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ABSTRACT

High transverse shear force regions in concrete plates and shells have alwavs
a controversial subject in structural design and analysis. Punching shear in the .-
column connections is a case in point. Existing building codes all over the world: d.
have a common approach to handle this phenomenon and could be unduly conser .
Offshore structures and highly pressurized concrete containments are other exarsr - n
which the presence of high transverse shear forces makes it hard to determine the =il

mode. ductility and thus reliability of the design in the analysis process.

Numerical analysis of structure by finite element method offers a substiwute to
expensive experimental investigations in such cases. Nevertheless. the available finite
element models for concrete plates or shells are not accurate in the regions of high
transverse shear force. Inaccuracy in finite element analysis of concrete shells and plates
stems from the strain field approximation and material model idealization. To address the
former a new plate-shell element with a refined strain field is developed in this work.
This element which is called “Refined Degencrated Shell Element”. is capable of
adjusting its strain field approximation to the actual situation of strain in the structure

more closely than that of other shell elements. This unique characteristic is especially

special consideration. In this work a three dimensional material model based on the
fracture energy and plasticity approaches for concrete is integrated into the finite element
model of plate and shells to remove the problems associated with inclined cracking in
zones of high transverse shear force. Tension stiffening is also addressed and its

implementation in the finite element modeling of these problems discussed.

Examples to verify the new shell element are presented. The material model is
also verified in special cases that are pertinent to ordinary stress fields in thin plates and
shells. Lastly. the results of numerical analysis of different thick plate and beam type

structures in the presence of high transverse shear forces are attempted and discussed.
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There was u song,
very deep into the sky.

There were only a few,
digging out the sky searching for it.
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CHAPTER ONE

INTRODUCTION

1.1. PROBLEM STATEMENT

Large scale concrete plate and shells are becoming more and more popular in the
design and construction of huge and important  structures  specially in offshore
environments. The advantages of concrete plates and shells include not only the cost of

the structure but also its low heat conductivity and better structural damping
characteristics among others. This area of application of concrete shells is flourishing
rapidly. Design of huge LNG (Liquid Natural Gas) super-tankers made of reinforced
concrete are examples showing the popularity of this trend. In the design process of such
important projects. a powerful analysis tool is required to ensure the availability of
sufficient ductility and thus reliability of the structure. The major concern is o improve
the accuracy of analysis in determining the failure mode and post peak behavior of the
structure. The problem in these cases arises mostly at the intersection of plates and shells
force is expected due to load transfer from a flexible shell to a stiffer one. Collision with
icebergs or other moving objects is another example that could cause concentrated shear
forces in the structure. These high transverse shear zoncs increase the possibility of brittle

failure and must be predicted in the analysis and prevented in the design.

Analysis and design of concrete plates and shells in the regions of high transverse
shear forces have always been controversial. Designing for punching shear around
columns in slabs is a graphic example of this case. The degree of uncertainty in
understanding the behavior of the structure in this region causes discrepancy in the design

rules in different building codes all over the world.



1.2 BACKGROUND AND REVIEW

Plates and shell- are highly indeterminate structures. In concrete shells and plates
progressive material failure is expected almost from the beginning of the loading process.
Thus, the load carrying mechanism in the structure varies through different stages in the

loading history. Therefore, in some cases it is hard to predict the final mode of failure.

and plates causes a great deal of inaccuracy in the conventional analysis techniques and
sometimes make it impossible to capture the brittle mode of failure in the analysis

process.

the regions of high transverse shear forces. one may examine the most common example
in this area: the punching shear problem in slab-column connections. Afier a large
number of experimental and analytical studies on this subject. there is still a great deal of
controversy about the mechanism of punching shear in the slab-column connections (see.
for example. Moe 1961, Regan et al. 1985, Moetlile et al. 1988 and Alexander et al. 1992).
Investigations in this area are mostly experimental. The primary reason is the relativelv

low cost of a full scale test of a slab-column connection.

Investigation in the other examples of the occurrence of high transverse shear
force such as offshore structures or highly pressurized containments involve costly
experimental studies. This restricts the number of these experiments to only a few tests on
smaller scale models of the actual structures or its components (see McLean 1987, Saito
et al. 1989 and Horschel 1988-a and b). The only alternative method of investigation is
numerical analysis. The work by Clauss (1987 and 1989) and Weatherby (1990) are
examples in which pre-test and post-test finite element analysis of an experimental study

have been carried out in order to justify and improve the numerical analysis techniques.

Tt



The need for an accurate prediction of the response of these structures has
stimulated research activities in the field of computational analysis of concrete structures
during the last 25 years. Advancement in the areas of nonlincar solution techniques,
concrete constitutive modelling and enhancement in strain ficld approximation in the
finite element method have made the analysis of complex  concrete structures possible.
Nevertheless there are several shortcomings in the current analysis techniques particularly

in plate and shell structures.

The source of inaccuracy in finite element analysis of concrete plates and shells in
the regions of high transverse shear force. is rooted in both strain ficld approximations

and material model representations.

Concrete plates and shells exhibit a complex structural response with various
important nonlinearities in the constitutive behavior of concrete. Progressive material
failure throughout the thickness due to tensile cracking and compression crushing of
concrete. causes a complicated distribution of strain in the thickness direction that varies
in accordance with the level of progression of material failure. This behavior in concrete
plates and shells requires special treatment at the level of strain field approximations in
the finite element method. In other words. refinement techniques are required to keep the
strain field approximation in the finite element method as close as possible to the actual

strain field in the structure.

The transverse shear force in the structure is accompanied by shear deformation.
The out of plane shear strain associated with this deformation is not uniformly distributed
across the thickness. As an example in the case of clastic materials, a parabolic
distribution of shear strain across the thickness is expected. A more complicated
distribution of strain is anticipated when a diffused material failure across the thickness is
likely to occur. Nevertheless existing plate and shell elements ignore the cffect of shear
deformation in the structure or only account for this phenomenon in an average sense by
assuming a uniform shear strain distribution across the thickness. This crude strain ficld

approximation in the presence of high transverse shear forces in the structure could



mislead the analyst to ignore a brittle mode of failure. There are some suggestions 10
resolve this dilemma: using several layers of three dimensional elements in the thick 1ess
direction in the vicinity of high transverse shear zones or utilizing refined plate-shell
clements. The latter are extended versions of ordinary plate-shell elements that include

more accurate strain fields in the thickness direction.

The other important aspect is the concrete material model. In fact, there is still no
universally accepted material model for concrete that covers accurately the wide range of
nonlinecar behavior of this material. Also it is indisputable that all the material
nonlinearitics of concrete depend strongly on the tri-axial state of stress. This is specially

important in plate and shell structures in the presence of hi gh transverse shear force,

The contribution of out of plane shear forces in plate and shells initiates inclined
cracking. The progression of inclined cracking in the region of high transverse shear
forces coalesce sometimes into localized fracture zones that lead to britile modes of
failure. To be able to universally capture this mode of behavior. the constitutive
relationships of the concrete material model must be able to represent the out of plane and

inplane components of stress and strain.

1.3 RESEARCH OBJECTIVES AND SCOPE
method in the analysis of shell structures in zones of high transverse shear forces. This

objective is categorized into several sub-domains.

(1) To develop a new plate shell element with refined strain field to use in the Zones

of high transverse shear forces.

(2)  To verify the potential of the refined shell elements to represent a more realistic

(3)  To implement a three dimensional plasticity concrete material constitutive relation

into the shell finite element.



) To validate the performance of the three dimensional concrete material model in

some particular states of stress that exist in plate-shell structures.

&) To examine the possibility of introducing the effect of tension stiffening in a three

dimensional plasticitv material model.

1.4 LAYOUT OF THE THESIS
This thesis consists of six chapters including this introduction as Chapter One.

The main concept of each of the following chapters is briefly summarized as follows:

Chapter 2 introduces the new Refined Degenerated Shell Element. This chapter
starts with an introduction and a short literature review. followed by a discussion of the
concept of refinement in degenerated shell elements. The formulation of the new clement
and the boundary condition of the new degrees of freedom are addressed in the remainder

of the chapter.

Chaprer 3 presents some examples of the application of refined degenerated shell
elements in the zones of high transverse shear force in plate and shell structures.
Verification of this new element and comparison of the results with other methods of

analysis form the last part of this chapter.

Chapter 4 discusses the concrete material model. Starts with an introductiors and a
brief literature review, it focuses on the three dimensional fracture energy based plasticity
model and its implementation in shell structures. Tension stiffening is also addressed in
this chapter. In addition, this chapter provides some examples of the application of this
material model in some special states of stress pertinent to plate and shell structures. It
gives some insight into the ability of the plasticity model to represent bi-axial tension,

pure shear and some other particular states of stress.

Chapter 5 presents attempts at the analysis of plates and shells subjected to high

transverse shear forces. It follows with a discussion of the results and some remarks on



the accuracy and reliability of the finite element model in zones of high transverse shear

forces.

Chapter 6 summarizes the work and presents a conclusion of the accomplished study.



CHAPTER TWO

REFINED STRAIN FIELD
IN THE REGIONS OF HIGH TRANSVERSE SHEAR FORCES *

2.1 Introduction and Literature Survey

The development of plate and shell elements started with clements based on the
well known Love-Kirchhoff hypothesis which totally ignores the shear deformation of the
element by assuming that a plane cross section that is normal to the mid-surface remains
plane and normal to the mid-surface after deformation. Thus. the transverse shear strain is
not included in the strain field description of these elements. This strain field consists
only of the strain components corresponding to a planc state of stress with a lincar
variation across the thickness. Figure 2.1 illustrates the deformed side-view of a
Love-Kirchhoff plate element and its strain field approximation. Most applications of

such elements are restricted to small deformations and are generally plagued by the

represented by strain field approximations of the Love-Kirchhoff model.

Plate and shell elements based on the Mindlin-Reissner hypothesis (Reissner
1945) were the next development in this area. These elements represent. the shear
deformation of the structure in an average sense by assuming plane sections remain plane
but not necessarily normal to the mid-surface afier deformation. Thus. in addition to the
in-plane strain components as above this formulation allows a uniform distribution of
transverse shear strains across the thickness as shown in Fig.2.2. A comprehensive
overview of the underlying assumptions in the mechanics of shells and also of the

discrete finite element models of these structures is given by Wempner (1989).

This chapter is, in some parts, directly quoted from papers co-written by the author (Ziyaeifar and Elwi
1995, 1996-a and b)



Plate and shell elements are traditionally divided into two different groups. shell

Degenerated shell elements, originally introduced by Ahmad et al. (1968). are
formed from three dimensional continuum elements with a special isoparametric
interpolation that in effect imposes the same kinematic constraints as those in the
Mindlin-Reissner hypothesis. This element is formulated by applying two constraints on
straight line normal to the mid-surface before deformation remains straight but not
necessarily normal to the mid-surface afier deformation. The second constraint requires
that the extension of the line normal to the mid-surface be negligible. implying the
transverse normal strain exists but is condensed out of the formulation, similar to plane
stress problems. Because of the three dimensional nature of the formulation the full
potential of Lagrangian approach to large deformation can be easily emploved. Thus. the
formulation allows for all ranges of large deformation and rotations but is restricted to
small strains since the thickness cannot change due to the second constraint ‘mposed on

the displacement field.

Both of the Mindlin-Reissner and Love-Kizchhoff types of plate and shell
clements were extensively used in the analysis of concrete plates and shells by using
effective cross sectional properties (El,z) to account for tensile cracking. This method
needs a pre-defined criteria for the value of ET,y based on the propagation of damage in
the structure. One of the earliest efforts in this area was reported by Jofriet (1971). Later
application of plate-shell elements in the nonlinear analysis of concrete plate and shell
structures made use of the layered model of plate-shell elements introduced by Clough
(1968). Layered techniques were improved by Figueras et al. (1983), Hinton et al. (1984)

and Scordelis et al. (1987). In these versions of shell elements, the element is actually



divided into a number of concrete layers throughout the thickness while the seecl
reinforcement is smeared into equivalent steel layers with unidircctional properties
(Scanlon 1971. Hand et al. 1972 and Lin et al. 1975). With this claboration. layered
elements can represent the state of stress in each layer independently from other layers,
allowing for material property variation through the thickness. Therefore. in the
compression region of shells or plates. concrete layers might be in clastic. strain
hardening or strain softening states while in the tension side concrete layers could be in

elastic, or cracked situations. Figure 2.3 shows this element.

Applications of the layered versions of Mindlin-Reissner type of shell elements in
the nonlinear analysis of shells and plates is quitc common. This application even extends
to the regions of high transverse shear forces (Abbasi ot al. 1993). The uniform
distribution of shear strain across the thickness, although not ideal. is in an average sense
a reasonable approximation. Nevertheless. to address zones of high shear forces properly.,
this approximation is nnt accurate en ough. The assumption of plane cross sections in
Mindlin-Reissner hypothesis is not valid in the presence of high transverse shear forees. It
leads to a uniform shear strain distribution across the thickness that is not realistic even
when the material is elastic. Moreover. it is too far from the true distribution of strain in
concrete shells and plates after cracking. Taking into account the fact that in finite
element analysis recoverv of shear stress is always much poorer than that of normal

stress, a more realistic distribution of shear strain is necessary.

The deficiency of layered Mindlin-Reissner elements in these circumstances was
addressed by several researchers ( Cervera et al. 1987 and Noguchi et al. 1993). As the
last alternative they proposed to make use of three dimensional elements in the regions of
high transverse shear forces.

Three dimensional elements are ideal elements when the problem is in the three
dimensional state of strain. An example of this application was shown by Cervera and
Hinton (1986). But in plate and shell structures the neighborhood in which a rigorous

three dimensional state of strain exists, is limited only to the zone of high transverse shear
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force. In the remaining part of the structure the assumptions utilized in the ordinary plate

and shell elements are valid enough to represent the state of strain in the structure.

Using several layers of three dimensional elements in the thickness directions for
a large part of the structure is quite expensive in finite element analysis. A remedy 10 this
forces and ordinary shell-plate elements in the other parts of the structure. This
claboration needs a transitional element as an interface between the two elements (three
dimensional and shell elements). One example of these elements is proposed by Liao et

al. (1988). The element called Solid-Shell element and it is in one side a solid element

cases. In concrete plates and shells. due to the extension of tensile cracking through most
of the thickness. shear rigidity of the cross section becomes small and in the mean time
(Cedolin et al. 1977. Owen et al. 1984 and Damjanic et al. 1984). As a result, even in the
abscnce of high shear forces there might be some large shear deformations in the
structure and refinement of the strain field by three dimensional elements has to be
extended further.

An alternative to this approach is to refine the strain field of plate and shell
clements. A realistic distribution of shear strain across the thickness requires relaxation of

the assumptions utilized in bending hypotheses for plates and shells.

2.1.1 Refined Shell Elements

Refined shell elements relax the constraint that the cross section remains plane
after deformation in the Mindlin-Reissner hypothesis. This means that the cross section
can warp to comply with a more realistic distribution of strain across the thickness. These
kinds of clements are developed based on the so called, higher order theories. For
example 1o represent a parabolic shear strain distribution across the thickness which is the

case in elastic structures. a third order variation of inplane displacements is required. This



approach is called third order shear deformation theory (Reddy 1984-a and b). In contrast.
the Mindlin-Reissner approach which requires only a linear variation of the inplane
displacement across the thickness is called a first order shear deformation theory,
Figure 2.5 Shows the inplane displacement across the thickness and its associated strain

field for the third order shear deformation theory.

Application of shell elements based on third order shear deformation theorics are
mostly concentrated on the analysis of composite multi-layered shell structures in acro-
space industries. The inter-laminar shear stress and strain is the crucial paramcters in the
design of these structures and the objective of the refinement is 10 provide the required
insight into this problem. In crder to have a continuous shear stress distribution across the
thickness, considering different material properties in each layer. a discontinuous shear
strain distribution is required (Reddy 1989). This concept is depicted in Fig. 2.6. In
concrete shells and plates. however. the refinement objective is different. Initiation of
tensile cracking at a point causes reduction of shear rigidity in that part of the cross
section (Damjanic et al. 1984) followed by an increase in the normal tensile strain and

also transverse shear strain of the c:i'ss section at that point. Because of the sensitivity of

structure and find out if it is in a brittle or ductile mode. Figure 2.7 shows in-plane and

shear strain distributions across the thickness in this situation.

In reinforced concrete structures there are a few examples in which some sort of
refinement techniques in shell elements are used in order to solve the problem more
accurately. Two examples in this area are the work done by Klein (1986) and Barzegar
(1988). Both of them used the layering concept proposed by Mawenya et al. (1974) in
which each layer has independent rotational degrees of freedom but the translational

degrees of freedom for all layers are connected to each other. Thus it can casily represent



non-symmetrical distributions of shear strain across the thickness in concrete plate and

shells afier initiation of tensile cracking.

shell elements. These approaches are categorized and discussed by Noor and Burton
(1989). Most of these higher order elements were formulated based on the shell theory
model. Except for few multi-layered continuum based elements such as the one proposed
by Owen ct al. (1987) and Li et al. (1989). nothing much has been done to refine the
strain field in the continuum based class of elements. In their work a continuum based
refined shell element for laminated shells was introduced in which a static condensation
technique was used to reduce the computational efforts.

