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Abstract

Pharm acokinetics describes the course of a drug through the body and is the main 

quantitative tool used in all stages of drug discovery, development, and adm inistration. 

Most pharm acokinetic models are based on the assum ption th a t drug transport and re

action kinetics occur in a homogenous environment. However, the spaces in the body are 

usually confined and heterogeneous. Consequently, the transport and chemical reaction 

processes occurring w ithin them  can become anomalous. Evidence of th is result includes 

emergent power law behaviour. The objective of this thesis is to  apply concepts from 

physics to  develop more physiologically-accurate models of drug processes occurring in 

the body in the presence of spatial and /o r tem poral heterogeneity.

Several com plem entary models were developed to  investigate drug elimination ki

netics in a heterogeneous environment. Fractal drug kinetics under Michaelis-Menten 

conditions was developed and implem ented using a continuous, determ inistic fractal 

com partm ental model. Using a param eter optim ization m ethod based on a simulated 

annealing algorithm , the model was found to provide an improved fit to experimental 

da ta  for the cardiac drug mibefradil.

The theory of fractal elim ination kinetics was then  tested using a stochastic m ethod 

based on an interacting random  walk model. It was found th a t short-term  correlations 

between drug molecules produced M ichaelis-Menten elim ination kinetics while long-term 

correlations produced fractal kinetics. By combining bo th  effects, the fractal Michaelis- 

M enten theory was reproduced. The model was then  expanded into a continuous time 

random  walk model to  include the effects of tem poral heterogeneity in the form of Levy- 

d istributed long-time trapping  of drug molecules in tem porary traps.

Power law behaviour does not always indicate fractal kinetics. A two-com partment 

model for the anticancer drug paclitaxel was used to  dem onstrate th a t it can be pro

duced by the com petition between two saturable processes. The power exponent of the 

long-time tail of the  concentration-tim e curve was correlated w ith the power exponent
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describing the nonlinear dose-dependence of two pharm acokinetic measures.

Finally, a physiologically-based flow network model was used to  show th a t the organ- 

level dynamics of drug m etabolism  can be reproduced a t the level of the functional unit of 

the liver. Different types of spatial heterogeneity th a t mimicked pathological conditions 

were found to  lead to  either fractal or fractal M ichaelis-M enten kinetics.
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Chapter 1

Introduction

Hum ans have a long history of using compounds to achieve therapeutic  effects. The 

Chinese scholar-em peror Shen Nun compiled a book about medical herbs around 2700

B.C., and synthetics com pounds were created as early as the fourth  century B.C. by Hip

pocrates [34], Today, drugs play a crucial role in the way th a t we diagnose, trea t, and pre

vent disease. Pharm acokinetics -  the study of the absorption, d istribution, metabolism, 

and eventual elim ination of a drug or chemical from the body -  is the m ain quantitative 

tool used in all stages of drug form ulation and adm inistration. During the development 

stage, it aids in the  design and analysis of laboratory experim ents and the elucidation 

of drug mechanisms. During Phase I and II clinical trials, it is essential in evaluating 

the drug’s effectiveness, optim um  dose levels, and preferred routes of adm inistration. 

During Phase III clinical trials, pharm acokinetics is used to compare the new drug with 

standard  therapies. Finally, in daily clinical practice, it is used to  calculate optimum 

doses for individual patients. The focus of this thesis is to  advance our understanding 

of the way th a t the  body processes drugs and the implications for patien t therapy.
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CHAPTER 1. INTRO DU CTION 2

1.1 C h allen ges to  P h arm acok in etic  M od elin g

The quantification of the course of a drug in the body is subject to  certain  constraints. 

Firstly, pharm acokinetic d a ta  consist prim arily of the drug concentration in the plasma 

at discrete tim es. However, the site of action of the drug is typically outside the plasma, 

and crucial inform ation about the actual dose to  the  target may be unavailable. In 

addition, clinical procedures and patient comfort lim it the num ber of samples th a t can 

be taken, which in tu rn  constrains the num ber of model param eters th a t can be fit 

to the d a ta  w ith sufficient statistical significance. In a literature  review of 50 random  

pharm acokinetic studies perform ed between 2001 and 2003, it was found th a t the average 

num ber of experim ental d a ta  points was 12 ±  5, w ith the  overall sampling tim e ranging 

between 30 m inutes and 28 days. In only 11 of the studies was there additional da ta  for 

the drug concentration in the urine, endocrine system, dialysate, or expired air.

C om partm ental models are the most common type of pharm acokinetic model due to 

their wide range of applicability and ease of use in a clinical setting. The body is divided 

into a network of com partm ents, where a com partm ent is defined as a kinetically-distinct 

am ount of the  drug. In  classical pharm acokinetics, each com partm ent is assumed to be 

homogeneous and instantaneously well-mixed, such th a t the transfer of drug between 

com partm ents follows linear or M ichaelis-Menten kinetics. However, there is evidence 

th a t many spaces in the body are heterogeneous an d /o r poorly-mixed, and thus classical 

kinetics may be an inadequate model for certain drug processes. The pharm acokinetics of 

a drug can be altered due to  spatial heterogeneity (for example the branching geometry of 

the vascular system) an d /o r tem poral heterogeneity (for example the  long-time trapping 

of drug molecules in tum our cells).

1.2 T h e R o le  o f P h ysics

M athem atical m ethods have been developed in fields of physics to  describe and model 

transport and reaction processes occurring on or w ithin heterogeneous media. These
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techniques include fractal geometry and fractal kinetics, percolation lattices, universality, 

and scaling. Since a dose of drug can be treated  as an ensemble of many identical drug 

molecules, tools from sta tistical mechanics, such as random  walks and M onte Carlo 

simulations, can be applied to its analysis. For example, a typical dose the anticancer 

drug paclitaxel contains on the order of 1020 drug molecules. Physical models can relate 

the macroscopic behaviour of the ensemble to  the microscopic behaviour of the individual 

drug molecules.

By applying a com bination of determ inistic and stochastic modeling, different aspects 

of the system  can be investigated and modeled. Generally, determ inistic models are best 

for curve fitting and clinical applications, while stochastic models can provide realistic 

models of fundam ental drug processes and a platform  to sim ulate the behaviour under 

different conditions.

1.3 H y p o th es is

In this thesis, it is proposed th a t the observed nonlinear behaviour of many drugs is 

a result of the  underlying complexity of the course of a drug. W hile such complexity 

might seem to preclude models simple enough for clinical applicability, the opposite is in 

fact true; relatively basic formulas have been developed th a t accurately describe complex 

systems. This research aims to apply techniques from physics to develop more accurate 

and meaningful pharm acokinetic models as well as clinically-relevant information. As 

such, the goals of th is research can be divided into two categories:

1. To increase our understanding of drug behaviour by.

• reproducing the observed pharm acokinetic behaviour of anticancer and car

diac drugs in the body, especially their long-time power-law tails and nonlinear 

dose-dependence;

• developing m ethods to extrapolate the dose to  the target from the observed 

plasm a concentration-tim e curve;
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• introducing the power law tail exponent as a diagnostic tool of drug behaviour;

• exploiting the scaling properties of power laws to relate the observed macro

scopic behaviour to  underlying microscopic processes and the behaviour at 

the organ level to th a t a t the level of the functional unit.

2. To improve clinical applications through:

• b e tte r  estim ates of optim um  dose levels, tim ing, and length of infusion to 

achieve the m axim um  therapeutic  effect;

• individualized treatm ent plans for patients, using new scaling relationships;

•  novel quantita tive  param eters derived from plasm a concentration-tim e curves 

th a t can be used to  dynamically evaluate the response of a patient to a trea t

m ent regimen.

1.4 O riginal C on trib u tion s

This thesis presents the  following new contributions:

• extension of fractal pharm acokinetic theory to  include M ichaelis-M enten reactions.

• development of a param eter optim ization m ethod based on a sim ulated annealing 

algorithm  to fit fractal com partm ental models to experim ental data.

•  incorporation of the fractal Michaelis-Menten theory into a com partm ent model 

th a t provides an improved fit to  da ta  for the cardiac drug mibefradil.

• evidence of correlation between power law dose dependence and power law tails of 

concentration-tim e curves for the anticancer drug paclitaxel.

• development of the first stochastic pharm acokinetic model th a t includes both  short

term  and long-term  interactions between drug molecules. This interacting ran

dom  walk m odel supports the analytical theory predicted by the  fractal Michaelis- 

M enten equation.
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• expansion of the random  walk model into a continuous tim e random  walk th a t 

incorporates tem poral heterogeneity in the form of drug trapping  times as Levy 

flights.

• use of a physiologically-based network model to  relate the macroscopic fractal 

behaviour a t the organ com partm ent level to  the behaviour a t the level of the 

functional unit of the organ.

• use of a random  lattice and a percolation lattice to  model the heterogeneity of the 

struc tu re  of bo th  healthy and diseased livers.

1.5 O rgan ization  o f  th e  T hesis

A review of basic pharm acokinetic concepts is presented in C hapter 2. In Chapter 3, 

a com putational m ethod for param eter optim ization based on a sim ulated annealing 

algorithm  is described. A new equation for Michaelis-Menten kinetics occurring within 

a heterogeneous environm ent is derived in C hapter 4 and shown to  provide an improved 

fit to d a ta  for the cardiac drug mibefradil. In  C hapter 5, clinical d a ta  for the anticancer 

drug paclitaxel is shown to obey power law behaviour th a t emerges from the com petition 

between two saturable processes. In C hapter 6 , an interacting random  walk model is 

developed th a t reproduces fractal-like elim ination kinetics, and in C hapter 7 this model 

is expanded into a continuous tim e random  walk model th a t incorporates the effects of 

long-time trapp ing  of drug molecules w ithin the body. The results of a  physiologically- 

based flow network model for the functional unit of the liver are presented in Chapter 8 . 

Finally, C hapter 9 summ arizes the m ain conclusions of the thesis and provides direction 

for future research.
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Chapter 2

Basic Concepts in 

Pharm acokinetics

Pharm acokinetics is the  quantification of the course of a drug through the body, includ

ing its absorption, d istribution, metabolism, and excretion. The aim  of pharm acokinetic 

m odeling is to  describe and predict the behaviour of a drug, w ith the ultim ate clini

cal goal of maximizing the d rug’s therapeutic  effect while minimizing any toxic effects. 

Pharmacological d a ta  in hum ans and lab anim als such as dogs or mice typically consist 

of discrete values of the  concentration of a drug in a certain  volume as a function of time. 

The work in th is thesis will focus on drug concentration values in the plasm a obtained 

through intravenous sampling; however, the m ethods described can be equally applied 

to pharm acokinetic d a ta  obtained through other m ethods or for other tissues.

2.1 P la sm a  C on cen tra tion -T im e C urves

Drugs can be introduced into the body through a variety of routes, including subcuta

neous, intram uscular, oral, buccal, bolus intravenous (IV), and IV infusion. The latter 

two should be distinguished from the others, since they entail direct input of the drug 

into the bloodstream  and thus involve no absorption processes. In  m ost cases, the dose
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CHAPTER 2. PHARM ACOKINETICS 7

time

F igure  2.1: An example of a plasma concentration-time curve for a drug under
going absorption, distribution, metabolism, and elimination in the body following 
an intravenous infusion.

results in transient pharm acokinetics, and the system  progresses in a dissipative m an

ner until all of the drug has left the system. A plot of these values generates a plasm a 

concentration-tim e curve th a t first rises as absorption of the drug dom inates and then 

decreases after a m axim um  concentration value is reached. This decline may be relatively 

short or may last for several days, and it is mainly governed by the rate  of elimination 

of the drug from the  body. The simplest case is illustrated  in Fig. 2.1. Unless otherwise 

indicated, the term  “concentration-tim e curve” will refer to the values for the plasma.

W hen a dose of drug is given as a bolus directly into the vascular system, the re

sulting concentration-tim e curve decreases continuously from a m axim um  and is called 

a clearance curve. For drugs rapidly distributed throughout the body, the shape of 

the curve is determ ined predom inantly by the ra te  of elim ination through enzymatic 

biotransform ation or direct excretion. In this case, the input function is given by

0  t  >  0

(2 .1 )
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the resulting concentration-tim e curve is called a clearance (or washout) curve.

Due to its system ic pervasion and relative ease of access, the blood is the dominant 

m aterial for which pharm acokinetic d a ta  are taken. However, because a drug’s target is 

most often outside of the blood, pharm acokinetic d a ta  tend to  be an indirect signal from 

which the desired or crucial inform ation m ust be deduced.

2.2 P h a rm a co k in etic  P aram eters

C ertain param eters are used to quantitatively describe a pharmacological d a ta  set. P har

macokinetic param eters depend on intrinsic properties of a drug and the physiological 

system w ith which it in teracts [157]. These include:

A rea under th e  curve (AUC ):  a m easure of the systemic exposure to the drug when 

calculated for the plasm a curve. It reflects the ability of the  body to remove a drug, 

where a larger value indicates a lower ability. The A U C  is calculated as

V olum e o f d istribution  (Vd): the  theoretical, apparent volume of fluid in which the 

to ta l adm inistered dose would have to  be d istributed in order to  achieve the concentration 

observed in the  plasm a. It is a ratio  between the am ount of drug in the body and the

drug in other tissues. Thus drugs th a t are highly bound to plasm a proteins will lead to 

a low apparent Vd and a high plasm a concentration, and drugs th a t are highly bound 

to  tissues will exhibit a high apparent Vd and a low plasm a concentration. The volume 

of distribution is generally only used for linear, stationary  systems under steady state 

conditions.

Clearance (Cl):  the volume of plasm a cleared of a drug per unit time. Clearance 

describes the efficiency of irreversible elimination of a drug from the body, an organ, or

A U C (2 .2 )

observed plasm a concentration. Gilette [63] proposed th a t Vd is directly proportional to 

the free fraction of drug in the plasm a and inversely proportional to  the free fraction of
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a pathway. For to ta l body clearance:

PO O

F  ■ D  = /  Cl ■ C(t)dt ,  (2.3)
Jo

where F  is the bioavailability, D  is the dose, and C'(t) is the drug concentration at time 

t. For constant clearance:
F  ■ D

Cl  =  A U C '  (2-4)

M axim um  concentration  (Cmax): occurs at a tim e Tmax and is usually calculated by 

fitting an equation to the concentration curve and solving for

"  0
dt

(2.5)
C = C r n a x

Half-life ( t i / 2 ) : the tim e required to reduce the drug concentration in the plasm a by 

one-half. W hile the half-life gives a quantitative m easure of the presence of the drug in 

the body, it is constant only for m onoexponential functions [156].

A lthough m ost pharmacokinetic parameters are defined independently of a model, 

their calculation may depend on the m athem atical model chosen to  represent the sys

tem  [157]. The model parameters are those quantities specific to  the chosen model, and 

while they depend on the drug and physiological properties, they also depend on the hy

potheses of the model. The next section summarizes the m ain types of pharm acokinetic 

models.

2.3 P h a rm a co k in etic  M od els

Pharm acokinetic studies can be generalized into two categories: individual-based or 

population-based. In individual-based studies, pharm acokinetic param eters are esti

m ated independently for each patient. Population-based studies, on the other hand, 

pool drug concentration values from more than  one individual. They account for both  

random  and fixed effects th a t produce the variability between individuals and w ithin
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individuals [152], A lthough less da ta  points are required per patien t when using this 

approach, assum ptions m ust be m ade in combining d a ta  from different patients and po

tentially  from different studies. These include the shape of the sam pling distributions of 

the population estim ates.

2 .3 .1  C o m p a r tm e n ta l M o d e ls

In com partm ental modeling, the most widely-used type of m odeling in pharm acokinet

ics, the body is represented by a system of com partm ents th a t may or may not have 

anatom ical or physiological meaning. A com partm ent is defined to be an amount of 

m aterial th a t acts kinetically like a distinct, well-mixed am ount of the m aterial [83]. In 

other words, every drug molecule in a com partm ent has the same probability of under

going a set of chemical or transport processes. The exchange of drug molecules between 

com partm ents is described by kinetic rate  coefficients. Two com partm ents merge if they 

exchange m aterial so rapidly th a t they are indistinguishable. The models are usually 

open, w ith a t least one input and one output.

Classical kinetics is based on the law of mass action, which states th a t the rate  of a 

chemical reaction is directly proportional to the product of the concentrations of the M  

reactions each raised to the order m,

M  

i- 1

where Aj is the mass of reactan t i and k  is the kinetic rate  coefficient. The reaction 

order rij is the num ber of mass term s th a t m ust be m ultiplied together to  get the rate 

of the reaction [44]. For a single step, rn is typically equal to the molecularity, which is 

the num ber of molecules th a t are altered during the reaction.

In a one-com partm ent model, the body is approxim ated as a single homogeneous 

com partm ent. It is im portan t to note th a t this does not mean th a t the  drug concentration 

is the same everywhere in the body; rather, the change in the drug concentration is
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everywhere proportional to  the change in the plasm a concentration. W hen only one 

molecule is modified, the linear one-com partm ent model is described by

dt
X ( t )  = k X ( t ) . (2.7)

The general case of N  com partm ents is represented by a system  of coupled ordinary 

differential equations:

d-X(t)  = K X (t) , (2.8)
dt

where X (f) is the column vector

X (i) =

/ X l (t) X

y X N (t) f

(2.9)

The m atrix  K has dimensions N  x N  and elements kij. Typically, k{j /  kji and the 

m atrix  K is not symm etric. A bolus dose Dq injected into the first com partm ent takes 

the form of the initial condition

X(0) = (2 .10)

\ 0 /

The general solution to  Eq. (2.8) is [115]

m  ( m j - 1

x i(t) =  X ab  X !  Cii ktk ) exP iXJf ) ) 
j = 1 \  k= 0

(2 .11)

where i, j ,  and k  are integers, and are constants, and K has m  distinct eigenvalues 

Ai w ith m ultiplicity m t.

The above equations can be w ritten  alternatively in term s of the drug concentration
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by using the concept of the volume of d istribution introduced in Section 2 .2 , since

If an IV infusion is adm inistered instead of a bolus dose, the following m atrix  would 

be added to  the  righ thand side of Eq. (2.8) or Eq. (2.13):

th a t they can be form ulated in term s of anatom ical components or physiological pro

cesses. For example, the pharm acokinetics of an anesthetic drug could be modeled by two 

com partm ents, one for the plasm a and one for the brain. The two com partm ents would 

exchange drug molecules a t a rate  dependent on the perm eability of the blood-brain 

barrier.

Lim itations of classical com partm ental models lie in their assum ptions, the m ain one 

being th a t each com partm ent is homogeneous and instantaneously mixed. To assess the 

applicability of com partm ental models to a given situation, the relative mixing rates 

within com partm ents should be compared to the transfer rates between compartm ents.

A subset of com partm ental models is the so-called physiologically-based pharm acoki

netic (PBPK ) models [41]. W hile th is term  incorrectly implies th a t classical compart-

X  =  VdC. (2 .12 )

For constant Vd, Eq. (2.8) becomes

j C W - K C W . (213)

0
1(f) = (2.14)

\ ° y

where i(t) is the infusion ra te  in units of m ass/tim e.

Advantages of com partm ental models include their wide applicability and the fact
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m ental models have no physiological basis, PB PK  models differ by explicitly expressing 

the kinetic ra te  coefficients and volumes of d istribution in term s of physiological and 

anatom ical param eters such as blood flow and m etabolic rates, organ volumes, mem

brane perm eability, and molecular binding constants. There are two general types of 

P B PK  models: flow- or diffusion-limited models and membrane- or perfusion-limited 

models (see [5] for a comprehensive study involving bo th  types of models). Advantages 

of PB PK  models include transfer coefficients related directly to  physiological processes 

and easier scaling of models between species and from in vitro to in vivo [41]. Disad

vantages of these models include the necessary am ount of detailed kinetic information, 

their relative complexity, and difficulties in validating the param eters and fitting them  

to experim ental data. Some software has been developed to  make these models more 

user-friendly (see for example PK Q uest [100]).

2 .3 .2  N o n -C o m p a r tm e n ta l M o d e ls

To address some of the  lim itations of com partm ental models, several non-com partm ental 

approaches have been developed. The m ethod of moments, or m ean residence time 

theory, uses not only the AUC bu t also quantities like the area under the moment 

curve (AUMC) and the m ean residence tim e (MRT) to deduce inform ation about a data  

set [194]. Linear system  analysis (LSA) uses procedures such as convolution, deconvo

lution, and disposition decomposition analysis [190]. C irculatory models describe drug 

disposition in term s of repeated cycles in the circulatory system, where the residence 

tim e of a drug molecule is determ ined by the cycle tim e and the  num ber of cycles the 

molecule undergoes before elim ination (see for example [98]).

Advantages of non-com partm ental analysis include fewer assum ptions and ones tha t 

are typically related  to  the observed behaviour ra ther th an  the  natu re  or mechanisms of 

the underlying system  [62]. In  addition, they provide general m ethods th a t can apply to 

a wide range of d a ta  sets. Both com partm ental and non-com partm ental m ethods can be 

applied to  the same system, either in complim entary roles or w ith non-com partm ental
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analysis as an  initial investigation [164],

It is im portan t to  note th a t in many cases, ‘non-com partm ental’ models can be 

m apped onto the com partm ental framework. For example, Lansky [98] points out tha t 

his circulatory m odel can be studied as a unilateral com partm ental model in which the 

com partm ents are arranged in series w ith a feedback loop.

2 .3 .3  S to c h a st ic  P h a r m a c o k in e tic  M o d e ls

Both com partm ental and non-com partm ental models can be form ulated in term s of deter

ministic an d /o r  stochastic variables. Stochastic components can be incorporated through 

the use of

• random  inputs or initial conditions;

• a random  m atrix  representation for the kinetic rate  coefficient K;

• random  walk models in which single molecules are followed between com partm ents 

or states.

An example of a noncom partm ental stochastic model is the circulatory model mentioned 

in the previous section.

If the random  com ponents are added to  the kinetic ra te  coefficients of a com partm en

ta l model, the effect is linear [83]. For example, consider the following one-com partment

where k  and a  represent the determ inistic and stochastic components, respectively. 

These equations can be rew ritten  as a determ inistic system  w ith a stochastic input:

model:

(2.15)

/  =  k + a, (2.16)

—  = k C  + [aC + t ( i ) ] . (2.17)
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On the other hand, if the random  components are added to  the  concentration values, 

the effect is nonlinear.

2.4 N o n lin ea r  P h arm acok in etics

The concept of linearity is sometimes poorly defined in the pharm acokinetic literature. 

In general, a system  is considered to be linear when its ou tpu t is directly proportional 

to  its input. Systems th a t can be described by a set of linear differential equations 

guarantee such a property. As discussed in Section 2.3.1, a linear ODE has kinetic order 

n = 0  or n — 1 and is expressed for a one-com partm ent model as

Linear processes obey the superposition principle, which states th a t the whole is

then for a rb itra ry  constants k\  and k2, the response to  x  = Aqaq +  k2x 2 is [190]

The superposition principle implies th a t molecules behave in a stochastically independent 

m anner [189]. In  nonlinear systems, however, the behaviour of one molecule is influenced 

by th a t of o ther molecules [46].

In a clinical setting, nonlinear behaviour of a drug can complicate the design of dosage 

regimens as well as predictions of the  drug’s effectiveness and toxicity. The m ain types of 

nonlinearity th a t are discussed in the pharm acokinetic literature fall into two categories: 

dose-dependence and time-dependence.

