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Abstract

Pharmacokinetics describes the course of a drug through the body and is the main
quantitative tool used in all stages of drug discovery, development, and administration.
Most pharmacokinetic models are based on the assumption that drug transport and re-
action kinetics occur in a homogenous environment. However, the spaces in the body are
usually confined and heterogeneous. Consequently, the transport and chemical reaction
processes occurring within them can become anomalous. Evidence of this result includes
emergent power law behaviour. The objective of this thesis is to apply concepts from
physics to develop more physiologically-accurate models of drug processes occurring in
the body in the presence of spatial and/or temporal heterogeneity.

Several complementary models were developed to investigate drug elimination ki-
netics in a heterogeneous environment. Fractal drug kinetics under Michaelis-Menten
conditions was developed and implemented using a continuous, deterministic fractal
compartmental model. Using a parameter optimization method based on a simulated
annealing algorithm, the model was found to provide an improved fit to experimental
data for the cardiac drug mibefradil.

The theory of fractal elimination kinetics was then tested using a stochastic method
based on an interacting random walk model. It was found that short-term correlations
between drug molecules produced Michaelis-Menten elimination kinetics while long-term
correlations produced fractal kinetics. By combining both effects, the fractal Michaelis-
Menten theory was reproduced. The model was then expanded into a continuous time
random walk model to include the effects of temporal heterogeneity in the form of Lévy-
distributed long-time trapping of drug molecules in temporary traps.

Power law behaviour does not always indicate fractal kinetics. A two-compartment
model for the anticancer drug paclitaxel was used to demonstrate that it can be pro-
duced by the competition between two saturable processes. The power exponent of the

long-time tail of the concentration-time curve was correlated with the power exponent
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describing the nonlinear dose-dependence of two pharmacokinetic measures.

Finally, a physiologically-based flow network model was used to show that the organ-
level dynamics of drug metabolism can be reproduced at the level of the functional unit of
the liver. Different types of spatial heterogeneity that mimicked pathological conditions

were found to lead to either fractal or fractal Michaelis-Menten kinetics.
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Chapter 1

Introduction

Humans have a long history of using compounds to achieve therapeutic effects. The
Chinese scholar-emperor Shen Nun compiled a book about medical herbs around 2700
B.C., and synthetics compounds were created as early as the fourth century B.C. by Hip-
pocrates [34]. Today, drugs play a crucial role in the way that we diagnose, treat, and pre-
vent disease. Pharmacokinetics — the study of the absorption, distribution, metabolism,
and eventual elimination of a drug or chemical from the body — is the main quantitative
tool used in all stages of drug formulation and administration. During the development
stage, it aids in the design and analysis of laboratory experiments and the elucidation
of drug mechanisms. During Phase I and II clinical trials, it is essential in evaluating
the drug’s effectiveness, optimum dose levels, and preferred routes of administration.
During Phase III clinical trials, pharmacokinetics is used to compare the new drug with
standard therapies. Finally, in daily clinical practice, it is used to calculate optimum
doses for individual patients. The focus of this thesis is to advance our understanding

of the way that the body processes drugs and the implications for patient therapy.
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CHAPTER 1. INTRODUCTION 2

1.1 Challenges to Pharmacokinetic Modeling

The quantification of the course of a drug in the body is subject to certain constraints.
Firstly, pharmacokinetic data consist primarily of the drug concentration in the plasma
at discrete times. However, the site of action of the drug is typically outside the plasma,
and crucial information about the actual dose to the target may be unavailable. In
addition, clinical procedures and patient comfort limit the number of samples that can
be taken, which in turn constrains the number of model parameters that can be fit
to the data with suflicient statistical significance. In a literature review of 50 random
pharmacokinetic studies performed between 2001 and 2003, it was found that the average
number of experimental data points was 12 £ 5, with the overall sampling time ranging
between 30 minutes and 28 days. In only 11 of the studies was there additional data for
the drug concentration in the urine, endocrine system, dialysate, or expired air.
Compartmental models are the most common type of pharmacokinetic model due to
their wide range of applicability and ease of use in a clinical setting. The body is divided
into a network of compartments, where a compartment is defined as a kinetically-distinct
amount of the drug. In classical pharmacokinetics, each compartment is assumed to be
homogeneous and instantaneously well-mixed, such that the transfer of drug between
compartments follows linear or Michaelis-Menten kinetics. However, there is evidence
that many spaces in the body are heterogeneous and/or poorly-mixed, and thus classical
kinetics may be an inadequate model for certain drug processes. The pharmacokinetics of
a drug can be altered due to spatial heterogeneity (for example the branching geometry of
the vascular system) and/or temporal heterogeneity (for example the long-time trapping

of drug molecules in tumour cells).

1.2 The Role of Physics

Mathematical methods have been developed in fields of physics to describe and model

transport and reaction processes occurring on or within heterogeneous media. These
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CHAPTER 1. INTRODUCTION 3

techniques include fractal geometry and fractal kinetics, percolation lattices, universality,
and scaling. Since a dose of drug can be treated as an ensemble of many identical drug
molecules, tools from statistical mechanics, such as random walks and Monte Carlo
simulations, can be applied to its analysis. For example, a typical dose the anticancer
drug paclitaxel contains on the order of 10%° drug molecules. Physical models can relate
the macroscopic behaviour of the ensemble to the microscopic behaviour of the individual
drug molecules.

By applying a combination of deterministic and stochastic modeling, different aspects
of the system can be investigated and modeled. Generally, deterministic models are best
for curve fitting and clinical applications, while stochastic models can provide realistic
models of fundamental drug processes and a platform to simulate the behaviour under

different conditions.

1.3 Hypothesis

In this thesis, it is proposed that the observed nonlinear behaviour of many drugs is
a result of the underlying complexity of the course of a drug. While such complexity
might seem to preclude models simple enough for clinical applicability, the opposite is in
fact true; relatively basic formulas have been developed that accurately describe complex
systems. This research aims to apply techniques from physics to develop more accurate
and meaningful pharmacokinetic models as well as clinically-relevant information. As

such, the goals of this research can be divided into two categories:
1. To increase our understanding of drug behaviour by:

e reproducing the observed pharmacokinetic behaviour of anticancer and car-
diac drugs in the body, especially their long-time power-law tails and nonlinear

dose-dependence;

e developing methods to extrapolate the dose to the target from the observed

plasma concentration-time curve;
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CHAPTER 1. INTRODUCTION 4

¢ introducing the power law tail exponent as a diagnostic tool of drug behaviour;

e exploiting the scaling properties of power laws to relate the observed macro-
scopic behaviour to underlying microscopic processes and the behaviour at

the organ level to that at the level of the functional unit.
2. To improve clinical applications through:
e better estimates of optimum dose levels, timing, and length of infusion to
achieve the maximum therapeutic effect;

e individualized treatment plans for patients, using new scaling relationships;

e novel quantitative parameters derived from plasma concentration-time curves
that can be used to dynamically evaluate the response of a patient to a treat-

ment regimen.

1.4 Original Contributions

This thesis presents the following new contributions:

o extension of fractal pharmacokinetic theory to include Michaelis-Menten reactions.

¢ development of a parameter optimization method based on a simulated annealing

algorithm to fit fractal compartmental models to experimental data.

¢ incorporation of the fractal Michaelis-Menten theory into a compartment model

that provides an improved fit to data for the cardiac drug mibefradil.

e evidence of correlation between power law dose dependence and power law tails of

concentration-time curves for the anticancer drug paclitaxel.

o development of the first stochastic pharmacokinetic model that includes both short-
term and long-term interactions between drug molecules. This interacting ran-
dom walk model supports the analytical theory predicted by the fractal Michaelis-

Menten equation.
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CHAPTER 1. INTRODUCTION 5

e expansion of the random walk model into a continuous time random walk that
incorporates temporal heterogeneity in the form of drug trapping times as Lévy

flights.

¢ use of a physiologically-based network model to relate the macroscopic fractal
behaviour at the organ compartment level to the behaviour at the level of the

functional unit of the organ.

e use of a random lattice and a percolation lattice to model the heterogeneity of the

structure of both healthy and diseased livers.

1.5 Organization of the Thesis

A review of basic pharmacokinetic concepts is presented in Chapter 2. In Chapter 3,
a computational method for parameter optimization based on a simulated annealing
algorithm is described. A new equation for Michaelis-Menten kinetics occurring within
a heterogeneous environment is derived in Chapter 4 and shown to provide an improved
fit to data for the cardiac drug mibefradil. In Chapter 5, clinical data for the anticancer
drug paclitaxel is shown to obey power law behaviour that emerges from the competition
between two saturable processes. In Chapter 6, an interacting random walk model is
developed that reproduces fractal-like elimination kinetics, and in Chapter 7 this model
is expanded into a continuous time random walk model that incorporates the effects of
long-time trapping of drug molecules within the body. The results of a physiologically-
based flow network model for the functional unit of the liver are presented in Chapter 8.
Finally, Chapter 9 summarizes the main conclusions of the thesis and provides direction

for future research.
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Chapter 2

Basic Concepts in

Pharmacokinetics

Pharmacokinetics is the quantification of the course of a drug through the body, includ-
ing its absorption, distribution, metabolism, and excretion. The aim of pharmacokinetic
modeling is to describe and predict the behaviour of a drug, with the ultimate clini-
cal goal of maximizing the drug’s therapeutic effect while minimizing any toxic effects.
Pharmacological data in humans and lab animals such as dogs or mice typically consist
of discrete values of the concentration of a drug in a certain volume as a function of time.
The work in this thesis will focus on drug concentration values in the plasma obtained
through intravenous sampling; however, the methods described can be equally applied

to pharmacokinetic data obtained through other methods or for other tissues.

2.1 Plasma Concentration-Time Curves

Drugs can be introduced into the body through a variety of routes, including subcuta-
neous, intramuscular, oral, buccal, bolus intravenous (IV), and IV infusion. The latter
two should be distinguished from the others, since they entail direct input of the drug

into the bloodstream and thus involve no absorption processes. In most cases, the dose
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CHAPTER 2. PHARMACOKINETICS 7

concentration

time

Figure 2.1: An example of a plasma concentration-time curve for a drug under-
going absorption, distribution, metabolism, and elimination in the body following
an intravenous infusion.

results in transient pharmacokinetics, and the system progresses in a dissipative man-
ner until all of the drug has left the system. A plot of these values generates a plasma
concentration-time curve that first rises as absorption of the drug dominates and then
decreases after a maximum concentration value is reached. This decline may be relatively
short or may last for several days, and it is mainly governed by the rate of elimination
of the drug from the body. The simplest case is illustrated in Fig. 2.1. Unless otherwise
indicated, the term “concentration-time curve” will refer to the values for the plasma.
When a dose of drug is given as a bolus directly into the vascular system, the re-
sulting concentration-time curve decreases continuously from a maximum and is called
a clearance curve. For drugs rapidly distributed throughout the body, the shape of
the curve is determined predominantly by the rate of elimination through enzymatic

biotransformation or direct excretion. In this case, the input function is given by

I(t) = : (2.1)
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CHAPTER 2. PHARMACOKINETICS 8

the resulting concentration-time curve is called a clearance (or washout) curve.

Due to its systemic pervasion and relative ease of access, the blood is the dominant
material for which pharmacokinetic data are taken. However, because a drug’s target is
most often outside of the blood, pharmacokinetic data tend to be an indirect signal from

which the desired or crucial information must be deduced.

2.2 Pharmacokinetic Parameters

Certain parameters are used to quantitatively describe a pharmacological data set. Phar-
macokinetic parameters depend on intrinsic properties of a drug and the physiological
system with which it interacts [157]. These include:

Area under the curve (AUC): a measure of the systemic exposure to the drug when
calculated for the plasma curve. It reflects the ability of the body to remove a drug,

where a larger value indicates a lower ability. The AUC is calculated as
oo
AUC:-—/ C(t)dt. (2.2)
0

Volume of distribution (V3): the theoretical, apparent volume of fluid in which the
total administered dose would have to be distributed in order to achieve the concentration
observed in the plasma. It is a ratio between the amount of drug in the body and the
observed plasma concentration. Gilette [63] proposed that Vj is directly proportional to
the free fraction of drug in the plasma and inversely proportional to the free fraction of
drug in other tissues. Thus drugs that are highly bound to plasma proteins will lead to
a low apparent V; and a high plasma concentration, and drugs that are highly bound
to tissues will exhibit a high apparent Vy and a low plasma concentration. The volume
of distribution is generally only used for linear, stationary systems under steady state
conditions.

Clearance (Cl): the volume of plasma cleared of a drug per unit time. Clearance

describes the efficiency of irreversible elimination of a drug from the body, an organ, or
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CHAPTER 2. PHARMACOKINETICS 9

a pathway. For total body clearance:
[e @]
F-D= / Cl-Cld, (2.3)
0

where F' is the bioavailability, D is the dose, and C(¢) is the drug concentration at time

t. For constant clearance:
_F-D

Cl= Viitoh

(2.4)

Maximum concentration (C,.;): occurs at a time Tjq, and is usually calculated by

fitting an equation to the concentration curve and solving for

dC
— =0 . (2.5)

C=Cmaz
Half-life (#;/3): the time required to reduce the drug concentration in the plasma by
one-half. While the half-life gives a quantitative measure of the presence of the drug in
the body, it is constant only for monoexponential functions [156].

Although most pharmacokinetic parameters are defined independently of a model,
their calculation may depend on the mathematical model chosen to represent the sys-
tem [157]. The model parameters are those quantities specific to the chosen model, and
while they depend on the drug and physiological properties, they also depend on the hy-
potheses of the model. The next section summarizes the main types of pharmacokinetic

models.

2.3 Pharmacokinetic Models

Pharmacokinetic studies can be generalized into two categories: individual-based or
population-based. In individual-based studies, pharmacokinetic parameters are esti-
mated independently for each patient. Population-based studies, on the other hand,
pool drug concentration values from more than one individual. They account for both

random and fixed effects that produce the variability between individuals and within
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CHAPTER 2. PHARMACOKINETICS 10

individuals [152]. Although less data points are required per patient when using this
approach, assumptions must be made in combining data from different patients and po-
tentially from different studies. These include the shape of the sampling distributions of

the population estimates.

2.3.1 Compartmental Models

In compartmental modeling, the most widely-used type of modeling in pharmacokinet-
ics, the body is represented by a system of compartments that may or may not have
anatomical or physiological meaning. A compartment is defined to be an amount of
material that acts kinetically like a distinct, well-mixed amount of the material [83]. In
other words, every drug molecule in a compartment has the same probability of under-
going a set of chemical or transport processes. The exchange of drug molecules between
compartments is described by kinetic rate coefficients. Two compartments merge if they
exchange material so rapidly that they are indistinguishable. The models are usually
open, with at least one input and one output.

Classical kinetics is based on the law of mass action, which states that the rate of a
chemical reaction is directly proportional to the product of the concentrations of the M

reactions each raised to the order n;,

M
v=k][] XM, (2.6)
=1

where X; is the mass of reactant ¢ and & is the kinetic rate coefficient. The reaction
order n; is the number of mass terms that must be multiplied together to get the rate
of the reaction [44]. For a single step, n; is typically equal to the molecularity, which is
the number of molecules that are altered during the reaction.

In a one-compartment model, the body is approximated as a single homogeneous
compartment. It is important to note that this does not mean that the drug concentration

is the same everywhere in the body; rather, the change in the drug concentration is
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CHAPTER 2. PHARMACOKINETICS 11

everywhere proportional to the change in the plasma concentration. When only one

molecule is modified, the linear one-compartment model is described by

d
X (t) = kX (2). (2.7)

The general case of N compartments is represented by a system of coupled ordinary

differential equations:

d
EX(t) = KX(#), (2.8)
where X(#) is the column vector
X1(t)
X(t) = (2.9)
Xn(t)

The matrix K has dimensions N x N and elements k;;. Typically, k;; # kj; and the
matrix K is not symmetric. A bolus dose Dy injected into the first compartment takes

the form of the initial condition

Dy
0
X0=1 |- (2.10)
0
The general solution to Eq. (2.8) is [115]
m m;—1
Xi(t) =D ay | Y cirt’ | exp (Ajt), (2.11)
j=1 k=0

where 4, j, and k are integers, a;; and c¢;;;, are constants, and K has m distinct eigenvalues
A; with multiplicity m;.

The above equations can be written alternatively in terms of the drug concentration
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CHAPTER 2. PHARMACOKINETICS 12

by using the concept of the volume of distribution introduced in Section 2.2, since
X =VyC. (2.12)

For constant Vy, Eq. (2.8) becomes

d
=C(t) = KC(t). (2.13)

If an IV infusion is administered instead of a bolus dose, the following matrix would

be added to the righthand side of Eq. (2.8) or Eq. (2.13):

w=| |, (2.14)

where i(t) is the infusion rate in units of mass/time.

Advantages of compartmental models include their wide applicability and the fact
that they can be formulated in terms of anatomical components or physiological pro-
cesses. For example, the pharmacokinetics of an anesthetic drug could be modeled by two
compartments, one for the plasma and one for the brain. The two compartments would
exchange drug molecules at a rate dependent on the permeability of the blood-brain
barrier.

Limitations of classical compartmental models lie in their assumptions, the main one
being that each compartment is homogeneous and instantaneously mixed. To assess the
applicability of compartmental models to a given situation, the relative mixing rates

* within compartments should be compared to the transfer rates between compartments.

A subset of compartmental models is the so-called physiologically-based pharmacoki-

netic (PBPK) models [41]. While this term incorrectly implies that classical compart-
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CHAPTER 2. PHARMACOKINETICS 13

mental models have no physiological basis, PBPK models differ by explicitly expressing
the kinetic rate coefficients and volumes of distribution in terms of physiological and
anatomical parameters such as blood flow and metabolic rates, organ volumes, mem-
brane permeability, and molecular binding constants. There are two general types of
PBPK models: flow- or diffusion-limited models and membrane- or perfusion-limited
models (see [5] for a comprehensive study involving both types of models). Advantages
of PBPK models include transfer coefficients related directly to physiological processes
and easier scaling of models between species and from in witro to in vivo [41]. Disad-
vantages of these models include the necessary amount of detailed kinetic information,
their relative complexity, and difficulties in validating the parameters and fitting them
to experimental data. Some software has been developed to make these models more

user-friendly (see for example PKQuest [100]).

2.3.2 Non-Compartmental Models

To address some of the limitations of compartmental models, several non-compartmental
approaches have been developed. The method of moments, or mean residence time
theory, uses not only the AUC but also quantities like the area under the moment
curve {(AUMC) and the mean residence time (MRT) to deduce information about a data
set [194]. Linear system analysis (LSA) uses procedures such as convolution, deconvo-
lution, and disposition decomposition analysis [190]. Circulatory models describe drug
disposition in terms of repeated cycles in the circulatory system, where the residence
time of a drug molecule is determined by the cycle time and the number of cycles the
molecule undergoes before elimination (see for example [98]).

Advantages of non-compartmental analysis include fewer assumptions and ones that
are typically related to the observed behaviour rather than the nature or mechanisms of
the underlying system [62]. In addition, they provide general methods that can apply to
a wide range of data sets. Both compartmental and non-compartmental methods can be

applied to the same system, either in complimentary roles or with non-compartmental
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analysis as an initial investigation [164].

It is important to note that in many cases, ‘non-compartmental’ models can be
mapped onto the compartmental framework. For example, Lansky [98] points out that
his circulatory model can be studied as a unilateral compartmental model in which the

compartments are arranged in series with a feedback loop.

2.3.3 Stochastic Pharmacokinetic Models

Both compartmental and non-compartmental models can be formulated in terms of deter-
ministic and/or stochastic variables. Stochastic components can be incorporated through

the use of
e random inputs or initial conditions;
¢ 3 random matrix representation for the kinetic rate coefficient K;

e random walk models in which single molecules are followed between compartments

or states.

An example of a noncompartmental stochastic model is the circulatory model mentioned
in the previous section.

If the random components are added to the kinetic rate coefficients of a compartmen-
tal model, the effect is linear [83]. For example, kconsider the following one-compartment

model:

dC .
= = fC+i(t) (2.15)

f=k+a, (2.16)
where k£ and o represent the deterministic and stochastic components, respectively.

These equations can be rewritten as a deterministic system with a stochastic input:

dc .
—= =kC +[aC +i(t)]. (2.17)
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On the other hand, if the random components are added to the concentration values,

the effect is nonlinear.

2.4 Nonlinear Pharmacokinetics

The concept of linearity is sometimes poorly defined in the pharmacokinetic literature.
In general, a system is considered to be linear when its output is directly proportional
to its input. Systems that can be described by a set of linear differential equations
guarantee such a property. As discussed in Section 2.3.1, a linear ODE has kinetic order

n=0or n =1 and is expressed for a one-compartment model as

dc
— =kC. (2.18)

Linear processes obey the superposition principle, which states that the whole is
equal to the sum of its individual components. If the variable y is linearly related to z,

then for arbitrary constants k; and kg, the response to x = kjz1 + kazg is [190]

Yy = k1y1 -+ kgyg. (2.19)

The superposition principle implies that molecules behave in a stochastically independent
manner [189]. In nonlinear systems, however, the behaviour of one molecule is influenced
by that of other molecules [46].