In this thesis the formulation of the continuum based three dimensionsl
degenerated plate-shell element is extended to accommodate the required refinement in
the strain field approximation of the element for general applications. The formulation is
also extended 10 the geometrically nonlinear range of behavior using a Lagrangian
approach. The refined element is shown to have an adjustable refined strain field suitable

for different types of refinement purposes.

2.2 Adjustable Refined Bending Theory for Shells

developed in the last decade. Among those the work by Reddy (1984-a and b) is
particularly well known. In his third order theory the constraint that plane cross sections
remain plane, which implies a linear variation of the longitudinal displacements through

the thickness. is replaced by a third order polynomial defined as:

u(z)=utaz+fzi+ 17 2.1)

in which z is the coordinate in the thickness direction. u is the normal displacement of the
cross section and a, fand A are coefficients to be determined. In the case of a symmetric

shear strain distribution across the thickness, that is expected with linear isotropic
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material models, the term 3 z* automatically disappears. The longitudinal displacement
component associated with wransverse shear strain is measured from the line normal to the

neutral axis as shown in Fig. 2.5 and can be expressed as:

u, (2)=u+(EwlEx)z~u(z) (2.2

Substituting for u(z) from Eq. 2.1 and taking the derivative of the above equation with

respect to z, the shear strain distribution across the thickness is obtained as :

longitudinal displacement field across the thickness:

u(zj=ug+az+ [HAw/ox-a)l3n’ ]z} (2.4)

in which / is the thickness of the structure. The shear strain distribution based on such a
displacement field would be a parabola, as shown in Fig. 2.5, which is the ideal case for
homogenous elastic material models.

The independent displacement parameters in the case of shell structures

considering a two dimensional surface would ,thus. be five:
Uyy Vy, Wy, and &,

These are three translations and two, so called. refined independent variables. Thus.
Reddy’s approach requires additional independent variables , o v and a ., two more than
is required by classical shell formulations based on the Love-Kirchhoff hypothesis. In this
method, the third term on the right hand side of Eq. 2.4, imposes a strict constraint on the
parabolic shear strain distribution and satisfies zero shear strain requirements at the top

and bottom surfaces of the element.



Finite element formulations based on such a constraint (third order theory) require
ac’ continuity of the displacement field due to the existence of the partial derivatives
of the lateral displacement in the formulation (Eq. 2.4). Similar requirements are existed
in the classical shell elements based on the Love-Kirchhoff hypothesis. In this process
the partial derivatives of the lateral displacement, w, must be invoked as degrees of
freedom in the formulation. In fact for a consistent refined shell element based on third
order theory the number of degrees of freedom is eight degree per node. not all

independent, however.

Ew dw G’w
“ox ' oy 6xdy

Uy Vo, Wy, ,a

Here the number of independent variables is only five at each node (Reddy 1989
and Averill et al. 1992). In this approach. involvement of the second partial derivative of
the first order displacement term, w. represents the continuity of twisting curvature which

is numerically inconvenient in finite element method.

Instead of using the above approach. Basar (1993) kept the fourth component of

the displacement field in Eq. 2.1 intact, and introduced a new independent variable 1 .
u(z)=u,+az+ 2z (2.5)

As before, the third component of the displacement field ( B z*) vanishes. In this case the

number of independent displacement variables in the shell element becomes seven:
Uys Voy Wy Ay @y A, and 4.

This implies that the partial derivative of the displacement, w, in the third order
theory is eliminated at the expense of introducing additional independent variables. This
also may be viewed as a potential source of problems because a zero transverse shear
strain condition at the top and bottom surfaces of the element is not directly required in

this formulation. This issue will be addressed later.
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Conceptually this approach is similar to the Mindlin-Reissner formulation in
which rotation of the cross section is used as an independent variable. This reduces the
continuity requirement of the displacement field ffom C /! to C ¢ and also relaxes the
constraint of classical plate theory in which cross sections remain perpendicular to the
neutral axes after deformation. Introducing the new independent variables A cand 4
keeps the C ¢ continuity in the displacement field while removing the constraint that
cross-sections remain plane in the Mindlin-Reissner elements. In the above treatment, the
total number of degrees of freedom per node is equal to the number of independent

variables. seven per node.

Expressing the longitudinal displacement of the cross section in the form ol a
third order polynomial allows the cross section to warp in order to comply with the actual
strain field in the element. But this is not a general approach to account for all required

refinements in shell structures.

2.3 Proposed Refined Strain Field in This Study

In the present study. instead of using a third order polynomial and an independent
displacement variable for each of its terms, a shape function attributed to cach new
independent displacement variable is defined. In this way there is the flexibility 1o
introduce any type of refinement on the displacement field across the thickness. no matter
if it is a smooth function such as " z or z3 " or a zigzag broken line function as shown in
Fig. 2.8. This ability is necessary if a special type of refinement is required. In fact some
cases dictate a unique pattern of the displacement field across the thickness that is hard 1o
represent by a polynomial. A laminated plate is an example. In this case a continuous
transverse shear stress distribution across the thickness is nceessary to keep the
equilibrium condition between layers. This requires a discontinuous shear strain
distribution because of varying material properties in each layer. Figure 2.6 shows the
shape of the longitudinal displacement of the cross section necessary to accommodate

such shear strain distribution across the thickness.



Applying the above concept. the longitudinal displacement field throughout the

thickness can be represented as:
u(z)=ug+a f(z)+pg(z)+Ak(z)+nl(z)+----- (2.6)

in which f{(z), g(z), k(z), I(z), ... are shape functions and their coefficients e, p. A, n, .. are
independent displacement variables that are similar to the actual degrees of freedom in
this approach. Each of these independent variables has two components in the x and y
directions. The number of shape functions depends on the complexity of the displacement

field. Figure 2.8 illustrates some possible shape functions.

It should be noted that. choosing a shape function must be based on some
preliminary knowledge of the displacement field in the structurc. Except for the first and
second terms which denote translation and ordinary rotations of the middle surface.
selection of the other functions is arbitrary as far as the concept of shape function is
concerned. In fact. these functions are invoked only to refine the strain field in the

structure. When there is no similarity between the strain field in the structure and that

process.

2.4 Refined Degenerated Shell Elements

In this section the concept of Adjustable Refined Bending Theory for Shells
developed in the previous section is implemented into the degenerated shell elements.
Because in this element independent displacement variables for rotations of the cross
section are used, the first shape function, f{z), is inherent in the original formulation.

In fact the first shape function is a linear displacement function (i.e. flz)=z) and
its independent variable a is simply the angle of rotation of the cross section. In other
words to obtain the displacement of a point through the thickness, a simple multiplication

of the angle of rotation by the distance from origin, z, is performed. The new independent
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variables (5, 4, 1, ...) are similar to the rotational degrees of freedom but instead of being

=

multiplied by a linear function z. other types of functions such as g(zj, k(=) I(z), ...arc o

be used. To highlight this analogy to angles of rotation. these independent variables are .

herein, called generalized rotations.

based on a three dimensional continuum representation of the strain ficld in which an
isoparametric interpolation impcﬁ:sés kinematic constraints similar to those in the first
order shear deformation theory (i.e. Mindlin--Reissner theory). In other words.
independent isoparametric interpolation is carried out for translational and rotational
degrees of freedom of each node. Figure 2.2 shows the deformed elevation of a
degenerated plate-shell element.

Using the same interpolation shape function over the middle surface of the
element for all degrees of freedom including generalized rotations. Ieads to the following

displacement field for the element :

F 7"!(0),. .

" AP
Hi(;) uz(ﬂ)" + f(;)[F..(VI,iW;)] + g(:)[l*’,,(yf..w;)] l * .
, L ' a,, ’]/;J (2.7)
uy(2)p = g[,\']"d u,(0),

k(;)[Fﬁ(;.fi,yfz)] o P

3‘ in

Here 4,(0) are the displacements of the middle surface. The expression [F;, (v vy 2)] is
a 3x2 geometrical transformation matrix proposed by Ramm (1976) to convert the
rotation of the cross section to longitudinal displacements. Parameters w,and w, are the
angles that represent the orientation of the cross section with respect to the global frame
of reference. In fact the rotational degrees of freedom a; and a;, are small changes 1o
these angles. The shape of such a transformation depends on the definition of these

degrees of freedom and it is similar for all rotational degrees of freedom including



varies from 1 to /, the number of nodes in an element. and [NV}, is the interpolation sub-

matrix at node n. Each shape function in the above formulation (i.e. g(z), k(z),...) can be
represented by a simple mathematical expression. The above relationship is merely an
extension of the displacement field which was used by Ramm (1976-1977) for ordinary
degencrated shell elements. The finite element formulation of the new element is also a

modification of the plate shell element published by the same author.

In this work the uniform distribution of out of plane shear strain of the ordinary
degenerated plate shell elements is extended to a nonlinear unsymmetric distribution
through two additional sets of shape functions. The first shape function, g(z). is provided
to represent the parabolic shear strain distribution, yielding zero shear strain at the top

and bottom surfaces of the shell. This function is illustrated in Fig. 2.8 and is written as:
g(z)=4 /1 (2.8)

In the case of anisotropy. elasto-plastic behavior or material models where the
behavior in tension is different from that in compression, an unsymmetric shear strain
distribution across the thickness may follow. These strain fields can be better represented
by introducing more sophisticated shape functions in the same way as above. The second
shape function, k(z). is thus. deliberately chosen to introduce an unsymmetric shear strain
distribution across the thickness. but in the mean time it should preserve a zero shear
strain at the top and bottom fibers of the shell. In this work a new shape function is
added to the longitudinal displacement distribution across the thickness. This function
complies with zero transverse shear strain conditions on the top and bottom surface of the
shell and introduces an anti-symmetric distribution of shear strain in the thickness
direction. Figure 2.8 shows the desired function and its contribution to the transverse
shear strain distribution across the thickness. This new shape function is constructed from

spline functions and is written as:

k(z)=6z*/h~ 82sign(z)/ I’ (2.9)
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At the beginning of loading. while the material is still homogenous elastic. a zero
value for the coefficient 4 of the function k(z) results which means no unsvmmetric shear
strain distribution exists across the thickness. When the material in the tension (or
compression) side of the plate experiences inelastic softening. the material response 1o
shear deformation is no longer homogeneous across the thickness. which automatically
triggers the second component of refinement. k(). Depending on the severity of
softening. the coefficient of this shape function. 1. becomes larger and plays a major role

in the displacement field of the element.

It is convenient to give the new displacement shape functions. the same extreme
value as that of the rotational degree of freedom at top and bottom of the cross scction.
This has no effect on the formulation because these additional components will be treated
as shape functions. The intention is only to provide the ability to standardize the relative
contributions of each component.

The longitudinal displacement at any point on a particular cross section can be

written as a function of the local coordinate in the thickness direction. 1. as:

u(t)=u o+ u,(t)+u,(t)+u,(t)
t=2z/h -L=f= 1.

(2.10-a)

in which

u.(t)=af(t)
u,(t)=pg(t) (2.10-h)
u,(t)=Ak(t)

RN

and

f(t)=ht/2
g(t)=ht* /2 (2.10-c)
k(t)=ht* /2~ ht*sign(t)

Here f(1), g(¥) and k(1) are shape functions in the local coordinate.



The concept of shape functions that was used in the above representation can be
casily expanded to the other types of refinements in the shell, particularly in multi-layered

shell elements. This can be achieved by introducing a piecewise linear shape function

across the thickness as a broken line. This function can accommodate the discontiruity of
transverse shear strain across the thickness to provide the required continuity of shear
force between layers. An example of this function /(z), is depicted in Fig. 2.§. The
substitution of such a function instead of g(#) or k(?) does not need any special elaboration

in the formulation.

2.4.1 Large Deformation Formulation

degrees of freedom at each node are three translations ."u; , "u>, ™u; and two rotations,
"ay and "a,. The translations take place at the middle surface and are defined with
respect to the global axes of reference. The rotational degrees of freedom. ™a; and "a, .
are defined as changes in the angles. y . the normal to the middle surface described with

respect to the global frame of reference. Thus, "a; and ™, are defined as

"ar=("y, -"y) and ="y -"y) (2.11)

in which ¢ ™) denotes the current configuration and ¢ ®) denotes the original undeformed
configuration. Figure 2.9 shows the definition of these angles.

The four new degrees of freedom, "B, ™B,, ™A, and ™A, introduced in this
work are naturally similar to and are modeled afier the rotational degrees of freedom "¢,
and "a,. There are, however, two main differences. The new degrees of freedom have
zero values in the original configuration (in contrast to the nonzero values of gyi] and ﬂgzz,_-;.
for rotational degrees of freedom). More importantly, since they have the magnitude of

shear strain values, they are not likely to have extremely large values. Therefore. they are



changes in the angles of normal to the middle surface "y and "y, (or "a; and "as ).

which existed in the original formulation. and can be as large as necessary.,

2.4.1.1 Geometric Transformation

Ramm (1976-1977) describes the mapping of a vector of length L along the
normal to the middle surface in the current configuration that undergoes small changes in
the angle's "y, and "y, . The magnitudes of these small changes are a; and a» . The
quantities @; and @, are thus the incremental changes in angles "yy and ™y, . The

translztions of the tip of the vector relative to the global frame of reference are thus:

(4" x,] [ 0 ~sin("y,) | 7
«
4 "',\-,r= ~sin("y )sin("y,) cos("y Jeos("y,) 1 L (2.12-0)
(24 3
|4 "'x3J | sin("y )eos("y,)  cos("y, )sin ("'W;)_J
{am} =[F("y,"w,) (o} (symbolically) (2.12-h)
Ve ¥, 1 A h

If the changes in the original rotational degrees of freedom are small from onc

[F;, (l// v, )] is the transformation matrix introduced in Eq. 2.7.

2.4.1.2 Finite Element Displacement Field

The full large deformation displacement field of a point on the cross scction of an



"u (1)) "w(0) cos("y,)—cos("y,)

T (t) =4 "ua(0) +% sin("y ) cos("w,) — sin("y,) cos("y,)
uc |

| "us(t) "u(0) sin("y ) sin("w,) = sin("w ) sin("y.) (2.13)

*afFCy '-"W:)]{ hokr ("'w,,'"w;)]{%
-

" As

To obtain the increment of displacement field, one notes the corresponding

increments in the rotational degrees of freedom are also small enough to be represented

in terms of the nodal degrees of freedom as:

( HI(D)ﬁ] i

, ey 1| &n

w(1)) w0, +S[F "y, "yl
i - o an 7

l:z(l)fI[N]; u(0),] L (2.14)

a=1

3 (1) | A, ) | In
’ g(f)[F.("'w.."w;)][ | Hh)[F("y, "y, )| *

bszn 7 (A2) ]

Which is again Eq. 2.7 written in the natural coordinate 7.

Here, B, B2 A; and A, are increments in the degrees of freedom ™4, , "B, ™A,
and "4 respectively. The node number # varies from 7 to the total number of nodes in an

element. / and [N], is the interpolation submatrix at node .
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Finite Element Formulation

2.5.1 Field Equations

In the following. the element formulation is presented in the context of the

incremental principle of virtual work. A Total Lagrangian approach is tollowed and

Ineremerit

between configurations m and m+1 . the principle is written as:

_‘.g! Cijkt Segy dV + _fmgu 5;7;_,-11!*’;
V 4 ) -
(2.15)

PP g SugdA+ [ M5y SugdV ~ (Mg S gt
A 4 v '

Here e is the linear part of the increment of Green Lagrange strain tensor. 77 is the
nonlinear part, § is the second Piola Kirchhoff stress tensor. € is the constitutive tensor, ¢
is the vector of surface tractions and f is the vector of body forces per unit volume. The

tensors e and 7 are defined in terms of the displacement derivatives and its incremental

values as:

Cij = Z(Uij+ujiv "YUy uk,j+ "y uk)

~ g

(2.16)
77,! = j-l-lk;i'lﬂ\‘;j

At a point within the element defined by ¢ and 7 on the middle surface and ¢
across the thickness, the strain tensor, e . and increment of displacement gradient, u;; . are

written in matrix form in terms of the nodal displacement increments as:

(2.17-4)
=l
{
{(Vu} = Zl[ " B ), {un) (2.17-b)



Here By and By, are shape function derivative operators evaluated at global frame of

reference by using a transformation from local coordinate system {.nand1.

Substituting the strain tensor. e . and increment of displacement gradient, u;; .in
Eq.2.15 with the forms of Eq.2.17 and recognizing the arbitrary variation of the

displacement increment. the Eq. of equilibrium is recovered as:

[mKL+m ﬁimx]{l!} = { milE*mQ} (2.18)

in which the first two terms inside the square bracket on the left hand side represent the
lincar (tangent) and geometric stiffness matrices respectively, while the two terms on the
right hand side represent the current level of loads and the internal equilibrating forces.

The stiffness matrices and internal force vector are recovered as:

] If.\’l;] = 'Ji[mB,\'L]T[n.S] [MB\L] dl (2]9)

In the following the forms of the matrices on the right hand side of Eqs. 2.17 and 2.19 are

defined.

