. However, in this study, we consider, Xp p =

Yoo=hp=1.

Table 6.2 identifies all the boundaries in terms of location, extent and specification with a
skin factor. There is a possibility that not all of the boundaries of the smail compartment
may be in communication with the big compartment. Hence, all possible combinations of
the conditions at the boundaries of the small compartment need to be analyzed. These
combinations of the values of the skin factor on the boundaries to be considered are
shown in Table 6.3. “Combination 17, for example, refers to a condition where the
boundary at xp = 1 (0 € yp < 1) of the small compartment is considered to be in
communication with the big compartment while all the remaining boundaries are closed.
Similarly, with “Combination 2”, there are boundaries atxp =1(0<yp<1)and at yp = 1
(0 £xp < 1) of the small compartment in communication with the big compartment while
the remaining boundaries are closed. With “Combination 3, the boundaries located at xp
=0(0<yp<1)andxp=1 (0 < yp < 1) of the small compartment are in communication
with the big compartment while the remaining boundaries are closed. This combination
possesses the same amount of surface area for fluid communication through the
boundaries as “Combination 2”, but has a different configuration. “Combination 3”
possesses two times as much area for fluid communication on the boundaries of the small

compartment as “Combination 1”. “Combination 4” possesses boundaries at xp=0
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TABLE 6.2: LOCATION, EXTENT AND SPECIFICATION OF SKIN FACTOR OF
COMMUNICATING BOUNDARIES

Location Extent Skin Factor
xp=1 0<yp<t 5
yp=1 0<xp<1 S5
xp=0 0<yp<1 Sz
yp=0 0<xp<sl Sy

TABLE 6.3: COMBINATIONS OF SKIN FACTORS AT THE BOUNDARIES OF A SMALL

COMPARTMENT
Combination s S> S3 Se
1 Finite oo oo oo
2 Finite Finite oo oo
3 Finite oo Finite oo
4 Finite Finite Finite oo
5 Finite Finite Finite Finite
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(0<yp<1),atyp=1(0<xp<1) and atxp=1 (0 <yp<1)of the small compartment in
communication with the big compartment while the remaining boundary is closed. This
combination has three times as much area for fluid communication through the boundaries
of the small compartment as “Combination 1”. Finally, “Combination 5” assumes that all
the boundaries of the small compartment are in communication with the big compartment.
This arrangement has four times as much communicating area of the small compartment as

in “Combination 1.

For a boundary with finite values for the skin factor, skin factors of 0, 1, 10, 100, 1000,
10000 and o are considered. An infinite value (o) for the skin factor at a certain boundary
of the small compartment means that the boundary is closed to fluid communication with
the big compartment (boundary condition of the Neumann-type) and a zero value for the
skin factor means that the boundary on the side of the small compartment is maintained at
a constant pressure with the big compartment (boundary condition of the Dirichlet-type).
Thus, the small compartment would tend to be closed for fluid communication altogether
as the value of the skin factor at all boundaries tends to have a limiting value of infinity

(==). However, zero and infinite values for the skin factor are meant to consider the

respective extreme situations that are possible as far as a bourdary condiiicn is

concerned.

All the reference parameters regarding the reservoir geometry, and the rock and fluid
properties, are taken with respect to the small compartment. Initially the whole reservoir
is considered to be at a constant uniform pressure. In the definition of dimensionless
pressure, the initial pressure of the reservoir is taken as the reference pressure, p,.
Therefore, the dimensionless initial pressure everywhere in the reservoir is zero and
Dw plap, bp, 0) = 0. For all the combinations of the conditions of the communicating
boundaries, as listed in Table 6.3, the dimensionless times, fpg, at which infinite-acting

radial flow period ends, and, fps, at which the steady-state flow period starts, will be

151




determined later. For all combinations, fpg is determined using the criterion of 2%
deviation from the intercept of the initial flat line in the semilog derivative plot and fps is
determined using the criterion of the Cartesian derivative falling below 0.02 (for a perfect
steady state, it is zero). The transient behavior corresponding to the combinations is

discussed in detail below.

6.3.1 Drawdown

Figures 6.7 through 6.11 show the dimensionless pressure responses in drawdown at the
wellbore for different values of the skin factor at the communicating boundary for
“Combination 1” through “Combination 5”. The infinite-acting radial flow periods at
early times are characterized by the line (up to about #p = 0.1) before the effects of the
boundaries are felt. However, the boundary-dominated flow regimes are characterized by

the respective value of the skin factor.

At late times, the flow leads to steady state regardless of the finite value of the skin
factor. The dimensionless time required to reach steady state is longer for higher values of
the skin factor, in any combination. Moreover, the dimensionless pressure responses in

drawdown for late times for different combinations can be estimated from the following

equations:

Combination 1:

Dap = SHF LS oo (6.2)

where s = s,.

Combination 2:
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Figure 6.7: Dimensionless pressure responses in drawdown for
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Figure 6.9: Dimensionless pressure responses in drawdown for
different values of skin factor considered in "Combination 3".
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Figure 6.10: Dimensionless pressure responses in drawdown for
different values of skin factor considered in "Combination 4".
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P = 0.5 S+ 13 (6.3)
where s =5, = 5>

Combination 3:

Pup = 0.5 8+ 1,25 s (6.4)
where s =5, = 5;.

Combination 4:

Pup = 0335+ 123 (6.5)
where s =5, =5>=5;.

Combination 5:

P = 0.255+ 121 (6.6)
where s =5, =5,=5; =5,

For finite values of the skin factor, Eqs. (6.2) through (6.6) show linear relationships
between the dimensionless wellbore pressures at late times and the values of the skin
factor. These equations may be used to estimate the values of the skin factor by matching
the data from an extended drawdown test. Comparison of Eq. (6.3) with Eq. (6.2) shows
that “Combination 2” always leads to a lower dimensionless wellbore pressure (or lower

drawdown) than “Combination 1” at steady state because of possessing a larger amount
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of area for fluid communication. Also the comparison of Eqs. (6.3) and (6.4) shows that
both “Combination 2" and “Combination 3” lead to about the same dimensionless
pressure at late times, especially at high values of the skin factor. For example, the
difference in dimensionless wellbore pressures between these two combinations is 4.8%
for s = 0 and 0.12% for s = 100. Comparison of Eq. (6.5) with Egs. (6.3) and (6.4) shows
that “Combination 4” results in a lower dimensionless wellbore pressure (or lower
pressure drop at the wellbore) than “Combination 2” or “Combination 3” does at steady
state. This is so because this combination has one and a half times as much area open to
fluid communication as “Combination 2” or “Combination 3”. Comparison of Eq. (6.6)
with Egs. (6.2) through (6.5) shows that among all the combinations, “Combination 5”
results in the lowest dimensionless wellbore pressure at steady state. This is so because
this combination possesses the largest amount of the area for fluid communication

through the boundaries of the small compartment.

Figures 6.12 through 6.16 show the semilog derivative profiles of dimensionless pressure
responses generated in drawdown for different values of the skin factor at the
communicating boundary for “Combination 1” through “Combination 5”. Here the
infinite-acting radial flow regimes are shown to be separated distinctly from the boundary
dominated flow regimes for different values of skin factor in any combination. Figures
6.17 through 6.21 show the Cartesian derivative profiles of dimensionless pressure
responses generated in drawdown for different values of the skin factor at the
communicating boundary for “Combination 1” through “Combination 5”. These figures
also demonstrate that effects of boundary-dominated flow on the transient behavior is
distinct for different values of the skin factor. The steady-state flow regime is
characterized by the flat line witn a Cartesian derivative of 0, whereas, the pseudosteady-

state flow period (in the case of s = o) is characterized by a flat line with a Cartesian

derivative value of 1. It has been estimated that the infinite-acting radial flow period ends

at tpg = 0.101 using the criterion of 2% deviation from the intercept of the initial flat line,
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Figure 6.12: Semilog derivative of dimensionless pressure responses
in drawdown for different values of skin factor considered in
"Combination 1".
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Figure 6.13: Semilog derivative of dimensionless pressure
responses in drawdown for different values of skin factor
considered in "Combination 2".
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Figure 6.14: Semilog derivative of dimensionless pressure
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Figure 6.15: Semilog derivative of dimensionless pressure
responses in drawdown for different values of skin factor
considered in "Combination 4".
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Figure 6.16: Semilog derivative of dimensionless pressure
responses in drawdown for different values of skin factor
considered in "Combination 5".
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Figure 6.17: Cartesian derivative of dimensionless pressure
responses in drawdown for different values of skin factor
considered in "Combination 1".
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Figure 6.19: Cartesian denvative of dimensionless pressure
responses in drawdown for different values of skin factor
considered in "Combination 3".
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Figure 6.21: Cartesian derivative of dimensionless pressure
responses in drawdown for different values of skin factor
in "Combination 5".
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which is 0.25/rn, as shown by Proano and Lilley (1986), on the semilog derivative plot

regardless of the values of the skin factor and combination of boundary conditions. Tables
6.4 through 6.8 show the dimensionless times, 7ps, at which the steady-state flow period
would start for different finite values of skin factor for “Combination 17 through
“Combination 5. Comparison of #ps-values from Table 6.4 with those from Table 6.5
shows that the system with “Combination 2” takes a shorter dimensionless time to reach
steady state than that with “Combination 1” for identical values of the skin factor because
of possessing a larger area for fluid communication at the boundaries. Comparison of the
values in Tables 6.5 and 6.6 shows that “Combination 3” reaches steady state
significantly earlier than “Combination 2” with low but identical values of skin factor. But
this difference in dimensionless times to reach steady state dissipates to an insignificant
level with high but identical values of the skin factor. Comparison of the values of fpg
from Table 6.7 with those from Tables 6.5 and 6.6 shows that “Combination 4~ takes
significantly shorter dimensionless times to reach steady state than “Combination 2” or
“Combination 3” does. For example, 755 for “Combination 2” is 48.8% longer and that for
“Combination 3” is 51.3% longer than #ps for “Combination 4” with s = 10. Comparison
of the values of 7ps from Table 6.8 with those from Tables 6.4 through 6.7 shows that
“Combination S” reaches steady state earlier than any other combination. For example, /ps
with “Combination 3” is 99.9% longer and that with “Combination 4” is 33.4% longer
than zps with “Combination 6” for s = 100. The criterion for the start of steady-state flow

period, fps, is taken as when the Cartesian derivative falls below 0.02 (ie., 0 < p,. p <

0.02). As is also evident in Figs. 6.12 through 6.21, the periods between #pg and Ips are
dominated mostly by the effects of pseudosteady-state flow. During these periods the
reservoir behaves predominantly like a closed one. However, these periods are longer for a
higher value of the skin factor which is consistent with the trend shown in Figs. 6.7
through 6.11.
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TABLE 6.4: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, fps, IN
“COMBINATION 17

s ps
0 1.586
1 5.437
10 40.531
100 392.601
1000 3913 .429
10000 39124.2

TABLE 6.5: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, Ips, IN

“COMBINATION 2"
s tps
0 0.793
1 2.708
10 20.304
100 196.342
1000 1956.75
10000 19562.3

TABLE 6.6: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, #ps, IN

“COMBINATION 3~
K Ips
0 0.699
1 2.375
10 19.97
100 196.0
1000 1956.1
10000 19560.5
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TABLE 6.7: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, #ps, IN

“COMBINATION 4~

S Ips

0 0.377

1 1.678
10 13.418
100 130.825
1000 1304.44
10000 13040.1

TABLE 6.8: DIMENSIONLESS TIME TO THE START OF STEADY-STATE FLOW, #ps, IN

“COMBINATION 5™
S s __
0 0.274
1 1.231
10 10.029
100 98.05
1000 978.438
10000 9782.02
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6.3.2 Buildup

Figures 6.22 through 6.26 show the dimensionless pressure responses at the wellbore due
to a production period (ending at 7, = 4) followed by a buildup period for different values
of the skin factor at the communicating boundary for “Combination 1” through
“Combination 5”. These figures demonstrate that the well should be shut in earlier for
higher values of the skin factor for any combination of the boundary conditions to avoid
the well pressure falling below the bubble point pressure. The buildup responses are
steeper for lower values of the skin factor for all combinations. This means that the
systems with higher values of the skin factor need more dimensionless time to build up to

the same level of dimensionless pressure, following a particular production period.

6.3.3 General Discussion

Stewart and Whaballa (1989) have argued that an extended drawdown test should be
performed to detect the limits of the producing compartment. Thus, transient-pressure
behavior has been studied in extended drawdown. From the preceding analysis, it is
evident that the type-curves developed in Figs. 6.4 through 6.23 and the time-criteria
presented in Tables 6.3 through 6.7 can be used for identifying the extent of faulted
boundaries between small and big compartments. By matching the data from late times
with Egs. (6.1) through (6.5), it is possible to estimate the values of the skin factor, a
parameter related to the resistance to flow of fluid at the boundary. It has already been
mentioned earlier that quantifying the flow resistance in terms of a skin factor is very
important for forecasting the long term production performance of a reservoir. A similar
problem has been solved by Fox et al. (1988) making the assumption that the transient-
effects dissipate so quickly that steady-state flow of the fluid can be considered for the
sake of simplicity. The analysis presented earlier in this study has shown that with the

use of the transient-pressure data, while considering the resistance to flow, it is possible
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Figure 6.22: Dimensionless pressure responses at the wellbore for
a shut-in period being followed by a production period where the
well is shut 1n at t, = 4 for "Combination 1"
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Figure 6.23: Dimensionless pressure responses at the wellbore for a
shut-in period being followed by a production period where the well
is shut in at t, =4 for "Combination 2"
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Figure 6.24: Dimensionless pressure responses at the wellbore for
a shut-in period being followed by a production period where the
well is shut in at t,= 4 for "Combination 3".
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Figure 6.25: Dimensionless pressure responses at the wellbore
for a shut-in period being followed by a production period where
the well is shut in at t= 4 for "Combination 4".
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Figure 6.26: Dimensionless pressure responses at the wellbore
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169



to recognize and quantify the presence of partially-communicating faults or low-
permeability barriers, if there are any. The dimensionless time at which infinite-acting
radial flow ends (fpg) has been estimated to be 0.101, regardless of the combination of
boundary conditions. This time-criterion for the end of the infinite-acting radial flow
period can be used for the semilog analysis to evaluate the rock and fluid properties of the
small compartment. Also the time-criteria of Tables 6.4 through 6.8 are useful in
determining the time to the start of the steady-state flow regime for the purpose of
deciding the applicability of simplified analyses like the one presented in Fox et al.
(1988). Evidence has been found in the previous Sub-Section that a pseudosteady state
flow-period exists between fpz and Ips, that has a flattened value of the Cartesian
derivative of unity. This particular period can be utilized to find the volume of the
producing compartment using an extended drawdown analysis. The idea of estimating
pore-volume from the extended drawdown data will be presented in Chapter 7. Therefore,
the time-criteria presented earlier can help locate the pseudosteady state flow regime in a
set of well test data. The onset of steady-state flow is characterized by a flattening of the
Cartesian derivative profile along the intercept value of zero which signals the
establishment of pressure support at the communicating boundaries of the small
compartment (Figs. 6.12 through 6.16). The type-curves can also be used to design the
production and shut-in schedule of the producing well ahead of time to avoid producing

from the compartment below the bubble point pressure.

“Combination 2” and “Combination 3” possess the same amount of surface area for fluid
communication at the boundaries. But the total area for fluid communication in
“Combination 3” is split into two segments which are located at opposite sides of the
small compartment. The solutions for late times of these combinations are presented in
Egs. (6.3) and (6.4), respectively, which are very close in magnitude, especially at high
values of the skin factor. Dimensionless times for the start of the steady-state flow

period, fps, of these combinations are tabulated in Tables 6.5 and 6.6, respectively. These
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tables show that the dimensionless times in “Combination 3” are significantly shorter
than those in “Combination 2 for low values of the skin factor. However, the difference
in dimensionless times for these two combinations becomes insignificant for high values

of the skin factor.

Dimensionless wellbore pressure at late times, as expressed by Eqs. (6.2) through (6.6),
is observed to be a linear function of the finite value of the skin factor. Comparison of
these equations reveals that an increase in area of the communicating boundaries for a
particular value of the skin factor results in a decrease in the dimensionless wellbore
pressure at steady state. An increase in area for fluid communication at the boundaries
decreases the total resistance to flow which eventually causes a lower dimensionless

pressure drop at the wellbore.

Comparison of Tables 6.4 through 6.5 shows a general trend of taking shorter
dimensionless times for a system to reach steady-state flow with an increase in the

communicating area at the boundary for identical values of the skin factor.

6.3 Two-Compartment Cellular System

Section 6.2 has dealt with a situation where a producing compartment is in hydraulic
communication with a relatively big compartment having negligible internal resistance to
the flow of fluid. However, in this Section the situation when the two communicating
compartments are of comparable volumes having finite internal resistance to the flow of
fluid is considered. Junkin et al. (1992) have pointed out that, in most instances, the
evaluation of production data and static pressure history can be accomplished with a two-

compartment system producing through a single well.
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The compartmentalized system under consideration is bounded by extreme boundaries
located at xp = X;p=0,xp=Xsp= 1, yp=Y,p=0and yp = Y2p = 1. Hydraulic
communication between the compartments is poor due to the presence of a thin skin at
the interface located at xp = X>p = 0.5 (¥; p < yp < ¥ p). The first compartment is
producing at a constant rate of gp = 1 through a well located areally at the center of the
first compartment with coordinates (ap = 0.25, bp = 0.5). All the reference parameters are
taken with respect to the rock and fluid properties in the first compartment (X; p < xp <
X5 p). Initially the system is assumed to be at a uniform pressure. The analytical solution
for a two-dimensional compartmentalized system as developed in Chapter 3 is used to

generate numerical values for the system under consideration.

First, the effect of skin factor (s) on the transient responses at the wellbore is considered.
The compartments with identical values of the rock and fluid properties are separated
with an interface with skin. Figure 6.27 demonstrates the dimensionless pressure
responses for different values of the skin factor. With increasing values of the skin factor,
the elevated dimensionless pressure remains in a longer transition period before the profile
merges with that of s = 0. Figure 6.28 shows the semilog-derivative profiles of the
dimensionless pressure responses for different values of the skin factor. This plot
reinforces the observations drawn from Fig. 6.27. The effects of the skin factor on the
Cartesian derivative of the dimensionless pressure responses are shown in Fig. 6.29.
Regardless of the value of skin factor, the flow regime eventually leads to pseudosteady-
state flow where dp,, p/dtp = 1. For instance, pseudosteady-state flow starts at 7p = 107
for s = 100 (using a criterion of the Cartesian derivative reaching within 2% of the
benchmark value of 1). However, it takes longer for a higher value of the skin factor to

reach the pseudosteady-state period.

Identification of the pseudosteady-state flow period is important, because one can

perform an extended drawdown analysis during pseudosteady-state flow to evaluate the
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Figure 6.27: Effect of skin factor on the dimensionless pressure
responses at the wellbore in a two-compartment system.
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Figure 6.28: Effect of skin factor on the semilog derivative of dimensionless
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Figure 6.29: Effect of skin factor on Cartesian derivative of dimensionless
pressure responses at the wellbore of a two-compartment system.
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pore-volume in the producing compartment. This idea will be illustrated later in Chapter

7.

Figures 6.30 through 6.36 depict the effects of the contrasts of the values of the rock and
fluid properties in the compartments on the Cartesian derivative of the dimensionless
pressure responses at the wellbore. The values of s = 100 and 1000 are considered in
these cases. A comparison of Fig. 6.30 with Fig. 6.31 shows that an increased mobility
ratio in the supporting compartment (second compartment) (from M, = 10 to M, = 100)
for s = 100 has little effect on the Cartesian derivative profiles for different storativity
ratios. Moreover, a comparison of Fig. 6.30 with Fig. 6.32 demonstrates that a decreased
mobility ratio in the supporting compartment (from M, = 10 to M, = 0.1) always has
little effect on the Cartesian derivative. This is so because the resistance to flow due to s
= 100 at the interface boundary is more dominant than the internal resistance in the
supporting compartment. But the storativity ratio has an effect on the Cartesian
derivative profiles, especially at higher values. The profiles at late times are influenced by
the value of storativity ratio. A higher value of skin factor (s = 1000) is considered in
Figs. 6.33 through 6.36. In this case, similar observations as made for s = 100 can be
reiterated. In Figs. 6.35 and 6.36, lower mobility ratios, M> = 0.01 and 0.1, in the
supporting compartment than the producing compartment have been considered. These
cases also show skin-dominated flow even after considering such low value of the

mobility ratio.

The Cartesian derivative of dimensionless pressure responses at late times is

approximated by the following equation:

P.p _ i 1 (6.7)
% Go=Fp) EF (Xp-X,p)
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Figure 6.30: Effect of mobility and storativity ratios on Cartesian derivative
of dimensionless pressure responses at the wellbore of a two-compartment
system with M2 =10, s = 100.
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Figure 6.31: Effect of mobility and storativity ratios on Cartesian derivative
of dimensionless pressure responses at the wellbore of a two-compartment
system with M2 =100, s = 100.

176



10 —r‘rmmq_m UL AL TTIT
M =1M _=0.1 F =1 3
x 1 x 2 lF
M =M _=0.1 2
v! y?2 0.01

0.1
1.0

LI
P 1t

T T lllllll

1.1 ijJJlJL

-
o
Ta 10
3
o
° % Ex =y _=o E
E b 1D X,p=05 3
[ X p= Y= .
L g =1 a =025b =05 §

D
0.01 __I_LLU.I.I.I.I 1 llll-ll.ll 1 lllllU.I_LLLIJJ.lI.I_LlJJJLUL_LLLLUM__LJ_LUﬂU

102 10°! 10° 100 t_ 10 10° 10* 10°

Figure 6.32: Effect of mobility and storativity ratios on Cartesian derivative
of dimensionless pressure responses at the wellbore of a two-compartment
system with M2 =0.1, s = 100.
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Figure 6.33: Effect of mobility and storativity ratios on Cartesian dernvative
of dimensionless pressure responses at the wellbore of a two-compartment
system with M2 =10, s = 1000.
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Figure 6.34: Effect of mobility and storativity ratios on Cartesian derivative
of dimensionless pressure responses at the wellbore of a two-compartment
system with M2 = 100, s = 1000.
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Figure 6.35: Effect of mobility and storativity ratios on Cartesian derivative
of dimensionless pressure responses at the wellbore of a two-compartment
system with M2 = 0.01, s = 1000.
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Figure 6.36: Effect of mobility and storativity ratios on Cartesian derivative
of dimensionless pressure responses at the wellbore of a two-compartment
system with M2 =0.1, s=1000.
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where 1 is the total number of compartments and F, is the storativity ratio in the ith
compartment. For the system under consideration with F; = 1, F> = 20, one has, dp,, p/dip
= 0.0952 at late times. Equation (6.7) shows that the Cartesian derivative of
dimensionless pressure responses at late times is not a function of the mobility ratio (M,)
or of the values of the skin factor. However, any higher value of F, decreases the value of
this derivative due to an increase of the pore volume and/or of total compressibility in the
system. The values of the Cartesian derivative at late times are found to be in good
agreement with the respective values as observed from Figs. 6.29 through 6.36. These
figures also demonstrate that the value of the storativity ratio in the supporting
compartment has an effect on the Cartesian derivative profile, especially at a high value
during late times. However, this equation can be used in confirming the volume-weighted
storativity from the late-time data or in evaluating the volume or storativity of a

compartment if other parameters are known.

