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Abstract

Real-time control of visual display systems via mid-air hand gestures offers

many advantages over traditional interaction modalities. In medicine, for ex-

ample, it allows a practitioner to adjust display values, e.g. contrast or zoom,

on a medical visualization interface without the need to re-sterilize the inter-

face. However, there are many practical challenges that make such interfaces

non-robust including poor tracking due to frequent occlusion of fingers, inter-

ference from hand-held objects, and complex interfaces that are difficult for

users to learn to use efficiently.

In this work, various techniques are explored for improving the robustness

of computer interfaces that use hand gestures. This work is focused predomi-

nately on real-time markerless Computer Vision (CV) based tracking methods

with an emphasis on systems with high sampling rates.

First, we explore a novel approach to increase hand pose estimation accu-

racy from multiple sensors at high sampling rates in real-time. This approach is

achieved through an intelligent analysis of pose estimations from multiple sen-

sors in a way that is highly scalable because raw image data is not transmitted

between devices. Experimental results demonstrate that our proposed tech-

nique significantly improves the pose estimation accuracy while still maintain-

ing the ability to capture individual hand poses at over 120 frames per second.

Next, we explore techniques for improving pose estimation for the purposes

of gesture recognition in situations where only a single sensor is used at high

sampling rates without image data. In this situation, we demonstrate an ap-

proach where a combination of kinematic constraints and computed heuristics

are used to estimate occluded keypoints to produce a partial pose estimation

of a user’s hand which is then used with our gestures recognition system to
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control a display. The results of our user study demonstrate that the proposed

algorithm significantly improves the gesture recognition rate of the setup.

We then explore gesture interface designs for situations where the user may

(or may not) have a large portion of their hand occluded by a hand-held tool

while gesturing. We address this challenge by developing a novel interface

that uses a single set of gestures designed to be equally effective for fingers

and hand-held tools without the need for any markers. The effectiveness of

our approach is validated through a user study on a group of people given

the task of adjusting parameters on a medical image display. Finally, we

examine improving the efficiency of training for our interfaces by automatically

assessing key user performance metrics (such as dexterity and confidence),

and adapting the interface accordingly to reduce user frustration. We achieve

this through a framework that uses Bayesian networks to estimate values for

abstract hidden variables in our user model, based on analysis of data recorded

from the user during operation of our system.
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If you can’t explain it simply, you don’t understand it well enough.

– Albert Einstein.
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Chapter 1

Introduction

In this work, we study techniques for improving the efficiency and robustness

of interaction with hand gesture interfaces. For the purposes of this work,

hand gestures refer to hand and finger movements (such as pinching, waving,

swiping, etc.) explicitly performed in mid-air without physically touching any-

thing for the purpose of being interpreted as input into some type of computer

interface. There are many devices that can be used to track human hand

movements over time, including data-gloves, Infrared (IR) markers, or marked

tools such as IR-pens. This work is instead primarily focused on markerless

Computer Vision (CV) based techniques. CV-based techniques use no devices

or markers attached to the human hand and instead track motions through

either image or depth cameras alone.

In our work, as summarized in Figure 1.1, we investigate both the recog-

nition and interface aspects of real-time high-dimensional data visualizations.

On the recognition side, we examine techniques to make more accurate pose

estimations and better recognition rates for gestures. By pose estimation we

refer to being able to accurately predict the all the finger positions and joint

angles in a human hand (i.e. full pose estimation) or a subset of these (i.e.

such as only palm and/or fingertip positions in the case of partial pose esti-

mation). Gesture recognition rate is related to the number of intentional hand

1



Figure 1.1: An overview of the different processes involved in our proposed
approach to gesture interfaces.

gestures a user performs that we are successfully able to recognize as having

occurred.

On the interface side, we examine how we can design the gesture interface

and interactions to improve efficiency when users have their hands partially

occluded by unmarked hand-held tools. As part of this, we look at how we

can improve visualization interfaces further by creating a model of the user’s

performance and adapting the interface accordingly.

1.1 Motivation

Hand gestures have been investigated for many years as a more natural and

intuitive form of computer input for many applications. Although much of the

early work in hand gesture recognition used a variety of input devices such as

data gloves or tracking markers, in recent years there has been more focus on

techniques that use no markers or devices on the hand, and track the hand

movements through Computer Vision (CV) techniques alone. These interfaces

are the most practical for users because they can be used immediately upon

arrival at the interface and require no additional equipment other than users’

own hands.

2



CV-based hand gesture interfaces are ideal for many applications where

one wishes to interact with a display without touching a physical interface.

Consider the example of controlling the visual parameters of a medical display

during a live procedure such as an ultrasound examination, or a dental opera-

tion. During such a procedure, practitioners can adjust displays without any

concern about spreading biological contamination that may otherwise have

resulted from using a touch interface or physical device. Touchless CV-based

gesture interfaces such as these hold the potential impact of improving the

safety and reducing costs (associated with cleaning and sterilization) in medi-

cal domains such as these. Non-contact interfaces such as these are also useful

for cleaner public computer interfaces such as interactive building directories.

A key challenge to making such interfaces robust, efficient, and practical

to use, is to have them track human hand motions with a high degree of

accuracy, both spatially and temporally. Highly accurate pose estimations

can help create more robust gesture recognition by eliminating noisy finger or

hand movements that might otherwise be falsely labeled as gestures. They

also allow for more subtle movements to be permitted as gestures if there is

more confidence that such subtle movements are not due to tracking errors.

The efficiency of gesture based interfaces can also be improved through

design of the interface itself. Making the interface robust to the presence of

hand-held tools allows for more streamlined workflows in situations such as

medical examinations. Similarly, each user has a unique set of skills relevant

to controlling an interface (e.g. dexterity, confidence, precision, etc.). By es-

timating key characteristics of a user’s skill level in several dimensions, the

system can adapt the user experience to better match their abilities. In the

example of a gesture-based interface, for example, if an adaptive user model

determines that a user does not have a high degree of dexterity, the inter-

face can automatically adjust threshold values to be more tolerant of noisy

3



movements at the expense of requiring larger motions. The end result is an

individualized user interface experience that is better matched to the user’s

specific skills and abilities.

1.2 Problem Definition, Focus, and Scope

In order to improve the robustness of real-time CV-based hand-gesture inter-

faces, there are a wide range of key challenges to overcome. In this work, we

narrow our scope to focus on two key challenge areas: 1) improving the accu-

racy of pose estimation and gesture recognition, and 2) designing interfaces to

be robust and adaptive on a per-user basis.

In regards to the first challenge, robustly tracking the full pose of a hu-

man hand without markers or any kind of visual aids has been a difficult

problem to achieve in real-time. Inter- and intra-hand occlusions, rapid mo-

tions, shadow/illumination changes, uncontrolled backgrounds, and the large

number of degrees of freedom of the human hand all make reliable pose track-

ing quite difficult through marker-less CV techniques alone. However, recent

advances in depth sensor technologies have helped alleviate many of the is-

sues faced, especially hand/finger segmentation and issues with illumination

or noisy backgrounds. In this work, we focus on real-time techniques to over-

come challenges with occlusion in order to improve the reliability of gesture

recognition.

In regards to the second challenge, there are many considerations that must

go into designing the gesture interface itself. Naturally, the gestures must be

designed such that they can be robustly recognized by the system, and be

as unambiguous from each other as possible. However, in order to ensure as

much flexibility as possible, we propose an interface design that freely allows

users to interact in either bi-manual or uni-manual modes with or without the

presence of unmarked handheld tools. We also explore the potential to improve
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interfaces for users through customized intelligent user models. By learning a

model of each user over time, a more efficient, individualized experience can be

achieved. Although we explain how our model can be applied to hand gesture

recognition, we also demonstrate how it is more broadly applicable to other

areas such as adaptive training.

The scope of our work is focused on gesture interfaces that control a display

of some kind, such as a medical display, or some type of public display. How-

ever, while such systems were used as a test-bed to evaluate the effectiveness

of our approaches, they are not limited to them. Similarly, while our work

is generally not limited to any specific CV-based sensor technology (such as

IR-patterned light, Time of flight, stereo-scopic reconstruction, etc.) our main

focus is on newer state-of-the-art sensor systems that are capable of real-time

sampling rates of over 100 pose estimations per second which thus have very

tight computational time constraints to maintain real-time tracking.

1.3 Contributions

1) The first significant contribution of this work is a technique for improving

the pose estimation accuracy of state-of-the art hand-tracking sensor systems

when used for gesturing in front of a display. In this approach, we develop

a novel technique that uses pose estimations from multiple sensors without

the need to transmit video or depth images. Our experimental results demon-

strate that our proposed technique significantly improves the pose estimation

accuracy while still maintaining the ability to capture individual hand poses

at over 120 frames per second.

2) Another contribution of this work is a technique for greatly improving

the gesture recognition rate of real-time hand gestures used for controlling

a display from a single-sensor. Specifically, we proposed, implemented, and

evaluated a system which uses a novel customized Kinematic Constraint Model
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and dynamic relabeling to vastly the reduce the parameter space of occluded

keypoints on a tracked human hand, while still preserving a pose recognition

rate of over 120 samples per second. Besides improving gesture recognition

reliability for interactive visualizations, our technique can also be applied as

a pre-processing step to other hand tracking systems with similar inputs and

architectures.

3) In our investigations of gesture-controlled medical displays we have de-

veloped a gesture interface that is effective for real-time control while seam-

lessly allowing users to transition between bi-manual or uni-manual modes,

and between using empty hands or handheld instruments. The results of our

experimental studies in this area demonstrate that users are just as effective

when gesturing using small handheld instruments as with empty hands in our

gesture interface contrary to what is expected in light of their strong preference

for interacting using only their empty hands.

4) In order to create interfaces that can adapt to their users’ specific skill

levels in a variety of dimensions, we create a user modelling technique based on

Bayesian networks. We apply our proposed system to the domain of 3D virtual

rehabilitation medicine, and show the effectiveness of our system through a

user study.

1.4 Organization of the Thesis

The rest of the thesis document is organized as follows: In Chapter 2, we cover

the background research and related works in the areas of human computer in-

teraction, hand pose estimation, and gesture recognition. Chapter 3 discusses

our approach for improving upon state-of-the-art hand pose estimation sensor

systems through an analysis of multiple sensors at high real-time sampling

rates without the costly bandwidth needed to transmit image data. Chapter

4 covers the design and implementation of our technique for improving the
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gesture recognition rate of gestures used for controlling displays while main-

taining high real-time frame-rates. In Chapter 5 we present the results of our

investigation into robust medical gesture interfaces that are able to adapt to

the presence of hand-held tools during gesturing. In Chapter 6 we investigate

interfaces that automatically adapt to users in an individualized manner. Fi-

nally, in Chapter 7 we state our conclusions and indicate directions for future

work.
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Chapter 2

Background and Related Work

In this section, we begin with a brief overview regarding how hand gestures

relate to the topic of natural Human Computer Interaction (HCI). Next, the

motivation for selecting a computer vision based approach is explained. Fi-

nally, key challenges regarding Computer-Vision based approaches are outlined

as well as recent advances in techniques used for pose estimation and gesture

recognition.

2.1 Gesture-based Interfaces

As computers continue to grow in computational power and graphical display

capabilities, the limited means by which users interact with their systems

threatens to prevent these advances from being used to their full potential

[70]. Depending on the application domain, user efficiency and effectiveness

can potentially be increased by novel, more intuitive interaction mechanisms.

Specifically, allowing a user to interact naturally with a computer through the

use of gestures (hand gestures in particular) has been recognized as a much

more intuitive interaction mode for many applications [43].

Typically, most user interaction modalities introduce a tradeoff between

expressiveness and ease of use; i.e. whereas a keyboard may be more expressive

than a mouse, it is often easier to use a mouse for many data manipulation
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tasks [70]. Natural hand gestures are seen as an attractive alternative mode

of intuitive human computer interaction because their dexterity and general-

purpose usage offer a high degree of expressiveness [28].

Gesture-based user interfaces can offer a number of advantages over ex-

isting traditional interfaces [94] [92]. For example, systems using computer-

vision (CV) gesture-based interfaces can have a reduced need for buttons or

other physical interface components, thus reducing the size of the device. CV

gesture-based interfaces can also be operated at a further distance from the

actual computer hardware which can be quite beneficial in many situations.

For example, interfaces used in store-fronts or public spaces can be protected

from environmental damage or wear-and-tear sources (such as weather or van-

dalism). Finally, CV gesture based interfaces also avail themselves nicely to

interaction with multiple users given that, theoretically, new users can enter

and leave the interaction space freely as they would not require any dedicated

interaction device. The lack of a physical interface to touch is also useful in

situations where one wishes to avoid spreading biological contagions [1].

2.2 Implicit vs. Explicit Interaction

Human interactions with gesture interfaces can roughly be divided into two

main categories: implicit and explicit.

Implicit interaction refers to human actions that are not intentionally con-

veyed by the user for input into a system, but which are recognized and used

as input nonetheless [80].The motivation behind interpreting implicit interac-

tions is based on the observation that a significant amount of communication

between humans is exchanged implicitly. An example of implicit HCI is in the

field of affective computing where systems attempt to determine the emotional

states of users so as to respond more appropriately when user frustration is

detected [22].
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Explicit HCI, on the other hand, refers to user actions that are intentionally

conveyed as input into the system, whether it is through a keyboard, mouse,

speech recognition, or a gesture-based interface, etc. The focus of this work is

on explicit gesture interactions.

2.3 Gesture Taxonomies

Hand gestures for explicit human computer interaction are commonly classified

into three categories depending upon their usage [70]: deictic, manipulative,

and communicative.

Deictic gestures refer to gestures designed to indicate an object or location,

often to be used as the focus of context for subsequent action. One common

example of deictic gestures would be selecting on-screen virtual objects by

pointing directly at them with one’s index finger.

Manipulative gestures refer to gestures where one or more parameters (such

as location, orientation or scale) defining a virtual object are directly modi-

fied. Moving a virtual cursor with hand movements through a gesture-based

interface environment is an example of a manipulative gesture. As the 3D

position of the user’s hand changes over time, the 2D or 3D position of the

virtual cursor changes accordingly.

Finally, communicative hand gestures are those where the pose or move-

ment of a user’s hand is meant to communicate some information; for example,

holding up 3 fingers to communicate the number “three” or sticking up a thumb

to indicate approval. Several researchers have cautioned against heavy use of

communicative gestures for natural HCI [96] [28]. This is because simple com-

municative tasks can typically be achieved much easier through a keyboard

as opposed to forcing the user to memorize and perform a large number of

hand poses or movements. Therefore, it is usually ideal to keep the number

of communicative gestures small and as natural or intuitive as possible. For-
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tunately, research has also shown that for quite a number of 3D gesture-based

application domains, a combination of only a few gestures is usually sufficient

for completing many non-trivial tasks [40] [49] [48]. Nonetheless, balancing

the tradeoff between how easy a gesture is to perform in comparison to how

easy it is to recognize can be quite challenging.

2.4 Gesture Interface Challenges

Even if human hand poses could be tracked with perfect accuracy, there are

still challenges in the interpretation of human motions that remain. Serveral

well-known prominent challenges include:

Gesture spotting Distinguishing intentional, explicit gestures designated as

input from implicit gestures that are not intended as input (such as a

user lowering his or her hands because they are tired) is a classic problem

in HCI systems [92]. Also known as the “Midas Touch” problem [9], the

key challenge is to determine when to start and stop tracking human

actions as input into the system.