Dose-proportionality is a concept common in dose-escalation experiments, which are 

prim arily conducted early in the research of a new drug (such as in Phase I clinical 

trials). The response of patients to different doses of the drug is m easured. If the phar

(2.18)

equal to  the sum  of its individual components. If the variable y  is linearly related to x,

y = k iyi  +  k2y2. (2.19)
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macokinetic param eters are unchanged w ith changes in the dose, the pharm acokinetics 

of the system  is said to  be dose-independent over the therapeutic  range studied [6 8 ]. If a 

doubling of the dose of a drug produces a doubling in one or more pharm acokinetic pa

ram eters (typically the AUC or Cmax), the system is considered to  be dose-proportional 

and linear. If the param eter values decrease, or increase by a factor other th an  two, the 

system is considered to  be dose-proportional and nonlinear.

Tim e-dependent pharm acokinetics is present when the pharm acokinetic param eters 

vary w ith tim e due to  physical alterations in the body, w hether in the form of physio

logical changes related  to the body’s circadian rhythm s (called chronopharmacokinetics) 

or chemically-induced changes brought about by the in troduction of the drug into the 

body [1 0 1 ].

Both dose-dependency and tim e-dependency can be present in the same system (i.e. 

the pharm acokinetic param eters describing a system can vary bo th  in tim e and with 

dose), and in fact the  sources proposed for bo th  are similar. Lin [103] states th a t the 

causes of nonlinear dose-dependent pharm acokinetics can be found in the processes of 

absorption, tissue d istribution, protein binding in bo th  the plasm a and tissues, and 

elimination. Levy [101] breaks down the potential causes of tim e-dependence into the 

categories of absorption and elim ination param eters, m etabolism, plasm a binding, renal 

or hepatic clearance, overall systemic clearance, and enzyme activity. Concentration- 

dependent pharm acokinetics are usually modeled using M ichaelis-M enten kinetics.

2 .4 .1  M ic h a e lis -M e n te n  K in e tic s

The rate  of enzyme-catalyzed reactions can deviate from those predicted by classical 

kinetics. M ichaelis-M enten kinetics [126] is the standard  formalism for describing these 

reactions. At high concentrations, saturation  of the enzymes lim its the maximum reac

tion rate  th a t can be achieved, while a t low concentrations, the ra te  of form ation of the 

enzym e-substrate complex becomes significant and the reaction becomes dependent on 

the substra te  concentration [133].
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E + S <=► ES — » P + E

F igure  2.2: Enzyme-mediated reaction. E, S, ES, and P represent the enzyme, 
substrate, enzyme-substrate complex, and product, respectively

max

c

1

c
F igure  2.3: (a) Velocity v of a Michaelis-Menten reaction as a function of the 
reactant concentration, where umax is the maximum rate of the reaction, (b) 
Lineweaver-Burk plot, where C is the drug concentration and K m  is the Michaelis- 
Menten constant.
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Consider the  reaction shown in Fig. 2.2, where E, S, ES, and P  represent the enzyme, 

substrate, enzym e-substrate complex, and product, respectively. If  we denote the con

centration of the substra te  as C,  the concentration of the enzym e-substrate as and the 

to ta l concentration of enzymes as eo, the system  is described by the following ordinary 

differential equations:

dx
—  =  ki  (e0 -  x) C  -  ( k - i  +  k2) x ,  (2.20)

% = hx.  ( 2.21)

Using the Briggs-Haldane treatm ent [44] to simplify the problem , a quasi-steady-state 

assum ption is m ade where the concentration of the substrate-enzym e complex is taken 

to  be constant, i.e. d x /d t  =  0. Therefore,

k\  (eo — x) C  — (k - 1  +  k2) x  =  0. (2 .2 2 )

Collecting the term s in x  and rearranging gives

x =  -----kl^ ~ ;  r , - (2.23)k —i +  k2 +  k \ C

Using the fact th a t the ra te  of the reaction is v = k<ix leads to

k2e0C
k-i+k2

k i + C
(2.24)

Finally, denoting '(;rnax =  k 2eQ, K m  =  (k - 1  + k 2) j k \  gives the Michaelis-Menten equa

tion:

h -  (2 25)

The param eter umax is the maximum  velocity of the reaction, and the Michaelis-Menten 

constant K m  is the  substra te  concentration at half the m axim um  velocity.
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In the low concentration case, where C «  K m , Eq- (2.25) reduces to

19

^max (2.26)

which is first-order kinetics w ith k — umax/ K m - In the high-concentration case, where 

C »  K m , Eq. (2.25) becomes

v — nmax, (2.27)

which is zero-order kinetics w ith a constant reaction rate.

A plot of v as a function of the concentration reveals a hyperbolic relationship 

(Fig. 2.3 a). As the concentration increases, v approaches a m axim um  value. The 

M ichaelis-M enten equation can be rearranged to  generate a linear plot (called a Lineweaver- 

Burk plot, shown in Fig. 2.3 b):

2.5 T ransient F ractal K in etics

Fractals are a m athem atical construct th a t describes certain heterogeneous geometric 

structures or tem poral processes. A introduction to fractal concepts is presented in 

Appendix A. Anacker and Kopelman [8 ] found th a t reactions th a t occur on or within 

fractal media exhibit anomalous kinetics th a t do not follow the  classical mass-action 

form. Specifically, the kinetic ra te  coefficient becomes tim e-dependent [94]:

^ ^max X p  v ,
1 =  K M 1 ( 1 (2.28)

m ax

Values for wmax and K m  can be estim ated from the slope and y-intercept of the line.m ax

k  =  kot h (2.29)

where

(2.30)
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The quantity  ds is the spectral dimension th a t describes the p a th  of a random  walker 

w ithin the m edium  [7]. The classical case corresponds to  ds = 2. The quantity  t~h is 

considered dimensionless, and bo th  k  and ko are in units of inverse tim e (h-1 ). Because 

Eq. (2.29) has a  singularity a t t  =  0 for h > 0, Schnell and Turner [170] have suggested a 

modified form based on the Zipf-M andelbrot d istribution, k(t) — ko ( r  +  t )~ h, where the 

constant r  is the critical tim e from which the ra te  constant is driven by fractal effects. 

However, if r  is very small, Eq. (2.29) is a good approxim ation.

Equations (2.29) and (2.30) have been supported by experim ents of trapping and bi

nary reactions on the Sierpinski gasket, percolation clusters, and lattices w ith disordered 

transition  rates [8 , 75, 94, 93]. W hile Eq. (2.29) applies to  diffusion-limited reactions on 

fractals, it also applies to any situation for which h > 0 .

Equation (2.29) has been incorporated into pharm acokinetics through both  non- 

com partm ental and com partm ental models. The former includes the homogeneous- 

heterogeneous distribu tion  model introduced by M acheras [107] to  quantify the global 

and regional characteristics of blood flow to organs. The la tte r includes the fractal com

partm ental model developed by Fuite et al. [55] in which a classical com partm ent was 

used to  represent the plasm a while a fractal com partm ent was used to  represent the liver. 

In this formalism, the ra te  of elim ination from the liver is given by

v =  k0t~hC. (2.31)

Simulations of the model showed th a t h  plays a significant role in determ ining the shape 

of the concentration-tim e curve [38].

Several a ttem pts have been made to incorporate Eq. (2.29) into the Michaelis-Menten 

equation to  describe concentration-dependent reactions th a t occur in spatially-constrained 

conditions. Kosmidis et al. [96] made the substitu tion  k\ = k \ t ~ h into Eq. (2.20), pro

ducing the form ula

v = r/ mahxC . (2.32)
K Mt h + C  v '
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They also perform ed M onte Carlo simulations and found th a t Eq. (2.32) holds mainly 

when the initial substra te  concentration is high, either through an intravenous (IV) bolus 

adm instration or a high rate  of absorption. In addition, they incorporated Eq. (2.32) 

into a one-com partm ent model. Berry [25] used M onte Carlo sim ulations on a 2D lattice 

to model enzyme reactions in low-dimensional media, and he found th a t h increases inde

pendently w ith increasing obstacle density on the lattice and increasing initial substrate 

concentration. Simulations performed by A randa et al. [13] also confirm these results but 

suggest th a t K mo is characterized by m ultifractality and hence a set of fractal exponents.

2.6 P ow er Law s and Scaling in P h arm acok in etics

A power law relationship such as the one expressed by the tim e-dependence of the fractal 

kinetic rate  coefficient has special qualities, such as scale-invariance. The variable y 

follows a power law function of x  if

y{x) = a x b, (2.33)

where b determ ines the shape of the relationship between y and x,  and a controls the 

m agnitude of the  gain in y. If  \b\ < 1, y increases or decreases more slowly than  x,  and 

if |6 | > 1 , 7/ changes more rapidly than  x. Equation (2.33) possesses the property of 

scaling; if x  is m ultiplied by a factor L,  the constant changes bu t y  rem ains proportional 

to x b:

y (L x ) =  xb■ (2.34)

The behaviour of y  is said to  be self-similar over the range of x  for which this relationship 

holds.

Power laws do not single out any particular value (unlike the m ean of the Gaussian 

distribution). The shape or behaviour of such a system  is similar a t bo th  small and 

large scales. If a system  w ith a hierarchical organization produces power-law behaviour
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over a wide range of values of a given control param eter, the system  is said to be scale- 

invariant [180]. Since naturally-occurring physical and biological systems are neither 

perfect nor infinite, it is im portan t to  specify the range of values over which a scaling 

regime holds. In pharm acokinetics, for example, this might consist of the therapeutic 

dose range and the tim e over which it is attained.

Evidence of power law behaviour has been found in pharm acokinetics, including the 

shape of clearance curves, nonlinear dose-dependence of pharm acokinetic param eters, 

and allometric scaling.

2 .6 .1  C lea ra n ce  C u rves

There is evidence th a t the concentration-tim e curves of many drugs exhibit long-time 

power law tails of the form

C(t)  ~  C  for t  > T, (2.35)

where 7  is negative, and T  marks the tim e of the onset of the tail. Negative power laws 

were first applied, empirically, to  describe the washout of bone-seeking radioisotopes [143, 

201]. Subsequently, other types of clearance curves have been fit by a single power law, 

two sequential power laws, or the gamm a function y ( t ) =  at~ae~Pt [11, 200, 144, 21].

Different explanations for these power law and gam m a function fits have been pro

posed. W ise et al. [202] proposed a stochastic random  walk model based on the cycling of 

radionuclides in and out of the plasma. By changing the ratio  of the cycling probability 

to the elim ination probability, Wise was able to  produce different power law exponents 

and even two sequential power laws [201]. Because the nine drugs examined by Norwich 

and Siu [144] were predom inately elim inated through the liver, they  developed a model 

based on the anatom y and vasculature of th a t organ. Their convection-diffusion equa

tions for the  functional unit of the liver, the acinus, generated approxim ate solutions 

w ith gam m a and power functions. Weiss [193] fit plasm a curves w ith functions of the 

form C  — A t ~ ae~bt, which he shows can arise from gam m a-distributed residence times.
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He compared the m odel to  a random  walk w ith drift.

2 .6 .2  N o n lin e a r  D o se -D e p e n d e n c e

Dose-proportionality of pharm acokinetic param eters, such as the A U C  and CmaXi can 

be identified using a simple plot of the pharm acokinetic param eter as a function of the 

dose. The graph will be a straight line w ith a zero intercept if the param eter is linearly 

proportional to  dose. As a b e tte r diagnostic tool, Gough et al. [6 8 ] suggest the following 

“power m odel” :

P  =  cD13 (2.36)

where P  is a  pharm acokinetic param eter and D  is the dose. W hen lo g P  is plotted 

as a function of log D, the  slope of the line will be equal to  the param eter fi. Two 

scenarios are discussed: f3 = 0 (dose-independence) and /3 = 1 (dose-dependence). While 

they m ention th a t dose-dependence can be linear or nonlinear, their only suggestion for 

fitting a nonlinear relationship was the addition of higher-order polynomial term s to 

Eq.(2.36). In  their analysis of eight da ta  sets, the authors found th a t the slopes were 

consistent w ithin each study, bu t they compared each to  an expected value of one. The 

authors stress th a t their model is empirical and their application of the power law is not 

mechanistic.

2 .6 .3  A llo m e tr ic  S ca lin g

To date, the concept of scaling in pharm acokinetics has been lim ited to  allometric scaling 

equations of the form

Y  = a W b (2.37)

where Y  is the dependent biological variable of interest, W  is the  weight of the organism, 

a is a norm alization constant called the allometric coefficient, and b is the allometric ex

ponent [109]. The clearance, toxicity, maximum concentration, volume of distribution at 

steady state , and elim ination half-life have all been investigated as a function of mass.
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Such relationships have been applied to scaling among hum ans [185, 136], extrapolation 

between anim al and hum an models (interspecies scaling) [111, 17], and extrapolation 

from in vitro to  in vivo [16, 110]. For example, Hu and H ayton [79] studied clearance 

values from the literatu re  for 115 xenobiotics for various species. They found no corre

lation between log clearance and log body weight for 2 1 % of the substances, bu t found 

an average of b — 0.74 ±  0.16 for the others.
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Chapter 3

A Param eter Optim ization  

M ethod U sing a Simulated  

Annealing Algorithm

3.1 P u rp o se

This purpose of th is chapter is to describe the development of an efficient and accurate 

param eter optim ization m ethod, based on the sim ulated annealing algorithm , to fit a 

system of differential equations to  a set of experim ental data.

3.2 B ackground

Most determ inistic pharm acokinetic models are expressed as a set of differential equa

tions, and m odeling is most efficient when these equations can be solved analytically 

to produce algebraic equations th a t can be fit to  experim ental d a ta  using linear and 

nonlinear regression techniques. However, some models, especially those w ith nonlinear 

or tim e-dependent term s, lead to  equations th a t can only be solved numerically. In such 

cases, including the growing set of fractal models, a lternate  m ethods m ust be developed
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to  estim ate the m odel param eters. The objectives of this chapter are to  experimentally 

determ ine the optim al im plem entation of the SA algorithm , test its performance against 

existing algorithm s, and assess its applicability to  fitting com partm ental models. Spe

cific a tten tion  is given to  the case of fractal com partm ental models, in which one or more 

kinetic ra te  coefficients are power functions of time.

U nfortunately, most fractal models cannot be solved analytically. There are sev

eral commercially-available software packages, including W inNonLin [1] and Boomer [2], 

th a t make use of the  Gauss-Newton [74], and Nelder-M ead simplex [137] algorithm s to 

numerically fit differential equations to experim ental data. For models based on clas

sical and M ichaelis-M enton kinetics, these program s are excellent. However, even with 

the option of user-defined models, these program s currently do not have the capability 

to handle power-law tim e-dependent kinetic rate  coefficients. Furtherm ore, the Gauss- 

Newton m ethod is a gradient-based m ethod th a t involves the calculation of derivatives, 

and the simplex algorithm  is sensitive to  initial conditions [42]. To fit their model for 

fractal M ichaelis-M enten kinetics to experim ental data, Kosmidis et al. [96] used the 

Levenberg-M arquardt (LM) algorithm . However, the LM algorithm  is also gradient- 

based; therefore, although it is appropriate for fitting their one-com partm ent model tha t 

can be solved analytically, it may not be the best m ethod for fitting model th a t do not 

have an algebraic solution. Furtherm ore, the LM algorithm  has the  disadvantage of con

verging towards local m inim a when the initial param eter estim ates are poor [53]. This 

chapter describes the sim ulated annealing algorithm  and explores its ability to optimize 

functions through an efficient exploration of the param eter space.

3.3 S im u lated  A n n ea lin g  A lgorith m

K irkpatrick and colleagues developed sim ulated annealing to optim ize the design of in

tegrated  circuits, and they later applied it to the optim ization of m any-variable func

tions [91]. Sim ulated annealing (SA) derives its name from an analogy to the cooling
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of heated m etals. As a m etal cools, the atom s fluctuate between relatively higher and 

lower energy levels. If the tem perature  is dropped slowly enough, the atom s will all reach 

their ground state . However, if the tem perature is dropped too quickly, the system will 

get trapped  in a less-than-optim um  configuration. If the energy function of this physical 

system  is instead replaced by an objective function /  ({a;*}), where {rc^} is a set of inde

pendent variables, then  the progression of this function towards the global minimum is 

analogous to  the physical progression towards the ground state.

The SA algorithm  also requires a control param eter, T  (the effective tem perature), a 

strategy for changing T,  and a m ethod for exploring the param eter space. The algorithm, 

illustrated  in Fig. 5.1, begins a t a random  initial position in param eter space and its 

corresponding objective function, / o. The param eters are then  pertu rbed  to  generate 

a tria l point w ith a  new objective function, / i ,  and the move is either accepted or 

rejected. All downhill moves, corresponding to A f  — f i  — f %~i <  0, are accepted, while 

uphill moves, corresponding to  A /  >  0 , are accepted in a probabilistic m anner using the 

M etropolis algorithm  [125] based on Boltzm ann statistics such th a t

P  (A /)  =  exp
A /  
T

(3.1)

A random  num ber is generated over the range (0,1), and if P  (A /)  >  random(0,1), 

the trial point is accepted. Otherwise, the point is rejected and another trial point 

is generated. The tem peratu re  is decreased every n  steps, and the step lengths can 

be adjusted every m  steps. The process continues in an iterative m anner until the 

program  converges on a solution. This convergence can be expressed as a function of the 

tem perature, the num ber of iterations, the acceptance ra te  of new moves, or the absolute 

or relative change in the objective function.

At the s ta r t of the annealing process, the tem perature  is relatively high compared 

to the standard  deviation of the values com puted for the objective function, so the 

probability of accepting an uphill move is great. Hence, the random  walk is able to
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generate 
initial point

compute initial 
objective function/n

/ = i +1 generate 
random step

no
compute 

objective function^

Metropolis

no yes
exp
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yes save configuration 
as optimum'optim um  '

no
m od( n j)  =  0  T ^ x

yes

adjust step lengths

no

yes

reduce 
temperature T

termination 
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yes

STOP

F igure  3.1: The simulated annealing algorithm. The operator mod (x ixxp  
returns the remainder of x% divided by *2-
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explore a wide area of param eter space w ithout getting trapped  in local minima. As the 

tem perature  is decreased, the algorithm  is able to focus on the m ost promising areas.

In addition to  m anipulating the tem perature, the m agnitude of the step length in 

param eter space can be controlled. It has been found experim entally th a t the space is 

best explored when the acceptance rate  of new steps is 50% [125]. A relatively high 

rejection ra te  means th a t the space is being ineffectively explored, while a relatively low 

rejection ra te  means the algorithm  is being explored w ith too-sm all steps.

The SA algorithm  has many advantages over other optim ization m ethods. It is largely 

independent of the s tarting  values, it can escape local m inim a through selective uphill 

moves, and the  underlying function need not be continuous. The SA m ethod has been 

found to  be superior to  the simplex m ethod, the A daptive Random  Search, and the quasi- 

Newton algorithm  in finding the optim um  of continuous functions [42, 64], Eftaxias et 

al. [53] com pared the SA and Levenberg-M arquardt algorithm s and found th a t the LM 

algorithm  was only advantageous when few model param eters m ust be optimized and 

a good initial estim ate was provided. They observed th a t the SA algorithm  was more 

robust and found more accurate and meaningful fits as the num ber of model param eters 

was increased.

The SA algorithm  has been applied to population pharm acokinetics [52], optim al 

design [85] and in the physiologically-based program  PK Q uest [100]. However, in the 

latter, the m ethod is built into an application for Maple, a commercial m athem atical 

problem-solving program , and not explicitly described. To our knowledge, this algorithm  

has not yet been applied to solve com partm ental models in individual pharmacokinetics.

3.4 M eth o d s

3 .4 .1  T h e  P K P h it  P ro g ra m

A C + +  program , P K P h it, was w ritten  to implement the  SA algorithm . It includes 

the definition of three classes: D ata, Model, and SimAnneal. The D ata  class holds the
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experim ental data. The Model class contains the equations of the model, the dosing 

information, and the chosen form of the objective function. The differential equations 

were solved num erically using a fourth-order R unge-K utta routine w ith 500 steps [153]. 

The SimAnneal class holds a particu lar set of values for the param eters and the corre

sponding value of the objective function. It makes use of three functions to  generate a 

trial set of param eter values, calculate the corresponding cost function, and determine 

whether or not to  accept the new set of values.

3 .4 .2  A n n e a lin g  S ch ed u le

The program  begins by generating a random  starting  position in param eter space and 

calculating the corresponding objective function, /o- The form of the objective function, 

/ ,  was chosen to  be the weighted residual sum of squares (WRSS):

n  2

WRSS = J 2 wi { ° i - & )  ’ M
i—1

where Ci denotes the predicted value of Cr based on the chosen model, and wi is the 

weighting factor. The weight is commonly chosen to be the inverse of the variance of 

the observation, and here an iterative reweighting scheme was chosen where the variance 

was taken to be proportional to the square of the predicted concentration [56], Ci , so 

th a t

The algorithm  progresses as new steps are generated and either accepted or rejected 

as a function of the tem perature, which is reduced every m  iterations. The m agnitude of 

a step is calculated by m ultiplying a random  num ber between 0  and 1 by the step length. 

The acceptance ra te  (AR) of new trials is checked every n iterations. The step lengths 

are increased if A R  >  60%, decreased if A R  <  40%, and left unchanged otherwise. 

Following C orana et al. [42], the new step length, T ' , for the j th param eter is calculated
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from the previous step length Lj  according to

if A R  >  0.6,

if A R  > 0.4,
(3.4)

where cj is the step length adjustor for param eter j .

The program  term inates when the convergence criteria are reached. Several different 

criteria were investigated alone and in combination, including the to ta l num ber of iter

ations, the  absolute or relative change in W RSS, the acceptance rate, and the current 

tem perature.

using three two-com partm ent models. Figure 3.2 shows a m am illiary model w ith a 

central com partm ent. The case w ith constant kinetic rate  coefficients, which we will 

refer to as the classical Model 1, is described by the equations

where C\  is the concentration in com partm ent 1 , C2 is the concentration in com partm ent 

2 , kij is the kinetic ra te  coefficient for the transfer of drug molecules from com partm ent i 

to  com partm ent j ,  and i{t) is the infusion rate of the drug in mass or moles per hour. The 

term  Vd is the apparent volume of distribution, defined as the volume of fluid into which 

the dose would have to  be dispersed in order to produce the  concentration observed 

in the plasm a, and it is expressed in liters. Com partm ent 1 typically corresponds to 

the plasm a, and com partm ent 2 could represent a tum or, the brain, a bound state, or 

simply a m athem atical construct. For constant kinetic rate  coefficients, Equations (3.5)

3 .4 .3  T est M o d e ls

The robustness of the SA algorithm  in fitting pharm acokinetic param eters was tested

C\ — k2\ C 2 ~  (^12 +  ^ 10) Ci +  ~ r r , (3.5)

C2 =  k 12Cx -  k l2C2 (3.6)
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F igure  3.2: A two-compartment mamillary model.

and (3.6) have an exact algebraic solution th a t is a sum  of term s th a t are exponential in 

time.

By replacing one or more of the constant kinetic rate  coefficients by the fractal 

equivalent, a fractal com partm ental model can be created. For example, by making the 

substitu tion  k2i =  k 2 \ t ~ h in Eqs. (3.5) and (3.6), a fractal trapping  model is obtained, 

w ith a power-law release of drug molecules from com partm ent 2  back into com partm ent 

1. This Model 2 is expressed m athem atically as

C x = k21t~hC2 -  (k12 +  k l0) C l + (3.7)
Vd

C2 =  k 12Ci  -  k2i t - hC2. (3.8)

Alternatively, a fractal elim ination model can be created from the concatenary con

figuration shown in Fig. 3.3. Fuite et al. [55] designated com partm ent 1 as the plasma 

and com partm ent 2 as the liver. By making the substitu tion  &20 =  ^20t~h, elimination 

from the liver now occurs a t a fractal rate. This case comprises Model 3 and is described
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F igure  3.3: A two-compartment catenary model.

by the equations

Cl = k 2lC2 - k l2C l + l̂ - : (3.9)
Vd,

C 2 — &I2C 1 — (&21 +  ^20t~h^ C 2 . (3.10)

The fractal com partm ental models are linear, since the kinetics rem ain first-order. 