2.5.2  Decrivation of The Strain Displacement Matrix

displacement gradient and the displacerent gradient tensor in configuration (). Thus the

final representation of strain-displacement derivatives can be writien as:

{el =["H]\ Vi) (2.20)
in which ["'H] contains a template of the current displacement gradient while {Vu} is the
gradient of the increment of displacement. Equation 2.20 in full matrix form would be

wrillen as:



‘ﬁ.i>
3 Fy m Lol I i 7 'h: |
en| | wm, 0 0 wy, 0 0 ‘w0 0
_ " . . Iha
n 0 mjﬁiz 0 0 1+EH;2 0 (1] m‘b‘: 0 th-
A - A A I 3 -
e | 0 0 "y 0 0 ws 0 0 1+7p, : (2210
) = ] m i " m 1 m 3 4 ALL-Ah
2ep ey Wiy 0 Wy, ", 0 i I 0
m i m m m & i m Ig"‘
2e, ‘s 0 Wy "y 0 wy Wy 0 16,
. 1 m " ] ,m L L )
2en! | O s T 0 y By 0 By, "™, ]
b
1.3
Components of the gradient of the increment of displacement vector are obtained
using the form of Eq. 2.17-b. Thus. the first step is the calculation of the displacement

derivatives matrix [By;]. Displacement derivatives must be first interpolated from nodal
degrees of freedom in the natural local coordinate system (£,7,¢) and then transformed to

For example. in order to evaluate the gradient of the increment of displacement

vector. one must first evaluate the gradient with respect to the local coordinates:

in which the subscript (, ) denotes the submatrices (vectors) of onc node in the clement,

[m;\r‘(g,r;gr)]n{u‘ i=123 and &=¢ .00 (222

R ]

Here the matrix [N'] holds the shape function derivatives with respect to the natural local
coordinates of node # evaluated at the current integration point with coordinates ¢, 7 and
1. The vector {u}, holds the displacement increments at node # (remember we have here
nine degrees of freedom per node).

The next step is to transform the displacement gradient from the local to the

global frame of re ' rence.
{H,—'ij} = > iJ]El{Iliég}n (2.23)

In which [J]” is the inverse of the Jacobian of the geometric transformation. In the “7otal

Lagrangian” approach the Jacobian is derived by interpolating the geometry of the

Fu
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element from the nodal coordinates in the undeformed configuration. Therefore. the
Jacobian remains unchanged in all time steps, because it always refers to the original
configuration. But in the “Updated Lagrangian” approach, the Jacobian must be derived

for cach time step on the basis of the displacement field defined in Eq. 2.13.

Combining Eqs. 2.22 and 2.23 and comparing to Eq.2.17-b the displacement

gradient is obtained in the form:

n=]

{ !
(Vai = Z I[N (¢ n1)] tul, = X [mpy) lal, 2.24)
n=1J 1=1 oan ’

The vector on the right hand side represents the displacement degrees of freedom

of node n. while [ " g .. | stands for node # submatrix. The matrix has the form.
L BNI"J?

[on 0 0 g1 EG BN FL GRFL gL FL $T.FL $0 F
0 ¢% 0 gu,F ¢l,Fh ¢5,F N #RaFh LR #LaFY
U ﬂ éﬁé ¢gJF; ¢:3F£ ¢;;.1 l éﬁ.ls i.;le,; ¢:_1F32
$h 00 GLLFY BLLFG bpaF @h.Fh $1.F) ¢u.Fn| (2.25)
["Bu],=| 0 @0 0 BLIFL BUFL GhiFh Gh.Fh $ULFL 4L FR
Bl 00 GLLFY GLFS R FN GRiFlL $UAF) 8L F
0 0 ¢ PLLFS pn Sy Gh.Fl #h.F ¢t FL 4% Fh
0 4% 0 g F da Fn ¢5.Fy bpaFyy @5,.Fy ¢;3F2’§
ED 0 ¢"z ;:r;: st;zi:;; ¢;,:F;; i’;.:Fﬁ, ¢:;F;; FJ;J

Y] N!

(2]
3]
L]

In this Matrix F}} are the components of the transformation matrix defined in
Eq. 2.12. while the shape function derivatives are defined as:
by =i ¢l + Jid ¢;]

= F’”’¢ - ‘¢"]
| (2.26-a)

o r 9
#hi=| 808"+ 5 ()]} "]

ha= KOS+ k(1)) 4|



In the above expressions the functions g*(t) and k() arc simple derivatives of the
functions g(®) and k(1) in terms of the natural coordinate . These shape functions are

defined in Eq. 2.10-c. and their derivatives are written as:

g'(t)=3ht’/2

7 , (2.26-b)
k'(t)=3ht-3ht'sign(t)

The strain displacement matrix operator [’"EL] is obtained by pre-multiplving
matrix [”‘E‘NL]n by [”’H] and the strain increment of Eq. 2.17-a is finally obtained as:

1 ¥
ey} = ("8, ] {u,} = X["H][" By, ], {u,) (2.27)

n=l H=

The final result is shown on the following page as:
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The following expressions were used for the sake of simplicity:

D) ’(1+ u”)F“+ uy F\+™u; Fy|

D;"lz(l+ u”)I-i,-’= uy Fyi+"uy | Fi)

1%2(] " 2'—)F"l+ ‘uy o Fy T+ "uy, F

, (2.29)
7é§=(l+muﬂ)ﬂa+ u s F5+" "3-'F1=

Dj; = (1*' "—'13)FBI;""mHLsFl?*mH;;F;
DI = (1+™uy 3 F+ ™ 12+ 3 F
The gradient of the total displacement. {™ u;; } has yet to be determined. The
procedure is similar to that used for the increment of displacement gradient. Eq. 2.24.
except that here. possible large values for rotations have to be considered:
-1

{"' } i[ ] [MNF,(E” )]:ﬂn{mﬁ};v!i = i[mE"] { }m' 2.30)

n=1 =1 910

The dimension of matrices "”N' and "'E as well as the vector { ™! are
| M

slightly different from those used with their counterparts in forming the gradient of the
displacement increment in Eq. 2.24 because of the large rotational characteristics of the
total displacements. In such a case, due to the complicated trigonometric relationship
between the two rotational degrees of freedom y; and ¥,. it is convenient to use three
equations for the two degrees of freedom instead of two separale  complicated
expressions. The detailed description of Eq. 2.30 in matrix form is shown on the next

page as:
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2.5.3 Stress State Matrix and Vector ['"s] and {"‘5"

There are only six components of stress state all together, but to comply with

matrix multiplication requirements. they have to be manipulated into a square matrix

form:
Fmsll
0 0 ’".5'33

"S, 0 0 "S, -
["S]=| 0 ™s, 0 o0 s,

"S: 0 0 "S, 0 "S,
0 0 ™S 0 0 o0 ™§,
0 ™S, 0 0 ™S, 0 "S.,

0 0 ™S 0 0 0 ™S, 0 "S,]

=

The stress state vector { "'5} . takes the traditional form:

I
L
'

{mg}r =<mSn "Sn "Su "Si: "Su mS;;) (2.33

2.6 Boundary Conditions

Boundary conditions are constraints on certain force or displacement components,
Simple constraints take the form of prescribed displacements or forces. The new degrees
of freedom introduced herein cannot have nonzero prescribed displacements or forces.

Thus the associated nodal forces for these degrees of freedom are always zero. regardless

Eq. 2.10-a. ug (¥). is directly proportional 1o the shear strain at the neutral axis. Py This
component and its associated shear strain distribution are included in Fig. 2.10. The

second component of displacement in Eq. 2.10-a is representative of the rotational degree

3



stresses associated with bending moments also its derivative in the thickness direction
provides a constant shear strain contribution. The shape of the full shear strain

distribution is a combination of the two contributions and is depicted in Fig 2.10.

It is noted here that there is no strict constraint that imposes a perfect parabolic
restraint on the shear strain distribution across the thickness. similar to that in the third
order shear deformation theory. Since each component of longitudinal displacement
across the thickness having a contribution to the out of plane shear strain distribution is a
totally independent degree of freedom, there is no assurance of a zero shear strain at the
top and bottom fibers. Everything is relegated to the self adjustment capability of the
finite elemem formulation. On the basis of the field described in Eq. 2.10-a. the structure
has two different channels to move into. second and third component of displacement
U,(t) and uyft), for the case of a symmetric distribution of shear strain. Its share from each
of those. is inherited from the basic concept of finite element. In other words. the
structure would choose a combination from both of those channels of deformations in
which the resulting strain distribution satisfies equilibrium and simulates the actual strain
field. Moreover, the new components contribute to the longitudinal normal strains as well
as the transverse shear strains.

The new refined degrees of freedom also interact with ordinary degrees of

frecdom. The parabolic shear degrees of freedom B; and B, not only contribute to the

shear strain distributions. but also to the rotations and, thus. indirectly to the bending

would be expected. Similarly, the unsymmetric shear degrees of freedom A, and A,
interact with the axial deformations. As a starting point it would be necessary to switch

off the interaction phenomena at certain points to avoid undesirable strain fields.

The parabolic shear strain degrees of freedom B and B are similar to rotational
degrees of freedom. Thus, if a fixed rotational boundary condition is required, these
degrees of freedom should be suppressed along with the ordinary rotational degrees of

freedom @/ and @;. The same reasoning, however, cannot be used for the unsymmetric

Rade
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shear strain degrees of freedom 4, and 4, . Although the latter degrees of freedom can
represent axial deformations as well as unsymmetric shear strain distributions. the middle
surface of the element is not affected by these degrees of freedom. Thus. there is no need

to suppress these degrees of freedom where the axial in-plane degrees of are suppressed.

The unsymmetric shear strain distribution is represented by the function k(1) in
Eq. 2.10-c. This shape function is symmetric and possesses a derivative with respect to
no contribution to the flexural deformation of the cross section. On the other hand. close
attention must be paid to its contribution to the axial deformation of the element. which is
particularly pronounced at discontinuity locations of axial forces such as inplane point

loads and support reactions.

Where a concentrated load is applied in the in-plane direction. the unsymmetric
shear strain degrees of freedom A, and A, together with ordinary in-plane degrees of
freedom u,, u>and u; can represent the pinching effect on the middle surface of the cross
in structure. With no constraints on the A4 degrces of freedom, a concentrated load that is
assumed to be applied at the middle surface is distributed non-uniformly on the cross
section. Therefore, the A degrees of freedom must be restricted where a concentrated load
on the in-plane direction is expected o the structure. Support reactions with components
in the in-plane direction are an example of this casc. A node at which a concentrated load
is applied with a component in the in-plane direction, is another potential candidate for
freedom removes one of the most desirable aspects of refinement in the shell clement,
Therefore, it should be done only at the nodes at which a high magnitude of concentrated

in-plane force is expected.

The same phenomenon arises in the case of concentrated moments. In this

situation there is strong interaction between the @ and /8 degrees of freedom. Therefore,



the contribution of S to the final strain distribution across the thickness may not be
proportional to the actual shear force. In this case the strain field may no longer be
acceptable. A remedy for this problem is to suppress the parabolic shear strain
distribution degrees of freedom at the point of concentrated moment. Again. one should
shear strain distribution. Thus, it is advisable only in the presence of high concentrated
moments.

There is another way to switch off the interaction between the new degrees of
freedom and the original translational and rotational degrees of freedom based on
changing the definition of the shape functions. For instance in the case of A degiees of
freedom, if the definition of shape function k(z) could change so that. its integral across
the thickness become zero (from 7 = -h/2 10 7 = +h/2). it can no longer have anv
contribution to the inplane displacement of the cross section. Such a function can easily
be found by shifting the function k(z) in Fig. 2.8-a. to the left side of the z axis. For Yij
degrees of freedom. however, the first moment of the function £(z) about an axis parallel
to the neutral surface must be zero to remove its interaction with the rotational degrees of

freedom.

2.7  Programming

The model developed above was implemented into Program NISA-80 that was
developed at the University of Stuttgart by Stegmuller et al. (1983). This program was
written in FORTRAN77 and contains the three dimensional degenerated plate-shell
elements developed by Ramm (1976-1977). The total number of lines added to this

program to accommodate two sets of refined shape functions is less than 500.

Because of the similarity between the new degrees of freedom (or independent

no matter what kind of shape function to be used, the program can accept or replace them

ot
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in an orderly manner without any special elaboration. The number of shape tunctions
which can be used is not limited. but to reduce the computational effort it is preferred to
employ only those functions which are likely to be effective in refinement of the strain

field in the structure.

freedom is added in each direction at each node. Thus. for the parabolic and anti-
symmetric shear distributions. two additional degrees of freedom in each direction must
be added to the ordinary five degrees of freedom at each node. The increase in
computational effort is thus substantial. The use of the additional degrees of freedom
should be based on the specific characteristics of each problem. For example if there is no

possibility of having an unsvmmetric behavior in the shell thickness, it is better (o

suppress the degrees of freedom related to this behavior in the finite element model or

even remove the corresponding shape function from the formulation.

To implement any other types of refinement in the shell structure. the same

computer program which was used for diffused material failure herein. can be Lmrnlnvul
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(a) - Deformed elevation

(b) - Strain distribution across the thickness

Figure 2.1 - Love-Kirchhoff hypothesis on bending



(a) - Deformed elevation

1ELL = h

N
|

(b) - Strain distribution across the thickness

Figure 2.2 - Mindlin-Reissner hypothesis on bending
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Steel Layers

(a) - Lavered shell element
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(b) - Normal strain ~ (c) - Stress in concrete(d) - Stress in steel

Figure 2.3 - Layered shell element
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(a) - Deformed elevation
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Figure 2.5 - Third order deformation theory
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(a) - Displacement across the thickness
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(b) - Discontinuous shear strain across the thickness

Figure 2.6 - Multi-layered shell
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(a) - Inplane strain distribution across the thickness

(b) - Shear strain distribution across the thickness

Figure 2.7 - Strain distribution in the case of diffused material failure
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(a) - Shape functions for cross section displacement

(b) - Shear strain contribution of the shape functions

Figure 2.8 - Shape function across the thickness
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Intermediate station for process of transformation
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Z

Figure 2.9 - Definition of rotational degrees of freedom

is the angle between the x-L plane and x-y plane
is the changes in i,
is the changes in ¥
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Figure 2.10 - Displacement and shear strain distribution across the thickness
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CHAPTER THREE

VERIFICATION OF THE REFINED ELEMENT

3.1 Introduction

In order 1o verify the performance of the refined element, a number of problems
were solved and the solutions compared to those obtained from the original degenerated
plate-shell element, hereinafter called the “ordinary element”, and other solutions. The
examples include a shell structure, two square plates and two beams. The integration
algorithm adopted in all the examples in this chapter and the rest of this study is a full
Gaussian integration (4x4 integration points for bi-cubic elements used in this study) in
the plane parallel to the surface. Though sometimes it is not really necessary, an eleven
point Simpson'’s integration rule is adopted across the thickness for all the examples. In

the following the examples are presented and the results discussed.

3.1.  Elastic Behavior of Thin and Thick Shells

The first example is a shallow spherical shell supported on four corners and
subjected to a uniform normal pressure loading. The material property is assumed to be
isotropic linear elastic. The consequences of using the refined element are manifested in
the flexibility of the structure and the stress distribution. Both effects are thickness
dependent. Therefore, this example has been solved with two thickness units (r =200 and
2000 mm). The extreme thickness values have been used deliberately to bring out an

exaggerated response that can be seen clearly.

Figure 3.1 shows the load versus vertical deflection response of point B for both
the ordinary element and the refined element in the case of the thin shell (r =200. mm).
The two solutions are almost identical, but the one with refined elements is slightly more

flexible than the other one. This flexibility which might not be seen in that figure due to
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its small scale. comes from the higher number of degrees of freedom in the refined

model.

Figure 3.2 illustrates the normal and shear stress distributions at point A that is
close to a support. Note that the difference in the normal stress distribution between the
solutions of the ordinary element and the refined element is clear and in contrast to the
shear stress distribution. is highly thickness dependent as is shown in F ig. 3.3 for the case
of the thick shell structure (r =2000 mm). This is expected since plane sections do not
remain plane in the presence of high shear gradients in the refined element. The ratio of
the shear stresses to the normal stresses in the thick shell at this location is much higher

than that in the thin shell at the same location.