In a clinical setting, nonlinear behaviour of a drug can complicate the design of dosage
regimens as well as predictions of the drug’s effectiveness and toxicity. The main types of
nonlinearity that are discussed in the pharmacokinetic literature fall into two categories:
dose-dependence and time-dependence.

Dose-proportionality is a concept common in dose-escalation experiments, which are
primarily conducted early in the research of a new drug (such as in Phase I clinical

trials). The response of patients to different doses of the drug is measured. If the phar-
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macokinetic parameters are unchanged with changes in the dose, the pharmacokinetics
of the system is said to be dose-independent over the therapeutic range studied [68]. If a
doubling of the dose of a drug produces a doubling in one or more pharmacokinetic pa-
rameters (typically the AUC or Cj,q4), the system is considered to be dose-proportional
and linear. If the parameter values decrease, or increase by a factor other than two, the
system is considered to be dose-proportional and nonlinear.

Time-dependent pharmacokinetics is present when the pharmacokinetic parameters
vary with time due to physical alterations in the body, whether in the form of physio-
logical changes related to the body’s circadian rhythms (called chronopharmacokinetics)
or chemically-induced changes brought about by the introduction of the drug into the
body [101].

Both dose-dependency and time-dependency can be present in the same system (i.e.
the pharmacokinetic parameters describing a system can vary both in time and with
dose), and in fact the sources proposed for both are similar. Lin [103] states that the
causes of nonlinear dose-dependent pharmacokinetics can be found in the processes of
absorption, tissue distribution, protein binding in both the plasma and tissues, and
elimination. Levy [101] breaks down the potential causes of time-dependence into the
categories of absorption and elimination parameters, metabolism, plasma binding, renal
or hepatic clearance, overall systemic clearance, and enzyme activity. Concentration-

dependent pharmacokinetics are usually modeled using Michaelis-Menten kinetics.

2.4.1 Michaelis-Menten Kinetics

The rate of enzyme-catalyzed reactions can deviate from those predicted by classical
kinetics. Michaelis-Menten kinetics [126] is the standard formalism for describing these
reactions. At high concentrations, saturation of the enzymes limits the maximum reac-
tion rate that can be achieved, while at low concentrations, the rate of formation of the
enzyme-substrate complex becomes significant and the reaction becomes dependent on

the substrate concentration [133].
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E+S = ES — P+E

Figure 2.2: Enzyme-mediated reaction. E, S, ES, and P represent the enzyme,
substrate, enzyme-substrate complex, and product, respectively

(a)

vmax

(b)
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Figure 2.3: (a) Velocity v of a Michaelis-Menten reaction as a function of the
reactant concentration, where vmay is the maximum rate of the reaction. (b)
Lineweaver-Burk plot, where C' is the drug concentration and Ky is the Michaelis-
Menten constant.
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Consider the reaction shown in Fig. 2.2, where E, S, ES, and P represent the enzyme,
substrate, enzyme-substrate complex, and product, respectively. If we denote the con-
centration of the substrate as C, the concentration of the enzyme-substrate as z, and the
total concentration of enzymes as eg, the system is described by the following ordinary

differential equations:

Et_ =ki(eg—xz)C — (k_1 + k‘g) T, (2.20)
dp

Using the Briggs-Haldane treatment [44] to simplify the problem, a quasi-steady-state
assumption is made where the concentration of the substrate-enzyme complex is taken

to be constant, i.e. dz/dt = 0. Therefore,
ki(eg —z)C — (k—1 + ko)z = 0. (2.22)

Collecting the terms in z and rearranging gives

r = kleOC’
N kg +ky+kC

(2.23)

Using the fact that the rate of the reaction is v = koz leads to

k2€00

T Eitke :
R tC

(2.24)

Finally, denoting vmax = k2eo, Kpr = (k—1 + k2) /k1 gives the Michaelis-Menten equa-

tion:
UmaxC

= _maxz .25
v Ky+C (2.25)

The parameter vy is the maximum velocity of the reaction, and the Michaelis-Menten

constant K s is the substrate concentration at half the maximum velocity.
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In the low concentration case, where C' << Ky, Eq. (2.25) reduces to

Umax
= 2.26
v=p, (2:20
which is first-order kinetics with & = vyax/Kar. In the high—concentration case, where
C >> Ky, Eq. (2.25) becomes
U = Umax, (2.27)

which is zero-order kinetics with a constant reaction rate.

A plot of v as a function of the concentration reveals a hyperbolic relationship
(Fig. 2.3 a). As the concentration increases, v approaches a maximum value. The
Michaelis-Menten equation can be rearranged to generate a linear plot (called a Lineweaver-
Burk plot, shown in Fig. 2.3 b):

Ky 1, 1
_Kw 1

Umax X P Umax

% (2.28)

Values for vy and Kjr can be estimated from the slope and y-intercept of the line.

2.5 Transient Fractal Kinetics

Fractals are a mathematical construct that describes certain heterogeneous geometric
structures or temporal processes. A introduction to fractal concepts is presented in
Appendix A. Anacker and Kopelman [8] found that reactions that occur on or within
fractal media exhibit anomalous kinetics that do not follow the classical mass-action

form. Specifically, the kinetic rate coefficient becomes time-dependent [94]:
k = kot™", (2.29)

where

h=1- %. (2.30)
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The quantity ds is the spectral dimension that describes the path of a random walker
within the medium [7]. The classical case corresponds to dy = 2. The quantity ¢t~ is
considered dimensionless, and both k& and kg are in units of inverse time (h™!). Because
Eq. (2.29) has a singularity at ¢ = 0 for A > 0, Schnell and Turner [170] have suggested a
modified form based on the Zipf-Mandelbrot distribution, k(t) = ko (7 + )™ where the
constant 7 is the critical time from which the rate constant is driven by fractal effects.
However, if 7 is very small, Eq. (2.29) is a good approximation.

Equations (2.29) and (2.30) have been supported by experiments of trapping and bi-
nary reactions on the Sierpinski gasket, percolation clusters, and lattices with disordered
transition rates [8, 75, 94, 93]. While Eq. (2.29) applies to diffusion-limited reactions on
fractals, it also applies to any situation for which & > 0.

Equation (2.29) has been incorporated into pharmacokinetics through both non-
compartmental and compartmental models. The former includes the homogeneous-
heterogeneous distribution model introduced by Macheras [107] to quantify the global
and regional characteristics of blood flow to organs. The latter includes the fractal com-
partmental model developed by Fuite et al. [55] in which a classical compartment was
used to represent the plasma while a fractal compartment was used to represent the liver.

In this formalism, the rate of elimination from the liver is given by
v = kot "C. (2.31)

Simulations of the model showed that h plays a significant role in determining the shape
of the concentration-time curve [38].

Several attempts have been made to incorporate Eq. (2.29) into the Michaelis-Menten
equation to describe concentration-dependent reactions that occur in spatially-constrained
conditions. Kosmidis et al. [96] made the substitution k; = k0¢~" into Eq. (2.20), pro-

ducing the formula
VmaxC

= Ruth+ 0 (232

v
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They also performed Monte Carlo simulations and found that Eq. (2.32) holds mainly
when the initial substrate concentration is high, either through an intravenous (IV) bolus
adminstration or a high rate of absorption. In addition, they incorporated Eq. (2.32)
into a one-compartment model. Berry [25] used Monte Carlo simulations on a 2D lattice
to model enzyme reactions in low-dimensional media, and he found that h increases inde-
pendently with increasing obstacle density on the lattice and increasing initial substrate
concentration. Simulations performed by Aranda et al. [13] also confirm these results but

suggest that K is characterized by multifractality and hence a set of fractal exponents.

2.6 Power Laws and Scaling in Pharmacokinetics

A power law relationship such as the one expressed by the time-dependence of the fractal
kinetic rate coefficient has special qualities, such as scale-invariance. The variable y

follows a power law function of z if
y(z) = ax®, (2.33)

where b determines the shape of the relationship between y and z, and a controls the
magnitude of the gain in y. If |b| < 1, y increases or decreases more slowly than z, and
if |b] > 1, y changes more rapidly than z. Equation (2.33) possesses the property of
scaling; if = is multiplied by a factor L, the constant changes but y remains proportional

to zb:

y(Lz) = (aLb) 2P, (2.34)

The behaviour of y is said to be self-similar over the range of z for which this relationship
holds.

Power laws do not single out any particular value (unlike the mean of the Gaussian
distribution). The shape or behaviour of such a system is similar at both small and

large scales. If a system with a hierarchical organization produces power-law behaviour
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over a wide range of values of a given control parameter, the system is said to be scale-
invariant [180]. Since naturally-occurring physical and biological systems are neither
perfect nor infinite, it is important to specify the range of values over which a scaling
regime holds. In pharmacokinetics, for example, this might consist of the therapeutic
dose range and the time over which it is attained.

Evidence of power law behaviour has been found in pharmacokinetics, including the
shape of clearance curves, nonlinear dose-dependence of pharmacokinetic parameters,

and allometric scaling.

2.6.1 Clearance Curves

There is evidence that the concentration-time curves of many drugs exhibit long-time
power law tails of the form

Ct) ~ " fort>T, (2.35)

where vy is negative, and T marks the time of the onset of the tail. Negative power laws
were first applied, empirically, to describe the washout of bone-seeking radioisotopes [143,
201]. Subsequently, other types of clearance curves have been fit by a single power law,
two sequential power laws, or the gamma function y(¢) = at~®e~%* [11, 200, 144, 21].
Different explanations for these power law and gamma function fits have been pro-
posed. Wise et al. [202] proposed a stochastic random walk model based on the cycling of
radionuclides in and out of the plasma. By changing the ratio of the cycling probability
to the elimination probability, Wise was able to produce different power law exponents
and even two sequential power laws [201]. Because the nine drugs examined by Norwich
and Siu [144] were predominately eliminated through the liver, they developed a model
based on the anatomy and vasculature of that organ. Their convection-diffusion equa-
tions for the functional unit of the liver, the acinus, generated approximate solutions
with gamma and power functions. Weiss [193] fit plasma curves with functions of the

form C' = At~%~%, which he shows can arise from gamma-distributed residence times.
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He compared the model to a random walk with drift.

2.6.2 Nonlinear Dose-Dependence

Dose-proportionality of pharmacokinetic parameters, such as the AUC and Cq,, can
be identified using a simple plot of the pharmacokinetic parameter as a function of the
dose. The graph will be a straight line with a zero intercept if the parameter is linearly
proportional to dose. As a better diagnostic tool, Gough et al. [68] suggest the following
“power model”:

P =cD? (2.36)

where P is a pharmacokinetic parameter and D is the dose. When log P is plotted
as a function of log D, the slope of the line will be equal to the parameter 8. Two
scenarios are discussed: 8 = 0 (dose-independence) and 8 = 1 (dose-dependence). While
they mention that dose-dependence can be linear or nonlinear, their only suggestion for
fitting a nonlinear relationship was the addition of higher-order polynomial terms to
Eq.(2.36). In their analysis of eight data sets, the authors found that the slopes were
consistent within each study, but they compared each to an expected value of one. The
authors stress that their model is empirical and their application of the power law is not

mechanistic.

2.6.3 Allometric Scaling

To date, the concept of scaling in pharmacokinetics has been limited to allometric scaling

equations of the form

Y =aW? (2.37)

where Y is the dependent biological variable of interest, W is the weight of the organism,
a is a normalization constant called the allometric coefficient, and b is the allometric ex-
ponent [109]. The clearance, toxicity, maximum concentration, volume of distribution at

steady state, and elimination half-life have all been investigated as a function of mass.
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Such relationships have been applied to scaling among humans [185, 136], extrapolation
between animal and human models (interspecies scaling) {111, 17], and extrapolation
from in vitro to in vivo [16, 110]. For example, Hu and Hayton [79] studied clearance
values from the literature for 115 xenobiotics for various species. They found no corre-
lation between log clearance and log body weight for 21% of the substances, but found

an average of b = 0.74 + 0.16 for the others.
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Chapter 3

A Parameter Optimization
Method Using a Simulated

Annealing Algorithm

3.1 Purpose

This purpose of this chapter is to describe the development of an efficient and accurate
parameter optimization method, based on the simulated annealing algorithm, to fit a

system of differential equations to a set of experimental data.

3.2 Background

Most deterministic pharmacokinetic models are expressed as a set of differential equa-
tions, and modeling is most efficient when these equations can be solved analytically
to produce algebraic equations that can be fit to experimental data using linear and
nonlinear regression.techniques. However, some models, especially those with nonlinear
or time-dependent terms, lead to equations that can only be solved numerically. In such

cases, including the growing set of fractal models, alternate methods must be developed
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to estimate the model parameters. The objectives of this chapter are to experimentally
determine the optimal implementation of the SA algorithm, test its performance against
existing algorithms, and assess its applicability to fitting compartmental models. Spe-
cific attention is given to the case of fractal compartmental models, in which one or more
kinetic rate coefficients are power functions of time.

Unfortunately, most fractal models cannot be solved analytically. There are sev-
eral commercially-available software packages, including WinNonLin [1] and Boomer [2],
that make use of the Gauss-Newton [74], and Nelder-Mead simplex [137] algorithms to
numerically fit differential equations to experimental data. For models based on clas-
sical and Michaelis-Menton kinetics, these programs are excellent. However, even with
the option of user-defined models, these programs currently do not have the capability
to handle power-law time-dependent kinetic rate coefficients. Furthermore, the Gauss-
Newton method is a gradient-based method that involves the calculation of derivatives,
and the simplex algorithm is sensitive to initial conditions [42]. To fit their model for
fractal Michaelis-Menten kinetics to experimental data, Kosmidis et al. [96] used the
Levenberg-Marquardt (LM) algorithm. However, the LM algorithm is also gradient-
based; therefore, although it is appropriate for fitting their one-compartment model that
can be solved analytically, it may not be the best method for fitting model that do not
have an algebraic solution. Furthermore, the LM algorithm has the disadvantage of con-
verging towards local minima when the initial parameter estimates are poor [53]. This
chapter describes the simulated annealing algorithm and explores its ability to optimize

functions through an efficient exploration of the parameter space.

3.3 Simulated Annealing Algorithm

Kirkpatrick and colleagues developed simulated annealing to optimize the design of in-
tegrated circuits, and they later applied it to the optimization of many-variable func-

tions [91]. Simulated annealing (SA) derives its name from an analogy to the cooling
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of heated metals. As a metal cools, the atoms fluctuate between relatively higher and
lower energy levels. If the temperature is dropped slowly enough, the atoms will all reach
their ground state. However, if the temperature is dropped too quickly, the system will
get trapped in a less-than-optimum configuration. If the energy function of this physical
system is instead replaced by an objective function f ({z;}), where {z;} is a set of inde-
pendent variables, then the progression of this function towards the global minimum is
analogous to the physical progression towards the ground state.

The SA algorithm also requires a control parameter, T' (the effective temperature), a
strategy for changing 7', and a method for exploring the parameter space. The algorithm,
illustrated in Fig. 5.1, begins at a random initial position in parameter space and its
corresponding objective function, fy. The parameters are then perturbed to generate
a trial point with a new objective function, f;, and the move is either accepted or
rejected. All downhill moves, corresponding to Af = f; — fi_1 < 0, are accepted, while
uphill moves, corresponding to A f > 0, are accepted in a probabilistic manner using the

Metropolis algorithm [125] based on Boltzmann statistics such that

P(Af)=exp [—%ﬂ—] . (3.1)

A random number is generated over the range (0,1), and if P(Af) > random(0,1),

the trial point is accepted. Otherwise, the point is rejected and another trial point

is generated. The temperature is decreased every n steps, and the step lengths can

be adjusted every m steps. The process continues in an iterative manner until the

program converges on a solution. This convergence can be expressed as a function of the

temperature, the number of iterations, the acceptance rate of new moves, or the absolute
or relative change in the objective function.

At the start of the annealing process, the temperature is relatively high compared

to the standard deviation of the values computed for the objective function, so the

probability of accepting an uphill move is great. Hence, the random walk is able to
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explore a wide area of parameter space without getting trapped in local minima. As the
temperature is decreased, the algorithm is able to focus on the most promising areas.

In addition to manipulating the temperature, the magnitude of the step length in
parameter space can be controlled. It has been found experimentally that the space is
best explored when the acceptance rate of new steps is 50% [125]. A relatively high
rejection rate means that the space is being ineffectively explored, while a relatively low
rejection rate means the algorithm is being explored with too-small steps.

The SA algorithm has many advantages over other optimization methods. It is largely
independent of the starting values, it can escape local minima through selective uphill
moves, and the underlying function need not be continuous. The SA method has been
found to be superior to the simplex method, the Adaptive Random Search, and the quasi-
Newton algorithm in finding the optimum of continuous functions [42, 64]. Eftaxias et
al. [563] compared the SA and Levenberg-Marquardt algorithms and found that the LM
algorithm was only advantageous when few model parameters must be optimized and
a good initial estimate was provided. They observed that the SA algorithm was more
robust and found more accurate and meaningful fits as the number of model parameters
was increased.

The SA algorithm has been applied to population pharmacokinetics [52], optimal
design [85] and in the physiologically-based program PKQuest [100). However, in the
latter, the method is built into an application for Maple, a commercial mathematical
problem-solving program, and not explicitly described. To our knowledge, this algorithm

has not yet been applied to solve compartmental models in individual pharmacokinetics.

3.4 Methods

3.4.1 The PKPhit Program

A C++ program, PKPhit, was written to implement the SA algorithm. It includes

the definition of three classes: Data, Model, and SimAnneal. The Data class holds the
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experimental data. The Model class contains the equations of the model, the dosing
information, and the chosen form of the objective function. The differential equations
were solved numerically using a fourth-order Runge-Kutta routine with 500 steps [153].
The SimAnneal class holds a particular set of values for the parameters and the corre-
sponding value of the objective function. It makes use of three functions to generate a
trial set of parameter values, calculate the corresponding cost function, and determine

whether or not to accept the new set of values.

3.4.2 Annealing Schedule

The program begins by generating a random starting position in parameter space and
calculating the corresponding objective function, fy. The form of the objective function,

f, was chosen to be the weighted residual sum of squares (WRSS):

n
WRSS = 3w, (ci - Oi)Q, (3.2)

i=1
where C; denotes the predicted value of C; based on the chosen model, and w; is the
weighting factor. The weight is commonly chosen to be the inverse of the variance of
the observation, and here an iterative reweighting scheme was chosen where the variance
was taken to be proportional to the square of the predicted concentration [56], C;, so

that
1

w;

The algorithm progresses as new steps are generated and either accepted or rejected
as a function of the temperature, which is reduced every m iterations. The magnitude of
a step is calculated by multiplying a random number between 0 and 1 by the step length.
The acceptance rate (AR) of new trials is checked every n iterations. The step lengths
are increased if AR > 60%, decreased if AR < 40%, and left unchanged otherwise.

Following Corana et al. [42], the new step length, L%, for the 4 parameter is calculated
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from the previous step length L; according to

AR~ 0.
L (1 + cj%(lﬁ) if AR > 0.6,
L. = _ (3.4)
! OLgl o if AR> 0.4,
1 —
taT 0

where c; is the step length adjustor for parameter j.

The program terminates when the convergence criteria are reached. Several different
criteria were investigated alone and in combination, including the total number of iter-
ations, the absolute or relative change in WRSS, the acceptance rate, and the current

temperature.

3.4.3 Test Models

The robustness of the SA algorithm in fitting pharmacokinetic parameters was tested
using three two-compartment models. Figure 3.2 shows a mamilliary model with a
central compartment. The case with constant kinetic rate coefficients, which we will
refer to as the classical Model 1, is described by the equations

i(t)

Ol = ko1 Cy — (klz + klO) Ci + 7(1, (35)

Cy = k120 — k120%, (3.6)

where C is the concentration in compartment 1, C5 is the concentration in compartment
2, ki; is the kinetic rate coeflicient for the transfer of drug molecules from compartment i
to compartment j, and i(¢) is the infusion rate of the drug in mass or moles per hour. The
term Vj is the apparent volume of distribution, defined as the volume of fluid into which
the dose would have to be dispersed in order to produce the concentration observed
in the plasma, and it is expressed in liters. Compartment 1 typically corresponds to
the plasma, and compartment 2 could represent a tumor, the brain, a bound state, or

simply a mathematical construct. For constant kinetic rate coefficients, Equations (3.5)
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i(t)

Figure 3.2: A two-compartment mamillary model.

and (3.6) have an exact algebraic solution that is a sum of terms that are exponential in
time.

By replacing one or more of the constant kinetic rate coefficients by the fractal
equivalent, a fractal compartmental model can be created. For example, by making the
substitution ko; = k21t~ in Egs. (3.5) and (3.6), a fractal trapping model is obtained,
with a power-law release of drug molecules from compartment 2 back into compartment
1. This Model 2 is expressed mathematically as
i(t)
Vi’
Cy = k12Cy — ko1t " Cs. (3.8)

Cl = k‘Qlt_hCQ — (k12 + k10) C1 +

Alternatively, a fractal elimination model can be created from the concatenary con-
figuration shown in Fig. 3.3. Fuite et al. [55] designated compartment 1 as the plasma
and compartment 2 as the liver. By making the substitution kog = k9ot ™", elimination

from the liver now occurs at a fractal rate. This case comprises Model 3 and is described
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i(t)

v

ry

Figure 3.3: A two-compartment catenary model.

by the equations

C1 = ko1 Cy — k12Cy + Z‘(/—), (3.9)
d
02 = k12Cy — (kgl + kzot-h) Cs. (310)

The fractal compartmental models are linear, since the kinetics remain first-order.
However, the value of the fractal kinetic rate coeflicient, and thus the probability of drug
release from the fractal compartment, changes with time. Unlike Model 1, the equations

for Models 2 and 3 cannot be solved exactly using analytical methods [38].

