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Abstract

In this dissertation, we study online off-policy temporal-difference learning

algorithms, a class of reinforcement learning algorithms that can learn predic-

tions in an efficient and scalable manner. The contributions of this dissertation

are one of the two kinds: (1) empirically studying existing off-policy learning

algorithms, or, (2) exploring new algorithmic ideas.

In reinforcement learning, it is not uncommon for an agent to learn about

one policy, called the target policy, while behaving using a different policy,

called the behavior policy. When the target and behavior policies are different,

learning is ‘off’ the policy in the sense that the data is from a different source

than the target policy.

Our first contribution is a novel Gradient-TD algorithm called TDRC.

Gradient-TD algorithms are one of the most important families of off-policy

learning algorithms due to their favorable convergence guarantees. Previous

research showed that Gradient-TD algorithms learn slower than some other

unsound algorithms such as Off-policy TD(λ) (Maei, 2011). In addition,

Gradient-TD algorithms are not as easy to use as Off-policy TD because they

have two learned weight vectors and two step-size parameters. Our contribu-

tion is a new algorithm called temporal-difference learning with regularized

corrections (TDRC), that behaves as well as Off-policy TD, when Off-policy

TD performs well but is sound in cases where Off-policy TD diverges. TDRC

provides a standard way of setting the second step-size parameter and is eas-

ier to use than other Gradient-TD algorithms. We empirically investigate the

performance of TDRC across a range of problems, for both prediction and

control, and for both linear and non-linear function approximation, and show

that it consistently outperforms other Gradient-TD algorithms. We derive
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the control variant of TDRC and show that it could be a better alternative to

existing algorithms for solving complex control problems with neural networks.

One of the most important contributions of this thesis is a comprehensive

empirical study of off-policy prediction learning algorithms. The study is one

of the most thorough studies of off-policy prediction learning algorithms to

date in terms of the number of algorithms it includes and is unique in that

the performance of algorithms with respect to each of the algorithms’ param-

eters is assessed individually. We present empirical results with eleven promi-

nent off-policy learning algorithms that use linear function approximation:

five Gradient-TD methods, two Emphatic-TD methods, Off-policy TD(λ), V-

trace(λ), Tree Backup(λ), and ABQ(ζ). We assess the performance of the

algorithms in terms of their learning speed, asymptotic error, and sensitivity

to the step-size and bootstrapping parameters on a simple problem, called the

Collision task, that has eight states and two actions. On the Collision task, we

found that the two Emphatic-TD algorithms learned the fastest, reached the

lowest errors, and were robust to parameter settings. V-trace, Tree Backup,

and ABQ were no faster and had higher asymptotic error than other algo-

rithms.

Another one of the main contributions of this thesis is the first empirical

study of off-policy prediction learning algorithms with a focus on one of the

most important challenges in off-policy learning: slow learning. When learning

off-policy, importance sampling ratios are used to correct for the differences

between the target and behavior policies. These ratios can be large and of

high variance. The step-size parameter should be set small to control this

high variance, which in turn slows down learning. In this study, we found

that the algorithms’ performance is highly affected by the variance induced by

the importance sampling ratios. Data shows that algorithms that adapt the

bootstrapping parameter during learning, such as V-trace(λ) are less affected

by the high variance than the other algorithms. We observed that Emphatic

TD(λ) tends to have lower asymptotic error than other algorithms, but exhibits

high variance and does not learn well when the product of importance sampling

ratios is large.
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The final contribution of this thesis is a step-size adaptation algorithm,

called Step-size Ratchet (and a variant of it called Soft Step-size Ratchet),

that when combined with Emphatic TD(λ), significantly improves its learn-

ing speed. The Step-size Ratchet algorithm keeps the step-size parameter as

large as possible and only ratchets it down when necessary. We establish the

effectiveness of the combination of Emphatic TD and Step-size Ratchet by

comparing it with the combination of Emphatic TD(λ) and other step-size

adaptation algorithms on tasks where learning fast is challenging.

The empirical studies conducted in this dissertation are not the last word,

but they contribute to the growing database of reliable results comparing mod-

ern off-policy learning algorithms. Similarly, the algorithms proposed in this

dissertation do not completely resolve the challenges of off-policy prediction

learning, but they do take a step in increasing the practicality of the existing

set of off-policy prediction learning algorithms.
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Preface

Several parts of this dissertation are based on papers that were written in
collaboration with others.

Chapters 4 and 5 are based on a published paper that introduces the
TDRC algorithm, a new variant of Gradient-TD algorithms (Ghiassian, Pat-
terson, Garg, Gupta, White, & White 2020). This work was motivated by
the preformance gap we observed between the sound GTD(λ) algorithm, and
the unsound Off-policy TD(λ) algorithm. I was involved in all parts of the
work, including the algorithmic, experimental, theoretical, and writeup as-
pects. Other authors were also involved in pretty much all aspects of the
work. Shivam Garg, specifically played a key role in establishing that a vari-
ant of the proof provided by Maei (2011) for the convergence of the TDC
algorithm applies to the TDRC algorithm.

Chapter 6 is based on a paper under review (Ghiassian & Sutton, 2021a),
mostly done by Sutton and I. I was responsible for designing, conducting, and
writing about the experiments and the results. I discussed extensively every
aspect of the project with Sutton during the course of the write up. Sutton
had a key role in forming the architecture of the manuscript. An earlier version
of this paper is also availabble on ArXiv. Adam White, Martha White, and
Andrew Patterson helped me in writing up an earlier version of the paper.
Adam White and Martha White’s help for the earlier version of the paper
included but was not limited to forming the overall architecture of the paper.

Chapter 7 is also based on a paper under review (Ghiassian & Sutton,
2021b), mostly done by Sutton and I. I was responsible for designing and con-
ducting the experiments. I was also responsible for writing up the manuscript.
Sutton helped me to a great extent in presenting the work and editing the
manuscript. Similar to the previous chapter, Adam White, Martha White,
and Andrew Patterson helped me in writig up the earlier version of the pa-
per. Adam White and Martha White’s help on the early version of the paper
included but was not limited to forming the overall architecture of the paper.
Kenny Young helped me in preparing Section 7.11.

Chapter 8 is based on a paper in preparation. Sutton and I developed the
algorithm and designed the experiments. I was responsible for conducting the
experiments, analyzing the results and writing up the work.
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One day I will find the right words, and they will be simple.

– Jack Kerouac.
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Chapter 1

Learning Predictions in a
Continual, Scalable, and Online
Manner

We make hundreds, if not thousands of decisions every day. In every decision,

one or more predictions are involved. These predictions form our expectation

of what happens next if an action is taken in a situation. For example, when

we decide to open a door, we make a number of decisions and make predictions

about each of them: we reach for the door knob, predicting that our hand will

touch the door knob, turn it, predicting that the knob will in fact turn and

predicting that the door will be unlocked, and finally pull the door predicting

that the door will be opened. The collection of these predictions that we have

about our behavior constitutes much of our knowledge about interacting with

the world. In this sense, much of knowledge is predictive.

To learn predictions that constitute predictive knowledge, like the ones

mentioned in the example above, it is best that the learning algorithm has

special attributes. First, it is desirable if the algorithm is able to learn in

a continual manner. Learning should continue forever, because we want the

agent to be able to adapt to new situations and learn how to deal with them.

Second, it is desirable if the algorithm is able to learn in a scalable manner

because there are many predictions to be learned about and the agent should

be able to learn and maintain a large body of predictive knowledge. The

agent and the world are both complex, and the intelligent agent needs scalable
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algorithms to be able to handle the complexity. Finally, it is desirable if the

algorithm is able to learn in an online manner, meaning that the agent learns

as it interacts with its environment. This is in contrast to storing the data

and learning from it later on. We want learning algorithms to be able to learn

online because it can be more robust than offline learning, meaning that errors

in the data can be corrected during the operation, whereas in offline learning,

the data is gathered and fixed, and possible errors cannot be corrected while

the agent is learning from the data. Another reason that we want learning

to be online is that the data for online learning can often be generated at

low cost and in large quantities. For example, AlphaGo, the computer Go

player made by Silver et al. (2016), that beat the human champion, or the

success of Tesauro’s (1994) TD Gammon both rely on a vast amount of data

generated by an agent while in operation. Finally, to adapt to changes in the

environment, online learning is important as is learning continually (Sutton &

Whitehead, 1993).

1.1 Off-policy Prediction Learning

Off-policy prediction learning algorithms, which are the focus of this disserta-

tion, can be utilized by an intelligent agent to learn predictions in a continual

and scalable manner. In reinforcement learning, it is not uncommon to learn a

value function for a policy while following another policy. For example, the Q-

learning algorithm (Watkins, 1989; Watkins & Dayan, 1992) learns the value

of the greedy policy while the agent selects its actions according to a different,

more exploratory policy. The first policy, the one whose value function is being

learned, is called the target policy while the more exploratory policy generat-

ing the data is called the behavior policy. When the two policies are different,

as they are in Q-learning, the problem is said to be one of off-policy learning,

whereas if they are the same, the problem is said to be one of on-policy learn-

ing. The former is ‘off’ in the sense that the data is from a different source

than the target policy, whereas the latter is from data that is ‘on’ the policy.

Off-policy learning is more difficult than on-policy learning and subsumes it
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as a special case.

One reason for interest in off-policy learning algorithms is that they provide

a way of intermixing exploration and exploitation. The classic dilemma is that

an agent should always exploit what it has learned so far—it should take the

best actions according to what it has learned—but, on the other hand, it should

always explore to find actions that might be superior. Of course, no agent can

simultaneously behave in both ways. However, an off-policy algorithm like

Q-learning can, in a sense, pursue both goals at the same time. The behavior

policy can explore freely, while the target policy can converge to the fully

exploitative, optimal policy independent of the behavior policy’s explorations.

Another appealing aspect of off-policy learning is that it enables learning

about many policies in parallel. Once the target policy is freed from behavior,

there is no reason to have a single target policy. With off-policy learning,

an agent could simultaneously learn how to optimally perform many different

tasks (as suggested by Jaderberg et al., 2016 and Rafiee et al., 2019). Paral-

lel off-policy learning of value functions has even been proposed as a way of

learning general, policy-dependent, world knowledge (e.g., Sutton et al., 2011;

White, 2015; Ring, in prep).

Finally, note that numerous ideas in the machine learning literature rely

on effective off-policy learning, including the learning of temporally-abstract

world models (Sutton, Precup, & Singh, 1999), predictive representations of

state (Littman, Sutton, & Singh, 2002; Tanner & Sutton, 2005), auxiliary

tasks (Jaderberg et al., 2016), life-long learning (White, 2015), and learning

from historical data (Thomas, 2015).

Many off-policy learning algorithms have been explored in the history of

reinforcement learning. Q-learning (Watkins, 1989; Watkins & Dayan, 1992) is

perhaps the oldest. In the 1990s it was realized that combining off-policy learn-

ing, function approximation, and temporal-difference (TD) learning risked

instability (Baird, 1995). Precup, Sutton, and Singh (2000) introduced off-

policy algorithms with importance sampling and eligibility traces, as well as

tree backup algorithms, but did not provide a practical solution to the risk

of instability. Gradient-TD methods (see Maei, 2011; Sutton et al., 2009) as-
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sured stability by following the gradient of an objective function, as suggested

by Baird (1999). Emphatic-TD methods (Sutton, Mahmood, & White, 2016)

reweighted updates in such a way as to regain the convergence assurances of the

original on-policy TD algorithms. These methods had convergence guarantees,

but no assurances that they would be efficient in practice. Other off-policy

algorithms, including Retrace (Munos et al., 2016), V-trace (Espeholt et al.,

2018), and ABQ (Mahmood, Yu, & Sutton, 2017) were developed recently to

overcome difficulties encountered in practice.

As more off-policy prediction learning algorithms were developed, there was

a need to compare them systematically. There have been a few systematic em-

pirical studies of off-policy prediction learning algorithms. The earliest system-

atic study was probably that by Geist and Scherrer (2014). Their experiments

were on random MDPs and compared eight major off-policy algorithms. A few

months later, Dann, Neumann, and Peters (2014) published a more in-depth

study with one additional algorithm (an early Gradient-TD algorithm) and

six test problems including random MDPs. Both studies considered off-policy

problems in which the target and behavior policies were given and stationary.

Such prediction problems allow for relatively simple experiments and are still

challenging (e.g., they involve the same risk of instability). Both studies also

used linear function approximation with a given feature representation. The

algorithms studied by Geist and Scherrer (2014), and by Dann, Neumann,

and Peters (2014) can be divided into those whose per-step complexity is lin-

ear in the number of parameters, like TD(λ), and methods whose complexity is

quadratic in the number of parameters (proportional to the square of the num-

ber of parameters), like Least-squares TD(λ) (Bradtke & Barto, 1996; Boyan,

1999). Quadratic-complexity methods avoid the risk of instability, but cannot

be used in learning systems with large numbers (e.g., millions) of weights. A

third systematic study, by White and White (2016), limited the breadth of

the study in that they excluded quadratic-complexity algorithms, but added

four additional linear-complexity algorithms and additionally, studied different

forms of eligibility traces.

Although there has been a few studies that focused on practical considera-
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tions in off-policy prediction learning, there remains a gap between the theory

of off-policy learning and its practical applications as most of the recent work

in off-policy learning has focused on guaranteeing stability with linear func-

tion approximation and left a thorough empirical evaluation of algorithms for

future work.

1.2 Objective

This dissertation seeks to answer the following question:

How do online off-policy prediction learning algorithms compare to each other

in practice and how can their practicality be improved?

At this point, the reader might rightfully ask what practicality means. We gen-

erally examine three areas when studying a prediction algorithms practicality.

One important area is learning speed. It is important that the algorithm learns

fast, meaning that it is able to learn predictions via minimal interactions with

the environment. Other than being fast, we care about the final error level.

An algorithm that converges fast but to a poor solution is not desirable. Fi-

nally, when studying the performance of algorithms with respect to an error

measure, the performance changes as we adjust the algorithms’ parameters.

The less we need to adjust the parameters of an algorithm in order for it to

learn fast and accurately, the better.

We empirically investigate the practicality of prominent prediction learning

algorithms by applying them to three small problems of increasing size and

complexity. Sensitivity curves are the main tool we use for assessing the algo-

rithms’ practicality. Sensitivity curves show the performance of an algorithm

over many parameter settings in a condensed manner. In sensitivity curves,

the primary measure of good performance that we look for is low error, over

a large range of parameters. This measure can tell us if the algorithm learned

a task well, and how easy it was to tune the algorithm, depending on what

portion of parameters resulted in low error.

To improve algorithms’ practicality, our methodology is to closely examine

the existing algorithms, spot their weaknesses and make improvements where
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they have a weakness. When examining the practicality of existing algorithms,

it is observed repeatedly that an algorithm performs better than another in

one aspect but performs worse in another aspect. The latter is referred to as

a weakness of the algorithm. For example, the Gradient-TD algorithms have

stronger convergence guarantees than Off-policy TD(λ) but they learn slower.

One of the objectives of this dissertation is to make incremental improvements

to algorithms where they exhibit a weakness.

1.3 Contributions

This dissertation makes five main contributions, including two empirical stud-

ies and three algorithmic ideas.

The two empirical studies go deeper than other empirical studies of off-

policy prediction learning algorithms conducted to date in that they include

more online off-policy prediction learning algorithms than any other study

conducted to date. Additionally, the empirical studies in this dissertation in

a sense go deeper than the previous empirical studies in that they analyze the

performance of algorithms with respect to the parameters of algorithms indi-

vidually rather than maximizing over one parameter to study the performance

over another. This provides a more realistic picture of the performance of algo-

rithms and can result in a better understanding of the algorithms. Our empir-

ical studies are more limited than the previous empirical studies in breadth,

in that they only consider linear complexity algorithms and focus only on

practical considerations. Our empirical studies are more limited than the one

conducted by White and White (2016) in that only one form of the eligibil-

ity trace is studied. Last but not least, our empirical studies are more limited

than the previous studies in that they do not consider random MDPs, whereas

all previous studies of off-policy prediction learning algorithms included some

form of random MDPs in their experiments.

The three algorithmic ideas have their root in empirical analyses, in that

their goal is to improve the algorithms where they showed to have a weak-

ness in empirical studies. One of the main algorithmic ideas for prediction
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learning uses regularization techniques and is motivated by the performance

gap observed by Maei (2011) between Off-policy TD(λ) and Gradient-TD al-

gorithms. In supervised learning, regularization is used to encourage learning

a simple model. Learning simple models can be useful, especially when we do

not want to overfit to possible noise in the data. Gradient-TD algorithms use

a correction term in their update rule so that the updates are in the direction

of minimizing an objective function. This correction term relies on a learned

weight vector that we call the secondary weight vector. Secondary weights

are learned such that they linearly approximate the TD-error. Because the

TD-error can itself be noisy, using regularization can help learn better approx-

imations of the TD-error. The second algorithmic idea is a simple modification

of the first one so that it is applicable to control. The third algorithmic idea

is a step-size adaptation algorithm to increase the learning speed of Emphatic

TD(λ). The proposed algorithm, called Step-size Ratchet, shrinks down the

step-size parameter over the course of learning only when it is necessary for

the step-size parameter to be shrunk to avoid overshoot. Below, we discuss

the contributions of this dissertation in more detail.

The TDRC algorithm (Chapter 4)

We propose a new algorithm called TD with Regularized Corrections (TDRC),

that attempts to balance ease of use, soundness, and performance. Maei (2011)

showed that although Gradient-TD algorithms have strong convergence prop-

erties, they learn slower than the classic Off-policy TD(λ) algorithm that is

not guaranteed to converge under off-policy training. Our new algorithm,

TDRC(λ) uses regularization of the weight vector, to improve the learning

speed and preserve convergence properties. We show that TDRC(λ) behaves

as well as Off-policy TD(λ), when Off-policy TD(λ) performs well, but is

sound in cases where Off-policy TD(λ) diverges. We empirically investigate

TDRC(λ) across a range of problems for both prediction with linear function

approximation and show that it outperforms other Gradient-TD algorithms.
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The QRC Algorithm (Chapter 5)

We extend TDRC such that it is applicable to control problems. The resulting

algorithm is called Q-learning with Regularized Corrections (QRC). We show

that QRC performs as well as the classic Q-learning algorithm when applied

to simple tasks such as Mountain Car, and also show that it outperforms the

DQN architecture (Mnih et al., 2015) on two challenging tasks where an agent

learns how to play games from raw pixels.

An empirical comparison of online off-policy prediction learning al-

gorithms on the Collision task (Chapter 6)

We present empirical results with eleven prominent off-policy prediction learn-

ing algorithms with linear function approximation: five Gradient-TD methods,

two Emphatic-TD methods, Off-policy TD(λ), V-trace, and variants of Tree

Backup and ABQ derived in this dissertation so that they are applicable to the

prediction setting. Our experiments used the Collision task, a small off-policy

problem analogous to that of an autonomous car trying to predict whether

it will collide with an obstacle. We assessed the performance of the algo-

rithms according to their learning rate, asymptotic error level, and sensitivity

to step-size and bootstrapping parameters. By these measures, the eleven al-

gorithms can be partially ordered on the Collision task. In the top tier, the

two Emphatic-TD algorithms learned the fastest, reached the lowest errors,

and were robust to parameter settings. In the middle tier, the five Gradient-

TD algorithms and Off-policy TD(λ) were more sensitive to the bootstrapping

parameter. The bottom tier comprised V-trace, Tree Backup, and ABQ; these

algorithms were no faster and had higher asymptotic error than the others.

Our results are definitive for this task, though of course experiments with more

tasks are needed before an overall assessment of the algorithms’ merits can be

made.

An empirical comparison of online off-policy prediction learning al-

gorithms in the Four Rooms environment (Chapter 7)

Many off-policy prediction learning algorithms have been proposed in the past

8



decade, but it remains unclear which algorithms learn faster than others. We

empirically compare the same set of off-policy prediction learning algorithms

mentioned above with linear function approximation on two small tasks: the

Rooms task, and the High Variance Rooms task. The tasks are designed such

that learning fast in them is challenging. In the Rooms task, the product of

importance sampling ratios can be as large as 214. To control the high variance

caused by the product of the importance sampling ratios, the step-size parame-

ter should be set small, which in turn slows down learning. The High Variance

Rooms task is more extreme in that the product of the ratios can become as

large as 214 × 25. We consider the same set of algorithms as in the Collision

task and employ the same experimental methodology. The algorithms consid-

ered are: Off-policy TD(λ), five Gradient-TD algorithms, two Emphatic-TD

algorithms, Tree Backup(λ), V-trace(λ), and ABTD(ζ). We found that the

algorithms’ performance is highly affected by the variance induced by the im-

portance sampling ratios. The data shows that Tree Backup(λ), V-trace(λ),

and ABTD(ζ) are not affected by the high variance as much as other algo-

rithms but they restrict the effective bootstrapping parameter in a way that

is too limiting for tasks where high variance is not present. We observed that

Emphatic TD(λ) tends to have lower asymptotic error than other algorithms,

but might learn more slowly in some cases.

The Step-size Ratchet algorithm (Chapter 8)

We propose a new algorithm for adapting the step-size parameter of Emphatic

TD(λ). We observed in our empirical studies that Emphatic TD(λ) might learn

slower than other algorithms when solving a problem with large products of im-

portance sampling ratios. The Step-size Ratchet algorithm ratchets down the

step-size when necessary to avoid overshoot. We show that Step-size Ratchet

significantly improves Emphatic TD(λ)’s learning speed. We show that the

combination of Emphatic TD(λ) and Step-size Ratchet is perfectly capable

of solving problems that Emphatic TD(λ) with constant step-size parameters

has trouble solving due to high variance and slow learning. We follow up with

a new form of Step-size Ratchet which we call Soft Step-size Ratchet, that
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occasionally increases the magnitudes of the step-size parameter to provide

even further improvements in learning speed. We show that on the Rooms,

and the High Variance Rooms tasks, Soft Step-size Ratchet combined with

Emphatic TD(λ) outperforms Emphatic TD(λ) combined with other step-size

adaptation algorithms such as Adam.

1.4 Summary

In this chapter, we discussed the main topic of this dissertation, the objective,

and some of the key ideas that are used throughout the thesis. We went

over some of the related works, and finally closed by briefly discussing the

contributions that we make throughout the dissertation.

10



Chapter 2

Background

This thesis includes two empirical studies and three novel algorithmic ideas

for online off-policy prediction learning. To understand the contributions of

this dissertation, an understanding of a few fundamental reinforcement learn-

ing concepts including value functions, prediction learning, off-policy learning,

and function approximation is needed. The contents of this chapter serve as

background only. The reader familiar with the concepts mentioned above, can

safely skip this chapter.

We start by going over the reinforcement learning framework and Markov

Decision Processes. We continue with a formal definition of state-value func-

tions and state-action-value functions, and finish with a formal discussion of

off-policy learning, importance sampling ratios, and linear and non-linear func-

tion approximation.

2.1 Reinforcement Learning

In reinforcement learning, an agent and environment interact at discrete time

steps, t = 0, 1, 2, . . .. The environment is a Markov Decision Process (MDP)

and is in state St ∈ S at time step t. At each time step, the agent chooses

an action At ∈ A with probability π(a|s), where the function π : A × S →
[0, 1] with

∑
a∈A π(a|s) = 1, ∀s ∈ S, is called the policy and determines the

agent’s behavior. After taking action At in state St, the agent receives from

the environment a numerical reward Rt+1 ∈ R ⊂ R and the environment

moves to a new state St+1. The reward and the next state are stochastically
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The predictions that we discussed in the first chapter can be formulated

through value functions. In prediction learning, the goal of the agent is to

learn value functions through interaction with the environment.

In control learning, it is common to use the state-action-value function for

policy π or simply the action-value function. The action-value function for

policy π is defined as:

qπ(s, a)
def

= E [Gt | St=s, At=a,At+1:∞∼ π] . (2.2)

The main difference between state-value functions and action-value functions

is that the expectation is computed given the state and the action for action-

value functions, while for state value functions, the expectation is computed

given the state only.

In control learning, the goal typically is to learn the policy whose action-

value function assigns to each state-action pair the largest expected return

achievable by any policy. This policy is called the optimal policy:

q∗(s, a)
def

= max
π

qπ(s, a),

for all s ∈ S and a ∈ A(s).

There might sometimes be natural breaks in the interaction of the agent-

environment. We call the intervals between these breaks episodes. Each

episode ends in a state called the terminal state. Reaching the terminal state

is typically followed by a reset to the starting state or to a sample from the

distribution of starting states. Reinforcement learning tasks that fit in the

above-mentioned explanation, are called episodic tasks. In contrast, in many

cases, learning continues forever without limit. Reinforcement learning tasks

of this kind are called continuing tasks. Notation for episodic and continuing

tasks can be unified by considering an absorbing state, that transitions only to

itself with a reward of zero. In this dissertation, we study both episodic and

continuing tasks.
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2.2 Off-policy Learning

In off-policy learning, the agent follows a behavior policy b, and is interested in

learning the value function under a different target policy, π. To account for the

differences between the target and the behavior policies, importance sampling

ratios are typically used. The importance sampling ratio is the probability

of taking an action in a state under the target policy divided by the same

probability under the behavior policy. Formally, the importance sampling

ratio is defined as:

ρt
def

=
π(At|St)

b(At|St)
, (2.3)

which has an expected value of one:

Eb[ρt | St = s] =
∑

a

b(a|s)π(a|s)
b(a|s) =

∑

a

π(a|s) = 1, (2.4)

where Eb[· | ·] is the conditional expectation given than policy b is followed. At

time steps where the target and behavior policies have the same distribution

and in on-policy learning, the ratio is one. When the target and behavior

policies are different, the ratio will be greater or less than one, depending on

if the action that was taken under the behavior policy would have been more

or less likely under the target policy.

For any random variable Xt+1 that is generated using the behavior policy,

and depends on the state-action-next state triplet, the expectation under the

target policy can be computed using importance sampling ratios:

Eb[ρtXt+1 | St = s] =
∑

a

b(a|s)π(a|s)
b(a|s)Xt+1

=
∑

a

π(a|s)Xt+1

= Eπ[Xt+1 | St = s] , ∀s ∈ S.

2.3 Linear and Non-linear Function Approxi-

mation

In the simplest form, the agent observes the state, and estimates a value

function for each of the observed states separately. This setting is known as
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the tabular setting, because the values of the states can simply be stored in a

lookup table.

In most problems S is large and an exact approximation is not possible

even in the limit of infinite time and data. This means that it is not possible

to store one value for each state and the agent observes a representation of the

state, rather than observing the state itself. In such cases, typically parametric

function approximation is used to approximate the value function. Many para-

metric forms are possible, but of particular interest, and our exclusive focus

in this dissertation, is the linear form. Prediction learning algorithms seek to

learn an estimate v̂ : S → R that approximates the true value function vπ. In

the linear form, learning algorithms seek to find a weight vector, w, such that

the product of the weight vector and the feature representation approximates

the value function:

v̂(s,w)
def

= w⊤x(s), (2.5)

where w ∈ R
d is a learned weight vector and x(s) ∈ R

d, ∀s ∈ S is a set of

given feature vectors, one per state, where d ≪ |S|. In control learning, it is

common for the feature vector to represent the state-action pair, instead of

the state alone, in which case x(s, a) is used instead of x(s). In this case, the

action-value function, q̂(s, a) is defined as the dot product of the weight vector

w and the feature representation of the state action pair, (s,a):

q̂(s, a,w)
def

= w⊤x(s, a).

See Chapter 9 of Sutton and Barto (2018), for a detailed explanation of linear

function approximation.

Non-linear function approximation is also possible. Approximating value

functions non-linearly comes with its own advantages and disadvantages. For

example, non-linear functions can approximate more complex functions, but

are typically learned slower and they are harder to interpret and understand.