User Fatigue Depending on the design of the gesture system, physical fatigue

can quickly result from moving or holding hands and arms in awkward

positions for extended periods of time [51].

Cognitive Load Similarly, requiring users to recall how to perform certain

actions from a large set of complex gestures can result in a large amount

of cognitive load which will slow down the efficiency of the system. A

common approach taken to reduce this problem is to design hand gesture

libraries that mirror (as closely as possible) the way that gestures are

used in the real world for common interactions [66][78][82].
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2.5 Multi Modal User Interfaces

When combined with other input modalities, such as speech, the expressive

power of hand gestures increases further. Such interfaces that make use of

two or more synchronized input modalities are referred to as Multi-Modal

User Interfaces (MMUIs) [43]. MMUIs are important to consider because

several studies have revealed that for quite a number of tasks, users tend to

consistently choose to interact using multiple input modes into a user interface

if the option is available [69] [40].

Performing gestures while speaking is one of the most commonly examined

forms of multi-modal interaction due to its inherent naturalness and common

use in human communication. Gestures that are performed while speaking

(known as “gesticulations”) can be useful for MMUIs in a number of ways [28].

Gesticulations typically come in two main forms: those that are complemen-

tary to the spoken information, and those that are redundant [80]. An example

of a case where a gesticulation carries redundant information is as simple as a

person saying the word ”yes” while nodding. Both the gesture and the spoken

word convey the same information, but if, for example, the spoken word was

not recognized correctly, the gesture could be used to help determine the user’s

meaning and improve recognition accuracy [80].

An example of where a gesticulation carries complementary information

to spoken words would be a user pointing at a location and giving the in-

struction “move right there”. Here, the speech and gesture contain unique,

complementary information; the speech indicates the action to be performed

and the gesture indicates the location. The seminal work on using this form

of interaction was achieved by Richard A. Bolt in 1980 [13] with his multi-

modal interface that allowed users to create, move and otherwise manipulate

objects projected onto a large screen simply by pointing at them with their
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hands and issuing a voice command regarding the action to perform. Since

then, many MMUI designs have incorporated this interaction technique with

modified interaction designs and improved recognition accuracy [11].

2.6 Motivations for CV-Based Tracking

Although gesture recognition can be implemented through the use of peripheral

devices such as IR pointers or other hand-held devices, the focus of this thesis is

on empty-hand gestures that are tracked through computer vision techniques.

Peripherals such as IR pens, motion sensitive devices, such as the Wii remote

[78], or other handheld devices may be much easier to track but can restrict

ad hoc user sign in and reduce the expressiveness of empty-hand gestures

which are much more dexterous, natural to use, and have more degrees of

freedom [28].

A commonly used, accurate, and reliable method of tracking hand poses

and gestures in real-time for general purpose applications is through the use

of data sensor gloves which have been successfully applied to a wide range of

gesture-based applications [28]. Due to the high accuracy of data sensor gloves,

they are well suited to tasks such as natural interaction with computer-aided

3D design (CAD) which is a highly spatial task involving interaction in 3-

dimensions [3]. More recent implementations use data gloves for tasks such

as immersive simulation and visualization [7]. However, data sensor gloves

have a number of drawbacks that render them unsuitable for a large number

of application domains. In situations where the desire is for users to freely

enter and leave the interaction space, data gloves are not ideal. Furthermore,

for the best results, they often need to be re-calibrated on a time-consuming,

per-user basis [28][66].

Cost can also become an issue, particularly in the case of systems designed

for multiple users where the number of data gloves needed must be at least
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equivalent to the number of simultaneous users the system supports. More

generally, the most accurate data sensor gloves often present the problem of

being restricted with regards to user motion, making even basic gestures more

difficult to perform [82]. Pinch gloves, which measure when finger tips are

touching each other, tend to be much less restrictive and are useful in certain

data manipulation tasks [18], but convey less information, and are often less

practical than simple handheld button interfaces [55].

2.6.1 Applications of CV-Based tracking

Several application areas have been identified where CV-based gesture interac-

tion can be applied to improve the interface design. For example, in the field of

medicine, gesture based interfaces can be used to control medical equipment,

including surgical robotics in order to allow for more complex procedures or

even to perform procedures remotely if the option to do it locally is not avail-

able [94]. Another example would be interfaces for use in surgical rooms where

a surgeon can interact with a visualization system to view patients medical

scans without the need to physically touch a computer. This avoids the need

to constantly re-sterilize hands, as shown in Figure 2.1.

In the field of rehabilitation medicine, gesture tracking can be used to mea-

sure a patients recovery over time, and allow patients to practice rehabilitation

exercises without the presence of a clinician, or allow clinicians to work with

patients remotely who may then be treated at home [94]. Interactive games

and training have also been proven to be effective in rehabilitation medicine

in terms of increasing patient engagement and promoting improved rehabil-

itation results. Immersive 3D virtual environments are an attractive option

for education and training as they enable educational or training tasks that

are not possible or as effective in 2D environments [24]. Gesture based inter-

faces have been identified as potentially making interaction in such virtual 3D
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Figure 2.1: A touch-free gesture interface for interacting with Medical images
(figure is from [94]).

environments much more natural and intuitive [9]. Gesture-based interfaces

have also been considered as useful for more immersive and effective inter-

action with data visualization of large, complex, multi-dimensional scientific

datasets [82] [59] [9].

Gesture-based interfaces have also been examined in the field of robotics.

Human gestures are potentially seen as a much more natural mode of interac-

tion with complex robots because they allow users to carry out robotic tasks

in a more effective and straight-forward manner [78].

Hand gestures are viewed as particularly useful for interaction in 3D virtual

environments given that to place an object in 3D typically requires about 6

DOFs (i.e. x, y, z position, and yaw, pitch, and roll for orientation) whereas

a standard mouse interface offers only 2 by default [82]. Hand gestures of-

fer a more immersive and natural way to manipulate 3D objects in virtual
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Figure 2.2: Gesture based manipulation of 3D objects (figure is from [82]).

environments as shown in Figure 2.2.

2.6.2 Challenges with Computer Vision Based Tech-
niques

Intuitively, given that human beings can easily recognize hand gestures using

only their eyes, it should theoretically be possible for a computer to accomplish

the same through visual sensors alone. However, many computer vision-based

tracking challenges exist which complicate this goal. The more prevalent and

recurring issues are as outlined below:

Motion Blur Due to the fast movements human hands are capable of, track-

ing of fingers or hand poses during rapid motion can be quite difficult

due to motion blur [92] as shown in Figure 2.3. Fortunately, research

has shown that people tend not to change hand poses whilst the hand is

in motion, which potentially simplifies the recognition tasks somewhat
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by making assumptions that finger poses will remain unchanged during

quick movements [34].

Figure 2.3: Motion blur induced by rapid motion (figure is from [92]).

Processing Speed Prior investigations have shown that in order for users

to comfortably feel that a system is tracking their movements in real-

time and free of lag, the delay between the input and response time

should be less than approximately 45ms [94]. This can be challenging

due to the high computation time involved in complex image processing

tasks. Often, reduced or simplified recognition goals must be set to keep

a system responsive in real-time [28].

Uncontrolled Background and Illumination Many gesture-based appli-

cations involve image backgrounds that are cluttered, dynamic, and oth-

erwise uncontrolled making hand segmentation quite difficult [92]. While

variations in skin color amongst different individuals is an issue for iden-

tifying hands, the issue can be complicated further by changes in illu-

mination in the environment. The problem is particularly prevalent in

projection-based systems where the ambient room brightness is often

quite low in order to see the display properly, and can be made even

more complicated by light from the projection display shining onto the

user’s hands as they are being tracked [49].
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Finally, shadows cast by others or by the users themselves onto their own

hands can cause illumination changes. Often, an approach taken to deal

with the issue of illumination changes is to convert the video images

from the standard Red Green Blue (RGB) colour space into the Hue,

Saturation, and Intensity/Value (HSI or HSV) colour space [104][82][61]

or the YCbCr colour space [61][53]. With this approach, the illumination

intensity can be partially isolated to make the system somewhat more

tolerant to changes in brightness (as shown in Figure 2.4).

Figure 2.4: The Colour histogram of the image on the left is shown on the
right (figure is from [94]).

High Dimensionality The tracking of hands is made difficult by their highly

dimensional features including up to 24 or 27 degrees of freedom (DOF)

as shown in Figure 2.5 depending upon the model used [59]. In addition,

there can be a great deal of variation in users regarding the relative sizes

and positions of joints in their hand, although research has shown that

there is much less variation in joint angles between individuals [34] [68].

Self Occlusions When posing gestures, finger can frequently occlude one an-

other, or the hand can occlude entire regions of itself [34] [59] [92] [104]

[94]. In the case of multiple hands, it is quite easy for one hand to oc-

clude the other and thus disrupt the tracking. To address this issue,

many systems place restrictions on the gestures or postures allowed for
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Figure 2.5: Examination of the kinematic structure of the human hand (figure
is from [28]).

interaction, such as requiring that a user’s palm always face the camera,

or allowing only one hand to be used for interaction at a time [28].

2.7 Pose Estimation and Gesture Recognition

Computer vision approaches for hand tracking and gesture recognition gen-

erally fall into two major categories: Model Based approaches and Appear-

ance/Image based approaches [70] as shown in Figure 2.6.

Model-based approaches attempt to determine the complete 3D position,

orientation, and ariculation of a human hand. This typically includes the

position and joint deflection angles of every joint in the user’s hand as well.

One of the primary advantages of real-time model-based approaches is that

they are usually aimed at giving complete and continuous pose estimations

regarding the entire kinematic structure of the hand [70]. This allows the

system to be more general-purpose and useful for a much wider range of ap-

plication areas. Unfortunately, a drawback of model-based approaches is that
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Figure 2.6: Breakdown of model vs. Image/Appearance based approaches
(figure is from [70]).

in order to achieve precision, they are often computationally expensive, and

do not operate in real-time. In recent years, however, by using new low-cost

commercially available depth sensors [95] [83] and GPU programming tech-

niques [68], real-time model based tracking for a wide range of arbitrary hand

poses is becoming possible.

For most earlier real-time applications, however, model-based approaches

do not offer a strong balance of computational complexity vs. accuracy. In-

stead, alternative appearance based approaches are used. Appearance-based

approaches differ from model-based approaches in that they are not focused on

full hand-pose estimation, but rather are only aimed at identifying a reduced

set of hand parameters [70]. Appearance-based approaches tend to be much

lower in computational complexity, and can readily achieve high accuracy real-

time results at the cost of having a smaller, limited gesture vocabulary [104].

However, for many application areas (such as virtual object manipulation in

3D environments) the complete kinematic hand pose is generally unnecessary,

and a smaller more modest gesture vocabulary is preferred in order to reduce
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the cognitive load on the user. A small set of gestures is usually sufficient

for many tasks [40] [49] [48]. These factors have made the appearance-based

strategy useful for some real-time gesture based systems, but the most appro-

priate approach is usually dependent upon the application domain in which it

is used [94].

2.7.1 Appearance Based Methods

The first challenge in most appearance based methods is to localize and usually

segment the user’s hand(s) from the background. The most popular means

to achieve this is to segment out pixel regions with colour histograms that

are similar to human skin colour [45]. Once skin-coloured pixel regions have

been determined, it is necessary to isolate the pixels that belong to the hand

from pixels that belong to other parts of the human body (such as the arm

or face) and noisy background regions that are only false-positives. One com-

mon approach used is to use the skin-coloured pixel region with the largest

number of connected pixels and remove all others [39] [17]. One can also care-

fully control the image background (e.g. using a solid colour) to help improve

hand segmentation, although this greatly reduces the practicality of the ap-

proach [31] [2] [86]. Alternatively, many past approaches restrict use-cases to a

static, non-moving background in which case the foreground pixels (including

the user’s hand) can be segmented by simply subtracting away the known back-

ground image [17] [41]. In order to deal with dynamic backgrounds, previous

researchers have used more advanced methods such as elastic graph match-

ing [90], tracking multiple hypotheses [5], or more recently, depth data [75].

Although appearance-based approaches typically only locate the position of

the hand in the 2 dimensional space of the image, some techniques make use

of multiple cameras to find the 3D position [2] [102].

With the 3D position of a user’s hand known, many different image fea-
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tures are typically used to try to understand the gesture being performed.

Optical flow correlation has been used effectively in many past appearance

based approaches for tracking dynamic hand gestures [17] [27] [103] [23] [26].

This feature is a way to model motion in the image as pixel regions flow in a

correlated manner over a series of video images. Other methods include mak-

ing use of edges and contours [17], symmetrically correlated movements [100],

and orientation histograms [31].

2.7.2 Gesture Recognition

Hidden Markov Models (HMMs) have been the most widely used models for

effectively detecting dynamic hand gestures over the past several decades [86]

[54] [97] [64] [74]. In HMMs, one can model a system as being in one of a

number of unknown (i.e. hidden) states and then make use of known measured

values to try to predict which hidden state the system is most likely in. In

the case of hand gesture recognition from appearance-based methods, the true

pose of the hand is generally unknown (i.e. it can be in a number of hidden

states) but we can attempt to predict the hidden state of the hand based

on measureable appearance-based features. For example, to model a swipe

gesture, the hidden states might include the hand being raised, moving from

left to right, stopping, and then being lowered again. Based on measured

features, such as optical flow [27], the HMM can be make updated prediction

on what state the system is currently in. If the system predicts that the hand

has traversed through all hidden states, one after the other, a gesture can be

reported as having been detected. It is common to create a separate HMM

network for each possible gesture the system can detect, and to update them

in parallel [54].

While HMMs have proven themselves to be highly effect in gesture recog-

nition systems, they are naturally limited by the quality of the features used
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as input. For this reason, many approaches pre-filter their data features before

inputting them into the HMM (e.g. through the use of a Kalman filter [74]).

Furthermore, the models must be trained offline for each gesture. This means

the quality of the training set becomes another important factor in the overall

performance of the system.

Other important techniques previously used for dynamic gesture recogni-

tion include Dynamic Time Warping (DTW) [21] [5]. Originally used in speech

recognition [73], this technique allows for direct comparisons of feature trajec-

tories despite different amounts of time being taken to complete each part.

It is well suited for hand gesture recognition because there can be a great

deal of variation in the speed at which users perform different parts of a ges-

ture. Older techniques have also made use of Conditional Density Propagation

(Condensation) to track gesture trajectories through noisy data [41] [12].

Another common approach is to build a rule-based recognition system.

That is, for a given set of input features, there are manually defined if-else rules

that determine when to report that a gesture has been detected [39] [23] [88].

While this technique avoids the need for any model training, manually encod-

ing appropriate rules is difficult unless the gestures are simple or well-described

by robust, accurate input data. The noisy and indirect nature of features from

appearance-based methods usually makes the direct encoding of gesture recog-

nition rules difficult except for simple movements such as large motions related

to tracking the position of the centroid of a hand. If one had an accurate, con-

tinuous measure of the exact pose of a user’s hand at all times, however,

rule-based approaches could encode much more detailed gestures.