6.4 Stacked Channel Realization

Another important aspect of reservoir compartmentalization is a stacked channel
realization where two sand bodies communicate hydraulically with each other through an
overlapping area (interface). This has been illustrated schematically in Fig. 6.37. However,
in this study, the poor communication between the sand bodies is taken care of by
considering the presence of a thin skin at the interface. Stewart and Whaballa (1989) have
mentioned that the sealing nature of the overlapping area would make the producing sand
body behave as if it were a closed rectangular system. Lord et al. (1992) have pointed out
that such an interface may be extensive in area, but typically consists of low-permeability
shale. In this Section, the transient behavior of a stacked channel realization will be

investigated.
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Figure 6.37: Schematic of a stacked channel realization.
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Since the effects of gravity are important due to the structure of a system of stacked
channels, transient-potential behavior, rather than transient-pressure, will be analyzed.
The analytical solution for a three-dimensional flow system as developed in Chapter 4
will be used to generate the transient responses. The geometry of the system of stacked
channels to be considered in this study is illustrated in Figs. 6.38a and 6.38b. These
figures show that the upper body has a region within X;p S xp < X, p, 2pSyp<V;p
and Z, p < zp < Z,p, and that the lower body has a region within X; p S xp < X3 p, ¥;p <
yp € Yspand Z, p £2p < Z;p. Also the skin surface is within the region, X; p < xp < X p
and Y>p <€ yp £ ¥; p, located between the upper and lower bodies. All the extreme
boundaries of this system are considered closed. All rock and fluid properties are taken
with reference to those in the upper body. Initially, the entire system has been at an

identical, uniform potential.

Figure 6.39 shows the effect of contrasts of rock and fluid properties in the upper and
lower bodies of a stacked channel realization. Here, the upper and lower bodies are in
perfect communication (s = 0). For a very low storativity ratio in the supporting
compartment (lower body), ¢; < 0.1, the producing compartment (upper body) receives
very little potential support. In such cases, the Cartesian derivative responses are similar
to a situation with very high communication resistance at the interface. However, for high
values of the storativity ratio, ¢; > 1.0, the upper body receives substantial potential
support from the lower body. This results in low values of the Cartesian derivative at late

times.

Figure 6.40 shows the effects of contrasts of rock and fluid properties when s = 100. The
Cartesian derivative profiles for different values of e; are presented. After the transition
from infinite-acting radial flow period, there is a certain period of time where the

producing compartment behaves as if it were a closed system, as indicated by flattening
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Figure 6.38a: Schematic illustrating the geometry of a stacked channel realization in areal view.
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Figure 6.38b: Schematic illustrating the geometry of a stacked channel realization in plan view.
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Figure 6.39: Effect of storativity ratio on the Cartesian derivative of
dimensionless potential responses at a wellbore in a stacked channel
realization for s = 0.
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Figure 6.40: Effect of storativity ratio on the Cartesian derivative of
dimensionless potential responses at a wellbore in a stacked channel
realization for s = 100.
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of the derivative values. But for ¢; < 0.1, the profiles remain flat. This means that the

upper body gets very little potential support from the lower body for such low
storativity values for the lower body. However, this observation is identical to that for s
= 0 in Fig. 6.39. For ¢, > 1.0, a considerable amount of potential support is available as
depicted by the lower values of the Cartesian derivative at late times. There is a time-lag

for establishment of such support due to the presence of resistance at the interface

between the upper and lower bodies (s # 0).

Figure 6.41 shows the Cartesian derivative profiles for the potential responses at the
wellbore for different values of the skin factor in a stacked channel realization with
identical rock and fluid properties in the upper and lower bodies. For s > 0, it is shown
that the upper body (producing compartment) remains a closed system as depicted by
the zero slope for some time after the infinite-acting period and the transition period after
that disappear. Such an interim pseudosteady-state period is more prominent and lasts
longer for a higher value of the skin factor. After this period of pseudosteady-state flow,
the potential support from the lower body is established, as is depicted by the declining
value of the Cartesian derivative for s > 0, before the entire system leads to
pseudosteady-state flow. The system pseudosteady-state flow period is another flat line
having a smaller value of the intercept than that during the pseudosteady-state period for
the producing compartment. Recognizing these pseudosteady-state periods is important
for the purpose of estimating the compartment volumes from extended drawdown data

which will be discussed in the following Chapter.

The Cartesian derivative of the dimensionless potential responses at late times is

approximated, from the solution presented in Chapter 4, by the following equation:
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Figure 6.41: Cartesian derivative of dimensionless potential responses
at a wellbore for different values of skin factor in a stacked channel
realization.
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where e and v stand for the storativity ratio and the dimensionless volume, respectively,
and the subscripts # and / represent the upper body and the lower body, respectively.
Equation (6.8) shows that the Cartesian derivative of dimensionless potential responses
at late times is not a function of the mobility ratio or the skin factor. However, this
equation can be used to confirm the volume-weighted storativity or to evaluate the
volume or storativity of a compartment from extended drawdown data. The Cartesian
derivative of the potential responses at late times, as shown in Figs. 6.39 through 6.41, is

found to be in excellent agreement with that predicted by Eq. (6.8).
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CHAPTER 7

EXTENDED DRAWDOWN ANALYSIS IN COMPARTMENTALIZED
RESERVOIRS

7.1 Introduction

Compartmentalized models in low-permeability reservoirs are an improvement over the
application of traditional volumetric analysis (material balance models). According to
Payne (1996), this poor performance of the volumetric analysis in such reservoirs is a
result of the residual pressure gradient, even after moderate shut-in periods. He also
indicates that a lack of understanding of the way a number of poorly drained regions

would behave in the long run could lead to a conservative estimation of reserves.

An estimation of average reservoir pressure is very important for characterizing a
reservoir, computing the amount of hydrocarbons in place and predicting future reservoir
behavior (Earlougher, 1977). Also the average reservoir pressure gives an estimation of
the density of the fluids in place and the average driving force to move fluids toward the
wellbore (Raghavan, 1993). Dake (1994) proposes a method for estimating the average
reservoir pressure of a homogeneous system from a set of data from a two-rate flow test
without any shut-in of the producing well. This method makes economic sense because
any shut-in of a producing well to obtain pressure buildup data causes a loss of
production. But the difficulty of establishing a second, stable production rate is

mentioned as a barrier to the application of this method.
A number of well-established methods are available to measure the average reservoir

pressure in homogeneous systems from pressure buildup data. These include those of

Horner (1951), Miller et al. (1950), Matthews et al. (1954) and Dietz (1965).
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Lord and Collins (1991) mention that the inflow relationship is valid only after a
pseudosteady-state pressure distribution has evolved in the reservoir. This means that
following any rate change, a time period would have to e!apse before this relationship
comes into effect. Fox et al. (1988) acknowledged the limitation of a conventional buildup
test to determine the average pressure within a compartment due to uncertainty about the

amount of fluid crossing a partially-communicating interface.
7.2 Relationship between Average Reservoir Pressure and Production Rate

Golan and Whitson (1986) have suggested an equation for the decline of the average
reservoir pressure for constant-rate production in a closed system using material balance.
To generalize the equation for the decline of the average pressure, a varable rate of
production from a closed, compartmentalized system is considered. Taking a similar
approach to that of Golan and Whitson (1986), one has the dimensionless form of this

relationship as,

hpD JqD(T) dt

b (1) = e e e e 7.1
Pp(p) N, (7.1)
where,

- k. h(p - p

Pp A (72)

9, 8,1,
A A (7.3)
9,
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7.3 Analysis of Extended Drawdown Data

Jones (1956) introduced the idea of analyzing the drawdown data to compute the volume
of hydrocarbons from the observed rate of pressure decline due to production.
Earlougher et al. (1968) observed that pseudosteady-state flow at the wellbore ensures
that the same condition prevails at all other points in the reservoir. This has been the

basis for analysis of extended drawdown data.

In the following Sub-Sections, methods will be presented to detect poor drainage between
compartments and to calculate the amount of hydrocarbon reserve per unit pressure
drawdown and the average reservoir pressure. Although the methods are explained in
terms of a two-compartment system, they can be extended similarly to any number of

compartments.

7.3.1. Detection of Poor Hydraulic Communication

Consider a two-compartment system where Compartment 1 is producing through a well
at a constant rate of ¢, while Compartment 2 is supporting Compartment 1 hydraulically.
The extreme boundaries are all closed ones. Both compartments have been subject to the
same uniform, initial pressure, p,. When the system reaches pseudosteady state, the late-

time versions of the solutions from Chapters 3 and 4 are applicable.

Cartesian derivative profiles with dimensionless time for different values of the skin
factor are plotted on a log-log plot in Fig. 7.1. This figure shows that the producing
compartment is temporarily subject to pseudosteady-state flow after the end of the
transition from infinite-acting radial flow. The responses due to this period of

pseudosteady-state flow are characterized by flattening (first plateau) of the profile. A
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Figure 7.1: Cartesian derivative responses to detect poor hydraulic
communication between compartments.
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similar observation has been made in a system comprised of a small compartment in
communication with a big compartment as analyzed in Section 6.3, Chapter 6. Applying
pseudosteady-state analysis during this period enables estimation of the hydrocarbon
pore-volume in the producing compartment. A two-compartment system possesses two
plateaus: the first is due to the producing compartment and the next is due to the entire
system. This observation can be extended to any number of compartments, where the
number of plateaus will be equal to the number of compartments. On the other hand, for
perfect communication between compartments ( s = 0 ), no such plateau appears before
the system reaches pseudosteady-state flow. So, the appearance of multiple plateaus in a
p.’ vs. t plot is an indication of the existence of poor hydraulic communication between
compartments. The order of appearance of each plateau will be in accordance with the
way the compartments are arranged. However, the definition of such a plateau depends

upon the value of the skin factor; a larger skin factor causes a longer plateau.

A similar approach for detecting poor communication between upper and lower sand
bodies in a stacked channel realization has been shown by Rahman and Ambastha (1997b)
by taking advantage of the fact that the partially-communicating barrier acts as a sealing

barrier for some time before the entire system reaches pseudosteady state.

7.3.2 Compartment Volumes and Hydrocarbon Reserve

With the well producing at a constant rate in the first compartment, the Cartesian
derivative, p,.p” (=dp,p/dtp) during the first appearance of pseudosteady-state flow is

given by (from the solution in a two-dimensional system, expressed by Eq. (3.40), with a

modification suggested by Eq. (3.63), Chapter 3),

wa,I =dqp hpD/e, Al ...................................................................................................... (74)
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In this analysis, the reference parameters are taken with respect to the first compartment
(producing compartment). Eventually the entire system undergoes pseudosteady-state
flow. Then the late-time solution for the system stated above is given by,

Pup’ 2= G Py p 1 (€1 A1+ €3 A3) oo (7.5)

Dimensionalization of Egs. (7.4) and (7.5) yields,

P 1= Q7 N o (7.6)
Puw 2= (N F Nga)ooo e (71.7)
where,

Ny =¢,cuVi/By. ettt ettt ettt ettt ettt (7.8)
N s = 05C Vol B e (7.9)

The values of p,’; and p,’, are read from the first and second flattened intercepts
(plateaus), respectively, in a plot of Cartesian derivative responses at the wellbore, D
versus time, 7, on a Cartesian plot (or log-log plot). Figure 7.2 illustrates how these
intercept values can be determined from a plot of p,,” vs. ¢, drawn from a set of well test

data. Solving Eqs. (7.6) and (7.7) for N, ; and N; ,, one gets,

Ny 1= Q11D 1 oo ee oot (7.10)

193



0.01 :Trrrml—rrrrml‘—rrrrrmrn'rmqm Hnml] nnml] IIHITITI lllllllll

1k * First Plateau .
P " Prod. Comp. Pseudosteady State” ®

-

.Second Plateau
-0 0009
System Pscudosteady State

|pw' |, psi / hour

~-

o
A

3

0.001 __I__LU_I,ULI llllml Illlu,ll 1 Lllll,l,d_]_u_uﬂl,[ ! llllu]] ] Illllﬂl | llllml_l_u_uuﬂ

103 10! 10! 10° 10°
t, hours

Figure 7.2: Determination of intercept values from Cartesian derivative
profile plotted with well test data from a compartmentalized system.
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Noa=q LI 2] =D 1] L (7.11)

Therefore, the hydrocarbon reserve in standard volume per unit pressure drawdown in
each compartment ( N, ; and &, ;) is known, and the total hydrocarbon reserve in standard
volume per unit pressure drawdown in the reservoir, Ns, can be computed from the

following relationship,

NS=N,1+N,2 .............................................................................................................. (712)

This method for estimating the hydrocarbon reserve in each compartment can be extended
to any number of compartments, provided the corresponding number of plateaus are
available on the p,’ vs. t plot. The higher the resistance to flow at an interface (higher skin
factor), the longer will be the corresponding pseudosteady-state period. If one has some
prior information about formation volume factors and total compressibilities, then the
respective hydrocarbon pore-volumes from Egs. (7.8) and (7.9) can be determined. The
approach taken here is based on pseudosteady-state flow. Therefore, this procedure may
be extended to other compartmentalized systems regardless of the shape of the

compartments.

A similar method for estimating the hydrocarbon pore-volume has been developed by
Rahman and Ambastha (1997b), for a stacked channel realization using extended
drawdown data. In the case of a stacked channel realization, the late-time approximation
of the general solution for a three-dimensional system, expressed by Eq. (4.54), has been
used taking into account the proper recommendation in Section 4.3.7, Chapter 4, for
having all the extreme boundaries of the closed-type. Equations for the hydrocarbon
reserve in standard volume per unit potential drawdown in each compartment, similar to
Eqgs. (7.10) and (7.11), have been derived in terms of the intercepts of the Cartesian

derivative of dimensional potential responses from a plot of @’ vs. t.
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From the drawdown data in the infinite-acting, radial-flow regime (semilog analysis), the

permeability of the producing compartment can be estimated following Tiab (1995) as,

k1=qu u,/{uh, (I@w/dt)r} ................................................................................. (713)

Subscript, r, refers to a data point in the infinite-acting, radial-flow regime.

7.3.3 Average Reservoir Pressure

Figure 7.3 shows the effect of the values of the skin factor at the interface on the buildup
profile at the shut-in well in the first compartment. This figure shows that a longer
buildup time is required to reach the average reservoir pressure for a higher value of the
skin factor. Table 7.1 shows the dimensionless buildup times and the corresponding
buildup times in hours with respect to a set of reference parameters for different values of
s. For s > 0, the buildup times required to the average reservoir pressure are very high and
such long buildup times may not always be feasible for practical reasons. As an
alternative to a buildup test running for such a long time, here we will develop a method

to calculate the average reservoir pressure from stabilized drawdown data.

Simplification of Eq. (7.1) into dimensional form yields,

The dimensionless wellbore pressure of the system under consideration at pseudosteady

state can be approximated by,
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Figure 7.3: Buildup behavior at a well in the first compartment for different
values of skin factor after a production period of t - 100.

TABLE 7.1: BUILDUP TIME REQUIRED FOR DIFFERENT SKIN FACTORS

Skin factor, s Dimensionless buildup time Buildup time", hours
0 0.12 696.02
10 1.96 1.13 x 10*
100 12.45 7.22 x 10*
1000 165.2 9.58 x 10°
10000 1662.0 9.64 x 10°
* Based on reference parameters: k,= 100 md, ¢, = 0.23, cp = 11.4 x 10° psi”’, p, = 0.584 cp,
Xp = 10000 f.
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wa=Cw+ththD/(e,A,+e_7Ag) .......................................................................... (715)

where C,, is a constant. Mathematically, C, is a function of the location of the well
within the producing compartment and the skin factor, among other parameters, of a given
system. To take into account the effect of well location on C., identical values of rock and
fluid properties are considered in a compartmentalized system. Values of C,, for systems
with different well locations corresponding to the aspect ratio of the producing
compartment, X’Y = 0.5, 1 and 2 (Fig. 7.4) are presented in Tables 7.2 through 7.10.
Ramey and Cobb (1971) made a similar observation with respect to pseudosteady-state
flow in a closed, homogeneous square as in Eq. (7.15) where the late-time dimensionless
pressure is shown to be a linear function of dimensionless time. Nevertheless, a
comparison of the values of C,, in Tables 7.2 through 7.10 indicates that while C, is a
strong function of the skin factor, it is only a weak function of the well location in the
producing compartment. Based on this observation, average values of C,, calculated from
those presented in Tables 7.2 through 7.10, are proposed in Table 7.11,. These values can
be used for the purpose of estimating the average reservoir pressure, the procedure for

which will be explained later.

Upon dimensionalization of Eq. (7.15) and substituting Eq. (7.14) in it, one gets,

p=pw+Cqu,u,/k,h, ....... S PP PS (716)

Therefore, ; can be computed from the flowing bottomhole pressure using Eq. (7.16),
provided the system has reached pseudosteady state. This equation shows a linear
relationship between the average reservoir pressure and the flowing bottomhole pressure

at pseudosteady state in a compartmentalized system.
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TABLE 7.2: VALUES OF C, FOR WELL LOCATIONS IN A COMPARTMENTALIZED
SYSTEM WITH X/Y = 0.5, s = 100

Well location Cw

1 3.033

3.09

3.03

3.2

2
3
4 3.192
S
6

3.123
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TABLE 7.3: VALUES OF C. FOR WELL LOCATIONS IN A COMPARTMENTALIZED
SYSTEM WITH X/Y = 0.5, s = 1000

Well location Cv
1 41.53

2 416
41.53
4 41.76
) 41.65
6 41.66

TABLE 7.4: VALUES OF C., FOR WELL LOCATIONS IN A COMPARTMENTALIZED
SYSTEM WITH X/Y = 0.5, s = 10000

Well location C.
1 469.9
2 469.97
3 469.89
4 470.15
5 470.0
6 470.03

TABLE 7.5: VALUES OF C., FOR WELL LOCATIONS IN A COMPARTMENTALIZED
SYSTEM WITH XY=1,s = 100

Well location Cv

1 3.26

3.26

3.18

336

2
3
4 3.31
5
6 3.23
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TABLE 7.6: VALUES OF C. FOR WELL LOCATIONS IN A COMPARTMENTALIZED
SYSTEM WITH X/Y =1, s = 1000

Well location Cv
1 41.84
2 41.83
3 41.73
4 41.93
5 41.96
6 41.82

TABLE 7.7: VALUES OF C. FOR WELL LOCATIONS IN A COMPARTMENTALIZED
SYSTEM WITH X/¥ = 1, s = 10000

Well location C.
1 470.24
2 470.23
3 470.12
4 470.38
5 470.37
6 47022

TABLE 7.8: VALUES OF C. FOR WELL LOCATIONS IN A COMPARTMENTALIZED
SYSTEM WITH X/Y =2,s = 100

Well location C,
1 3.56
2 3.77
3 3.55
4 3.68
5 3.8
6 3.56
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TABLE 7.9: VALUES OF C. FOR WELL LOCATIONS IN A COMPARTMENTALIZED

SYSTEM WITH X/Y =2, s = 1000

Well location Cw
1 42.23
2 42.07
3 42.37
4 4237
5 42.1
6 42.69

TABLE 7.10: VALUES OF C. FOR WELL LOCATIONS IN A COMPARTMENTALIZED

SYSTEM WITH X/Y =2, s = 10000

Well location Cw
1 470.96
2 470.57
3 470.49
4 470.97
5 470.77
6 470.51

TABLE 7.11: AVERAGE VALUES OF C. FOR DIFFERENT VALUES OF SKIN FACTOR IN A

COMPARTMENTALIZED SYSTEM

Skin factor Cw
100 3.26
1000 419
10000 470.7
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Figures 7.5 and 7.6 show the comparison of the predicted dimensionless wellbore
pressures at late time using the recommended values of C,, from Table 7.11 with those
from the analytical solution. As mentioned earlier, the values of C, are valid at
pseudosteady state. The onset of pseudosteady-state flow in Figs. 75 and 7.6 1s
indicated by flattening of the Cartesian derivative corresponding to a skin factor. These
figures show that the predicted values (discrete points) of dimensionless pressure at late

time match well with the values from the analytical solution.

In this Chapter, a simple diagnostic technique has been developed to identify poor
hydraulic-communication between compartments from p,’ vs ¢ plots. Procedures leading

to the computation of the hydrocarbon reserve in each compartment and in the entire

reservoir, and the average reservoir pressure from the extended drawdown data have also

been developed.
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Figure 7.5: Comparison of the predicted dimensionless wellbore pressure
at late time with that from the analytical solution with X/Y =2.
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Figure 7.6: Comparison of the predicted dimensionless wellbore pressure
at late time with that from the analytical solution with X/Y =0.5.
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CHAPTER 8
DISCUSSION, CONCLUSIONS AND RECOMMENDATIONS

8.1 General Discussion

In this study, the necessary analytical solutions have been developed to help understand
the transient behavior of a number of compartmentalized systems. Poor communication
between an adjoining pair of compartments has been comprehensively modeled as being
due to the presence of a thin skin at the interface. As a result of this, the rate of fluid
crossing the interface is primarily dependent on the amount of pressure (or potential)
drop occurring across the skin. The value of the skin factor regulates the amount of
pressure (or potential) drop. The higher the value of the skin factor, the higher pressure
(or potential) drop that will occur across the interface, while the other parameters of the
system remain the same. This approach of estimating the amount of fluid communication
is more comprehensive than that which has been considered in the literature using the

concept of barrier transmissibility.

New analytical solutions have been developed for transient flow in compartmentalized
systems with the flow govemed by one-, two- and three-dimensional Cartesian
representations. Attempts have been made to include more complicated situations by
extending one-dimensional to three-dimensional systems. These solutions are more
rigorous than models based on the material balance technique (tank models) because of the
fact that these new analytical solutions include the shape, size, internal resistance to flow
and the contrasts of rock and fluid properties of a compartmentalized system.
Nevertheless having more parameters with regards to rock and fluid properties and the
geometry of the system in the analytical solutions makes the problem of non-uniqueness
worse. This problem can be minimized when an estimation of some (if not all) of the

parameters, with a high confidence level, is available. Despite the problem of non-
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uniqueness, the analysis proposed in this study enables a better production (or pressure)
match in compartmentalized systems. That is, this new approach is expected to overcome

the shortcomings of the material balance techniques.

In order to develop the new solutions, an integral-transform technique for finite,
composite domains has been used. The properties of this technique that are considered to
be important include:

e it is applicable to finite, composite domains;
e it is capable of dealing with multi-dimensional variables (e.g., 3 dimensional

space variables);,

e it has convenient transformation and inversion processes.

To the best of the author’s knowledge, this method has not been used in the Petroleum
Engineering literature. This integral-transform technique has proved itself to be very
efficient and useful in complicated scenarios like compartmentalized reservoirs. Also,
there are a lot possibilities for improvement of the simple solutions that are already
known in the well-testing literature. Attempts to improve such solutions have usually
failed because of the inability to deal with multiple independent variables or the process
of inversion, as sometimes occurs when using the Laplace-transform technique.
Application of a very powerful technique, such as the integral-transform technique, may
prove to be useful when revisiting some of these simple solutions in the literature for the
purpose of improving their utility. This could lead to increasing the number of tools that

are currently available for analyzing and interpreting well-test data.

Equivalent production rates of compartmentalized systems with multiple wells and
multiple rates have been developed with respect to the same compartmentalized system
and to homogeneous systems. The ideas of equivalence have been illustrated by generating
results from the mathematical expressions. The purpose of such equivalence is to

integrate the interference of wells due to production into an equivalent system.
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New solutions have been used for studying the transient behavior of different
compartmentalized systems. The systems that have been considered include a linear
system, a system with a small compartment in communication with a big one, a two-
compartment system and a stacked channel realization. The effects of the inclusion of the
resistance to flow and the contrast of the rock and fluid properties have been investigated.
Correlations and time criteria have been proposed with the help of identifying different

flow regimes.