Artificial neural networks have been widely successful in reinforcement

learning when used for non-linear function approximation. An artificial neu-

ral network is a combination of nodes and real-valued weights that connect

the nodes. Typically, one or more real-valued inputs are fed to the neural
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network, and then each node computes a weighted sum of its inputs, and

passes the weighted sum through a non-linearity, such as the logistic function,

and sends the result to the next layer. The simplest form of artificial neural

networks are feedforward networks. Feedforward networks do not have any

loops in their connections, meaning that none of the outputs of the nodes can

influence the input to the same node.

The backpropagation algorithm is a key algorithm to adjust the weights in

a neural network such that the output of the network approximates a desired

function. After each forward pass in the network, the partial derivative of an

objective function with respect to each of the weights is calculated, and the

weights are then adjusted using stochastic gradient descent. When combined

with reinforcement learning algorithms, the weights of the artificial neural

network are updated using reinforcement learning algorithms such as semi-

gradient Q-learning or semi-gradient TD(λ). Other than the experiments of

Chapter 5, the rest of the experiments in this dissertation use linear function

approximation.

2.4 Online and Offline Learning

Remember that the focus of this dissertation is on online fully-incremental

learning algorithms. We say that learning is online, if interaction with the

environment and learning from samples received from the environment happen

simultaneously. In this dissertation, we distinguish between two kinds of online

learning. Online fully-incremental learning is the setting in which the agent

receives samples from the environment one by one, learns from each single

sample once it is received, and then disposes of the sample. In the other

setting, which we refer to as online weakly-incremental learning, the agent has

some kind of a memory that it uses to store samples. In the weakly-incremental

learning setting, the agent receives and learns from samples once in a while.

In such a setting, the agent does not wait until it receives all the data before

it starts learning, nor does it necessarily update its parameter after receiving

each sample. In this setting, the agent might learn from mini-batches of data.
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An example of such a setting is the popular DQN architecture (Mnih et al.,

2015), in which experience replay buffers are used to store data, so that they

can be presented to the agent repeatedly as mini-batches, from which the

agent learns a policy. Throughout this dissertation, we use the phrase “online

learning”, to refer to the online fully-incremental setting.

Online learning is of course not the only type of learning. For example,

many supervised learning algorithms learn offline, meaning that the samples

are all provided to the agent first, in pairs, from which the agent learns a

function that maps the first element of the pair to the second one. We refer

to a setting as offline reinforcement learning setting if the whole set of data is

first collected and is then presented to the agent. The agent can for example

use the dataset to learn a function that maps states to value functions. An

example of offline learning is to learn from historical data. The data is gathered

in the past, and is now used to learn a value function, or a policy.

Online and offline learning have their advantages and disadvantages. One

advantage of online learning is that errors or omissions in the training data

can be corrected during operation. For example, when a robot’s sensor is

not producing accurate signals, the agent might be able to omit some of the

noise by averaging over sensor readings. Another advantage of online learning

is that, data generation can be easy and thus great quantities of data can

be generated. This is for example true in simulated problems. Yet another

advantage of online learning is that the algorithms that are able to learn online

can be deployed in non-stationary environments. In such environments, online

learning enables the agent to adapt to a change (see Sutton & Whitehead,

1993). Of course, offline learning has its own advantages. For example, many

convergence proofs rely on using independent samples for updates. In online

fully-incremental learning, it is not possible to use independent samples to

update the weight vector, because the samples that are received are correlated

and the agent needs to learn from the samples one by one as they are received.

The focus of this dissertation is on fully-incremental online learning algo-

rithms. These algorithms are discussed in detail in the next chapter. Never-

theless, there are many algorithms proposed for offline off-policy learning. For
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example, the distribution correction estimation (DICE) family of algorithms

correct for the difference in the stationary distribution of the behavior and

target policies (Nachum et al., 2019a; Nachum et al., 2019b; Zhang et al.,

2019). To make such corrections, lots of data is necessary, which means these

algorithms are not readily available to be used in the online fully-incremental

setting. A study of these algorithms is out of the scope of this dissertation.

2.5 Summary

In this chapter, we provided a review of the fundamental concepts in rein-

forcement learning. The concepts we explained included linear and non-linear

function approximation, value functions, off-policy learning, online learning,

and offline learning.
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Chapter 3

Learning Algorithms for Solving
Off-policy Learning Problems

Two of the most important contributions of this dissertation are empirical

studies of fully-incremental off-policy prediction learning algorithms. In the

empirical studies, we are interested in a wide variety of algorithms. This chap-

ter explains these algorithms. A good understanding of the algorithms helps

in better understanding and analyzing the results of the empirical studies.

In this chapter, we first briefly discuss the problem of prediction learning

and the problem of control learning. We continue by discussing 10 off-policy

prediction learning algorithms that are used to solve the prediction learning

problem. We close the chapter by discussing the Q-leaning algorithm, which

we will later use in the development of the QRC algorithm.

3.1 The Problem of Prediction Learning and

the Problem of Control Learning

In solving the off-policy prediction learning problem, the agent’s goal is to

learn predictions in an off-policy manner, where predictions are formulated

using value functions. Recall from Chapter 2 that, for all s ∈ S,

vπ(s)
def

= Eπ[Gt | St = s] , (3.1)

where the expectation is subscripted by π to indicate that they are condi-

tioned on π being followed. In off-policy learning, we assume that actions are

taken according to a behavior policy b, while the agent seeks to learn the value
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function under a different policy π. We assume both the target and the be-

havior policies are known and static, although of course in many applications

of interest one or the other may be changing.

The prediction learning problem can be contrasted with the control learning

problem which we will consider in Chapter 5. In off-policy control learning,

the agent’s goal is to find the optimal policy, rather than evaluating a fixed

given policy. For example, in the most well-known off-policy control learning

algorithm, Q-learning, the policy that the agent learns about is the greedy

policy, while the policy that the agent follows is a more exploratory policy

such as an ǫ-greedy, policy.

3.2 The Off-policy TD(λ) Algorithm

The value of a state St = s can be written recursively, using the value of the

next state St+1. To show this, we use the following identity:

E [X] = E [E [X | Y ]] , (3.2)

which in statistics, is known as the law of total expectation or the tower rule.

In (3.1) we defined the value function, based on which we can write:

vπ(s
′)

def

= Eπ[Gt+1 | St+1 = s′] . (3.3)

Using (3.2) and (3.3), the value of the next state St+1 can be written:

Eπ[vπ(St+1) | St = s] = Eπ[Eπ[Gt+1 | St+1 = s′] | St = s]

= Eπ[Gt+1 | St = s] , (3.4)

which is used below to show that the value of the current state St = s is equal

to the expectation of the reward plus the discounted value of the next state:

vπ(s)
def

= Eπ[Gt | St = s]

= Eπ[Rt+1 + γGt+1 | St = s]

= Eπ[Rt+1 | St = s] + γEπ[Gt+1 | St = s]

= Eπ[Rt+1 + γvπ(St+1) | St = s] . (by (3.4))

20



The equation vπ(s)
def

= Eπ[Rt+1 + γvπ(St+1) | St = s] is referred to as the Bell-

man equation for vπ. The Bellman equation says that the value of a state is

equal to the expectation of the immediate reward plus the discounted value of

the next state. If vπ(s) is moved to the right hand side and to the inside of

the expectation we get:

Eπ[Rt+1 + γvπ(St+1)− vπ(s) | St = s] = 0, (3.5)

which is referred to as the Bellman error. The error is equal to 0 for the true

value function, vπ.

In its tabular form, temporal-difference learning updates the weight vector,

w, in the direction that minimizes the Bellman error. When using function

approximation, (3.5) can often only hold approximately:

Eπ[Rt+1 + γv̂w(St+1)− v̂w(s) | St = s] ≈ 0. (3.6)

The simplest form of temporal-difference learning, the TD(0) algorithm, uses

a sample of the left hand side of (3.6) to update w. This sample is called the

TD-error and is defined as:

δt
def

= Rt+1 + γw⊤
t xt+1 −w⊤

t xt, (3.7)

where linear function approximation is used to approximate the value function.

TD(0) uses (3.7) to update the weight vector as follows:

wt+1 ← wt + αδtxt, (3.8)

where α is a scalar constant step-size parameter. If α is adaptive and changes

at each time step, it is denoted by αt.

Off-policy TD(0) augments the TD(0) update, (3.8), with an importance

sampling ratio:

wt+1 ← wt + ρtαδtxt. (3.9)

One of the widely known ideas to make TD-style algorithms more effi-

cient, are eligibility traces. Eligibility traces help assign credit to features that
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were activated in the past based on how far in the past they were activated.

Eligibility traces assign credit by storing a fading trace of the features that

were activated. In this dissertation, our focus is on one of the form of eligibil-

ity traces, called accumulating traces. The Off-policy TD(λ) algorithm with

eligibility traces is fully specified by the following update rules:

δt
def

= Rt+1 + γw⊤
t xt+1 −w⊤

t xt (3.10)

zt ← ρt(γλzt−1 + xt), with z−1 = 0

wt+1 ← wt + αδtzt.

Off-policy TD(λ) might diverge when combined with linear function ap-

proximation. A simple example can help see this intuitively (Sutton & Barto,

2018). Suppose, two states in an MDP, whose values are approximated using

the same weight w, except that the second state has a value twice as big as

the first state as shown below. In this example, w is a single number and the

feature vectors are 1 for the left state and 2 for the right state. Suppose, for

this MDP that γ = 1 and the rewards are 0 on all transitions.

If the transition from w to 2w is experienced repeatedly, the weight will

diverge to infinity. Suppose, the first time the transition is experienced, w =

10. This means 2w is 20 and the TD error will be 10. If, for example, α = 0.5,

the value of w will be increased by 5 and will change to 15. If this transition

is experienced repeatedly, it is clear that the weights will diverge to infinity.

w 2w

There is no way on-policy TD(0) may diverge in the example above. In on-

policy learning, when the agent moves from 2w to w, through some path not

shown in the figure above, the weights will eventually decrease and convergence

will be guaranteed. In off-policy learning, however, there can be situations

where the weights do not decrease when taking the path from 2w to w and

divergence will occur.

22



ΠBπ v̂w
X

Bπ v̂w

PBE

v̂w

Figure 3.1: Geometry of linear function approximation shown in three dimen-
sional space.

3.3 Gradient-TD Algorithms

One way to assure convergence is to use stochastic gradient descent to minimize

an objective function. By using stochastic gradient descent, convergence will

follow, even in the off-policy learning case. One important question is: What

objective function should be minimized?

One option is to minimize the mean squared projected Bellman error, which

we denote by PBE. To define PBE, we first need to define the Bellman oper-

ator. The Bellman error, in state s is:

Eπ[Rt+1 + γv̂w(St+1)− v̂w(St) | St = s] ,

or more explicitly:

(∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a)[r + γv̂w(s
′)]

)
− v̂w(s), (3.11)

where p is the underlying transition probability distribution of the MDP. The

Bellman operator Bπ : R|S| → R
|S|, at state s, is defined as:

(Bπv̂w)(s)
def

=
∑

a

π(a|s)
∑

s′,r

p(s′, r|s, a)[r + γv̂w(s
′)]. (3.12)

As seen in (3.12), the Bellman operator works irrespective of the parameters

of the value function. This means after applying the Bellman operator to a

value function, the new value function might not be representable in the feature

space X. It can, however, be projected back into the space of the representable

functions, using a projection matrix. In the linear function approximation
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case, the projection operator is linear, meaning that it can be represented as

an |S| × |S| matrix:

Π
def

= X(X⊤DX)−1X⊤D,

where X is a matrix of size |S| × d with feature vectors of all states as its

rows and D being a diagonal matrix with the state visitation distribution

on its diagonal. To minimize the distance between the value function and

the projection of the value function after applying the Bellman operator, we

first need to apply the Bellman operator to the current value function using

(3.12). The Bellman error for all states, put together in a vector is called

the Bellman error vector. We denote the Bellman error vector by δ̄w ((3.11)

for all s). This vector can be projected to the space of representable value

function. We denote the projected vector by Πδ̄w. The distance between

the value function before applying the Bellman operator and the projection

of the function after applying the Bellman operator is known as the Mean

Squared Projected Bellman Error or the PBE and can be minimized directly

using stochastic gradient descent. See Figure 3.1. The PBE is defined in a

condensed form as:

PBE(w) = ||Πδ̄w||2µb
, (3.13)

where µb is the state visitation distribution induced by policy b.

All members of the Gradient-TD family minimize some form of the mean

squared projected Bellman error. GTD(λ) and GTD2(λ) both minimize the

PBE objective (Sutton et al. 2009). An earlier version of the Gradient-TD

family minimizes the Norm of the Expected TD Update, or the NEU (Sut-

ton, Maei, & Szepesvári, 2008). The NEU does not have a readily available

geometric interpretation, but it is only different from the PBE in how the ob-

jective function (3.13) is weighted. The algorithm proposed by Sutton, Maei,

& Szepesvári (2008) was called GTD. The algorithms proposed by Sutton et

al. (2009) were called TDC and GTD2. Later on, in Maei (2011), the TDC

and GTD2 algorithms were combined with eligibility traces and were called

GTD(λ) and GTD2(λ), respectively. This means that GTD(0) is the same

as TDC and GTD2(0) is the same as GTD2. Throughout the dissertation,
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we use both TDC and GTD(0) names to refer to the same algorithm. The

algorithm that minimizes the NEU was later found to be inferior to GTD and

GTD2 algorithms and was abandoned (Sutton et al., 2009; Dann, Neumann,

& Peters, 2014).

Update rules for GTD(λ) and GTD2(λ) are similar to Off-policy TD(λ).

The only difference is that the Gradient-TD algorithms have a correction term

that changes the original TD update to make sure it follows the direction of

the gradient of PBE at each time step. To estimate the correction term, both

algorithms use a secondary or auxiliary learned weight vector, which we denote

by v, that can be learned at a different rate than the primary weight vector.

The update rules for GTD(λ) are:

δt
def

= Rt+1 + γw⊤
t xt+1 −w⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

vt+1 ← vt + αv

[
δtzt − (v

⊤

t xt)xt

]

wt+1 ← wt + αδtzt − αγt+1(1− λt+1)(v
⊤

t zt)xt+1︸ ︷︷ ︸
correction term

,

and the update rules for GTD2(λ) are:

δt
def

= Rt+1 + γw⊤
t xt+1 −w⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

vt+1 ← vt + αv

[
δtzt − (v

⊤

t xt)xt

]

wt+1 ← wt + α(v
⊤

t xt)xt − αγt+1(1− λt+1)(v
⊤

t zt)xt+1.

There has been a few attempts at making GTD(λ) and GTD2(λ) faster.

Maei (2011) showed that although Gradient-TD algorithms provide better

convergence guarantees than off-policy TD(λ), they learn slower. HTD was

the first attempt at making Gradient-TD algorithms faster. Hybrid TD was

first proposed by Maei (2011). It was later developed further by Hackman

(2012). It was finally extended to incorporate eligibility trace case by White

and White (2016). HTD(λ) was an attempt at combining the fast learning of

Off-policy TD(λ) and the convergence guarantees of the Gradient-TD family.
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HTD(λ) is a generalization of TD(λ) in the sense that in the on-policy case,

HTD(λ) reduces to TD(λ). To better understand HTD(λ), we first write the

PBE in an alternative form and for the off-policy case and full bootstrapping:

PBE(w) = Eb[δtρtxt]
⊤
Eb

[
xtx

⊤
t

]−1
Eb[δtρtxt] ,

We then use the following definitions:

C
def

= Eb

[
xtx

⊤
t

]
,

A
def

= −Eb

[
(γxt+1 − xt)ρtx

⊤
t

]
,

b
def

= Eb

[
Rt+1ρtx

⊤
t

]
,

where Rt+1 is the reward and x is the feature vector of the state St. Using the

above identities, we write the PBE in the following form (Hackman, 2012):

PBE = (−Aw + b)⊤C−1(−Aw + b), (3.14)

where

−Aw + b = Eb[δtρtxt] ,

C = Eb

[
xtx

⊤
t

]
.

In (3.14), the C matrix is weighting −Aw+b. As long as −Aw+b becomes

0 asymptotically, the algorithms find a solution to the PBE and the weighting,

C is irrelevant in the quality of the solution. However, the rate of convergence

might change with C. More specifically, the C matrix can be replaced by

any positive definite matrix and the resulting algorithm is guaranteed to be

stable and will converge to the minimum of the PBE. The HTD(λ) algorithm

replaces C−1 with A−⊤
b , where:

A−⊤
b

def

= Eb

[(
xt − γxt+1

)
x⊤
t

]
,

Using A−⊤
b instead of C−1, and computing the derivative of the resulting

PBE, gives the HTD(0) update rules.
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White and White, (2016) extended HTD to the case of general bootstrap-

ping. HTD(λ) is fully specified by the following update rules:

δt
def

= Rt+1 + γw⊤
t xt+1 −w⊤

t xt

zt ← ρt(γλzt−1 + xt) with z−1 = 0

zbt ← γλzbt−1 + xt with zb−1 = 0

vt+1 ← vt + αv

[
δtzt − (xt − γt+1xt+1)(v

⊤

t z
b
t )

]

wt+1 ← wt + α

[
δtz+ (xt − γt+1xt+1)(zt − zbt )

⊤

vt

]
,

where zbt is an eligibility trace vector that does not include importance sam-

pling ratios and zt is the normal off-policy trace with the importance sampling

ratio.

Proximal Gradient-TD algorithms are another set of algorithms proposed

to improve on the original Gradient-TD algorithms (Mahadevan et al., 2014;

Liu et al., 2015; Liu et al., 2016). Proximal Gradient-TD algorithms improve

on classic Gradient-TD algorithms in the sense that they use the true gra-

dient of the PBE objective to update the weight vector. This is in contrast

to Gradient-TD algorithms that are not true stochastic gradient algorithms

with respect to the PBE objective. The reason why the classic Gradient-TD

algorithms are not exactly stochastic gradient descent is that they include a

product of expectations over the next feature vector in the gradient of the

objective function. In the on-policy case:

−1

2
∇PBE(w) = E

[
(xt − γxt+1)x

⊤]
E
[
xtx

⊤
t

]−1
E [δtxt] (3.15)

= A⊤C−1 (−Aw + b) . (3.16)

The next state’s feature vector, xt+1, appears in A. The gradient of PBE in

(3.16) multiplies A with itself and includes a product of expectations of the

next state’s feature vector. To get an unbiased sample of the product, two

independent samples are required. However, during the normal interaction of

the agent with the environment, it is only possible to get one sample. Gradient-

TD algorithms get around this issue by learning a second weight vector, v, and

forming a quasi-stationary estimate of the last two expectations in (3.15).
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Proximal Gradient-TD algorithms approach the double sampling challenge

by writing the objective function using a saddle-point formulation:

PBE(w) = min
w

max
v

(b−Aw)⊤v − 1
2
‖v‖2C, (3.17)

where 1
2
‖v‖2C is the norm of v weighted by C, or simply v⊤Cv. Computing

the derivative of the objective function (3.17), with respect to v, results in:

∇vPBE = b−Aw −Cv,

and the derivative with respect to w results in:

∇wPBE = −A⊤v.

The gradient of the saddle-point formulated objective does not have the prod-

uct of the A matrix with itself and avoids the double sampling issue. This

means the algorithm that minimizes the saddle-point objective is a true stochas-

tic gradient descent algorithm and as a result, they can make use of algorithms

developed for improving the convergence rate of stochastic gradient descent.

Mahadevan et al. (2014) used stochastic mirror-prox (Juditsky, Nemirovski, &

Tauvel, 2011) to derive a new version of Gradient-TD family, called Proximal

GTD2. Proximal GTD2(λ) is fully specified by the following equations:

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

vt+ 1

2

← vt + αv

[
δtzt − (v

⊤

t xt)xt

]

wt+ 1

2

← wt + α(v
⊤

t xt)xt − αγt+1(1− λt+1)(v
⊤

t zt)xt+1

δt+ 1

2

def

= Rt+1 + γt+1w
⊤

t+ 1

2

xt+1 −w
⊤

t+ 1

2

xt

vt+1 ← vt + αv

[
δt+ 1

2

zt − (v
⊤

t+ 1

2

xt)xt

]

wt+1 ← wt + α(v
⊤

t+ 1

2

xt)xt − αγt+1(1− λt+1)(v
⊤

t+ 1

2

zt)xt+1.

There are other objective functions that can be minimized. One alternative

objective function is the Mean Squared Bellman Error (BE). BE is similar to

the PBE objective but does not have the projection operator. The so-called
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residual gradient algorithms minimize BE. There has been some recent work in

minimizing the BE objective using stochastic gradient descent (Dai et al., 2018;

Feng, Li, & Liu, 2019). These algorithms are true stochastic gradient descent

algorithms and in turn provide strong convergence guarantees; however, we

choose not to consider such algorithms due to reasons such as non-learnability.

See Sutton and Barto (2018) for a thorough discussion of why minimizing the

BE might not be desirable.

Before closing the Gradient-TD section, we would like to mention that the

PBE, which is used as an objective function, can naturally be used to measure

the error at each time step. To do so, we use (3.14). To compute the A matrix,

C matrix, and the b vector, we use the following identities from White (2015):

C
def

= X⊤DX,

A
def

= X⊤D(I− γPπ)X,

b
def

= X⊤D rπ.

The vector rπ ∈ R
|S| is a column vector with each component equal to the

expectation of one step reward under the target policy, Eπ[Rt+1 | St = s]. As

the reader might remember, the matrix D ∈ R
|S|×|S| is a diagonal matrix

whose diagonal elements correspond to the stationary distribution under the

behavior policy: D(s, s)
def

= db(s) ∀s ∈ S, which can be approximated from

data, X ∈ R
|S|×d is a matrix with |S| rows and d columns: one row for

each s ∈ |S| where each state is represented with a d-dimensional feature

vector. Finally, P π : S × S → [0, 1] where P π(s, s′)
def

=
∑

a∈A π(s, a)p(s, a, s′),

which can be approximated given access to the parameters of the MDP. The

function p(s, a, s′) is the one-step transition dynamics of the MDP: probability

of transitioning into s′ when action a is taken in state s.

3.4 Emphatic-TD Algorithms

Emphatic-TD algorithms provide an alternative strategy for stable off-policy

learning (Sutton, Mahmood, & White, 2016). Gradient-TD algorithms correct

the semi-gradient updates of TD(λ) so that the updates are in the direction
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of the gradient and convergence guarantees follow. Emphatic-TD algorithms,

on the other hand, use semi-gradient updates, just like Off-policy TD(λ).

The main idea of Emphatic-TD algorithms is to emphasize and de-emphasize

the update at different time steps. By using emphasis, Emphatic-TD algo-

rithms assure that selective updating in off-policy learning cannot cause diver-

gence. This can be explained by going over the w−2w example. As we noted,

the problem is that the parameter is updated when the agent moves from w

to 2w but no updates happen when the agent moves from 2w to w. If an

algorithm assures updates in parameter happen when moving from 2w to w,

the value of w will decrease and divergence can be prevented. This is exactly

what Emphatic-TD algorithms do. Emphatic-TD algorithms assure that the

value of a state (or parameter vector) will be updated if the state is reachable

from another state for which we update the parameter vector. In the w − 2w

example, with Emphatic-TD algorithms, if an update happens when the agent

moves from w to 2w, an update is assured when the agent moves from 2w to

w.

The first Emphatic-TD algorithm was Emphatic TD(λ) (Sutton, Mah-

mood, & White, 2016). This algorithm is sometimes referred to as ETD(λ).

It is the first algorithm with convergence guarantees under off-policy train-

ing that has one set of learned weight vector and one step-size parameter.

The Emphatic TD(λ) algorithm is fully specified described by the following

equations:

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

Ft ← ρt−1γtFt−1 + 1 with F−1 = 0 (3.18)

Mt ←λ+ (1− λ)Ft (3.19)

zt ← ρt (γtλzt−1 +Mtxt) with z−1 = 0 (3.20)

wt+1 ← wt + αδtzt,

where Ft in (3.18) is the followon trace and Mt is called the emphasis. As λ

approaches 1, Mt approaches λ = 1. At the extreme, when λ = 1, we have

Mt = λ = 1 in (3.19), Mt disappears from (3.20), and Emphatic TD(1) will
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reduce to Off-policy TD(1). As a result, as λ → 1, we might expect Emphatic

TD(λ) to behave more like Off-policy TD(λ). This also means that the largest

difference between TD(λ) and Emphatic TD(λ) should probably be expected

at λ = 0.

Emphatic TD(λ) is prone to high variance. In spite of correcting for the

difference between the target and behavior policies at each time step, Emphatic

TD(λ) also corrects for the differences between the policies in the past. To do

so, it uses a product of importance sampling ratios, as shown in (3.18). As a

result, the followon trace can become large over time (even unbounded) and

the step-size parameter should be reduced further down to avoid divergence.

Later on, Emphatic TD(λ, β) was proposed to reduce the variance of Em-

phatic TD(λ). As the name suggests, the algorithm has an extra parameter β.

This parameter provides some control over how quickly the magnitude of Ft

grows. All the update rules for Emphatic TD(λ, β) are the same as the ones

for Emphatic TD(λ), except for the update to the followon trace:

Ft ← ρt−1βFt−1 + 1. (3.21)

By comparing (3.18) and (3.21) we see that if β is set to a value smaller than

γ, Ft will grow at a slower rate than when β = γ. If β = 0 in (3.21), Emphatic

TD(λ, β) reduces to Off-policy TD(λ), and if β is set to γ, the algorithm

reduces to Emphatic TD(λ).

The emphasis idea has use-cases other than assuring convergence under off-

policy training. Although originally proposed for off-policy learning, Emphatic

TD(λ) does not reduce to TD(λ) even if the target and behavior policies are

the same. In fact, Emphatic TD(λ) is shown to empirically outperform TD(λ)

in some on-policy experiments (Ghiassian, Rafiee, & Sutton, 2016). It has also

been shown that Emphatic TD(λ) can solve some of the counterexamples to

the TD(λ) algorithms in the on-policy case (Gu, Ghiassian, & Sutton, 2019).

It is also notable that the emphasis idea can be combined with other families

of algorithms, such as the Gradient-TD family.
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3.5 Algorithms for Fast Off-policy Prediction

Learning

A common concern with off-policy learning is that large importance sampling

ratios might cause high variance. Several methods have been proposed that

avoid large importance sampling ratios. Tree Backup(λ) (Precup, Sutton, &

Singh, 2000), Retrace(λ) (Munos et al., 2016), and ABQ(ζ) (Mahmood, Yu, &

Sutton, 2017) all avoid large importance sampling ratios. Tree Backup(λ), and

ABQ(ζ) avoid explicit use of importance sampling ratios in their update rules.

Retrace(λ), simply truncates any importance sampling ratio that happens to

be larger than one.

Tree Backup(λ), Retrace(λ), and ABQ(ζ) can all be seen as Off-policy

TD(λ) with λ generalized from a constant to a function of state and action.

This unification was highlighted by Mahmood, Yu, and Sutton (2017) and

also by Yu, Mahmood, and Sutton (2018). The unification makes it simple

to explain all three algorithms: all methods are the same as Off-policy TD(λ)

but each method uses a different action-dependent trace function λ : S ×A →
[0, 1]. Simply put, each method sets λ differently at each time step. All three

methods mentioned above were originally proposed for control. Later in this

dissertation, we provide an easy way to understand all three algorithms and

also present the natural state-value variants of all these algorithms.

Between the three algorithms, Retrace(λ) was later extended to prediction

setting by Espeholt et al. (2018). The resulting algorithm is called V-trace(λ).

Here, we use a simplified version of the V-trace algorithm that simply truncates

the importance sampling ratio in the eligibility trace. The V-trace algorithm

used here uses the following update rules:

δρt
def

= ρt

(
Rt+1 + γt+1w

⊤

t xt+1 −w
⊤

t xt

)

zt ← max(ρt−1, 1) (γtλtzt−1) + xt with z−1 = 0

wt+1 ← wt + αδtzt.

