
 

 

 

 

 

 

Predicting Breeding Status of a Forest Songbird from Singing Rate 

by 

Emily Upham-Mills 

 

 

 

A thesis submitted in partial fulfillment of the requirements for the degree of 

Master of Science 

in 

Ecology 

 

 

 

Department of Biological Sciences 

University of Alberta 

 

 

© Emily Upham-Mills, 2018 

  



 

ii 
 

Abstract 

For male breeding songbirds, song rate varies throughout the breeding season and tends to be 

correlated with breeding-cycle stages. Although these patterns have been well documented, to 

our knowledge, this relationship has not been used to predict a bird’s breeding status through 

acoustic monitoring. The first objective of this study was to determine if variation in song rate 

can be used to predict the breeding status of the Olive-sided Flycatcher (Contopus cooperi; 

OSFL), a Species at Risk in Canada. In 2016, song rates from 27 male OSFLs in Alberta and the 

Northwest Territories were collected from human observers (n = 454 5-min counts), and 

breeding status (i.e. single, paired, and feeding young) was monitored throughout the breeding 

season. I evaluated the predictive ability of three modeling approaches (i.e. regression, 

hierarchical, and machine learning) using model sensitivity and specificity. The hierarchical 

model was the best at predicting all three breeding statuses, with 69%, 50% and 87% sensitivities 

and 80%, 82% and 78% specificities for predicting single, paired, and feeding young, 

respectively. This resulted in a mean sensitivity of 69%, compared with 54% and 50% from the 

regression and machine learning models, respectively. A second objective was to use the 

hierarchical modelling framework to predict breeding status from song rates collected by 

Autonomous Recording Units (ARUs) processed using automatic recognition software. For 24 of 

these OSFLs, I collected 4,302 5-min song counts and used daily song rate to compare the 

relationship of rates and breeding status as determined by ARUs versus human-observers. We 

then tested four hierarchical models accounting for imperfect detection. Song rates derived from 

ARU data followed a similar pattern to that of human-observer song rates, where single males 

had the higher rates, paired males had lower rates, and those feeding young had lowest rates, but 

the absolute values for rates were much lower with ARUs. All ARU data predictive models 
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performed poorly at predicting single (sensitivity range 0 – 7%) and well at predicting paired 

(sensitivity range 77 – 84%). The ARU models had mixed success at predicting feeding young 

(sensitivity range of 25 – 68%) but adjusting for imperfect detection did not improve model 

sensitivity to predict any breeding statuses. Low predictive ability was likely due to the low 

detectability of ARUs (e.g. bird movement out of detection range of ARU) and the automatic 

recognition software we used. Considering the high predictive ability of models using human-

observer data and that the challenges currently associated with our acoustic processing methods 

can be addressed, I recommend that the breeding status of forest birds should be monitored using 

acoustic data. I provided a hierarchical modelling framework than can be applied to other species 

and improved to account for bird movement or number of conspecifics. This novel approach 

could provide a cost-effective tool to infer much needed demographic information over large 

spatial extents, and inform species status assessments, recovery strategies, and management 

plans for many species of conservation interest. 
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Chapter 1: General introduction 

Migratory songbird monitoring for status assessment and focal species 

 Large-scale declines in North American migratory songbird populations (Bohning-Gaese 

et al., 1993; Michel et al., 2016) have highlighted the importance of understanding the ecological 

processes driving population change throughout a species full life annual cycle (Donovan & 

Flather, 2002). Millions of these migratory songbirds are breeding each year in the boreal forest 

of North America (Wells et al., 2014), but very little is known on their population dynamics in 

this region which makes it difficult to determine the status of theses species (Machtans et al., 

2014). Forest songbird monitoring programs are typically limited to standardized species counts 

(i.e. North American Breeding Bird Survey; Sauer et al., 2017), with inference on habitat quality 

limited to population density estimates (Haché et al., 2014). Density may be an indicator of 

habitat quality, as long as individuals select habitat according to an ideal free distribution 

(Fretwell & Lucas Jr, 1970). However density often does not always indicate habitat quality 

(Van Horne, 1983).  

An example of a boreal breeding songbird experiencing an important decline in 

population size is the Olive-sided Flycatcher (Contopus cooperi; OSFL), which is designated as 

Threatened under Canada’s Species at Risk Act (S.C. 2002, c.29). However, the causes for 

decline in this species are not well-understood. This important knowledge gap has been 

identified in the Schedule of Studies of the Recovery Strategy of this species as one component 

preventing the identification of critical habitat to inform conservation actions to allow the species 

to recover (Environment and Climate Change Canada, 2016a). For example, Robertson & Hutto 

(2007) found that OSFLs breeding in the northern Rocky Mountains of Montana occurred at 

higher densities in selectively harvested forests, but nest success was half that of pairs in burned 
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forests of the same region. Thus, results from density models may not always depict spatial 

variation in habitat quality. Finding a cost-effective way to monitor variation in breeding success 

across a species range is required to understanding population trends and inform conservation 

efforts.  

Demographic studies for forest songbirds 

To quantify population viability throughout a species’ range, researchers need to measure 

demographic processes (Johnson, 2007). This involves estimating reproduction (e.g. breeding 

status and successful fledging) and survival among populations associated with different 

biophysical attributes at different spatial scales (i.e. habitat types) to infer habitat quality 

(Johnson, 2007). However, this information is time-consuming to collect for songbirds (Martin 

& Geupel, 1993). Locating nests and identifying breeding status is especially challenging for 

forest songbirds with large territories and cryptic, hard-to-access nests like the OSFL. A current 

standard method to monitor bird nests is to use the Breeding Biology Research & Monitoring 

Database (BBIRD; Martin et al., 1997), which involves a large time commitment to find nests 

and many repeated visits to monitor nesting status. Another standardized method called MAPS 

(Monitoring Avian Productivity and Survivorship) combines mist-netting, banding and intensive 

point counts to estimate survival and reproductive rates of local breeding birds (DeSante et al., 

1993). This requires standard effort every year, with hundreds of hours required throughout the 

breeding season. Because these traditional demographic monitoring techniques are so time 

consuming, they are rarely used at a larger scale, such as informing conservation of species 

across its entire range.  
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Breeding status and singing behaviour 

Male songbirds sing mainly to attract females and defend their breeding territories 

(Armstrong, 1973; Thorpe, 1961). Researchers commonly use these audible cues to conduct 

surveys (Bibby et al., 2000) to estimate population densities, distributions, and trends (Robbins 

et al., 1989). Many factors affect the accuracy of acoustic songbird surveys, including song rate, 

distance, species and observer (Alldredge et al., 2007; Sólymos et al., 2013). Singing rate from 

an individual varies across the breeding season, which affects the probability of detecting these 

individuals (D. M. Wilson & Bart, 1985; Wright, 1997). This pattern has spurred much research 

into how and why song rate varies throughout the breeding cycle of these species (Slagsvold, 

1977; Wilson & Bart, 1985). 

Variation in song rate throughout the breeding season is strongly linked to breeding status 

(Wilson & Bart, 1985). Upon arrival to the breeding grounds in the springtime, male songbirds 

sing more frequently and consistently with the purpose of attracting females. After pairing, song 

rate tends to decline significantly (Gibbs & Wenny, 1993), with further decreases upon 

incubation (Lampe & Espmark, 1987; Wilson & Bart, 1985; Wright, 1997). Although these 

patterns create challenges for abundance estimates from acoustic surveys (Gibbs & Wenny, 

1993), they also provide opportunities to study breeding behaviour which can be used to provide 

useful demographic information. In this thesis, I explore the potential to predict breeding status 

from song rate using the OSFL as a focal species.  

 

Acoustic technology 

Acoustic data collection by human observers in the field is limited by the time it takes to 

access sites on multiple visits and is negatively impacted by inclement weather. Fortunately, in 
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recent years, technological advances have facilitated higher efficiency and more fine scale detail 

in acoustically monitoring breeding birds. Autonomous Recording Units (ARUs) are audio 

recording devices which can be deployed to a stationary location to collect a large volume of 

acoustic data based on a pre-programmed recording schedule. These units are increasing in 

popularity in the field of avian ecology. Some examples of their use include conducting acoustic 

surveys (Shonfield & Bayne, 2017), monitoring breeding phenology of bird populations (e.g. 

Colbert et al., 2015; Digby et al., 2013; Jahn et al., 2017) and monitoring nest status in owls 

(Kozlowski, 2005). ARUs provide a large detection range and can record over a large time 

period, making them well suited for studying rare and low density species, or species with large 

territories (e.g. Campos-Cerqueira & Aide, 2016). The high volumes of acoustic recording data 

that are collected by ARUs can now be processed using species-specific recognition software, 

which scans audio recordings quickly to detect sounds and identify target species using pattern-

matching algorithms. The advantages of ARUs provide an opportunity to collect detailed 

information on singing behaviour, such as song or call rate (Digby et al., 2013), leading to 

potential use in inferring breeding status. A primary challenge of using ARUs is that of imperfect 

detection, where the probability of detecting a bird decreases with distance from the recording 

unit (Yip et al., 2017). Thus, detectability is an important consideration for acoustic-based 

research, especially using ARUs which are stationary and will not capture all songs produced by 

birds as they move in and out of detection range. 

 

Study species 

 The OSFL is a neotropical migratory songbird that typically breeds in lowland coniferous 

forests of the Canadian boreal and montane coniferous or coastal regions of the Pacific coast of 
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Canada and the United States (Altman & Sallabanks, 2012). OSFLs breed in habitat along forest 

edges and open areas such as wetlands, harvested forests and recent burns, that provide tall trees 

which provide perches for singing and open spaces for feeding on aerial insects (Altman & 

Sallabanks, 2012). In boreal regions, they typically defend territories in conifer stands, recently 

burned forest, and shrubby patches (Haché et al., 2014). OSFLs are monogamous birds that 

defend large territories (up to 40-45 ha) compared to other songbird species (Altman & 

Sallabanks, 2012), with territories from conspecifics being located at least >100 m apart 

(Robertson et al., 2009). They usually build an open cup nest in branches near the top of tall live 

or dead conifer trees, lay 3-4 eggs, and only lay one clutch per year (Altman & Sallabanks, 

2012). OSFLs sing a single song type, described as a loud, clear whistle or the onomatopoeia 

“quick, three-beers!” (Fig. 1.1). 

 

Figure 1. 1. A spectrogram of two consecutive Olive-sided Flycatcher songs recorded from an 

ARU.   

 In 2010, the OSFL was designated as a Threatened species in Schedule 1 of the Species 

at Risk Act (S.C. 2002, c. 29) of Canada. This designation was due to a widespread population 

decline of about 75% since around 1970 (Environment and Climate Change Canada, 2016a). 

Reasons for the decline remains largely unknown, but theories include a decrease in aerial insect 

prey abundance, fire suppression, deforestation and land conversion in the wintering grounds, 

and habitat loss in the breeding grounds due to industry (i.e. forestry and oil and gas sectors) and 
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urban development (Environment and Climate Change Canada, 2016a). More information is 

needed on demographic processes of this species to determine if conditions occurring on the 

breeding grounds could limit population growth (see Schedule of Studies in the Recovery 

Strategy for the Olive-sided Flycatcher [Environment and Climate Change Canada, 2016a]).  

A 2-year study in Alaska indicated significant variation in song rate as a function of 

breeding status in the OSFL (Wright, 1997). As predicted, males sang at high rates before 

pairing, low rates after pairing, moderate rates when incubating, and very low rates when feeding 

young, and males that never paired sang at higher rates throughout the season (Wright, 1997). 

All males also sang at higher rates and most consistently around sunrise (Wright, 1997). Female 

OSFLs can also sing, but infrequently, and their songs are weaker and soft, lazy or slurred 

(Wright, 1997). 

 

Research objectives 

In this thesis, the overall objective was to determine if song rate can be used to predict 

breeding status in the OSFL in its northwestern boreal breeding range. In Chapter 2, I determined 

if song rate quantified by human observers conducting song counts in the field can be used to 

predict three breeding status classes for males: single, paired and feeding young. I evaluated the 

predictive abilities of three statistical methods commonly used for classification: 1) a 

multinomial logistic regression, 2) a hierarchical model, and 3) a classification tree (see Table 

1.1 for glossary of terms used to describe predictive abilities throughout the thesis). In Chapter 3, 

I used the best modelling framework identified from Chapter 2 and applied this analytical 

framework to song rate data collected from ARUs to predict the breeding status of OSFLs. 

Specifically, I compared predictive ability of four models differing in adjustments for imperfect 
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detection. To my knowledge, this is the first study to use song rate to predict breeding status of a 

forest songbird and to highlight the potential of ARU technology to collect broad-scale 

demographic data on a species of conservation interest. In Chapter 4, I summarized the success 

of the hierarchical model using human-observer song counts, recommended an approach for 

applying the model to other species, and described improvements to study design and acoustic 

processing methods to improve model performance using ARUs to predict breeding status. I 

conclude by describing how my findings contribute to conservation management of vocal species 

in expanding the potential for large-scale demographic data collection using bioacoustics.  

Table 1. 1. Glossary of terms used to describe predictive abilities of models. Descriptions are 

based on the R documentation for package ‘caret’, function confusionMatrix (Kuhn et al., 2017).  