Static Pose Recognition

Besides dynamic movements, it is also meaningful to attempt to determine if

the hand is in a certain static pose such as a pinch or some other commu-
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nicative gesture. In this case, we wish to determine whether the hand is in

a certain pre-defined pose based on a single static image. Previous work has

made connections between this task, and the task of general object recognition

(i.e. shape matching), where the silhouette of the segmented hand is matched

against a reference template [8] [57] [58]. Other approaches involve decompos-

ing the segmented hand image into a skeletal graph and using these skeletal

graphs for comparisons of similarity [6] [75].

2.7.3 Model Based Approaches

Unlike appearance-based methods, model-based approaches to hand gesture

tracking have generally been offline methods due to computational complexity.

One of the eariler works in model-based tracking of an articulated hand was

completed by Stenger et al. [87] who tracked the pose of a simpler 7 DOF hand

model. His approach made use of an unscented Kalman filter to minimize the

error between the edges of the rendered virtual 3D hand model, and the edges

detected from the captured images. Approaches by Lin et al. [99] [56] used a

Monte Carlo search method to try find optimal pose estimations in a highly-

dimensional search space. Their method succeeded only when they made use

of additional constraints on joint deflection angles to significantly reduce the

search space.

Later work by Dewaele et al. [26] used a set of stereoscopic cameras to com-

pute 3D point correspondences between the two images. A 3D representation

of the hand is then modelled as a series of rendered spheroidal shapes. Gorce

et al. [25] make use of hand texture, illumination, and shading as ways to help

detect occlusion, and produce improved pose estimations. Finally, Bray et

al. [14] made use of a particle filter approach [52] to estimate hand poses of

a full 27 DOF hand model. Their technique can handle multiple hypotheses

as it tracks hands over time, but, like previous techniques, can still result in
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hand poses being caught in a local minimum.

Real time Model Based Approaches

In 2011 Oikonomidis et. al. [68] claimed to be the first to develop a model-

based approach for accurately tracking a full pose estimation of a human

hand (27 DOF) at near real-time speeds of 15Hz (Figure 2.7). They achieved

their approach through the use of a modified Particle Swarm Optimization

(PSO) [72] [44]. Their PSO method works by starting off with a number of

hand hypotheses with random velocities near an initial calibration starting

pose. As the user moves their hand away from the initialization pose, the

acceleration of the particles is adjusted to guide them towards a single particle

(i.e. pose hypothesis) which is measured to have the best match with the sen-

sor data. In order to enable good tracking results in real-time, the approach

made use of a highly-parallelized GPU implementation to evaluate the pose

hypotheses’ depth maps against real-time depth data from a Kinect sensor. As

with particle filter approaches, the technique is still vulnerable to being caught

in a local minimum, particularly when there is a great deal of occlusion in the

hand pose. However, the most significant limitation, due to the use of a PSO,

is that users are restricted to only slow hand movements, because faster move-

ments will cause the particle swarm to become desynchronized with the true

hand pose, and will thus provided lower quality estimates.

Figure 2.7: Outline of a real-time approach for model-based hand pose recog-
nition (figure is from [68]).

In 2013, Keskin, et. al. [47] proposed a novel approach for real-time hand
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pose recognition using Random Decision Forests on a synthetically generated

dataset of hand poses. Their approach is similar to the approach used by

Microsoft Research to create the real-time skeletal pose recognition system of

the Kinect [83]. Full pose estimation is achieved by using their classifier in

order to label each depth pixel, and then mean-shift to identify the position

of each part of the hand. The classifier is able to run at a rate of up to

30Hz where the bottleneck is due to the sampling rate of the Kinect depth

sensor. However, their technique was only able to achieve the classification of

a few discrete poses (namely, hand poses related to American Sign Language)

although the authors claim that the technique should theoretically be able to

classify hand poses in any arbitrary number of configurations given enough

synthetically generated data to train their classifier. Their approach is not

able to give values for hand poses in the continuous space of all possible hand

configurations. This discrete pose limitation is also present in the real-time

discrete hand pose system proposed by Romero et. al. in 2009 [76].
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Chapter 3

A Multi-Sensor Technique for
Hand Pose Estimation through
Novel Skeletal Pose Analysis

3.1 Introduction

Interacting with computer interfaces through mid-air hand gestures is emerg-

ing as an intuitive and effective alternative to traditional touch-screen inter-

faces. For example, interacting with medical displays via touch screens or a

traditional mouse and keyboard can present a major problem for medical pro-

fessionals wishing to keep equipment sterile. Even in small clinical settings, ex-

aminations may often use fluids such as ultrasound conductive gel which users

do not want to spread onto a physical interface by touching it [77] [35] [37] [93].

However, even as new hardware advances have been made in high-accuracy

CV-based hand-tracking systems (such as the Leap Motion sensor system [95])

these state-of-the-art systems still have low pose estimation accuracy when the

hand is in a pose that causes a high degree of occlusion between fingers. These

situations frequently occur when the palm is not directly facing the camera,

or when performing certain gestures such as pinches. This presents a problem

for mid-air hand gesture recognition because intermittent disruptions in pose

estimation accuracy can interrupt recognition of a dynamic gesture that was in-
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progress (such as a pinch-drag, for example). Likewise, false pose estimations

can lead to the detection of gestures that were not actually performed, possibly

leading to unintended interactions.

3.1.1 Our Approach

In this work, we present a novel technique that improves upon the hand pose

estimation accuracy when using current state-of-the-art sensors for tracking

hand poses. Our technique addresses the issue of occlusion by using pose es-

timations from multiple sensors placed at different viewing angles. One of the

primary advantages of our approach is that we avoid the need to fuse sen-

sor data at the 3D depth-map level which is not available for certain modern

sensors such as the Leap Motion. We instead gain wider flexibility by in-

telligently analyzing each sensor system’s independently derived skeletal pose

estimations. A key challenge that makes skeletal pose fusion especially diffi-

cult is the tendency of the underlying pose estimation algorithms to settle into

stable local minima that can nonetheless have a large amount of disagreement

between each other. This renders most classical sensor fusion techniques, such

as the Kalman filter [89], largely ineffective in this problem domain because

it there will be no useful difference in noise profiles with which to make a

meaningful weighting of incoming sensor data.

We instead present an alternative strategy by re-framing the challenge as

a type of classification problem. Specifically, we demonstrate that by using a

carefully-designed subset of the skeletal pose estimation parameters, we can

build an offline model which can then be used in real-time to intelligently

select pose estimations while still running at over 120 frames per second. In

an experimental analysis involving two sensors, as shown in Figure 3.1, we

analyse the pose estimation accuracy for a number of hand gestures typically

used to control displays (i.e. pinch, tap, open hand) taken from a variety of
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different angles. In this context we demonstrate that we are able to achieve a

31.5% reduction in pose estimation error as compared to using only a single

sensor and that, crucially, we are able to disproportionally eliminate the false

poses that tend to interfere with gesture recognition.

Figure 3.1: An example setup used in our lab to capture a single hand pose
from two different viewing angles.

3.2 Comparisons with Related Work

Previous work in markerless CV hand-tracking has made use of colour and/or

depth cameras (such as with the Microsoft Kinect [68]) in order to analyze

either static or dynamic hand gestures in real-time. Using raw depth/colour

data, features such as hand and finger positions/orientations can be extracted,

and from this, an estimation of the hand’s pose can be determined. The main

drawbacks of these past approaches included a large degree of noise in the

computed 3D positions of fingertips, and that they are not able to robustly

capture small precise gestures (like quick subtle finger-taps) due to their low

sampling rate and motion blur [92]. The reason for estimating human hand
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poses at high sampling rates is largely a result of the rapid motions that the

human hand can regularly achieve. Previous work has reported that human

hands can regularly reach movement speeds of up to 5 m/s and the wrist can

reach rotational speeds of up to 300 degrees per second while gesturing nor-

mally [28]. The combination of high movement speeds, and low sampling rates

often creates inaccuracies in gesture recognition because hand poses between

successive frames become increasingly uncorrelated to each other as the hand

moves faster [28]. It is for this reason that we tested our proposed method

using the Leap Motion Sensor technology [95].

The Leap Motion Sensor is an example of a new generation of Computer

Vision based sensors that provides state-of-the-art real-time hand tracking and

pose estimation. Unlike past Infrared Red (IR) patterned light depth sensors

(such as the first generation Microsoft Kinect), or Time of Flight sensors such

as the Soft Kinectic DepthSense Camera, the Leap Motion sensor is able to

provide much higher 3D positional accuracy for hands and fingertips (better

than 1 millimeter of precision if near the sensor and un-occluded) and sampling

rates in excess of 120 frames per second [95]. As a drawback of the Leap

Motion’s high resolution tracking and sampling rate, the sensor is not able to

provide a full high-resolution depth maps at over 120Hz due to USB bandwidth

considerations. The maximum effective tracking distance is approximately

50cm from the device.

3.2.1 Sensor Fusion

Regardless of the underlying hand pose recognition technique, or sensor used,

occlusion inevitably becomes a problem in many situations if only a single

CV-based sensor from a single point of view is used. For this reason, we

propose analyzing results of multiple sensors placed at different viewing angles.

Specifically, we propose directly analysing the skeletal pose estimations rather
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than the depth maps which may not always be available (as is the case with

the Leap Motion Sensor which does not generate any depth maps or 3D point

clouds at all).

A key challenge for analyzing these alternative hand poses is related to

how they behave when in a high-occlusion situation. As previously mentioned,

many skeletal hand pose estimation techniques follow a type of particle-filter

approach. This leads to tendency for the pose estimation to enter a local

minimum (i.e. a false pose that mostly matches the limited visible data),

when there is a high degree of ambiguity in the hand pose. Here, the pose

estimation model can remain in this stable but inaccurate state with little

noise for a considerable amount of time, or even indefinitely if the user’s hand

is staying in a static pose. Essentially, this means that if a user performs a

static hand pose, two sensor systems from two different viewing angles can

result in substantially different pose estimations that are nonetheless both

highly stable over time. An example, recorded from our sensor setup, is shown

in Figure 3.2.

This characteristic of hand pose estimation techniques renders typical real-

time sensor fusion techniques, such as the Kalman filter [89] unsuitable. This is

because the similar noise profile of correct and incorrect hand pose estimations

will result in them being approximately equally weighted [62]. It is also not

feasible to use aspects of finger motion such as the angular velocities of finger

joints to predict future positions given how rapid finger movements can be.

It should be noted that the current implementation of our proposed ap-

proach is similar to sensor fusion in that we take data from multiple sensors and

produce a single output that attempts to be as accurate as possible. A differ-

ence in our approach compared to classical sensor fusion approaches, however,

is that our classification step (which uses an Support Vector Machine [71] in

our test implementation) results in only one sensor’s data being used at any
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Figure 3.2: In the image on the top, the open hand pose (a) is readily visible
by both sensors (b)(c) and thus each gives a similar pose estimation (d)(e)
in their local sensor coordinate spaces. In the case on the bottom, however,
the sensor on the left (g) has a fairly good view of the pinch pose (f) but this
pose is mostly occluded from the right side sensor (h), which leads to large
disagreements in the pose estimation (i)(j).

single time-step. The rationale for this is again related to the tendency of

certain underlying sensor pose estimations to become trapped in a very poor

local pose estimation. These low-accuracy estimations are removed completely

by our classification step in order to prevent them from negatively impacting

our final estimation.

32



3.3 Implementation

Our multi-sensor skeletal pose estimation approach is composed of several

steps:

1. First, we use a trained Support Vector Machine [71] (SVM) model to

intelligently determine the optimal pose estimation from an array of

sensors. We build this model offline (only once) where the training set

uses a feature vector composed of a subset of each sensor’s output.

2. Next, we convert the computed single pose into a global coordinate sys-

tem, so that the pose of all fingers is known in a single unified space.

Similarly, we also compute the position of all fingers in a local hand co-

ordinate system which provides key information for the pose estimation

model we use.

3. Finally, the local hand pose information, and global hand pose infor-

mation are fed into our gesture recognition model so that dynamic and

static hand gestures can be tracked.

An overview of these steps is shown in Figure 3.3.

3.3.1 Sensor Array Setup

The goal in our implementation was to demonstrate the viability of our ap-

proach. We tested this by using a basic sensor setup involving two sensors.

As shown in Figures 3.1 and 3.4, our sensor setup involves two Leap Motion

sensors placed at a 45 degree angle to the table surface they rest upon. These

angles were chosen so as to make the sensor view angles orthogonal in an at-

tempt to optimize the amount of unique information available to each sensor

during situations of high occlusion. The point at which the center of the field

of view of both sensors intersects was set at 20cm for our experiment because
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Figure 3.3: Overview of our approach during real-time execution.

this is the default pre-calibrated interaction height for the Leap Motion Sen-

sor. It should be noted that our proposed approach is not necessarily tied to

this particular sensor configuration. Depending on the specific user interface

application, the sensors can be placed farther back from each other or at dif-

ferent viewing angles if necessary. Similarly, our approach is not limited to

any specific number of sensors.

One consideration when using multiple Leap Motion Sensors for our im-

plemented configuration is that the IR (infrared) projectors of one sensor can

shine directly into the IR cameras of the other which can sometimes cause

interference and unstable hand tracking. This can be solved by placing the
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sensors such that they lie outside the 150 degree field of view of each other

or by simply placing a small non-reflective object somewhere in-between the

sensors to prevent a direct line-of-sight. The latter is the approach used in our

setup. As an alternative, if our approach is used with time-of-flight sensors,

direct interference of this nature would not be an issue.

45° 45°

Figure 3.4: A Diagram of our implemented sensor setup. A small non-reflect-
ing object is placed between the sensors to prevent interference.

3.3.2 Selecting Optimal Pose Estimations

In our approach, we define the amount of pose estimation error as the average

of the euclidean distances (in millimeters) that each fingertip is from its ground

truth position. The positions are expressed locally relative to the reported

palm position and normal of the hand (provided directly by the sensor data

in our setup case). That is, where fi is a 3D vector representing the position

of the fingertip of the ith finger on a hand, and gi is the actual ground truth

position, we then define the total error of a hand pose estimation as:

E =

∑5
i=1 ||fi − gi||

5
(3.1)

Given a set of pose estimations from a sensor array (2 sensors with 2

indpendent estimations in our setup), the goal at each time-step is to select
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the single pose estimation that has minimum total error. The issue is that

there is usually no useful difference in tracking noise between accurate and

highly inaccurate pose estimations which makes it difficult to decide which

sensor’s readings are more trustworthy. As explained previously, the stable

inaccurate pose estimations are a common artefact of the underlying particle

filter algorithms typically used to generate them.

The key novelty in our approach lies in that we intelligently determine

which sensor is likely reporting the most accurate pose estimation. Specifically,

we observed that even in situations with high occlusion and pose estimation

error, the tracking of the hand palm position and orientation often remains

accurate. Our system exploits this property in order to build a SVM model

that learns which hand positions and orientations are likely to associate with

higher pose estimation error. The SVM model uses a polynomial kernel func-

tion with a complexity constant of 1.0. Results were evaluated using a 10-fold

cross-validation.

At run-time, the model composes a normalized feature vector based on each

sensor’s reported hand position/orientation in the local sensor space. This

feature vector is then run through the pre-built classifier in order to predict

which sensor is likely providing the best pose estimation. The selected pose is

then passed along for subsequent processing and gesture recognition.

For our 2-sensor setup using the Leap Motion, the feature vector per sensor

is composed of the following 12 floating point values per pose estimation:

1. X,Y,and Z values of the palm position relative to the sensor.

2. X,Y,and Z values of the palm plane normal relative to the sensor.

3. X,Y,and Z values of the ”forward” direction of the hand (i.e. the direc-

tion the fingers point when extended).