32



3.6 Least-squares Algorithms

Temporal-difference learning algorithms, when they converge, satisfy the Bell-

man equation (Sutton & Barto, 2018); a fixed point solution that can be di-

rectly computed with least-squares algorithms (Bradtke & Barto, 1996; Boyan,

1999). In fact, TD(λ) and Gradient-TD algorithms converge to the minimum

of the mean squared projected Bellman error (PBE), also known as the TD(λ)

fixed point. In the case of a fixed basis, we can analytically solve the PBE for

the weights that satisfy the fixed point equation. The algorithm that solves the

least-squares problem to find the fixed point of TD(λ) is called least Squares

Temporal-Difference or LSTD(λ). The weight vector computed by LSTD(λ)

(from a finite batch of training data) represents the weight vector that TD(λ)

would converge to with repeated presentation of online data under standard

conditions.

Different weightings of the PBE can be simply incorporated into LSTD(λ).

For example, combining LSTD(λ) and the emphatic weighting produces the

weight vector that Emphatic TD(λ) would converge to, given a fixed batch

of data. Although, LSTD(λ) can be updated online and incrementally, its

complexity is different from the algorithms that we used in our empirical study

in this work. Least-squares algorithms are only of interest as baselines in

this work because their computation is quadratic in the number of weights

(O(n2)) and are in general problematic with large state representations (like

for example representations that might be learned using a neural network),

compared to the algorithms that are presented so far in the work such as

Gradient-TD methods that require linear computation per time step in the

number of weights (O(n)).

To compute the TD(λ) fixed point, LSTD(λ) approximates w = A−1b

from the data. The values of the A matrix and the b vector can be estimated
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incrementally using the following update rules:

zt ← ρtγt(λtzt−1 + xt)

At+1 ← At +
1

t+ 1
[zt(xt − γt+1xt+1)

⊤−At]

bt+1 ← bt +
1

t+ 1
[Rt+1zt − bt].

where t is the time starting from 0, z is the eligibility trace and ρ is the

importance sampling ratio.

We can similarly find the LSTD(λ) fixed-point with emphatic weighting by

simply changing the trace update rule mentioned above, to:

Ft ← βρt−1Ft−1 + It

Mt ← λtIt + (1− λt)Ft

zt ← ρt(γtλtzt−1 + xtMt).

where Ft is the followon trace at time step t, and Mt is the emphasis.

3.7 Q-learning

Q-learning is perhaps one of the oldest off-policy learning algorithms (Watkins,

1989). The Q-learning algorithm is off-policy because the policy that is being

learned (the target policy) is the optimal policy, while the behavior policy

is typically an exploratory policy (e.g., ǫ-greedy) with respect to the current

value function. This means that the value function that is being learned is

different from the policy that is used for behavior. The update rules for the

Q-learning algorithm are:

δt
def

= Rt+1 + γq̂(St+1, a
′)− q̂(St, At) (3.22)

wt+1←wt+αδtx(St, At),

where a′ is the action that the policy we are evaluating would take in state

St+1. Q-learning learns the greedy policy, and so a′ = argmaxa q(St+1, a) and

δt = Rt+1 + γmaxa q(St+1, a) − q(St, At). This action a′ may differ from the

(exploratory) action At+1 that is actually executed, and so this estimation is
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off-policy. As discussed previously in Chapter 2, the action-value function, q̂

is defined as the dot product of the weight vector and the state-action feature

vector.

3.8 Summary

In this chapter, we explained the off-policy prediction learning algorithms that

we will use in the empirical studies of this dissertation. We started with

a discussion of Off-policy TD(λ) algorithm and how it might diverge. This

motivated the introduction of Gradient-TD and Emphatic-TD family of algo-

rithms that are guaranteed to converge under off-policy training. We discussed

the objective function that Gradient-TD algorithms minimize, the PBE, and

various approaches to minimizing this objective function. We then discussed

algorithms that are proposed for fast off-policy learning. Finally, we closed the

discussion of algorithms by providing a brief summary of how Least-squares

algorithms can use the data to find an approximate solution to the minimum

of the PBE, or an approximate solution to the minimum of the emphatic

weighted PBE.
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Chapter 4

Temporal-Difference Learning
with Regularized Corrections1

This dissertation makes five main contributions. It introduces three new al-

gorithms, and conducts two empirical studies. This chapter presents the first

new algorithm: TDRC. All three algorithms proposed in this thesis have a

common goal: improve the practicality of online off-policy prediction. The

TDRC algorithm is not an exception. The goal of TDRC is to take a step in

closing the performance gap that has been shown to exist between Off-policy

TD(λ) and Gradient-TD algorithms.

The TDRC algorithm is similar to the TDC (also known as GTD(0)) al-

gorithm, with the difference that the second weight vector is regularized in

TDRC but not in TDC. We show that with more regularization, TDRC acts

like TD, and with no regularization, it reduces to TDC. We find that for an

interim level of regularization, TDRC obtains the best of both algorithms, and

is quite insensitive to the regularization parameter: a regularization parameter

of 1.0 was effective across all experiments. We show that our method (1) out-

performs other Gradient-TD algorithms overall across a variety of problems,

and (2) matches TD when TD performs well while maintaining convergence

guarantees.

1The contents of this chapter are based on a paper co-authored by this author (Ghiassian
et al., 2020).
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4.1 Motivation

Both Off-policy TD and Q-learning, have well documented convergence issues,

as highlighted in the seminal counterexample by Baird (1995). The fundamen-

tal issue is the combination of function approximation, off-policy updates, and

bootstrapping: an algorithmic strategy common to sample-based TD learning

and Dynamic Programming algorithms (Precup, Sutton, & Dasgupta, 2001).

This combination can cause the value estimates to grow without bound (Sut-

ton & Barto, 2018). Baird’s result motivated over a decade of research and

several new off-policy algorithms. The most well-known of these approaches,

the Gradient-TD algorithms (Sutton et al., 2009), make use of a second set of

weights and importance sampling.

Although sound under function approximation, these Gradient-TD algo-

rithms are not commonly used in practice, likely due to the additional com-

plexity of tuning two learning rate parameters. Many practitioners continue

to use unsound approaches such as TD and Q-learning for good reasons. The

evidence of divergence is based on highly contrived toy counter-examples. Of-

ten, many large scale off-policy learning systems are designed to ensure that

the target and behavior policies are similar, and therefore less off-policy. How-

ever, if agents could learn from a larger variety of data streams, our systems

could be more flexible and potentially more data efficient. Unfortunately, it

appears that current architectures are not as robust under these more aggres-

sive off-policy settings (van Hasselt et al., 2018). This results in a dilemma:

the easy-to-use and typically effective TD algorithm can sometimes fail, but

the sound Gradient-TD algorithms can be difficult to use.

4.2 The TDRC Algorithm

We develop a new algorithm, called TD with Regularized Corrections (TDRC).

The idea is simple: regularize the update to the secondary parameters v. The

inspiration for the algorithm comes from the behavior of TDC observed by

Maei (2011) and the behavior observed in experiments that we will discuss in
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Section 4.3. Consistently, we find that TDC outperforms—or is comparable

to—GTD2 in terms of optimizing the PBE. These results match previous

experiments comparing these two algorithms (White & White, 2016; Ghiassian

et al., 2018). Previous results suggested that TDC could match TD (White &

White, 2016); however, as we highlight in Section 4.3, this is only when the

second step-size parameter is set so small that TDC is effectively behaving like

TD. This behavior is unsatisfactory because to have guaranteed convergence,

for example on Baird’s Counterexample, the second step-size parameter needs

to be large. Further, it is somewhat surprising that attempting to obtain an

estimate of the gradient of the PBE, as done by TDC, can perform so much

more poorly than TD.

Notice that the v update is simply a linear regression update for estimating

the (changing) target δt for both GTD2 and TDC (Sutton & Barto, 2018,

Chapter 11). As w converges, δt approaches zero, and consequently v goes to

0 as well. But, a linear regression estimate of E[δt|St = s] is not necessarily

the best choice. In fact, using ℓ2 regularization (ridge regression) can provide

a better bias-variance trade-off: it can reduce variance without incurring too

much bias. This is in particular true for v, where asymptotically v = 0 and

so the bias disappears.

This highlights a potential reason that TD frequently outperforms TDC

and GTD2 in experiments: the variance of v. If TD already performs well, it

is better to simply use the zero variance but biased estimate vt = 0. Adding ℓ2

regularization with parameter β, i.e. β‖v‖22, provides a way to move between

TD and TDC. For a very large β, v will be pushed close to zero and the update

to w will be lower variance and more similar to the TD update. On the other

hand, for β = 0, the update reduces to TDC and the estimator v will be an

unbiased estimator with higher variance.

The resulting update equations for TDRC are

wt+1 ← wt + αρtδtxt − αρtγ(v
⊤

t x)xt+1

vt+1 ← vt + α
[
ρtδt − (v

⊤

t xt)
]
xt − αβvt.

The update to w is the same as TDC, but the update to v now has the
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Box 1: Deriving the update rule for the second weight vector of TDC and
TDRC
TDRC differs from TDC in its update of the secondary weight vector.
TDC’s second weight vector seeks to find the weight vector v such that
the following objective function is minimized:

J(v) =
(
v⊤xt − δt

)2
, (4.1)

taking the derivative with respect to v:

∇v = 2(v⊤xt − δt)∇v(v
⊤xt − δt),

= 2(v⊤xt − δt)xt,

which results in the following update for the secondary weight vector for
TDC:

vt+1 ← vt + α

[
δtxt − (v

⊤

t xt)xt

]
.

TDRC uses the same rationale, with the difference that it uses ℓ2 regular-
ization in its objective:

J(v) =
(
v⊤xt − δt

)2
+ β||v||22,

the derivative of which is:

∇v = 2(v⊤xt − δt)xt + 2β||v||.

Setting β = 1, results in the following update for TDRC’s secondary weight
vector:

vt+1 ← vt + α

[
δtxt − (v

⊤

t xt)xt

]
− αvt. (4.2)

additional term αβvt which corresponds to the gradient of the ℓ2 regularizer.

Box 1 shows how we arrived at the update for the secondary weight vector

v. The updates only have a single shared step-size parameter, α, rather than

a separate step-size parameter for the secondary weights v. We make this

choice precisely for our motivated reason upfront: for ease of use. Further, we

find empirically that this choice is effective, and that the reasons for TDC’s

sensitivity to the second step-size parameter are mainly due to the fact that

a small second step size enables TDC to behave like TD. Because TDRC has
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this behavior by design, a shared step-size parameter is more effective.

Note that the ℓ2 regularizer biases the estimator v towards v = 0, the

known optimum of the learning system as w converges. This means that

the bias imposed on v disappears asymptotically, changing only the transient

trajectory (we prove this in Theorem 4.4.1).

As a final remark, we motivate that TDRC should not require a second

step-size parameter, but have introduced a new parameter (β) to obtain this

property. The idea, however, is that TDRC should be relatively insensitive

to β. The choice of β sweeps between two reasonable algorithms: TD and

TDC. If we are already comfortable using TD, then it should be acceptable to

use TDRC with a larger β. A smaller β will still result in a sound algorithm,

though its performance may suffer due to the variance of the updates in v. In

our experiments, we in fact find that TDRC performs well for a wide range

of β, and that our default choice of β = 1 works reasonably across all the

problems that we tested.

4.3 Experiments in the Prediction Setting

We first establish the performance of TDRC across several small linear pre-

diction tasks where we carefully sweep over parameters, analyze sensitivity,

and average over many runs. The goal is to understand if TDRC has similar

performance to TD, with similar parameter sensitivity, but avoids divergence.

Before running TDRC, we set β = 1 across all the experiments to refrain from

tuning this additional parameter. Code for all experiments is available at:

https://github.com/rlai-lab/Regularized-GradientTD.

In the prediction setting, we investigate three different problems with vari-

ations in feature representations, target, and behavior policies. We choose

problems that have been used in prior work to empirically investigate TD

methods.

The first problem, Boyan’s chain (Boyan, 2002), is a 14 state Markov chain

where each state is represented by a compact feature representation. This

encoding causes inappropriate generalization during learning, but vπ can be
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Figure 4.1: A graphic depiction of each of the three MDPs and the corre-
sponding feature representations used in our experiments. We omit the three
feature representations used in the Random Walk due to space restrictions
(see Sutton et al., 2009). All unlabeled transitions emit a reward of zero.

represented perfectly with the given features. The task is undiscounted and

the rewards are either -2 or -3 at each time step depending on the selected

action (the reward on the last time step from state 1 to the terminal state is

0). The Boyan’s chain is shown at the upper left side of Figure 4.1.

In Boyan’s chain, each episode started at the leftmost state and the policy

was to choose one of the two actions with equal probability in all states except

state 1. In state 1, the one available actions was chosen with probability 1.

The second problem that we considered is Baird’s (1995) well-known star

counterexample. In this MDP, the target and behavior policy are very differ-

ent resulting in large importance sampling corrections. Baird’s counterexam-

ple has been used extensively to demonstrate the soundness of Gradient-TD

algorithms, so provides a useful testbed to demonstrate that TDRC does not

sacrifice soundness for ease of use. In Baird’s counterexample, the discount

factor is γ = 0.99 and all the rewards are 0. Baird’s counterexample is shown

on the right side of Figure 4.1.

In Baird’s counterexample, the target policy is π(solid|·) = 1, while the

behavior policy is: b(dashed|·) = 6/7 and b(solid|·) = 1/7, where solid and

dashed refer to the lines in Figure 4.1.

Finally, we include a seven state Random Walk MDP, with five non-
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terminal states and two terminal states, one at each end (see the bottom

left panel of Figure 4.1). This problem was originally studied by Sutton et

al. (2009) to compare GTD2, TDC, and Off-policy TD. Similar to the orig-

inal problem, we used three different feature representations: Tabular (unit

basis vectors), Inverted, and Dependent features. Inverted features were pro-

posed such that they cause extensive inappropriate generalization between

states. Using Inverted features, the second state is for example represented

by x2 = (1
2
, 0, 1

2
, 1
2
, 1
2
)⊤. The value 1

2
was chosen such that the feature vector

has unit norm. Dependent features had 3 dimensions, and the states were

represented as follows: x1 = (1, 0, 0)⊤, x2 = ( 1√
2
, 1√

2
, 0)⊤, x3 = ( 1√

3
, 1√

3
, 1√

3
)⊤,

x4 = (0, 1√
2
, 1√

2
)⊤, and x5 = (0, 0, 1)⊤. This task is undiscounted and the re-

wards are all 0, except for transitioning to the terminal state for which the

agent receives a -1 or +1 rewards, depending on the terminal state.

The only difference between the task studied here and the one studied by

Sutton et al. (2009) is the behavior policy. The experiments conducted by

Sutton et al. (2009) were on policy, whereas, like Hackman (2012), we used

an off-policy variant of the problem. The agent starts each episode in the

middle state. The behavior policy chooses the left and right action with equal

probability, and the target policy chooses the right action 60% of the time.

We applied GTD2, TDRC, TD, HTD, TDRC, and V-trace to the prob-

lems discussed above for 3000 time steps and 200 independent runs. We swept

over free parameters for every method comparing the parameters which per-

formed best according to the area under the
√
PBE learning curve. The

step-size parameters swept for all algorithms were α ∈ {2−7, 2−6, . . . , 20}.
For TDC and HTD, we swept values of the second step-size parameter by

sweeping over a multiplicative constant times the primary step-size parame-

ter, η ∈ {20, 21, . . . , 26} maintaining the convergence guarantees of the two-

timescale proof of convergence for TDC. For GTD2, we swept values of η ∈
{2−6, 2−5, . . . , 25, 26} as the saddle-point formulation of GTD2 allows for a

much broader range of η while still maintaining convergence.

In the first set of results discussed below, we used the AdaGrad (Duchi,

Hazan & Singer, 2011) algorithm to adapt a vector of step-size parameters
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Figure 4.2: Step-size parameter sensitivity measured using average area under

the the
√
PBE learning curve for each method on each problem. HTD and

V-Trace are not shown in Boyan’s Chain because they reduce to TD for on-
policy problems. All algorithms that had more than one step-size parameter
were free to choose the second step-size parameter that minimized the area
under the learning curve for each first step-size parameter.

for each algorithm (Figures 4.2, 4.3, 4.4, 4.5). Additional results for con-

stant scalar step-size parameters are provided later. Combining AdaGrad and

Gradient-TD algorithms is straightforward. In gradient-based learning, Ada-

Grad uses statistics from the gradient vectors observed so far, to determine

the size and direction of the update in each direction at each time step. When

AdaGrad is applied to Gradient-TD learning, or any other temporal-difference

learning algorithm, it determines the size and direction of the update at each

time step using statistics from the direction of the update suggested by the

original temporal-difference algorithm, such as TDC.

We provide the parameter sensitivity plots in Figure 4.2. Additionally, we

report the performance with the best step-size parameter in Figure 4.3. In the

bar plot, we compactly summarized relative performance to TDRC. TDRC

performed well across problems, while every other method had at least one

setting where it was noticeably worse than TDRC. TDC generally performed

much better than GTD2. This is most probably because TDC learned faster

than GTD2, as both algorithms converge to the same asymptotic error level.
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so that the errors for all problems can be shown in the same range. All results
are averaged over 200 independent runs with standard error bars shown at the
top of each rectangle, though most are vanishingly small. Off-policy TD and
V-Trace both diverge on Baird’s Counterexample, which is represented by the
bars going off the top of the plot. HTD’s bar is also off the plot due to its
oscillating behavior.

In Boyan’s chain, however, TDC performed worse than the other algorithms.

TDRC, on the other hand, which regularizes v, significantly improved learning

in Boyan’s chain. TD and HTD performed very well across all problems ex-

cept for Baird’s. Finally, V-trace—which uses a TD update with importance

sampling ratios clipped at 1—performed slightly worse than TD due to the

introduced bias.

The results reported here for TDC do not match previous results which

indicate performance generally as good as TD (White & White, 2016). The

reason for this discrepancy is that previous results carefully tuned the second

step-size parameter ηα for TDC. The need to tune η is part of the difficulty in

using TDC. To better understand the role it is playing here, we include an ad-

ditional result where we sweep η as well as α for TDC; for completeness, we also

include this sweep for GTD2 and HTD. We sweep η ∈ {2−6, 2−5, . . . , 25, 26}.
This allows for ηα that is very near zero as well as ηα much larger than α. The

theory for TDC suggests η should be larger than 1. The results in Figure 4.4,

however, demonstrate that TDC almost always preferred the smallest η; but

for very small η TDC effectively performs a TD update. By picking a small

η, TDC essentially keeps v near zero—its initialization—and so removes the

gradient correction term. TDC was therefore able to match TD by simply

tuning a parameter so that it effectively was TD. Unfortunately, this is not a
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general strategy, for instance in Baird’s, TDC picks η ≥ 1 and small η performs

poorly.

So far we have only used TDRC with a regularization parameter β = 1.

This choice was made both to avoid over-tuning our method, as well as to show

that an intuitive default value could be effective across settings. Intuitively,

TDRC should not be sensitive to β, as both TDC (β = 0) and TD (large β)

generally perform reasonably. Picking a β > 0 should enable TDRC to learn

faster like TD—by providing a lower variance correction—as long as it’s not

too large, to ensure we avoid the divergence issues of TD.

We investigated this intuition by looking at performance across a range of

β ∈ 0.1 ∗ {20, 21, . . . , 25, 26}. For β = 0, we have TDC. Ideally, performance

should quickly improve for any non-negligible β, with a large flat region of good

performance in the parameter sensitivity plots for a wide range of β. This is

generally what we observe in Figure 4.5. For even very small β, TDRC notice-

ably improved performance over TDC, getting halfway between TDC and TD

(Random Walk with Tabular or Dependent features) or in some cases imme-

diately obtaining the good performance of TD (Random Walk with Inverted
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Figure 4.5: Sensitivity to the regularization parameter, β. TD and TDC are
shown as dotted baselines, demonstrating extreme values of β; β = 0 repre-
sented by TDC and β → ∞ represented by TD. This experiment demonstrates
TDRC’s notable insensitivity to β. Its similar range of values across problems,
including Baird’s counterexample, motivates that β can be chosen easily and is
not heavily problem dependent. Values swept are: β ∈ 0.1∗{20, 21, . . . , 25, 26}.

Features and Boyan’s chain). Further, in these three cases, it even performed

better or comparably to both TDC and TD for all tested β. Notably, these

are the settings with more complex feature representations, suggesting that

the regularization parameter helps TDRC learn an v that is less affected by

harmful aliasing in the feature representation. Finally, the results also showed

that β = 1 was in fact not optimal, and we could have obtained even better

results in the previous section, typically with a larger β. These improvements,

though, were relatively marginal over the choice of β = 1.

We provide the bar plot, sensitivity to the first step-size parameter, and

sensitivity to the second step-size parameter in Figures 4.6, 4.7, and 4.8 when

constant step-size parameters were used instead of AdaGrad. The conclu-

sions remain similar to when AdaGrad was used to adapt a vector of step-size

parameters.
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4.4 Theoretically Characterizing the TDRC Up-

date

The PBE (Sutton et al., 2009) is defined as

PBE(wt)
def

= E [δtxt]
⊤
E
[
xtx

⊤
t

]−1
E [δtxt] (4.3)

= (−Aw + b)⊤C−1(−Aw + b)

where E [δtxt] = b−Awt for

C
def

= E
[
xtx

⊤
t

]
, A

def

= E
[
xt(xt − γxt+1)

⊤] , b
def

= E [Rt+1xt] .

The TD fixed point corresponds to E [δtxt] = 0 and so to the solution to the

system Awt = b. The expectation is taken with respect to the target policy

π, unless stated otherwise.

The expected update for TD corresponds to E [δtxt] = b − Awt. The

expected update for w in TDC corresponds to the gradient of the PBE,

−1

2
∇PBE(wt) = A⊤C−1(b−Awt).
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Both TDC and GTD2 estimate vt
def

= C−1(b −Awt) = E
[
xtx

⊤
t

]−1
E [δtxt], to

get the least squares estimate v⊤
t xt ≈ E [δt|xt] for targets δt. TDC rearranges

terms, to sample this gradient differently than GTD2; for a given v, both have

the same expected update for w: A⊤v.

We can now consider the expected update for TDRC. Solving for the ℓ2

regularized problem with target δt, we get (E
[
xtx

⊤
t

]
+ βI)v = E [δtxt] which

implies vβ = C−1
β (b−Awt) for Cβ

def

= C+ βI. To get a similar form to TDC,

we consider the modified expected update A⊤
βvβ for Aβ

def

= A + βI. We can

get the TDRC update by rearranging this expected update, similarly to how

TDC is derived

A⊤
β vβ = (E

[
(xt − γxt+1)x

⊤
t

]
+ βI)vβ

=
(
E
[
xtx

⊤
t

]
+ βI− γE

[
xt+1x

⊤
t

])
C−1

β E [δtxt]

=
(
E
[
xtx

⊤
t

]
+ βI

)
C−1

β E [δtxt]− γE
[
xt+1x

⊤
t

]
C−1

β E [δtxt]

= E [δtxt]− γE
[
xt+1x

⊤
t

]
vβ.

This update equation for the primary weights looks precisely like the update

in TDC, except that our v is estimated differently. Despite this difference,

we show in Theorem 4.5.1 that the set of TDRC solutions w to A⊤
β vβ = 0

includes the TD fixed point, and this set is exactly equivalent if Aβ is full

rank.

In the following theorem we prove the convergence of TDRC. Though the

TDRC updates are no longer gradients, we maintain the convergence proper-

ties of TDC. This theorem extends the TDC convergence result to allow for

β > 0, where TDC corresponds to TDRC with β = 0. Theorem 4.4.1 shows

that TDRC maintains convergence when TD is convergent: the case when A

is positive definite. Otherwise, TDRC converges under more general settings

than TDC, because it has the same conditions on η as given by Maei (2011)

but allows for β > 0. The upper bound on β makes sense, since as β → ∞,

TDRC approaches TD.

Theorem 4.4.1 (Convergence of TDRC) Consider the TDRC update, with
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a TDC like step-size parameter multiplier η ≥ 0:

vt+1 = vt + ηαt

[
ρtδt − v⊤

t xt

]
xt −ηαtβvt, (4.4)

wt+1 = wt +αtρtδt xt −αtρtγ(v
⊤
t xt)xt+1, (4.5)

with step sizes αt ∈ (0, 1], satisfying
∑∞

t=0 αt = ∞ and
∑∞

t=0 α
2
t < ∞. As-

sume that (xt, Rt,xt+1, ρt) is an i.i.d. sequence with uniformly bounded sec-

ond moments for states and rewards, A+β I and C are non-singular, and

that the standard coverage assumption (Sutton & Barto, 2018) holds, i.e.

b(A|S) > 0 ∀S,A where π(A|S) > 0. Then wt converges with probability

one to the TD fixed point if either of the following are satisfied:

(i) A is positive definite, or

(ii) β < −λmax(H
−1 AA⊤) and η > −λmin(C

−1 H), with H
def

= A+A⊤

2
.

Note that when A is not positive definite, −λmax(H
−1 AA⊤) and −λmin(C

−1 H)

are guaranteed to be positive real numbers.

Proof: We combine the TDRC update equations (Eqs. 4.4 and 4.5) into a

single linear system in variable ̺
⊤
t

def

=
[
v⊤
t w⊤

t

]
:

̺t+1 = ̺t +αt(Gt+1 ̺t +gt+1), (4.6)

with Gt+1
def

=

[
−η(xt x

⊤
t +β I) ηρt xt(γ xt+1 −xt)

⊤

−ρt(γ xt+1 x
⊤
t ) ρt xt(γ xt+1 −xt)

⊤

]
and gt+1

def

=

[
ηρtRt+1 xt

ρtRt+1 xt

]
.

For a random variable X, using the definition of importance sampling, we

know that Eb[ρX] = Eπ[X]. Further, while learning off–policy we assume the

excursion setting and use the stationary state distribution corresponding to the

behavior policy, i.e. Eπ[xt x
⊤
t ] =

∑
S∈S db(S)x(S)x(S)

⊤, and consequently

Eb[xt x
⊤
t ] = Eπ[xt x

⊤
t ]. We define, G

def

= Eb[Gk] =

[
−ηCβ −ηA
A⊤ −C −A

]
and

g
def

= Eb[gk] =

[
η b
b

]
, and therefore (4.6) can be rewritten as

̺t+1 = ̺t +αt

(
h(̺t) +Mt+1

)
, (4.7)

where h(̺)
def

= G̺+g and Mt+1
def

= (Gt+1 −G)̺t +(gt+1 −g) is the noise

sequence.

To prove the convergence of TDRC, we use the results from Borkar &

Meyn (2000) which require the following to be true: (i) The function h(̺)
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Box 2: Derivation of (4.8)

Following the analysis given in Maei (2011), we write

det(G−λ I) = det

[
−ηCβ −λ I −ηA
A⊤ −C −A−λ I

]
= (−1)2d det

[
ηCβ +λ I ηA
C−A⊤ A+λ I

]
.

For a matrixU =

[
A1 A2

A3 A4

]
, det(U) = det(A1)·det(A4 −A3 A

−1
1 A2). Further,

since C is positive semi–definite, Cβ +λ I would be non–singular for any β > 0.
Using these results, we get

det(G−λ I) = det(ηC+(ηβ+λ) I)·det(A+λ I−η(C−A⊤)(ηC+(ηβ+λ) I)−1 A).
(B1)

Now ηC
(
ηC+(ηβ + λ) I

)−1
=

((
ηC+(ηβ + λ) I

)
− (ηβ + λ) I

)(
ηC+(ηβ +

λ) I
)−1

= I−(ηβ + λ)
(
ηC+(ηβ + λ) I

)−1
. We can then write

A+λ I−η(C−A⊤)(ηC+(ηβ + λ) I)−1 A

=A+λ I−ηC(ηC+(ηβ + λ) I)−1 A+ηA⊤(ηC+(ηβ + λ) I)−1 A

=A+λ I−
(
I−(ηβ + λ)

(
ηC+(ηβ + λ) I

)−1
)
A+ηA⊤(ηC+(ηβ + λ) I)−1 A

=λ I+(ηβ + λ)
(
ηC+(ηβ + λ) I

)−1
A+ηA⊤(ηC+(ηβ + λ) I)−1 A

=

[

λ (A)−1 (ηC+(ηβ + λ) I
)

+ (ηβ + λ) I+ηA⊤

]

(

ηC+(ηβ + λ) I
)−1

A

=(A)−1

[

λ
(

ηC+(ηβ + λ) I
)

+A
(

ηA⊤ +(ηβ + λ) I
)

]

(

ηC+(ηβ + λ) I
)−1

A .