However, the value of the fractal kinetic ra te  coefficient, and thus the probability of drug 

release from the fractal com partm ent, changes w ith tim e. Unlike M odel 1, the equations 

for Models 2 and 3 cannot be solved exactly using analytical m ethods [38].

3 .4 .4  S im u la te d  D a ta  S ets

Sets of error-free d a ta  were generated for each model using param eters (listed in Ta

ble 3.1) th a t were chosen to  reproduce real clinical situations. For Models 1 and 2, the val

ues correspond to param eters reported for the anticancer agent carboplatin  in pediatric 

patients [150]. In  addition, an arb itrary  value of h = 0.6 was included for Model 2. The 

dose and infusion tim e were taken to  be 500 mg and 1.5 h, respectively. Twelve concen-

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 3. P A R A M E TE R  OPTIMIZATION METHOD  34

Table 3.1: Theoretical coefficients for the simulated two-compartment models.

Model
k n

( h - 1 )
&21

( h - 1 )
h o

( h - 1 )

O 
«-*

<N 
1

"se 
A v d

(L)
h

Classical 1.5 1.1 1.25 - 5.0 -

Fractal trapping 1.5 1.1 1.25 - 5.0 0 .6

Fractal elim ination 28.0 3.0 - 0 .6 1 0 .0 0 .8

tra tion  values, Ci, were calculated for tim es ti = 0 ,0 .5 ,1 ,1 .5 , 2 ,3 ,4 ,6 , 8 ,10 ,12, and 18 h.

Here, Ci refers to  the concentration at tim e Beyond 18 hours, the concentration falls

below the quantification limit of 0.0025 mg • L_1  reported  for free p latinum  using atomic

absorption spectrom etry [71]. Model 3 was fit to m ibefradil d a ta  [173], and the estim ated

param eters were used to  generate 12 points for times ti =  0 ,0 .8333,0 .1667,0 .25,0 .3333,0 .5 ,1 ,1 .5 ,2 ,6 ,1

A dose of 25 mg and an infusion tim e of 0.1667 h was selected for a hypothetical 25-kg

dog.

To create sets of realistic, noisy data, ( ti ,C*),  an  independent error value, e,;, was 

added to  each concentration value:

Ct  = Ci + €i. (3.11)

A G aussian distribu tion  w ith zero mean (//) was assumed for e*, such th a t

e i ~ N ( 0 , a 2) ,  (3.12)

where N  (/j. cr2) is a norm ally-distributed random  variate w ith m ean /j and variance a 2.

The variance was chosen to induce a coefficient of variation (CV) of 10% [82] in Ci, where

C V  = ° - x  100% =  x 100%. (3.13)
H Ci

In order to  generate N  ( 0 ,a2), the polar form of the Box-Muller m ethod was used
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to transform  two uniform ly-distributed random  numbers into two N  (0,1) variates [153], 

Further m odification provides

with Ui =  ( X Ci) from Eq. (3.13). Finally, substitu ting  into Eq. (3.11) yields

an appropriate annealing schedule. To ensure successful optim ization, the tem perature 

should be lowered slowly enough to find the global m inimum b u t quickly enough to 

minimize com puter run  time. For the two-com partm ent models, it was found th a t a 

linear decrease in tem peratu re  by a factor R  was the most efficient, as compared to 

exponential or power law functions of T , or a function of the num ber of iterations. 

Furtherm ore, the  tem peratu re  drop was best achieved when the ratio  of the number of 

iterations a t each tem perature, m, to  the initial tem perature, To, was 0 .1 0  (with m  =  1

TTh
and To =  10) and R  — 0.999. W hen —  =  1.0, the algorithm  failed to converge, and

To7TI
when —- =  0 .0 1 , the algorithm  was inefficient and required more th an  twice as many 

To
iterations. An increase in R  to  0.9999 also proved inefficient, while a decrease to 0.99 

led to a lower accuracy in the final results.

The choice of appropriate  convergence criteria was also investigated. W inNonLin ®  

m onitors the relative change in the objective function. In  this work, a  modified m ethod 

based on results of Goffe et al. [64] was developed for P K P hit. Every Ng iterations,

ti = N  (0, a 2) =  cr* x N  (0 ,1 ). (3.14)

(3.15)

Figure 3.4 shows the range in d a ta  points for the three models.

3.5 R esu lts

3 .5 .1  O p tim u m  A lg o r ith m  P a ra m eters

Perhaps the m ost im portan t step in evaluating the SA algorithm  is the development of
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F igure  3.4: The simulated data sets for (a) Model 1, (b) Model 2, and (c) Model 
3.
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Table 3.2: Annealing schedule.

Param eter Value

Cycles a t step length 2 0
Iterations a t tem perature 10

Tem perature reduction factor 0.999
Step length adjustor 0.995
Lower bound - kinetic param eters 0 .0 0 1

U pper bound - kinetic param eters 1 0 0 0 .0

Lower bound - volume of distribution 0 .0 0 1

U pper bound - volume of d istribution 1 0 0 0 .0

Table 3.3: Initial parameter values.

Param eter Value

Tem perature 10
Step length - kinetic param eters 0.01
Step length - volume of d istribution 0.1

the average of the previous N$ accepted values of the objective function was calculated 

and com pared to  bo th  the current function value, / , ,  and the current optim um  value, 

/o p tim u m - The relative changes were compared to  a predeterm ined value S, and the 

algorithm  was said to  converge if

I/p rev io u s fi\
I previous

<  <5 (3.16)

and
I/p rev io u s /o p tim u m  | 

/p rev io u s

where

<  5, (3.17)

N S

/previous =  . .  ■ (3 .18)
N&

For flexibility in fitting difficult da ta  sets, an additional condition was imposed such
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th a t the to ta l num ber of iterations did not exceed iVmax =  30,000. Using the optim um  

param eters discussed above and values of Ng = 10 and <5 =  0.0001, convergence was 

found to  occur after 15, 000 ±  5,000 iterations (taking less th an  a m inute on a Pentium  

4 com puter, 3.2 GHz w ith 1 G of RAM).

Because it was found th a t adjusting the step length actually led to  longer run times 

and in m any cases an inability to converge, constant step length values were used. A 

step length of 0.01 to  0.05 was optim al for the kinetic rate  param eters and volume of 

d istribution, while a value of 0.001 was ideal for the fractal exponent. W hen these 

values were increased, the algorithm  quickly found the correct area in param eter space, 

bu t subsequently took over 30,000 iterations to  narrow in on the optim um. Smaller step 

lengths resulted in inefficient exploration of the param eter space and the same excess of 

iterations. The bounds in param eter space were taken to be 0.01 — 10.0 for the kinetic 

rate  coefficients and volume of distribution, and 0 — 5 for the fractal exponent; however, 

widening the ranges, even by a factor of 1 04, had no effect on the progression of the 

algorithm.

In order to  investigate the sensitivity of the SA algorithm  to the initial param eter 

values, Model 1 was fit to  a d a ta  set 50 times, each tim e w ith different values of the 

random  seed and initial model param eter values (random ly chosen over the range (0 , 1 0 ]). 

The m ean W RSS was 0.3389T0.0004, and the coefficient of variation was less th an  5% for 

each of the estim ated model param eters. A lthough the algorithm  is most efficient when 

the range of the initial values is lim ited, it never failed to reach the global optimum, even 

when the ranges were extended to (0,50] and the initial function value was as high as 

10100. Consequently, the performance of the SA algorithm  is independent of the starting  

point.

Finally, perform ing occasional restarts of the program  using the  current optimum 

param eter values as the  new initial values was not found to  be beneficial; the algo

rithm  explored the  surrounding space bu t still converged on the minimum  at the same 

tem perature.
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3 .5 .2  C o m p a r iso n  W ith  O th er  A lg o r ith m s

To evaluate the perform ance of the SA algorithm , the W RSS and model param eter 

values found by P K P h it for Model 1 were compared to  those determ ined by the Gauss- 

Newton (Levenberg and Hartley) and Nelder-Mead simplex algorithm s as implemented 

by W inNonLin ®  Version 4.1. Table 3.4 lists the results for 50 da ta  sets, the number 

found to achieve meaningful results since two independent groups of 50 were statistically 

equivalent (w ith W RSS values of 0.27 ±  0.10 and 0.28 ±  0.10). The confidence intervals 

should include the theoretical values used to  generate the noise-free data, and this is 

indeed the  case for all of the  param eters.

Because the same d a ta  and model is involved, the W RSS can be used to compare 

the goodness of fit of the three algorithms. The W RSS values were the same for all 

three algorithm s, and thus P K P h it performs as well as the commercially-available im

plem entations of the Gauss-Newton and simplex algorithm s. However, in order to get 

the similar degree of accuracy and precision in the Gauss-Newton and simplex results, 

the initial param eter values had to  be w ithin 40% of the actual values, and the lower and 

upper bounds had to be w ithin an order of m agnitude for the Gauss-Newton algorithm  

and more th an  twice as narrow again for the simplex algorithm  (see Table 3.5). Doubling 

the range of the param eter bounds for the simplex algorithm  resulted in a decrease in 

the accuracy of the param eter estim ates by an average of 30% and an increase in their 

standard  deviation by an average of 140%. In the  case of the Gauss-Newton algorithm, 

simply increasing the initial estim ates of the kinetic ra te  coefficients from 1 .0  h " 1 to 

5.0 h - 1  resulted in an inability of the algorithm  to  converge to  a solution for any of the 

1 0 0  d a ta  sets.

In the extrem e case where no initial estim ates were provided to  W inNonLin, the 

program  was unable to  find solutions for 26 of the d a ta  sets when using the Gauss- 

Newton algorithm  and 24 of the sets when using the simplex algorithm . Furthermore, 

although the m ean objective functions did not rise significantly, the standard  deviations 

in the param eter estim ates increased by 15 — 50% in the Gauss-Newton case and by
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Table 3.4: Estimated parameters for the classical two-compartment model. The 
input parameters necessary for the Gauss-Newton and simplex algorithms are listed 
in Table 3.5.

E stim ated Value

Theoretical 
Param eter Value P K P hit Gauss-Newton Simplex

m ean 2.26 2.23 2.48
SD 0 .8 6 1.06 0 .6 8

range 0 .8 3 -4 .1 0.68 -  5.5 0.93 -  3.0

m ean 1.44 1.43 1.47
SD 0 .2 2 0.18 0.17

range 0.95 -  2.1 1.1 -  1.9 1 .0 -  1.9

m ean 1.44 1.42 1.51
SD 0.30 0.35 0.27

range 0 .8 8 - 2 .3 0 .8 7 - 2 .7 0.92 -  2.0

mean 4.53 4.64 4.29
SD 0.93 1 .0 0 .8 8

range 2 .7 - 7 .3 2.3 -  7.6 3.1 - 7 .0

mean 0.28 0.28 0.28
SD 0 .1 0 0 .1 1 0.09

range 0 .1 1 -0 .5 0 0 .1 1 -0 .5 4 0 .1 2 -0 .5 1

ki2
( h - 1)

h i
( h - 1)

h o
( h - 1)

Vd
( h - 1)

W RSS

1.5

1.1

1.25

5.0

Table 3.5: Initial and bounding parameter values necessary for the Gauss-Newton 
and simplex algorithms to achieve the accuracy shown in Table 3.4.

Algorithm Value
u . . 

( h - 1 )
Vd
(L)

Gauss-Newton Initial 1 .0 7.0
Lower Bound 0.5 0.5
Upper Bound 1 0 .0 1 0 .0

Simplex Initial 1 .0 7.0
Lower Bound 0.5 2 .0

Upper Bound 3.0 7.0
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Table 3.6: Estimated parameters for Model 2 with fractal trapping.

Experim ental Value

Param eter Theoretical Value Mean SD Range

k u  ( h - 1 ) 1.50 1.75 0.75 0.58-4.01
*21 (1W1 ) 1 .1 0 1 .11 0.32 0.50-1.89
*10 (h- 1 ) 1.25 1.40 0.28 0.96-2.54
Vd (L) 5.00 4.76 0.94 1.46-6.99
h 0.60 0.58 0.073 0.39-0.72
W RSS - 0.067 0.043 0.0077-0.20

50 — 350% in the simplex case. Therefore, although the three algorithm s are capable of 

achieving equivalent model fits, the Gauss-Newton and simplex algorithm s require strict 

initial conditions, whereas the SA algorithm  is able to  explore the param eter space and 

focus on the m ost prom ising area w ithout prior knowledge of its location.

3 .5 .3  A p p lic a b ility  to  F racta l m o d e ls

Fifty noisy d a ta  sets were generated for Model 2, the fractal trapping  model, and Model 

3, the fractal elim ination model. Based on the performance of P K P h it dem onstrated in 

the previous section, the param eters were estim ated using P K P h it, and the results are 

listed in Tables 3.6 and 3.7, respectively. For bo th  the fractal models, the param eter 

estim ates agree w ith the predicted values, and the confidence intervals are reasonable. 

These values are sim ilarly independent of the initial values and bounds of the param eters. 

In these cases, the  W RSS values are strictly  the m etric for m inim ization and as such 

cannot be com pared across Tables 3.4 -  3.7.

On a final note, while the W RSS is a good m etric for function optim ization, we 

recommend using the Akaike Inform ation Criterion (AIC) an d /o r the Schwarz-Bayesian 

Criterion (SBC) to  guide selection between different models [105]. These metrics adjust 

for the num ber of model param eters and the num ber of d a ta  points.
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Table 3.7: Estimated parameters for Model 3 with fractal elimination.

Experim ental Value

Param eter Theoretical Value Mean SD Range

to 1?
1 28.0 24.3 2 .0 18.3-29.6

h i  (h X) 3.00 2 .6 8 0.58 1.42-4.43
h o  (h- 1 ) 0 .6 0.57 0.059 0.43-0.71

(L) 1 0 .0 10.9 1.19 7.8-15.1
h 0.80 0.77 0.056 0.63-0.88
W RSS - 0.074 0.047 0.0068-0.23

3.6 C onclu sion

This chapter introduced the first detailed application of the sim ulated annealing op

tim ization routine to  fit individual pharm acokinetic data . The robustness of the SA 

algorithm  in fitting b o th  classical and fractal com partm ental models has been demon

strated . A lthough a technique was used to modify the  step length, a constant step 

length was found to  lead to  a more stable solution. Convergence of the SA algorithm  

was most efficient w ith a linear decrease in the tem perature by a factor R  =  0.999 every 

m  =  0 .1 0  ■ To iterations and best estim ated using the relative decrease in the objective 

function.

P K P h it always converged towards the global minimum, irrespective of the initial 

values and bounds of the model param eters, whereas similar fits by the Gauss-Newton 

and simplex algorithm s required estim ates of the param eters to  w ithin 40% of the actual 

values as well as narrow param eter ranges. This lim itation is significant not only in the 

case of a new drug, b u t also for established drugs due to wide ranges in interindividual 

variability. For example, when Sonnichsen et al. [176] fit a two-com partm ent model to 

d a ta  for the anticancer agent paclitaxel in 30 pediatric patients, the ranges of values found 

for three of the param eters were k \ 2  = 2.9 —47.4 pm ol • h -1 , &21 =  6.0 — 142.7 pm ol • h _1, 

and &20 =  0.052 -  1.04 h _1.

Due to  its versatility and independence on prior knowledge of the param eter values,
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the SA algorithm  is particularly  applicable to  fitting fractal models th a t are not solvable 

using analytical techniques. Eftaxias et al. [53] found th a t an SA solution may be 

further improved by around 5% by subsequent application of the LM algorithm , and this 

possibility could be investigated in a future study.
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Chapter 4

Em ergence of Power Laws from  

C om peting Saturable Processes

4.1 P u rp o se

The objectives of this chapter are (1) to  perform  power law analysis of pharm acokinetic 

d a ta  for the anticancer agent paclitaxel, and (2 ) to  emphasize the role of the power 

exponent in the investigation and quantification of nonlinear pharm acokinetics and the 

elucidation of underlying physiological processes. In  addition, it will be tested to see if 

a correlation exists between different types of power law behaviour.

4.2 B ackground

One of the  biggest challenges in medical oncology is optim izing the dose and dosing 

schedules of an  anticancer drug for a given patient. The concept of linearity in the body’s 

handling of a drug is im portant, since it indicates th a t the d rug’s concentration as well 

as derived param eters scale simply w ith bo th  dose and time. Nonlinearity, however, 

implies th a t the relationships are less straightforward. In  this study, new ways to assess 

and quantify nonlinear pharm acokinetic behaviour are investigated using power laws,
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with emphasis on their origins and applications to the drug paclitaxel.

Paclitaxel [160] is derived from the bark of the Pacific Yew tree and is active against 

many cancers, including ovarian, breast, head and neck, and non-sm all cell lung can

cers [81]. Because it is poorly water-soluble, the current form ulation incorporates the 

solvents Crem ophor EL (CrEL) and dehydrated alcohol. Paclitaxel is typically adm in

istered by intravenous infusion over 1 , 3, 6 , or 24 hours (h). Because a patient may 

have an anaphylactic reaction to  CrEL, alternative form ulations of paclitaxel have been 

introduced, including Genexol-PM  [90] and ABI-007 [47],

Paclitaxel is elim inated predom inantly through m etabolism  in the liver by cytochrome 

P-450 enzymes [128]. Paclitaxel’s mechanism of action is by binding to  and stabilizing 

m icrotubules w ithin cells, leading to the inhibition of cell replication and eventual cell 

death  due to  apoptosis [8 6 ]. Paclitaxel has a long residence tim e w ithin the body and 

can stay trapped  in cancer cells for over a week [131]. Paclitaxel is also highly bound to 

CrEL micelles, plasm a proteins, platelets, and red blood cells [77].

Clinical trials indicate th a t the area under the p lasm a curve (AUC) and the maximum 

plasm a concentration (Cmax) for paclitaxel increase disproportionately w ith an increase 

in dose. Not surprisingly, com partm ental models w ith linear ra te  constants have pro

vided less th an  adequate fits to paclitaxel concentration-tim e curves. As a result, two- 

and three-com partm ent models w ith bo th  saturable d istribution and saturable elimina

tion have been used to  model clinical d a ta  [60, 8 8 , 176]. Figure 4.1 shows the central 

plasm a com partm ent, a saturable binding com partm ent, and an optional linear binding 

com partm ent. The saturab le d istribution has been a ttrib u ted  to  either transport [176] 

or binding [87] processes. Paclitaxel’s pharm acodynam ic effects correlate best with the 

duration  of tim e th a t the  plasm a concentration rem ains above a critical value, estim ated 

as 0 .05/uM [60].
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4.3 H y p o th es is

As discussed in Section 2.6, power law relationships have been found in many pharm a

cokinetic d a ta  sets. These include concentration-tim e curves w ith long-time power law 

tails of the form

C{t)  ~  t~a for t  > T  (2.35)

and pharm acokinetic param eters P  th a t vary w ith dose D  through

P  = cD?,  (2.36)

where c is a proportionality  constant and /3 is the power exponent. In the previous 

chapter, it was dem onstrated  th a t power laws can be generated by a one-com partment 

m odel w ith  fractal enzyme-m ediated elimination kinetics. In  th is chapter, it is hypoth

esized th a t power law behaviour can also be generated by a m ulticom partm ent model 

w ith com peting saturab le processes. Pharm acokinetic d a ta  for the drug paclitaxel will 

be tested for the  relationships in Eqs. (2.35) and (2.36).

4.4  M eth o d s

A power law is best identified through a log-log plot, since taking the logarithm  of both 

sides of Eq. (2.33) yields the linear relationship, w ith the slope of the line is equal to 

the power exponent. Thus, the existence of a power law can be tested for by performing 

regression analysis on log-transform ed data, w ith the goodness of fit evaluated using the 

R 2 m etric (a value of 1 corresponding to a perfect fit).

Forty-one sets of concentration-tim e da ta  from 20 published clinical tria l studies were 

digitized and inferred using M acromedia Fireworks Version 4. The d a ta  were tested for 

power law tails of the form expressed by Eq. (2.35), where T  coincides w ith the end of 

the intravenous infusion of the drug. The m ean num ber of d a ta  points in the tail was 

9 ±  2 (minim um  of 6  and m axim um  of 13). Eight sets of AUC and Cmax d a ta  were taken
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i(t)

k-13 v d k dm ax ’ M

3 1 2

^31 ^21

v e lce
m ax  ’ M

F igure  4.1: A compartment model with both saturable distribution to compart
ment 2 and saturable elimination from compartment 1, as well as an optional linear 
binding compartment 3.

directly from 10 published studies and were fit to  Eq. (2.36). The m ean num ber of dose 

levels per study  was 4 ±  1 (minimum of 3 and m axim um  of 6 ).

Simulations of the two- and three-com partm ent model illustrated  in Fig. 4.1 were 

performed using code w ritten  in C + +  to numerically solve the set of ordinary differential 

equations using a fourth-order R unge-K utta algorithm  [153]. The relevant equations are:

  % a x ^ l  , t. U r< \ h C1 Wmax^*l . M i l
Cl “  “K i T c l + kl2°2- kaCl + hlCs -  K h T c l + v p  (4'1)

h ~ k M ’ ( 4 - 2 )

C*3 =  ^13^1 — ^31^3- (4.3)

For the M ichaelis-M enten reactions, the quantity  vmax is the  m axim um  reaction rate, and

K m  is the concentration at which half the maximum velocity occurs. The superscript d 

indicates param eters th a t describe the d istribution process, the e superscript indicates 

the elim ination process, i(t) is the input (infusion) function, and V4  is the volume of

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 4. SATU RAB LE PH ARM ACO KINETICS 48

Table 4.1: Mean population values reported by Kearns et al. [88] for the three- 
compartment model parameters.

Param eter Value
ydumax (pM ■ h - 1) 1 0 .2 0

K “m (pM) 0.32
k n ( h '1) 0 .6 8
v e‘'max (pM ■ h ” 1) 18.80
K eM (pM) 5.50
*13 ( h '1) 2 .2 0

*31 ( h '1) 0.65
vd (L) 4.00

distribution. T he param eter values used were those reported  by Kearns et al. [8 8 ] and 

are sum m arized in Table 4.1. Because the molecular weight of paclitaxel is 853.93 g/m ol, 

the conversion factor between units is lm g /L  =  1.171 pM. AUC was calculated using 

Simpson’s m ethod, and Cmax was simply the largest C  value of a tta ined  during the 

R unge-K utta algorithm .

4.5 R esu lts

4 .5 .1  P o w er  Law  T ails

Thirty-nine of the 41 concentration-tim e curves exhibited power law tails. Values cal

culated for the power exponent a  are summarized in Table 4.2. A lthough the exponent 

was relatively independent of patient characteristics (such as weight, age, sex, and the 

type and stage of cancer) and the dose level, it varied w ith the length of the infusion. 

For short infusions (1-h duration), a single long-time ta il was observed w ith a power 

exponent of a  = —1.57 ±0 .14 . The tails persisted up to 24 h and in one case up to 36 h. 