3.2.  Elastic-Plastic Analysis of a Plate

The next example consists of a square plate supported at four corners and
subjected to a uniform pressure. The material has a yield strength of 240 MPa and is
modeled with an elastic perfectly plastic Von Mises constitutive relation. The response of
the refined element shows a different progression of yield in the structure from that of the
ordinary element. The refined element predicts yield in the structure carlier and also in a
different mode compared to the ordinary element. The onset of yield takes place at the
middle of the cross section close to the support (point A4 in Fig. 3.4-a) due to the high
shear stresses at that point (Fig. 3.4-b). This limits the load carrying capacity of the
structure and constitutes a behavior approaching "punching" shear failure. On the other
hand, when ordinary elements are used, the onset of yield is postponed to a higher level
of load and it starts at the extreme fibers of the plate cross section due to a combination of
exhibits a gradually softening response. Punching shear may not be detected if a different
mode of failure takes place .elsewhere, such as at mid-span or at the free edge. The load

deflection curve is shown in Fig. 3.5.
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3.3.  Plate with Unsymmetric Material Behavior Across the Thickness

The next example shows the case of unsymmetric material behavior across the
thickness. This is provided by applying a bi-axial inplane normal force 0 a square plate
supported at the central point. This represents the region of a flat slab around a column.
The plate is subjected to a uniform transverse pressure. The vertical displacement of the
four comers have been constrained to be equal by a boundary equation (an option in
program NISA). to prevent rigid body modes of behavior in the structure. The material
model used here is the same as that of the previous model. In this case, the onset of yield
in the top and bottom fibers of the plate. takes place at different levels of transverse
pressure. Figure 3.6 shows the normal and shear stress distributions at point 4 that clearly

depicts the effect of the unsymmetric component of shear strain across the thickness.

3.4.  Strain Distribution Close to the Point of Discontinuity of Shear Force

As mentioned in the previous chapter. both the parabolic shear strain components.
B. and the rotational degrees of freedom, a. contribute to the shear and flexure
combination of @ and f could yield a non-zero transverse shear strain at the top and
bottom of the plate surface. However, the integral of shear stresses across the thickness is

always in total balance with the actual shear force on the cross section.

Under such circumstances the €  continuity of the interpolation functions for

the discontinuity in the shear force properly. In this situation a combination of the degrees
of freedom a and S gives a gradual but steep transition of shear strains over the
discontinuity region. If a three dimensional model were to be used with the same
constraints of plate or shell, the result of the strain field would be similar to that of the

refined shell element. This phenomenon is illustrated in the last example.
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In this last example. a beam supported at both ends and subjected to concentrated
loads is analyzed. The beam is fairly thick to render the shear deformation mode
dominant relative to the flexural mode. Two extreme cases in which a sharp discontinuity
in the shear force exists in the beam are analyzed. one with two point loads applied at 14
points of the span and one with a single mid-span load. These beams are shown in
Fig. 3.7. Boundary conditions of plane stress are assumed in the width direction when
refined elements are used (12 bi-cubic elements). The same beams were constructed from
256 two dimensional isoparametric 8-node plane stress elements also shown on the same
figure. The large number of elements is necessary to examine the stress points as close as
possible to the plane of shear force discontinuity. Figure 3.8-a shows the results for the
mid-span load case compared to the plane stress solution at different points in the vicinity
of the discontinuity. At points close to the discontinuity (for example at L/290 away from
the discontinuity), the shear stress distributions from the plane stress and from the refined
element solutions are rather flat. A short distance away from the point of discontinuity

(L/14) both solutions become much more parabolic.

Figure 3.8-b shows the two point load solutions for both types of analysis. The
points at L/290 and L/14 are in the pure moment region. However because of localized
effects both solutions give a perturbation in the shear stress that is evident at 1./290 and is
negligible at L/14 from the load point in this region. The solutions at a distance of 1/40
from the load point measured towards the support (nonzero shear force zone) arc again

almost identical and parabolic.
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Figure 3.3 - Thick shell example. normal stress distribution at point A
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Figure 3.4 - Plate supported at corners, stress distribution at point A
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Figure 3.6 - Plate supported at centre, stress distribution at point A
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Figure 3.8 - Shear stress close to points of shear force discontinuity
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CHAPTER FOUR

FINITE ELEMENT MODELLING
OF CONCRETE SHELLS AND PLATES

4.1 Introduction

A primary motivation for the development of the refined formulation for shell
elements discussed in chapter 2 and 3 was the desire to use these elements in the analvsis
of large reinforced concrete structures subjected to high shear forces. There are some
major concerns about finite element modelling in the zones of high shear force in plates
and shells. The formation and propagation of diffuse micro-cracks which coalesce into

localized fracture zones usually dominates the response of reinforced concrete structures

transverse shear forces is not actually supported by observations and/or experiments. This

behavior invokes the old debate in finite element applications to concrete structures,

regarding the use of discrete cracks versus smeared crack approaches.

This chapter reviews the concepts of single crack development and localization
and other related issues such as mesh dependency. This is followed by a presentation of
the concrete constitutive model used in this work and ends with verification of the

behavior of material model in shear, compared to the test results from the literature.

4.2  Single Crack Development and Localization

From the beginning and in the earliest work on finite element analysis of concrete
structures by Ngo et al. (1967) and Rashid (1968) the two different concept of discrete
crack and smeared crack were essentially introduced. In the first one, each single crack
continuum. In the smeared crack approach, geometry is kept constant and cracks cause a

distributed softening effect in the cracked region by means of the constitutive law.
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approach is suitable up to the development of a localized failure zone in the structure.,
Analysis then should be carried out by a discrete crack model that is suited to track down
the behavior of the structure by considering the propagation of a localized failure zone or
a single crack pattern through mesh changes. Until recently. conducting such an analysis
is very difficult and in most cases not practical. particularly in three dimensional
situations. In a large structure it is not possible to model each potential crack as an

model is needed to be able to represent the discrete crack development and progression of
discontinuity in the structure. Much initial work is being carried out in the area on
simulating strong discontinuities within elements (Simo et al. 1990). The object here is 1o
identify the conditions necessary to generate a mesh change at any particular location as
well as the optimum direction of change. In the meanwhile the smeared crack approach

remains viable and practical in the analysis of large concrete structures.

and since within an element each integration point represents a weighted ratio of that

region, a different mesh should produce different results for the same softening behavior.

the softening range of behavior. Therefore. the simplified smeared crack assumptions are

valid only when micro-cracking is relativity well distributed in the structure. In the other

the structure.

59



4.2.1 Mesh Dependency

Mesh dependency comes into the picture when degradation of the material tends
to localize in a line or a narrow zone. In some applications this zone may be viewed as
representing a crack. In other applications it may be perceived as a slip surface called
shear band. In these cases strains grow in that region of structure in a width governed by
the finite element mesh size. Also localization normally tends to concentrate on a certain
direction in the structure. This direction is also affected by the finite element mesh

alignment.

The tendency of the strain field to localize in as narrow as possible volume of

expressed particularly by Drucker’s second stability postulate (see Drucker 1951 and
1959). It is necessary. however, to express it in a structural sense as described by Otteson
(1979). In finite element method the solution tends to choose the most efficient way to

minimize the potential energy in the structure (e.g. Rayligh-Ritz method). Considering

This effect was first recognized by Hillerborg (1976 and 1978). Later it was established
by many others in different applications, such as Willam et al. (1986) in his work on

fracture process zones in concrete under direct tension.

Also the different levels of continuity of the displacement field inside the element
and between the elements (C ! class of continuity or highér inside the element and C ?
class of continuity between the elements), introduces a directional bias on the continuity
of displacement field which forces the localization to take place parallel to element
boundaries (see Steinmann and Willam 1991-a). In fact the €’ continuity in the element
boundaries allows a jump in the strain field, which attracts the localization effect. If the

element boundaries are not originally oriented in the actual discontinuity line or surface,

60



it may lead to a very unrealistic prediction of structural response due to mesh locking (see

Ortiz and Quigley. 1989 and 1991).

Thus, in the smeared crack approach and in the softening range of behavior. there
are two sources of mesh dependency. mesh size and mesh orientation. Removing the
mesh dependency at the structural level in the smeared crack approach needs a
localization limiter to adjust for the size of the mesh. Also another arrangement is
required at the level of displacement field continuity of the finite element model to avoid
mesh alignment dependency. The former one could be achieved by the adoption of a
mesh size limiter such as the characteristic length of Bazant et al. (1983) or by

be discussed in the following section.

4.2.1.1 Mesh Size

Localization limiters are in most cases length parameters that govern the width of
the strain localization zone. One of the earliest localization limiters is the crack band
model introduced by Bazant et al. (1%83) in which the minimum size of elements is a
fixed parameter. The concept of localization limiter later developed into a more
sophisticated form called "Nonlocal Damage Model” (see Bazant et al. 1988-a and b) in

is the method called “Consistent Characteristic Length” proposed by Oliver (1989). In
this method the length parameter is deduced from hypothesis governing the behavior in

the crack band zone. By analysis of the energy dissipated inside of the band, the

at each crack point. This elaboration requires a proper estimate of the fracture energy

which is a function of the average crack spacing in the fracture zone.
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There is another approach to implement the localization limiter in finite element
model of concrete structures by integrating it into concrete material model. This method

approach the degradation of material is invariably expressed in terms of crack opening
displacement rather than strain (see Willam et al. 1986). To calculate strain from crack
opening displacement, the softening slope of the stress strain curve must be changed in
order to keep the fracture energy release rate constant. Here the mesh size dependency
comes into picture. Regardless of the size of the element. fracture energy release rate is
only a function of the crack spacing in the real structure. Thus if the size of element is not
as big as the crack spacing, it cannot accommodate the localization of strain softening

alone and the strain disperses to the other elements in that neighborhood.

This method naturally fits into the Mode-7 fracture (tensile fracture) but the
concept was expanded implicitly to the case of multiple cracking in general case of stress
condition by the means of a mixed fracture approach. This has been done for example by
incorporating the ratio of fracture energy release rate in Mode-1 fracture into the Mode-/
fracture (see Willam et al. 1986 and Rots et al. 1987). Although this is a very useful
approach. it suffers from lack of direct control on the crack spacing in the mixed mode of

fracture,

4.2.1.2 Mesh Alignment

To eliminate the mesh dependency in the smeared crack approach, the bias of the
finite element descretization in the continuity of displacement field should be removed.
Different classes of continuity inside elements and between them need special treatment
to capture the localization and single crack development in the structure. A very effective
approach is to use mesh adaptivity and remeshing techniques to reconstruct the finite
element mesh in order to align the element boundaries along the emerging discontinuities.
In this way the smeared crack approach is becoming similar to the discrete crack method.

The techniques of remeshing are derived from mesh generation concepts and error



estimating analysis (see, for example. Zienkiewicz and Zhu 1987. Ortiz el al. 1989 and

Bicanic et al. 1991).

In recent years. however. a new family of elements have evolved in which some
brand new enrichment strategies were used to capture jump conditions in the
displacement continuity inside an element due to localization (see. for example. Simo et
al. 1990 and Steinmann and Willam 1991-b). Applying these techniques could remove
the necessity of remeshing in the finite element model. The new developments in this
method of handling localization in the presence of strong discontinuity in solid mechanics

are promising (see, for example, Simo. et al. 1993, Oliver et al. 1994 and Oliver 1995).

The above methods for mesh realignment or other methods for handling
discontinuities in displacement fields have been demonstrated in two dimensional
applications. For three dimensional problems still it is not possible to capture the

localization surface reliably.

The analysis of shells and plates in regions of high shear forces is three

dimensional in nature. In this situation, it is not easy to track down the development of a

elements in several layers across the thickness direction with a powerful remeshing
techniques to realign the element boundaries along the emerging crack pattern. The only
affordable and/or available alternative is to reduce the mesh sensitivity of the finite

element model by using a localization limiter. A material model with a built in

4.3  Concrete Material Model

The inadequacy of the concrete material model is the most important obstacle in
the analysis of concrete structures (see, Bathe et al. 1989), Development of such models
have been done through different approaches that can be categorized into three major
groups, elasticity based models, plasticity based models and advanced models developed

recently based on concepts of micro-mechanics of inelastic phenomenon in the material
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micro-structure. Among the latter are the Microplane models proposed by Bazant (1984).

In this approach a macro model for smeared constitutive relations would be based on

planes called “Microplanes” and their responses are related 10 the macro-level through a
probability function simply by integration over all of the spatial directions (Bazant et al.
1984, Bazant et al. 1988 and Carol et al. 1992). This approach is hampered by lack of
understanding of the probability function and by the difficulty in carrying out the

integration on a sphere around each material point.

Elasticity based models are divided into several groups. The most important one is
the hypoelastic approach in which the material behavior is described in terms of the
increments of the stress and strain. The constitutive law in this case is thought to be a
tangent stiffness matrix dependent on the current state of stress. Thus, hypoelasticity is
able to represent the deformation history dependency in concrete materials. Among the
models developed in this category are the orthotropic models developed by Darwin and
Pecknold (1977), Elwi and Murray (1979), Vecchio and Collins (1982) to mention a few.
But this class of material models loses its accuracy in the highly nonlinear range of
behavior due to the increasing level of anisotropy in the material. Theoretically. it is
possible to push the hypoelastic model further in this range of behavior, but practically
due to the large number of material constants to be defined in the anisotropic range, it is
not usually recommended. In general. elasticity based models are mostly suitable for the
range of small to moderate nonlinearity, before anisotropic behavior becomes significant.
Beyond this. plasticity based models are preferred because they are thought to render

more accuracy, generality and are also convenient in formulation.

initially for metals, has been expanded to concrete and other geomaterials. A
comprehensive overview of the earlier works in this area was reported by Chen (1982).
Plasticity models proposed by Willam et al. (1975), Ottosen (1977 and 1979), Hsieh et a)

(1982) arc well known among others. Development of more sophisticated plasticity
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models for concrete is still a challenge. one of the latest is the model proposed by
Menetrey and Willam (1995). Most of the classical plasticity models are problematic.
particularly in the softening range of concrete behavior. This is natural because these
models are directly derived from models originally  proposed for metals. In the

cementitious materials like concrete as well as unique plastic volume change

full range of behavior of these materials.

Some of the major problems in elasticity approach can be easily overcome in

by limited volumetric expansion phenomenon in the highly nonlinear range of behavior

which can be easily dealt with by incorporating a nonassociated flow rule in plasticity

specified in the design rules. To capture this mode of behavior in the analysis process
requires a sophisticated concrete material model to represent the strain soltening range of

The complexity in the softening range of behavior is predominantly due to the
localization phenomenon which is in contrast to the smooth and distributed deformation
softening part of the material model are mostly derived from the concepts of fracture
mechanics. Among the earliest version of this approach is the plastic fracture theory by
Bazant et al. (1979). Naturally, this approach works fairly well in the cases dominated by

a tension field in which the crack pattern can easily be classified experimentally. In the
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implicit approach developed originally by Willam et al. (1986) to by-pass this dilemma.

Program NISA-80 (Stegmuller et al. 1983) in which the refined plate shell
clement described in Chapters 2 and 3 has been implemented., already incorporates a two
dimensional orthotropic failure model developed by Massicotte et al. (1988). This model
concerned with the out of plane shear behavior of shell and plates. Such analysis requires
- full three dimensional concrete material model. It was not deemed possible to expand
the Massicotte model to full three dimensions. On the other hand recent work by Xie et
al. (1995) expands the two dimensional aforementioned Paramono and Willam (1989)
plasticity based model to a full three dimensional application. That work was originally
implemented in program ABAQUS (Hibbitt 1993) by Xie et al. (1995) . However,
because of the successful application of this model in representing the behavior of the
concrete columns, it was decided to try it in the context of thick shells subject to out of
plane shear forces. This has been carried out by incorporating the Xie material model into
the program NISA-80. The following sections present a short overview on the basic

assumptions of this model.

4.3.1 Three Dimensional Constitutive Model

Conceptually most of the concrete nonlinearities depend on the three dimensional
state of stress (see, for example, Gedlin et al. 1986), but some of the very successful
concrete material models to date are based on a two dimensional approach. The extension
of these models developed originally for plane stress or plane strain conditions to three
dimensional state of stress is not easv because of the complexity involved in the
formulation (due to problems like confinement and/or complicated crack pattern
formation) and also because of the lack of experimental data in the three dimensional

state of stress,
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Two dimensional models can easily be used in study of beams in the zones of
high shear force because all the components of stress field are located in the same planc.
In plate and shell structures in the high transverse shear zone. stress field is strongly three
dimensional because of the contribution of out of plane shear forces. If transverse shear
force is not significant in that region. extending the formulation of two dimensional
al. (1988 and 1990) have extended a two dimensional plane stress hypoelastic constitutive
law to a three dimensional model for plate and shells. In this method a plane stress

constitutive law for each layer of concrete in the thickness direction is used but the

are equivalent to the inplane value of the shear rigidity Gy,. The logic behind this
assumption is simple, degradation of shear rigidity is isotropic in concrete plate and
shells. This argument conceptually is not valid in a three dimensional state of stress in
concrete plate and shells, but it might be acceptable when the magnitude of shear stresses
are small and structure is not exposed to large shear deformation or it is not susceptible to

shear failure. Such circumstances require a true three dimensional constitutive model.

The fracture energy based plasticity model mentioned above is inherently a three
dimensional model written in the épaee of principal stresses o; and o . This formulation
is adequate for two dimensional problems but to extend it to a three dimensional
applications it must be transformed to the space of general stress tensor with 6
components &f stress < Oy ,Gyy ,0%; yTay 3 Tyg 1 T > . To have a threc dimensional
constitutive model, a transformation algorithm from the space of principal stresses 1o the
state of general stress tensor is required. The algorithm described by Xic et al. ( 1994) is

employed in the present study.
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4.3.2  Fracture Energy Based Plasticity Model (Paramono et al. 1989)

This model is an isotropic hardening material law with a nonassociated flow rule
release rate is implemented.