Putting the above result in (B1) along with the fact that det(A1 A2) = det(A1)·
det(A2), we get

det(G−λ I) = det
(

λ
(

ηC+(ηβ + λ) I
)

+A
(

ηA⊤ +(ηβ + λ) I
)

)

.

is Lipschitz and there exists h∞(̺)
def

= limc→∞
h(c̺)

c
for all ̺ ∈ R

2d (ii) The

sequence (Mt,Ft) is a Martingale difference sequence (MDS), where Ft
def

=

σ(̺1,M1, . . . ,̺t,Mt), and E [‖Mt+1‖2 | Ft] ≤ c0(1 + ‖̺ ‖2) for any initial pa-

rameter vector ̺1 and some constant c0 > 0; (iii) The step size sequence αt

satisfies
∑

t αt = ∞ and
∑

t α
2
t < ∞; (iv) The origin is a globally asymptoti-

cally stable equilibrium for the ODE ˙̺ = h∞(̺); and (v) The ODE ˙̺ = h(̺)
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has a unique globally asymptotically stable equilibrium.

The function h(̺) = G̺+g is Lipschitz with the coefficient ‖G ‖ and

h∞(̺) = G̺ is well defined for all ̺ ∈ R
2d. (Mt,Ft) is an MDS, since

by construction it satisfies E [Mt+1 | Ft] = 0 and Mt ∈ Ft. The coverage

assumption implies that the second moments of ρt are uniformly bounded.

Then applying triangle inequality to Mt+1 = (Gt+1 −G)̺t +(gt+1 −g) and

using the boundedness of second moments of the quadruplets (xt, Rt,xt+1, ρt),

we get E [‖Mt+1‖2 | Ft] ≤ E [‖(Gt+1 −G)̺t ‖2 | Ft] + E
[
‖gt+1 −g ‖2 | Ft

]
≤

c0(‖̺t ‖2+1). Condition on the step size parameter follows from our assump-

tions in the theorem statement. To verify the conditions (iv) and (v), we first

show that the real parts of all the eigenvalues of G are negative.

Proving that the Real Parts of Eigenvalues of G are Negative (as-

suming C to be non–Singular) We consider the case when the C matrix

is non–singular. TDRC converges even when C is singular under alternate

conditions, which are given in Section 4.4. From Box 2, we obtain

det(G−λ I) =det
(
λ(ηC+(ηβ + λ) I) +A(ηA⊤ +(ηβ + λ) I)

)
, (4.8)

for some λ ∈ C. Now because an eigenvalue λ of matrixG satisfies det(G−λ I) =

0, there must exist a non–zero vector z ∈ C
d such that z∗[λ(ηC+(ηβ+λ) I)+

A(ηA⊤ +(ηβ + λ) I)] z = 0, which is equivalent to

λ2 +

(
ηβ + η

z∗ Cz

‖ z ‖2 +
z∗ Az

‖ z ‖2
)
λ+ η

(
β
z∗ Az

‖ z ‖2 +
z∗ AA⊤ z

‖ z ‖2
)

= 0.

We define bc = z∗ Cz
‖ z ‖2 , ba = z∗ AA⊤ z

‖ z ‖2 , and λz = z∗ Az
‖ z ‖2 = λr + λci for some

λr, λc ∈ R. The constants bc and ba are real and greater than zero for all

non–zero vectors z. Then the above equation can be written as

λ2 + (ηβ + ηbc + λz)λ+ η(βλz + ba) = 0. (4.9)

We solve for λ in Eq. 4.9 (see Box 3 for the full derivation) to obtain 2λ =

−Ω− λci±
√

(Ω2 − Ξ) + (2Ωλc − 4ηβλc)i, where we introduced intermediate

variables Ω = ηβ + ηbc + λr, and Ξ = λ2
c + 4η(βλr + ba), which are both real

numbers.
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Box 3: Solutions of (4.9)

The solutions of a quadratic ax2+ bx+ c = 0 are given by x = − b
2a
±

√
b2−4ac
2a

. Using
this, we solve for λ in Eq. 4.9:

2λ = −(ηβ + ηbc + λz)±
√
(ηβ + ηbc + λz)2 − 4η(βλz + ba)

= −
(
ηβ + ηbc + (λr + λci)

)
±

√(
ηβ + ηbc + (λr + λci)

)2 − 4η
(
β(λr + λci) + ba

)

= −Ω− λci±
√

(Ω + λci)2 − 4η(βλr + ba)− 4ηβλci

= −Ω− λci±
√(

Ω2 − λ2
c − 4η(βλr + ba)

)
+
(
2Ωλc − 4ηβλc

)
i

= −Ω− λci±
√(

Ω2 − Ξ
)
+
(
2Ωλc − 4ηβλc

)
i,

where in the second step we put λz = λr +λci, and also we define Ω = ηβ+ ηbc+λr

and Ξ = λ2
c + 4η(βλr + ba), which are both real numbers.

Using Re(
√
x+ yi) = ± 1√

2

√√
x2 + y2 + x we get Re(2λ) = −Ω± 1√

2

√
Υ,

with the intermediate variable Υ =
√
(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2+(Ω2−Ξ).

Next we obtain conditions on β and η such that the real parts of both the values

of λ are negative for all non–zero vectors z ∈ C.

CASE 1 First consider Re(2λ) = −Ω+ 1√
2

√
Υ. Then Re(λ) < 0 is equivalent

to

Ω >
1√
2

√
Υ. (4.10)

Since, the right hand side of this inequality is clearly positive, we must

have

Ω = ηβ + ηbc + λr > 0. (C1)

This gives us our first condition on η and β. Simplifying (4.10) and putting

back the values for the intermediate variables (see Box 4 for details), we get

Ω2 + Ξ >
√

(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2. (4.11)

Again, since the right hand side of the above inequality is positive, we must

have

Ω2 + Ξ = (ηβ + ηbc + λr)
2 + λ2

c + 4η(βλr + ba) > 0. (C2)

53



Box 4: Simplification of (4.10)

Putting the value of Υ =
√

(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2 + (Ω2 − Ξ) back in Ω >
1√
2

√
Υ, we get

Ω >
1√
2

√√
(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2 + (Ω2 − Ξ)

⇔ Ω2 >
1

2

[√
(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2 + (Ω2 − Ξ)

]

[squaring both sides]

⇔ Ω2 + Ξ >
√

(Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)2

⇔ (Ω2 + Ξ)2 > (Ω2 − Ξ)2 + (2Ωλc − 4ηβλc)
2

[squaring both sides]

⇔ Ω2Ξ > (Ωλc − 2ηβλc)
2

⇔ Ω2(λ2
c + 4η(βλr + ba)) > Ω2λ2

c + 4η2β2λ2
c − 4ηβλ2

cΩ
[putting Ξ = λ2

c + 4η(βλr + ba)]

⇔ Ω2η(βλr + ba) > η2β2λ2
c − ηβλ2

cΩ

⇔ (ηβ + ηbc + λr)
2(βλr + ba) > ηβ2λ2

c − βλ2
c(ηβ + ηbc + λr)

[putting Ω = ηβ + ηbc + λr]

⇔ (ηβ + ηbc + λr)
2(βλr + ba) > −βλ2

c(ηbc + λr)

⇔ (ηβ + ηbc + λr)
2(βλr + ba) + βλ2

c(ηbc + λr) > 0.

Note that all these steps have full equivalence (especially the squaring operations in
second and fourth step are completely reversible), because we explicitly enforce that
Ω > 0 and Ω2+Ξ > 0 in Conditions C1 and C2 respectively. As a result, if we satisfy
conditions C1, C2, and C3, Re(2λ) = −Ω + 1√

2

√
Υ < 0 would be satisfied as well.

This is the second condition we have on η and β. Continuing to simplify the

inequality in (4.11) (again see Box 4 for details), we get our third and final

condition:

(ηβ + ηbc + λr)
2(βλr + ba) + βλ2

c(ηbc + λr) > 0. (C3)

If A is positive definite (in which case TD converges) then λr > 0 for all z ∈ R

and each of the Conditions C1, C2, and C3 hold true and consequently TDRC

converges.

Now we show that TDRC converges even when A is not positive definite

(the case where TD is not guaranteed to converge). If we assume βλr + ba > 0

and ηbc + λr > 0, then each of the Conditions C1, C2, and C3 again hold true
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and TDRC would converge. As a result we obtain the following bounds:

β < − ba
λr

⇒ β < min
z

(
−z∗ AA⊤ z

z∗ Hz

)
, (4.12)

η > −λr

bc
⇒ η > max

z

(
−z∗ Hz

z∗ Cz

)
, (4.13)

with H
def

= 1
2
(A+A⊤). These bounds can be made more interpretable. Using

the substitution y = H
1

2 z we obtain

min
z

(
−z∗ AA⊤ z

z∗ Hz

)
≡ min

y

y∗(−H− 1

2 AA⊤ H− 1

2 )y

‖y ‖2

= λmin(−H− 1

2 AA⊤ H− 1

2 )

= −λmax(H
− 1

2 AA⊤ H− 1

2 )

= −λmax(H
−1 AA⊤),

where λmax represents the maximum eigenvalue of the matrix. Proceeding

similarly for η, we can write the bounds in Eq. 4.12 and 4.13 equivalently as

β < −λmax(H
−1 AA⊤), (4.14)

η > −λmin(C
−1 H). (4.15)

If these bounds are satisfied by η and β then the real parts of all the eigenvalues

of G would be negative and TDRC will converge.

CASE 2 Next consider Re(2λ) = −Ω− 1√
2

√
Υ. The second term is always

negative and we assumed Ω > 0 in Eq. C1. As a result, Re(λ) < 0 and we are

done.

Therefore, we get that the real part of the eigenvalues of G are negative

and consequently condition (iv) above is satisfied. To show that condition (v)

holds true, note that since we assumed A+β I to be non–singular, G is also

non–singular; this means that for the ODE ˙̺ = h(̺), ̺∗ = −G−1 g is the

unique asymptotically stable equilibrium with V̄(̺)
def

= 1
2
(G̺+g)⊤(G̺+g)

as its associated strict Lyapunov function.

We can extend this result to allow for singular C, which was not possible

for TDC. The set of conditions on η and β, however, are more complex. We

include this result with conditions given in (4.16).
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Convergence of TDRC when C is Singular When C is singular, bc =

z∗ Cz
‖ z ‖2 is no longer always greater than zero for an arbitrary vector z. Conse-

quently, if we explicitly set bc = 0 we would get alternative bounds on η and

β for which TDRC would converge. Putting bc = 0 in Conditions C1, C2, and

C3, we get

ηβ + λr > 0,

(ηβ + λr)
2 + λ2

c + 4η(βλr + ba) > 0, and

(ηβ + λr)
2(βλr + ba) + βλ2

cλr > 0.

As before, we are concerned with the case when A is not PSD and thus λr < 0.

Further, assume that βλr+ba > 0 (this is the same upper bound on β as given

in Eq. 4.12). We simplify the third inequality above to obtain the bound on

η. As a result, we get the following bounds for β and η:

β < − ba
λr

, η >
1

β

(√
−βλ2

cλr

βλr + ba
− λr

)

. (4.16)

The bound on η automatically satisfies the first condition ηβ+λr > 0. There-

fore, if β and η satisfy these bounds, TDRC converges even for a singular C

matrix. �

4.5 Fixed Points of TDRC

Theorem 4.5.1 (Fixed Points of TDRC) If w is a TD fixed point, i.e., a

solution to Aw = b, then it is a fixed point for the expected TDRC update,

A⊤
βC

−1
β (b−Aw) = 0.

Further, the set of fixed points for TD and TDRC are equivalent if Cβ is

invertible and if −β does not equal to any of the eigenvalues of A (so that Aβ

is non-singular). Note that Cβ is always invertible if β > 0, and is invertible

if C is invertible even for β = 0.

Proof: To show equivalence, the first part is straightforward: when Aw = b,

then b − Aw = 0 and so A⊤
βC

−1
β (b − Aw) = 0. This means that any TD
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fixed point is a TDRC fixed point. Now we simply need to show that under

the additional conditions, a TDRC fixed point is a TD fixed point.

If −β does not equal any of the eigenvalues of A, then Aβ = A + βI is a

full rank matrix. Because both Aβ and Cβ are full rank, A⊤
βC

−1
β (b − Aw)

equals to 0 if and only if b−Aw = 0.

We can prove Theorem 4.5.1, in an alternate fashion as well. The linear

system in Eq. 4.6 has a solution (in expectation) which satisfies

G̺+g = 0.

We show that this linear system has full rank and thus a single solution:

w = A−1 b and v = 0. If we show that the matrix G is non–singular, i.e.

its determinant is non–zero, we are done. From (4.8) it is straightforward to

obtain

det(G) = η2d det(A⊤ +β I) · det(A),

which is non–zero if we assume that β does not equal the negative of any

eigenvalue of A and that A is non–singular. �

4.6 Conclusions

In this chapter, we introduced the TDRC algorithm: a simple modification

of the TDC algorithm that achieves performance much closer to that of Off-

policy TD. We established a standard way for setting the second step-size and

regularization parameters. TDRC behaves like TD when TD performs well but

also prevents divergence under off-policy sampling. TDRC is built on TDC,

and, as we showed, inherits its soundness guarantees. In small linear prediction

problems, TDRC performs best overall, when compared to many other pre-

diction learning algorithms, and exhibits low sensitivity to its regularization

parameter.
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Chapter 5

Regularized Corrections for
Control1

We set out to contribute two empirical studies and three algorithmic ideas in

this dissertation. Two out of the three algorithmic ideas and both empirical

studies are focused on prediction learning. One of the algorithmic ideas is

intended for control learning, which is the focus of this chapter. This chapter

includes the second contribution of this dissertation: a novel algorithm for

off-policy control learning, which we call Q-learning with Regularized Correc-

tions, or QRC for short. QRC is the control variant of the TDRC algorithm

introduced in the previous chapter.

There are natural—though in some cases heuristic—extensions from predic-

tion learning algorithms to both the control setting and to non-linear function

approximation. In this chapter, we propose the QRC algorithm and investigate

its practicality. We first investigate QRC in control with linear function ap-

proximation. We then provide a heuristic strategy to use TDRC and TDC with

non-linear function approximation. We demonstrate—for the first time—that

Gradient-TD methods can outperform Q-learning when using neural networks

in two classic control domains and two visual domains.

1The contents of this chapter are based on a paper co-authored by this author (Ghiassian
et al., 2020).
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formance in the value estimates simply to improve estimates of E [δt|St = s].

It also makes the connection to TD more clear when β becomes larger, as the

update to the network is only impacted by w. We have not extensively tested

this choice; it remains to be seen if using gradients from both heads might

actually be a better choice. For a schematic view of the architecture we used,

see Figure 5.1.

The next step is to extend the algorithm to action-values. For an input

state s, the network produces an estimate q̂(s, a) and a prediction δ̂(s, a) of

E [δt|St = s, At = a] for each action. The weights vt+1,At
for the head corre-

sponding to action At are updated using the features produced by the last

layer, which we refer to as xt, with δ̂(St, At) = v
⊤

t,At
xt:

vt+1,At
← vt,At

+ α
[
δt − v

⊤

t,At
xt

]
xt − αβvt,At

. (5.1)

For the other actions, the secondary weights are not updated since we did not

get a target δt for them.

The remaining weights wt, which include all the weights in the network

excluding v, are updated using

δt = Rt+1 + γq̂(St+1, a
′)− q̂(St, At) (5.2)

wt+1←wt+αδt∇wq̂(St, At)−αγδ̂(St, At)∇wq̂(St+1, a
′),

where a′ is the action that the policy we are evaluating would take in state St+1.

For control, we often select the greedy policy, and so a′ = argmaxa q(St+1, a)

and (5.2) becomes δt = Rt+1 + γmaxa q̂(St+1, a) − q̂(St, At) as in Q-learning.

This action a′ may differ from the (exploratory) action At+1 that is actually

executed, and so this estimation is off-policy.

We call this final algorithm QRC: Q-learning with Regularized Corrections.

We can obtain, as a special case, a control algorithm based on TDC, which we

call QC. QC is simply obtained by setting β = 0 in (5.1).
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Figure 5.2: Number of steps to reach goal, averaged over runs, versus number
of environment steps, in Mountain Car with tile-coded features. Comparison
of state-action-value control algorithms with constant step-size parameters.
Results are averaged over 200 independent runs, with shading corresponding
to standard error. Q-learning and QRC found a good policy while QC failed
to learn a policy that can reach the goal in reasonable time.

5.2 Control Experiments with Linear Func-

tion Approximation

We first tested the algorithms in a well-understood setting, in which we know

Q-learning is effective: Mountain Car under a tile-coding representation.

In Mountain Car (Moore, 1990; Sutton, 1996), the goal is to reach the top

of a hill with an underpowered car. The car starts at the bottom of the hill.

The state consists of the agent’s position and velocity, with a reward of −1

per step until termination, and actions to accelerate forward, backward or do

nothing. The task is undiscounted.

We applied the algorithms to the Mountain Car control task, for 50,000

time steps and 200 independent runs. At the beginning of each of the runs,

the weight vectors, w and v, were set to 0. The behavior policy was ǫ-greedy

with ǫ = 0.1. Step-size parameter was swept over α ∈ {2−8, 2−7, . . . , 2−2, 2−1}
and then scaled by the number of active features. We used 16 tilings and 4×4

tiles. We fixed β = 1 for QRC, and η = 1 for QC.

The results are plotted in Figure 5.2. We plotted the best learning curve

for each algorithm averaged over the 200 runs with standard error as shaded

regions around each curve. We can see two clear outcomes from this con-
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trol experiment. The control algorithm based on TDC failed to converge to

a reasonable policy. The TDRC variant, on the other hand, matched the

performance of Q-learning.

This result might be surprising, since the only difference between TDRC

and TDC is regularizing v. This small addition, though, seems to play a

big role in avoiding this surprisingly bad performance of QC, and potentially

explains why gradient methods have been dismissed as hard-to-use. When we

looked more closely at QC’s behavior, we found that the magnitude of the

gradient corrections grew rapidly. This high magnitude gradient correction

resulted in a higher magnitude gradient for w, and pushed down the learning

rate for QC. The constraint on this correction term provided by QRC seems to

prevent this explosive growth, allowing QRC to attain comparable performance

to the Q-learning agent.

5.3 Control Experiments with Non-linear Func-

tion Approximation

In the second phase of the control experiments, we used neural network func-

tion approximation in two classic control environments: Mountain Car and

Cart Pole. In Cart Pole (Barto, Sutton & Anderson, 1983), the goal is to keep

a pole balanced as long as possible, by moving a cart left or right. The state

consists of the position and velocity of the cart, and the angle and angular

velocity of the pole. The reward is +1 per step. Episodes end when the agent

fails to balance the pole or balances the pole for more than 500 consecutive

steps. The discount factor parameter, γ, is equal to 0.99.

We applied Q-learning, QC and QRC to the Mountain Car and Cart Pole

tasks for 200 independent runs, where in Mountain Car each run lasted for

25,000 time steps and in Cart Pole each run lasted for 10,000 time steps. For

the details of the experiment including the architecture and neural network

parameters see Implementation Details, Section 5.5 of this chapter.

Learning curves are shown in the upper panels of Figure 5.3. QC learned

more slowly than QRC and Q-learning in both environments. In the Mountain
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Figure 5.3: Performance of Q-learning, QC and QRC on two classic control
environments with neural network function approximation. On top, the learn-
ing curves are shown. At the bottom, the parameter sensitivity for various
step-size parameters are plotted. Lower is better for Mountain Car (fewer
steps to goal) and higher is better for Cart Pole (more steps balancing the
pole). Results are averaged over 200 runs, with shaded error corresponding
to standard error. In Mountain Car QRC learned the fastest followed by Q-
learning and QC. In Cart Pole Q-learning learned the fastest, followed by
QRC, and then QC.

Car environment, QRC learned the fastest, followed by Q-learning and then

QC.

5.4 Control Experiments with Non-linear Func-

tion Approximation in Visual Domains

To test the algorithms in more challenging visual domains, we used Break-

out and Space Invaders from the MinAtar suite (Young & Tian, 2019). In

Breakout, the agent moves a paddle left and right, to hit a ball into bricks.

A reward of +1 is given for every brick hit; new rows appear when all the
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Figure 5.4: Performance of Q-learning, QC, and QRC in the two MinAtar
environments. The learning curves in the top row depict the average return
over time for the best performing step-size parameter for each agent. The step-
size parameter sensitivity plots in the bottom row depict the total discounted
reward achieved with several step-size parameter values. Higher is better. Re-
sults are averaged over 30 independent runs, with shaded error corresponding
to standard error. Light blue lines show the performance of QRC with smaller
regularization parameters, β < 1. QC provided a significant improvement on
Q-learning. The best performance was achieved with QRC with β < 1.

rows are cleared. The episode ends when the agent misses the ball. In Space

Invaders, the agent shoots alien ships coming towards it, and dodges their fire.

A reward of +1 is given for every alien that is shot. The episode ends when the

spaceship is hit by alien fire or reached by an alien ship. These environments

are simplified versions from the Atari suite (Bellemare et al., 2013), designed

to avoid the need for large networks and make it more feasible to complete

more exhaustive comparison—similar to the ones conducted here—including

using more runs.

We applied QRC, QC and Q-learning to the two MinAtar environments.

Each algorithm instance was run for 30 independent runs, each of which lasted
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for 5 million time steps. All methods use a network with one convolutional

layer, followed by a fully connected layer. All experimental settings are identi-

cal to the original MinAtar paper (Young & Tian, 2019). The discount factor

was γ = 0.99. For the details of the experiment, including the network ar-

chitecture and the parameters, see the Implementation Details, Section 5.5 of

this chapter.

The learning curve for the algorithm instance that resulted in the largest

area under the learning curve is shown in the two upper panels of Figure 5.4.

Each point in the learning curve is the moving average of returns over 100

episodes similar to Young and Tian (2019). To plot the sensitivity over pa-

rameters, we used the average of all returns acquired during the 5 million

steps, and divided the results by the number of returns. See the bottom row

of Figure 5.4. The code for this process is provided by Young and Tian at

https://github.com/kenjyoung/MinAtar.

On the two MinAtar environments we obtained a surprising result: QC pro-

vided substantial performance improvements over Q-learning (see Figure 5.4).

QRC with β = 1 was not as performant as QC in this setting and instead

obtained performance in-between QC and Q-learning. However, QRC with

smaller values of regularization parameter (shown as lighter blue lines) re-

sulted in the best performance.

This outcome highlights that Gradient-TD methods are not only theoret-

ically appealing, but could actually be a better alternative to Q-learning in

standard (non-adversarially chosen) problems. It further shows that, although

QRC with β = 1 generally provides a reasonable strategy, substantial improve-

ments might be obtained with an adaptive method for selecting β.

5.5 Implementation Details

In this section, we provide the details of experiments that used non-linear

function approximation.
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Mountain Car and Cart Pole with Non-linear Function Approxima-

tion We applied Q-learning, QC and QRC to the Mountain Car and Cart

Pole tasks for 200 independent runs, where in Mountain Car each run lasted

for 25,000 time steps and in Cart Pole each run lasted for 10,000 time steps.

To solve these task we used a fully connected neural network with two hidden

layers where each layer had 64 nodes in Cart Pole (32 nodes in Mountain Car)

with ReLU as the non–linearity and the output layer as linear. The weights

were updated using a replay buffer of size 4,096 in Cart Pole and a replay

buffer of size 4,000 in Mountain Car. In Cart Pole, we used a mini-batch size

of 32 for updates and used Adam with ǫ = 10−8, β1 = 0.9, and β2 = 0.999.

In Mountain Car, we tested a more highly off-policy setting: 10 replay steps

per time step. By using more replay per step, more data from older policies

is used, resulting in a more off-policy data distribution. We used Adam to

update the v vector using ǫ = 10−8, β1 = 0.99, and β2 = 0.999. The neu-

ral network weights for both tasks were initialized using Xavier initialization

(Glorot & Bengio, 2010) and the biases were initialized with a normal distribu-

tion with mean 0 and standard deviation 0.1. The second weight vectors were

initialized to with zero vectors. In both tasks, actions were selected using an

ǫ-greedy policy with ǫ = 0.1. We applied a range of algorithm instances with

various step-size parameters to the problems: {2−13, ..., 2−2} for Cart Pole and

{2−17, ..., 2−2} for Mountain Car. In these tasks we set η = 1 for QC and set

the regularization parameter β = 1 for QRC. We did not use target networks

in any of the tasks.

To plot the learning curves for the control experiments, we followed a

simple procedure. During the experiment, we saved the number of steps per

episode. For example, in the non-linear Mountain Car experiment, we saved

the number of steps per episode over the 25,000 time steps of each run. Then,

for each run, we created an array with 25,000 (or any other number of steps

each run lasted for) elements. We filled the array with the number of steps

each episode lasted. For example, if the first episode lasted 100 steps, and

the second episode lasted 80 steps, the first 100 elements of the array were

filled with the number 100, and the next 80 elements in the array were filled
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with the number 80. Then, for each run, we smoothed the resulting array

by averaging over a window size of 10. We then computed the average and

standard deviation over the smoothed data, over runs. We finally plotted the

learning curve of the algorithm instances that had the smallest (or largest for

Cart Pole) area under the learning curve.

Breakout and Space Invaders with Non-linear Function Approxima-

tion We used a decayed ǫ-greedy policy with ǫ = 1 decaying linearly to

ǫ = 0.1 over the first 100,000 steps. The rewards were scaled by (R× (1− γ))

so that the neural network does not have to estimate large returns. The Q-

Learning and QRC network architectures were the same as that used by Young

and Tian, (2019). The network had one convolutional layer and one fully con-

nected layer after that. The convolutional layer used sixteen 3×3 convolutions

with stride one. The fully connected layer had 128 units. Both convolutional

and fully connected layers used ReLU gates. The network was initialized the

same way as Young and Tian (2019). We did not use target networks for

MinAtar experiments because Young and Tian (2019) showed that using tar-

get networks has negligible effects on the results. We used a circular replay

buffer of size 100,000. The agent started learning when the replay buffer had

5,000 samples in it. The agent had one training step using a mini-batch of

size 32 per environment step. As explained by Young and Tian (2019), frame

skipping was not necessary since the frames of the MinAtar environment are

more information rich. Other parameters were chosen the same as Young and

Tian (2019): RMSProp with a smoothing constant of 0.95, and ǫ = 0.01 was

used. For QRC and QC, we used RMSProp to learn the second weight vec-

tor v as well. We swept over the RMSprop step-size parameter in powers

of 2: {2−10, ..., 2−5} for breakout, and {2−12, ..., 2−8} for space invaders. The

parameter η was set to 1 for QC and QRC and β was 1 for QRC.
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5.6 Conclusions

We proposed QRC, the control variant of the TDRC algorithm, with exten-

sions to non-linear function approximation. Our experiments suggest that the

performance of QRC is comparable to, and in some cases notably better than,

Q-learning. This constitutes the first demonstration of Gradient-TD methods

outperforming Q-learning in visual domains. Our results suggest that this sim-

ple modification to the standard Q-learning update—i.e., QRC—could provide

a more general purpose algorithm.
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Chapter 6

An Empirical Comparison on
the Collision Task1

One of the objectives of this dissertation is to provide a better understanding

of online off-policy prediction learning algorithms and how they perform in

practice. We take the first step in gaining a better understanding of the

algorithms’ merits and interrelationships in this chapter by presenting one of

the most important contributions of this dissertation: a detailed empirical

study of off-policy prediction learning algorithms on a small task, called the

Collision task. In previous chapters, we discussed 10 of the existing off-policy

prediction learning algorithms, and introduced one new prediction learning

algorithm (TDRC). This chapter makes a comparison of all these algorithms.