3.4.4 Simulated Data Sets

Sets of error-free data were generated for each model using parameters (listed in Ta-
ble 3.1) that were chosen to reproduce real clinical situations. For Models 1 and 2, the val-
ues correspond to parameters reported for the anticancer agent carboplatin in pediatric
patients [150]. In addition, an arbitrary value of h = 0.6 was included for Model 2. The

dose and infusion time were taken to be 500 mg and 1.5 h, respectively. Twelve concen-
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Table 3.1: Theoretical coefficients for the simulated two-compartment models.

k1o ka1 k1o k2o Va h

Model (h=1) (') () (h71) (L)
Classical 1.5 1.1 1.25 - 50 -
Fractal trapping 1.5 1.1 1.25 - 50 0.6
Fractal elimination  28.0 3.0 - 0.6 10.0 0.8

tration values, C;, were calculated for times ¢; = 0,0.5,1,1.5,2,3,4,6,8,10,12,and 18 h.
Here, C; refers to the concentration at time ¢;. Beyond 18 hours, the concentration falls
below the quantification limit of 0.0025 mg - L ™! reported for free platinum using atomic
absorption spectrometry [71]. Model 3 was fit to mibefradil data [173], and the estimated
parameters were used to generate 12 points for times £; = 0,0.8333,0.1667,0.25,0.3333,0.5,1,1.5, 2, 6, 1%
A dose of 25 mg and an infusion time of 0.1667 h was selected for a hypothetical 25-kg
dog.
To create sets of realistic, noisy data, (¢;,C;), an independent error value, €;, was

added to each concentration value:
Cr =Cj + e (3.11)
A Gaussian distribution with zero mean (1) was assumed for ¢;, such that

¢ ~ N (0,0%), (3.12)

where N (i, 0?) is a normally-distributed random variate with mean p and variance o2.

The variance was chosen to induce a coefficient of variation (CV) of 10% [82] in C;, where

oV =2 x 100% = = x 100%. (3.13)
7 C

K3

In order to generate N (0,07), the polar form of the Box-Muller method was used
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to transform two uniformly-distributed random numbers into two N (0, 1) variates [153].

Further modification provides
& = N (0,0%) =0; x N(0,1). (3.14)

with o; = (%(Y% x C;) from Eq. (3.13). Finally, substituting into Eq. (3.11) yields

Ct =G (1 + [-1%%] N(0, 1)) . (3.15)

Figure 3.4 shows the range in data points for the three models.

3.5 Results

3.5.1 Optimum Algorithm Parameters

Perhaps the most important step in evaluating the SA algorithm is the development of
an appropriate annealing schedule. To ensure successful optimization, the temperature
should be lowered slowly enough to find the global minimum but quickly enough to
minimize computer run time. For the two-compartment models, it was found that a
linear decrease in temperature by a factor R was the most efficient, as compared to
exponential or power law functions of 7', or a function of the number of iterations.
Furthermore, the temperature drop was best achieved when the ratio of the number of
iterations at each temperature, m, to the initial temperature, Ty, was 0.10 (with m =1
and Ty = 10) and R = 0.999. When gi = 1.0, the algorithm failed to converge, and

0
when — = 0.01, the algorithm was inefficient and required more than twice as many

0
iterations. An increase in R to 0.9999 also proved ineflicient, while a decrease to 0.99
led to a lower accuracy in the final results.
The choice of appropriate convergence criteria was also investigated. WinNonLin ®

monitors the relative change in the objective function. In this work, a modified method

based on results of Goffe et al. [64] was developed for PKPhit. Every Nj iterations,
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Figure 3.4: The simulated data sets for (a) Model 1, (b} Model 2, and (c) Model
3.
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Table 3.2: Annealing schedule.

Parameter Value
Cycles at step length 20

Iterations at temperature 10

Temperature reduction factor 0.999
Step length adjustor 0.995
Lower bound - kinetic parameters 0.001
Upper bound - kinetic parameters 1000.0

Lower bound - volume of distribution  0.001
Upper bound - volume of distribution 1000.0

Table 3.3: Initial parameter values.

Parameter Value
Temperature 10
Step length - kinetic parameters 0.01

Step length - volume of distribution 0.1

the average of the previous Ns accepted values of the objective function was calculated
and compared to both the current function value, f;, and the current optimum value,
foptimum. The relative changes were compared to a predetermined value J, and the

algorithm was said to converge if

|fprevious - le

f previous

<4 (3.16)

and
| fprevious — Soptimum| <6, (3.17)
f previous
where
Ns
S f
j=1
fprevious =2 N . (3'18)

For flexibility in fitting difficult data sets, an additional condition was imposed such
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that the total number of iterations did not exceed Nyax = 30,000. Using the optimum
parameters discussed above and values of N5 = 10 and § = 0.0001, convergence was
found to occur after 15,000 =+ 5,000 iterations (taking less than a minute on a Pentium
4 computer, 3.2 GHz with 1 G of RAM).

Because it was found that adjusting the step length actually led to longer run times
and in many cases an inability to converge, constant step length values were used. A
step length of 0.01 to 0.05 was optimal for the kinetic rate parameters and volume of
distribution, while a value of 0.001 was ideal for the fractal exponent. When these
values were increased, the algorithm quickly found the correct area in parameter space,
but subsequently took over 30,000 iterations to narrow in on the optimum. Smaller step
lengths resulted in inefficient exploration of the parameter space and the same excess of
iterations. The bounds in parameter space were taken to be 0.01 — 10.0 for the kinetic
rate coeflicients and volume of distribution, and 0 — 5 for the fractal exponent; however,
widening the ranges, even by a factor of 10%, had no effect on the progression of the
algorithm.

In order to investigate the sensitivity of the SA algorithm to the initial parameter
values, Model 1 was fit to a data set 50 times, each time with different values of the
random seed and initial model parameter values (randomly chosen over the range (0, 10]).
The mean WRSS was 0.3389+0.0004, and the coefficient of variation was less than 5% for
each of the estimated model parameters. Although the algorithm is most efficient when
the range of the initial values is limited, it never failed to reach the global optimum, even
when the ranges were extended to (0,50] and the initial function value was as high as
1019, Consequently, the performance of the SA algorithm is independent of the starting
point.

Finally, performing occasional restarts of the program using the current optimum
parameter values as the new initial values was not found to be beneficial; the algo-
rithm explored the surrounding space but still converged on the minimum at the same

temperature.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 3. PARAMETER OPTIMIZATION METHOD 39

3.5.2 Comparison With Other Algorithms

To evaluate the performance of the SA algorithm, the WRSS and model parameter
values found by PKPhit for Model 1 were compared to those determined by the Gauss-
Newton (Levenberg and Hartley) and Nelder-Mead simplex algorithms as implemented
by WinNonLin ® Version 4.1. Table 3.4 lists the results for 50 data sets, the number
found to achieve meaningful results since two independent groups of 50 were statistically
equivalent (with WRSS values of 0.27 £ 0.10 and 0.28 + 0.10). The confidence intervals
should include the theoretical values used to generate the noise-free data, and this is
indeed the case for all of the parameters.

Because the same data and model is involved, the WRSS can be used to compare
the goodness of fit of the three algorithms. The WRSS values were the same for all
three algorithms, and thus PKPhit performs as well as the commercially-available im-
plementations of the Gauss-Newton and simplex algorithms. However, in order to get
the similar degree of accuracy and precision in the Gauss-Newton and simplex results,
the initial parameter values had to be within 40% of the actual values, and the lower and
upper bounds had to be within an order of magnitude for the Gauss-Newton algorithm
and more than twice as narrow again for the simplex algorithm (see Table 3.5). Doubling
the range of the parameter bounds for the simplex algorithm resulted in a decrease in
the accuracy of the parameter estimates by an average of 30% and an increase in their
standard deviation by an average of 140%. In the case of the Gauss-Newton algorithm,
simply increasing the initial estimates of the kinetic rate coefficients from 1.0h~! to
5.0h~! resulted in an inability of the algorithm to converge to a solution for any of the
100 data sets.

In the extreme case where no initial estimates were provided to WinNonLin, the
program was unable to find solutions for 26 of the data sets when using the Gauss-
Newton algorithm and 24 of the sets when using the simplex algorithm. Furthermore,
although the mean objective functions did not rise significantly, the standard deviations

in the parameter estimates increased by 15 — 50% in the Gauss-Newton case and by
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Table 3.4: Estimated parameters for the classical two-compartment model. The
input parameters necessary for the Gauss-Newton and simplex algorithms are listed

in Table 3.5.
Estimated Value
Theoretical
Parameter Value PKPhit Gauss-Newton Simplex
k19 1.5 mean 2.26 2.23 2.48
(h=1) SD 0.86 1.06 0.68
range 0.83 —4.1 0.68 — 5.5 0.93 - 3.0
ko1 1.1 mean 1.44 1.43 1.47
(h~1) SD 0.22 0.18 0.17
range 0.95 —2.1 1.1-1.9 1.0-1.9
k1o 1.25 mean 1.44 1.42 1.51
(h~1) SD 0.30 0.35 0.27
range 0.88 —2.3 0.87 —2.7 0.92 -2.0
Va 5.0 mean 4.53 4.64 4.29
(h=1) SD 0.93 1.0 0.88
range 2.7 —17.3 23176 3.1-70
WRSS - mean 0.28 0.28 0.28
SD 0.10 0.11 0.09
range 0.11 —0.50 0.11 - 0.54 0.12-0.51

Table 3.5: Initial and bounding parameter values necessary for the Gauss-Newton
and simplex algorithms to achieve the accuracy shown in Table 3.4.

kg Va

Algorithm Value (h=1) (L)
Gauss-Newton Initial 1.0 7.0
Lower Bound 0.5 0.5

Upper Bound 10.0 10.0

Simplex Initial 1.0 7.0
Lower Bound 0.5 2.0

Upper Bound 3.0 7.0
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Table 3.6: Estimated parameters for Model 2 with fractal trapping.

Experimental Value

Parameter Theoretical Value Mean  SD Range
ko (h71) 1.50 1.75  0.75 0.58-4.01
ko1 (h™1) 1.10 1.11  0.32  0.50-1.89
k1o (h™1) 1.25 1.40  0.28 0.96-2.54
Vy (L) 5.00 4.7  0.94 1.46-6.99
h 0.60 0.58 0.073  0.39-0.72
WRSS - 0.067 0.043 0.0077-0.20

50 — 350% in the simplex case. Therefore, although the three algorithms are capable of
achieving equivalent model fits, the Gauss-Newton and simplex algorithms require strict
initial conditions, whereas the SA algorithm is able to explore the parameter space and

focus on the most promising area without prior knowledge of its location.

3.5.3 Applicability to Fractal models

Fifty noisy data sets were generated for Model 2, the fractal trapping model, and Model
3, the fractal elimination model. Based on the performance of PKPhit demonstrated in
the previous section, the parameters were estimated using PKPhit, and the results are
listed in Tables 3.6 and 3.7, respectively. For both the fractal models, the parameter
estimates agree with the predicted values, and the confidence intervals are reasonable.
These values are similarly independent of the initial values and bounds of the parameters.
In these cases, the WRSS values are strictly the metric for minimization and as such
cannot be compared across Tables 3.4 — 3.7.

On a final note, while the WRSS is a good metric for function optimization, we
recommend using the Akaike Information Criterion (AIC) and/or the Schwarz-Bayesian
Criterion (SBC) to guide selection between different models [105]. These metrics adjust

for the number of model parameters and the number of data points.
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Table 3.7: Estimated parameters for Model 3 with fractal elimination.

Experimental Value

Parameter Theoretical Value Mean  SD Range
k12 (h1) 28.0 243 2.0 18.3-29.6
ko1 (h™1) 3.00 2.68 0.58  1.42-4.43
koo (h™1) 0.6 0.57 0.059 0.43-0.71
Va (L) 10.0 109 1.19 7.8-15.1
h 0.80 0.77 0.056  0.63-0.88
WRSS - 0.074 0.047 0.0068-0.23

3.6 Conclusion

This chapter introduced the first detailed application of the simulated annealing op-
timization routine to fit individual pharmacokinetic data. The robustness of the SA
algorithm in fitting both classical and fractal compartmental models has been demon-
strated. Although a technique was used to modify the step length, a constant step
length was found to lead to a more stable solution. Convergence of the SA algorithm
was most efficient with a linear decrease in the temperature by a factor R = 0.999 every
m = 0.10 - T iterations and best estimated using the relative decrease in the objective
function.

PKPhit always converged towards the global minimum, irrespective of the initial
values and bounds of the model parameters, whereas similar fits by the Gauss-Newton
and simplex algorithms required estimates of the parameters to within 40% of the actual
values as well as narrow parameter ranges. This limitation is significant not only in the
case of a new drug, but also for established drugs due to wide ranges in interindividual
variability. For example, when Sonnichsen et al. [176] fit a two-compartment model to
data for the anticancer agent paclitaxel in 30 pediatric patients, the ranges of values found
for three of the parameters were k12 = 2.9—47.4 ymol - h™1, ky; = 6.0 —142.7 pmol - h™1,
and kog = 0.052 — 1.04h~L,

Due to its versatility and independence on prior knowledge of the parameter values,
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the SA algorithm is particularly applicable to fitting fractal models that are not solvable
using analytical techniques. Eftaxias et al. [53] found that an SA solution may be
further improved by around 5% by subsequent application of the LM algorithm, and this

possibility could be investigated in a future study.
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Chapter 4

Emergence of Power Laws from

Competing Saturable Processes

4.1 Purpose

The objectives of this chapter are (1) to perform power law analysis of pharmacokinetic
data for the anticancer agent paclitaxel, and (2) to emphasize the role of the power
exponent in the investigation and quantification of nonlinear pharmacokinetics and the
elucidation of underlying physiological processes. In addition, it will be tested to see if

a correlation exists between different types of power law behaviour.

4.2 Background

One of the biggest challenges in medical oncology is optimizing the dose and dosing
schedules of an anticancer drug for a given patient. The concept of linearity in the body’s
handling of a drug is important, since it indicates that the drug’s concentration as well
as derived parameters scale simply with both dose and time. Nonlinearity, however,
implies that the relationships are less straightforward. In this study, new ways to assess

and quantify nonlinear pharmacokinetic behaviour are investigated using power laws,
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with emphasis on their origins and applications to the drug paclitaxel.

Paclitaxel [160] is derived from the bark of the Pacific Yew tree and is active against
many cancers, including ovarian, breast, head and neck, and non-small cell lung can-
cers [81]. Because it is poorly water-soluble, the current formulation incorporates the
solvents Cremophor EL (CrEL) and dehydrated alcohol. Paclitaxel is typically admin-
istered by intravenous infusion over 1, 3, 6, or 24 hours (h). Because a patient may
have an anaphylactic reaction to CrEL, alternative formulations of paclitaxel have been
introduced, including Genexol-PM [90] and ABI-007 [47].

Paclitaxel is eliminated predominantly through metabolism in the liver by cytochrome
P-450 enzymes [128]. Paclitaxel’s mechanism of action is by binding to and stabilizing
microtubules within cells, leading to the inhibition of cell replication and eventual cell
death due to apoptosis [86]. Paclitaxel has a long residence time within the body and
can stay trapped in cancer cells for over a week [131]. Paclitaxel is also highly bound to
CrEL micelles, plasma proteins, platelets, and red blood cells [77].

Clinical trials indicate that the area under the plasma curve (AUC) and the maximum
plasma concentration (Cyax) for paclitaxel increase disproportionately with an increase
in dose. Not surprisingly, compartmental models with linear rate constants have pro-
vided less than adequate fits to paclitaxel concentration-time curves. As a result, two-
and three-compartment models with both saturable distribution and saturable elimina-
tion have been used to model clinical data [60, 88, 176]. Figure 4.1 shows the central
plasma compartment, a saturable binding compartment, and an optional linear binding
compartment. The saturable distribution has been attributed to either transport [176]
or binding [87] processes. Paclitaxel’s pharmacodynamic effects correlate best with the

duration of time that the plasma concentration remains above a critical value, estimated

as 0.05 uM [60].

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. SATURABLE PHARMACOKINETICS 46

4.3 Hypothesis

As discussed in Section 2.6, power law relationships have been found in many pharma-
cokinetic data sets. These include concentration-time curves with long-time power law
tails of the form

C{t)y~t™« fort>T (2.35)

and pharmacokinetic parameters P that vary with dose D through
P =¢D?, (2.36)

where ¢ is a proportionality constant and 8 is the power exponent. In the previous
chapter, it was demonstrated that power laws can be generated by a one-compartment
model with fractal enzyme-mediated elimination kinetics. In this chapter, it is hypoth-
esized that power law behaviour can also be generated by a multicompartment model
with competing saturable processes. Pharmacokinetic data for the drug paclitaxel will

be tested for the relationships in Eqgs. (2.35) and (2.36).

4.4 Methods

A power law is best identified through a log-log plot, since taking the logarithm of both
sides of Eq. (2.33) yields the linear relationship, with the slope of the line is equal to
the power exponent. Thus, the existence of a power law can be tested for by performing
regression analysis on log-transformed data, with the goodness of fit evaluated using the
R? metric (a value of 1 corresponding to a perfect fit).

Forty-one sets of concentration-time data from 20 published clinical trial studies were
digitized and inferred using Macromedia Fireworks Version 4. The data were tested for
power law tails of the form expressed by Eq. (2.35), where T' coincides with the end of
the intravenous infusion of the drug. The mean number of data points in the tail was

9+ 2 (minimum of 6 and maximum of 13). Eight sets of AUC and Cyax data were taken

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. SATURABLE PHARMACOKINETICS 47
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Figure 4.1: A compartment model with both saturable distribution to compart-
ment 2 and saturable elimination from compartment 1, as well as an optional linear
binding compartment 3.

directly from 10 published studies and were fit to Eq. (2.36). The mean number of dose
levels per study was 4 £ 1 (minimum of 3 and maximum of 6).

Simulations of the two- and three-compartment model illustrated in Fig. 4.1 were
performed using code written in C++ to numerically solve the set of ordinary differential

equations using a fourth-order Runge-Kutta algorithm [153]. The relevant equations are:

: vd . Cl ve, C1 i(t)

C = ——2axZt | k0O — kisCh + k31 Oy — 2l 2V 4.1
1 Ki +C) 1202 — k13071 + k31073 K, +C @ Vg (4.1)
: ’Ud 01
2 Kd + C; 2102 (4.2)

Cs = k13Cy — k31Cs. (4.3)

For the Michaelis-Menten reactions, the quantity vyay is the maximum reaction rate, and
K is the concentration at which half the maximum velocity occurs. The superscript d
indicates parameters that describe the distribution process, the e superscript indicates

the elimination process, i(t) is the input (infusion) function, and Vy is the volume of
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Table 4.1: Mean population values reported by Kearns et al. [88] for the three-

compartment model parameters.

distribution. The parameter values used were those reported by Kearns et al. [88] and

Parameter Value
vl (uM-h71) 10.20
K%  (uM) 0.32
k1o (h—l) 0.68
vé.. (uM-h71)  18.80
KS$,  (uM) 5.50
ki3 (b7 2.20
ksi  (h7Y) 0.65
Vy (L) 4.00

48

are summarized in Table 4.1. Because the molecular weight of paclitaxel is 853.93 g/mol,

the conversion factor between units is 1 mg/L = 1.171 uyM. AUC was calculated using

Simpson’s method, and Cpax was simply the largest C value of attained during the

Runge-Kutta algorithm.

4.5 Results

4.5.1 Power Law Tails

Thirty-nine of the 41 concentration-time curves exhibited power law tails. Values cal-

culated for the power exponent « are summarized in Table 4.2. Although the exponent

was relatively independent of patient characteristics (such as weight, age, sex, and the

type and stage of cancer) and the dose level, it varied with the length of the infusion.

For short infusions (1-h duration), a single long-time tail was observed with a power

exponent of & = —1.57+0.14. The tails persisted up to 24 h and in one case up to 36 h.

For long infusions (6-h or 24-h duration), a single long-time tail was also observed but

with an exponent of over 3. The tails extended up to 24 h for the 6-h infusions and up

to 48 h for the 24-h infusions.
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Table 4.2: The power law exponent « quantifying the tail of paclitaxel
concentration-time curves.

Initial Slope Terminal Slope
Infusion Number of
Time (h) Data Sets e R? o R?
1 12¢ -1.57 (0.14)  0.97 (0.02)
3 20° -3.38 (0.27) 0.95 (0.04) -1.70 (0.16) 0.99 (0.02)
6 3¢ -3.07 (0.53) 0.96 (0.01)
24 44 -3.23 (0.55)  0.94 (0.08)

QOver the dose range 150 — 250 mg/m?, taken from [4, 112, 132].