4.3.2.1 Isotropic Hardening Model

In the initial stages of behavior the material remains elastic up to an initial value

for hardening parameter £, (i.e. k<k,). After that and until a strength envelope is

hardening parameter is defined as a function of plastic strain indicator £ 5, which is a

monotonic parameter that accumulates the Euclidean norm of increment in plastic strain

hardening rule. The model uses the Leon tri-axial strength failure criterion (see Ramano

1969) as a strength envelope at which & = & =L

goes through volumetric expansion and it becomes hydrostatic pressure sensitive. In this
case the direction of the principal strain and stress no longer coincide, indicating the
existence of a high level of anisotropy in the material. A non-associated flow rule.

adopted in this approach, can properly address this problem.

4.3.2.2 Isotroic Softening Model

Afier the state of stress reaches the failure surface, degradation of the material
starts and it ends down at a residual strength envelope. To monitor the softening behavior
of the material in this range the measure used is the equivalent tensile fracture strain
indicator & ;. This parameter is similar to &7, , but is a function only of the tensile

components of the strain tensor, {Ags}.
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In fracture mechanics degradation of tensile strength is properly expressed in
terms of crack opening displacement uy instead of & which renders a more physical
sense. This behavior usually expresses in a very sharp descending function. Relating the
degradation of tensile strength to the crack opening displacement for cach individual
crack removes the problem associated with the measuring length in strain measurement.
The average strain in the specimen, therefore. would be proportional to the number of

cracks or to the crack spacing in the structure.

u

f -
£, =+ 4.1
5= (+.1)

I

The symbol 1, in the above equation is the crack spacing in tension. It is cusy to
determine crack spacing in pure tension but in the general case, when the state of stress is

not dominated by tension, some other elaboration is required to determine this parameter,
Localization or crack band in the general state of stress. dominated usually by

compression, is actually in a kind of a shear band. Therefore, the shear mode of fracture

(or Mode-IT fracture) in this case must come into picture.

Fracture energy release rate in developing a single crack in tension is usually

written as:
Us
Gi=[o, du, (4.2)
0

This energy is for a unit area of crack surface 4 A, . In Mode-#1 fracture also the
fracture energy release rate G }’ can be written in the same way. Here it is assumed that
failure in compression manifests also as a different form of failure in tension, say by
cracks at a different orientation. The G }’ energy release rate again is for unit area of
crack surface, in this case 4 A, . In other words, fracture energy is proportional to the arca

of the crack surface because crack in a continuur s taking place in a line or on a surface
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not in a volume and its energy releases on this surface not in the volume of material.
Accepting this intuition, the density of energy release rate in terms of crack surface area

should be equal for the fields dominated by tension or compression.

GI G" ,
N A (4.3)
4A4, AA,

Considering the fact that the density of crack surface in a volume is proportional

to the crack spacing in the smeared crack approach we can write:

av
a4,=2 and a4, =

4.4
"oon, < h ¢4

4

In which ki, is an equivalent crack spacing in the compression dominated case.

Now Eq. 4.3 can be written in the form:
Gh, =G/ h, (4.5)

In this way by incorporation of the ratio of the fracture energy release in Mode-II
and Mode-/. an implicit relationship for crack spacing indicator. #, . in the compression

dominated state of stress is found.

More details about this approach and its implementation can be found in
Paramono et al. (1989) and Xie et al. (1994). It should be noted. however, that since this
mode! is based on a nonassociated flow rule it results in a non-symmetric incremental
stress-strain relationship and consequently a nonsymmetric stiffness matrix. This means
that a nonsymmetric solver has to be implemented into the program NISA. This program
uses a skyline stiffness matrix to start with and, therefore, all assembly and storage
routines are based on a skyline scheme. For the purposes of this thesis then a skyline
nonsymmetric solver developed by Chan (1986) was implemented and the assembly and

storage systems modified accordingly.
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4.3.3 Implementation of 3D Material Model in Plate and Shell
The elastic constitutive equation of a three dimensional stote of stress in an

arbitrary frame of reference in plates and shells can be shown as follows:

hay B ‘,;x“ N
={o_E(-v) l 0 0 0 (4.22)
o (o)) ;]_2“) 0 o (17
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But the same constitutive relationship for plates and shells with respect o the local
coordinate system r.s and ¢ has to satisfy the constraint of’ o, = 0 (1 is the local coordinate
in the thickness direction). This implies that in three dimensional finitc clement
formulation of plates and shells. the same as in the plane stress problem. the normal strain
in the thickness direction must be condensed out of the formulation. Thus the actual

e nf (e . . T
number of the component of stress reduces to five < e T Tan T =

“rre

In the local coordinate system. Applying the constraint of 0y = 0 can be done by

static condensation of the three dimensional constitutive equation with respect to the £, .
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The above treatment indicates that the &, exist but its effect is condensed out of

the solution. The material model is still three dimensional and no approximations have

system [D] later must be augmented to a 6x6 matrix by adding zero values as its third
column and third row to be able to use the standard transformation matrices for three

dimensional space in global frame of reference.

4.3.4 Programming
Since the constitutive equation for concrete material model in the range of

nonlincar behavior is not symmetric (due to the dilatancy effects in concrete material that
is represented by nonassociated flow rule in the formulation). the stiffness matrix of the
structure is not symmetric as well. Program NISA-80 has been equipped with a
nonsymmetric solver developed by Chan (1986) to be able to address the problem.
Although this eclaboration seems quite simple. in the context of programming and

alteration of an existing computer code. it is technically troublesome.

Program NISA uses a one dimensional array to store the stiffness matrix and some
other variables and parameters in the program. This approach needs a very strict book
keeping policy for the memory to distinguish between different variables and parameters
stored in that array. The required memory 1o store a nonsymmetric stiffness matrix is

obviously higher than that in the symmetric solver and the book keeping policy in the
stiffness matrix in the one dimensional array.

The new program with nonsymmetric solver needs more memory and it also runs
system of equation is certairly higher than that in a symmetric one, but in the nonlinear
analysis of structures, this can not make a significant difference in the required CPU time

for running the problem. In fact in most cases the solver algorithm is not consuming the

major part of the computational efforts in the analysis. Numerical calculations are mostly



concentrated on re-evaluation of the state of stress on the integration points which has

nothing to do with the solver algorithm.

44 Tension Stiffening

The above treatment deals specifically with concrete continua. Reinforcing stecl
bars embedded in concrete pose a different set of problems. In an uncracked reinforced
concrete member subjected to tension, bond between the concrete and steel 1s represented
by strain compatibility. In other words, the tensile force is resisted by both concrete and
reinforcement. until the ultimate tensile strain in concrete is rcached. At this stage.
cracking initiates. At the crack only the steel reinforcement carries the tensile force but
the concrete surrounding the reinforcement between consecutive tensile cracks can still
transmit tensile stresses. This phenomenon results from the bond slip between reinforcing
bars and surrounding concrete at the crack and it contributes 1o the stiffness of the
structure by gradual release of stresses in the uncracked portions between the cracks. The
phenomenon is called “tension stiffening™ and it affects the service behavior of reinforced
concrete members by increasing their tension and/or bending stiffness in the post

cracking range of behavior.

Traditionally. there are two approaches to account for the tension stiffening effect
in finite element analysis of concrete structures. In the first one an increase in the
reinforcement stiffness is proposed to account for the concrete between the cracks
(Gilbert et al. 1977). In the second the concrete stiffness is increased by changing the
sharp slope of its descending softening branch to a more gentle and gradual softening
slope as shown in Fig. 4.1 (Scanlon 1971, Lin et al. 1975 and Massicotte et al. 1990).
However there is yet a third approach in which the effect of tension stiffening is

indirectly integrated in the analysis by artificially increasing in the value of the fracture

energy release rate of the plain concrete, G, by AG,(Rots 1988).

Formulation of tension stiffening in the case of uniaxial tensile force in the

member is straight forward, but in the bi-axial tension field, as in the tension zone of
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plate and shells, the interaction between reinforcement and concrete becomes more
complicated. The main reason is that, the strain sofiening behavior of cracked concrete is
dominant in the direction normal to the crack but tension stiffening is taking place along

the reinforcement direction. The two directions may not be the same.

Tension stiffening is a phenomenon attributed to the cracked reinforced concrete.
It initiates with the appearance of the first crack and its effect continue with every
forthcoming crack until no more cracks can appear. This stage usually concludes with
yielding of the reinforcement. Thus, most of the existing tension stiffening models are
based on orthotropic elasticity concrete material models in which the concept of cracking
is directly used. In these approaches once the orientation of the crack is determined. the
behavior of concrete in the direction normal to the crack is known. A unique softening
regime defined for the uniaxial tension case is mostly used in the direction normal to the

crack.

By contrast, in plasticity based models in order to account for tension stiffening in
a bi-axial stress field the approach must be different. Plasticity models use the concept of
softening instead of crack which is not a directional criterion. Once the orientation of
softening in the material is found (based on the principal tensile strain), although literally
it resembles the crack line but the softening behavior in ¢rack normal direction is not the
same as that in the uniaxial tensile case. In fact in the plasticity models, hardening and
softening rules are applied to a material point in every direction in a uniform manner.
Therefore, there is not any clear distinction between the tensile crack dominated area and

the coinpression one.

For instance, plasticity model proposed by Paramono et al. (1989) in the pure
uniaxial tension case gives a strain-stress relationship for concrete exactly similar to that
of the actual concrete with elastic behavior before S anda sharp descending branch after
that. But in a bi-axial stress field, existence of the principal compression stress in the
material that could arise from the contribution of a shear stress, causes hardening and

softening behavior somewhere between tension and compression as shown in the Fig. 4.2.
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In other word there is not a unique softening regime. Developing a tension stiffening
model in a plasticity approach needs some special modifications in the material model
particularly in the tension dominated field to render a more unified representation of the

tensile cracking behavior in the bi-axial stress domain.

In this thesis some preliminary attempts had been made to integrate the effect of
tension stiffening into the finite element model of plates and shells but those attempts
were not successful. It was decided later to discard the implementation of tension
stiffening in this model. It was believed that, in the region of high transverse shear foree
of plate and shells. the contribution of the tension zone to the response of structure and its
strength is not significant. This reduces the effect of tension stiffening in the problem and
removes the necessity of implementation of this phenomenon into finit element model of

plates and shells in the regions of high shear force.

4.5  Verification of The Concrete Material Model

Due to the complications involved in conducting experiments in  three
dimensional state of stress for concrete. verification of material model is usually carried
out by using the two dimensional experimental results abundantly available in the
literature. In this study a major objective was to determine the ability of the material
model to represent concrete behavior whenever shear is the dominant component of
stress. A well known experimental data source in this area is a series of panel tests
reported by Vecchio and Collins (1982). These tests (called PV-Series) had targeted the
inplane shear behavior of the concrete panels in different combination of reinforcement
ratio and bi-axial inplane stresses. Vecchio and Collins tested 30 specimens altogether out
of which 22 were merely in pure shear loading condition. Although the tests are two
dimensional, the dominance of the shear force justifies their application in validating of

the material model discussed in the previous sections.
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4.5.1 Description of Specimens

In the PV-Series, each specimen is 890 x 890 x 70 mm, reinforced with two layers
of welded wire mesh. Reinforcement bars are oriented parallel to the panel sides and
inplane load and shear forces are applied to the concrete panel through a system specially
designed to render a uniform distribution of shear and inplane forces to the panel sides.

Figure 4.3 illustrates this mechanism (Vecchio and Collins 1982).

4.5.2 Finite Element Model for PV-Series

In this study five of the PV-Series specimens are chosen to investigate the
performance of the material model and examine its characteristics. Three of these
specimens are in pure shear loading condition (PV-4, PV-6 and PV-27 ) differing
primarily in the level of reinforcement ratio. The remaining two (PV-23 and PV-28) are
subjected to combined shear and inplane loading. The material properties of these

specimens are listed in table 4.1.

In the finite element model of these specimens only one element is used to model
each specimen. The sixteen node shell element used in these cases has not shown any
zero energy mode and its bi-cubic displacement field provides enough accuracy to
represent the uniform strain field in the specimen with one element. Figure 4.4 illustrates

this finite element model.

4.5.3 Prediction of The PV-Panels Response

Comparison between the finite element predictions for response of the specimens
and the actual test results help us to understand some of the basic aspects of the material
model. The main concern herein, is to find out the characteristics of the plastic material

model when the state of stress is predominantly originated from the shear force.

The state of stress after initiation of crack in concrete panel is different from that
in pre-crack situation. For example in the case of pure shear forces before cracking,

concrete is in shear and rebars are in zero stress condition. Initiation of crack puts rebars
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in tension and causes a biaxial compression in concrete. The increases in the shear
carrying capacity of concrete afier cracking is in fact dominated by this compression
field. In plasticity material model this phenomenon classifies as confined pressure. To
investigate the ability of the material model 1o represent the effeet of compression
provided by rebars in changing the behavior of the structure after cracking. specimen PV-
4 is chosen for some experimental finite element analysis. This specimen analvzed with
the actual reinforcement ratio reported in the test and also with three other hypothetical

ratios for steel rebars. The results of the analysis are shown in Fig. 4.5.

Without reinforcement, there is no confinement on the concrete alter cracking and
the cohesive-frictional nature of a classic cementitious material can be seen from the
graph provided in Fig. 4.5. The lack of confinement in this casc does not allow the
frictional characteristics of the material to increase the shear strength of the specimen in
any sense. Friction in this case provides a little ductility in the specimen hefore rupture

similar to the slipping phenomenon between two rough surfaces.

In the next step steel rebars with a ratio equal to the actual value in the experiment
are used in the model. A different mode of behavior is detected. After cracking. the
confinement pressure provided by steel rebars causes an increase in the shear capacity of
the specimen due to the contribution of frictional characteristics of the material model.
This contribution exists until the strain in the rebar reaches the yield limit. Yielding of the
rebars restricts the amount of the confinement on the material causing a constant value for
the shear capacity of the specimen. The frictional characteristic of the material also

provides a kind of ductility for the specimen as shown in Fig. 4.5.

To examine the effect of higher level of confinement in the specimen, the yield

limit of the rebar hypothetically increased which practically make it elastic without yicld

indicating the sensitivity of the material model to the confinement pressure,



In the final step the ratio of the steel rebars is also increased by 70 percent 1o
amplify the effect of the confinement in the specimen (vield limit is still very high). The
results show an increase in the shear capacity of the specimen as well as its shear
stiffness. The response of the specimen in the analysis is very similar to the test result of

the PV-27 shown in Fig. 4.8 which has the same amount of steel rebars.

This simple example shows the ability of the plasticity material model to
represent the effect of compression field, produced by steel rebars after cracking, in the

shear behavior of the concrete panels.

4.5.3.1 Response of The Specimens in Pure Shear

Comparison of the finite element response of the specimen PV- 4 and its actual
test result are shown in Fig 4.6. Although the analysis gives a good agreement with test

result in some parts. there are still two major difference between them.

First. the analysis shows a higher ultimate value for the shear stress in the
specimen. In the analysis. the beginning of ductile behavior of the specimen is fairly

matched with the yield strain of the rebars, but in the test results this is not the case. In

reaches the yield limit of rebars. This could happen when localized yielding occurs in the
rebar. most probably at the weld points of the mesh. By contrast in another example, PV-
6. the ductile behavior in the experiment starts exactly when the average strain in rebar

reaches to the yield limit, as is shown in Fig. 4.7.

Second. analysis of the PV-4 specimen shows the observed ductility in the
specimen but not to the extent captured in the experiment. This indicates the limitation of
the plasticity material model in representing the state of material in the case of extensive
cracking in concrete. In PV-6, the reinforcement ratio is 70 percent higher than that in
PV-4 and again the same phenomenon exists. The analysis couldn’t show the softening
behavior of the specimen as was shown in the test. In this case initiation of yield in the

rebars causes a jump in the strain fieid of the specimen which is hard to represent

78



accurately by the concrete material model in that highly stressed state of stress. This

makes the solution unstable and program can not find an equilibrium position in that
vicinity.

limit is higher ( Jy= 442 instead of 266 MPa). The specimen in the test didn't show any
ductile behavior the same as that in PV-6 but its ultimate shear strength is almost 30
percent higher than that in the previous example even though the concrete in this
This indicates the effect of confinement provided by steel rebars. In the finite clement
analysis of the specimen. the same trend is predicted with some minor differences as
shown in Fig. 4.8. After initiation of crack in the specimen the analysis shows a linear or

close to linear relationship between shear stress and rebar strain (an indicator of the

confinement on the concrete). This depicts thoroughly the cohesive and frictional nature
of the plasticity material model. In the experiment there is a transition curve after
cracking and before the constant slope of the curve. The same phenomenon exists in all
the other examples with high confinement stresses. This indicates that although the
material model can represent the frictional nature of concrete almost flawlessly, it is not

as good when cohesion comes into the picture.