For long infusions (6 -h or 24-h duration), a single long-time ta il was also observed but 

w ith an exponent of over 3. The tails extended up to  24 h for the 6 -h infusions and up 

to 48 h for the 24-h infusions.
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Table 4.2: The power law exponent a  quantifying the tail of paclitaxel
concentration-time curves.

Initial Slope Term inal Slope

Infusion N um ber of
Time (h) D ata  Sets a  R 2 a R 2

1 1 2 “ -1.57 (0.14) 0.97 (0.02)
3 2 0 b -3.38 (0.27) 0.95 (0.04) -1.70 (0.16) 0.99 (0.02)
6 3C -3.07 (0.53) 0.96 (0.01)

24 4 d -3.23 (0.55) 0.94 (0.08)

“Over the dose range 1 50 — 250 m g/m 2, taken from [4, 112, 132].
6Over the dose range 1 50 — 250 m g/m 2, taken from [59, 58, 60, 77, 88, 135, 146, 175, 177, 187, 188].
“Over the dose range 6 — 30 m g/m 2, taken from [31].
dOver the dose range 1 80 — 290 m g/m 2, taken from [149, 176, 198].

In contrast, for the interm ediate infusion tim e of 3 h, the concentration-tim e curves 

exhibited a crossover between two power law regimes. At the end of the infusion, there 

was an in itial 1 - 2  h slope whose power exponent was equal, w ithin error, to th a t exhibited 

by the 6 -h  and 24-h infusion curves. This initial slope was followed by a long-time tail 

w ith a power exponent equal, w ithin error, to th a t exhibited by the 1-h infusion curves. 

The length of the  long-time tail ranged from 9 to 6 8  h post-infusion. Figure 2 shows the 

distinct dual natu re  of the tails for 3-h infusions of paclitaxel. In addition, the rise of 

each curve also appears to  follow a power law relationship. The shape of the curves is an 

example of a flip-flop situation  because the initial slope is steeper th an  the term inal long

tim e tail. One would expect the opposite, since smaller plasm a concentrations should 

be cleared more rapidly. Usually, a flip-flop is linked to orally-adm inistered drugs whose 

absorption is the rate-lim iting step [30]. In the case of paclitaxel, however, we believe 

th a t the flip-flop is associated w ith the distribution of drug from the plasm a to other 

tissues.

The observed power law behaviour is likely not a  consequence of binding to the 

CrEL form ulation vehicle or blood components. Analysis of two CrEL-free formulations 

of paclitaxel produced results consistent w ith those observed for regular paclitaxel. Two
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F igure  4.2: Pharmacokinetic data obtained for 3-h infusions of paclitaxel, replot
ted from Kearns et al. [88] for three dose levels (open circles, 135m g/m 2; solid 
circles, 175mg/m2; open triangles, 225mg/m2). (A) Log-lin plot showing the non
exponential nature of the tails of the curves. (B) Log-log plot showing three distinct 
power law regions.
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concentration-tim e curves for 30-min infusions of the drug ABI-007 taken from Damas- 

celli et al. (2001) [47] dem onstrated single power law tails w ith a  = —1.61. Four curves 

for 3-h infusions of 1 75 — 390 m g /m 2 of the drug Genexol-PM  taken from Kim et al. 

(2004) [90] exhibited dual power law tails w ith a  =  —4.99 ± 0 .57  for the initial slope and 

a  =  —1.65 ±  0.15 for the term inal slope. The concentration-tim e curve reported by van 

Zuylen (2001) [188] for paclitaxel in whole blood following a 3-h infusion produced an 

initial power exponent of a  — —3.86 ± 0 .59  and a term inal exponent of a  — —1.64 ±0.01.

We conjecture th a t the steep curves correspond to the case where the distribution 

process is not satu ra ted , allowing the maximum  fraction of drug to  be d istributed outside 

of the plasm a. The larger power exponent therefore reflects the m axim um  transfer of 

drug outside of the  plasm a. This situation occurs when the drug is infused relatively 

slowly. The shallow curves, however, result when the distribution process is saturated, 

and therefore the smaller power exponent predom inantly reflects the elim ination process. 

This situation  occurs when the drug is infused relatively rapidly.

The fact th a t the power law tails persist even at low concentrations (below the 

reported K m  values) provides additional inform ation about the system. This continued 

adherence to  a  power law indicates a failure of the drug to a tta in  a  steady state  in the 

peripheral com partm ent(s). Therefore, drug distribution to and release from the tissues 

plays a dom inant role in the  pharm acokinetics of paclitaxel a t all p lasm a concentrations.

4 .5 .2  P o w er  Law  D o se  D e p e n d e n c e

The dose-dependence of AUC and Cmax were found to be nonlinear, in agreement with 

the  literature. T he relationship in Eq. (2.36) provided a good fit to  the  data, and the 

results are listed in Table 4.3. The two values of /3 agree w ithin error w ith each other 

and w ith the exponent characterizing the shallow long-time tails. Note th a t these results 

are only valid over the  therapeutic  dose ranges considered, and caution should be used 

in extrapolating beyond this range.
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Table 4.3: The power law exponent /? quantifying the dose dependence of phar
macokinetics parameters for 1-h paclitaxel infusions.

Param eter
Num ber of 
D ata  Sets

Dose Range 
(m g/m 2) P R?

AUC 8  ° 54-300 1.76 (0.17) 0.94 (0.08)
C m ax 8 6 135-390 1.74 (0.09) 0.92 (0.09)

“From [60, 88, 112, 132, 146, 149, 187, 198].
6From [60, 88, 112, 132, 146, 159, 198, 199].

4 .5 .3  S im u la tio n s

After confirming the  existence of power law tails in paclitaxel concentration-tim e curves, 

whether or not they could be generated by the com petition between two saturable pro

cesses was tested. Simulations of the model shown in Fig. 4.1 did indeed replicate the 

behaviour. Figure 4.3 shows the shape of the concentration-tim e curve for different in

fusion times. For the  3-h infusion, a dual power law is evident. As the infusion time

decreases, the in itial slope becomes longer and less steep, and it is feasible th a t a single

power law may be observable after short infusion tim es under certain  conditions. Con

versely, as the infusion tim e increases, the initial slope becomes shorter and essentially 

unobservable, resulting in a single steep power law for the 24-h infusion curve.

An advantage of sim ulations is th a t they allow us to  study effects of different pa

ram eters on the shape of the concentration-tim e curve. By pertu rb ing  the param eter 

values, it was determ ined th a t the duration of the initial steep slope is determ ined by 

param eters describing the saturable d istribution process, «rf,nax and K ^ .  while the value 

of the exponent of the initial slope is determ ined predom inantly by param eters describ

ing the saturab le elim ination process, and Kf^ .  The slope of the shallow term inal 

curve is determ ined m ainly by where an increase in its value produces an increase 

in a. This confirms the  hypothesis proposed above th a t the steep curve reflects both 

the d istribution and elim ination processes while the shallow curve is dom inated by the 

m axim um  ra te  of elimination.
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F igure  4.3: The effect of the infusion time (IT) on the shape of the concentration
time curve. (Open circles, IT =  lh ; solid circles, IT = 3 h; open triangles, IT = 6 h; 
solid triangles, IT =  24 h.)

The inclusion of the  th ird , linear binding com partm ent was found to  have an impor

tan t effect. For low values of &13 (weak binding), the slopes of the two segments remain 

unchanged, b u t the duration  of the initial slope increases (Fig. 4.4). As k-\ 3 becomes 

larger, however, the  long-time tail eventually becomes exponential instead of power law. 

Therefore, an increase in the strength  of the linear binding process decreases the plasma 

concentration and minimizes the effect of the saturable processes.

In the  case of paclitaxel, K f ^  < <  A |/f, and therefore the d istribu tion  process satu

rates before the elim ination process. B ut w hat occurs when the reverse, »  K ^ , 

is the case? An exam ple is shown in Figure 4.5 for the two-com partm ent model, and 

a much wider range of behaviour results. Simply changing the value of «((iax can pro

duce a  single power law tail, a dual curve w ith an exponential tail, or a dual power law 

curve w ith either a steep or shallow term inal tail. A similar transition  between different 

regimes also occurs when the dose increases, the volume of d istribution decreases, or 

A,'21 increases. Therefore, this situation is much more sensitive to changes in the dosing
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F igure  4.4: The effect of the strength of the linear binding compartment on the 
shape of the concentration-time curve. The tail becomes exponential for high &13 
values. (Open circles, &13 =  Oh-1 ; solid circles, k13 =  2.2h” 1; open triangles, 
ki3 =  8 .8 h_1.)

regimen or pa tien t characteristics.

Simulations can also be used to investigate the dose-dependence of AUC and Cmax 

beyond the current clinically-relevant range. Both param eters exhibit three distinct 

regions of dose-dependence on a log-log plot (Fig. 4.6). In bo th  cases, the initial and 

term inal regions are characterized by approxim ately (3 =  1 (Table 4.4), indicating linear 

dependence of the concentration on the dose when the system  is well below or well above 

the saturable concentration range. The interm ediate regions, however, are characterized 

by a transition  to a nonlinear regime w ith f3 > 1. The curves in Fig. 4.5 fall w ithin 

this dose range. Because the onset dose of the interm ediate slope is higher for AUC 

th an  for Cmax, and the slope persists over a longer range, there appears to be a lag 

between the occurrence of disproportionately-higher m aximum  concentrations and an 

overall noticeable effect on the shape of the concentration-tim e curve. In summary, 

power law analysis is helpful in predicting nonlinear kinetics, and Figure 4.6 emphasizes
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F igure  4.5: The effect of the dose on the shape of the concentration-time
curve for a hypothetical two-compartment model with K ^  «  K eM . (Open 
circles, 40 mg; solid circles, 50 mg; open triangles, 60 mg; solid triangles, 75 mg; 
open squares, lOOmg.) The model parameters were u^ax = lO.Omg • L_1h_1, 
K ff  = O .lm g -L -1, k 2 1  =  0.5h-1 , < ax =  l.Omg • L_1h_1, K eM =  5.0m g-L_1, 
and Vd =  5.0 L.
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Table 4.4: The power law exponent /3 describing the graphs in Fig. 4.6.

Param eter
Dose Range 

mg P R 2

AUC 0 - 1 0 1.050 (0.006) 1 .0 0 0

55-300 3.163 (0.005) 1 .0 0 0

> 400 1.0683 (0.0004) 1 .0 0 0

Cmax 0 - 1 0 1.066 (0.009) 1 .0 0 0

20-60 3.67 (0.01) 1 .0 0 0

>  150 1 .0 2 0 2  (0 .0 0 0 1 ) 1 .0 0 0

th a t the concept of linearity is valid only over a specified dose range.

A dditional sim ulations were performed to investigate whether a relationship exists 

between /3 and a,  such th a t the nonlinear dose-dependence of AUC and Cmax is correlated 

w ith the non-exponential shape of the long-time tail. Figure 4.7 shows th a t /3 increases 

as a  decreases; therefore the dose-dependence becomes increasingly disproportionate as 

the long-time ta il becomes more shallow. In other words, the greater the contribution 

th a t the ta il portion  of the curve makes to the overall area under the curve, the greater 

the increase in  AUC w ith  an increase in dose.
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F igure  4.6: The dose-dependence of AUC and Cmax- The model parameters are 
those described for Fig. 4.5.
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F igure  4.7: The relationship between ft and a  for a three-compartment model. 
The value for ft was determined for 3-h infusions of 135, 175, 200, 250, and 
300 m g/m 2 of paclitaxel (open circles, AUC; solid circles, Cmax.) The model 
parameters were K — 0 .1m g-L_1, 1 =  0.68 h-1 , u^ax = 18.8 mg • L- 1h-1 ,
K eM = 5.5 mg • L-1 , A;i3 =  2.2 h_1, kz\ =  0.65 h_1, and Vd =  4.0 L. The parameter 
^max varied between 5.1 mg • L-1  • h_1 and 20.4mg ■ L_1 ■ h -1 .

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. SATU RAB LE PH ARM ACOKINETICS

4.6 D iscu ssio n

59

The exponent of the power law tail can provide insight into the underlying drug processes. 

For paclitaxel, only two exponents were found to  characterize the behaviour following 

short, interm ediate, and long infusion times. Analysis of power law tails can provide 

valuable inform ation for clinical applications. For example, longer infusions leading to a 

steeper ta il would theoretically be best for paclitaxel, because they would indicate th a t 

a greater portion  of the drug is being transferred to  the tissues.

An advantage of this proposed mechanism is th a t it does not place a restriction on 

the value of a,  in contrast to  models suggested for the bone-seeking elements, where 

— 1 < a  <  0 [24], and for fractal kinetics, in which — 1 <  a  <  0 and ds <  2 [55],

Power laws can indicate self-similarity, as discussed above. Power law relationships 

in concentration-tim e curves may imply th a t pharmacological processes are linked over 

different tim e an d /o r  size scales. To date, allometric scaling has been applied to phar

macokinetics to  assess interspecies and intraspecies variation in pharm acokinetic param 

eters. However, the scaling of pharmacological processes w ithin an individual has yet to 

be discussed and w arrants further investigation.

Furtherm ore, the identification of power law tails has im portant consequences for the 

calculation of pharm acokinetic measures th a t are extrapolated  back from the tail, and 

it implies th a t the concept of a term inal half-life does not apply.

4 .7  C onclu sion

We have shown th a t two com peting saturable processes can generate concentration-tim e 

curves w ith power law tails. To the best of our knowledge, this is the  first study to report 

power law tails in the  concentration-tim e curves of an anticancer drug, as well as the first 

study to  relate  the  existence of power law tails to  saturab le processes. A lthough a single 

saturable process cannot produce a power law, two com peting saturable processes can 

produce a range of behaviour th a t includes single and dual power law tails. Furthermore,
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although power law tails have been reported for clearance curves, th is is the first study 

to  investigate the tails of infusion curves and the dependence of the shape of the curve 

on the infusion rate.

Before em barking on a full pharm acokinetic analysis, the tails of concentration-tim e 

curves can be checked for a power law fit. The existence of a power law tail, especially 

a shallow one, can signal dose-dependent behaviour. In the case of paclitaxel, a steeper 

decline is more desirable, since it implies a greater distribution to the tissues as well as 

a decrease in the  extent of nonlinearity. This model is also consistent w ith observations 

th a t the pharm acodynam ic effect does not correlate w ith AUC or Cmax, since plasm a 

concentrations do not necessarily indicative of the am ount of drug still present in the 

body.
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Chapter 5

Fractal M ichaelis-M enten Kinetics 

Under Steady State Conditions

5.1 P u rp o se

The objective of th is chapter is to extend the theory of fractal kinetics to  include sat

urable reactions occurring w ithin heterogeneous media. The theory will be tested using 

experim ental d a ta  for the cardiac drug mibefradil.

5.2 B ackground

In Section 2.5, the theory of fractal kinetics in the transient regime was summarized. 

Several researchers applied the tim e-dependent kinetic ra te  coefficient to the Michaelis- 

M enten equation; however, as seen in Section 2.4.1, the M ichaelis-M enten formalism 

assumes a steady sta te  regime. In this chapter, an alternative theory for fractal Michaelis- 

M enten kinetics is presented.
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5.2 .1  S te a d y  S ta te  F racta l K in e tic s

As discussed in Section 2.5, the effect of complex geometry on the ra te  of transient 

reactions produces an anomalous kinetic rate  coefficient. Under steady sta te  conditions, 

however, Anacker and Kopelm an [8 ] dem onstrated th a t the effect of the geometry is

m anifested instead as an anomalous reaction order. They showed th a t the classical

equation

v = k C  (5.1)

should be replaced by the effective ra te  equation

v = k C x , (5.2)

where A  is a fractal reaction order related to the spectral dimension of the random  walk. 

For example [9],

1 +  w- for A +  A reactions,
A  =  s (5.3)

1 +  j -  for A +  B  reactions.
< 3

These equations have been confirmed using Monte Carlo simulations. Anacker et al. [10] 

found th a t A  =  2.44 for the 2D Sierpinski gasket and A  =  2.01 as expected for the ho

mogenous cubic lattice. Klymko and Kopleman [92] found th a t for bimolecular reactions 

in solids, ranged from the homogeneous value of 2 up to  a value of 30. Newhouse and 

K opelman [138] found values of A  «  5 for ensembles of 10 x 10 islands and A  rj 15 for 

ensembles of 5 x 5 islands. Therefore, as a space becomes more finely divided, as in the 

example a  fractal dust like the Cantor set [113], ds —t 0 and therefore A  —> oc.

A form of concentration-dependent fractal kinetics was developed by Lopez-Quintela 

and Casado [97], who proposed the following scaling relationship:

k eSf = A C l ~df 0 < d f  < 1 ,  (5.4)
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where d f  is the fractal dimension of the space. The effective kinetic ra te  coefficient k e^

is therefore assum ed to  be dependent on the observation scale, here taken to be the 

concentration. By applying this equation to  umax, they obtained the formula

equation is recovered, and as d f  -> 0 , the complexity of the reaction becomes more 

and more im portan t. Heidel and Maloney [76] performed an analytical exploration of 

this equation, and initially M acheras [106] and later Ogihara [145] applied it to model 

carrier-m ediated tran spo rt under heterogeneous conditions.

“power-law form alism ” developed by Savageau [166], expressed through the generalized 

m ass-action representation:

where a  and fd are the  kinetic rate  coefficients and g and h are the kinetic rate  orders 

associated w ith each reactan t. The equations for the power-law formalism are compli

cated and Savageau adm its th a t this model works best for large series of reactions rather 

than  of one or more reactions catalyzed by only one enzyme [166]. Savageau justifies 

his formalism by showing th a t for homodimeric reactions, its equations are equivalent 

to the fractal kinetics equations. However, this equivalence has yet to be proven for any 

other reactions due to  the complexity of the equations [170]. In  principle, it is possible 

th a t Eq. (5.6) can be obtained by summing over several M ichaelis-M enten reactions.

To summ arize, any reaction for which h >  0 or X  >  n  is referred to as following 

fractal-like kinetics [95]. In th is chapter, an alternative form ulation of dose-dependent 

fractal kinetics is proposed based on fractal reaction orders under steady sta te  conditions.

, , e j j  n ^ - d j  ^max^ J,e// / - i 2 — d

(5.5)

where t>ma4 and are new constants. For d f  — 1, the classical Michaelis-Menten

A seemingly different approach to  concentration-dependent fractal kinetics is the

r n r n

(5.6)
k=l j = 1 k= 1 j=l
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In a strict sense, a steady sta te  regime means th a t the concentration of the reactant 

is constant in tim e, i.e. d C /d t  =  0. One way in which this can be achieved is if the 

concentration of drug molecules is much greater th an  the concentration of enzymes, 

even if the  local concentration values vary considerably. Even in the presence of drug 

elimination, a steady sta te  can be m aintained due to the recycling of drug molecules by 

the circulatory system. It is im portant to  distinguish this steady sta te  achieved through 

recycling from the  steady sta te  defined for chronic drug adm inistration. In the latter, 

drug is adm inistered through m ultiple doses or a constant infusion, and the elimination 

ra te  eventually becomes equal to  the infusion rate. The steady sta te  in the current theory 

can be considered as a local approxim ation to  the same condition.

If the environm ent is heterogeneous, the system is described by the equations:

where C  is the concentration of the substrate, x  is the concentration of the enzyme- 

substrate  complex, and eo is the to ta l concentration of enzymes, as introduced in Sec

tion 2.4.1. Applying the  quasi-steady-state assum ption, d x /d t  =  0, the following equa

tion is derived:

response of a  patien t or tissue as a function of the drug concentration [133]. Incorporating 

this formula into a one-com partm ent model w ith an IV infusion yields

=  h  (e0 -  x) C x  -  (& _ 1 +  k2) x, (5.7)

(5.8)

'm ax (5.9)
V K m  +  C x '

It can be noted th a t Eq. (5.9) has the same form as the Hill equation th a t describes the

dC _  VmaxCX  i(t)
dt ~  K m  + C x  Vd '

(5.10)
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where i(t) is the infusion ra te  in units of m ass/tim e and V,j is the volume of distribution 

in units of volume.

5.3.1 A sym ptotic Behaviour

To investigate the  asym ptotics of Eq. (5.10), we consider the model post-infusion. For 

high concentrations (those occurring well above K m )'

dC
~dt ~  ~ Vmax' ( 5 ' n )

For low concentrations (those occurring far below K m )'-

dC = _ v _ ^ L c X'  (g
at K m

Integrating Eq. (5.12) leads to the asym ptotic power law behaviour

C ( t ) ~ t i = x m (5.13)

Com paring to  Eq. (2.35) yields the relationship

7 = I 4 ^  (5-14)

or

X  = 1 - - .  (5.15)
7

Note th a t Eqs. (5.13) -  (5.15) are undefined for X  =  1, since th is value corresponds to 

the classical m odel w ith an exponential tail, which is inconsistent w ith a power law.

The fact th a t the proposed steady state  model predicts long-time power law behaviour 

provides a  point of comparison w ith other models. The solution to  a com partm ental

model w ith constant coefficients takes the form of a linear superposition of exponential

term s, and the resulting concentration-tim e curve exhibits an exponentially-decaying
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tail:

C(t)  ~  exp [—k t ] . (5.16)

The M ichaelis-M enten model predicts an exponential tail:

C(t)  ~  exp
K m

(5.17)

The transient fractal equation predicts a stretched exponential tail:

C(t)  ~  exp -kt i~h (5.18)

Finally, the fractal M ichaelis-M enten equation (Eq. (2.32)) derived by Kosmidis et al, [96] 

also predicts a  stretched exponential tails of the form

C ( t ) ~  exp
K M

(5.19)

5.4 M eth o d s

Concentration-tim e d a ta  were obtained for the cardiac drug m ibefradil [174] in four dogs. 

The dogs received a dose of 1 m g/kg of mibefradil infused over 10 minutes. The analysis 

of the d a ta  consists of the following steps: (1 ) quantification of the shape of the tail, (2 ) 

comparison of the fit of the proposed model w ith th a t of existing models, and (3) testing 

of the relationship expressed in Eq. (5.15).

The value and standard  deviation of the power law ta il exponent 7  were calculated 

from the concentration-tim e curves using linear regression analysis of the log-transformed 

data.

The models were fit to the d a ta  using the sim ulated annealing algorithm  described 

in C hapter 3. Five one-com partm ent models were fit to  the d a ta  sets, and they are 

summ arized in Tale 5.1.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CH APTER 5. FRAC TAL M ICHAELIS-M ENTEN K IN ETIC S  67

Table 5.1: Summary of models for the enzyme-mediated kinetics of drug elimina
tion.

Model A bbreviation R eaction Rate

Fractal [55] F k 0 t~hC

M ichaelis-M enten [126] MM
VmaxC

K M A C

Transient fractal M ichaelis-M enten [96] FMM *ma xC
K Mt h +  C

Lopez-Q uintela fractal Michaelis-Menten [97] LQC
VmIxC2~df

K ed f  +  C

Steady sta te  fractal Michaelis-Menten SSFMM
K m  + C x

Table 5.2: The slope 7  of the log (concentration) versus log(time) curve between 
t = 30 min and t — 1440 min. Values are given as mean (standard deviation).

Dog 7 R 2

1 -0.702 (0.028) 0.991
2 -0.464 (0.049) 0.927
3 -0.597 (0.024) 0.989
4 -0.705 (0.066) 0.943

5.5 R esu lts

The shape of the tail was determ ined for the four d a ta  sets and was found to be a 

straight line on a log-log plot, indicating a power law relationship. The values for the 

power law exponent are listed in Table 5.2. The power law ta il extends over three orders 

of m agnitude in tim e, and the goodness-of-fit represented by the R 2  value is greater than

0.9 for every dog. This result indicates th a t the SSFMM model is an appropriate model 

for the data.