36



4. The local ”Roll” rotation of the hand.

5. The dot product between the palm normal and the direction the sensor

is facing

6. Sensor Confidence Estimation. This value is a floating point between

0 and 1 that is generated by an internal proprietary part of the Leap

Motion API. Its limitations when used on its own are shown in the

Evaluation section.

SVM was chosen as the classifier for our approach because almost all of

the features used have a geometric meaning. We expect, therefore, that in

the higher dimensional space of the palm position/orientation, it should be

possible to find a relatively good hyperplane that separates the spatial regions

in which each sensor would perform the best.

In order to build the training data for our model, we require a set of feature

vectors that are already pre-labeled with which sensor performed best. Several

strategies are possible for generating the training data for the model. If the

setup did not use IR sensors (such as the Leap Motion) it may be possible

to use an IR-based motion capture rig such as OptiTrack1 with markers on

the fingertips during the training process. Alternatively, data-gloves with only

minimal error levels can possibly be used if they are not bulky enough to skew

the results. In our Evaluation section, we demonstrate our approach through

yet a third option whereby we use an articulated artificial hand model with a

known pose to represent a ground truth for the training and evaluation data.

3.3.3 Re-Projecting into Global and Local Spaces

After a hand pose is selected from the sensor array, it must be converted into

a unified global space in order to be interpreted for meaningful gestures or

1http://www.optitrack.com
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interaction. The matrix used to determine the hand pose in global space can

be defined manually if the sensor placement is known precisely enough such

as in our proposed 2-sensor setup. More generally, for an array of sensors,

the user can use several static finger positions in view of each sensor to build

a set of 3D point clouds, and then apply an ICP (Iterative Closest Point)

algorithm [10] to compute the matrix required to project the points from one

sensor’s coordinate system into the other. In parallel with the step above, we

also compute a projection into a local hand coordinate space for purposes of

aiding gesture recognition. The precise details of projecting the hand into the

local coordinate space for gesture recognition is explained in section 4.3.3.

3.4 Evaluation

In our experiment, ground truth values for hand poses were determined by

using an artificial hand model that was manually placed into fixed, known

poses. Because the number of hand poses that could be created are virtually

limitless, we focused on tracking three static hand poses that were of interest

to us because of their use in controlling displays. Specifically, the three hand

poses we tracked were:

1. An open hand.

2. A pinch gesture.

3. A tap gesture.

These gestures are shown in Figure 3.5.

The articulated artificial hand model used has dimensions similar to that

of a male right hand. Fingers are approximately between 7.0cm to 10.5cm in

length, and the entire length of the hand from the bottom of the palm to the tip

of the middle finger is approximately 20.5cm when fingers are fully extended.
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Figure 3.5: The three ground-truth hand poses tracked by our system.

Empirically, it was observed that the tracking accuracy of the artificial hand

was roughly equivalent to that of a normal human hand.

In order to investigate the ability of the Leap Motion Sensors to track these

hand poses as the hand moves, we fixed the hand position to be in the middle

of the field of view of both sensors (20cm away) and slowly rotated the artificial

hand counter-clockwise along the axis of the wrist as shown in Figure 3.6. The

rotation was paused every 10 degrees in order to record a measurement from

each sensor. This resulted in 36 pairs of pose estimations per gesture and 108

pairs of pose estimations in total.

We then computed the pose estimation error each sensor produces for all

108 cases. To train our model, we constructed all 108 feature vectors and

labelled every case with the sensor that produced the lower pose estimation

error. Note that the average pose estimation performance of both sensors are

made identical because both sensors will eventually see all the exact same hand

poses from the same distance and rotation angle (but not at the same time).
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Figure 3.6: The artificial hand model was mounted such that it was fixed in
space relative to the sensors and rotated along the axis of the wrist.

We evaluated the performance of our model using a 10-fold cross-validation

across all 108 data points, which is a standard approach commonly used by

other classification techniques.

3.4.1 Performance

Overall, the experimental results indicated that our approach reduced the

total pose estimation error by 31.5% (in comparison to using only a single

Leap Motion sensor). We summarize the performance comparisons in Figure

3.7 and 3.8. Results are reported in Table 3.1 and Table 3.2.

In our comparison, we computed values for the worst case and best case per-

formance as 21.45 mm and 9.5 mm respectively. The worst case performance

is a representation of the theoretical worst average pose estimation error that
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Figure 3.7: Comparison of average pose estimation error per fingertip between
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Table 3.1: Experimental Results

Technique Finger Estimation Err. (mm) Std. Err

Single Sensor

Thumb 14.20 1.22

1st Finger 18.40 1.87

2nd Finger 15.51 1.55

3rd Finger 16.29 1.08

4th Finger 12.98 1.06

Mean 15.48 1.12

Averaging

Thumb 11.39 0.78

1st Finger 16.22 1.19

2nd Finger 13.27 1.00

3rd Finger 13.79 0.67

4th Finger 10.83 0.67

Mean 13.10 0.69

Sensor Confidence

Thumb 11.23 0.86

1st Finger 14.26 1.49

2nd Finger 12.61 0.97

3rd Finger 13.14 0.94

4th Finger 10.24 0.83

Mean 12.29 0.85

Our Approach

Thumb 9.53 0.85

1st Finger 10.09 0.97

2nd Finger 10.74 0.77

3rd Finger 12.49 0.88

4th Finger 10.14 0.84

Mean 10.60 0.74

could result from our approach. For it to occur, our classifier would need to

incorrectly choose the sensor with the worse pose estimation every time (i.e.

essentially have 0% accuracy). Similarly, the best case represents the result

we would expect if our approach consistently managed to always choose the

sensor with the smaller of the two pose estimation errors. In this context, our
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Table 3.2: Overall Performance Comparison

Technique Mean Pose Estimation Error (mm) % Optimal

Worst Case 21.45 0%

Best Case 9.50 100%

Single Sensor 15.48 50%

Averaging 13.10 69.9%

Sensor Confidence 12.29 76.6%

Our Approach 10.60 90.8%

approach can be thought of as approximately 90.8% optimal. That is, our

final result is about 90.8% of the distance from the worst case performance

towards the best case.

3.4.2 Comparison to Alternative Techniques

The single sensor measurement shown in Figure 3.8 and Table 3.1 represents

the average amount of pose estimation error that results from using only a

single Leap Motion Sensor. Given the completely symmetrical nature of our

setup, it is also the amount of pose estimation error that one would expect if

choosing randomly between the two sensors. Although the mean sensor pose

estimation error was approximately 15.48 mm, there was quite a large variation

in estimation error across the dataset with a maximum recorded error of 114.24

mm, and the minimum recorded error of less than 0.07 mm. Generally, when

the pose estimation error for a finger exceeded about 30 mm, the sensor was

producing a pose estimation that was substantially different from the ground

truth. There were about 22 such cases in our dataset of 108.

We also analyzed the performance of using unweighted averaging to fuse

pose estimations. That is, for each finger in the local hand coordinate space,

the final pose is the midpoint between the two sensor estimations. This tech-

nique similar to the results that one might expect a Kalman filter or similar
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technique to converge to after the differing pose estimations have settled. The

results indicate that, to a certain extent, it can help in situations where it

reduces the error from infrequent, poor pose estimations. A drawback to con-

sider, however, is that if the system enters a state where the user’s hand pose

is constantly at a poor viewing angle for one sensor, the averaging will contin-

ually pull the final pose estimation away from the mostly accurate readings of

the other sensor. In these asymmetric situations, one can expect that averag-

ing in this manner could in fact reduce the overall accuracy in comparison to

using only one sensor.

Finally, we also compare our approach to the strategy of using the Leap

Motion sensor’s self-reported confidence score. In this technique, the choice of

which sensor reading to select is based on which one is reporting a higher con-

fidence using a scale of 0 to 1. This approach did show some merit suggesting

that there is some reasonable motivation to include it in the training model.

By itself, it is shown to be not as effective as our approach which also takes

the palm position and orientation into account. Also, not all sensor systems

produce self-reported confidence scores.

Ultimately, a one-tailed paired T-test confirmed (with α = 0.05) that our

approach significantly outperforms all the aforementioned alternative tech-

niques.

3.4.3 Analysis of Classification Performance

A unique aspect of our system’s performance is that while our approach was

about 90.8% optimal in terms of reducing the mean pose estimation error, our

classifier accuracy was only 76.9% (i.e. 83 correctly classified instances out

of the total 108). Normally, one would expect that this would result in the

final performance being similar to this value. In order to investigate this, we

compared the difference in pose estimation error between the correctly and
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Figure 3.9: A box and whisker plot showing the distribution of the level of
disagreement between the sensors for correctly and incorrectly classified in-
stances. The analysis shows that cases where the instance was incorrectly
classified tended to have proportionally smaller differences between the sensor
measurements. The tops and bottoms of the boxes indicate the 1st and 3rd
quartiles of the distributions respectively, with the line through the middle of
the boxes indicating the median value. The top and bottom whiskers indicate
the max and min values of the distributions.

incorrectly classified instances.

A large difference in the pose estimation error between the two sensors for a

datapoint typically indicates that the sensors had a large disagreement between

each other, and that likely one of them (but perhaps both) was producing a

very low quality pose estimation. In cases where the difference between the

two sensors was low, it indicated that both sensors were likely producing very

similar pose estimations, and thus the choice of which sensor to use was less

important. In our analysis, we computed the difference in sensor pose estima-

tion errors for all our datapoints and show the corresponding distributions in

Figure 3.9.

The analysis showed that for the correctly classified instances, the median

difference between pose estimations was 11.44 mm. For the incorrectly clas-

sified instances, the median difference was only 4.47 mm. This indicates that
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in cases where there was a large disagreement between the two sensors, our

approach tended to make the correct decision. The instances our approach

missed tended to be cases where the sensors only had a small level of disagree-

ment. This supports the practicality of our approach because it shows that

it disproportionally eliminates the worst pose estimations, which we would

expect would have the largest interruption to gesture recognition.

3.5 Summary

In this work, we presented a novel technique for improving full hand pose

recognition accuracy from multiple sensors at framerates in excess of 120 pose

estimations per second. Our technique achieves this through a model that

is built to intelligently select the more accurate pose estimations based on

a subset of the underlying pose estimation data of each individual sensor.

One of the main applications for our technique is to improve the quality of

tracking accuracy for gesture-controlled display interfaces. The results of our

experiment show that we are able to reduce the overall pose estimation error

for such gesture recognition by over 31% in a 2-sensor setup as opposed to the

single sensor approach.

Our approach is independent of any particular sensor or underlying pose

estimation algorithm, does not require the array of sensors to all be the same

type (as long as their pose estimations are in a common format), and more

importantly, it preserves the real-time performance of the system. Techniques

which attempt to evaluate high-resolution images at high sampling rates from

a large number of sensors quickly run into hardware limitations related to

computational complexity and data bandwidth. In comparison, our approach

is able to scale better with a large number of sensors because the data processed

(i.e. the pose estimation models) are much smaller. One of the primary

impacts of our work is that it demonstrates the viability of combining pose
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estimations from multiple sensor systems even without the presence of the

underlying image data.
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Chapter 4

High Precision Markerless Hand
Gesture Tracking based on
Kinematic Constraints and
Re-Labelling

4.1 Introduction

Recent advances in integrating computer vision techniques with smart sensors,

such as the Leap Motion Sensor, have made the tracking of human hand and

finger movements more accurate at high sampling rates. However, these latest

sensors present novel challenges for real-time gesture recognition due to pro-

cessing time constraints and limited data output (i.e. only a small number of

lossy keypoints). In this paper, we present a novel algorithm that improves

the robustness of real-time computer vision gesture recognition from a sin-

gle depth sensor. We achieve our results through a combination of kinematic

constraints and computed heuristics to estimate the occluded keypoints and

create a partial pose estimation of a user’s hand. Finally, we apply our algo-

rithm to the task of interacting with a display system through touchless hand

gesture interaction alone. The results of our user study demonstrate that the

proposed algorithm significantly improves the gesture recognition rate, while

maintaining the ability to capture individual hand poses at over 120 frames
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per second. The direct impact of our work is on improving the practicality of

touchless display systems. Applications include health services and education.

4.1.1 Problem and Motivation

Hardware innovations in new high-sampling rate CV-based hand-tracking sen-

sor systems (e.g., Leap Motion) allow for millimeter-level precision for tracking

fingertips, and sampling rates of over 150 frames per second [95]. However, the

challenge of using newer sensors like Leap Motion is that certain versions (such

as the commercially available v1 API) only provide the 3D position/direction

of a user’s hand and the position and direction of between zero to five fingertip-

like features that are connected to a hand-like object. There is no depth map

or image data availabe to use classical pose recognition strategies, and the

extremely high sampling rates would make it difficult to process such images

in real-time regardless. Furthermore, the actual pose of the hand is unknown

because no labelling of the tracked fingertips is computed in these versions

(i.e., thumb, index, middle, etc.) and no data is available regarding the po-

sition of obscured fingertips. This poses a problem for mid-air hand gesture

recognition because the loss of tracking on a fingertip can interrupt recogni-

tion of a dynamic gesture that is in progress. What is ideal for robust gesture

recognition is a 3D virtual model of the user’s hands and fingers that per-

sists even when the tracking of keypoints on the hand are occasionally lost.

Motivated by these weaknesses, we propose a partial pose estimation system

to recognize hand gestures real-time making use of kinematic constraints and

motion characteristics.

4.1.2 Contributions

Resulting from the flexibility and low processing overhead of our partial pose

estimation system, our algorithm can also be effectively applied as a pre-
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processing step to various touchless interaction interfaces which use a Leap

Motion or similar sensor system to improve the robustness of gesture recogni-

tion.

Finally, we designed a novel gesture vocabulary to allow intuitive control of

displays. Our interaction vocabulary is specifically designed around gestures

that can be robustly identified and yet are easy for users to adopt because

they use similar concepts as touch screen interfaces commonly deployed on

handheld devices and smart-phones. The touchless control of medical displays

is one of the orignal motivations for this work, but the techniques presented

are generally applicable to other application areas such as education.

4.2 Comparisons with Related Work

In 2011 Oikonomidis et. al. [68] successfully developed possibly the first real-

time, accurate, model-based approach for tracking the 3D position, orientation,

and full articulation of a hand at over 15 Hz on high-end hardware. Their

approach used a combination of video and depth images from a Microsoft

Kinect sensor as input into a modified particle swarm optimization (PSO)

algorithm. In contrast to our work, a drawback of their proposed approach is

that it is not able to robustly capture small precise gestures (like quick subtle

finger-taps) due to its low sampling rate, and the limitations of the sensor

technology used. The aforementioned PSO technique is not a good match for

our particular application not only because of computational costs, but also

because there is no colour or depth map from the newer sensor systems we

are focusing on. This results in no information on partially occluded fingers

to guide the optimization towards the correct pose.

In 2013, Keskin, et. al. [47] proposed a novel approach for real-time hand

pose recognition using Random Decision Forests on a synthetically generated

dataset of hand poses. However, their technique was only able to achieve the
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classification of a few discrete poses, whereas in our application we are inter-

ested in the continuous space of all possible hand poses in order to maximize

flexibility and future extendibility of our system.