  Reference 
Predicted Event No Event 
Event A B 
No Event C D 

 

Term Synonym Formula 

Sensitivity True positive rate; recall A/(A + C) 

Specificity False positive rate D/(B + D) 

Prevalence (Observed) Proportion of observed events (A + C)/(A + B + C + D) 

Prevalence (Predicted) Proportion of predicted events (A + B)/(A + B + C + D) 
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Introduction 

Ecologists often desire information on the state of an organism or environment that can 

be challenging to measure directly. Because of this, many state variables require indirect 

measurements (Stephens et al., 2015). For example, leaf area index, an important metric of forest 

function, is often measured indirectly through recording light absorption patterns because of the 

high cost of directly measuring leaf dimensions (Olivas et al., 2013). Other examples include 

using indicator species to track changes in the state of the environment (Lindenmayer & Likens, 

2011), or satellite tracking data as an indirect measure of wildlife feeding behaviour (Robinson et 

al., 2007). Although use of indirect metrics is common in ecology (Stephens et al., 2015), the 

methods of statistical analysis used to create the relationship between the state variable of 

interest and the indirect proxy are often oversimplified. For simplicity, it may be tempting to 

ignore causal dependencies when analysing these relationships. However, this can result in 

incorrect conclusions or low predictive accuracy due to the error distributions implied by 

standard statistical models (e.g., regression models). Statistical calibration, which can be 

described as the reverse process of regression, aims to estimate an independent variable (the 

cause) from a dependent variable (the effect) (Osborne, 1991). Despite acknowledgements of the 

importance of calibration in some fields (for example, water quality health [Hall & Smol, 1992; 

Ter Braak & Barendregt, 1986] and paleoecology [ter Braak, 1995]), relatively few ecological 

studies have used such approaches for creating effective indirect measurement techniques 

(Biondi & Waikul, 2004). 

In avian ecology, calibration models describing the relationship between a male 

songbird’s breeding status and his behaviour (cause and effect, respectively) may provide a novel 

way to monitor male breeding status indirectly. This information is required to inform sound 
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conservation planning (Anders & Marshall, 2005), but direct measurements of pairing success, 

nest success, and fledging rates for songbirds is expensive and logistically challenging (Martin et 

al., 1997). Thus, empirical data on breeding status is only available for a few species and over 

relatively small spatial extents (e.g. Christoferson & Morrison, 2001; Dussourd & Ritchison, 

2003; Haché, Villard, & Bayne, 2013; Holmes, Sherry, Marra, & Petit, 1992). Indirect measures 

of breeding status, such as observing non-agonistic behaviour towards conspecifics to confirm 

pairing status and observing adult birds carrying food to confirm presence of young, have been 

suggested as an approach to decrease time and effort to estimate metrics such as fledging success 

(Hunt et al., 2017; Vickery et al., 1992).  However, such methods are still time consuming for 

many species occurring at low abundance and with large breeding territories and have not yet 

been rigorously calibrated.   

We propose a simpler indirect measure of a songbird’s breeding status: inferring breeding 

status from singing behaviour. Songs in passerines are primarily used by a male to attract a 

female and to defend a territory against conspecifics (Armstrong, 1973; Thorpe, 1961). For many 

species, males tend to sing at high rates when they are unpaired, with declines in singing rate as 

their breeding status changes (i.e. unpaired to paired, mated to nest building, egg laying to 

incubating, incubating to feeding nestlings, etc.; Dussourd & Ritchison, 2003; Gibbs & Wenny, 

1993; Liu et al., 2007).  We refer to this pattern as the breeding status - song rate relationship, or 

the “BSSR” relationship. While several studies have described the BSSR relationship, to our 

knowledge, none have attempted to use song rate to predict breeding status (although Staicer et 

al. [2006] suggested the possibility). We explore three different calibration models to assess the 

use of song rate to predict breeding status (single, paired, and feeding young) of the Olive-sided 

Flycatcher (Contopus cooperi; OSFL). Specifically, our objective was to test predictive accuracy 



 

11 
 

of these three BSSR calibration models. We used OSFL song rate data from a study conducted in 

the Northwest Territories, Canada. This species is designated as Threatened under the Species at 

Risk Act (SARA; 1994), and has experienced an overall population decline of 70% between 1970 

and 2015 (Environment and Climate Change Canada, 2017). Therefore, finding a cost-effective 

way to monitor breeding success is a priority in recovery planning (Environment and Climate 

Change Canada, 2017).  

Previous work has suggested that song rates and detection probabilities for the OSFL are 

influenced by breeding status, time of day, and day of year (Wright, 1997). Time of day is an 

important predictor for singing activity in songbirds, as most males sing the most around sunrise 

and song production declines throughout the day (Stacier et al., 1996). Date is also an important 

variable for predicting breeding status, because migratory birds will be single upon first arriving 

at the breeding ground, then will be more likely to be paired or have active nests as the days 

advance. Furthermore, latitude may affect breeding timing because more northern breeding sites 

will have later arrival times. We therefore test the importance of each of these predictors in the 

BSSR models. 

First, we perform a multinomial logistic regression of breeding status against song rate 

and temporal covariates. Arguably the simplest model we consider, this model conflates the 

causal relationship assumed between breeding status and song rate, and the causal mechanisms 

behind the temporal predictors. Secondly, we use a hierarchical model, defined as a sequence of 

probability models arranged to describe conditionally dependent random variables (Kéry & 

Royle, 2016a). This modelling approach is useful for complex ecological modelling because of 

its ability to account for multiple sources of uncertainty (Cressie et al., 2009). In the case of 

BSSR calibration, a hierarchical model can be used to deconstruct the cause and effect 
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relationships into one component that accounts for temporal variation in breeding status 

probabilities throughout the breeding season and a second component that models how breeding 

status and time of day affect song rate. Our third approach was to use a classification and 

regression tree (CART) model (Brieman et al., 1984), to predict breeding status from song rate, 

time of day, date and latitude. CART is a machine learning approach which has been 

recommended as a powerful method for modelling complex ecological data because of its ability 

to deal with nonlinear relationships and high order interactions (De’Ath & Fabricius, 2000). 

CART models are comprised of a series of binary splits, based on predictor variable values, to 

partition data into smaller groups and increase the proportion of any one class (i.e. categorical 

value) in each group (Kuhn & Johnson, 2016).  

Our objective was to determine the best modelling framework to predict accurately a 

songbird’s breeding status. We measured relative success of the three models by comparing 

prediction sensitivity and specificity for the three breeding status classes using k-fold cross 

validation. We conclude by discussing the strengths and weaknesses of the top performing model 

and how this model may be further developed for use with autonomously recorded acoustic data.  

 

Methods 

Study area 

The study took place in northern Alberta and the Northwest Territories (Fig. 2.1) between 

May 30 – July 22, 2016. The sampling locations in Alberta were ~80 km north of Fort 

McMurray, in the Mid Boreal Mixedwood Ecoregion (Strong & Leggat, 1992) in stands 

comprised of upland jack pine (Pinus banksiana) forest, bog and fen wetlands (dominated by 

black spruce, Picea mariana and tamarack, Larix laricina). Dominant understory shrubs 
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included rose (Rosa acicularis), alder (Alus spp.) and aspen (Populus tremuloides) in upland 

sites and blueberry (Vaccinium myrtilloides), Labrador tea (Ledum groenlandicum), dwarf/bog 

birch (Betula spp.), and willow (Salix spp.) in lowland sites. The Northwest Territories study 

area ranged from ~ 30 km south of Fort Providence to Behchokǫ̀, with site access off highway 3 

(Fig. 2.1). It was within the Great Slave Lowland Mid-Boreal Ecoregion (Ecosystem 

Classification Group, 2009), which is dominated by wetlands (bogs and fens) and scattered 

patches of upland mixed-wood and jack pine forests. Some sampling locations were in stands 

that had burned in 2014 and 2015. Shrub species composition was similar to Alberta. 
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Figure 2. 1. Locations (red dots) where Olive-sided Flycatcher territories were monitored in 2016 

in the Northwest Territories (n=18) and northern Alberta (n=9), Canada.  

 

Sampling design 

Potential sampling locations were selected based on known locations of territorial male 

Olive-sided Flycatchers (OSFLs) obtained during the previous two breeding seasons (Pankratz et 

al., 2017; Pardieck et al., 2015, E. Bayne unpublished data, Knaggs et al. in prep.). The spatial 

extent of our study area was selected to represent southern (latitude 57°) and northern locations 

(latitude 62°) to account for variation in daily activity levels. Between the last week of May and 

the first week of June 2016, potential sampling locations were monitored using call playback 

surveys to confirm arrival and settlement of OSFLs. Call playback surveys consisted of 5 

minutes of listening, followed by 30 seconds of playback, 2 minutes of listening, 30 seconds of 

playback and a final 5 minutes of listening. If call playback surveys were conducted at a location 

on three separate days before June 8, 2016, and no OSFL was detected, or only once prior to the 

last visit, a location was deemed to not overlap a territory. Alternatively, if an OSFL was 

detected twice or more, the potential territory was considered occupied and included in our 

sampling locations. While monitoring potential territories, we detected additional males in other 

nearby locations (n =5) and these locations were added to the sampling design. This resulted in 

19 sampling locations in the Northwest Territories and 9 in Alberta.  

For each territory, we conducted repeated visits approximately once per week, resulting 

in between 1 to 10 visits per bird (6 ± 2.43; mean ± SD). During each visit, we assessed breeding 

status (i.e. single, paired [including being paired with no known nest, nest building or incubating] 

or feeding young; Table 2.1). When breeding status could not be confirmed in the field, the 
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status was back calculated based on average breeding timing for the species (15 days for 

incubation, 19 days for nestling period; Wright, 1997) using breeding status information from 

previous and subsequent visits. Dates when status could not be back calculated with confidence 

(i.e. there were not enough dates with field-confirmed breeding status) were excluded from the 

analysis. A visit lasted 1 hour and was conducted between sunrise and the first 6 hours after 

sunrise. During each visit, we also measured song rate, i.e. the mean singing rate based off four 

5-minute song counts. At time 0, 15, 30 and 45 minutes from the start of the visit, the number of 

“quick, three beers” songs sung by the male were counted in a 5-minute period. Song counts 

were only conducted when observers were close enough to see the male and were cancelled if he 

flew away during the count period. Song count data were recorded until June 30 and July 8, in 

Alberta and the Northwest Territories, respectively. In both study areas, territories were revisited 

once or twice between July 8 - 22 to confirm nest contents if not yet confirmed. Nests were 

located for 12 of the 28 males monitored in this study. For these males, nest contents were 

confirmed using a telescopic PVC pole (maximum height 17 m) with a video camera, which 

provided a live feed to a handheld monitor on the ground (The Peeper Cam, 

http://www.ibwo.org/camera.php, David Luneau, Arkansas).  

Table 2. 1. Breeding status classification descriptions and observational cues. 

Classification Description Behavioural evidence 
Single Unpaired male defending a 

breeding territory 
No interactions with a female detected 
on that day and during previous visits 

Paired  Immediately after a female settled 
on a male’s territory, no known 
nest 

First observation of a female present on 
a male OSFL’s territory, but nest not 
located 

 Nest building – one or both adults 
seen building a nest  

Either or both adults seen carrying 
nesting material 

 Incubating - 15-day period pre-
hatching when female spends most 
of her time sitting on eggs in the 
nest (Altman & Sallabanks, 2012) 

Female directly observed sitting on 
nest, male observed feeding a female on 
the nest or when nestlings were 

http://www.ibwo.org/camera.php
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observed during a later visit (backdated 
incubation period based on hatch date) 

Feeding 
young 

One or more eggs have hatched, 
and nestlings are present 

A parent observed holding/carrying 
insect and/or feeding an insect to 
nestlings, or direct observations of 
nestlings 

 

Methods of calibration  

For the three model types, i.e. multinomial logistic regression, hierarchical model, and 

classification tree, model selection was conducted on a set of candidate models allowing for 

identification of meaningful predictor variables. Song rate, time, ordinal date, and latitude were 

considered as candidate predictors for each model type. Song rate was the average 5-minute song 

count collected within one sampling-hour (n=4) during a visit. Time was calculated by 

subtracting time of sunrise from the mean time of the song counts. Both date and time were 

mean-centered and scaled by their standard deviation. Latitude was a binary categorical variable, 

representing either the northern (Northwest Territories) or southern sites (Alberta).  

All models were built using the R statistical programming language (R Core Team, 2013, R 

Foundation for Statistical Computing, Vienna, Austria).  

 

Multinomial logistic regression 

Multinomial logistic regression models were built using the multinom function in R package 

‘nnet’ (Ripley & Venables, 2016; Venables & Ripley, 2002). We compared six a priori models 

(Appendix 1, Table 1), ranging from the simplest models with a single predictor, to the full 

model which included song rate, date, time as an interaction with song rate, and latitude as an 

interaction with date, as predictors of breeding status. We used the lowest Akaike’s Information 
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Criterion (AIC) value (with a difference >2) to select the best supported model (Burnham & 

Anderson, 2002). 

 

Hierarchical model 

The hierarchical model structure follows from Bayes’ theorem (Kéry & Royle, 2016b). This 

approach allows relating the probability of an individual having a given breeding status, 

conditional on its song rate, to the probability of that individual having a given song rate, 

conditional on its breeding status (Eq. 1). 

Equation 1. 

P(𝑏𝑏𝑏𝑏|𝑏𝑏𝑠𝑠,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑, 𝑑𝑑𝑙𝑙𝑡𝑡𝑑𝑑) α P(𝑏𝑏𝑏𝑏|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑙𝑙𝑑𝑑𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑑𝑑)���������������
Component A

 P(𝑏𝑏𝑠𝑠|𝑏𝑏𝑏𝑏, 𝑑𝑑𝑙𝑙𝑡𝑡𝑑𝑑)���������
Component B

 

Where bs is breeding status, sr is song rate and α means “proportional to”, with the constraint 

that the sum of the left-hand side probabilities for each breeding status must sum to 1. 