An extended drawdown analysis for a compartmentalized system has been presented.
Evidence has also been presented in Sub-Section 6.3.1, Chapter 6 and Sub-Section 7.3.1,
Chapter 7, to show that a partially-communicating fault or barrier acts as a sealing fault
temporarily for some time. During this period, by taking advantage of pseudosteady-state
flow, it is possible to obtain information about a compartmentalized system from
extended tests. A new, but simple, diagnostic technique has been developed to identify
any poor hydraulic communication between compartments from drawdown data. It has
been shown that estimation of the hydrocarbon pore-volume in each compartment, the

total reserve and the average reservoir pressure, is possible from the late-time data.

8.2 Conclusions

Based on the study presented in the preceding Chapters, the following conclusions are

drawn:

1. New generalized solutions for transient flow in one-, two- and three-
dimensional coordinate systems have been developed analytically. These solutions
have been validated by comparing a number of simplified cases with those

available in the literature.
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2. The principle of reciprocity has been found to be applicable with the new
solutions, provided the conditions at the extreme boundaries of a
compartmentalized system are of the homogeneous Dirichlet-, Neumann-type or a

combination of these.

3. The slope of the dimensionless pressure profile with respect to dimensionless
time on a log-log plot increases to slightly more than 1/2 as the infinitely-acting
linear flow period ends for a non-zero value of the skin factor in a linear

compartmentalized system.

4. Time criteria for the start of the pseudosteady-state flow period confirm that a
higher value of the skin factor delays the onset of the pseudosteady-state flow

period in a compartmentalized system.

5. The effect of the boundaries starts, or the infinite-acting radial flow ends, at fpz
= 0.101, regardless of the combination of boundary conditions or of the value of
the skin factor in a system comprising a small, producing compartment in
communication with a big one. In such a system, the dimensionless time required
to reach steady state becomes shorter with an increase of the surface area for fluid
communication with the same value of the skin factor. Dimensionless wellbore
pressure at steady state decreases with an increase of the surface area for fluid
communication with the same value of the skin factor. The presence of a
communicating boundary with a higher value of the skin factor requires a longer

time to make up the pressure drawdown in the small compartment.

6. A higher, or lower, value of the mobility ratio in the supporting compartment

has little effect on the Cartesian derivative of the dimensionless pressure
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responses at the wellbore in the producing compartment. This is due to the fact
that the resistance to flow at the interface boundary dominates the internal

resistance to flow in the supporting compartment.

7. The storativity ratio in the supporting compartment has an effect on the
Cartesian derivative profiles, especially at a high value of the storativity ratio

during late times.

8. For low storativity of the supporting compartment, the system behaves as if

there is no communication of potential support to the producing compartment.

9. A partially-communicating barrier between a pair of adjoining compartments
behaves as a sealing barrier temporarily for a certain period of time. This period
lasts longer for a higher value of the resistance to fluid communication (skin

factor).

10. Based on the observation made in Item 9, a simple diagnostic technique has
been developed to detect any poor hydraulic communication between
compartments from drawdown data. Observation of multiple plateaus in p,’
(Cartesian derivative of wellbore pressure or potential) vs. fis an indication of the
presence of pressure (or potential) support through partially-communicating
barmier(s).

11. The observation made in Item 9 has also been utilized to develop a method for

computing the hydrocarbon reserve in each compartment and in the entire

reservoir from extended drawdown data.
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12. A new method has been proposed to compute the average reservoir pressure

from the flowing bottomhole-pressure data.

8.3 Recommendations

Upon the conclusion of this study, the following areas are recommended for further

study:

1. Developing analytical solutions of some simple problems with enhanced
features to improve the current level of understanding of the transient-pressure
behavior for the flow of fluids, taking advantage of the ability of the integral-

transform technique to deal with multi-dimensional flow situations.

2. Developing solutions for the flow of natural gas in compartmentalized systems
using the necessary transformations for pressure-sensitive gas properties. If the
potential formulation is used, it must be considered in terms of energy per unit

mass to make it consistent with the ideas of Hubbert (1940).

3. Extending the solutions for the flow of multiphase fluids in compartmentalized
systems by using the necessary transformations for pressure-sensitive fluid

properties.

4. Using the solutions for transient flow developed in this study for understanding

reservoir heterogeneity.
Item 1 is concerned with developing the analytical solutions for more complicated

problems than the existing ones. One of the obstacles to obtaining such solutions has been

the limited ability of the techniques in use (e.g., Laplace transform) to deal with multiple
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independent variables (e.g., space coordinates). The development of such new solutions
by utilizing an integral-transform technique for finite domains is expected to improve the
understanding of transient-pressure behavior, as compared to that obtained using
conventional techniques. With the proposed solutions in Items 2 and 3, different time
criteria for compartmentalized systems should be developed for the purpose of
understanding the transient behavior of the flowing fluids. Item 4 necessitates the use of
an analytical solution for understanding the reservoir heterogeneity in terms of the
variations of rock and fluid properties. The solutions developed in this study, and those
recommended to be developed in the future, take proper account of the intemnal resistance
to flow and the contrasts in fluid and rock properties, including anisotropy.
Consequently, these solutions can be used to characterize reservoir systems wherein the

compartmentalization is not as prominent as the reservoir heterogeneity.
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APPENDICES

APPENDIX A
COMPUTER PROGRAM FOR ONE-DIMENSIONAL FLOW SYSTEM

This appendix presents the computer program for computing the numerical values from
the analytical solution for a one-dimensional linear, compartmentalized system as
developed in Chapter 2.

A.l1 Source Code

* Program: 1.f

PO R A R R R A R R A R AR R A A A A A A A A A AR AR A AL R AR R AR AR S

. COMPARTMENTALIZED RESERVOIRS IN A 1-DIMENSIONAL SYSTEM

R R xRS R A R A AR R A A A A A R A A A A R A A A A A A R A A AN S S ARl

. Variable Identification List
D T L L R R R R

- NC = Number of compartments

. XXD(I} = Locations of boundaries along x-axis

- F{I) = Storativity ratio in ith compartment

. EM{I) = Mobility ratio :n i1:th compartment

. AL{I) = Def:ned :in Eg. {2.7)

hd E{I) = Defined :n Egq. (2.9}

. U = 1/s (s = skin factor at an interface)

M AD(I) = Dimensionless location of a producing well at .th CScmpartment

- NTS!I) = Number of variable rates that the well at :1th Zompartiment procuces
M QD(I, J} = Dimensionless production rate from ith compartment witn jth rate
h TPD(I, J) = Dimensionless time at which ith production rate ccmmences in the
. well at ith compartiment

. TSD(I, J} = Dimensionless time at which jth product:.or rate ceases 1in the

. well at ith compartment

. TD = Dimensionless time

. PD = Dimensionless pressure

ht DERL = Particular derivative for i1nfinite—acting linear Iiow

v CDER = Cartesian derivative

IMPLICIT REAL*8(A-H,0-2)
COMMON/TL1/XXD(4)
COMMON/T2/AL (2
COMMON/T3/E(2)
COMMON/T4/U
COMMON/TS/N(3)
COMMON/T&/AD(3)
COMMON/TT/NTS (3)
COMMON/T8/QD(3,2),TPD(3,2},TSD(3,2)
COMMON/T 9/ QDSUM
COMMON/T10/GBSUM
COMMON/T12/CO (3}
COMMON/T13/EI(2000}, KK
COMMON/T16/AA1, XD
COMMON/T120/ML
OPEN(4,FILE="inld.d")
OPEN (3, FILE="rdald.d")
OPEN{7,FILE="'c.0")
NC=2
NNX=2*NC
CALL INPUT(NC)

CALL DATA(NC)
CALL RADMIN
FAL=0.1
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FAL1=22.0
WRITE(7,51)

FORMAT (3X, 'TD', 15X, 'PD', 15X, 'DERL’, 15X, "CDER "}
TD=0.01
DO 5 I=1,30
IND=0

CALL PRIME(TD,PD,DERL,CDER}

WRITE(7,50)TD, PD, DERL,CDER

FORMAT (F10.3,5X,F15.3,F10.3,F10.3)

IF(TD.LT.FAL)THEN

TD=TD+0.01

IND=1

ENDIF

IF(IND.EQ.1)GO TO S

IF({TD.GT.FAL.AND.TD.LT.FALL) THEN

TD=TD+2.0

IND=1

ENDIF

IF{IND.EQ..:GC TO S

IF(TD.GT.FAL)THEN

TD=2.0*TD

ENDIF
CONTINUE
STC?P
END

SUBROUTINE INPUT(NX)

SUBROUTINE READS DIMENSIONS, ROCK AND FLUID PROPERTIES
IMPLICIT REAL*8(A-H,0-1)

COMMON/T./XXD4)

COMMON/TZ/ALI(Z)

COMMCN/T3/E{2!

CCMMON/T4/U
COMMON/TS/N2
COMMON/T6/AD 2}
COMMON/T7/NTS(3)
COMMON/T8/QD(3,2:,7PD(3,2},TSD(
COMMON/T9/ QDSUM
COMMON/T10/GBSUM
COMMCN/T12/C0O(3)
COMMON/T135/P2DO(3)

DIMENSION EM(2),F1(2)

READING GEOMETRIC DIMENSIONS OF EZACH COMPARTMENT
READ(4, ) (XXD(I}),I=1,N¥~1)

READING OIMENSIONLESS INITIAL PRESSURE IN EACH COMPARTMENT
READI(4,* ! (PDO(I},I=1,NX)

READING RCCK AND FLUID PROPERTIES IN EZACH COMPARTMENT
READ(4,*) {(EM(L), L--1,NZX}

)

s

CONTINUE

READING TRANSMISSIBILITY COEFFICIENT AT EACH INTER-COMPARTMENT
BOUNDARY

READ(4,*])S

WRITE(7,51)S

FORMAT ( 'SKIN FACTOR = ',E7.1)}

u=1.0/8

READING WHETHER A COMPARTMENT HAS A WELL, N(L)=0 MEANS NO WELL

READ(4,*) (N(L),L=1,NX}

READING LOCATION OF EACH WELL

DO 4 I=1,NX

IF(N{I}.NE.O) THEN

READ(4,*JAD(I)

ENDIF

CONTINUE

RETURN

END

SUBROUTINE COEFF(EVV, FA)

THIS SUBROUTINE CREATS A COEFFIENT MATRIX
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IMPLICIT REAL*8(A-H,0-2)
COMMON/T1/XXD{4}
COMMON/T2/AL (2}
COMMON/T3/E(2)
COMMON/T4/U
COMMON/T14/AR{3)
DIMENSION FA({3,3)

po 101 I=1,2
AR(I})=EVV*DSQRTI(E(I))
CONTINUE

V1=DSQRT (E(1))
V2=DSQRT(E(2))

0

bt

FA(1,1)=DCOS{AR(1)*XXD(2))-EVV*AL(1)*V1I*DSIN(AR(1l}*XXD(2

FA(1,2)=-V2*DSIN(AR(2)*XXD(2)}
FA(1,3)=-V2*DCOS(AR(2)*XXD(2}}

FA(2,1)=-AL(1)*V1*DSIN(AR(1)*XXD(2)}
FA(2,2)=-AL{2)*V2*DCOS(AR(2)*XXD(2)!
FA(2,3)=AL(2)*V2*DSIN{AR(2)"XXD(2})

FA(3,1)=0.C
FA(3,2)=DCOS(AR(2)*XXD(3))
FA(3,3)=-DSIN(AR(2)*XXD(3)}
RETURN

END

SUBROUTINE DCOEFEI(ZV, TR)

THIS SUROUTINE COMPUTES DERIVATIVE
IMPLICIT REAL*8(A-H,0-I}
COMMON/T1/XXD(4}
TOMMON/T2/ALIZ)

COMMON/T3/E. 2.

JOMMON/TS/U

TOMMON/T14/AR(3)

CIMENSION FA{Z,3),VR(2}

¢ 10l I=i,C
AR(IV=EVV-DSQRT(Z (I}
YR{I}=DSQRT(E!{I}}

PR CONTINUE

-

r---DS*N(AR(l:'XKD(Z);'VRCI"l!

‘T2

AZ==CSIN(ARIII*MXD(Z),;/U-AR{1}*DCOS AR{

TA(I,li=Al-AL(L;"VR{1I"A2

?A(l,2)=—DCOS(AR(2"XXD(Z))'VR(:}'KXD(
TA{L1,3)=0SIN{ARII}*XAXD(2))*VR (2}~

ZACH

ELEMENT OF THE

FA{Z,1)=-AL{1)*DCOS{AR{L1})*XXD(Z} ) *E(1}*XXD(Z
FA(2,2)=AL{2)*D3COS{AR(Z)*XXD(2) )'E(:)'.(.’..‘(.'}
FTAIZ,3)=AL{(2)*DCOS(AR(2)*XXD(2) 1 *E(2i"XXD(2)
TA{3,1)=C.C
FA{3,2)=-DSIN{RR{2)*XXD(3}*/R(2}*X¥D(3)
TA(3,3)=-DCOS{AR(2})*XXD(3)i*VR(2)}*XXD(3}
ETURN

END

SUBROUTINE DATA({NX)

THIS SUROUTINE READS OTHER DATA
IMPLICIT REAL*E8{A-H,0-2
COMMON/T16/ARL, XD
COMMON/T1Z20/ML
READ (3, *)AAL
READ(3,*)1XD
READ(3, ML
RETURN
END
SUBROUTINE EIGEN(VI1,VIZ,EV)

THIS SUROUTINE COMPUTES EIGENVALUES USING MCDIFIED REGULA

IMPLICIT REAL*8(A-H,0-2)

DIMENSION AA(3,3),BB(3,3),CC(3,3)

CALL COEFF(VII,RA}

CALL DETER(AA,3,3,ADl)

CALL COEFF({VI2,BB)

CALL DETER(BB, 3,3,AD2)
EV=(VI1*AD2-VIZ*ADl}/ (AD2-AD1)
CALL COEFF{EV,AA)

CALL DCOEEF(EV,BB)

SUM=0.0

po i 1=1,3
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-

-

THIS SUROUTINE ARRANGES JACOBIANS

CALL MAT!(I,2,AA,BB,CC)

CALL DETER(CC, 3,3,DV)
SUM=SUM~+DV

CONTINUE

CALL DETER(AA, 3, 3,AD!
DEV=-AD/SUM

EV=EV+DEV
IF(DABS(DEV).GT.1.0D-12)GO 7O
RETURN

END

SUBROUTINE MAT (JKF,NI,AB,BC,CA)

IMPLICIT REAL*B(A-H,0-2)
DIMENSION AB(NI,NI;,BC{NI,NI),CA(NI,NI}
Do 2 I=1,NI
50 2 J=1,NI
IF{I.EQ.JKF)THEN
CA(I,Jy=BC(I,J)
ELSE
CA{I,J)=AB(I,J]}
ENDIF
CONTINUE
RETURN
END
SUBROUTINE RADMIN
IMPLICIT REAL*S(A-H,0-2)
COMMON/T11/EV{15000000;,UD(15CC00C0)
COMMON/T13/EI(2000),KK
COMMCN/ T14/RAR!{ 2]
COMMON/T16/AAL,XC
COMMON/T.2C/ML
DIMENSION AEL (2703, ,AEZ(ZCOC:

CALL AROCTS M

ULLAH=UD(L)/UD(L-1;
DER3=ULLAH
IF(ULZAH.LT.1.23-17)

MM=MM= L

AZ2 (MM )= i
ENCIF
TONTINUE
KK=MM
K=l
K=1
DOWHILE {(K.LE.KK)
PA=AEl (K)
FU=AE2{K)
CALL EIGEN(AREL(X),RE2(K],ABC)
IF{(ABC.GT.FU.CR.ABC.LT.PA)GO TO 2
IF(DABS{ABC}.LE.1.0D-3}GO 70 2

INDI=0

IF{LX.GT.1)THEN
DIFF=DABS (ABC-EI(LX~1})
IF(DIFF.LE.1.0D-03)INDI=1

ENDIF

IF({INDI.NE.OQ}GO TO 2

£I (LX})=ABC

LX=LX+1

K=K+l

ENDDO

KK=LX-1

RETURN

END

SUBROQUTINE PRIME(TD, SUM,DERL,CDER}

THIS SUROUTINE COMPUTES DIMESIONLESS PRESSURE AND ITS

IMPLICIT REAL*B(A-H,0-2)
COMMON/TL13/EI{2000},KK
COMMON/T14/AR(3)
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COMMON/Ti6/AAL, %D

DIMENSION FF(3,3),GG'=,3),2(21,Q(2}
CALL NOR(VA)

SUM=TD/VA

CDER=1.0/VA

sYy=1.C

LX=1

K=1

DOWHILE (K.LE.XK.AND.DASS(SY).GT.1.0D-17)
CALL COEFF(EI(K),FE!

DO 12 II=1,3

iz CONTINUE
CALL SOLVE({
CALL SOURCE({
SUM=SUM=+SY
CDER=CDER+SC
K=K+1
ENDDO
DERL=CDER* (TD}**0.5
RETURN
END
SUBROUTINE ARRAN({UU,D,G,H|
* THIS SUROUTINE COMPUTES RESIDUE
IMPLICIT REAL*8(A-H,C-Z;
COMMON/T16/AAl, XD
DIMENSION G(Z;,H(2:,2.2,,0U(3,3}
G(1)=0.98
H(l!=AAl

o

PRINT~,
ENDIF
CONTINUE
RETURN
END
SUBRCUTINE ARCOTS(LL:
* THIS SUROUTINE COMPUTES CISCRETE PCINT
REALTBIA-H,C-
COMMON/T11/EV(1300CCCC,,U2(25000000)
DIMENSION AA(3,3)
EV(1:;=0.00000€
DO 100C L=1,LL
CALL COEFF(EVI(L:,AA)
CALL DETER(AA,3,3,UC:il;!
EVIL+1}=EV(L)+0.201
LCCC COCNTINUE
RETURN
END
SUBROUTINE DETER{A,N,NP, D)}
v THIS SUROUTINE COMPUTES DCETERMINANT OF A MATRIX
IMPLICIT REAL*8{A~H,0-I!
DIMENSION A(NE,NP),INDX(€)
CALL LUDCMP(A,N,NP,INDX,D)
DO 11 J=1,N
D=D*A(J, J)
11 CONTINUE
RETURN
END
SUBROUTINE SOLVE({UU,?,Q)
IMPLICIT REAL*B(AR-H,C-2)

(Y1)

COMMON/T16/AAL, XD
DIMENSION UU(3,3),W(2,2),2(2),IND(2),P(2),Q(2}
Ip=2

DO 1 II=i,Z

DO 1 JJ=i,2

W(II,JJ)=UU(II,JJ+1}
M CONTINUE
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Do 5 II=i,l

Z(II)==ARI-UU I, 1}

CONTINUE

CALL LUDCTMP(W,Z,IP,INI, F)

CALL LUBKSBI(W, ?,IND,2)

CALL ARRAN (UU,Z,P,Q)

RETURN

END

SUBROUTINE SOURCE(G,H,ALL,TD,SU,SUD)
THIS SUROUTINE COMPUTES SOURCE TERM

IMPLICIT REAL*8!{A-H,0-2)

COMMON/TL1/XXD{4]

COMMON/TZ/RL{Z!

COMMON/T3/E (2}

COMMCHN/TS/N{3)

COMMON/T6/AD( 3}

COMMON/TT/NTS {2

COMMON/TE/QC 1 3,2:,TP0(3,2:),TSD(3,2}

COMMCN; T.2/CO2:

COMMON/TL4/AR(2)

COMMCM/TLE/AAL, X

LTS
LSS0 I

ARGU=AR (1]
PSIA=G{1!*CSINIARGU) +H (1) *DCOS{ARGU)

SUU=PSIA~CCE/
ARU=AR 1., XC

*CDCOS (ARU)

EC=5G1

CALL

SU=sSUu~

SUD=FSIA~FC>TCEZ/ AN

RETURN

END

SUBRCUTINE NOR. AR
THIS SURCU T

IMPL <

CRM CTCRRESPONDING TC I

COMMON/TL1/¥%42 5
COMMCHN/TIrALIZ
COMMON/TZ2/E: 2,
COMMCN/ TL4/ARZ,

RETURN

END

SUBRQUTINE NORM(A, 3,ABN)
THIS SUROUTIN NCAM

IMPLICIT

CTCOMMON/ 7L/ KD

XKI=KAD(I+1; =X 2

XX2=XAD(I-1)-XXD(I}
AXRI=AR{I)*({XXD(I+1)+XXD{(I))
XXR2=AR(I)*(XAD(I+1)-XXD(I))

S$S=0.5* (AA+BB) *XX2

TT=-0.5* (RA-BB) *DCOS(XXR1) *DSIN (XXR2)/AR(I)
UU=RAB*DSIN(XXR1})*DSIN(XXR2}/AR(I}
ABN=ABN+(E{I)*AL(I))*(SS+TT+UU)

CONTINUE

RETURN
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END
SUBROUTINE LUDCMP(A,N,NP,INDX,D)
* THIS SUROUTINE DEVELOPS DIAGONAL SYSTEM
IMPLICIT REAL*8(A-H,0-2)
PARAMETER (NMAX=10G,TINY=1.00-20)
DIMENSION A({(NP,NP}, INDX(N),VVI{NMAX)
D=1.0
DO 12 I=I,N
AAMAX=TINY
DO 11 J=1,N
IF (DABS(A(I,J)).GT.AAMAX) AAMAX=DABS(A(I,J})
11 CONTINUE
IF (AAMAX.LE.TINY) PAUSE 'Singular Matraix !!!'°
YV(I)=1./AAMARX
CONTINUE
0O 13 J=1,N
DO 14 I=1,J0-1
SUM=A(I,J}
DO 13 ¥=1,I-1
SUM=SUM-A(I,K)*A(K,J}

b=
r

b=
W

CONTINUE
A{I,J)=SUM
14 CONTINUE
AAMAX=C .
DO 16 I=J,N
SUM=A(I,J)
DC 15 K=1,

b
wn

e M
Z
(@)
=
m

Al
" iy

-NE.N} .HEN

18 CTONTINUE
EINIIT
9 CONTINUE
RETURN
END
SUBROUTINE LUBKSB(A,N,NP,INDX,B)
IMPLICIT REAL*8(A-H,0-Z)
DIMENSION A(NP,NP), INDX{N),B{N}
II=0
D0 12 I=l,N
LL=INDX (I}
SUM=B (LL}
B{LL)=B(I)
IF (II.NE.O} THEN
DO 11 J=II,I-1
SUM=SUM-A(I,J}*B(J)
CONTINUE
ELSE IF (SUM.NE.O.) THEN
II=I
ENDIF
B(I)=SUM

}e
'

231



12 CONTINU

SUM=SUM-A(I,J}*B(J}
CONTINUE
B{I)=SUM/A(I,I)

CONTINUE
RETURN
END

(1]

b
o

A.2 Input Files
* Input file: inld.d

0.0 c.5 1.2 <location of bcundaries, XXD(I)>

0.9 0.0 <d:mensionless :i1nitial pressure, PDO(I}>
l.0 100.0Q <mobil:ty ratios in compartments, EM(I}>
1.0 100.0 <storativity ratios in compartments, EF(I)>
0010C.0000C <skin facter at interface>

0.25 0.7% <leocation of wells, AD(I!>

* Input file: rdald.d

J <constant in calculating roots of a linear, homogeneous syste>
2 <locaticn where dimensioniess pressure resgonses te be calculated>
00 <number cf segments to be considerec Icr zalculating eigenvalues,

1.
¢}
9 Ml

o]
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APPENDIX B
COMPUTER PROGRAM FOR TWO-DIMENSIONAL FLOW SYSTEM

This appendix presents the computer program for computing the numerical values from
the analytical solution for a two-dimensional compartmentalized system as developed in
Chapter 3.