5Over the dose range 150 — 250 mg/m?, taken from [59, 58, 60, 77, 88, 135, 146, 175, 177, 187, 188].
“Over the dose range 6 — 30 mg/m?, taken from [31].

“Over the dose range 180 — 290 mg/m?, taken from [149, 176, 198].

In contrast, for the intermediate infusion time of 3 h, the concentration-time curves
exhibited a crossover between two power law regimes. At the end of the infusion, there
was an initial 1-2 h slope whose power exponent was equal, within error, to that exhibited
by the 6-h and 24-h infusion curves. This initial slope was followed by a long-time tail
with a power exponent equal, within error, to that exhibited by the 1-h infusion curves.
The length of the long-time tail ranged from 9 to 68 h post-infusion. Figure 2 shows the
distinct dual nature of the tails for 3-h infusions of paclitaxel. In addition, the rise of
each curve also appears to follow a power law relationship. The shape of the curves is an
example of a flip-flop situation because the initial slope is steeper than the terminal long-
time tail. One would expect the opposite, since smaller plasma concentrations should
be cleared more rapidly. Usually, a flip-flop is linked to orally-administered drugs whose
absorption is the rate-limiting step [30]. In the case of paclitaxel, however, we believe
that the flip-flop is associated with the distribution of drug from the plasma to other
tissues.

The observed power law behaviour is likely not a consequence of binding to the
CrEL formulation vehicle or blood components. Analysis of two CrEL-free formulations

of paclitaxel produced results consistent with those observed for regular paclitaxel. Two
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Figure 4.2: Pharmacokinetic data obtained for 3-h infusions of paclitaxel, replot-
ted from Kearns et al. [88] for three dose levels (open circles, 135mg/m?; solid
circles, 175mg/m?; open triangles, 225 mg/m?). (A) Log-lin plot showing the non-
exponential nature of the tails of the curves. (B) Log-log plot showing three distinct
power law regions.
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concentration-time curves for 30-min infusions of the drug ABI-007 taken from Damas-
celli et al. (2001) [47] demonstrated single power law tails with & = —1.61. Four curves
for 3-h infusions of 175 — 390 mg/m? of the drug Genexol-PM taken from Kim et al.
(2004) [90] exhibited dual power law tails with & = —4.99 4 0.57 for the initial slope and
a = —1.65 £ 0.15 for the terminal slope. The concentration-time curve reported by van
Zuylen (2001) [188] for paclitaxel in whole blood following a 3-h infusion produced an
initial power exponent of ¢ = —3.86 +0.59 and a terminal exponent of ¢ = —1.64+0.01.

We conjecture that the steep curves correspond to the case where the distribution
process is not saturated, allowing the maximum fraction of drug to be distributed outside
of the plasma. The larger power exponent therefore reflects the maximum transfer of
drug outside of the plasma. This situation occurs when the drug is infused relatively
slowly. The shallow curves, however, result when the distribution process is saturated,
and therefore the smaller power exponent predominantly reflects the elimination process.
This situation occurs when the drug is infused relatively rapidly.

The fact that the power law tails persist even at low concentrations (below the
reported K s values) provides additional information about the system. This continued
adherence to a power law indicates a failure of the drug to attain a steady state in the
peripheral compartment(s). Therefore, drug distribution to and release from the tissues

plays a dominant role in the pharmacokinetics of paclitaxel at all plasma concentrations.

4.5.2 Power Law Dose Dependence

The dose-dependence of AUC and Cy,,x were found to be nonlinear, in agreement with
the literature. The relationship in Eq. (2.36) provided a good fit to the data, and the
results are listed in Table 4.3. The two values of B agree within error with each other
and with the exponent characterizing the shallow long-time tails. Note that these results
are only valid over the therapeutic dose ranges considered, and caution should be used

in extrapolating beyond this range.
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Table 4.3: The power law exponent # quantifying the dose dependence of phar-
macokinetics parameters for 1-h paclitaxel infusions.

Number of Dose Range

Parameter Data Sets (ng/m?) B R?
AUC g ¢ 54-300 1.76 (0.17)  0.94 (0.08)
Cmax g b 135-390  1.74 (0.09) 0.92 (0.09)

“From [60, 88, 112, 132, 146, 149, 187, 198).
*From [60, 88, 112, 132, 146, 159, 198, 199].

4.5.3 Simulations

After confirming the existence of power law tails in paclitaxel concentration-time curves,
whether or not they could be generated by the competition between two saturable pro-
cesses was tested. Simulations of the model shown in Fig. 4.1 did indeed replicate the
behaviour. Figure 4.3 shows the shape of the concentration-time curve for different in-
fusion times. For the 3-h infusion, a dual power law is evident. As the infusion time
decreases, the initial slope becomes longer and less steep, and it is feasible that a single
power law may be observable after short infusion times under certain conditions. Con-
versely, as the infusion time increases, the initial slope becomes shorter and essentially
unobservable, resulting in a single steep power law for the 24-h infusion curve.

An advantage of simulations is that they allow us to study effects of different pa-
rameters on the shape of the concentration-time curve. By perturbing the parameter
values, it was determined that the duration of the initial steep slope is determined by

parameters describing the saturable distribution process, v¢,. and K ]‘f/[, while the value

max

of the exponent of the initial slope is determined predominantly by parameters describ-

ing the saturable elimination process, v, and K§,. The slope of the shallow terminal

d

¢ ax» Where an increase in its value produces an increase

curve is determined mainly by v
in . This confirms the hypothesis proposed above that the steep curve reflects both
the distribution and elimination processes while the shallow curve is dominated by the

maximum rate of elimination.
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Figure 4.3: The effect of the infusion time (IT) on the shape of the concentration-
time curve. (Open circles, IT = 1h; solid circles, IT = 3 h; open triangles, IT = 6 h;
solid triangles, IT = 24 h.)

The inclusion of the third, linear binding compartment was found to have an impor-
tant effect. For low values of k13 (weak binding), the slopes of the two segments remain
unchanged, but the duration of the initial slope increases (Fig. 4.4). As k;3 becomes
larger, however, the long-time tail eventually becomes exponential instead of power law.
Therefore, an increase in the strength of the linear binding process decreases the plasma
concentration and minimizes the effect of the saturable processes.

In the case of paclitaxel, Kj‘f/[ << K}, and therefore the distribution process satu-
rates before the elimination process. But what occurs when the reverse, Kj‘f/l >> Kf,,

is the case? An example is shown in Figure 4.5 for the two-compartment model, and

d

a much wider range of behaviour results. Simply changing the value of v,

can pro-
duce a single power law tail, a dual curve with an exponential tail, or a dual power law
curve with either a steep or shallow terminal tail. A similar transition between different

regimes also occurs when the dose increases, the volume of distribution decreases, or

ko1 increases. Therefore, this situation is much more sensitive to changes in the dosing
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Figure 4.4: The effect of the strength of the linear binding compartment on the
shape of the concentration-time curve. The tail becomes exponential for high k3
values. (Open circles, k13 = O0h™!; solid circles, kj3 = 2.2h™!; open triangles,
k13 =8.8h71))

regimen or patient characteristics.

Simulations can also be used to investigate the dose-dependence of AUC and Ciax
beyond the current clinically-relevant range. Both parameters exhibit three distinct
regions of dose-dependence on a log-log plot (Fig. 4.6). In both cases, the initial and
terminal regions are characterized by approximately ﬂ = 1 (Table 4.4), indicating linear
dependence of the concentration on the dose when the system is well below or well above
the saturable concentration range. The intermediate regions, however, are characterized
by a transition to a nonlinear regime with 8 > 1. The curves in Fig. 4.5 fall within
this dose range. Because the onset dose of the intermediate slope is higher for AUC
than for Cpax, and the slope persists over a longer range, there appears to be a lag
between the occurrence of disproportionately-higher maximum concentrations and an
overall noticeable effect on the shape of the concentration-time curve. In summary,

power law analysis is helpful in predicting nonlinear kinetics, and Figure 4.6 emphasizes
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Figure 4.5: The effect of the dose on the shape of the concentration-time
curve for a hypothetical two-compartment model with K¢, << K$,. (Open
circles, 40mg; solid circles, 50mg; open triangles, 60mg; solid triangles, 75 mg;

open squares, 100mg.) The model parameters were v%,, = 10.0mg-L~th~1,
K¢ =01mg-L™, ko = 0.5h71, 0, = 1.0mg-L7th™ K¢ = 5.0mg-L7!,
and V; =5.0L.
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Table 4.4: The power law exponent 8 describing the graphs in Fig. 4.6.

Dose Range
Parameter mg B R?
AUC 0-10 1.050 (0.006)  1.000
55-300 3.163 (0.005)  1.000
> 400 1.0683 (0.0004) 1.000
Crmax 0-10 1.066 (0.009)  1.000
20-60 3.67 (0.01) 1.000
> 150 1.0202 (0.0001) 1.000

that the concept of linearity is valid only over a specified dose range.

Additional simulations were performed to investigate whether a relationship exists
between 5 and «, such that the nonlinear dose-dependence of AUC and Cay iS correlated
with the non-exponential shape of the long-time tail. Figure 4.7 shows that § increases
as o decreases; therefore the dose-dependence becomes increasingly disproportionate as
the long-time tail becomes more shallow. In other words, the greater the contribution
that the tail portion of the curve makes to the overall area under the curve, the greater

the increase in AUC with an increase in dose.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 4. SATURABLE PHARMACOKINETICS

100000

10000

1000

100

AUC (mg b/L)

0.1

1000

100

Cax (mg/L)

0.1

0.001

T

el

g rnaal

!

T

|

10

100
Dose (mg)

1000

bt tn sl

bt 1t

el

10

100
Dose (mg)

1000

10000

57

Figure 4.6: The dose-dependence of AUC and Cpax. The model parameters are
those described for Fig. 4.5.
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Figure 4.7: The relationship between 8 and a for a three-compartment model.
The value for [ was determined for 3-h infusions of 135, 175, 200, 250, and
300 mg/m? of paclitaxel (open circles, AUC; solid circles, Cpmax.) The model
parameters were K{, = 0.1mg-L7!, kyy = 0.68h71, vf,, = 18.8mg-L~th~!,
K¢ =55mg-L71, ki3 =2.2h7!, k3; = 0.65h~!, and V; = 4.0L. The parameter
vd . varied between 5.1mg-L~'-h~! and 20.4mg-L~!-h~1,

max
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4.6 Discussion

The exponent of the power law tail can provide insight into the underlying drug processes.
For paclitaxel, only two exponents were found to characterize the behaviour following
short, intermediate, and long infusion times. Analysis of power law tails can provide
valuable information for clinical applications. For example, longer infusions leading to a
steeper tail would theoretically be best for paclitaxel, because they would indicate that
a greater portion of the drug is being transferred to the tissues.

An advantage of this proposed mechanism is that it does not place a restriction on
the value of a, in contrast to models suggested for the bone-seeking elements, where
—1 < a < 0 [24], and for fractal kinetics, in which —1 < a <0 and d; < 2 [55].

Power laws can indicate self-similarity, as discussed above. Power law relationships
in concentration-time curves may imply that pharmacological processes are linked over
different time and/or size scales. To date, allometric scaling has been applied to phar-
macokinetics to assess interspecies and intraspecies variation in pharmacokinetic param-
eters. However, the scaling of pharmacological processes within an individual has yet to
be discussed and warrants further investigation.

Furthermore, the identification of power law tails has important consequences for the
calculation of pharmacokinetic measures that are extrapolated back from the tail, and

it implies that the concept of a terminal half-life does not apply.

4.7 Conclusion

We have shown that two competing saturable processes can generate concentration-time
curves with power law tails. To the best of our knowledge, this is the first study to report
power law tails in the concentration-time curves of an anticancer drug, as well as the first
study to relate the existence of power law tails to saturable processes. Although a single
saturable process cannot produce a power law, two competing saturable processes can

produce a range of behaviour that includes single and dual power law tails. Furthermore,
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although power law tails have been reported for clearance curves, this is the first study
to investigate the tails of infusion curves and the dependence of the shape of the curve
on the infusion rate.

Before embarking on a full pharmacokinetic analysis, the tails of concentration-time
curves can be checked for a power law fit. The existence of a power law tail, especially
a shallow one, can signal dose-dependent behaviour. In the case of paclitaxel, a steeper
decline is more desirable, since it implies a greater distribution to the tissues as well as
a decrease in the extent of nonlinearity. This model is also consistent with observations
that the pharmacodynamic effect does not correlate with AUC or Cy,.x, since plasma
concentrations do not necessarily indicative of the amount of drug still present in the

body.
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Chapter 5

Fractal Michaelis-Menten Kinetics

Under Steady State Conditions

5.1 Purpose

The objective of this chapter is to extend the theory of fractal kinetics to include sat-
urable reactions occurring within heterogeneous media. The theory will be tested using

experimental data for the cardiac drug mibefradil.

5.2 Background

In Section 2.5, the theory of fractal kinetics in the transient regime was summarized.
Several researchers applied the time-dependent kinetic rate coefficient to the Michaelis-
Menten equation; however, as seen in Section 2.4.1, the Michaelis-Menten formalism
assumes a steady state regime. In this chapter, an alternative theory for fractal Michaelis-

Menten kinetics is presented.
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5.2.1 Steady State Fractal Kinetics

As discussed in Section 2.5, the effect of complex geometry on the rate of transient
reactions produces an anomalous kinetic rate coefficient. Under steady state conditions,
however, Anacker and Kopelman [8] demonstrated that the effect of the geometry is
manifested instead as an anomalous reaction order. They showed that the classical
equation

v=FkC (5.1)

should be replaced by the effective rate equation
v =kCX, (5.2)

where X is a fractal reaction order related to the spectral dimension of the random walk.
For example [9],

1+ 32; for A + A reactions,

X = (5.3)
1+ % for A + B reactions.

These equations have been confirmed using Monte Carlo simulations. Anacker et al. [10]
found that X = 2.44 for the 2D Sierpinski gasket and X = 2.01 as expected for the ho-
mogenous cubic lattice. Klymko and Kopleman [92] found that for bimolecular reactions
in solids, ranged from the homogeneous value of 2 up to a value of 30. Newhouse and
Kopelman [138] found values of X = 5 for ensembles of 10 x 10 islands and X = 15 for
ensembles of § x 5 islands. Therefore, as a space becomes more finely divided, as in the

example a fractal dust like the Cantor set [113], d; — 0 and therefore X — oc.
A form of concentration-dependent fractal kinetics was developed by Lépez-Quintela

and Casado [97], who proposed the following scaling relationship:

kIf = ACt 4 0<df <1, (5.4)
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where dy is the fractal dimension of the space. The effective kinetic rate coefficient k°/f
is therefore assumed to be dependent on the observation scale, here taken to be the

concentration. By applying this equation to vmax, they obtained the formula

p o UCTY (5.5)
K+ o’ '

where vf,{;’; and K;{f are new constants. For dy = 1, the classical Michaelis-Menten

equation is recovered, and as dy — 0, the complexity of the reaction becomes more
and more important. Heidel and Maloney [76] performed an analytical exploration of
this equation, and initially Macheras [106] and later Ogihara [145] applied it to model
carrier-mediated transport under heterogeneous conditions.

A seemingly different approach to concentration-dependent fractal kinetics is the
“power-law formalism” developed by Savageau [166], expressed through the generalized

mass-action representation:

T n

dC; _ : . - Fijk ) hijk
dt Z ik H = Z B H 7, (5.6)

k=1 j=1

where « and § are the kinetic rate coefficients and g and h are the kinetic rate orders
associated with each reactant. The equations for the power-law formalism are compli-
cated and Savageau admits that this model works best for large series of reactions rather
than of one or more reactions catalyzed by only one enzyme [166]. Savageau justifies
his formalism by showing that for homodimeric reactions, its equations are equivalent
to the fractal kinetics equations. However, this equivalence has yet to be proven for any
other reactions due to the complexity of the equations [170]. In principle, it is possible
that Eq. (5.6) can be obtained by summing over several Michaelis-Menten reactions.
To summarize, any reaction for which A > 0 or X > n is referred to as following
fractal-like kinetics [95]. In this chapter, an alternative formulation of dose-dependent

fractal kinetics is proposed based on fractal reaction orders under steady state conditions.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 5. FRACTAL MICHAELIS-MENTEN KINETICS 64

5.3 Model

In a strict sense, a steady state regime means that the concentration of the reactant
is constant in time, i.e. dC/dt = 0. One way in which this can be achieved is if the
concentration of drug molecules is much greater than the concentration of enzymes,
even if the local concentration values vary considerably. Even in the presence of drug
elimination, a steady state can be maintained due to the recycling of drug molecules by
the circulatory system. It is important to distinguish this steady state achieved through
recycling from the steady state defined for chronic drug administration. In the latter,
drug is administered through multiple doses or a constant infusion, and the elimination
rate eventually becomes equal to the infusion rate. The steady state in the current theory
can be considered as a local approximation to the same condition.

If the environment is heterogeneous, the system is described by the equations:

C;—:: = k1 (eg — z) CX—(k_1+k2).’E, (5.7)
dp

where C is the concentration of the substrate, = is the concentration of the enzyme-
substrate complex, and eg is the total concentration of enzymes, as introduced in Sec-
tion 2.4.1. Applying the quasi-steady-state assumption, dz/dt = 0, the following equa-

tion is derived:
'UmaxCX
= . 5.9
v Ky +C X ( )
It can be noted that Eq. (5.9) has the same form as the Hill equation that describes the
response of a patient or tissue as a function of the drug concentration [133]. Incorporating

this formula into a one-compartment model with an IV infusion yields

dC VmaxCX i(t)
o OmaxC  Ul) 5.10
it - Ky +OX TV, (5.10)
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where 4(t) is the infusion rate in units of mass/time and Vy is the volume of distribution

in units of volume.

5.3.1 Asymptotic Behaviour

To investigate the asymptotics of Eq. (5.10), we consider the model post-infusion. For

high concentrations (those occurring well above Kjr):

ac
— = ~Umax. (5.11)

For low concentrations (those occurring far below Kjy):

dC Umax ~X
—_—=——C". A2
dt Ky (5.12)
Integrating Eq. (5.12) leads to the asymptotic power law behaviour

O(t) ~ tTx. (5.13)

Comparing to Eq. (2.35) yields the relationship

1
T=1"% (5.14)
or
x=1-1 (5.15)
= .

Note that Egs. (5.13) — (5.15) are undefined for X = 1, since this value corresponds to
the classical model with an exponential tail, which is inconsistent with a power law.
The fact that the proposed steady state model predicts long-time power law behaviour
provides a point of comparison with other models. The solution to a compartmental
model with constant coefficients takes the form of a linear superposition of exponential

terms, and the resulting concentration-time curve exhibits an exponentially-decaying
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tail:

C(t) ~ exp [—kt]. (5.16)

The Michaelis-Menten model predicts an exponential tail:

O(t) ~ exp [—-7;’;—;‘1:] . (5.17)

The transient fractal equation predicts a stretched exponential tail:
C(t) ~exp [—ktl"h] . (5.18)

Finally, the fractal Michaelis-Menten equation (Eq. (2.32)) derived by Kosmidis et al. [96]

also predicts a stretched exponential tails of the form

C(t) ~ exp [—%“itl—h] : (5.19)

5.4 Methods

Concentration-time data were obtained for the cardiac drug mibefradil [174] in four dogs.
The dogs received a dose of 1 mg/kg of mibefradil infused over 10 minutes. The analysis
of the data consists of the following steps: (1) quantification of the shape of the tail, (2)
comparison of the fit of the proposed model with that of existing models, and (3) testing
of the relationship expressed in Eq. (5.15).

The value and standard deviation of the power law tail exponent v were calculated
from the concentration-time curves using linear regression analysis of the log-transformed
data.

The models were fit to the data using the simulated annealing algorithm described
in Chapter 3. Five one-compartment models were fit to the data sets, and they are

summarized in Tale 5.1.
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Table 5.1: Summary of models for the enzyme-mediated kinetics of drug elimina-

tion.
Model Abbreviation Reaction Rate
Fractal [55] F kot~"C
Michaelis-Menten [126] MM UmaxC
Ky +C
Transient fractal Michaelis-Menten [96] FMM UmaxC
Kyth +C
’Uef;if CQ——df
Lépez-Quintela fractal Michaelis-Menten [97] LQC ——H-l;ff—~
Ky’ +C
Steady state fractal Michaelis-Menten SSFMM M
Y Ky +CX

Table 5.2: The slope v of the log(concentration) versus log(time) curve between
t = 30 min and ¢ = 1440 min. Values are given as mean (standard deviation).

Dog ¥ R?
1 -0.702 (0.028) 0.991
2 -0.464 (0.049) 0.927
3 -0.597 (0.024) 0.989
4 -0.705 (0.066) 0.943

5.5 Results

The shape of the tail was determined for the four data sets and was found to be a
straight line on a log-log plot, indicating a power law relationship. The values for the
power law exponent are listed in Table 5.2. The power law tail extends over three orders
of magnitude in time, and the goodness-of-fit represented by the R? value is greater than
0.9 for every dog. This result indicates that the SSFMM model is an appropriate model
for the data.