The results from the model fits are listed in Table 5.3. The MM model performs
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the worst. Furtherm ore, the values th a t it predicts for the volume of distribution are 

unrealistically low for three of the four dogs. In  contrast, the  V,\ values for the other 

models are reasonable for a dog and are consistent w ith each other. Furtherm ore, the 

K m  values for the MM model are almost two orders of m agnitude higher than  the 

values for the  LQC, FMM, and SSFMM models. The values for the intrinsic clearance, 

«ma■x./'K-mi  are also a t least one order of m agnitude smaller th an  those predicted by the 

other models. These results indicate th a t classical M ichaelis-M enten kinetics does not 

adequately describe the  elim ination of mibefradil from the  dog.

The LQC, F, and FM M  models provide some improvement. However, in the case 

of the LQC model, the  reaction orders of 2 — df  yield values of zero for the fractal 

dimension, d f , essentially elim inating the fractal natu re  of the model. In the case of the 

F and FM M  models, the exponent h takes the m axim um  value of 1.

The SSFMM m odel provides the best fit to  all d a ta  sets. The values for X  determined 

from the m odel fit were compared to those calculated from the  power law tail exponent 

7  using Eqs. (5.13) and (5.15), and the results are listed in Table 5.4. The values 

agree w ithin error for all bu t Dog 1. Figure 5.1 a shows the power law tail for Dog 3, 

and Figure 5.1 b shows the  same d a ta  fit by the SSFMM model. The proposed model 

accurately describes the concentration-curve at all concentration levels.

According to  Eq. (5.12), the existence and onset of the power law tail correlate with 

the value of K m , and the power law behaviour should only exist for C «  K m - The 

values estim ated for K m  range from 800 ng/m L  to 7000 ng/m L  and are between 30 and 

90% higher th an  the  m axim um  plasm a concentrations (556.1 to  1400 ng/m L). Therefore, 

the power law tails are observable because the dose of m ibefradil given to the dogs in 

this study leads to  plasm a concentrations well below satu ration  levels. Furthermore, 

Eq. (5.12) can be in terpreted  alternatively in term s of a concentration-dependent umax 

of the form VmJL =  «may.Cx ~ l - W hen the approxim ate Eq. (5.12) was used instead of 

Eq. (5.9), it resulted in sim ilar param eter values as the SSFMM model bu t w ith a poorer 

fit to the rise of the  curve.
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Table 5.3: One-compartment parameters for the drug concentration in the jugular 
vein of dogs following a 1 0 -min infusion of 1  mg/kg of mibefradil.

Model Param eter

Value

Dog 1 Dog 2 Dog 3 Dog 4 Mean

MM «max (ng • m L_ 1m in_1) 327 4,699 4,737 4,375
K m  (ng • m L "1) 96,593 101,139 100,131 101,046
Vd (L) 10.5 0.00369 0.00361 0.00405
W RSS 7.27 1 1 .0 1 1 .0 1 1 .0

AIC 31.8 37.2 37.2 37.2 35.9

LQC Vmix (ng • m L_ 1m in“ 1) 587 847 363 623
K M f  (ng ■ m L '1) 5,323 6,961 4,702 5,693
Vd (L) 7.21 8.45 4.64 5.67
2 — D 2 .0 0 2 .0 0 2 .0 0 2 .0 0

W RSS 2 .6 8 4.06 4.15 3.05
AIC 20.8 26.2 26.5 22.5 24.0

F k e (m in-1 ) 1.01 1.16 1.03 1 .21

Vd (L) 4.80 4.31 4.95 3.55
h 0.999 0.999 0.998 0.998
W RSS 2.56 5.33 3.74 4.14
AIC 18.2 27.8 23.2 24.5 23.4

FMM % ax (ng • m L_ 1m in -1) 4,358 3,306 2,486 4,170
K m  (ng • m L-1 ) 4,623 3,638 2,709 4,401
Vd(L) 6.04 1 1 .0 1 0 .1 1 2 .0

h 1 .0 0 1 .0 0 1 .0 0 1 .0 0

W RSS 2 .0 1 1.82 2 .0 1 2 .0 1

A IC 17.1 15.8 17.1 17.1 16.8

SSFMM nmax (ng ■ m L ^ m in - 1) 3,575 8 ,2 0 1 3,548 3,817
K m  (ng • m L-1 ) 5,217 799 6,778 7,098
Vd (L) 1.30 2.39 16.5 9.54
X 2.56 3.35 2.74 2.61
W RSS 0.845 0.263 0.219 0.544
AIC 5.99 -9.38 -11.7 0.0797 -3.75
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F igure  5.1: Concentration-time curve for mibefradil data for Dog 3. (A) Log-log 
plot showing the long-time power law tail from 30 min to 1440 min. The dashed 
line is the regression line with 7  =  —0.597 ±  0.024. (B) The same data but the 
dashed line now represents the best-fit curve found using the SSFMM model with 
X  =  2.74.
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Table 5.4: Comparison between the values for the fractal reaction order X  pre
dicted from the slope 7 and obtained from the model fit.

X

Dog Predicted From 7 Model Value

1 2.42 (0.10) 2.56
2 3.16 (0.33) 3.35
3 2 .6 8  (0 .1 1 ) 2.74
4 2.41 (0.22) 2.61

5.6 D iscu ssio n

One-com partm ent models are simplifications; however, they can provide an accurate and 

adequate fit if the  d istribution of the drug is rapid and equilibrium  is achieved quickly 

in all tissues. In  th is study, we used a one-com partm ent model to  show th a t  anomalous 

reaction orders can be a  reflection of the heterogeneous natu re  of the medium under 

which drug m etabolism  occurs. Two concepts need to  be elaborated upon: the meaning 

of a steady sta te  and the meaning of noninteger reaction orders.

It is well-known th a t the liver has a complex geometry. The blood vessels supplying 

it are arranged as a fractal tree [84], its cellular network has fractal properties [57], and 

the perfusion of blood at the term inal branches is heterogeneous [195]. Both transient 

and steady sta te  reactions occurring w ithin such spaces can exhibit anomalous behaviour. 

For transient reactions, it is assumed th a t there is a  random  distribution of reactants [95]. 

Therefore, anomalous kinetics in the transient case strictly  results from the decreased 

efficiency of random  walkers in exploring their irregular space (quantified by ds). In 

the steady sta te  regime, however, there is a constant influx of molecules. In regular 

geometries, th is influx can cause a net stirring effect [95]; however, in fractal and confined 

geometries, self-stirring is inefficient. The spaces are instead characterized by large 

fluctuations in the local concentration and an increasing segregation of molecules [9]. 

This effect has been reported  for reaction-diffusion phenom ena in physical systems [43].
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As a result, under steady sta te  conditions, the distribution of molecules is partially 

ordered due to  the influx of molecules, and the nonrandom ness reduces the reaction 

probabilities and consequently the reaction rate. To summarize, transien t fractal kinetics 

occur in well-stirred heterogeneous m edia while steady state  kinetics occur in poorly- 

stirred heterogeneous media. Here, the term  heterogeneity refers to  the geometry of the 

environment.

In the case of steady sta te  fractal kinetics, Klymko and Kopelm an [92] interpreted 

noninteger values of X  as characteristic of a microscopically heterogeneous medium that 

is best described as a collection of kinetically-independent clusters. The kinetic rate 

coefficients are then  kinetic averages taken over dom ains of different sizes and local 

concentration. This in terpreta tion  is consistent w ith the studies th a t reported high X  

values for reactions occurring on clusters and islands [138, 139]. A similar model can 

be developed for the liver, the organ predom inantly responsible for the elimination of 

mibefradil from the body. The m etabolic enzymes are located in the liver cells, called 

hepatocytes, which are organized around the term inal supply vessels. Each set of vessels 

and their surrounding cells are called a sinusoid. Not only does each sinusoid have a 

different num ber and distribution of hepatocytes, it receives a different portion of the 

blood flow. Therefore, the vascular system of the liver can be considered as a network 

of clusters of sinusoids. Because X  increases as the size of the clusters decreases [138], 

X  =  1 means th a t the liver acts as a homogeneous, well-mixed com partm ent and X  >  1 

indicates segm entation and a lack of mixing.

This in terp reta tion  is consistent with a model proposed by Weiss [195], who de

scribed the tran sit tim es in the liver as being determ ined by bo th  the micromixing and 

m acromixing processes. He suggested two models a t different ends of the spectrum: i) a 

d istributed m odel in which the sinusoids are parallel and there is complete segregation 

of the pathways, and ii) a dispersion model in which the sinusoids are interconnected 

and there is perfect micromixing. Considering our results in th is framework, X  provides 

a quantitative m easure of the degree of micromixing between sections of the liver and
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locates the m odel somewhere between Weiss’s two extrem e models.
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5.7  C on clu sion

This study  provides the first application of fractal kinetics under steady sta te  conditions 

to  pharm acokinetics. We have dem onstrated th a t a steady sta te  fractal Michaelis-Menten 

equation best describes the elim ination of the drug m ibefradil from dogs. Furtherm ore, 

it accounts for the long-tim e power law behaviour of the concentration through the 

inclusion of a  fractal reaction order, X .  This anomalous reaction order suggests th a t the 

liver, the organ of elim ination for mibefradil, is best trea ted  as a  collection of clusters 

of sinusoids. The higher the value of X ,  the less mixing th a t occurs between adjacent 

sinusoid clusters.

We conclude th a t transient fractal kinetics is appropriate for describing reactions 

th a t occur w ithin well-mixed heterogeneous environments, while steady state  fractal 

kinetics b e tte r  describes reactions th a t occur in understirred heterogeneous spaces. The 

la tter can occur due to  the continuous influx of drug molecules through recycling in the 

circulatory system. Finally, although the proposed one-com partm ent model is sufficient 

for fitting curves w ith a single power law tail, curves described by consecutive power 

laws may require more th an  one com partm ent.
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Chapter 6

Interacting Random Walk M odel

6.1 P u rp o se

The application of fractal kinetics through com partm ental models is determ inistic and 

a m easure of the aggregate, macroscopic behaviour of the ensemble of drug molecules. 

This chapter investigates the  relationship between the mean, macroscopic behaviour 

and the underlying behaviour of individual drug molecules through a stochastic frame

work. A random  walk formalism is developed to relate the macroscopic chemical kinetic 

behaviour of the ensemble of drug molecules to  the  microscopic interactions between 

individual molecules. The model is used to  investigate the consequences of nonlinearity 

and interactions between individual drug molecules.

6.2 M od el

From a physical point of view, a group of drug molecules can be trea ted  as a m any-body 

system of identical molecules. The molecules are introduced into a confined, dissipative 

medium, and they undergo transport and kinetic processes until all of the molecules have 

been removed from the  system. For drugs adm inistered directly into the vascular system, 

the  molecule residence tim e is determ ined predom inantly by (1 ) the  resistive effect of the 

tem porary trapp ing  of drug molecules in cells and tissues, and (2 ) the conductive effect
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of perm anent trapp ing  due to  m etabolism  and excretion.

In the current model, the  walk occurs through tim e on a one-dimensional finite lattice 

w ith periodic boundary conditions. For the purpose of this chapter, we consider only 

two different kinds of lattice sites: plasm a (P)  transport sites and perm anent elimination 

(E)  traps. This is equivalent to  assuming th a t the drug concentration in other tissues is 

instantaneously in equilibrium  w ith th a t in the plasma. Drug molecules are introduced 

onto P  sites and undergo a sequence of sojourn tim es in P  sites until they are removed 

from an E  site. The residence tim e of a molecule is denoted 9 and can be expressed 

simply as

0 = (6 -1 )
i—1

where t ,  is an individual sojourn tim e in a P  site and q is the to ta l num ber of sojourns.

Because 9 is a macroscopic quantity  and f  is a microscopic quantity, Eq. (6.1) represents

a simple sta tistical mechanical view of the drug residence time. For the current study, 

in order to  isolate the dynamics of the elim ination process, the plasm a sojourn tim e was 

taken to be constant and equal to 3 tim e steps. In addition, molecules rem ained in E 

sites for 3 tim e steps before being removed from the lattice.

If each walker is independent, the to ta l num ber of walkers will decrease exponentially 

in time. However, if the walkers are allowed to  interact, anomalous behavior can result. 

To test w hether interactions can reproduce fractal kinetics, bo th  short-term  and long

term  correlations were introduced into the model using a saturable process and walk 

constraints. A lthough heterogeneity is typically incorporated into random  walk models 

explicitly through a  waiting tim e distribution ip(t) a t each site, we instead indirectly 

generate ip(t) using these interactions to  affect the accessibility and availability of E 

sites. The waiting tim e d istribution is therefore a “waiting tim e to  exit the body” , and 

the model is hopping-controlled instead of trap-controlled.

This model can be m apped onto a stochastic com partm ental model, w ith all the sites 

of a given type being in terpreted  as forming a “com partm ent” and the transfer between
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P  and E sites being governed by a PD F. However, the random  walk model has a greater 

degree of flexibility in handling interactions between molecules.

A C + +  program  was w ritten  using Microsoft Visual C + + .net (Redmond, WA) with 

a DrugMolecule class and a DrugSite class. An instance of the  DrugMolecule class was 

created for each molecule to keep track of its plasm a sojourn tim e, 9, num ber of plasm a 

hits, N p ,  and current location and site type. An instance of the DrugSite class was 

created for each lattice site to  hold inform ation about its location, type, and occupation 

status.

The M onte Carlo algorithm  proceeds as follows:

1 . An L-length array {so, s i , . . . ,  s l}  is created to  represent the lattice, w ith Sj repre

senting the type of site a t the *-th position. The site types are d istribu ted  random ly 

along the lattice according to the fractions f i  of the to ta l num ber of sites of type 

i (equal to  P  or E).

2. An N - length array {do, d i , . . . ,  djv} of drug molecules is created  to  track the posi

tion of each molecule.

3. To in stitu te  the CTRW  formalism, an M -length  sorted list {+ , h ,  ■ ■ ■ H m } is cre

ated  to  hold the update  times of the molecules. The update  tim e is equal to the 

current tim e plus the sojourn tim e associated w ith the type of site a molecule cur

rently occupies. The list is sorted in increasing order in tim e, so th a t to is the next 

tim e a t which the system  will advance.

4. The clock, which runs in M onte Carlo tim e steps, is set to  zero. The molecules are 

initially assigned to  random  P  sites, and the sorted list is populated  w ith update 

tim es equal to  3 tim e steps. M ultiple occupancy of any site is not allowed.

5. The clock is moved forward to  equal to, and the molecule associated w ith tha t 

update  tim e is selected.

6 . If the molecule is a t an E site, it is removed from the system. Otherwise, a new
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site is chosen according to  the sampling rules (c.f. Section 6.3.2). If the new site is 

unoccupied, the molecule moves to  th a t site. If the site is occupied, the molecule 

rem ains a t its current site. A new update  tim e is generated for the molecule and 

added to  the  sorted list.

7. Steps 5 and 6  are repeated until all of the molecules have been removed from the 

lattice.

At intervals of n update moves, the elapsed tim e and occupation num ber, A,;, for each 

site type are recorded. The occupation num ber plays the role of drug concentration. 

Unless otherwise indicated, the model param eters for the current study were chosen to 

be L  =  200,000, N  =  10,000, f E =  0.05, and f P =  0.95.

6.3 R ep ro d u cin g  E lim in ation  K in etics

6.3.1 M ichaelis-M enten kinetics

In order to  sim ulate M ichaelis-M enten kinetics, molecules were allowed to  jum p anywhere 

on the lattice. However, although a molecule always moved to  an em pty P  site, it was 

only moved to  an em pty E site if a random  num ber draw n on [0,1] was less than  the 

probability p ( N e). The quantity  N e is the num ber of currently occupied E sites. To 

satisfy the condition th a t p  is 1 for low values of N e and 0 for N e = N ’;n3,x, the probability 

d istribution was chosen to have the form

=  0 < J V . < A T ” “  (6.2)

Figure 6.1 shows p ( N e) for different values of N'c"'dX. The effect of increasing jV™ax is 

to increase bo th  umax and K m - Figure 6.2 confirms th a t this d istribution produces the 

correct behavior; the plot of j p  as a function of X p  is hyperbolic and the Lineweaver- 

Burk plot (Eq. (2.28)) is linear.

Figure 6.3 shows a plot of X P following a bolus dose. The transition  to  linear kinetics
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Figure  6.1: The probability p that a molecule will move to an empty elimination 
(E) site, given the number N e of currently populated E sites, with iV™ax — 15 
(open circles), N™ax = 30 (solid circles), and lV™ax = 45 (open triangles).

occurs a t approxim ately X p  — 2,000 molecules. Because this interaction only persists 

for the duration  of the E  site sojourn tim e (3 tim e steps), this sa tu ra tion  effect is an 

example of a  short-term  correlation between the molecules.
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F igure  6.2: (a) Reaction rate as a function of plasma occupation with iV™ax =  30. 
The solid line represents a moving-average trendline, (b) Reciprocal Lineweaver- 
Burk plot of the same data. The solid line represents the best-fit obtained by 
regression analysis, with corresponding values of vm&x = 1.14 ±  0.01 and Km  — 
317 dt 8  (R2 =  0.958).
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F igure  6.3: (a) The plasma occupation following a bolus dose of 10,000 drug 
molecules undergoing short-term interactions, (b) The decline is first linear and 
then transitions to exponential.
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6 .3 .2  F ra cta l-lik e  k in e tic s

Transient fractal-like kinetics can be introduced into the  random  walk model by limiting 

the movement of molecules along the lattice. For a simple random  walk in which the 

molecules can jum p to any site on the lattice, there is a constant probability (equal to 

J e )  th a t a molecule is elim inated at a given time. The probability is independent of the 

tim e th a t a molecule has spent in P sites, or its “age” . In addition, the com partm ents 

are homogeneous and well-mixed, and the system  lacks memory.

However, if the  molecules are restricted to  nearest-neighbor moves, the probability 

of elim ination is no longer constant. Clusters of molecules will begin to form along 

the lattice, and the  interior molecules will have lim ited mobility. The more interior a 

molecule is w ithin a cluster, the more tim e m ust elapse before it will be able to move and 

access an E site. Therefore, clustering creates an age-dependent effect. To implement 

this modification in the  interacting random  walk model, molecules were only allowed to 

move a m axim um  of sites in either direction along the lattice. For large Q (>  50), the 

simple random  walk and classical kinetics were recovered.

This type of heterogeneity leading to age-discrim ination in the elim ination process 

mimics understirred  com partm ents [122], The lower the value of fi, the less efficient 

the mixing process. A physiological analogy can be m ade to a drug th a t is transported  

through the bloodstream  and elim inated from the liver. Access to an enzyme site in 

the liver will depend not only on the blood flow to the liver, b u t also on the degree of 

mixing w ithin the sinusoids and the transport into the hepatocytes. The ra te  of reactions 

occurring w ithin poorly-mixed environments has been shown to be slowed down in both 

regular and disordered environm ents [9, 14, 139].

To the  best of our knowledge, this type of stochastic pharm acokinetics model is 

unique in its use of bo th  saturable and clustering processes. A lthough M atis and 

Wehrly [121] studied a stochastic model with clustering effects, the  purpose was to mimic 

situations in which drug molecules can adhere to  each other or to a foreign object, so 

the elim ination probability was the same for all molecules w ithin a cluster.
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F igure  6.4: Reaction rate as a function of plasma occupation following a bolus 
dose of 10,000 molecules undergoing short-term interactions with A™‘ax =  15 and 
12 = 100 (closed triangles), fl =  5 (open triangles), fl =  2 (closed circles), and 
12 = 1 (open circles). The X p  and X p  values were averaged over 5 runs.

Figure 6.4 shows the effect of 12 on the reaction rate. At the m aximum  plasm a 

occupation, the rates are the same. However, as the concentration drops, the rate  cor

responding to  12 =  1 0 0  drops linearly, while the rates corresponding to low 12 values 

decrease more drastically as clusters form and then  eventually taper off as the clusters 

disperse. Because the ra te  never regains the value of the simple random  walk, this sug

gest a long-time persistence of correlations between the molecules due to  the formation 

and dispersion of clusters.

Figure 6.5 shows the plasm a occupation curve following a bolus dose w ith 12 =  1. 

The curve exhibits a long-time tail th a t is best described by a stretched exponential in 

time. To confirm th a t this behaviour is consistent w ith transient fractal-like kinetics, k 

(calculated as [dXp/dt]  / X p ) ,  was plotted  as a function of tim e (Fig. 6 .6 ). A power law 

dependence was found, as predicted by Eq. 2.29, w ith h =  —0.569 ± 0 .014  (R 2  = 0.965).
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F igure  6.5: (a) The plasma occupation following a bolus dose of 10,000 drug 
molecules undergoing long-term interactions (ft =  1). (b) The decline follows a 
stretched exponential.
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F igu re  6 .6 : The power law dependence of k on t for a lattice with long-term 
correlations (fl =  1).
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6 .3 .3  F ra cta l-lik e  M ich a e lis -M e n ten  k in e tic s

W hen sim ulations were performed in the presence of bo th  short-term  and long-term 

interactions, the  plasm a occupation decreased in a biphasic m anner (Fig. 6.7). There was 

an initial linear decline followed by a long-time power law tail. This result is consistent 

w ith bo th  Eq. (5.9) and experim ental results found for the drug m ibefradil [117]. The 

mean value of the power law tail exponent calculated between t  =  1 ,0 0 0  and t — 1 0 0 , 0 0 0  

and averaged over 10 runs was 7  =  — 1.414T0.005 (R 2 =  0.995T0.005). Therefore, steady 

state  fractal M ichaelis-M enten kinetics are consistent w ith a com bination of short-term  

and long-term  interactions between drug molecules.

The P D F  for 0 was calculated for the process illustrated  in Fig. 6.7 using 10,000 drug 

molecules. The function has a long-time power law tail (Fig. 6 .8 ) w ith an exponent of 

—2.46 ±  0.04 (R 2  =  0.993), which is equal to  7  +  1. The num ber of sojourn times will 

follow the same distribution, ju st scaled by the sojourn time.
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Figure 6.7: (a) The plasma occupation following a bolus dose of 10,000 molecules 
undergoing both short-term and long-term correlations (7V™ax=15 and =  1). The 
decline is (b) first linear and then transitions to (c) a power law.
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F igure  6 .8 : The probability distribution of drug residence times 6  for a system 
undergoing combined short- and long-term interactions (Ar‘uax = 15 and fl =  1).
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6 .3 .4  In fu s io n  cu rves

A drug can be infused over tim e instead of adm inistered as a bolus dose. The infusion 

rate  is given as molecules per tim e step. This is especially im portan t in the case of 

saturable kinetics, since lower infusion rates can lead to a  greater systemic exposure to 

the drug and potentially  a greater dose to the target. It was found th a t linear and fractal 

kinetics produced dose-independent AUC values (Fig. 6.9 (a), while Michaelis-Menten 

elim ination kinetics produced nonlinear dose-dependent AUC values. For the case of 

fractal-like M ichaelis-M enten kinetics, the AUC values were similar to those for fractal 

kinetics a t low infusion rates bu t rose to m irror those of the M ichaelis-M enten regime at 

high infusion rates. By far the highest systemic exposure corresponded to the fractal-like 

M ichaelis-M enten elim ination regime.

The m axim um  plasm a concentration, X p 3x. was linearly dependent for the case of 

linear elim ination, b u t was nonlinearly dependent on the infusion ra te  for the other three 

types of elim ination kinetics. Again, the fractal-like M ichaelis-M enten case followed the 

fractal-like behaviour a t low infusion rates bu t followed the M ichaelis-M enten behaviour 

at high infusion rates.