B.1 Source Code

* pProgram: 2.f

P e s 2 A R R RS AR A A R A A R R A2 A 2 A A A A A A A A A A AR AR DAL Al

- COMPARTMENTALIZED RESERVOIRS IN A 2-DIMENSIONAL SYSTEM
"""""""""""""'"""""""""""""""""."""'.'v

- Variable Identification List
""'"""""""""""""""""""""""'."'t"""'t"'v'-t

M N = Number of compartments

- XXD(I} = Locations of boundaries along x-axis

o YYD(I) = Locations of boundaries along y-axis

. ALX(I} = Defined in Eg. (3.186)

- ALY(I) = Defined in Eq. (3.17)

v EX(I) = Defined in Eq. (3.11)

M £Y{(I) = Def:ned in Eq. (3.26)

- Uz = ./s :s = skin factor at an interface)

. AD(I, J!, BD(I,J) = Dimensionless coordinates of jth producing well at LIn
o ccmpactment

- NW(I; = Number of wells 10 :1th compartment

- NTS(I, J' = Number of wvariaple rates tnat the jth well at :Ih cmpartment
- produces

- 20(I, J, ¥, = Dimensicnless procduction rate from i1th ccmpariment with 1In
. rate

hd TEZ(I, S, K, = Cimensicnless time an which 1th producticn rate fimmences Lo
- well az 1th compartment

M TSD!I, J, K: = Dimensionliess time at which th procuczicrn rate Zce3ses 1o tne
- well at :th compartment

d TC = Zimensionless time

d PD = Timensicriless pressure

- SD = Semiicg cerivative

- CD = Cartesian derivative

IMPLICIT REAL*8(A-H,0-2)
COMMON/TL1/XXD(3),YYD(2)
COMMON/T2/ALX (2) ,ALY (2}
COMMON/T3/EX(2),EY(2)
COMMON/T4/U2Z
COMMON/TS/NW (2}
COMMON/T6/AD(2,2),BD{2,2)
COMMON/TT7/NTS(2,2)
COMMON/T8/QD(2,2,10),TDT(2,2,10)
COMMON/T11/AAL, XD, YD
COMMON/T21/AR(2)
COMMON/T101/T1(12000),T2(12000),S1(12000},52(12000)
COMMON/T201/T1A(12000},T2A(12000),S1A(12000),S2A(12000)
COMMON/S50/ML
COMMON/SS1/TD
OPEN(4,FILE="1in%9d.d")
OPEN(3,FILE="r9d.d")
OPEN(7,FILE='c.0")

CALL INPUT
CALL DATA

CALL PRE

CALL RADMIN (KK)
CALL PRES(KKK)
TD=0.01
WRITE(7,10)
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FORMAT (8%, 'TD', 10X, 'PD', 10X, ' SEMDER', 10X, "CARDER")
FAL=0.10
DO 1 I=1,23
IND=1
CALL EQEVI(KK,TD,PD,CD)
CALL PCAL (KKK, PC, SD, CD!}

WRITE(7,11,;TD,PD,SD,CD

FORMAT (F10.3,5X,F10.3,5%,F10.3,3X,57.4)

IF(TD.LT. FAL)THEN
TD=TD+0.01
IND=0
ENDIF

IF(IND.EQ.0)GO TC 1
IF(TD.GT.FAL)THEN
TD=2.0"TD
ENDIF
CONTINUE

TOP
END
SUBROUTINE INPUT

IMPLICIT REAL*8(A-H,0-1}
COMMON/T1/XXD(3),YYD(2]
COMMON/TZ/ALX (Z},ALY (2
COMMON/T3/EX(2),EY(2}
COMMON/T4/UZ
COMMON/TS/NW(Z}
CCMMON/T6/AD(2,2),BD(2,2)
COMMON/T7/NTS (2,2}
COMMON/TB/QD{2,2,10;,TDT!(2
DIMENSION AMX(2),AMY(2},E(
READING NO. OF COMPARTMENT
READ(4, *)NX

READING GEOMETRIC DIMENSIONS OF EACH CCOMPARTMENT IN X-CIR
READ(4, * 1 XXD(1),XXD(2),XXD(3)

READ(4,*)YYD(1},YYD(2)
READING DIMENSICNLESS IN
READING ROCK AND FLUID P
REAZ(4,*) (AMX (I}, I=1,2)
READ(4I')(AMY(-J’:=II:;

TIAL PR

I RE IN EACH COMPARTMENT
ROPERT B

ACH COMPARTMENT

READING TRAMSMISSIBILITY CCEFFICIENT AT INTER-COMPARTMENT
BCUNCARY

READ(4,*)S

Uz=1.0/s

WRITE(7,*)'S=",8

WRITE(7,v)'Ml=" AMX(1;, "M2=",AMY 2}

WRITE(7,*)'Fl=",E(1l),"'FI=",E{2}

READING WHETHER A COMPARTMENT HAS A WELL, NW(L)}=0 MEANS NO

READING LOCATION OF EACH WELL

READ(4, *INW(1),NW(2)

0O 230 J=1,NX

IF(NW(J).EQ.0)GO TO 231

DO 23 I=1,NW(J)

READ(4,*)AD(J,I},BD(J,I)

READING NO. OF TIME-INTERVALS IN THE PRODUCTION
SCHEDULE OF EACH WELL

READ(4,*}NTS(J, I}

READING DIMENSIONLESS PRODUCTION RATE, DIMENSIONLESS
TIMES WHEN PRODUCTION STARTS

DO 7 II=1,NTS(J,I)

READ({4,*)QD(J,I,II)

READ(4,*)TDT(J,I,II)

CONTINUE

CONTINUE

CONTINUE

CONTINUE
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RETURN

END

SUBROUTINE DATA

IMPLICIT REAL*8(A-H,0-1;

COMMON/T11/AAY,XD,YC

COMMON/S50/ML

READ(3,*)AAL

READ(3,*1XD,YC

READ({ 3, *)ML

RETURN

END

SUBROUTINE COEFF(ELl,E2,FA}

IMPLICIT REAL*8(A-H,0-2}

COMMON/T1/XXD(3),7YD(2}

COMMON/T2/ALX(2) ,ALY 2}

COMMON/T3/EX(2:,E7T(2)

COMMON/T4/UZ

COMMONM/T21/AR(2)

DIMENSION FA(3,3)

AR(1}=EL1*DSQRT(EX (1)}

AR(2)=E2*DSQRT(EX (2]}
FA(1,1)=DCOS(AR{1}*XAD(2))-ALX(1)*AR(1)*CSIN(AR!1}*XXD(2))/UZ
FA(1,2)==-DSIN(AR{Z;*XXD (2}

FA(1l,3)=-DCOS(AR (2)*%XD(2)}
FA(2,1)=-ALX(1)*AR{1)*DSIN(AR{1)*XXD(2))
FA(2,2)=-ARLX(2;*AR{(Z}*DCOS(AR(2}*¥XXD(2})

FA({2,3)=ALX {2} *AR({2!*CSIN{AR(2)*XXD(2}}

FA{3,1)=0.C
FA(3,2)=DCOS(AR:Z) *X¥D{
FA(3,3)==CSIN(AR 2 ~XXD!

RETURN

ENDC
SUBROUTINE
IMPLICIT REAL®
CCMMON/T1/XXC
COMMON/ T2/ ALY ! ’

COMMON/T3/EX (2. ,E7"

COMMON/T4/7ULZ

COMMON/T2L/AR 2}

CIMENSION FA(Z, 2,

V1=DSQRTI(EX{l)}
=CSQRT(EX (2!
Al==-DSIN(AR(L}*X¥D: 2, | *Vi*XL{T(2!
A2==ALX{1}*V1I*DSITNARIL, *dXD{21 /U2
A3=-ALX{1l}"AR(L1, */1vX¥D({2;*CCCSIAR(1)*XXD(2}))/UZ
FA(1,l1=Al+A2+A3
FRA{L,2)==V2*XXD(Z,*2COS(AR(2)*XXD!2})}
FA(L,3)=V2-XXD(Z)vISIN{AR(2)*XXD{2))
Ad==-ALX{1)*AR(1}*ViI~XXD(2)*DCOS(AR (1) *XXD(2))
AS==ALX {1} *VI*CSIN(AR({1*XXD(2)}

FA{2,1)=A4+A5

AG==~ALX (2)*V2*OCOS(AR{I)*XXD(2))
AT=ALX(2)*AR(2)*V2 XX (2, *DEIN(AR{2)*XXD(2}

FA(2,2]1=A6+AT7

AB=ALX(2)*V2*DSIN(AR(2!*XXD(2)}
R9=ALX(2)*AR(2)*V2~XXD(2) *DCCS(AR{2)1*XXD(2)}))

FA(2,3)=A8+A3

FA(3,1)=0.0

FA(3,2)=-DSIN(AR(2)*XXD(3))
FA(3,3)=-DCOS{AR(Z)*XXD(3}})

RETURN

END

SUBROUTINE EIGEN(VI.,VIZ,EV)

IMPLICIT REAL*8(A-+H,0-2}

DIMENSION AA(3,3),BB(3,3),CC(3,3)

CALL COEFF({VIl1,VIl,6AA)

CALL DETER(AA, 3, 3,AD1)

CALL COEFF(VIZ,VI2,BEB)

CALL DETER({BSB, 3,3,ADZ:

EV=(VI1*AD2~-VI2*ALl}/ (AD2-AD1)

M=0

CALL COEFF(EV,EV,AA}

N
i

;
;
3

(@)
T 0
O
l) w m m
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CALL DCCEEF!EV,BB)

M=M+1

SUM=0.0

po 1 1=1,23

CALL MAT!(I,3,AR,BB,CC)

CALL DETER(CC, 3, 3,DV)
SUM=SUM+LV

CONTINUE

CALL DETER(AA, 3, 3,AD)
DEV=-AD/SUM

EV=EV+DEV

IF(M.GT.1000)GO TO 3
IF(DABS(DEV).GT.1.0D-12)G0 TO 2
IF(M.GT.100C)THEN

EV=10C0000.0

ENDIF

RETURN

END

SUBROUTINE MAT(JKF,NI,AB,BC,CA)
IMPLICIT REAL*8(A-H,C-2)
DIMENSICN AB(NI,NI},BC{NI,NI),CA(NI, NI}

3C 2 I=1,NI

DO I J=1,NI

IF(I.EQ.JKF)THEN
CA(I,2)=BC(I,J)
ELSE
CA(I,J)=AB(I,J)
ENDIT

CONTINUE

RETURN

END

SUBROUTINE GUESS
IMPLICIT REAL~vA!
SOMMON/T10L/T2 225001, T2(12000},81(120361,32(12C90!
PI=DACCS{-1.0500!

RETURN

END
SUBROUTINE FF
IMPLICIT REAL-8!A-H,C-I)

ol
m

COMMON/TLZCL/
JDIMENSION SE!

112300),7T2:12000},81(12000;,82(1200¢C;
200}

o t3
b

SUBROUTINE PRES(M)
IMPLICIT REAL*§(A~H,0-Z)
COMMON/T101/T1(12000),T2
COMMON/TZ201/T1A(12000),T
COMMON/S51/TD
DIMENSION SE{1000)
CALL GUESS
M=0
00 3 J=1,50C
0O 2 I=1,50
DS=S1{I})*S1(I1)-S2(J)*s2(J)
IF(DABS(DS).LT.1.0D-09)GO TO 2
CALL FUNCT(I,DS)
IF(T1(I).LT.1.0D-10.0R.T2(I).LT.1.0D-10)GO TO 2
DIFF=TI(I})-T2(I)
IF(DABS(DIFF).LT.1.0D-05)G0 TO 2
TIA(M)=T1(I)
T2A(M)=T2(I)
S1A(M)=S1(I)

{120003,81(12000;,82(12000;
2A(12000),S1A(12000},S2A(12C0C)
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S2A(M)=82¢(
M=M+1
CONTINUE
CONTINUE
M=M-1
RETURN
END
SUBRCUTINE FUNCT (I, DSQ)
IMPLICIT REAL*8(A-H,0-2)
COMMON/T101/T1(12000},T2(12000},S81(120CC},S2(120C0}
DIMENSION FF(3,3)
MM=Q

[P N ]

102 CALL FL(T1(I),T2{(I),F1Q)
F20=TI{I)*T1(I})-T2{I}"T2(I;~0SQ
CALL DIDL(T1(I),T2(I}),DFL}
CALL DID2(T1{(I},T2(I},DF2)

DF2DT1=2.0*T1{I}
DF2DT2=-2.0"TZ (I}
V=DF1*DF2DT2-CF2*DF2DTL
Ul=(-FlO*DF2DT2-F20*DEF2)/V
TI(II=T1(I})+Ul
J2=(-F20*DF1~-F1O0*DF2DT1)/V
T2(I)=T2¢{I)~U2

MM=MM+1

IF{MM.GE.S0CIGC TO 103
DEL=DABS (F1C) ~DAEBS(FZ0)
IF(DEL.GT...0D-C€)THEN

IVUA=L

ZLSE

TVUA=2

ENDIF
Ifd IVUA.-Q 1130 TC 14z
IF(IVUA.EQ.Z;30 TO 134

1C3 Tl(I)=vOCOOO 3

T:(I)-'OOO“O 3

SUBRCUTINE Tl
IMPLICIT REAL-
TOMMON/ T/ ¥XD
’ONMON/TZ/R;('
ce MMCV/TS/;A(ZI,
COMMON/T4/7J2
RI=0SORT(EX (1)
R2=DSQRT (EX (2!} ;
AR1=EV1I*RI
ARZ=EY2vRZ
X=XXD(3)-XXD{Z}
W1=-AR2*DCOS(AR1*XXD(2!}*DSIN(ARZ*X)
W2=ALX(1}*ALX(2)*AR1*AR2*DSIN(ARI*XXD(Z})}*DSIN(AR2*X})/UZ
5==ALA(1)*ARLI*DSIN(AR1*XXD(2))*"DCOS(AR2~X;

FA=W1+W2+W3
RETURN
END
SUBRCUTINE FCAL{NM, SU,SSD,SUD)
IMPLICIT REAL*8{A-H,0-2)
COMMON/T21/AR (2}
COMMCN/T201/T1IA(12000),T2A(12000),S1A(12000),S
COMMON/SS51/TD
COMMON/S52/G(2),H(2)
DIMENSION FE(3,3),5G(3,3)
S50 1 I=1,NM
Al=TlA(I)
Bl1=T2A(I)
Cl=S1A(I}
D1=S2A(I)
ALU=Al*Al1+Cl*Cl
CALL COEFF{(Al,Bl,FF)
DO 12 II=1,3
Do 12 JJ=1,3
GG(II,JdJ)=FF(II,JJ}

12 CONTINUE

ru’m(q

2000)

.4
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CALL SOLVE(FF,G,H)

CALL SOURCE(Al,B1,Cl,Di,SY)
CALL PDSUM(ALl,B1,Cl,Dl1,S)
CALL soupP(A1,Bl,Ci,D1,SD)
SU=SU+S*SY
SUD=SUD+SY*SD-ALU*S*SY
CONTINUE

SSD=TD*SUD

RETURN

END

SUBROUTINE INVAL(T,P,DP)
IMPLICIT REAL*8(A-H,0-2)
COMMON/T1/XXD(3),YYD(2)
COMMON/T2/ALX (2} ,ALY (2)
COMMON/T3/EX(2),EY(2)
COMMON/TS/NW({2)

AN=0.0
QSsuU=0.
DO i I=i,2

AN=AN+EX (I)*ALX(I)*(XXD(I+1)~-XXDI(I})
DO 2 J=1,NW(I)

IF{NW(I).EQ.QIGO TO 2

CALL FTD(I,5,T,Q)
QSU=QSU+EX {2} *ALX(2}*Q

CONTINUE

CONTINUE

AN=AN* (YYD(2Z)-YYD(1}}

DP=QSU/AN

P=T*0P

RETURN

END

SUBRCUTINE EQEV(XK,TD,SUM,SUD)
IMPLICIT REAL*8(A-H,0-I)
COMMCN/S2/EV(1GCQ0},UD({10000)
TOMMON/33/EI(2Q00)
COMMON/T11/AARLl, XC,7D
COMMON/T21/AR( 2!

0

COMMON/T101/T1{120C0),TZ(12000),81{1203¢;,3Z!2

COMMON/SS0/ML
COMMON/SS2/G(Z;,H!Z)
SIMENSION FF(3,3),GG(3,3;

CALL INVAL:TD, 3UM, SUD)

SAL=J.2

SA2=0.2

0O 11 KY=l,3C0

30 10 ¥=1,KK

CALL COEFF(EI/K),EI(K),FF)

oC 12 II=1,3

20 12 JJ=1,3

GG(II,JJ)=FF(1I,JJ)

CONTINUE

ALUSEI(K)YEI(X)+S1(KY}*S1({KY)
VE{(FF,G, H)

CALL SCURCE(EI(K),EI(K),SL{KY},S1(KY),SY;
CALL PDSUM(EZI(X),EI(K),Si(KY},S1(KY},S)
CALL SOUP(EI(K),EI(K},S1!(KY),S1(KY},SD:
SUM=SUM+SY*S
SUD=SUD+SY~*SD-ALU*SY*S
CONTINUE
ALY=S1(KY)*S1l(KY)
CALL PDSU(S1l(KY),SlY)
SAl=SAl+SlY
CALL PDSD(S1(KY},S2Y)
SA2=SA2+S2Y-ALY*S1lY
CONTINUE
SUM=SUM+SAl
SUD=SUD+SA2
RETURN
END
SUBROUTINE RADMIN (LX)
IMPLICIT REAL*8(A-H,0-2)
COMMON/S2/EV(100000600),UD(1000000QC)
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COMMON/S3/EI(200C)
COMMON/S50/ML

DIMENSICN AE1{2000),AE2(2G00!
CALL AROOTS

LX=0

DO 1 L=1,ML-1
IF(DABS(UD(L)}.LE.1.0D-12:THEN

ABC=EV (L)
GO TO 420
ENDIF

IF(DABS(UD(L+1)).LE.1.0D-12)THEN
ABC=EV(L+1l}
GO TO 420
ENDIFE
ULLAH=UD(L}/UD(L+1)
IF(ULLAH.GT.0.0)GC TO 1
PA=EV(L)
FU=EV(L+1)
CALL EIGEN(EV(L),EV{L+l},ABC)
IF(ABC.GT.FU.OR.ABC.LT.PA)GC TO
IF{ABC.LE.1.0D-5)GC TO 1
INDI=0
IF(LX.GT.1)THEN
CIFF=DABS (ABC-EI (LX)}
IF(DIFF.LE...30-03)INDI=1
ENDIF
IF(INDI.NE.C}GO TO
L¥=LX~+1
EI{LX)=AEC
CONTINUE
LX=LX~-1
RETURN
END
SUBROUTINE GENEI(SE!
IMPLICIT REZAL*8(A-H,0-1]
COMMON/TL1/XXD12),YYDI(2)
COMMON/TI/EX(Z),EY{D!
,-MENC ON SE(1CQ0)
=DACOS(-1.230+20!
DO 100 ‘=-,300

SUBROUTINE ARRAN({UU,D,G,H)
IMPLICIT REAL*E€(A-H,0-1)
COMMON/TI1/AAL,XE, YD

DIMENSION &(2),H(2!,D(2),UU(3,3)
3(1)=0.0

H(l)=ARAl
5(2)=0¢{1}
H(Zy=C{2:
20 5 I=1i,3

T=H(L}*UU(I,1)+G(2)"UU(I,2})=H{2)*UU!I, 3}
IF(DABS(V).GE.1.D-5) THEN
PRINT*, 'WARNING! RESIDUE IS HIGH!!',V
ENDIF
CONTINUE
RETURN
END
SUBROUTINE AROQOTS
IMPLICIT REAL*8(A~H,0-Z;
COMMON/S2/EV(10000000},UD(1C000C092)
COMMON/S50/ML
DIMENSION AA(3,3)
EV(1)=0.000006
DO 1000 L=1,ML
CALL COEFF(EV(L),EVI(L),ARA)
CALL DETERI(AA,3,3,UD(L)}
EV(L+1)=EV(L)+0.001
CONTINUE
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RETURN
END
SUBRCUTINE DETER(A,N,NP,D;
IMPLICIT REAL*B8(A-H,0-2!
DIMENSICN A(NP,NP),INDX(6}
CALIL LUDCMP(A,N,NP, INDX,D)
D0 1l J=1,N

D=D*A(J,J)
CONTINUE
RETURN
END
SUBRCUTINE SCLVE(UU,P,Q)
IMPLICIT REAL*8(A-H,0-2)
COMMCN/T11/ARL, XD,YD
DIMENSION UU(3,3),W(2,2),2{2),INDI2),P(2}),Q(2)

Iy==AAIYUUIII, L:

LUDCMP(W,2,IP,IND,F)
_UBKSB(W,2,IP, IND,2)
L ARRAN(UU, Z,?2,Q!

IMPLICIT REAL*2!A-H,0-1)
COMMCN/TI/ENIZG ,EYZ,
COMMCN/ TLL/AARL, XD, YD
TOMMON/TI2L/AR(D)

DIMENSION F£F (3, 32:,GG(3,3)

TRIL NOCRMI(G,H,AN)

ARY1=EY:!1)*DSQRT(AYL}

CA=G {1 *CSINAR(I*XI!+H(1;*0COS ARl XD,

DY=CCCS {ARY1"YD)
PC=Cx~C

Sy=£C/{J.5AN}

RETURN

ZNT

SUBROUTINE PDSUM(ALL,ALZ,AYI,A
IMPLIZIT REAL*8(A-H,0-2)
COMMON/TX/¥XD{3),YYD(2)
COMMON/TZ/ALX(2),ALY (2)
COMMON/T3/EX(2),EY(2)
COMMCN/T4/UZ

COMMON/ TS/NW(2}
COMMON/T&/AD(2,2),BD(Z,2;
COMMON/T7/NTS(2,2)
cCoMMCN/TB/QL(2,2,103,TDT(2,2,10}
COMMON/T21/RR (2}
COMMON/S51/TD
COMMCN/SE2/G(2) ,HI(2)
DIMENSION DUMT (20)
ARY1=AY1*DSQRT(EY (1l})
ARY2=AY2*DSQRT(EY (2))
ALU=ALLI*AL1+AY1*AY1l
£D5=0.C

DO 227 IA=1,2
IF(NWIIA).EQ.0)GO TO 201
DO 200 JB=1,NW(IA)

INDEX=1

<
(K]
-~

g
Q
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0O 2 K=2,NTS(IA,JB)
IF{INDEX.EQ.2!GO TO =
IF(TC.LE.TDT(IA,JB,K) )THEN
JKF=K-1
INDEX=0
ENDIF
CONTINUE
IF(INDEX.EQ.O) THEN
L=JKE
ELSE
L=NTS (IA,JB)
ENDIF
Do 50 KI=1,L
DUMT (KI)=TDT{IA,J B, KI}
CONTINUE
DUMT (L+1)=TD
Do 1 I=1,L
TTi=ALU* (DUMT(I}-TD)
TT2=ALU* {DUMT (I+1}-TD)

DEX=G(IA)*DOSIN(AR({IA)*AD(IA,JB!)+H{(IA)*DCOS{AR{IA}*AD(IA,JB);

IF(IA.EQ.1)THEN
DEY=DCOS (ARYL*BL{IA,JB))

ELSE
DFY=DCOS (ARYZ*BC(IA,JB} !