4.2.1 Partial Pose Estimation

It is important at this point to make a distinction between full hand pose es-

timation, and partial pose estimation. The aforementioned works by Oikono-

midis, Keskin, and others are full pose estimation solutions because they pro-

vide values for a 27 degrees of freedom hand model (i.e. the position and

orientation of the wrist, and the joint deflection angles for every joint in ev-

ery finger). On the other hand, our proposed hand pose estimation model is

a partial pose estimation system. Partial pose estimation systems are con-

cerned with tracking a reduced number of degrees of freedom of the hand [28].

For example, a gesture recognition system may only need to track the hand

position, and the direction the index finger is pointing, or simply the hand

position/orientation, and label each finger as either extended or retracted [4]

[79] [67]. In contrast, our model is much closer to approximating a full hand

pose estimation because we provide continuous values for the position and

orientation of the palm, as well as the position and pointing direction of all

5 fingertips. What is notably absent is the joint deflection angles for the

knuckles. However, using the position and orientation of the palm, and the

3D position and pointing direction of each fingertip, these values can be rea-

sonably approximated to extend our model into a full pose estimation. For

the needs of our application domain the joint deflection angles of the knuckles

were not important for gesture recognition, and thus were not included in the

model at this point.
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4.2.2 Gesture Controlled Medical Displays

There has been a great deal of interest in the literature regarding the touch-

less (or non-contact) control of medical displays over the past few decades.

The primary motivations include the reduced likelihood of spreading biologi-

cal contamination if a medical interface is never physically touched, and the

time/cost savings that result from reduced sterilization needs [37].

One of the earlier works in CV-based gesture control of medical displays

was completed by Grange et. al. in 2004 [35] with their development of

a system that controlled computer mouse movements in an operating room

display via hand gestures. Their approach used stereo colour cameras and a

combination of static background subtraction and pixel colour thresholding to

locate and track the user’s hand positions in 3D space. As the system did not

track fingers, virtual mouse clicks were performed by either pushing the hand

forward 20 cm, or holding it absolutely still for several seconds. Similarly, the

Gestix system developed in 2008 [93] uses a nearly identical approach but does

not control a virtual cursor and instead uses communicative gestures (such as

hand swipes or circular motions) to perform various tasks.

As is typical of appearance-based approaches that use colour information to

segment the user’s hands, both of these approaches leave themselves vulnerable

to segmentation errors due to changes in illumination, shadows, or dynamic

backgrounds.

In 2011 Gallo et al. [33] proposed a Kinect-based interface for visualizing

medical images in a sterile surgery room requiring the user to be standing,

and using both hands for interaction. The system tracked the 3D position

of both hands at 30 Hz and recognized the hand as either being in the open

or closed state. As with the previous works, the inability to track the finger

positions means that the gesture language requires large hand movements for
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recognition purposes, which can cause the user physical fatigue over time [82].

Another limitation of the system is that it requires both hands to be free for

operation, which may not always be an option depending upon the situation.

4.3 Our Approach

In this work, we use lossy hand and fingertip keypoint data from a Leap

Motion Sensor, which has the required precision, for persistent partial hand

pose estimation in real-time at over 120 Hz. This allows us to have continuous

fingertip positions and orientations in 3D space at all times.

The proposed algorithm uses sensor data to construct a local coordinate

system for each hand tracked. When tracking on a finger is lost (frequently by

occlusion or segmentation failure from contact with another finger) an estimate

of the location of the lost finger is computed based on kinematic constraints

and movements of the remaining tracked fingers as well as the hand itself.

As lost fingers are rediscovered, the algorithm determines the identity of these

fingers and labels them appropriately (e.g., thumb, index finger, middle finger,

etc.). This labelling is computed based on positions in the local hand coordi-

nate system, several finger features that are learned over time, and the known

or estimated positions of the other fingers. As fingers move around or are lost

and rediscovered over time, the algorithm can recognize labelling errors, and

dynamically re-label fingers as more data becomes available.

4.3.1 Algorithms and Implementation

Our implementation is based on data output from the Leap Motion v1 API and

sensor, which is an example of a new generation of CV-based hand tracking

sensors. Unlike past Infrared Red (IR) patterned light depth sensors (such as

the first generation Microsoft Kinect), or Time of Flight sensors such as the

Soft Kinectic DepthSense Camera, the Leap Motion sensor is able to provide
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much higher 3D positional accuracy for hands and fingertips (better than 1

millimetre of precision if the finger is unoccluded and sufficiently close to the

sensor) and sampling rates in excess of 120 frames per second. As a compromise

for the Leap Motion’s high resolution tracking and sampling rate, the sensor

is not able to provide a full high-resolution depth maps at over 120Hz due to

USB bandwidth constraints. Also, the maximum effective tracking distance is

approximately 50 cm from the device.

The output of the Leap sensor v1 API includes the following data:

Hands:

• Position of palm in 3D space (in millimetres)

• Estimate of palm normal direction (direction the palm is facing)

Fingers:

• Position of fingertips in 3D space (in millimetres)

• Estimate of direction the finger is pointing

• Estimate of finger length and width

• The ID of the hand the finger belongs to (if the hand is visible)

What is notably missing is a classification regarding whether a hand is a

left hand or right hand, and whether a finger is an index finger, middle finger,

thumb, etc. Also, the aforementioned output is only available for hands and

fingers that the sensor has an unobstructed view of. Fingertip positions are not

reported by the sensor API if the view of the finger is obstructed by another

finger, or often if two or more fingers come in contact with each other. This

means that at any given time, the number of fingertips that a sensor is tracking

and reporting values for may be much less than the expected total of 5. There

is no data regarding the position or orientation of the untracked fingers, and
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no way to view partially obstructed fingers due to a lack of a colour or depth

map.

The lossy tracking of fingertips poses an issue for identifying hand gestures

because the tracking of a fingertip may be lost part-way through a gesture be-

ing performed, which interrupts and prevents its recognition. Even if tracking

on a fingertip is just lost temporarily but then quickly restored, there is no

way to be certain that it is the same finger as before. This is especially true in

situations where the majority of the fingers on a hand are currently not being

tracked.

What we require for robust hand gesture recognition is a real-time partial

pose estimation of the user’s hand state that can provide continuous values

for hand and fingertip positions at all times. We achieve this through com-

bining past tracking data and kinematic constraints with heuristics that can

be computed in real-time. Finally, we outline our gesture vocabulary for the

task of controlling displays with hand gestures. An overview of our approach

is shown in Figure 4.1.

4.3.2 Estimating Untracked Finger Positions

In our depth sensor setup, tracking of fingers is generally lost in 3 situations:

1. Complete or partial occlusion by another finger or part of the palm: For

example, the simple act of turning the hand sideways usually causes a

great deal of occlusion from other fingers.

2. Coming into contact with another finger. For example, when performing

the pinch gesture, the sensor may have a completely unoccluded view of

both the thumb and index finger, but tracking of both fingers is usually

lost due to an inability to identify the resulting shape as two distinct

fingers.
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Figure 4.1: Overview of our algorithm.

3. Curling-up. If a finger is curled-up past a certain extent (such as the

case where one is making a fist) it once again cannot be segmented and

recognized as a finger.

Several real-world examples of cases where finger tracking is lost are shown

in Figures 4.2 and 4.3.

4.3.3 Kinematic Model for Pose Estimation

In order to help estimate the pose of untracked fingers, we use the following

key properties and human hand motion characteristics:

• Fingers generally tend to not move (relative to their hand) if the parent

hand is moving above a certain velocity. Prior research has empirically

proven that, when humans are performing fast hand movements while

gesturing, fingers tend to remain stationary relative to the hand [34].

Following this we can assume that fingers tend to stay close to their last
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known position relative to the hand if the hand is moving. In contrast,

if a hand is mostly stationary, we can expect that the loss of tracking

is likely due to the motions of the fingers instead of the motions of the

hand.

• Fingers are very limited in their side-to-side motion. Crossing one’s

fingers is generally not a situation that occurs if one is gesturing naturally

(though it may occur if one is performing an intentional communicative

gesture). Much of the previous work in hand pose estimation models

assume little to no side-to-side motion of the fingers [62]. This allows

us to make several assumptions about the labelling of unknown fingers

based on their positions relative to each other.

Our first step in determining the position of untracked fingers involves

defining a local hand coordinate system in order to convert the fingertip po-

sitions from world space into a local hand coordinate space. If we consider a

hand with a normalized palm direction vector ĥN (i.e. normal to the plane of

the palm and in the direction the palm is facing), and a normalized orthogonal

forward vector ĥF we can compute an additional basis vector ĥC for the local

hand coordinate system as the cross product of these two:

ĥC = ĥN × ĥF (4.1)

The main challenge in this prior step involves determining ĥF , the ”for-

ward” direction of a hand. Multiple definitions are possible, but given the

sensor data available, we propose to define the forward direction of the hand

based on the mean direction of all tracked fingers. This means that for n

tracked fingers with normalized direction vectors d̂0, d̂1, ..., d̂n we compute the

unnormalized mean forward direction dM as shown in equation 4.2.

dM =

∑n
i=1 d̂i

n
(4.2)
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We then project this computed vector onto the palm normal plane (provided

directly from the sensor data), and normalize the result as shown in equation

4.3.

ĥF =
dM − (ĥN · dM)ĥN

||dM − (ĥN · dM)ĥN ||
(4.3)

With the 3 basis vectors of the local hand coordinate system computed, and

the known position of the hand palm (T ), we construct a matrix M that

transforms fingertip positions and direction vectors from the global coordinate

system into our defined local hand coordinate system.

M =

⎡
⎢⎢⎢⎢⎣

ˆhCx − ˆhNx − ˆhFx Tx

ˆhCy − ˆhNy − ˆhFy Ty

ˆhCz − ˆhNz −ĥFz Tz

0 0 0 1

⎤
⎥⎥⎥⎥⎦

−1

(4.4)

Note that the directions of the hand normal and forward vectors are inverted

when used as basis vectors. This is because the coordinate system of the

global sensor space defines the y axis as pointing upwards, and the z vector

as pointing towards the user whereas the palm normal is defined as facing

downwards, and the fingers (used for the forward direction) normally point

away from the user.

Note that the transformation matrix is a 4×4 matrix because we are using

a typical homogeneous coordinate system. This means that 3D points are

augmented with a 1 at the end before multiplication, and direction vectors are

augmented with a 0.

Using this setup, when the tracking of a finger is lost while the hand is

moving, we compute its position in our local hand coordinate space, and as-

sume that it will remain at its original position in this space. The estimation

of its position in the global sensor coordinate space is continually updated

using the previously defined transformation matrix, and its stored last known

position in local space.
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4.3.4 Classifying Fingers

Although the previous step provides position and orientation values for fingers

that become untracked by sensors, a problem arises when dealing with multiple

untracked fingers. Consider the situation where only the thumb and index

finger of the right hand are being tracked: if we regain tracking on a third

finger that is somewhere to the right of the index finger, we cannot be certain

whether this finger with newly-restored tracking is the index, ring, or small

finger. Furthermore, if a newly tracked finger on the same hand is discovered

to the left of the thumb, it implies that the current labelling is incorrect, and

fingers must be relabelled on the fly. This latter case is particularly common

when a new hand is entering the field of view of the sensor for the first time.

In order to classify newly rediscovered fingers on a hand, we implement

a two-stage approach that first uses kinematic constraints that dynamically

re-classifies existing fingers if necessary, and a second stage that uses compu-

tationally fast heuristics.

In our first step, from the list of all possible candidate classifications for a

finger, we filter out classifications that break the kinematic assumptions of our

hand. For example, if we have a situation where the middle finger and thumb

are fully tracked on the right hand, and the newly rediscovered finger has a

position in our local coordinate space that is to the right of the middle finger,

then we can eliminate the index finger as a possible classification (naturally,

the thumb and middle finger are also eliminated as possible classifications

because they are already being tracked).

If this kinematic constraint filtering stage eliminates all possible candidate

classifications except for one, then we can immediately assign the sole remain-

ing candidate to the newly rediscovered finger. However, because classification

errors can occur, we can frequently find ourselves in the situation where no
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candidates remain that do not violate our kinematic assumptions. Consider,

for example, the situation where we are tracking three fingers believed to be

the thumb, index finger, and ring finger on the right hand. If we discover a

new finger, but its local position is to the right of the thumb and the left of the

index finger, then we have most likely made one or more classification errors at

some previous timestep, and the labels on our currently tracked fingers must

be updated.

4.3.5 Dynamic Relabeling

The relabeling algorithm works by finding the closest labelling scheme that

preserves all of our kinematic constraints and assumptions while altering the

minimal number of existing finger labels (i.e., we assume that the most likely

correct labelling scheme is the one that is closest to our current prediction).

The formal breakdown of this algorithm is as follows:

Assume all currently tracked fingers F = [F1, F2, ...] are assigned an integer

index value label between 0 and 4 (i.e., label(Fn) = 0, 1, 2, 3, 4) where 0 =

thumb, 1 = index finger, 2 = middle finger, etc. Assume U0 is the newly

discovered, unlabelled finger that we just started tracking, and must assign a

label to, and then insert into the sorted array F .

DYNAMIC RELABELING ALGORITHM:

1. Project the 3D position of U0 and all fingers in F into our local hand

coordinate system.

2. Find the finger FL in F where FL has the minimum Euclidean distance

from U0, and is also on the left side of U0 (if such a finger exists). Simi-

larly, find FR for the right side.

3. Calculate NL as the number of finger index values away the nearest

unused index label is on the left (if any). Similarly, calculate NR for the
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right side. For example, if only two fingers are tracked, such as the thumb

and index finger, and the newly tracked finger U0 is discovered to be

physically in-between these two fingers then, we would have label(FL) =

0, label(FR) = 1, NL = MAX INTEGER, and NR = 1. Technically,

the value of NL is undefined because there are no unused labels to the

left of the thumb, so we set it to a sufficiently large value to indicate

this. In all of these steps, the left and right directions are swapped for

the left hand versus the right hand.

4. If NL < NR, then we set label(U0) = label(FL) and repeatedly re-assign

label(Fn) = label(Fn) − 1 for a total of NL times starting from FL and

using decreasing values of n. Otherwise, If NL ≥ NR, then we set

label(U0) = label(FR) and repeatedly re-assign label(Fn) = label(Fn)+1

a total of NR times starting from FR and using increasing values of n.

The reason to favour pushing finger labels to the right instead of the left

(on the right hand), in the case of a tie where NL = NR is that empirically

it was discovered that labelling errors were more common on the right side

of the right hand where fingers tend to be closer together, thus resulting in

less confidence in the accuracy of these labels. This left-right direction bias is

swapped for the left hand versus the right hand.

4.3.6 Heuristics

In case the kinematic constraint filtering step results in multiple ways to label

a newly tracked, unlabelled finger, we apply a set of computationally fast

heuristics in order to predict the identity of the finger. This situation is most

common in cases where tracking on all or nearly all fingers has been lost due

to a recent gesture such as a closed fist, or rotating the hand such that the

sensor lies on the plane of the palm.
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Amongst the possible candidates that the new unlabelled finger may repre-

sent, the chosen candidate is based on a combination of the Euclidean distance

between the unlabeled finger and a candidate finger’s last known position (in

the local hand coordinate space), and differences in the estimated width and

length of the fingers. The formula for determining which candidate finger

identity to assign is given by Equation 4.5.

h(C) =

WL(CL − UL)
2 +WW (CW − UW )2

+WD

√
(Cx − Ux)2 + (Cy − Uy)2 + (Cz − Uz)2

(4.5)

Where UL and Uw are the estimated length and width of the unlabelled

finger (output by the sensor), and Ux, Uy, Uz represent the 3D position of the

unlabelled finger in 3D space. Similarly, CL and CW are the estimated length

and width of the candidate finger C, and Cx, Cy, Cz represent the last known

3D position of candidate finger C in the local hand coordinate space before it

became untracked. To reduce noise, the values for CL and CW are computed as

a running average based on their values reported in the last 30 frames of sensor

data (the running average is halted when tracking is lost). WL, WW , and WD

are weighting factors (values were set empirically based on experimentation)

applied to the differences in finger lengths, widths, and distances respectively.