In addition, the  inclusion of the long-term  correlations between the molecules pre

cluded the reaching of a steady state. Figure 6.10 (a) shows a steady sta te  for Michaelis- 

M enten elim ination kinetics while Figure 6.10 (b) shows th a t no steady sta te  is achieved 

when the kinetics are fractal-like Michaelis-Menten.
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Figure  6.9: (a) Area under the plasma curve and (b) the maximum plasma con
centration as a function of the infusion rate for a system with no temporary traps 
and elimination following linear (open circles), fractal (solid circles), Michaelis- 
Menten (open triangles), or fractal Michaelis-Menten (solid triangles) elimination 
kinetics.
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F igu re  6.10: Plasma occupation curves for a system with (a) Michaelis-Menten 
elimination kinetics and (b) fractal Michaelis-Menten kinetics. The infusion rate 
is, from top to bottom: 100, 10, 5, 3, and 1 molecule per time step
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6.4 C on clu sion

91

A continuous tim e random  walk model was used to describe the residence tim e of drug 

molecules undergoing a series of sojourn times in the body before being perm anently 

elim inated under either homogeneous or heterogeneous conditions. It was shown that 

short-term  correlations between drug molecules lead to M ichaelis-M enten kinetics while 

long-term correlations lead to  transient fractal-like kinetics. By combining both  types 

of correlation, fractal-like Michaelis-Menten kinetics were achieved, and the simulations 

confirm the analytical results derived in Section 5.2.1.
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Chapter 7

Continuous Tim e Random  Walk 

M odel W ith  Levy Flights

7.1 P u rp o se

In  previous chapters, fractal kinetics were used to  model the effects of spatial hetero

geneity on the  progress of a reaction. In this chapter, the case of tem poral heterogeneity 

is considered, in the  form of Non-Gaussian trapping  times. The interacting random  

walk m odel from C hapter 6  is expanded into a continuous tim e random  walk (CTRW) 

model th a t can accom m odate Levy-distributed trapping  t imes. The results provide an 

alternative m odel for concentration-tim e curves w ith power law tails as well as a way to 

investigate the interplay between tem porary and perm anent trapping  mechanisms.

7.2 B ackground

Levy statistics involve random  variables w ith such broad distributions th a t the usual 

C entral Limit Theorem  does not hold. In this chapter, the argum ent is made th a t such 

a broad distribu tion  can also be found in the behaviour of some drugs, especially when 

there is a small b u t finite probability th a t a drug molecule rem ains trapped  in the body
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for a long period of time.

7 .2 .1  T em p o ra ry  B in d in g  o f  D ru g  M o lecu les

Drug molecules are involved in three m ajor binding processes: binding to their target, 

binding to  com ponents of the blood, and binding to  tissues. In  the first case, most drugs 

act by the inhibition of an enzyme or interaction w ith a receptor. O ut of 480 drugs 

studied by Saltzm an [163], 28% were found to inhibit an  enzyme, 45% interacted with 

general receptors, and 21% interacted w ith nuclear receptors. The m ajority  of receptors 

are proteins on or w ithin cells, and the molecules th a t bind to  them  are called ligands. 

The drug-receptor interaction can block or alter the function of the receptor, thereby 

initiating biochemical and physiological changes. The structu re  of a drug determines its 

binding affinity for the  receptor.

In addition to  the specific binding of drugs to initiate a therapeutic  effect, drug 

molecules can bind in non-specific ways to blood components. M any drugs bind to plasma 

proteins in a nonlinear, saturable way, although the unbound fraction may be relatively 

constant around the therapeutic  range [32]. The m ain plasm a proteins are albumin, 

globulins, clotting proteins, hormones, enzymes, and antibodies. Drug molecules can 

also bind to  red blood cells.

Furtherm ore, drug molecules can bind to the cellular components of tissues. Exam 

ples include the binding of quinacrine in the liver and spleen [204] and the binding of 

gentam icin in the kidney [134], In addition, fat can serve as a reservoir for lipid-soluble 

drugs. Due to low blood flow to these sites, drug molecules can rem ain bound to fat for 

long periods of tim e. Bone is another potential reservoir. D rug molecules can adsorb 

onto the surface of the bone crystal and eventually be incorporated into the lattice [32]. 

Examples are toxins like lead and the tetracyline antibiotics, and their prolonged release 

from bone is governed m ostly by the ra te  of bone remodeling [181].

A high binding affinity can be an advantage if it refers to the  target of the drug; how

ever, if the target is elsewhere, those tissues act instead as drug reservoirs th a t prolong
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the body’s exposure to the drug and can in itiate  local toxicities and complicate dosage 

estim ates. Because a  d rug’s target is frequently outside of the  blood, pharm acokinetic

7 .2 .2  L ev y  D is tr ib u tio n s

Levy distributions are the typical framework for analyzing and m odeling power law be

haviour in fields as diverse as geology [147][148], economics [171][28], and physics [72][165]. 

Applications in biology and medicine include the nature  of DNA sequences [168], motor- 

controlled movements in hum ans [35], the spreading of epidemics [118], anim al flights [20], 

and neural networks [172],

Levy distributions (also called stable, a-stable, or Levy stable distributions) allow 

skewness and heavy tails. They follow the Generalized Central Limit Theorem  th a t states 

th a t the only non-trivial lim it of a normalized sum of independent, identically-distributed 

variables follows a Levy distribution. The standard  Central Limit Theorem  is a special 

case in which the  lim it of normalized sums of independent, identically-distributed terms 

w ith finite variance tends to  a Gaussian. Let a Levy random  variable be denoted by 

S  (a, /3, a, /j,), where a  £ (0,2], ft £  [—1,1], a  £  5R+ , and // £  5ft are the indices of 

stability, skewness, scale, and shift, respectively. W hen (3 =  0, the subfamily S  (a , 0, a, //,) 

is sym m etric about / j .  Two special cases exist: the Cauchy d istribution when a  =  0 and 

ft =  0, and the Gaussian d istribution when a  =  2 and ft =  0, w ith m ean // and variance

Consider the set {z } of N  statistically  independent, identically-distributed random  

variables and their normalized sum

If the d istribu tion  of z  has a finite variance, the C entral Limit Theorem  (CLT) states

d a ta  tend  to  be an indirect signal from which the crucial inform ation m ust be deduced.

2 a 2.

N

(7.1)
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th a t
Z  — A n  

B n
± S { 2 ,P ,o , t x ) , (7.2)

where the equality sign applies to  the probability density functions (PDFs) and A n  and 

B n  are norm alization constants. Thus the distribution of { Z j  tends towards as Gaussian 

as N  goes to  infinity. If the assum ption of a finite variance is relaxed, the Generalized 

Central Limit Theorem  (GCLT) holds th a t [186]

Z  — A n

B n
S ( a , P , a , n ) . (7.3)

The Gaussian and Cauchy distributions are the only two distributions for which 

a closed form exists for the probability density function (PD F). Consequently, Levy 

distributions are represented by the characteristic function </> (£) (the Fourier transform  

of the PD F) through

E
exp {—cr|f|“ [l — i/3sgn (f) tan  +  i p t ]  if a  ^  1

exp |- c r | f |  1 + ^ s g n ( f ) l n | i |  +  i p t } if a  =  1

where E  [a:] =  / ' ^  xp  (x) dx  denotes the expectation value of x.

Sometimes it is useful to  use Zolotarev’s (M) param etrization [206]

E
exp { —|f|“ [l +  «/3sgn (i) (tan  ^ )  (l^ 1 a — l ) ] }  if a  ^  1 

exp { - \ t \  [l +  i/3 sgn (t) f  In |£|] } if a  =  1

Nolan [140] developed a useful m odification S* ( a , (3,cr*, p*) such th a t

X* =  a ~ l!aa* (Z - m  (a, /3)) +  p*,

(7.4)

(7.5)

(7.6)

where Z  has the characteristic function shown in Eq. 7.5. In  th is param etrization, the 

distribution is shifted so th a t p  and a  coincide w ith the mode and standard  deviation
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in the G aussian case. This param etrization is useful for visual comparisons and compu

tations.

The tails of the  Gaussian distribution are exponential. The ta il of Levy distributions 

w ith a  < 2, however, are asym ptotically equivalent to  a power law [141]:

P ( X  > x )  ~ 7 aCa(l + /3)x~a (7.7)

p(x)  ~  a j aca (1 +  j8 ) x~(a+1\  (7.8)

where ca =  s i n ( ^ )  T (a) j i r. These distributions are called heavy-tailed because they 

fall off more slowly th an  an  exponential, and there is a small b u t finite probability tha t 

x  takes an  extrem ely large value.

Figure 7.1 show the PD F generated using the S* param etrization for /3 =  1 as 

im plem ented in the  STABLE program  (available a t h ttp ://academ ic2 .am erican .edu / jp- 

no lan /stab le/stab le .h tm l). The distributions w ith higher a  are more concentrated near 

the mode a t the origin while those w ith lower a  have heavier tails. W hen [3 >  1, the 

curves are skewed to  the  left and the right-hand tail becomes heavier. W hen j3 <  1, 

the opposite is true, and the curve is identical to  th a t for ft — b bu t reflected across the 

y-axis. Figure 7.2 compares the a  =  0.8 case for different values of /3.

As a  decreases, more of the probability resides in the tail. For example, given a

sample of d a ta  from a sym m etric distribution, there would be more th an  30 times as 

many values above 3 in the a  — 1.4 case th an  in the Gaussian case and over 100 times as 

many in the  a  — 0.8 case th an  in the Gaussian case. Moreover, if the same distributions 

are fully skewed to  the left (/? =  1 ), these factors more th an  double.

One consequence of heavy tails is th a t not all moments m ight exist, where the n th 

moment is given by (xn) = x" f ( x ) d x .  The value of a  can be thought of as the 

largest moment th a t exists. Because the first moment is equal to  the m ean and the second 

moment is equal to  the variance, distributions w ith a  < 2  have an  infinite variance, and 

distributions w ith a  < 1 also have an infinite mean.
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F igure  7.1: Levy probability density functions for /? =  1, a =  1, and fi — 0.
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F igure  7.2: Levy probability density functions for a = 0.8, a — 1, and p = 0.
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7 .2 .3  L ev y  F lig h ts

A Levy flight is defined as a stochastic process whose jum ps are Levy-distributed stochas

tic variables. Levy flights have been used as a model for trapping  tim es and flight lengths 

in a  variety of physical systems. In their study of subrecoil laser cooling, Bardou et al. [19] 

describe the tran sit of an atom  as a sequence of trapping  periods a lternating  with dif

fusive periods. The d istribution of trapping times is taken to  be Levy-distributed with 

index a. The authors found th a t the evolution of the system  depends on com petition 

between the trapping  and diffusive processes.

Levy-distributed trapping  times have also been used to characterize incoherent ra

diation [151]. The rad iation  undergoes a num ber of absorption events (due to elastic 

scattering) and reemission events before ultim ately escaping (through inelastic scatter

ing). Single rad iation  trajectories are described by Levy flights, and the to ta l trajectory 

forms a fractal in space.

Levy flights have also been tied to  self-organized criticality (SOC), the spontaneous 

emergence of scale-invariant behaviour in systems out of equilibrium  [18]. Sand or rice 

piles are the usual paradigm  for SOC. Grains are added to the top of a pile, and the 

transit of the grains to  the bottom  of the pile is m onitored in term s of flight lengths and 

times. Experim ents have shown th a t the tim e for grains to escape from the bottom  of 

the pile follows a negative power law distribution [39]. Boguna and Corral [29] modelled 

the dynamics by describing the movement of the grains using Levy flights, which they 

incorporated into a continuous tim e random  walk model.

A lthough it m ight seem illogical to  use an infinite-variance distribution to describe 

a bounded, physical variable, approxim ations can be m ade so th a t the tail distribution 

exhibits power law behaviour over a large bu t finite range. M antegna and Stanley [114] 

introduced the  trunca ted  Levy flight (TLF), whose PD F for sym m etric distributions is
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given as
/

0  x  <

p(x)  =  < c\L{x)  —l < x < H  (7-9)

0  x  >  I

where L(x)  is a Levy d istribution w ith a  <  2, c\ is a norm alization constant, and I 

is the cutoff length. M antegna and Stanley found th a t the sum  Z  given by Eq. 7.1 

w ith z  draw n from Eq. 7.9 converges a t a value n x to  a Gaussian for relatively large 

N  or relatively small I. However, if the w idth of the distribution is small compared 

to the truncation  value, this convergence can be extremely slow. Thus, the sum of a 

large num ber of random  variables from a distribution w ith finite variance can follow a 

non-Gaussian d istribu tion  except for a t the  very ends of its tails. The behaviour of a 

TLF will be essentially indistinguishable from a Levy flight, except for in the most rare 

events. Consequently, although the truncation of the flight renders the moments of the 

d istribution finite, the  system  can exhibit anomalous behaviour and scaling properties 

before the eventual convergence.

7.3 R elevan ce o f L evy  D istr ib u tio n s to  P h arm acok in etics

Weron [197] has discussed three of the conditions in which Levy distributions are believed 

to  be applicable in the description of a system: (i) there is a specific theoretical reason 

for expecting non-G aussian behaviour (e.g. diffusion in a disordered system); (ii) an 

observable is the  sum  of many small term s (e.g. stock m arket prices); or (iii) a data  

set exhibits power-law tails. More th an  one situation might apply to  a given system, 

and indeed in the  case of pharm acokinetic systems, each can be found under certain 

conditions.

In the first case, many drug processes in the body occur in confined or heteroge

neous spaces, in which bo th  diffusion and kinetics have been found to  exhibit anomalous 

behaviour [24]. For example, as seen in previous chapters, it has been found th a t the
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pharm acokinetics of a drug elim inated from the liver, an organ w ith a fractal structure, 

can lead to  fractal kinetics. In the second case, the residence tim e of a drug molecule 

can be seen as the  sum  of many small sojourn tim es in the cells, tissues, and organs of 

the body. If the  elim ination of a drug is slow an d /o r the drug’s binding affinity w ithin 

the body is high, the num ber of sojourn times will increase. In  the th ird  case, power-law 

tails have been found empirically in many plasm a concentration-tim e curves. Therefore, 

as suggested in the  literatu re  for radioisotopes, the cycling between trapped  and circulat

ing states can describe drug molecules in the body analogous to  subrecoil laser cooling, 

incoherent radiation, and a sandpile. This concept is im plem ented in the next section 

using a continuous tim e random  walk model.

7 .3 .1  C o n tin u o u s  t im e  ran d om  w alks

In physical systems, random  walks in the presence of traps are typically modeled using the 

continuous-tim e random  walk (CTRW) formalism. M ontroll and Weiss [130] introduced 

the concept to  render tim e continuous without going to  the diffusion limit. In a standard 

random  walk, the waiting tim e between steps is a constant, discrete value. In  a CTRW, 

the tim e between steps, typically called the waiting tim e, is draw n from a continuous 

distribution, ip(t). The CTRW  m ethod has been applied to  model systems as diverse 

as asset prices in the  financial m arket [119], charge transport in am orphous solids [142], 

and solute tran sp o rt in geological formations [51].

The relevant m aster equation is [24]

where P ( r, t) is the probability d istribution for the walker being a t position r in d - 

dimensional space a t tim e t, and wry  is the rate  of transition  from position r' to position

r' r'
(7.10)
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r. For nearest-neighbour walks on a one-dimensional lattice, the  m aster equation is

^  =  w X,x - \P {x  -  1, t) + w XiX+1 P ( x  +  1 , f)

-  {wx-i ,x  +  wx+i iX) P ( x , t ) .  (7.11)

W hen all the wXiV values are constant, the walk is classical. If they  are also all equal, the 

simple random  walk w ith no bias is recovered. However, when the transition  rates are 

drawn from a d istribu tion  '(/;('«;), the walk becomes anomalous. These results are useful 

because m any physical problems can be m apped onto the one-dimensional lattice [6 ]. 

Disorder or heterogeneity is typically incorporated into CTRW  models through a non- 

Gaussian waiting tim e d istribution ?/>(t ).

The next section introduces a new application of the CTRW  to the modeling of drug 

residence tim es. The model builds on the interacting random  walk model described in 

the previous chapter; however, the sojourn tim e at a lattice site is no longer a constant 

bu t ra ther a random  variable drawn from a probability distribution.

7.4 M o d el

Expanding upon the interacting random  walk model developed previously, there are now 

three different types of lattice sites: plasm a (P ) sojourn sites, tem porary  target traps 

(T), and perm anent elim ination traps (E ). Drug molecules are introduced onto P  sites 

and undergo a sequence of sojourn times in bo th  P  and T  sites until they are removed 

from an E  site. The to ta l residence tim e 0 of a molecule can now be expressed as

e = T  + T ,  (7.12)

where T  is the to ta l tim e spent in the plasm a and T  is the to ta l tim e spent in tem porary 

traps. Because each of these quantities is the sum of N  individual plasm a sojourn times
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Table 7.1: Levy distribution parameters

Param eter Description

a heaviness of the tail
p skewness
a scale

position

Tj or M  individual trapping  times f.t ,

N  M

e = ^2tj + Y^n. (7.13)
i= 1 j = 1

Note th a t  Q is a  macroscopic quantity  while r  and f  are microscopic quantities.

In order to  focus on the roles of the tem porary and perm anent trapping sites, the 

sojourn tim e in the plasm a, P  ( r) , is still approxim ated as a delta  function at the value 

P T .  However, it is proposed th a t the tem porary trapping  events are Levy flights, and 

P  (f) is Levy-distributed . The additional model param eters are listed in Table 7.1. If 

a  < 2 , there is a  dispersion in the trapping times due to  the relaxation of deep traps.

In this simplified version of the model, the tem porary traps are also assumed to be the 

therapeutic  target of the drug (for example, tum or cells in the case of anticancer agents).

Weiss [196] incorporated a similar idea into his recirculatory model for the drug 

amiodarone. He used a gam m a distribution for plasm a cycling tim es in the plasm a and 

trapping tim es following:

/  (t ) ~  Tat ^ l ~a) (0 <  a  <  1). (7.14)

His model, however, assum ed a constant elim ination rate , no interactions between molecules, 

and no saturab le processes.

In the current model, the different m ethods for elim inating a molecule from an E site 

are those described in the previous chapter: simple elimination, M ichaelis-Menten sat-
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Table 7.2: Power law tail exponent between x  =  0 and x = 3000 for the distribu
tion of values drawn randomly from the quantiles for a  =  1.4.

Num ber of Values Power Law Exponent R 2

10  0 0 0 -2.42 (0.15) 0.943
1 0 0  0 0 0 -2.40 (0.06) 0.983
1 0 0 0  0 0 0 -2.44 (0.04) 0.992
10  0 0 0  0 0 0 -2.45 (0.04) 0.992

urable elim ination, and fractal elimination under bo th  transient and saturable regimes. 

To the best of our knowledge, this model is the only one th a t combines saturable pro

cesses, long-term  interactions between molecules, and the probability of long-time trap 

ping in the body.

7.5 M eth o d

In  order to  generate random  variables from a Levy distribution, the  characteristic func

tion given by Eq.(7.4) was integrated using techniques outlined by Nolan [140]. In 

addition, in order to efficiently sample the d istribution, look-up tables were generated 

th a t consisted of 10,000 quantiles (values separated by equal probability). The quantiles 

were calculated using

f  f ( x ) d x = p ,  (7.15)
J X {

w ith p  =  1 x 1 0 -7. Therefore, two integrations were performed. To get a power-law 

relationship, the quantiles were draw n from the end portion of the Levy distribution, 

w ith =  0, p =  0, and <7 =  1. All the values were shifted such th a t x \  = 0. The power 

law exponent of each PD F was equal to —(1 +  a )  to  w ithin 1 x 10 ~6. The quantiles were 

tested by uniformly sam pling the quantiles random ly and checking the distribution of 

the new values. The results for the quantiles for a  = 1.4 are shown in Table 7.2.

Unless otherwise indicated, the model param eters were chosen to  be L  =  200,000 

lattice sites, N  =  10,000 drug molecules, P T  =  3 tim e steps spent a t a P  site, E T  =  3
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Table 7.3: Power exponent 7  for drug molecules undergoing simple elimination 
and Levy trapping with different values of a.

a Tim e Range 7 R?

1 .2 50 -  5000 -1.187 (0.003) 0.992
1.4 50 -  2000 -1.241 (0.005) 0.990
1 .6 50 -  1000 -1.255 (0.006) 0.983
1.8 50 -  400 -1.316 (0.008) 0.994

tim e steps spent a t an  E  site, and a = 10 for the Levy distributions. Because the goal is 

to investigate the interplay between the tem porary and perm anent trapping  processes, 

the values for f p  =  0.05 and f p  =  0.05 were chosen since they were much smaller than  

f p  bu t equal to  each other.

7.6 R esu lts

7.6.1 Effect o f Levy-distributed Traps

Figure 7.3 shows the  plasm a occupation curve following a bolus dose of drug molecules 

undergoing simple elim ination and Levy-distributed trapping  tim es w ith a  =  1.6. After 

an initial period, the  ta il of the curve transitioned to  a power law at t  =  30 and persisted 

until t = 1000. There was a short term inal exponential decay th a t occurred when less 

than  1% of the  molecules rem ained in the system. The power exponent of the tail was 

7  =  —1.255 ±  0.006 (R 2  =  0.993). Therefore, tem porary  trap s w ith power-law-tailed 

trapping tim es can produce a concentration-tim e curve with power law behaviour tha t 

persists over three orders of m agnitude, even when the elim ination process is linear and 

the probability of trapping  is only 5%.

The effect of decreasing a  was to  decrease 7  bu t increase the range over which the 

power law persisted (Table 7.3). In each case, 7  <  a , bu t the percent difference decreased 

w ith decreasing a.  The shape of the power law segment was relatively independent of 

the scale factor a  (Table 7.4).
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F igu re  7.3: (a) The plasma occupation as a function of time for N  = 10,000 
molecules undergoing simple elimination and Levy-distributed trapping with a  = 
1.6. (b) Closeup of the the power law segment between t = 30 and t =  1000.
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Table 7.4: The power exponent for a  =  1.6 as a function of the Levy scale, a.

a 7

1 1.271 (0.008)
5 1.253 (0.008)

10 1.255 (0.006)
15 1.210 (0.004)
20 1.294 (0.007)

Table 7.5: The mean power exponent 7  and standard deviation as a function of 
the number of values.

No. Values 7

5 1.259 (0 .0 1 1 )
10 1.255 (0.006)
20 1.259 (0.005)
30 1.255 (0.004)
40 1.256 (0.004)

7 .6 .2  S e n s it iv ity  o f  th e  P o w er E x p o n en t

Sensitivity analysis was performed for 7 . In order to determ ine the m inimum  number of 

runs required to  achieve an acceptable error value, the sim ulation illustrated  in Fig. 7.3 

was executed for 10 different values of the random  seed. Since the improvement in 

the error was not significant beyond 10 runs (Table 7.5), this value was chosen for all 

subsequent sim ulations in order to minimize run  times. The same sim ulation was also 

repeated for three different lattice sizes L. The m ean values of 7  agree w ithin error, but 

the standard  deviation decreases w ith increasing lattice size (Table 7.6). Therefore, the 

maximum  sized lattice (L =  2 0 0 , 0 0 0 ) th a t can be accom m odated by the com puter was 

chosen for all subsequent runs.
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Table 7.6: The mean power exponent 7  and standard deviation as a function of 
the lattice size, L.