Component A of Eq. 1 is the marginal probability of observing each breeding status on a given 

day at a given latitude, while component B is the conditional probability relating song rate to 

breeding status and time of day. Equation 1 describes all co-variate relationships which we 

considered, but final models did not necessarily include all co-variates. The breeding status 

variable in our model is known and observable, unlike state-space models (Patterson et al., 

2008), hence we were able to conduct model selection on each component separately. This 

avoided the difficulty in model selection for state-space models (i.e. where AIC is not properly 

defined and Deviance Information Criterion [DIC], typically used with Bayesian model 

selection, is problematic; Hooten & Hobbs, 2015).  

We first conducted model selection for component A, using the lowest AIC value within 2 to 

select the top model. For this component, we compared three a priori multinomial logistic 
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regression models (MLR) relating the marginal probability of each breeding status to date and 

latitude (Appendix 1, Table 2).  

For component B, we used a generalized linear model (GLM) for song rate, with time and 

breeding status as predictor variables. We considered 12 a priori models, using either breeding 

status as a single covariate or both breeding status and time. For both options, we tested using a 

Poisson, zero-inflated Poisson, a negative binomial, and a zero-inflated negative binomial song 

rate distribution (Appendix 1, Table 3). For component B, model sensitivity for the three 

predicted classes was used to select the top model, instead of AIC, with the purpose of 

maximizing model ability to predict individual breeding statuses from song rate. 

Normal approximations of the parameter estimates and their standard error values from the 

top-ranked MLR (component A) and GLM (component B) were used as priors for the 

hyperparameters of model components. A common practice is to use so-called non-informative 

priors, but they have issues (Lele, 2014; Northrup & Gerber, 2018). We chose to use informative 

priors as is suggested by Hamilton (1986) and Harris (1989) in the context of prediction. 

Cumulatively, selected models for components A and B comprised the top hierarchical 

model used to predict breeding status class probability densities. These calibration distributions 

(i.e. posterior distributions) were generated using Markov Chain Monte Carlo methods from the 

package ‘rjags’ in R (Plummer, Stukalov, et al., 2016).  We generated 5 Markov chains, 

discarding the first 1,000 values as the burn-in, followed by 10,000 iterations. We used the 

Gelman-Rubin diagnostic to test for convergence of the chains to a posterior distribution (Brooks 

& Gelman, 1998; Spiegelhalter et al., 1995). 
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Classification tree 

The classification tree model (CT; Brieman et al., 1984) was built using R package ‘rpart’ 

(Therneau et al., 2018), using the Gini index as the impurity index (Wu et al., 2008). A set of 

classification trees were built to include a range of sizes, from unpruned (i.e. the tree with the 

highest number of branches, created using the default complexity parameter value of 0.01) to 

fully pruned (i.e. the tree with the smallest number of branches). We conducted model selection 

by choosing the classification tree which predicted with the highest mean sensitivity after K-fold 

cross validation (i.e. “leave-one-group-out”, process described in more detail below). This model 

selection process is the best when the research objective behind the generation of classification 

trees is prediction (De’Ath & Fabricius, 2000). 

 

Model Evaluation 

Breeding status predictions were made using “leave-one-group-out” K-fold cross validation, 

using one individual OSFL as the “group-out”. Specifically, all observations from one individual 

OSFL were removed from the dataset, leaving a training set with observations from 27 males 

which was used to obtain predictive distributions. The model selection process was not repeated 

for each validation fold. Breeding status predictions were then made on observations from the 

“group-out” OSFL and the process was repeated for each OSFL, resulting in a 28-fold cross 

validation for each model type. The output from each model was a probability mass function for 

each sampling time, describing the probability of the individual having each of the three 

breeding statuses. We then used the breeding status with the highest probability as the predicted 

status. 
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We used the following performance statistics to compare the predictive accuracy from the 

top model in each model type: over-all model accuracy (i.e. proportion of correctly classified 

song rates), sensitivity (i.e. true positive rate for each breeding status class), mean sensitivity 

(mean taken across the three breeding status classes), specificity (i.e. false positive rate for each 

breeding status class), and mean specificity (mean taken across all three breeding status classes). 

See Chapter 1, Table 1.1 for functions describing each prediction evaluation term. We used 

specificity and sensitivity as predictive measures because both are prevalence-independent test 

characteristics, meaning that their values do not depend on the prevalence of a value in the 

dataset. We tested whether predicted breeding status prevalence was significantly different from 

prevalence of observed breeding statuses by performing two tests of marginal homogeneity: a 

Bhapkar test for overall results (Bhapkar, 1966) and McNemar tests for each of the three 

predicted classes (McNemar, 1947).  

 

Results 

 We collected on average 20 (± 7.70; n = 545) 5-minute song counts per territorial male, 

from which we calculated 160 mean 5-minute song rates. The breeding statuses associated with 

these song rates were comprised of 26 (16.3%) instances where males were classified as single, 

111 (69.4%) as paired, and 23 (14.4%) when feeding young.  

 

Multinomial logistic regression 

The top multinomial model included song rate and date as independent variables 

(Appendix 1, Table 1). Song rate had a significant negative effect on the probability of being 

paired versus single (log odds ratio = 0.94, p < 0.001). OSFLs are more likely to be paired or 
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feeding young than single later in the breeding season. Date had a significant positive effect on 

the probability of being paired (log odds ratio = 1.07, p = 0.045) or feeding young (log odds ratio 

= 1.74, p < 0.001) versus single.  

 

Hierarchical model 

 The top ranked full model included time, date, and song rate (see Appendix 2 for BUGS-

language script file for this model). For component A, breeding status was best modelled by date 

(Table 2 in Appendix 1), where the probabilities of: 1) being single is highest in early dates, 2) 

being paired is highest in the middle of the date range, and 3) feeding young is highest in later 

dates. The component B model which resulted in the highest mean sensitivity included both 

breeding status and time as predictors of song rate, using a Poisson distribution of mean rounded 

song rate (see Table 3 in Appendix 1 for contrasting AIC values).  

 

Classification tree 

 The top CT model from the model selection (i.e. the one that best predicted all three 

breeding statuses) had four splits and included all predictor variables (ranked importance: date, 

song rate, time and latitude; Appendix 1, Fig. 1).  

 

Model performance comparison 

 Based on the highest mean sensitivity, the top model type was the hierarchical model 

(69%), followed by the multinomial logistic regression and classification tree with mean 

sensitivity of 54% and 50%, respectively (Table 2.2). Overall accuracy values for the three 

models did not produce the same ranking, in that the multinomial model had the highest accuracy 
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(74%), followed by the classification tree (71%), and the hierarchical model (59%). Overall 

accuracy is highly biased by unequal class distribution in the dataset (i.e. prevalence), with 

models predicting higher prevalence of paired birds than observed.  

All three models overpredicted some breeding statuses, indicated by specificity values 

other than 1 (Table 2.2). The multinomial logistic regression and classification tree both 

overpredicted paired at a high rate (specificity values of 0.37 and 0.29, respectively) compared to 

the hierarchical model (0.82 specificity). The marginal frequencies (i.e. predicted breeding status 

prevalence) of the multinomial logistic model and the classification tree were similar (< 10% 

predictions of single and feeding young and > 80% for paired), while those for the hierarchical 

model predicted a lower prevalence of paired individuals (Figure 2.2), with the true prevalence 

lying between these two extremes. Marginal homogeneity between the predicted and the 

observed breeding statuses was similar for all three models, with prevalence of single and paired 

differing significantly from true prevalence (Table 4 in Appendix 1). Prevalence of feeding 

young did not differ significantly between predicted and true breeding statuses for the 

classification tree and multinomial logistic regression, but the predicted value differed 

significantly from the true breeding status for the hierarchical model.  

 

Table 2. 2. Performance evaluation metrics of the three model types (MR = multinomial logistic 

regression, HM = hierarchical model, CT = classification tree).  
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MR 0.74 (0.67 – 0.81) 0.19 0.92 0.52 0.54 0.96 0.37 0.97 0.77 
HM 0.59 (0.51 – 0.66) 0.69 0.50 0.87 0.69 0.80 0.82 0.78 0.80 
CT 0.71 (0.63 – 0.78) 0.08 0.89 0.52 0.5 0.93 0.29 0.98 0.73 
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Figure 2. 2. Prevalence of predicted breeding statuses for the three model types (MR = 

multinomial logistic regression, HM = hierarchical model, CT = classification tree) and the true 

breeding statuses.  

 

Discussion 

The top modelling approach in our comparison was the hierarchical model (hereafter 

referred to as the BSSR model), which predicted all three breeding statuses correctly at a higher 

rate (i.e. sensitivity) than the regression and CART models and was the best at not overpredicting 

any given breeding status (i.e. specificity). The challenge with measuring breeding status 

indirectly is the statistical calibration of the underlying behavioural mechanism when breeding 
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status causes changes in singing rate. The hierarchical structure of the BSSR model allowed us to 

address this challenge while also accounting for daily variation in singing rate through the 

hierarchical series of conditional probability statements. This study provides an example of how 

to create a relatively accurate predictive model through statistical calibration for an indirect 

measurement of a biological state. Our work answers the call for more fundamental studies to 

better understand and represent the underlying mechanisms in indirect measurements in ecology 

(Lindenmayer & Likens, 2011; Stephens et al., 2015). 

The pattern we observed in how singing rate changes with breeding status in the OSFL is 

similar to patterns observed by Wright (1997) in an OSFL population in Alaska. In both study 

areas, in different years, unpaired males sang at the highest rates, males who had paired and were 

engaged in initial breeding activities (i.e. nest building and incubating) sang less and males 

feeding young rarely sang and when they did, they sang few songs. OSFLs in both studies also 

sang most around sunrise and much less as time since sunrise increased. This suggests the song 

rate component of the hierarchical BSSR model can be used in different study areas for OSFL 

research and that time of day is an important song rate predictor. The other component of the 

hierarchical BSSR model however, models the probability of each breeding status given the date, 

or general species breeding timing (i.e. phenology) for that latitude and year. Although latitude 

was tested as a predictor in the breeding status component model, it was not significant in model 

selection. This result suggests limited regional variation in breeding phenology, contrary to our 

expectation that phenology would shift in our more northern study area. Environmental 

conditions during migration and at the breeding grounds can change breeding timing for a 

species among years, especially with the warming effects of climate change (Visser et al., 2004). 

Mean dates of OSFL pairing and of feeding young in 2016 in northern Alberta and the Northwest 
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Territories were comparable to those reported from other OSFL populations and phenology 

tended to not vary beyond a week between 1995 and 1996 from one study (Wright, 1997). 

Although there may not be extreme variation in phenology between breeding regions or among 

years in OSFL, it may be important to verify breeding phenology for the region and year of 

interest for future application of the model.  

The BSSR model we produced is a simple version which can be used as a baseline on 

which to add parameters to improve predictive ability. Additional covariates which could be 

added to the model to account for variation in song rate include density of conspecifics (Lampe 

& Espmark, 1987), temperature (Gottlander, 1987), and singing rate or predicted (or known) 

breeding status of a given individual in the previous visit. Model improvement may also be 

achieved by using other song metrics. For example, instead of song rate, length of song bout, 

time of first song, afternoon singing rates, song count conditional on at least one song, or a 

combination of other song metrics might improve accuracy. The BSSR model we constructed is 

constrained to use between OSFL spring arrival and late July when the first round of breeding 

OSFLs are feeding young, but if the research objective was to predict breeding status after 

pairing (i.e. incubating eggs, feeding young, and fledging), the use of call rates instead of song 

rates may be a more precise indicator of nest status because calls represent activity at the nest (J. 

Hagelin and J. Wright, unpublished data). Though this would only be possible when nest 

locations were known, as calls are only detected by observers when in close proximity of a nest. 

 The sensitivity values (i.e. true positive rates) for the BSSR model were 69%, 50% and 

87% to predict single, paired and feeding young respectively. To our knowledge, no other studies 

have used calibration methods to predict breeding status from song rate, so we are unable to 

compare predictive ability with those from other models. However, we can compare the BSSR 
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model predictive ability to that of other breeding bird reproductive indices. Vickery et al. (1992) 

designed a method to measure reproductive success, representing five statuses ranging from 

unpaired to fledged young, based on breeding-behaviours. This index provided a reasonable 

measure of reproductive success for grassland songbirds compared to more intensive nest 

monitoring at the same study area (27% predicted fledged vs 42% truly fledged; Vickery et al., 

1992). When adapted to integrate nest monitoring with breeding behaviours for three forest 

breeding birds, the index provided correct breeding status predictions for 61 – 79% of the visits 

(Christoferson & Morrison, 2001). Our hierarchical model had a similar predictive success, 

without the need for extensive nest searching and behavioural observations, although our model 

is constrained to predict three breeding classes.  

Monitoring song rate over a larger portion of the breeding season would improve 

certainty in predictions for individual birds. However, collection of song rate data by human 

observers on a fine temporal scale (i.e. daily versus once per week) would take a large amount of 

time, and ultimately be infeasible. A promising alternative method for collecting a larger amount 

of song rate data is using autonomous recording units (ARUs), which are increasing in popularity 

for bird research (e.g. Shonfield & Bayne, 2017, Pankratz et al. 2017). There are three important 

advantages of using this technology to predict breeding status from song rate: 1) daily acoustic 

surveys of a target location can be conducted for the entire breeding season; 2) large quantities of 

acoustic data can be processed using automatic recognition software; and 3) acoustic data can be 

permanently stored, which can be reanalyzed later. The advantage connected to future reanalysis 

reflects the fact that automatic recognition software, used to detect species of interest efficiently, 

is still improving and future processing may improve detection rates on recordings. This 

technology is being applied over large spatial extents and acoustic data are becoming readily 
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available for many regions. For example, the Alberta Biodiversity Monitoring Institute 

(www.abmi.ca) has been monitoring breeding birds in Alberta since 2003 and breeding season-

long recordings are available from across the province (Alberta Biodiversity Monitoring 

Institute, 2012). Thus, large-scale demographic analyses based on temporal variation in song 

rates could be conducted for our focal species if the hierarchical model can be adapted for ARU-

based song rates. ARU data has some challenges however, primarily associated with imperfect 

detection probabilities related to bird movement away from the detection limit of the ARU. This 

would have to be accounted for in the modelling approach, and the hierarchical model provides 

the framework to include such uncertainty and is an area of active investigation. 