Amongst all the possible candidate fingers, the candidate chosen is the one

that returns the minimum value for h(C).

4.3.7 Gesture Detection

Our gesture interface is designed to allow users to intuitively control displays

using hand gestures without actually touching the screen. All of the interac-

tions in our interface are based on a combination of two basic components:

air taps and dragging (or swiping). Finger airtaps are analogous to clicking

mouse buttons or tapping a touch screen with your finger, but in mid-air. In
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our interface, this is used to select items. The air-tap was chosen because it

can be recognized robustly via our system setup, and a great deal of previous

work has demonstrated that most users find it exceptionally intuitive to learn

and remember [91][30]. Dragging (or swiping) refers to moving the hand while

at least one of the fingers is in the tap-down state (i.e., essentially perform-

ing the first half of an air tap, but halting before raising the finger). This is

analogous to dragging file icons on a computer interface while having a mouse

button down, or dragging objects across a touch screen display with the tip of

one’s finger, or swiping between pages displayed on a tablet computer.

In past works, Hidden Markov Models (HMMs) have proven to be effec-

tive at gesture recognition from appearance-based systems [98]. In our case,

however, the actual finger positions in 3D space have values continuously re-

ported. Thus, we instead use the current state of the fingers directly in a Finite

State Machine (FSM) model removing the need for indirectly modelling hidden

states. Likewise, unlike previous works, we found it was not necessary to filter

the finger positions with a technique such as a Kalman filter [62] because the

inherent sensor accuracy for tracked fingertips. The result is a computationally

inexpensive direct analysis of the finger states using a FSM model for gesture

recognition. Figure 4.4 shows a graph summarizing the state transitions for

our prototype interface.

Tap Recognition

Using the local coordinate system defined earlier, it is tempting to recognize

if an air tap is being performed by simply measuring if a finger has a local

y value that is sufficiently below a threshold value. Experimentation shows,

however, that the primary challenge in identifying air-taps lies in eliminating

false positives that occur due to the tendency of all of a user’s fingers having

increasingly negative local y values as they naturally tend to drift towards a
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Figure 4.4: Overview of the state transitions for the proposed gesture interface.

more relaxed state over time as shown in Figure 4.5.

The threshold y value of the downward distance a finger must move in the

local hand coordinate system in order to be classified as an air tap is therefore

adaptive. It is based on Equation (4.6):

Tf = DT (1 +WTmT ) (4.6)

Where Tf is the threshold y value (in millimetres) that the finger f must pass

below in order for the finger to be recognized in the downward part of an

air-tap, DT is the default threshold value for an air tap assuming that all the

other fingers are in the plane of the palm, and WT is a constant weighting

factor. mT is the mean y position of all other fingers besides the finger f in

our partial pose estimation model.

To prevent noisy toggling between the tapped and untapped states when

a finger hovers near the threshold value, once a finger has been recognized as

being in the tapped state, having passed below Tf , we require that it return

through a different upper threshold value Uf nearer to the palm plane in order

to be recognized as being in the untapped state. Where:

Uf = cTf , 0 < c < 1 (4.7)
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Figure 4.5: An overview of the tap recognition system, highlighting the need
for dynamic thresholds. The dashed magenta lines indicate the palm plane
as reported by the sensor, whereas the solid magenta line indicates the side
view of the offset plane that is parrallel to the palm plane, but offset according
to the average displacement of the fingertips relative to the palm plane. The
solid green line indicates the threshold that must be exceeded to enter that
tap Down state, whereas the dashed green line indicates the threshold that the
finger must be above to return to the Open state. The top left image shows the
ideal case where the user’s fingertips are mostly lying the in the palm plane,
and the tap is easy to recognize (top right). The bottom left shows a more
realistic case where the user has taken a more relaxed hand posture over time
and the tap gesture is more subtle (bottom right).

Figure 4.5 demonstrates the tap recognition in action corresponding to

different situations.

Drag or Swipe Recognition

Drag gestures are recognized as hand movements that occur whilst one or

more fingers are in the down position of an air tap. The primary novelty of

our dragging gesture is that unlike a touch screen, where one drags virtual
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items according to the position of their fingertip, in our application items

are tapped by the user’s finger, but dragged according to the hand position.

This is due to the lack of haptic feedback in mid-air gestures which makes

it difficult to distinguish the movements of communicative tap gestures from

being confused with the movements used to manipulate the position of a virtual

object. Our approach of using the finger movements to indicate taps, while the

hand position is used to manipulate the position of 3D virtual objects, is based

on the similar experience one has with using mouse buttons for selections, and

hand palm movements (i.e., mouse movements) to move objects on a computer

screen.

4.4 User Study Setup

To evaluate the effectiveness of our approach in improving gesture recogni-

tion reliability, a user study was conducted in which users were instructed to

complete 50 randomly assigned gestures as fast as possible using our inter-

face. The three types of gestures users could be randomly asked to complete

were: (i) swipe left, (ii) swipe right, and (iii) tap. Figure 4.6 shows how the

experimental interface was set up.

Each test subject completed the experiment a total of six times where each

separate trial alternated between gestures being recognized by our approach

(B) and a baseline approach (A) of using the Leap Motion v1 API directly.

To control the impact of repeated practice over time, half of all test subjects

were randomly selected to complete the repeated experiments in the order A

B, A B, A B, while the rest completed the experiment in the order B A, B A,

B A. Each pair of experimental runs was grouped into a round, making three

rounds in total.

During the experiment, users were given 8 seconds to complete a gesture

during which time they could make as many attempts as they liked. Upon
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Figure 4.6: The experimental set up. On the experimental interface (right
image) the values indicate: (top left) number of gestures completed thus far,
(top center) current gesture to perform (top right) which recognition technique
is currently being used (users not told what the letters mean), (bottom center)
the orange circle appears when the hand is considered to be in the tap-down
state, and the yellow progress bar appears during swipes to indicate to users
how far to go to complete them (as indicated by the black goal markers).

successfully completing a gesture, the system flashes the word GOOD for 0.2

seconds and then immediately displays the next randomly chosen gesture to

complete. To prevent user frustration in the event the system fails to recognize

hand movements as the appropriate gesture, after 8 seconds the system flashes

the phrase MOVING ON and continues on to the next gesture regardless.

Therefore, the theoretical maximum time a user could take to complete the

experiment was 410 seconds if none of their gestures were ever recognized. At

the end of the experiment, the total time taken to complete all 50 gestures was

reported, as well as the number of gestures (if any) that were not completed

within the 8 second time window. The experiment was tested and designed

such that the entire trial could be completed in approximately 60 seconds

(with some practice) if there are no recognition errors. The experiment was

completed by 25 participants (11 female, 14 male) between the ages of 22 and

41. One participant chose not to complete the third round of the experiment.

Given that the state-of-the-art pose estimation systems mentioned in the

related works section [68] [47] are not applicable for this new class of sensors

and the high sampling rate gesturing environment we are studying (i.e. the
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gestures we focus on are not readily recognizable at lower spatial resolutions or

sampling rates), we therefore measure the improvement in gesture recognition

rate of our approach in comparison to the baseline method of using the Leap

Motion v1 API directly.

4.5 Results and Performance Analysis

Figure 4.7: Results of user study.

The results for all six trials in the experiment are summarized in Figure 4.7.
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A paired one-way mixed-design ANOVA revealed that for all three rounds, our

approach significantly out-performed the baseline and reduced the total time

taken to complete the 50 gestures (α = 0.05, with P-values of 0.0001, 0.0001,

and 0.0058 respectively). We also see that there is a significant amount of

improvement in completion time with repeated uses of the system as users be-

come more comfortable with the interface. The results are highly encouraging

because they show a clear improvement in the gesture recognition rate when

our method is applied, allowing users to complete tasks and interact through

the interface more efficiently. In the study feedback, several users also reported

that during Trial B (our approach) the interface generally felt more “reliable.”

There are two main reasons why we chose to measure the total comple-

tion time for all 50 gestures instead of the proportion of gestures correctly

identified compared to those that were missed. Firstly, attempting to define

what constitutes a missed gesture is not always clear due to users commonly

performing ambiguous movements that could subjectively be interpreted by

a human as a swipe attempt, or simply re-positioning their hand to prepare

for another gesture. Likewise, spontaneous flicks or twitches are difficult to

discern as possibly being an intentional tap gesture. Secondly, measuring the

total completion time of the task is a more objective assessment of what we are

actually interested in, which is the overall communicative efficiency of using

our interface in comparison to the baseline. We therefore define the gesture

recognition rate in this paper as:

Gesture Recognition Rate =
Gestures Recognized

Time

The average number of times the system was not able to recognize the

appropriate gesture in the 8 second time window is also summarized in Figure

4.7.
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4.5.1 Observations and Discussion

We observed that the mean number of completely missed gestures in each

round was consistently higher for the baseline approach. Over time, it seemed

users began to slowly learn what movements tended to cause interruptions in

gesture recognition, and thus performed motions to avoid them. This came

at the cost of slowing users down in baseline trials (A). Whereas in trials

with our approach (B), users appeared to generally be slow and cautious at

first, but then seemed to gradually learn that they could go faster and be less

careful about their hand movements, and still have their gestures successfully

recognized.

It was also generally noted that most of the failed gesture attempts with the

baseline method were occurring during airtaps and swipes to the right. During

airtaps, it was observed that at some point during the tap, the tapping finger

would frequently point directly at the sensor as it passed over it, which caused

it to become temporarily unrecognized as a finger, and interrupted the ges-

ture. However, in our approach the persistent model successfully interpolated

the finger position in these situations, and the gesture could be recognized

properly. The issue of the tapping finger directly pointing at the sensor also

occurred frequently during swipes as the finger passed over the sensor.

During swipes to the right, it was observed that users’ fingers would fre-

quently become crowded together towards the end of the swipe, causing a

great deal of loss in tracking and frequently interrupting the gesture recogni-

tion. Once again, our persistent pose model was usually able to maintain the

hand pose state and correctly recognize the gesture. This issue presented itself

less often with swipes to the left, because the finger used to perform the swipe

usually does not have fingers directly behind it from the point of view of the

sensor.
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4.6 Summary

In this work, we presented a novel partial pose estimation system that uses

data input from a Leap Motion sensor v1 API to identify hand poses, and is

capable of running at over 120 frames per second on a single computer. Our

technique uses a customized kinematic constraint model and computationally

efficient heuristics to achieve the partial pose estimation at high speeds. The

results of our user study evaluation showed a significant improvement in ges-

ture recognition rate, when our model was used in comparison to the baseline

Leap Motion v1 API. While our markerless hand gesture detection approach

can be deployed in general to execute interface commands, e.g., slider control

and drag-and-drop, to make human-computer interaction more engaging, an

important application is the control of sterile touchless medical displays via

hand gestures.

The impact of our work is that our approach can be applied as a pre-

processing step to almost any gesture recognition interface which uses the

Leap Motion or similar sensor for gesture tracking because our model adds

estimations for the positions of untracked fingers without incurring a large

computational cost. As depth sensor technology evolves, occlusion continues

to pose challenges for CV-based sensors. Our partial pose estimation based

on kinematic constraints and human hand motion characteristics is a robust

approach for dealing with this missing data in a manner that facilitates efficient

gesture recognition.
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Chapter 5

Touchfree Medical Displays

5.1 Introduction

Markerless, mid-air hand gestures tracked by computer vision techniques have

become increasingly popular for human-computer interaction. Prior work has

shown that their non-contact nature makes them especially well-suited for

controlling visual displays at a distance [63]. They are also useful for control-

ling medical visualization interfaces where the lack of physical touch improves

safety by avoiding possible contamination [1].

Some of the challenges when users are performing tasks that require them

to hold a tool in their hand(s) such as a pen, computer stylus, laser pointer, or

a medical instrument, are that it can interfere with finger tracking or make it

awkward for the user to perform gestures in a way that can be recognized. For

example, a clinician might be holding an ultrasound probe in one hand, and a

biopsy needle in the other during a procedure, but would still like to control

their real-time medical display. As another example, an artist might be using

a computer drawing tablet with a stylus but would still prefer to make display

interactions without switching to their non-dominant hand. Being forced to

constantly put a tool down causes an undesirable interruption in workflow.

To address the challenges above, we propose a novel interface design for

controlling displays that enables mid-air gestures from hands and also hand-
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held tools. In our approach, hand-held tools can automatically become gesture

devices that the user may use to help control the display as shown in Figure 5.1.

Previously, our proposed interface design would not be practical with low

resolution commercial depth sensors, such as the Kinect [83], but is achievable

in this work using the Leap Motion sensor’s [95] higher resolution and sampling

rate.

Figure 5.1: Several applications of our approach. Left: The user controls an
ultrasound display without touching it, using a needle to gesture. Top Right:
A computer stylus is lifted off its drawing table and used to adjust the display
without needing to switch modes. Bottom Right: During a presentation, an
ordinary laser pointer is used to interact with the display.

To summarize, the contributions of our work are:

1. An interface design that uses gestures specifically designed to be equally

efficient with bare hands or hand-held tools.

2. Unique filtering rules introduced to help prevent unintentional gestures

caused by hand movements while holding tools.

3. Developing an application for touch-free control of an interface coupled

with an Ultrasound display.
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4. The ability to operate in both bimanual, and unimanual modes, without

the need for context switching, or the use of markers on hands or tools.

Finally, to evaluate the effectiveness of our approach, a prototype medical

display interface was implemented that uses our interaction framework. A

3-stage user study conducted on our implementation revealed that users were

capable of using either their hands or pointed tools to perform the gestures with

no major loss in task performance times being observed. Applications of our

work include touch-free interfaces for ultrasound devices, where a technician

does not need to worry about having one hand free of gel for interacting with

the device or a keyboard, or surgical environments where a dedicated operator

(in addition to surgeons) is not needed for visualizing surgery related images.

5.2 Comparisons to Related Work

In 2003, the VisionWand [16] was proposed as a simple, low-cost tool for

interacting with displays. The wand itself was simply a colored plastic rod

that contained no electronics and was tracked in 3D by a pair of calibrated

color cameras as the user performed 3D mid-air gestures. In 2007, Guo et

al. [38] proposed a wand with similar features but with more degrees of free-

dom. However, in both of these approaches, only pre-calibrated marked tools

were considered for interaction, and the tool gestures were considered in a

completely separate context from hand gestures.