With many algorithms proposed for off-policy prediction learning, it is im-

portant to know how these algorithms compare to each other in practice, in

terms of learning speed, asymptotic error level, and ease of use. As discussed

previously, high variance and divergence are arguably the two most important

challenges of off-policy learning. Lots of the online off-policy prediction liter-

ature since the 2000s have focused on proposing algorithms that are guaran-

teed to converge under off-policy training with linear function approximation.

There have been few studies that focused exclusively on the empirical consid-

erations of off-policy prediction learning. To the best of our knowledge, three

studies to date conducted detailed empirical comparisons of fully incremental

1The contents of this chapter are based on a paper co-authored by this author (Ghiassian
& Sutton, 2021a).
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off-policy prediction learning algorithms with linear function approximation:

Geist and Scherrer (2014), Dann, Neumann, and Peters (2014), and White

and White (2016). While these empirical studies played an important role

in understanding the advantages and disadvantages of algorithms, our under-

standing of the algorithms merits remains limited.

In previous chapters we discussed the prediction variant of the Retrace

algorithm, called V-trace, but postponed the derivation of the prediction vari-

ants of Tree Backup and ABQ to this chapter. To be able to apply ABQ and

Tree Backup to prediction learning problems, we need to derive their predic-

tion variants. In this chapter we derive the prediction variants of ABQ, Tree

Backup, and Retrace algorithms in a unified way. To the best of our knowl-

edge, this dissertation is the first to derive prediction variants of ABQ and

Tree Backup. We refer to the prediction variant of ABQ as ABTD, and refer

to the prediction and control variants of the Tree Backup algorithm with the

same name.

This chapter presents empirical results with eleven prominent off-policy

prediction learning algorithms that use linear function approximation: five

Gradient-TDmethods, two Emphatic-TD methods, Off-policy TD(λ), V-trace,

Tree Backup, and ABTD. Our experiment used the Collision task, a small

idealized off-policy problem analogous to that of an autonomous car trying

to predict whether it will collide with an obstacle. We assessed the perfor-

mance of the algorithms according to their learning rate, asymptotic error

level, and sensitivity to step-size and bootstrapping parameters. By these

measures, we partially order the eleven algorithms into three tiers on the Col-

lision task. The top tier comprised of the two Emphatic-TD algorithms. These

algorithms learned the fastest, reached the lowest error levels, and were most

robust to parameter settings. The middle tier comprised of six Gradient-TD

algorithms and Off-policy TD(λ). These algorithms were more sensitive to the

bootstrapping parameter than the Emphatic-TD algorithms and did not learn

faster than them. Finally, the bottom tier comprised V-trace, Tree Backup,

and ABTD. These three algorithms were no faster and had higher asymptotic

error than the others.
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Our results are definitive for this task, though of course experiments with

more tasks are needed before an overall assessment of the algorithms’ merits

can be made.

6.1 Two Different Forms of Importance Sam-

pling Placement for Off-policy TD(λ)

The goal of this chapter is to conduct an empirical comparison of prediction

learning algorithms. However, two of the algorithms that we intend to in-

clude in our comparison (Tree Backup and ABTD), are originally proposed

for control. To derive these algorithms for prediction, and to show how these

algorithms are related to the classic Off-policy TD(λ), we first need to show the

Off-policy TD(λ) update rules can be written in two different forms. We show

that these two sets of update rules are equivalent to each other step by step.

One of these forms is the one that we previously used to introduce Off-policy

TD(λ) in Chapter 2, and the other one is later used to derive the prediction

variants of the three algorithms (Tree Backup, ABTD, and V-trace).

The original work on Off-policy TD(λ) uses the following update rules

(Precup, Sutton, & Singh, 2000):

δt
def

= Rt+1 + γw
⊤

t xt+1 −w
⊤

t xt

zρt ← ρt
(
γλzρt−1 + xt

)
with zρ−1 = 0

wt+1 ← wt + αδtzt.

Other works (e.g., Geist & Scherrer, 2014) have used a different placement of

the importance sampling ratio, with ρt in the update rule for w and ρt−1 in

the update rule for z :

z′t ← ρt−1γλz
′
t−1 + xt with z′−1 = 0

wt+1 ← wt + αρtδtz
′
t.

In Box 1, we show that given zρ−1 = z′−1 = 0, the two sets of updates listed

above for Off-policy TD(λ) are equivalent step by step.

71



Box 1: Equality of the two forms of importance sampling placement

We start by showing that δtzt is equal to the product ρtδtz
′
t at each step, given

that zρ−1 = z′−1 = 0.

ρtδtz
′
t = ρtδt

[
ρt−1γλz

′
t−1 + xt

]

= ρtδt
[
ρt−1γλ(ρt−2γλz

′
t−2 + xt−1) + xt

]

= ρtδt
[
(γλ)2 ρt−1ρt−2z

′
t−2 + γλρt−1xt−1 + xt

]

= ρtδt
[
(γλ)2 ρt−1ρt−2

(
ρt−3γλz

′
t−3 + xt−2

)
+ γλρt−1xt−1 + xt

]

= ρtδt
[
(γλ)3 ρt−1ρt−2ρt−3z

′
t−3 + (γλ)2 ρt−1ρt−2xt−2 + γλρt−1xt−1 + xt

]

...

= ρtδt

(
t∑

i=0

(γλ)i xt−i

i∏

k=1

ρt−k

)

+ ρtδt

(

(γλ)t+1
t+1
∏

k=1

ρt−k

)

z′−1,

assuming that z′−1 = 0:

ρtδtz
′
t = ρtδt

(

t
∑

i=0

(γλ)i
i
∏

k=1

ρt−k

)

. (6.1)

On the other hand we have:

δtz
ρ
t = δt

[

ρt
(

γλzρt−1 + xt

)]

= ρtδt
[

γλρt−1

(

γλzρt−2 + xt−1

)

+ xt

]

= ρtδt
[

(γλ)2 ρt−1z
ρ
t−2 + γλρt−1xt−1 + xt

]

= ρtδt
[

(γλ)2 ρt−1

(

ρt−2

(

γλzρt−3 + xt−2

))

+ γλρt−1xt−1 + xt

]

= ρtδt
[

(γλ)3 ρt−1ρt−2z
ρ
t−3 + (γλ)2 ρt−1ρt−2xt−2 + γλρt−1xt−1 + xt

]

...

= ρtδt

(

t
∑

i=0

(γλ)i xt−i

i
∏

k=1

ρt−k

)

+ ρtδt

(

(γλ)t+1
t
∏

k=1

ρt−k

)

zρ−1

which is equal to (6.1) given that zρ−1 = 0.
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6.2 Derivations of Tree Backup, V-trace, and

ABTD

In this section, we derive the prediction variants of Tree Backup(λ), Retrace(λ),

and ABQ(ζ). Deriving the prediction variant of control algorithms is typically

straightforward. However, deriving the prediction variant of the three men-

tioned algorithms is a little more involved. All prediction algorithms can be

seen as Off-policy TD(λ) with λt generalized from a constant to a function of

(St, At). As we will shortly see, importance sampling ratios cannot be com-

pletely avoided in the prediction setting as was done in the control setting.

Trying to avoid all importance sampling ratios in the prediction learning case

might result in an incorrect version of these algorithms that we will discuss at

the end of this section.

As mentioned, the key idea is to set λt = λ(St−1, At−1) adaptively in generic

Off-policy TD(λ):

zt = ρt−1γtλtzt−1 + xt (6.2)

wt+1 = wt + αρtδtzt, (6.3)

where δt is the TD-error, zt is eligibility trace, ρt is the importance sampling

ratio, and α is the step-size parameter. The prediction variant of all three

algorithms can be derived in a similar way. To understand the prediction

variant of these algorithms, we derive ABTD(ζ). We then use ABTD(ζ) to

derive extensions to V-trace(λ) and Tree Backup(λ) for prediction.

Consider the generalized λ-return, for a λ based on the state and action—as

in ABQ(ζ)—or the entire transition (White, 2017). Let λt+1 = λ(St, At, St+1)

be defined based on the transition (St, At, St+1), corresponding to how rewards

and discounts are defined based on the transition, Rt+1 = r(St, At, St+1) and

γt+1 = γ(St, At, St+1). Then, given a value function v̂, the λ-return Gλ
t for

generalized γ and λ is defined recursively as

Gλ
t

def

= ρt
(
Rt+1 + γt+1

[
(1− λt+1)v̂(St+1) + λt+1G

λ
t+1

])
.

Similar to ABQ(ζ) (Mahmood et al., 2017, Equation 7), this λ-return can be
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written using TD-errors

δt
def

= Rt+1 + γt+1v̂(St+1)− v̂(St),

as

Gλ
t = ρt

(
Rt+1 + γt+1v̂(St+1)− γt+1λt+1v̂(St+1) + γt+1λt+1G

λ
t+1

)

= ρt
(
δt + v̂(St) + γt+1λt+1

[
Gλ

t+1 − v̂(St+1)
])

= ρtδt + ρtv̂(St)+

ρtγt+1λt+1

(
ρt+1δt+1 + ρt+1γt+2λt+2

[
Gλ

t+2 − v̂(St+2)
])

= ρt

∞∑

n=t

(ρt+1λt+1γt+1)
nδt + ρtv̂(St),

where

(ρt+1λt+1γt+1)
n def

=
n∏

i=t+1

ρiλiγi.

This return differs from the return used by ABQ(ζ), because it corresponds

to the return from a state, rather than the return from a state and action. In

ABQ(ζ), the goal is to estimate the action-value for a given state and action.

For ABTD(ζ), the goal is to estimate the value for a given state. For the

return from a state St, we need to correct the distribution over actions At

with importance sampling ratio ρt. For ABQ(ζ), the correction with ρt is

not necessary because St and At are both given, and importance sampling

corrections only need to be computed for future states and actions, with ρt+1

onward. For ABTD(ζ), therefore, unlike ABQ(ζ), not all importance sampling

ratios can be avoided. We can, however, still set λ in a similar way to ABQ(ζ)

to mitigate the variance effects of importance sampling.

To ensure ρtλt+1 is well-behaved, ABTD(ζ) sets λ as follows:

λ(St, At, St+1) = ν(ψ, St, At)b(St, At),

with the following scalar parameters to define νt (Mahmood, Yu, & Sutton,

74



2017):

νt
def

= ν(ψ(ζ), St, At)
def

= min

(
ψ(ζ),

1

max(b(At|St), π(At|St))

)
,

ψ(ζ)
def

= 2ζψ0 +max(0, 2ζ − 1)(ψmax − 2ψ0),

ψ0
def

=
1

maxs,a max(b(a|s), π(a|s)) ,

ψmax
def

=
1

mins,a max(b(a|s), π(a|s)) .

In the λ-return, then

ρtλt+1 =
π(St, At)

b(St, At)
ν(ψ, St, At)b(St, At) = ν(ψ, St, At)π(St, At).

This removes the importance sampling ratios from the eligibility trace. The

resulting ABTD(ζ) algorithm can be written as the standard Off-policy TD(λ)

algorithm, for a particular setting of λ. The Off-policy TD(λ) algorithm, with

this λ, is called ABTD(ζ), with updates

δt
def

= ρt
(
Rt+1 + γt+1w

⊤

t xt+1 −w
⊤

t xt

)

zt ← γtνt−1πt−1zt−1 + xt with z−1 = 0

wt+1 ← wt + αρtδtzt.

Finally, we can adapt Retrace(λ) and Tree Backup(λ) for policy evaluation.

Mahmood, Yu, and Sutton (2017) showed that Retrace(λ) can be specified

with a particular setting of νt (in their Equation 36). We can similarly obtain

Retrace(λ) for prediction by setting

νt−1 = ζmin

(
1

πt−1

,
1

bt−1

)
,

or more generally:

νt−1 = ζmin

(
c̄

πt−1

,
1

bt−1

)
,

where c̄ is a constant, which we will discuss in more detail shortly. For Tree

Backup(λ), the setting for νt is any constant value in [0, 1] (see Algorithm 2

of Precup, Sutton & Singh, 2000).

So far, we derived ABTD(ζ) for prediction by defining λt in the eligibility

trace update of Off-policy TD(λ). We then used two special settings of ν
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to recover V-trace(λ) and Tree Backup(λ) algorithms. Now, we specify Tree

Backup(λ), and V-trace(λ) updates again, but this time in terms of a special

setting of λt in the Off-policy TD(λ) update.

Prediction variant of Tree Backup(λ) is Off-policy TD(λ) with λt = bt−1λ,

for some tuneable constant λ ∈ [0, 1]. Replacing λt with bt−1λ in the eligibility

trace update in (6.2) simplifies as follows:

zt ← γt
πt−1

bt−1

bt−1λzt−1 + xt,

= γtπt−1λzt−1 + xt. (6.4)

A simplified variant of the V-trace(λ) algorithm (Espeholt et al., 2018) can

be derived with a similar substitution:

λt = min

(
c̄

πt−1

,
1

bt−1

)
λbt−1,

where c̄ ∈ R
+ and λ ∈ [0, 1] are both tuneable constants. The update rule for

the eligibility trace of V-trace(λ) with this special setting of λt at each time

step becomes:

zt = γt min

(
c̄

πt−1

,
1

bt−1

)
λbt−1

πt−1

bt−1

zt−1 + xt

= γt min

(
c̄

πt−1

,
1

bt−1

)
λπt−1zt−1 + xt

= γt min

(
c̄πt−1

πt−1

,
πt−1

bt−1

)
λzt−1 + xt

= γt min (c̄, ρt−1)λzt−1 + xt. (6.5)

The parameter c̄ is used to clip importance sampling ratios in the trace. Note

that it is not possible to recover the full V-trace(λ) algorithm in this way. The

more general V-trace(λ) algorithm uses an additional parameter, ρ̄ ∈ R
+ that

clips the ρt in the update to wt+1: min(ρ̄, ρt)δtzt. When ρ̄ is set to the largest

possible importance sampling ratio, it does not affect ρt in the update to wt

and so we obtain the equivalence above. For smaller ρ̄, however, V-trace(λ)

is no longer simply an instance of Off-policy TD(λ). In our experiments, we

investigate this simplified variant of V-trace(λ) that does not clip ρt and set

c̄ = 1 as done in the original Retrace algorithm.
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Finally, as mentioned before, ABTD(ζ) for ζ ∈ [0, 1] uses λt = νt−1bt−1

in the Off-policy TD(λ) update which results in the following eligibility trace

update:

zt = γt
πt−1

bt−1

νt−1bt−1zt−1 + xt

= γtνt−1πt−1zt−1 + xt, (6.6)

The convergence properties of all three methods are similar to Off-policy

TD(λ). They are not guaranteed to converge under off-policy sampling with

weighting µb and function approximation. With the addition of gradient cor-

rections similar to GTD(λ), all three algorithms are convergent. For explicit

theoretical results, see Mahmood, Yu, and Sutton (2017) for ABQ(ζ) with gra-

dient correction and Touati et al. (2018) for convergent versions of Retrace(λ)

and Tree Backup(λ).

Trying to simply derive a control variant of these algorithms without taking

into account which terms need to be corrected in prediction versus in control

learning, might result in deriving an incorrect version of the algorithm that

we briefly discuss below.

An alternative but incorrect extension of ABQ(ζ) to ABTD(ζ) The

ABQ(ζ) algorithm specifies λ to ensure that ρtλt is well-behaved, whereas

we specified λ so that ρtλt+1 is well-behaved. This difference arises from the

fact that for action-values, the immediate reward and next state are not re-

weighted with ρt. Consequently, the λ-return of a policy from a given state

and action is:

Rt+1 + γt+1

[
(1− λt+1)v̂(St+1) + ρt+1λt+1G

λ
t+1

]
.

To mitigate variance in ABQ(ζ) when learning action-values, therefore, λt+1

should be set to ensure that ρt+1λt+1 is well-behaved. For ABTD(ζ), however,

λt+1 should be set to mitigate variance from ρt rather than from ρt+1.

To see why more explicitly, the central idea of these algorithms is to avoid

importance sampling altogether: this choice ensures that the eligibility trace
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does not include importance sampling ratios. The eligibility trace zat in TD

when learning action-values is:

zat = ρtλtγtz
a
t−1 + xa

t ,

for state-action features xa
t . For ρtλt = νtπt, this trace reduces to zat =

νtπtγtz
a
t−1 + xa

t (Equation 18, Mahmood et al., 2017). For ABTD(ζ), one

could in fact also choose to set λt so that ρtλt = νtπt instead of ρtλt+1 = νtπt.

However, this would result in eligibility traces that still contain importance

sampling ratios. The eligibility trace in TD when learning state-values is:

zt = ρt−1λtγtzt−1 + xt.

Setting ρtλt = νtπt would result in the update zt = ρt−1νt
πt

ρt
γtzt−1 + xt, which

does not remove important sampling ratios from the eligibility trace. Rather,

the corresponding update for policy evaluation requires ρt−1λt = νt−1πt−1,

giving the ABTD(ζ) as specified above.

6.3 TDRC with General λ

One of the algorithms that we will use in the empirical studies is TDRC(λ).

In Chapter 4 we introduced the TDRC algorithm for the full bootstrapping

case.

Remember from Chapter 4 that the update rule for TDRC’s secondary

weight vector is:

vt+1 ← vt + αv

[
δtxt − (v

⊤

t xt)xt

]
− αvvt. (6.7)

The intuition for this update is that we need the correction term in the TD

update, but we would like the correction term to be small in magnitude, and

we control its magnitude by regularizing the update for the second weight

vector and keeping it small. This is what the regularization term in (6.7)

does. Given that we want the same effect when general λ is used, the update

for the secondary weight vector of the TDRC(λ) algorithm is:

vt+1 ← vt + αv

[
δtzt − (v

⊤

t xt)xt

]
− αvvt,
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which similar to the full bootstrapping case, subtracts a multiple of the sec-

ondary weight vector from the update to keep the magnitude of v small. The

update rule for the primary weight vector of TDRC(λ) is the same as GTD(λ).

The TDRC(λ) algorithm is fully specified by the following update rules:

δt
def

= Rt+1 + γw⊤
t xt+1 −w⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

vt+1 ← vt + αv

[
δtzt − (v

⊤

t xt)xt

]
− αvvt

wt+1 ← wt + αδtzt − αγt+1(1− λt+1)(v
⊤

t zt)xt+1.

With the introduction of TDRC(λ), we have now introduced all the algo-

rithms that will be used in the empirical studies.

6.4 The Collision Task

The Collision task is an idealized off-policy prediction-learning task. A vehicle

moves along an eight-state track towards an obstacle with which it will collide

if it keeps moving forward. In this episodic task, each episode begins with the

vehicle in one of the first four states (selected at random with equal probabil-

ity). In these four states, forward is the only possible action whereas, in the

last four states, two actions are possible: forward and turnaway (see Figure

6.1). The forward action always moves the vehicle one state further along

the track; if it is taken in the last state, then a collision is said to occur, the

reward is 1, and the episode ends. The turnaway action causes the vehicle to

“turn away” from the wall, which also ends the episode, except with a reward

of zero. The reward is also zero on all earlier, non-terminating transitions. In

an episodic task like this the return is accumulated only up to the end of the

episode. After termination, the next state is the first state of the next episode,

selected randomly from the first four as specified above.

The target policy on this task is to always take the forward action, mean-

ing that π(forward|s) = 1, ∀s ∈ S, whereas the behavior policy is to take

the two actions (where available) with equal probability, which means that
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forward

turnaway

+1

1 2 3 4 65 7 8

S t a r t   S t a t e s

Figure 6.1: The Collision task. Episodes start in one of the first four states
and end when the forward action is taken from the eighth state, causing a
crash and a reward of 1, or when the turnaway action is taken in one of the
last four states.

b(forward|s) = b(turnaway|s) = 0.5, ∀s ∈ {5, 6, 7, 8}. The problem is dis-

counted with a discount rate of γ = 0.9. As always, we are seeking to learn

the value function for the target policy, which in this case is vπ(s) = γ8−s. This

function is shown as a dotted black curve in Figure 6.2. The thin red lines show

approximate value functions v̂ ≈ vπ, using various feature representations, as

we discuss shortly below.

This idealized task is roughly analogous to and involves some similar issues

as real-world autonomous driving problems, such as exiting a parallel parking

spot without hitting the car in front of you, or learning how close you can

get to other cars without risking collisions. In particular, if these problems

can be treated as off-policy learning problems, then solutions can potentially

be learned with fewer collisions. In this work, we are testing the efficiency

of various off-policy prediction-learning algorithms at maximizing how much

they learn from the same number of collisions.

Similar problems have been studied using mobile robots. For example,

White (2015) used off-policy learning algorithms running on an iRobot Create

to predict collisions as signaled by activation of the robot’s front bumper sen-

sor. Rafiee et al. (2019) used a Kobuki robot to predict predictions as well.

Modayil and Sutton (2014) trained a custom robot to predict motor stalls and

turn off the motor when a stall was predicted.

We artificially introduce function approximation into the Collision task.

Although a tabular approach is entirely feasible on this small problem, it

would not be on the large problems of interest. In real applications, the agent
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would have sensor readings, which will go through an artificial neural network

to create feature representations. We simulate such representations in the

Collision task by randomly assigning to each of the eight states a binary feature

vector x(s) ∈ {0, 1}d, ∀s ∈ {1..8}. We chose d = 6, so that was not possible

1 2 3 4 5 6 7 8

State

0

0.2

0.4

0.6

0.8

1.0

Value v̂(.,w∗)

vπ

Figure 6.2: The ideal value function, vπ, and the best approximate value
functions, v̂, for 50 different feature representations.

for all eight of the feature vectors (one per state) to be linearly independent.

In particular, we chose all eight feature vectors to have exactly three 1s and

three 0s, with the location of the 1s for each state being chosen randomly.

Because the feature vectors are linearly dependent, it is not possible in

general for a linear approximation, v̂(s,w) = w⊤x, to equal to vπ(s) at all

eight states of the Collision task. This, in fact, is the sole reason the red

approximate value functions in Figure 6.2 do not exactly match vπ. Given

a feature representation x : S → R
d, a linear approximate value function

is completely determined by its weight vector w ∈ R
d. The quality of that

approximation is assessed by its squared error at each state, weighted by how

often each state occurs:

VE(w) =
∑

s∈S
µb(s)

[
v̂(s,w)− vπ(s)

]2
, (6.8)

where µb(s) is the state distribution, the fraction of time steps in which St = s,

under the behavior policy (here µb was approximated from visitation counts

from one million sample time steps). The value functions shown by red lines

in Figure 6.2 are for w∗, the weight vector that minimizes VE(w), with each

line corresponding to a different randomly selected feature representation as

described earlier. For these value functions, VE(w∗) ≈ 0.05. The code for
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0
0.2

0.4
0.6

0.8
1.0

1 2 3 4 5 6 7 8

State

t=200

t=20,000

t=2,000

t=0

vπ

v̂(s,wt)

Figure 6.3: An example of the approximate value function, v̂, being learned
over time.

the Collision task and the experiments are provided at the following link:

https://github.com/sinaghiassian/OffpolicyAlgorithms.

6.5 Experiment

The Collision task, in conjunction with its behavior policy, was used to gen-

erate 20,000 time steps, comprising one run, and then this was repeated for a

total of 50 independent runs. Each run also used a different feature represen-

tation randomly generated as described in the previous section. The eleven

learning algorithms were then applied to the 50 runs, each with a range of

parameter values; each combination of algorithm and parameter settings is

termed an algorithm instance. A list of all parameter settings used can be

found in Table 6.1. They included 12 values of λ, 19 values of α, 15 values of

η (for the Gradient-TD family), six values of β (for ETD(λ, β)), and 12 values

of ζ (for ABTD(ζ)), for approximately 20,000 algorithm instances in total. In

each run, the weight vector was initialized to w0 = 0 and then updated at

each step by the algorithm instance to produce a sequence of wt. At each

step we also computed and recorded VE(wt). With a successful learning pro-

cedure, we expect the value function to evolve over time as in Figure 6.3. The

approximate value function starts at v̂(s,0) = 0, as shown by the pink line,

then moves toward positive values, as shown by the blue and orange lines.

Finally, the learned value function slants and comes to closely approximate

the true value function, though always with some residual error due to the

limited feature representation, as shown by the green line (and also by all the

red lines in Figure 6.2).

82



Algorithms η or β λ or ζ α

Off-policy TD(λ) —
0,

0.1, 0.2,
0.3, 0.5,
0.9, 1
and

1 - 2−x

where
x ∈ {

2, 3, 4, 5, 6}

α = 2−x

where
x ∈ {

0, 1, 2, · · · ,
17, 18}

Gradient-TD
Algorithms

GTD(λ) 2x

where x ∈
{−6,−5, · · · ,

7, 8}GTD2(λ)

HTD(λ)

Proximal GTD2(λ)

TDRC(λ) —

Emphatic-TD
Algorithms

Emphatic
TD(λ)

—

Emphatic
TD(λ, β)

β ∈
{0.0, 0.2,
0.4, 0.6,
0.8, 1.0}

Variable-λ
Algorithms

Tree Backup(λ)
—

V-trace(λ)

ABTD(ζ)

Table 6.1: List of all parameters that we used in the experiment. For algo-
rithms such as GTD(λ) that had more than one parameter, we tried all the
possible combinations of all parameters.
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over 

50 runs)
0.1
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Steps

√

VE

Figure 6.4: Learning curves illustrating the range of things that can happen
during a run. The average error over the 20,000 steps is a good combined
measure of learning rate and asymptotic error.

Figure 6.4 shows learning curves illustrating the range of things that hap-

pened in the experiment. Normally, we expect VE to decrease over the course

of the experiment, starting at VE(0) ≈ 0.7 and falling to some minimum

value, as in the red and black lines in Figure 6.4 (these and all other data are

averaged over the fifty runs). If the primary step-size parameter, α, is small,

then the learning may be slow and incomplete by the end of the runs, as in the

orange line. A larger step-size parameter may be faster, but, if it is too large,

then divergence can occur, as in the blue line. For one algorithm, Proximal

GTD2(λ), we found that the error dipped low and then leveled off at a higher

level, as in the olive line.

6.6 Main Results: A Partial Order over Algo-

rithms

As an overall measure of the performance of an algorithm instance, we take

its learning curve over 50 runs, as in Figure 6.4, and then average it across the

20,000 steps. In this way, we reduce all the data for an algorithm instance to a

single number that summarizes performance. These numbers appear as points

in our main results figure, Figure 6.5. Each panel of the figure is devoted to a

single algorithm.

For example, performance numbers for instances of Off-policy TD(λ) are

shown as points in the left panel of the second row of Figure 6.5. This algorithm

has two parameters, the step-size parameter, α, and the bootstrapping param-

eter, λ. The points are plotted as a function of α, and points with the same
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Figure 6.5: Main results: Performance of all algorithms on the Collision task
as a function of their parameters α and λ. The top tier algorithms (top row)
attained a low error (≈0.1) at all λ values. The middle tier of six algorithms
attained a low error for λ = 1, but not for λ = 0. And the bottom-tier of three
algorithms were unable to reach an error of ≈0.1 at any λ value.

λ value are connected by lines. The blue line shows the performances of the

instances of Off-policy TD(λ) with λ = 1, the red line shows the performances

with λ = 0, and the gray lines show the performances with intermediate λs.

Note that all the lines are U-shaped functions of α, as is to be expected; at

small α learning is too slow to make much progress, and at large α there is

overshoot and divergence, as in the blue line in Figure 6.4. For each point, the

standard error over the 50 runs is also given as an error bar, though these are

too small to be seen in all except the rightmost points of each line where the

step size was highest and divergence was common. Except for these rightmost

points, almost all visible differences are statistically significant.