The results from the model fits are listed in Table 5.3. The MM model performs
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the worst. Furthermore, the values that it predicts for the volume of distribution are
unrealistically low for three of the four dogs. In contrast, the V; values for the other
models are reasonable for a dog and are consistent with each other. Furthermore, the
K s values for the MM model are almost two orders of magnitude higher than the
values for the LQC, FMM, and SSFMM models. The values for the intrinsic clearance,
vmax/ K, are also at least one order of magnitude smaller than those predicted by the
other models. These results indicate that classical Michaelis-Menten kinetics does not
adequately describe the elimination of mibefradil from the dog.

The LQC, F, and FMM models provide some improvement. However, in the case
of the LQC model, the reaction orders of 2 — d; yield values of zero for the fractal
dimension, dy, essentially eliminating the fractal nature of the model. In the case of the
F and FMM models, the exponent A takes the maximum value of 1.

The SSFMM model provides the best fit to all data sets. The values for X determined
from the model fit were compared to those calculated from the power law tail exponent
v using Egs. (5.13) and (5.15), and the results are listed in Table 5.4. The values
agree within error for all but Dog 1. Figure 5.1 a shows the power law tail for Dog 3,
and Figure 5.1 b shows the same data fit by the SSFMM model. The proposed model
accurately describes the concentration-curve at all concentration levels.

According to Eq. (5.12), the existence and onset of the power law tail correlate with
the value of Ky, and the power law behaviour should only exist for C << Kjps. The
values estimated for Ky range from 800 ng/mL to 7000 ng/mL and are between 30 and
90% higher than the maximum plasma concentrations (556.1 to 1400 ng/mL). Therefore,
the power law tails are observable because the dose of mibefradil given to the dogs in
this study leads to plasma concentrations well below saturation levels. Furthermore,
Eq. (5.12) can be interpreted alternatively in terms of a concentration-dependent v,y
of the form vﬁajl = UmaxC¥ 1. When the approximate Eq. (5.12) was used instead of
Eq. (5.9), it resulted in similar parameter values as the SSFMM model but with a poorer

fit to the rise of the curve.
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Table 5.3: One-compartment parameters for the drug concentration in the jugular
vein of dogs following a 10-min infusion of 1 mg/kg of mibefradil.

Value

Model Parameter Dogl Dog2 Dog3 Dog4 Mean
MM Umax (ng-mL~'min~1) 327 4,699 4,737 4,375

K (ng-mL™Y) 96,593 101,139 100,131 101,046

Vy (L) 10.5  0.00369 0.00361 0.00405

WRSS 7.27 110 11.0 11.0

AIC 31.8 37.2 37.2 37.2 359
LQC v¥f (ng-mL lmin~!) 587 847 363 623

K47 (ng - mL1) 5323 6,961 4,702 5,693

Vv, (L) 721 845 4.64 5.67

2-D 2.00  2.00 2.00 2.00

WRSS 2.68  4.06 4.15 3.05

AIC 20.8 26.2  26.5 225 24.0
F k. (min~!) 1.01 1.16 1.03 1.21

V, (L) 480 431 4.95 3.55

h 0999  0.999 0998  0.998

WRSS 256  5.33 3.74 4.14

AIC 18.2 27.8 232 245 23.4

FMM  ¥max (ng-mL~'min~!) 4,358 3,306 2,486 4,170

Ky (ng-mL™1) 4623 3,638 2,709 4,401
Vy (L) 6.04 11.0 10.1 12.0
h 1.00 1.00 1.00 1.00
WRSS 2.01 1.82 2.01 2.01
AIC 17.1 15.8 17.1 17.1  16.8

SSFMM  vmax (ng-mL~'min~!) 3,575 8,201 3,548 3,817

Ky (ng-mL™1) 5,217 799 6,778 17,098
Vy (L) 130  2.39 16.5 9.54
X 256  3.35 2.74 2.61
WRSS 0.845  0.263 0219  0.544
AIC 599 -9.38 -11.7 0.0797 -3.75
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Figure 5.1: Concentration-time curve for mibefradil data for Dog 3. (A) Log-log
plot showing the long-time power law tail from 30min to 1440 min. The dashed
line is the regression line with v = —0.597 & 0.024. (B) The same data but the
dashed line now represents the best-fit curve found using the SSFMM model with
X =274,
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Table 5.4: Comparison between the values for the fractal reaction order X pre-
dicted from the slope v and obtained from the model fit.

X
Dog Predicted From v Model Value
1 2.42 (0.10) 2.56
2 3.16 (0.33) 3.35
3 2.68 (0.11) 2.74
4 2.41 (0.22) 2.61

5.6 Discussion

One-compartment models are simplifications; however, they can provide an accurate and
adequate fit if the distribution of the drug is rapid and equilibrium is achieved quickly
in all tissues. In this study, we used a one-compartment model to show that anomalous
reaction orders can be a reflection of the heterogeneous nature of the medium under
which drug metabolism occurs. Two concepts need to be elaborated upon: the meaning
of a steady state and the meaning of noninteger reaction orders.

It is well-known that the liver has a complex geometry. The blood vessels supplying
it are arranged as a fractal tree [84], its cellular network has fractal properties [57], and
the perfusion of blood at the terminal branches is heterogeneous [195]. Both transient
and steady state reactions occurring within such spaces can exhibit anomalous behaviour.
For transient reactions, it is assumed that there is a random distribution of reactants [95].
Therefore, anomalous kinetics in the transient case strictly results from the decreased
efficiency of random walkers in exploring their irregular space (quantified by d;). In
the steady state regime, however, there is a constant influx of molecules. In regular
geometries, this influx can cause a net stirring effect [95]; however, in fractal and confined
geometries, self-stirring is ineflicient. The spaces are instead characterized by large
fluctuations in the local concentration and an increasing segregation of molecules [9].

This effect has been reported for reaction-diffusion phenomena in physical systems [43].
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As a result, under steady state conditions, the distribution of molecules is partially
ordered due to the influx of molecules, and the nonrandomness reduces the reaction
probabilities and consequently the reaction rate. To summarize, transient fractal kinetics
occur in well-stirred heterogeneous media while steady state kinetics occur in poorly-
stirred heterogeneous media. Here, the term heterogeneity refers to the geometry of the
environment,.

In the case of steady state fractal kinetics, Klymko and Kopelman [92] interpreted
noninteger values of X as characteristic of a microscopically heterogeneous medium that
is best described as a collection of kinetically-independent clusters. The kinetic rate
coefficients are then kinetic averages taken over domains of different sizes and local
concentration. This interpretation is consistent with the studies that reported high X
values for reactions occurring on clusters and islands [138, 139]. A similar model can
be developed for the liver, the organ predominantly responsible for the elimination of
mibefradil from the body. The metabolic enzymes are located in the liver cells, called
hepatocytes, which are organized around the terminal supply vessels. Each set of vessels
and their surrounding cells are called a sinusoid. Not only does each sinusoid have a
different number and distribution of hepatocytes, it receives a different portion of the
blood flow. Therefore, the vascular system of the liver can be considered as a network
of clusters of sinusoids. Because X increases as the size of the clusters decreases [138],
X =1 means that the liver acts as a homogeneous, well-mixed compartment and X > 1
indicates segmentation and a lack of mixing.

This interpretation is consistent with a model proposed by Weiss [195], who de-
scribed the transit times in the liver as being determined by both the micromixing and
macromixing processes. He suggested two models at different ends of the spectrum: i) a
distributed model in which the sinusoids are parallel and there is complete segregation
of the pathways, and ii) a dispersion model in which the sinusoids are interconnected
and there is perfect micromixing. Considering our results in this framework, X provides

a quantitative measure of the degree of micromixing between sections of the liver and
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locates the model somewhere between Weiss’s two extreme models.

5.7 Conclusion

This study provides the first application of fractal kinetics under steady state conditions
to pharmacokinetics. We have demonstrated that a steady state fractal Michaelis-Menten
equation best describes the elimination of the drug mibefradil from dogs. Furthermore,
it accounts for the long-time power law behaviour of the concentration through the
inclusion of a fractal reaction order, X. This anomalous reaction order suggests that the
liver, the organ of elimination for mibefradil, is best treated as a collection of clusters
of sinusoids. The higher the value of X, the less mixing that occurs between adjacent
sinusoid clusters.

We conclude that transient fractal kinetics is appropriate for describing reactions
that occur within well-mixed heterogeneous environments, while steady state fractal
kinetics better describes reactions that occur in understirred heterogeneous spaces. The
latter can occur due to the continuous influx of drug molecules through recycling in the
circulatory system. Finally, although the proposed one-compartment model is sufficient
for fitting curves with a single power law tail, curves described by consecutive power

laws may require more than one compartment.
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Chapter 6

Interacting Random Walk Model

6.1 Purpose

The application of fractal kinetics through compartmental models is deterministic and
a measure of the aggregate, macroscopic behaviour of the ensemble of drug molecules.
This chapter investigates the relationship between the mean, macroscopic behaviour
and the underlying behaviour of individual drug molecules through a stochastic frame-
work. A random walk formalism is developed to relate the macroscopic chemical kinetic
behaviour of the ensemble of drug molecules to the microscopic interactions between
individual molecules. The model is used to investigate the consequences of nonlinearity

and interactions between individual drug molecules.

6.2 Model

From a physical point of view, a group of drug molecules can be treated as a many-body
system of identical molecules. The molecules are introduced into a confined, dissipative
medium, and they undergo transport and kinetic processes until all of the molecules have
been removed from the system. For drugs administered directly into the vascular system,
the molecule residence time is determined predominantly by (1) the resistive effect of the

temporary trapping of drug molecules in cells and tissues, and (2) the conductive effect
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of permanent trapping due to metabolism and excretion.

In the current model, the walk occurs through time on a one-dimensional finite lattice
with periodic boundary conditions. For the purpose of this chapter, we consider only
two different kinds of lattice sites: plasma (P) transport sites and permanent elimination
(E) traps. This is equivalent to assuming that the drug concentration in other tissues is
instantaneously in equilibrium with that in the plasma. Drug molecules are introduced
onto P sites and undergo a sequence of sojourn times in P sites until they are removed
from an F site. The residence time of a molecule is denoted 8 and can be expressed
simply as .

0="> 4 (6.1)

i=1

where 7; is an individual sojourn time in a P site and ¢ is the total number of sojourns.
Because 6 is a macroscopic quantity and 7 is a microscopic quantity, Eq. (6.1) represents
a simple statistical mechanical view of the drug residence time. For the current study,
in order to isolate the dynamics of the elimination process, the plasma sojourn time was
taken to be constant and equal to 3 time steps. In addition, molecules remained in E
sites for 3 time steps before being removed from the lattice.

If each walker is independent, the total number of walkers will decrease exponentially
in time, However, if the walkers are allowed to interact, anomalous behavior can result.
To test whether interactions can reproduce fractal kinetics, both short-term and long-
term correlations were introduced into the model using a saturable process and walk
constraints. Although heterogeneity is typically incorporated into random walk models
explicitly through a waiting time distribution ¥(t) at each site, we instead indirectly
generate ©(t) using these interactions to affect the accessibility and availability of E
sites. The waiting time distribution is therefore a “waiting time to exit the body”, and
the model is hopping-controlled instead of trap-controlled.

This model can be mapped onto a stochastic compartmental model, with all the sites

of a given type being interpreted as forming a “compartment” and the transfer between
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P and E sites being governed by a PDF. However, the random walk model has a greater
degree of flexibility in handling interactions between molecules.

A C++ program was written using Microsoft Visual C++.net (Redmond, WA) with
a DrugMolecule class and a DrugSite class. An instance of the DrugMolecule class was
created for each molecule to keep track of its plasma sojourn time, €, number of plasma
hits, Np, and current location and site type. An instance of the DrugSite class was
created for each lattice site to hold information about its location, type, and occupation
status.

The Monte Carlo algorithm proceeds as follows:

1. An L-length array {so, s1,..., s} i created to represent the lattice, with s; repre-
senting the type of site at the i-th position. The site types are distributed randomly
along the lattice according to the fractions f; of the total number of sites of type

i (equal to P or E).

2. An N-length array {dp,d1,...,dy} of drug molecules is created to track the posi-

tion of each molecule.

3. To institute the CTRW formalism, an M-length sorted list {tg,¢1,...,¢p} is cre-
ated to hold the update times of the molecules. The update time is equal to the
current time plus the sojourn time associated with the type of site a molecule cur-
rently occupies. The list is sorted in increasing order in time, so that ¢y is the next

time at which the system will advance.

4. The clock, which runs in Monte Carlo time steps, is set to zero. The molecules are
initially assigned to random P sites, and the sorted list is populated with update

times equal to 3 time steps. Multiple occupancy of any site is not allowed.

5. The clock is moved forward to equal ¢y, and the molecule associated with that

update time is selected.

6. If the molecule is at an E site, it is removed from the system. Otherwise, a new
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site is chosen according to the sampling rules (c.f. Section 6.3.2). If the new site is
unoccupied, the molecule moves to that site. If the site is occupied, the molecule
remains at its current site. A new update time is generated for the molecule and

added to the sorted list.

7. Steps 5 and 6 are repeated until all of the molecules have been removed from the

lattice.

At intervals of nypgee moves, the elapsed time and occupation number, X;, for each
site type are recorded. The occupation number plays the role of drug concentration.
Unless otherwise indicated, the model parameters for the current study were chosen to

be L = 200,000, N = 10,000, fz = 0.05, and fp = 0.95.

6.3 Reproducing Elimination Kinetics

6.3.1 Michaelis-Menten kinetics

In order to simulate Michaelis-Menten kinetics, molecules were allowed to jump anywhere
on the lattice. However, although a molecule always moved to an empty P site, it was
only moved to an empty E site if a random number drawn on [0,1] was less than the
probability p (Ng). The quantity N, is the number of currently occupied E sites. To
satisfy the condition that p is 1 for low values of N, and 0 for N, = N?* the probability

distribution was chosen to have the form

N. 2
p(N,) =1— (Nmix) 0 < N, < Nmax, (6.2)
[

Figure 6.1 shows p (N,) for different values of N*®*. The effect of increasing NM** is
to increase both vyax and Kjys. Figure 6.2 confirms that this distribution produces the
correct behavior; the plot of Xp as a function of Xp is hyperbolic and the Lineweaver-
Burk plot (Eq. (2.28)) is linear.

Figure 6.3 shows a plot of X p following a bolus dose. The transition to linear kinetics
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Figure 6.1: The probability p that a molecule will move to an empty elimination
(E) site, given the number N, of currently populated E sites, with N™#* = 15
(open circles), NI = 30 (solid circles), and N®* = 45 (open triangles).

occurs at approximately Xp = 2,000 molecules. Because this interaction only persists
for the duration of the E site sojourn time (3 time steps), this saturation effect is an

example of a short-term correlation between the molecules.
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Figure 6.2: (a) Reaction rate as a function of plasma occupation with N*#* = 30.
The solid line represents a moving-average trendline. (b) Reciprocal Lineweaver-
Burk plot of the same data. The solid line represents the best-fit obtained by
regression analysis, with corresponding values of vyax = 1.14 £ 0.01 and Ky =
317 + 8 (R? = 0.958).
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Figure 6.3: (a) The plasma occupation following a bolus dose of 10,000 drug
molecules undergoing short-term interactions. (b) The decline is first linear and
then transitions to exponential.
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6.3.2 Fractal-like kinetics

Transient fractal-like kinetics can be introduced into the random walk model by limiting
the movement of molecules along the lattice. For a simple random walk in which the
molecules can jump to any site on the lattice, there is a constant probability (equal to
fr) that a molecule is eliminated at a given time. The probability is independent of the
time that a molecule has spent in P sites, or its “age”. In addition, the compartments
are homogeneous and well-mixed, and the system lacks memory.

However, if the molecules are restricted to nearest-neighbor moves, the probability
of elimination is no longer constant. Clusters of molecules will begin to form along
the lattice, and the interior molecules will have limited mobility. The more interior a
molecule is within a cluster, the more time must elapse before it will be able to move and
access an E site. Therefore, clustering creates an age-dependent effect. To implement
this modification in the interacting random walk model, molecules were only allowed to
move a maximum of {2 sites in either direction along the lattice. For large Q (> 50), the
simple random walk and classical kinetics were recovered.

This type of heterogeneity leading to age-discrimination in the elimination process
mimics understirred compartments [122]. The lower the value of €, the less efficient
the mixing process. A physiological analogy can be made to a drug that is transported
through the bloodstream and eliminated from the liver. Access to an enzyme site in
the liver will depend not only on the blood flow to the liver, but also on the degree of
mixing within the sinusoids and the transport into the hepatocytes. The rate of reactions
occurring within poorly-mixed environments has been shown to be slowed down in both
regular and disordered environments [9, 14, 139].

To the best of our knowledge, this type of stochastic pharmacokinetics model is
unique in its use of both saturable and clustering processes. Although Matis and
Wehrly [121] studied a stochastic model with clustering effects, the purpose was to mimic
situations in which drug molecules can adhere to each other or to a foreign object, so

the elimination probability was the same for all molecules within a cluster.
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Figure 6.4: Reaction rate as a function of plasma occupation following a bolus
dose of 10,000 molecules undergoing short-term interactions with N*** = 15 and
Q = 100 (closed triangles), = 5 (open triangles), @ = 2 (closed circles), and
Q =1 (open circles). The Xp and Xp values were averaged over 5 runs.

Figure 6.4 shows the effect of 2 on the reaction rate. At the maximum plasma
occupation, the rates are the same. However, as the concentration drops, the rate cor-
responding to 2 = 100 drops linearly, while the rates corresponding to low £ values
decrease more drastically as clusters form and then eventually taper off as the clusters
disperse. Because the rate never regains the value of the simple random walk, this sug-
gest a long-time persistence of correlations between the molecules due to the formation
and dispersion of clusters.

Figure 6.5 shows the plasma occupation curve following a bolus dose with {2 = 1.
The curve exhibits a long-time tail that is best described by a stretched exponential in
time. To confirm that this behaviour is consistent with transient fractal-like kinetics, k
(calculated as [dXp/dt] /X p), was plotted as a function of time (Fig. 6.6). A power law
dependence was found, as predicted by Eq. 2.29, with A = —0.569 +0.014 (R? = 0.965).
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Figure 6.5: (a) The plasma occupation following a bolus dose of 10,000 drug
molecules undergoing long-term interactions (€ = 1). (b) The decline follows a

stretched exponential.
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Figure 6.6: The power law dependence of k on ¢ for a lattice with long-term
correlations (2 = 1).
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6.3.3 Fractal-like Michaelis-Menten kinetics

When simulations were performed in the presence of both short-term and long-term
interactions, the plasma occupation decreased in a biphasic manner (Fig. 6.7). There was
an initial linear decline followed by a long-time power law tail. This result is consistent
with both Eq. (5.9) and experimental results found for the drug mibefradil [117]. The
mean value of the power law tail exponent calculated between ¢ = 1,000 and ¢ = 100, 000
and averaged over 10 runs was v = —1.41440.005 (R? = 0.99540.005). Therefore, steady
state fractal Michaelis-Menten kinetics are consistent with a combination of short-term
and long-term interactions between drug molecules.

The PDF for 6 was calculated for the process illustrated in Fig. 6.7 using 10,000 drug
molecules. The function has a long-time power law tail (Fig. 6.8) with an exponent of
—2.46 £ 0.04 (R? = 0.993), which is equal to v 4 1. The number of sojourn times will

follow the same distribution, just scaled by the sojourn time.
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Figure 6.7: (a) The plasma occupation following a bolus dose of 10,000 molecules
undergoing both short-term and long-term correlations (N™=15 and Q = 1). The
decline is (b) first linear and then transitions to (c¢) a power law.
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Figure 6.8: The probability distribution of drug residence times 8 for a system
undergoing combined short- and long-term interactions (N*** = 15 and 2 = 1).
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6.3.4 Infusion curves

A drug can be infused over time instead of administered as a bolus dose. The infusion
rate is given as molecules per time step. This is especially important in the case of
saturable kinetics, since lower infusion rates can lead to a greater systemic exposure to
the drug and potentially a greater dose to the target. It was found that linear and fractal
kinetics produced dose-independent AUC values (Fig. 6.9 (a), while Michaelis-Menten
elimination kinetics produced nonlinear dose-dependent AUC values. For the case of
fractal-like Michaelis-Menten kinetics, the AUC values were similar to those for fractal
kinetics at low infusion rates but rose to mirror those of the Michaelis-Menten regime at
high infusion rates. By far the highest systemic exposure corresponded to the fractal-like
Michaelis-Menten elimination regime.

The maximum plasma concentration, X7**, was linearly dependent for the case of
linear elimination, but was nonlinearly dependent on the infusion rate for the other three
types of elimination kinetics. Again, the fractal-like Michaelis-Menten case followed the
fractal-like behaviour at low infusion rates but followed the Michaelis-Menten behaviour
at high infusion rates.

In addition, the inclusion of the long-term correlations between the molecules pre-
cluded the reaching of a steady state. Figure 6.10 (a) shows a steady state for Michaelis-

Menten elimination kinetics while Figure 6.10 (b) shows that no steady state is achieved

when the kinetics are fractal-like Michaelis-Menten.