ENDIF
VALU=ALY (Z)*DEX*DEY/ALU
PDS=PDS+QD(IA,JB,I)*{DEXP{TT2)-CEXFtTT1}*VALU
CONTINUE

CONTINUE

CONTINUE

ZONTINUE

RETURN

END

SUBROUTINE PDSIT(ALLY, FDS:
IMPLICIT REAL-3(A-H,C-I;
TOMMON/TL/XXT13;,7YD 2
TOMMON/T2/ALA (2 ,ALY 2
COMMON/ TZ/EX LJEYL2G

TOMMON/ T4/ U
COMMON/TS/NW( )
CCMMCON/T6/AD(2,2;,801(2,2)
CTOMMON/TT/NTS(Z2, 2
COMMON/T8/QD(Z,2,10},TCT!
COMMON/T1I/AAL,XC,7C
COMMON/SS1/TD
DIMENSION DUMT(IG),ALV(Z)
ALU=ALLY*ALLY
PDS=C.13
INDI=Q
IF(DABS(ALLY).LT.1.0D-3}THEN
INDI=1
ENDIF
ALV{1}=ALLY*DSQRT(EY (1)}
ALV (2)=ALLY*DSQRT(EY(2))
IF{INDI.EQ.1)GO TO 3323
Do 1 I=1,2
IF(NW(I}.EQ.0)GO TC 1
DO 2 J=1,NW(I)
DEY=DCOS(ALV{I)}*BD(I,J}}
DEYY=DCOS (ALV(I)*YD)
CALL FTD(I,J,TD,Q)
VALU=Q~DEFY*DEYY~ ALY (2}
PDS=PDS+VALU/O0.5
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE PDSU(ALLY, PDS)
IMPLICIT REAL*8(A-H,0-2)
COMMON/T1/XXD(3),YYD(2)
COMMON/T2/ALX(2),ALY {2)
COMMON/T3/EX(2),EY(2)
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COMMON/T4/U2Z
COMMON/TS/NW(Z}
COMMON/T6/AD(Z,2),8Dt2,2)
COMMON/TT/NTS(2,2)
COMMON/T8/QD(2,2,10},TDT(2,2,10;
COMMON/T11/AAL,¥D,YD
COMMCN/SS51/TD
DIMENSION DUMT(20},ALV(2)
ALU=ALLY*ALLY
INDI=0
PDS=0.0
ALV(1)=ALLY*DSQRT(EY (1)}
ALV(2}=ALLY*DSQRTI(EY(2})
IF{DABS{ALLY}.LT.1.0D=2)THEN
INDI=1
ENDIF
IF(INDI.EQ.1:GC TO 332
00 220 IR=L,2
IF(NW(IA).EQ.0})GO TO 20C1
30 200 JB=1,NW(IA)
INDEX=1
00 2 K=2,NTS(IAR,JB)
IF{INDEX.EQ.J)3C TC 2

IE(TC.LE.TOT:IA,JB, K} I THEN
JKF=K-1
INDEX=0
ENDIT
ZONTINUE
IF(INDEX.EQ. 3! THEN
L=JKF
ELSE
L=NTS{IA,JE!
ENDIT

20 36 ®KI=L,C
DUMT(KI ) =TIZT:IA,JE,KI}
CONTINUE

DL TilL-l=TC

PON*’NUL

ONTINUE
RETURN
END
SUBROUTINE SOUP'ALL,ALZ,AYL,RY2,
IMPLICIT REAL®S(A-H,0-2)
ZCMMON/TL/XXD(3),Y7YD{2)
COMMON/T2/ALX {2} ,ALY (2)
COMMON/TZ3/EX(2},EY{Z
COMMON/ T4 /U2
COMMON/TS/NW(2)
COMMON/T6/AD(2,2),BD{(2,2)
COMMON/T7/NTS(2,2)
COMMON/T8/QD(2,2,10),TDT(2,2,10)
COMMON/T21/AR(2}
COMMON/S51/TD
COMMON/SS52/G(2),H(2)
DIMENSION DUMT (20}
suB=0.0
ALU=AL1*AL1+AY1*AY1l
Do 200 I=1,2
IF(NW(I).EQ.0)GC TO 201
DO 202 J=1,NW(I;
CALL FTD(I,J,TD,QRATE)

DEX=G(I}*DSIN{AR(I}*AD(I,J})+H(I}*DCOS(AR(I)*AD(I,J);

IF(I.EQ.1)THEN
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ARY=AY1*DSQRT(EY(1;.
ELSE
AY=RY2*DSQRTI(EY{Z.;
ENDIF
DEY=DCOS{AY*5C(I,J )
SUB=SUB+QRATE*CF{*CFY ALY (2)
CONTINUE
CONTINUE
CONTINUE
RETURN
END
SUBROUTINE ®¥TD(I,J,7,Q!
IMPLICIT REAL*8(A-H,0-2)
COMMON/TT7/NTS (2,2
COMMON/T8/QD(Z,2,15;,TDT(2,2,10}
INDEX=1
DO 1 K=2,NTS({I,J:
IF{INDEX.EQ.0)GC TC *
IF(T.LT.TDT(I,J, ), THEN
Q=QD(I,J,K-1}
INDEX=0
ENDIYT
ZONTINUE
IF(INDEX.EQ.1;iT
Q=QD(I,J,NTS:I, ).
ENDIF
RETURN
END
SUBROUTINE NORM!A,3,ABN)
IMPLICIT REAL*S'A-H,C-I;
COMMON/TL/ KT (2
COMMON/TZ/ALX 4
COMMON/T3/EX(2,,E7:C
COMMON/TZ1/AR{2:
DIMENSION A(l:,E
ABN=C
D0 1 I=l,Z
AA=R(I) AL
BB B(I)=81{]

XR1IV*OSIN(XXR2!
JU=ABvDSIN{XXR1 *ISIN(XKXRI)
ABN=ABN~+EX(I}* (S3-TT-UUI"ALX(I)
CONTINUE

+
TT=-0.5~ (RA-EB)~ICOS (X

SUBROUTINE LUDCMP(A,N,NP,INDX,D!
IMPLICIT REAL*E . A-%,0-Z)

PARAMETER (NMAX=13C,TINY=1.00-20;
DIMENSION A(NP, XPA,-!DI(N , VV (NMAX)

o=..0
DO 12 I=1,N
AAMAX=0.

Do 11 J=1,N
IF (DABS(A(I,J)).GT.AAMAX) AAMAX=DABS{A(I,J}}
CONTINUE
IF (AAMAX.EZ.0.) PAUSE 'Singular Matrix !!!°
VVI(I)=1./AAMAX
CONTINUE
0O 19 J=1,N
DO 14 I=1,J-1
SUM=A(I,J)
DO 13 K=1,I-1
SUM=SUM-A(I,K)*A(K,J)
CONTINUE
A(I,J)=SUM
CONTINUE
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CONTINUE
A(I,J)=SUM
DUM=VV (I} *DABS (SUM)
IF (DUM.GE.AAMAX) THEN
IMAX=1
AAMAX=DUM
ENDIF
CONTINUE
IF {(J.NE.IMAX) THEN
DO 17 K=1,N
DUM=A( IMAX, K}
A(IMAX,K)=A(J,K)
A(J,K)=DUM
CONTINUE

41
[OR]
s

m

INDX {J ) =IMAX

IF LALS,J).EQ.S. AND,JY=TINY

IF {(J.NE.N) THEN
DUM=1./A(J,J}
DO 18 I=J=-i,N

AtI,Ji=A{I,J)*CUM
CONTINUE

ENDIF

CCONTINUE

RETURN

'l~0|.|C
~- Zzm X

SUM=SUM-A(I,J:*B(J)

CONTINUE

S{I}=SUM/A(I, I}
CONTINUE
RETURN
END

SUBRCUTINE DID1(ALl,ARL2,DF1DT1!)

IMPLICIT REAL*8(A-H,0-2)
COMMON/TL/XXD(3),YYD(2)
COMMON/T2/ALX (2} ,ALY(2)
COMMON/T3/EX(2),EY(2)

COMMON/T4/UZ

R1=DSQRT(EX(1l)}

R2=DSQRT(EX(2})

AR1=R1*ALl

AR2=R2*AL2
Al=ALX(2)*AR2*XXD(2)*R1*DSIN(ARL1*XXD(2})}
Al=A1*DSIN(AR2~ (XXD(3)-XXD(2}))

A2=AL¥Y (1) ALX(2}*AR1*AR2*R1*XXD(2)*DCOS(ARI*XXD(Z}}/UZ
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A3=A2*DSIN(AR2~ (XXD(3)-XXD(2}) )}
A4=ALX{1)*ALX{Z;*R1*AR2*DSIN(AR1*XXD(2))
AS5=A4*DSIN{AR2* {XXD(3}-XX%D(2})))/UZ
A6=-ALX{1)*R1*DSIN{ARL1*XXD(2))*DCOS(ARZ* (XXD(3)-XXD(2}),
AT7=-ALX(1)*ARL*R1*XXD(2)*DCOS(ARLI*XXD(2}
AT=A7*DCOS(AR2~ {XXD(3)-XAD(2) )}
DF1DT1=Al~A3+AS+A6+AT

RETURN

END

SUBROUTINE D1DI(AL1l,AL2,DF1ETZ)

IMPLICIT REAL*38(A-H,0-2)

COMMON/T1/XXD(3},YYD(2)

COMMON/T2/ALX (I} ,ALY (2)

COMMON/T3/EX {2} ,EY(Z)

COMMON/T4/UZ

R1=DSQRT(EX(1l;

R2=DSQRT(EX (2}

AR1=R1*ALl

AR2=R2*ALC

Al=-ALX(2}*R2*3COS (ARL*XXD(2))

Al=Al*DSIN(AR2~ (XXD(3)-XXD(2}))

A2=-ALX(2}*R2* (XXD(3)-XXD(2)} *AR2*DCOS (AR1*XXD(2}}
A2=A2+*DCOS{ARZ~ (XXD(3)-XXD(2)})}
A3=ALX(1}*ALX{Z)*ARI*R2*DSIN(ARI-XXC(2!}/UZ
A3=A3*DSIN(AR2~:XXD(3)-XXD(2}})
Ad4=ALX(1)*ALX{Z)*ARI~AR2*R2* (XXD(3)-XXD(2)}/UZ
A4=A4*DSIN{ARL*XD(Z))*DCOS(AR2* (XXD(3)-XXD(Z: '}
AS5=ALX (1} ARI*CSIN(ARI*XXD(2}y*R2* (XAD{3}-XXZ 1}
AS5=AS5*DSIN(ARZ~ XXD(3)-XXD{2)i:
SELDTI=Al+Al~-A3+A4+AS

RETURN
END

B.2: Input Files
* Input file: input9d.d

numper

ssimpartments>

ty

< cf =
c.2 .8 1.8 <lscaz poundaries In x-Qiceciin>
2.3 z.Q <locat pouncaries 1n y-directicn>
L2 2.2 <alx::
.t .2 <aly'L.>
.. Tl <eli.>
L <sKLn s>
z 2f wel..s .n eacnh compartment, NW(I,>
) . <lgca%ni.zn of first well, 2(1,2),80(1,.>
z <number of <:me sSteps 1N procuction schedule c¢f ZIirst well,
1.0 <QDTI(1,1,1;>
3.0 <TOT(1,1,11>
0.¢ <QDT:{1,1,2)>
Z26.% <TDTI(1,:,2)>
3.7 C.¢S <lccat.zn of seccnd well, AD(2,1),BD(2,1:)>
Z <numpber of time steps 1n production schedule cf secong well,
3.8 <QDT{(2,:,:1}>
c.C <TDT(2,1,11>
1.0 <QDT(2,1,2)>
10C.C <TDT(2,1,2:>

* Input file: r9d.d
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NTS(1,11>

NTS{Z,1)>

1.0 <AAl, a constant for solution of a linear system>
g.28 0.5000001 <location of measuring cimensionless pressure responses, XD, YD>
1000000 <ML, number of segments to be considered for calculating eigenvalues>



APPENDIXC
COMPUTER PROGRAM FOR THREE-DIMENSIONAL FLOW SYSTEM

This appendix presents the computer program for computing the numerical values from
the analytical solution for a three-dimensional compartmentalized system as developed in
Chapter 4.

C.1 Source Code

* Program: 3.f

R R R R R R R R R R R R A R R R A A R A A A A A A R A A A R R AR R A R

M COMPARTMENTALIZED RESERVCIRS IN A 3-DIMENSIONAL SYSTEM

- Stacked Channel Realizaticn
T T I R T R

- Variable Identif:ization List
P T R R T T

. N = Number <f compartments

. AXD(I) = Locations of boundaries along x-axis

M YYD(I} = Locations of boundaries along y-axis

M ZZD!{I) = Locations of boundaries along z-axis

o WD = Dimensionless wiath of each sand body

M ALX{I) = Definec in Eg. (4.22)

o ALY(I, = Defined in Eg. (4.23)

M ALZ{(I) = Defined 1n Eg. ({4.24}

- Z(I} = Cefined in Eg. {4.2%5)

o SX(I} = Cefined :n Eg. (4.28)

. ZY(I} = Defined in E£g. (4.33)

hd Z2tI) = Zefined in Eqg. (4.38)

. 2 = ls/s s = skin factcr at an :interface;

. ac(z, J), BD!I,J) = Cimensionless areal cocrdinates of jth precucing well at
ot ith comparctment

M iZL.Z, 3, HD2(I,J: = Extent of procucing zcne of jth progucing well act

M ith compartment (Fig. $.2)

hd NW{I) = Number 2I wells in 1th compartmenct

. NTS:I, J; = Number cf var:rable rates that the jth well at .th Icmcartment
N grocduces

M sC.I, S, K) = Dimensionless product:on rate from i1th compasiment WiIn IIn
M rate

- ICT(I, J, X) = Cimensionless time at which jth producticn rate comrences .o
- well at ith compartment

o TC = Dimens:ionless time

M D = Dimensionless pressure

ot PARD = Particular derivative (eg. l:inear, radial or spherical;

A D =

Cartesian derivative
IMPLICIT REAL*B8(A-H,0-2}
COMMCHN/T1/XXD(4}),YYD(4},22ZD(3)
COMMON/T2/ALX(2),ALY(2),ALZ(2)
COMMON/T3/EX(2),EY(2),EZ2(2)
COMMON/T4/U2
COMMCN/TS/NW{6)
COMMON/T6/AD(6,2),8D(6,2),HD1(6,2),HD2(6,2)
CCMMON/TT/NTS(6,2)
COMMON/TB/QD(6,2,20),TDT(6,2,20)
COMMON/T11/AALl,XD,YD, 2D
COMMON/T102/T1(1200},S81(1200),P1(1200)
COMMON/T103/T2(1200),S82(1200),P2(1200)}
COMMON/T104/T3(1200),S3(1200),P3(1200)
COMMON/T105/T4(1200),S4(1200),P4(1200)
COMMON/T106/TS5(1200),S85(1200},P5(1200)
COMMOM/T127/T6(1200),S86(1200),P6(1200)
OPEM(4,FILE="'in3d.d"':
OPEN(3,FILE="'r3c.d")

-
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OPEN(7,FILE="S
CALL INPUT
CALL DATA

CALL EQEV (M}
CALL EIGENV (M}
TD=0.001
WRITE(7,10)
FORMAT ( 8X,
FAL=C.10

Do 1 J=1,30
IND=1

CALL PCAL(M,TD,PD,CD)
BARD=CD* (TD**0.5)
WRITE(7,.1)TO,PD,

L Ja
jo]

, 10X, 'PC

PARD, CD

FORMAT(F10.3,5X,F10.3,5%,F10.

IF(TD.LT.FAL)THEN
TD=TD+0.01

IND=Q

ENDIF
IF(IND.EQ.Q2)GO TO I
IF(TD.GT.FAL} THEN
TD=2.0"TD

ENDIF

CONTINUE

STOP

ZND

SUBROUTINE INBPUT

IMPLICIT REAL*Z(A-KH,0-Z;
COMMON/T1/X¥DTi4:!,YYD(4:,222102
TOMMON/ T2/ ALX{Z ) ALY (2} ,ALZIC
COMMON/T3/EZX(Z;,EY{2},EZ(D)
COMMON/T4/7U2

JOMMON/TES/NW (G}
COMMON/T6/AD(E, 2},

COMMON/T7/NTS (6,2}
COMMON/TS/QD(6,2,20:,TC
COMMON/TL1/AAL,XD,YD,2D
READING NO. OF C
READ(4, " INX
READING GEOMETRIC DIMENSICHSE
READ(4, *YXXD(1;,XXD(4)
READ(3, *IWC

XD (21=0.5% (X¥D(4)-XXD{(
AXXD{3;=0.5" (XXD(4;-XXD
REAC(4,*)YYD(1;,YY0(4
=C.S~(YYD(4}~
YYS13)=C.5"(YY¥YD(4}
READ{4,~)(22D2(1),I=1,
READING DIMENSIONLESS
REACING ROCK AND FLUI
READ(S, "V (ALX(I),I=1
READ(4,*) {ALY (I,
READ(4,*) (ALZ(I),I=1
READ(4, ! (EX(I),I=1,
READ(4,*)(EY!I),I=1,2)
READ(4,*)(EZ{I),I=1,2]}

&, 2
[ -

PARTMENTS

YV
-YY

i
s

w(jL)”

SN NN

~ s 0~

2
<

READING TRANSMISSIBILITY CCEFEFICIENT AT

BOUNDARY
READ{4,*)S
Uz=1.0/S
READING WHETHER A COMPARTMENT
REZAD(4,* ) (NW(I),I=1,NX)
READING LOCATION OF EACH WELL
DC 45 I=1,NX
IF(NW(I}).EQ.0)GO TO 451
DO 452 J=1,NW(I}
READ(4,*}AD(I,J),BD(I,J)}
READ(4,*1HDL(I,J),HD2(I,J)
READING NO. OF TIME-INTERVALS
SCHEDULE OF EACH WELL

READ(4,*INTS(I,J)

READING DIMENSIONLESS PRODUCTION RATE,

', 19X, 'PARDER"', 10X,

8D(¢,2:,H0l{%, 2} ,HIl

X

'CARDER '}

4,3X,F9.4)

, 200

. 4

CARTMENT

OF EACH CZCMEART

PRESSURE

IN
TIES IN EtAT

EACH COMPARTMENT
H COMPARTMENT

T INTER-COMPARTMENT

HAS A WELL, N(L)=0 MEANS NO WELL

IN THE PRODUCTION

DIMENSIONLESS TIMES WHEN PRODUCTION
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DC 7 K=1,NTS(I,J)
READ(4,*)QD(I,J,K}
READ(4,*)TDT(I,J,K)
7 CONTINUE
452 CONTINUE
451 CONTINUE
45 CONTINUE
RETURN
END
SUBROUTINE DATA
IMPLICIT REAL*8(A-H,0-2}
COMMON/T11/AR1,XD,¥YD,2ZD
COMMON/T1100/WRS
READ(3,*}AARL
READ(3,*)XD, YD, 2D
READ (3, *1WRS
RETURN
END
SUBROUTINE GUESS
IMPLICIT REAL*B(A-H,Q-2)
COMMON/T101/T(6},5(6),P(6;
COMMON/T1100/WRS
PI=DACOS(-1.2D00)
20 1 I=1,3
T(I)=WRS
CONTINUE
20 2 I=4,86
S{I)=WRS
z ZONTINUE
2: 2} =WR3
£{Z)=WRS
RETURN
END
SUSRCUTINE INVAL!T,?,DP)
IMPLICIT REAL*S{A-H,0-2;
COMMON/TL1/X¥Di4:,Y70(4),220!
COMMON/TZ/ALXL 2 ALY (2),ALZ
COMMON/T3/2ZX{2),EY(2;,EZ2' 2,
TOMMON/TS/NW(E;
COMMON/Te/ADte,2,,8D(6,2),H2. 4,.,,HC2(6,C

[

AN=0.0
ANI=0.0
RSU=C.C
¢ L I=L,:3

AN=AN+EX (1} vALK(1) > {XKDS(I~1)=X¥D(I};
S0 I J=1,NW(I}

IF(NW(TI}.EQG.C, GC TO 2

CALL FTD(I,JS,T,Q!

QSU=QSU+Q

CONTINUE
: CONTINUE

AN=AN~:YYD(3)~-YYD(2)}*(22ZD¢{2)~-220{1)

[N

(@)
le]
d )
()
[}
ol
t W

QSU=QSU+Q

CONTINUE
CTONTINUE

AN=AN+AN1* (XXD(3)-XXD(2) )~ (22D(3;-2ZD(2))
DP={22ZD(2)/XXD(4))*QSU/AN

p=T*DP
RETURN
END

SUBROUTINE PCAL(NM, TD, SU, SUD}

IMPLICIT REAL*8(A-H,0-Z}
COMMON/T11/AAl,XD,YD, 2D
COMMON/T102/T1(1200},81(1200},21(1200)
COMMON/T103/T2(1200),S2(1200;},P2(1200)
COMMON/T104/T3(1200),83(1200},P3(1200)
COMMON/T105/T4(1200),84(1200},P4(1200)

La)
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COMMON/T106/T5(1200),85(1200},25(1200)
COMMON/T107/T6(1200),56(1200;,P6(1200)
COMMON/T108/A(3),8(3),C(3),D(3),F(2},G(2)
DIMENSION FX(5,5),FY(5,5),F2(3,3)

CALL INVAL(TD,SU,SUD!

DO 1 I=1,NM
ALU=TI(I)*T1(I)+S1(I}~S1(I)+PL(I}"PLl(I}
VUL=1.0-DEXP(-TD*ALU)

CALL FlX{TL(I),TZ2(I},T3(I),FX)

CALL 30LVE(S,FX,A,B)

CALL F2Y(S4(I),S5(I),36(I),FY)

CALL SOLVE(S,FY,C,D)

CALL F32(P2(I),PS5(I),FZ)

CALL SOLVE(3,FZ,F,G}

CALL SOURCE (I

CALL PDSUM(I,TD,SUM)

CALL SOUP{I,TD,SUMD)

SU=sU+S*sSUM

SUD=SUD+S*SUMD-ALU*S*SUM

CONTINUE

RETURN

END

SUBROUTINE EQEV{MM)

IMPLICIT REAL®*32(A-H,0-2)
COMMON/T1/XXD(4}),YYD(4),220(3)
COMMON/T3/EX{Z}),EY(2},EZ(2)
COMMON/T101/T(6),5(8)},P(6;}
COMMON/T102/T141200},S1(:200Q0),P11120Q)
COMMON/T103/T2¢1200:,82¢12G0),P2(1200)
COMMON/T104/T3(12C0;,S83(1200},P3(1200)
CCMMON/TZ3%/T4(:200),54(1200),P4(12C0)
COMMON/T.0€/TE¢2200),85(12C0),P5(1200;
COMMON/T107/T€{12C0},86(1200Q0;,P6(12CC;
COMMCN/T110Q/WRS

DIMENSION SEL(1060),SE2(1900),SE3{12C0;,TE4(1000),

$TES (1000;,TE6(1000),PE1({1000), PE3(10CC;, PES (1060}, FES(1CC0)
=DACOS (~-1.5D-30)

WD=XKD{3) -XMT(2}

WD1=2ID(2)- .