4.5.3.2 Response to Combined In-plane Normal and Shear Forces
In the PV-Series, there are only a few examples with combined inplane and shear
forces, among those there is only one specimen with tension dominated inplane foices.

However, according to these test results, the existence of the normal inplane forces does

not change the mode of behavior of the reinforced shear panels. In fact. even without the
normal forces, the inplane stresses will be generated by reinforcement after initiation of
crack in the specimen. Thus, the mechanism of behavior described in the pure shear

cases again appears in the presence of the inplane normal forces,
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Finite element response and the actual test result for the specimen PV-23 is shown
in Fig. 4.9. Behavior of this exanple is essen:ally the same as that of the PV-27 in
previous casc. Both specimens have the same amount of reinforcement and the same
quality of concrete (f . for both is equal). In PV-23 the shear foree is accompanied by a
biaxial inplane compression force equal to 39 percent of its shear force. This foree acts as
another source of confined pressure (besides the confinement provided by the
reinforcement) on the concrete and causes a shift in the behavior of the specimen

conmpared to PV-27 as illustrated in Fig. 4.10.

In specimen PV-28 the shear force appears with a biaxial inplane tension foree
equal to 32 percent of the shear force magnitude. The specimen has the same amount of
steel rebars compared to the previous examples and with almost the same conerete quality
(f ".is equal to 19. MPa instead of 20.5 MPa for PV-27). Finite element analysis and test
results are shown in Fig. 4.11. In the test result there is no sign of transition curve before
starting frictional behavior in the specimen. the same as that predicted by finite clement.
The ultimate value for the shear strength obtained in this analysic is about 30 percent less
than the actual value in the experiment which indicates the sensitivity of the material
model to the level of confinement provided by external inplanc force and steel rebars,

This phenomenon is described below.

Comparing the finite element response of the specimens PV-23, PV-27 and PV-2§

provided by steel rebars and makes the plasticity material model s¢ robust, it overshoots
the experimental ultimate value for the shear strength (see Fig 4.9). However, the tensile
inplane force in specimen PV-28 reduces the amount of the confinement provided by
reinforcement and causes a lower estimate on the shear strength of the specimen in the
analysis (as shown in Fig.4.11). In the absence of the inplane normal forces (i.c..
specimen PV-27), analysis still gives a lower estimate for shear strength compare to the
test result but its prediction margin is much closer (see Fig. 4.8). The abovc observation

shows the so called sensitivity of the material model to the confined pressure in

50



estimation of ultimate shear strength of the specimens but material model is still accurate

enough 1o represent the general trend of the concrete behavior.

Scnsitivity of the plasticity material model to confinement can be solved by
calibrating it for each application depending on the level of confined pressure. This
claboration is not casy when the state of stress varies in different locations of the
structure. Plate structures are typically in this category in which. state of stress changes
from biaxial tension to biaxial compression through the thickness. In such problems. the
accuracy of the analysis can not be improved considerably by calibration process on

plasticity material model.
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Concrete Reinforcement Transverse

& Longitudinal

[ &, N N )
(MPa) (MPa) {mm)
PV -4 Pure shear 26.6 0.0025 242 0.01056 345
PV -6 Pure shear 29.8 0.0025 266 0.01785 6.35
PV -27 Pure shear 20.5 0.0019 442 0.01785 0.353
PV -23  Shear & Compression 20.5 0.0020 518 0.01785 6.35
PV -28 Shear & Tension 19 0.00185 483 | 0.01785 6.35

Table 4.1 - PV panels material propertics
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Figure 4.2 - Strain softening in different combination of bi-axial stress



Transverse
reinforcing

Figure 4.3 - Load application Mechanism on PV panels (Vecechio and Collies 1982)

Figure 4.4 - Finite element model for PV series
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CHAPTER FIVE

RESULTS AND DISCUSSION

5.1 Introduction

The behavior of concrete plates and shells in the region of high transverse shear
forces depends on the thickness and reinforcement arrangement. The behavior ranges
from 4 brittle mode of failure in short span thick structures to a more ductile behavior in

long span lightly reinforced thin plates and shells. In most cases failure initiates by

of the concrete in the unconfined regions of the concrete continuum takes place under
high compressive stresses. The continuum nature of concrete structures is also lost when
spalling of the concrete occurs. In other cases loss of bond (slip) between the concrete
and the reii:forcement is manifested as strain incompatibility between the two elements.
The mechanism of failure in some of these cases has not yet been understood thoroughly.
An example is punching shear of slab-column connections that is still one of the most
controversial subjects in this area (Moe 1961. Regan et al. 1985, Moehle et al. 1988 and

Alexander et al. 1992).

The finite element method is an approximate solution technique for continuum
medium and in its state-of-the-art formulation, can hardly address the large
discontinuities in the strain and displacement field of concrete plates and shells in
locaiized fracture zone. In fact analysis of structure using shell elements cannot provide
the required discontinuity in the strain field of the plates and shells to represent inclined
single crack pattern in the structure in the high shear force region. This issue was

discussed in the previous chapter. However, a qualitative numerical analysis is still
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possible and it helps to understand the behavior of these structures and o deteet the

required ductility and other performance parameters of the structure.

In this chapter the performance of the finite element model developed in the
previous chapters is examined in some special cases chosen from the recent literature. To
investigate the brittle mode of transverse shear failure in thick and short span plates and
shells. a shell specimen which failed in shear in the test process is chosen as the first
example. A more recent reinforced concrete slab-column conneciion test thrt showed a
more ductile behavior is also studied to examine the performance of the numerical model
in punching shear probléms where yielding of rebars occurs prior to shear failure. The

point out its limitatii:r;s;

5.2  Description of Specimens
In this section specimens are described and their finite element medels are

explained.

5.2.1 Shear Failure in Thick Plates

The SP-Series speﬂmens tested by Adebar and Collins (1989) are the first
examples to be used in this study to validate the finite elz=ment model developed in the
previous chapters. The SP-Series is a part of an experimental program carried out at the
University of Toronto to investigate some of the characteristics of thick shells in hléh
combination of transverse shear and in-plane forces. The specimens were of different
thicknesses and reinforcement arrangements and were tested in a special test device
called “Shell Element Tester” developed specifically for testing shell elements under
controlled conditions. Two of these specimens, SP8 and SP3 are chosen in this study for
analysis. The main objective is to analyze the SP3 specimen which is loaded solely by

out-of -plane shear force. Specimen SP8 with a pure in-planc shear loading is also
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analyzed to examine the performance of the finite element inodel in a uniform shear

strain environment.

Both specimens have a standard size of 1524 x 1524 x 310 mm. reinforced in two
orthogonal directions in-plane and also in the out-of-plane orientation. The amount of
reinforcing steel in both in-plane directions is equal and almost the same for SP3 and SP§
(3.6% in both direction). Rebars are oriented at a 45 degree angle with respect to the side
of the specimens. Out-of-plane reinforcement is 800 mm*/m” and it is the same for both
specimens. Figure 5.1 illustrate the cross section of the specimens and their reinforcement
patterns. The loading mechanism for out-of-plane shear forces includes equilibrating
bending moments applied at the edge of the specimen. Details conceming the material

properties and loading of SP3 and SP8 are given in Table 5.1.

The finite element model of the specimens consists of one bicubic shell element
for SP8 (distribution of strain is uniform) and four elements for SP3 (to account for
bending curvature) as shown in Fig. 5.2. Two concentrated equilibrating moments
applied in the same direction at both supports provide the uniform distribution of shear
force and a linear distribution of flexural moment in the span direction for SP3 specimen.
To generate a uniform in-plane shear stress in the SP8 specimen. in-plane forces are
applied on the edge of the specimen. The applied loads and boundary conditions on the

finite element model of the specimens are shown in Fig. 5.2.

5.2.2 Slab-Column Connection

A reinforced concrete slab-column connection test is the other example examined
in this study. The test was carried out by Afhami, Alexander and Simmonds (1996) at the
University of Alberta to study the mechanics of punching shear failure of concrete slab-
column connections. This experiment was particularly oriented to investigate the plate-
edge column connections. The test specimen consisted of a 10008 x 4270 mm,
rectangular concrete slab, 152 mm. in thickness clamped in two 305 by 254 exterior

columns and one 305 mm. square interior column. The two edge columns are located
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adjacent to and centered along the two short edges of the slab while the interior column is
centered exactly at the middle of the slab. The specimen is rotationally restrained along
the two longer edges to represent a continuous slab in the width direction. The svstem
and dimensions of the slab are shown in Fig. 5.3, The slab was loaded almost uniformly
by spreading the concentrated jack loads on the slab through an articulating distributing

mechanism.

To recuce the size of the numerical model of this specimen. the finite clement

separately by applyving the appropriate bmmdar}' conditions in the finite clement model of

each connection as shown in Fig. 5.3. The llSSU!ﬂPlinn of hmmdary condition of zero
behavior. In the out of plane direction. the vertical displacement of nodes in the column
are suppressed. The finite element model of cach connection consists of 16 bicubic shell
element as shown in Fig. 5.3. Utilizing symmet= about the longitudinal axis. only half of
the connection is modeled. Element 17 in the finite element model is in the column,
Imaginary values for material properties were assigned to this element (high rigidity and
strength) to make its contribution to the model similar to that of the column. For all the
other elements according to the test data. compressive strength of concrete £, considered
as 34.8 MPa and yield stress of reinforcements f, assumed as 420 MPa. The exterior
edgeacalumn connection is the main ijective of this slud}', The different i;.lycrs of the
The arrangement of reinforcement for elements in the interior connection is listed in

Table 5.3

53 Observations in The Analysis

Some of the characteristics of the finite element model developed in this study
were identified in the analysis process of the above specimens. These characteristics are
classified in two different groups. One relates to the refined shell clement, the other

relates to the concrete material model.



5.3.1 Refined Degenerated Shell Element in Concrete Structures

concrete structures illustrates some important characteristics and limitations of this new
element. Simultaneous propagation of cracks in the tension side and softening of the
matcrial in the compression side of the cross section in concrete plates and shells reveals
the outstanding strain field adjustability of the adopted refinement technique. The
clement, however, needs some modifications in its integration algorithm acrnss the
thickness to compensate for the effect of movement of the neutral axis and decrease in the
height of the compression block. Also in nonlinear analysis of concrete plates and shells.
the refined degrees of freedom demonstrate sensitivity to the convergence criteria and
tolerances adopted for out of balance loads in the solution algorithm. These issue will be

discussed in details.

5.3.1.1 Strain Ficld Idealization

The refined degenerated shell element is distinguished from the other shell
elements by its superior strain field idealization, specially in high transverse shear force
zones. Finite element analysis of specimen SP3 gives some insight into the mechanism of
refinement adopted in this approach and its adjustability to the changing strain field of the

structure.

The shear strain distribution at different load steps in SP3 specimen is plotted in
Fig. 5.4 at two cross sections, one at the support, the other at one third of the span. These
points are shown in Fig. 5.2. The term “Average transfer shear siress” in the figure
substitutes the term for load level in the structure. Average shear stress indicates the total
transfer shear force in the structure (which is constant everywhere in the structure in each
load step) divided by the cross sectional area of the specimen. In the initial stage of
loading. the concrete is in the elastic range of behavior and the strain distribution is
analyzed. A parabolic distribution of shear strain exists at a distance from the support

while close to the support, a more uniform distribution of strain prevails. The reason for



have been suppressed at the point of application of concentrated moments to switch off
the interaction with the rotational degrees of freedom. as discussed in Chapter 3. From a
practical point of view. it could be argued that the introduction of edge moments requires
in practice that the top and bottom fibers be clamped or be built integral with some other

element that will apply the moment imposing de fucto that particular constraint at the

support.

Afier mitiation of cracks in the top fibers of the specimen. a softening behavior

starts in this part of the cross section causing a non-symmetric shear strain distribution
across the thickness. This phenomenon becomes more obvious when the crack grows in
the depth of the specimen as shown in Fig. 5.4-b for a point far from the support. In a
refined element this behavior must be captured by the second component of refinement.
the analysis. however, this unsymmetric distribution of shear strain for the point close o
support 1s accompanied with a huge nonzero shear strain at top and bottom fibers of the
cross section as it is shown in Fig. 5.4-a. Such behavior seems in contrast with the
argument in Chapters 2 and 3 that shear strain at the extreme fibers should be close to
zero due to the contribution of parabolic shear strain component of refinement, /.

represented by the shape function g(#) in Eq. 2.10-c.

The involvement of the parabolic shear strain shape function in the solution,

appears to be in the opposite direction of that that was expccted. This behavior is
triggered because of the strain hardening characteristics of concrete in the compression
part of the cross section. Cracking of concrete in tension and strain hardening of concrete
in compression part of the cross section causes a simultaneous softening responsc across
the thickness from top and bottom while in the mid-cross section material is still stiff,
refined shape function to address this characteristic is g(1) which is originally meant to

represent the parabolic shear strain distribution of the cross section. Nevertheless the
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severity of the softening in both top and bottom of the cross section is much higher than

the required zero shear strain condition at the top and bottom. As a result. the self

function contributing in the solution, giving the best fit to the actual distribution of the

shear strain across the thickness. Figure 5.6 illustrates this phenomenon,

By increasing the value of the material parameter &, that governs initiation of
yield as defined in Chapter 4. strain hardening of material in the compression side of the
cross section will be delayed and simultaneous softening of the cross section starts at a
higher load level. Analysis of a simple hypothetical beam, the same as that in chapter 3.
illustrates this phenomenon. Figure 5.7 shows the beam and its finite element model.
Shear strain distribution of the cross section at a point close to mid-span using two

different values for parameter &, is shown in Fig. 5.8, As shown in this figure, a higher

higher level of load.

Such phenomenon can be described based on the nature of the finite element
method and the role of the independent variables. Although the strain field in this case
does not satisfy the required zero shear strain at the top and bottom of the cross section. it
describes the most accurate distribution of strain. considering the limited number of

independent variables in the formulation.

To be able to represent simultaneously the zero shear strain at the extreme fibers
and also the softening in both sides of the cross section, a new shape function would be
required in the formulation of refined shell element. Figure 5.9 illustrates an example for
this function. The function g(#) would provide the shear strain distribution curve with two
bumps at the top and bottom to represent the simultaneous softening behavior of the cross
section in extreme fibers. The new shape function ¢(#) relaxes the parabolic shear strain

shape function g(?) and allows zero shear strain at extreme fibers.



Another remedy to escape from the nonzero shear strain in top and bottom face of
degenerated shell elements with a constraint on zero shear strain at top and bottom face of
the cross section. Although this technique guarantees a zero shear strain in the extreme

fibers in all circumstances, to be able to account for the strain field shown in Fiv. 5.5 i:

i
==

still needs the additional shape function g(s) to represent simultancous sofiening in the

extreme fibers.

5.3.1.2 Integration Across The Thickness

Degenerated shell elements are not necessarily layered. In program NISA-80
integration across the thickness is performed using a Simpson’s rule at a user defined odd
number of points equally spaced across the thickness. In the analysis of flexural
reinforced concrete members, specially in the under-reinforced condition. the
compression zone of the cross section could be very small compared 1o the tension zone.

Specimen SP3 gives rise to this condition. Figure 5.10 shows the distribution of the
normal strain across the thickness in different load steps in specimen SP3 at a point close
to support (tension at the top, compression at the bottom). This distribution is plotted
against the Simpson integration point number along the depth of the cross scction. Here,
obviously an 11 point rule is used. The figure illustrates the migration of the neutral axis
towards the compression side of the cross section and the decrease in the depth of the
compression block in each load step as the tension side softens (cracks). To have an

accurate integratic:nn across the thickness, a small campressicn block is numerically

If the number of integration points inside of the compression block becomes too
small. the accuracy of the analysis will be affected considerably. The increasing number
of integration points in the tension part of the cross section does not contribute to the
accuracy of the analysis but is inevitable as a result of moving the neutral axis toward the
compression side of the cross section. Since the number and location of the integration

points are fixed in the integration algorithm, the decreasing number of integration points
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in the compression block will yield an inaccurate estimate of the moment and axial force
on the cross section. in some cases the number of integration points in the compression
block reduced to two or even one point, causing instability in the solution procedure and

renders it unable to reestablish equilibrium in an iterative sense.

As a remedy for this problem. it would be desirable to keep the number of the
integration points constant in the compression block regardless of the position of the
neutral axis. This elaboration raises two problems. The first one is to find the location of
neutral axis and to define the compression block. The second is to realize that, keeping
the number of integration points constant in the compression block requires changing the
location of these points in each iteration in each load step. This in turn requires an
algorithm that interpolates the history of the state variables of the material at the new
locations of the integration points in the current load step from the existing information

about the previous integration points in the last load step.