L 7

50,000 1 .2 1 2 (0 .0 1 2 )
1 0 0 ,0 0 0 1.231 (0.087)
2 0 0 ,0 0 0 1.255 (0.006)

Table 7.7: Power law exponent for Levy trapping with a — 1.6 with simple elim
ination, for different relative strengths of the temporary and permanent trapping.

Je / J t Tim e Range 7 R 2

0 .1 1 0 0 -- 10 0 0 -0.399 (0.006) 0.983
0.4 1 0 0 -- 10 0 0 -0.629 (0.006) 0.993
0 .6 1 0 0 -- 1 0 0 0 -1.13 (0.01) 0.989
1 .0 3 0 - 1 0 0 0 -1.255 (0.006) 0.993
1.4 3 0 --900 -1.334 (0.006) 0.992
1.6 3 0 --900 -1.379 (0.009) 0.983
2 .0 3 0 --900 -1.41 (0.01) 0.987

7 .6 .3  T em p o ra ry  V ersu s P er m a n e n t T rap p in g

As the num ber of E  sites was decreased, the power exponent decreased (Fig. 7.4) but 

the length of the  power law portion rem ained alm ost the same (Table 7.7). Therefore, 

the effect of a decreased elim ination probability was to decrease 7 .
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F igu re  7.4: The plasma occupation for N  =  10,000 molecules undergoing sim
ple elimination and Levy-distributed trapping. From top to bottom, / e / / t  — 
0.1,0.2,0.6,1.0,1.4,2.0.
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7 .6 .4  E ffect o f  th e  E lim in a tio n  K in e tic s

In the above sections, it was dem onstrated th a t a small probability of a  Levy-distributed 

trapping  event could produce plasm a occupation curves w ith a significant power law 

segment. This section investigates how this behaviour is affected when the elimination 

process is not linear. Figures 7.5 -  7.7 show the results when the elim ination is saturable, 

fractal, and saturab le fractal, respectively.

In the saturab le case, the power law segment became longer and steeper as the 

maximum num ber IVgiax of molecules allowed in E sites increased.

W hen the  elim ination occurred via transient fractal kinetics through the use of clus

tering effects, decreasing decreased the value of 7 . The stronger the clustering effects, 

the less prom inent the power law, and at fl  = 1, the power law disappeared. Therefore, 

the clustering reduces the effect of the long-time trapping  mechanism, since less molecules 

will a ttem p t to move a t a given time. As decreased, the clustering effects became more 

dom inant and the elim ination depended more on the release of the molecules from the 

clusters th an  on the  release from the tem porary traps. The transition  occurs when the 

tim e to  be released from a cluster is longer th an  the tim e to be released from a trap.

In the case of elim ination w ith bo th  sa turation  and clustering effects, the power law 

segment becomes less steep and it persists for longer.
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F igu re  7.5: The plasma occupation for N  = 10,000 molecules undergoing sat
urable elimination and Levy-distributed trapping. From top to bottom, N'Sax = 
15,30,45,10,000.
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F igu re  7.6: The plasma occupation for N  — 10,000 molecules undergoing fractal 
elimination and Levy-distributed trapping. From left to right, fi =  100,5,3,2,1.
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F igure  7.7: The plasma occupation for N  =  10,000 molecules undergoing Levy- 
distributed trapping and simple (S) elimination or steady steady fractal (SSFMM) 
elimination ( N g ax =  15).
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7 .6 .5  P r e d ic t in g  th e  D o se  to  th e  T arget

If the tem porary  trap s are the drug’s intended target, one im portan t use of this type of 

modeling is the ex trapolation  of the T  site occupation level from the observable signal, 

the P site occupation level. Table 7.8 shows th a t the highest occupation level a t the target 

site is achieved w hen the  elim ination kinetics are fractal, while the  greatest dose to  the 

target occurs for fractal M ichaelis-M enten elim ination kinetics. A saturable elimination 

process allows more drug molecules to enter long-time traps. Figure 7.8 illustrates the 

three processes. A lthough the highest occupation level is reached w ith fractal kinetics, 

the occupation drops off quickly. However, w ith the saturable elimination, the target 

occupation level rem ains higher over a much longer period.

Figure 7.9 shows an example of a quantitative relationship between the observed 

plasm a signal and the occupation num ber of the target. Note th a t the shape of the curve 

is strongly dependent on the type of elim ination kinetics. If one can deduce the type of 

elim ination kinetics th a t might be present in a system based on the shape of the plasma 

concentration-tim e curve, this type of graph can then  be used to  estim ate the relationship 

between the plasm a occupation and the am ount of drug at the target site. In  addition, 

the curve indicates a t w hat plasm a occupation the m axim um  target dose can be expected. 

This occupation num ber is much lower in the case of simple elim ination and much higher 

for the other elim ination regimes. Interestingly, the m aximum  target occupation under 

fractal M ichaelis-M enten elim ination is sustained over a  range of plasm a occupation of 

almost 2 0 0 0 .
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Table 7.8: Pharmacokinetic parameters.

E lim ination AUCp AUCt vmaxyVy
Kinetics (xlO 6) (xlO 6) (x lO 3)

Linear 0.597 (0.006) 1.41 (0.03) 3.03 (0.02)
Fractal 3.92 (0.02) 7.24 (0.03) 5.12 (0.04)
M ichaelis-M enten 13.6 (0.6) 28.5 (0.04) 2.67 (0.02)
Fractal M ichaelis-M enten 15.7 (0.1) 31.7 (0.03) 3.44 (0.04)

SSFMM

-MM

t

F igu re  7.8: The target occupation as a function of time for N  = 10,000 molecules 
undergoing Levy-distributed trapping with a = 1.6 and fractal Michaelis-Menten 
(SSFMM), Michaelis-Menten (MM), fractal (F), or simple (S) elimination.
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F igure  7.9: The target occupation as a function of the plasma occupation for 
N  =  10,000 molecules undergoing Levy-distributed trapping with a = 1.6 and 
Michaelis-Menten (MM), fractal Michaelis-Menten (SSFMM), simple (S), or fractal 
(F) elimination.
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7 .6 .6  In fu sio n  cu rves

W hen the molecules were adm inistered via an extended infusion instead of a bolus dose, 

A U C p  and A U C p  were only independent of the infusion ra te  for the case of linear 

elim ination (Fig. 7.10). For very small infusion rates, or very long infusion times, the 

fractal and linear cases gave the same dose to  the plasm a and the target. In  addition, the 

behaviour in these two cases was the same. However, in the case of Michaelis-Menten 

and fractal M ichaelis-M enten elim ination kinetics, there was a rise in bo th  A U C p  and 

A U C p  a t small infusion rates. This is because the elim ination sites do not saturate.

Figure 7.11 shows the behaviour of X max as the infusion rate  increases. In the case 

of linear elim ination, X p 'ax increases linearly w ith the infusion rate , b u t X™'rLX increases 

a t a much faster rate. For the cases of fractal, M ichaelis-Menten, and fractal Michaelis- 

M enten elim ination kinetics, it appears th a t T “ ax reaches a m axim um  more quickly 

than  X j?ax.

Finally, the  relationship between the target occupation and the plasm a occupation 

was investigated for different infusion rates. The curves are more skewed towards the 

X p  axis in the case of fractal M ichaelis-Menten elimination, and they also decrease in 

size much more slowly.
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F igure  7.10: Area under (a) the plasma occupation curve and (b) the tar
get occupation curve for Levy-distributed traps with elimination following linear 
(open circles), fractal (solid circles), Michaelis-Menten (open triangles), and fractal 
Michaelis-Menten (solid triangles) kinetics.
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F igure  7.11: Maximum (a) plasma and (b) target occupation number for Levy- 
distributed traps with elimination following linear (open circles), fractal (solid cir
cles), Michaelis-Menten (open triangles), and fractal Michaelis-Menten (solid tri
angles) kinetics.
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F igure  7.12: The target occupation number as a function of the plasma occupa
tion number for Levy traps and (a) linear or (b) fractal Michaelis-Menten elimina
tion. The curves represent an infusion rate of, from inside to outside, 100, 10, 5, 
and 1 molecules per time step.
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7.7  D iscu ssio n

119

The pharm acokinetic tim e series can be seen as a fractal tim e process in which the events 

th a t make up the process are d istributed in a self-similar way. This means th a t the events 

occur as a hierarchy of bursts separated by a hierarchy of gaps. This is an example of 

statistical self-similarity, where the PD F of the residence tim e m easured on a large scale 

is similar to  the P D F  of the residence tim e m easured on a small scale. One consequence 

of the self-similarity is th a t there may be no single m ean residence time. The analysis 

can be taken one step further to  relate the param eter 7  to the self-similarity of the drug 

residence times. D ifferentiating the equation C(t)  oc t1 gives

(7 .16)

and therefore
d C / C  , x

<7-17>

This, the relative variation of C  divided by the relative variation of t  is constant [108]. 

Therefore, 7  relates how m any molecules are being elim inated by a fractal Michaelis- 

M enten m echanism  th a t is similar to  the overall process governing the residence time 

distribution.

W hile allom etric scaling has been applied to pharm acokinetics, the scaling of phar

m acokinetic processes occurring w ithin an individual has yet to  be investigated. One 

advantage of scaling properties is th a t knowledge of the appearance or behaviour of a 

system at one scale (such as the whole body) provides inform ation about the system 

at other scales (such as the organ or cellular level). Therefore, scaling laws can help 

extrapolate knowledge about elements of a system  th a t are difficult to  directly measure 

(such as the drug concentration in a tum our or in individual tum our cells).
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7.8 C on clu sion

120

The concept of Levy flights has many potential applications in pharm acokinetic model

ing. Expanding the random  walk model from the previous chapter into a CTRW  with 

Levy trapp ing  tim es enabled the  construction of the  first stochastic pharm acokinetic 

model th a t combines the  effects of saturable and fractal perm anent elim ination w ith 

long-time tem porary  trapping. The model can be used to  ex trapolate the target dose 

from the plasm a signal and to  predict changes in the system ’s response to different dosing 

regimes.

An advantage of this model is th a t it does not make any assum ptions about what 

causes the dispersion in the  molecular residence times; these causes could include fractal 

kinetics, mechanisms of cell death, heterogeneity in cell populations, or release from long

tim e traps in cells such as tum our or fat cells. Furtherm ore, th is dispersion can also help 

explain some clinical observations, for example delayed reactions in certain  patients.
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Chapter 8

Physiologically-Based Flow  

Network M odel for Drug 

Elim ination

8.1 P u rp o se

The objective of th is chapter is to investigate whether the aggregate, organ-level kinetics 

modeled by a fractal com partm ent can be reproduced at the level of a single functional 

unit of the organ. A discrete network model is developed using anatom ical and phys

iological param eters of the liver, and the effects of different types of heterogeneity are 

explored.

8.2 B ackground

8 .2 .1  L iver A r c h ite c tu r e

At the macroscopic level, the liver consists of three vascular trees, two supply trees tha t 

originate from the po rta l artery  and hepatic vein, and one collecting tree th a t drains into 

the porta l vein [15] (Fig. 8.1 (a)). The vessels bifurcate down to the term inal arterioles
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(c)

Figure 8.1: The liver, (a) The macrostructure. The hepatic artery and portal
vein bring blood rich in oxygen, nutrients, and drug molecules in from the left, (b)
The vessels branch to form a tree of arterioles and venules, (c) Pairs (represented 
by open circles) of terminal hepatic arterioles and portal venules empty into a 
hexagonal lobule. The blood flows towards a central hepatic venule (solid circle)
The dotted lines represent sheets of hepatocyte, and the white space between them 
represents the sinusoids.

and venules (Fig. 8.1 (b)), which are organized into porta l trac ts  along with a term inal 

bile duct. Liver cells, called hepatocytes, rad iate outward from the term inal vessels. 

These plates of hepatocytes are interspersed by sinusoids, which play the role of the 

capillary in the  liver, and the spaces of Disse, which are the extravascular space of the 

liver [67]. Finally, the  blood is collected and removed by the hepatic venules.

8 .2 .2  F u n ctio n a l U n it

The functional unit of an organ is the smallest s truc tu ra l unit th a t can independently 

serve all of the  organ’s functions [167]. Because of its complexity, there is continued de

bate about w hat the functional unit of the liver should be. The classic lobule (Fig. 8.1 (c)) 

is a hexagonal cylinder, centered around a hepatic venule and w ith po rta l trac ts situated 

at the corners. The po rta l lobule has a similar shape b u t is centered about a portal tract 

w ith the hepatic venules a t the periphery [27]. The acinus is another proposed unit and 

is based on the p a tte rn  formed by the cords of hepatocytes between two central venules.
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Table 8.1: Anatomical values for the liver.

123

Param eter Value Ref.

H epatocyte diam eter 12-24 iim [70]
D iam eter of liver cell sheets 25 /j, m [67]
Lobule diam eter 1-2.5 mm [70]
M ean sinusoid diam eter 7.3 /im [67]

9.0 ±  0.2/rm [3]
Vascular tissue component 28-30% [73]
Specific gravity of liver 1.05 [70]
Liver volume 1071 ±  228 cm3 [205]

M atsum oto and Kawakami [123] suggested th a t the classic lobule can be divided into 

prim ary lobules, which are cone-shaped and each fed by one po rta l trac t and drained by 

one hepatic venule. Teutsch and colleagues [183, 182] performed a morphological study 

of ra t and hum an liver lobules, and their results support the idea of a secondary unit 

made up of prim ary units in w hat they term  as a m odular architecture. They conclude, 

however, th a t the  prim ary unit is more polyhedral in shape th an  conical. O ther exper

iments done by R uijter et al. [162] suggest th a t the prim ary unit is needle-shaped and 

th a t there are equal am ounts of porta l and central vein associated w ith one unit. For 

this study, the  prim ary unit is taken to be one-fourth of the classical lobule. The relevant 

anatom ical values are listed in Table 8.1.

8 .2 .3  D ise a se d  s ta te s

The health  of the liver can be compromised by viruses, hereditary diseases, and toxins 

such as alcohol [184]. Damage or death  of the hepatocytes leads to  inflam mation of the 

liver, called hepatitis. A lthough zones of necrosis can form when adjacent cells die, this 

damage is to  some extent reversible, since the liver has the ability to regenerate. Thus 

hepatitis is typically characterized by waves of cell death  and regeneration, leading to 

a m ixture of necrotic areas and nodules of new hepatocytes. Because the architecture 

of the liver is often compromised, some cells may not receive norm al levels of blood
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supply. Furtherm ore, as inflam m ation progresses, fibrous tissue may replace the normal 

hepatocytes, resulting in the irreversible condition of cirrhosis. The damage can be 

compounded because the form ation of necrotic zones increases the resistance to blood 

flow, and in trahepatic  shunts can occur in which blood vessels begin to  bypass the liver 

altogether. Therefore, although the liver has the capacity to w ithstand  and even correct 

a lot of damage, its ability to  transport, absorb, and m etabolize im portant nutrients and 

drug molecules can be compromised.

8 .2 .4  N etw o r k  M o d e ls  o f  th e  L iver

Several lattice models have been used to sim ulate enzyme kinetics in disordered media. 

Berry [25] perform ed M onte Carlo simulations of a M ichaelis-M enten reaction on a two- 

dimensional lattice w ith a varying density of obstacles to  sim ulate the barriers to  diffusion 

caused by biological membranes. He found th a t fractal kinetics resulted a t high obstacle 

concentrations. Kosmidis et al. [96] performed M onte Carlo sim ulations of a Michaelis- 

M enten enzym atic reaction on a two-dimensional percolation lattice a t criticality. They 

found th a t fractal kinetics emerged at large times.

Previously, Chelminiuk et al. [37] developed a network model of the liver consisting 

of a square lattice of vascular bonds connecting two types of sites th a t represent either 

sinusoids or hepatocytes. Random  walkers explored the lattice a t a constant velocity 

and were removed w ith a given probability from hepatocyte sites. To sim ulate different 

pathological sta tes of the liver, random  sinusoid or hepatocyte sites were removed. For 

a lattice w ith regular geometry, it was found th a t the num ber of walkers decayed ac

cording to  an exponential relationship. For a percolation lattice w ith a fraction p  of the 

bonds removed, the  decay was found to be exponential for high trap  concentrations but 

transitioned to  a stretched exponential at low trap  concentrations.

The models described above are all basic random  walk models, and the lattices are 

abstract representations of the geometry of the space. The objective of this chapter 

is to  develop a lattice model th a t incorporates realistic anatom ical and physiological
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F igure  8.2: Homogeneous lattice. The grey bands represent sinusoids and the 
white spaces represent hepatocytes.

properties of the liver as well as the transport of reacting tracers by a blood-like fluid.

8.3 M o d el and M eth o d s

The prim ary unit of the liver was approxim ated by a 51 x 51 square lattice such th a t four 

units correspond to  one lobule. The architecture of the lattice consists of hepatocyte grid 

cells interlaced by a network of narrower sinusoidal grid cells (Fig. 8.2). The diam eter 

of the sinusoid grid cells was taken to  be 0.0006 cm, and the diam eter of the hepatocyte 

grid cells was taken to  be 0.0024 cm. The length of the lattice was thus 0.0744 cm per 

side. Doubling th is value gives a lobule diam eter of 0.149 cm, which is consistent with 

values listed in Table 8.1. The depth  of the lattice was taken to be the diam eter of a 

sinusoid, 0.0006 cm.

Each sinusoid grid cell represents a tubu lar vessel of diam eter a. Taking the ratio 

of the volume of the vessel to  the volume of the grid cell yields a porosity of (j:>s =  

0.7854. Each parenchym al grid cell represents a cellular (hepatocyte) component and an 

extracellular (space of Disse) component. A ratio  of 0.75 to 0.25 was chosen for their
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PAC + CYP — - PAC-OH + CYP

F igure  8.3: Simplified scheme of the Phase I metabolism of paclitaxel (PAC) by 
the enzyme cytochrome (CYP) P450 3A4 to form the metabolite hydroxy-paclitaxel 
(PAC-OH).

respective contributions to  the  volume, and the  porosity of the  parenchym al sites was 

therefore (f>H =  0.25.

There is an input site corresponding to  a term inal porta l venule a t one corner of the 

lattice and an ou tpu t site corresponding to a term inal hepatic venule a t the opposite 

corner. For simplicity, the arterial blood supply, which is lower in volume and pulsatile 

in nature, is om itted  for the current simulations. The blood viscosity was taken to be 

3.5. The molecular weight of the hepatocytes was taken to  be 131, based on the formula 

C5H9O3N, which is a standard  representation of cell systems [124]. The drug paclitaxel 

was used as a reactive tracer, and its Phase I m etabolism  was modeled using the general 

formula of one paclitaxel (PAC) molecule being transform ed into the m etabolite 6 a  - 

hydroxypaclitaxel (PAC-OH) by the cytochrome P450 (CYP) isozyme CYP2C8 [129] 

(Fig. 8.3). Each hepatocyte grid cell contains a m olar fraction of enzyme. The reaction 

can proceed in a linear m anner a t a rate  characterized by k  (in units of min 1) or via 

M ichaelis-M enten kinetics, defined by K m  (in units of molar fraction) and t>max (in units 

of m in-1 ). The m olecular weight of paclitaxel is 0.853906.

In order to  investigate the effects of the heterogeneity of the liver architecture on 

the rate  of the reaction, three different variations of the lattice were studied: a regular 

lattice, a lattice w ith random  perm eability of the sinusoids, and a percolation lattice 

w ith a random  num ber of the sinusoid sites removed.

The sim ulations were performed using the STARS advanced process sim ulator de

signed by the C om puter Modelling Group (CMG) Ltd. in Calgary, A lberta, to model 

the flow and reactions of m ulti-phase, m ulti-component fluids through porous media. 

The m edium  is discretized into grid cells, and the displacement of fluid between cells is
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calculated based on mass and energy conservation and the difference in pressure [104], 

This difference can be induced by chemical, mechanical, or therm al processes. In the 

current sim ulations, the fluid flow was driven by a higher pressure a t the inlet than  at 

the outlet. STARS uses an  adaptive-im plicit num erical scheme such th a t the properties 

of each grid cell can be solved in either an implicit or an explicit mode [161]. This tech

nique combines the  stability  of the implicit m ethod while retaining the com putational 

efficiency of the explicit m ethod. M atrix inversion is achieved using CM G’s package 

AIMSOL, based on incomplete Gaussian Elim ination [104], and its extension, PARA

SOL, to parallel com puting architectures [48]. A lthough the program  can model both 

convective and dispersive effects, only convective transport was studied here.

Ignoring the  dispersive contribution and m aking the assum ption of incompressible 

and lam inar flow, the system  progressing according to  D arcy’s Law:

G =  (8 -1 )H ox

where Q is the fluid velocity, k is the permeability, /j is the viscosity of the fluid, and 

is the pressure gradient. The perm eability k is a measure of the transm issibility of 

a grid cell to  the flow of a fluid, expressed in units of area (e.g. cm2). For a cylindrical 

tube  such as a blood vessel,
r 2« = - ,  (8.2)

where r  is the  radius of the  tube. For m ulti-com ponent flow, STARS tracks the com

position (molar or mass fraction) of any components in the fluid. The molar fraction x  

was used here.

The pressure value a t the inlet was taken to be Pm =  103 kPa, and the pressure at the 

outlet was taken to  be Pout =  101.8 kPa. After subtracting the atm ospheric pressure, 

these values are consistent w ith experim ental values quoted by R appaport [155], who 

found th a t the term inal po rta l venule pressure was 0.59 — 2.45 kPa and th a t the term inal 

hepatic venule pressure was 0.49 kPa. Because flow through the lobule is due to the
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pressure drop across the lattice, the generated flow rate  will be a m easure of the flow 

perm eability of the  lobule and hence a reflection of the health  and functioning of the 

liver.

8.4  R esu lts

8 .4 .1  R eg u la r  L a ttic e

W hen blood w ith  a  relative composition of 0.01 paclitaxel was infused into the regular 

lattice shown in Fig. 8.2 w ith nonreactive hepatocytes, the evolution of the paclitaxel 

concentration on the lattice followed a spatially homogeneous progression (Fig. 8.4). The 

flow ra te  a t the  input was 6 .8  x 1 0 - 5  cm3 /m in.

W hen a linear reaction (w ith k — 10,000 m in-1 ) was allowed to  occur w ithin the 

hepatocytes, a plot of the molar outflow of the m etabolite followed a linear increase in 

the transient regime before transitioning to a steady sta te  (Fig. 8.5). W hen the reaction 

proceeded instead by Michaelis-Menten kinetics (w ith K m  =  2 x 10- 8  molar fraction 

and umax =  10,000 m in-1 ), the Lineweaver-Burke plot was linear in the transient regime 

(Fig. 8 .6 ).
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Figure 8.4: Contour plot of the molar fraction of paclitaxel on a regular lattice 
with a constant infusion of 0.01 molar fraction of the drug. The snapshots were 
taken at 0.00002, 0.00012, 0.00024, 0.00036, 0.00050, and 0.0012 minutes.
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Figure 8.5: (a) The molar fraction of the metabolite PAC-OH as a function of 
time following a linear reaction on a regular lattice, (b) In the transient regime, 
the curve exhibits linear behaviour.
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F igure  8 .6 : (a) The molar fraction of the metabolite PAC-OH as a function of time 
following a Michaelis-Menten reaction on a regular lattice, (b) Lineweaver-Burke 
plot.
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F igure  8.7: Lattice with random permeabilities. The shade of grey represents the 
permeability of the sinusoid (where a darker colour indicates a higher permeability), 
while the white hepatocyte sites have a constant permeability.