WDZ=IZD(3)-2I2C::2
MM=0
ZALL GUESS
DO 160 I=Z,1C0
AI=FLOAT: I,
S(L)=(AI-1.0}*PI/(WD-EY(1};
Sl”) S(1

3)_ \bl
.( J=(ARI-1.0)*PI/(WD*EX!(2):
T(5)-T(4‘
T(G)‘”l
Py )‘(AI-l.O)'P /{WDI*EZ (1))
P{3)=P(1)
B(4)=(AI-1.0)*PI/(WD2*EZ(2)}
2(6)=P(4)

CALL FUNCT{NN,MM)
IEF{ (NN-MM).EQ.L1})THEN

MM=NN

ENDIF
CONTINUE
RETURN
END
SUBROUTINE EIGENV(MJ)
IMPLICIT REAL*B{A-H,0-2)
COMMON/T1/XXD(4),YYD(4},22D(3)
COMMON/T3/EX(2),EY(2),EZ2(2)
COMMON/T101/T(6),S(6),P(6}
COMMON/T102/T1(1200),81(1200),P1(1200)
COMMON/T103/T2{1200),S52(1200),P2(1200)
COMMON/T104/T32(1200),83(1200),P3(1200)
COMMON/T105/T4{(1200),54(1200),P4(1200)
COMMON/T106/T5(1200),585(1200},P5(1200!
COMMON/T107/T6(1200),56(1200}),P6(1200)
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100

-4
[®]

<3 LD A v

[S1I 1Y

LRod O B PRI 2

b

o

DIMENSION SE1(1000;,SE2(1230),8E3(1000},TE411C0C),
#TES(1000),TE6(1000},PEL{1000),PE3(10CC),PE4(100C},FEc2200)
PI=DACOS(~-1.0D+00)
WD=XXD(3)~-XXD(2}
WD1=2ZD(2)-22D(1)
WD2=ZZD(3}-22D(2)

DO 100 I=1,10

AI=FLOATI(I)
SE1(IV=(AI-1.0)*PI/(WD*EY(1})
SE2(I)=SEL1(I)

SE3(I}=SEl(I}
TE4(I)=(AI-1.0)*PI/ (WD EX:(2)}
TES(I)=TE4(I)

TE6(I)=TE4(I)
PEL{I}=(ARI-1.0)*PI/(WDLI*ZZ(1l}!
PE3(I)=PEL(I)

PE4 (I)=(AI-1.0)~PI/{WDI"EZ:(2))
PE6(I)=PE4(I]

CONTINUE

CALL GUESS

NN=2

DO 1 Il=1,NN

S(1l}=SEX1(I1l}

20 2 I2=1,NN

S(2)=SE2(IZ2}

DC 3 I3=],NN

S{3)1=5E3(1I3)

20 4 I4=1,NN

TN =TEJ{I4}

DO S IZ=L, NN
T(S)=TES(IS}
DO 6 I6=1,NN
T(6;=TE6{I¢8;
0C 7 IT=i, NN
P(1)=PE1(I7}
D0 8 I8=1,NN
P(3)=PE3(I8;
20 9 I%=1,NN
P(4)=PES(I9}
DO 10 T10=1,NN
£{6)=PE6(I10}

IF((MI-MJY.EQ. L THEN
MJI=MI
ENDIF
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CONTINUE
CCNTINUE
CONTINUE
RETURN
END
SUBROUTINE FUNCT (MA,MB);
IMPLICIT REAL-8(A-H,0-1)
COMMON/T101/T(6),S(6),E(6)
COMMON/T102/T1(1200),51{1200),P1(1200}
COMMON/T103/T2(1200),82{1200},22(1200}
COMMON/T104/T3(1200),S53(1200),P3(1200)
COMMON/T105/T4(1200),S84(1200),P4(12200)
COMMON/T106/T5(12€9),S85(1200),925(1200)
COMMON/T107/T6(1200),56(120C),P6(1200)
DIMENSION F(8),F10(5,5),F20(5,5),¢30(3,3),DF1(5,5),0F2A{5,5},
+DF2B(5, 5),DF3A(5,5),DF3B¢(5,5),DF2(3,3),DF2A(3,3:,0F2B1(3, 3},
-DF(8,8),DFF(8,8},DFA(2,8),U(8)
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PI=DACOS (-1.3D+0C}

MA=MB

MM=0Q

Do 1 J=1,8

Do : I=i,8
DE(I,J}=0.0Q

CONTINUE

CALL FlX{(T(1},T{(2)},T(3),Fi0)

CALL DETER(F10,5,5,F(1))

CALL F2Y(S(4),S(5),S(6),F20!}

CALL DETER(F20,5,5,F(2}}

CALL F3Z(P{2},P(5),F30)

CALL DETER(F3C,3,3,F(3))
F(4)=T(1)*T(1}+S(1)*S(1)+P(L1)*P(1)-T(2)*T(2)-5(2)*S(2)-P(2}*P(2}
F(5)=T(2)*T(2)+S(2)*S(2)+P(2}*P(2}-T(31*T(3}-S(3)+S(2)-2(3)1*P(3}
F(6)=T(4)*T(4}+S(4)*S(4)+P{4)*P({4})-T(S)*T{5)~-S{5)*S(5)-P(5)*P(5)
F{7)=T(S8)*T(5)+S(5)*S(5)+P(5)*P(S)~-T(6)"T(6)-5{6)*S(86)-P(6)*P(&)
F(81=T{2)"T(2)+S({2)*S(2)+-2{2)*P(2)-T{(5)*T(5}-S{5,*S({5)-P(5}*P(5E!
CALL DFIDL(T(1},T(2),T(3),DF1)

CALL DETER(DFL,3,5,DF{1,1})

CALL DF1D2A(T(1}),T(Z),T(3),DF2A)

CALL DETER(DF2A,&,5,DL:

CALL DF1D2B(T(1:,T(2),T(3),DF2B;

CALL DETER(DFZIB,S,3,D2!

DF(1,2)=D1+D2

CALL DFID3A(T!1},T{2),T{3)},0F3A)

CALL DETZR(DF23A,5,5,C1

CALL DFID3B{T(1),T(2)
CALL DETER(DF38B,5,35,D
DF(1,3)=C1+D2

CALL DFZD4!(S{4:,S(%:,S5(6;,2F1)
CALL DETER(DFL,S,S,0F(<,4Y

CALL DFZIDSA(S(4:,51%5),5(6),DF2R)
CTALL DETERI{DF2A,:,5,31)

CRLL DF2D3B(S:4:),S8!(5;,
CALL DETER(DF2S,3,5,22

OF(2,5)=D1+DZ

)
Ti2,0E28)
3y
)

CALL DF2DE6A(S(4:,5(%5),8(6°,dF3A;
CALL DETER{DF2A,%,5,01;

CALL DFZD6B(S(4),S!5),3(68),0F3B)
ZALL DETER(DF3B. 3,3,02!
JF{2,5)=01+D2

CALL DE307(P{2),P(S},DFZ)

CALL DETER(DFZ,3,3,DF(3,7})

CALL DF3DBA(P{Z),P(5),DFIA)

CALL DETER{(DFZA, 3,3,DL!

CALL DF3DBB(P(Z),P(S%),DFIE!

CALL DETER(DFZSB, 3,3,D2)

DF13,8)=D1+02
DEt4,l)=2.0"T: 2
DE(4,2)=-2.0"T1
OF(4,7)=-2.0%2¢
. 2
DF{3,3)=-2.0"T{3}
TE{3,71=2.0"P(2)
JE(6,3)=2.0"5(4)
DF(&,5)=-2.0"S(5)
DF(6,8)=-2.0"P(5)
DF(7,5)=2.0*3(5)
DE{7,6)=-2.0"S(6}
DE(7,81=2.0"P (5}
DF(8,2)=2.0%T(2)
DF(8,5}=-2.0*3(5)
DF(8,7)=2.0%P(2}
DF(8,8)=-2.0"P5)
D0 101 J=1,8
DO 101 I=1,8
DFA(I,J)=DE(I,J)
CONTINUE
CALL DETER(LFA,8,8,V)
DEL=0.0
DELU=0.0
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Do 100 I=1,8

CALL MATAR(I,F,DF,DFF)
CALL DETER(DFEF,8,8,U(I))
U(I)y=Uu(Iy/v
DEL=DEL+DABS(F({I})
DELU=DELU+DASS(U(I))
CONTINUE

T(L)=T(l}+U(l;
T(2)=T{2)+U(2}
T(3)=T(3)+U{3}
S(4)=S{4})+U(4)
S(5)=S(5}+U(5)
S(61=S(6}+U(6)
B(2)=P({2}+U(7)
P(5)=P(5)~U(8)

MM=MM+ L

IF{MM.GE.200)GC TO 103
IVU=0
IF(DEL.GE.1.CD-06)IVU=1
IF(DELU.GE.1.0D-08)IVU=1
IF(IVU.EQ.1)GO TO 102
IND=0

20 43 KK=1,6
IFIT{KK).LT.C.O}IND=1
IF(T(KK}.GT.1.20+10)IND=1
IF(S(KK).LT.0.0)IND=1
IF(S(KK).GT.1.00+10)IND=1
IF{PIKK).LT.3.0VIND=L
IF(P(KK).GT.l.30+10) INDC=1
CONTINUE

IT{IND.EQ.1})GC TO 1¢3
MA=MB+1
TL(MA)=T (X

T2IMA)=T (2}
T3I(MA)=T{3}
T4 MAY=T (4]
TSIMR) =TS,
TS (MA)=T(86}
SI{MA)=S(1:
SZ{MA)=S(Z!
S3(MA)=51{3}
S3(MR;=5(4;
SSE(MA)=S(E)
S6(MA}=S(6}
PL{MR)=P(1)
PZ(MA)=P (2]
PI(MA)=B (3}
P4 (MA)=P(4)
PS(MA)=P(5)
PE(MA)=P(6)

IF(IVU.EQ.CIGO TO 104
CALL GUESS

CONTINUE

KRETURN

END

SUEBROUTINE MATAR!K, FU, DEFU,REU)

IMPLICIT REAL*8(A-H,0-2)

DIMENSION FU(8),DFU(8,8),REU(8,8)

Do 1 J=1,8

Do 1 I=1,8

IF{J.EC.K) THEN
RFU(I,J)=-FU(I)
ELSE
RFU(I,J)=DFU(I,J)

ENDIF

CONTINUE

RETURN

END

SUBRCUTINE F1X(EV1,EV2,EV3,FA)

IMPLICIT REAL*8({A-H,0-Z;

COMMON/T1/XXD(4),YYD(4),22D(3)
COMMOMN/T2/RLX(2),ALY (2} ,ALZ (2}
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COMMON/T3/EX(2,EY{2},EZ12)
DIMENSION fA!E,5)

Do 162 I
D0 102 J=

FA(I,J)=c
CONTINUE
ARL=EV1*ISCRT i
ARZ=EVI*ISQRT (1)
AR3=EV3*DSCRT(EX (1))

COL=ALX(1l)*ARI
CO2=ALX (1)1 *ARZ
CO3=ALX (1) ARSZ
FA{l,1}==CCl~CSIN(ARLI*XXD(2})}
FA{l,2)=CO2*DSIN(ARZ*¥XD{2!
FA{1,3)=-CO2*CCOS (AR2*XXDI2) !
TA(2,1)=0COS(ARL"XXD(2};
FA(Z,2)=-CJCStAR2XXD(2)}
FA(2,3)==0SIN(ARZ*XXD(2)}
FA(3,2;=-CC2*CSIN(ARZ*XXD(3
FA (3, 3)=C02~ZCCOS(AR2*XXD! 3}
FA(3,4)=CO3~DSIN(AR3*XAD(3"
FA(32,5)=-CO3*DCOS(AR3*XXD( 3}
FA(4,2)=DCOS{ARZ*XXI(2;;
FA(4,3)=DSIN(AR2*¥XDI(3}]
FA({4,4)=-DCOS(AR3I*XXD(3}}
TA{4,5)=~-0SIM{AR3*XXC(3))
})==-CSIN!AR3I*XXC{4 )
)=DCOStAR3*XXT (4!

COMMON/ T/
COMMCN/T2/AL
COMMCN/ T3/ 2
SIMENSICN
8 Loo Tl

[ W}

- 202,
FA{L,2}=CC2Z*ISIN(AR2*YYDI2})
FA{l,3)=-CO2~DCCS (ARR2*YYD!Z))

FA(2,1)=DCOS(ARI*YYD(2})
FA(2,2)=-CCOS(ARZ*YYD(Z})
FA(2,3)=-DSIN{AR2*YYD(2) ]
FA(3,2)=-CO2*DSIN(ARZ*YYD!(3)
FA(3,3)=COZ*DCOS{AR2Z*YYD(3)}
FA{3,4)=CO3*DSIN(AR3*YYD(3})
FA({3,5)=-CC3*DCOS(AR3~YYD(2))
FA(4,2)=DCOS{ARZ"YYD(3};
FA{4,3)=DSIN(AR2*YYD(3))
FA(4,4)=-DCOS(AR3*YYD(3))
FA(4,5)=-DSIN(AR3*YYD(3))
FA(5,4)=-DSIN(AR3*YYD(4))
FA(5,5)=DCOS(AR3*YYD(4))
RETURN

END

SUBROUTINE F3Z(EV1,EV2,FR)
IMPLICIT REAL*8(A-H,0-Z}
COMMON/T1/XXD(4),YYD(4),220(3)
COMMON/TZ/ALX{(2),ALY(2),ALZ(2)
COMMCN/T3/EX(Z),EY{2),EZ{2)}
COMMON/T4/U2Z
DIMENSION FA(2
AR1=EV1*D3SQRT!

3)
¢
-

1)
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AR2=EV2*DSQRT(EZ(2)}
CO1=ALZ(1)*ARl
T02=ALZ(2)*ARZ

FA(l,1})=-UZ*DCOS(AR1*Z2D(2)}+COL*DSIN{ARI*ZZD(2))

FA{1,2)=UZ*DCOS(AR2*2ZZD(2} .
FA(1,3)=UZ~*DSIN(AR2*2ZD(2}}
FA(2,1)=-COl~*DSIN(AR1*2ZD(Z}
FA{2,2)=C0O2*DSIN(ARZ*ZZD(2}}
FA{2,3)=-CO2*DCOS (ARR2*22D(2))
FA(3,1)=0.0
FA(3,2)=-DSIN(AR2*ZZD(3})}
FA(3,3)=DCOS{AR2*ZZD(3}}
RETURN
END
SUBROUTINE DF1D1l(EV1,EV2,EV3,FA)
IMELICIT REAL*8(A-H,0-2)
COMMON/TL/XXD(4),YYD(4),22D(3)
COMMON/TZ/ALX(2),ALY(2),ALZ(2)
COMMON/T3/EX(2),EY(2),EZ{2)
DIMENSION FA(S5,5)
3o 102 I=1,S
DC 102 J=1,5

FALI,J)=0.0
ZONTINUE
AR1=EV1*DSQRT(EX(1}:
AR2=EV2*DSQRT!EX (1))
AR3=EV3*DSQRT(EX{1l))
CCl=ALX(1)*AR1
Z02Z2=ALX(1)*AR2
ZC3=ALKX{1:*ARZ:
CCX=CSQRT(EX (1.,
TCC=RALX (1} ~TOX

CCOL=ALX{l)*EX 1} *EVI

2)=COZ*CSIN(AR2*X¥D(2})

3 =-COZ*ZCZOS(ARZ2*XXD(2Z:)
=-CCX*XXD(2)"DSIN(ARI*XNND (2
=DCOS (AR2*X¥DI(2))
-DSIN(ARZI*XXD(2))
-Z02*ZSIN(ARZ2~XXD¢
CO2%COS(AR2*KXL (3
CO3*DSIN(AR3I*XXDI(3
-C03*2COS (AR3*XXD(

I

Vo

1
v
L]
3

& ) Ia b 1) (1 de G ) L b

FA{4,l/=CCOS(ARI*XXD(3}:
TR14,3,=DSIN(AR2"XXD(3}}
TA:14,4)=-DCOS(ARR3*XXD(3)
FA(4,35)=-DSIN(AR3*X{D(3)!
FA(3,4)=-DSIN(AR3*XXD(4)!
FA(5,5)=DCOS(AR3*XXD(4)}

n
m
.
o
p]
4

SUBROUTINE DFIDZA(EVI,EV2,EV3,FA)
IMPLICIT REAL*8(A-H,0-2)
TOMMON/TL/XXD!4),YYD(4;,22D(3)
COMMON/T2/ALX{2},ALY(2),ALZ(2)
COMMON/T3/EX(2),EY(2),E2(2)
DIMENSION FA(5,3)
20 102 I=1,5
0C 102 J=1,%

FA(I,J)=0.0
CONTINUE
ARI=EV1I*DSQRT(EX(1)}
ARZ=EV2*DSQRT(EX(1})
AR3=EV3*DSQRT(EX(1l})
CO1=ALX(1;*ARl
CO2=ALX(1)*AR2
CC3=ALX(1)*AR3
COX=DSQRT(EX{1)}
ZOO=ALX(1})*COX
CO02=ALX(1}*EV2*EX(1l)}
FA(l,1)=-COl*DSIN(AR1*XXD(2))

11=~CO0O*DSIN(ARL*XKD({Z!) | -COCLv4{Z 2 *COSARLXXD (2

FA{1,2)=COO*DSIN(AR2*XXD(2))+CO2~XXD({2)*DCOS{ARZ*X¥D(2))
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FA(l,3)=-CO2*DCOS (AR2*XXC(2))
FA(2,1)=DCOS(ARL*XXD(2))
FA(2,2)=COX*XXD(2)*DSIN{ARI*XXD: 2!
FA(2,3)=-DSIN(AR2*XXD(2)}

FA(3,2}=-COO*DSIN(AR2*XXD(3))-CO0O2*XXD(3)*DCOS (AR2*XXD(3})

FA (3, 3)=CC2*DCOS{AR2*XXD(3);
FA(3,4)=CO3*DSIN(AR3*XXD(3))
EA(3,5)=-CO3*DCOS (AR3*XXD{(3})

FA(4,2)=-COX*XXD(3)*DSIN(AR2*XXD(3))

FA(4,3)=DSIN(AR2*XXD{(3})
FA(4,4)=-DCOS(AR3*XXD(3})
FA(4,5)=-CSIN(AR3*XXD(3))
FA(S,4)=-DSIN{AR3I*XXD(4}"
FA{5,5)=DCOS(AR3*XXC4}}
RETURN
ZND
SUBROUTINE OSFID2B(EV:I,EV2,EV3,FA)
IMPLICIT REAL*8(A-H,0-2!
COMMON/T1/XXD{4;,YYD(4},220(
COMMON/T2/ALX! Zl,ALY\:,, 2
COMMON/T3/EX(2),EY({2),E2(2}
DIMENSION FALS, 5!
oo 102 I=,%
2C 12 J=1,%2
FA(I,J:=0.
CONTINUE
AR1=EVI1*CSQRT!EX!
AR2=EVZ*DSQRT (EX!
AR3=EV3*CSQRT (ZX: l L
”O-‘A~“\l}'ﬂRl
ZO2=ALA 1, *ARZ
TO3=ALXI1;*AR3
TCX=DSQRT(EX{l;.,
ZOO0=RALX !l *CCx
COO2=ALX{1l)*EX(l1)*EVZ
{1,1)=-COL*CSIN{ARL
(.,-)=CO"'35'”(ARZ':
3)=-CO0*2COS(ARZ"

v
-t

lll ™
:u

oA

?AlZ 11=DCOS(ARI*XXD(2};

FA(Z,2)=-0CCS (ARI*XXD(Z:!

TA(L,31=-COX*XXD(2)"2COS(ARI"

FA(3,2)=-CO2*DSIN(ARI*XXD({3,:}
({3,3)=CCO*DCOS(ARI*XLNYD (3! . -COOZ~XKD 2,

FA(2,4)=CO3*DSIN(AR3I*XACT! !

TALZ =~CZ03* DCOS(AR3I*XKT {2 .

FA(4,21=0COS(ARZ*XXD(3},

FAL4, 3. =COX~*HXD(3) *DCOS (ARZI*XMIZ (23

FA(4,4=-DCOS (AR3*XXD(3}}

FRA(4,5)=-DSIN(AR3*XXD(31}

FR(5,4)=-DSIN(ARI*XXD(4))

FA(5,3)=DCOS(AR3*XXD(4}!

RETURN

END

SUBROUTINE DFL1D3A(EVL1,EVZ2,EV3, FA)
IMPLITIT REAL*S8{A-H,0-2)
COMMON/T1/XXD(4),YYD(4),220(3)
COMMCN/T2/ALX(2),ALY(2),ALZ(2)
COMMON/T3/EX(2),EY(2),EZ2(2)
DIMENSION FA(S5,5)
DO 102 I=1,5
DO 102 J=1,5

FA(I,J)=0.0
CONTINUE
AR1=EV1*DSQRT(EX(1l})
AR2=EV2*DSQRT(EX (1))
AR3=EV3*DSQRT(EX (1)}
COl=ALX(1l)*AR1l
CO2=ALX (1) *AR2
CO3=ALX({1)*AR3
COX=DSQRT (EX(1})
COC=ALX(1)*COX
COO3=ALX(1)*EX(1}*EV3

*2SIN(ARZYEND

e
te

v
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, 1)1 =~COl*DSIN(ARLI*XXD(Z}}
,2)=CO2*DSIN(ARZ*XXDI(2)}
,3)=-CO2*DCOS (ARZ2*XXL(2}
1)=DCOS(AR1*XXD(2})
2, 2)——DCOS(AR2 XXD(2)}
TA(2,3)=-DSIN{(ARZ*XXD(Z}))
FA(3,2)=-CO2*DSIN(AR2*XXD(3})
FA(3, 3)=CO2~DCOS (AR2*XXD(3)
FA(3,4)=COO'DSIN(AR3'XXD(3))*COOS'XXD(B)'DCOS(ARE'KXD(3))
FA(3,5)=-C0O3*DCOS (ARR3*XXD(3})
FA(4,2)=DCOS(AR2*XXD(3})
FA(4,3)=DSIN(AR2*XXD(3})
FA(4,4!=COX~XXD{2)*DSIN{AR3"XXD(3)}
FA(4,5)=-DSIN(AR3*XXD(3);
FA(5,4)=-COX*XXD(4)*DCOS(AR3*XXD(4})}
FA(5,5)=DCOS(AR3*XXD(4}!
RETURN
ENC
SUBRCUTINE DF1D3B(EV1,EV2,EV3,FA)
IMPLICIT REAL*8(A-H,0-2}
COMMON/T1/XXD(4),Y¥D(4),22D(3}
COMMON/T2/ALX(2),ALY{Z),ALZ(2;
COMMON/T3/ZX(2:,EY(2},E2(2)
ZIMENSION FA(S5,5;
0 102 I=i,

e m

)

'g ... '4 ,4

"

'13:’333:3{

"

"

ZONTINUE
ARI=EVI*DSQRT(EX (1}
A EVZ*DSQRT P
£33~ DSQRT
TCI=ALX(Il,"AR
:3: A.A(l; A

SO03=ALK{L)vEX (L, vEV3
TA!IL,L)==COL*DSIN(ARLI~XXD
FR{.,2)=CO2*DSIN(AR2*XXAD!
FA{l,3}==-CO2*DCOS (ARZ*X¥XD
TALZ, DCOS(ARI*XXD({2}!}

;o
-
~
(2

FA12,2;=-0COS (AR2*XXIi{2}!
FR(2,3,=-DSIN(AR2*XXD(2};
FR{3,2)=-CC2" DS'N(RR"VX“‘:L
TA(3, 2)=CO2*DCOS (AR2*XXD (3}
TA(3,4)=CO3*DSIN(AR3~ KXD(J))
FA(3,5)=-COO~DCOS (AR3*XXD(3);+CO03*¥XD! 3 *CSIN{ARI~XXI1{3),
TA(4,2)=DCOS(AR2*XXD(3)
TA(4,3)=DSIN(AR2*XXD(3))
TA(4,4)=-DCOS (AR3~XXD(3))
FA{4,5)=-COX*X%XD(3}*DCOS(AR3*XXD{2}}
TA{3,41=-DSIN(AR3*XXD(4)}
FAI(5,8)=-COX*XXD(4) *CSIN{AR3I*XXD{3)!
RETURN

SUBROUTINE DF2D4(EV1,EV2,EV3,FR)
IMPLICIT REAL*8(A-H,0-2)
COMMON/T1/XXD(4),YYD(4),22D(3)
COMMON/T2/ALX(2),ALY (2} ,ALZ(2)
COMMON/T3/EX(2),EY(2),EZ({2)
DIMENSION FA(S5,3)

CONTINUE
ARL1=EV1*DSQRT(EY(2))
AR2=EV2*DSQRT(EY(2))
AR3=EV3*DSQRT(EY (2} )}
CO1=ALY(2)*ARL
CO2=ALY (2)"AR2
CO3=ALY{2)*AR3
COX=DSQRT(EY (2})
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COO=ALY{Z)*COX
COOLl=ALY (2)*EY(Z}"EV1

FA(1,1)==COO*DSIN{ARLI~YYD(2))~COOL*YYD(Z}>*DCOS (ARI*YYD(2};

FA(1l,2)=COZ*DSIN(AR2*YYC(2})
FA(l,3)=-CO2*DCOS (RR2*YYD (2}
FA(2,1!==-CO¥~*YYD(2)*DSIN(ARL*YYD(2}
FR(2,2)==DCOS(AR2"YYD(2}}
FR(2,3)=~CSIN(AR2*YYID(2Z})
CA(3,2)=-CO2*CSIN{AR2*YYDI(3)}
FA (3, 3)=CO2*DCOS(AR2*YYD(3})
FA (3, 4)=CO3~DSIN(AR3~YYD(3))
FA(3,5)=-C0O3*DCOS(AR3*YYD(3})
FA(4,2)=DCOS(AR2*YYD(3))
FA(4,3)=DSIN{AR2*YYD(3})
FA(4,4)==-CCOS{AR3*YYD(3))
FA(4,3!=-DSIN(AR3*YYD(3}}
FA!5,4)=-DSIN(AR3I*YYD(4)}
FA(S,5)=DCOS{AR3*YYD(4}}
RETURN

END

SUBROUTINE OJF2DSA{EV1,EV2,EV3,FA)
IMPLICIT REAL*8(A-H,C-2)
COMMON/T1/XXD{4),YYD(4:,22D(2)
COMMON, T /als 2 AL 2y ALZ 12
COMMON/T3/EX(2),EY(2),E2(C}
DIMENSION FA(E,S)

o0 102 I=1,5

oCc 102 J=1,5
FA(I,J}=3.0C

CONTINUE

AR1=EVI*DSCRTIEY
AR2=EV2*DSQRT(EY (I}
AR3=EV3*DSQRTI(EY{Z)
COl=ALY(2)*ARL
CO2=ALY(2)*ARC
CO3=ALY(2)*ARS3
ZO¥=DSQRT{EY (2}
COC=RLY{2}*COX
COOZ=ALY{Z})*EY!Z)*EVC
FA(1,1)=-COl*DSIN(ARI*YYD!