5.3.1.3 Sensitivity in The Analysis

The refined degrees of freedom arc not the essential degrees of freedom in the
structure to establish equilibrium and to find a solution. Their existence, however, helps
to reach to a more accurate point in the solution space that is not far from the point
reached if the refined degrees of freedom were excluded from the formulation. In other
words equilibrium is not affected strongly by the new degrees of freedom and the
sensitivity of the solution for them is lower than that for the other degrees of freedom. As
a result. in the case of nonlinear analysis when iteration is required to reestablish the
equilibrium in the structure, the contribution of the refined degrees of freedom can be
invoked properly only if the solution is very close to the absolute equilibrium position. In
fact if the convergence criteria and tolerances in the solution strategy is not strict enough
to reestablish the equilibrium in each load step properly, the accuracy expected from the

contribution of refined degrees of freedom will not be sustained in the analysis procedure.
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Concrete Material Model for Plates and Shells

Although nonlinear analysis of concrete structures has been around for decades.
there are a number of factors that have prevented wide application of this technique in
common practice (Bathe et al. 1989). In fact nonlinear finite element analyvsis of concrete
part of the user. The high cost of the analysis and the necd for an experienced user is
largely due to the difficulties encountered in the stability and convergence of the
numerical solution procedure. Reliability of the results and accuracy of the solution is
another issue that plagues analysts. Drift of the solution and lack of convergence are both
rooted in the numerical model of concrete material. Hypoelastic (so called “orthotropic™)
concrete models are perhaps less theoretically sound than would be desired. but are
mathematically simple and. as a result. in most cases numerically stable. In wrn. their
accuracy in representing the concrete nonlinearities in the triaxial state of stress is not
sufficient. Plasticity models are the other way around. In theory. they are able to represent
material nonlinearities in the three dimensional state of stress and are mathematically

implementations of the concrete nonlinearities.

Some of these difficulties in the performance of concrete plasticity material model

used in this study are described in this section

5.3.2.1 Concrete Material Model in General State of Stress

There is no uniformity in the stress field of plate and shell structures. it changes
from point to point across the thickness as well as in the plane of the clement. In the
thickness direction, the bending moment causes a tension dominated field on one side and
a compression field on the other side of the cross section. The other components of stress,
in-plane and out-of-plane shear stresses, also vary across the thickness. In the in-plane
direction, close to free corners of the structure, large torsional moments causc large

in-plane shear stresses, while close to point loads, out-of-plane shear stresses dominate
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model to represent all these situations simultaneously with a unique set of calibration

paramelcrs.

Plasticity material model include some parameters that govern the hardening and
softening range of behavior (size of the load and potential functions as well as the amount
and direction of plastic flow). To determine the material constants that define the rate of
change of the hardening and softening parameters a calibration technique must be
adopted. Calibration is usually a process based on a well defined experiment in a
controlled situation. These type of experiments are difficult to conduct for all ranges and
possible combinations of the stress components in the concrete material. The few feasible
test results available mostly target the compressior. dominated state of stress. However.
even access to these parameters for different states of stress in the concrete is not
practically helpful. In fact it is not easy to use the new parameters conveniently in the

analysis because the state of stress in the structure varies from point to point and from

step to step in the analysis.

Figures 5.11 and 5.12 illustrate this situation. In these figures. distribution of the
transverse shear stress and normal stress across the thickness in specimen SP3 are shown
at two integration points in the same element. As the level of load in the structure

increases, the state of stress at the integration points across the thickness changes.

points close to the neural axis. By comparing the two graphs (a and b) in each of
Figs. 5.11 and 5.12, it is obvious that the state of stress would also be different at any two

adjacent in-plane integration points in the same element and it changes from load step to

matter in the analysis of plate and shell structures.

The nature of the material itself in the regions of tension compression is sensitive.
Consider for example Fig. 4.2. in that region, the rapid change of the compressive branch

with very little change in the tensile stress is obvious. Yet no test results exist in this
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region. The literature contains only uniaxial tension and compression test results and high

compression confined test results,

The sensitivity of the analysis to the calibration parameters was obvious in the
analysis of almost all of the specimens in the current study. Any slight change meant a
different behavior at certain points on the cross section. This in turn affected the accuracy
of the result and restricted the application of the plasticity material model to plate and
shell structures.

5.3.2.2 Extensive Cracking

High transverse shear forces in plates and shells are usually accomipanied wit!
large bending and/or torsional moments as exists in slab-column connections or at free
edges. In these highly stressed locations. it happens most of the time that the steel rebars
in one direction yield but due to the highly indeterminate nature of the structure. load
could transfer to the other directions and the structure can withstand higher loads. In these
situations. concrete experiences intensive cracking accompanied with shear stresses

originating from the out-of-plane shear forces.

case of extensive uniaxial cracking when shear stresses dominate the state of stress (see
section 4.4.3.1). In the current study this phenomenon was observed in the analysis of
slab-column connections mentioned in 5.2.2. In this case. after initiation of yicld in the
rebars. material model failed to represent the state of stress at the integration points close
to the yielded rebars due to extensive cracking in the concrete. This model does not allow

concrete. The material model reached the end of the effective fracture displacement, u,

and was unable to keep a zero state of stress thereafter. Convergence deteriorated and the

analysis was terminated well before the ultimate load was reached.

strain of the material (& = u, / h, where h, is the tensile crack spacing) was 1.16x10™,
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lower than yield strain in steel reinforcement (&, = 2.1x1 0”’). Wherever the uniaxial strain
in concrete passed the limit of fracture strain, the material model representation of state of
stress becomes problematic as it is shown in Fig. 5.13. In the last load step strain in steel
layer exceeds the yield limit (2.23x10” > 2.1x10% in a point between integration points 9
and 10, close to point 9). By proportion. strain in most part of the tension side of the cross
section is passed over the fracture strain limit in concrete. Nevertheless, material model in
the tension side of the cross section shows 1nostly compression instead of zero tension.
To reestablish the equilibrium, the strain field in the structure changes in an iterative
process. As a result, the compression side of the cross section in this integration point was
incorrectly unloaded to account for equilibrium in the structure as shown in Fig. 5.13.
Considering the rapid progress of the intensive cracked zone in that region, reestablishing
the equilibrium in the structure is difficult and analysis could not proceed beyvond this

point.

5.3.2.3 Sensitivity to The Increment of Strain

Plasticity material models. similar to most other inelastic material models for
solids, are history dependent. In other word, the response of the material model is related
to the state of stress experienced by the material in previous load steps. In such a model.
errors or inaccuracies in updating the state variables in each load step accumulate and
become permanent features of the history of the material that cannot be corrected in
forthcoming load steps. The Willam and Pramono plasticity model in this study show
sensitivity to the increment of strain tensor probably caused by linearization process in
tracing the plastic strain history. A rapid change in the strain level introduces inaccuracies
in this model which grow in every load step and leads to instability and convergence
problems in the analysis. Even a simple compression test in hardening range of behavior,
which is known as insensitive case compared to the other possible states of stress, can
show the problem. Analysis is carried out using the same shell element with the boundary
conditions of pure uniaxial state of stress (only translational degrees of freedom in the

plane are free) as shown in Fig. 5.14-a. Compression dominated field is a simple state of
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stress and material model has been used successfully before in this range of behavior (sec,
Xie et al. 1994). The results of the analysis for four differen: load increments. shown in
Fig. 5.14-b. indicates the sensitivity of the material model 10 the increment of strain. In
(to satisfy the consistency provision and 1o find a new equilibrium position on the vield
surface) led the model to a dead-lock. Analysis can not go any further even with a very

small strain increment thereafier,

In analysis of plates and shells in high transverse shear force area. a highly
stressed zone exists in which after initiation of damage or crack in concrete, strain growth
rate increases rapidly. Due to the localized nature of this phenomenon. it is practically
difficult to keep the rate of the change of the incremental strain tensor small enough at
that special point to prevent inaccuracy in the analysis. Some models have incorporated
strain sub-increment techniques that respond to these demands. However. there is really
no rational basis in the literature for how small a strain increment should be. The model
implemented in this study used a fixed number of strain sub-increments (ten) to trace the
strain history at any point in the inelastic range of behavior. Changing that number to

This was not deemed practical.

5.3.2.4 Numerical Instability

A very important aspect in the finite element modelling of concrete plates and
shells is the ability to represent the progressive nature of damage across the thickness. To
be able to represent such a phenomenon, a material model must be able to accept rapid
changes in the state of stress from compression to tension dominated fields when damage

passes through the integration point. In hypoelastic material models damage is based on a

updating the state variables needs only a simple mathematical transformation. In
plasticity models such a problem requires a rapid change in angle of similarity 0

(sometimes more than 40 degrees) in z-plane in a single load step. To find a new position
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of the yield surface satisfying the consistency provision, the return algorithm to the vield
surface must be quite sophisticated (considering hardening. softening and nonassociated
characteristics of the model) to accommodate such a big changes in the angle of similarity

0. The angle of similarity is a stress invariant defined as:

in which J, and J; are the second and third deviatoric invariants. In the Willam and

Pramono model. @ varies from -30 to +30 degrees. The first limit corresponds to a tensile

distribution across the thickness was not a smooth function. similar to the strain
distribution. As an example, consider the shear stress distribution of specimen SP3 at the
point close to support shown in Fig.5.11-a in comparison with the shear strain
distribution shown in Fig. 5.4-a. The strain distribution is always a smooth function
because it is constructed from smooth shape functions f{#), g(t) and k(1) as described in
Chapters 2 and 3. The stress distribution, however, is a product of two components, the
strain distribution and the material properties. If the distribution of stress is not a smooth
function across the thickness, material property is the only reason why. Hypoelastic
concrete material models, similar to that developed by Massicotte et al. (1990), mostly
render a smooth distribution of shear stress across the thickness compared to plasticity
material models. In fact the simplicity in implementation of concrete nonlinearities in
hypoelastic models removes the sensitivity of the material model to the rate of change in

the strain tensor, resulting a gradual and mild rate of change in the state of stress.

The jagged shape of distribution of stress across the thickness in plasticity model
becomes more severe when the level of load on the structure comes closer to the ultimate

value as can be seen from Fig. 5.15 and 5.16. The state of stress sometimes jumps
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suddenly to a new equilibrium point far from the previous position. Figures 5.17 and 5.18
show the distribution of stress across the thickness for consecutive load steps in two
different cases. The strain distribution in these cases are still smooth functions and the

Jjump in stress distribution comes only from material model.

The history of the angle of similarity has been traced in the n—plane at two cross
sections for specimen SP3 as shown in Fig. 5.19. There are jumps and irregularities in the

history of @ for some of the integration points across the thickness.

In the compression side of the cross section. integration point No. "1 for
exampie. a very smooth and gradual change in the value of @exists as shown in Fig. 5.19-
a and b. Concrete in these integration points is in a compression dominated state of stress
changing from elastic to strain hardening phase. In fact concrete has never reached to the
softening phase in this analysis and this is the main reason why a smooth change in the
value of the angle of similarity exists in these integration points. However in the tension
side of the cross section. points No. “11™" and “9” in Fig. 5.19-a and b, there is an
irregular and zigzag behavior in the history of @ as shown in the figure. Initiation of
crack in the plasticity material model can interpret as a sudden switch from clastic or
hardening phase to the softening range of behavior. Material model obviously cannot
sustain a smooth rate of convergence to stick to the shrinking yield surface in this range.
Degradation of concrete in the softening range of behavior follows a very sharp
descending slope which is hard to capture properly by the numerical algorithm
implemented in the current version of the material model. The performance of the
material model can be improved in the softening range of behavior by adopting a more
sophisticated return algorithm to the yield surface. The new algorithm must be capable of
handling large gradient of changes in the potential function representing the shrinking

yield surface.

Integration points in the middle of the cross section are in a more complex state of
stress, a combination of shear and normal stresses. By progression of damage in the

tension side of the cross section, shear stress shifts upward to the compression side of the
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cross section as shown in the integration points No. “4 and “5" in Fig. 5.19-aand b
where the value of angle of similarity @ for these points get closer to the pure shear axis
(0=0.). The change of 8 is smooth with a decided shift to the tension phase oi the state
of stress. In fact neutral axis is moving toward the compression side of the cross section
and the state of stress in those points is changing 10 a tension dominated field
accordingly. For the integration points located in the compression side of the cross
section. reduction of compression by movement of the neutral axis means to shift from a
confined compression dominated state of stress with a ductile hardening behavior to a
tension-shear dominated field with a brittle softening behavior. When the state of material
hits the failure surface in this case. a softening behavior starts which is not as smooth as

the onc in the hardening phase. the same as that described in the previous paragraph.

For integration points No. “4™ and “5™ in Fig. 5.19-b located in a point close to
support. the dominance of tension stress is quite obvious after neutral axis passed them
and they get into the tension side of the cross section. The irregularities in the history of &
in these points are similar to the integration points No. “9™ and “11” in the tension side of
the cross section as discussed before. However. integration points No. “4” and 5™ in Fig.
5.19-a have shown big jumps in the value of & which cannot consider as irregularities.
Although the state of strain and stress in these two points are very close to each other

before the jump. after the jump they behaved differently.

The difference between the behavior of the points at the 1/3 of span (Fig. 5.19-a)
with the same points in location close to support (Fig. 5.19-b) is related to the proportion
of normal stress in the combination of stress components. In the point at 1/3 of span. the
dominant stress is shear and softening behavior starts very close to the pure shear state of
stress. It seems that, material model in this case (softening in pure shear) not only can not
sustain a gradual change in the angle of similarity but, it is in a very unstable condition.
In fact, depending on a slight difference in the initial state of stress, material model
discharge itself to a more stable situation in the compression or tension phase of behavior.

The new stable point in the state of material physically can not happen in this structure as
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shown in Fig. 5.16-b and 5.18-a and is an indication of numerical instability in the

The error introduced in the material model because of the instability will remain
in the history of the material in that integration point as shown in Fig. 5.20. This was one
of the main reason of the convergence problem in the analysis as was observed in the

analysis of SP3 specimen.

5.4  Prediction of The Response of The Specimens
In this section the performance of the finite element model in predicting the
behavior of the specimens in the zone of high transverse shear forces is qualitatively

investigated and compared with the actual test results.

5.4.1 Shear Failure in Thick Plates
The main objective in analysis of the SP-Series is to investigate the performance
of finite element model where out-of-plane shear force is the main cause of failure. In the

testing process of specimen SP3. a transverse shear failure occurred prior to yicld in the

plane shear forces is carried out in this chapter for the sake of comparison. The two
specimen SP3 and SP8 are very similar and it is important to know if the finite element
model with the same calibration parameters in material model can represent both in-plane

and out-of -plane shear behavior of the structure.

In this study the effect of confinement provided by transverse reinforcement in the

specimen has not been included in finite element model. The amount of confinement is

case can build up to about 0.4 MPa which is not a significant amount of confinement, but
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it might be the main reason why the numerical model for SP3 slightly underestimates the

ultimate value of the failure load.

Analysis of SP8 specimen under pure in-plane shear forces vields an ultimate
value for shear stress equal to 16.08 MPa very close to the actual test value of 16.8 MPa.

Results indicate a good correlation with the test and justifies the calibration parameters

the specimen is compared with the actual test results in Fig 5.21. Although it seems that
the numerical modecl could not grasp the actual behavior of the specimen. the analysis
results is very similar to the PV-Series specimens (PV-4, PV-6 and PV-27) in the
pervious chapter. In fact the method of application of inplane shear force to the SP8 is
different from that in PV-Series specimens (as shown in Fig. 4.3 and Fig. 5.2) and the
difference in the behavior of this specimen compared to PV-Series in the test is probably
because of the load application problem. In finite element model, however. there is no
difference between the method of application of inplane shear forces and both of them are

exactly pronounced the same effect on the numerical model.

SP3 specimen is subjected to out-of -plane shear forces and its equilibrating
bending moments as it is shown in Figs. 5.1 and 5.2. The crucial regions in this structure
are the points close to the support where a large bending moment accompanies the shear
1.513 MPa compared to the actual test value of 1.72 MPa. In the analysis, long before any
sign of flexural failure (£ =34 <f,"=50.and f; ™ = 230. < f, =480. MPa) the
numerical model locked in the convergence problem and analysis couldn’t proceed
thereafier. In this case the numerical inaccuracy and instability described in 5.3.2.4 was

the main cause of the termination of the analysis.

Figure 5.22-b shows the predicted load deformation response of the structure
compared to the actual test result. The term “Tangential Deviation” in that figure is
described in Fig. 5.22-a. The test shows almost a ductile behavior in the structure which

is not the case in the analysis as it was discussed before. Also there is no other indication
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in the test results to show ductility in the specimen before failure. In tact it is hard to
imagine such a ductile behavior in a thick and short span structure, The flat part of the

load deformation curve in the test result could be beczuse of the localized effect of the

hanism on concrete at the edge of the specimen.

Although the prediction for average transverse shear stress was only about 1.3
MPa, the maximum local transverse shear stress at some of the integration points across

the thickness was as high as 5. MPa as shown. for e,\amplc in Fig. 5.15-a. This value of
example, it compares to the value suggested by CAN3-A23.3 M84 for average shear
strength of concrete (02\/7' = 0.2J50. = 1.4 MPa). The high value of localized shear
stress across the thickness indicates that the analysis was terminated because of the shear
failure and it automatically rules out the other possibilities for the failure mode in the
structure. Considering the fact that, in the ultimate load level the stress in the longitudinal
rebars and also normal stress in concrete was well below the yield or crushing limits.

strengthening this argument.