8.4.2 R andom  Perm eability Lattice

The first type of heterogeneous lattice th a t was sim ulated was a random  perm eability 

lattice (Fig. 8.7). The vascular perm eability n was allowed to  vary uniformly between 

k  — <t and k  +  cr, w ith  k  =  r 2/ 8 . The value of a was taken to be 0, 0.25k, 0.5k, 0.75k, or 

k . This lattice can mimic the effects of vascular irregularity in healthy livers (for smaller 

values of a) or diseased livers (larger values of a). The flow ra te  dropped slowly as a  

was increased until a steep two-orders-of-magnitude drop when a  = k  (Table 8.2). This 

suggests th a t relatively significant variations in sinusoid perm eability may have only a 

small effect on liver tran spo rt and th a t healthy livers can support a reasonable amount 

of sinusoidal heterogeneity.

The reaction was first allowed to proceed in a linear m anner w ith an infusion of 

0 .0 1  m olar fraction of paclitaxel and a kinetic rate  coefficient of k = 1 0 ,0 0 0  m in-1 . 

Figure 8 .8  shows the m olar fraction of the m etabolite as a  function of tim e when a  =  k . 

There are two regions in the transient regime: an initial fractal region exists up until
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Table 8.2: Flow rate as a function of the a for a random permeability lattice.

a Q
( x k )  (xlO 5 cm 3/m in)

0

0.25
0.5

0.75
1

2.63
2.54
2.28
1.81

0.0684

t  =  0 .0 1  m in and then  transitions to  a linear region th a t persists between t  =  0 .0 2  min 

and t  =  0.06 min. The fractality  of the initial rise is dem onstrated by the power law 

dependence of k  on tim e (Fig. 8.9), where k(t)  was calculated from

where y (t) is the m olar fraction of the m etabolite, PAC-OH. The value of the power 

exponent was equal to  1.762 ± 0 .0 0 5  (R 2 =  0.998). Therefore, the heterogeneous lat

tice dem onstrated  fractal kinetics in the transient regime when the reaction proceeded 

according to linear kinetics.

W hen the reaction instead followed Michaelis-Menten kinetics, w ith K m  =  2  x  10- 8  

molar fraction and umax =  1 0 ,0 0 0  m in-1 , the transient regime produced the dual be

haviour predicted by the fractal M ichaelis-Menten equation. The initial portion followed 

a power law increase in the molar fraction and then  transitioned to a linear increase 

(Fig. 8.10). The power law exponent was equal to  X  — 11.6 ±  0.2.

These results are consistent w ith those found for the fractal com partm ental model 

for m ibefradil in C hapter 5. The spatial evolution of the m olar fraction of paclitaxel on 

the lattice shows the form ation of islands of higher reaction rates (Fig. 8.11) as predicted 

by the fractal M ichaelis-M enten theory.

The results presented above were for the extrem e case of a  =  k . B ut are these

(8.3)
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F igure  8 .8 : Molar fraction x  of the metabolite PAC-OH as a function of time for 
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F igure  8.9: Initial fractal kinetics of the molar fraction x  of the metabolite PAC- 
OH showing the power law dependence of k on time for the linear reaction on a 
random permeability lattice.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8. FLOW NETW ORK MODEL

OI
uc
0 <

co

03
'o

1. 6-10

1.4-10

1.2 - 0

1 .0 -1 0

8.0-10

6 .0-10

4.0-10'

2 .0-10 

0.0-10'
0.004 0.008 0.012 

t (m in )
0.016 0.02

ffi
OI
u
<Ph

i so
oa

M0"

1-10

0.001

t (m in )

1.6-10"8

1.4-10"8
6<CU
o

1.2-10'8

1.0-10"8

a.2 8.0-10"9
'w
£ 6.0-10"9
*
M 4.0-10'9

os 2.0-10"9 

0.0-10°
0.008 0.012 0.016 

t (m in )
0.02

F igure  8.10: (a) Molar fraction of the metabolite PAC-OH as a function of time 
for a Michaelis-Menten reaction on a random permeability lattice with a =  k. (b) 
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F igure  8.11: Contour plot of the molar fraction of paclitaxel on a lattice with 
random permeability (er =  k), Michaelis-Menten kinetics (K m  =  2 x 10~ 8 and 
^max = 1 0 ,0 0 0  min-1 , and a constant infusion of 0.01  molar fraction of the drug. 
The snapshots were taken at 0.006, 0.016, 0.036, 0.064, 0.1, and 0.4 minutes.
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Table 8.3: Effect of the standard deviation a of the permeability on the shape of 
the molar fraction of PAC-OH curve.

Linear Reaction MM Reaction

a h R? 7 R 2

0.25 1.594 (0.006) 0.998 6.56 (0.08) 0.998
0.50 1.615 (0.006) 0.998 6.83 (0.07) 0.999
0.75 1.641 (0.006) 0.998 7.12 (0.05) 0.999
1 .0 1.762 (0.005) 0.998 1 1 .6  (0 .2 ) 0.998

results also observed for less heterogeneous lattices? Table 8.3 shows th a t the effect of 

increasing a  was to  increase h in the linear case and to  increase 7  in the Michaelis- 

M enten case. Decreasing K m  in the Michaelis-Menten case resulted in a significantly 

higher production of the  m etabolite in the early regime and then  a drop to lower steady 

state  value (Fig. 8.12).
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F igure  8.12: The effect of Km  on the Michaelis-Menten reaction on a random 
permeability lattice with a = k. From top to bottom: Km  — 2 x 10~14, Km —  

2 x H r 13, K m = 2 x 1CT12, and K M = 2 x 10~8
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Figure  8.13: Lattice with p =  0.4. The grey bands are sinusoids and the white 
spaces are hepatocytes.

Table 8.4: Flow rate as a function of the a for a percolation lattice.

p Q (xlO 5 cm3/m in)

1 2.63
0.9 1.96
0 .8 1.18
0.7 0.774
0 .6 0.517

8 .4 .3  P e r c o la t io n  L a ttice

The same sim ulations were run  for a percolation lattice in which the sinusoids were 

removed random ly w ith probability p  (Fig. 8.13). This lattice mimics the effects of 

damage and scarring th a t occurs w ith cirrhosis. In  th is case, the architecture of the liver 

is physically changed. The flow rate  drops w ith p  (Table 8.4), b u t not as drastically as 

in the random  perm eability case. Because p  is a t or above the percolation threshold, 

the pressure difference still drives flow through the lattice. However, some regions will 

receive poor or no flow, which should have an effect on the ra te  of the reaction.
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F igure  8.14: Initial fractal kinetics of the molar fraction x  °f the metabolite 
PAC-OH showing the power law dependence of k on time for a linear reaction on 
a percolation lattice.

The sim ulation results were similar to  those produced by the random  perm eability 

lattice. The linear reaction was best characterized by transient fractal kinetics (Fig. 8.14), 

while the M ichaelis-M enten reaction showed evidence of fractal Michaelis-Menten kinetics 

(Fig. 8.15). The spatial evolution of the molar fraction of paclitaxel when p  =  0.6 (near 

the percolation threshold) is shown in Fig. 8.16. In this case, the regions of reaction 

show a more homogeneous distribution of paclitaxel th an  in the random  perm eability 

lattice; however, there are now large areas w ith no m etabolic activity  at all.

These results suggest th a t even some perm anent change in the  tissue architecture pro

duces significantly anomalous kinetics. The effect of changing the  value of p  is recorded 

in Table 8.5. In the  linear case, there is little difference in the h values. In  the Michaelis- 

M enten case, there is variation among the 7  values, bu t w ith no consistent pattern .
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F igure  8.15: (a) Molar fraction of the metabolite PAC-OH as a function of time 
for a Michaelis-Menten reaction on a percolation lattice with p = 0.6. (b) The 
initial power law increase, which transitions to (c) a linear increase.
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F igure  8.16: Evolution of the molar fraction of paclitaxel on a percola
tion lattice with probability p = 0.6  of each sinusoid being intact, at t = 
0.0004,0.0012,0.002,0.0042,0.008,0.02 min.
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Table 8.5: Effect of p on the shape of the molar fraction of PAC-OH curve.

Linear Reaction MM Reaction

p h R 2 7 R?

0.9 1.678 (0.009) 0.995 7.14 (0.10) 0.996
0.8 1.658 (0.007) 0.996 7.96 (0.09) 0.999
0.7 1.646 (0.009) 0.996 7.30 (0.05) 0.998
0.6 1.646 (0.009) 0.996 6.68 (0.10) 0.996
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8.5 C on clu sion

144

In  this chapter, it was dem onstrated th a t the aggregate behaviour of an ensemble of drug 

molecules as represented by a fractal com partm ent can be reproduced at the level of the 

functional unit of the  organ. Because the behaviour a t the sm aller scale is similar to 

th a t a t the  whole organ scale, this is an example of scaling. Two types of heterogeneity 

were considered, corresponding to  tem porary and perm anent damage to  the liver tissue 

architecture. B oth  were shown to lead to  fractal and fractal M ichaelis-M enten kinetics 

under certain  conditions, providing support for the theoretical predictions in Chapter 5 

as well as the in terp reta tion  of the liver as an ensemble of islands of m etabolic activity.

This work may be expanded in the future to model a percolation lattice w ith random  

permeability, a three-dim ensional lattice, and the zonation of enzyme activity w ithin the 

lobule. In  addition, the dynamics of the liver architecture could be modeled such tha t 

the causes of liver dam age and the subsequent regeneration are included.
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Chapter 9

Conclusion

9.1 Sum m ary

The m ain objective of the research presented in this thesis was to model the effects of 

spatial and tem poral heterogeneity on drug processes occurring w ithin the body. This 

was achieved using a com bination of methodologies borrowed from physics (Table 9.1) 

and the development of new pharm acokinetic theory.

The first new m ethodology presented was a  technique for fitting the param eters of 

a model to experim ental da ta  using a sim ulated annealing algorithm . The m ethod per

formed com parably to commercial software, and because of its independence on the initial 

conditions, it was shown to  be especially applicable to  fractal com partm ental models. 

Second, a stochastic m odel was developed using a random  walk model w ith bo th  short

term  and long-term  interactions between drug molecules. Finally, a  physiologically-based

Table 9.1: Summary of models.

Model Characteristics Heterogeneity

Fractal C om partm ental Determ inistic, Continuous Spatial
CTRW Stochastic, Discrete Spatial, Temporal
Flow Network Determ inistic, Discrete Spatial
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network model was constructed for the liver functional unit and was able to  reproduce 

the heterogeneous structu re  of bo th  healthy and diseased livers using random  and per

colation lattices.

The m ain theoretical contribution of this thesis was the development of a fractal 

M ichaelis-M enten equation to describe saturable, enzyme-m ediated reactions occurring 

w ithin heterogeneous and poorly-mixed environments. The m odel incorporates a fractal 

reaction order th a t can be naturally  interpreted in term s of the  anatom y and physiology 

of the liver. W hen incorporated into the com partm ental framework, the fractal Michaelis- 

M enten theory provided an improved fit to  da ta  for the cardiac drug mibefradil. The 

theory of fractal kinetics under bo th  simple and saturable conditions was supported by 

sim ulations using b o th  the interacting random  walk model and the physiologically-based 

network model.

Several mechanisms for generating and modeling concentration-tim e curves with long

tim e power law tails were proposed, including fractal M ichaelis-M enten kinetics, Levy- 

d istributed trapp ing  tim es, and the com petition between two saturable processes.

To summ arize, different m ethods from physics have been successfully applied to solve 

problems in pharm acokinetics and to extract additional inform ation about the behaviour 

of pharm acokinetic systems.

9.2 F uture D irection s

The m ethods described in th is thesis can be bo th  expanded and applied to solve other 

problems in pharm acokinetics. For example, additional types of tem porary trapping 

sites could be incorporated into the CTRW  model to  investigate the effect of reservoirs 

such as fat cells on the d istribution of the drug at its target site. In  addition, other types 

of d istributions could be used to model the trapping  times.

The theory of fractal com partm ents can be applied to  other tissues in the body. For 

example, the kidney is responsible for the excretion of many drugs, and the venous and
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arterial trees feeding the kidney as well as the network of tubules th a t remove the urine 

all approxim ate fractal trees. In addition, the branching natu re  of the bronchial tree 

suggests th a t it could be modeled by a fractal com partm ent. Furtherm ore, different 

types of tum ours have been shown to have fractal structures.

Finally, a three-dim ensional version of the flow network model could be constructed. 

Eventually, th is type of model could be developed for the m ajor organs in the body as 

well as for different types of tum ours, and they could be all connected into a full-body 

physiologically-based pharm acokinetic model. By incorporating the specific anatom i

cal and physiological characteristics of a given patient, such a  model could be used to 

test the individual’s response to  different therapeutic  regimes in a virtual, noninvasive 

environment.
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A ppendix A

Fractals

A .l  D efin itio n

In  the past century, the concept of fractals has been developed to  describe spatial or 

tem poral phenom ena th a t are continuous bu t not differentiable. The term  fractal was 

coined by Benoit M andelbrot [113] in 1975 from the latin  word fractus, or “fragm ented” . 

Fractals are typically characterized by roughness on all scales, which can lead to  proper

ties like self-similarity, scaling, and a fractal dimension. Therefore, they are useful tools 

for m odeling disordered systems [24], Fractals can be m athem atical or na tu ra l entities, 

and they are generally characterized by three properties: they are self-similar over many 

scales, they can be generated by an iterative process, and their fractal dimension is not 

equal to the Euclidean dimension.

An object is self-similar if it is invariant under bo th  transla tion  and dilation, such 

th a t the sm aller parts  resemble the structure  of the whole. Euclidean objects are only 

invariant under translation. For example, when a circle is magnified, it begins to  appear 

more and more like a straight line. W ith  fractal objects, however, continually increasing 

the magnification simply reveals more and more fine structu re  th a t resembles th a t of the 

whole. Not all self-similar objects are fractal, however, such as squares and triangles.

If a property  L{r) is m easured at resolution r  and then  com pared to  the value of the
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property a t resolution ar, it is said to possess self-similarity if
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L(ar) = k L (r ), (A .l)

where k is a proportionality  constant. The solution to  Eq. (A .l) is the scaling relationship

L (r) =  (a r )a , (A.2)

where a  is the scaling exponent and a is a constant. This equation expresses how the

value of the property  depends on the measurement resolution.

The scaling relationship has the form of a power law and thus exhibits some special 

properties. It gives a straight line w ith slope a  when plotted  on a double-logarithmic 

plot since

logL (r) =  a lo g (r)  +  lo g A  (A.3)

Due to the dependence on the resolution, power laws do not single out any particular 

value, unlike the m ean of the Gaussian distribution. In  addition, small irregularities at 

small scales are reproduced as large irregularities a t larger scales, and thus the variance 

may also not exist. If different variables are scaled by different factors, the fractal is said 

to be self-affine [169].

Fractals can also exist in time. In this case, the fluctuations of the value of a variable 

as a function of tim e will resemble each other when examined over different tim e scales. 

The tim e series is said to  be generated by a fractal process.

A determ inistic fractal is a m athem atical entity  th a t is exactly self-similar over a the

oretically infinite range. A sta tistical (or random ) fractal is only self-similar on average 

and its elements are generated from a probability distribution ra the r th an  through an 

exact determ inistic law. For statistical fractals, it is the d istribution of the measurement
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or property th a t  is the same at different scales:

PD F [L(ar)] = PD F [kL(r) ] , (A.4)

where PDFfx] refers to  the probability d istribution function for the  value x. In addition 

to  not being Euclidean, na tu ra l fractals cannot be strictly  fractal, and hence statistical 

fractals are most useful in modeling natu ra l phenomena. A lthough there will always be 

a lower and an upper cutoff for which the self-similarity of a  na tu ra l object or process 

holds, these cutoffs may be separated by several orders of m agnitude.

A . 2 E xam p les

The Koch curve and Sierpinski gasket, examples of determ inistic fractals, are shown in 

Figures A.2 and A.2, respectively. They can be generated through an iterative process 

by successively applying a  generator to  an initiator. The in itia tor can be replaced by 

smaller and sm aller version of the generator (as in the case of the Koch curve), or it 

can be assembled into larger and larger versions of itself (as in the case of the Sierpinski 

gasket).

The in itia tor of the  Koch curve is a straight line. The generator is formed by dividing 

the line into three equal segments, then  removing the middle segment and replacing it 

by two copies th a t  point upwards along an equilateral triangle. During an iteration, each 

line segment is replaced by smaller and smaller copies of the generator. If the lengths of 

the three segments are not equal bu t instead are random ly chosen at each iteration, a 

statistical Koch curve is created.

The in itia tor for the Sierpinski gasket is a solid equilateral triangle. Each successive 

step is formed by the union of three copies of the current object, resulting in a new object 

th a t resembles the  previous one bu t is twice the size. The gasket can also be formed by 

starting  w ith a solid triangle, removing the middle triangle, and then  repeating iteratively 

for all rem aining triangles.
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(a)

1
(b)

1
(c)

1
(d)

Figure  A .l :  The Koch curve. The initiator is shown in (a) and the generator is 
shown in (b). Configurations (c) and (d) are formed by replacing every line segment 
by successively smaller copies of the generator.

F igure  A .2: The Sierpinski gasket. To generate the next iteration, three copies 
of the object are arranged to form a figure that is similar in shape but twice the
size.
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An example of a fractal tim e series is the W eierstrass-M andelbrot function [113]:

where l < d < 2 , 6 i s a  constant determ ining how much of the curve is visible for a 

given range of t, and (f>n is an arb itrary  phase. This function is continuous bu t has no 

derivative a t any point nor a characteristic scale. Setting <fin =  0 and taking only the 

real p a rt gives [26]

Figure A .3 shows the shape of Eq. (A.6 ) for two different values of d. For values close 

to  d — 1 , the  fluctuations about the trend  line are small, b u t as d  approaches 2 , the 

fluctuations become more pronounced. Figure A .4 shows the W eierstrass-M andelbrot 

function p lo tted  over two different tim e scales. The curves are self-affine since they are 

superim posable if the coordinates t  and C  are scaled by different factors. By choosing 

a random  phase (f)n over the interval (0,27r), the equivalent sta tistical fractal can be 

generated [26].

u larity or complexity of an object or process. The sim ilarity dimension ds describes the

(A.5)
U —  —  OQ

(A.6 )

A .3 T h e Fractal D im en sion

Different definitions for the fractal dimension have been developed to  quantify the irreg-

num ber N  of original curves th a t fit into the curve when it is magnified by a factor F. 

For Euclidean objects,

N  = X D. (A.7)

For determ inistic fractal objects, the relation is

N  = X ds, (A.8 )
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C(t)
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F igure  A .3: The Weierstrass-Mandelbrot function C(t) with b = 1.5 and —1000 < 
n < 1000. (a) D =  1.3. (b) D = 1.7.
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t
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F igure  A .4: The Weierstrass-Mandelbrot function C(t) with b =  1.5, D — 1.7, 
and - 1 0 0 0  < n  < 10 0 0 . (a) 0 < t < 1 . (b) 0 < t < 0 .0 1 .
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where ds can take non-integer values. Rearranging gives

log N
log.F

(A.9)

W hen the Koch curve is enlarged by a factor of 3, the new curve contains 4 of 

the original curves and therefore ds =  1.26. Therefore, the Koch curve is a fractal 

w ith embedding space D  = 2, topological dimension d r  = 1, and sim ilarity dimension 

ds =  1.26. It is more dense th an  a  one-dimensional object b u t less dense than  a two- 

dimensional one, and the self-similarity dimension describes the ability of a line to fill 

an area of space. For the Sierpinski gasket, when the object is enlarged by a factor of 2, 

it contains three of the original curves, and thus ds — 1.58.

The fractal dimension can also be calculated from the scaling relationship, since [23]

1 — a  for ID 

, = < 2 - a  for 2D. (A-10)

3 — o; for 3D

in Eq. (A.2).

Because the sim ilarity dimension can only be calculated for determ inistic fractals, a 

more general fractal dimension called the Hausdorff-Besicovitch dimension [69], d u . has 

been developed. It is also referred to as the capacity dimension or the fractal dimension 

d f. In fact, M andelbrot’s formal definition of a fractal was a set for which the Hausdorff- 

Besicovitch dimension strictly  exceeds the topological dimension [113]. It is calculated 

as

r —fO log (i) ’

where d r  < d f < D , N  is the minimum  num ber of balls of radius r  required to cover 

the object [69]. For determ inistic fractals, d f = ds. The fractal dimension is a summary 

statistic  th a t  m easures the overall complexity of an object or process. As such, it is
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an im portant descriptor when used in conjunction w ith other measures. The fractal 

dimension of a  sta tistical fractal is the same as th a t for its determ inistic counterpart. 

For a tem poral series, the fractal dimension describes the relationship between signal 

variance and the  tim e scale [169].

If a group of objects or curves are characterized by the same exponent, they may 

fall into a universality class, which suggests commonality in their underlying microscopic 

mechanisms [180]. On the other hand, an object or process may not be described by 

a unique fractal dimension bu t ra ther a set of fractal dimensions. This is called mul- 

tifractality, and m ultifractal phenom ena are typically associated w ith systems governed 

by random  m ultiplicative processes [179].

A .4 F ractals in A n a to m y  and P h y sio lo g y

Anatomy is the branch of morphology th a t deals w ith the structu re  of organisms, and 

physiology is the  branch of biology th a t deals w ith the function and activities of those 

structures. M any anatom ical structures have fractal characteristics, and a wide range of 

fractal processes have been identified in physiology.

One of the m ost prom inent fractal structures in the body is the dichotomously branch

ing tree (Fig. A.4), whose vessels become successively shorter and narrower to most effec

tively their embedding space. Such a pa tte rn  is found in the blood vessels supplying the 

heart [22], lung [80], liver [57], kidney [61], and retina  [120] as well as in the branches of 

the bronchial tree [12, 78] and the dendrite arbors of neurons [158]. It has even been sug

gested th a t fractal geometry such as the hierarchical tree is a biological design principle 

th a t maximizes efficiency and functioning [192],

Fractal geom etry has also proven to  be an appropriate tool for measuring the irreg

ularity and complexity of tissues over many scales, from the organization of cells a t the 

organ and bone level [36, 57] down to  the surface of cells [89] and the distribution of 

protein aggregates in the  m em brane [50], the organization of the  cytoplasm  [49, 191]
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Figure A .5: A fractal tree with dichotomous branching. At each level, both the 
radius and the length of the branch are reduced.

and the nucleus [99], and the structure  of individual proteins [33] and RNA [154], Fur

therm ore, fractals have been found to  characterize the shape of tum ours [45, 40]. The 

fractal dimension may even be related to the severity of disease or injury of a tissue. For 

example, Moal et al. [127] found th a t the fractal dimension of the  liver increases with 

increasing fibrosis, and Spillman et al. [178] used the fractal dimension to  characterize 

the level of m alignancy of a cancer.

Examples of sta tistical fractals in physiology include ion channel kinetics [102], reg

ulation of renal blood pressure and flow [116], fluctuations in the EEG signal [203] and 

the heartbeat [6 6 ], and the volume and duration of consecutive b reaths [54], These time 

series are characterized by long-range correlations, which may contribute to the adap t

ability necessary for the health  of an individual. In  fact, the fractal dimension may prove 

to  be a quantita tive  tool for assessing an individual’s level of risk for a particular dis

ease, m onitoring the individual’s health, and forecasting outcomes [65]. Thus, disease or 

a physiologic “disorder” may in fact be related to an increase in m athem atical order and 

a decrease in the  fractal characteristics of the system. Finally, because all of the above 

examples are n a tu ra l objects and phenomena, their fractal characteristics only exist over
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a finite size or tim e scale.
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