First focus on the blue line (of the left panel on the second row of Figure

6.5), representing the performances of Off-policy TD(λ) with λ = 1. There is

a wide sweet spot, that is, there are many intermediate values of α at which
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good performance (low average error) is achieved. Note that the step-size

parameter α is varied over a wide range, with logarithmic steps. The minimal

error level of about 0.1 was achieved over four or five powers of two for α. This

is the primary measure of good performance that we look for in these data:

low error over a wide range of parameter values.

Now contrast the blue line with the red and gray lines (for Off-policy TD(λ)

in the left panel of the second row of Figure 6.5). Recall that the blue line is for

λ = 1, the red line is for λ = 0, and the gray lines are for intermediate values

of λ. First note that the red line shows generally worse performance; the error

level at λ = 0 was higher, and its range of good α values was slightly smaller

(on a logarithmic scale). The intermediate values of λ all had performances

that were between the two extremes. Second, the sweet spot (the best α value)

consistently shifted right, toward higher α, as λ was decreased from 1 toward

0.

Now, armed with a thorough understanding of the Off-policy TD(λ) panel,

consider the other panels of Figure 6.5. Overall, there are a lot of similarities

between the algorithms and how their performances varied with α and λ. For

all algorithms, error was lower for λ = 1 (the blue line) than for λ = 0 (the

red line). Bootstrapping apparently confers no advantage in the Collision task

for any algorithm.

The most obvious difference between algorithms is that the performance of

the two Emphatic-TD algorithms varied relatively little as a function of λ; their

blue and red lines are almost on top of one another, whereas those of all the

other algorithms are qualitatively different. The emphatic algorithms generally

performed as well as or better than the other algorithms. At λ = 1, the

emphatic algorithms reached the minimal error level of all algorithms (≈0.1),

and their ranges of good α values was as wide as that of the other algorithms.

While at λ = 0, the best errors of the emphatic algorithms were qualitatively

better than those of the other algorithms. The minimal λ = 0 error level

of the emphatic algorithms was about 0.15, as compared to approximately

0.32 (shown as a second thin gray line) for all the other algorithms (except

Proximal GTD2, a special case that we consider later). Moreover, for the
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emphatic algorithms the sweet spot for α shifted little as λ varied. The shift

was markedly less than for the six algorithms in the middle two rows of Figure

6.5. The lack of an interaction between the two parameter values is another

potential advantage of the emphatic algorithms.

The lowest error level for eight of the algorithms was ≈0.1 (shown as a thin

gray line), and for the other three algorithms the best error was higher, ≈0.16.

The differences between the eight and the three were highly statistically sig-

nificant, whereas the differences within the two groups were negligible. The

three algorithms that performed worse than the others were Tree Backup(λ),

V-trace(λ), and ABTD(ζ)—shown in the bottom row of Figure 6.5. The differ-

ence was only for large λs; at λ = 0 these three algorithms reached the same

error level (≈0.32) as the other non-emphatic algorithms. The three worse

algorithms’ range of good α values was also slightly smaller than the other

algorithms (with the partial exception, again, of Proximal GTD2(λ)). A mild

strength of the three is that the best α value shifted less as a function of λ

than for the other six non-emphatic algorithms. Generally, the performances

of these three algorithms in Figure 6.5 look very similar as a function of pa-

rameters. An interesting difference is that for ABTD(ζ), we only see three

gray curves, whereas for the other two algorithms we see seven. For ABTD(ζ)

there is no λ parameter, but the parameter ζ plays the same role. In our

experiment, ABTD(ζ) performed identically for all ζ values greater than 0.5;

four gray lines with different ζ values are hidden behind ABTD’s blue curve.

In summary, our main result is that on the Collision task the performances

of the eleven algorithms fell into three groups, or tiers. In the top tier are the

two Emphatic-TD algorithms, which performed well and almost identically at

all values of λ and significantly better than the other algorithms at low λ.

Although this difference did not affect best performance here (where λ = 1

is best), the ability to perform well with bootstrapping is expected to be

important on other tasks. In the middle tier are Off-policy TD(λ) and all

the Gradient-TD algorithms including HTD(λ), all of which performed well at

λ = 1 but less well at λ = 0. Finally, in the bottom tier are Tree Backup(λ),

V-trace(λ), and ABTD(λ), which performed very similarly and not as well as
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Figure 6.6: Detail on the performance of Emphatic TD(λ, β) at λ = 0. Note
that Emphatic TD(λ) is equivalent to Emphatic TD(λ, γ), and here γ = 0.9.
The flexibility provided by β does not help on the Collision task.

the other algorithms at their best parameter values. All of these differences

are statistically significant, albeit specific to this one task. In Figure 6.5 the

three tiers are the top row, the two middle rows, and the bottom row.

In the next two sections we take a closer look at two of the tiers to find

differences within them.

6.7 Emphatic TD(λ) versus Emphatic TD(λ, β)

In this section, the effect of the β parameter of Emphatic TD(λ, β) on the al-

gorithm’s performance in the full bootstrapping case is analyzed. We focus on

the full bootstrapping case (λ = 0) because this is where the largest differences

were observed in the previous section. The curves shown in Figure 6.5, are for

the best values of β; meaning that, for each λ, we found the combination of

α and β that resulted in the minimum average error, fixed β, and plotted the

sensitivity for that fixed β over the step-size parameter. Here, we show how

varying β affects performance.

The error of Emphatic TD(0), and Emphatic TD(0,β) for various values of

α and β are shown in Figure 6.6. We see that both algorithms performed sim-

ilarly well on the Collision task, meaning that they both had a wide sensitivity

curve and reached the same (≈0.1) error level. Notice that, as β increased,

the sensitivity curve for Emphatic TD(0,β) shifted to left and the overall error

decreased. With β = 0, Emphatic TD(λ, β), reduces to TD(λ). With β = 0.8,
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and β = 1, Emphatic TD(λ, β) reached the same error level as Emphatic

TD(λ). With β = γ, Emphatic TD(λ, β) reduces to Emphatic TD(λ). This

explains why the red curve is between the β = 0.8 and β = 1 curves.

The results make it clear that the superior performance of emphatic meth-

ods are almost entirely due to the basic idea of emphasis; the additional flex-

ibility provided by β of the Emphatic TD(λ, β) was not important on the

Collision problem.

6.8 Assessment of Gradient-TD Algorithms

We study how the η parameter of Gradient-TD algorithms affects performance

in the case of full bootstrapping (the second step-size parameter, αv, is equal

to η × α). Previously, in Figure 6.5 we looked at the results with the best

values of η for each λ; meaning that for each λ, first the combination of α and

η that resulted in the lowest average VE was found and then sensitivity to

the step-size parameter was plotted for that specific value of η. Sensitivity to

step size for various values of η for λ = 0 are shown in Figure 6.7. Each panel

shows the result of two Gradient-TD algorithms for various η. One main

algorithm, shown with solid lines, and another additional algorithm shown

with dashed lines for comparison. First focus on the upper left panel. The

upper left panel shows the parameter sensitivity for GTD2(0), for four values

of η, and additionally it shows GTD(0) results as dashed lines for comparison.

We plotted these four values out of the eight values listed in Table 6.1 because

they are a good representative of all the value of η. The color for each value

of η is consistent within and across the four panels, meaning that for example,

η = 256 is shown in green in all panels, either as dashed or solid lines. For all

parameter combinations, GTD errors were lower than (or similar to) GTD2

errors. With two smaller values of η (1 and 0.0625) GTD had a wider and

lower sensitivity curve than GTD2, which means GTD was easier to use than

GTD2.

Let us now move on to the upper right panel of Figure 6.7. Proximal

GTD2 had the most distinctive behavior among Gradient-TD algorithms. As
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Figure 6.7: Detail on the performance of Gradient-TD algorithms at λ =
0. Each algorithm has a second step-size parameter, scaled by η. A second
algorithm’s performance is also shown in each panel, with dashed lines, for
comparison.

previously observed in Figure 6.4, it is the only algorithm that in some cases

had a “bounce”; its error dipped down at first and then moved back up. With

λ = 0, it sometimes converged to an error that was lower than all other

Gradient-TD algorithms. Proximal GTD2 was more sensitive to the choice of

α than other Gradient-TD algorithms except GTD2. Proximal GTD2 had a

lower error and a wider sensitivity curve than GTD2. To see this, compare

the dotted and solid lines in the upper right panel of Figure 6.7.

Moving on to the lower left panel, we see that GTD and HTD performed

similarly. Sensitivity curves were similarly wide but HTD reached a lower error

in some cases. We see this by comparing the dotted and solid pink curves in

the lower left panel.

The fourth panel shows sensitivity to the step-size parameter for HTD and

TDRC. Notice that TDRC has one sensitivity curve, shown in dashed blue.

This is because η is set to one (also its regularization parameter was set to one)

as proposed in the original paper. HTD’s widest curve was with η = 0.0625

which was as wide as TDRC’s curve.

On one hand, among the Gradient-TD algorithms, TDRC was the easiest

to use. On the other hand, in the case of full bootstrapping, Proximal GTD2

reached the lowest error level among all Gradient-TD algorithms. It remains

to be seen how these algorithms compare on other problems.
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6.9 Conclusions

We conducted an empirical study of off-policy prediction learning algorithms

on the Collision task. We learned that Emphatic TD(λ) is one of the best al-

gorithms for solving this task, as it learns the fastest, converges to the lowest

error, and is not more sensitive to parameters than other algorithms. Using

V-trace, Tree Backup, and ABTD to solve the Collision task did not pro-

vide any benefit over using other algorithms. These three algorithms did not

learn faster, and they converged to a higher asymptotic error than other algo-

rithms. Within the Gradient-TD family, TDRC(λ) seems to be the easiest to

use algorithm as it provides a standard way for choosing the second step-size

parameter, and it performs similarly to other Gradient-TD algorithms.

The present study is based on a single task, and this limits the conclusions

that can be fairly drawn from it. For example, we have found that Emphatic-

TD methods perform well over a wider range of parameters than Gradient-TD

methods on the Collision task, but it is entirely possible that the reverse would

be true on a different task. Many more tasks must be explored before it is

possible for a consistent pattern to emerge that favors one class of algorithm

over another.

On the other hand, a pattern over empirical results must begin somewhere.

We stress the need for extensive empirical results even for a single task. Ours

is the first systematic study of off-policy learning to describe the effects of all

algorithm parameters individually (rather than, for example, taking the best

performing parameters or fixing one parameter and studying another).
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Chapter 7

An Empirical Comparison in
the Four Rooms Environment1

One of the main objectives of this dissertation is to empirically study off-policy

prediction learning algorithms. So far, we empirically studied eleven promi-

nent off-policy prediction learning algorithms on the Collision task. This chap-

ter presents another important contribution of this dissertation: an empirical

study of off-policy prediction learning algorithms with a focus on the challenge

of high variance in off-policy learning.

In this chapter, we empirically compare off-policy prediction learning al-

gorithms on two small tasks: the Rooms task, and the High Variance Rooms

task. Both tasks are based on the original Four Rooms environment proposed

by Sutton, Precup, and Singh (1999). The tasks are designed such that learn-

ing fast in them is challenging. In the Rooms task, the product of importance

sampling ratios can be as large as 214 and in the High Variance Rooms task,

the product of the ratios can become as large as 214 × 25. To control the high

variance caused by the product of the importance sampling ratios, the step-size

parameter should be set small, which in turn slows down learning. The exper-

iments conducted in this chapter build on the ones from the previous chapter.

We consider the same set of algorithms as in the previous chapter and employ

the same experimental methodology. Based on the data, we conclude that the

performance of most algorithms is highly affected by the variance induced by

1The contents of this chapter are based on a paper co-authored by this author (Ghiassian
& Sutton, 2021b).
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rightleft

(to each room's 2 hallways)

Figure 7.1: The Four Rooms environment. Four actions are possible in each
state. Two hallway states are shown with arrows. Four sub-tasks are also
schematically shown. The four shaded states are the ones where the Rooms
and the High Variance Rooms tasks have different policies.

the importance sampling ratios. We found that the algorithms that adapt the

λ parameter of Off-policy TD(λ) (Tree Backup(λ), V-trace(λ), and ABTD(ζ))

are not affected by the high variance as much as the other algorithms. We ob-

served that Emphatic TD(λ) tends to have lower asymptotic error than other

algorithms, similar to what we observed in the Collision task, but it tends

to learn more slowly in problems where the product of importance sampling

ratios is high.

7.1 Rooms Task

The Rooms task uses a variant of the Four Rooms environment MDP (Sutton,

Precup, & Singh, 1999): a gridworld with 104 states, roughly partitioned into

four contiguous areas called rooms (Figure 7.1). These rooms are connected

through four hallway states. Four deterministic actions are available in each

state: left, right, up, and down. Taking each action results in moving

in the corresponding direction except for cells neighboring a wall in which

the agent will not move if it takes the action toward the wall. The task is

continuing.

The Rooms task consists of eight sub-tasks. Solving a sub-task corresponds

to learning the value function for the target policy corresponding to the sub-
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Figure 7.2: Target policy of the upper left room leading to one of the hallways.

task. Under the corresponding target policy, the agent follows a shortest path

to one of the room’s hallways, which we refer to as the corresponding hallway.

If two actions are optimal in a state one of the two is taken randomly with

equal probability. For a sample target policy defined in the upper left room,

see Figure 7.2. The termination function returns 0.9 while the agent is in

the room. Once the agent reaches the corresponding hallway, the termination

function returns zero, without affecting the actual trajectory of the behavior

policy. The termination function remains zero for all states that are not part of

the sub-task. When the agent reaches the corresponding hallway, it receives a

reward of +1. The rewards for all other transitions are zero. Each of these sub-

tasks can also be explained using the general value function (GVF) language

(Sutton et al. 2011). In the same room, another target policy is defined under

which the agent follows the shortest path to the other hallway state. This

means that there are exactly two sub-tasks defined for each state, including

the hallways.

The Rooms task is designed to be a high variance problem. By a high

variance problem, we mean the product of importance sampling ratios can vary

between small and large values during learning and can cause large changes in

the learned weight vector that might make learning unstable. Under the target

policy, the agent follows a shortest path to a hallway, and the behavior policy

is equiprobable random. If the agent is in the top left state of the upper right

room, chooses the right action twice, and then chooses the down action six

times, the product of the importance sampling ratios will become 214 because

the importance sampling ratio is 2 at the first two time steps and it is 1
1/4

= 4
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for a total of 6 steps.

The agent learns about two sub-tasks at each time step. For Emphatic

TD, this will be automatically enforced with the interest function set to 0 for

all states that are not part of the active sub-task. Other algorithms do not

natively have interest so we enforce this manually by making sure that at each

time step, the agent knows what sub-tasks are active and only updates weight

vectors corresponding to those sub-tasks.

We used linear function approximation to solve the task. To represent

states, (x, y) coordinates were tile coded. The x coordinate ranged from 0 to

10, where 0 was assigned to the far left cell. The y coordinate also ranged

from 0 to 10, where 0 was the bottom cell. We used four tilings, each of

which was two by two tiles. In fact, the features used to solve the task can be

produced using any system, for example, a neural network. Our focus, in this

experiment, is on learning the value function linearly using known features,

the task that is typically carried out by the last layer of the neural network.

To assess the quality of the value function found by an algorithm, we used

the mean squared value error:

VE(w) =

∑
s∈S µb(s)i(s) [v̂(s,w)− vπ(s)]

2

∑
s∈S µb(s)i(s)

,

where i(s), the interest function, i : S → {0, 1} defines a weighting over

states and µb(s) is an approximation of the stationary distribution under the

behavior policy which was calculated by having the agent start at the bottom

left corner and following the behavior policy for a hundred million time steps

and computing the fraction of time the agent spent in each state. The true

value function was calculated by following each of the target policies from each

state to their corresponding hallway once. The interest function is one for all

states where the target policy is defined. Setting i(s) in the error computation

ensures that prediction errors from states outside of a room do not contribute

to the error computed for each sub-task. We computed the square root of VE

for each policy separately and then simply averaged the errors of the eight

approximate value functions to compute an overall measure of error, which we

denote by AVE: AVE(w)
def

= 1
8

∑8
j=1

√
VE(wj).
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7.2 Experimental Setup

The task and the behavior policy were used to generate 50,000 steps, com-

prising one run. This was repeated for a total of 50 runs. The 11 learn-

ing algorithms were applied to the 50 runs, each with a range of parame-

ter values. A list of all parameters used can be found in Table 7.1. They

included 12 values of λ, 19 values of α, 15 values of η (for the Gradient-

TD family), six values of β (for Emphatic TD(λ, β)), and 12 values of ζ

(for ABTD(ζ)), for approximately 20,000 algorithm instances in total. At

the beginning of each run, the weight vector was initialized to w0 = 0 and

then was updated at each step by the algorithm instance. At each time step,

AVE was computed and recorded. The code for the Rooms and High Vari-

ance Rooms tasks and the experiments are provided at the following link:

https://github.com/sinaghiassian/OffpolicyAlgorithms.

7.3 Main Results of the Rooms Experiment

Performance of an algorithm instance is summarized by one number: AVE

averaged over runs and time steps. This number is shown for many algorithm

instances in Figure 7.3. Each panel shows one algorithm’s performance.

Let us first focus on Off-policy TD(λ) results shown in the first panel of the

second row of Figure 7.3. This algorithm has two parameters: the step-size

parameter, α, and the bootstrapping parameter, λ. The x-axis shows the value

of α at logarithmic scale. Each curve within the panel shows the performance

with one λ. The blue curve shows performance with λ = 1 and the red curve

shows performance with λ = 0. Performance with intermediate values of λ are

shown in gray. With small α, learning was too slow. With large α, divergence

happened. This is why all the curves in the panel are U-shaped. For each

point, the standard error over 50 runs is shown as a bar over the point. The

error bars are often too small and are not visible.

The measure of good performance that we look for in the data is low error

over a wide range of parameters. For Off-policy TD(λ), the bottom of the
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Algorithms η or β λ or ζ α

Off-policy TD(λ) —
0,

0.1, 0.2,
0.3, 0.5,
0.9, 1
and

1 - 2−x

where
x ∈ {

2, 3, 4, 5, 6}

α = 2−x

where
x ∈ {

0, 1, 2, · · · ,
17, 18}

Gradient-TD
Algorithms

GTD(λ) 2x

where x ∈
{−6,−5, · · · ,

7, 8}GTD2(λ)

HTD(λ)

Proximal GTD2(λ)

TDRC(λ) —

Emphatic-TD
Algorithms

Emphatic
TD(λ)

—

Emphatic
TD(λ, β)

β ∈
{0.0, 0.2,
0.4, 0.6,
0.8, 1.0}

Variable-λ
Algorithms

Tree Backup(λ)
—

V-trace(λ)

ABTD(ζ)

Table 7.1: List of all parameters that we used in the experiment. For algo-
rithms such as GTD(λ) that had more than one parameter, we tried all the
possible combinations of all parameters.

97



(averaged

over

time steps

and 

50 runs)

Tree Backup Vtrace ABTD

Emphatic TD

0.1

0.7

0.3

0.5

0.1

0.7

0.3

0.5

Off-policy TD GTD GTD2

HTD TDRCProximal GTD20.1

0.7

0.3

0.5

0.1

0.7

0.3

0.5

λ 01

2−18 2−10 2−2 2−18 2−10 2−2 2−18 2−10 2−2

Emphatic TD(λ,β)

0.14

0.14

0.14

0.14

AVE

Step-size parameter,    (log scale)α

Figure 7.3: Error as a function of α and λ for all algorithms on the Rooms
task. All algorithms reached the 0.14 error level except Tree Backup(λ), V-
trace(λ), and ABTD(ζ). Proximal GTD2(λ) and Emphatic TD(λ) were more
sensitive to α than other algorithms. Emphatic TD(λ) was less sensitive to λ
than other algorithms.

U-shaped curves were at about 0.14 (shown as a thin gray line). The instances

that reached this error level were in a sweet spot. This sweet spot was large

for Off-policy TD(λ).

Let us now move on to studying the performance of all algorithms shown

in Figure 7.3. There are lots of similarities between the algorithms. All algo-

rithms had their best performance with intermediate values of λ, except for

Tree Backup(λ), V-trace(λ), and ABTD(ζ). All algorithms except the three

reached to about 0.14 error level. With all algorithms, except for Emphatic

TD(λ), the sweet spot shifted to the left, as λ increased from 0 to 1. Between

the five Gradient-TD algorithms shown in the two middle rows, GTD2 and

Proximal GTD2 were more sensitive to α and their U-shaped curves were less

smooth than some others.

One of the most distinct behaviors was observed with Emphatic TD(λ)
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whose performance changed little as a function of λ. Its best performance was

a bit worse than 0.14 and was achieved with λ = 0. Emphatic TD(λ) was

more sensitive to α than other algorithms. Notice how its U-shaped curve is

less smooth and narrower at its bottom than many others.

Tree Backup, V-trace, and ABTD behaved similarly. They did not reach

the 0.14 error level, and had their best performance at λ =1. Notice how

ABTD(ζ) was less sensitive to its bootstrapping parameter, ζ, and only had

three gray curves, whereas V-trace(λ), and Tree Backup(λ) had more gray

curves. Many of the ABTD(ζ) gray curves are hidden behind the blue curve.

All these observations (not reaching the minimum error level like other al-

gorithms, best performance with λ =1, and ABTD being more robust to the

choice of the bootstrapping parameter), are consistent with what was reported

from the experiments on the Collision task.

Overall, on the Rooms task, we divide the algorithms into two tiers. All

algorithms except Tree Backup, V-trace, and ABTD had an error close to

0.14 and are in the first tier. Tree Backup, V-trace, and ABTD are in the

second tier because regardless of how their parameters were set, they never

reached the 0.14 error level. These conclusions are in some cases similar to the

ones from the Collision task. When applied to the Collision task, algorithms

were divided into three tiers: Emphatic-TD algorithms were in the top tier,

Gradient-TD and Off-policy TD(λ) were in the middle tier, and Tree Backup,

V-trace, and ABTD were in the bottom tier. Similar to the Collision task, Tree

Backup, V-trace, and ABTD did not perform as well as the other algorithms

when applied to the Rooms task. Unlike the Collision task, Emphatic TD’s

best performance was similar to Gradient-TD algorithms’ best performance,

but not better.

7.4 Emphatic-TD Algorithms Applied to the

Rooms Task

So far, we looked at performance as a function of α and λ. We now set λ = 0,

and study the effect of β on the performance of Emphatic TD(λ, β). Errors
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Figure 7.4: Detail on the Emphatic TD(λ, β) performance on the Rooms task
at λ = 0 is shown on the left. Best learning curves for each algorithm are
shown on the right. The β parameter helped Emphatic TD(λ, β) learn faster.

for various βs are plotted in the left panel of Figure 7.4. Best performance

was achieved with an intermediate β and was statistically significantly lower

than the error of Emphatic TD.

These results make it clear that the β parameter improves the performance

of Emphatic-TD algorithms on the Rooms task. This is in contrast to the

results reported from the Collision task experiment in which no improvement

was observed by varying β. It seems like varying β might only be useful in

cases where the problem variance is high where by problem variance we mean

the variance induced by the large products of importance sampling ratios.

Two learning curves and two dotted straight lines are shown in the right

panel of Figure 7.4. The learning curves correspond to algorithm instances

of Emphatic TD(0) and Emphatic TD(0, β) that minimized the area under

the learning curve (AUC). The dotted lines show the approximate solutions

of Emphatic TD(0) and Off-policy TD(0). These solutions are found using all

the data over 50,000 time steps and 50 runs, and the Least-squares algorithms

discussed in Section 3.6. These solutions show the error level these algorithms

would converge to if they were applied to the task with a small enough α and

were run for long enough.

Emphatic TD(0) learned slower than Emphatic TD(0, β). In fact, Em-

phatic TD(λ) learned slower than all other algorithms when applied to the

Rooms task. Learning curves for algorithm instances with the smallest AUC

for of all algorithms for general λ are shown in Figure 7.5. However, if Em-
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Figure 7.5: Learning curves for the best algorithm instances of each learning
algorithm in the Rooms task with general λ. Emphatic TD(λ) learned the
slowest, followed by GTD2(λ). V-trace, Tree Backup, and ABTD converged
to a statistically significantly worse asymptotic error than other algorithms.

phatic TD(0) had enough time to learn, it would converge to a lower asymp-

totic solution than other algorithms in the case with λ = 0, as shown by the

straight dashed lines of Figure 7.4

The results from the Collision and Rooms task collectively show that Em-

phatic TD(λ) tends to have a lower asymptotic error level, but is more prone

to the problem variance. On the Collision task, Emphatic TD(λ) had a lower

asymptotic error level and learned faster than other algorithms. Moving on to

the Rooms task, Emphatic TD learned slower than other algorithms, but still

had a lower asymptotic error.

7.5 Gradient-TD Algorithms Applied to the

Rooms Task

To study Gradient-TD algorithms in more detail, we set λ = 0 and analyze

the effect of η on performance, where α = η ∗ αv, and αv is the second step

size.

Error as a function of α for various values of η is shown in Figure 7.6. Each

panel shows the performance of an algorithm as a function of α for four values

of η. The errors of algorithm instances with the same η are connected with

a line. Each panel shows results of one algorithm in solid lines. Each panel

additionally shows the performance of one extra algorithm in dashed lines
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Figure 7.6: Error as a function of α and η at λ = 0 on the Rooms task. A sec-
ond algorithm’s performance is shown in each panel for comparison. Proximal
GTD2 had the lowest error but was more sensitive to α than other algorithms.
TDRC and HTD had the lowest sensitivity to α.

for comparison. For example, the upper left panel shows the performance of

GTD2(0) in solid and GTD(0) in dashed lines. The dashed lines were always

below the solid lines, meaning that GTD(0) had a lower error than GTD2(0)

over all parameters. Difference between GTD(0) and GTD2(0) was largest

with small η.

With a thorough understanding of one panel, let us now move on to com-

paring the algorithms in all panels. We first notice that all algorithms solved

the problem fairly well. According to the upper right panel, Proximal GTD2

had the lowest error among all algorithms, but only with one of its parameter

settings. Proximal GTD2 had a lower error than GTD2 for small η. For larger

η the reverse was true. According to the lower left panel, GTD had a slightly

lower error than HTD; however, HTD was less sensitive to α, specifically with

η = 0.0625. According to the lower right panel, TDRC’s bowl was almost as

wide as HTD’s widest bowl. TDRC has one tuned parameter and thus has

one curve.

Although Proximal GTD2 performed better than others, it did so with

only one parameter setting, and thus the improvement it provides is not of

much practical importance. HTD, GTD, and TDRC all performed well and
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Figure 7.7: State visitation distribution for Rooms (shown in blue) and High
Variance Rooms (shown in orange) tasks for two of the sub-tasks that are
active in the two lower rooms shown in blue and orange respectively. The
numbers on the x-axis are the state numbers with 0 being the bottom left
state, and the state immediately to the right of state 0 being state 1. The
state immediately above state 0 is state 11. Changing the policy in one of
the states resulted in a vastly different state visitation distribution in the two
tasks.

were robust to the choice of α. TDRC, specifically, with one tuned parameter,

is the easiest to use algorithm for solving the Rooms task. Conclusions made

here are similar to the ones made from the Collision experiment.

7.6 High Variance Rooms Task

With a slight modification of the Rooms task, we increased its variance. We

changed the behavior policy in four states such that one action is chosen with

0.97 and the three other actions with 0.01 probability. These states are the

ones shaded in blue in Figure 7.1. In the two left rooms, the left action is

chosen with 0.97 probability, and in the two right rooms, the right action.

This means that, if the down action is chosen in the blue state in the upper

right room, the importance sampling will be 1
1/100

. The new task is called the

High Variance Rooms task. If the agent starts from the upper left state in

the upper right room, takes two right actions, and then six down actions, the

product of importance sampling ratios will be 214 × 25. In addition to more

extreme importance sampling ratios, this small change in the behavior policy

largely changes the state visitation distribution compared to the Rooms task.