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 6. INTERACTING RW MODEL 89

AUG,

01 00 A T T
0 20 40 60 80 100

Infusion Rate (mol/time)

2.0-10* . T . .

L610*

1.2-10%

8.0-10°

4.0-10°

0.01 0() s L
0 20 40 60 80 100

Infusion Rate (mol/time)

Figure 6.9: (a) Area under the plasma curve and (b) the maximum plasma con-
centration as a function of the infusion rate for a system with no temporary traps
and elimination following linear (open circles), fractal (solid circles), Michaelis-
Menten (open triangles), or fractal Michaelis-Menten (solid triangles) elimination
kinetics.
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Figure 6.10: Plasma occupation curves for a system with (a) Michaelis-Menten
elimination kinetics and (b) fractal Michaelis-Menten kinetics. The infusion rate
is, from top to bottom: 100, 10, 5, 3, and 1 molecule per time step
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6.4 Conclusion

A continuous time random walk model was used to describe the residence time of drug
molecules undergoing a series of sojourn times in the body before being permanently
eliminated under either homogeneous or heterogeneous conditions. It was shown that
short-term correlations between drug molecules lead to Michaelis-Menten kinetics while
long-term correlations lead to transient fractal-like kinetics. By combining both types
of correlation, fractal-like Michaelis-Menten kinetics were achieved, and the simulations

confirm the analytical results derived in Section 5.2.1.
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Chapter 7

Continuous Time Random Walk

Model With Lévy Flights

7.1 Purpose

In previous chapters, fractal kinetics were used to model the effects of spatial hetero-
geneity on the progress of a reaction. In this chapter, the case of temporal heterogeneity
is considered, in the form of Non-Gaussian trapping times. The interacting random
walk model from Chapter 6 is expanded into a continuous time random walk (CTRW)
model that can accommodate Lévy-distributed trapping times. The results provide an
alternative model for concentration-time curves with power law tails as well as a way to

investigate the interplay between temporary and permanent trapping mechanisms.

7.2 Background

Lévy statistics involve random variables with such broad distributions that the usual
Central Limit Theorem does not hold. In this chapter, the argument is made that such
a broad distribution can also be found in the behaviour of some drugs, especially when

there is a small but finite probability that a drug molecule remains trapped in the body

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7. LEVY FLIGHTS 93

for a long period of time.

7.2.1 Temporary Binding of Drug Molecules

Drug molecules are involved in three major binding processes: binding to their target,
binding to components of the blood, and binding to tissues. In the first case, most drugs
act by the inhibition of an enzyme or interaction with a receptor. Out of 480 drugs
studied by Saltzman [163], 28% were found to inhibit an enzyme, 45% interacted with
general receptors, and 21% interacted with nuclear receptors. The majority of receptors
are proteins on or within cells, and the molecules that bind to them are called ligands.
The drug-receptor interaction can block or alter the function of the receptor, thereby
initiating biochemical and physiological changes. The structure of a drug determines its
binding affinity for the receptor.

In addition to the specific binding of drugs to initiate a therapeutic effect, drug
molecules can bind in non-specific ways to blood components. Many drugs bind to plasma,
proteins in a nonlinear, saturable way, although the unbound fraction may be relatively
constant around the therapeutic range [32]. The main plasma proteins are albumin,
globulins, clotting proteins, hormones, enzymes, and antibodies. Drug molecules can
also bind to red blood cells.

Furthermore, drug molecules can bind to the cellular components of tissues. Exam-
ples include the binding of quinacrine in the liver and spleen [204] and the binding of
gentamicin in the kidney [134]. In addition, fat can serve as a reservoir for lipid-soluble
drugs. Due to low blood flow to these sites, drug molecules can remain bound to fat for
long periods of time. Bone is another potential reservoir. Drug molecules can adsorb
onto the surface of the bone crystal and eventually be incorporated into the lattice [32].
Examples are toxins like lead and the tetracyline antibiotics, and their prolonged release
from bone is governed mostly by the rate of bone remodeling [181].

A high binding affinity can be an advantage if it refers to the target of the drug; how-

ever, if the target is elsewhere, those tissues act instead as drug reservoirs that prolong
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the body’s exposure to the drug and can initiate local toxicities and complicate dosage
estimates. Because a drug’s target is frequently outside of the blood, pharmacokinetic

data tend to be an indirect signal from which the crucial information must be deduced.

7.2.2 Lévy Distributions

Lévy distributions are the typical framework for analyzing and modeling power law be-
haviour in fields as diverse as geology [147][148], economics [171][28], and physics [72][165].
Applications in biology and medicine include the nature of DNA sequences [168], motor-
controlled movements in humans [35], the spreading of epidemics [118], animal flights [20],
and neural networks [172].

Lévy distributions (also called stable, a-stable, or Lévy stable distributions) allow
skewness and heavy tails. They follow the Generalized Central Limit Theorem that states
that the only non-trivial limit of a normalized sum of independent, identically-distributed
variables follows a Lévy distribution. The standard Central Limit Theorem is a special
case in which the limit of normalized sums of independent, identically-distributed terms
with finite variance tends to a Gaussian. Let a Lévy random variable be denoted by
S (o, B,0,1), where @ € (0,2], 8 € [-1,1], 0 € Ry, and p € R are the indices of
stability, skewness, scale, and shift, respectively. When 8 = 0, the subfamily S («, 0, 0, i)
is symmetric about . Two special cases exist: the Cauchy distribution when oo = 0 and
B =0, and the Gaussian distribution when oo = 2 and 8 = 0, with mean p and variance
202

Consider the set {z} of N statistically independent, identically-distributed random

variables and their normalized sum

N
Z = Zzl (7.1)
i=1

If the distribution of z has a finite variance, the Central Limit Theorem (CLT) states

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 7. LEVY FLIGHTS 95

that

Z—ANi

Z 4 5(2,8,0,0), (72)

where the equality sign applies to the probability density functions (PDFs) and Ay and
By are normalization constants. Thus the distribution of {Z} tends towards as Gaussian
as N goes to infinity. If the assumption of a finite variance is relaxed, the Generalized

Central Limit Theorem (GCLT) holds that [186]

Z — An

d
BN - S(Ol,,B,O',N)- (73)

The Gaussian and Cauchy distributions are the only two distributions for which
a closed form exists for the probability density function (PDF). Consequently, Lévy
distributions are represented by the characteristic function ¢ (¢) (the Fourier transform

of the PDF) through

5 [eitqﬁ] _ exp {—olt|* [1 — iBsgn (¢) tan G +ipt) fa#l | (74)

exp {—a[t[ [1 + %sgn (t)In ltl] + iut} ifa=1

where E [z] = [ zp (z) dz denotes the expectation value of z.

Sometimes it is useful to use Zolotarev’s (M) parametrization [206]

. [eiw _ exp {—[t|* [L + iBsgn (t) (tan &F) (|t|*=* —1)]} fa#1 | 5)

exp {—[t| [1 +iBsgn (t) 2In|t[] } ifa=1

Nolan [140] developed a useful modification $* (a, 8, 0*, u*) such that
x* L a0 (Z —m (e, B)) + ", (7.6)

where Z has the characteristic function shown in Eq. 7.5. In this parametrization, the

distribution is shifted so that p and ¢ coincide with the mode and standard deviation
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in the Gaussian case. This parametrization is useful for visual comparisons and compu-
tations.
The tails of the Gaussian distribution are exponential. The tail of Lévy distributions

with a < 2, however, are asymptotically equivalent to a power law [141]:

PX>z)~y%q 14+ 8)z¢ (7.7)

p(@) ~ ay®cq (1+ f) z~ D), (7.8)

where cq = sin (Z2) ' (a) /m. These distributions are called heavy-tailed because they
fall off more slowly than an exponential, and there is a small but finite probability that
z takes an extremely large value.

Figure 7.1 show the PDF generated using the S* parametrization for 8 = 1 as
implemented in the STABLE program (available at http://academic2.american.edu/ jp-
nolan/stable/stable.html). The distributions with higher o are more concentrated near
the mode at the origin while those with lower « have heavier tails. When 8 > 1, the
curves are skewed to the left and the right-hand tail becomes heavier. When 8 < 1,
the opposite is true, and the curve is identical to that for 4 = b but reflected across the
y-axis. Figure 7.2 compares the o = 0.8 case for different values of 5.

As a decreases, more of the probability resides in the tail. For example, given a
sample of data from a symmetric distribution, there would be more than 30 times as
many values above 3 in the o = 1.4 case than in the Gaussian case and over 100 times as
many in the a = 0.8 case than in the Gaussian case. Moreover, if the same distributions
are fully skewed to the left (8 = 1), these factors more than double.

One consequence of heavy tails is that not all moments might exist, where the n*
moment is given by (z") = [ " f(z)dz. The value of o can be thought of as the
largest moment that exists. Because the first moment is equal to the mean and the second
moment is equal to the variance, distributions with a < 2 have an infinite variance, and

distributions with « < 1 also have an infinite mean.
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Figure 7.1: Lévy probability density functions for 8 =1,0 =1, and p = 0.

0.30 | ] 1 | I

0.25

0.20

0.15

0.10

0.05

0.00

Figure 7.2: Lévy probability density functions for « = 0.8, ¢ = 1, and u = 0.
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7.2.3 Lévy Flights

A Lévy flight is defined as a stochastic process whose jumps are Lévy-distributed stochas-
tic variables. Lévy flights have been used as a model for trapping times and flight lengths
in a variety of physical systems. In their study of subrecoil laser cooling, Bardou et al. [19]
describe the transit of an atom as a sequence of trapping periods alternating with dif-
fusive periods. The distribution of trapping times is taken to be Lévy-distributed with
index . The authors found that the evolution of the system depends on competition
between the trapping and diffusive processes.

Lévy-distributed trapping times have also been used to characterize incoherent ra-
diation [151]. The radiation undergoes a number of absorption events (due to elastic
scattering) and reemission events before ultimately escaping (through inelastic scatter-
ing). Single radiation trajectories are described by Lévy flights, and the total trajectory
forms a fractal in space.

Lévy flights have also been tied to self-organized criticality (SOC), the spontaneous
emergence of scale-invariant behaviour in systems out of equilibrium [18]. Sand or rice
piles are the usual paradigm for SOC. Grains are added to the top of a pile, and the
transit of the grains to the bottom of the pile is monitored in terms of flight lengths and
times. Experiments have shown that the time for grains to escape from the bottom of
the pile follows a negative power law distribution [39]. Boguiid and Corral [29] modelled
the dynamics by describing the movement of the grains using Lévy flights, which they
incorporated into a continuous time random walk model.

Although it might seem illogical to use an infinite-variance distribution to describe
a bounded, physical variable, approximations can be made so that the tail distribution
exhibits power law behaviour over a large but finite range. Mantegna and Stanley [114]

introduced the truncated Lévy flight (TLF), whose PDF for symmetric distributions is
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given as )
0 z < —l
p(z) = al(z) -l<z<lI> (7.9)
0 z>1

where L(z) is a Lévy distribution with @ < 2, ¢; is a normalization constant, and {
is the cutoff length. Mantegna and Stanley found that the sum Z given by Eq. 7.1
with z drawn from Eq. 7.9 converges at a value n, to a Gaussian for relatively large
N or relatively small {. However, if the width of the distribution is small compared
to the truncation value, this convergence can be extremely slow. Thus, the sum of a
large number of random variables from a distribution with finite variance can follow a
non-Gaussian distribution except for at the very ends of its tails. The behaviour of a
TLF will be essentially indistinguishable from a Lévy flight, except for in the most rare
events. Consequently, although the truncation of the flight renders the moments of the
distribution finite, the system can exhibit anomalous behaviour and scaling properties

before the eventual convergence.

7.3 Relevance of Lévy Distributions to Pharmacokinetics

Weron [197] has discussed three of the conditions in which Lévy distributions are believed
to be applicable in the description of a system: (i) there is a specific theoretical reason
for expecting non-Gaussian behaviour (e.g. diffusion in a disordered system); (ii) an
observable is the sum of many small terms (e.g. stock market prices); or (iii) a data
set exhibits power-law tails. More than one situation might apply to a given system,
and indeed in the case of pharmacokinetic systems, each can be found under certain
conditions.

In the first case, many drug processes in the body occur in confined or heteroge-
neous spaces, in which both diffusion and kinetics have been found to exhibit anomalous

behaviour [24]. For example, as seen in previous chapters, it has been found that the
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pharmacokinetics of a drug eliminated from the liver, an organ with a fractal structure,
can lead to fractal kinetics. In the second case, the residence time of a drug molecule
can be seen as the sum of many small sojourn times in the cells, tissues, and organs of
the body. If the elimination of a drug is slow and/or the drug’s binding affinity within
the body is high, the number of sojourn times will increase. In the third case, power-law
tails have been found empirically in many plasma concentration-time curves. Therefore,
as suggested in the literature for radioisotopes, the cycling between trapped and circulat-
ing states can describe drug molecules in the body analogous to subrecoil laser cooling,
incoherent radiation, and a sandpile. This concept is implemented in the next section

using a continuous time random walk model.

7.3.1 Continuous time random walks

In physical systems, random walks in the presence of traps are typically modeled using the
continuous-time random walk (CTRW) formalism. Montroll and Weiss [130] introduced
the concept to render time continuous without going to the diffusion limit. In a standard
random walk, the waiting time between steps is a constant, discrete value. In a CTRW,
the time between steps, typically called the waiting time, is drawn from a continuous
distribution, ¢ (t). The CTRW method has been applied to model systems as diverse
as asset prices in the financial market [119], charge transport in amorphous solids [142],
and solute transport in geological formations [51].

The relevant master equation is [24]
9P (x, 1) ,
= Z Wy P(r', 1) — rz wy P(r,t), (7.10)

where P(r,t) is the probability distribution for the walker being at position r in d -

dimensional space at time ¢, and wy , is the rate of transition from position r’ to position
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r. For nearest-neighbour walks on a one-dimensional lattice, the master equation is

OP(z,t)

ot = wm,w——lp(m - 17t) + wx,x—l—lp(x + 1at)

— (Wg—1,5 + Wet1,2) Pz, ). (7.11)

When all the w; y values are constant, the walk is classical. If they are also all equal, the
simple random walk with no bias is recovered. However, when the transition rates are
drawn from a distribution ¢(w), the walk becomes anomalous. These results are useful
because many physical problems can be mapped onto the one-dimensional lattice [6].
Disorder or heterogeneity is typically incorporated into CTRW models through a non-
Gaussian waiting time distribution ().

The next section introduces a new application of the CTRW to the modeling of drug
residence times. The model builds on the interacting random walk model described in
the previous chapter; however, the sojourn time at a lattice site is no longer a constant

but rather a random variable drawn from a probability distribution.

7.4 Model

Expanding upon the interacting random walk model developed previously, there are now
three different types of lattice sites: plasma (P) sojourn sites, temporary target traps
(T'), and permanent elimination traps (F). Drug molecules are introduced onto P sites
and undergo a sequence of sojourn times in both P and T sites until they are removed

from an F site. The total residence time 6 of a molecule can now be expressed as
0=T+T, (7.12)

where T is the total time spent in the plasma and T' is the total time spent in temporary

traps. Because each of these quantities is the sum of N individual plasma sojourn times
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Table 7.1: Lévy distribution parameters

Parameter Description

« heaviness of the tail

I} skewness

o scale

W position

7; or M individual trapping times 7,
N M
HZZTj-l-Zﬂ'. (7.13)

i=1 j=1

Note that 4 is a macroscopic quantity while 7 and 7 are microscopic quantities.

In order to focus on the roles of the temporary and permanent trapping sites, the
sojourn time in the plasma, P (7), is still approximated as a delta function at the value
PT. However, it is proposed that the temporary trapping events are Lévy flights, and
P (7) is Lévy-distributed . The additional model parameters are listed in Table 7.1. If
o < 2, there is a dispersion in the trapping times due to the relaxation of deep traps.
In this simplified version of the model, the temporary traps are also assumed to be the
therapeutic target of the drug (for example, tumor cells in the case of anticancer agents).

Weiss [196] incorporated a similar idea into his recirculatory model for the drug
amiodarone. He used a gamma distribution for plasma cycling times in the plasma and

trapping times following:
F@)~7m1 < a<l). (7.14)

His model, however, assumed a constant elimination rate, no interactions between molecules,
and no saturable processes.
In the current model, the different methods for eliminating a molecule from an E site

are those described in the previous chapter: simple elimination, Michaelis-Menten sat-
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Table 7.2: Power law tail exponent between z = 0 and z = 3000 for the distribu-
tion of values drawn randomly from the quantiles for a = 1.4.

Number of Values Power Law Exponent  R?

10 000 -2.42 (0.15) 0.943
100 000 -2.40 (0.06) 0.983
1 000 000 -2.44 (0.04) 0.992
10 000 000 -2.45 (0.04) 0.992

urable elimination, and fractal elimination under both transient and saturable regimes.
To the best of our knowledge, this model is the only one that combines saturable pro-
cesses, long-term interactions between molecules, and the probability of long-time trap-

ping in the body.

7.5 Method

In order to generate random variables from a Lévy distribution, the characteristic func-
tion given by Eq.(7.4) was integrated using techniques outlined by Nolan [140]. In
addition, in order to efficiently sample the distribution, look-up tables were generated
that consisted of 10,000 quantiles (values separated by equal probability). The quantiles

were calculated using

/ " fa)de =, (7.15)

with p = 1 x 1077, Therefore, two integrations were performed. To get a power-law
relationship, the quantiles were drawn from the end portion of the Lévy distribution,
with 8 =0, p =0, and o = 1. All the values were shifted such that z; = 0. The power
law exponent of each PDF was equal to —(1 + &) to within 1 x 107%. The quantiles were
tested by uniformly sampling the quantiles randomly and checking the distribution of
the new values. The results for the quantiles for « = 1.4 are shown in Table 7.2.

Unless otherwise indicated, the model parameters were chosen to be L = 200,000

lattice sites, N = 10,000 drug molecules, PT = 3 time steps spent at a P site, ET = 3
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Table 7.3: Power exponent 7 for drug molecules undergoing simple elimination
and Lévy trapping with different values of a.

a Time Range v R?

1.2 50 — 5000  -1.187 (0.003) 0.992
1.4 50-2000 -1.241 (0.005) 0.990
1.6 50—1000 -1.255 (0.006) 0.983
1.8 50 — 400 -1.316 (0.008) 0.994

time steps spent at an E site, and o = 10 for the Lévy distributions. Because the goal is
to investigate the interplay between the temporary and permanent trapping processes,
the values for fr = 0.05 and fr = 0.05 were chosen since they were much smaller than

fp but equal to each other.

7.6 Results

7.6.1 Effect of Lévy-distributed Traps

Figure 7.3 shows the plasma occupation curve following a bolus dose of drug molecules
undergoing simple elimination and Lévy-distributed trapping times with o = 1.6. After
an initial period, the tail of the curve transitioned to a power law at ¢ = 30 and persisted
until ¢ = 1000. There was a short terminal exponential decay that occurred when less
than 1% of the molecules remained in the system. The power exponent of the tail was
v = —1.255 £ 0.006 (R? = 0.993). Therefore, temporary traps with power-law-tailed
trapping times can produce a concentration-time curve with power law behaviour that
persists over three orders of magnitude, even when the elimination process is linear and
the probability of trapping is only 5%.

The effect of decreasing a was to decrease v but increase the range over which the
power law persisted (Table 7.3). In each case, v < a, but the percent difference decreased
with decreasing . The shape of the power law segment was relatively independent of

the scale factor o (Table 7.4).
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Figure 7.3: (a) The plasma occupation as a function of time for N = 10,000
molecules undergoing simple elimination and Lévy-distributed trapping with a =
1.6. (b) Closeup of the the power law segment between ¢ = 30 and ¢ = 1000.
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Table 7.4: The power exponent for o = 1.6 as a function of the Lévy scale, o.

o g
1 1.271 (0.008)
5 1.253 (0.008)
10 1.255 (0.006)
15 1.210 (0.004)
20 1.294 (0.007)

Table 7.5: The mean power exponent v and standard deviation as a function of
the number of values.

No. Values ¥
5 1.259 (0.011)
10 1.255 (0.006)
20 1.259 (0.005)
30 1.255 (0.004)
40 1.256 (0.004)

7.6.2 Sensitivity of the Power Exponent

Sensitivity analysis was performed for . In order to determine the minimum number of
runs required to achieve an acceptable error value, the simulation illustrated in Fig. 7.3
was executed for 10 different values of the random seed. Since the improvement in
the error was not significant beyond 10 runs (Table 7.5), this value was chosen for all
subsequent simulations in order to minimize run times. The same simulation was also
repeated for three different lattice sizes L. The mean values of v agree within error, but
the standard deviation decreases with increasing lattice size (Table 7.6). Therefore, the
maximum sized lattice (L = 200, 000) that can be accommodated by the computer was

chosen for all subsequent runs.
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Table 7.6: The mean power exponent v and standard deviation as a function of
the lattice size, L.