For comparison. another analysis was carried out. using the orthotropic
hypoelastic material model developed by Massicotte et al. (1990). In this case the finite
element analysis estimation for failure load passed the actual valuc for the strength of the
specimen by a wide margin (2.12 compared to 1.72 MPa.). The Massicotic model

predicted a more ductile failure mode by giving 50% more strain in the longitudinal

problems (Balakrishnan et al. 1988). The Massicotte model is 1wo> dimensional.
Out-of-plane shear components do not enter the material model. Only the out-of -plane
modules of rigidity is changed to match that of the in-planc shear value. This shows the
invaluable importance of a three dimensional material model when a large out-of-planc

shear stress exists in the structure.
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5.4.2 Slab-Column Connection

Due to localization of stress and disintegration of the structure in the punching
shear zone of slab-column connections, a reliable finite element analvsis of punching
shear in concrete slabs is very complicated and has not been conducted properly so far. In
fact, the structure is not a continuum in the punching shear zone where damage in that
region destroys the bond between steel and concrete and inclined single cracks propagate
throughout the thickness. Finite element analysis is a continuum approach in nature and

Chapter 4.

A finite element model of a slab column connection in its traditional form
(smeared crack continuum approach) can be used to qualitatively analyze the punching
shear problem. Using refined shell element to address the complicated strain field of the
structure in that region is one of the improvements in this approach (see, for example. the
work by Klein 1986). Another improvement in the traditional form of finite element
analysis of this region is to use a three dimensional material model capable of
representing the state of material in softening range of behavior. The finite element model
developed in the previous chapters theoretically covers both of these two improvements

in the analysis techniques and it was decided to try it in the slab-column test described in

A

Nonlinear analysis of the specimen for the edge-column exterior connection and
for the interior connection, proceeded with a constant rate of convergence up to the yield
limit of the reinforcement. Beyond this limit, the analysis became unstable and couldn't

go much further. Extensive cracking in the presence of high shear stresses in the vicinity



structure with the actual test result at point C in the slab (see Fig. 5.3). The analysis
obviously could not show the most important part of the load deformation history of the

structure but its results is comparable to the actual test results in the range of analvsis,

model in this study, it shows a good resemblance with some aspects of the test results,

specially in the edge column connection.

The analysis of the edge column connection shows that, the shear force transfer to
the edge strip (elements No. 2,3 and 4 shown in Fig. 5.3) is much less than shear force
transfer to the interior strip (element No. 5.9 and 13 shown in the same figure) connecting
edge column to the interior column. Adjacent to these strips, the resultant of the shear
force intensity along the lines MM and NN" (shown in Fig. 5.24-a) is given in Fig. 5.24-

b for the last load step. According to the test results, only a fraction of shear force, about

10% , passes through edge strip to the column and the main shear carrying mechanism in
integral of shear intensity along line NN" between column face and point N on the center
of column in Fig. 5.24-b represents the shear force transfer to the column by interior strip.

This is considerably higher than the shear force transfer via edge strip (by integration of

In the test. a back calculation of torsional moment in the slab along the face of
edge strip and interior strip (line MM" and NN" in Fig. 5.24-a up to column face) shows
opposite sign for torsional moment in these strips. The intensity of torsional moment
along these two lines (MM and NN") in the analysis, shown in Fig. 5.25, indicates the

same result. In last load step (load level 10 kPa) integration of torsional moments

each direction but in different sign. In fact analysis shows the mechanism of the behavior
of the structure in which torsion on the side face of the edge strip reduces the shear
capacity of that strip compared to the interior strip in which torsion increases the capacity

of the strip (Afhami, Alexander and Simmonds 1996).
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In the test, the reinforcement parallel to and adjacent to the interior strip did not
show considerable contribution in carrying the negative moment of the slab. The same
concept observed in the analysis. Figure 5.26 shows stress in the outer layer of steel bars
parallel to the interior strip in the elements on the edge strip (line NN in Fig. 5.24-a).
Analysis predicts yield of rebars in the interior strip(element No. 2) with a sharp decline

in the stress level in reinforcement outside of that strip(element No. €).

Although punching shear failure of the slab-column connection has not been

adequately simulated in this numerical model, the mechanism of load transfer in the slab

Propagation of damage in the slab up to 55% of ultimate load, reduces the indeterminacy
of the structure and the load path in the slab will not change considerably till punching

shear failure.

For a point close to the column face. shear stress distribution in ‘the slab at
different load steps is shown in Fig. 5.27-a. The same structure was analyzed again, this
time with ordinary shell elements (instead of refined version of the shell element). Figure
5.27-b illustrates the shear stress distribution for the same integration point in this
analysis. Comparison between the two figures reveals the importance of application of
refinement in strain field of concrete plates and shells in high shear zone. Shear stress
distribution in the direction parallel to the interior strip for point A (shown in Fig. 5.3) is
different in both analysis. First, a large nonzero value for shear stress exist in the
compression side of the cross section in the analysis with the ordinary shell element.
Second, analysis with the refined element exhibits a fast shear stress growth rate at the
beginning of loading but this rate slowed down later in the analysis as shown in Fig. 5.27-
a, comparing stress disiribution in load level 1 and 4 kPa. with that of load levels 7 and
10 kPa. In the analysis with ordinary elements, however, the rate of change of the shear
stress is different as illustrated in Fig. 5.27-b. In fact two different history for shear
transfer in the structure was found in the analysis with refined elements and ordinary

elements.
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Analysis using refined elements terminates slightly sooner at a lower load level,
In fact the estimate of stress becomes closer to the critical value in the material model
(due to a more accurate strain field in the element) and causes material instability carlier

than that in the application of ordinary shell element.



Concrete In-Plane Transverse
properties Reinforcement | Reinforcement

“Specimen | Applied | £, & |p=p| S | Ju | @ o 5 ¢
load MPa " | MPa | MPa MPa

SP3 50 | 0.0022 {0.0358 {480 [ 660 |20 |0.0008 {460 |8
i f

[ G

Ty
Wad

SP8 BRI | 53 10.0021 | 0.0375 | 536 {637 |20 | 0.0008 | 460 |8

Table 5.1 - Material properties and loading mechanism of the SP panels



slab-column connection

Top (W-E) Top(N-§) Bottom (W-E) Bottom (N-§)
Effective depth Effective depth ~ Effective depth Effcctive depth
106 mm 122 mm 3 113 mm 125 mm
" Element Area | Element Area Element Area Slement | Arca
No. (mm") No. (mm’) | No. (mm®) No. (mm*)
23 | 334 59 ]300 | 234 | 250 | 5943 | 1%
567 ] 334 [ 2600 | 500 | 5.6.78 | 82 | 260004 | 206
9.10.11 | 1202 [9a0ia2 393 [ 370105 | 630
3040506 | 375 | 481206 | 630
~ Total area of steel | Total area of steel | Total area of steel Total area = 1600
1870 mm® 800 mm® 1000 mm" mm”
Table 5.2 - Reinforcement arrangement of the Afhami et al. edge
slab-column connection
Top (W-E) Top (N-S) ___Bottom (W-E) Bottom (N-§8)
- Effective depth - Effective depth Effective depth | Effective depth
_ 106mm 122mm 113 mm 125mm
" Element | Area | Element No. | Arca | Element | Arca Element | Area
No. (mmz) B (nj;ml) ~ No. (mm%’) No. (m}ng)
23 1209 59 209 | 234 250 | 5.9.13 250
567 346 2.6.10 348 56,78 | 82 [26,10,14 71
9.00.11 | 1245 3.7.11 1043 | 9.10,11,12 | 293 [3.7,11.15] 212
- i ’ — |1304,15,16 | 375 |[48.12.16 | 367
Total area of steel Total area of steel Total area of steel | Total area = 900
1800 mm® 1600 mm? 1000 mm* mm’
Table 5.3 - Reinforcement arrangement of the Afhami et al. interior
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Figure 5.1 Cross section and reinforcement pattern of the SP specimens
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I I " Point at 173 of span

Point close 1o support
at 1/30 of span

Equilibrating bending moment

Bending moment distribution

I 1

Shear force distribution

(a)-Finite element model for SP3

(b)- Finite element model for SP8

Figure 5.2 Finite element of SP-Series specimens and their loading mechanism
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Shear strain distribution close to support

—e—0.09\ Pa
—-—-0.71 MPa
—— 097 MPa
—a— L16 MPa

—x— .36 MPa

Thickness direction

Transverse shear strain

(a)

Shear strain distribution at 1/3 of span

llgm —-009MPa
—a—0.71 MPa
—¢—0.97 MPa
—a— 116 MPa

—w— 1.36 MPa

Thickness direction

Transverse shear strain

(b)

Figure 5.4 Transverse shear strain distribution across the thickness in SP3
(legend describes average transverse shear stress)
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Figure 5.5 Shear strain distribution in the case of simultaneous softening of the cross
section at top and bottom

Shear distribution based on

Refined approach
% 7z PP
-+ -+ -+
Assumed shear distribution
Yo YB 'YA Yxz or sz

Figure 5.6 Shear strain distribution constructed based on refined approach
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d=510 mm f =33 MPa
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(a)- Beam cross section and loading
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[\_/Fuinl close to load (1/500 span)
gl el el I T —_—
és
&

- i — — — —
1830 mm

(b)- Finite element model with 10 clements

Figure 5.7 Refined shell based finite element model of a deep beam




Shear strain distribution close to point load

(ko =0.1)
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Transverse shear strain

(b)

Figure 5.8 Transveérse shear strain distribution in deep beam with different &,
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Figure 5.9 Proposed shape function for simultaneous softening at extreme fibers with
the associated shear strain distribution
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Normal strain distribution across the thickness in SP3 specimen
(legend describes average transverse shear stress)
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Shear stress distribution close to support

—o—0.09MPa
—a—0.71 MPa
—s0.97 MPa
—— 116 MPa

Thickness direction

Transverse shear stress (MPa)

(a)

Shear stress distribution at 1/3 of span

—e—009MPa
—a—0.71 MPa
—5—097MPa
——1.16MPa
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Thickness direction

%
Transverse shear stress (MPa)
(b)

Figure 5.11  Transverse shear stress distribution across the thickness in SP3
(legend describes average transverse shear stress)



Normal stress distribution close to support
1
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Thickness direction
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Normal stress distribution at 1/3 of span
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Thickness direction
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Figure 5. 12 Normal stress distribution across the thickness in SP3 specimen
(legend describes average transverse shear stress)



Thickness direction

Normal stress distribution at the zone of extensive
cracking I
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Normal stress (MPa)

Distribution of normal stress across the thickness at a point close to
column face in the Afhami et al. slab-column connection



Compresive stress (MPa)

Figure 5.14
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Sensitivity of concrete material model to the increment of strain



Thickness direction

Tickness direction

Figure 5.15

Shear stress distribution close to support

—o— LI9MPa
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Transverse shear stress (MPa)

(a)

Shear stress distribution at 1/3 of span

-3.5 - . .5 -0.5
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—w— 136 MPa

Transverse shear stress (MPa)

(b)

Shear stress distribution across the thickness in SP3 at high load level
(legend describes average transverse shear stress)



Thickness direction

Thickness direction

Figure 5.16

<30

Normal stress distribution close to support
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Normal stress (MPa)
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Normal stress distribution at 1/3 of span
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Normal stress distribution across the thickness in SP3 at high load level
(legend describes average transverse shear stress)



Distribution of normal stresses in both directions
1

- S(x) at 1.289 MPa
—m— S(v)at 1.289 MPa

—a— S(x)at 1.294 MPa

—3— S(¥) at 1.294 MPa
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Thickness direction

Normal stress (MPa)

(a)

Shear stress distribution on the span direction
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—a— 1.289MPa

Thickness direction

- 1.294 MPa

Transverse shear stress (MPa)

(b)

Figure 5.17  Normal and shear stress distribution in SP3 at two consecutive load steps
(legend describes average transverse shear stress)
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Distribution of normal stresses in both directions
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—a— . )al L2966 MPa
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Thickness direction

Normal stress (MPa)
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Shear stress distribution on the span direction

L

—a— 1.296 MPa

Thickness direction

L]

—— 1.33MPa
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Figure 5.18  Normal and shear stress distribution in SP3 at two consecutive load steps

(legend describes average transverse shear stress)
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Figure 5.20
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Figure 5.21  In-plane shear stress vs. principal strain in SP8 specimen
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Distributed load on the slab (KPa)
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Load deformation behavior of Afhami et al. slab-column connection at
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(a)- Finite element mesh for edge slab-column connection

Shear intensity distribution on edge column
connection
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-300 - . “\. Column center along line NN*

Shear force intensity (N/mm)

= __ Column face along line MM" at point M

. Column face
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Figure 5.24  Shear intensity distribution on the face of interior strip and edge strip in
the Athami et al. specimen



Torsional moment distribution on edge column
connection
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Figure 5.26  Tension in outer layer of reinforcement in the Afhami et al. slab-column
connection
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Shear stress distribution using refined elements
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Figure 5.27  Shear stress distributions in Afhami et al. slab-column connection using
refined and ordinary shell elements
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SUMMARY AND CONCLUSION

6.1 Summary

plate and shell structures in the region of high transverse shear force.

As the first step. a new shell element with the unique ability to adjust its strain

field approximation to fit the actual distribution of strain in the structure has been

formulation of shell elements and it is called “Refined Degenerated Shell Element .

Analysis of plates and shells in the region of high transverse shear force requires a
more accurate strain field representation in finite element modeling of structure. Using
three dimensional elements is not practical in most cases and shell elements are usually
preferred. Although some traditional plate-shell elements relax the constraint that normal
cross sections remain normal to the neutral plane during transverse shear deformation. the
section is still constrained to remain plane. The work reported here relaxes this constraint

by introducing shape functions across the thickness to apnroximate the transverse shear

displacement field of the degenerated shell elements. The field is still able to simulatc

large deformation behavior of the element. Each shape function yields two independent

variables, one in each direction.
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By using the concept of shape functions across the thickness. the strain field
approximation of the refined element is easily adjustable to different applications. In this
work, two types of shape functions are proposed allowing a parabolic transverse shear
strain as well as an unsymmetric transverse shear strain distribution in the thickness
direction. These two modes of deformation are particularly important in the case of

diffused material failure in conerete shell structures.

The performance of the new element has been tested in different applications
using clasto-plastic material models. The results indicate that. the two sets of shape
functions implemented in this model effectively remove the assumption that plane
sections remain plane and a more realistic response for the structure has been followed.
Also corresponding results are shown to be consistent even in the presence of strong

discontinuities in the transverse shear force in the structure.

In the last phase of this study finite element modeling of concrete plate and shells
has been discussed and problems associated with high transverse shear forces are
highlighted. Localized fracture zone in this area reduces the level of continuity in
displacement field (and its derivatives) of the structure. Finite element modeling of
discontinuity needs a more sophisticated approach in discretization of the structure to
remove mesh dependency problems in the numerical model. In addition, the significant
amount of out of plane shear force in that region causes a three dimensional state of stress
in concrete that can no longer be represented by orthotropic models usually available for

concrele,

A three dimensional fracture energy based plasticity material model for concrete
has been adopted in this study to address both of these problems. In addition to its three
dimensional nature, the fracture energy based characteristics of the model can also reduce
mesh dependency in finite element model. This material mode! is based on the Willam
and Paramono (1989) approach and has been modified to account for the state of stress in

plates and shells. The material model has been verified later in some shear dominated
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states of stress pertinent to the stress field in plates and shells in the zone of high transter

shear force.

As the last step. the performance of the finite element model was examined in two
different examples of high transverse shear forces: shear failure of a thick plate and
punching shear of a thin slab. Numerical analysis revealed some of the characteristics of
finite element model developed in this study. The ability of the refined shell elements to
adjust its strain field approximation to the actual domain of strain in the structure Wi
verified in the analysis of these examples. However it was shown that in some special
cases a more sophisticated integration algorithm across the thickness is required. The
concrete material model also revealed some of its shortcomings: numerical instability,
problems in extensive cracking zone, calibration parameters and sensitivity to the

increment of strain tensor.

Finite element analysis could not reach the ultimate load carrying capacity of the
specimens reported in the test results. The growing inaccuracy in the numerical model
due to problems in the concrete material model. led to instability in the analysis and
caused convergence problem. The analysis was terminated thereafter. The numerical

model, however, was able to qualitatively represent the behavior of the structures.

6.2 Conclusion

The new refined shell element developed in this study is quite successful in
almost all the examples solved in the course of this study and it has a potential to be used
in some other areas of application (multi-layered composite shells, for example) besides
concrete structures. The adjustability concept of the element and the ease of programming
in this approach provides the required versatility for this element to be used as a gencral
shell element in refined applications. Also it can substitute the three dimensional
modeling of the shell structures with brick elements in a variety of examples when

ordinary shell elements are not rendering an accurate strain field in the structure.



However. the capability of this new element in the context of concrete structures
was not invoked properly in this study due to problems in the concrete material model.
The material model has shown good performance in three dimensional compression states

of stress (see, Xie et al. 1994) but, to be able to use it in plate and shell applications. it has
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