The states to the left of the blue states in the two left rooms, and the states
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to the right of the blue states in the two right rooms are visited more often.

Visitation distributions are shown in Figure 7.7.

7.7 Experimental Setup

The experimental setup for this task was the same as the Rooms task. Number

of time steps, number of runs, and the algorithm instances were all the same.

7.8 Main Results of the High Variance Rooms

Experiment

Main results for the High Variance Rooms task are plotted in Figure 7.8. The

variance caused by the importance sampling ratio impacted all algorithms

except Tree Backup(λ), V-trace(λ), and ABTD(ζ). These three algorithms

reached an error of 0.2 (shown as a thin gray line), which was the lowest error

achieved on this task. Similar to the Rooms and the Collision tasks, these

three algorithms had their best performance with λ = 1.

Now let us focus on the rest of algorithms in the three first rows of Fig-

ure 7.8. All algorithms except Emphatic TD(λ), Proximal GTD2(λ), and

GTD2(λ) reached the 0.23 error level (shown as a thin gray line). These three

algorithms were sensitive to α and did not perform well. Emphatic TD(λ)

reached an error of about 0.45 which was significantly higher than the error

achieved by any other algorithm.

On this task, we divide the algorithms into three tiers. The top tier com-

prises of Tree Backup(λ), V-trace(λ), and ABTD(ζ) whose error was the low-

est. The behavior of these was similar across Collision, Rooms, and High

Variance Rooms tasks. In the middle tier are Off-policy TD(λ), GTD(λ),

HTD(λ), and TDRC(λ). These algorithms achieved a slightly higher error

than the top tier algorithms but still reasonably solved the task. The bottom

tier comprises of Emphatic TD(λ), GTD2(λ), and Proximal GTD2(λ) whose

best error level was even higher than second tier algorithms.
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Figure 7.8: Error as a function of α and λ for all algorithms on the High
Variance Rooms task. Tree Backup(λ), V-trace(λ), and ABTD(ζ) reached the
lowest error level (0.2) and were in the top tier. All other algorithms except for
Emphatic TD(λ), Proximal GTD2(λ), and GTD2(λ) reached the 0.23 error-
level and were in the middle tier. Emphatic TD(λ), Proximal GTD2(λ), and
GTD2(λ) had a higher error than the rest of the algorithms and were more
sensitive to α and were grouped into the bottom tier.
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Figure 7.9: Error as a function of α and β at λ = 0 on the High Variance
Rooms task is shown on the left. Two best learning curves for Emphatic
TD(λ, β) and Emphatic TD(λ) on the right show that Emphatic TD(λ, β)
learned faster.

7.9 Emphatic-TD Algorithms Applied to the

High Variance Rooms Task

We now turn to studying the Emphatic-TD algorithms in more detail. We set

λ = 0, and study the behavior of Emphatic TD(λ, β) with varying β. Errors

for various values of β are shown in the left panel of Figure 7.9. The best

performance was observed with small values of β. The bowl was nice and wide

with β = 0 and β = 0.2. After that, with increasing β, the error consistently

increased.

These results show that varying β significantly improves Emphatic TD(λ, β)’s

performance. Without β, Emphatic TD(0) performed quite poorly on the High

Variance Rooms task due to large variance. These results and the results from

the Rooms task show that β’s role becomes more salient as the problem vari-

ance increases. On the Collision task, no improvement was observed when

varying β. On the Rooms task, intermediate values of β resulted in the best

performance, and in the High Variance Rooms task, small values. The trend

shows that as the problem variance increases, the magnitude of β that results

in the best performance becomes smaller.

Learning curves for best algorithm instances of Emphatic TD(0) and Em-

phatic TD(0, β) are shown in the right panel of Figure 7.9. These learn-

ing curves correspond to algorithm instances that resulted in minimum AUC.

Emphatic TD(0, β) learned significantly faster than Emphatic TD. Emphatic
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Figure 7.10: Best algorithm instances of each learning algorithm for general λ
on the High Variance Rooms task. Emphatic TD learned the slowest, followed
by the Proximal GTD2 and GTD2 algorithms. V-trace, Tree Backup, and
ABTD learned the fastest.

TD(0) did not learn a reasonable approximation of the value function, prob-

ably due to being affected by the problem variance. The two dashed lines

in the right panel of the figure show the approximate solutions for Emphatic

TD(0) and Off-policy TD(0). Emphatic TD’s solution had a significantly

smaller AVE than Off-policy TD. This means that if the high variance was

not present, Emphatic TD would find a solution with lower error than other

algorithms such Off-policy TD(λ).

Learning curves for the best algorithm instances of all learning algorithms

for general λ are shown in Figure 7.10. Emphatic TD(λ) learned significantly

slower than the rest of the algorithms, followed by Proximal GTD2(λ) and

GTD2(λ).

In Rooms, High Variance Rooms, and Collision tasks, Emphatic TD had

a lower asymptotic error than other algorithms. This has also been observed

in some previous studies (Ghiassian, Rafiee, & Sutton, 2016). However, as

the problem variance increases, Emphatic TD(λ) tends to learn slower. On

the Collision task, it learned the fastest, on the Rooms task it learned slower

than other algorithms, and it failed to learn a good approximation of the value

function in the High Variance Rooms task. The trend shows that Emphatic

TD has a smaller asymptotic error across tasks but might overall be more

prone to the variance issue than other algorithms.
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Figure 7.11: Error as a function of α and η at λ = 0 on the High Variance
Rooms task. The error of Proximal GTD2 (solid lines in the upper right panel)
was higher than others.

7.10 Gradient-TD Algorithms Applied to the

High Variance Rooms Task

We now turn to a more detailed analysis of Gradient-TD algorithms on the

High Variance Rooms problem. Errors for λ = 0 for various η are plotted in

Figure 7.11.

Based on the data provided in the upper left panel, GTD2 generally per-

formed worse than GTD. Based on the upper right panel, Proximal GTD2

had a significantly larger error than GTD2. According to the two lower pan-

els, TDRC, HTD, and GTD all performed similarly and were all relatively

robust to the choice of α.

Let us now summarize the performance of Gradient-TD algorithms across

tasks. On the Collision and Rooms tasks, Proximal GTD2 had the lowest error

of all Gradient-TD algorithms. On the High Variance Rooms task, however,

it had a higher error than all Gradient-TD algorithms. The trend across

problems shows that Proximal GTD2 might be able to reach a lower error level

than other Gradient-TD algorithms but is more prone to high variance than

other Gradient-TD algorithms. In addition, the lower error level it achieves

does not seem to be of much practical utility because it is rare. GTD(λ),
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HTD(λ), and TDRC(λ) all seem to work well across tasks. HTD(λ) seems to

be easier to tune across problems (see how its various bowls are smoother and

wider than GTD in the lower left panel of Figure 7.11). TDRC seems to be

the easiest to use Gradient-TD algorithm because it has one tuned parameter

and works as well as HTD across tasks.

7.11 Possibility of Larger Empirical Studies

Off-policy learning has been essential to many of the recent successes of deep

reinforcement learning. The DQN architecture (Mnih et al., 2015) and its

successors such as Double DQN (van Hasselt, Guezm, & Silver, 2016). The

core of many of these architectures is Q-learning (Watkins, 1989), the first

algorithm developed for off-policy control. Recent research used some modern

off-policy algorithms such as V-trace and Emphatic-TD within deep reinforce-

ment learning architectures (Espeholt et al., 2018; Jiang et al., 2021), but it

remains unclear which of the many off-policy learning algorithms developed to

date empirically outperforms others.

Unfortunately, due to the computational burden, it is not possible to con-

duct a large comparative study in a complex environment such as the Arcade

Learning Environment (ALE). The original DQN agent (Mnih et al., 2015)

was trained for one run with a single parameter setting. Of course, the num-

ber of runs necessary for an empirical study depends on the distribution of the

underlying data and the statistics that one likes to compute, but typically, a

detailed comparative study needs at least 30 runs and includes a dozen algo-

rithms, each of which have their own parameters. For example, to compare

10 algorithms on the ALE, each with 100 parameter settings (combinations

of step-size parameter, bootstrapping parameter, etc.), for 30 runs, we need

30,000 times more compute than what was used to train the DQN agent on

an Atari game. One might think that given the increase in available compute

since 2015, such a study might be feasible. Moore’s law states that the avail-

able compute approximately doubles every two years. That means compared

to 2015, eight times more compute is at hand today. Taking this into account,
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we still need 30,000/8=3750 times more compute than what was used to train

one DQN agent. This is simply not feasible now, or in the foreseeable future.

Let us now examine the possibility of conducting a comparative study in

a state-of-the-art domain, similar to Atari, but smaller. MinAtar (Young &

Tian, 2019) simplifies the ALE considerably, but presents many of the same

challenges. To evaluate the possibility of conducting a comparative study in

MinAtar, we compared the training time of two agents. One agent used the

original DQN architecture (Mnih et al., 2015), and another used the much

smaller neural network architecture of Young and Tian (2019) for training in

MinAtar. Both agents were trained for 30,000 frames on an Intel Xeon Gold

6148, 2.4 GHz CPU core. On average, each MinAtar training frame took 0.003

of a second and each ALE training frame took 0.043 of a second. To speed

up training, we repeated the same procedure on an NVidia V100SXM2 (16GB

memory) GPU. Each MinAtar training frame took 0.0023 of a second and

each ALE training frame took 0.0032 of a second. The GPU did a good job

speeding up the process that used a large neural network (in the ALE), but did

not provide much of a benefit on the smaller neural network used in MinAtar.

This means, assuming we have enough GPUs to train on, using MinAtar and

ALE will not be that different. Given this data, detailed comparative studies

in an environment such as MinAtar are still far out of reach. Note that we do

not mean to imply that the experiments conducted on MinAtar in Chapter 5

are not important, but to emphasize that it arguably is not easy (if at all

possible) to use the MinAtar environment in a detailed empirical study of a

dozen algorithms.

Before we close this chapter with conclusions, we would like to mention

that it seems plausible to conduct a careful comparative study on classic rein-

forcement learning tasks, such as Mountain Car (Moore, 1990). This in fact,

seems to be a good future research direction as it will help us understand which

of the conclusions made here will scale up to larger, more complex tasks.
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7.12 Conclusions

Two of the most central challenges of off-policy learning are stability and

slow learning. The stability issue first became evident through Baird’s coun-

terexample (Baird, 1995). Since then, Baird’s counterexample has been used

numerous times to exhibit various algorithms’ divergence, and had a part in

advances made in algorithms proposed for convergent off-policy learning. In

this work, we clearly exhibited the variance challenge of off-policy learning in

practice. The tasks introduced in this dissertation can be used to assess the

algorithms’ capability of learning in a high variance setting.

This study along with the Collision task experiment paints a detailed pic-

ture of algorithms’ performance as a function of the problem variance. Regard-

ing the interplay of the algorithms’ performance and variance of the problem,

three main points were shown in this chapter:

1. We showed, for the first time, that Emphatic TD(λ) tends to have a

lower asymptotic error level but it is more prone to the high variance

issue than other algorithms.

2. We showed, for the first time, that Proximal GTD2(λ) seems to be prone

to the variance issue as well, but less so than Emphatic TD(λ).

3. We showed, for the first time, that Tree Backup(λ), V-trace(λ), and

ABTD(ζ) are most robust to the problem variance but perform worse

than other algorithms on simple problems where high variance is not

expected.

Our message for practitioners is to use Tree Backup, V-trace, or ABTD in

problems where high variance is expected, and to use Emphatic TD(λ) other-

wise.
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Chapter 8

Speeding up Emphatic TD(λ)

We set out to propose three new algorithmic ideas in this dissertation. This

chapter presents the third algorithmic idea: a step-size adaptation algorithm to

increase Emphatic TD(λ)’s learning speed. Remember that Emphatic TD(λ)

tends to have lower asymptotic error than other algorithms but it can learn

more slowly on problems with high variance. The algorithms presented in this

chapter adapt the step-size parameter of Emphatic TD(λ) and significantly

increase its learning speed.

Two algorithms are introduced in this chapter: Step-size Ratchet and Soft

Step-size Ratchet. The main idea behind both algorithms is the same: keep

the step-size parameter as large as possible, and ratchet it down when there is

a possibility of overshoot. To show that the new algorithms are effective, we

combine them with Emphatic TD(λ) and apply them to the Collision, Rooms,

and High Variance Rooms tasks. Remember from the previous chapter that

Emphatic TD(λ) with constant step-sizes could not learn a good approxima-

tion of the value function in the High Variance Rooms task and learned slowly

on the Rooms task. In this chapter, we show that, not only the combination of

Emphatic TD(λ) and Ratchet algorithms learns a good approximation of the

value function on all three problems, but also we show that Ratchet algorithms

learn faster than other step-size adaptation algorithms such as Adam, when

combined with Emphatic TD(λ).
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8.1 Emphatic TD(λ) + Step-size Ratchet

In this section we introduce the first step-size adaptation algorithm and com-

bine it with Emphatic TD(λ). The main idea is to choose at each time step

a step-size parameter that is as large as possible (or a fraction of it) without

overshooting the target. Depending on how close the target of the update is

to the current estimation of the value function, the step-size parameter is re-

duced only when necessary. The step-size parameter is never increased during

learning.

At each time step, we compute the magnitude of the step-size parameter

that if used, will result in the estimate of the value function being equal to the

target of the update. This means we want to find the step-size that if used,

the following equation would hold:

wt+1
⊤ xt = Rt+1 + γt+1w

⊤
t xt+1. (8.1)

In TD style algorithms, the target of the update is the reward plus the

discounted value of the next state. The update rules for Emphatic TD(λ) are:

δt
def

= ρt(Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt) (8.2)

Ft ← ρt−1γtFt−1 + It with F0 = I0

Mt
def

= λtIt + (1− λt)Ft

zt ← ρt−1γtλzt−1 +Mtxt with z−1 = 0 (8.3)

wt+1 ← wt + αtδtzt. (8.4)

We now replace wt+1 on the left hand side of (8.1) with the update rule

provided for wt+1 in (8.4) and solve for αt:

(wt + αtδtzt)
⊤xt = Rt+1 + γt+1w

⊤
t xt+1

αtδtz
⊤
txt = Rt+1 + γt+1w

⊤
t xt+1 −w⊤

t xt︸ ︷︷ ︸
δt

⊲αt =
1

z⊤txt

,

(8.5)

which in the case of full bootstrapping reduces to:

αt =
1

Mtx⊤
txt

, (8.6)
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because if λ = 0, we can see from (8.3) that zt ← Mtxt.

We refer to the αt that has the magnitude computed above in (8.5), as the

normalized step-size parameter. We use a parameter κ, to take a fraction of a

normalized step towards the target at each time step. For λ > 0:

αt =
κ

z⊤txt

,

and for λ = 0:

αt =
κ

Mtx⊤xt

.

It makes intuitive sense for the step-size parameter to be large at the be-

ginning of learning and shrink down as learning goes on. The following min-

imization at each time step assures that the step-size parameter shrinks or

remains the same:

αt ← min (αt−1,
κ

z⊤txt

). (8.7)

At the first time step, αt−1 is set to a large number, maybe ∞. This completes

the specification of the Step-size Ratchet algorithm. The following update

rules fully specify Emphatic TD(λ) augmented with Step-size Ratchet:

δt
def

= ρt(Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt)

Ft ← ρt−1γtFt−1 + It with F−1 = 0

Mt
def

= λtIt + (1− λt)Ft

zt ← ρt−1γtλzt−1 +Mtxt with z−1 = 0

αt ←min (αt−1,
κ

z⊤txt

) with α−1 = ∞

wt+1 ←wt + αtδtzt with w0 = 0, or arbitrary.

8.2 Emphatic TD(λ) + Soft Step-size Ratchet

In this section, we propose a new algorithm called Soft Step-size Ratchet, and

combine it with Emphatic TD(λ). The goal of Soft Step-size Ratchet is to

relax the strict requirement of the Step-size Ratchet algorithm that the step-

size parameter can only become smaller or remain the same size at each time

step. We will show that we are able to increase the magnitude of the step-size
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parameter at times, while maintaining the main idea of the Step-size Ratchet

algorithm. We show that this change will result in increasing the learning

speed.

The Soft Step-size Ratchet algorithm works as follows. At each time step,

first the step-size parameter is computed using (8.7); the same update rule

used for Step-size Ratchet. Second, the step-size parameter, αt, is used to

update the weight vector wt; again the same as what the Step-size Ratchet

algorithm does. The Step-size Ratchet algorithm, at this point will go back to

the first step and continue from there. The Soft Step-size Ratchet algorithm,

instead, uses αt and αt−1 to compute a new αt−1 that will be used in the next

round of the updates once the execution of the algorithm goes back to the

first step. This means that the only difference between the Step-size Ratchet

and Soft Step-size Ratchet algorithms is that the αt−1 used in (8.7) will be

updated before moving on to the next time step, pretending that the previous

step-size parameter was in fact larger than what was used to update w. The

update rule we use for computing the new αt−1 is:

αt−1 ← αt + (αt−1 − αt)× τ, (8.8)

where τ is a tunable parameter in (0, 1), that we set to 0.5 in all our experi-

ments. After executing (8.8), the agent moves on to the next time step, and

goes back to the first step and continues from there.

Let us now examine (8.8) more closely. Remember that before executing

(8.8), the step-size parameter, αt, is calculated using (8.7) at each time step,

from which it immediately follows that αt−1 ≥ αt for ∀t. It then follows that

the term (αt−1 − αt) in (8.8) is always greater than or equal to zero. Let

us first consider the case when it is zero. The difference being zero means

αt = αt−1, meaning that αt−1 will not change after executing (8.8) because

the term (αt−1 − αt) is equal to zero. If the difference is not zero, it means

αt−1 > αt, in which case the value of αt−1 after performing update (8.8) will

become larger proportional to τ . Let us for example assume αt−1 = 1, and the

new step-size parameter computed by (8.7) is αt = 0.5, and τ = 0.5. In this
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case, the αt−1 for the next round of updates will be:

αt−1 = 0.5 + (1− 0.5)× 0.5 = 0.75

The magnitude of increase in αt−1 is proportional to the difference between

αt−1 and αt and is also proportional to the magnitude of τ . At the first time

step, we set α−1 = κ
z⊤
t
xt

. We call this new algorithm Soft Step-size Ratchet

because ratcheting down the step-size parameter is soft, in that the step-size

parameter can sometimes become a little larger. The following update rules

fully specify Emphatic TD(λ) augmented with Soft Step-size Ratchet:

δt
def

= ρt(Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt)

Ft ← ρt−1γtFt−1 + It with F−1 = 0

Mt
def

= λtIt + (1− λt)Ft

zt ← ρt−1γtλzt−1 +Mtxt with z−1 = 0

αt ←min (αt−1,
κ

z⊤txt

) with α−1 =
κ

z⊤txt

wt+1 ←wt + αtδtzt with w0 = 0

αt−1 ←αt + (αt−1 − αt)× τ.

8.3 Emphatic TD(λ) + Adam

The adaptive moment estimation algorithm (Adam), also known as the Adam

optimizer, is one of the most commonly used step-size adaptation algorithms

used in deep reinforcement learning (Kingma & Ba, 2017). Adam is often

used with neural network function approximation to increase learning speed.

Adam uses statistics from the gradient vector to compute the direction and

size of the update, in each dimension of the space, at each time step. The

most significant difference between Adam and the Ratchet algorithms is that

Adam computes a vector of step-sizes at each time step, one step-size scalar for

each element of the weight vector, whereas the Ratchet algorithms compute

a universal step-size parameter at each time step, one scalar step-size for all

elements of w. As a baseline in our experiments, we used Emphatic TD(λ)

combined with Adam. Of course other step-size adaptation algorithms, such
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as AdaGrad (Duchi, Hazan, & Singer, 2011) or AdaGain (Jacobsen et al.,

2019) can be included as baseline algorithms. We chose to include Adam in

our experiments rather than other algorithms simply because it is shown to

be effective on a variety of problems.

Combining Emphatic TD(λ) and Adam is simple. Adam typically operates

on the gradient vector. Here, instead of the gradient vector, we apply Adam

to the directions suggested by Emphatic TD(λ). The update rules for the

combination of Emphatic TD(λ) and Adam are as follows:

δt
def

= ρt(Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt)

Ft ← ρt−1γtFt−1 + It with F−1 = 0

Mt
def

= λtIt + (1− λt)Ft

zt ← ρt−1γtλzt−1 +Mtxt with z−1 = 0

gt
def

= δtzt (set gt to the direction computed by Emphatic TD(λ))

mt+1 ← β1mt + (1− β1)gt with m0 = 0

vt+1 ← β2vt + (1− β2)g
2
t with v0 = 0

m̂t+1
def

= mt+1/(1− βt+1
1 )

v̂t+1
def

= vt+1/(1− βt+1
2 )

wt+1 ← wt + αm̂t+1/(
√

v̂t+1 + ǫ) with w0 = 0.

These update rules specify the direction of the update in each dimension. The

rest of the update rules, specify the magnitude of the update in each direction

in the space. The variable mt is the biased first moment estimate, vt is the

biased second raw moment estimate, m̂t+1 is the bias-corrected first moment

estimate, v̂t+1 is the bias-corrected second raw moment estimate, and ǫ is a

small constant. Adam has four free parameters: β1 and β2 that determine

the weighting of the average of the first and second moments, α, which is the

step-size parameter, and finally ǫ that prevents division by zero.
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8.4 Emphatic TD(λ) + AlphaBound

The AlphaBound Algorithm (Dabney & Barto, 2012) is similar to the Step-

size Ratchet algorithm in that it has a single step-size parameter (rather than

a vector of step-size parameters one for each direction) that only decreases

in value over the course of learning. The schedule by which the step-size

parameter shrinks is different from the schedule used by the Step-size Ratchet

algorithm. The intuition behind the AlphaBound algorithm is to make sure

that the TD-error at time step t gets closer to 0 after each update. This means

that AlphaBound assures |δ′t| < |δt| at each time step, where δ′t is the TD-error

after a single update to the weight vector. In fact, it is shown by Dabney and

Barto (2012) that AlphaBound guarantees the condition |δ′t| < |δt| is satisfied
at each time step by using the following update rule:

αt ← min

(
αt−1,

1

| z⊤t (γxt+1 − xt) |

)
, (whenever z⊤t (γxt+1 − xt) < 0)

with α0 being the free parameter set by the user. It is shown by Dabney and

Barto (2012) that the |δ′t| < |δt| inequality and the requirement that α ∈ [0, 1]

forces α = 0 whenever z⊤t (γxt+1 − xt) > 0, which is equivalent to ignoring

the update completely. Dabney and Barto (2012) suggests to set the step-size

parameter equal to 1 at the first time step, meaning α0 = 1. The AlphaBound

algorithm was originally applied to the TD(λ) algorithm. Here, we apply it

to the Emphatic TD(λ) algorithm. When applied to Emphatic TD(λ), the

AlphaBound algorithm remains the same as when it is applied to TD(λ). The

only difference between the two cases is the eligibility trace vector, zt which

includes the emphasis when Emphatic TD(λ) is used. For completeness, we

provide the update rules that fully specify the Emphatic TD(λ) algorithm
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augmented with AlphaBound:

δt
def

= ρt(Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt)

Ft ← ρt−1γtFt−1 + It with F−1 = 0

Mt
def

= λtIt + (1− λt)Ft

zt ← ρt−1γtλzt−1 +Mtxt with z−1 = 0

αt ←min

(
αt−1,

1

| z⊤t (γxt+1 − xt) |

)
(if z⊤t (γxt+1 − xt) < 0)

wt+1 ←wt + αtδtzt with w0 = 0.

8.5 The Collision Task Experiment

We applied the following combinations of algorithms to the Collision task:

Emphatic TD(λ) and Step-size Ratchet, Emphatic TD(λ) and Soft Step-size

Ratchet, Emphatic TD(λ) and AlphaBound, Emphatic TD(λ) and Adam, and

finally Emphatic TD(λ) with a constant step-size parameter. Often, we refer

to these combinations by the step-size adaptation algorithm name, leaving out

Emphatic TD(λ) from the name because it is common across all combinations.

All of the experimental setup remains the same as what was discussed in

Chapter 6 other than the parameters of the step-size adaptation algorithms,

which we will discuss shortly. The Collision task in conjunction with its behav-

ior policy, was used to generate 20,000 time steps, and 50 independent runs.

Each run, used a different random binary feature representation. The feature

representations were the same as the ones used previously in Chapter 6.

Similar to the previous chapter, we use the term algorithm instance to refer

to an algorithm with a specific set of parameters. We applied many algorithm

instances to the Collision task. The parameters of algorithms included all

combinations of: two values of λ (0, 0.9), 19 values of α for constant step-

size parameters (α = 2−x where x ∈ {0, 1, 2, . . . , 17, 18}), 19 values of α0 for

AlphaBound and Adam algorithms (α0 = 2−x where x ∈ {0, 1, 2, . . . , 17, 18}),
19 values of κ for Step-size Ratchet and Soft Step-size Ratchet (κ = 2−x where

x ∈ {0, 1, 2, . . . , 17, 18}), one value of τ for Soft Step-size Ratchet (τ = 0.5),

three values of β1 for Adam (0.9, 0.99, 0.999), and three values of β2 for Adam
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8.6 Collision Task Results

The results are shown in Figure 8.1. The top row shows learning curves over

20,000 time steps and the bottom row shows parameter sensitivity curves.

Results for two values of the bootstrapping parameter are shown: λ = 0

(full bootstrapping) in the left column, and λ = 0.9 (minimal bootstrapping)

in the right column. For Adam that had more than one parameter, to plot

one sensitivity curve, we first found the combination of all parameters that

resulted in the best overall performance (minimum area under the learning

curve), then fixed all parameters except the step-size parameter, and plotted

the performance over the step-size parameter with the rest of the parameters

fixed.

The learning curves show that compared to when constant step sizes were

used, no improvement was observed when step-size adaptation algorithms were

used. In fact, in one case, with λ = 0, Adam resulted in a worse performance

than when constant step sizes were used. Most learning curves in the figures

are on top of each other and thus are not visible.

The parameter sensitivity plots show that all algorithms had a U-shaped

curve of a similar width, meaning that, at logarithmic scale, all algorithms

were similarly sensitive to the choice of their parameter. The U-shaped curve

for Step-size Ratchet and Soft Step-size Ratchet algorithm were shifted to

the right meaning that at linear scale, Step-size Ratchet and Soft Step-size

Ratchet were less sensitive to the choice of the step-size parameter than other

algorithms.

The standard error for each algorithm is shown as a shaded area around

the learning curves and as error bars on the sensitivity curves. In almost all

cases, the error bars are not visible due to being small. In the case with λ = 0,

the combination of Adam and Emphatic TD learned statistically significantly

slower than other algorithms. Other than that, no statistically significant

difference was observed between the algorithms on the Collision task. We con-

clude that none of the algorithms we considered here improves the performance

of Emphatic TD(λ) when applied to the Collision task.
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8.7 Rooms Task Experiment

We applied the same set of algorithms to the Rooms task. The experimental

setup remained the same as the original Rooms experiment discussed in Chap-

ter 7. In short, we applied the algorithms to the task for 50,000 time steps and

50 independent runs. We used tile coding to create a feature representation

for each state. The range of parameters applied to the Rooms task were the

same as the ones applied to the Collision task, discussed in Section 8.5 of this

chapter.

8.8 Rooms Task Results

The results are shown in Figure 8.2. The top row shows the learning curves,

and the bottom row shows the parameter sensitivity curves.

Let us first focus on the learning curve for the full bootstrapping case shown

on the upper left panel of Figure 8.2. Unlike the Collision task where the step-

size adaptation algorithms did not have any positive effect, on the Rooms task,

we see the positive effect of applying the step-size adaptation algorithms to

Emphatic TD(λ) clearly. Emphatic TD(λ) with constant step sizes learned

the slowest, followed by the AlphaBound algorithm and then Adam. Em-

phatic TD(0) combined with the Step-size Ratchet algorithm learned faster

than constant, AlphaBound, and Adam, as shown in the upper left panel of

Figure 8.2. The Soft Step-size Ratchet algorithm learned the fastest. In the

case of full bootstrapping, the Soft Step-size Ratchet algorithm converged to

the lowest asymptotic error level, followed by the Step-size Ratchet algorithm.