 This study was the first attempt to predict a male songbird’s breeding status using his 

singing rate, and our results provide a new method to monitor breeding status in a migratory 

songbird. We highlighted the importance of considering the calibration problem in ecological 

prediction modeling and demonstrated the advantage of using hierarchical modeling over 

conventional predictive model types (i.e. multinomial logistic regression and classification tree) 

to improve the sensitivity of predicting target classes. Future studies should aim at testing a 

similar approach to predict breeding status from song rates for other songbird species. We 

demonstrated that monitoring birdsong to infer songbird breeding status shows promise and 

warrants further investigation, especially if the model can be further developed for application 

with non-invasive ARU monitoring.  
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Introduction 

The primary functions of singing in male songbirds during the breeding season are to 

defend a territory and to attract a mate (Catchpole & Slater, 2008; Collins, 2004). Singing rates 

for males vary throughout the breeding season as these functions change from mainly intersexual 

attraction to intrasexual competition (Lampe & Espmark, 1987; Otter & Ratcliffe, 1993). 

Specifically males tend to sing at high rates when unpaired and lower rates immediately after 

pairing, with gradual decreases in song rate at birds progress from nest building through 

incubating and feeding young (Gibbs & Wenny, 1993; Hayes et al., 1986; Lein, 1978; M. B. 

Robbins et al., 2009; Stacier et al., 1996; Wright, 1997). This variation in singing rate results in 

temporal variation in detectability of birds by human observers conducting acoustic surveys 

(Johnson, 2008; Nichols et al., 2009). While researchers have quantified singing rate of forest 

songbird males throughout the breeding season based on acoustic surveys (Sólymos et al., 2013), 

such data have rarely been used as a predictor of breeding phenology and success (but see Staicer 

et al., 2006). The ability to monitor breeding status efficiently in individual birds using acoustic 

data would fill important gaps in our understanding of population dynamics of most forest 

songbirds (e.g. Environment and Climate Change Canada 2016; Environment Canada 2015; 

Haché, Villard, and Bayne 2013) and thus inform species status assessments (e.g. Environment 

and Climate Change Canada 2018). 

  In Chapter 2, we presented the advantages of using a hierarchical modelling framework 

to predict breeding status of the Olive-sided Flycatcher (Contopus cooperi; OSFL), a neotropical 

migratory songbird, as a function of date, song rate, and time of day by using field observations. 

This model correctly predicted breeding status classes (single, paired and feeding young) with an 

average sensitivity of 70%. This result suggests that the breeding status – song rate relationship 
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(hereafter “BSSR”) can be used to monitor the breeding status of this Species at Risk in Canada 

(Environment and Climate Change Canada, 2016a). However, this type of modelling (hereafter 

“human-observer model”) requires song rate data from field observers who must track focal 

individuals multiple times throughout the breeding season, which can be time consuming and 

costly. Thus, these types of studies are generally limited to small spatial extents (e.g. Amrhein, 

Korner, and Naguib 2002; Dussourd and Ritchison 2003; Haché, Villard, and Bayne 2013) and 

low number of years (but see Scott Sillett and Holmes 2002). The presence of human observers 

may also alter singing behaviour, resulting in biased data, although the degree of this bias, to our 

knowledge, has never been quantified (Bye et al., 2001; Gutzwiller et al., 1994, but see Campbell 

& Francis, 2012).  

 The advent of autonomous recording unit (ARU) technology to supplement human 

observers in collecting acoustic data (Pankratz et al., 2017; Shonfield & Bayne, 2017; Yip et al., 

2017) may provide a cost-effective way to quantify the BSSR relationship over large spatial 

scales. ARUs can be preprogrammed to record for long time periods, on specific days of the year 

and times of day, and simultaneously in many locations. They also do not alter the behaviour of 

birds being monitored (Darras et al., 2018; Müller et al., 2006). New technology also allows for 

bulk processing of the larger amounts of recordings generated for sound identification and 

species classification (Shonfield & Bayne, 2017). The performance and design of these species 

recognition models are constantly improving (Knight et al., 2017). Additionally, recent research 

has show that measurements of relative sound level in the recordings can be used to estimate 

distances of birds from recorders and thus standardize ARU surveys; a lack of standardization 

has limited inference in ARU studies (Darras et al., 2018; Yip et al. in review). Long-term 

monitoring programs have started using ARUs to document changes in breeding phenology of 
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bird populations based on singing or calling behaviour (Colbert et al., 2015; Digby, Towsey, 

Bell, & Teal, 2013), but, to our knowledge, these studies have not monitored the breeding status 

of individual breeding birds. Although ARUs have the potential to produce abundant data on 

singing behaviours passively, there are uncertainties about how bird movement affects 

detectability (but see Matsuoka et al. 2012), especially, when song rates are derived from 

recordings collected from permanent sampling locations.  

This goal of this study was to evaluate the ability of the BSSR relationship model to 

predict breeding status in the OSFL, using song rate data collected from ARUs. The first step 

towards using ARU data in this predictive model was to calibrate the existing modelling 

framework based on acoustic data collection by human observers (Chapter 2) to ARU data by 

determining if underlying singing patterns produced using ARU data are comparable to patterns 

produced with human observer data. This calibration step is important in building a model for 

indirect measurement of a biological state (Stephens et al., 2015). Therefore, our first objective 

was to test for differences in effect size, and changes in song rates among breeding statuses 

(single, paired, and feeding young) of OSFLs from ARU-based versus human-based song rates. 

The second objective was to predict breeding status using ARU data and a modified hierarchical 

human-observer model (Chapter 2) based on the top ARU data song rate model determined by 

objective 1. Because OSFLs occupy territories which are larger than the detection range of an 

ARU (Altman & Sallabanks, 2012), we expected detectability issues. Thus, we generated four 

predictive hierarchical models with different adjustments for imperfect detection using: 1) no 

adjustment for imperfect detection (hereafter the “no-adjustment model”); 2) only song rates 

with known presence (hereafter the “zero-truncated model”); 3) a two-step model where the 

probability of detection is first modeled followed by the song rate model (hereafter the “zero-
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inflated model”), and 4) relative sound level as a predictor (i.e. proxy for the relative distance of 

a male to the ARU; hereafter the “distance model”). We tested for an effect of relative distance 

of a male because lower song rates should be recorded for birds farther away from an ARU than 

birds singing closer to a unit. If the detection from ARUs at fixed locations resembles the 

detection by human observers, then the “no adjustment model” should perform similarly to the 

human-observer model (Chapter 2). Alternatively, if imperfect detection of the birds in ARU 

recordings alters song rates, models accounting for imperfect detection should have improved 

predictive performance. We assessed model performance by comparing sensitivity and 

specificity values for predicting each of the three breeding statuses.   

 

Methods 

Study species 

OSFL are an appropriate model species to test the use of the BSSR relationship for 

prediction for three major reasons: 1) The OSFL song carries farther in the forest than most 

songbirds (effective detection radius = 121.3 ± 16.9 m; maximum detection distance = 400 m; 

Matsuoka et al. 2012, or 624 m; Wright 1997), which should affect detection positively, possibly 

counteracting the challenge of movement (i.e. the bird is loud enough on average that it can be 

heard from most spots on the territory regardless of where it is singing on the territory); 2) 

territories are typically large and non-overlapping (Altman & Sallabanks, 2012), unlike many 

songbirds with smaller territory sizes and thus, avoiding challenges associated with 

distinguishing between individuals; and 3) The OSFL song is a simple crisp, clear song, 

described by the mnemonic “quick, three-beers”, with little variation among individuals 
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(Robertson et al., 2009), making them easy to detect and distinguish from other species of 

songbirds.  

 

Field methods 

ARU recordings and breeding status data were collected from breeding OSFL males in 

northern Alberta (n = 8) and the Northwest Territories (n = 16), Canada from May 30 - July 22, 

2016. Each week, the territorial males were tracked for 1-hour observation periods to confirm 

breeding statuses (single, paired, and feeding young) and document song rates (every 15 

minutes; n = 4 per visit).  For a more detailed description of the study area, breeding territory 

selection, and field methods, refer to Chapter 2 methods.  

 

Acoustic data collection 

Acoustic recordings were collected using Song Meters (SM4s and SM2s; Wildlife 

Acoustics Inc.) deployed in 24 breeding territories when males were considered to have settled 

(i.e. a male was found singing in the same area on two separate occasions between May 30 and 

June 8, 2016). One ARU was deployed near a primary singing perch at each territory, where 

males were more often observed singing (Wright, 1997). Each ARU was preprogrammed to 

record daily, for one continuous recording period between 15 minutes before sunrise until 30 

minutes after sunrise (i.e. 45 minutes per day per ARU), to maximize OSFL song detection 

(Wright, 1997). Three ARUs were deployed in the Northwest Territories prior to May 5, 2016, 

which was > 3 weeks before spring arrival of the first migrants (E. Upham-Mills, unpublished 

data). Locations for these ARUs were based on detections from individuals during the previous 

breeding season (Knaggs, 2018). Average deployment date for the other 21 ARUs, placed at 
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primary singing perches, was June 10 (± 5 days; SD), 2016. All ARUs were retrieved in August 

or September 2016, resulting in an average number of 85 (+ 53) days deployed/unit. 

 

Acoustic data processing 

We processed the ARU recordings using automated recognition software (hereafter 

"recognizer"; McLeod, 2015) built with the software Song Scope (Wildlife Acoustics, Inc.). A 

recognizer scans audio recording files using a moving window with a pattern-matching algorithm 

to produce a list of candidate target sounds (i.e. detections). The recognizer was used at a quality 

threshold of 50 and score threshold of 70, both of which are values to quantify “fit” of the 

detection to the pattern the algorithm is attempting to match (see Appendix 3 for score threshold 

decision process). Each detection was assigned as a true or false positive after visual and audio 

inspections of the spectrograms.  

For this study, our sampling unit was the mean song count from nine consecutive 5-

minute song counts collected between 15 minutes before sunrise and 30 minutes after sunrise for 

a given day (hereafter “song rate”). For each true positive song detection, the relative sound level 

value (i.e. “level” in the Song Scope output) was extracted and the mean level value was 

calculated for each song rate (i.e. the mean of all level values for each song included in a 5-

minute song count was calculated, then the mean level of the four song counts was used for the 

song rate). Data were removed from the analysis when the breeding status was not confirmed or 

recordings were incomplete (e.g. full SD cards, empty batteries, etc.).  
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Statistical analysis  

Our first objective was to compare singing rates as determined by ARUs versus human-

observers to calibrate the hierarchical model built in Chapter 2 to ARU data. We wanted to 

differentiate between variation in singing rate due to individual effect of OSFLs (i.e. certain birds 

sing more that others) and effect of individual ARUs (i.e. a combination of the local sound 

environment and the individual bird’s movement and singing patterns) to inform the song rate 

component of the hierarchical model, thus we evaluated the inclusion of random effect in models 

for both datasets. We modelled both the ARU and the human-observer song rates using one 

generalized linear regression (GLM) and one generalized linear mixed model (GLMM) each. All 

models included the response variable of song rates using a Poisson distribution, as predicted by 

breeding status. The human-observer GLM and GLMM both included a covariate for time 

relative to sunrise, because human observer song rates were not collected at a standardized time 

of day, as was the case for ARUs. Lastly, for the ARU model, we also tested for the effect of 

sound level to determine if it would improve model fit. We used Akaike’s Information Criterion 

(AIC) to rank model fit for each dataset (ARU and human-observer) and considered a decrease 

in AIC >2 as evidence for improved fit. We modelled GLMs and GLMMs using the r packages 

‘stats’ and ‘glmmADMB’, respectively (Skaug et al., 2018). We explored coefficient values and 

significance (α level of P < 0.05) of each predictor and plots of fitted values from these models 

to compare their relative fit to the data and appropriateness for use in the predictive hierarchical 

models (objective 2). 

 For the second objective, we determined which of the four approaches to correcting ARU 

data (i.e. the no-adjustment model, the zero-truncated model, the zero-inflation model, and the 

distance model) produced the best predictive performance within the hierarchical framework. For 
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all hierarchical models, we used a parametric empirical Bayesian approach and priors were 

derived from maximum likelihood models fit using the ARU data (Cressie et al., 2009; Morris, 

2012; Ver Hoef, 1996). Models were built using a framework adapted from the following 

human-observer model (Chapter 2):   

Equation 1. 

P(𝑏𝑏𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑏𝑏 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏|𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑,𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑, 𝑑𝑑𝑙𝑙𝑡𝑡𝑑𝑑) α P(𝑏𝑏𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑏𝑏 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏|𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑)�����������������
Component A

P(𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑|𝑏𝑏𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑏𝑏 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏, 𝑑𝑑𝑙𝑙𝑡𝑡𝑑𝑑)�������������������������
Component B

 

where the left-hand side probabilities for each breeding status conditional on song rate are 

proportional to the product of two components on the right-hand side. Component A is the 

marginal probability of observing each breeding status on a given day, and component B is the 

probability of song rate conditional on breeding status and time of day (i.e. the model tested in 

objective 1). 

 The no adjustment model used the hierarchical model with ARU data, but made no 

adjustment for imperfect detection of bird songs. Each observed song rate i followed a Poisson 

distribution with a mean of λi:  

Equation 2. 

𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖 ~ 𝑃𝑃𝑠𝑠𝑙𝑙𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 (λ𝑖𝑖)   

Mean song rate λi was log-normally distributed with a mean conditional on breeding status for a 

given bird (breeding statusj; single, paired, or feeding young) a fixed effect, individual bird as a 

random effect (𝛾𝛾𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏,𝑖𝑖): 

Equation 3. 

log(𝜆𝜆𝑖𝑖) ~ 𝛾𝛾𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏,𝑖𝑖 +  𝛽𝛽0 ∗ 𝑏𝑏𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑏𝑏 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑖𝑖 , 

where 𝛾𝛾𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏,𝑖𝑖 was normally distributed with a mean of 0 and an empirical Bayes estimate of the 

variance. breeding statusj followed a multinomial distribution conditional on ordinal date (datei): 
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Equation 4. 

𝑏𝑏𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑏𝑏 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑖𝑖  ~ 𝑡𝑡𝑙𝑙𝑙𝑙𝑑𝑑𝑙𝑙𝑏𝑏𝑠𝑠𝑡𝑡𝑙𝑙𝑑𝑑𝑙𝑙�𝑝𝑝𝑠𝑠𝑖𝑖𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 ,𝑝𝑝𝑝𝑝𝑝𝑝𝑖𝑖𝑏𝑏𝑠𝑠𝑏𝑏,𝑝𝑝𝑓𝑓𝑠𝑠𝑠𝑠𝑏𝑏𝑖𝑖𝑠𝑠𝑠𝑠 𝑦𝑦𝑦𝑦𝑦𝑦𝑠𝑠𝑠𝑠 �𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑖𝑖). 

The probability of each breeding status (psingle ppaired,and pfeeding young) depended on the date and 

the three probabilities were constrained to sum to 1. The no adjustment model was built using 

JAGS language (packages ‘R2jags’ [Su & Yajima, 2015] and ‘UIjags’ [Kellner, 2017] see 

Appendix 4 for details).  

 The zero-truncated model adjusted for imperfect detection by constraining song rate 

analysis to sampling sessions when a bird was confirmed to be present (i.e. at least one song). 

We therefore removed cases where song rate was zero and used a zero-truncated Poisson 

distribution for 𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑐𝑐𝑠𝑠𝑙𝑙𝑏𝑏𝑑𝑑𝑖𝑖.  

A disproportionate number of zeros can arise from two processes: 1) birds are within an 

ARU detection range and silent or 2) birds are out of detection range of the ARU. The zero-

inflation model adjusted for this imperfect detection by first modelling the probability of 

detection as a Bernoulli distribution, then modelling detected song rate conditional on probability 

of detection: 

Equation 5. 

𝑝𝑝𝑏𝑏𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑖𝑖𝑦𝑦𝑠𝑠𝑖𝑖 ~ 𝐵𝐵𝑑𝑑𝑠𝑠𝑏𝑏𝑠𝑠𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙(𝜓𝜓) 

Equation 6. 

𝑏𝑏𝑠𝑠𝑏𝑏𝑏𝑏 𝑐𝑐𝑠𝑠𝑙𝑙𝑏𝑏𝑑𝑑𝑖𝑖|𝑝𝑝𝑏𝑏𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑖𝑖𝑦𝑦𝑠𝑠𝑖𝑖 ~ 𝑃𝑃𝑠𝑠𝑙𝑙𝑏𝑏𝑏𝑏𝑠𝑠𝑏𝑏 (λ𝑖𝑖) ∗ 𝑝𝑝𝑏𝑏𝑠𝑠𝑑𝑑𝑠𝑠𝑑𝑑𝑑𝑑𝑖𝑖𝑦𝑦𝑠𝑠𝑖𝑖  

𝜓𝜓 followed a uniform distribution from 0 to 1, followed by detected song rates modelled as a 

Poisson distribution with mean λi.  
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Lastly, the distance model built on the zero-inflation model by adding a relative sound 

level (𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑖𝑖) as a predictor to account for lower song rates resulting from increasing distances of 

a bird from the ARU. The full structure of the distance model consisted of Eqn. 4 – 6 and: 

Equation 7. 

log(𝜆𝜆𝑖𝑖) ~ 𝛾𝛾𝑏𝑏𝑖𝑖𝑏𝑏𝑏𝑏,𝑖𝑖 + 𝛽𝛽0 ∗ 𝑏𝑏𝑠𝑠𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑏𝑏 𝑏𝑏𝑑𝑑𝑑𝑑𝑑𝑑𝑙𝑙𝑏𝑏𝑖𝑖 + 𝛽𝛽1 ∗  𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑖𝑖  

using the same parameterization as Eqn. 3, with the addition of the 𝑙𝑙𝑑𝑑𝑙𝑙𝑑𝑑𝑙𝑙𝑖𝑖 covariate, which 

followed a Cauchy distribution using a location of 0, precision of 0.4, and degrees of freedom of 

1.  

The Monte Carlo Markov Chain (MCMC) specifications for all models used a burn-in 

period of 1,000 iterations, followed by 10,000 iterations, on five parallel chains. We ensured 

convergence using the Gelman-Rubin diagnostic (GR), considering a threshold of GR > 1.1 to 

indicate convergence (Gelman & Rubin, 1992; Plummer, Best, et al., 2016).  

We compared the relative predictive ability of the four predictive hierarchical models 

using a modified K-fold cross-validation (Arlot & Celisse, 2010), where for each fold we 

removed all song rates from one bird. The subset of song rates removed from the dataset (i.e. the 

test data) were then used for predictions from the model built using the remaining dataset (i.e. the 

training data). This process was repeated until each bird had been removed, for a total of 

predictions from 28 datasets for each model. We used K-fold validation because it is a common 

method for accuracy estimation of classifiers (Kohavi, 1995). We assessed prediction accuracy 

(or predictive ability) by comparing true (i.e. sensitivity) and false (i.e. specificity) positive rates 

for each breeding status from each model. Values were displayed in a contingency table (i.e. 

confusion matrix) built using the package ‘caret’ in R (Kuhn et al. 2017). We emphasized the 
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importance of the ability of each model to predict single and feeding young correctly as this 

information can reflect important differences in habitat quality among breeding territories. 

 

Results 

For each territory, we collected an average of 896 minutes of recordings (+ 502; mean + 

SD) producing a sample size of 478 5-minute song rates (19.9 + 11.2 song rates/territory).  

For objective 1, we found that the three breeding status classes were significant predictors 

of song rate in both the ARU and human-observer GLMs (i.e. with no random effect of 

individual; Table 3.1). However, the datasets differed in two major ways: 1) song rates were 

lower in the ARU dataset (Fig. 3.1a,c), and 2) the order of the highest to lowest song rate as a 

response to the three breeding statuses was different (Fig. 3.1a,c). In the human-observer data, 

the song rates were predicted to be the highest when birds were single, then when paired, and 

lowest when feeding young (Fig. 3.1a). The order differed with ARU data; here paired birds had 

the highest predicted song rate, followed by single and feeding young (Fig. 1c). Adding the 

random effect of bird to the human-observer data had a minimal effect on effect size, standard 

error, or significance of breeding status effect on song rate (Fig. 3.1b) which was not true for the 

ARU-data (Fig. 3.1d; Table 3.1). With the ARU dataset, random effect changed the order of 

single, paired and feeding young song rate predictions to align with the human-observer dataset 

(Fig 3.1a,d), but the effect of single and paired status on song rate were no longer significant 

(Table 3.1). The distance proxy (i.e. mean sound level) had a significant positive effect on 

documented song rate (Fig. 3.2, Table 3.1).  
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AIC values for both the ARU and human observer datasets decreased after random effect 

of individual was included in the model (Table 3.1). Adding sound level as a covariate to the 

ARU model further decreased the AIC value, indicating a better model fit (Table 3.1).  

  

Table 3. 1. Beta-coefficients, standard errors and p-values from generalized linear regression 

models describing the effect of breeding status and other covariates on song rate for ARU and 

human-observer data. SR = song rate, BS = breeding status, 1|ind = random effect of individual.  

  Predictor variables  
Model Data Time 

(Minutes from 
Sunrise) 

Breeding 
Status:  
Single 

Breeding 
Status: 
Paired 

Breeding 
Status: 
Feeding 
Young 

Level 
(Relative 
Sound 
Level) 

AIC 
value 

SR ~ BS + time Human -0.48 + 0.03* 2.84 + 0.05* 1.91 + 0.04* 1.09 + 0.11* - 2277.8 
SR ~ BS + time + 1|ind -0.55 + 0.03* 2.93 + 0.23* 1.39 + 0.20* 0.53 + 0.24* - 1725.1 
SR ~ BS ARU - -0.32 + 0.13* 0.44 + 0.05* -1.88 + 0.25* - 1985.3 
SR ~ BS + 1|ind - 0.06 + 0.53 -0.32 + 0.33 -3.05 + 0.42 - 1246.1 
SR ~ BS + level + 1|ind - 0.00 + 0.52 -0.34 + 0.32 -2.96 + 0.40* 0.23 + 0.07* 1237.9 

* indicates significance at α of P < 0.05. 
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Figure 3. 1. Predicted Olive-sided Flycatcher song rates for three breeding status classes from: 

A) a generalized linear (GLM) regression using human-observer* data, B) a generalized linear 

mixed effects (GLMM) model using human-observer data, C) a GLM using ARU data, and D) a 

GLMM using ARU data. GLMMs included random effect of individual (n = 28 individuals, and 

24 individuals, for human-observer and ARU data, respectively). * Human-observer models 

included a time co-variate (minutes past sunrise), which was held at the median value for these 

predictions (113 minutes).  
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Figure 3. 2. Predicted song rates using ARU data for three breeding statuses over a range of 

sound levels (scaled and mean-centered).  

 

 The four hierarchical models based on ARU data rarely predicted the breeding status 

single correctly (sensitivity <0.07) compared to models based on human-observer song rates 

(sensitivity = 0.69; Table 3.2). ARU models had good predictive accuracy for paired (sensitivity 

ranging from 0.77 – 0.84) compared with the human-observer model (0.50). However, 

specificity values for paired (<0.46) were lower than those for the other breeding statuses 

(specificity > 0.89; Table 3.2). The no adjustment and zero-inflated models had high sensitivities 

for feeding young (0.68 and 0.61, respectively), while the zero-truncated model performed 

poorly, with the lowest sensitivity (0.25) of all models for predicting feeding young.  

 Overall, the best predictive model was the no adjustment model, which had the highest 

mean sensitivity (0.52 + 0.39) for all three breeding statuses versus values of 0.34 (+ 0.39), 0.49 

(+ 0.41), and 0.44 (+ 0.41) for the zero-truncated, zero-inflated and distance models, 
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respectively. This model also had the highest mean specificity (0.76 + 0.26), followed by the 

zero-inflated (0.75 + 0.31), distance (0.72 + 0.38) and the zero-truncated (0.62 + 0.49) models.  

 All ARU models followed similar patterns of over and under-predicting the occurrence of 

specific breeding statuses (Fig. 3.3). The no adjustment, zero-inflated and distance models all 

overpredicted paired, whereas the zero-truncated model predicted similar prevalence of paired 

statuses compared to observed breeding status prevalence. This is different from the human-

observer model, which underpredicted paired by more than 30%. All four ARU models 

underpredicted single by ≥ 10%, which was opposite to the human-observer model. The zero-

truncated model was the only model to overpredict feeding young, as did the human-observer 

model.  

 

 

Figure 3. 3. Prevalence of observed versus predicted breeding statuses for four ARU data models 

and the human-observer data model from Chapter 2. 
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Table 3. 2. Sensitivity and specificity values for predicting breeding statuses using ARU-based 

song rate data in four hierarchical models as compared to a human-observer song rate 

hierarchical model (Chapter 2).  

Model Adjustment for imperfect 
detection 

Prediction 
Evaluation 
Value 

Single Paired Feeding 
Young 

 
No 
adjustment 

 
None 

Sensitivity 0.07 0.80 0.68 

Specificity  0.94 0.46 0.89 

Zero-
truncated 

 
Removed zeros from dataset 

Sensitivity 0.00 0.77 0.25 

Specificity  0.91 0.06 0.89 

Zero-inflated Modelled song detection/non-
detection first, then song rate 

Sensitivity 0.04 0.83 0.61 

Specificity  0.95 0.39 0.91 

Distance 

Model song detection/non-
detection first, then song rate as 
a function of mean level (i.e. 
relative sound level) 

Sensitivity 0.03 0.84 0.46 

Specificity  0.95 0.28 0.92 

Human-based 
song rate model 
(Chapter 2) 

None (no need because 
observers always confirmed bird 
presence) 

Sensitivity 0.69 0.50 0.87 

Specificity  0.80 0.82 0.78 

 

Discussion  

In this study, song counts derived from ARU recordings processed with automatic 

recognition were much lower than those recorded by human observers in the field. We expected 

that a BSSR model using song count data from ARUs would be constrained by limited 

detectability, i.e. values of zero could reflect a silent bird or a bird singing beyond the perceptual 

range of an ARU deployed at a permanent location. However, even after adjusting ARU data to 

account for imperfect detection through zero-truncation, zero-inflation, and by adding sound 
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level as a proxy for distance, predictive performance of ARU-based models did not improve. 

These results suggest that the current BSSR model with ARU data has important limitations and 

improvements in both technology and sampling design are warranted. Still we do propose that 

the ARU is a promising tool to monitor population dynamics of forest songbird over large spatial 

extent in a cost-effective way to inform conservation actions. 