5]

FA(L,2
y==CO2*CCOS (AR2*YZT 11,
DCOS(ARR1I~YYD(2))
=COX*7YYD{2)*DSIN(AR2*YYD(2})
-DSIN(ARZ*YYC(2!:

FAL2,
FALZ,

(3,2

[N NN W

)

ny
ob
7]

3,3)=COZ~DCCSI(ARZI*YYDI(3))
3,4)=CO3*DSIN(AR3*YYD(3))

L
w
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]
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(o]
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[o]
n
(%]
*
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4,2)==COX*YYD(3)*DSIN(AR2*YYD(3)]
{4,3)=DSIN(AR2*YYDI(3)}
FA{4,4)=-DCOS(AR3*YYD(3}]
FA14,5)=-DSIN(AR3*YYD(3))
FA(5,4)=-DSIN(AR3*YYD(4})
FA(5,5)=DCOS(AR3*YYD(4))
RETURN
END
SUBROUTINE DF2DSE(EV!,EV2,EV3,FRA)
IMPLICIT REAL®*8(A-H,0-2,
COMMON/T1/XXD(4),YYD(4),2ZD(3)
COMMON/T2/ALX(2),ALY{2),ALZ(Z}
COMMON/T3/EX(2),EY(2),E2(2)
DIMENSION FA(5,5)
DO 162 I=1,5
DO 102 J=1,5

FA(I,J)=0.0
CONTINUE
AR1=EV1*DSQRT(EY(2))
AR2=EV2*DSQRTI(EY(2})
AR3=EV3*DSQRT(EY(2))
COl=ALY(2}*AR1
CO2=ALY(2)*AR2

¥

Ve ny
» 55
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=-CCO*DSIN{ARI*YYD(3:,-CO02*YY (3} *DCCS(ARZ YYD

-
=COO*CSIN(AR2*YYD(2) ) +~C0OC2*YYD{ 2} *ICOS{ARI YY)

(3




CO3=ALY (Z)*AR3

COR=USQRTIEY (2))

COO=ALY (1) *COX

COO2=ALY(Z}*EY(2) “EVZ

FA(1,1)=~COLl*DSIN(ARL1-"YYD(Z}}

FA 1, 2)=CC2*DSIN(ARI*YYD(2))
FA(1,3)=-COO*DCOS{AR2*YYD(Z)}+CCOZ*YYD(2) *DSIN(ARZI*YYD(Z])
FR(2,1)=DCOS{ARL-YYD(Z;}

FA(2,2)=-DCOS (AR2*YYDI(2} !

FA(2, 3)=-COX*YYD(2)*DCOS(AR2*YYD(2})
FA(3,2}=-CO2*DSIN(AR2*YYD(3}}
FA{3,3)=C00*DCOS(ARZ*YYD(3)})-CO0O2*YYD(3} *DSIN{AR2*YYD(3};
FA(3,4)=CO3*DSIN(AR3*YYDI(3)}

FA(3,5)=~-CO2*DCOS (AR3*YYD(3))

FA(4,2)=DCOS(AR2*YYD(3):
FA(4,3)=CCX*YYL(3}*DCCS(ARZI-YYD(3})

FA(4,4)=-DCCS(AR3*YYD(2
FA(4,5)==-DSIN(AR3*YYD(
FA(5,4)=-0SIN(AR3*YYD (4
FA(5,5)=DCCS(AR3~YYD(4}:
RETURN
END

SUBROUTINE DE2DGA(EV1,EVZ,EV3,FA)
IMPBLICIT REAL*8(A-H,0-I:!
ZOMMON/T1/XXD(4),YYD(4),22D(3;
COMMON/T2/ALX{2),ALY (2, ,ALZ{2}
COMMCN/T3/EX(2),EY(2),E22:!2
DIMENSION FA(Z,Z)
20 102 I=1,%
oC 102 J=i
FALI, )=,

ZONTINUE

[vY)

1
I
by

2h

COL=ALY (Z)*ARL
C02=21Y (2} vARZ
CO3=ALY!2)*ARZ
CC¥=DSQRT(EY (Z::
CO0=ARLY (2} *COX
ZO03=ALY(2)EY{(Z) *EV3

£A(L,1V==CO1l*CSIN(ARI"YY2. 1),

FA(L,2)=CO2*DSIN(ARI*YID!Z})

FA(1,3)=-CO2*DCOS(ARZ~YYZ{I)}
:

FA(Z,1)=DCOS{ARLI*YYD(Z]
FAR{2,2)==-DCCS{AR2*YYL(l:
FA(2,3)=-DSIN(AR2*YYD(l}
FA(2,2)=-CO2*DSIN(ARI*TTD(3))
FA(3, 3)=CO2*DCCS(ARZ*YYI(3}}
FA(3, 4)-COO'LSIN(§R3'.!D(J))?COO3 YYD(3)*DCOS(AR2YYYD(3);
FA{3,5,=-CO3*DCOS(AR3*YYD(2})
:A(4,2)=3COS(AR2'YYD(3\)
A4, 2)=DSIN(AR2" YL (3)}
FAL4,4)=COX" YVD’S)'DS’M( ARZ*IYD(3) )
FA(4,5)=-DSIN(AR3YYYD(3
.A(,,4,--COX'.YD(4"DCCSIARB'YYD(4))
FA(5,5)=DCOS(AR3*YYD (4}
RETURN
END
SUBROUTINE DF2D6B(EVL,EV2,EV3,FA)
IMPLICIT REAL*8{(A-H,C-Z}
COMMON/T1/XXD(4),YYD(3},
COMMON/T2/ALX{(2),ALY(Z},
COMMON/T3/EX(2),EY(2},E2
DIMENSION FA(S,5]
Do 102 I=1,5
DO 102 J=1,5

FA(I,J}=0.0
CONTINUE
AR1=EV1*DSQRT(EY(2)}
AR2=EV2*DSQRT(EY (2} )
AR3=EV3*DSQRTIEY(2)}

2803}
ALZ(2)
(20
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COLl=ALY 2:*ARL

AM2—Rr T e3DRD

CO3=ALY {2, *AR3
COX=DSQRT(EY(2) )
COO=ALY {2} *COX
COO3=ALY{Z}*EY (2} *EV3
FA(1,1)=-CCL*DSIN(AR1*YYD(2))
FA{1,2)=CCl~*CSIN(RR2*YYD(2))
FA({l,3)=-COZ*DCCS(AR2*’/YD(2}!
FA(2,1)=DCOS(A~."YYDI(Ll,
FA(2,2)=-DCOS (A 2*YYD(2))
FA(2,3)=-DSIN(AR2*YYD(2))
FA(3,2)=-COZ'DSIN(AR2'YYD(3H
FA(3, 3)=CO2*DCCS(AR2*YYD(3}
FA(3,4)=CO3*DSIN(AR3*YYD(3})
FA(3,5)=-CO0O*DCOS{AR3*YYD!3})+CO03*YYD(3) *DSIN(ARZ*YYD(3})
TA(4,2:=0DCOS{ARZ*YYD(3))
TA(4,31=DSIN(RR2*YYD(3})
FA(4,4)=-DCOS(AR3*YYD{3)}
FA(4,5)=-COX~*YYD({3)*DCOS(AR3I~YYD(3}))
FA(S,4)==-DSIN(AR3*YYD(4))
FA(E,5)=-CC¥*YYD(4)*DSIN(AR3*YYD(4}}
RETURN
END

SUBRCUTINE CFZCT(EV1,EV2,FA)
IMPLICIT REAL S\w-h,O—")

DYMTNS’OF
2O 10z
06 102

CZ CONTINUE
ARI=EVL~
ARZ=EVZ L
COl=ALZ(L - -
TC2=AlZIl, -

CTOX1=DSQRT(EZ 1,

COX2=0SQRT(EZ( D)

CO01=ALZ 1 *CQ¥L
on

CCO2=ALZ {2, "TCXI
COQ3= A.Z l TEZ(LivEVL
CvCOX1~ZZD(2}*CSIN(ARLI*ZZD(2))-COOL*DSIN{ARI*IZ2D(Z
.(.,.}‘COO'a ZZDi{2;vDCOS{ARL*ZZDI(2)}
UZI+*2CO0S(AR2+ZZD(2))

=U2~-CSIN(AR2+*Z22D(2);
}=-COO1~*SSIN(AR1*2ZD(2)!~-CO03*2ZD(2)*DCOS{ARL*2Z2ZD(2)
FA{Z,2;=CO2*DSIN(AR2*ZID{2}}

FA(2,31=~CO2*OCOS(AR2~2ZD(2))

FA!3,2)==CSIN{AR2*ZZD(3)!

FA(3,3)=DCOS(AR2*2ZZD(3}))

SUSROCT'WE DF3D8A(EV1,EVZ, FR)
IMPLICIT REAL-8(R-H,0-2)
COMMON/T1/XXD(4),YYD{4},22D(3)
COMMON/T2/ALY.(2),ALY(2),ALZ(2)
COMMON/T3/EX(2),EY(2},EZ(2}

COMMON/T3$/UZ
CIMENSION FA(3,3)
00 10z

k]
S

DO 102
FA(I,J}=0.C
102 CONTINUE
AR1=EV1*DSQRT(EZ (1))
AR2=EV2*DSQRT(EZ (2}
COl=ALZ!{1)*AR]
CO2=RLZ{Z)}*ARZ
COX1=DSQRT(EZ{1})
COX2=DSQRT (EZ (2}
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COO1=RALZ(1)"COX1l

CO02=ALZ(2)*COX2

COO3=ALZ(2}*EZ(2)*EV2
FA(1,1)=-UZ*DCOS(ARL*ZZD(2}))+COLl*DSIN(ARL
FA(L,2)=-UZ*COX2*2ZD(2)*DSIN(AR2~22D(2}}
FA(1,31=UCZ*DSIN(ARZ*2ZD(2}}
FA(2,1}=-COl*DSIN(ARL1*2ZD(2}}

TAL2,
FA(2,3)=-CCZ*DCOS (AR2*22ZD(2})
FA(3,2)=-COX2*2ZD(3)*DCOS(AR2*ZZD(3))
FA(3,3)=DCOS{AR2*22ZD(3})
RETURN
END

SUBROUTINE DF3D8B{EV1,EVZ,FA)
IMPLICIT REAL*8(A-H,C-2)
COMMON/TL1/XXD(4),YYD{4,,220(3,
COMMON/T2/ALX(2),ALY(2),ALZ(2)
COMMON/T3/EX (2} ,EY{(2),E2{2}
COMMON/T4 /U2

DIMENSION FA(3, 3)
DO 102 I=1,23

CONTINUE
AR1=EV1*DSQRT(EZ
AR2=EV2*DSQRT(EZ
COl=ALZ(1}*AR1
ZO2=ALZ(2)*ARCZ
COX1=DSQRT(EZ 1}
COXI=DSQRT({EZ:Z);
TOO1=RLI 1 ~CQOXl

CO02=ALZ(2:*COXZ
FA(1,1)=-Ul*DCOSIARI*ZID(Z) ) +CCL*DSINIARL"
FALL,2)=UZ*DCCOS{AR2 2202}

TALL, TZOXIvIZD(Z ) *DCCS(ARI®ZIZD( 2
TA2,1i=-COl~CsZ N(AA"ZAD(-))
?‘(Z,ZY—CO”'DS N(ARZ*ZZID(Z,)

DCCS(AR2*ZZIT
LARZ*ZZD(2))
pO(“'""D(‘)'DSIN ARI*ZIZZI3):

-ZCZ~2ZZ:iZ;

-Z2002~

125

:d:RCLTIN; ARRAN(N,UU, D, G, H;
IMPLICIT REALYE(A-H,0-1)
COMMCN/TLL/AAL,XD,YZ2,20

DIMENSION JHE3},0(N=-1;,JU{N,N}
G(i1!=AAl
H{1}=0.2
M=1
L=(N+1)/2
0O 89 LL=2,L
G{LL!=D(LM)
H(LL;=C(LM~1,
IM=LM+2
CONTINUE

D0 5 I=1l,N
V=G(1)*UU(I,1)+G(2)*UU(I,
IF{L.GT.2)THEN
V=V+G({3)*UU(I,4)+H(3) UU(I
ENDIF
IF(DABS(V) .GE
PRINT*, 'WARNING!
ENDIF
CONTINUE
RETURN
END
SUBROUTINE DETER(A,N,NP,D)
IMPLICIT REAL*8(A~H,0-2)
DIMENSION A(NP,NP},INDX(NP)
CALL LUDCM?P(A,N,NP,INDX,D)
DO 11 J=1,N
D=D*A(J,J)

2)+H(2)~UU(I, 3)

1.0-5) THEN

RESIDUE IS HIGH!!'',V
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CONTINUE

RETURN

EMD

SUBROUTINE SOLVE(N,UU,G,H)

IMPLICIT REAL*8(A-H,0-2)

COMMON/T11/AAl,XD, YD, 2D

DIMENSION UU(N,N),W(N=-1,N-1},DI(N-1!,G3{2},H(3),IND(N-1)
DO . iI=l,N-1

DO . JJ=1,N-1
WtII,JJ)=UU(II,JJ+1)

CONTINUE

Do S5 II=1l,N-1

D{II;=-AALl*UU(IZI, 1}

CONTINUE

CALL LUCCMP(W,N-1,N-1,IND,F)
CALL LUBKSB(W,N-1,N-1,INC,D}
CALL ARRAN(N,UU,D,G,H:

RETURN

END

SUBROUTINE SOURCE(L,SU:

IMPLICIT REAL*S(A-H,0-1}
COMMON/TZ1/AALl,XD,YD, 20
COMMON/T108/A(3),B(3),Ci3),D(2),F
COMMON/ TLO09/ARA 0 ,ARY (€) ,ARL S,
COMMON/T110/AX1(6),AXZ(6),AY1(6),AYI(6,,AI1(6},A22(6)
CALL NORM{L,AN)

DX=AX1(5) *DCOS (ARX(5) *XLC}+AX2 (S} *DSIN ARX (5! *XD)
DY=C(Z2!*DCOS (ARY (5! *YD)+C{2)*DSIN(ARY 2 *Y¥D)
DZ=F{Z}*CCOS{ARZ(S1*ZD)+G(Z)*DSINIARI (22D}
PC=DX*Zv*CC

SU=pPC/AN

L I PR Y

RETURN

ZND

SUBROUTINE PFISUMILL,TD, PDS)
IMPLICIT REAL*S!A-H,0-1)
COMMON/TZ/XXD:4),YYD(4,,22D(3!
COMMON/TZ2/RLA(Z) ALYTIZ)Y,ALZIT:
ZOMMCN/ T3/ E 702,222

TOMMON/ TS/ NW(e:
COMMON/TésAD(6,2:,BCi8,2:,HD1'&,.,; ,H422'2, 2"
COMMCN/ TT/NTS (€, 2]
COMMCN/T9/QD(6,2,20),7T5T!16,2,290)
COMMON/TLL/AAL,XD,YD,20
COMMON/T232/72{1203,81{1200),Pp1:220C
COMMCN/TZ03/TZ211200),82{2200),B2(12%¢
COMMON/T1C04/T3(1200),83(12002),P31
COMMON/T>205/T411200),84(1200),°24¢
COMMCN/T106/TS{1200),85(1200},P5!¢ :
COMMON/T1507/T6(1200),S86(1200},P0(12CT
COMMON/T108/A(3},B(3),C(3),D:13),5(2),Gi2}
COMMON/T.0G/ARX (S} ,ARY (6} ,ARZ (%)
COMMON/T112/AX1(é},AXZ(6),AYli06; ,AY2 (& ,AZ1(6},AZl9;
DIMENSICN DUMT (20!
ALU=TI1{(LL)*TLl(LL}-S1(LL)*SL{LLy=PL(LL:~2L{LL}
PDS=C.C
DO 220 IA=1,6
IF(NW(IA).EQ.0)GO TC 201
DO 200 JB=1,NW(IA)
INDEX=1
DO 2 K=2,NTS(IA,JB)
IF(INDEX.EQ.0)GO TO 2
IF(TD.LE.TDT(IA,JB,K))THEN
JKF=K-1
INDEX=0

ENDIF
CONTINUE
IF({INDEX.EQ.OQO) THEN

L=JKF

ELSE

L=NTS({IA,JB)

ENDIF
DO 50 I=1,L
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1Y Fy to b

(S eNe]
O r+ 0

DUMT (KI})=TDT(IA,JB,KI}
CONTINUE
DUMT (L+1}=TD

el I=I,L

TT1=ALU* (DUMT (I}-TD)

TT2=ALU* (DUMT(I+1)-TD)
JFX=AX1(IA}*DCOS(ARX(IA)*AD(IA,JB))
$+AX2 (IA) *DSIN(ARX(IA}*AD(IR,JB})
DEY=C(IA-3)*DCOS(ARY(IA}*BD(IA,JB))
#+D(IA-3)*DSIN(ARY(IA)*BD(IA,JB))

DEZ=AZ1 (IA}

DHD= (HD2 (IA,JB)-HD1 (IA,JB)}/22D(2)
IF(ARZ(IA).GT.1.0D-10)THEN
V1=0.5*ARZ (IA)* (HD1{IA,JB)+HD2{IA,JB))
V2=0.5*ARZ (IA}* (HC2(IA,JB)-HD1l(IA,JB})
DEZ=F(IA-3}*DCOS(V1)*DSIN(V2)+G(IA-3)*CSIN(V1)*DSIN(V2)
DEZ=2.0*DfZ/ARZ(IA)

ENDIF

VALU=DFX*DFY*DFZ/ (DHD*ALU)
PDS=PDS+QD(IA,JB,I)* (DEXP{(TT2)-DEXP(TTL}}*VALU
CONTINUE

CONTINUE

CONTINUE

CONTINUE

RETURN

END

SUBROUTINE SOUP(L,TD,SUB)

IMPLICIT REAL*8(A-H,0-2)
COMMON/T1/XXD(4),YYD(4!,220(3)
COMMON/T2/ALX (2} ,ALY(2),ALZ(2)
COMMON/T3/EX(Z},EY(2),EZ(2)
COMMON/TE/NWI(G)
COMMCN/T6/AD(6,2),BD(6,2),HD1!6,2),HD2!1¢,2)
COMMON/T7/NTS (6,2}
ZOMMON/T8/Ql(6,2,20),TDT(6,2,20)
COMMON/T102/T1(:1200},811{1200),P1{1200)
COMMON/T123/T2{1200),52(1200),P2{12C0)
COMMOMN/T104/T32!1200),83(1200),23(1200)
COMMON/T105/74(1200),54(1200),P4(1220)
COMMON/T106/T5({1200),55(1200),P5(1200)
COMMON/T107/T6(1200},S6(120C),P5(1200)
COMMON/T108/A(3),B(3),C(3),D(3},F1(2),G(2}
COMMON/T109/ARX(6),ARY (6) ,ARZ(6)
COMMON/T110/AX1(6),AX2(6),AY1(6),AY2(E),AZ1(%),AZ2{6]
DIMENSION DUMT(20)
ALU=TI(L}*TI(L)+S1(L)*SL{L)+PL(L)*PLl(L)
sUB=0.0

DO 200 I=1,6

IF(NW(I).EQ.0)GO TO 201

DC 202 J=1,NW(I)

CALL FTD(I,J,TD,QRATE!
OFX=AX1(I)*DCOS(ARX(I)J*AD(I,J))+AX21I}*DSIN(ARA(I)*AD(Z
DEY=C(I-3}*DCOS(ARY(I}*BD(I,J))+D(I-3) DSIN(ARY (I} EL(I
DFZ=RZ: (1)

DHD=(HD2(I,J)-HD1(I,J))/22D(2)
IF(ARZ(I;.GT.1.0D-10)THEN
V1=0.5*ARZ(I}*(HDL(I,J)+HD2(I,J))
V2=0.5*ARZ(I)* (HD2(I,J)-HD1(I,J)}
DFZ=F(I-3)*DCOS(V1)*DSIN(V2}+G(I-3)*DSIN(V1)*DSIN(V2)
DFZ=2.0*DFZ/ARZ(I)

ENDIF

SUB=SUB+QRATE*DFX~DEY*DEZ/ DHD

CONTINUE

CONTINUE

CONTINUE

RETURN
END

SUBROUTINE FTD(I,J,T,Q)

IMPLICIT REAL*8(A-H,0-2)

COMMON/T7/NTS (6,2}
COMMON/T8/QD{(6,2,20),TDT(6,2,20)

INDEX=1

.~ -

[
I}
\
i

]
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CO I K=2,NT5!(I,J)
IF(INDEX.EQ. 2)GO TO 1
IF(T.LT.TDT(I,J,K) ) THEN
Q-QD(IIJI l)