L ¥

50,000 1.212 (0.012)
100,000 1.231 (0.087)
200,000 1.255 (0.006)

Table 7.7: Power law exponent for Lévy trapping with o = 1.6 with simple elim-
ination, for different relative strengths of the temporary and permanent trapping.

R2
0.1 100 — 1000  -0.399 (0.006) 0.983

0.4 100 — 1000  -0.629 (0.006) 0.993

fe/fr Time Range y
E
0.6 100 — 1000 -1.13 (0.01)  0.989
(
(
(
(

1.0 30 — 1000  -1.255 (0.006) 0.993
1.4 30 — 900 -1.334 (0.006) 0.992
1.6 30 — 900 -1.379 (0.009) 0.983
2.0 30 — 900 -1.41 (0.01)  0.987

7.6.3 Temporary Versus Permanent Trapping

As the number of E sites was decreased, the power exponent decreased (Fig. 7.4) but
the length of the power law portion remained almost the same (Table 7.7). Therefore,

the effect of a decreased elimination probability was to decrease .
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Figure 7.4: The plasma occupation for N = 10,000 molecules undergoing sim-
ple elimination and Lévy-distributed trapping. From top to bottom, fg/fr =
0.1,0.2,0.6,1.0,1.4,2.0.
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7.6.4 Effect of the Elimination Kinetics

In the above sections, it was demonstrated that a small probability of a Lévy-distributed
trapping event could produce plasma occupation curves with a significant power law
segment. This section investigates how this behaviour is affected when the elimination
process is not linear. Figures 7.5 — 7.7 show the results when the elimination is saturable,
fractal, and saturable fractal, respectively.

In the saturable case, the power law segment became longer and steeper as the
maximum number NZ'% of molecules allowed in E sites increased.

When the elimination occurred via transient fractal kinetics through the use of clus-
tering effects, decreasing €2 decreased the value of y. The stronger the clustering effects,
the less prominent the power law, and at 2 = 1, the power law disappeared. Therefore,
the clustering reduces the effect of the long-time trapping mechanism, since less molecules
will attempt to move at a given time. As Q decreased, the clustering effects became more
dominant and the elimination depended more on the release of the molecules from the
clusters than on the release from the temporary traps. The transition occurs when the
time to be released from a cluster is longer than the time to be released from a trap.

In the case of elimination with both saturation and clustering effects, the power law

segment becomes less steep and it persists for longer.
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Figure 7.5: The plasma occupation for N = 10,000 molecules undergoing sat-
urable elimination and Lévy-distributed trapping. From top to bottom, Npa* =
15, 30, 45, 10, 000.
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Figure 7.6: The plasma occupation for N = 10, 000 molecules undergoing fractal
elimination and Lévy-distributed trapping. From left to right, & = 100, 5, 3,2, 1.
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Figure 7.7: The plasma occupation for N = 10,000 molecules undergoing Lévy-
distributed trapping and simple (S) elimination or steady steady fractal (SSFMM)
elimination (Ng#* = 15).
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7.6.5 Predicting the Dose to the Target

If the temporary traps are the drug’s intended target, one important use of this type of
modeling is the extrapolation of the T site occupation level from the observable signal,
the P site occupation level. Table 7.8 shows that the highest occupation level at the target
site is achieved when the elimination kinetics are fractal, while the greatest dose to the
target occurs for fractal Michaelis-Menten elimination kinetics. A saturable elimination
process allows more drug molecules to enter long-time traps. Figure 7.8 illustrates the
three processes. Although the highest occupation level is reached with fractal kinetics,
the occupation drops off quickly. However, with the saturable elimination, the target
occupation level remains higher over a much longer period.

Figure 7.9 shows an example of a quantitative relationship between the observed
plasma signal and the occupation number of the target. Note that the shape of the curve
is strongly dependent on the type of elimination kinetics. If one can deduce the type of
elimination kinetics that might be present in a system based on the shape of the plasma
concentration-time curve, this type of graph can then be used to estimate the relationship
between the plasma occupation and the amount of drug at the target site. In addition,
the curve indicates at what plasma occupation the maximum target dose can be expected.
This occupation number is much lower in the case of simple elimination and much higher
for the other elimination regimes. Interestingly, the maximum target occupation under
fractal Michaelis-Menten elimination is sustained over a range of plasma occupation of

almost 2000.
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Table 7.8: Pharmacokinetic parameters.

Elimination AUCp AUCT X7
Kinetics (x106) (x106) (x10°)
Linear 0.597 (0.006) 1.41 (0.03) 3.03 (0.02)
Fractal 3.92 (0.02) 7.24 (0.03) 5.12 (0.04)
Michaelis-Menten 13.6 (0.6)  28.5 (0.04) 2.67 (0.02)
Fractal Michaelis-Menten ~ 15.7 (0.1)  31.7 (0.03) 3.44 (0.04)
10 . . . . .
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Figure 7.8: The target occupation as a function of time for N = 10, 000 molecules
undergoing Lévy-distributed trapping with o = 1.6 and fractal Michaelis-Menten
(SSFMM), Michaelis-Menten (MM), fractal (F), or simple (S) elimination.
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Figure 7.9: The target occupation as a function of the plasma occupation for
N = 10,000 molecules undergoing Lévy-distributed trapping with &« = 1.6 and
Michaelis-Menten (MM}, fractal Michaelis-Menten (SSFMM), simple (S), or fractal
(F) elimination.
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7.6.6 Infusion curves

When the molecules were administered via an extended infusion instead of a bolus dose,
AUCp and AUCT were only independent of the infusion rate for the case of linear
elimination (Fig. 7.10). For very small infusion rates, or very long infusion times, the
fractal and linear cases gave the same dose to the plasma and the target. In addition, the
behaviour in these two cases was the same. However, in the case of Michaelis-Menten
and fractal Michaelis-Menten elimination kinetics, there was a rise in both AUCp and
AUCT at small infusion rates. This is because the elimination sites do not saturate.

Figure 7.11 shows the behaviour of X™* as the infusion rate increases. In the case
of linear elimination, X7** increases linearly with the infusion rate, but X7*** increases
at a much faster rate. For the cases of fractal, Michaelis-Menten, and fractal Michaelis-
Menten elimination kinetics, it appears that X7% reaches a maximum more quickly
than Xp#*.

Finally, the relationship between the target occupation and the plasma occupation
was investigated for different infusion rates. The curves are more skewed towards the

Xr axis in the case of fractal Michaelis-Menten elimination, and they also decrease in

size much more slowly.
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Figure 7.10: Area under (a) the plasma occupation curve and (b) the tar-
get occupation curve for Lévy-distributed traps with elimination following linear
(open circles), fractal (solid circles), Michaelis-Menten (open triangles), and fractal
Michaelis-Menten (solid triangles) kinetics.
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Figure 7.11: Maximum (a) plasma and (b) target occupation number for Lévy-
distributed traps with elimination following linear (open circles), fractal (solid cir-
cles), Michaelis-Menten (open triangles), and fractal Michaelis-Menten (solid tri-
angles) kinetics.
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Figure 7.12: The target occupation number as a function of the plasma occupa-
tion number for Lévy traps and (a) linear or (b) fractal Michaelis-Menten elimina-
tion. The curves represent an infusion rate of, from inside to outside, 100, 10, 5,
and 1 molecules per time step.
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7.7 Discussion

The pharmacokinetic time series can be seen as a fractal time process in which the events
that make up the process are distributed in a self-similar way. This means that the events
occur as a hierarchy of bursts separated by a hierarchy of gaps. This is an example of
statistical self-similarity, where the PDF of the residence time measured on a large scale
is similar to the PDF of the residence time measured on a small scale. One consequence
of the self-similarity is that there may be no single mean residence time. The analysis
can be taken one step further to relate the parameter -y to the self-similarity of the drug

residence times. Differentiating the equation C(t) o< t7 gives

d

d—f ~ 771 (7.16)
and therefore

dC/C

This, the relative variation of C' divided by the relative variation of ¢ is constant [108].
Therefore, v relates how many molecules are being eliminated by a fractal Michaelis-
Menten mechanism that is similar to the overall process governing the residence time
distribution.

While allometric scaling has been applied to pharmacokinetics, the scaling of phar-
macokinetic processes occurring within an individual has yet to be investigated. One
advantage of scaling properties is that knowledge of the appearance or behaviour of a
system at one scale (such as the whole body) provides information about the system
at other scales (such as the organ or cellular level). Therefore, scaling laws can help
extrapolate knowledge about elements of a system that are difficult to directly measure

(such as the drug concentration in a tumour or in individual tumour cells).
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7.8 Conclusion

The concept of Lévy flights has many potential applications in pharmacokinetic model-
ing. Expanding the random walk model from the previous chapter into a CTRW with
Lévy trapping times enabled the construction of the first stochastic pharmacokinetic
model that combines the effects of saturable and fractal permanent elimination with
long-time temporary trapping. The model can be used to extrapolate the target dose
from the plasma signal and to predict changes in the system’s response to different dosing
regimes.

An advantage of this model is that it does not make any assumptions about what
causes the dispersion in the molecular residence times; these causes could include fractal
kinetics, mechanisms of cell death, heterogeneity in cell populations, or release from long-
time traps in cells such as tumour or fat cells. Furthermore, this dispersion can also help

explain some clinical observations, for example delayed reactions in certain patients.
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Chapter 8

Physiologically-Based Flow
Network Model for Drug

Elimination

8.1 Purpose

The objective of this chapter is to investigate whether the aggregate, organ-level kinetics
modeled by a fractal compartment can be reproduced at the level of a single functional
unit of the organ. A discrete network model is developed using anatomical and phys-
iological parameters of the liver, and the effects of different types of heterogeneity are

explored.

8.2 Background

8.2.1 Liver Architecture

At the macroscopic level, the liver consists of three vascular trees, two supply trees that
originate from the portal artery and hepatic vein, and one collecting tree that drains into

the portal vein {15] (Fig. 8.1 (a)). The vessels bifurcate down to the terminal arterioles
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Figure 8.1: The liver. (a) The macrostructure. The hepatic artery and portal
vein bring blood rich in oxygen, nutrients, and drug molecules in from the left. (b)
The vessels branch to form a tree of arterioles and venules. (¢) Pairs (represented
by open circles) of terminal hepatic arterioles and portal venules empty into a
hexagonal lobule. The blood flows towards a central hepatic venule (solid circle)
The dotted lines represent sheets of hepatocyte, and the white space between them
represents the sinusoids.

and venules (Fig. 8.1 (b)), which are organized into portal tracts along with a terminal
bile duct. Liver cells, called hepatocytes, radiate outward from the terminal vessels.
These plates of hepatocytes are interspersed by sinusoids, which play the role of the
capillary in the liver, and the spaces of Disse, which are the extravascular space of the

liver [67]. Finally, the blood is collected and removed by the hepatic venules.

8.2.2 Functional Unit

The functional unit of an organ is the smallest structural unit that can independently
serve all of the organ’s functions [167]. Because of its complexity, there is continued de-
bate about what the functional unit of the liver should be. The classic lobule (Fig. 8.1 (c))
is a hexagonal cylinder, centered around a hepatic venule and with portal tracts situated
at the corners. The portal lobule has a similar shape but is centered about a portal tract
with the hepatic venules at the periphery [27]. The acinus is another proposed unit and

is based on the pattern formed by the cords of hepatocytes between two central venules.
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Table 8.1: Anatomical values for the liver.

Parameter Value Ref.
Hepatocyte diameter 12-24 pm [70]
Diameter of liver cell sheets 25 um [67]
Lobule diameter 1-2.5 mm [70]
Mean sinusoid diameter 7.3 pm [67]
9.0 £0.2um (3]
Vascular tissue component  28-30% [73]
Specific gravity of liver 1.05 [70]
Liver volume 1071 4 228 cm®  [205]

Matsumoto and Kawakami [123] suggested that the classic lobule can be divided into
primary lobules, which are cone-shaped and each fed by one portal tract and drained by
one hepatic venule. Teutsch and colleagues {183, 182] performed a morphological study
of rat and human liver lobules, and their results support the idea of a secondary unit
made up of primary units in what they term as a modular architecture. They conclude,
however, that the primary unit is more polyhedral in shape than conical. Other exper-
iments done by Ruijter et al. [162] suggest that the primary unit is needle-shaped and
that there are equal amounts of portal and central vein associated with one unit. For
this study, the primary unit is taken to be one-fourth of the classical lobule. The relevant

anatomical values are listed in Table 8.1.

8.2.3 Diseased states

The health of the liver can be compromised by viruses, hereditary diseases, and toxins
such as alcohol [184]. Damage or death of the hepatocytes leads to inflammation of the
liver, called hepatitis. Although zones of necrosis can form when adjacent cells die, this
damage is to some extent reversible, since the liver has the ability to regenerate. Thus
hepatitis is typically characterized by waves of cell death and regeneration, leading to
a mixture of necrotic areas and nodules of new hepatocytes. Because the architecture

of the liver is often compromised, some cells may not receive normal levels of blood
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supply. Furthermore, as inflammation progresses, fibrous tissue may replace the normal
hepatocytes, resulting in the irreversible condition of cirrhosis. The damage can be
compounded because the formation of necrotic zones increases the resistance to blood
flow, and intrahepatic shunts can occur in which blood vessels begin to bypass the liver
altogether. Therefore, although the liver has the capacity to withstand and even correct
a lot of damage, its ability to transport, absorb, and metabolize important nutrients and

drug molecules can be compromised.

8.2.4 Network Models of the Liver

Several lattice models have been used to simulate enzyme kinetics in disordered media.
Berry [25] performed Monte Carlo simulations of a Michaelis-Menten reaction on a two-
dimensional lattice with a varying density of obstacles to simulate the barriers to diffusion
caused by biological membranes. He found that fractal kinetics resulted at high obstacle
concentrations. Kosmidis et al. [96] performed Monte Carlo simulations of a Michaelis-
Menten enzymatic reaction on a two-dimensional percolation lattice at criticality. They
found that fractal kinetics emerged at large times.

Previously, Chelminiuk et al. [37] developed a network model of the liver consisting
of a square lattice of vascular bonds connecting two types of sites that represent either
sinusoids or hepatocytes. Random walkers explored the lattice at a constant velocity
and were removed with a given probability from hepatocyte sites. To simulate different
pathological states of the liver, random sinusoid or hepatocyte sites were removed. For
a lattice with regular geometry, it was found that the number of walkers decayed ac-
cording to an exponential relationship. For a percolation lattice with a fraction p of the
bonds removed, the decay was found to be exponential for high trap concentrations but
transitioned to a stretched exponential at low trap concentrations.

The models described above are all basic random walk models, and the lattices are
abstract representations of the geometry of the space. The objective of this chapter

is to develop a lattice model that incorporates realistic anatomical and physiological

Reproduced with permission of the copyright owner. Further reproduction prohibited without permission.



CHAPTER 8. FLOW NETWORK MODEL 125

Figure 8.2: Homogeneous lattice. The grey bands represent sinusoids and the
white spaces represent hepatocytes.

properties of the liver as well as the transport of reacting tracers by a blood-like fluid.

8.3 Model and Methods

The primary unit of the liver was approximated by a 51 x 51 square lattice such that four
units correspond to one lobule. The architecture of the lattice consists of hepatocyte grid
cells interlaced by a network of narrower sinusoidal grid cells (Fig. 8.2). The diameter
of the sinusoid grid cells was taken to be 0.0006 cm, and the diameter of the hepatocyte
grid cells was taken to be 0.0024 cm. The length of the lattice was thus 0.0744 cm per
side. Doubling this value gives a lobule diameter of 0.149 cm, which is consistent with
values listed in Table 8.1. The depth of the lattice was taken to be the diameter of a
sinusoid, 0.0006 cm.

Each sinusoid grid cell represents a tubular vessel of diameter a. Taking the ratio
of the volume of the vessel to the volume of the grid cell yields a porosity of ¢g =
0.7854. Each parenchymal grid cell represents a cellular (hepatocyte) component and an

extracellular (space of Disse) component. A ratio of 0.75 to 0.25 was chosen for their
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PAC + CYP — PAC-OH + CYP

Figure 8.3: Simplified scheme of the Phase I metabolism of paclitaxel (PAC) by
the enzyme cytochrome (CYP) P450 3A4 to form the metabolite hydroxy-paclitaxel
(PAC-OH).
respective contributions to the volume, and the porosity of the parenchymal sites was
therefore ¢ = 0.25.

There is an input site corresponding to a terminal portal venule at one corner of the
lattice and an output site corresponding to a terminal hepatic venule at the opposite
corner. For simplicity, the arterial blood supply, which is lower in volume and pulsatile
in nature, is omitted for the current simulations. The blood viscosity was taken to be
3.5. The molecular weight of the hepatocytes was taken to be 131, based on the formula
CsHgO3N, which is a standard representation of cell systems [124]. The drug paclitaxel
was used as a reactive tracer, and its Phase I metabolism was modeled using the general
formula of one paclitaxel (PAC) molecule being transformed into the metabolite 6a -
hydroxypaclitaxel (PAC-OH) by the cytochrome P450 (CYP) isozyme CYP2C8 [129]
(Fig. 8.3). Each hepatocyte grid cell contains a molar fraction of enzyme. The reaction
can proceed in a linear manner at a rate characterized by & (in units of min™!) or via
Michaelis-Menten kinetics, defined by K (in units of molar fraction) and vmax (in units
of min~!). The molecular weight of paclitaxel is 0.853906.

In order to investigate the effects of the heterogeneity of the liver architecture on
the rate of the reaction, three different variations of the lattice were studied: a regular
lattice, a lattice with random permeability of the sinusoids, and a percolation lattice
with a random number of the sinusoid sites removed.

The simulations were performed using the STARS advanced process simulator de-
signed by the Computer Modelling Group (CMG) Ltd. in Calgary, Alberta, to model
the flow and reactions of multi-phase, multi-component fluids through porous media.

The medium is discretized into grid cells, and the displacement of fluid between cells is
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calculated based on mass and energy conservation and the difference in pressure [104].
This difference can be induced by chemical, mechanical, or thermal processes. In the
current simulations, the fluid flow was driven by a higher pressure at the inlet than at
the outlet. STARS uses an adaptive-implicit numerical scheme such that the properties
of each grid cell can be solved in either an implicit or an explicit mode [161]. This tech-
nique combines the stability of the implicit method while retaining the computational
efficiency of the explicit method. Matrix inversion is achieved using CMG’s package
AIMSOL, based on incomplete Gaussian Elimination [104], and its extension, PARA-
SOL, to parallel computing architectures [48]. Although the program can model both
convective and dispersive effects, only convective transport was studied here.

Ignoring the dispersive contribution and making the assumption of incompressible

and laminar flow, the system progressing according to Darcy’s Law:

k OP

where () is the fluid velocity, s is the permeability, 4 is the viscosity of the fluid, and
%% is the pressure gradient. The permeability s is a measure of the transmissibility of
a grid cell to the flow of a fluid, expressed in units of area (e.g. cm?). For a cylindrical

tube such as a blood vessel,

K= (8.2)

where r is the radius of the tube. For multi-component flow, STARS tracks the com-
position (molar or mass fraction) of any components in the fluid. The molar fraction x
was used here.

The pressure value at the inlet was taken to be Pj, = 103 kPa, and the pressure at the
outlet was taken to be P, = 101.8kPa. After subtracting the atmospheric pressure,
these values are consistent with experimental values quoted by Rappaport [155], who
found that the terminal portal venule pressure was 0.59 — 2.45 kPa and that the terminal

hepatic venule pressure was 0.49 kPa. Because flow through the lobule is due to the
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pressure drop across the lattice, the generated flow rate will be a measure of the flow
permeability of the lobule and hence a reflection of the health and functioning of the

liver.

8.4 Results

8.4.1 Regular Lattice

When blood with a relative composition of 0.01 paclitaxel was infused into the regular
lattice shown in Fig. 8.2 with nonreactive hepatocytes, the evolution of the paclitaxel
concentration on the lattice followed a spatially homogeneous progression (Fig. 8.4). The
flow rate at the input was 6.8 x 107% cm3/min.

When a linear reaction (with ¥ = 10,000 min~!) was allowed to occur within the
hepatocytes, a plot of the molar outflow of the metabolite followed a linear increase in
the transient regime before transitioning to a steady state (Fig. 8.5). When the reaction
proceeded instead by Michaelis-Menten kinetics (with Kp = 2 X 10~8 molar fraction
and Umax = 10,000 min~!), the Lineweaver-Burke plot was linear in the transient regime

(Fig. 8.6).
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Figure 8.4: Contour plot of the molar fraction of paclitaxel on a regular lattice
with a constant infusion of 0.01 molar fraction of the drug. The snapshots were
taken at 0.00002, 0.00012, 0.00024, 0.00036, 0.00050, and 0.0012 minutes.
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Figure 8.5: (a) The molar fraction of the metabolite PAC-OH as a function of
time following a linear reaction on a regular lattice. (b) In the transient regime,
the curve exhibits linear behaviour.
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Figure 8.6: (a) The molar fraction of the metabolite PAC-OH as a function of time
following a Michaelis-Menten reaction on a regular lattice. (b) Lineweaver-Burke
plot.
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Figure 8.7: Lattice with random permeabilities. The shade of grey represents the
permeability of the sinusoid (where a darker colour indicates a higher permeability),
while the white hepatocyte sites have a constant permeability.