In 2005, Vogel et al. [91] investigated unimanual hand gestures for highly

precise manipulations on a large high-resolution display. Their work identi-

fied that small quick finger gestures, such as tapping in mid-air (called an “air

tap”), were highly intuitive for users and could be used for efficient and precise

context switching. Similar findings were also confirmed by Fikkert el al. in

2010 [30] in their interactive map display. These small, precise finger gestures
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provide a good solution to the common issue of determining when to begin and

end tracking of a user’s hand for manipulation tasks, which is known as “ges-

ture spotting” [94]. However, Vogel’s system requires a costly, pre-calibrated

motion capture rig and needs infrared reflectors placed on users’ hands in order

to achieve its precise tracking. Therefore, the system is designed to track only

one hand at a time and does not consider the presence of unmarked hand-held

tools. Techniques using data gloves or other sensors placed on the hand are

similarly limited [32].

To overcome the limitations of markers, several recent approaches have

made use of low-cost commercial depth sensors, such as the Microsoft Kinect,

to interact with displays via hand gestures. Gallo et al. [33] proposed a Kinect-

based interface in 2011 for visualizing medical images in a sterile surgery room

requiring the user to be standing, and using both hands for interaction. Song

et al. [84] proposed a novel 2-handed 3D gesture interface in 2012 for making

precise manipulations using a handle-bar metaphor, and similarly, Schwaller

et al. [81] used a 2-handed approach for panning and zooming displays. These

techniques achieve their goals by using different, asymmetrical static hand

poses on each hand for gesture spotting and context switching. This overcomes

the inability of modern commercial depth sensors to precisely track dynamic

finger gestures in 3D, because of noise and low resolution depth images. This

approach also takes advantage of the fact that 2-handed gestures are often

preferred by users for interacting with displays, and can allow for tasks to

be completed quicker, as was demonstrated by Nancel et al. [63]. Users may

not always have both hands free for interaction depending on the application

domain, but it is ideal for the option to be available if possible. The weakness of

this class of methods is the low accuracy which makes dynamic finger tracking

impossible.

In contrast to the above approaches, our method: (i) is completely marker-
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less while accommodating the use of tools, (ii) can track dynamic fingers and

tools, thereby gestures like tapping, by exploiting the higher sensor precision

and novel filtering rules.

5.3 Proposed Approach and Implementation

To test the efficacy of our design, we chose to apply it to the challenge of

controlling an ultrasound machine’s display parameters during procedures. A

design was made in collaboration with our industrial partner who manufac-

tured and provided the test machine. The parameters chosen were the ones

identified as most frequently adjusted during procedures: Gain, Zoom, and

Contrast. The gesture interpretation system was implemented on a dedicated

low cost commodity laptop for mobility purposes (Intel x86 dual core pro-

cessor at 2.2 GHz, 2 GB RAM), while display parameter adjustments were

computed asynchronously and then sent to the display of an Sonix RP ul-

trasound machine. The sensor used was a low cost commercial Leap Motion

controller which uses small IR (Infrared Red) LEDs and a pair of IR cameras

to track unmarked objects with millimeter level precision at over 120 frames

per second in an interaction volume of about 1 cubic meter. The Leap Motion

v1 commercial API was used to track the the positions of finger tips, hands,

and tool tips.

The API restricts the tools that can be tracked to have dimensions similar

to that of a pen with a thickness between approximately 30mm and 3mm,

which still covers a large range of hand-held tools (pens, markers, styluses,

needles, probes, laser pointers, etc.) without any pre-calibration required. For

larger tools, our interface allows users to still hold it in their palm and use

free fingers to gesture, as the hand tracking is usually robust enough to remain

stable in this state. Visual feedback lets users know what is being tracked as

shown in Figure 5.2.
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Figure 5.2: We use green indicators to identify tracked fingertips. Blue is used
to indicate the palm position and magenta for tool tips, when recognized. Note
that the coloured boxes on the left image correspond to the coloured circles
on the right image, which is what is actually displayed to the user.

5.3.1 Gesture Interaction Design

To minimize cognitive load, our system uses a vocabulary of 3 communicative

gestures for finger tips or tool tips, and 1 manipulative gesture for hands. A

state transition diagram outlining the operation of the system is shown in

Figure 5.3.

Tracking
Started

Parameters
Selection

Cycle
Selected

Cycle GestureHand(s) in Range
Started,

Overlay Ready
Selection
Interface Display

Parameter
Selection
G tHand(s) visible

<START>
Overlay
Hidd

Manipulate
Current
Display

Update
Display

(Async)
Gesture

Tracking Lost

( )

Hidden Display
Parameter

Display

Figure 5.3: State transition diagram. Note that the Cycle Selected, and Up-
date Display states loop back automatically, whereas the Selection Gesture is
needed to toggle between the Parameters Selection and Manipulation states.

In its initial state, the interface overlay is hidden, and only the display is

shown. As users bring their hands closer to the interaction volume, the system

begins to track their hands, fingers and tools, and a partial overlay is shown
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as well as tracking indicators (represented as small colored circles) to provide

visual feedback. When at least one hand is fully in the interaction volume, the

parameter selection interface is shown and the currently highlighted display

parameter is indicated. Drawing a small clockwise or counter-clockwise circle

in the air (with a radius as small as 10 mm in size) will either cycle the

currently highlighted parameter forward or backward through the list. To

actually manipulate the currently highlighted parameter, the user performs

a mid-air tap as if they were clicking a mouse. In parameter manipulation

mode, the system uses the Y position (height) of the hand closest to the

monitor to raise or lower the selected display value, which is updated on the

display asynchronously in a separate thread to preserve system responsiveness.

A tap performed by any finger tip or tool tip exits the adjustment mode and

returns the user to the parameter selection state. Figure 5.4 shows gesturing

possibilities in several hand configurations.

Figure 5.4: Left: Any finger may be used to perform mid-air tap gestures or
circle gestures (shown in red). Middle: Only the index finger movements will
be tracked for circle and tap gestures, the tool is hidden. Right: The tip of
the felt pen is tracked for gestures while the remaining fingers are not, being
closed. In all cases, the hand palm position (blue) is tracked independently,
and may be moved for manipulative gestures.

Because the system does not restrict the tooltip or fingertip gestures to

the hand being used for parameter manipulation (i.e., the hand closest to the

display) highly precise adjustments can be made by using tapping gestures
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on one hand (with a tool or finger) while using the closer hand for parame-

ter adjustment. For one-handed gesturing, the largely independent tracking

of the palm and fingertips or tooltip tracking still allows for highly precise

manipulations.

5.3.2 Rule Based Filtering of Gestures

A drawback of our approach described thus far is that unintentional fingertip

or tooltip movements on one or both hands may be tracked and interpreted

as input. Therefore, a set of custom rule-based filtering techniques were im-

plemented to reduce unintentional gestures. For circle gestures, as soon as a

successful circle is recognized (within radius requirements of about 10mm -

80mm and time < 1.0s), the time window of the gesture is established. Any

other gestures with a time windows that overlaps a successful gesture are sup-

pressed. This avoids the common issue of users accidentally moving multiple

fingers in a similar manner while performing gestures. Quick gestures with a

small time window, such as tapping, require a secondary time window of fixed

size to be imposed to artificially suppress multiple fingers or tools unintention-

ally being involved in a tap.

A unique drawback of the chosen Leap sensor is that it occasionally causes

partially occluded fingertips or tool-tips to have highly inaccurate pose es-

timations when partially occluded. These erroneously tracked 3D positions

can sometimes be interpreted as a gesture, and thus must be recognized and

suppressed.

5.4 Evaluation

To evaluate our interface, a user study was conducted in which users were

required to perform a list of 6 arbitrarily chosen parameter adjustments (i.e.

Gain, Zoom, and Contrast) on our ultrasound machine’s display interface using
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only mid-air hand gestures. Participants were first instructed on how the

interface worked, and were made to practice 10 successfully tracked circle

gestures and 10 tapping gestures with their fingers before beginning. The

participants repeated the exact same task list using their dominant hand in 3

different configurations:

Open Hand The hand is empty and completely open in a relaxed state. All

fingers are tracked in this configuration and users are allowed to use any

finger to perform the gestures.

Pointing Finger The empty hand is closed except for the index finger which

is pointing forwards. This pose mimics holding a tool in the hand but

not gesturing with it.

Tool in Hand For the experiment, a pencil was chosen as the tool to gesture

with rather than a piece of medical equipment. Users were instructed to

hold it as naturally as possible while leaving at least 30mm protruding

at the tip.

The list of arbitrary parameter adjustment tasks was designed to take

about 1 minute to complete. Upon completing the task in all 3 modes (Trial

1), the users were required to repeat the entire round of tasks two more times

(Trials 2 and 3). The experiment was conducted with 12 participants (4 female,

8 male) between the ages of 20 and 55. After completing the experiment, users

completed a 5-point Likert scale questionnaire.

5.4.1 Results and Discussion

The task completion times for all 3 trials were recorded and are shown in Fig-

ure 5.5. The results of the Questionnaire are summarized in Figure 5.6. The

error bars in both graphs indicate the standard error. A two-way repeated
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measures ANOVA test examining the effect of trial round on completion time

rejects the null hypothesis at the 5% significant level (p-value: 0.00004 < 0.05)

which indicates that the user completion time varies from one trial round to an-

other. A two-way repeated ANOVA examining the effect of hand configuration

on completion time does not reject the null hypothesis that the three interac-

tion modes do not significantly differ from each other in this experiment with

respect to user completion time at the 5% significance level (p-value: 0.85158

> 0.05).

These results demonstrate that users can significantly improve their per-

formance with practice over a small number repeated uses. The results also

seem to suggest that there is no major difference in observed user performance

with respect to the 3 different hand configuration modes. This is encourag-

ing because it suggests that there is no exceptional loss in performance when

gesturing with a tool instead of putting it down. However, due to the high
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variance measured, more user studies need to be conducted in the future to

test for more subtle differences.
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Figure 5.6: Results of Questionnaire.

The questionnaire revealed that most users generally found the gesture

interface design to be intuitive and easy to remember, although they expressed

a preference for interacting with an empty hand rather than a tool, though

their performance between the two were similar. However, this peculiar result

is consistent with results from [63] who found a similar pattern, and suggests

that user opinion may change over time as they become more familiar with

using tools for gesturing.

5.5 Summary

In this work we presented a novel, markerless gesture interface using a leap

motion sensor and robust filtering rules. Our approach seamlessly integrates

gesturing with hands and unmarked tools in a single interface for precise con-

trol of display parameters via mid-air gestures. Application areas include con-

trolling medical displays, or more streamlined interaction when using devices

like computer styluses and tablets. The results of our user study suggested
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that users can quickly make a significant improvement on their performance

with practice, and no exceptional loss in performance between different hand

configurations was observed.
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Chapter 6

Framework for Adaptive
Training in Complex Interfaces

6.1 Introduction

In this work we explore a technique to adaptively train users on the use of a

challenging interface. As users begin to use a difficult interface (such a gesture-

controlled display interface or a medical device such as a joystick-controlled

electric wheelchair) their skill and proficiency can be expected to change over

time. A key challenge during the training steps is ensuring that the difficultly

of the training tasks is close to the user’s proficiency level. If the task is too

easy, then users are learning at a sub-optimal rate. If the task is too difficult,

users may become frustrated and quit. To address this, we propose a novel,

flexible, adaptive framework based on Bayesian networks to allow a system

to probabilistically measure a user’s performance level in several skill areas at

once and intelligently adapt the interface training tasks appropriately.

In order to demonstrate our model in a useful real-world environment, we

applied it to the task of helping rehabilitation patients learn to use an electric

power wheelchair, where the device is controlled through careful hand move-

ments on a sensitive joystick. To enhance the immersion of our approach,

the hand movements control an engaging virtual reality power wheelchair sim-

ulation. The effectiveness of our approach was supported by the results of
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a real-world user evaluation and feedback from our rehabilitation specialist

collaborators.

Motivation for Virtual Rehabilitation Interfaces

Typically, patients being trained on the use of the electric power wheelchairs

must have their wheelchairs and training regimes highly customized to their

specific needs and capabilities. This presents a problem because the number

of rehabilitation specialists and power wheelchairs available on hand at any

time is limited. As a result, patients are quite limited in terms of the amount

of time they may receive training from a specialist.

However, virtual reality training offers potential solutions to many chal-

lenges associated with rehabilitation medicine and power wheelchair train-

ing. For example, previous research has shown that skills acquired in virtual

reality wheelchair training can transfer effectively to real-world wheelchair

use [29] [20] [60] and virtual reality has also been shown to improve training

results through the use of virtual reality rehabilitation games [46] [50] [101] [15]

that engage and motivate patients to complete longer, more effective training

sessions [42].

Given these benefits, a virtual reality power wheelchair training system

was designed and implemented with collaboration and feedback from a group

of rehabilitation specialists and clinicians with expertise in a wide range of re-

habilitation medicine including power wheelchair training. Our virtual reality

training system is unique in that it was designed to be low-overhead, portable,

and focused on indoor training environments that are interactive in a reason-

ably realistic way. The system offers standard training modes and interactive

virtual reality games for increased patient engagement. A particularly unique

feature in comparison to similar approaches is that the system provides a

framework to allow clinicians to design, build, and customize interactive in-
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door rehabilitation training environments that can dynamically respond to

user actions in a meaningful way.

6.2 Related Work

Several approaches to virtual wheelchair training have been made in recent

years using a variety of proposed techniques. At one end of the scale, Niniss et

al. [65] proposed an immersive virtual wheelchair training system whereby an

actual power wheelchair rests on a raised hydraulic platform that can tilt in

response to the user’s movements in the virtual environment which is displayed

on a 110 degree panoramic screen. Despite its highly immersive features, one

of the goals of virtual reality rehabilitation is to increase the amount of training

time per patient in a realistic rehabilitation setting where resources are not

unlimited. A system such as the one implemented by Niniss et al. [65] is

not ideal given that its apparatus cost is higher than that of an actual power

wheelchair and availability will still be limited to one patient at a time. Also,

customizing such a system on a per-patient basis still remains time consuming.

At the other end of the scale, there are systems such as the one developed

by Spaeth et al. [85] which simply uses an ordinary projector and a power

wheelchair fitted with a special head-brace to track the head position. The

patient controls virtual racing cars which are shown on the projector as a 2D

top-down visualization of a race track. Although systems such as these satisfy

the goal of creating a low-cost automated supplement to real-world power

wheelchair training, as the authors point out, the simplistic non-immersive

game-like interaction is more focused on measurement of patient responses

over time, and the skills learned are not readily applicable to use of powered

wheelchairs in the real world [85].

Commercial desktop training simulators such as Wheelsim1 offer reason-

1http://www.ottobock.com/
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able immersion and are low-cost, but typically lack the possibility for spe-

cialists to adjust environments to patients’ needs. They also do not provide

realistic interactions between objects in the simulation (for example, in Wheel-

sim, collisions simply result the virtual wheelchair stopping instantaneously).

This is an issue given that previous research has shown that realistic physical

interactions between objects in virtual reality rehabilitation simulations are

important for ensuring that skills learned are more effectively transferred to

the real world [60].