The third lowest asymptotic error level was achieved with constant step sizes,

followed by AlphaBound. Interestingly, the worst asymptotic error level was

observed when Adam was used.

Let us now move on to consider the learning curves for the minimal boot-

strapping case shown in the upper right panel of Figure 8.2. Similar to the

full bootstrapping case, the Soft Step-size Ratchet algorithm was the fastest,

followed by the Step-size Ratchet algorithm. These were followed by Adam,
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Step-size Ratchet and Step-size Ratchet algorithms were shifted to the right

compared to other algorithms. These two algorithms had the largest sweet

spot at linear scale.

Overall, Step-size Ratchet and Soft Step-size Ratchet seem to be effective in

increasing the learning speed of Emphatic TD(λ) when applied to the Rooms

task. Moreover, at linear scale, they seem to have a larger sweet spot than

other algorithms. Another interesting fact is that the range of the best param-

eter for Soft Step-size Ratchet and Step-size Ratchet algorithms is around 2−2

for both the Collision and Rooms tasks. To see if this remains true on other

tasks, more experimental results are required.

8.9 High Variance Rooms Task Experiment

We applied the same set of algorithms to the High Variance Rooms task. The

experimental setup remained the same as what we discussed in Chapter 7. The

algorithms were applied to the task for 50,000 time steps and 50 independent

runs. The algorithm instances and range of parameters applied to the task

remained the same as the ones used in the Collision and Rooms tasks in this

chapter.

8.10 High Variance Rooms Task Results

The results are plotted in Figure 8.3. Similar to the previous experiments,

the top row shows the best learning curves, and the bottom row shows the

parameter sensitivity curves. Let us first focus on the two learning curves for

full and minimal bootstrapping. As we see, the difference between the algo-

rithms is more nuanced in the High Variance Rooms task than the Rooms task.

Emphatic TD(λ) with a constant step-size parameter had difficulty learning

the value function due to the high variance of the updates. Similar to the

Rooms task, the Soft Step-size Ratchet algorithm converged the fastest and to

the lowest asymptotic error than all other algorithms. The Step-size Ratchet

algorithm was the second fastest algorithm during the first 8000 time steps or

so. The Adam algorithm started learning slower than the Step-size Ratchet
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lower error over a range of parameters when compared to other algorithms,

followed by Adam, and the Step-size Ratchet algorithm.

Overall, the Step-size Ratchet and Soft Step-size Ratchet algorithms were

quite effective on the Rooms and High Variance Rooms tasks, while main-

taining the good performance of Emphatic TD(λ) on the Collision task. The

Soft Step-size Ratchet algorithm seem to be the best algorithm across tasks

consistently. On all tasks, the κ parameter that resulted in the lowest error

for Step-size Ratchet and Soft Step-size Ratchet algorithms was around 2−2.

It is natural to ask if it is easier to tune the parameter for Step-size Ratchet

and Soft Step-size Ratchet than the parameters of other algorithms across

tasks? Given the data that we have from the three tasks, it seems like the

answer to this question might be yes. To answer this question definitively,

more experimental results are of course necessary.

8.11 Conclusions

In this chapter, we proposed two new approaches to adapt the step-size pa-

rameter during learning. We found that both approaches are quite effective

in speeding up Emphatic TD(λ)’s learning on the Rooms and High Variance

Rooms tasks. Although only applied to the Emphatic TD, it will probably

be straightforward to apply these two step-size adaptation algorithms to other

reinforcement learning algorithms such as the Gradient-TD methods.

In previous chapters, we showed that Emphatic TD tends to have a lower

asymptotic error than other algorithms. This was shown through using Least-

squares Emphatic TD(λ). We observed that the online incremental version of

the Emphatic TD(λ) with constant step size parameters fails to converge to

the solution found by Least-squares Emphatic TD(λ) within 50,000 time steps

due to high variance. In this chapter, we showed that when online incremental

Emphatic TD(λ) is combined with Ratchet algorithms, the combination con-

verges to a low asymptotic error level within 50,000 time steps. Additionally,

we showed that, with the two Ratchet algorithms the range of appropriate

step-size parameters is larger than other algorithms at linear scale and finding
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the sweet spot of the step-size parameters is easy across problems.

8.12 Limitations

The primary goal of this chapter was to introduce the Step-size Ratchet and

Soft Step-size Ratchet algorithms and show that they can be useful in speeding

up Emphatic TD(λ). The study of the two algorithms proposed in this chapter

is in various ways limited.

One limitation of the current study is that it limits the application of Step-

size Ratchet and Soft Step-size Ratchet algorithms to increasing the learning

speed of Emphatic TD(λ). Not only do we expect the Step-size Ratchet and

Soft Step-size Ratchet algorithms to be applicable to other reinforcement learn-

ing algorithms, but also we consider this a fruitful future research direction.

Another limitation of this work is the small number of comparisons made

with other step-size adaptation algorithms. Comparisons with AdaGain (Ja-

cobsen et al, 2019), AdaGrad (Duchi, Hazan, & Singer, 2011), and newer ver-

sions of the Adam including AMSGrad (Reddi, Kale, & Kumar, 2018) would

make the results of this chapter significantly stronger. Of course, experiments

on new environments are necessary before a trend of results can be estab-

lished and a final judgement about the merits of the Step-size Ratchet and

Soft Step-size Ratchet algorithms can be made.

One other limitation of the Soft Step-size Ratchet algorithm is that is

has more than one tuned parameter. However, the experiments show that it

might not be that hard for the user to select the τ parameter, because we

only used one value of τ in our experiments, and with that one value, the Soft

Step-size Ratchet algorithm performed well across tasks. It remains unclear

how sensitive the Soft Step-size Ratchet algorithm is to the choice of the τ

parameter and if tuning τ can provide a significant performance gain.

Another limitation of both the Step-size Ratchet and Soft Step-size Ratchet

algorithms is that they are not readily applicable to non-stationary problems.

These algorithms ratchet down the step-size parameter over time, which means

if the environment changes during learning, it might be hard for the agent to
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adapt to the new setting, depending on how small the step-size parameter is

when the change happens.

Yet another limitation of the proposed algorithms is that the step-size

parameter they compute at each time step is universal, meaning that a single

step-size parameter is computed that is used to update the parameter vector

in all directions. Remember that in principle, stochastic gradient descent is a

component-wise process in which the step-size parameter for each component

can be set separately. The Step-size Ratchet algorithm should ideally follow

this principle, and as a result, it will be applicable to more flexible function

approximators such as artificial neural networks.
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Chapter 9

Closing

In this dissertation, we studied practical online off-policy learning. The ob-

jective was to understand the strengths and weaknesses of existing algorithms

and also to improve the algorithms where weaknesses are observed. We took

a few steps towards this objective. First, we conducted two empirical studies

of prominent prediction learning algorithms. Our results provide new insights

into how these algorithms compare to each other, their relative merits, and

their inter-relationships. We put forth three non-trivial algorithmic ideas and

showed that they are useful towards more practical online off-policy learning.

The first main contribution of this dissertation is a novel off-policy predic-

tion learning method: the TDRC algorithm. With the introduction of TDRC,

we took a step in closing the gap between the sample efficiency of Gradient-TD

algorithms and Off-policy TD(λ).

The second contribution of this dissertation is a new algorithm for off-policy

control learning. The new algorithm is called QRC, and is the control variant

of the TDRC algorithm. We showed, potentially for the first time, that the

QRC algorithm can have practical advantages to simpler unsound algorithms

such as Q-learning.

The third and fourth main contributions are in-depth empirical studies of

online off-policy prediction learning algorithms on three tasks of increasing

complexity. The data showed that no one algorithm solves all tasks better

than others. Nevertheless, the empirical studies shed light on the strengths

and weaknesses of the algorithms. For the first time, we showed that Emphatic
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TD(λ) tends to have a lower error level than other algorithms, but learns

more slowly in situations where there are large differences between the target

and behavior policies. Within the Gradient-TD family, Proximal GTD2(λ) is

probably the slowest to learn, but converges to a lower asymptotic error level

than other Gradient-TD algorithms. We learned that TDRC(λ) is probably

the most practical choice among all Gradient-TD algorithms studied in this

dissertation for solving the problems we considered here. TDRC(λ) provides a

standard way of setting the second step-size parameter and in general performs

as well as other Gradient-TD algorithms. We learned that algorithms that

adapt λ during learning can be inferior to other algorithms when applied to

simple problems such as the Collision task; however, they seem to be the most

robust across problems.

The fifth main contribution of this dissertation are the Step-size Ratchet

and Soft Step-size Ratchet algorithms for adapting Emphatic TD(λ)’s step-size

parameter. We showed that both algorithms can be quite effective in speeding

up Emphatic TD’s learning in high variance environment such as Rooms and

High Variance Rooms tasks.

9.1 Future Research Directions

Off-policy learning has come far in the past decades but that fact alone says

little about how much farther it has to go if it is to realize its true potential.

With every new step that we take towards solving or better understanding

a problem, comes new questions that need to be answered, and interesting

future directions ripe for exploration. We discuss a few of these below.

Improving Emphatic TD(λ)’s learning speed Emphatic TD(λ) seems

to have a lower asymptotic error than other algorithms; however, it is prone to

the high variance induced by the product of the importance sampling ratios.

A few approaches might help speed up Emphatic-TD’s learning that were not

pursued in this dissertation. We discuss a few ideas below.

One approach might be through meaningfully defining the interest func-
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tion. All studies so far in the literature, have used an interest equal to one

in all states for simplicity. The fact that Emphatic TD is affected by the

variance more than other algorithms might be due to the increase in the em-

phasis variable: at each time step, the emphasis variable is incremented by

the value returned by the interest function in that state. Setting the interest

smaller wherever possible will slow down the rate of increase in the emphasis

magnitude and might in turn help control the variance and speed up learning.

We might be able to improve the learning speed of the Emphatic TD(λ, β)

algorithm by using an adaptive β parameter. On one hand, the β parameter

should be close to γ, to provide low asymptotic error, and on the other hand,

it should at times be downsized to allow fast learning. Note that when β

becomes smaller, Emphatic TD(λ, β) is expected to perform more similarly

to Off-policy TD(λ), and based on the data presented in this dissertation, it

might learn faster (note that at λ = 0, Emphatic TD(λ, β) reduces to Off-

policy TD(λ)). In states where large importance sampling ratios are observed,

β can be set small, whereas in sates where the importance sampling ratio is

not large, β can be set closer to γ, in which case the algorithm reduces to

Emphatic TD(λ) and lower asymptotic error can be expected.

Another simple approach to reducing the variance is by clipping the traces

in Emphatic TD(λ). Both the eligibility and the followon traces can be cut

off if they become larger than a certain value. This approach is in general

similar to what has been done in Retrace, ABQ, and Tree Backup algorithms,

which try to indirectly control the magnitude of the trace by using a small λ

when the importance sampling ratio is large. These algorithms, however, do

not directly truncate the eligibility traces. The approach we are suggesting

here is to control the magnitude of the traces directly and truncate them

if they become larger than a certain value. For example, if the ℓ2 norm of

the eligibility trace or the followon trace is larger than 200, simply set it to

200. In principle, truncating traces should be applicable to any TD method,

including Emphatic-TD algorithms. One benefit of truncating the trace is that

it provides an intuition for setting the step-size parameter. For example, if the

eligibility trace is capped at 200, this is an indication that the step-size should
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probably be set smaller than 1/200. A similar approach for truncating traces

in TD learning is suggested by Yu, Mahmood, and Sutton (2018).

Investigating Emphatic TD(λ) in the on-policy setting Emphatic

TD(λ) was originally proposed to solve the stability problem of off-policy learn-

ing. However, Emphatic TD(λ) is different from TD(λ) even in the on-policy

case. Previous work showed that Emphatic TD(λ) outperforms TD(λ) when

solving the prediction variant of the Mountain car problem (Ghiassian, Rafiee,

& Sutton, 2017). Other previous work showed that Emphatic TD(λ) solves

counterexamples to on-policy TD(λ) (Gu, Ghiassian, & Sutton, 2019). Gu,

Ghiassian, and Sutton (2019) applied Emphatic TD(λ) to three counterexam-

ples that were proposed to show on-policy TD(λ)’s divergence or poor perfor-

mance on specific problems. Emphatic TD(λ) solved all three counterexamples

successfully.

The behavior and performance of Emphatic TD(λ) in the on-policy setting

remains largely unclear. Does Emphatic TD(λ) converge to a lower asymptotic

error than on-policy TD(λ)? Why can Emphatic TD(λ) solve counterexamples

to on-policy TD(λ)? Is Emphatic TD(λ) in general a better algorithm than

on-policy TD(λ)? Should all temporal-difference learning use emphasis?

Investigating Emphatic TD’s fixed point and its relationship to the

VE Emphatic TD’s fixed point is the minimum of the PBE weighted by the

emphatic weightings. TD’s fixed point is the minimum of the PBE weighted

by the behavior policy distribution. Minimum of the VE in the function ap-

proximation case is not necessarily the same as any of the minimums found

by the Emphatic or non Emphatic algorithms discussed in this dissertation.

We observed in the experiments that Emphatic TD(λ) tends to have a lower

asymptotic error than other algorithms, which means that in the problems

that we considered, the distance between the minimum of the PBE weighted

by the emphatic weightings and the minimum of the VE was smaller than

the distance between the minimum of the PBE weighted by the behavior pol-

icy distribution and the minimum of the VE. An interesting future research
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direction is to try to understand the conditions under which Emphatic TD

converges to a lower VE than other algorithms.

Reducing variance in off-policy prediction learning through adapting

the bootstrapping parameter The strategy for controlling the variance

by adapting λ based on the magnitude of importance sampling ratios (like Tree

Backup, V-trace, and ABTD do), has proven limited on simple problems such

as the Collision task. Tree backup, V-trace, and ABTD adapt the bootstrap-

ping parameter of Off-policy TD(λ), and are not consistent in the statistical

sense. An alternative idea for adapting λ is to set it based on how certain the

agent is in the value of the state it is bootstrapping from. When the agent is

certain about the value of the next state, λ can be set to 0 to reduce variance.

As certainty decreases, λ can be set to larger values.

Investigating the asymptotic error level of Proximal GTD2(λ) In

the Collision and the Rooms experiments, we observed that the Proximal

GTD2(λ) algorithm converged to a lower error level than other Gradient-TD

algorithms. An interesting future research direction is to investigate why this

happened in these specific problems and if this is something more general

and might happen in other problems as well. One reason might be that on

those problems, Proximal GTD2 converged to a minimum of the PBE that

was different from (and had a smaller VE than) the minimum that the other

algorithms converged to. Note that the PBE can have more than one minimum

in the function approximation case.

Improving the TDRC algorithm An important next step is to better

understand the conditions on the regularization parameter β and whether we

can truly remove the second step-size parameter η. The current theorem does

not remove conditions on η; in fact, it has the same conditions as TDC. We

hypothesize that β should make v converge more quickly, and so removes

the need for the step-size parameter for the secondary weights to be larger.

Further, the conditions on η and β both depend on domain specific quantities
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that are generally difficult to compute.

Another important next step is to thoroughly investigate if the empirical

results of TDRC and QRC hold in a broader range of environments and set-

tings. The results in this work suggest that TDRC could potentially be a

replacement for the widely used TD algorithms. It is only a small modifica-

tion to an existing TD implementation, and so would not be difficult to adopt.

But, to make such a bold claim, much more evidence is needed, particularly

because TD has been shown to be so successful for many years.

Improving the applicability of the Step-size Ratchet Algorithm One

important next step is to develop a vectorized version of the Step-size Ratchet

algorithm. In principle, stochastic gradient descent is a component-wise pro-

cess in which the step-size parameter for each component can be set separately;

there is no rule that prevents us from setting each step-size element in each di-

rection separately. The Step-size Ratchet algorithm should ideally follow this

principle. However, our proposed algorithms do not follow this principle. The

next step would be to derive an algorithm that ratchets down each component

of the step-size parameter, one for each direction.

Another important next step is to apply the Step-size Ratchet and Soft

Step-size Ratchet to other reinforcement learning algorithms, such as GTD(λ)

or TDRC(λ). In this dissertation, we only applied Step-size Ratchet and Soft

Step-size Ratchet to the Emphatic TD(λ) algorithm because our goal was

to speed up the algorithm that had the lowest asymptotic error level on the

problems that we studied. It remains unclear how much or if Step-size Ratchet

and Soft Step-size Ratchet can benefit other algorithms. Our expectation is

that the Step-size Ratchet and Soft Step-size Ratchet algorithms can greatly

increase the learning speed of other algorithms especially in high variance

environments and in cases that a large value of bootstrapping parameter is

used.

More empirical studies A simple but useful future research direction is

to conduct additional online off-policy prediction learning experiments on new
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tasks. The new tasks could be simulations of real-world tasks like the ones

studied in this dissertation, or they can be random MDPs. With more tasks,

trends over results can be established. These trends can be used to better un-

derstand the advantages and disadvantages of existing algorithms. Hopefully,

these empirical results and trends can eventually be used for developing novel

and more effective algorithms.

9.2 Closing Thoughts

Finally, we would like to stress the need for thorough empirical studies. A

thorough examination is necessary to obtain the understanding that is critical

to using algorithms successfully and with confidence. There is a need for

thorough empirical studies, but they take time, and a proper presentation of

them takes space. While our study is not the last word, it does contribute to

the growing database of reliable results comparing modern off-policy learning

algorithms.
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Appendix A

Various Forms of Importance
Sampling Placement for
Off-policy TD(λ) and a
Comparative Study of Them

In the main body of the dissertation, in Chapter 6, we showed that Off-policy

TD(λ) update rules can be written in two different forms. We showed that

these two forms are equivalent step by step given that the eligibility trace

vector is set to zero at the beginning of each run. The role of this chapter

is to show that another set of update rules used for Off-policy TD(λ) in the

literature, is equal to the two other forms discussed in the main body of the

dissertation in expectation.

A.1 The Third Form of Importance Sampling

Placement for Off-policy TD(λ)

Here, we show that the update rules for Off-policy TD(λ) can be written in a

third form, which is not necessarily equivalent to the two other forms step by

step, but is equivalent to the two other forms in expectation. The third form

of the update rules are:

δt
def

= ρt(Rt+1 + γt+1w
⊤

t xt+1)−w
⊤

t xt

zt ← ρt−1γtλtzt−1 + xt with z−1 = 0

wt+1 ← wt + αδtzt.
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The second and third update rules are the same as the one we discussed

in Chapter 6. We only need to show that the TD-error defined here, δt
def

=

ρt(Rt+1+ γt+1w
⊤

t xt+1)−w
⊤

t xt, is equal in expectation to the TD-error defined

previously δt
def

= ρt(Rt+1 + γt+1w
⊤

t xt+1 − w
⊤

t xt). We only need to show that

the last terms in the two TD-errors are equal in expectation. This is because

the first two terms of the TD-error are exactly the same in the two updates,

and:

= Eb

[
ρt

(
Rt+1 + γw

⊤

t xt+1 −w
⊤

t xt

)
| St

]

= Eb

[
ρt

(
Rt+1 + γw

⊤

t xt+1

)
| St

]
− Eb

[
ρt

(
w

⊤

t xt

)
| St

]
. (A.1)

We now only need to show that:

Eb

[
w

⊤

t xt | St

]
= Eb

[
ρt

(
w

⊤

t xt

)
| St

]
.

This is straightforward because Eb

[
w

⊤

t xt | St

]
= w

⊤

t xt and:

Eb

[
ρt

(
w

⊤

t xt

)
| St

]
= w

⊤

t xt Eb[ρt | St]︸ ︷︷ ︸
=1

= w
⊤

t xt.

A.2 An Empirical Study of Different Impor-

tance Sampling Placements

We just showed that correcting or not correcting the last term in the TD-error,

w⊤
t xt, does not change the expected update. All algorithms that we discussed

throughout the dissertation use the TD-error, and for all of them, the last

term in the TD-error can be corrected or it can be left with no correction.

Which approach should we choose?

Here, we conduct a simple comparison of all algorithms we discussed in

Chapter 3, with and without correcting the last term of the TD-error. The ex-

perimental setting remains the same as the original Collision task experiment,

with the same number of time steps and same algorithm instances applied to

the task.

We applied all algorithms to the Collision task with and without correcting

the w⊤
t xt term and summarized the results in Figure A.1 and Figure A.2. Let
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(averaged

over

time steps

and 
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Figure A.2: Collision problem when λ = 0. The curves are optimized for
the area under the curve. The figures compare how ρ placement can affect
the performance of each method. Blue is when the whole TD-error term is
corrected and red is when v(St) is not corrected.

the whole TD-error including the w⊤
t xt term is corrected with the importance

sampling ratio.

146



Appendix B

A Summary of Prediction
Learning Algorithms and All
Update Rules

Here, we first briefly introduce the eleven algorithms used in our empirical

studies. As the reader might remember, the eleven algorithms are intended to

include all the best candidate algorithms for off-policy prediction learning with

linear function approximation. We will then provide the update rules for all

algorithms as a single point of reference that can be used for implementation.

B.1 A Summary of Algorithms

In this section, we briefly introduce the eleven algorithms used in our empirical

study. These eleven are intended to include all the best candidate algorithms

for off-policy prediction learning with linear function approximation.

Off-policy TD(λ) (Precup, Sutton, & Dasgupta, 2001) is the off-policy

variant of the original TD(λ) algorithm (Sutton, 1988) that uses importance

sampling to reweight the returns and account for the differences between the

behavior and target policies. This algorithm has just one set of weights and

one step size parameter.

Our study includes five algorithms from the Gradient-TD family. GTD(λ)

and GTD2(λ) are based on algorithmic ideas introduced by Sutton et al.,

(2009), then extended to eligibility traces by Maei (2011). Proximal GTD2(λ)

(Mahadevan et al., 2014; Liu et al., 2015; Liu et al., 2016) is a “mirror descent”
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version of GTD2 using a saddle-point objective function. These algorithms

approximate stochastic gradient descent (SGD) on an alternative objective

function, the mean squared projected Bellman error. HTD(λ) (Hackman,

2012; White & White, 2016) is a “hybrid” of GTD(λ) and TD(λ) which be-

comes equivalent to classic TD(λ) where the behavior policy coincides with

the target policy. TDRC(λ) is a promising recent variant of GTD(λ) that

adds regularization. All these methods involve an additional set of learned

weights (beyond that used in v̂) and a second step-size parameter, which can

complicate their use in practice. TDRC(λ) offers a standard way of setting

the second step-size parameter, which makes this less of an issue. All of these

methods are guaranteed to converge with an appropriate setting of their two

step-size parameters.

Our study includes two algorithms from the Emphatic-TD family. Emphatic-

TD algorithms attain stability by up- or down-weighting the updates made on

each time step by Off-policy TD(λ). If this variation in the emphasis of up-

dates is done in just the right way, stability can be guaranteed with a single set

of weights and a single step-size parameter. The original emphatic algorithm,

Emphatic TD(λ), was introduced by Sutton, Mahmood, and White (2016).

The variant Emphatic TD(λ, β), introduced by Hallak et al., (2016), has an

additional parameter, β ∈ [0, 1], intended to reduce variance.

The final three algorithms in our study can be viewed as different attempts

to address the problem of large variations in the product of importance sam-

pling ratios. If this product might become large, then the step-size parameter

must be set small to ensure there is no overshoot—and then learning may be

slow. All these methods attempt to control the importance sampling product

by changing the bootstrapping parameter from step to step (Yu, Mahmood,

& Sutton, 2018). Munos et al., (2016) proposed simply putting a cap on the

importance sampling ratio at each time step; they explored the theory and

practical consequences of this modification in a control context with their Re-

trace algorithm. V-trace(λ) (Espeholt et al., 2018) is a modification of Retrace

to make it suitable for prediction rather than control. Mahmood et al., (2017)

developed a more flexible algorithm that achieves a similar effect. Their algo-
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rithm was also developed for control; to apply the idea to prediction learning

we had to develop a nominally new algorithm, ABTD(ζ), that naturally ex-

tends ABQ(ζ) from control to prediction. A full development of ABTD(ζ)

can be found in Chapter 6 of the dissertation. Finally, Tree Backup(λ) (Pre-

cup, Sutton, & Singh, 2000) reduces the effective λ by the probability of the

action taken on each time step. Each of these algorithms (or their control

predecessors) have been shown to be very effective on specific problems.

B.2 Update Rules

Here, we provide the update rule for all off-policy prediction learning algo-

rithms we used in this dissertation.

Off-policy TD(λ):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

wt+1 ← wt + αδtzt

GTD(λ):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

vt+1 ← vt + αv

[
δtzt − (v

⊤

t xt)xt

]

wt+1 ← wt + αδtzt − αγt+1(1− λt+1)(v
⊤

t zt)xt+1
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TDRC(λ):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

vt+1 ← vt + α

[
δtzt − (v

⊤

t xt)xt

]
− αvt

wt+1 ← wt + αδtzt − αγt+1(1− λt+1)(v
⊤

t zt)xt+1

GTD2(λ):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

vt+1 ← vt + αv

[
δtzt − (v

⊤

t xt)xt

]

wt+1 ← wt + α(v
⊤

t xt)xt − αγt+1(1− λt+1)(v
⊤

t zt)xt+1

HTD(λ):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

zt ← ρt(γλz
ρ
t−1 + xt) with z−1 = 0

zbt ← γλzt−1 + xt with zb−1 = 0

vt+1 ← vt + αv

[
δtzt − (xt − γt+1xt+1)(v

⊤

t z
b
t)

]

wt+1 ← wt + α

[
δtzt + (xt − γt+1xt+1)(zt − zbt)

⊤

vt

]
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Proximal GTD2(λ):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

zt ← ρt(γtλtzt−1 + xt) with z−1 = 0

vt+ 1

2

← vt + αv

[
δtzt − (v

⊤

t xt)xt

]

wt+ 1

2

← wt + α(v
⊤

t xt)xt − αγt+1(1− λt+1)(v
⊤

t z
ρ
t )xt+1

δt+ 1

2

def

= Rt+1 + γt+1w
⊤

t+ 1

2

xt+1 −w
⊤

t+ 1

2

xt

vt+1 ← vt + αv

[
δt+ 1

2

zρt − (v
⊤

t+ 1

2

xt)xt

]

wt+1 ← wt + α(v
⊤

t+ 1

2

xt)xt − αγt+1(1− λt+1)(v
⊤

t+ 1

2

zρt )xt+1

Emphatic TD(λ):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

Ft ← ρt−1γtFt−1 + It with F0 = I0

Mt
def

= λtIt + (1− λt)Ft

zt ← ρt (γtλzt−1 +Mtxt) with z−1 = 0

wt+1 ← wt + αδtzt

Emphatic TD(λ , β):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

Ft ← ρt−1βFt−1 + It with F0 = I0

Mt
def

= λtIt + (1− λt)Ft

zt ← ρt (γtλzt−1 +Mtxt) with z−1 = 0

wt+1 ← wt + αδtzt
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Tree Backup(λ) for prediction:

δρt
def

= ρt

(
Rt+1 + γt+1w

⊤

t xt+1 −w
⊤

t xt

)

zt ← γtλtπt−1zt−1 + xt with z−1 = 0

wt+1 ← wt + αδρt zt

V-trace(λ):

δt
def

= Rt+1 + γt+1w
⊤

t xt+1 −w
⊤

t xt

zt ← max(ρt, 1) (γtλzt−1 + xt) with z−1 = 0

wt+1 ← wt + αδtzt

ABTD(ζ):

δρt
def

= ρt

(
Rt+1 + γt+1w

⊤

t xt+1 −w
⊤

t xt

)

zt ← γtνt−1πt−1zt−1 + xt with z−1 = 0

wt+1 ← wt + αδρt zt
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