 Detection of sound on an acoustic recording can be inhibited by multiple extrinsic factors 

related to the location of the ARU: 1) the structure of the environment affecting sound 

attenuation (Yip et al., 2017); 2) amount of precipitation and wind intensity and direction; and 3) 

species richness and activity levels of the bird community within the range of an ARU. An 

additional factor affecting song rates detected from an ARU is density of conspecifics. This can 

artificially inflate song rate for the target male when neighbouring male songs are captured on 

the ARU. However, this challenge can be overcome if individual recognition is possible for the 

species of interest, which is increasingly available with recent technological advancements 

(Ehnes & Foote, 2015; Foote et al., 2013; Kirschel et al., 2011; Wilson, 2018). Increased density 

can also change male singing behaviour by countersinging behaviour producing higher song 

rates in the target individual, independently of breeding status (Penteriani et al., 2002). We 

assumed multiple conspecifics in an area would not be an issue for OSFL due to large, non-

overlapping territories, but some of our ARUs did contain songs from multiple individuals. 

Future studies using ARU data in BSSR models should account for these different sources of 

variations which may improve predictive ability.   

 Another important source of detection error is low detectability of the recognizer. The 

OSFL recognizer used in this study (McLeod, 2015) performs well when the objective is to 

identify presence of an OSFL at a given ARU. Individuals were detected by the recognizer for 
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each ARU where a human interpreter confirmed the presence of an individual (Bayne and 

McLeod, unpublished data). However, the recognizer misses >80% of the songs present in the 

recordings (i.e. false negative rate), when compared to the performance of human interpreters 

(Appendix 5). If predicted song rates for single are ~20-fold lower for ARU data compared to 

human-observer data, as with the false-negative rate we observed, then the difference in song 

rates could be much closer (i.e. 4-fold lower) if recordings were processed by human listeners 

instead of a computer algorithm. Thus, adjusting the recognizer to achieve higher detectability 

may greatly improve sensitivity to predict breeding status. We only tested one automated 

recognition software currently available. Many more exist (e.g. Raven Pro [Cornell Laboratory 

of Ornithology, Ithaca, New York, USA], R package “monitoR” [Hafner and Katz 2018], and 

Kaleidoscope Pro [Wildlife Acoustics, Maynard, Massachusetts, USA]) and statistical models 

are quickly evolving to minimize false negative rates (Knight et al. 2017). For example, 

Chambert et al. (2018) present a hierarchical model to use an automatic recognition algorithm to 

first detect the target species, then incorporate a subset of post-hoc validated data to optimize 

processing and improve recognizer accuracy. Lower false negative rates can also be achieved by 

lowering the score threshold of a recognizer to increase sensitivity to candidate detections 

(Knight et al., 2017), but this comes at the efficiency expense of having a considerably larger 

number of detections to validate. We recommend future users of the BSSR model should 

consider either the use of human interpreters (e.g. Joshi, Mulder, and Rowe 2017) or evaluate the 

available species recognizers (see Knight et al. [2017] for recommendations) to ensure the lowest 

false negative rate in song detection.   

The difference in predicted song count between single and paired males based on ARU 

data was negligible compared to the differences detected by human observers. We suspect this is 
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the reason that all hierarchical models based on ARU data had a low rate of correctly predicting 

a status of single. Single males are expected to sing significantly more than paired males, 

therefore differences in song counts between ARU and human observer data should be explained 

by differences in detectability generated by bird movements. Our results suggest a larger 

propensity for single birds to move over larger areas than paired birds. There is evidence for 

differential movement associated with changes in breeding status in songbirds (e.g. Bayne and 

Hobson 2001; Liu, Kroodsma, and Yasukawa 2007). We posit that single males searching for a 

mate may not only sing at higher rates but may spend more time covering their entire territories 

and beyond. Potential differences in movement patterns associated with breeding status should 

be quantified acoustically and these variables could be integrated into the hierarchical models. 

For example, the mean relative sound level (i.e. what we used as a proxy for average distance 

from the ARU) could be added to the multinomial component of the hierarchical model (i.e. 

instead of the song count regression component), where breeding status is predicted by ordinal 

date, to use as a proxy for movement around the territory. However, the importance of variation 

in detectability related to movement across breeding statuses is likely species-specific and/or a 

function of territory size. For example, the BSSR approach using a single ARU may be more 

suited to smaller passerines that tend to defend territories of < 1 ha (e.g. Red-eyed Vireo, Vireo 

olivaceus [Marshall & Cooper 2004]; Cerulean Warbler, Setophaga cerulea [Robbins et al., 

2009]; Golden-winged Warbler, Vermivora chrysoptera [Streby et al., 2012]). Fortunately, 

technology is available to calibrate the effect of breeding status on bird movement, and 

movement on detectability. Options include either increasing acoustic coverage using an array of 

ARUs (Blumstein et al., 2011), allowing acoustic localization of birds (Wilson, 2018), tracking 

bird movements using telemetry or GPS technology, or using a combination of microphone and 
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GPS (e.g. lightweight GPS-ARUs have been used to simultaneously track movement and 

vocalizations in Common Nighthawks, Chordeiles minor, Knight et al., unpublished data). 

We have identified challenges that need to be addressed to account for ARU-related 

detection error. Thus, ARU-based models might not be currently appropriate to predict and 

monitor the breeding status of an individual based on song counts. However, the BSSR model is 

well suited to integrate larger acoustic datasets that cover a large number of breeding territories 

to predict proportion of territories that have achieved more advanced breeding statuses (e.g. 

feeding young) and, perhaps, infer differences in habitat quality. For example, hundreds of 

ARUs are being deployed annually across Alberta (Alberta Biodiversity Monitoring Institute 

2012, www.abmi.com) since 2003, and in the Northwest Territories since 2013 (Haché & 

Pankratz, unpublished data). Information on breeding phenology and where large proportions of 

OSFL territories produce young would provide important demographic information given the 

status and population trends of this species is largely unknown in northern boreal regions owing 

to the sparse coverage of the North American Breeding Bird Survey (Machtans et al., 2014).  

Thus, already available multi-year ARU data covering large spatial extents could be processed to 

provide information on breeding success for this Species at Risk in Canada to help the status 

reassessment process (Environment and Climate Change Canada, 2016a).  

This is, to our knowledge, the first study demonstrating how song rate from ARUs data 

processed with automatic recognition software can predict breeding status of a forest songbird. 

The hierarchical modelling approach we used provides a flexible framework to include 

additional parameters to take full advantage of the behavioural and detectability information 

available in acoustic recordings. ARUs are being used across North America to monitor bird 

occurrence or abundance (Shonfield & Bayne, 2017), but this new tool can potentially be applied 



 

50 
 

to monitor population dynamics of forest birds for a broad range of species and ecosystems and 

could revolutionize how avian ecologists monitor populations. Bioacoustics technology is 

improving quickly, which provides great opportunity for researchers to document, in a cost-

effective way, much needed information about population dynamics for status assessments and 

inform conservation initiatives to address the growing global biodiversity crisis (Singh, 2002).  
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Chapter 4: General conclusion 

 

Summary 

The purpose of this study was to determine the best modelling approach to predict breeding 

status from singing rate in the OSFL and test its use with ARUs. I successfully addressed the first 

challenge of statistically calibrating the cause and effect relationship between breeding status and 

singing rate, respectively, to derive an indirect measure of breeding status. I found that a 

hierarchical modelling framework, based on song rates determined by human observers, 

produced highly sensitive breeding status predictions. This was in contrast with the multinomial 

logistic regression and classification tree models, which did not account for the true relationship 

between cause and effect and produced low sensitivity values for the breeding status classes of 

conservation interest, single and feeding young. When I applied the ARU-derived data to the 

hierarchical model, sensitivity values for predicting the three breeding statuses (single, paired 

and feeding young) were low. Song rates collected from ARUs likely did not represent the actual 

singing behaviours due to low detectability. Thus, the ARU-based data did not reflect the true 

relationship between singing rate and breeding status. The detectability issues I identified were 

low accuracy of the recognizer to detect OSFL songs in the recordings and movement of the 

individual bird in and out of the detection range of an ARU. A large portion of these detectability 

issues observed in our study can be accounted for through improvements in the acoustic data 

processing (i.e. better species recognition with different software or human listening) and 

modifications to my study design (i.e. increasing number of ARUs in an area). Results from my 

thesis provides an important contribution to the field of bioacoustics by providing a proof of 

concept for a new approach to collect valuable and efficient demographic monitoring of forest 

songbirds to better inform conservation actions.  
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Model improvement using different song metrics 

I used song rate as a metric of singing behaviour to infer breeding status in the Olive-sided 

Flycatcher, but this metric is not the only option to quantify singing behaviour in birds. I propose 

that the modelling framework used in this study can likely be applied to other songbird species, 

but the model will first have to be calibrated for those species. For many songbird species, 

singing behaviour is significantly different between single and paired individuals (Dussourd & 

Ritchison, 2003; Gibbs & Wenny, 1993; Radesäter et al., 1987; Stacier et al., 1996). For 

example, Yellow-breasted Chats (Icteria virens) spend much less time singing after pairing 

(Dussourd & Ritchison, 2003). Additionally, incremental declines in percent of time spent 

singing between arrival on breeding territory and post-fledging indicate that this species may be 

a candidate for predicting breeding status using singing behaviour. Song rate within singing 

bouts does not vary with breeding status for Yellow-breasted Chats (Dussourd & Ritchison, 

2003). Thus, a predictive model for this species could use percent of time spent singing instead 

of the metric I used for OSFL, mean number of songs in a 5-minute period (i.e. singing rate). 

With 170 pairs of the southern mountain population of Yellow-breasted Chat (subspecies 

auricollis) remaining in Canada (Environment and Climate Change Canada, 2016c) and a 

classification of Endangered by the Committee on the Status of Endangered Wildlife in Canada 

(COSEWIC), our methods could be applied to inform conservation of this threatened taxon.  

 

Model improvement using different breeding status classes 

My study was designed to predict only three breeding status classes (single, feeding young 

and paired) because I wanted to test model accuracy for a well-established behavioural 

relationship between breeding status and song rate in the Olive-sided Flycatcher (Wright, 1997). 
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Singing behaviour was not as well quantified when nests either fail or successfully fledge young 

(Altman & Sallabanks, 2012; Wright, 1997). For some species, there is evidence suggesting that 

singing behaviour may be differential at these later states because males tend to re-initiate high 

singing rates when his mate dies or abandons (Amrhein et al., 2002; Stacier et al., 1996). Thus, 

predicting reproductive success in addition to breeding status may be achievable by calibrating a 

song behaviour model to predict fledge of fail status later in the breeding season. It is possible 

that predictions of breeding status may be more accurate using multiple sets of binary responses, 

e.g. paired versus unpaired early in the breeding season and fledged versus failed later in the 

season (conditional on pairing status). Thus, future studies could test modelling singing 

behaviour of multiple binary states in different phases of the breeding cycle instead of a 

multinomial response for predictive purposes. A hierarchical modelling framework provides the 

flexibility to account for these conditional relationships. 

 

Recommendations for model application to other songbird species 

1) Consider the research question. The study design influences both the scale of inferences that 

can be generated and the predictive ability of the model. If the objective is to make predictions 

about individual birds, then minimizing detectability issues and maximizing temporal coverage 

(within breeding season) and spatial coverage (within territory) will be important to ensure the 

best predictive ability. Alternatively, if the goal is to make predictions at a population scale, 

maximizing coverage over large special extent may be more important than intensive monitoring 

(i.e. high frequency visits by human observers or many ARUs recording daily) at a few locations. 
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2) Consider behaviour of the focal species. Territory size, peak of acoustic activity levels (within 

day and breeding season), and densities of conspecific are all life history traits important to 

understand to inform appropriate sampling design (i.e. human vs. ARU-based data, recording 

schedule, and need for individual recognition through visual or vocal identification). For 

example, if the species has a large territory, spatial coverage within a territory or accounting for 

bird movement in the model may be required to ensure predictive ability. This could be 

accounted for by increasing the number of ARUs deployed on a territory or monitoring bird 

movement in the area with ARUs by deploying radio transmitters or GPS units. For species with 

small territories, individual recognition within recordings may be the challenge if conspecific 

densities are high enough to result overlap of detectable individuals. In this case, acoustic 

processing would need to be able to distinguish individuals.    

3) Calibration. Quantifying the behavioural mechanisms underlying an observed biological state 

is a key step in ensuring correct and accurate modeling for prediction of this state (Stephens et 

al., 2015). In the case of BSSR models, this means determining the song metric with the 

strongest response to breeding status for the species of interest. Calibration of a model for a 

given time and location may also be important if the data used to build a model was from a 

different time or place even if it is from the same focal study species.  

4) Validation. Testing the predictive ability of the model is also an important step in predictive 

modelling. This can be accomplished in a many ways, including holdout methods, cross-

validation, and bootstrapping (Kohavi, 1995). An important part of validation is interpreting 

predictive ability, which can be subjective and depends on the research question in mind. In our 

study, I decided to optimize prediction of the breeding statuses classes of conservation interest, 
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single and feeding young. However, the need to optimize some classes over others may not be 

required if the data are comprised of classes with equal prevalence.   

Researchers should consider these steps when designing a model to acoustically monitor 

breeding status, but I also recommend taking advantage of the few existing studies monitoring 

demographics in vocal animals by placing ARUs at study areas for future use in model-building 

and monitoring.  