INDEX=C

ENDIF

CONTINUE

IF{INDEX.EQ. 1) THEN
=QD{I,J,NTS{I,J))
ENDIF
RETURN
END
SUBROUTINE NCRM(L,ABN)
IMPLICIT REAL*8(A-H,C-Z)
COMMON/TL1/XXD(4),YYD(4),22D(3)
COMMON/T2/ALX(2),ALY(2) ,ALZ(2}
COMMON/T3/EX(2),EY(2},E2(2)
COMMON/T11/AAl, XD, YD
COMMON/T102/T1{1200},81(1200),¢8
COMMON/T103/T2(1200),82(12CQ),P<
COMMON/T104/T3(1200},83(1200),°?
COMMCN/T105/T4(1200},S4(1200),P
COMMON/TIOG/TS(1200),55(1200),
COMMON/T1Q07/T6(1200),S6(1200),°?
COMMON/T108/A(3;,B(3),C J),D(’),
COMMON/T109/ARX(6),ARY (6),ARZ (€]
COMMON/T110/AX1(6},AX2(6),AY1 {6} ,AY2(6;,AZ1(6},AZ2(4)

(2)

DIMENSION E(2}
E{L)=ALX(I)vEX (1)
E(:>=ALX(“"=1(3
ABN=.
AR l' }
2 )
3
4
s

EY
ARV(3)-SJ\L) DSQRT(EY (1
ARY (4)=S4 (L} *DSQRT(EY(2:!)
ARY(5)=S53(L)*DSQRTIEY (2}
ARY (16)=S6{L)*DSQRT(EY(2}!
ARZ:i1)=PL{L}*DSQRT(EZ(1)
[

+
ARZ{Z)= P:lL)'DSQRT(— )
ARZ(2)=P3(L)*DSQRT(EZ(1})
BRZ(4)=P4 (L)*DSQRT(EZ(2})
ARZ({5)=PS(L})*DSQRT(EZ (2}
ARZ(6)=P6{L)*DSQRT(EZ (2]}
AY1{(1)=AAR1l
ASD=S1!L}*YYD(3}*DSQRT(EY (1!}
AY2(1'=RAl*CSIN(ASD)/DCOS(ASD:

Azl (1"AAA
AZZ(1l;=0C
RYI(Z)—AA;

ASD=S2(L}*YYD(3})*DSQRT(EY{1}}
AY2(2)=RAl*DSIN(ASD)/DCOS(ASD;

AZl(2i=F(1)
R22(2)=G(1)
AY1(3)=AAl

ASD=S3(L)*YYD(3)*DSQRT(EY (1))
AY2(3)=AR1*DSIN(ASD)/DCOS (ASD}
AZ1(3)=AAl

AZ2(31=0.0

YYL1=YYD{3}+YYD(2)
YY2=YYD(3)-YYD(2}
2Z21=22D(2)+22D(1)
222=2ZD(2)-22D(1;
223=ZZD(3)-22D{(2;

DO L I=1,3

AA=A{I)*A(I}

BB=B(I)*B(I)
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=A(I}*B(I)
XX1=XXD(I+1}+XXD{I;
XX2=XXD(I~+1}-XXD(I}
XXR1=ARX(I)*XX1
XXRZ=ARX(I}*%xX2
SS=0.5* (AA+BB) * KXZ
T=0.0
yu=0.Q
IF{ARX(I}.GT.1.00-1C)THEN
TT=0.5* (RA-BB) *DCOS {XXR1)*ISIN(XXR2) /ARX(I)
UU=AB*DSIN(XXR1}*DSIN(XXR2}/ARX (I}

ENDIF

F1=E{1)* (SS+TT+UU}

AA=AY1(I}*AY1(I)

BB=AY2 (I} ARY2(I}

F2=0.5* (AAR+BB)*YYZ

AA=AZ1(I)*AZ1(I;

BB=AZ2(I}*AZ2(I}

AB=AZ1(I})*ARZ2(I)

ZZR1=ARZ(I)*2Z1

ZZR2=ARZ{I;*222

SS=0.S* (AA+BB)~Z1Z

TT=C.~

Uu=: .
IFI.20.2.AND.ARZ(I).GT...0D-10)THEN
TT=0.5* {ARA-BB}*DCOS{ZZR1)*DSIN(ZIZRZ})/ARZ (I}
UU=AB*DSIN(ZZR1}*DSIN{ZZR2)/ARRI (I}

ENDIF
F3=SS+TT+UU
ABN=ABN-Fl~ 52~ ¢
CONTINUE
AX1{4)=ARl
ASD=T4 (L) X¥D(2
AX2{4)=RAl-DSIN
AZl(4)=ARAl
ASD=P4 (L)~ ZZD(2}*ISQRTIEZ!
AZ2(4)=AAL~DSIN(ASC)/ITCS{ASD)
AXIIS)=ARL
ASD=TS(L;*XXD:

"

AXI(S)=ARALl

ASD=T6(L}*XXD(3)"28SRRT 242,

2XZ(0)=AAl1*ISIN{ASC)/DCOS{ASD)

AZl(4;=RAl

ASD=P6(L)*ZZD(3)*TSQRT(EZ{(I}:

AZ2(6)=AAL*DSIN{ASD)/CCOS(ASD)

XX1=XXD{3)+XXC(2)

AX2=XXD(3)-XXD(2}

223=220(3)+220(2)

224=Z2D01(3,-220(2}

DO 2 I=4,6

AA=C{I-3}*C(I-3)

3B=D(I-3)*D{I-3}
=C(I-3)*D(I-3}

YY1=YYD(I-2}+YYD{I-3;

YY2=YYD(I=-2)=-YYD(I-3)

YYR1I=ARY (I}*YY1l

YYR2=ARY (I)*YY2

SS=0.5* (AA+BB)*YY2

TT=C.0

Uu=0.0

IF(ARY (I} .GT.1.0D-1C}THEN

TT=0.5* (AAR-BB)*DCOS(YYR1; *DSIN(YYR2)/ARY(I)

UU=AB*DSIN(YYR1)*DSIN(YYR2)/ARY (I}
ENDIF

F4=E(2)* (SS+TT+UU)

AA=AXI(I)*AX1(I)

BB=AX2(I}*AX2(I)

AB=RAX1(I)*AX2(I)

FS=0.5* (AA+BB) *XX2
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(8

18

9

AA=AZ1{I}*AZ1(I)
8B=AZ2{I)*AZ2(I)
AB=AZI1(I)*ARZ2(I}
Z2ZRI=ARZ(I}*2Z23
ZZR2=ARI(I)*~ZZ4
$S=0.5* (AA+BB)*22Z4
TT=0.0
uu=0.0
IF{I.EQ.5.AND.ARZ (I} .GT.1.0D-10)THEN
TT=0.5* {AA-BB)*DCOS(2ZR1}*DSIN(2ZZR2)/ARZ (I}
UU=AB*DSIN(ZZR1)*DSIN(ZZR2}/ARZ(I)
ENDIF
F6=SS+TT+UU
ABN=ABN~-F4*EF5*F6
CONTINUE
RETURN
END
SUBROUTINE LUDCMP(A,N,NP,INDX,D;
IMPLICIT REAL*8(A-H,0-2)
PARAMETER (NMAX=100,TINY=1.0D-20}
DIMENSION A(NP,NP},INDX(N),VV{(NMAX)
0=1.0
20 12 I=1,N
AAMAX=C.
DO 11 J=1,N

IF (DABS{A{(I,J);.GT.AAMAX! AAMAX=DABS(A!(I,J))

TONTINUE
IF (AAMAX.EQ.l.. PAUSE 'Singular Matrix !!'!°
=1./RARAMAX

TONTINUE
A, =8SUM
TONTINUE
AAMAX=C.

CONTINUE
A(I,J)=8SUM
SUM=VV{I)vDABS I5UM;
IF {CUM.GE.AAMAX, THEN
IMAX=1I
AAMAX=DUM
ENDIF
CONTINUE
IF (J.NE.IMAX) THEN
DO 17 K=i,N
DUM=A({ IMAX, K)
A(IMAX,Ki=A(J,K)
A(J,K)=DUM
CONTINUE
D=-D
VV(IMAX)=VV(J)
ENDIF
INDX (J)=IMAX
IF (A(J,J).EQ.Q.)A(J,J}=TINY
IF (J.NE.N) THEN
DUM=1./A(J,J)
DO 18 I=J+1,N
A{I,J)=A(I,J)*DUM
CONTINUE
ENDIF
CONTINUE
RETURN
END
SUBRQUTINE LUBKSB(A,N,NP,INDX,B;
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IMPLICIT REAL®*8(A-H,0-2)
DIMENSION A{NP,NP),INCX{N},B(N)
II=Q
DC 1Z I=1,N
LL=INDX(I)
SUM=8(LL}
B{LL}=BiI)
IF(II.NE.Q) THEN
Do 11 J=II,I-1
SUM=SUM-A(I,J)~B(J"
11 CONTINUE
ELSE IF(SUM.NE.O.:THEN
II=I
ENDIF
B{I)=SUM
12 CONTINUE
DO 14 I=N,1,-1
SUM=B(I!
DO 13 J=I+i,N
SUM=SUM-A(I,J}*B(J)
13 CONTINUE
B{I)=SUM/AR(I,I)
14 CONTINUE
RETURN
END

C.2 Input Files
* Input file: in3d.d

€ I Ccmpartments>

S.2 . 2cation ¢ extreme GOuUncaries L X-3l1Iecticn>

3.3 nless wiatrn 32 eacn pody>

S, L. <lscat.cn I extreme Doundarles L. y-=ClIection>

0.2 Z.2% .. <lzcatien :tf oecundaries Ln n>

PN ALE{I . >

.2 1.6 <ALTLI>

PR e ALIZ{IN>

DO A <EX I}>

P, .o <E ;>

PR <E 1>

310000.3 <skin 7

259012 <numpecr :n each compactment, NI >

2.2 .8 <areal 1 well in 5th ccompartment>

J.3IL T.g8l2e <cocmpiet sf well in 3tn ccompartment, Nz S, nap(l; >
2 <numper cf tTime roduction schedule ¢ well 1n 2th ccmpartrent,

NTS(I,J >
<QD(5,1,1)
<TDT(5,1.,2
<QC(5,:,2)
<TDTt:,1,Z2

b O
[6 SN N o)

* Input File: r3d.d

c

<ARl, a constant for solving a linear system cf equation>
.8 G.022 <location of cbserving pressure responses, Xp,Yps < p>
<WRS, Initial guess for eigenvalues>

[WiNe N

¢l
S1
o1

266



APPENDIXD

THREE-DIMENSIONAL FLOW IN A HOMOGENEOUS AND ISOTROPIC
RECTANGULAR PARALLELEPIPED

D.1 Introduction

Sometimes a producing well penetrates the formation partially, rather than fully. The
presence of bottom water and/or a gas cap may lead to such a situation. The primary
objective of this Appendix is to develop analytical solutions for the transient potential in
a homogeneous and isotropic rectangular parallelepiped which is producing through a
partially-penetrating well. Here, an extension of the procedure for developing the
solutions for a two-dimensional rectangular system, as outlined by Hovanessian (1961),

will be followed.

Muskat (1949) presented an analytical solution for the potential distribution in a bounded
reservoir under steady-state conditions producing through a partially-penetrating well.
This author used a continuous distribution of flux elements, each of which is provided
with a series of images in the bounding planes such that the net flow across the bounding
planes cancels to zero. Setk (1968) developed an analytical solution for transient pressure
in finite reservoirs in radial systems producing through a partially-penetrating well.
Kazemi and Seth (1969) generated numerical solutions for transient-pressure responses
using a finite-difference technique for finite and infinite reservoirs producing through
partially-penetrating wells. These authors examined the effect of anisotropy and
stratification on transient-pressure analysis of wells with restricted flow entry.
Streltsova-Adams (1979) developed analytical solutions for transient pressure in an oil
reservoir producing through a partially-penetrating well in the presence of a gas cap.
These solutions have been shown to become the solution for a situation with impervious

top and bottom boundaries as a limiting case. Marett et al. (1991) have derived analytical
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solutions for steady-state pressure distribution due to production through a partially-

perforated wellbore in a three-dimensional cylindrical system.

Raghavan and Ozkan (1994) have presented the solutions in Laplace space for transient
pressure for a line-source well placed inside a homogeneous and isotropic parallelepiped
with various boundary conditions using the method of images. These authors considered
the cases of all the boundaries being closed and of where up to four boundaries (out of six

boundaries) are being maintained at a constant pressure.

Therefore, in the following Sections, analytical solutions will be developed for transient-
potential responses in a homogeneous and isotropic parallelepiped producing through a
partially-penetrating well at a constant rate. Considering the importance of incorporating
the effects of gravity in the solutions, this problem (with diffusivity equation and
conditions) is formulated based on the force form of potential as illustrated in Section 4.1,

Chapter 4.

D.2 Development of Solutions

A homogeneous and isotropic rectangular parallelepiped, whose domain is defined by R,
is producing through a partially-penetrating (or partially completed) well as shown in Fig.
D.1. In this Appendix, the analytical solutions in closed form for the dimensionless
potential of this system following a procedure similar to that of Hovanessian (1961) are
developed. Here the solutions are developed for two sets of boundary conditions. The

boundary conditions considered are:

e All boundaries are closed (no flow)

e All boundaries are kept at a constant potential.
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completed
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Xop

Figure D.1: Schematic of three-dimensional flow in a homogeneous parallelepiped.
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The dimensionless form of the diffusivity equation for a slightly-compressible fluid with
a constant compressibility in the three-dimensional, Cartesian co-ordinate system due to
production through a completed interval between zp = h, p and zp = h; p of the partially-

penetrating well located at (ay p, b, p) areally (on x-y plane) at a dimensionless rate of gp

is given by:
Fo, I, 5, b, oD,
- H(z, - - H(zp - h, - —byp)=
2, Py + oz, + hp—hp" (zp— hp)—H(zp — hp)18(xp — ) 80p — bop) o,
....................................................................................................................................... (D.1)

The above equation is valid for 0 S xp < Xpp, 0Syp < ¥pp, 0<zp < Zo p, tp > 0. The

dimensionless variables are defined in Section 4.2, Chapter 4.

For a uniform, intitial potential, the initial condition to Eq. (D.1) is prescribed as:

(DD(XD, YD, 2D, 0) T e e (D2)

In the following Sections, the solutions for ®p(xp, ¥p, zp, tp) to Eq. (D.1) with the initial

condition, expressed by Eq. (D.2), are derived for two sets of boundary conditions.

D.3 Case: All Boundaries Closed

All the boundaries are kept closed while the partially-penetrating weil is producing. In

this case, the boundary conditions in dimensionless form are prescribed as:

[0, | od,

= I S, D.3)
L axD dxy=0 L axD dep=Xy p
9| _ (9% e (D.4)
L ayD dyp=0 L ayD Syp=Yop
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The homogeneous, Neumann-type of boundary conditions, expressed by Egs. (D.3)
through (D.5), suggest that one needs to use the finite, Fourier cosine transform (Sreddon,
1951). There will be eight auxiliary solutions to Eq. (D.1), the algebraic summation of

which will result in the complete solution for ®p. Thus,

@, (Xps Vo> Zps Ip) = D Dy oo (D.6)

Table D.1 shows the kernel functions (operators) for the finite, Fourier cosine transform
used for these auxiliary solutions. In the following, the derivation for @, p is shown. The

other auxiliary solutions can be derived in a similar way.

To get the Fourier cosine transformation of the diffusivity equation, multiplying both

4 4 ’ ’ -
sides of Eq. (D.1) by the operator, co{[ T XDJ cos{ ~ xyo) co{n %% 1 dx, ady, dz,,
XOD \ ),()D ZOD )

and integrating over the domain of the rectangular parallelepiped, R, one has:

Fo ’ " R ‘= \
J’”‘[ D . a?dzo +82(ED) co{l Kxo) CO{MJ co{” T Idxp ay, dz,,
7 \ 9% Y5 0z, Xoo Yoo Zyp )

N h q_Dh, HI[H‘"D" hp)—H(zp — hp)10(xp — G p) 80, — byp)
I'nx, m’ Ty, n xz, :
.co{ X, )cos{ 7 } cos( Z.. )a&D dy, dz,

oo, {I'nx,,) {m'uybj {n’ nzD)
= co co co dx, dy, dz
Iﬂ o, Xoo Y, Z, ) DT D.7)
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TABLE D.1: KERNEL FUNCTIONS FOR AUXILIARY SOLUTIONS FOR CLOSED
BOUNDARIES

Auxialiary Solution,

(DJD

Kernel Function

Db co{[ u:x,,) co{m nyu) co{n nzD)
Xobp Yoo Zyp
od.p co{l nxojco{m nyg)
XOD Y;)D
;5 Co{i'nxD'J
XOD
, PR
(DJD CO{I IL’XD) co{n Tz, i
XOD } ZOD /,
<D_5D co{n RZD)
Zyp
Do co{m RYD\ (n 7’5~o)
sk ZOD /
®-p co (m' nyD)
1o
Dz C (an arbitrary constant)
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Simplification of Eq. (D.7) involves evaluation of integrals and substitution of the
boundary condition, Egs. (D.3) through (D.5). Then, solving the resulting equation with

the initial condition, one gets,

Do 1w (ty) = —QM- R YO (D.8)
O} o
where,
— I'rtx m' T "z, )
Do rrmn(ty) = [[[ @5 co{ DJ co{—y”) co{ D deD dyydzp ... D.9)
R XOD Y;)D ZOD
0 _ ap Z, {I'naoo) {m'nbw){Si’{n’nh.DJ_S"[n'ithD\}
Qil'nfr
n' m(h,p— hyp) Xsp Yy Zop \ “4oo
..................................................................................................................................... (D.10)
. 2 ,n.'.’ n/.
By = T ( - ~ ) el (D.11)

8 o I'mx mny\ Tz
d,= ——— E CDDll'm'n'(l )COS( D) { L { D}
e XOD }IOD ZOD Z#m'#; ° XOD

Having derived the other auxiliary solutions (for ®; p, ®; p,........... , ®g p) and then

substituting all the auxiliary solutions into Eq. (D.6), one has, for the complete solution:
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9 b 8 551 Qotrmw 05w b0
Q(X,y,z,t)= + [z—(l_e ll'I’u’)
oI Xop Yep Zop Xop Yon Zoo :Z#ZZZ D

cos{l nxD) co{m nyp) cos(’{ n:zoh
Y XOD I,OD ZOD /

4 = = Qo2 ime _eot. ¢ (¥ nxDJ S(m'n’.y,,]
$ — [=2 (1—- e™?) cosl cos{ —= |]
XOD I,C)D ZOD ;z ﬁ.; \ XOD Y;JD

m'= 'm”

2 S Qosl -0 4 {I'TCXD\
+ [ (1 i1 o) co J]
XOD YODZ oD g ‘651

Qo g tinet {m' “}’D) {”' nzo)
+ [ m'n’ (1 ww )CO 22 | cog —2 ]
TiaZn 2o N s

2 Z[Qofi, (1_. e"ﬁ-r‘o) cos(m n_yD_)
Y(.‘D IZODZD nt =] ﬁ}n( Y(:)D

I'mx nrwz
+ [*"’"" (1- "’“’“"") co{ D) co{—D)]
XOD ),ODZ oD ;g 6In XOD ZOD

2 =~ .0, _o? nrz .
+ [ (1- e """)cos{ D)] ............... ®.13)
Xop Y0 Zop nzl n \ Zbo
where,
I'ma m R’ b
0. ,..= COSl 2 | oSl — 2 | e D.14
Coztm UJ3) {Xoo ] { T, ) ( )
. , 1/2 m/l’
B = T ( T (D.15)
' Xip  Yip
I'n
Ousr = 4o co{ "“D) ........................................................................................... (D.16)
XOD
£\ SO SRRSO PP PPN 17
31 X;D (D )
Qpomy = ——12 Zop {”’ "bw){sn{'{“h-"’) szr{n ’”‘D\} ........... {D.18)
nrh,— hp) ) 9 Zyp Zop J
72 2
e oS (D.19)
I,0.D ZOD
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B = e e e D.21)
Yo
9 Zop {l'“aoo){ -,{"’nh)o) -,{”Ixhro)}
OQosrw = = co Sin ——= |—Si} ——= |p..ceceeeen (D.22)
et nnh,— hy) Xop Z,p Zyp
. R 112 n12
Y, =1 o ) e e e e e et e e e eeas 23
51 (X';o Zf,D) (D.23)
Z ‘T nr
Oorw =— b Zop {n{nZ@D\—Sﬁ{ h”’]} ........................................ (D .24)
nah,— hp) oo J Z,p
) 1‘:2 72
B2, = e e (D.25)
Zsp

Therefore, Eq. (D.13) is the ultimate solution to the problem.
D.4 Case: All Boundaries Maintained at a Constant Potentiai
All the boundaries are maintained at a constant potential (initial potential) while the

partially-penetrating well is producing. Thus, the boundary conditions in dimensionless

ferm are as follows:

[cbD]xD:O = | ]X 0 e (D.26)
[cb,,]m=0 | ]Ww 0 e (D.27)
[®, o T [ DL,,:Z,,,, 0o e (D.28)

Following Sneddon (1951), the homogenous, Dirichlet-type of boundary conditions,
expressed by Eqs. (D.26) through (D.28), suggest that one should use the finite, Fourier
sine transform. Unlike the case of closed boundary system considered in Section D.3, the

ultimate solution is reached by carrying out the derivation with one kemel function
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(operator) only. Thus, multiplying both sides of the diffusivity equation, expressed by

Eq. (D.1), bv the operator, sin I xp sifn T | 27 dx, dy, dz,, and
XOD )GD ZOD

integrating over the domain of the rectangular parallelepiped, R, and following a similar

procedure to that described in Section D.3, one obtains,

8 C © T QOI’ w — O} O
D (5, Yo» Zo» 1p) = [ Soee (1 ¢ %)
pipr A Tor D XOD YODZOD gmz#g 6f'm'n'

where,

Qoz-,..»,.. = - OD _’{1'1[ aOD) r{m, T[boo) {Cof(——n’ nh}D)—COA{——n’ nh’D )}
n'm (h’o ho) Yoo Z,p k Zyp

Therefore, Eq. (D.29) is the ultimate solution to the problem.
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APPENDIX E
PROOF OF APPLICABILITY OF PRINCIPLE OF RECIPROCITY

Consider a compartmentalized system with two hydraulically-communicating
compartments A and B. This system is subject to two-dimensional flow when the
condition at each extreme boundary is of the homogeneous, Dirichlet-type. It will be
shown that the principle of reciprocity holds for this kind of situation. Initially. both
compartments are at an identical, uniform pressure. The points (xp 4, ¥p 4) and (xp 5, ¥p 5)
are the two arbitrary points in these compartments, respectively, where an active well
and an observation well are to be located. Let pp 4(xp 4, Yp 4 {p) be the dimensionless
pressure response at an observation well, located at (xp 4, ¥p 4) in compartment A, due to
the production through an active well, located at (xp g, ¥p 3, {p) in compartment B, and
also let pp s(xp 5. Yo 5, Ip) be the dimensionless pressure response at .an observaticn well,
located at (xp g, ¥p ) in compartment B, due to production through an active well, located
at {xp 4, Vp 3) in compartment A, at dimensionless time /5. In both cases, a dimensionless

production rate of gp{fp) as a function of #5 is considered.

Applying the solution for dimensionless pressure responses from Eq. (3.40), taking care
that an appropriate Dirichlet-type conditions is used at all the extreme boundaries

(Section 3.2.7 in Chapter 3), one gets,

Poapas Yous o) = Hyp ZU:s(xos, Yo) VisGop: Yos) Urapas You) V14Xp s Yoi) qu(t) et
=1 0
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From Eqgs. (E.1) and (E.2), one has,

PDA(XA, Y4, tD) =PDB(XDB, YD B> ID) ..................................................... s (53)

Hence the principle of reciprocity holds when all the conditions at the extreme boundaries
are of the homogeneous, Dirichlet-type. Similarly, one can show that this principle is
applicable even when the conditions are of the homogeneous, Nuemann-type or a

combination of homogeneous, Dirichlet- and Nuemann-types.
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