Adaptive Training Interfaces

By automating the task of constantly adjusting patient exercies to provide

the optimal challenge level, specialists can have additional time to work with

more patients. Several previously implemented virtual reality rehabilitation

systems use a single metric, for example, how long it took to complete a task or

what the range of motion was, and then slightly increment the difficulty level

accordingly [42]. Other systems make use of a game-based levelling system in

their virtual rehabilitation training. As patients successfully complete levels,

they automatically move on to more challenging levels [50]. While such systems

are simple to implement and successfully provide some degree of automatic

adaption, they are not able to measure nor address the enormous range of

disabilities and residual capabilities that patients may have, and they do not

make full use of the background knowledge and skills of the rehabilitation

specialists. While previous work by Ma et. al. [60] has proposed adaptive

virtual reality games for rehabilitation that attempt to measure a much wider

range of patient skills and adapt according to each patient’s unique skill set,

the skill estimation and adaption rules are hard-coded into the games, thereby

not enabling rehabilitation specialists to apply their expertise and specialized

domain knowledge to modify them as needed.
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To address this challenge, we propose a novel, flexible framework based

on Bayesian networks. Although previous research has proposed Bayesian

networks as a way to measure student performance in online web-based mul-

timedia educational games [19], to the best of our knowledge, this is the first

attempt to adapt this concept to the continuous input of hand movements to

train users to control an interface.

6.3 System Design

6.3.1 Customizable Virtual Reality Environment

To handle different computer hardware configurations, the proposed virtual

reality system was designed as a stand-alone open-source 3D application capa-

ble of running on any modern desktop or laptop using any standard operating

system (Mac, Linux, or Windows). The system requires no specialized input

hardware, though the main mode of input is an analog joystick. The Open-

Source Graphics Rendering Engine (OGRE2) was selected as the 3D graphics

engine due to its substantial feature set, open-source nature, and the successful

use in previous rehabilitation systems [60].

To encourage the transfer of skills learned in the virtual reality environ-

ment to the real world, interactions between the virtual wheelchair and other

objects in the simulation were realistically modelled using the Newton Game

Dynamics3 physics engine. Newton was chosen due to being open source and

its integration with OGRE through the OGRENewt4 API. Furthermore, pre-

vious research has concluded that game engines could play an important role

in developing realistic, effective rehabilitation systems [36].

A key challenge posed by the rehabilitation collaborators involved in the

2http://www.ogre3d.org/
3http://newtondynamics.com/
4http://www.ogre3d.org/tikiwiki/OgreNewt
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project was the desire to allow clinicians to easily design and modify virtual

environments for their patients so that they could practice manoeuvres such

as navigating around the patient’s house. In order to achieve this, an XML

scene node based framework was designed and implemented as a 3D-modelling

plug-in tool (see Figure 6.1). Using this tool, clinicians can change the layout

of training rooms, adjust the position, scale, and rotation of objects, and

even assign physical properties such as object mass. The resulting customized

environments are stored in XML format which can also be modified directly

as shown in Figure 6.1. To the best of our knowledge, this ability to provide

clinicians with a flexible, extensible means by which to customize their virtual

reality training environments is a feature not provided by any other virtual

reality power wheelchair training environment.

Figure 6.1: Interface for customization of the virtual environment.

The primary advantages of the design chosen are that the issues of cost and

power wheelchair availability are both addressed. The computer hardware

and software needed to run the system are low-cost and readily available,

and can even be used for other purposes when not used for virtual reality

training. In light of research demonstrating the ability of interactive games

to encourage patient engagement and increase the length and effectiveness of
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rehabilitation sessions [46] [50] [101] [15], the system is also capable of training

through interactive games which are implemented in the same way as standard

training environments, but with the addition of special goals. An example of

one such simple rehabilitation game called Virtual Reality Wheelchair Soccer

was implemented (see Figure 6.2) where the goal is to carefully navigate the

wheelchair so as to push the ball past two goal posts in a certain amount of

time.

Figure 6.2: A simple game of virtual reality soccer where the objective is to
carefully maneuver the virtual wheelchair and use it to push the ball past the
two goalposts.

6.3.2 Interface Adaption

The second challenge of the implemented framework was to have the system

automatically assess a complex range of patient skills, many of which are

not independent of each other, and then have the virtual rehabilitation system

automatically and intelligently adapt the training simulation accordingly. The

designed approach uses Bayesian networks to attempt to determine patient

skill levels in a variety of skill areas based on measurable results collected by

completing rehabilitation tasks.

Consider the simple Bayesian network shown in Figure 6.3. In this example,

the rehabilitation specialist is interested in determining the patient’s dexterity

level based on how long a patient takes to drive through a virtual reality
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obstacle course, and the number of collisions that occur along the way.

Confidence (C)

Dexterity Average+ Low

Dexterity (D)

High Medium Low

0 1 0 5 0 4

High 0.8 0.2

Medium 0.5 0.5

Low 0 3 0 7

Dexterity
Skill Level

Patient
Confidence

0.1 0.5 0.4Low 0.3 0.7

Number ofTasks Completed

Number of Collisions (X)

Confidence Dexterity High Low
Number of
Collisions

Tasks Completed
in Time?

Done in Time? (T)

Average+ High 0.1 0.9

Average+ Medium 0.3 0.7

Average+ Low 0 7 0 3
Confidence Yes No

Average+ 0.7 0.3

Low 0.4 0.6

Average+ Low 0.7 0.3

Low High 0.5 0.5

Low Medium 0.8 0.2

Low Low 0.9 0.1

Figure 6.3: A sample Bayesian network topology.

Suppose that a patient’s confidence level is also known to impact perfor-

mance and that confidence is affected by the patient’s dexterity level as well.

The network layout in Figure 6.3 shows how a rehabilitation specialist might

model this. As shown in the figure, the latent variable “Dexterity” increases

the measured number of collisions when it is low, but low values for dexterity

also increase the probability of a patient having low confidence. Although

confidence is another latent variable that cannot be directly measured, we can

see that it has an effect on both the length of time it takes for a patient to

complete the exercise, and also the number of collisions that will occur along

the way.

Once the network topology is defined, specialists can infer the value of

the hidden latent variables such as “Dexterity” and “Confidence” based on

the values of the measured variables. For example, in order to determine the

probability that the patient has low dexterity given that they did not finish
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the exercise on time, and that the number of collisions was high, we could

compute this as shown below.

𝑷(𝑫 = 𝑳𝒐𝒘|𝑻 = 𝑵𝒐,𝑿 = 𝑯𝒊𝒈𝒉) = 𝑷(𝑫 = 𝑳𝒐𝒘, 𝑻 = 𝑵𝒐,𝑿 = 𝑯𝒊𝒈𝒉)𝑷(𝑻 = 𝑵𝒐,𝑿 = 𝑯𝒊𝒈𝒉)
= ∑ 𝑷(𝑪,𝑫 = 𝑳𝒐𝒘, 𝑻 = 𝑵𝒐,𝑿 = 𝑯𝒊𝒈𝒉)𝑪∈{𝑨𝒗𝒆𝒓𝒂𝒈𝒆ା,𝑳𝒐𝒘}∑ 𝑷(𝑪,𝑫, 𝑻 = 𝑵𝒐,𝑿 = 𝑯𝒊𝒈𝒉)𝑪,𝑫∈{𝑯𝒊𝒈𝒉,𝑴𝒆𝒅𝒊𝒖𝒎,𝑳𝒐𝒘} ≈ 𝟎. 𝟓𝟑𝟗
Although the example shown uses a simple network with only two mea-

sured variables and two latent variables, this framework can be easily scaled

to include a large number of latent and measured variables with complex in-

teractions between them. Additional measured variables might include the

optimality of the path a patient took through an environment, the ratio of

collisions that occurred with objects out-of-sight compared to objects that

were in plain view, or the number of collisions that occur while turning rather

than simply driving straight, etc. Additional latent variables could include the

ability of patients to judge distances, the patient’s spatial awareness in regards

to objects that are behind them, or the patient’s spatial awareness on one side

of their field of view compared to another in the case of brain injury, etc.

Likewise, the values of the variables in the network need not have only two

or three possible values. Clinicians can define as many values as necessary for

nodes in the Bayesian network, and express continuous variables as meaningful

discrete ranges with as much granularity as necessary. Based on the inferred

values of the latent variables, clinicians define which virtual game or training

environment should automatically be loaded next to offer the appropriate dif-

ficultly level and type of training needed to continue to improve the patient’s

skills.
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6.4 System Evaluation

6.4.1 Method

In order to help determine the effectiveness of the implemented system, a

small-scale user evaluation was performed. The objective of the experiment

was to determine if the virtual reality training system implemented was ef-

fective in teaching test participants to navigate around obstacles in an indoor

environment any faster than those that did not receive the virtual training. A

group of 8 graduate students between the ages of 22 and 28, both male and

female, who had never used a power wheelchair before were randomly split into

two evenly-sized test groups: the control group and the experimental group.

A simple indoor power wheelchair obstacle course was then set up using office

chairs and tables that was designed to require approximately 90 seconds to

complete without collisions.

Figure 6.4: Real-world power wheelchair used in experimental setup.

Participants in both the control and experimental groups were tasked with

completing the course as fast as possible using a “Jazzy 1122” mid-wheel drive

type electric power wheelchair with a standard joystick as its control device as
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shown in Figure 6.4. Participants in the experimental group first completed

a virtual obstacle course in the proposed virtual reality training environment

prior to their real-world run, whereas individuals in the control group received

no virtual training beforehand. The time taken by each test participant to

complete the real-world obstacle course was then recorded.

6.4.2 Results

Participants who used the proposed virtual reality wheelchair training system

completed the real world obstacle course on average faster, with a mean time

of 81.5 seconds for the experimental group compared to 104.5 seconds for the

control group. While the results seem to suggest that the proposed system is

effective in training individuals on the use of power wheelchairs, due to the

high level of variance between individual completion times (i.e. a standard

deviation of 26.51 for the response group, and 43.16 for the control) and the

fact that the system was tested on non-disabled individuals, more research is

needed before more conclusive results can be drawn.

The completed prototype system was also demonstrated to a group of reha-

bilitation specialists and clinicians present at the collaborating rehabilitation

hospital. Feedback was positive to the point that plans are now currently in

motion to begin integration of the proposed system into a part of the rehabil-

itation training practices used at the hospital.

6.4.3 Discussion

Although our specific experiment was focused on controlling powered electric

wheelchairs, our framework is applicable to a much wider range of applications.

As an example, a common rehabilitation task in the case of stroke patients is

to perform hand and arm exercises to restore the full range of hand motion

and dexterity that may have been partially lost. By using our hand-tracking
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frame-work described in Chapters 3 and 4 clinicians can quantitatively measure

several different characteristics of the user’s hand motions. Characteristics

that could be measured include variability in hand motions, movement speed,

or accuracy in performing specific motions. These measured characteristics

can subsequently be used as observed variables in the framework proposed in

this chapter. One can then use these observations to attempt to determine

hidden characteristics of a user’s performance such as dexterity, confidence,

and level of control. Clincians can then use the predicted values of these

hidden variables to dynamically adjust the rehabilitation training exercises

appropriately.

For increased hand pose estimation accuracy, clinicians can apply the tech-

niques from Chapter 4 (in the case of a single sensor setup) or alternatively, use

the techniques from Chapter 3 (for systems with multiple sensors). In cases

where the rehabilitation tasks require the manipulation of tools, the techniques

outlined in Chapter 5 are directly applicable.

6.5 Summary

In this work, we demonstrated a means by which to adaptively train users

on the control of a challenging user interface. This is accomplished by a pro-

posed novel Bayesian network-based adaptive training framework that uses

measured variables from a completed training simulation in order to proba-

bilistically determine unknown user skill levels in a variety of key areas. We

then demonstrated how our model could be applied to the analog hand-joystick

interface of a novel virtual reality rehabilitation training system. The same

model is also completely applicable to other interfaces that use continuous

motions such as hand or full body gesture interfaces.
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Chapter 7

Conclusion and Future
Directions

In this work, we explored several techniques for improving the efficiency and

robustness of interaction with hand gesture interfaces. The techniques in-

volved not only improving the underlying hand pose estimation and gesture

recognition, but also techniques for making the interfaces more adaptive to

user interactions.

We first explored a novel real-time approach to increase hand pose esti-

mation accuracy through an intelligent analysis of estimations from multiple

state-of-the-art sensors at extremely high sampling rates. Experimental re-

sults demonstrate that our approach can reduce the pose estimation error by

over 31% (in comparison to using a single sensor) when applied to gestures

commonly used in display interfaces (tap, pinch gestures, etc.). The key con-

tribution of our work is that it is the first to demonstrate the viability of

integrating different pose estimations in this manner while in the absence of

any depth or color image data. Our technique can also be expected to scale

better than techniques that use image/depth data because of reduced compu-

tational complexity and data bandwidth requirements.

Next we demonstrated an approach that uses kinematic constraints to re-

construct a partial pose estimation and improve real-time gesture recognition
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from a single sensor system without image data. A user study was conducted

which showed that our approach significantly improved the gesture recognition

rate while still producing pose estimations at over 120 times per second. The

key contribution of this work is that our approach can be applied as a pre-

processing step to improve the gesture recognition rate in any sensor systems

that produce partial pose estimations in a similar manner.

We then proposed a novel gesture interface for controlling medical displays

that was specifically designed to adapt appropriately to whether or not the user

was holding a small handheld instrument. Our experimental results showed

that there was no observable loss in user performance when users transitioned

between different hand configurations, including configurations where the users

were holding a small instrument. This framework allows for more streamlined

interface interactions because it does not require users to remove tools from

their hands when switching tasks.

Finally, we examine techniques to make the training of challenging inter-

faces more efficient. This is accomplished through a Bayesian network model

that measures various hidden parameters of a user’s skill set based on measur-

able properties of their hand movements. We show how our model is suitable

to the training of an electric wheelchair interface in a virtual reality rehabili-

tation environment.

7.1 Future Directions

The techniques presented in this document have thus far primarily focused on

building models for hand motions, however, with some modifications most of

the techniques explored should also be effective when applied to full body hu-

man pose tracking and gesture recognition. For example, it should be possible

to use a multi-sensor set-up for full human skeletal pose recognition that makes

use of the same general approach from Chapter 3 but with a modified feature

99



vector that uses the orientation of the human body to determine which sensor

is most likely to give the best data on limb poses. Additional future directions

for work our include investigating the effectiveness of our approaches when

used with larger arrays of sensors to help increase the size of the interaction

space.

More generally, there are several interesting directions for the field of hu-

man pose recognition in the future. With new types of low-cost, highly accu-

rate depth sensors now appearing commercial markets, there is a great deal

of potential work to be done. One can likely expect a continuation of the

current trend whereby different sensors are likely to be more or less optimized

for specific applications. Future research challenges will likely involve combing

data streams from multiple sensors each with different resolutions, noise char-

acteristics, sampling rates, and likely even data content (e.g. colour images

vs. depth images).

An additional trend to consider is the steady shift of low-cost hardware

sensors to mobile devices. One can expect that within the next few years, many

mobile devices may carry depth/image sensors which may be used for human

hand gesture recognition in order to expand the interaction space beyond the

confines of a small touch-screen. This is likely to introduce a new suite of

research challenges due to the tight processing power constraints imposed by

mobile hardware. Furthermore, additional challenges will likely stem from

a wider range of uncontrolled illumination and backgrounds, and additional

motion caused by unstable movement of the mobile device which may make it

difficult to isolate hand motions. Further work could focus on integrating data

from multiple mobile devices arranged in an ad-hoc configuration. Besides

the challenges involved in recognizing human hand poses for mobile devices,

more investigation will likely be necessary to determine which gestures are

best-suited for interacting with a small, hand-held mobile device.
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Finally, as hardware and software for recognizing gestures in new appli-

cation domains evolves, it will become increasingly important to the research

field to provide open datasets to allow for more direct comparisons between

approaches that address similar challenges.
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