Conclusions 

Acoustic monitoring to infer breeding status in a songbird is a novel approach, despite the 

relatively large amount of research into functions of vocalization in birds (Boncoraglio & Saino, 

2007; Collins, 2004; Nowicki & Searcy, 2004) and growing popularity of bioacoustics in avian 

conservation research (Fristrup & Mennitt, 2012; Shonfield & Bayne, 2017). The wealth of 

literature on studies in singing behaviour functions associated with breeding status indicates that 

any of these empirical observations can likely be used to indirectly measure breeding status, and 

possibly reproductive success, in an abundance of vocal species. Advancements of ARU and 

acoustic processing technology, and models for predicting breeding status such as those 

presented in this thesis, will promote efficient collection of large-scale data on population 

dynamics. Existing ARU recordings can be mined for information on breeding status for focal 

species. Land managers could use such information to infer habitat quality, impact of 

anthropogenic disturbance, and effects of climate change on vocal species. Bioacoustics methods 

could address significant knowledge gaps in the recovery of many Species at Risk songbirds in 

Canada (Environment and Climate Change Canada, 2016b, 2016c, 2016a) by providing an 

efficient method to collect information on breeding success and the factors affecting it. The 

analytical framework and management implications presented in this thesis are not limited to 
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avian systems because it could be applied to any vocal species, such as cetaceans (Mellinger et 

al., 2007), primates (Todt et al., 1988) and other mammals (Lynch et al., 2013).   
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Appendices  

Appendix 1: Model selection results for each of the three modelling approaches from Chapter 2 

(multinomial logistic regression, hierarchical model and classification tree), including individual 

component models of the hierarchical model 

Table 1. Model selection for the effects of the predictor variables song rate, date, time and 

latitude on breeding status (single, paired, feeding young) using six a priori multinomial logistic 

regressions and their residual degrees of freedom, residual deviance and AIC values. The top 

model, indicated in bold, was identified as the lowest AIC value by a difference of > 2 AIC.  

Predictor Variables Resid. Df Resid. Dev AIC 
Breeding Status ~ Song Rate 4 241.8392 249.8392 
Breeding Status ~ Date 4 185.2757 193.2757 
Breeding Status ~ Song Rate + Date 6 170.4263 182.4263 
Breeding Status ~ Date + Song Rate*Time 10 164.6213 184.6213 
Breeding Status ~ Song Rate + Date*Latitude 10 168.1566 188.1566 
Breeding Status ~ Song Rate*Time + Date*Latitude 14 161.9928 189.9928 

 
 
Table 2. Model selection by AIC values for the first component of the hierarchical model; a 

multinomial logistic regression model to predict breeding status. The top model, indicated in 

bold, was identified as the lowest AIC value by a difference of > 2 AIC. 

 
Model AIC 
Breeding Status ~ 1 268.9 
Breeding Status ~ date 193.3 
Breeding Status ~ date + latitude 200.3 

 
 
Table 3. Model selection and AIC values for second component of the hierarchical model. Two 

underlying models were tested using six different model families, including Poisson, Zero-

inflated Poisson with one zero-inflation co-efficient, Zero-inflated Poisson allowing zero-

inflation to vary with breeding status, Negative Binomial, Zero-inflated Negative Binomial with 
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one zero-inflation co-efficient, and Zero-inflated Negative Binomial allowing zero-inflation to 

vary with breeding status. 

 
Model Family AIC 

Song Rate ~ Breeding Status 

Poisson 2539.2 
Zero-inf. Poisson |1 1868.1 
Zero-inf. Poisson |bs 1857.2 

Neg. Binom. 948.7 
Zero-inf. Neg. Binom. |1 950.6 
Zero-inf. Neg. Binom. |bs 946.9 

 
Song Rate ~ Breeding Status + Time 

Poisson 2277.8 
Zero-inf. Poisson |1 1768.8 
Zero-inf. Poisson |bs 1758.0 

Neg. Binom. 936.4 
Zero-inf. neg. Binom. |1 938.4 

Zero-inf. Neg. Binom. |bs 935.8 
 
 
Table 4. Marginal homogeneity test results, comparing proportions of predicted breeding status 

classes outputted by each model to the true breeding status proportions. *significance at p < 0.05. 
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MR 13.15 0.00 * 7.26 0.01 * 11.03 0.00 * 2.4 0.12 
HM 43.66 0.00 * 9.26 0.00 * 31.64 0.00 * 20.48 0.00 * 
CT 12.26 0.00 * 5.94 0.01 * 10.3 0.00 * 3.5 0.06 
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Figure 1. Top classification tree model. The class (single, paired, feeding young) in each box is 

class with the highest probability for that node (and would be the final prediction, for the 

terminal nodes). At each split, the predictor variable and split value is indicated, with a left split 

agreeing and right split disagreeing. The three probabilities in each box represent the probability 

of feeding young, paired and single in that split and the percentage value represents the 

proportion of all observations in that node.  
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Appendix 2: Hierarchical model bug (Bayesian inference Using Gibbs Sampling) file for use with 

‘rjags’ code (R package) used in Chapter 2, which identifies the model specification, data 

specification and prior distributions in the model to implement the Markov Chain Monte Carlo 

(MCMC) sampler 

JAGS language for the top hierarchical model in Chapter 2  used to predict breeding status using 
ARU data song rates. 
 
# note: the order of breeding states is: FY, P, S 
 
model{ 
  ### Likelihood 
  for (i in 1:N){ 
    songcount[i] ~ dpois(lambda[i])  
    log(lambda[i]) <- beta0[breedingstatus[i]] + 
beta1*abs(TimeRel2Sun[i]) 
 
    breedingstatus[i] ~ dcat(p[i,1:3])  
    for (j in 1:3){ 
      p[i,j] <- delta[i,j]/sum(delta[i,]) 
      log(delta[i,j]) = alpha[i,j] 
    }  
    alpha[i,1] <- eta[1] + eta[4]*JDate[i] 
    alpha[i,2] <- eta[2] 
    alpha[i,3] <- eta[3] + eta[5]*JDate[i] 
  } 
   
  # Priors 
  # etas are the log odds of each state (with paired as the reference 
here) 
  eta[1] ~ dnorm(eta_FY,1/(eta_FY_SE^2)) 
  eta[2] ~ dnorm(0,1000) 
  eta[3] ~ dnorm(eta_S,1/(eta_S_SE^2)) 
  eta[4] ~ dnorm(eta_FY_date,1/(eta_FY_date_SE^2)) 
  eta[5] ~ dnorm(eta_S_date,1/(eta_S_date_SE^2)) 
   
  # exp(beta0) is the expected song count (for each state) 
  beta0[1] ~ dnorm(beta0_FY, 1/(beta0_FY_SE^2)) 
  beta0[2] ~ dnorm(beta0_P, 1/(beta0_P_SE^2)) 
  beta0[3] ~ dnorm(beta0_S, 1/(beta0_S_SE^2))  
 
  beta1 ~ dnorm(beta_1, 1/(beta_1_SE^2)) 
} 
 
# FY, P, S 
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Appendix 3: Decision process for selecting a score threshold for use with an Olive-sided 

Flycatcher Song Scope recognizer to optimize recognizer output validation time while 

maintaining high true positive rate 

I used a subset of recordings processed using the OSFL recognizer (McLeod, 2015) to 

determine the most efficient way to validate Olive-sided Flycatcher (OSFL) recognizer outputs. I 

combined outputs from 11 ARUs, representing recordings with high (ie. 2086/3299) and low (ie. 

27/4649) proportions of true positive detections (Table 1).  

Table 1. Counts of true and false positives used to optimize OSFL recognizer validation.  

ARU name Count of false 
positives 

Count of true 
positives 

Total count of 
detections 

OSFL_JN_08_1 4649 27 4677 
OSFL_JN_08_2 1297 214 1511 
OSFL_JN_08_3 3299 2086 5385 
OSFL_JN_09_1 3982 147 4129 
OSFL_JN_09_2 4305 385 4690 
OSFL_JN_09_3 6376 935 7311 
OSFL_JN_09_6 2612 73 2685 
OSFL_JN_10_1 3864 17 3881 
OSFL_JN_11_2 6594 624 7218 
OSFL_JN_11_3 2593 3622 6215 
OSFL_JN_08_2 639 23 662 
Total 40210 8153 48364 

 

I investigated the descriptive statistics of acoustic measurements produced in the 

recognizer output along (level, score and quality; Wildlife Acoustics, 2011) with each detection 

to determine which measures are associated with true positive classification (Table 2) of OSFL. 

Table 2. Descriptive statistics of level, quality and score from OSFL recognizer outputs (n = 

48,364 detections), including average and standard deviation. 
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True (y) or 
false (n) 
positive 

Average 
of Level 

SD of 
Level 

Average 
of 
Quality 

SD of 
Quality 

Average 
of Score 

SD of 
Score 

N 37.80 10.22 61.81 9.75 68.66 5.32 
Y 55.25 10.51 67.43 11.68 75.46 4.86 

 

I found that both high level and high score are associated with true positive classification. 

I then removed all detections with a score of less than 70 and observed descriptive statistics of 

level and quality (Table 3). 

Table 3. Mean, standard deviation and range of level and mean quality for detections with score 

> 70. 

True (y) or 
false (n) 
positive 

Average of 
Level 

SD of Level Min of 
Level 

Max of 
Level 

Average of 
Quality 

n 50.34 12.94 21 74 66.92 
y 55.99 9.89 22 88 67.51 

 

I found that level is higher when score > 70, but by an average of 5, and large SD, 

therefore not helpful for further discrimination between true and false positives.  

Lastly, I calculated time saved if only detections with score > 70 were validated instead of the 

entire dataset. If technicians had only validated this subset, they would have had to process 

23,397/48,367 detections (i.e. 48%), decreasing validation time to half that of the full dataset 

while retaining a large portion of true positives.  
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Appendix 4: Hierarchical model bug (Bayesian inference Using Gibbs Sampling) files for use with 

‘rjags’ code (R package) used in the four hierarchical models of Chapter 3, which identifies the 

model specification, data specification and prior distributions in the model to implement the 

Markov Chain Monte Carlo (MCMC) sampler 

JAGS language for the four hierarchical models used to predict breeding status using ARU data 

song rates. 

 
#################################################################### 
# Model 1: the “no adjustment” model 
# note: for all three models, the order of breeding states is: FY, P, 
S 
 
model{ 
  ### Likelihood 
  for (i in 1:N){ 
    songcount[i] ~ dpois(lambda[i])  
    log(lambda[i]) <- gamma[birdID[i]] + beta0[breedingstatus[i]] 
 
    breedingstatus[i] ~ dcat(p[i,1:3])  
    for (j in 1:3){ 
      p[i,j] <- delta[i,j]/sum(delta[i,]) 
      log(delta[i,j]) = alpha[i,j] 
    }  
    alpha[i,1] <- eta[1] + eta[4]*JDate[i] 
    alpha[i,2] <- eta[2] 
    alpha[i,3] <- eta[3] + eta[5]*JDate[i] 
  } 
   
  # Priors 
  # etas are the log odds of each state (with paired as the reference 
here) 
  eta[1] ~ dnorm(eta_FY,1/(eta_FY_SE^2)) 
  eta[2] ~ dnorm(0,1000) 
  eta[3] ~ dnorm(eta_S,1/(eta_S_SE^2)) 
  eta[4] ~ dnorm(eta_FY_date,1/(eta_FY_date_SE^2)) 
  eta[5] ~ dnorm(eta_S_date,1/(eta_S_date_SE^2)) 
   
  # exp(beta0) is the expected song count (for each state) 
  beta0[1] ~ dnorm(beta0_FY, 1/(beta0_FY_SE^2)) 
  beta0[2] ~ dnorm(beta0_P, 1/(beta0_P_SE^2)) 
  beta0[3] ~ dnorm(beta0_S, 1/(beta0_S_SE^2))  
   
  # Prior distribution on random effect of individiual 
  for(k in 1:nbird){ 
    gamma[k] ~ dnorm(0, 1/alpha.var) 
  } 
} 
 
#################################################################### 
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# Model 2: the “zero-truncated” model 
 
model{ 
  ### Likelihood 
  for (i in 1:N){ 
    songcount[i] ~ dpois(lambda[i])T(1,)  
    log(lambda[i]) <- gamma[birdID[i]] + beta0[breedingstatus[i]]  
 
    breedingstatus[i] ~ dcat(p[i,1:3])  
    for (j in 1:3){ 
      p[i,j] <- delta[i,j]/sum(delta[i,]) 
      log(delta[i,j]) = alpha[i,j] 
    }  
    alpha[i,1] <- eta[1] + eta[4]*JDate[i] 
    alpha[i,2] <- eta[2] 
    alpha[i,3] <- eta[3] + eta[5]*JDate[i] 
  } 
   
  # Priors 
  # etas are the log odds of each state (with paired as the reference 
here) 
  eta[1] ~ dnorm(eta_FY,1/(eta_FY_SE^2)) 
  eta[2] ~ dnorm(0,1000) 
  eta[3] ~ dnorm(eta_S,1/(eta_S_SE^2)) 
  eta[4] ~ dnorm(eta_FY_date,1/(eta_FY_date_SE^2)) 
  eta[5] ~ dnorm(eta_S_date,1/(eta_S_date_SE^2)) 
   
  # exp(beta0) is the expected song count (for each state) 
  beta0[1] ~ dnorm(beta0_FY, 1/(beta0_FY_SE^2)) 
  beta0[2] ~ dnorm(beta0_P, 1/(beta0_P_SE^2)) 
  beta0[3] ~ dnorm(beta0_S, 1/(beta0_S_SE^2))  
 