8.4.2 Random Permeability Lattice

The first type of heterogeneous lattice that was simulated was a random permeability
lattice (Fig. 8.7). The vascular permeability x was allowed to vary uniformly between
k— o and K+ o, with kK = 72/8. The value of o was taken to be 0, 0.25x, 0.5x, 0.75x, or
k. This lattice can mimic the effects of vascular irregularity in healthy livers (for smaller
values of o) or diseased livers (larger values of o). The flow rate dropped slowly as o
was increased until a steep two-orders-of-magnitude drop when o = x (Table 8.2). This
suggests that relatively significant variations in sinusoid permeability may have only a
small effect on liver transport and that healthy livers can support a reasonable amount
of sinusoidal heterogeneity.

The reaction was first allowed to proceed in a linear manner with an infusion of
0.01 molar fraction of paclitaxel and a kinetic rate coefficient of & = 10,000 min™?.

Figure 8.8 shows the molar fraction of the metabolite as a function of time when o = «.

There are two regions in the transient regime: an initial fractal region exists up until
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Table 8.2: Flow rate as a function of the ¢ for a random permeability lattice.

o
(xk) (x1075 cm3/min)
0 2.63
0.25 2.54
0.5 2.28
0.75 1.81
1 0.0684

t = 0.01 min and then transitions to a linear region that persists between ¢ = 0.02 min
and ¢ = 0.06 min. The fractality of the initial rise is demonstrated by the power law

dependence of k£ on time (Fig. 8.9), where k(¢) was calculated from

k() = X4 (8.3)

where x(t) is the molar fraction of the metabolite, PAC-OH. The value of the power
exponent was equal to 1.762 + 0.005 (R? = 0.998). Therefore, the heterogeneous lat-
tice demonstrated fractal kinetics in the transient regime when the reaction proceeded
according to linear kinetics.

When the reaction instead followed Michaelis-Menten kinetics, with K3; = 2 x 1078
molar fraction and vmax = 10,000 min~!, the transient regime produced the dual be-
haviour predicted by the fractal Michaelis-Menten equation. The initial portion followed
a power law increase in the molar fraction and then transitioned to a linear increase
(Fig. 8.10). The power law exponent was equal to X = 11.6 & 0.2.

These results are consistent with those found for the fractal compartmental model
for mibefradil in Chapter 5. The spatial evolution of the molar fraction of paclitaxel on
the lattice shows the formation of islands of higher reaction rates (Fig. 8.11) as predicted
by the fractal Michaelis-Menten theory.

The results presented above were for the extreme case of ¢ = x. But are these
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Figure 8.8: Molar fraction x of the metabolite PAC-OH as a function of time for
a linear reaction on a lattice with ¢ = &.
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Figure 8.9: Initial fractal kinetics of the molar fraction x of the metabolite PAC-
OH showing the power law dependence of k& on time for the linear reaction on a
random permeability lattice.
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Figure 8.10: (a) Molar fraction of the metabolite PAC-OH as a function of time
for a Michaelis-Menten reaction on a random permeability lattice with o = . (b)
The initial power law increase, which transitions to (¢) a linear increase.
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Figure 8.11: Contour plot of the molar fraction of paclitaxel on a lattice with
random permeability (¢ = &), Michaelis-Menten kinetics (K = 2 x 107® and
Umax = 10,000 min™!, and a constant infusion of 0.01 molar fraction of the drug.
The snapshots were taken at 0.006, 0.016, 0.036, 0.064, 0.1, and 0.4 minutes.
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Table 8.3: Effect of the standard deviation ¢ of the permeability on the shape of
the molar fraction of PAC-OH curve.

Linear Reaction

MM Reaction

o h R? y R?
0.25 1.594 (0.006) 0.998  6.56 (0.08) 0.998
0.50 1.615 (0.006) 0.998  6.83 (0.07) 0.999
0.75 1.641 (0.006) 0.998  7.12 (0.05) 0.999
1.0 1.762 (0.005) 0.998  11.6 (0.2) 0.998

137

results also observed for less heterogeneous lattices? Table 8.3 shows that the effect of

increasing ¢ was to increase h in the linear case and to increase <y in the Michaelis-

Menten case. Decreasing Kjs in the Michaelis-Menten case resulted in a significantly

higher production of the metabolite in the early regime and then a drop to lower steady

state value (Fig. 8.12).
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Figure 8.12: The effect of K/ on the Michaelis-Menten reaction on a random
permeability lattice with o = x. From top to bottom: Ky = 2 x 107, Ky =
2x 1071 Ky =2x 10712 and Kpy =2 x 1078
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Figure 8.13: Lattice with p = 0.4. The grey bands are sinusoids and the white
spaces are hepatocytes.

Table 8.4: Flow rate as a function of the o for a percolation lattice.

p @ (x107° cm3/min)

1 2.63
0.9 1.96
0.8 1.18
0.7 0.774
0.6 0.517

8.4.3 Percolation Lattice

The same simulations were run for a percolation lattice in which the sinusoids were
removed randomly with probability p (Fig. 8.13). This lattice mimics the effects of
damage and scarring that occurs with cirrhosis. In this case, the architecture of the liver
is physically changed. The flow rate drops with p (Table 8.4), but not as drastically as
in the random permeability case. Because p is at or above the percolation threshold,
the pressure difference still drives flow through the lattice. However, some regions will

receive poor or no flow, which should have an effect on the rate of the reaction.
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Figure 8.14: Initial fractal kinetics of the molar fraction x of the metabolite
PAC-OH showing the power law dependence of k on time for a linear reaction on
a percolation lattice.

The simulation results were similar to those produced by the random permeability
lattice. The linear reaction was best characterized by transient fractal kinetics (Fig. 8.14),
while the Michaelis-Menten reaction showed evidence of fractal Michaelis-Menten kinetics
(Fig. 8.15). The spatial evolution of the molar fraction of paclitaxel when p = 0.6 (near
the percolation threshold) is shown in Fig. 8.16. In this case, the regions of reaction
show a more homogeneous distribution of paclitaxel than in the random permeability
lattice; however, there are now large areas with no metabolic activity at all.

These results suggest that even some permanent change in the tissue architecture pro-
duces significantly anomalous kinetics. The effect of changing the value of p is recorded
in Table 8.5. In the linear case, there is little difference in the h values. In the Michaelis-

Menten case, there is variation among the 7 values, but with no consistent pattern.
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Figure 8.15: (a) Molar fraction of the metabolite PAC-OH as a function of time
for a Michaelis-Menten reaction on a percolation lattice with p = 0.6. (b) The
initial power law increase, which transitions to (c) a linear increase.
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0.010
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Figure 8.16: Evolution of the molar fraction of paclitaxel on a percola-
tion lattice with probability p = 0.6 of each sinusoid being intact, at ¢ =
0.0004, 0.0012, 0.002, 0.0042, 0.008, 0.02 min.
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Table 8.5: Effect of p on the shape of the molar fraction of PAC-OH curve.

Linear Reaction

MM Reaction

p h R? v R?

0.9 1.678 (0.009) 0.995 7.14 (0.10) 0.996
0.8 1.658 (0.007) 0.996 7.96 (0.09) 0.999
0.7 1.646 (0.009) 0.996 7.30 (0.05) 0.998
0.6 1.646 (0.009) 0.996 6.68 (0.10) 0.996
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8.5 Conclusion

In this chapter, it was demonstrated that the aggregate behaviour of an ensemble of drug
molecules as represented by a fractal compartment can be reproduced at the level of the
functional unit of the organ. Because the behaviour at the smaller scale is similar to
that at the whole organ scale, this is an example of scaling. Two types of heterogeneity
were considered, corresponding to temporary and permanent damage to the liver tissue
architecture. Both were shown to lead to fractal and fractal Michaelis-Menten kinetics
under certain conditions, providing support for the theoretical predictions in Chapter 5
as well as the interpretation of the liver as an ensemble of islands of metabolic activity.

This work may be expanded in the future to model a percolation lattice with random
permeability, a three-dimensional lattice, and the zonation of enzyme activity within the
lobule. In addition, the dynamics of the liver architecture could be modeled such that

the causes of liver damage and the subsequent regeneration are included.
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Chapter 9

Conclusion

9.1 Summary

The main objective of the research presented in this thesis was to model the effects of
spatial and temporal heterogeneity on drug processes occurring within the body. This
was achieved using a combination of methodologies borrowed from physics (Table 9.1)
and the development of new pharmacokinetic theory.

The first new methodology presented was a technique for fitting the parameters of
a model to experimental data using a simulated annealing algorithm. The method per-
formed comparably to commercial software, and because of its independence on the initial
conditions, it was shown to be especially applicable to fractal compartmental models.
Second, a stochastic model was developed using a random walk model with both short-

term and long-term interactions between drug molecules. Finally, a physiologically-based

Table 9.1: Summary of models.

Model Characteristics Heterogeneity
Fractal Compartmental Deterministic, Continuous Spatial
CTRW Stochastic, Discrete Spatial, Temporal
Flow Network Deterministic, Discrete Spatial
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network model was constructed for the liver functional unit and was able to reproduce
the heterogeneous structure of both healthy and diseased livers using random and per-
colation lattices.

The main theoretical contribution of this thesis was the development of a fractal
Michaelis-Menten equation to describe saturable, enzyme-mediated reactions occurring
within heterogeneous and poorly-mixed environments. The model incorporates a fractal
reaction order that can be naturally interpreted in terms of the anatomy and physiology
of the liver. When incorporated into the compartmental framework, the fractal Michaelis-
Menten theory provided an improved fit to data for the cardiac drug mibefradil. The
theory of fractal kinetics under both simple and saturable conditions was supported by
simulations using both the interacting random walk model and the physiologically-based
network model.

Several mechanisms for generating and modeling concentration-time curves with long-
time power law tails were proposed, including fractal Michaelis-Menten kinetics, Lévy-
distributed trapping times, and the competition between two saturable processes.

To summarize, different methods from physics have been successfully applied to solve
problems in pharmacokinetics and to extract additional information about the behaviour

of pharmacokinetic systems.

9.2 Future Directions

The methods described in this thesis can be both expanded and applied to solve other
problems in pharmacokinetics. For example, additional types of temporary trapping
sites could be incorporated into the CTRW model to investiéate the effect of reservoirs
such as fat cells on the distribution of the drug at its target site. In addition, other types
of distributions could be used to model the trapping times.

The theory of fractal compartments can be applied to other tissues in the body. For

example, the kidney is responsible for the excretion of many drugs, and the venous and
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arterial trees feeding the kidney as well as the network of tubules that remove the urine
all approximate fractal trees. In addition, the branching nature of the bronchial tree
suggests that it could be modeled by a fractal compartment. Furthermore, different
types of tumours have been shown to have fractal structures.

Finally, a three-dimensional version of the flow network model could be constructed.
Eventually, this type of model could be developed for the major organs in the body as
well as for different types of tumours, and they could be all connected into a full-body
physiologically-based pharmacokinetic model. By incorporating the specific anatomi-
cal and physiological characteristics of a given patient, such a model could be used to
test the individual’s response to different therapeutic regimes in a virtual, noninvasive

environment.
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Appendix A

Fractals

A.1 Definition

In the past century, the concept of fractals has been developed to describe spatial or
temporal phenomena that are continuous but not differentiable. The term fractal was
coined by Benoit Mandelbrot [113] in 1975 from the latin word fractus, or “fragmented”.
Fractals are typically characterized by roughness on all scales, which can lead to proper-
ties like self-similarity, scaling, and a fractal dimension. Therefore, they are useful tools
for modeling disordered systems [24]. Fractals can be mathematical or natural entities,
and they are generally characterized by three properties: they are self-similar over many
scales, they can be generated by an iterative process, and their fractal dimension is not
equal to the Euclidean dimension.

An object is self-similar if it is invariant under both translation and dilation, such
that the smaller parts resemble the structure of the whole. Euclidean objects are only
invariant under translation. For example, when a circle is magnified, it begins to appear
more and more like a straight line. With fractal objects, however, continually increasing
the magnification simply reveals more and more fine structure that resembles that of the
whole. Not all self-similar objects are fractal, however, such as squares and triangles.

If a property L(r) is measured at resolution r and then compared to the value of the
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property at resolution ar, it is said to possess self-similarity if

L(ar) = kL(r), (A1)

where k is a proportionality constant. The solution to Eq. (A.1) is the scaling relationship

L(r) = (ar)“, (A.2)

where ¢ is the scaling exponent and a is a constant. This equation expresses how the
value of the property depends on the measurement resolution.

The scaling relationship has the form of a power law and thus exhibits some special
properties. It gives a straight line with slope & when plotted on a double-logarithmic
plot since

log L(r) = alog(r) + log A. (A.3)

Due to the dependence on the resolution, power laws do not single out any particular
value, unlike the mean of the Gaussian distribution. In addition, small irregularities at
small scales are reproduced as large irregularities at larger scales, and thus the variance
may also not exist. If different variables are scaled by different factors, the fractal is said
to be self-affine [169].

Fractals can also exist in time. In this case, the fluctuations of the value of a variable
as a function of time will resemble each other when examined over different time scales.
The time series is said to be generated by a fractal process.

A deterministic fractal is a mathematical entity that is exactly self-similar over a the-
oretically infinite range. A statistical (or random) fractal is only self-similar on average
and its elements are generated from a probability distribution rather than through an

exact deterministic law. For statistical fractals, it is the distribution of the measurement
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or property that is the same at different scales:
PDF [L(ar)] = PDF [kL(r)], (A.4)

where PDF[z] refers to the probability distribution function for the value z. In addition
to not being Euclidean, natural fractals cannot be strictly fractal, and hence statistical
fractals are most useful in modeling natural phenomena. Although there will always be
a lower and an upper cutoff for which the self-similarity of a natural object or process

holds, these cutoffs may be separated by several orders of magnitude.

A.2 Examples

The Koch curve and Sierpinski gasket, examples of deterministic fractals, are shown in
Figures A.2 and A.2, respectively. They can be generated through an iterative process
by successively applying a generator to an initiator. The initiator can be replaced by
smaller and smaller version of the generator (as in the case of the Koch curve), or it
can be assembled into larger and larger versions of itself (as in the case of the Sierpinski
gasket).

The initiator of the Koch curve is a straight line. The generator is formed by dividing
the line into three equal segments, then removing the middle segment and replacing it
by two copies that point upwards along an equilateral triangle. During an iteration, each
line segment is replaced by smaller and smaller copies of the generator. If the lengths of
the three segments are not equal but instead are randomly chosen at each iteration, a
statistical Koch curve is created.

The initiator for the Sierpinski gasket is a solid equilateral triangle. Each successive
step is formed by the union of three copies of the current object, resulting in a new object
that resembles the previous one but is twice the size. The gasket can also be formed by
starting with a solid triangle, removing the middle triangle, and then repeating iteratively

for all remaining triangles.
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(a)

(b)

(c)

(d)

Figure A.1: The Koch curve. The initiator is shown in (a) and the generator is
shown in (b). Configurations (c) and (d) are formed by replacing every line segment
by successively smaller copies of the generator.
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&v& ENGA
INENENENENINEN/ N

Figure A.2: The Sierpinski gasket. To generate the next iteration, three copies
of the object are arranged to form a figure that is similar in shape but twice the
size.
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An example of a fractal time series is the Weierstrass-Mandelbrot function [113]:

00 (1 _ oib"t) gidn
W)= > —(—b(g—_‘g)—)n——, (A.5)

n=—oo

where 1 < d < 2, b is a constant determining how much of the curve is visible for a
given range of ¢, and ¢, is an arbitrary phase. This function is continuous but has no
derivative at any point nor a characteristic scale. Setting ¢, = 0 and taking only the
real part gives [26]

cmp:zjl%ggﬂ. (A.6)

n=—co
Figure A.3 shows the shape of Eq. (A.6) for two different values of d. For values close
to d = 1, the fluctuations about the trend line are small, but as d approaches 2, the
fluctuations become more pronounced. Figure A.4 shows the Weierstrass-Mandelbrot
function plotted over two different time scales. The curves are self-affine since they are
superimposable if the coordinates ¢ and C are scaled by different factors. By choosing
a random phase ¢, over the interval (0,27), the equivalent statistical fractal can be

generated [26].

A.3 The Fractal Dimension

Different definitions for the fractal dimension have been developed to quantify the irreg-
ularity or complexity of an object or process. The similarity dimension d, describes the
number N of original curves that fit into the curve when it is magnified by a factor F.
For Euclidean objects,

N =XxP. (A7)

For deterministic fractal objects, the relation is

N=X%, (A.8)
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Figure A.3: The Weierstrass-Mandelbrot function C(t) with b = 1.5 and —1000 <
n < 1000. (a) D =1.3. (b) D =1.7.
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Figure A.4: The Weierstrass-Mandelbrot function C(t) with b = 1.5, D = 1.7,
and —1000 <7 < 1000. (a) 0<t<1. (b) 0<t<0.01.
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where ds can take non-integer values. Rearranging gives

__log N
* T logF

(A.9)

When the Koch curve is enlarged by a factor of 3, the new curve contains 4 of
the original curves and therefore d; = 1.26. Therefore, the Koch curve is a fractal
with embedding space D = 2, topological dimension dr = 1, and similarity dimension
ds = 1.26. It is more dense than a one-dimensional object but less dense than a two-
dimensional one, and the self-similarity dimension describes the ability of a line to fill
an area of space. For the Sierpinski gasket, when the object is enlarged by a factor of 2,
it contains three of the original curves, and thus d; = 1.58.

The fractal dimension can also be calculated from the scaling relationship, since [23]

r

1—a for 1D

df =42 - for 2D. (A.10)
3—a for3D
\

in Eq. (A.2).

Because the similarity dimension can only be calculated for deterministic fractals, a
more general fractal dimension called the Hausdorff-Besicovitch dimension [69], dy, has
been developed. It is also referred to as the capacity dimension or the fractal dimension
ds. In fact, Mandelbrot’s formal definition of a fractal was a set for which the Hausdorft-
Besicovitch dimension strictly exceeds the topological dimension [113]. It is calculated

as

d; = dy = lim 8N

A1
li 15 (A11)

where dp < df < D, N is the minimum number of balls of radius r required to cover
the object [69]. For deterministic fractals, df = ds. The fractal dimension is a summary

statistic that measures the overall complexity of an object or process. As such, it is
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an important descriptor when used in conjunction with other measures. The fractal
dimension of a statistical fractal is the same as that for its deterministic counterpart.
For a temporal series, the fractal dimension describes the relationship between signal
variance and the time scale [169].

If a group of objects or curves are characterized by the same exponent, they may
fall into a universality class, which suggests commonality in their underlying microscopic
mechanisms [180]. On the other hand, an object or process may not be described by
a unique fractal dimension but rather a set of fractal dimensions. This is called mul-
tifractality, and multifractal phenomena are typically associated with systems governed

by random multiplicative processes [179].

A.4 Fractals in Anatomy and Physiology

Anatomy is the branch of morphology that deals with the structure of organisms, and
physiology is the branch of biology that deals with the function and activities of those
structures. Many anatomical structures have fractal characteristics, and a wide range of
fractal processes have been identified in physiology.

One of the most prominent fractal structures in the body is the dichotomously branch-
ing tree (Fig. A.4), whose vessels become successively shorter and narrower to most effec-
tively their embedding space. Such a pattern is found in the blood vessels supplying the
heart [22], lung [80], liver [57], kidney [61], and retina [120] as well as in the branches of
the bronchial tree [12, 78] and the dendrite arbors of neurons [158]. It has even been sug-
gested that fractal geometry such as the hierarchical tree is a biological design principle
that maximizes efficiency and functioning [192].

Fractal geometry has also proven to be an appropriate tool for measuring the irreg-
ularity and complexity of tissues over many scales, from the organization of cells at the
organ and bone level [36, 57] down to the surface of cells [89] and the distribution of

protein aggregates in the membrane [50], the organization of the cytoplasm [49, 191]
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Figure A.5: A fractal tree with dichotomous branching. At each level, both the
radius and the length of the branch are reduced.

and the nucleus [99], and the structure of individual proteins [33] and RNA [154]. Fur-
thermore, fractals have been found to characterize the shape of tumours [45, 40]. The
fractal dimension may even be related to the severity of disease or injury of a tissue. For
example, Moal et al. [127] found that the fractal dimension of the liver increases with
increasing fibrosis, and Spillman et al. [178] used the fractal dimension to characterize
the level of malignancy of a cancer.

Examples of statistical fractals in physiology include ion channel kinetics [102], reg-
ulation of renal blood pressure and flow [116], fluctuations in the EEG signal [203] and
the heartbeat [66], and the volume and duration of consecutive breaths [54]. These time
series are characterized by long-range correlations, which may contribute to the adapt-
ability necessary for the health of an individual. In fact, the fractal dimension may prove
to be a quantitative tool for assessing an individual’s level of risk for a particular dis-
ease, monitoring the individual’s health, and forecasting outcomes [65]. Thus, disease or
a physiologic “disorder” may in fact be related to an increase in mathematical order and
a decrease in the fractal characteristics of the system. Finally, because all of the above

examples are natural objects and phenomena, their fractal characteristics only exist over
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a finite size or time scale.
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