  # Prior distribution on random effect of individiual 
  for(k in 1:nbird){ 
    gamma[k] ~ dnorm(0, 0.0001) 
  } 
 
} 
 
#################################################################### 
# Model 3: the “zero-inflated” model  
 
model{ 
  ### Likelihood 
  for (i in 1:N){ 
    z[i] ~ dbern(psi) 
    songcount[i] ~ dpois(lambda[i]*z[i])  
    log(lambda[i]) <- gamma[birdID[i]] + beta0[breedingstatus[i]] 
 
    breedingstatus[i] ~ dcat(p[i,1:3])  
    for (j in 1:3){ 
      p[i,j] <- delta[i,j]/sum(delta[i,]) 
      log(delta[i,j]) = alpha[i,j] 
    }  
    alpha[i,1] <- eta[1] + eta[4]*JDate[i] 
    alpha[i,2] <- eta[2] 
    alpha[i,3] <- eta[3] + eta[5]*JDate[i] 
  } 
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  # Priors 
  # etas are the log odds of each state (with paired as the reference 
here) 
  eta[1] ~ dnorm(eta_FY,1/(eta_FY_SE^2)) 
  eta[2] ~ dnorm(0,1000) 
  eta[3] ~ dnorm(eta_S,1/(eta_S_SE^2)) 
  eta[4] ~ dnorm(eta_FY_date,1/(eta_FY_date_SE^2)) 
  eta[5] ~ dnorm(eta_S_date,1/(eta_S_date_SE^2)) 
   
  # exp(beta0) is the expected song count (for each state) 
  beta0[1] ~ dnorm(beta0_FY, 1/(beta0_FY_SE^2)) 
  beta0[2] ~ dnorm(beta0_P, 1/(beta0_P_SE^2)) 
  beta0[3] ~ dnorm(beta0_S, 1/(beta0_S_SE^2))  
   
  # psi is the probability that the bird sings (or is detected by the 
ARU and the automation algorithm) 
  psi ~ dunif(0, 1) 
   
  # Prior distribution on random effect of individiual 
  for(k in 1:nbird){ 
    gamma[k] ~ dnorm(0, 1/alpha.var) 
  } 
} 
 
#################################################################### 
# Model 4: the “distance” model  
 
model{ 
  ### Likelihood 
  for (i in 1:N){ 
    z[i] ~ dbern(psi) 
    songcount[i] ~ dpois(lambda[i]*z[i])  
    log(lambda[i]) <- gamma[birdID[i]] + beta0[breedingstatus[i]] + 
beta1.phi*level[i] 
 
    breedingstatus[i] ~ dcat(p[i,1:3])  
    for (j in 1:3){ 
      p[i,j] <- delta[i,j]/sum(delta[i,]) 
      log(delta[i,j]) = alpha[i,j] 
    }  
    alpha[i,1] <- eta[1] + eta[4]*JDate[i] 
    alpha[i,2] <- eta[2] 
    alpha[i,3] <- eta[3] + eta[5]*JDate[i] 
  } 
   
  # Priors 
  # etas are the log odds of each state (with paired as the reference 
here) 
  eta[1] ~ dnorm(eta_FY,1/(eta_FY_SE^2)) 
  eta[2] ~ dnorm(0,1000) 
  eta[3] ~ dnorm(eta_S,1/(eta_S_SE^2)) 
  eta[4] ~ dnorm(eta_FY_date,1/(eta_FY_date_SE^2)) 
  eta[5] ~ dnorm(eta_S_date,1/(eta_S_date_SE^2)) 
   
  # exp(beta0) is the expected song count (for each state) 
  beta0[1] ~ dnorm(beta0_FY, 1/(beta0_FY_SE^2)) 
  beta0[2] ~ dnorm(beta0_P, 1/(beta0_P_SE^2)) 
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  beta0[3] ~ dnorm(beta0_S, 1/(beta0_S_SE^2))  
   
  # psi is the probability that the bird sings (or is detected by the 
ARU and the automation algorithm) 
  psi ~ dunif(0, 1) 
   
  # Prior distributions on detection 
  beta1.phi ~ dt(0, 0.4, 1) 
   
  # Prior distribution on random effect of individiual 
  for(k in 1:nbird){ 
    gamma[k] ~ dnorm(0, 1/alpha.var) 
  } 
} 
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Appendix 5: A pilot study of quantifying Olive-sided Flycatcher songs in ARU recordings manually 

versus with automatic recognition to determine the most efficient processing method for 

breeding status – song rate studies 

Objectives:  

1) Determine which song metrics can be extracted manually using a spectrogram annotation 

software (Syrinx, henceforth “manual” method) vs. automatic recognition software (Song Scope, 

henceforth “automatic recognition” method).  

2) Determine the optimum processing method (manual vs. automatic recognition) to extract 

Olive-sided Flycatcher singing behaviour to model the relationship between singing behaviour 

and breeding status. 

 

Methods: 

Acoustic processing 

Song Scope - The recognizer (McLeod, 2015) was run at score-quality threshold 50-60, then 

validated to score > 70. True positives were totalled for each 5-min period at the start of every 

hour.  

Syrinx - Spectrograms for each 5-minute sample period were visually scanned for any OSFL 

vocalization, including songs (“quick, three-beers”), calls (“pip-pip-pip”) and other 

miscellaneous OSFL sounds (ie. chattering and purring sounds and beak snapping). Visual 

identification was also confirmed by listening to clips, when required. If multiple individuals 

were detected (based off overlapping songs/calls or obvious distance differences), they were 

recorded separately.  
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Recordings selection 

I selected two OSFL territories that were monitored in 2016, had already been processed 

using Song Scope, and had relatively high song counts (Table 1). The ARUs selected had been 

well-placed on the OSFL territories (Fig.1); they were at the centre of the where the OSFLs were 

detected during multiple 1-hour focal studies throughout the breeding season and were placed 

near the nest. I also wanted to test the effect of multiple individuals on recognizer detections and 

AB-08 was known to have an immediately adjacent territory. For each male, I listened to 

recordings collected on 4 days throughout the breeding season, approximately 1 week apart, 

which overlapped the “paired”, “incubating” stages, as well as the “feeding young” stage for JN-

10 (Table 2). For each day, I processed nine 5-minute periods at the start of every hour between 

3:00 am and 11:05 am.  

 

Table 1. Total counts for all ARUs from 2016 which were run and validated using Song Scope. 

Rows in white represent ARUs where an OSFL was detected at least once, whereas grey rows 

are ARUs with no true positives produced from Song Scope processing. The two ARUs selected 

for this study are highlighted in yellow.  

ARU Sum 5-min 
song count 

Mean 5-
min song 
count 

StdDev 5-min 
song count 

Max 5-min 
song count 

OSFL-AB-02-1 934 7.41 16.57 108 
OSFL-NB-10-2 773 4.52 15.74 131 
OSFL-AB-08-1 573 1.82 6.42 50 
OSFL-JN-11-3 327 2.02 6.19 43 
OSFL-NB-08-1 207 1.10 2.65 22 
OSFL-SB-14-1 193 1.07 3.25 22 
OSFL-AB-06-2 168 0.50 3.40 42 
OSFL-AB-09-1 147 1.09 2.43 12 
OSFL-SB-01-2 147 2.04 2.86 12 
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OSFL-NB-01-2 122 0.71 2.38 14 
OSFL-AB-07-1 93 0.49 1.10 6 
OSFL-JN-10-2 79 0.63 1.94 18 
OSFL-SB-04-1 66 0.29 1.52 16 
OSFL-JN-09-3 62 0.30 1.13 9 
OSFL-SB-03-1 47 1.31 3.88 16 
OSFL-JN-08-3 38 2.11 5.80 18 
OSFL-AB-01-1 10 0.07 0.45 4 
OSFL-NB-20-2 9 0.14 0.56 3 
OSFL-NB-09-1 8 0.07 0.45 3 
OSFL-AB-04-1 4 0.02 0.14 1 
OSFL-AB-10-1 1 0.01 0.12 1 
OSFL-AB-01-2 0 0.00 0.00 0 
OSFL-AB-02-2 0 0.00 0.00 0 
OSFL-AB-04-2 0 0.00 0.00 0 
OSFL-AB-06-3 0 0.00 0.00 0 
OSFL-AB-08-2 0 0.00 0.00 0 
OSFL-AB-09-2 0 0.00 0.00 0 
OSFL-AB-11-1 0 0.00 0.00 0 
OSFL-AB-11-2 0 0.00 0.00 0 
OSFL-JN-08-1 0 0.00 0.00 0 
OSFL-JN-08-2 0 0.00 0.00 0 
OSFL-JN-09-1 0 0.00 0.00 0 
OSFL-JN-09-2 0 0.00 0.00 0 
OSFL-JN-09-4 0 0.00 0.00 0 
OSFL-JN-09-5 0 0.00 0.00 0 
OSFL-JN-09-6 0 0.00 0.00 0 
OSFL-JN-11-2 0 0.00 0.00 0 
OSFL-JN-11-4 0 0.00 0.00 0 
OSFL-JN-14-1 0 0.00 0.00 0 
OSFL-JN-14-2 0 0.00 0.00 0 
OSFL-JN-14-3 0 0.00 0.00 0 
OSFL-JN-14-4 0 0.00 0.00 0 
OSFL-JN-18-1 0 0.00 0.00 0 
OSFL-JN-18-2 0 0.00 0.00 0 
OSFL-NB-08-2 0 0.00 0.00 0 
OSFL-NB-09-2 0 0.00 0.00 0 
OSFL-NB-10-1 0 0.00 0.00 0 
OSFL-NB-20-1 0 0.00 0.00 0 
OSFL-NB-20-3 0 0.00 0.00 0 
OSFL-NB-20-4 0 0.00 0.00 0 
OSFL-SB-01-3 0 0.00 0.00 0 
OSFL-SB-03-2 0 0.00 0.00 0 
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OSFL-SB-04-2 0 0.00 0.00 0 
OSFL-SB-11-2 0 0.00 0.00 0 
OSFL-SB-11-3 0 0.00 0.00 0 
OSFL-SB-14-2 0 0.00 0.00 0 

 

 

 

Figure 1. Placement of the ARUs (red dots) in relation to nest locations (yellow dot on the left, 

blue dot on the right) and other used locations (GPS points collected every 5 minutes during 

hour-long follows). JN-10 is an OSFL territory in the NWT, with no known neighbouring OSFL 

males nearby. AB-08 (right) is a territory near McClelland fen, AB and was immediately 

adjacent to OSFL territory AB-09. For this analysis, ARU 08-1 was used (closest to nest).  

 

Table 2. Sample dates for each OSFL territory and associated breeding status of the male OSFL 

occupying that territory. For each date, nine 5-minute periods were sampled (every hour, 

between 3 am – 11 am). 

OSFL 
territory 

Date Breeding 
Status 

Count of 5-min recordings 

AB-08 June 10, 2016 Paired 9 
AB-08 June 17, 2016 Paired 9 
AB-08 June 23, 2016 Paired 9 
AB-08 June 30, 2016 Incubating 9 
JN-10 June 11, 2016 Paired 9 
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JN-10 June 19, 2016 Incubating 9 
JN-10 June 26, 2016 Incubating 9 
JN-10 July 2, 2016 Feeding Young 9 
                                                             TOTAL 72 

 

Objective 1: Determine which song metrics can be extracted manually using manual vs. 

automatic recognition methods. 

1a. What is the false negative rate (i.e. missed OSFL songs) using the Song Scope 

recognizer? 

Table 3. Number of songs detected using automatic recognition vs. manual methods for the same 

recordings and the percentage of songs missed by automatic recognition compared with manual 

processing. 

 Song Scope (automatic 
recognition) 

Syrinx  
(manual/visual) 

% of songs 
missed 

JN-10 (only 1 male) 44 256 83% 
AB-08 (up to 3 males) 98 1170 92% 

 

1b. How much more song/call information can I extract?  

 

The number of OSFL songs detected by human listening, using Syrinx, was much higher 

than the number of songs detected using Song Scope automatic recognition (Fig.2). Song Scope 

is unable to distinguish between multiple individuals, but when they were identified using 

Syrinx, I see that more individuals result in more singing (Fig. 3).  
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Figure 2. Mean 5-minute song count + SE when the same 72 recordings were processed using 

Song Scope (automatic recognition) vs Syrinx (manual detection). The left plot is all counts 

combined, and the right plot is mean song counts as a function of sample hour. 

 

Figure 3. Mean 5-minute song count + SE when the same 72 recordings were processed using 

Song Scope (automatic recognition) vs Syrinx (manual detection), as a function of the number of 



 

83 
 

individual OSFLs detected singing on the recording. The number above each bar is the sample 

size.  

 

Objective 2: Determine the optimum processing method (manual vs. automatic recognition) to 

extract Olive-sided Flycatcher singing behaviour to model the relationship between singing 

behaviour and breeding status. 

2a. How long does manual processing of recordings take?  

Average processing time using my current song and pip detection methods in Syrinx is ~ 

1.5 processing minutes/1 minute of audio. I have calculated the number of days (comprised of 6 

hours of processing/day) that it would take to complete a few different scenarios with different 

sampling options (varying daily sample rate and number of samples per day; table 2). The 

maximum standard recording size to sample is limited to 5 minutes because that was the 

maximum length of time the ARU was programmed to record. If sampling is only once per day, I 

would select 3 am, to maximize the likelihood of capturing a singing bout (based off my results 

so far and other studies on OSFL singing behaviour).   

 

Discussion: 

• Detecting Olive-sided Flycatcher (OSFL) songs using an automated recognition software 

(Song Scope, by Wildlife Acoustics, recognizer built by McLeod [2015]) results in 

missing >80% of songs that could be detected in the Autonomous Recording Unit (ARU) 

recordings, based on manual processing of audio recordings (Syrinx) 

• Multiple OSFLs on a recording cannot be identified using Song Scope, but can with 

Syrinx, and singing conspecific neighbours likely impact singing behaviour 
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• The processing speed for identifying vocalizations using Syrinx is ~1.5 processing 

minutes/1 audio minute (example sample regime: to sample 19 individuals, for 67 days, 

for 5-minutes a day, would require 13 6-hour work days to process)   
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